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Preface 

Malicious programs present an increasing threat to the privacy of sensitive data and 
the availability of critical services. As Internet connectivity exploded and online ser­
vices have become omnipresent, malware has targeted all aspects of the cyberworld. 
Driven by profit, malware authors have sharpened their skills to attack all online 
services, from banking to social networking to instant messaging, with increased 
frequency and sophistication. 

This book captures recent advances in the defense against all types of threats, 
and the chapters reflect a diversity of defensive techniques. Chapter 1 presents a 
detailed view of the threat landscape and analyzes the malware trends. The remaining 
chapters are organized into themes corresponding to the various malware threats. 

Chapters 2-5 present techniques for analyzing existing programs to determine 
their trustworthiness, as well as techniques for armoring programs against remote at­
tacks. Chapter 2 introduces robust approaches to the disassembly and static analysis 
of obfuscated binaries, including obfuscated malware, while Chapter 3 describes a 
static analysis to recover high-level variables and data structures from binaries. Tech­
niques that characterize the behavioral and structural properties of binary code are 
used to generate semantically-rich descriptions of malware in Chapter 4. New ap­
proaches for the detection and prevention of SQL injection attacks against database-
driven web applications are presented in Chapter 5. 

The second part of the book (chapters 6-9) tackles the problem of distributed 
threats and the challenge of distributed detection. Network containment of worms 
(Chapter 6) complements the host-based self-healing architecture of Sting (Chap­
ter 7) to provide end-to-end defenses against fast Internet-scale worm attacks. Chap­
ter 8 presents the inner workings of botnets, the large networks of infected hosts 
under the control of a remote attacker. Chapter 9 analyzes the benefits of cooperation 
between network-based and host-based intrusion detectors and provides practical 
guidelines for obtaining the maximum detection rate out of a cooperative setup. 

Targeted and stealthy threats meet their match in Chapters 10 and I I . Shadow 
honeypots in Chapter 10 combine the power of anomaly detectors with the preci­
sion of honeypots to detect targeted attacks. Statistical methods for binary content 
analysis are then used in Chapter 11 to detect malware hiding in document files. 



VI Preface 

The last part of the book presents new techniques for constructing trustworthy 
services and applications from the ground up. Pioneer in Chapter 12 can verify the 
correct execution of a program on an untrusted remote host. Chapter 13 explains 
the principles of secure information flow analysis, with the goal of proving that a 
program does not leak sensitive information. 

We are grateful to the authors appearing in this edited volume for their contribu­
tions to the field of malware detection, in all of its aspects, and for striving to make 
the Internet a safer, more trustworthy place. 

Mihai Christodorescu 
Somesh Jha 

Douglas Maughan 
Dawn Song 
Cliff Wang 
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Introduction 

Shared resources, such as the Internet, have created a highly interconnected cyber-
infrastructure. Critical infrastructures in domains such as medical, power, telecom­
munications, and finance are highly dependent on information systems. These two 
factors have exposed our critical infrastructures to malicious attacks and accidental 
failures. Disruption of services caused by such undesirable events can have catas­
trophic effects, including loss of human life, disruption of essential services, and 
huge financial losses. For example, the outbreak of the CodeRed virus infected more 
than 359,000 hosts, resulting in financial losses of approximately 2.6 billion dol­
lars [10]. Given the devastating effect malicious code can have on our cyber infras­
tructure, identifying and containing malicious programs is an important goal. 

A malware is a program that has malicious intent. Examples of malware are 
viruses, trojans, and worms. Malware is usually classified [9] according to its propa­
gation method and goal into the following categories: 

• viruses are programs that self-replicate within a host by attaching themselves to 
programs and/or documents that become carriers of the malicious code; 

• worms self-replicate across a network; 
• trojan horses masquerade as useful programs, but contain malicious code to at­

tack the system or leak data; 
• back doors open the system to external entities by subverting the local security 

policies to allow remote access and control over a network; 
• spyware is a useful software package that also transmits private user data to an 

external entity. 

A malware detector is a system that attempts to identify malware. A virus scanner 
uses signatures and other heuristics to identify malware, and thus is an example of 
a malware detector. Given the havoc that can be caused by malware [4], malware 
detection is an important goal. 

The goal of an malware writer (hacker) is to modify or morph their malware to 
evade detection by a malware detector. A common technique used by malware writ­
ers for evading detection is program obfuscation [11]. Polymorphism and metamor-
phism are two common obfuscation techniques used by malware writers. In order 
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to evade detection, a virus morphs itself by encrypting its malicious payload and 
decrypting it during execution. A polymorphic virus obfuscates its decryption loop 
using several transformations, such as n op-insertion, code transposition (changing 
the order of instructions and placing jump instructions to maintain the original se­
mantics), and register reassignment (permuting the register allocation). Metamorphic 
viruses attempt to evade detection by obfuscating the entire virus. When they repli­
cate, these viruses change their code in a variety of ways, such as code transposition, 
substitution of equivalent instruction sequences, change of conditional jumps, and 
register reassignment [8,12,13]. 

Addition of new behaviors to existing malware is another favorite technique 
used by malware writers. For example, the Sobig.A through Sobig.F worm variants 
(widespread during the summer of 2003) were developed iteratively, with each suc­
cessive iteration adding or changing small features [5, 6, 7]. Each new variant man­
ages to evade detection either through the use of obfuscations or through adding more 
behavior. The recent recurrence of the Netsky and Beagle worms (both active in the 
first half of 2004) are also examples of how adding new code or changing existing 
code creates new undetectable and more malicious variants [2, 3]. For example, the 
Beagle worm shows a series of "upgrades" from version A to version C that include 
the addition of a backdoor, code to disable local security mechanisms, and function­
ality to better hide the worm within existing processes. A quote from [3] summarizes 
the challenges worm families pose to malware detectors: 

Arguably the most striking aspect of Beagle is the dedication of the au­
thor or authors to refining the code. New pieces are tested, perfected, and 
then deployed with great forethought as to how to evade antivirus scanners 
and how to defeat network edge protection devices. 

Commercial malware detectors (such as virus scanners) use a simple pattern 
matching approach to malware detection, i.e., a program is declared as malware if it 
contains a sequence of instructions that is matched by a regular expression. A recent 
study demonstrated that such malware detectors can be easily defeated using simple 
program obfuscations [1], which are already being used by hackers. The basic defi­
ciency in the "pattern matching" approach to malware detection is that they ignore 
the semantics of instructions. Since the pattern-matching algorithm is not very re­
silient to slight variations, these malware detectors have to use different patterns for 
detecting two malware that are slight variations of each other. This is the reason that 
the signature database of a commercial virus scanner has to be updated frequently. 
The paper by Christodorescu and Jha [1] demonstrates that in the field of malware 
detection a fundamental shift in direction is required. If malware detectors keep re­
lying on simple techniques (such as pattern matching), they are bound to fall behind 
in the "arms race". 

In order to address these challenges in malware detection, a workshop on Mal­
ware Detection was held on August 10-11, 2005 at SRI International, Arlington, 
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Virginia.' The workshop was co-sponsored by the Army Research Office (ARO) and 
Department of Homeland Security (DHS). Several experts in the field of malware 
detection attended the workshop. Presentations covered various topics, such static 
analysis, distributed threat detection, and novel techniques for building trustworthy 
services. The papers in this edited volume represent the cutting edge techniques in 
detection malware. 
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1.1 Overview 

Speed, stealth, and purpose of malware [1] threats and countermeasures are 
evolving quickly. This chapter describes these three facets of current mal­
ware threats, and describes a few countermeasures emerging to better ad­
dress such threats. 

1.2 Evolution of Threats 

Defenders currently have a much smaller window from discovery of a 
vulnerability to release of malware exploiting that vulnerability. Further, a 
number of malware threats released within the last five years have been 
effectively designed to propagate far faster than threats released in previous 
periods. Yet more disconcerting, malware authors and distributors are in­
creasingly focused on collection of private and directly valuable informa­
tion, both in spyware [2] and other forms of malware, and they have a 
growing number of techniques for hiding themselves. 
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1.2.1 Evolution of Threat Speed 

The average time between announcement of a computer system security 
flaw and appearance of malicious code that takes advantage of the flaw 
declined from 281 days in 1999 to 10 days in 2004 [15]. Recent threats are 
also faster in propagation rate. By way of example, on January 25, 2003 an 
SQL based worm commonly referred to as Slammer [18] infected 90% of 
vulnerable servers within the first 10 minutes of propagation [37]. Similarly, 
on July 19, 2001 in less than 14 hours more than 359,000 computers were 
infected with a variant of the Code-Red worm [32]. In contrast, the Morris 
Worm of 1988 [6] spread over the course of days [26]. Given that the cur­
rent average time between the disclosure of a vulnerability and the release of 
an associated exploit is 6 days, and that the average patch-release time is 54 
days [44], patching is largely ineffective against new threats. 

1.2.2 Evolution of Tlireat Purpose 

Malicious code for profit remains on the rise [44], as are spyware and other 
threats to confidential information. Between January 1 and June 30, 2005, 
malicious code that exposed confidential information represented 74% of 
the top 50 malicious code samples reported to Symantec, up from 54% 
during the previous six months [44], and 44% between January 1 and June 
30, 2004 [43]. Spyware is now among the most pervasive and fastest 
growing forms of malware. In a recent study by NCSA and AOL, 80% of 
systems scanned were infected by spyware [12]. Even by conservative 
standards of cataloging spyware, Symantec now lists 221 families of spy-
ware that have appeared in and since 2003 [7]. To contrast the spyware 
threat with viruses and worms, although thousands of variants of viruses and 
worms are found each quarter, only 830 families of viruses and worms were 
discovered between January 1, 2003 and June 30, 2005 [44]. In short, al­
though anti-spyware offerings did not appear until 2000 [8], the rate at 
which new families of spyware are being created is now nearing the rate at 
which new viruses are being created. Moreover, by laying in waiting at well 
advertised sites and bundling itself with desirable downloads such as 
Browser Helper Objects, and other software that users intentionally or un­
intentionally download, it's easier to broadcast some forms spyware to very 
broad distributions of victims immediately, rather than waiting through the 
first portion of s-shaped infection growth curves experienced by viruses and 
worms. Given these propagation vectors and threat speeds described above, 
along with the number of unprotected systems and systems that update their 
defenses infrequently, malware authors have succeeded in compromising 
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countless systems. In fact, police recently arrested three people accused of 
compromising 100,000 systems [21]. Moreover, given the changing mo­
tives described above, it is very common to establish a persistent presence 
called a "hot" on such compromised machines for financial gain. Once such 
a bot is installed, its owner can steal confidential information, use the ma­
chine for spam distribution, falsely increasing hit rates on advertisements to 
increase hit rate-based ad revenue, or simply sell the bot to others for such 
illicit uses. We recently reported evidence of underground selling of bot 
networks and reported identifying an average of over 10,000 bots per day 
over a six month period [44]. 

1.2.3 Evolution of Threat Stealth 

Such financial motives give direct financial value to the ability to hide a 
persistent presence to prevent detection. Rootkits [9] are among the tools 
which malware may use to persistently hide itself as well as installed bots. 
This is a growing area of interest for malware authors, and several tech­
niques have recently been published showing how to more effectively hide 
persistent malware from detection by security software [10, 41]. Further, as 
the number of variants of viruses and worms continues to nearly double 
every six months [44], the risk of previously unseen malware evading de­
tection continues to increase substantially each quarter. Moreover, as the 
number of vulnerabilities continues to grow so does the risk that someone 
might quietly and non-publicly find a new, unpublished vulnerability and 
create malware exploiting the vulnerability on large scale before most de­
fenders are able to find and mitigate the vulnerability. Last, as defenses and 
detection schemes have evolved to better protect operating systems and 
standard services, many malware authors have focused their attention on 
higher level web applications where fewer defenses have existed histori­
cally, resulting in a countless number of incidents with sweeping loss of 
privacy [31, 45]. 

1.3 Evolution of Countermeasures 

This section describes a sampling of recently emerging countermeasures for 
fast spreading and previously unseen threats, as well as spyware. Since 
emergence of fast spreading threats such as Slammer and Code Red, tech­
niques and technologies have emerged to better mitigate risks fi-om such fast 
spreading threats. Various forms of rate-limiting, such as Virus Throt­
tling [50], were among early countermeasures proposed to slow such rapid 
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and potentially entirely-unknown threats. Other countermeasures, however, 
don't merely slow the threat but rather completely block previously unseen 
threats from actually infecting protected machines. Given the strong indus­
try emphasis on signature-based detection for intrusion detection and 
anti-virus, malware authors and distributors have found great value in lev­
eraging previously unseen threats to evade detection. For this reason, pro­
active approaches will grow to be an increasingly important tool in the se­
curity arsenal. However, broadening and generalizing protection against 
many classes of previously unseen threats is not sufficient for all threats. 
More and more spyware threats are employing self-updating to add fiinc-
tionality and change their signature faster than security vendors can respond 
with traditional techniques; moreover, they have distribution vectors that 
are vastly different from traditional malware. Thus, security firms are hav­
ing to devote substantial effort addressing these unique behaviors, including 
building farms of spyware to rapidly harvest new spyware variants as they 
update themselves. Further, when threats such as rootkits, which are be­
coming increasingly stealthy in establishing and maintaining covert and 
persistent presence, are coupled with either a previously unseen threat or the 
exceptionally broad distribution vectors of spyware, the result is a blended 
threat that is exceedingly difficult to detect at time of compromise, and can 
be exceedingly difficult to detect and remove after compromise. For these 
reasons, the next sections focus on countermeasures for previously unseen 
malware threats in general, then specific attention to countermeasures for 
rootkits and spyware. 

1.3.1 Countermeasures for Previously Unseen Threats 

Countermeasures for previously unseen threats are addressed below first for 
detecting previously unseen threats against already known vulnerabilities 
and identifying previously unknown vulnerabilities, and then for detecting 
previously unseen threats without foreknowledge of the vulnerability. 

Blocking Previously Unseen Threats Against Already Known Vulnerabilities 

Techniques such as Generic Exploit Blocking (GEB) [33] and Microsoft's 
Shield effort [47] were conceived to provide protection against previously 
unseen threats. These techniques use analysis of a known vulnerability to 
produce a signature that is not specific to any single instance of malware 
exploiting the vulnerability. Thus, such a properly written signature can 
properly detect all potential attacks against a given vulnerability. This is in 
contrast with traditional antivirus and IDS heuristics which may be able to 
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detect a percentage of new threats, but cannot guarantee complete detection. 
However, these approaches include a number of challenges in implementa­
tion, including the following three challenges. 

- First, the signatures must be specified in a language and processed by a 
scanning engine that facilitate "performanf' scanning, either in the 
sense of high line-speeds, as is the constraint for traditional intrusion 
detection and network level anti-virus systems, or in the sense of low 
CPU burden. 

- Second, the system must maintain low false positives while producing 
high true positives. 

- Third, even though these approaches do not require prior knowledge of 
the malware, they still require prior knowledge of the vulnerability. 
The luxury of that prior knowledge is not always available. 

The next two sections describe techniques for identifying previously 
unknown vulnerabilities, and techniques for detecting previously unseen 
threats without the luxury of knowledge of the vulnerability. 

Identifying Previously Unknown Vulnerabilities 

Given that the above techniques rely on prior knowledge of vulnerabilities, 
they would be substantially more valuable if it was possible to better iden­
tify vulnerabilities in software before malware was created to exploit those 
vulnerabilities. A form of random test case generation known as Fuzzing [5] 
is among the most common techniques for finding vulnerabilities. More 
recently, static analysis of the target software itself has been used to intel­
ligently generate test cases more efficiently identifying vulnerabilities likely 
to exist near comer cases in target software execution [16, 23]. Although 
these techniques currently require source code, substantial progress has 
been made in extracting models from executable code for model checking 
and other static analysis without source code [13, 14]. However, in dis­
cussing static analysis of binaries, it is important to note that such tools can 
be used very effectively by creators of malware just as easily as they can be 
used by the security community [30]. 

Identifying Previously Unseen Threats without Prior Knowledge of 
Vulnerabilities 

In this section we describe several emerging techniques that do not require 
prior knowledge of vulnerabilities for identifying previously unseen threats. 
These techniques include behavior based techniques, honeypots, anomaly 
detection, fault analysis, and correlation. Dynamic analysis of program 
behavior within a host is not new [11]. Behavior analysis was extended with 
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various forms of anomaly detection [25] to improve generalization to pre­
viously unseen attacks while reducing false positives. However, some of 
these techniques are vulnerable to evasion [30]. More recent techniques 
include: 

Model Extraction: 
- Machine learning of packet payload statistical profiles to model nor­

mality for anomaly correlation 
- Machine learning of state models of run-time behavior to detect 

run-time deviation from model 
- Using static analysis to extract models for run-time monitors that de­

tect deviation from model 

Automated Signature Inference, extracting signatures: 
- From static samples in controlled environments 
- From taint analysis of fault inducing inputs in production systems 
- From correlation of fault inducing inputs in production systems 
- From analysis of fault inducing inputs in honeypots shadowing pro­

duction systems 
- Via correlation for longest common byte sequences in honeypot traffic 

and other inputs given above 
- Via correlation for trees of token subsequences to reduce false posi­

tives 

Model Extraction 

Having a model of how a system should behave can be helpful in detecting 
new threats that cause misbehavior. Even if there is no prior knowledge of 
the threat, such models make detection of the misbehavior possible, therein 
facilitating potential remedies. 

One approach for modeling how a system should behave involves 
learning the statistical composition of traffic coming and going from a 
system. With such statistical models, anomalies are detectable, and it may 
even be possible to correlate commonality between anomalies occurring at a 
distributed set of sites [48]. 

For stateful systems, including many software applications that query 
database systems, it is possible to build more precise models of normal 
behavior by modeling the behavior in terms of state machines. This works 
best when a full set of normal queries can be learned quickly so that after 
such a learning period, the system can alert on any anomalies in different 
fields of queries via statistical approaches without intolerable false posi-
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tives. Recent progress demonstrated this possible for at least one web based 
database application [46]. 

However, not all anomalies are misbehaviors. Since some rare and 
anomalous behaviors are legitimate behaviors, there are advantages in ap­
plying static analysis to the software to build a model of how the software 
should behave, and detecting deviations from such models [24]. 

Automated Signature Inference 

Once a new, previously unseen threat is detected, extracting a signature of 
that threat and disseminating that signature to others may help others better 
protect themselves. Of course, automated signature extraction is not new in 
controlled environments [27], and there has been tremendous progress re­
cently in automated signature extraction in the "wild" of less controlled 
environments such as production systems, honeypots, and other threat col­
lection systems. 

One technique for automatically extracting signatures fi-om production 
systems leverages analysis of fault inducing inputs. By using tainting, it is 
possible to trace backwards from a fault to the fault inducing input [35]. 

Similarly, without runtime tracing, it is possible to capture the set of in­
puts preceding a fault or disallowed state, and send those inputs to other 
parties for correlation with other inputs preceding and not preceding 
faults [19]. 

Moreover, a third approach to fault handling leverages parallel execution 
of inputs on production systems and more controlled systems to provide the 
ability to not only detect previously unseen threats, but to dynamically 
generate and dynamically apply curative patches and allow the system to 
continue operation despite receipt of what would have been fault inducing 
input [38, 39]. In this model, the more controlled system, is a honeypot 
shadowing the production system. The honeypot executes the inputs first, 
and if a fault occurs, an overarching control system attempts to mutate the 
executable around the region of the fault to produce a variant of the ex­
ecutable that does not fault on the input. Once such a curative patch is 
generated and applied to the production system, the production system is 
allowed to process the input which caused the fault in the controlled system 
but does not cause faults in the dynamically patched system. 

Automated signature extraction has also been developed for less con­
trolled honeypot environments to function without requiring either faults as 
triggers or production systems to shadow. One version of this approach 
works by using longest common sequences in message exchanges [28]. 

Such techniques have been improved in systems such as Polygraph by 
using trees of token sequences to reduce false positives [34]. Moreover, 
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such techniques have been further improved in a similar system, Earlybird, 
to support processing traffic at speeds up to 200 Mbps [40]. More recently, a 
similar system, "DACODA" demonstrated detection of more than a dozen 
worms, with no prior knowledge of the worms and no false positives over a 
six month period [20]. Maintaining negligible false positives is critical since 
preventing threats so rapidly propagating as Warhol Worms [42] requires 
both rapid signature inference and rapid blocking, and system owners and 
operators have little tolerance for blockage of legitimate traffic. Regrettably 
though, DACODA does not have the line speed scalability of Earlybird. 

1.3.2 Countermeasures for Rootkit Detection 

As described in the "Evolution of Threats," above, malware authors and 
distributors currently have many vectors for establishing access to a system, 
and direct financial motives for establishing and maintaining undetected 
persistent presence on compromised systems, effectively hiding themselves 
indefinitely. Recently, some techniques have begun to emerge for detecting 
the stealth threats by searching for side effects of the stealthing mechanism 
(e.g. changes made to various operating system structures, checking for 
unusual hooks in the operating system kernel, etc.). One technique uses 
static analysis of the operating system to identify critical regions of memory 
and valid values for those regions, and provides those results to a run time 
kernel integrity monitor [22, 36]. Another technique uses static analysis to 
construct a model of a module's programmed behavior to determine at load 
time whether or not the module will behave like a rootkit at runtime [29]. 
Though not mentioned by the authors, similar techniques may also have 
utility in detection and classification of spy ware. 

1.3.3 Countermeasures for Spyware 

However, spyware also requires technologies orthogonal to load time 
analysis, categorization, and run time rootkit detection. Perhaps most im­
portantly, the rate of spyware evolution, the rate of spyware distribution, 
and the means of spyware distribution broadcast fi-om thousands to millions 
of websites to countless unsuspecting users, practically all require the se­
curity industry to more actively seek out these threats on the internet. Such 
techniques have been proposed and implemented by Microsoft [49], We-
bRoot [3], and others. Moreover, spyware defenses are now in or entering 
the market as either standalone offerings, or as offerings integrated with 
anti-virus and other product offerings. 
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1.4 Summary 

The speed, stealth, and purpose of malware are evolving rapidly. Over re­
cent years, substantial technology has emerged to help mitigate risks of fast 
spreading threats, and a variety of technologies have emerged to begin to 
help mitigate risks from previously unseen threats. However, malware is 
becoming both increasingly stealthy, and increasingly malicious in the 
sense of collection of private and directly valuable personal information. 
Gone are the relatively innocent glory days where fame and infamy were 
primary motivators behind construction of most malware seen. We've now 
entered the era where malicious collection of private and directly valuable 
personal information from unsuspecting users is a billion dollar [4] illicit 
industry. 
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Summary. The classification of an unknown binary program as malicious or benign requires 
two steps. In the first step, the stream of bytes that constitutes the program has to be trans­
formed (or disassembled) into the corresponding sequence of machine instructions. In the 
second step, based on this machine code representation, static or dynamic code analysis tech­
niques can be applied to determine the properties and function of the program. 

Both the disassembly and code analysis steps can be foiled by techniques that obfuscate 
the binary representation of a program. Thus, robust techniques are required that deliver re­
liable results under such adverse circumstances. In this chapter, we introduce a disassemble 
technique that can deal with obfuscated binaries. Also, we introduce a static code analysis 
approach that can identify high-level semantic properties of code that are difficult to conceal. 

2.1 Introduction 

Code analysis takes as input a program and attempts to determine certain character­
istics of this program. In particular, the goal of security analysis is to identify either 
malicious behavior or the presence of security flaws, which might be exploited to 
compromise the security of a system. In this chapter, we focus particularly on the 
security analysis of binary programs that use the Intel x86 instruction set. However, 
many of the concepts can also be applied to analyze code that exists in a different 
representation. 

In the first step of the analysis, the code has to be disassembled. That is, we want 
to recover a symbolic representation of a program's machine code instructions from 
its binary representation. While disassembly is straightforward for regular binaries, 
the situation is different for malicious code. In particular, a number of techniques 
have been proposed that are effective in preventing a substantial fraction of a binary 
program from being disassembled correctly. This could allow an attacker to hide ma­
licious code from the subsequent static program analysis. In Section 2.2, we present 
binary analysis techniques that substantially improve the success of the disassembly 
process when confronted with obfuscated binaries. Using control flow graph infor­
mation and statistical methods, a large fraction of the program's instructions can be 
correctly identified. 



20 Giovanni Vigna 

Based on the program's machine code, the next step is to identify code sequences 
that are known to be malicious (or code sequences that violate a given specification of 
permitted behavior). Often, malicious code is defined at a very low level of abstrac­
tion. That is, a specification, or signature, of malicious code is expressed in terms of 
byte sequences or instruction sequences. While it is efficient and easy to search a pro­
gram for the occurrence of specific byte strings, such syntax-based signatures can be 
trivially evaded. Therefore, specifications at a higher level are needed that can char­
acterize the intrinsic properties of a program that are more difficult to disguise. Of 
course, suitable analysis techniques are required that can identify such higher-level 
properties. Moreover, these techniques have to be robust against deliberate efforts of 
an attacker to thwart analysis. 

Code analysis techniques can be categorized into two main classes: dynamic 
techniques and static techniques. Approaches that belong to the first category rely 
on monitoring execution traces of an application to identify the executed instructions 
and their actions, or behavior. Approaches that belong to the second category analyze 
the binary structure statically, parsing the instructions as they are found in the binary 
image and attempting to determine a (possibly over-approximated) set of all possible 
behaviors. 

Both static and dynamic approaches have advantages and disadvantages. Static 
analysis takes into account the complete program, while dynamic analysis can only 
operate on the instructions that were executed in a particular set of runs. Therefore, 
it is impossible to guarantee that the whole executable with all possible actions was 
covered when using dynamic analysis. On the other hand, dynamic analysis assures 
that only actual program behavior is considered. This eliminates possible incorrect 
results due to overly conservative approximations that are often necessary when per­
forming static analysis. 

In Section 2.3, we introduce our static analysis approach to find pieces of code 
that perform actions (i.e., behave) in a way that we have specified as malicious. More 
precisely, we describe our application of symbolic execution to the static analysis of 
binaries. 

2.2 Robust Disassembly of Obfuscated Binaries 

In this section, we introduce our approach to robust disassembly when facing ob­
fuscated, malicious binaries. The term obfuscation refers to techniques that preserve 
the program's semantics and functionality while, at the same time, making it more 
difficult for the analyst to extract and comprehend the program's structures. In the 
context of disassembly, obfuscation refers to transformations of the binary such that 
the parsing of instructions becomes difficult. 

In [13], Linn and Debray introduced novel obfuscation techniques that exploit 
the fact that the Intel x86 instruction set architecture contains variable length in­
structions that can start at arbitrary memory address. By inserting padding bytes at 
locations that cannot be reached during run-time, disassemblers can be confused to 
misinterpret large parts of the binary. Although their approach is limited to Intel x86 
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binaries, the obfuscation results against current state-of-the-art disassemblers are re­
markable. 

In general, disassemblers follow one of two approaches. The first approach, 
called linear sweep, starts at the first byte of the binary's text segment and proceeds 
from there, decoding one instruction after another. It is used, for example, by GNU's 
objdump [8]. The drawback of linear sweep disassemblers is that they are prone to 
errors that result from data embedded in the instruction stream. The second approach, 
called recursive traversal, fixes this problem by following the control flow of the pro­
gram [4, 15]. This allows recursive disassemblers such as IDA Pro [7] to circumvent 
data that is interleaved with the program instructions. The problem with the second 
approach is that the control flow cannot always be reconstructed precisely. When the 
target of a control transfer instruction such as a jump or a call cannot be determined 
statically (e.g., in case of an indirect jump), the recursive disassembler fails to an­
alyze parts of the program's code. This problem is usually solved with a technique 
called speculative disassembly [3], which uses a linear sweep algorithm to analyze 
unreachable code regions. 

Linn and Debray's approach [13] to confuse disassemblers are based on two main 
techniques. First, junk bytes are inserted at locations that are not reachable at run­
time. These locations can be found after control transfer instructions such as jumps 
where control flow does not continue. Inserting junk bytes at unreachable locations 
should not affect recursive disassemblers, but has a profound impact on linear sweep 
implementations. 

The second technique relies on a branch function to change the way regular pro­
cedure calls work. This creates more opportunities to insert junk bytes and misleads 
both types of disassemblers. A normal call to a subroutine is replaced with a call to 
the branch function. This branch function uses an indirect jump to transfer control to 
the original subroutine. In addition, an offset value is added to the return address of 
the subroutine, which has been saved on the stack as part of the subroutine invoca­
tion. Therefore, when the subroutine is done, control is not transfered to the address 
directly after the call instruction. Instead, an instruction that is a certain number of 
bytes after the call instruction is executed. Because calls are redirected to the branch 
function, large parts of the binary become unreachable for the recursive traversal 
algorithm. As a result, recursive traversal disassemblers perform even worse on ob­
fuscated binaries than linear sweep disassemblers. 

When analyzing an obfuscated binary, one cannot assume that the code be gen­
erated by a well-behaved compiler. In fact, the obfuscation techniques introduced by 
Linn and Debray [13] precisely exploit the fact that standard disassemblers assume 
certain properties of compiler-generated code that can be violated without chang­
ing the program's functionality. However, in general, certain properties are easier to 
change than others and it is not straightforward to transform a binary into a func­
tionally equivalent representation in which all the compiler-related properties of the 
original code are lost. When disassembling obfuscated binaries, we require that cer­
tain assumptions are valid. 

First of all, we assume that valid instructions must not overlap. An instruction is 
denoted as valid if it belongs to the program, that is, it is reached (and executed) at 
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run-time as part of some legal program execution trace. Two instructions overlap if 
one or more bytes in the executable are shared by both instructions. In other words, 
the start of one instruction is located at an address that is already used by another 
instruction. Overlapping instructions have been suggested to complicate disassembly 
in [5]. However, suitable candidate instructions for this type of transformation are 
difficult to find in real executables and the reported obfuscation effects were minimal 
[13]. 

The second assumption is that conditional jumps can be either taken or not taken. 
This means that control flow can continue at the branch target or at the instruction 
after the conditional branch. In particular, it is not possible to insert junk bytes at the 
branch target or at the address following the branch instruction. Linn and Debray [13] 
discuss the possibility to transform unconditional jumps into conditional branches 
using opaque predicates. Opaque predicates are predicates that always evaluate to 
either true or false, independent of the input. This would allow the obfuscator to 
insert junk bytes either at the jump target or in place of the fall-through instruction. 
However, it is not obvious how to generate opaque predicates that are not easily 
recognizable for the disassembler. Also, the obfuscator presented in [13] does not 
implement this transformation. 

In addition to the assumptions above, we also assume that the code is not nec­
essarily the output of a well-behaved compiler. That is, we assume that an arbitrary 
amount of junk bytes can be inserted at unreachable locations. Unreachable locations 
denote locations that are not reachable at run-time. These locations can be found af­
ter instructions that change the normal control flow. For example, most compilers 
arrange code such that the address following an unconditional jump contains a valid 
instruction. However, we assume that an arbitrary number of junk bytes can be in­
serted there. Also, the control flow does not have to continue immediately after a 
call instruction. Thus, an arbitrary number of padding bytes can be added after each 
call. This is different from the standard behavior where it is expected that the callee 
returns to the instruction following a call using the corresponding return instruction. 
More specifically, in the x86 instruction set, the c a l l operation performs a jump 
to the call target and, in addition, pushes the address following the call instruction 
on the stack. This address is then used by the corresponding r e t instruction, which 
performs a jump to the address currently on top of the stack. However, by redirecting 
calls to a branch function, it is trivial to change the return address. 

Given the assumptions above, we have developed two classes of techniques: gen­
eral techniques and tool-specific techniques. General techniques are techniques that 
do not rely upon any knowledge on how a particular obfuscator transforms the bi­
nary. It is only required that the transformations respect our assumptions. Our general 
techniques are based on the program's control flow, similar to a recursive traversal 
disassembler. However, we use a different approach to construct the control flow 
graph, which is more resilient to obfuscation attempts. Program regions that are not 
covered by the control flow graph are analyzed using statistical techniques. 

An instance of an obfuscator that respects our assumptions is presented by Linn 
and Debray in [13]. By tailoring the static analysis process against a particular tool, 
it is often possible to reverse some of the performed transformations and improve the 
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analysis results. For more information on how we can take advantage of tool-specific 
knowledge when disassembling binaries transformed with Linn and Debray's ob-
fuscator, please refer to [11]. In the following, we only concentrate on the general 
disassembly techniques. 

2.2.1 Function Identification 

The first step when disassembling obfuscated programs is to divide the binary into 
functions that can then be analyzed independently. The main reason for doing so is 
run-time performance; it is necessary that the disassembler scale well enough such 
that the analysis of large real-world binaries is possible. 

An important part of our analysis is the reconstruction of the program's control 
flow. When operating on the complete binary, the analysis does not scale well for 
large programs. Therefore, the binary is broken into smaller regions (i.e., functions) 
that can be analyzed consecutively. This results in a run-time overhead of the disas­
sembly process that is linear in the number of instructions (roughly, the size of the 
code segment). 

A straightforward approach to obtain a function's start addresses is to extract the 
targets of call instructions. When a Unker generates an ordinary executable, the tar­
gets of calls to functions located in the binary's text segment are bound to the actual 
addresses of these functions. Given the call targets and assuming that most func­
tions are actually referenced from others within the binary, one can obtain a fairly 
complete set of function start addresses. Unfortunately, this approach has two draw­
backs. One problem is that this method requires that the call instructions are already 
identified. As the objective of our disassembler is precisely to provide that kind of 
information, the call instructions are not available at this point. Another problem is 
that an obfuscator can redirect all calls to a single branching function that transfers 
control to the appropriate targets. This technique changes all call targets to a single 
address, thus removing information necessary to identify functions. 

We use a heuristic to locate function start addresses. More precisely, function 
start addresses are located by identifying byte sequences that implement typical func­
tion prologs. When a function is called, the first few instructions usually set up a new 
stack frame. This frame is required to make room for local variables and to be able 
restore the stack to its initial state when the function returns. In the current imple­
mentation, we scan the binary for byte sequences that represent instructions that 
push the frame pointer onto the stack and instructions that increase the size of the 
stack by decreasing the value of the stack pointer. The technique works very well for 
regular binaries and also for the obfuscated binaries used in our experiments. The 
reason is that the used obfuscation tool [13] does not attempt to hide function pro­
logs. It is certainly possible to extend the obfuscator to conceal the function prolog. 
In this case, our function identification technique might require changes, possibly 
using tool-specific knowledge. 

Note that the partitioning of the binary into functions is mainly done for perfor­
mance reasons, and it is not crucial for the quality of the results that all functions 
are correctiy identified. When the start point of a function is missed, later analysis 
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simply has to deal with one larger region of code instead of two separate smaller 
parts. When a sequence of instructions within a function is misinterpreted as a func­
tion prolog, two parts of a single function are analyzed individually. This could lead 
to less accurate results when some intra-procedural jumps are interpreted as inter-
procedural, making it harder to reconstruct the intra-procedural control flow graph 
as discussed in the following section. 

2.2.2 Intra-Procedural Control Flow Graph 

To find the valid instructions of a function (i.e., the instructions that belong to the pro­
gram), we attempt to reconstruct the function's intra-procedural control flow graph. 
A control flow graph (CFG) is defined as a directed graph G = (V, E) in which 
vertices u,v E V represent basic blocks and an edge e E E : u —> v represents a 
possible flow of control from utov. A basic block describes a sequence of instruc­
tions without any jumps or jump targets in the middle. More formally, a basic block 
is defined as a sequence of instructions where the instruction in each position domi­
nates, or always executes before, all those in later positions, and no other instruction 
executes between two instructions in the sequence. Directed edges between blocks 
represent jumps in the control flow, which are caused by control transfer instructions 
(CTIs) such as calls, conditional and unconditional jumps, or return instructions. 

The traditional approach to reconstructing the control flow graph of a function 
works similar to a recursive disassembler. The analysis commences at the function's 
start address and instructions are disassembled until a control transfer instruction 
is encountered. The process is then continued, recursively, at all jump targets that 
are local to the procedure and, in case of a call instruction or a conditional jump, 
at the address following the instruction. In case of an obfuscated binary, however, 
the disassembler cannot continue directly after a call instruction. In addition, many 
local jumps are converted into non-local jumps to addresses outside the function to 
blur local control flow. In most cases, the traditional approach leads to a control flow 
graph that covers only a small fraction of the valid instructions of the function under 
analysis. 

We developed an alternative technique to extract a more complete control flow 
graph. The technique is composed of two phases: in the first phase, an initial control 
flow graph is determined. In the following phase, conflicts and ambiguities in the 
initial CFG are resolved. The two phases are presented in detail in the following two 
sections. 

2.2.3 Initial Control Flow Graph 

To determine the initial control flow graph for a function, we first decode all possible 
instructions between the function's start and end addresses. This is done by treating 
each address in this address range as the beginning of a new instruction. Thus, one 
potential instruction is decoded and assigned to each address of the function. The 
reason for considering every address as a possible instruction start stems from the fact 
that x86 instructions have a variable length from one to fifteen bytes and do not have 
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mov 
jmp 
(junk) 
mov 

mov 
pop 
rat 
nop 

%ebp 
%esp, %ebp 

19788008 <branch fnct> 

0, %6ax 
8048014 <L1> 
0, %eax 
8048019 <L2> 

(1740000), %eax 

%6bp, %6Sp 
%ebp 

function func(int arg) { 
int locaLvar, ret_val; 

local = oth6r_tunc(arg); 

if (locaLvar == 0) 

r6t_val = 0; 
else 

r6t_val = globaLvar; 

return ret_val; 

Disassembly of Obfuscated Function C Function 

Fig. 2.1. Example function. 

to be aligned in memory (i.e., an instruction can start at an arbitrary address). Note 
that most instructions take up multiple bytes and such instructions overlap with other 
instructions that start at subsequent bytes. Therefore, only a subset of the instructions 
decoded in this first step can be valid. Figure 2.2 provides a partial listing of all 
instructions in the address range of the sample function (both in source and assembler 
format) that is shown in Figure 2.1. For the reader's reference, valid instructions are 
marked by an x in the "Valid" column. Of course, this information is not available to 
our disassembler. An example for the overlap between valid and invalid instructions 
can be seen between the second and the third instruction. The valid instruction at 
address 0x8048001 requires two bytes and thus interferes with the next (invalid) 
instruction at 0x8048002. 
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Fig. 2.2. Partial instruction listing. 
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The next step is to identify all intra-procedural control transfer instructions. For 
our purposes, an intra-procedural control transfer instruction is defined as a CTI with 
at least one known successor basic block in the same function. Remember that we 
assume that control flow only continues after conditional branches but not necessarily 
after call or unconditional branch instnictions. Therefore, an instruction is an intra-
procedural control transfer instruction if either (i) its target address can be determined 
and this address is in the range between the function's start and end addresses or (ii) 
it is a conditional jump. In the latter case, the address that immediately follows the 
conditional jump instruction is the start of a successor block. 

Note that we assume that a function is represented by a contiguous sequence of 
instructions, with possible junk instructions added in between. This means that, it is 
not possible that the basic blocks of two different functions are intertwined. There­
fore, each function has one start address and one end address (i.e., the last instruction 
of the last basic block that belongs to this function). However, it is possible that a 
function has multiple exit points. 

To find all intra-procedural CTIs, the instructions decoded in the previous step are 
scanned for any control transfer instructions. For each CTI found in this way, we at­
tempt to extract its target address. In the current implementation, only direct address 
modes are supported and no data flow analysis is performed to compute address val­
ues used by indirect jumps. However, such analysis could be later added to further 
improve the performance of our static analyzer. When the instruction is determined 
to be an intra-procedural control transfer operation, it is included in the set of jump 
candidates. The jump candidates of the sample function are marked in Figure 2.2 by 
an X in the "Candidate" column. In this example, the call at address 0x8048003 
is not included into the set of jump candidates because the target address is located 
outside the function. 

Given the set of jump candidates, an initial control flow graph is constructed. 
This is done with the help of a recursive disassembler. Starting with an initial empty 
CFG, the disassembler is successively invoked for all the elements in the set of jump 
candidates. In addition, it is also invoked for the instruction at the start address of the 
function. 

The key idea for taking into account all possible control transfer instructions 
is the fact that the valid CTIs determine the skeleton of the analyzed function. By 
using all control flow instructions to create the initial CFG, we make sure that the 
real CFG is a subgraph of this initial graph. Because the set of jump candidates can 
contain both valid and invalid instructions, it is possible (and also frequent) that the 
initial CFG contains a superset of the nodes of the real CFG. These nodes are in­
troduced as a result of argument bytes of valid instructions being misinterpreted as 
control transfer instructions. The Intel x86 instruction set contains 26 single-byte 
opcodes that map to control transfer instructions (out of 219 single-byte instruction 
opcodes). Therefore, the probability that a random argument byte is decoded as CTI 
is not negligible. In our experiments [11], we found that about one tenth of all de­
coded instructions are CTIs. Of those instructions, only two thirds were part of the 
real control flow graph. As a result, the initial CFG contains nodes and edges that 
represent invalid instructions. Most of the time, these nodes contain instructions that 
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overlap with valid instructions of nodes that belong to the real CFG. The follow­
ing section discusses mechanisms to remove these spurious nodes from the initial 
control flow graph. It is possible to distinguish spurious from valid nodes because 
invalid CTIs represent random jumps within the function while valid CTIs constitute 
a well-structured CFG with nodes that have no overlapping instructions. 

Creating an initial CFG that includes nodes that are not part of the real control 
flow graph can been seen as the opposite to the operation of a recursive disassembler. 
A standard recursive disassembler starts from a known valid block and builds up 
the CFG by adding nodes as it follows the targets of control transfer instructions 
that are encountered. This technique seems favorable at a first glance, because it 
makes sure that no invalid instructions are incorporated into the CFG. However, most 
control flow graphs are partitioned into several unconnected subgraphs. This happens 
because there are control flow instructions such as indirect branches whose targets 
often cannot be determined statically. This leads to missing edges in the CFG and 
to the problem that only a fraction of the real control flow graph is reachable from 
a certain node. The situation is exacerbated when dealing with obfuscated binaries, 
as inter-procedural calls and jumps are redirected to a branching function that uses 
indirect jumps. This significantly reduces the parts of the control flow graph that are 
directly accessible to a recursive disassembler, leading to unsatisfactory results. 

Although the standard recursive disassembler produces suboptimal results, we 
use a similar algorithm to extract the basic blocks to create the initial CFG. As men­
tioned before, however, the recursive disassembler is not only invoked for the start 
address of the function alone, but also for all jump candidates that have been identi­
fied. An initial control flow graph is then constructed. 

There are two differences between a standard recursive disassembler and our 
prototype tool. First, we assume that the address after a call or an unconditional 
jump instruction does not have to contain a valid instruction. Therefore, our recursive 
disassembler cannot continue at the address foUowing a call or an unconditional 
jump. Note, however, that we do continue to disassemble after a conditional jump 
(i.e., branch). 

The second difference is due to the fact that it is possible to have instructions in 
the initial call graph that overlap. In this case, two different basic blocks in the call 
graph can contain overlapping instructions starting at slightly different addresses. 
When following a sequence of instructions, the disassembler can arrive at an instruc­
tion that is already part of a previously found basic block. Normally, this instruction 
is the first instruction of the existing block. The disassembler can then "close" the 
instruction sequence of the current block and create a link to the existing basic block 
in the control flow graph. 

When instructions can overlap, it is possible that the current instruction sequence 
overlaps with another sequence in an existing basic block for some instructions be­
fore the two sequences eventually become identical. In this case, the existing basic 
block is split into two new blocks. One block refers to the overlapping sequence up 
to the instruction where the two sequences merge, the other refers to the instruction 
sequence that both have in common. All edges in the control flow graph that point 
to the original basic block are changed to point to the first block, while all outgoing 
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edges of the original block are assigned to the second. In addition, the first block is 
connected to the second one. 

The reason for splitting the existing block is the fact that a basic block is de­
fined as a continuous sequence of instructions without a jump or jump target in the 
middle. When two different overlapping sequences merge at a certain instruction, 
this instruction has two predecessor instructions (one in each of the two overlapping 
sequences). Therefore, it becomes the first instruction of a new basic block. As an 
additional desirable side effect, each instruction appears at most once in a basic block 
of the call graph. 

The fact that instruction sequences eventually "merge" is a common phenomenon 
when disassembling x86 binaries. The reason is called self-repairing disassembly 
and relates to the fact that two instruction sequences that start at slightly different 
addresses (that is, shifted by a few bytes) synchronize quickly, often after a few 
instructions. Therefore, when the disassembler starts at an address that does not cor­
respond to a valid instruction, it can be expected to re-synchronize with the sequence 
of valid instructions after a few steps [13]. 

J K 

Fig. 2.3. Initial control flow graph. 

The initial control flow graph generated for for our example function is shown 
in Figure 2.3. In this example, the algorithm is invoked for the function start at 
address 0x8048000 and the four jump candidates (0x8048006, 0x804800c , 
0x8048010, and 0x8048017) . The nodes in this figure represent basic blocks 
and are labeled with the start address of the first instruction and the end address of 
the last instruction in the corresponding instruction sequence. Note that the end ad­
dress denotes the first byte after the last instruction and is not part of the basic block 
itself. Solid, directed edges between nodes represent the targets of control transfer 
instructions. A dashed line between two nodes signifies a conflict between the two 
corresponding blocks. 

Two basic blocks are in conflict when they contain at least one pair of instruc­
tions that overlap. As discussed previously, our algorithm guarantees that a certain 
instruction is assigned to at most one basic block (otherwise, blocks are split appro-
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priately). Therefore, whenever the address ranges of two blocks overlap, they must 
also contain different, overlapping instructions. Otherwise, both blocks would con­
tain the same instruction, which is not possible. This is apparent in Figure 2.3, where 
the address ranges of all pairs of conflicting basic blocks overlap. To .simplify the 
following discussion of the techniques used to resolve conflicts, nodes that belong 
to the real control flow graph are shaded. In addition, each node is denoted with an 
uppercase letter. 

2.2.4 Block Conflict Resolution 

The task of the block conflict resolution phase is to remove basic blocks from the 
initial CFG until no conflicts are present anymore. Conflict resolution proceeds in 
five steps. The first two steps remove blocks that are definitely invalid, given our 
assumptions. The last three steps are heuristics that choose likely invalid blocks. The 
conflict resolution phase terminates immediately after the last conflicting block is 
removed; it is not necessary to carry out all steps. The final step brings about a 
decision for any basic block conflict and the control flow graph is guaranteed to be 
free of any conflicts when the conflict resolution phase completes. 

The five steps are detailed in the following paragraphs. 
Step 1: We assume that the start address of the analyzed function contains a valid 
instruction. Therefore, the basic block that contains this instruction is valid. In addi­
tion, whenever a basic block is known to be valid, all blocks that are reachable from 
this block are also valid. 

A basic block v is reachable from basic block u if there exists a path p from 
M to «. A path p from M to t; is defined as a sequence of edges that begins at u 
and terminates at v. An edge is inserted into the control flow graph only when its 
target can be statically determined and a possible program execution trace exists that 
transfers control over this edge. Therefore, whenever a control transfer instruction is 
valid, its targets have to be valid as well. 

We tag the node that contains the instruction at the function's start address and 
all nodes that are reachable from this node as valid. Note that this set of valid nodes 
contains exactly the nodes that a traditional recursive disassembler would identify 
when invoked with the function's start address. When the valid nodes are identified, 
any node that is in conflict with at least one of the valid nodes can be removed. 

In the initial control flow graph for the example function in Figure 2.3, only 
node A (0x8048000) is marked as vahd. That node is drawn with a stronger bor­
der in Figure 2.3. The reason is that the corresponding basic block ends with a call 
instruction at 0x8048003 whose target is not local. In addition, we do not assume 
that control flow resumes at the address after a call and thus the analysis cannot di­
rectly continue after the call instruction. In Figure 2.3, node B (the basic block at 
0x8048006) is in conflict with the valid node and can be removed. 
Step 2: Because of the assumption that valid instructions do not overlap, it is not 
possible to start from a valid block and reach two different nodes in the control flow 
graph that are in conflict. That is, whenever two conflicting nodes are both reachable 
from a third node, this third node cannot be valid and is removed from the CFG. The 
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situation can be restated using the notion of a common ancestor node. A common 
ancestor node of two nodes u and v is defined as a node n such that both u and v are 
reachable from n. 

In Step 2, all common ancestor nodes of conflicting nodes are removed from the 
control flow graph. In our example in Figure 2.3, it can be seen that the conflicting 
node F and node K share a common ancestor, namely node J. This node is removed 
Irom the CFG, resolving a conflict with node I. The resulting control flow graph after 
the first two steps is shown in Figure 2.4. 

The situation of having a common ancestor node of two conflicting blocks is 
frequent when dealing with invalid conditional branches. In such cases, the branch 
target and the continuation after the branch instruction are often directly in conflict, 
allowing one to remove the invalid basic block from the control flow graph. 

K 

Fig. 2.4. CFG after two steps of conflict resolution. 

Step 3: When two basic blocks are in conflict, it is reasonable to expect that a valid 
block is more tightly integrated into the control flow graph than a block that was 
created because of a misinterpreted argument value of a program instruction. That 
means that a valid block is often reachable from a substantial number of other blocks 
throughout the function, while an invalid block usually has only a few ancestors. 

The degree of integration of a certain basic block into the control flow graph 
is approximated by the number of its predecessor nodes. A node u is defined as a 
predecessor node of v when v is reachable from u. In Step 3, the predecessor nodes 
for pairs of conflicting nodes are determined and the node with the smaller number 
is removed from the CFG. 

In Figure 2.4, node K has no predecessor nodes while node F has five. Note 
that the algorithm cannot distinguish between real and spurious nodes and, thus, it 
includes node C in the set of predecessor nodes for node F. As a result, node K is 
removed. The number of predecessor nodes for node C and node H are both zero and 
no decision is made in the current step. 
Step 4: In this step, the number of direct successor nodes of two conflicting nodes 
are compared. A node v is a direct successor node of node u when v can be directly 
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reached through an outgoing edge from u. The node with less direct successor nodes 
is then removed. The rationale behind preferring the node with more outgoing edges 
is the fact that each edge represents a jump target within the function and it is more 
likely that a valid control transfer instruction has a target within the function than 
any random CTI. 

In Figure 2.4, node C has only one direct successor node while node H has two. 
Therefore, node C is removed from the control flow graph. In our example, all con­
flicts are resolved at this point. 
Step 5: In this step, all conflicts between basic blocks must be resolved. For each 
pair of conflicting blocks, one is chosen at random and then removed from the graph. 
No human intervention is required at this step, but it would be possible to create 
different alternative disassembly outputs (one output for each block that needs to be 
removed) that can be all presented to a human analyst. 

It might also be possible to use statistical methods during Step 5 to improve the 
chances that the "correct" block is selected. However, this technique is not imple­
mented and is left for future work. 

The result of the conflict resolution step is a control flow graph that contains no 
overlapping basic blocks. The instructions in these blocks are considered valid and 
could serve as the output of the static analysis process. However, most control flow 
graphs do not cover the function's complete address range and gaps exist between 
some basic blocks. 

2.2.5 Gap Completion 

The task of the gap completion phase is to improve the results of our analysis by 
filling the gaps between basic blocks in the control flow graph with instructions that 
are likely to be valid. A gap from basic block &i to basic block 62 is the sequence of 
addresses that starts at the first address after the end of basic block &i and ends at the 
last address before the start of block 62, given that there is no other basic block in the 
control flow graph that covers any of these addresses. In other words, a gap contains 
bytes that are not used by any instruction in blocks the control flow graph. 

Gaps are often the result of junk bytes that are inserted by the obfuscator. Be­
cause junk bytes are not reachable at run-time, the control flow graph does not cover 
such bytes. It is apparent that the attempt to disassemble gaps filled with junk bytes 
does not improve the results of the analysis. However, there are also gaps that do 
contain valid instructions. These gaps can be the result of an incomplete control flow 
graph, for example, stemming from a region of code that is only reachable through an 
indirect jump whose target cannot be determined statically. Another frequent cause 
for gaps that contain valid instructions are call instructions. Because the disassem­
bler cannot continue after a call instruction, the following valid instructions are not 
immediately reachable. Some of these instructions might be included into the control 
flow graph because they are the target of other control transfer instructions. Those 
regions that are not reachable, however, cause gaps that must be analyzed in the gap 
completion phase. 
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The algorithm to identify the most probable instruction sequence in a gap from 
basic block 61 to basic block &2 works as follows. First, all possibly valid sequences 
in the gap are identified. A necessary condition for a valid instruction sequence is that 
its last instruction either (i) ends with the last byte of the gap or (ii) its last instruction 
is a non intra-procedural control transfer instruction. The first condition states that the 
last instruction of a valid sequence has to be directly adjacent to the first instruction of 
block 62. This becomes evident when considering a valid instruction sequence in the 
gap that is executed at run-time. After the last instruction of the sequence is executed, 
the control flow has to continue at the first instruction of basic block 62- The second 
condition states that a sequence does not need to end directly adjacent to block &2 if 
the last instruction is a non intra-procedural control transfer. The restriction to non 
intra-procedural CTIs is necessary because all intra-procedural CTIs are included 
into the initial control flow graph. When an intra-procedural instruction appears in a 
gap, it must have been removed during the conflict resolution phase and should not 
be included again. 

Instruction sequences are found by considering each byte between the start and 
the end of the gap as a potential start of a valid instruction sequence. Subsequent 
instructions are then decoded until the instruction sequence either meets or violates 
one of the necessary conditions defined above. When an instruction sequence meets a 
necessary condition, it is considered possibly valid and a sequence score is calculated 
for it. The sequence score is a measure of the likelihood that this instruction sequence 
appears in an executable. It is calculated as the sum of the instruction scores of all 
instructions in the sequence. The instruction score is similar to the sequence score 
and reflects the likelihood of an individual instruction. Instruction scores are always 
greater or equal than zero. Therefore, the score of a sequence cannot decrease when 
more instructions are added. We calculate instruction scores using statistical tech­
niques and heuristics to identify improbable instructions. 

The statistical techniques are based on instruction probabilities and digraphs. 
Our approach utilizes tables that denote both the likelihood of individual instruc­
tions appearing in a binary as well as the likelihood of two instructions occurring 
as a consecutive pair. The tables were built by disassembling a large set of common 
executables and tabulating counts for the occurrence of each individual instruction 
as well as counts for each occurrence of a pair of instructions. These counts were 
subsequently stored for later use during the disassembly of an obfuscated binary. It 
is important to note that only instruction opcodes are taken into account with this 
technique; operands are not considered. The basic score for a particular instruction 
is calculated as the sum of the probability of occurrence of this instruction and the 
probability of occurrence of this instruction followed by the next instruction in the 
sequence. 

In addition to the statistical technique, a set of heuristics is used to identify im­
probable instructions. This analysis focuses on instruction arguments and observed 
notions of the validity of certain combinations of operations, registers, and accessing 
modes. Each heuristic is applied to an individual instruction and can modify the basic 
score calculated by the statistical technique. In our current implementation, the score 
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of the corresponding instruction is set to zero whenever a rule matches. Examples of 
these rules include the following: 

• operand size mismatches; 
• certain arithmetic on special-purpose registers; 
• unexpected register-to-register moves (e.g., moving from a register other than 

%ebp into %esp); 
• moves of a register value into memory referenced by the same register. 

When all possible instruction sequences are determined, the one with the highest 
sequence score is selected as the valid instruction sequence between &i and &2-
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Fig. 2.5. Gap completion and disassembler output. 

The instructions that make up the control flow graph of our example liinction 
and the intermediate gaps are shown in the left part of Figure 2.5. It can be seen that 
only a single instruction sequence is valid in the first gap, while there is none in the 
second gap. The right part of Figure 2.5 shows the output of our disassembler. All 
valid instructions of the example function have been correctly identified. 

Based on the list of valid instructions, the subsequent code analysis phase can 
attempt to detect maUcious code. In the following Section 2.3, we present symbolic 
execution as one possible static analysis approach to identify higher-level properties 
of code. 
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2.3 Code Analysis 

This section describes the use of symbolic execution [10], a static analysis technique 
to identify code sequences that exhibit certain properties. In particular, we aim at 
characterizing a code piece by its semantics, or, in other words, by its effect on the 
environment. The goal is to construct models that characterize malicious behavior, 
regardless of the particular sequence of instructions (and therefore, of bytes) used in 
the code. This allows one to specify more general and robust descriptions of mali­
cious code that cannot be evaded by simple changes to the syntactic representation 
or layout of the code (e.g., by renaming registers or modify the execution order of 
instructions). 

Symbolic execution is a technique that interpretatively executes a program, using 
symbolic expressions instead of real values as input. This also includes the execution 
environment of the program (data, stack, and heap regions) for which no initial value 
is known at the time of the analysis. Of course, for all variables for which concrete 
values are known (e.g., initialized data segments), these values are used. When the 
execution starts from the entry point in the program, say address s, a symbolic execu­
tion engine interprets the sequence of machine instructions as they are encountered 
in the program. 

To perform symbolic execution of machine instructions (in our case, Intel x86 op­
erations), it is necessary to extend the semantics of these instructions so that operands 
are not limited to real data objects but can also be symbolic expressions. The nor­
mal execution semantics of Intel x86 assembly code describes how data objects are 
represented, how statements and operations manipulate these data objects, and how 
control flows through the statements of a program. For symbolic execution, the defi­
nitions for the basic operators of the language have to be extended to accept symbolic 
operands and produce symbolic formulas as output. 

2.3.1 Execution State 

We define the execution state S of program p as a snapshot of the content of the 
processor registers (except the program counter) and all valid memory locations at 
a particular instruction of p, which is denoted by the program counter. Although it 
would be possible to treat the program counter like any other register, it is more 
intuitive to handle the program counter separately and to require that it contain a 
concrete value (i.e., it points to a certain instruction). The content of all other registers 
and memory locations can be described by symbolic expressions. 

Before symbolic execution starts from address s, the execution state S is initial­
ized by assigning symbolic variables to all processor registers (except the program 
counter) and memory locations for which no concrete value is known initially. Thus, 
whenever a processor register or a memory location is read for the first time, without 
any previous assignment to it, a new symbol is supplied from the list of variables 
{vi, V2, V3,... } . Note that this is the only time when symbolic data objects are in­
troduced. 
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In our current system, we do not support floating-point data objects and opera­
tions. Therefore, all symbols (variables) represent integer values. Symbolic expres­
sions are linear combinations of these symbols (i.e., integer polynomials over the 
symbols). A symbolic expression can be written as c„ * w„ -I- c„_i * w„_i + • • • -f 
Ci*Vi + Co where the Ci are constants. In addition, there is a special symbol ± that 
denotes that no information is known about the content of a register or a memory 
location. Note that this is very different from a symbolic expression. Although there 
is no concrete value known for a symbolic expression, its value can be evaluated 
when concrete values are supplied for the initial execution state. For the symbol ± , 
nothing can be asserted, even when the initial state is completely defined. 

By allowing program variables to assume integer polynomials over the symbols 
Vi, the symbolic execution of assignment statements follows naturally. The expres­
sion on the right-hand side of the statement is evaluated, substituting symbolic ex­
pressions for source registers or memory locations. The result is another symbolic 
expression (an integer is the trivial case) that represents the new value of the left-hand 
side of the assignment statement. Because symbolic expressions are integer polyno­
mials, it is possible to evaluate addition and subtraction of two arbitrary expressions. 
Also, it is possible to multiply or shift a symbolic expression by a constant value. 
Other instructions, such as the multiplication of two symbolic variables or a logic 
operation (e.g., and, o r ) , result in the assignment of the symbol _L to the destina­
tion. This is because the result of these operations cannot (always) be represented as 
integer polynomial. The reason for limiting symbolic formulas to linear expressions 
will become clear in Section 2.3.3. 

Whenever an instruction is executed, the execution state is changed. As men­
tioned previously, in case of an assignment, the content of the destination operand is 
replaced with the right-hand side of the statement. In addition, the program counter 
is advanced. In the case of an instruction that does not change the control flow of a 
program (i.e., an instruction that is not a jump or a conditional branch), the program 
counter is simply advanced to the next instruction. Also, an unconditional jump to a 
certain label (instruction) is performed exactly as in normal execution by transferring 
control from the current statement to the statement associated with the corresponding 
label. 

Figure 2.6 shows the symbolic execution of a sequence of instructions. In addi­
tion to the x86 machine instructions, a corresponding fragment of C source code is 
shown. For each step of the symbolic execution, the relevant parts of the execution 
state are presented. Changes between execution states are shown in bold face. Note 
that the compiler (gcc 3 .3 ) converted the multiplication in the C program into an 
equivalent series of add machine instructions. 

2.3.2 Conditional Branches and Loops 

To handle conditional branches, the execution state has to be extended to include a 
set of constraints, called the path constraints. In principle, a path constraint relates a 
symbolic expression L to a constant. This can be used, for example, to specify that 
the content of a register has to be equal to 0. More formally, a path constraint is a 
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int i, j, k; 

void f() 
{ 
i = 3'j + k; 

} 

8048364 
B04836a 
804836c 
8048366 
8048370 
8048376 
804837b 

mov 
mov 
add 
add 
add 
mov 

0x8049588,%edx 
%Bdx,%eax 
%eax,%eax 
'*/oedx,%eax 
0x804958c,%eax 
%eax, 0x8049590 

eax: vO 
edx: VI 

8049588 (j) : V2 
804958c (k): V3 
8049590 (i) : V4 

PC: 8048364 

1 eax: vO 
1 edx: v2 

1 8049588: Q) : v2 
; 804958c: (k): V3 
; 8049590: (i) : V4 

< PC: 804836a 

Step1 Step 2 

eax: v2 
edx: v2 

8049588 (j) : v2 
804958c (k): v3 
8049590 (i) : v4 

P C L 8 0 4 8 3 6 0 

1 eax: 2*v2 
] edx: v2 

1 8049588 (j) : v2 
; 804958c (k): v3 
; 8049590 (i) : V4 

I^PCL 80483_6e_ 

; eax: 3*v2 
1 edx: v2 

I 8049588 (j) : v2 
; 804958c (k): V3 
1 8049590 (i) : V4 

L P C L 8P483_70_ 

' eax: 3*v2+v3 • 
i edx: v2 ! 

; 8049588 (i) : V2 j 
; 804958c (k): v3 
; 8049590 (i): v4 ; 

1_PCL 8048376, _ J 

eax: 3*v2+v3 
edx: v2 

8049588 (j) : V2 
804958c (k): v3 
8049590 (i) : 3«v2+v3 

P C L 804837_b _ 

Step 3 Step 4 Steps Step 6 Step 7 

Fig. 2.6. Symbolic execution. 

boolean expression of the form L > 0 or L = 0, in which L is an integer polynomial 
over the symbols Uj. The set of path constraints forms a linear constraint system. 

The symbolic execution of a conditional branch statement starts by evaluating the 
associated Boolean expression. The evaluation is done by replacing the instruction's 
operands with their corresponding symbolic expressions. Then, the inequality (or 
equality) is transformed and converted into the standard form introduced above. Let 
the resulting path constraint be called q. 

To continue symbolic execution, both branches of the control path need to be 
explored. The symbolic execution forks into two "parallel" execution threads: one 
thread follows the then alternative, while the other one follows the else alternative. 
Both execution threads assume the execution state that existed immediately before 
the conditional statement, but proceed independently thereafter. Because the then 
alternative is only chosen if the conditional branch is taken, the corresponding path 
constraint q must be true. Therefore, we add q to the set of path constraints of this 
execution thread. The situation is reversed for the else alternative. In this case, the 
branch is not taken and q must be false. Thus, -ig is added to the path constraints of 
this execution. 

After q (or -^q) is added to a set of path constraints, the corresponding linear 
constraint system is immediately checked for satisfiability. When the set of path con­
straints has no solution, this impUes that, independent of the choice of values for 
the initial configuration C, this path of execution can never occur. This allows us to 
immediately terminate impossible execution threads. 

Each fork of execution at a conditional statement contributes a condition over the 
variables w, that must hold for this particular execution thread. Thus, the set of path 
constraints determines which conditions the initial execution state must satisfy in or­
der for an execution to follow the particular associated path. Each symbolic execution 
begins with an empty set of path constraints. As assumptions about the variables are 
made (in order to choose between alternative paths through the program as presented 
by conditional statements), those assumptions are added to the set. An example of 
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int i, j : 

void f() 

< if(i>42) 
i = i ; 

else 
i = 0; 

> 

8048364 
804836b 
804836d 
8048377 
8048379 
8048383 

cmpi $0x2a,0x804958c 
jle 8048379 
movl $0x1,0x8049588 
imp 8048383 
movl $0x0,0x8049588 

I eax: 
1 edx; 

! 8049588 (i): V2 
; 804958c (i); V3 

; PC: 804836b 

' Path Condition; 

then continuation 

Fig. 2.7. Handling conditional branches during symbolic execution. 

a fork into two symbolic execution threads as the result of an i f-statement and the 
corresponding path constraints are shown in Figure 2.7. Note that the if-statement 
was translated into two machine instructions. Thus, special code is required to extract 
the condition on which a branch statement depends. 

Because a symbolic execution thread forks into two threads at each conditional 
branch statement, loops represent a problem. In particular, we have to make sure that 
execution threads "make progress." The problem is addressed by requiring that a 
thread passes through the same loop at most three times. Before an execution thread 
enters a loop for the forth time, its execution is halted. Then, the effect of an arbi­
trary number of iterations of this loop on the execution state is approximated. This 
approximation is a standard static analysis technique [6, 14] that aims at determining 
value ranges for the variables that are modified in the loop body. Since the problem 
of finding exact ranges and relationships between variables is undecidable in the gen­
eral case, the approximation naturally involves a certain loss of precision. After the 
effect of the loop on the execution thread is approximated, the thread can continue 
with the modified state after the loop. To determine loops in the control flow graph, 
we use the algorithm by Lengauer-Tarjan [12], which is based on dominator trees. 

To approximate the effect of the loop body on an execution state, afixpoint for 
this loop is constructed. For our purposes, a fixpoint is an execution state F that, 
when used as the initial state before entering the loop, is equivalent to the execution 
state after the loop termination. In other words, after the operations of the loop body 
are applied to the fixpoint state F, the resulting execution state is again F. Clearly, 
if there are multiple paths through the loop, the resulting execution states at each 
loop exit must be the same (and identical to F). Thus, whenever the effect of a loop 
on an execution state must be determined, we transform this state into a fixpoint for 
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this loop. This transformation is often called widening. Then, the thread can continue 
after the loop using the fixpoint as its new execution state. 

The fixpoint for a loop is constructed in an iterative fashion. Given the execution 
state Si after the first execution of the loop body, we calculate the execution state 52 
after a second iteration. Then, ^ i and 5*2 are compared. For each register and each 
memory location that hold different values (i.e., different symbolic expressions), we 
assign _L as the new value. The resulting state is used as the new state and another 
iteration of the loop is performed. This is repeated until Si and 5(1+1) are identical. 
In case of multiple paths through the loop, the algorithm is extended by collecting 
one exit state Si for each path and then comparing all pairs of states. Whenever a 
difference between a register value or a memory location is found, this location is 
set to ± . The iterative algorithm is guaranteed to terminate, because at each step, it 
is only possible to convert the content of a memory location or a register to _L. Thus, 
after each iteration, the states are either identical or the content of some locations is 
made unknown. This process can only be repeated until all values are converted to 
unknown and no information is left. 

intj, k; 

void t() 

{ 
int i = 0; 
j = k = 0; 

while ( i< 100) { 
k = 1 ; 
i f ( i ==10 ) 

j = 2; 
I++; 

> 
} 

: i = 1; : 
: J = 0; : 
; k = 1; ; 

S i 

i = 2; ; 
; J = 0:. 
;k = i ; ; 

S2 

: i = l ; : 
: J = 0 ; i 
: k = 1; 

S3 

: i=±;: 
i i = 0; : 

k = 1; : 

S4 

: j = 2 ; : 
k = 1; • 

S5 

: i = l ; ' : 
ii=±; 

k = 1; 

Se 

\\=±;\ 
;i=±;; 

k = 1 ; 

S7 

: i= i ; : 

|< = 1 ; 

Ss 

Fig. 2.8. Fixpoint calculation. 

An example for a fixpoint calculation (using C code instead of x86 assembly) 
is presented in Figure 2.8. In this case, the execution state includes the values of 
the three variables i, j , and k. After the first loop iteration, the execution state ^ i 
is reached. Here, i has been incremented once, k has been assigned the constant 1, 
and j has not been modified. After a second iteration, S2 is reached. Because i has 
changed between ^ i and ^2, its value is set to ± in S'3. Note that the execution has 
not modified j , because the value of i was known to be different from 10 at the if-
statement. Using S3 as the new execution state, two paths are taken through the loop. 
In one case (^4), j is set to 2, in the other case {S5), the variable j remains 0. The 
reason for the two different execution paths is the fact that i is no longer known at 
the i f-statement and, thus, both paths have to be followed. Comparing 53 with 54 
and S5, the difference between the values of variable j leads to the new state Se in 
which j is set to _L. As before, the new state 5*6 is used for the next loop iteration. 
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Finally, the resulting states 5*7 and Ss are identical to SQ, indicating that a fixpoint is 
reached. 

In the example above, we quickly reach a fixpoint. In general, by considering 
all modified values as unknown (setting them to _L), the termination of the fixpoint 
algorithm is achieved very quickly. However, the approximation might be unneces­
sarily imprecise. For our current prototype, we use this simple approximation tech­
nique [14]. However, we plan to investigate more sophisticated fixpoint algorithms 
in the future. 

2.3.3 Analyzing Effects of Code Sequences 

As mentioned previously, the aim of the symboUc execution is to characterize the 
behavior of a piece of code. For example, symbolic execution could be used to deter­
mine if a system call is invoked with a particular argument. Another example is the 
assignment of a value to a certain memory address. 

Consider a specification that defines a piece of code as malicious when it writes 
to an area in memory that should not be modified. Such a specification can be used to 
characterize kernel-level rootkits, which modify parts of the operating system mem­
ory (such as the system call table) that benign modules do not touch. To determine 
whether a piece of code can assign a value to a certain memory address t, the des­
tination addresses of data transfer instructions (e.g., x86 mov) must be determined. 
Thus, whenever the symbolic execution engine encounters such an instruction, it 
checks whether this instruction can possibly access (or write to) address t. To this 
end, the symbolic expression that represents the destination of the data transfer in­
struction is analyzed. The reason is that if it were possible to force this symbolic 
expression to evaluate to t, then the attacker could achieve her goal. 

Let the symbolic expression of the destination of the data transfer instruction 
be called St- To check whether it is possible to force the destination address of this 
instruction to t, the constraint st = t is generated (this constraint simply expresses 
the fact that st should evaluate to the target address t). Now, we have to determine 
whether this constraint can be satisfied, given the current path constraints. To this 
end, the constraint St = t is added to the path constraints, and the resulting linear 
inequality system is solved. 

If the linear inequality system has a solution, then the sequence of code instruc­
tions that were symbolically executed so far can possibly write to t. Note that, since 
the symbolic expressions are integer polynomials over variables that describe the ini­
tial state of the system, the solution to the linear inequality system directly provides 
concrete values for the initial configuration that will eventually lead to a value being 
written to t. For example, in the case of kernel-level rootkit detection, a kernel mod­
ule would be classified as malicious if a data transfer instruction (in its initialization 
routine) can be used to modify the address t of an entry in the system call table. 

To solve the linear constraint systems, we use the Parma Polyhedral Library 
(PPL) [1]. In general, solving a linear constraint system is exponential in the number 
of inequalities. However, the number of inequalities is usually small, and PPL uses a 
number of optimizations to reduce the resources required at run time. 
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2.3.4 Memory Aliasing and Unknown Stores 

In the previous discussion, two problems were ignored that considerably complicate 
the analysis for real programs: memory aliasing and store operations to unknown 
destination addresses. 

Memory aliasing refers to the problem that two different symbolic expressions si 
and S2 might point to the same address. That is, although si and S2 contain different 
variables, both expressions evaluate to the same value. In this case, the assignment of 
a value to an address that is specified by Si has unexpected side effects. In particular, 
such an assignment simultaneously changes the content of the location pointed to by 

Memory aliasing is a typical problem in the static analysis of high-level lan­
guages with pointers (such as C). Unfortunately, the problem is exacerbated at the 
machine code level. The reason is that, in a high-level language, only a certain subset 
of variables can be accessed via pointers. Also, it is often possible to perform alias 
analysis that further reduces the set of variables that might be subject to aliasing. 
Thus, one can often guarantee that certain variables are not modified by write oper­
ations through pointers. At machine level, the address space is uniformly treated as 
an array of storage locations. Thus, a write operation could potentially modify any 
other variable. 

In our prototype, we take an optimistic approach and assume that different sym­
bolic expressions refer to different memory locations. This approach is motivated 
by the fact that most C compilers address local and global variables so that a dis­
tinct expression is used for each access to a different variable. In the case of global 
variables, the address of the variable is directly encoded in the instruction, making 
the identification of the variable particularly easy. For each local variable, the access 
is performed by calculating a different offset with respect to the value of the base 
pointer register (%ebp). 

A store operation to an unknown address is related to the aliasing problem as such 
an operation could potentially modify any memory location. Here, one can choose 
one of two options. A conservative and safe approach must assume that any vari­
able could have been overwritten and no information remains. The other approach 
assumes that such a store operation does not interfere with any variable that is part 
of the solution of the linear inequality system. While this leads to the possibihty of 
false negatives, it significantly reduces the number of false positives. 

2.4 Conclusions 

The analysis of an unknown program requires that the binary is first disassembled 
into its corresponding assembly code representation. Based on the code instructions, 
static or dynamic code analysis techniques can then be used to classify the program 
as malicious or benign. 

In this chapter, we have introduced a robust disassembler that produces good re­
sults even when the malicious code employs tricks to resists analysis. This is crucial 
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for many security tools, including virus scanners [2] and intrusion detection sys­
tems [9]. 

We also introduced symbolic execution as one possible static analysis technique 
to infer semantic properties of code. This allows us to determine the effects of the 
execution of a piece of code. Based on this knowledge, we can construct general and 
robust models of malicious code. These models do not describe particular instances 
of malware, but capture the properties of a whole class of malicious code. Thus, it is 
more difficult for an attacker to evade detection by applying simple changes to the 
syntactic representation of the code. 
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Summary. In recent years, there has been a growing need for tools that an analyst can use to 
understand the workings of COTS components, plug-ins, mobile code, and DLLs, as well as 
memory snapshots of worms and virus-infected code. Static analysis provides techniques that 
can help with such problems; however, there are several obstacles that must be overcome: 

• For many kinds of potentially mahcious programs, symbol-table and debugging informa­
tion is entirely absent. Even if it is present, it cannot be relied upon. 

• To understand memory-access operations, it is necessary to determine the set of addresses 
accessed by each operation. This is difficult because 
- While some memory operations use explicit memory addresses in the instruction 

(easy), others use indirect addressing via address expressions (difficult). 
- Arithmetic on addresses is pervasive. For instance, even when the value of a local vari­

able is loaded from its slot in an activation record, address arithmetic is performed. 
- There is no notion of type at the hardware level, so address values cannot be distin­

guished from integer values. 
- Memory accesses do not have to be aligned, so word-sized address values could po­

tentially be cobbled together from misahgned reads and writes. 

We have developed static-analysis algorithms to recover information about the contents of 
memory locations and how they are manipulated by an executable. By combining these 
analyses with facilities provided by the IDAPro and CodeSurfer toolkits, we have created 
CodeSurfer/x86, a prototype tool for browsing, inspecting, and analyzing x86 executables. 

* This chapter is a slightly revised version of a paper that appeared in Proceedings of the 3rd 
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From an x86 executable, CodeSurfer/x86 recovers intermediate representations that are sim­
ilar to what would be created by a compiler for a program written in a high-level language. 
CodeSurfer/x86 also supports a scripting language, as well as several kinds of sophisticated 
pattern-matching capabilities. These facilities provide a platform for the development of addi­
tional tools for analyzing the security properties of executables. 

3.1 Introduction 

Market forces are increasingly pushing companies to deploy COTS software when 
possible—for which source code is typically unavailable—and to out-source devel­
opment when custom software is required. Moreover, a great deal of legacy code— 
for which design documents are usually out-of-date, and for which source code is 
sometimes unavailable and sometimes non-existent—will continue to be left de­
ployed. An important challenge during the coming decade will be how to identify 
bugs and security vulnerabilities in such systems. Methods are needed to determine 
whether third-party and legacy application programs can perform malicious opera­
tions (or can be induced to perform malicious operations), and to be able to make 
such judgments in the absence of source code. 

Recent research in programming languages, software engineering, and computer 
security has led to new kinds of tools for analyzing code for bugs and security vul­
nerabilities [26, 43, 21, 15, 9, 6, 11, 28, 18, 10]. In these tools, static analysis is 
used to determine a conservative answer to the question "Can the program reach a 
bad state?"^ In principle, such tools would be of great help to an analyst trying to 
detect malicious code hidden in software, except for one important detail: the afore­
mentioned tools all focus on analyzing source code written in a high-level language. 
Even if source code were available, there are a number of reasons why analyses that 
start from source code do not provide the right level of detail for checking certain 
kinds of properties, which can Cause bugs, security vulnerabilities, and malicious 
behavior to be invisible to such tools. (See §3.2.) 

In contrast, our work addresses the problem of finding bugs and security vul­
nerabilities in programs when source code is unavailable. Our goal is to create a 
platform that carries out static analysis on executables and provides information that 
an analyst can use to understand the workings of potentially malicious code, such as 
COTS components, plug-ins, mobile code, and DLLs, as well as memory snapshots 
of worms and virus-infected code. A second goal is to use this platform to create 
tools that an analyst can employ to determine such information as 

• whether a program contains inadvertent security vulnerabilities 

^ Static analysis provides a way to obtain information about the possible states that a pro­
gram reaches during execution, but without actually running the program on specific in­
puts. Static-analysis techniques explore the program's behavior for all possible inputs and 
all possible states that the program can reach. To make this feasible, the program is "run 
in the aggregate"—i.e., on descriptors that represent collections of memory configurations 
[16]. 
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• whether a program contains deliberate security vulnerabilities, such as back 
doors, time bombs, or logic bombs. If so, the goal is to provide information about 
activation mechanisms, payloads, and latencies. 

We have developed a tool, called CodeSurfer/x86, that serves as a prototype for a 
next-generation platform for analyzing executables. CodeSurfer/x86 provides a secu­
rity analyst with a powerful and flexible platform for investigating the properties and 
possible behaviors of an x86 executable. It uses static analysis to recover interme­
diate representations (IRs) that are similar to those that a compiler creates for a pro­
gram written in a high-level language. An analyst is able to use (i) CodeSurfer/x86's 
GUI, which provides mechanisms to understand a program's chains of data and con­
trol dependences, (ii) CodeSurfer/x86's scripting language, which provides access to 
all of the intermediate representations that CodeSurfer/x86 builds, and (iii) Gram-
maTech's Path Inspector, which is a model-checking tool that uses a sophisticated 
pattern-matching engine to answer questions about the flow of execution in a pro­
gram. 

Because CodeSurfer/x86 was designed to provide a platform that an analyst can 
use to understand the workings of potentially malicious code, a major challenge 
is that the tool must assume that the x86 executable is untrustworthy, and hence 
symbol-table and debugging information cannot be relied upon (even if it is present). 
The algorithms used in CodeSurfer/x86 provide ways to meet this challenge. 

Although the present version of CodeSurfer/x86 is targeted to x86 executables, 
the techniques used [3, 35, 40, 33, 36] are language-independent and could be 
applied to other types of executables. In addition, it would be possible to extend 
CodeSurfer/x86 to use symbol-table and debugging information in situations where 
such information is available and trusted—for instance, if you have the source code 
for the program, you invoke the compiler yourself, and you trust the compiler to 
supply correct symbol-table and debugging information. Moreover, the techniques 
extend naturally if source code is available: one can treat the executable code as just 
another IR in the collection of IRs obtainable from source code. The mapping of 
information back to the source code would be similar to what C source-code tools 
already have to perform because of the use of the C preprocessor (although the kind 
of issues that arise when debugging optimized code [27, 46, 17] complicate matters). 

The remainder of chapter is organized as follows: §3.2 illustrates some of the 
advantages of analyzing executables. §3.3 describes CodeSurfer/x86. §3.4 gives an 
overview of the model-checking facilities that have been coupled to CodeSurfer/x86. 
§3.5 discusses related work. 

3.2 Advantages of Analyzing Executables 

This section discusses why an analysis that works on executables can provide more 
accurate information than an analysis that works on source code."* An analysis that 

* Terms like "an analysis that works on source code" and "source-level analyses" are used as 
a shorthand for "analyses that work on IRs built from the source code." 
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works on source code can fail to detect certain bugs and vulnerabilities due to the 
WYSINWYX phenomenon: "What You See Is Not What You eXecute" [5], which 
can cause there to be a mismatch between what a programmer intends and what is 
actually executed by the processor. The following source-code fragment, taken from 
a login program, illustrates the issue [30]: 

m e m s e t ( p a s s w o r d , ' \ 0 ' , l e n ) ; 
f r e e ( p a s s w o r d ) ; 

The login program temporarily stores the user's password—in clear text—in a dy­
namically allocated buffer pointed to by the pointer variable p a s s w o r d . To mini­
mize the lifetime of the password, which is sensitive information, the code fragment 
shown above zeroes-out the buffer pointed to by p a s s w o r d before returning it to 
the free-storage pool. Unfortunately, a compiler that performs useless-code elimi­
nation may reason that the program never uses the values written by the call on 
memset, and therefore the call on memset can be removed—thereby leaving sen­
sitive information exposed in the free-storage pool. This is not just hypothetical; a 
similar vulnerability was discovered during the Windows security push in 2002 [30]. 
This vulnerability is invisible in the source code; it can only be detected by examin­
ing the low-level code emitted by the optimizing compiler. 

A second example where analysis of an executable does better than typical 
source-level analyses involves pointer arithmetic and an indirect call: 

int 
int 
f = 
f = 

(*f)(void); 
diff = 
Sfl; 

(char*) S.f2 

(int (*) 0) ((char* 
(*f) 0; // indirect ca 

-

)f 
11 

(char*)Sfl 

+ diff); 

; 

// 

// 

f 

The 

now 

offset 

points 

bet 

to 

ween 

f2 

fl and f2 

Existing source-level analyses (that we know of) are ill-prepared to handle the above 
code. The conventional assumption is that arithmetic on function pointers leads to 
undefined behavior, so source-level analyses either (a) assume that the indirect func­
tion call might call any function, or (b) ignore the arithmetic operations and assume 
that the indirect function call calls f 1 (on the assumption that the code is ANSI-
C compliant). In contrast, the analysis described by Balakrishnan and Reps [3, 36] 
correctly identifies f 2 as the invoked function. Furthermore, the analysis can detect 
when arithmetic on addresses creates an address that does not point to the beginning 
of a function; the use of such an address to perform a function "call" is likely to be a 
bug (or else a very subtle, deliberately introduced security vulnerability). 

A third example involves a function call that passes fewer arguments than the 
procedure expects as parameters. (Many compilers accept such (unsafe) code as an 
easy way of implementing functions that take a variable number of parameters.) With 
most compilers, this effectively means that the call-site passes some parts of one 
or more local variables of the calling procedure as the remaining parameters (and, 
in effect, these are passed by reference—an assignment to such a parameter in the 
callee will overwrite the value of the corresponding local in the caller.) An analysis 
that works on executables can be created that is capable of determining what the 
extra parameters are [3, 36], whereas a source-level analysis must either make a 
cruder over-approximation or an unsound under-approximation. 
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A final example is shown in Fig. 3.1. The C code on the left uses an uninitialized 
variable (which triggers a compiler warning, but compiles successfully). A source-
code analyzer must assume that l o c a l can have any value, and therefore the value 
of V in main is either 1 or 2. The assembly listings on the right show how the C 
code could be compiled, including two variants for the prolog of function c a l l e e . 
The Microsoft compiler (cl) uses the second variant, which includes the following 
strength reduction: 

The instruction sub esp, 4 that allocates space for 1 ocal is replaced by 
a push instruction of an arbitrary register (in this case, ecx). 

An analysis of the executable can determine that this optimization results in l o c a l 
being initialized to 5, and therefore v in main can only have the value 1. 

int callce(int a, int b ) {_ 
int local; 
if (local:::: 5) return 1; 
else return 2; 

} 

int mainQ { 
int c 
intd 

•5; 
••7: 

int V = callec(c,cl); 

Stondard prolog 
push ebp 
mov ebp, esp 
sub esp,4 

Prolog for 1 local 
push ebp 
mov ebp, esp 
push ecx 

} 

/ / What is the value of v here? 
return 0; 

mov 
mov 
mov 
push 
mov 
push 
call 

[ebp+var_8], 5 
[cbp+var_C], 7 
eax, [cbp+var_C] 
eax 
ecx,[cbp+var_8] 
ecx 

_callee 

Fig. 3.1. Example of unexpected behavior due to compiler optimization. The box at the top 
right shows two variants of code generated by an optimizing compiler for the prolog of 
c a l l e e . Analysis of the second of these reveals that the variable l o c a l necessarily con­
tains the value 5. 

To summarize, the advantage of an analysis that works on executables is that an 
executable contains the actual instructions that will be executed, and hence provides 
information that reveals the actual behavior that arises during program execution. 
This information includes 

• memory-layout details, such as (i) the positions (i.e., offsets) of variables in the 
runtime stack's activation records, and (ii) padding between structure fields. 

• register usage 
• execution order (e.g., of actual parameters) 
• optimizations performed 
• artifacts of compiler bugs 

Access to such information can be crucial; for instance, many security exploits de­
pend on platform-specific features, such as the structure of activation records. Vul­
nerabilities can escape notice when a tool does not have information about adjacency 
relationships among variables. 
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In contrast, there are a number of reasons why analyses based on source code do 
not provide the right level of detail for checking certain kinds of properties: 

• Source-level tools are only applicable when source is available, which limits their 
usefulness in security applications (e.g., to analyzing code from open-source 
projects). 

• Analyses based on source code typically make (unchecked) assumptions, e.g., 
that the program is ANSI-C compliant. This often means that an analysis does 
not account for behaviors that are allowed by the compiler (e.g., arithmetic is 
performed on pointers that are subsequently used for indirect function calls; 
pointers move off the ends of arrays and are subsequently dereferenced; etc.) 

• Programs typically make extensive use of libraries, including dynamically linked 
libraries (DLLs), which may not be available in source-code form. Typically, 
source-level analyses are performed using code stubs that model the effects of 
library calls. Because these are created by hand they are likely to contain errors, 
which may cause an analysis to return incorrect results. 

• Programs are sometimes modified subsequent to compilation, e.g., to perform 
optimizations or insert instrumentation code [44]. (They may also be modified to 
insert malicious code.) Such modifications are not visible to tools that analyze 
source. 

• The source code may have been written in more than one language. This com­
plicates the life of designers of tools that analyze source code because multiple 
languages must be supported, each with its own quirks. 

• Even if the source code is primarily written in one high-level language, it may 
contain inlined assembly code in selected places. Source-level analysis tools 
typically either skip over inlined assembly code [14] or do not push the analysis 
beyond sites of inlined assembly code [1]. 

Thus, even if source code is available, a substantial amount of information is hidden 
from analyses that start from source code, which can cause bugs, security vulnerabil­
ities, and malicious behavior to be invisible to such tools. Moreover, a source-level 
analysis tool that strives to have greater fidelity to the program that is actually exe­
cuted would have to duplicate all of the choices made by the compiler and optimizer; 
such an approach is doomed to failure. 

3.3 Analyzing Executables in the Absence of Source Code 

To be able to apply techniques like the ones used in [26, 43, 21, 15, 9, 6, I I , 28, 
18, 10], one already encounters a challenging program-analysis problem. From the 
perspective of the compiler community, one would consider the problem to be "IR re­
covery": one needs to recover intermediate representations from the executable that 
are similar to those that would be available had one started from source code. From 
the perspective of the model-checking community, one would consider the problem 
to be that of "model extraction": one needs to extract a suitable model from the exe­
cutable. To solve the IR-recovery problem, several obstacles must be overcome: 
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• For many kinds of potentially malicious programs, symbol-table and debugging 
information is entirely absent. Even if it is present, it cannot be relied upon. 

• To understand memory-access operations, it is necessary to determine the set of 
addresses accessed by each operation. This is difficult because 
- While some memory-access operations use explicit memory addresses in the 

instruction (easy), others use indirect addressing via address expressions (dif­
ficult). 

- Arithmetic on addresses is pervasive. For instance, even when the value of a 
local variable is loaded from its slot in an activation record, address arith­
metic is performed. 

- There is no notion of type at the hardware level, so address values cannot be 
distinguished from integer values. 

- Memory accesses do not have to be aligned, so word-sized address values 
could potentially be cobbled together from misaligned reads and writes. 

For the past few years, we have been working to create a prototype next-
generation platform for analyzing executables. The tool set that we have developed 
extends static vulnerability-analysis techniques to work directly on executables, even 
in the absence of source code. The tool set builds on (i) recent advances in static 
analysis of program executables [3, 36], and (ii) new techniques for software model 
checking and dataflow analysis [8, 39, 40, 33]. The main components of the tool set 
are CodeSurfer/x86, WPDS++, and the Path Inspector. 

• CodeSurfer/x86 recovers IRs from an executable that are similar to the IRs 
that source-code-analysis tools create—but, in many respects, the IRs that 
CodeSurfer/x86 builds are more precise. CodeSurfer/x86 also provides an API 
to these IRs. 

• WPDS-i~i- [32] is a library for answering generalized reachability queries on 
weighted pushdown systems (WPDSs) [8, 39, 40, 33]. This library provide a 
mechanism for defining and solving model-checking and dataflow-analysis prob­
lems. To extend CodeSurfer/x86's analysis capabilities, the CodeSurfer/x86 API 
can be used to extract a WPDS model from an executable and to run WPDS++ 
on the model. 

• The Path Inspector is a software model checker built on top of CodeSurfer and 
WPDS-H-. It supports safety queries about a program's possible control configu­
rations. 

In addition, by writing scripts that traverse the IRs that CodeSurfer/x86 recovers, the 
tool set can be extended with further capabilities (e.g., decompilation, code rewriting, 
etc.). 

Fig. 3.2 shows how these components fit together. CodeSurfer/x86 makes use 
of both IDAPro [31], a disassembly toolkit, and GrammaTech's CodeSurfer sys­
tem [14], a toolkit originally developed for building program-analysis and inspection 
tools that analyze source code. These components are glued together by a piece called 
the Connector, which uses two static analyses—value-set analysis (VSA) [3, 36] and 
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aggregate-structure identification (ASI) [35] to recover information about the con­
tents of memory locations and how they are manipulated by an executable.' 

CodeSurter/x86 

I User Scripts . , 

Init ial estimate of 
• code vs. data 
• procedures 
• call sites 
• malloc sites 

• f leshed-out CFSs 
• f leshed-out call graph 
• used, killed, may-killed 

variables for CFG nodes 
• points-to sets 
• reports of violations 

Path 
Inspector 

Decompiler 

Code 
ftewritcr 

*^WPDSt 

Fig. 3.2. Organization of CodeSurfer/x86 and companion tools. 

An x86 executable is first disassembled using IDAPro. In addition to the disas­
sembly listing, IDAPro also provides access to the following information: 

Statically known memory addresses and offsets: IDAPro identifies the statically 
known memory addresses and stack offsets in the program, and renames all 
occurrences of these quantities with a consistent name. This database is used 
to define the set of data objects in terms of which (the initial run of) VSA is 
carried out; these objects are called a-locs, for "abstract locations". VSA is an 
analysis that, for each instruction, determines an over-approximation of the set 
of values that each a-loc could hold. 

Information about procedure boundaries: X86 executables do not have information 
about procedure boundaries. IDAPro identifies the boundaries of most of the 
procedures in an executable.^ 

VSA also makes use of the results of an additional static-analysis phase, called affine-
relation analysis (ARA), which, for each program point, identifies affine relationships [34] 
that hold among the values of registers; see [3, 33]. 

' IDAPro does not identify the targets of all indirect jumps and indirect calls, and therefore 
the call graph and control-flow graphs that it constructs are not complete. However, the 
information computed during VSA is used to augment the call graph and control-flow 
graphs on-the-fly to account for indirect jumps and indirect calls. 
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Calls to library functions: IDAPro discovers calls to library functions using an al­
gorithm called Fast Library Identification and Recognition Technology (FLIRT) 
[24]. 

IDAPro provides access to its internal resources via an API that allows users to 
create plug-ins to be executed by IDAPro. CodeSurfer/x86 uses a plug-in to IDAPro 
to read out information from IDAPro. This information is then used by the Connector 
to create the initial versions of its own intermediate representations (see Fig. 3.2); 
VSA and ASI are implemented using the intermediate representations created by 
the Connector. The IDAPro-plug-in/Connector combination is also able to create the 
same data structures for DLLs, and to link them into the data structures that represent 
the program itself. This infrastructure permits whole-program analysis to be carried 
out—including analysis of the code for all library functions that are called. 

CodeSurfer/x86 makes no use of symbol-table or debugging information. In­
stead, the results of VSA and ASI provide a substitute for absent or untrusted 
symbol-table and debugging information. Initially, the set of a-locs is determined 
based on the static memory addresses and stack offsets that are used in instructions 
in the executable. Each run of ASI refines the set of a-locs used for the next run of 
VSA. 

Because the IRs that CodeSurfer/x86 recovers are extracted directly from the exe­
cutable code that is run on the machine, and because the entire program is analyzed— 
including any libraries that are linked to the program—this approach provides a 
"higher fidelity" platform for software model checking than the IRs derived from 
source code that other software model checkers use [26, 43, 21, 15, 9, 6, 11, 28, 18, 
10]. 

CodeSurfer/x86 supports a scripting language that provides access to all of the 
IRs that CodeSurfer/x86 builds for the executable. This provides a way to connect 
CodeSurfer/x86 to other analysis tools, such as model checkers (see §3.4), as well 
as to implement other tools on top of CodeSurfer/x86, such as decompilers, code 
rewriters, etc. It also provides an analyst with a mechanism to develop any additional 
"one-off" analyses he needs to create. 

3.3.1 Memory-Access Analysis in the Connector 

The analyses in CodeSurfer/x86 are a great deal more ambitious than even relatively 
sophisticated disassemblers, such as IDAPro. At the technical level, CodeSurfer/x86 
addresses the following problem: 
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Given a stripped executable E, identify the 

• procedures, data objects, types, and libraries that it uses 

and 

• for each instruction I 'm E and its libraries 
• for each interprocedural calling context of / 

• for each machine register and a-loc A 

statically compute an accurate over-approximation to 

• the set of values that A may contain when / executes 
• the instructions that may have defined the values used by I 
• the instructions that may use the values defined by execution of I 

and provide effective means to access that information both interactively and under 
program control. 

Value-Set Analysis. VSA [3, 36] is a combined numeric and pointer-analysis 
algorithm that determines an over-approximation of the set of numeric values and 
addresses (or value set) that each a-loc holds at each program point. The information 
computed during VSA is used to augment the call graph and control-flow graphs 
on-the-fly to account for indirect jumps and indirect function calls. 

VSA is related to pointer-analysis algorithms that have been developed for pro­
grams written in high-level languages, which determine an over-approximation of 
the set of variables whose addresses each pointer variable can hold: 

VSA determines an over-approximation of the set of addresses that each data 
object can hold at each program point. 

At the same time, VSA is similar to range analysis and other numeric static-analysis 
algorithms that over-approximate the integer values that each variable can hold: 

VSA determines an over-approximation of the set of integer values that each 
data object can hold at each program point. 

The following insights shaped the design of VSA: 

• A non-aligned access to memory—e.g., an access via an address that is not 
aligned on a 4-byte word boundary—spans parts of two words, and provides a 
way to forge a new address from parts of old addresses. It is important for VSA 
to discover information about the alignments and strides of memory accesses, 
or else most indirect-addressing operations appear to be possibly non-aligned 
accesses. 

• To prevent most loops that traverse arrays from appearing to be possible stack-
smashing attacks, the analysis needs to use relational information so that the 
values of a-locs assigned to within a loop can be related to the values of the 
a-locs used in the loop's branch condition (see [3, 34, 33]). 

• It is desirable for VSA to track integer-valued and address-valued quantities 
simultaneously. This is crucial for analyzing executables because 
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- integers and addresses are indistinguishable at execution time, and 
- compilers use address arithmetic and indirect addressing to implement such 

features as pointer arithmetic, pointer dereferencing, array indexing, and ac­
cessing structure fields. 

Moreover, information about integer values can lead to improved tracking of 
address-valued quantities, and information about address values can lead to im­
proved tracking of integer-valued quantities. 

VSA produces information that is more precise than that obtained via several more 
conventional numeric analyses used in compilers, including constant propagation, 
range analysis, and integer-congruence analysis. At the same time, VSA provides 
an analog of pointer analysis that is suitable for use on executables. 
Aggregate-Structure Identification. One of the major stumbling blocks in analysis 
of executables is the difficulty of recovering information about variables and types, 
especially for aggregates (i.e., structures and arrays). CodeSurfer/x86 uses an itera­
tive strategy for recovering such information; with each round, it refines its notion of 
the program's variables and types. 

Initially, VSA uses a set of variables ("a-locs") that are obtained from IDAPro. 
Because IDAPro has relatively limited information available at the time that it applies 
its variable-discovery heuristics (i.e., it only knows about statically known memory 
addresses and stack offsets), what it can do is rather limited, and generally leads to a 
very coarse-grained approximation of the program's variables. 

Once a given run of VSA completes, the value sets for the a-locs at each in­
struction provide a way to identify an over-approximation of the memory accesses 
performed at that instruction. This information is used to refine the current set of a-
locs by running a variant of the ASI algorithm [35], which identifies commonalities 
among accesses to different parts of an aggregate data value. ASI was originally de­
veloped for analysis of Cobol programs: in that context, ASI ignores all of the type 
declarations in the program, and considers an aggregate to be merely a sequence of 
bytes of a given length; an aggregate is then broken up into smaller parts depending 
upon how the aggregate is accessed by the program. In the context in which we use 
ASI—namely, analysis of x86 executables—ASI cannot be applied until the results 
of VSA are already in hand: ASI requires points-to, range, and stride information 
to be available; however, for an x86 executable this information is not available until 
after VSA has been run. 

ASI exploits the information made available by VSA (such as the values that a-
locs can hold, sizes of arrays, and iteration counts for loops), which generally leads 
to a much more accurate set of a-locs than the initial set of a-locs discovered by 
IDAPro. For instance, consider a simple loop, implemented in source code as 

i n t a [ 1 0 ] , i ; 
f o r ( i = 0; i < 10; i + +) 

a [ i ] = i ; 

From the executable, IDAPro will determine that there are two variables, one of 
size 4 bytes and one of size 40 bytes, but will provide no information about the 
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substructure of the 40-byte variable. In contrast, in addition to the 4-byte variable, 
AST will correctly identify that the 40 bytes are an array of ten 4-byte quantities. 

The Connector uses a refinement loop that performs repeated phases of VS A and 
ASI (see Fig. 3.2). The ASI results are used to refine the previous set of a-locs, and 

the refined set of a-locs is then used to analyze the program during the next round of 
VSA. The number of iterations is controlled by a command-line parameter. 

ASI also provides information that greatly increases the precision with which 
VSA can analyze the contents of dynamically allocated objects (i.e., memory loca­
tions allocated using m a l l o c or new). To see why, recall how the initial set of a-locs 
is identified by IDAPro. The a-loc abstraction exploits the fact that accesses to pro­
gram variables in a high-level language are either complied into static addresses (for 
globals, and fields of struct-valued globals) or static stack-frame offsets (for locals 
and fields of struct-valued locals). However, fields of dynamically allocated objects 
are accessed in terms of offsets relative to the base address of the object itself, which 
is something that IDAPro knows nothing about. In contrast, VSA considers each 
malloc site m to be a "memory region" (consisting of the objects allocated at m), 
and the memory region for m serves as a representative for the base addresses of 
those objects.' This lets ASI handle the use of an offset from an object's base ad­
dress similar to the way that it handles a stack-frame offset—with the net result that 

ASI is able to capture information about the fine-grained structure of dynamically 
allocated objects. The object fields discovered in this way become a-locs for the next 
round of VSA, which will then discover an over-approximation of their contents. 

ASI is complementary to VSA: ASI addresses only the issue of identifying the 
structure of aggregates, whereas VSA addresses the issue of (over-approximating) 
the contents of memory locations. ASI provides an improved method for the 
"variable-identification" facility of IDAPro, which uses only much cruder techniques 
(and only takes into account statically known memory addresses and stack offsets). 
Moreover, ASI requires more information to be on hand than is available in IDAPro 
(such as the sizes of arrays and iteration counts for loops). Fortunately, this is exactly 
the information that is available after VSA has been carried out, which means that 
ASI can be used in conjunction with VSA to obtain improved results: after a first 

round of VSA, the results of ASI are used to refine the a-loc abstraction, after which 
VSA is run again—generally producing more precise results. 

3.3.2 CodeSurfer/x86 

The value sets for the a-locs at each program point are used to determine each point's 
sets of used, killed, and possibly-killed a-locs; these are emitted in a format that is 
suitable for input to CodeSurfer. 

'' CodeSurfer/x86 actually uses a more refined technique (involving two memory regions 
per malloc site) to overcome some of the imprecision that arises due to the need to per­
form weak updates—i.e., accumulate information via join—on fields of summary malloc-
regions. In particular, this technique, which is described in [4], often allows VSA to estab­
lish a definite link between a dynamically-allocated object of a class that uses one or more 
virtual functions and the appropriate virtual-function table. 
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CodeSurfer is a tool for code understanding and code inspection that supports 
both a graphical user interface (GUI) and an API (as well as a scripting language) to 
provide access to a program's system dependence graph (SDG) [29], as well as other 
information stored in CodeSurfer's IRs.^ An SDG consists of a set of program 
dependence graphs (PDGs), one for each procedure in the program. A vertex in a 
PDG corresponds to a construct in the program, such as an instruction, a call to 
a procedure, an actual parameter of a call, or a formal parameter of a procedure. 
The edges correspond to data and control dependences between the vertices [22]. 
The PDGs are connected together with interprocedural edges that represent control 
dependences between procedure calls and entries, data dependences between actual 
parameters and formal parameters, and data dependences between return values and 
receivers of return values. 

Dependence graphs are invaluable for many appUcations, because they highlight 
chains of dependent instructions that may be widely scattered through the program. 
For example, given an instruction, it is often useful to know its data-dependence 
predecessors (instructions that write to locations read by that instruction) and its 
control-dependence predecessors (control points that may affect whether a given in­
struction gets executed). Similarly, it may be useful to know for a given instruction its 
data-dependence successors (instructions that read locations written by that instruc­
tion) and control-dependence successors (instructions whose execution depends on 
the decision made at a given control point). 

CodeSurfer's GUI supports browsing ("surfing") of an SDG, along with a variety 
of operations for making queries about the SDG—such as sUcing [29] and chopping 
[38].^ The GUI allows a user to navigate through a program's source code using 
these dependences in a manner analogous to navigating the World Wide Web. 

CodeSurfer's API provides a programmatic interface to these operations, as well 
as to lower-level information, such as the individual nodes and edges of the pro­
gram's SDG, call graph, and control-flow graph, and a node's sets of used, killed, 
and possibly-killed a-locs. By writing programs that traverse CodeSurfer's IRs to 
implement additional program analyses, the API can be used to extend CodeSurfer's 
capabilities. 

CodeSurfer/x86 provides some unique capabilities for answering an analyst's 
questions. For instance, given a worm, CodeSurfer/x86's analysis results have been 
used to obtain information about the worm's target-discovery, propagation, and acti­
vation mechanisms by 

' In addition to the SDG, CodeSurfer's IRs include abstract-syntax trees, control-flow graphs 
(CFGs), a call graph, VSA results, the sets of used, killed, and possibly-killed a-locs at each 
instruction, and information about the structure and layout of global memory, activation 
records, and dynamically allocated storage. 

' A backward slice of a program with respect to a set of program points S is the set of all 
program points that might affect the computations performed at S; a forward slice with 
respect to S is the set of all program points that might be affected by the computations 
performed at members of S [29]. A program chop between a set of source program points 
S and a set of target program points T shows how S can affect the points in T [38]. 
Chopping is a key operation in information-flow analysis. 
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• locating sites of system calls, 
• finding the instructions by which arguments are passed, and 
• following dependences backwards from those instructions to identify where the 

values come from. 

Because the techniques described in §3.3.1 are able to recover quite rich information 
about memory-access operations, the answers that CodeSurfer/x86 furnishes to such 
questions account for the movement of data through memory—not just the move­
ment of data through registers, as in some prior work (e.g., [19, 12]). 

3.3.3 Goals, Capabilities, and Assumptions 

A few words are in order about the goals, capabilities, and assumptions underlying 
CodeSurfer/x86. 

The constraint that symbol-table and debugging information are off-limits com­
plicated the task of creating CodeSurfer/x86; however, the results of VSA and ASI 
provide a substitute for such information. This allowed us to create a tool that can be 
used when symbol-table and debugging information is absent or untrusted. 

Given an executable as input, the goal is to check whether the executable con­
forms to a "standard" compilation model—i.e., a runtime stack is maintained; acti­
vation records (ARs) are pushed onto the stack on procedure entry and popped from 
the stack on procedure exit; each global variable resides at a fixed offset in memory; 
each local variable of a procedure / resides at a fixed offset in the ARs for / ; actual 
parameters of / are pushed onto the stack by the caller so that the corresponding 
formal parameters reside at fixed oll^sets in the ARs for / ; the program's instructions 
occupy a fixed area of memory, are not self-modifying, and are separate from the 
program's data. If the executable conforms to this model, CodeSurfer/x86 creates an 
IR for it. If it does not conform to the model, then one or more violations will be 
discovered, and corresponding error reports are issued. 

The goal for CodeSurfer/x86 is to provide (i) a tool for security analysis, and (ii) 
a general infrastructure for additional analysis of executables. Thus, as a practical 
measure, when the system produces an error report, a choice is made about how to 
accommodate the error so that analysis can continue (i.e., the error is optimistically 
treated as a false positive), and an IR is produced; if the analyst can determine that 
the error report is indeed a false positive, then the IR is valid. 

The analyzer does not care whether the program was compiled from a high-level 
language, or hand-written in assembly code. In fact, some pieces of the program may 
be the output from a compiler (or from multiple compilers, for different high-level 
languages), and others hand-written assembly code. Still, it is easiest to talk about 
the information that VSA and ASI are capable of recovering in terms of the features 
that a high-level programming language allows: VSA and ASI are capable of recov­
ering information from programs that use global variables, local variables, pointers, 
structures, arrays, dynamically allocated storage, pointer arithmetic, indirect jumps, 
recursive procedures, indirect calls through function pointers, virtual-function calls, 
and DLLs (but, at present, not run-time code generation or self-modifying code). 
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Compiler optimizations often make VSA and ASI less difficult, because more 
of the computation's critical data resides in registers, rather than in memory; register 
operations are more easily deciphered than memory operations. 

The major assumption that we make about IDAPro is that it is able to disassemble 
a program and build an adequate collection of preliminary IRs for it. Even though (i) 
the CFG created by IDAPro may be incomplete due to indirect jumps, and (ii) the 
call-graph created by IDAPro may be incomplete due to indirect calls, incomplete 
IRs do not trigger error reports. Both the CFG and the call graph are fleshed out 
according to information recovered during the course of VSA/ASI iteration. In 
fact, the relationship between VSA/ASI iteration and the preliminary IRs created 
by IDAPro is similar to the relationship between a points-to-analysis algorithm in a 
C compiler and the preliminary IRs created by the C compiler's front end. In both 
cases, the preliminary IRs are fleshed out during the course of analysis. 

3.4 Model-Checking Facilities 

Model checking [13] involves the use of sophisticated pattern-matching techniques to 
answer questions about the flow of execution in a program: a model of the program's 
possible behavior is created and checked for conformance with a model of expected 
behavior (as specified by a user query). In essence, model-checking algorithms ex­
plore the program's state-space and answer questions about whether a bad state can 
be reached during an execution of the program. 

For model checking, the CodeSurfer/x86 IRs are used to build a weighted 
pushdown system (WPDS) [8, 39, 40, 33] that models possible program behav­
iors. WPDSs generalize a model-checking technology known as pushdown systems 
(PDSs) [7, 23], which have been used for software model checking in the Moped 
[42,41] and MOPS [11] systems. Compared to ordinary (unweighted) PDSs, WPDSs 
are capable of representing more powerful kinds of abstractions of runtime states 
[40, 33], and hence go beyond the capabilities of PDSs. For instance, the use of 
WPDSs provides a way to address certain kinds of security-related queries that can­
not be answered by MOPS. 

WPDS-H- [32] is a library that implements the symbolic algorithms from [40, 33] 
for solving WPDS reachability problems. We follow the standard approach of using 
a PDS to model the interprocedural CFG (one of CodeSurfer/x86's IRs). The stack 
symbols correspond to program locations; there is only a single PDS state; and PDS 
rules encode control flow as follows: 

Rule Control flow modeled 
q{u) '-^ q{v) Intraprocedural CFG edge w —» w 
q{c) ^^ q{entryp r) Call to P from c that returns to r 
q{x) ^-^ q{) Return from a procedure at exit node x 

In a configuration of the PDS, the symbol at the top of the stack corresponds to the 
current program location, and the rest of the stack holds return-site locations—this 
allows the PDS to model the behavior of the program's runtime execution stack. 
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An encoding of the interprocedural CFG as a PDS is sufficient for answering 
queries about reachable control states (as the Path Inspector does; see below); the 
reachability algorithms of WPDS++ can determine if an undesirable PDS configura­
tion is reachable. However, WPDS++ also supports weighted PDSs, which are PDSs 
in which each rule is weighted with an element of a (user-defined) semiring. The 
use of weights allows WPDS++ to perform interprocedural dataflow analysis by us­
ing the semiring's extend operator to compute weights for sequences of rule firings 
and using the semiring's combine operator to take the join of weights generated by 
different paths [40, 33]. (When the weights on rules are conservative abstract data 
transformers, an over-approximation to the set of reachable concrete configurations 
is obtained, which means that counterexamples reported by WPDSH-+ may actually 
be infeasible.) 

The advantage of answering reachability queries on WPDSs over conventional 
dataflow-analysis methods is that the latter merge together the values for all states 
associated with the same program point, regardless of the states' calling context. 
With WPDSs, queries can be posed with respect to a regular language of stack con­
figurations [8, 39, 40, 33]. (Conventional merged dataflow information can also be 
obtained [40].) 

CodeSurfer/x86 can also be used in conjunction with GrammaTech's Path In­
spector tool. The Path Inspector provides a user interface for automating safety 
queries that are only concerned with the possible control configurations that an ex­
ecutable can reach. The Path Inspector checks sequencing properties of events in a 
program, which can be used to answer such questions as "Is it possible for the pro­
gram to bypass the authentication routine?" (which indicates that the program may 
contain a trapdoor), or "Can this login program bypass the code that writes to the log 
file?" (which indicates that the program may be a Trojan login program). 

With the Path Inspector, such questions are posed as questions about the exis­
tence of problematic event sequences; after checking the query, if a problematic path 
exists, it is displayed in the Path Inspector tool. This lists all of the program points 
that may occur along the problematic path. These items are linked to the source code; 
the analyst can navigate from a point in the path to the corresponding source-code 
element. In addition, the Path Inspector allows the analyst to step forward and back­
ward through the path, while simultaneously stepping through the source code. (The 
code-stepping operations are similar to the single-stepping operations in a traditional 
debugger.) 

The Path Inspector uses an automaton-based approach to model checking: the 
query is specified as a finite automaton that captures forbidden sequences of program 
locations. This "query automaton" is combined with the program model (a WPDS) 
using a cross-product construction, and the reachability algorithms of WPDS-H- are 
used to determine if an error configuration is reachable. If an error configuration is 
reachable, then witnesses (see [40]) can be used to produce a program path that drives 
the query automaton to an error state. 

The Path Inspector includes a GUI for instantiating many common reachabil­
ity queries [20], and for displaying counterexample paths in the disassembly list­
ing. In the current implementation, transitions in the query automaton are triggered 
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by program points that the user specifies either manually, or using result sets from 
CodeSurfer queries. Future versions of the Path Inspector will support more sophis­
ticated queries in which transitions are triggered by matching an abstract-syntax-tree 
pattern against a program location, and query states can be instantiated based on 
pattern bindings. 

3.5 Related Work 

Previous work on analyzing memory accesses in executables has dealt with memory 
accesses very conservatively: generally, if a register is assigned a value from memory, 
it is assumed to take on any value. VSA does a much better job than previous work 
because it tracks the integer-valued and address-valued quantities that the program's 
data objects can hold; in particular, VSA tracks the values of data objects other than 
just the hardware registers, and thus is not forced to give up all precision when a load 
from memory is encountered. 

The basic goal of the algorithm proposed by Debray et al. [19] is similar to that 
of VSA: for them, it is to find an over-approximation of the set of values that each 
register can hold at each program point; for us, it is to find an over-approximation 
of the set of values that each (abstract) data object can hold at each program point, 
where data objects include memory locations in addition to registers. In their analy­
sis, a set of addresses is approximated by a set of congruence values: they keep track 
of only the low-order bits of addresses. However, unlike VSA, their algorithm does 
not make any effort to track values that are not in registers. Consequently, they lose 
a great deal of precision whenever there is a load from memory. 

Cifuentes and Fraboulet [12] give an algorithm to identify an intraprocedural 
slice of an executable by following the program's use-def chains. However, their 
algorithm also makes no attempt to track values that are not in registers, and hence 
cuts short the slice when a load from memory is encountered. 

The two pieces of work that are most closely related to VSA are the algorithm for 
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for 
pointer analysis on a low-level intermediate representation of Guo et al. [25]. The al­
gorithm of Amme et al. performs only an j'nfraprocedural analysis, and it is not clear 
whether the algorithm fully accounts for dependences between memory locations. 
The algorithm of Guo et al. [25] is only partially flow-sensitive: it tracks registers 
in a flow-sensitive manner, but treats memory locations in a flow-insensitive man­
ner. The algorithm uses partial transfer functions [45] to achieve context-sensitivity. 
The transfer functions are parameterized by "unknown initial values" (UIVs); how­
ever, it is not clear whether the the algorithm accounts for the possibility of called 
procedures corrupting the memory locations that the UIVs represent. 
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Summary. Most current systems to detect malicious code rely on syntactic signatures. More 
precisely, these systems use a set of byte strings that characterize known malware instances. 
Unfortunately, this approach is not able to identify previously unknown malicious code for 
which no signature exists. The problem gets exacerbated when the malware is polymorphic 
or metamorphic. In this case, different instances of the same malicious code have a different 
syntactic representation. 

In this chapter, we introduce techniques to characterize behavioral and structural proper­
ties of binary code. These techniques can be used to generate more abstract, semantically-rich 
descriptions of malware, and to characterize classes of malicious code instead of specific in­
stances. This makes the specification more robust against modifications of the syntactic layout 
of the code. Also, in some cases, it allows the detection of novel malware instances. 

4.1 Introduction 

Malicious code (or malware) is defined as software that fulfills the deliberately harm­
ful intent of an attacker when run. Typical examples of malware include viruses, 
worms, and spyware. The damage caused by malicious code has dramatically in­
creased in the past few years. This is due to both the popularity of the Internet, which 
leads to a significant increase in the number of available vulnerable machines, and 
the sophistication of the malicious code itself. 

Current systems to detect malicious code (most prominently, virus scanners) are 
mostly based on syntactic signatures, which specify byte sequences that are char­
acteristic of particular malware instances. This approach has two drawbacks. First, 
specifying precise, syntactic signatures makes it necessary to update the signature 
database whenever a previously unknown malware sample is found. As a result, 
there is always a window of vulnerability between the appearance of a new maU-
cious code instance and the availability of a signature that can detect it. Second, 
malicious code can be metamorphic. That is, the malware code mutates while repro­
ducing or spreading across the network, thereby rendering detection using signatures 
completely ineffective. 
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In this chapter, we will discuss approaches to characterize higher-level properties 
of malicious code. These properties are captured by abstract models that describe the 
behavior and structure of malicious code. The key idea is that semantic or structural 
properties are more difficult to change between different malware variations. There­
fore, our approach results in a more general and robust description of malicious code 
that is not affected by syntactic changes in the binary image. To demonstrate the ef­
fectiveness of our approach, we introduce a technique to describe and detect kernel-
level rootkits based on their behavior in Section 4.2. In addition, in Section 4.3, we 
describe a mechanism to capture the structure of executables and its use to identify 
metamorphic worms. 

4.2 Behavioral Identification of Rootliits 

A rootkit is a collection of tools often used by an attacker after gaining administrative 
privileges on a host. This collection includes tools to hide the presence of the attacker 
(e.g., log editors), utiUties to gather information about the system and its environment 
(e.g., network sniffers), tools to ensure that the attacker can regain access at a later 
time (e.g., backdoored servers), and means of attacking other systems. Even though 
the idea of a rootkit is to provide all the tools that may be needed after a system 
has been compromised, rootkits focus in particular on backdoored programs and 
tools to hide the attacker from the system administrator. Originally, rootkits mainly 
included modified versions of system auditing programs (e.g., p s or n e t s t a t for 
Unix systems) [10]. These modified programs (also called Trojan horses) do not 
return any information to the administrator about specific files and processes used by 
the intruder, making the intruder "invisible" to the administrator's eyes. Such tools, 
however, are easily detected using file integrity checkers such as Tripwire [3]. 

Recently, a new type of rootkit has emerged. These rootkits are implemented as 
loadable kernel modules (LKMs). A loadable kernel module is an extension to the 
operating system (e.g., a device driver) that can be loaded into and unloaded from 
the kernel at runtime. This runtime kernel extension is supported by many Unix-style 
operating systems, most notably Solaris and Linux. When loaded, a kernel module 
has access to the symbols exported by the kernel and can modify any data structure 
or function pointer that is accessible. Typically, these kernel rootkits "hijack" entries 
in the system call table and provide modified implementations of the corresponding 
system call functions [11, 17]. These modified system calls often perform checks 
on the data passed back to a user process and can thus efficiently hide information 
about files and processes. An interesting variation is implemented by the a d o r e - n g 
rootkit [18, 19]. In this case, the rootkit does not modify the system call table, but, 
instead, hijacks the routines used by the Virtual File System (VFS), and, therefore, 
it is able to intercept (and tamper with) calls that access files in both the / p r o c file 
system and the root file system. In any case, once the kernel is infected, it is very 
hard to determine if a system has been compromised without the help of hardware 
extensions, such as the TCPA chip [13]. 
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4.2.1 Rootkit Detection 

In the following, we introduce a technique for the detection of kernel rootkits in the 
Linux operating system. The technique is based on the general specification of the 
behavior of a rootkit. Using static analysis (more precisely, symbolic execution), an 
unknown kernel module is checked for code that exhibits the malicious behavior. If 
such code is found, the module is classified as rootkit. The advantage of our method 
compared to byte string signatures is the fact that our specification describes a gen­
eral property of a class of kernel rootkits. As a result, our technique has the capability 
to identify previously unknown instances. Also, it is robust to obfuscation techniques 
that change the syntactic layout of the code but retain its semantics. 

The idea for our detection approach is based on the observation that the runtime 
behavior of regular kernel modules (e.g., device drivers) differs significantly from 
the behavior of kernel rootkits. We note that regular modules have different goals 
than rootkits, and thus implement different functionality. Our analysis is performed 
in two steps. First, we have to specify undesirable behavior. Second, each kernel 
module binary is statically analyzed for the presence of instructions sequences that 
implement these specifications. 

Currently, our specifications are given informally, and the analysis step has to 
be adjusted appropriately to deal with new specifications. Although it might be pos­
sible to introduce a formal mechanism to model behavioral specifications, it is not 
necessary for our detection prototype. The reason is that a few general specifications 
are sufficient to accurately capture the malicious behavior of all current LKM-based 
rootkits. Nevertheless, the analysis technique is powerful enough that it can be easily 
extended. This may become necessary when rootkit authors actively attempt to evade 
detection by changing the code such that it does not adhere to any of our specifica­
tions. 

4.2.2 Specification of Behavior 

A specification of malicious behavior has to model a sequence of instructions that is 
characteristic for rootkits but that does not appear in regular modules (at least, with 
a high probability). That is, we have to analyze the behavior of rootkits to derive 
appropriate specifications that can be used during the analysis step. 

In general, kernel modules (e.g., device drivers) initialize their internal data struc­
tures during startup and then interact with the kernel via function calls, using both 
system calls or functions internal to the kernel. In particular, it is not often necessary 
that a module directly writes to kernel memory. Some exceptions include device 
drivers that read from and write to memory areas that are associated with a managed 
device and that are mapped into the kernel address space to provide more efficient 
access or modules that overwrite function pointers to register themselves for event 
callbacks. 

Kernel rootkits, on the other hand, usually write directly to kernel memory to alter 
important system management data structures. The purpose is to intercept the regular 
control flow of the kernel when system services are requested by a user process. This 
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is done in order to monitor or change the results that are returned by these services to 
the user process. Because system calls are the most obvious entry point for requesting 
kernel services, the earliest kernel rootkits modified the system call table accordingly. 
For example, one of the first actions of the k n a r k [11] rootkitis to exchange entries 
in the system call table with customized functions to hide files and processes. 

In newer kernel releases, the system call table is no longer exported by the kernel, 
and thus it cannot be directly accessed by kernel modules. Therefore, alternative ap­
proaches to influence the results of operating system services have been investigated. 
One such solution is to monitor accesses to the / p r o c file system. This is accom­
plished by changing the function addresses in the / p r o c file system root node that 
point to the corresponding read and write functions. Because the / p r o c file system 
is used by many auditing applications to gather information about the system (e.g., 
about running processes, or open network connections), a rootkit can easily hide im­
portant information by filtering the output that is passed back to the application. An 
example of this approach is the a d o r e - n g rootkit [19] that replaces functions of 
the virtual flic system (VFS) node of the / p r o c flle system. 

As a general observation, we note that rootkits perform writes to a number of 
locations in the kernel address space that are usuaUy not touched by regular modules. 
These writes are necessary either to obtain control over system services (e.g., by 
changing the system call table, file system functions, or the list of active processes) 
or to hide the presence of the kernel rootkit itself (e.g., modifying the list of installed 
modules). Because write operations to operating system management structures are 
required to implement the needed functionality, and because these writes are unique 
to kernel rootkits, they present a salient opportunity to specify malicious behavior. 

To be more precise, we identify a loadable kernel module as a rootkit based on 
the following two behavioral specifications: 

1. The module contains a data transfer instruction that performs a write operation 
to an illegal memory area, or 

2. the module contains an instruction sequence that i) uses a. forbidden kernel sym­
bol reference to calculate an address in the kernel's address space and ii) per­
forms a write operation using this address. 

Whenever the destination address of a data transfer can be determined statically 
during the analysis step, it is possible to check whether this address is within a le­
gitimate area. The notion of legitimate areas is defined by a white-list that specifies 
the kernel addressed that can be safely written to. For our current system, these areas 
include function pointers used as event callback hooks (e.g., b r _ i o c t l _ h o o k ()) 
or exported arrays (e.g., b lk_dev) . 

One drawback of the first specification is the fact that the destination address 
must be derivable during the static analysis process. Therefore, a complementary 
specification is introduced that checks for writes to any memory address that is cal­
culated using a forbidden kernel symbol. 

A kernel symbol refers to a kernel variable with its corresponding address that 
is exported by the kernel (e.g., via / p r o c / k s y s m ) . These symbols are needed by 
the module loader, which loads and inserts modules into the kernel address space. 



4 Behavioral and Structural Properties of Malicious Code 67 

When a kernel module is loaded, all references to external variables that are declared 
in this module but defined in the kernel (or in other modules) have to be patched 
appropriately. This patching process is performed by substituting the place holder 
addresses of the declared variables in the module with the actual addresses of the 
corresponding symbols in the kernel. 

The notion of forbidden kernel symbols can be based on black-lists or white-
lists. A black-list approach enumerates all forbidden symbols that are likely to be 
misused by rootkits, for example, the system call table, the root of the / p r o c file 
system, the list of modules, or the task structure list. A white-list, on the other hand, 
explicitly defines acceptable kernel symbols that can legitimately be accessed by 
modules. As usual, a white-list approach is more restrictive, but may lead to false 
positives when a module references a legitimate but infrequently used kernel symbol 
that has not been allowed previously. However, following the principle of fail-safe 
defaults, a white-Ust also provides greater assurance that the detection process cannot 
be circumvented. 

Note that it is not necessarily malicious when a forbidden kernel symbol is de­
clared by a module. When such a symbol is not used for a write access, it is not 
problematic. Therefore, we cannot reject a module as a rootkit by checking the de­
clared symbols only. 

Also, it is not sufficient to check for writes that target a forbidden symbol directly. 
Often, kernel rootkits use such symbols as a starting point for more complex address 
calculations. For example, to access an entry in the system call table, the system call 
table symbol is used as a base address that is increased by a fixed offset. Another 
example is the module list pointer, which is used to traverse a linked list of module 
elements to obtain a handle for a specific module. Therefore, a more extensive anal­
ysis has to be performed to also track indirect uses of forbidden kernel symbols for 
write accesses. 

Naturally, there is an arms-race between rootkits that use more sophisticated 
methods to obtain kernel addresses, and our detection system that relies on speci­
fications of malicious behavior. For current rootkits, our basic specifications allow 
for reliable detection with no false positives (see Section 4.2.4 for details). However, 
it might be possible to circumvent these specifications. In that case, it is necessary to 
provide more elaborate descriptions of malicious behavior. 

Note that our behavioral specifications have the advantage that they provide a 
general model of undesirable behavior. That is, these specifications characterize an 
entire class of malicious actions. This is different from fine-grained specifications 
that need to be tailored to individual kernel modules. 

4.2.3 Symbolic Execution 

Based on the specifications introduced in the previous section, the task of the analysis 
step is to statically check the module binary for instructions that correspond to these 
specifications. When such instructions are found, the module is labeled as a rootkit. 

We perform analysis on binaries using symbolic execution. Symbolic execution 
is a static analysis technique in which program execution is simulated using sym-
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bols, such as variable names, rather than actual values for input data. The program 
state and outputs are then expressed as mathematical (or logical) expressions involv­
ing these symbols. When performing symbolic execution, the program is basically 
executed with all possible input values simultaneously, thus allowing one to make 
statements about the program behavior. 

In order to simulate the execution of a program, or, in our case, the execution of 
a loadable kernel module, it is necessary to perform two preprocessing steps. 

First, the code sections of the binary have to be disassembled. In this step, the 
machine instructions have to be extracted and converted into a format that is suitable 
for symbolic execution. That is, it is not sufficient to simply print out the syntax of in­
structions, as done by programs such as ob j dump. Instead, the type of the operation 
and its operands have to be parsed into an internal representation. The disassembly 
step is complicated by the complexity of the Intel x86 instruction set, which uses a 
large number of variable-length instructions and many different addressing modes 
for backward-compatibility reasons. 

In the second preprocessing step, it is necessary to adjust address operands in all 
code sections present. The reason is that a Linux loadable kernel module is merely 
a standard ELF relocatable object file. Therefore, many memory address operands 
have not been assigned their final values yet. These memory address operands in­
clude targets of jump and call instructions but also source and destination locations 
of load, store, and move instructions. 

For a regular relocatable object file, the addresses are adjusted by the linker. 
To enable the necessary link operations, a relocatable object also contains, besides 
regular code and data sections, a set of relocation entries. Note, however, that kernel 
modules are not linked to the kernel code by a regular linker. Instead, the necessary 
adjustment (i.e., patching) of addresses takes place during module load time by a 
special module loader. For Linux kernels up to version 2.4, most of the module loader 
ran in user-space; for kernels from version 2.5 and up, much of this functionality was 
moved into the kernel. To be able to simulate execution, we perform a process similar 
to linking and substitute place holders in instruction operands and data locations with 
the real addresses. This has the convenient side-effect that we can mark operands that 
represent forbidden kernel symbols so that the symbolic execution step can later trace 
their use in write operations. 

When the loadable kernel module has been disassembled and the necessary ad­
dress modifications have occurred, the symbolic execution process can commence. 
To be precise, the analysis starts with the kernel module's initialization routine, called 
i n i t - m o d u l e ( ) . More details about a possible realization of the binary symbolic 
execution process can be found in [4]. During the analysis, for each data transfer 
instruction, it is checked whether data is written to kernel memory areas that are not 
explicitly permitted by the white-list, or whether data is written to addresses that are 
tainted because of the use of forbidden symbols. When an instruction is found that 
violates the specification of permitted behavior, the module is flagged as a kernel 
rootkit. 
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4.2.4 Evaluation 

The proposed rootkit detection algorithm was implemented as a user-space prototype 
that simulated the object parsing and symbol resolution performed by the existing 
kernel module loader before disassembling the module and analyzing the code for 
the presence of malicious writes to kernel memory. 

To evaluate the detection capabilities of our system, three sets of kernel mod­
ules were created. The first set comprised the k n a r k and a d o r e - n g rootkits, both 
of which were used during development of the prototype. As mentioned previously, 
both rootkits implement different methods of subverting the control flow of the ker­
nel: k n a r k overwrites entries in the system call table to redirect various system calls 
to its own handlers, while a d o r e - n g patches itself into the VFS layer of the kernel 
to intercept accesses to the / p r o c file system. Since each rootkit was extensively 
analyzed during the prototype development phase, it was expected that all malicious 
kernel accesses would be discovered by the prototype. 

Table 4.1. Evaluation rootkits. 
Rootkit Technique Description 

adore syscalls File, directory, process, and socket hiding 
Rootshell backdoor 
Gives all processes UID 0 
Gives special user UID 0 
Logs keystrokes from local and network logins 
Gives special user UID 0 
Execute arbitrary programs as UID 0 
File, directory, process, socket, and module hiding 
Gives special user UID 0 

The second set consisted of a set of seven additional popular rootkits downloaded 
from the Internet, described in Table 4.1. Since these rootkits were not analyzed dur­
ing the prototype development phase, the detection rate for this group can be con­
sidered a measure of the generality of the detection technique as applied against pre­
viously unknown rootkits that utilize similar means to subvert the kernel as k n a r k 
and a d o r e - n g . 

The final set consisted of a control group of legitimate kernel modules, namely 
the entire default set of kernel modules for the Fedora Core 1 Linux x86 distribu­
tion. This set includes 985 modules implementing various components of the Linux 
kernel, including networking protocols (e.g., IPv6), bus protocols (e.g., USB), file 
systems (e.g., EXT3), and device drivers (e.g., network interfaces, video cards). It 
was assumed that no modules incorporating rootkit functionality were present in this 
set. 

Table 4.2 presents the results of the detection evaluation for each of the three sets 
of modules. As expected, all malicious writes to kernel memory by both k n a r k and 
a d o r e - n g were detected, resulting in a false negative rate of 0% for both rootkits. 

all-root 
kbdv3 

kkeylogger 
rkit 

shtroj2 
synapsys 

syscalls 
syscalls 
syscalls 
syscalls 
syscalls 
syscalls 
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Table 4.2. Detection results. 
Module Set Modules Analyzed Detections Misclassification Rate 

Development rootkits 
Evaluation rootkits 

Fedora Core 1 modules 

2 
6 

985 

2 
6 
0 

0 (0%) 
0 (0%) 
0 (0%) 

All malicious writes by each evaluation rootkit were detected as well, resulting in 
a false negative rate of 0% for this set. We interpret this result as an indication that 
the detection technique generalizes well to previously unseen rootkits. Finally, no 
malicious writes were reported by the prototype for the control group, resulting in 
a false positive rate of 0%. We thus conclude that the detection algorithm is com­
pletely successful in distinguishing rootkits exhibiting specified malicious behavior 
from legitimate kernel modules, as no misclassiflcations occurred during the entire 
detection evaluation. 

kmodscan: initializing scan for rootkits/all-root.o 
kmodscan: loading kernel symbol table from boot/System.map 
kmodscan: kernel memory configured [c0100000-c041eaf8] 
kmodscan: resolving external symbols in section .text 
kmodscan: disassembling section .text 
kmodscan: performing scan from [.text+40] 
kmodscan: WRITE TO KERNEL MEMORY [c0347df0] at [.text+50] 
kmodscan: 1 malicious write detected, denying module load 

Fig. 4.1. a l l - r o o t roolkit analysis. 

To verify that the detection algorithm performed correctly on the evaluation 
rootkits, traces of the analysis performed by the prototype on each rootkit were ex­
amined with respect to the corresponding module code. As a simple example, con­
sider the case of the a l l - r o o t rootkit, whose analysis trace is shown in Figure 4.1. 
From the trace, we can see that one malicious kernel memory write was detected at 
. t e x t + 5 0 (i.e., at an offset of 50 bytes into the . t e x t section). By examining 
the disassembly of the a l l - r o o t module, the relevant portion of which is shown 
in Figure 4.2, we can see that the overwrite occurs in the module's initialization 
function, i n i t j n o d u l e () ^ Specifically, the movl instruction at . t e x t + 5 0 is 
flagged as a malicious write to kernel memory. Correlating the disassembly with 
the corresponding rootkit source code, shown in Figure 4.3, we can see that this 
instruction corresponds to the write to the s y s - c a l l _ t a b l e array to replace the 
g e t u i d () system call handler with the module's malicious version at line 4. Thus, 
we conclude that the rootkit's attempt to redirect a system call was properly detected. 

^ Note that this disassembly was generated prior to kernel symbol resolution, thus the dis­
played read and write accesses are performed on place holder addresses. At runtime and 
for the symbolic execution, the proper memory address would be patched into the code. 
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00000040 <ini t_module>: 
40 
45 
46 
48 
4d 
4e 
50 
57 

5a 

al 
55 
89 

a3 
5d 
31 
c7 

00 
c3 

60 

e5 

00 

cO 
05 
00 

00 

00 

60 
00 

00 

00 

00 

00 

00 

00 00 00 

mov 
push 
mov 
mov 

pop 
xor 

movl 

ret 

0x60, 
%ebp 
%esp. 
%eax, 

%ebp 
%eax, 

$0x0, 

%eax 

%ebp 
0x0 

%eax 

0x60 

Fig. 4.2. a l l - r o o t module disassembly. 

1 int init_module(void) 
2 { 
3 orlg_getuid = sys_call_table[ NR_getuid]; 
4 sys_call_table[ NR_getuid] = give_root; 
5 
6 return 0; 
7 } 

Fig. 4.3. a l l - r o o t initialization function. 

4.3 Structural Identification of Worms 

As mentioned previously, polymorphic code can change its binary representation as 
part of the replication process. This can be achieved by using self-encryption mech­
anisms or semantics-preserving code manipulation techniques. As a consequence, 
copies of polymorphic malware often no longer share a common invariant substring 
that can be used as a detection signature. 

In this section, we present a technique that uses the structural properties of an 
executable to identify different mutations of the same malware. This technique is re­
silient to code modifications that make existing detection approaches based on syn­
tactic signatures ineffective. Our approach is based on a novel fingerprinting tech­
nique based on control flow information that allows us to detect structural similar­
ities between variations of one malware instance or between members of the same 
malicious code family. The following properties are desirable for the fingerprinting 
technique: 

• Uniqueness. Different executable regions should map to different fingerprints. 
If identical fingerprints are derived for unrelated executables, the system cannot 
distinguish between code that should be correlated and those that should not. If 
the uniqueness property is not fulfilled, the system is prone to producing false 
positives. 

• Robustness to insertion and deletion. When code is added to an executable re­
gion, either by prepending it, appending it, or interleaving it with the original ex-
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ecutable (i.e., insertion), the fingerprints for the original executable region should 
not change. Furthermore, when parts of a region are removed (i.e., deletion), the 
remaining fragment should still be identified as part of the original executable. 
Robustness against insertion and deletion is necessary to counter straightforward 
evasion attempts in which an attacker inserts code before or after the actual ma­
licious code fragment. 

• Robustness to modification. The fingerprinting mechanism has to be robust 
against certain code modifications. That is, even when a code sequence is mod­
ified by operations such as junk insertion, register renaming, code transposition, 
or instruction substitution, the resulting fingerprint should remain the same. This 
property is necessary to identify different variations of a single polymorphic mal-
ware program. 

Our key observation is that the internal structure of an executable is more char­
acteristic than its representation as a stream of bytes. That is, a representation that 
takes into account control flow decision points and the sequence in which particu­
lar parts of the code are invoked can better capture the nature of an executable and 
its functionality. Thus, it is more difficult for an attacker to automatically generate 
variations of an executable that differ in their structure than variations that map to 
different sequences of bytes. 

For our purpose, the structure of an executable is described by its control flow 
graph (CFG). The nodes of the control flow graph are basic blocks. An edge from 
a block u to a block v represents a possible flow of control from u to v. A basic 
block describes a sequence of instructions without any jumps or jump targets in the 
middle.^ Note that a control flow graph is not necessarily a single connected graph. It 
is possible (and also very Ukely) that it consists of a number of disjoint components. 

Given two regions of executable code that belong to two different malware pro­
grams, we use their CFGs to determine if these two regions represent two polymor­
phic instances of the same code. This analysis, however, cannot be based on simply 
comparing the entire CFG of the regions because an attacker could trivially evade 
this technique, e.g., by adding some random code to the end of the actual malware 
instance. Therefore, we have developed a technique that is capable of identifying 
common substructures of two control flow graphs. We identify common substruc­
tures in control flow graphs by checking for isomorphic connected subgraphs of size 
k (called k-subgraphs) contained in all CFGs. Two subgraphs, which contain the 
same number of vertices k, are said to be isomorphic if they are connected in the 
same way. When checking whether two subgraphs are isomorphic, we only look at 
the edges between the nodes under analysis. Thus, incoming and outgoing edges to 
other nodes are ignored. 

^ More formally, a basic block is defined as a sequence of instructions where the instruc­
tion in each position dominates, or always executes before, all those in later positions, and 
no other instruction executes between two instructions in the sequence. Directed edges 
between blocks represent jumps in the control flow, which are caused by control transfer 
instructions (CTIs) such as calls, conditional and unconditional jumps, or return instruc­
tions. 
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Two code regions are related if they share common fc-subgraphs. Consider the 
example of the two control flow graphs in Figure 4.4. While these two graphs appear 
different at a first glance, closer examination reveals that they share a number of 
common 4-subgraphs. For example, nodes AtoD form connected subgraphs that 
are isomorphic. Note that the number of the incoming edges is different for the A 
nodes in both graphs. However, only edges from and to nodes that are part of the 
subgraph are considered for the isomorphism test. 

Fig. 4.4. Two control flow graphs with an example of a common 4-subgraph. 

Different subgraphs have to map to different fingerprints to satisfy the unique­
ness property. The approach is robust to insertion and deletion because two CFGs 
are related as long as they share sufficiently large, isomorphic subgraphs. In addi­
tion, while it is quite trivial for an attacker to modify the string representation of an 
executable to generate many variations automatically, the situation is different for 
the CFG representation. Register renaming and instruction substitution (assuming 
that the instruction is not a control flow instruction) have no influence on the CFG. 
Also, the reordering of instructions within a basic block and the reordering of the 
layout of basic blocks in the executable result in the same control flow graph. This 
makes the CFG representation more robust to code modifications in comparison to 
syntax-based techniques. 

To refine the specification of the control flow graph, we also take into account in­
formation derived from each basic block, or, to be more precise, from the instructions 
in each block. This allows us to distinguish between blocks that contain significantly 
different instructions. For example, the system should handle a block that contains 
a system call invocation differently from one that does not. To represent informa­
tion about basic blocks, a color is assigned to each node in the control flow graph. 
This color is derived from the instructions in each block. The block coloring tech­
nique is used when identifying common substructures, that is, two subgraphs (with 
k nodes) are isomorphic only if the vertices are connected in the same way and the 
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color of each vertex pair matches. Using graph coloring, the characterization of an 
executable region can be significantly improved. This reduces the amount of graphs 
that are incorrectly considered related and lowers the false positive rate. 

4.3.1 Control Flow Graph Extraction 

The initial task of our system is to construct a control flow graph from the program(s) 
that should be analyzed. This requires two steps. In the first step, we perform a linear 
disassembly of the byte stream to extract the machine instructions. In the second 
step, based on this sequence of instructions, we use standard techniques to create a 
control flow graph. 

Constructing a control flow graph is easy when the executable program is directly 
available (e.g., as an email attachment or as a file in the file system). However, the 
situation is very different in the case of network flows. The reason is that it is not 
known a priori where executable code regions are located within a network stream or 
whether the stream contains executable code at all. Thus, it is not immediately clear 
which parts of a stream should be disassembled. Nevertheless, network traffic must 
be analyzed to identify worms. The problem of finding executables in network traffic 
is exacerbated by the fact that for many instruction set architectures, and in particular 
for the Intel x86 instruction set, most bit combinations map to valid instructions. As a 
result, it is highly probable that even a stream of random bytes could be disassembled 
into a valid instruction sequence. This makes it very difficult to reliably distinguish 
between valid code areas and random bytes (or ASCII text) by checking only for the 
presence or absence of valid instructions. 

We address this problem by disassembling the entire byte stream first and defer­
ring the identification of "meaningful" code regions after the construction of the 
CFG. This approach is motivated by the observation that the structure (i.e., the 
CFG) of actual code differs significantly from the structure of random instruction 
sequences. The CFG of actual code contains large clusters of closely connected basic 
blocks, while the CFG of a random sequence usually contains mostly single, isolated 
blocks or small clusters. The reason is that the disassembly of non-code byte streams 
results in a number of invalid basic blocks that can be removed from the CFG, caus­
ing it to break into many small fragments. A basic block is considered invalid (i) if it 
contains one or more invalid instructions, (ii) if it is on a path to an invalid block, or 
(iii) if it ends in a control transfer instruction that jumps into the middle of another 
instruction. 

As mentioned previously, we analyze connected components with at least k 
nodes (i.e., fe-subgraphs) to identify common subgraphs. Because random instruction 
sequences usually produce subgraphs that have less than k nodes, the vast majority of 
non-code regions are automatically excluded from further analysis. Thus, we do not 
require an explicit and a priori division of the network stream into different regions 
nor an oracle that can determine if a stream contains a worm or not. Experimental 
results (presented in [5]) support our claim that code and non-code regions can be 
differentiated based on the shape of the control flows. 
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Another problem that arises when disassembling a network stream is that there 
are many different processor types that use completely different formats to encode 
instructions. In our current system, we focus on executable code for Intel x86 only. 
This is motivated by the fact that the vast majority of vulnerable machines on the 
Internet (which are the potential targets for malware) are equipped with Intel x86 
compatible processors. 

As we perform linear disassembly from the start (i.e., the first byte) of a stream, it 
is possible that the start of the first valid instruction in that stream is "missed". As we 
mentioned before, it is probable that non-code regions can be disassembled. If the last 
invalid instruction in the non-code region overlaps with the first valid instruction, the 
sequence of actual, valid instructions in the stream and the output of the disassembler 
will be different (i.e., de-synchronized). An example of a missed first instruction is 
presented in Figure 4.5. In this example, an invalid instruction with a length of three 
bytes starts one byte before the first valid instruction, which is missed by two bytes. 

Non-code Code 

Missed instruction 

Byte stream 

] Actual instructions 

I J Disassembler output 

/ * 
Synchronization point 

Fig. 4.5. Linear disassembler misses the start of the first valid instruction. 

We cannot expect that network flows contain code that corresponds to a valid ex­
ecutable (e.g., in the ELF or Windows PE format), and, in general, it is not possible, 
to identify the first valid instruction in a stream. Fortunately, two Intel x86 instruc­
tion sequences that start at slightly different addresses (i.e., shifted by a few bytes) 
synchronize quickly, usually after a few (between one and three) instructions. This 
phenomenon, called self-synchronizing disassembly, is caused by the fact that Intel 
x86 instructions have a variable length and are usually very short. Therefore, when 
the linear disassembler starts at an address that does not correspond to a valid instruc­
tion, it can be expected to re-synchronize with the sequence of valid instructions very 
quickly [6]. In the example shown in Figure 4.5, the synchronization occurs after the 
first missed instruction (shown in gray). After the synchronization point, both the 
disassembler output and the actual instruction stream are identical. 
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4.3.2 K-Subgraphs and Graph Coloring 

Given a control flow graph extracted from a binary program or directly from a net­
work stream, the next task is to generate connected subgraphs of this CFG that have 
exactly k nodes (fc-subgraphs). 

The generation of fc-subgraphs from the CFG is one of the main contributors to 
the run-time cost of the analysis. Thus, we are interested in a very efficient algorithm 
even if this implies that not all subgraphs are constructed. The rationale is that we 
assume that the number of subgraphs that are shared by two malware samples is 
sufficiently large that at least one is generated by the analysis. The validity of this 
thesis is confirmed by our experimental detection results, which are presented in 
Section 4.3.5. 

To produce fc-subgraphs, our subgraph generation algorithm is invoked for each 
basic block, one after another. The algorithm starts from the selected basic block A 
and performs a depth-first traversal of the graph. Using this depth-first traversal, a 
spanning tree is generated. That is, we remove edges from the graph so that there 
is at most one path from the node A to all the other blocks in the CFG. In practice, 
the depth-first traversal can be terminated after a depth of k because the size of the 
subgraph is limited to fc nodes. A spanning tree is needed because multiple paths 
between two nodes lead to the generation of many redundant fc-subgraphs in which 
the same set of nodes is connected via different edges. While it would be possible 
to detect and remove duplicates later, the overhead to create and test these graphs is 
very high. 

A ® 
©' 0 © © 

Control flow graph Spanning tree 

A A 
© 0 © ®(^ 

© © © © © © 
4-nocle subtrees 

Fig. 4.6. Example for the operation of the subgraph generation process. 
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Once the spanning tree is built, we generate all possible fc-node subtrees with the 
selected basic block A as the root node. Note that all identified subgraphs are used 
in their entirety, also including non-spanning-tree links. Consider the graph shown 
in Figure 4.6. In this example, fc is 4 and node A is the root node. In the first step, the 
spanning tree is generated. Then, the subtrees {A, B, D, E}, {A, B, C, Z)}, and {A, 
B, C, E} are identified. The removal of the edge from C to E causes the omission 
of the redundant subgraph {A, B, C, E}. 

4.3.3 Graph fingerprinting 

In order to quickly determine which fc-subgraphs are shared between different pro­
grams or appear in different network streams, it is useful to be able to map each 
subgraph to a number (a fingerprint) so that two fingerprints are equal only if the 
corresponding subgraphs are isomorphic. This problem is known as canonical graph 
labeling [1]. The solution to this problem requires that a graph is first transformed 
into its canonical representation. Then, the graph is associated with a number that 
uniquely identifies the graph. Since isomorphic graphs are transformed into an iden­
tical canonical representation, they will also be assigned the same number. 

The problem of finding the canonical form of a graph is as difficult as the 
graph isomorphism problem. There is no known polynomial algorithm for graph 
isomorphism testing; nevertheless, the problem has also not been shown to be NP-
complete [15]. For many practical cases, however, the graph isomorphism test can 
be performed efficiently and there exist polynomial solutions. In particular, this is 
true for small graphs such as the ones that we have to process. We use the Nau ty li­
brary [8, 9], which is generally considered to provide the fastest isomorphism testing 
routines, to generate the canonical representation of our fc-subgraphs. Nau ty can 
handle vertex-colored directed graphs and is well-suited to our needs. 

When the graph is in its canonical form, we use its adjacency matrix to assign 
a unique number to it. The adjacency matrix of a graph is a matrix with rows and 
columns labeled by graph vertices, with a 1 or 0 in position {vi,Vj) according to 
whether there is an edge from Vi to Vj or not. As our subgraphs contain a fixed 
number of vertices k, the size of the adjacency matrix is fixed as well (consisting of 
k^ bits). To derive a fingerprint from the adjacency matrix, we simply concatenate 
its rows and read the result as a single fe^-bit value. This value is unique for each 
distinct graph since each bit of the fingerprint represents exactiy one possible edge. 
Consider the example in Figure 4.7 that shows a graph and its adjacency matrix. By 
concatenating the rows of the matrix, a single 16-bit fingerprint can be derived. 

Of course, when k'^ becomes too large to be practical as a fingerprint, it is also 
possible to hash the rows of the adjacency matrix instead of concatenating them. In 
this case, however, fingerprints are no longer unique and a good hash function (for 
example, one proposed by Jenkins [2]) has to be used to prevent frequent collisions. 

4.3.4 Graph coloring 

One limitation of a technique that only uses structural information to identify sim­
ilarities between executables is that the machine instructions that are contained in 
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Fig. 4.7. Deriving a fingerprint from a subgraph with 4 nodes. 

basic blocks are completely ignored. The idea of graph coloring addresses this short­
coming. 

We devised a graph coloring technique that uses the instructions in a basic block 
to select a color for the corresponding node in the control flow graph. When using 
colored nodes, the notion of common substructures has to be extended to take into 
account color. That is, two subgraphs are considered isomorphic only if the vertices 
in both graphs are connected in the same way and have the same color. Including col­
ors into the fingerprinting process requires that the canonical labeling procedure ac­
counts for nodes of different colors. Fortunately, the Nauty routines directly provide 
the necessary functionality for this task. In addition, the calculation of fingerprints 
must be extended to account for colors. This is done by first appending the (numer­
ical representation of the) color of a node to its corresponding row in the adjacency 
matrix. Then, as before, all matrix rows are concatenated to obtain the fingerprint. 
No further modifications are required to support colored graphs. 

It is important that colors provide only a rough indication of the instructions in a 
basic block, that is, they must not be too closely associated with specific instructions. 
Otherwise, an attacker can easily evade detection by producing structurally similar 
executables with instructions that result in different colorings. For example, if the 
color of a basic block changes when an add instruction is replaced by a semantically 
equivalent sub (subtraction) instruction, the system could be evaded by malicious 
code that uses simple instruction substitution. 

In our current system, we use 14-bit color values. Each bit corresponds to a cer­
tain class of instructions. When one or more instructions of a certain class appear in 
a basic block, the corresponding bit of the basic block's color value is set to 1. If no 
instruction of a certain class is present, the corresponding bit is 0. 

Table 4.3 lists the 14 color classes that are used in our system. Note that it is 
no longer possible to substitute an add with a s u b instruction, as both are part of 
the data transfer instruction class. However, in some cases, it might be possible to 
replace one instruction by an instruction in another class. For example, the value of 
register %eax can be set to 0 both by a mov 0, %eax instruction (which is in the 
data transfer class) or by a x o r %eax, %eax instruction (which is a logic instruc­
tion). While instruction substitution attacks cannot be completely prevented when 
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Table 4.3. Color classes. 

Class Description Class Description 
Data Transfer mov instructions String 
Arithmetic incl. shift and rotate Flags 
Logic incl. bit/byte operations LEA 
Test test and compare Float 
Stack push and pop Syscall 
Branch conditional control flow Jump 
Call function invocation Halt 

x86 string operations 
access of x86 flag register 
load effective address 
floating point operations 
interrupt and system call 
unconditional control flow 
stop instruction execution 

using color classes, they are made much more difficult for an attacker. The reason is 
that there are less possibilities for finding semantically equivalent instructions from 
different classes. Furthermore, the possible variations in color that can be generated 
with instructions from different classes is much less than the possible variations on 
the instruction level. In certain cases, it is even impossible to replace an instruction 
with a semantically equivalent one (e.g., when invoking a software interrupt). 

4.3.5 Worm Detection 

In this section, we show how the previously introduced structural properties of exe-
cutables can be used to detect polymorphic worms in network traffic. To do so, we 
have to assume that at least some parts of a worm contain executable machine code. 
While it is possible that certain regions of the code are encrypted, others have to 
be directly executable by the processor of the victim machine (e.g., there will be a 
decryption routine to decrypt the rest of the worm). Our assumption is justified by 
the fact that most contemporary worms contain executable regions. For example, in 
the 2004 "Top 10" list of worms published by anti-virus vendors [16], all entries 
contain executable code. Note, however, that worms that do not use executable code 
(e.g., worms written in non-compiled scripting languages) will not be detected by 
our system. Based on our assumption, we analyze network flows for the presence 
of executable code. If a network flow contains no executable code, we discard it 
immediately. Otherwise, we derive a set of fingerprints for the executable regions. 

Our algorithm to detect worms is very similar to the Earlybird approach presented 
in [14]. In the Earlybird system, the content of each network flow is processed, and all 
substrings of a certain length are extracted. Each substring is used as an index into a 
table, called prevalence table, that keeps track of how often that particular string has 
been seen in the past. In addition, for each string entry in the prevalence table, a list 
of unique source-destination IP address pairs is maintained. This list is searched and 
updated whenever a new substring is entered. The basic idea is that sorting this table 
with respect to the substring count and the size of the address lists will produce the set 
of likely worm traffic samples. That is, frequently occurring substrings that appear 
in network traffic between many hosts are an indication of worm-related activity. 
Moreover, these substrings can be used directly as worm signatures. 
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The key difference between our system and previous work is the mechanism used 
to index the prevalence table [12]. While Earlybird uses simple substrings, we use the 
fingerprints that are extracted from control flow graphs. That is, we identify worms 
by checking for frequently occurring executable regions that have the same structure 
(i.e., the same fingerprint). 

This is accomplished by maintaining a set of network streams Si for each given 
fingerprint / j . Every set Si contains the distinct source-destination IP address pairs 
for streams that contained /». A fingerprint is identified as corresponding to worm 
code when the following conditions on Si are satisfied: 

1. m, the number of distinct source-destination pairs contained in Si, meets or ex­
ceeds a predefined threshold M. 

2. The number of distinct internal hosts appearing in Si is at least 2. 
3. The number of distinct external hosts appearing in Si is at least 2. 

The last two conditions are required to prevent false positives that would other­
wise occur when several clients inside the network download a certain executable file 
from an external server, or when external clients download a binary from an internal 
server. In both cases, the traffic patterns are different from the ones generated by a 
worm, for which one would expect connections between multiple hosts from both 
the inside and outside networks. 

In a first experiment, we analyzed the capabilities of our system to detect poly­
morphic worms. To this end, we analyzed malicious code that was disguised by 
ADMmutate [7], a well-known polymorphic engine. ADMmutate operates by first 
encrypting the malicious payload, and then prepending a metamorphic decryption 
routine. To evaluate our system, we used ADMmutate to generate 100 encrypted in­
stances of a worm, which produced a different decryption routine for each run. Then, 
we used our system to identify common substructures between these instances. 

Our system could not identify a single fingerprint that was common to all 100 
instances. However, there were 66 instances that shared one fingerprint, and 31 in­
stances that shared another fingerprint. Only 3 instances did not share a single com­
mon fingerprint at all. A closer analysis of the generated encryption routines revealed 
that the structure was identical between all instances. However, ADMmutate heavily 
relies on instruction substitution to change the appearance of the decryption routine. 
In some cases, data transfer instructions were present in a basic block, but not in 
the corresponding block of other instances. These differences resulted in a different 
coloring of the nodes of the control flow graphs, leading to the generation of differ­
ent fingerprints. This experiment brings to attention the possible negative impact of 
colored nodes on the detection. However, it also demonstrates that the worm would 
have been detected quickly since a vast majority of worm instances (97 out of 100) 
contain one of only two different fingerprints. 

In order to evaluate the degree to which the system is prone to generating false 
detections, we evaluated it on a dataset consisting of 35.7 Gigabyte of network traffic 
coflected over 9 days on the local network of the Distributed Systems Group at the 
Technical University of Vienna. This evaluation set contained 661,528 total network 
streams and was verified to be free of known attacks. The data consists to a large 
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extent of HTTP (about 45%) and SMTP (about 35%) traffic. The rest is made up of a 
wide variety of application traffic including SSH, IMAP, DNS, NTP, FTP, and SMB 
traffic. 

We were particularly interested in exploring the degree to which false positives 
can be mitigated by appropriately selecting the detection parameter M. Recall that 
M determines the number of unique source-destination pairs that a network stream 
set Si must contain belbre the corresponding fingerprint /j is considered to belong to 
a worm. Also recall that we require that a certain fingerprint must occur in network 
streams between two or more internal and external hosts, respectively, before be­
ing considered as a worm candidate. False positives occur when legitimate network 
usage is identified as worm activity by the system. For example, if a particular fin­
gerprint appears in too many (benign) network flows between multiple sources and 
destinations, the system will identify the aggregate behavior as a worm attack. While 
intuitively it can be seen that larger values of M reduce the number false positives, 
they simultaneously delay the detection of a real worm outbreak. 

Table 4.4. Incorrectly labeled fingerprints as a function of M. 1,400,174 total fingerprints 
were encountered in the evaluation set. 

M 
Fingerprints 
M 
Fingerprints 
M 
Fingerprints 

3 
12,661 

12 
1,134 

21 
22 

4 
7,841 

13 
944 

22 
22 

5 
7,215 

14 
623 

23 
22 

6 
3,647 

15 
150 
24 
22 

7 
3,441 

16 
44 
25 
22 

8 
3,019 

17 
43 

9 
2,515 

18 
43 

10 
1,219 

19 
24 

11 
1,174 

20 
23 

Table 4.4 gives the number of fingerprints identified by the system as suspicious 
for various values of M. For comparison, 1,400,174 total fingerprints were observed 
in the evaluation set. This experiment indicates that increasing M beyond 20 achieves 
diminishing returns in the reduction of false positives (for this traffic trace). The 
remainder of this section discusses the root causes of the false detections for the 23 
erroneously labeled fingerprint values for M = 20. 

The 23 stream sets associated with the false positive fingerprints contained a total 
of 8,452 HTTP network flows. Closer inspection of these showed that the bulk of the 
false alarms were the result of binary resources on the site that were (a) frequently 
accessed by outside users and (b) replicated between two internal web servers. These 
accounted for 8,325 flows (98.5% of the total) and consisted of: 

• 5544 flows (65.6%): An image appearing on most of the pages of a Java pro­
gramming language tutorial. 

• 2148 flows (25.4%): The image of a research group logo, which appears on many 
local pages. 

• 490 flows (5.8%): A single Microsoft PowerPoint presentation. 
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• 227 flows (2.7%): Multiple PowerPoint presentations that were found to contain 
common embedded images. 

The remaining 43 flows accounted for 0..5% of the total and consisted of external 
binary files that were accessed by local users and had fingerprints that, by random 
chance, collided with the 23 flagged fingerprints. 

The problem of false positives caused by heavily accessed, locally hosted files 
could be addressed by creating a white list of fingerprints, gathered manually or 
through the use of an automated web crawler. For example, if we had prepared a 
white list for the 23 fingerprints that occurred in the small number of image files 
and the single PowerPoint presentation, we would not have reported a single false 
positive during the test period of 9 days. 

4.4 Conclusions 

In this chapter, we have introduced behavioral and structural properties of malicious 
code. These properties allow a more abstract specification of malware, mitigating 
shortcomings of syntactic signatures. 

Behavioral properties are captured by analyzing the effect of a piece of code 
on the environment. More precisely, the behavior is specified by checking for the 
destination addresses of data transfer instructions. In the case of kernel modules, 
malicious behavior is defined as writes to forbidden regions in the kernel address 
space. Using symbolic execution, each kernel module is statically analyzed before 
it is loaded into the kernel. Whenever an illegal write is detected, this module is 
classified as kernel rootkit and loading is aborted. 

The structure of an executable is captured by the subgraphs of the executable's 
control flow graph. Based on the results of graph isomorphism tests, identical struc­
tures that appear in different executables can be identified. The precision of the struc­
tural description is further refined by taking into account the classes of instructions 
(not their exact type) that appear in certain nodes of the control flow graph. Using 
structural properties of executables, the spread of polymorphic worms can be identi­
fied. To this end, our system searches for recurring structures in network flows. When 
the same structure is identified in connections from multiple source hosts to multi­
ple destinations, this structure is considered to belong to a (possibly polymorphic) 
worm. 
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Summary. We depend on database-driven web applications for an ever increasing amount of 
activities, such as banking and shopping. When performing such activities, we entrust our per­
sonal information to these web applications and their underlying databases. The confidentiality 
and integrity of this information is far from guaranteed; web applications are often vulnerable 
to attacks, which can give an attacker complete access to the application's underlying database. 
SQL injection is a type of code-injection attack in which an attacker uses specially crafted in­
puts to trick the database into executing attacker-specified database commands. In this chapter, 
we provide an overview of the various types of SQL injection attacks and present AMNESIA, 
a technique for automatically detecting and preventing SQL injection attacks. AMNESIA uses 
static analysis to build a model of the legitimate queries an application can generate and then, 
at runtime, checks that all queries generated by the appUcation comply with this model. We 
also present an extensive empirical evaluation of AMNESIA. The results of our evaluation 
indicate that AMNESIA is, at least for the cases considered, highly effective and efficient in 
detecting and preventing SQL injection attacks. 

5.1 Introduction 

SQL Injection Attacks (SQLIAs) have emerged as one of the most serious threats 
to the security of database-driven applications. In fact, the Open Web Application 
Security Project (OWASP), an international organization of web developers, has 
placed SQLIAs among the top ten vulnerabilities that a web application can have [7]. 
Similarly, software companies such as Microsoft [3] and SPI Dynamics have cited 
SQLIAs as one of the most critical vulnerabilities that software developers must ad­
dress. SQL injection vulnerabilities can be particularly harmful because they allow 
an attacker to access the database that underlies an application. Using SQLIAs, an 
attacker may be able to read, modify, or even delete database information. In many 
cases, this information is confidential or sensitive and its loss can lead to problems 
such as identity theft and fraud. The list of high-profile victims of SQLIAs includes 
Travelocity, FTD.com, Creditcards.com, Tower Records, Guess Inc., and the Record­
ing Industry Association of America (RIAA). 
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The errors that lead to SQLIAs are well understood. As with most code-injection 
attacks, SQLIAs are caused by insufficient validation of user input. The vulnerability 
occurs when input from the user is used to directly build a query to the database. 
If the input is not properly encoded and validated by the application, the attacker 
can inject malicious input that is treated as additional commands by the database. 
Depending on the severity of the vulnerability, the attacker can issue a wide range of 
SQL commands to the database. Many interactive database-driven applications, such 
as web applications that use user input to query their underlying databases, can be 
vulnerable to SQLIA. In fact, informal surveys of database-driven web applications 
have shown that almost 97% are potentially vulnerable to SQLIA. 

Like most security vulnerabilities, SQLIAs can be prevented by using defensive 
coding. In practice however, this solution is very difficult to implement and enforce. 
As developers put new checks in place, attackers continue to innovate and find new 
ways to circumvent these checks. Since the state of the art in defensive coding is a 
moving target, it is difficult to keep developers up to date on the latest and best de­
fensive coding practices. Furthermore, retroactively fixing vulnerable legacy appli­
cations using defensive coding practices is complicated, labor-intensive, and error-
prone. These problems motivate the need for an automated and generalized solution 
to the SQL injection problem. 

In this chapter we present AMNESIA (Analysis and Monitoring for NEutraliz-
ing SQL Injection Attacks), a fully automated technique and tool for the detection 
and prevention of SQLIAs.' AMNESIA was developed based on two key insights: 
(1) the information needed to predict the possible structure of all legitimate queries 
generated by a web application is contained within the application's code, and (2) 
an SQLIA, by injecting additional SQL statements into a query, would violate that 
structure. Based on these two insights we developed a technique against SQL in­
jection that combines static analysis and runtime monitoring. In the static analysis 
phase, AMNESIA extracts from the web-application code a model that expresses 
all of the legitimate queries the application can generate. In the runtime monitoring 
phase, AMNESIA checks that all of the queries generated by the application comply 
with the model. Queries that violate the model are stopped and reported. 

We also present an extensive empirical evaluation of AMNESIA. We evaluated 
AMNESIA on seven web applications, including commercial ones, and on thousands 
of both legitimate and illegitimate accesses to such applications. We modeled the 
illegitimate accesses after real attacks that are in use by hackers and penetration 
testing teams. In the evaluation, AMNESIA did not generate any false positives or 
negatives and had a very low runtime overhead. These results indicate AMNESIA is 
an effective and viable technique for detecting and preventing SQLIAs. 

The rest of the chapter is organized as follows. Section 5.2 discusses SQLIAs and 
their various types. Section 5.3 illustrates our technique against SQLIAs. Section 5.4 
presents an empirical evaluation of our technique. Section 5.5 compares our approach 
to related work. Section 5.6 concludes and discusses future directions for the work. 

^ An early version of this work was presented in [9]. 
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5.2 SQL Injection Attacks Explained 

The presence of an SQL injection vulnerability allows an attacker to issue commands 
directly to a web application's underlying database and to subvert the intended func­
tionality of the application. Once an attacker has identified an SQLIA vulnerability, 
the vulnerable application becomes a conduit for the attacker to execute commands 
on the database and possibly the host system itself. 

SQLIAs are a class of code injection attacks that take advantage of a lack of vali­
dation of user input. The vulnerabilities occur when developers combine hard-coded 
strings with user-input to create dynamic queries. If the user input is not properly 
validated, it is possible for attackers to shape their input in such a way that, when it 
is included in the final query string, parts of the input are evaluated as SQL keywords 
or operators by the database. 

5.2.1 Example of an SQLIA 

To illustrate how an SQLIA can occur, we introduce an example web application 
that is vulnerable to a type of SQLIA that we call a tautology-based attack. The 
architecture of this web application is shown in Figure 5.1. In this example, the user 
interacts with a web form that takes a login name and pin as input and submits them 
to the web server. The web server passes the user supplied credentials to a servlet 
(show, j s p , in the example), which resides on the application server. The servlet 
queries the database to check whether the credentials are valid and, based on the 
result of the query, generates a response for the user in the form of a web page. The 
servlet, whose partial implementation is shown in Figure 5.2, uses the user-supplied 
credentials to dynamically build a database query. Method g e t U s e r I n f o is called 
with the login and pin provided by the user. If both l o g i n and p i n are empty, the 
method submits the following query to the database: 

SELECT info FROM users WHERE login='guest' 

Conversely, if l o g i n and p i n are specified by the user, the method embeds the 
submitted credentials in the query. Therefore, if a user submits l o g i n and p i n as 
"doe" and "12 3," the servlet dynamically builds the query: 

SELECT info FROM users WHERE login='doe' AND pin=123 

A web site that uses this servlet would be vulnerable to SQLIAs. For example, if 
a user enters " ' OR 1=1 — " and "", instead of "doe" and "12 3", the resulting 
query is: 

SELECT info FROM users WHERE login=" OR 1=1 — ' AND pin= 

The database interprets everything after the WHERE token as a conditional statement 
and the inclusion of the "OR 1=1" clause turns this conditional into a tautology. 
(The characters "—" mark the beginning of a comment, so everything after them is 
ignored.) As a result, the database would return information for all user entries. 

It is important to note that tautology-based attacks represent only a small subset 
of the different types of SQLIAs that attackers have developed. We present this type 
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/ Internet 

http://foo>cora/saoiflrtsp'?logtr^oe&pin=123 

http: // foo.com / show.jsp ? '^0=123^ 

Fig. 5.1. Example of interaction between a user and a typical web application. 

public class Show extends HttpServlet { 

1. public ResultSet getuserlnfo(String login, 
String pin) { 

2. Connection conn = DriverManager.getConnection("MyDB"}; 
3. Statement stmt = conn.createStatement(); 
4. String queryString = ""; 

5. queryString = "SELECT info FROM users WHERE "; 
6. if ((! login.equals("")) && (! pin.equals(""))) { 
7. queryString += "login='" + login + 

"' AND pin=" + pin; 
) 

8. else { 
9. queryString+="login=' guest' "; 

} 
10. ResultSet tempSet = stmt.execute(queryString); 
11. return tempSet; 

Fig. 5.2. Example servlet. 

of attack as an example because it is fairly straightforward and intuitive. For this same 
reason, tautology-based attacks have been widely cited in literature and are often 
mistakenly viewed as the only type of SQLIAs. However, current attack techniques 
are not limited to only injecting tautologies. In the rest of this section, we first provide 
a general definition of SQLIAs and then present an overview of the currently known 
types of SQLIAs. 

5.2.2 General Definition of SQLIA 

An SQL injection attack occurs when an attacker changes the intended logic, seman­
tics, or syntax of a SQL query by inserting new SQL keywords or operators. This 
definition includes all of the variants of SQLIAs discussed in the following subsec­
tions. 
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5.2.3 Variants of SQLIA 

Over the past several years, attackers have developed a wide array of sophisticated 
attack techniques that can be used to exploit SQL injection vulnerabilities. These 
techniques go beyond the commonly used tautology-based SQLIA examples and 
take advantage of esoteric and advanced SQL constructs. Ignoring the existence of 
these kinds of attacks leads to the development of solutions that address the SQLIA 
problem only partially. 

For example, SQLIA can be introduced into a program using several different 
types of input sources. Developers and researchers often assume that SQLIAs are 
only introduced via user input that is submitted as part of a web form or as a re­
sponse to a prompt for input. This assumption misses the fact that any external string 
or input that is used to build a query string can be under the control of an attacker and 
represents a possible input channel for SQLIAs. It is common to see other external 
sources of input such as fields from an HTTP cookie or server variables being used 
to build a query. Since cookie values are under the control of the user's browser and 
server variables are often set via values from HTTP headers, these values represent 
external strings that can be manipulated by an attacker. In addition, second-order 
injections use advanced knowledge of a vulnerable application to introduce an at­
tack using otherwise properly secured input sources [1]. A developer may properly 
escape, type-check, and filter input that comes from the user and assume it is safe. 
Later on, when that data is used in a different context or to build a different type of 
query, the previously safe input becomes an injection attack. Because there are many 
input sources that could lead to a SQLIA, techniques that focus on simply checking 
user input or explicitly enumerating all untrusted input sources are often incomplete 
and still leave ways for malicious input to affect the generated query strings. 

Once attackers have identified an input source that can be used to exploit an 
SQLIA vulnerability, there are many different types of attack techniques that they 
can employ. Depending on the type and extent of the vulnerabiUty, the results of 
these attacks can include crashing the database, gathering information about the ta­
bles in the database schema, establishing covert channels, and open-ended injection 
of virtually any SQL command. We briefly summarize the main techniques for per­
forming SQLIAs using the example code from Figure 5.2. Interested readers can 
refer to [10] for additional information and examples of how these techniques work. 

Tautologies. 
The general goal of a tautology-based attack is to inject SQL tokens that cause 

the query's conditional statement to always evaluate to true. Although the results 
of this type of attack are application specific, the most common uses are to bypass 
authentication pages and extract data. In this type of injection, an attacker exploits a 
vulnerable input field that is used in the query's WHERE conditional. This conditional 
logic is evaluated as the database scans each row in the table. If the conditional 
represents a tautology, the database matches and returns all the rows in the table 
as opposed to matching only one row, as it would normally do in the absence of 
injection. We showed an example of this type of attack in Section 5.2.1. 

Malformed Queries. 
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This attack technique takes advantage of overly descriptive error messages that 
are returned by the database when a query is rejected. Database error messages 
often contain useful debugging information that also allows an attacker to accu­
rately identify which parameters are vulnerable in an application and the com­
plete schema of the underlying database. Attackers exploit this situation by in­
jecting SQL tokens or garbage input that causes the query to contain syntax er­
rors, type mismatches, or logical errors. Consider our example, an attacker could 
try to cause a type mismatch error by injecting the following text into the pin 
input field: " c o n v e r t ( i n t , ( s e l e c t t o p 1 name from s y s o b j e c t s 
where x t y p e = ' u ' ) ) ". 

The resulting query generated by the web application would be: 

SELECT info FROM users WHERE login=" AND pin= 

convert (int,(select top 1 name from sysobjects where xtype='u')) 

In the attack string, the injected select query extracts the name of the first user table 
( x t y p e = ' u ' ) from the database's metadata table, s y s o b j e c t s , which contains 
information on the structure of the database. It then converts this table name to an 
integer. Because the name of the table is a string, the conversion is illegal, and the 
database returns an error. For example, an SQL Server may return the following 
error: "Microsoft OLE DB Provider for SQL Server (Ox80040E07) Error converting 
nvarchar value 'CreditCards' to a column of data type int." 
There are two useful pieces of information in this message that aid an attacker. First, 
the attacker can see that the database is an SQL Server database, as the error message 
explicitly states this. Second, the error message reveals the string that caused the 
type conversion to occur (in this case, the name of the first user-defined table in the 
database, "CreditCards"). A similar strategy can be used to systematically extract the 
name and type of each column in the given table. Using this information about the 
schema of the database, an attacker can create more precise attacks that specifically 
target certain types of information. Attacks based on malformed queries are typically 
used as a preliminary information-gathering step for other attacks. 

Union Query. 
The Union Query technique refers to injection attacks in which an attacker causes 

the application to return data from a table that is different from the one that was in­
tended. To this end, attackers inject a statement of the form "UNION < i n j e c t e d 
query>" . By suitably defining < in j e c t e d q u e r y > , attackers can retrieve infor­
mation from a specified table. The outcome of this attack is that the database returns 
a dataset that is the union of the results of the original query with the results of 
the injected query. In our example, an attacker could perform a Union Query injec­
tion by injecting the text " ' UNION SELECT ca rdNo from C r e d i t C a r d s 
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where a c c t N o = 1 0 0 3 2 — " into the login field. The application would then pro­
duce the following query: 

SELECT info FROM users WHERE login=" UNION 

SELECT cardNo from CreditCards where acctNo=10032 — AND pin= 

Assuming that there is no login equal to "" (the empty string), the original query 
returns the null set, and the injected query returns data from the "CreditCards" table. 
In this case, the database returns field "cardNo" for account "10032." The database 
takes the results of these two queries, unions them together, and returns them to the 
application. In many applications, the effect of this attack would be that the value for 
"cardNo" is displayed with the account information. 

Piggy-backed Queries. 
In the Piggy-backed Query technique, an attacker tries to append additional 

queries to the original query string. If the attack is successful, the database receives 
and executes a query string that contains multiple distinct queries. The first query 
is generally the original, legal query, whereas subsequent queries are the injected, 
malicious queries. This type of attack can be especially harmful; attackers can use 
it to inject virtually any type of SQL command. In our example application, an at­
tacker could inject the text " 0 ; d r o p t a b l e u s e r s " into the pin input field. 
The application would then generate the query: 

SELECT info FROM users WHERE login='doe' AND pin=0; drop table users 

The database treats this query string as two queries separated by the query delimiter, 
" ;" , and executes both. The second, malicious query causes the database to drop 
the u s e r s table in the database, which would have the catastrophic consequence of 
deleting all of the database users. Other types of queries can be executed using this 
technique, such as insertion of new users into the database or execution of stored 
procedures. It is worth noting that many databases do not require a special charac­
ter to separate distinct queries, so simply scanning for a special character is not an 
effective way to prevent this attack technique. 

Stored Procedures. 
In this technique, attackers focus on the stored procedures that are present on 

the database system. Stored procedures are code that is stored in the database and 
run directly by the database engine. Stored procedures enable a programmer to code 
database or business logic directly into the database and provide an extra layer of 
abstraction. It is a common misconception that the use of stored procedures protects 
an application from SQLIAs. Stored procedures are just code and can be just as 
vulnerable as the application's code. Depending on the specific stored procedures 
that are available on a database, an attacker has different ways of exploiting a system. 

The following example demonstrates how a parameterized stored procedure can 
be exploited via an SQLIA. In this scenario, we assume that the query string con­
structed at lines 5, 7, and 9 of our example has been replaced by a call to the stored 
procedure defined in Figure .5.3. The stored procedure returns a boolean value to in­
dicate whether the user's credentials were authenticated by the database. To perform 
an SQLIA that exploits this stored procedure, the attacker can simply inject the text" 
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CREATE PROCEDURE DBO.isAuthenticated 
@userName varchar2, @pin int 

AS 
EXEC("SELECT info FROM users 
WHERE login='" +@userName+ "' and pin=" +@pin); 

GO 

Fig. 5.3. Stored procedure for checking credentials. 

' ; SHUTDOWN; — " into the userName field. This injection causes the Stored 
procedure to generate the following query: 

SELECT info FROM users WHERE login=' '; SHUTDOWN; — AND pin= 

This attack works like a piggy-back attack. When the second query is executed, the 
database is shut down. 

Inference. 
Inference-based attacks create queries that cause an application or database to 

behave differently based on the results of the query. In this way, even if an applica­
tion does not directly provide the results of the query to the attacker, it is possible to 
observe side effects caused by the query and deduce the results. These attacks allow 
an attacker to extract data from a database and detect vulnerable parameters. Re­
searchers have reported that, using these techniques, they have been able to achieve 
a data extraction rate of one byte per second [2]. There are two well-known attack 
techniques that are based on inference: blind-injection and timing attacks. 

Blind Injection: In this variation, an attacker performs queries that have a boolean 
result. The queries cause the application to behave correctly if they evaluate to true, 
whereas they cause an error if the result is false. Because error messages are easily 
distinguishable from normal results, this approach provides a way for an attacker to 
get an indirect response from the database. One possible use of blind-injection is to 
determine which parameters of an application are vulnerable to SQLIA. Consider 
again the example code in Figure 5.2. Two possible injections into the login field 
are " l e g a l U s e r ' and 1=0 — " and " l e g a l U s e r ' and 1=1 —". These 
injections result in the following two queries: 

SELECT Info FROM users WHERE logln='legalUser' and 1=0 — ' AND pin= 

SELECT info FROM users WHERE login='legalUser' and 1=1 — ' AND pin= 

Now, let us consider two scenarios. In the first scenario, we have a secure ap­
plication, and the input for login is validated correctly. In this case, both injections 
would return login error messages from the application, and the attacker would know 
that the login parameter is not vulnerable to this kind of attack. In the second sce­
nario, we have a non-secure application in which the login parameter is vulnerable 
to injection. In this case, the first injection would evaluate to false, and the applica­
tion would return a login-error message. Without additional information, attackers 
would not know whether the error occurred because the application validated the in­
put correctly and blocked the attack attempt or because the attack itself caused the 
login error. However, when the attackers observe that the second query does not re-
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suit in an error message, they know that the attack was successful and that the login 
parameter is vulnerable to injection. 

Timing Attacks: A timing attack lets an attacker gather information from a 
database by observing timing delays in the database's responses. This attack is simi­
lar to blind injection, but uses a different type of observable side effect. To perform a 
timing attack, attackers structure their injected query in the form of an if-then state­
ment whose branch condition corresponds to a question about the contents of the 
database. The attacker then uses the WAITFOR keyword along one of the branches, 
which causes the database to delay its response by a specified time. By measuring the 
increase or decrease in the database response time, attackers can infer which branch 
was taken and the answer to the injected question. 

Using our example, we illustrate how to use a timing-based inference attack to 
extract a table name from the database. In this attack, the following text is injected 
into the login parameter: 

legalUser' and ASCII(SUBSTRING((select top 1 name from sysobjects) , 1, 1)) > 

X WAITFOR 5 — 

This injection produces the following query: 

SELECT i n t o FROM u s e r s WHERE l o g l n = ' l e g a l U s e r ' and ASCII(SUBSTRING((select t op 

1 name from s y s o b j e c t s ) , 1 , 1 ) ) > X WAITFOR 5 — ' AND pin= 

In this attack, the SUBSTRING function is used to extract the first character of the 
first table's name. The attacker can then ask a series of questions about this character. 
In this example, the attacker is asking if the ASCII value of the character is greater-
than or less-than-or-equal-to the value of X. If the value is greater, the attacker will be 
able to observe an additional five-second delay in the database response. The attacker 
can continue in this way and use a binary-search strategy to identify the value of the 
first character, then the second character, and so on. 

Alternate Encodings. Using alternate encoding techniques, attackers modify their 
injection strings in a way that avoids typical signature- and filter-based checks 
that developers put in their applications. Alternate encodings, such as hexadeci­
mal, ASCII, and Unicode can be used in conjunction with other techniques to al­
low an attack to escape straightforward detection approaches that simply scan for 
certain known "bad characters." Even if developers account for alternative encod­
ings, this technique can still be successful because alternate encodings can target 
different layers in the application. For example, a developer may scan for a Uni­
code or hexadecimal encoding of a single quote and not realize that the attacker 
can leverage a database function (e.g., c h a r (44) ) to encode the same character. 
An effective code-based defense against alternate encodings requires developers to 
be aware of all of the possible encodings that could affect a given query string as 
it passes through the different application layers. Because developing such a com­
plete protection is very difficult in practice, attackers have been very successful 
in using alternate encodings to conceal attack strings. The following example at­
tack (from [11]) shows the level of obfuscation that can be achieved using alter-
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nate encodings. In the attack, the pin field is injected with the following string: "0 ; 
e x e c (0x73587574 64 5f77 6e) , " and the resulting query is: 

SELECT info FROM users WHERE logln=" AND pin=0; exec(char(0x73687574646f776e)) 

This example makes use of the c h a r () function and ASCII hexadecimal encoding. 
The c h a r {) function takes as a parameter an integer or hexadecimal encoding of 
one or more characters and replaces the function call with the actual character(s). 
The stream of numbers in the second part of the injection is the ASCII hexadecimal 
encoding of the attack string. This encoded string is inserted into a query using some 
other type of attack profile and, when it is executed by the database, translates into 
the shu tdown command. 

5.3 Detection and Prevention of SQL Injection Attacks 

AMNESIA, (Analysis for Monitoring and NEutralizing SQL Injection Attacks) is 
a fully-automated and general technique for detecting and preventing all types of 
SQLIAs. The approach works by combining static analysis and runtime monitoring. 
Our two key insights behind the approach are that (1) the information needed to pre­
dict the possible structure of all legitimate queries generated by a web application is 
contained within the application's code, and (2) an SQLIA, by injecting additional 
SQL statements into a query, would violate that structure. In its static part, our tech­
nique uses program analysis to automatically build a model of the legitimate queries 
that could be generated by the application. In its dynamic part, our technique mon­
itors the dynamically generated queries at runtime and checks them for compliance 
with the statically-generated model. Queries that violate the model represent poten­
tial SQLIAs and are reported and prevented from executing on the database. 

The technique consists of four main steps. We first summarize the steps and then 
describe them in more detail in subsequent sections. 

5.3.1 The AMNESIA Approach 

Identify hotspots: Scan the appUcation code to identify hotspots—points in the ap­
plication code that issue SQL queries to the underlying database. 

Build SQL-query models: For each hotspot, build a model that represents all the 
possible SQL queries that may be generated at that hotspot. A SQL-query model 
is a non-deterministic finite-state automaton in which the transition labels consist 
of SQL tokens (SQL keywords and operators), delimiters, and placeholders for 
string values. 

Instrument Application: At each hotspot in the application, add calls to the runtime 
monitor. 

Runtime monitoring: At runtime, check the dynamically-generated queries against 
the SQL-query model and reject and report queries that violate the model. 
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Fig. 5.4. SQL-query model for the servlet in Figure 5.2. 

Identify Hotspots 

In this step, AMNESIA performs a simple scan of the application code to iden­
tify hotspots. In the Java language, all interactions with the database are performed 
through a predefined API, so identifying all the hotspots is a trivial step. In the case 
of the example servlet in Figure 5.2, the set of hotspots contains a single element: 
the call to s t m t . e x e c u t e on line 10. 

Build SQL-Query Models 

In this step, we build the SQL-query model for each hotspot. We perform this step in 
two parts. In the first part, we use the Java String Analysis (JSA) developed by Chris-
tensen, M0ller, and Schwartzbach [5] to compute all of the possible values for each 
hotspot's query string. JSA computes a flow graph that abstracts away the control 
flow of the program and only represents string-manipulation operations performed 
on string variables. For each string of interest, the library analyzes the flow graph 
and simulates the string-manipulation operations that are performed on the string. 
The result is a Non-Deterministic Finite Automaton (NDFA) that expresses, at the 
character level, all possible values that the considered string variable can assume. 
Because JSA is conservative, the NDFA for a given string variable is an overestimate 
of all of its possible values. 

In the second part, we transform the NDFA computed by JSA into an SQL-query 
model. More precisely, we perform an analysis of the NDFA that produces another 
NDFA in which all of the transitions are labeled with SQL keywords, operators, 
or literal values. We create this model by performing a depth first traversal of the 
character-level NDFA and grouping characters that correspond to SQL keywords, 
operators, or literal values. For example, a sequence of transitions labeled 'S ' , 'E' , 
'L', 'E', ' C , and 'T' would be recognized as the SQL keyword SELECT and grouped 
into a single transition labeled "SELECT". This step is configurable to recognize 
different dialects of SQL. In the SQL-query model, we represent variable strings 
(i.e., strings that correspond to a variable related to some user input) using the symbol 
p. For instance, in our example, the value of the variable l o g i n is represented as 
/3. This process is analogous to the one used by Gould, Su, and Devanbu [8], except 
that we perform it on NDFAs instead of DFAs. 

Figure 5.4 shows the SQL-query model for the single hotspot in our example. 
The model reflects the two different query strings that can be generated by the code 
depending on the branch followed after the i f statement at line 6 in Figure 5.2. 
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Instrument Application 

In this step, we instrament the application by adding calls to the monitor that checks 
the queries at runtime. For each hotspot, the technique inserts a call to the monitor 
before the call to the database. The monitor is invoked with two parameters: the 
query string that is about to be submitted to the database and a unique identifier 
for the hotspot. Using the unique identifier, the runtime monitor is able to correlate 
the hotspot with the specific SQL-query model that was statically generated for that 
point and check the query against the correct model. 

Figure 5.5 shows how the example application would be instrumented by our 
technique. The hotspot, originally at line 10 in Figure 5.2, is now guarded by a call 
to the monitor at line 10a. 

10a. if (monitor.accepts (<hotspot ID>, queryString)) 

{ 
10b. ResultSet tempSet = stmt.execute(queryString); 
11. return tempSet; 

} 

Fig. 5.5. Example hotspot after instrumentation. 

Runtime Monitoring 

At runtime, the application executes normally until it reaches a hotspot. At this point, 
the query string is sent to the runtime monitor, which parses it into a sequence of 
tokens according to the specific SQL syntax considered. In our parsing of the query 
string, the parser identifies empty string and empty numeric literals by their syntactic 
position, and we denote them in the parsed query string using e. Figure 5.6 shows 
how the last two queries discussed in Section 5.2.1 would be parsed during runtime 
monitoring. 

It is important to point out that our technique parses the query string in the same 
way that the database would and according to the specific SQL grammar considered. 
In other words, our technique does not perform a simple keyword matching over the 
query string, which would cause false positives and problems with user input that 
happened to match SQL keywords. For example, a user-submitted string that con­
tains SQL keywords but is syntactically a text field, would be correctly recognized 
as a text field. However, if the user were to inject special characters, as in our exam­
ple, to force part of the text to be evaluated as a keyword, the parser would correctly 
interpret this input as a keyword. Using the same parser as the database is essential 
because it guarantees that we are interpreting the query in the same way that the 
database will. 
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Fig. 5.6. Example of parsed runtime queries. 

After the query has been parsed, the runtime monitor checks it by assessing 
whether the query violates the SQL-query model associated with the current hotspot. 
An SQL-query model is an NDFA whose alphabet consists of SQL keywords, oper­
ators, literal values, and delimiters, plus the special symbol /?. Therefore, to check 
whether a query is compliant with the model, the runtime monitor can simply check 
whether the model accepts the the sequence of tokens derived from the query string. 
A string or numeric literal (including the empty string, e) in the parsed query string 
can match either /? or an identical literal value in the SQL-query model. 

If the model accepts the query, the monitor lets the execution of the query con­
tinue. Otherwise, the monitor identifies the query as an SQLIA. In this case, the 
monitor prevents the query from executing on the database and reports the attack. 

To illustrate, consider again the queries shown in Figure 5.6 and recall that the 
first query is legitimate, whereas the second one corresponds to an SQLIA. When 
checking query (a), the analysis would start matching from token SELECT and 
from the initial state of the SQL-query model in Figure 5.4. Because the token 
matches the label of the only transition from the initial state, the automaton reaches 

the second state. Again, token | i n f o | matches the only transition from the current 
state, so the automaton reaches the third state. The automaton continues to reach new 
states until it reaches the state whose two outgoing transitions are labeled "=". At this 
point, the automaton would proceed along both transitions. On the upper branch, the 
query is not accepted because the automaton does not reach an accept state. Con­
versely, on the lower branch, all the tokens in the query are matched with labels on 
transitions, and the automaton reaches the accept state after consuming the last token 
in the query ("' "). The monitor can therefore conclude that this query is legitimate. 

The checking of query (&) proceeds in an analogous way until token OR in the 
query is reached. Because the token does not match the label of the only outgoing 
transition from the current state (AND), the query is not accepted by the automaton, 
and the monitor identifies the query as a SQLIA. 

Efficiency and limitations 

For the technique to be practical, the runtime overhead of the monitoring must not af­
fect the usability of the web application. We analyze the cost of AMNESIA'S runtime 
monitoring in terms of both space and time. The space complexity of the monitoring 
is dominated by the size of the generated SQL-query models. In the worst case, the 
size of the query models is quadratic in the size of the application. This case corre­
sponds to the unlikely situation of a program that branches and modifies the query 
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string at each program statement. In typical programs, the generated automata are 
linear in the program size. In fact, our experience is that most automata are actually 
quite small with respect to the size of the corresponding application (see Table 5.1). 
The time complexity of the approach depends on the cost of the runtime matching of 
the query tokens against the models. Because we are checking a set of tokens against 
an NDFA, the worst case complexity of the matching is exponential in the number 
of tokens in the query (in the worst case, for each token all states are visited). In 
practice, however, the SQL-query models typically reduce to trees, and the cost of 
the matching is almost linear in the size of the query. Our experience shows that the 
cost of the runtime phase of the approach is negligible (see Section 5.4). 

As far as Umitations are concerned, our technique can generate false positives 
and false negatives. Although the string analysis that we use is conservative, false 
positives can be created in situations where the string analysis is not precise enough. 
For example, if the analysis cannot determine that a hard-coded string in the appli­
cation is a keyword, it could assume that it is an input-related value and erroneously 
represent it as a /3 in the SQL-query model. At runtime, the original keyword would 
not match the placeholder for the variable, and AMNESIA would flag the corre­
sponding query as an SQLIA. False negatives can occur when the constructed SQL 
query model contains spurious queries, and the attacker is able to generate an injec­
tion attack that matches one of the spurious queries. For example, if a developer adds 
conditions to a query from within a loop, an attacker who inserts an additional con­
dition of the same type would generate a query that does not violate the SQL-query 
model. We expect these cases to be rare in practice because of the peculiar structure 
of SQLIAs. The attacker would have to produce an attack that directly matches either 
an imprecision of the analysis or a specific pattern. Moreover, in both cases, the type 
of attacks that could be exploited would be limited by the constraints imposed by 
the rest of the model that was used to match the query. It is worth noting that, in our 
empirical evaluation, neither false positives nor false negatives were generated (see 
Section 5.4). 

5.3.2 Implementation 

AMNESIA is the prototype tool that implements our technique for Java-based web 
applications. The technique is fully automated, requiring only the web application 
as input, and requires no extra runtime environment support beyond deploying the 
application with the AMNESIA library. We developed the tool in Java and its im­
plementation consists of three modules: 

Analysis module. This module implements Steps 1 and 2 of our technique. It inputs 
a Java web application and outputs a list of hotspots and a SQL-query model 
for each hotspot. For the implementation of this module, we leveraged the im­
plementation of the Java String Analysis library by Christensen, M0ller, and 
Schwartzbach [5]. The analysis module is able to analyze Java Servlets and JSP 
pages. 
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Fig. 5.7. High-level overview of AMNESIA. 

Instrumentation module. This module implements Step 3 of our technique. It inputs 
a Java web application and a list of hotspots and instruments each hotspot with 
a call to the runtime monitor. We implemented this module using INSECTJ, a 
generic instrumentation and monitoring framework for Java developed at Geor­
gia Tech [23]. 

Runtime-monitoring module. This module implements Step 4 of our technique. The 
module takes as input a query string and the ID of the hotspot that generated 
the query, retrieves the SQL-query model for that hotspot, and checks the query 
against the model. 

Figure 5.7 shows a high-level overview of AMNESIA. In the static phase, the 
Instrumentation Module and the Analysis Module take as input a web application and 
produce (I) an instrumented version of the application, and (2) an SQL-query model 
for each hotspot in the application. In the dynamic phase, the Runtime-Monitoring 
Module checks the dynamic queries while users interact with the web application. If 
a query is identified as an attack, it is blocked and reported. 

Once an SQLIA has been detected, AMNESIA stops the query before it is exe­
cuted on the database and reports relevant information about the attack in a way that 
can be leveraged by developers. In our implementation of the technique for Java, we 
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throw an exception when the attack is detected and encode infonnation about the 
attack in the exception. If developers want to access the information at runtime, they 
can simply leverage the exception-handling mechanism of the language and integrate 
their handUng code into the appHcation. 

Having this attack information available at runtime is useful because it allows 
developers to react to an attack right after it is detected and develop an appropri­
ate customized response. For example, developers may decide to avoid any risk and 
shut-down the part of the application involved in the attack. Alternatively, a developer 
could handle the attack by converting the information into a format that is usable by 
another tool, such as an Intrusion Detection System, and reporting it to that tool. Be­
cause this mechanism integrates with the application's language, it allows developers 
flexibility in choosing a response to SQLIAs. 

Currently, the information reported by our technique includes the time of the 
attack, the location of the hotspot that was exploited, the attempted-attack query, 
and the part of the query that was not matched against the model. We are currently 
considering additional information that could be useful for the developer (e.g., infor­
mation correlating program execution paths with specific parts of the query model) 
and investigating ways in which we can modify the static analysis to collect this 
information. 

5.3.3 Implementation Assumptions 

Our implementation makes one main assumption regarding the applications that it 
analyzes. The tool assumes that queries are created by manipulating strings in the 
application, that is, the developer creates queries by combining hard-coded strings 
and variables using operations such as concatenation, appending, and insertion. Al­
though this assumption precludes the use of AMNESIA on some applications (e.g., 
applications that externalize all query-related strings in files), it is not overly restric­
tive and, most importantly, can be eliminated with suitable engineering. 

5.4 Empirical Evaluation 

The goal of our empirical evaluation is to assess the effectiveness and efficiency of 
the technique presented in this chapter when applied to various web applications. 
We used our prototype tool, AMNESIA, to perform an empirical study on a set of 
subjects. The study investigates three research questions: 

RQl : What percentage of attacks can AMNESIA detect and prevent that would 
otherwise go undetected and reach the database? 

RQl : How much overhead does AMNESIA impose on web applications at runtime? 
RQ3: What percentage of legitimate accesses does AMNESIA identify as attacks? 

The following sections illustrate the setup for the evaluation, and discuss the two 
studies that we performed to address the research questions. 
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Table 5.1. Subject programs for the empirical study. 
Subject LOC Servlets Injectable State Hotspots Automata Size 

(Description) Params Params (#nodes) 
Checkers 5,421 18(61) 44 

(Online checkers game) 

Office Talk 4,543 7 (64) 
(Purchase-order management) 

Employee Directory 5,658 7(10) 25 
(Online employee directory) 

Bookstore 16,959 8(28) 36 
(Online bookstore) 

Events 7,242 7(13) 
(Event tracking system) 

Classifieds 10,949 6(14) 
(Management system for classifieds) 

Portal 16,453 3(28) 
(Portal for a club) 

5.4.1 Experiment Setup 

To investigate our research questions, we leveraged a previously developed testbed 
for SQLIAs, which was presented in [9]. This testbed provides a set of web appli­
cations and a large set of both legitimate and malicious inputs for the applications. 
In the next two sections we briefly review the testbed, describe the applications it 
contains, and explain how the inputs were generated. Readers can refer to [9] for 
additional details. 

Subjects 

The testbed contains seven subjects. All of the subjects are typical web applica­
tions that accept user input via web forms and use that input to build queries to an 
underlying database. Five of the applications are commercial applications that we 
obtained fromGotoCode ( h t t p : //www. g o t o c o d e . com); Employee Directory, 
Bookstore, Events, Classifieds, and Portal. The last two applications. Checkers and 
OfficeTalk, were student-developed applications created for a class project. We con­
sider them because they have been used in previous related studies [8]. 

In Table 5.1 we provide information about the subject applications. For each sub­
ject, the table shows: its name (Subject); a concise description (Description); its size 
in terms of lines of code (LOC); the number of accessible servlets (Servlets), with the 
total number of servlets in the application in parenthesis; the number of injectable 
parameters (Injectable Params); the number of state parameters (State Params); the 
number of hotspots (Hotspots); and the average size of the SQL automata generated 
by AMNESIA (Automata Size), with the minimum-maximum range in parentheses. 
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The table distinguishes between injectable parameters and state parameters for 
each application. This distinction is necessary because each type of parameter plays 
a different role in the application. An injectable parameter is an input parameter 
whose value is used to build part of a query that is then sent to the database. A state 
parameter is a parameter that may affect the control flow within the web application 
but never becomes part of a query. Because, by definition, state parameters cannot 
result in SQL injection, we only focus on injectable parameters for our attacks. We 
also distinguish between total and accessible servlets in the applications. An acces­
sible servlet is a servlet that, to be accessed, only requires the user to be logged-in or 
does not require sessions at all. Some servlets, conversely, must have specific session 
data (i.e., cookies) to function properly, which considerably complicates the automa­
tion of the evaluation. Because we were able to generate enough attacks considering 
accessible servlets only, we did not consider the remaining servlets. 

Input Generation 

The sets of inputs provided by the testbed framework represent normal and malicious 
usages of the applications. In this section we briefly review how these sets were 
generated and the types of inputs they contain. 

In a preliminary step, we identified all of the servlets in each web application and 
the corresponding parameters that could be submitted to the servlet. Each parame­
ter was identified as either an injectable or state parameter. State parameters must 
be handled specially because they often determine the behavior of the application. 
Without a correct and meaningful value assigned to them, the application fails and 
no attack can be successful. Lastly, we identified the expected type of each injectable 
parameter. This information helps us in identifying potential attacks that can be used 
on the parameter and in generating legitimate inputs. 

The set of attack strings was generated independently using commercial pene­
tration testing techniques. For this task, we leveraged the services of a Masters-level 
student at Georgia Tech who worked for a local software-security company. The 
student is an experienced programmer who has developed commercial-level pene­
tration tools for detecting SQL-injection vulnerabilities. In addition, the student was 
not familiar with our technique, which reduced the risk of developing a set of attacks 
biased by the knowledge of the approach and its capabilities. 

To define the initial set of attack strings, the student used a combination of 
sources, including (1) exploits developed by commercial penetrating teams to take 
advantage of SQL-injection vulnerabilities, (2) online sources of vulnerability re­
ports, such as US-CERT ( h t t p : / / w w w . u s - c e r t . g o v / ) and CERT/CC Ad­
visories ( h t t p : / / w w w . c e r t . o r g / a d v i s o r i e s / ) , and (3) information ex­
tracted from several security-related mailing lists. The resulting set of attack strings 
contained thirty unique types of attacks. All types of attacks reported in literature 
(e.g., [1]) were represented in this set with the exception of attacks that take ad­
vantage of overly-descriptive database error messages and second-order injections. 
We excluded these kinds of attacks because they are multi-phase attacks that require 
intensive human intervention to interpret the attacks' partial results. 
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The student generated two sets of inputs for each application. The first set con­
tained normal or legitimate inputs for the application. We call this set LEGIT. The 
second set contained malicious inputs, that is, strings that would result in an SQLIA. 
We call this set ATTACK. To populate the LEGIT set, the student generated, for each 
servlet, different combinations of legitimate values for each injectable parameter. 
State parameters were assigned a meaningful and correct value. To populate the AT­
TACK set, a similar process was used. For each accessible servlet in the application 
the student generated the Cartesian product of its injectable parameters using values 
from the initial attack strings and legitimate values. This approach generated a large 
set of potentially malicious inputs, which we used as the ATTACK set. 

5.4.2 Study 1: Effectiveness 

In the first study, we investigated RQl, the effectiveness of our technique in detecting 
and preventing SQLIAs. We analyzed and instrumented each application using AM­
NESIA and ran all of the inputs in each of the applications' ATTACK sets. For each 
application, we measured the percentage of attacks detected and reported by AM­
NESIA. (As previously discussed, when AMNESIA detects an attack, it throws an 
exception, which is in turn returned by the web application. Therefore, it is easy to 
accurately detect when an attack has been caught.) 

The results for this study are shown in Table 5.2. The table shows, for each sub­
ject, the number of unsuccessful attacks {Unsuccessful),^ the number of successful 
attacks (Successful), and the number of attacks detected and reported by AMNESIA 
(Detected) in absolute terms and as a percentage over the total number of successful 
attacks, in parentheses. As the table shows, AMNESIA achieved a perfect score. 
For all subjects, it was able to correctly identify all attacks as SQLIAs, that is, it 
generated no false negatives. 

Table 5.2. Results of Study 1. 

Subject Unsuccessful Successful Detected 
Checkers 1195 
Office Talk 598 
Employee Directory 413 
Bookstore 1028 
Events 875 
Classifieds 823 
Portal 880 

248 
160 
280 
182 
260 
200 
140 

248 (100%) 
160(100%) 
280 (100%) 
182 (100%) 
260 (100%) 
200 (100%) 
140 (100%) 

2 Because the applications performed input validation, they were able to block a portion of 
the attacks without the attack reaching AMNESIA'S monitor. 
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5.4.3 Study 2: Efficiency and Precision 

In the second study, we investigated RQ2 and RQ3. To investigate RQ2, the effi­
ciency of our technique, we ran all of the inputs in the LEGIT sets on the uninstru-
mented web appUcations and measured the response time of the applications for each 
web request. We then ran the same inputs on the versions of the web applications in­
strumented by AMNESIA and again measured the response time. The difference in 
the two response times corresponds to the overhead imposed by our technique. 

We found that the overhead imposed by our technique is negligible and, in fact, 
barely measurable, averaging about 1 milUsecond. Note that this time should be con­
sidered an upper bound on the overhead, as our implementation was not optimized. 
These results confirm our expectations. Intuitively, the time for the network access 
and the database transaction completely dominates the time required for the runtime 
checking. As the results show, our technique is efficient and can be used without 
significantly affecting the response time of a web application. 

To investigate RQ3, the rate of false positives generated by our technique, we 
simply assessed whether AMNESIA identified any legitimate query as an attack. 
The results of the assessment were that AMNESIA correctly identified all such 
queries as legitimate queries and reported no false positives. 

5.4.4 Discussion 

The results of our study are very encouraging. For all subjects, our technique was 
able to correctly identify all attacks as SQLIAs, while allowing all legitimate queries 
to be performed. In other words, for the cases considered, our technique generated no 
false positives and no false negatives. The lack of false positives and false negatives 
is promising and provides evidence of the viability of the technique. 

In our study, we did not compare our results with alternative approaches against 
SQLIAs because most of the existing automated approaches address only a subset of 
the possible SQLIAs. (For example, the approach in [8] is focused on type safety, and 
the one in [25] focuses only on tautologies.) Therefore, we can conclude analytically 
that such approaches would not be able to identify many of the attacks in our test 
bed. 

As for all empirical studies, there are some threats to the validity of our evalua­
tion, mostly with respect to external validity. The results of our study may be related 
to the specific subjects considered and may not generalize to other web applications. 
To minimize this risk, we used a set of real web applications (except for the two 
applications developed by students teams) and an extensive set of realistic attacks. 
Although more experimentation is needed before drawing definitive conclusions on 
the effectiveness of the technique, the results we obtained so far are promising. 
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5.5 Related Approaches 

There has been a wide range of techniques proposed to counter SQLIAs. However, 
when compared to AMNESIA, these solutions have several limitations and short­
comings. In this section we review and discuss the main approaches against SQLIAs. 

Defensive Programming. 
Developers have proposed a range of code-based development practices to counter 

SQLIAs. These techniques generally focus on proper input filtering, such as escaping 
potentially harmful characters and rigorous type-checking of inputs. Many of these 
approaches are summarized in Reference [11]. In general, a rigorous and systematic 
application of these techniques is an effective solution to the problem. However, in 
practice, the application of such techniques is human-based and is therefore less than 
ideal. For example, many SQLIA vulnerabilities that have been discovered in various 
applications correspond to cases where the applications contained input-validation 
operations, but the validation was inadequate. The situation is further complicated 
because attackers continue to find new attack strings or subtle variation on old attacks 
that are able to avoid the checks programmers put in place. Lastly, retroactively fix­
ing vulnerable legacy applications using defensive coding practices is complicated, 
labor-intensive, and error-prone. 

Two widely suggested "SQLIA remedies" merit specific mention. Both of them 
initially appear to offer viable solutions to the SQLIA problem, but do not cor­
rectly address it. The first remedy consists of simply checking user input for ma­
licious keywords. This approach would clearly result in a high rate of false posi­
tives because an input field could legally contain words that match SQL keywords 
(i.e. "FROM","OR", or "AND"). The second remedy is to use stored procedures 
for database access. The ability of stored procedures to prevent SQLIAs is depen­
dent on their implementation. The mere fact of using stored procedures does not 
protect against SQLIA. Interested readers may refer to Section 5.2 and to Refer­
ences [1, 15, 18, 19] for examples of how SQLIAs can be performed in the presence 
of stored procedures. 

Two approaches, SQL DOM [17] and Safe Query Objects [6], use encapsulation 
of database queries to provide a safe and reliable way to access databases. These tech­
niques offer an effective way to avoid the SQLIA problem by changing the query-
building process from one that uses string concatenation to a systematic one that uses 
a type-checked API. (In this sense, SQL DOM and Safe Query Objects can be con­
sidered instances of defensive coding.) Although these techniques are as effective as 
AMNESIA, they have the drawback that they require developers to learn and use a 
new programming paradigm or query-development process. 

In general, defensive coding has not been successful in completely preventing 
SQLIA. While improved coding practices can help mitigate the problem, they are 
limited by the developer's ability to generate appropriate input validation code and 
recognize all situations in which it is needed. AMNESIA, being fully automated, can 
provide stronger guarantees about the completeness and accuracy of the protections 
put in place. 
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General Techniques Against SQLIAs. 
Security Gateway [22] uses a proxy filter to enforce input validation rules on 

the data that reaches a web application. Using a descriptor language, developers cre­
ate filters that specify constraints and transformations to be applied to application 
parameters as they flow from the web page to the application server. By creating ap­
propriate filters, developers can block or transform potentially malicious user input. 
The effectiveness of this approach is limited by the developer's abiUty to (1) identify 
all the input streams that can affect the query string and (2) determine what type of 
filtering rules should be placed on the proxy. 

WAVES [12] is a penetration testing tool that attempts to discover SQLIA vul­
nerabilities in web applications. This technique improves over normal penetration-
testing techniques by using machine learning to guide its testing. However, like all 
penetration testing techniques, it can not provide guarantees of completeness. 

Valeur and colleagues [24] propose the use of an Intrusion Detection System 
(IDS) to detect SQLIAs. Their IDS is based on a machine learning technique that 
is trained using a set of typical appUcation queries. The technique builds models of 
normal queries and then monitors the application at runtime to identify queries that 
do not match the model. The fundamental limitation of learning based techniques 
is that they can not provide guarantees about their detection abilities because their 
success is dependent on the use of an optimal training set. Without such a set, this 
technique could generate a large number of false positives and negatives. 

Boyd and Keromytis propose SQLrand, an approach that uses key-based random­
ization of SQL instructions [4]. In this approach, SQL code injected by an attacker 
would result in a syntactically incorrect query because it was not specified using 
the randomized instruction set. While this technique can be very effective, there are 
several practical drawbacks to this approach. First, the security of the key may be 
compromised by looking at the error logs or messages. Furthermore, the approach 
imposes a significant infrastructure overhead because it requires the integration of an 
encryption proxy for the database. 

Static Detection Techniques. 
JDBC-Checker is a technique for statically checking the type correctness of dy­

namically generated SQL queries [8]. Although this technique was not originally 
intended to address SQLIA, it can detect one of the root causes of SQL-injection 
vulnerabilities—improper type checking of input. In this sense, JDBC-Checker is 
able to detect and help developers eUminate some of the code that allows attackers 
to exploit type mismatches. However, JDBC-Checker cannot prevent other types of 
SQLIAs that produce syntactically and type correct queries. 

Wassermann and Su propose an approach that uses static analysis combined with 
automated reasoning to verify that the SQL queries generated in the application layer 
cannot contain a tautology [25]. The scope of this technique is limited, in that it can 
only address one type of SQLIAs, namely tautology-based attacks, whereas AMNE­
SIA is designed to address all types of SQLIAs. 

Taint-based Approaches. 
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Two similar approaches have been proposed by Nguyen-Tuong et al. [20] and 
Pietraszek and Berghe [21]. These approaches modify a PHP interpreter to track pre­
cise taint information about user input and use a context sensitive analysis to detect 
and reject queries if untrasted input has been used to create certain types of SQL 
tokens. In general, these taint-based techniques have shown much promise in their 
ability to detect and prevent SQLIAs. The main drawback of these approaches con­
cerns their practicality. First, identifying all sources of tainted user input in highly-
modular web applications introduces problem of completeness. Second, accurately 
propagating taint information may result in high runtime overhead for the web appli­
cations. Finally, the approach relies on the use of a customized version of the runtime 
system, which affects portability. 

Huang and colleagues define WebSSARI, a white-box approach for detecting 
input-validation-related errors, that is based on information-flovi' analysis [13]. This 
approach uses static analysis to check information flows against preconditions for 
sensitive functions. The analysis detects where preconditions are not satisfied and 
suggests filters and sanitization functions that can be automatically added to the ap­
plication to satisfy the preconditions. The primary drawbacks of this technique are 
the assumptions that (1) preconditions for sensitive functions can be adequately and 
accurately expressed using their type system and (2) forcing input to pass through 
certain types of filters is sufficient to consider it trusted. For many types of functions 
and applications, these assumptions do not hold. 

Livshits and Lam [14] use a static taint analysis approach to detect code that is 
vulnerable to SQLIA. This approach checks whether user input can reach a hotspot 
and flags this code for developer intervention. A further extension to this work, Se-
curifly [16], detects vulnerable code and automatically adds calls to a sanitization 
function. This automated defensive coding practice, while effective in some cases, 
would not prevent all types of SQLIAs. In particular, it would not prevent SQLIAs 
that inject malicious text into numeric non-quoted fields. 

5.6 Conclusion 

SQLIAs have become one of the more serious and harmful attacks on database-
driven web appUcations. They can allow an attacker to have unmitigated access to 
the database underlying an application and, thus, the power to access or modify its 
contents. In this article, we have discussed the various types of SQLIAs known to 
date and presented AMNESIA, a fully automated technique and tool for detecting 
and preventing SQLIAs. AMNESIA uses static analysis to build a model of the le­
gitimate queries that an application can generate and runtime monitoring to check 
the dynamically generated queries against this model. Our empirical evaluation, per­
formed on commercial applications using a large number of realistic attacks, shows 
that AMNESIA is a highly effective technique for detecting and preventing SQLIAs. 
Compared to other approaches, AMNESIA offers the benefit of being fully auto­
mated and is general enough to address all known types of SQLIAs. 
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Summary. Computer worms — malicious, self-propagating programs — represent a signif­
icant threat to large networks. One possible defense, containment, seeks to limit a worm's 
spread by isolating it in a small subsection of the network. In this work we develop con­
tainment algorithms suitable for deployment in high-speed, low-cost network hardware. We 
show that these techniques can stop a scanning host after fewer than 10 scans with a very low 
false-positive rate. We also augment this approach by devising mechanisms for cooperation 
that enable multiple containment devices to more effectively detect and respond to an emerg­
ing infection. In addition, we discuss ways that a worm can attempt to bypass containment 
techniques in general, and ours in particular. 

We then report on experiences subsequently implementing our algorithm in Click [13] 
and deploying it both on our own network and in the DETER testbed [6]. Doing so uncovered 
additional considerations, including the need to passively map the monitored LAN due to 
Ethernet switch behavior, and the problem of detecting ARP scanning as well as IP scanning. 
We finish with discussion of some deployment issues, including broadcast/multicast traffic 
and the use of NAT to realize sparser address spaces. 

6.1 Introduction 

Computer worms — malicious, self propagating programs — represent a substantial 
threat to large networks. Since these threats can propagate more rapidly than hu­
man response [30, 15], automated defenses are critical for detecting and responding 
to infections [16]. One of the key defenses against scanning worms which spread 
throughout an enterprise is containment [36, 29, 27, 9, 17]. Worm containment, also 
known as virus throttling, works by detecting that a worm is operating in the network 
and then blocking the infected machines from contacting further hosts. Currently, 
such containment mechanisms only work against scanning worms [33] because they 

' An earlier version of this chapter appears in Proceedings of the USENIX Security Sympo­
sium, 2004. 
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leverage the anomaly of a local host attempting to connect to multiple other hosts as 
the means of detecting an infectee. 

Within an enterprise, containment operates by breaking the network into many 
small pieces, or cells. Within each cell (which might encompass just a single ma­
chine), a worm can spread unimpeded. But between cells, containment attempts to 
limit further infections by blocking outgoing connections from infected cells. 

A key problem in containment of scanning worms is efficiently detecting and 
suppressing the scanning. Since containment blocks suspicious machines, it is criti­
cal that the false positive rate be very low. Additionally, since a successful infection 
could potentially subvert any software protections put on the host machine, contain­
ment is best effected inside the network rather than on the end-hosts. 

We have developed a scan detection and suppression algorithm based on a sim­
plification of the Threshold Random Walk (TRW) scan detector [11]. The simplifi­
cations make our algorithm suitable for both hardware and software implementation. 
We use caches to (imperfectly) track the activity of both addresses and individual 
connections, and reduce the random walk calculation of TRW to a simple compar­
ison. Our algorithm's approximations generally only cost us a somewhat increased 
false negative rate; we find that false positives do not increase. 

Evaluating the algorithm on traces from a large (6,000 host) enterprise, we find 
that with a total memory usage of 5 MB we obtain good detection precision while 
staying within a processing budget of at most 4 memory accesses (to two independent 
banks) per packet. In addition, our algorithm can detect scanning which occurs at a 
threshold of one scan per minute, much lower than that used by the throttling scheme 
in [36], and thus significantly harder for an attacker to evade. 

Our trace-based analysis shows that the algorithms are both highly effective and 
sensitive when monitoring scanning on an Internet access link, able to detect low-
rate TCP and UDP scanners which probe our enterprise. One deficiency of our work, 
however, is that we were unable to obtain internal enterprise traces. These can be 
very difficult to acquire, but we are currently pursuing doing so. Until we can, the 
efficacy of our algorithm when deployed internal to an enterprise can only be partly 
inferred from its robust access-link performance. 

We have also investigated how to enhance containment through cooperation be­
tween containment devices. Worm containment systems have an epidemic threshold: 
if the number of vulnerable machines is few enough relative to a particular con­
tainment deployment, then containment will almost completely stop the worm [27]. 
However, if there are more vulnerable machines, then the worm will still spread ex­
ponentially (though less than in the absence of containment). We show that by adding 
a simple inter-cell communication scheme, the spread of the worm can be dramati­
cally mitigated in the case where the system is above its epidemic threshold. 

We next discuss inadvertent and malicious attacks on worm containment sys­
tems: what is necessary for an attacker to create either false negatives (a worm which 
evades detection) or false positives (triggering a response when a worm did not ex­
ist), assessing this for general worm containment, cooperative containment, and our 
particular proposed system. We specifically designed our system to resist some of 
these attacks. 
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Subsequent to the publication of the above elements of the paper, we imple­
mented our algorithm in Click [13] and deployed it both on our own network and 
in the DETER testbed [6]. Doing so uncovered additional considerations, including 
the need to passively map the monitored LAN due to Ethernet switch behavior, and 
the problem of detecting ARP scanning as well as IP scanning. In the final section of 
this chapter, we revisit the algorithm in this light, and also discuss some deployment 
issues, including broadcast/multicast traffic and the use of NAT to realize sparser 
address spaces. 

6.2 Worm Containment 

Worm containment is designed to halt the spread of a worm in an enterprise by 
detecting infected machines and preventing them from contacting further systems. 
Current approaches to containment [36, 27, 25] are based on detecting the scanning 
activity associated with scanning worms, as is our new algorithm. 

Scanning worms operate by picking "random" addresses and attempting to infect 
them. The actual selection technique can VEiry considerably, from linear scanning of 
an address space (Blaster [31]), fully random (Code Red [7]), a bias toward local 
addresses (Code Red II [4] and Nimda [3]), or even more enhanced techniques (Per­
mutation Scanning [30]). While future worms could alter their style of scanning to 
try to avoid detection, all scanning worms share two common properties: most scan­
ning attempts result in failure, and infected machines will institute many connection 
attempts.'' Because containment looks for a class of behavior rather than specific 
worm signatures, such systems can stop new (scanning) worms. 

Robust worm defense requires an approach like containment because we know 
from experience that worms can find (by brute force) small holes in firewalls [4], 
VPN tunnels from other institutions, infected notebook computers [31 ], web browser 
vulnerabilities [3], and email-borne attacks [3] to establish a foothold in a target 
institution. Many institutions with solid firewalls have still succumbed to worms that 
entered through such means. Without containment, even a single breach can lead to 
a complete internal infection. 

Along with the epidemic threshold (Section 6.2.1) and sustained sub-threshold 
scanning (Section 6.2.2), a significant issue with containment is the need for com­
plete deployment within an enterprise. Otherwise, any uncontained-but-infected ma­
chines will be able to scan through the enterprise and infect other systems. (A single 
machine, scanning at only 10 IP addresses per second, can scan through an entire 
/16 in under 2 hours.) 

Thus, we strongly believe that worm-suppression needs to be built into the net­
work fabric. When a worm compromises a machine, the worm can defeat host soft­
ware designed to limit the infection; indeed, it is already common practice for viruses 

* There are classes of worms—topological, meta-server, flash (during their spreading phase, 
once the hit-list has been constructed), and contagion [33]—that do not exhibit such scan­
ning behavior. Containment for such worms remains an important, open research problem. 
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and mail-worms to disable antivirus software, so we must assume that future worms 
will disable worm-suppression software. 

Additionally, since containment works best when the cells are small, this strongly 
suggests that worm containment needs to be integrated into the network's outer 
switches or similar hardware elements, as proximate to the end hosts as economi­
cally feasible. This becomes even more important for cooperative containment (Sec­
tion 6.6), as this mechanism is based on some cells becoming compromised as a 
means of better detecting the spread of a worm and calibrating the response neces­
sary to stop it. 

6.2.1 Epidemic Tliresliold 

A worm-suppression device must necessarily allow some scanning before it trig­
gers a response. During this time, the worm may find one or more potential victims. 
Staniford [27] discusses the importance of this "epidemic threshold" to the worm 
containment problem. If on average an infected computer can find more than a sin­
gle victim before a containment device halts the worm instance, the worm will still 
grow exponentially within the institution (until the average replication rate falls be­
low 1.0). 

The epidemic threshold depends on 

• the sensitivity of the containment response devices 
• the density of vulnerable machines on the network 
• the degree to which the worm is able to target its efforts into the correct network, 

and even into the current cell 

Aside from cooperation between devices, the other options to raise the epidemic 
threshold are to increase the sensitivity of the scan detector/suppressor, reduce the 
density of vulnerable machines by distributing potential targets in a larger address 
space, or increase the number of cells in the containment deployment. 

One easy way to distribute targets across a larger address space arises if the en­
terprise's systems use NAT and DHCP. If so, then when systems acquire an address 
through DHCP, the DHCP server can select a random address from within a private 
/8 subnet (e.g., 10.0.0.0/8). Thus, an institution with 2̂ ® workstations could have an 
internal vulnerability density of 2^^/2^* = 1/256, giving plenty of headroom for 
relatively insensitive worm-suppression techniques to successfully operate. 

Alternatively, we can work to make the worm detection algorithm more accu­
rate. The epidemic threshold is directly proportional to the scan threshold T: the 
faster we can detect and block a scan, the more vulnerabilities there can be on the 
network without a worm being able to get loose. Thus, we desire highly sensitive 
scan-detection algorithms for use in worm containment. 

6.2.2 Sustained Scanning Tlireshold 

In addition to the epidemic threshold, many (but not all) worm containment tech­
niques also have a sustained scanning threshold: if a worm scans slower than this 
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rate, the detector will not trigger. Although there have been systems proposed to de­
tect very stealthy scanning [28], these systems are currently too resource-intensive 
for use in this application. 

Even a fairly low sustained scanning threshold can enable a worm to spread if the 
attacker engineers the worm to avoid detection. For example, consider the spread of 
a worm in an enterprise with 256 (2®) vulnerable machines distributed uniformly in 
a contiguous /16 address space. If the worm picks random addresses from the entire 
Internet address space, then we expect only 1 in 2̂ "* scans to find another victim in 
the enterprise. Thus, even with a very permissive sustained scanning threshold, the 
worm will not effectively spread within the enterprise. 

But if the worm biases its scanning such that 1/2 the effort is used to scan the 
local /16, then on average it will locate another target within the enterprise after 2® 
scans. If the threshold is one scan per second (the default for Williamson's technique 
[36]), then the initial population's doubling time will be approximately 2^ seconds, 
or once every 8.5 minutes. This doubling time is sufficient for a fast-moving worm, as 
the entire enterprise will be infected in less than two hours. If the worm concentrates 
its entire scanning within the enterprise's /16, the doubling time will be about four 
minutes. 

Thus, it is vital to achieve as low a sustained scanning threshold as possible. For 
our concrete design, we target a threshold of 1 scan per minute. This would change 
the doubling times for our example above to 8.5 and 4 hours respectively — slow 
enough that humans can notice the problem developing and take additional action. 
Achieving such a threshold is a much stricter requirement than that proposed by 
Williamson, and forces us to develop a different scan-detection algorithm. 

6.3 Scan Suppression 

The key component for today's containment techniques is scan suppression: re­
sponding to detected portscans by blocking future scanning attempts. Portscans— 
probe attempts to determine if a service is operating at a target IP address—are used 
by both human attackers and worms to discover new victims. Portscans have two ba­
sic types: horizontal scans, which search for an identical service on a large number 
of machines, and vertical scans, which examine an individual machine to discover 
all running services. (Clearly, an attacker can also combine these and scan many ser­
vices on many machines. For ease of exposition, though, we will consider the two 
types separately.) 

The goal of scan suppression is often expressed in terms of preventing scans 
coming from "outside" inbound to the "inside." If "outside" is defined as the exter­
nal Internet, scan suppression can thwart naive attackers. But it can't prevent infec­
tion from external worms because during the early portion of a worm outbreak an 
inbound-scan detector may only observe a few (perhaps only single) scans from any 
individual source. Thus, unless the suppression device halts all new activity on the 
target port (potentially disastrous in terms of collateral damage), it will be unable 
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to decide, based on a single request from a previously unseen source, vs/hether that 
request is benign or an infection attempt. 

For worm containment, however, we turn the scan suppressor around: "inside" 
becomes the enterprise's larger internal network, to be protected from the "outside" 
local area network. Now any scanning worm will be quickly detected and stopped, 
because (nearly) all of the infectee's traffic will be seen by the detector. 

We derived our scan detection algorithm from TRW (Threshold Random Walk) 
scan detection [11]. In abstract terms, the algorithm operates by using an oracle to 
determine if a connection will fail or succeed. A successfully completed connection 
drives a random walk upwards, a failure to connect drives it downwards. By modeling 
the benign traffic as having a different (higher) probability of success than attack 
traffic, TRW can then make a decision regarding the likelihood that a particular series 
of connection attempts from a given host reflect benign or attack activity, based on 
how far the random walk deviates above or below the origin. By casting the problem 
in a Bayesian random walk framework, TRW can provide deviation thresholds that 
correspond to specific false positive and false negative rates, if we can parameterize 
it with good a priori probabilities for the rate of benign and attacker connection 
successes. 

To implement TRW, we obviously can't rely on having a connection oracle 
handy, but must instead track connection establishment. Furthermore, we must do 
so using data structures amenable to high-speed hardware implementation, which 
constrains us considerably. Finally, TRW has one added degree of complexity not 
mentioned above. It only considers the success or failure of connection attempts to 
new addresses. If a source repeatedly contacts the same host, TRW does its ran­
dom walk accounting and decision-making only for the first attempt. This approach 
inevitably requires a very large amount of state to keep track of which pairs of ad­
dresses have already tried to connect, too costly for our goal of a line-rate hardware 
implementation. As developed in Section 6.5, our technique uses a number of ap­
proximations of TRW's exact bookkeeping, yet still achieves quite good results. 

There are two significant alternate scan detection mechanisms proposed for worm 
containment. The first is the new-destination metric proposed by Williamson [36]. 
This measures the number of new destinations a host can visit in a given period of 
time, usually set to 1 per second. The second is dark-address detection, used by both 
Forescout [9] and Mirage Networks [17]. In these detectors, the device routes or 
knows some otherwise unoccupied address spaces within the internal network and 
detects when systems attempt to contact these unused addresses. 

6.4 Hardware Implementations 

When targeting hardware, memory access speed, memory size, and the number of 
distinct memory banks become critical design constraints, and, as mentioned above, 
these requirements drive us to use data structures that sometimes only approximate 
the network's state rather than exactly tracking it. In this section we discuss these 
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constraints and some of our design choices to accommodate them. The next section 
then develops a scan detection algorithm based on using these approximations. 

Memory access speed is a surprisingly significant constraint. During transmis­
sion of a minimum-sized gigabit Ethernet paclcet, we only have time to access a 
DRAM at 8 different locations. If we aim to monitor both directions of the link 
(gigabit Ethernet is full duplex), our budget drops to 4 accesses. The situation is ac­
cordingly even worse for 10-gigabit networks: DRAM is no longer an option at all, 
and we must use much more expensive SRAM. If an implementation wishes to mon­
itor several links in parallel, this further increases the demand on the memory as the 
number of packets increases. 

One partial solution for dealing with the tight DRAM access budget is the use 
of independent memory banks allowing us to access two distinct tables simultane­
ously. Each bank, however, adds to the overall cost of the system. Accordingly, we 
formulated a design goal of no more than 4 memory accesses per packet to 2 separate 
tables, with each table only requiring two accesses: a read and a write to the same 
location. 

Memory size can also be a limiting factor. For the near future, SRAMs will only 
be able to hold a few tens of megabytes, compared with the gigabits we can store 
in DRAMs. Thus, our ideal memory footprint is to stay under 16 MB. This leaves 
open the option of implementing using only SRAM, and thus potentially running at 
10 gigabit speeds. 

Additionally, software implementations can also benefit from using the approx­
imations we develop rather than exact algorithms. Since our final algorithm indeed 
meets our design goals—less than 16 MB of total memory (it is highly effective with 
just 5 MB) and 2 uncached memory accesses per packet—it could be included as 
a scan detector within a conventional network IDS such as Bro [20] or Snort [26], 
replacing or augmenting their current detection facilities. 

6.4.1 Approximate Caches 

When designing hardware, we often must store information in a fixed volume of 
memory. Since the information we'd like to store may exceed this volume, one ap­
proach is to use an approximate cache: a cache for which collisions cause imperfec­
tions. (From this perspective, a Bloom filter is a type of approximation cache [2].) 
This is quite different from the more conventional notion of a cache for which, if 
we find an entry in the cache, we know exactly what it means, but a failed lookup 
requires accessing a large secondary data-store, or of a hash table, for which we will 
always find what we put in it earlier, but it may grow beyond bound. Along with 
keeping the memory bounded, approximate caches allow for very simple lookups, a 
significant advantage when designing hardware. 

However, we then must deal with the fact that collisions in approximate caches 
can have complicated semantics. Whenever two elements map to the same location 
in the cache, we must decide how to react. One option is to combine distinct entries 
into a single element. Another is to discard either the old entry or the new entry. 
Accordingly, collisions, or aliasing, create two additional security complications: 
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false positives or negatives due to the policy when entries are combined or evicted, 
and the possibility of an attacker manipulating the cache to exploit these aliasing-
related false outcomes. 

Since the goal of our scan-suppression algorithm is to generate automatic re­
sponses, we consider false positives more severe than false negatives, since they will 
cause an instance of useful traffic to be completely impaired, degrading overall net­
work reliability. A false negative, on the other hand, often only means that it takes us 
longer to detect a scanner (unless the false negative is systemic). In addition, if we 
can structure the system such that several positives or negatives must occur before 
we make a response decision, then the effect will be mitigated if they are not fully 
correlated. 

Thus, we decided to structure our cache-based approximations to avoid creating 
additional false positives. We can accomplish this by ensuring that, when removing 
entries or combining information, the resulting combination could only create a false 
negative, as discussed below. 

Attackers can exploit false negatives or positives by either using them to create 
worms that evade detection, or by triggering responses to impair legitimate traffic. 
Attacker can do so through two mechanisms: predicting the hashing algorithm, or 
simply overwhelming the cache. 

The first attack, equivalent to the algorithm complexity attacks described by 
Crosby and Wallach [5], relies on the attacker using knowledge of the cache's hash 
function to generate collisions. For Crosby's attack, the result was to increase the 
length of hash chains, but for an approximation cache, the analogous result is a spate 
of evicted or combined entries, resulting in excess false positives or negatives. A 
defense against it is to use a keyed hash function whose output the attacker cannot 
predict without knowing the key. 

The second attack involves flooding the cache in order to hide a true attack by 
overwhelming the system's ability to track enough network activity. This could be ac­
complished by generating a massive amount of "normal" activity to cloak malicious 
behavior. Unlike the first attack, overwhelming the cache may require substantial 
resources. 

While such attacks are a definite concern (sec also Section 6.7), approximate 
caching is vital for a high-performance hardware implementation. Fortunately, as 
shown below, we are able to still obtain good detection results even given the ap­
proximations. 

6.4.2 Efficient Small Block Ciphers 

Another component in our design is the use of small (32 bit) block ciphers. An A'̂ -bit 
block cipher is equivalent to an A''-bit keyed permutation: there exists a one-to-one 
mapping between every input word and every output word, and changing the key 
changes the permutation. 

In general, large caches are either direct-mapped, where any value can only map 
to one possible location, or TV-way associative. Looking up an element in a direct-
mapped cache requires computing the index for the element and checking if it resides 
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at that index. In an associative cache, there are N possible locations for any particular 
entry, arranged in a contiguous block (cache line). Each entry in an associative cache 
includes a tag value. To find an element, we compute the index and then in parallel 
check all possible locations based on the tag value to determine if the element is 
present. 

Block ciphers give us a way to implement efficiently tagged caches that resist 
attackers predicting their collision patterns. They work by, rather than using the ini­
tial A'̂ -bit value to generate the cache index and tag values, first permuting the A'̂ -bit 
value, after which we separate the resulting A^-bit value into an index and a tag. If 
we use k bits for the index, we only need N — k bits for the tag, which can result in 
substantial memory savings for larger caches. If the block-cipher is well constructed 
and the key is kept secret from the attacker, this will generate cache indices that at­
tackers cannot predict. This approach is often superior to using a hash function, as 
although a good hash function will also provide an attacker-unpredictable index, the 
entire A'̂ -bit initial value will be needed as a tag. 

Ciphers that work well in software are often inefficient in hardware, and vice 
versa. For our design, we used a simple 32 bit cipher based on the Serpent S-
boxes [1], particularly well-suited for FPGA or ASIC implementation as it requires 
only 8 levels of logic to compute. 

6.5 Approximate Scan Suppression 

Our scan detection and suppression algorithm approximates the TRW algorithm in 
a number of ways. First, we track connections and addresses using approximate 
caches. Second, to save state, rather than only incorporating the success or failure 
of connection attempts to new addresses, we do so for attempts to new addresses, 
new ports at old addresses, and old ports at old addresses if the corresponding entry 
in our state table has timed out. Third, we do not ever make a decision that an ad­
dress is benign; we track addresses indefinitely as long as we do not have to evict 
their state from our caches. 

We also extend TRW's principles to allow us to detect vertical as well as horizon­
tal TCP scans, and also horizontal UDP scans, while TRW only detects horizontal 
TCP scans. Finally, we need to implement a "hygiene filter" to thwart some stealthy 
scanning techniques without causing undue restrictions on normal machines. 

Figure 6.1 gives the overall structure of the data structures. We track connections 
using a fixed-sized table indexed by hashing the "inside" IP address, the "outside" 
IP address, and, for TCP, the inside port number. Each record consists of a 6 bit age 
counter and a bit for each direction (inside to outside and outside to inside), record­
ing whether we have seen a packet in that direction. This table combines entries in 
the case of aliasing, which means we may consider communication to have been 
bidirectional when in fact it was unidirectional, turning a failed connection attempt 
into a success (and, thus, biasing towards false negatives rather than false positives). 

We track external ("outside") addresses using an associative approximation 
cache. To find an entry, we encrypt the external IP address using a 32 bit block cipher 
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Fig. 6.1. The structure of the connection cache and the address cache. The connection cache 
tracks whether a connection has been established in either direction. The age value is reset 
to 0 every time we see a packet for that connection. Every minute, a background process 
increases the age of all entries in the connection cache, removing any idle entry more than 
Dconn minutes old. The address cache keeps track of all detected addresses, and records in 
"count" the difference between the number of failed and successful connections. Every Dmis.i 
seconds, each positive count in the address cache is reduced by one. 

Condition: 
SrdP = InsidelP 

If);!EstablishedInToOut) 
if(EstablishedOutToln) 

# Was previously 
# recorded as a miss 
# but is now a hit 
Count <- Count - 2 

EstablishedlnToOut <- True 
Age <- 0 
Forward packet 

Condition; 
SrclP = OutsidelP & 
Count < Thieslihold 
If(!EstablishedOutToIn) 

if(EstablishedInToOut) 
U Record as a hit 
Count <- Count - 1 
EstablishedOutToIn <- True 

else if(ltygiene__drop) 
Drop packet 

else 
# A possible miss 
Count <- Count i 1 
EstablishedOutToIn <- True 

if(!DroppedPacket) 
Age <- 0 
Forward packet 

Condition: 
SrcIP = OutsidelP & 
Coimt >" Threshliold 
# Address is being blocked 
if(EslablisliedlnToOut) 

if(isSYN I isUDP) 
a No matter what, drop 
Drop packet 

else if(!EstablishedOutToIn){ 
a Record as a hit 
Count <- Count -1 
EstabhshedOutlbln <- True 

# Internally requested or old 
# connection, so allow 
Age <- 0 
Forward packet 

else 
Drop packet 

Fig. 6.2. The high level structure of the detection and response algorithm. We count every 
successful connection (in either direction) as a "hit", with all failed or possibly-failed connec­
tions as "misses". If the difference between the number of hits and misses is greater than a 
threshold, we block further communication attempts from that address. 
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as discussed in Section 6.4.2, separating the resulting 32 bit number into an index and 
a tag, and using the index to find the group (or line) of entries. In our design, we use a 
4-way associative cache, and thus each line can contain up to four entries, with each 
entry consisting of the tag and a counter. The counter tracks the difference between 
misses and hits (i.e., successful and unsuccessful connection attempts), forming the 
basis of our detection algorithm. 

Whenever the device receives a packet, it looks up the corresponding connec­
tion in the connection table and the corresponding external address in the address 
table. Per Figure 6.2, the status of these two tables, and the direction of the packet, 
determines the action to take, as follows: 

For a non-blocked external address (one we have not already decided to sup­
press), if a corresponding connection has already been established in the packet's 
direction, we reduce the connection table's age to 0 and forward the packet. Other­
wise, if the packet is from the outside and we have seen a corresponding connection 
request from the inside, we forward the packet and decrement the address's count 
in the address table by 1, as we now credit the outside address with a successful 
connection. Otherwise, we forward the packet but increment the external address's 
count by 1, as now that address has one more outstanding, so-far-unacknowledged 
connection request. 

Likewise, for packets from internal addresses, if there is a connection establish­
ment from the other direction, the count is reduced, in this case by 2, since we are 
changing our bookkeeping of it from a failure to a success (we previously incre­
mented the failure-success count by 1 because we initially treat a connection attempt 
as a failure). 

Thus, the count gives us an on-going estimate of the difference between the num­
ber of misses (failed connections) and the number of successful connections. Given 
the assumption that legitimate traffic succeeds in its connection attempts with a prob­
ability greater than 50%, while scanning traffic succeeds with a probability less than 
50%, by monitoring this difference we can determine when it is highly probable that 
a machine is scanning. 

6.5.1 Blocking and Special Cases 

If an address's count exceeds a predefined threshold T, the device blocks it. When we 
receive subsequent packet from that address, our action depends on the packet's type 
and whether it matches an existing, successfully-estabUshed connection, which we 
can tell from the connection status bits stored in the connection table. If the packet 
does not match an existing connection, we drop it. If it does, then we still drop it if it 
is a UDP packet or a TCP initial SYN. Otherwise, we allow it through. By blocking 
in this manner, we prevent the blocked machine from establishing subsequent TCP or 
UDP sessions, while still allowing it to accept TCP connection requests and continue 
with existing connections. Doing so lessens the collateral damage caused by false 
positives. 

We treat TCP RST, RST+ACK, SYN+ACK, FIN, and FIN-i-ACK packets spe­
cially. If they do not correspond to a connection established in the other direction. 
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the hygiene filter simply drops these packets, as they could reflect stealthy scanning 
attempts, backscatter from spoofed-source flooding attacks, or the closing of very-
long-idle connections. Since they might be scans, we need to drop them to limit an 
attacker's information. But since they might instead be benign activity, we don't use 
them to trigger blocks. 

Likewise, if a connection has been established in the other direction, but not in 
the current direction, then we forward TCP RST, RST+ACK, FIN, and FIN+ACK 
packets, but do not change the external address's counter, to avoid counting failed 
connections as successful. (A FIN+ACK could reflect a successful connection ;/ we 
have seen the connection already established in the current direction, but the actions 
here are those we take if we have not seen this.) 

6.5.2 Errors and Aliasing 

Because connection table combines entries when aliasing occurs, it can create a false 
negative at a rate that depends on the fullness of the table. If the table is 20% full, then 
we will fail to detect roughly 20% of individual scanning attempts. Likewise, 20% of 
the successful connection attempts will not serve to reduce an address's failure/suc­
cess count either, because the evidence of the successful connection establishment 
aliases with a connection table entry that already indicates a successful establish­
ment. 

To prevent the connection table from being overwhelmed by old entries, we re­
move any connection idle for more than an amount of time Dconn, which to make 
our design concrete we set to Dconn = 10 minutes. We can't reclaim table space by 
just looking for termination (FIN exchanges) because aliasing may mean we need to 
still keep the table entry after one of the aliased connections terminates, and because 
UDP protocols don't have a clear "terminate connection" message. 

While the connection table combines entries, the address table, since it is respon­
sible for blocking connections and contains tagged data, needs to evict entries rather 
than combining information. Yet evicting important data can cause false negatives, 
requiring a balancing act in the eviction policy. We observe that standard cache re­
placement policies such as least recently used (LRU), round robin, and random, can 
evict addresses of high interest. Instead, when we need to evict an entry, we want to 
select the entry with the most negative value for the (miss-hit) count, as this consti­
tutes the entry least likely to reflect a scanner; although we thus tend to evict highly 
active addresses from the table, they represent highly active normal machines. 

In principle, this poUcy could occasionally create a transient false positive, if 
subsequent connections from the targeted address occur in a very short term burst, 
with several connection attempts made before the first requests can be acknowledged. 
We did not, however, observe this phenomenon in our testing. 

6.5.3 Parameters and IXining 

There are several key parameters to tune with our system, including the response 
threshold T (miss-hit difference that we take to mean a scan detection), minimum 
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and maximum counts, and decay rates for the connection cache and for the counts. 
We also need to size the caches. 

For T, our observations below in Section 6.5.5 indicate that for the traces we 
assessed a threshold of 5 suffices for blocking inbound scanning, while a threshold 
of 10 is a suitable starting point for worm containment. 

The second parameters, Cmin and Cmax< are the minimum and maximum values 
the count is allowed to achieve. Cmin is needed to prevent a previously good address 
that is subsequently infected from being allowed too many connections before it 
is blocked, while Cmax limits how long it takes before a highly-offending blocked 
machine is allowed to communicate again. For testing purposes, we set Cmin to -20 , 
and Cmax to oo as we 
could reach in practice. 

The third parameter, Dmias, is the decay rate for misses. Every D„ 
all addresses with positive counts have their count reduced by one. Doing so al­
lows a low rate of benign misses to be forgiven, without seriously enabling sub­
threshold scanning. We set Dmiss equal to 60 seconds, or one minute, meeting our 
sub-threshold scanning goal of 1 scan per minute. In the future, we wish to experi­
ment with a much lower decay rate for misses. 

We use a related decay rate, Dconn, to remove idle connections, since we can't 
rely on a "connection-closed" message to determine when to remove entries. As 
mentioned earlier, we set Dconn to 10 minutes. 

The final parameters specify the size and associativity of the caches. A software 
implementation can tune these parameters, but a hardware system will need to fix 
these based on available resources. For evaluation purposes, we assumed a 1 million 
entry connection cache (which would require 1 MB), and a 1 million entry, 4-way 
associative address cache (4 MB). Both cache sizes worked well with our traces, al­
though increasing the connection cache to 4 MB would provide increased sensitivity 
by diminishing aliasing. 

6.5.4 Policy Options 

Several policy options and variations arise when using our system operationally: 
the threshold of response, whether to disallow all communication from blocked ad­
dresses, whether to treat all ports as the same or to allow some level of benign scan­
ning on less-important ports, and whether to detect horizontal and vertical, or just 
horizontal, TCP scans. 

The desired initial response threshold T may vary from site to site. Since all 
machines above a threshold of 6 in our traces represent some sort of scanner (some 
benign, most malicious, per Section 6.5.5), this indicates a threshold of 10 on out­
bound connections would be conservative for deployment within our environment, 
while a threshold of 5 appears sufficient for incoming connections. 

A second policy decision is whether to block all communication from a blocked 
machine, or to only limit new connections it initiates. The first option offers a greater 
degree of protection, while the second is less disruptive for false positives. 
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Table 6.1. All outbound connections over a threshold of 5 flagged by our algorithm 

Anonymized IP Maximum Count Cause 
Benign DNS Scanner? 
Dynamic DNS host error? 
AFS-Related Control Traffic? 
NetBIOS "Scanning" and activity 
AFS-Related Control Traffic? 
Benign SNMP (UDP) "Scanning" 
NetBIOS "scanning" of a few hosts 

A third decision is how to configure Cmin and Cmax, the floor and ceiHng on the 
counter value. We discussed the tradeoffs for these in the previous section. 

A fourth policy option would be to treat some ports differently than others. Some 
applications, such as Gnutella [22], use scanning to find other servers. Likewise, 
at some sites particular tools may probe numerous machines to discover network 
topology. One way to give different ports different weights would be to changing the 
counter from an integer to a fixed-point value. For example, we could assign SNMP 
a cost of .25 rather than 1, to allow a greater degree of unidirectional SNMP attempts 
before triggering an alarm. We can also weight misses and hits differently, to alter 
the proportion of traffic we expect to be successful for benign vs. malicious sources. 

Finally, changing the system to only detect horizontal TCP scans requires chang­
ing the inputs to the connection cache's hash function. By excluding the internal port 
number from the hash function, we will include all internal ports in the same bucket. 
Although this prevents the algorithm from detecting vertical scans, it also eliminates 
an evasion technique discussed in Section 6.7.6. 

6.5.5 Evaluation 

We used hour-long traces of packet header collected at the access link at the 
Lawrence Berkeley National Laboratory. This gigabit/sec link connects the Lab­
oratory's 6,000 hosts to the Internet. The link sustains an average of about 50-
100 Mbps and 8-15K packets/sec over the course of a day, which includes roughly 
20M externally-initiated connection attempts (most reflecting ambient scanning from 
worms and other automated malware) and roughly 2M internally-initiated connec­
tions. The main trace we analyzed was 72 minutes long, beginning at 1:56PM on a 
Friday afternoon. It totaled 44M packets and included traffic from 48,052 external 
addresses (and all 13IK internal addresses, due to some energetic scans covering the 
entire internal address space). We captured the trace using t cpdump, which reported 
2,200 packets dropped by the measurement process. 

We do not have access to the ideal traces for assessing our system, which would 
be all internal and external traffic for a major enterprise. However, the access-link 
traces at least give us a chance to evaluate the detection algorithm's behavior over 
high-diverse, high-volume traffic. 
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We processed the traces using a custom Java application so we could include 
a significant degree of instrumentation, including cache-miss behavior, recording 
evicted machines, maintaining maximum and minimum counts, and other options 
not necessary for a production system. Additionally, since we developed the exper­
imental framework for off-line analysis, high performance was not a requirement. 
Our goal was to extract the necessary information to determine how our conceptual 
hardware design will perform in terms of false positives and negatives and quickness 
of response. 

For our algorithm, we just recorded the maximum count rather than simulating 
a specific blocking threshold, so wc can explore the tradeoffs different thresholds 
would yield. We emulated a 1 million entry connection cache, and a 1 million entry, 
4-way associative address cache. The connection cache reached 20% full during the 
primary trace. The eviction rate in the address cache was very low, with no evictions 
when tested with the Internet as "outside," and only 2 evictions when the enterprise 
was "outside." Thus, the 5 MB of storage for the two tables was quite adequate. 

We first ran our algorithm with the enterprise as outside, to determine which of 
its hosts would be blocked by worm containment and why. We manually checked all 
alerts that would be generated for a threshold of 5, shown in Table 6.1. Of these, all 
represented benign scanning or unidirectional control traffic. The greatest offender, 
at a count of 16, appears to be a misconfigured client which resulted in benign DNS 
scanning. The other sources appears to generate AFS-related control traffic on UDP 
ports 7000-7003; scanning from a component of Microsoft NetBIOS file sharing; and 
benign SNMP (UDP-based) scanning, apparently for remotely monitoring printer 
queues. 

With the Internet as "outside," over 470 external addresses reached a threshold of 
5 or higher. While this seems incredibly high, it in fact represents the endemic scan­
ning which occurs continually on the Internet [11]. We manually examined the top 
5 offenders, whose counts ranged from 26,000 to 49,000, and verified that these were 
all blatant scanners. Of these, one was scanning for the FTP control port (21/tcp), two 
were apparently scanning for a newly discovered vulnerability in Dameware Remote 
Administrator (6129/tcp), and two were apparently scanning for a Windows RPC 
vulnerability (135/tcp; probably from hosts infected with Blaster [31]). 

Additionally, we examined the offenders with the lowest counts above the thresh­
old. 10 addresses had a maximum count between 20 and 32. Of these, 8 were scans on 
a NetBIOS UDP port 137, targeted at a short (20-40 address) sequential range, with a 
single packet sent to each machine. Of the remaining two offenders, one probed ran­
domly selected machines in a /16 for a response on TCP port 80 using 3 SYN packets 
per attempt, while the other probed randomly selected machines on port 445/tcp with 
2 SYN packets per attempt. All of these offenders represented true scanners: none is 
a false positive. 

We observed 19 addresses with a count between 5 and 19, where we would par­
ticularly expect to see false positives showing up. Of these, 15 were NetBIOS UDP 
scanners. Of the remaining 4, one was scanning 1484/udp, one was scanning 80/tcp, 
and one was scanning 445/tcp. The final entry was scanning both 138/udp and gener-
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Table 6.2. Additional alerts on the outbound traffic generated when the sensitivity was in­
creased. 

Anonymized IP Maximum Count Cause 
147.95.61.87 11 NNTP, sustained low rate of failures 

147.95.35.154 11 Highport UDP, 10 scans in arow 
221.147.96.220 9 TCP port 13 ("daytime"), 

detected due to reduced sub-threshold 
144.240.96.234 9 NetBIOS and failed HTTP, 

detected due to reduced sub-threshold 
144.240.28.138 7 High port UDP, due to reduced sub-threshold 

147.95.3.27 6 TCP Port 25, due to reduced sub-threshold 
147.95.36.165 5 High port UDP, due to reduced sub-threshold 

144.240.43.227 5 High port UDP, due to reduced sub-threshold 

ating successful communications on 139/tcp and port 80/tcp. The final entry, which 
reached a maximum count of 6, represents a NetBIOS-related false positive. 

Finally, we also examined ten randomly selected external addresses flagged by 
our algorithm. Eight were UDP scanners targeting port 137, while two were TCP 
scanners targeting port 445. All represent true positives. 

During this test, the connection cache size of 1 million entries reached about 20% 
full. Thus, each new scan attempt has a 20% chance of not being recorded because it 
aliases with an akeady-established connection. If the connection cache was increased 
to 4 million entries (4 MB instead of 1 MB), the false negative rate would drop to 
slightly over 5%. 

We conducted a second test to determine the effects of setting the parameters 
for maximum sensitivity. We increased the connection cache to 4 million entries, 
reducing the number of false negatives due to aliasing. We also tightened the Cmin 
threshold to -5, which increases the sensitivity to possible misbehavior of previously 
"good" machines, and increased Dmiss to infinity, meaning that we never decayed 
misses. Setting the threshold of response to 5 would then trigger an alert for an 
otherwise idle machine once it made a series of 5 failed connections; while a series of 
10 failed connections would trigger an alert regardless of an address's past behavior. 

We manually examined all outbound alerts (i.e., alerts generated when consid­
ering the enterprise "outside") that would have triggered when using this threshold, 
looking for additional false positives. Table 6.2 summarizes these additional alerts. 

We would expect that, by increasing the sensitivity in this manner, we would ob­
serve some non-scanning false positives. Of the additional alerts, only one new alert 
was generated because of the changed Cmin- This machine sent out unidirectional 
UDP to 15 destinations in a row, which was countered by normal behavior when 
Cmin was sct to -20 instead of -5. The rest of the alerts were triggered because of 
the reduced decay of misses. In all these cases, the traffic consisted of unidirectional 
communication to multiple machines. The TCP-based activity (NNTP, daytime, and 
SMTP) showed definite failed connections, but these may be benign failures. 
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In summary, even with the aggressive thresholds, there are few false positives, 
and they appear to reflect quite peculiar traffic. 

6.5.6 Williamson Implementation 

For comparison purposes, we also included in our trace analysis program an im­
plementation of Williamson's technique [36], which we evaluated against the site's 
outbound traffic in order to assess its performance in terms of worm containment. 
Williamson's algorithm uses a small cache of previously-allowed destinations. For 
all SYNs and any UDP packets, if we find the destination in the allowed-destination 
cache, we forward it regularly. If not, but if the source has not sent to a new destina­
tion (i.e., we haven't added anything to its allowed-destination cache) during the past 
second, then we put an entry in the cache to note that we are allowing communication 
between the source and the given destination, and again forward the packet. 

Table 6.3. All outbound connections with a delay queue of size 15 or greater for Williamson's 
algorithm 

Anonymized IP 
144.240.84.131 

147.95.15.21 
144.240.84.130 

147.95.3.37 
144.240.25.76 

147.95.52.12 
147.95.208.255 

147.95.208.18 

Delay Queue Size 
11,395 
8,772 
3,416 

23 
19 
18 
17 
15 

Cause 
DNS Server 
DNS Server 
DNS Server 
SMTP Server 
Bursty DNS Client 
Active HTTP Client 
Active HTTP Client 
Active HTTP Client 

Otherwise, we add the packet to a delay queue. We process this queue at the rate 
of one destination per second. Each second, for each source we determine the next 
destination it attempted to send to but so far has not due to our delay queue. We 
then forward the source's packets for that destination residing in the delay queue and 
add the destination to the allowed-destination cache. The effect of this mechanism 
is to limit sources to contacting a single new destination each second. One metric of 
interest with this algorithm then is the maximum size the delay queue reaches. 

A possible negative consequence of the Williamson algorithm is that the cache of 
previously established destinations introduces false positives rather than false neg­
atives. Due to its limited size, previously established destinations may be evicted 
prematurely. For testing purposes, we selected cache sizes of 8 previously-allowed 
destinations per source (3 greater than the cache size used in [36]). We manually 
examined all internal sources where the delay queue reached 15 seconds or larger, 
enough to produce a significant disturbance for a user (Table 6.3). 

In practice, we observed that the Williamson algorithm has a very low false posi­
tive rate, with only a few minor exceptions. First, the DNS servers in the trace greatly 
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overflow the delay queue due to their high fanout when resolving recursive queries, 
and thus would need to be special-cased. Likewise, a major SMTP server also trig­
gered a response due to its high connection fanout, and would also require white-
listing. However, of potential note is that three HTTP clients reached a threshold 
greater than 15, which would produce a user-noticeable delay but not trigger a per­
manent alarm, based on Williamson's threshold of blocking machines when their 
delay queue reaches a depth of 100 [32]. 

6.6 Cooperation 

Staniford analyzed the efficacy of worm containment in an enterprise context, finding 
that such systems exhibit a phase structure with an epidemic threshold [27]. For 
sufficiently low vulnerability densities and/or T thresholds, the system can almost 
completely contain a worm. However, if these parameters are too large, a worm can 
escape and infect a sizeable fraction of the vulnerable hosts despite the presence of 
the containment system. The epidemic threshold occurs when on average a worm 
instance is able to infect exactly one child before being contained. Less than this, 
and the worm will peter out. More, and the worm will spread exponentially. Thus 
we desire to set the response threshold T as low as possible, but if we set it too low, 
we may incur unacceptably many false positives. This tends to place a limit on the 
maximum vulnerability density that a worm containment system can handle. 

In this section, we present a preliminary analysis of performance improvements 
that come from incorporating communication between cells. The improvement arises 
by using a second form of a-worm-is-spreading detector: the alerts generated by 
other containment devices. The idea is that every containment device knows how 
many blocks the other containment devices currently have in effect. Each devise uses 
this information to dynamically adjust its response threshold: as more systems are 
being blocked throughout the enterprise, the individual containment devices become 
more sensitive. This positive feedback allows the system to adaptively respond to a 
spreading worm. 

The rules for doing so are relatively simple. All cells communicate, and when one 
cell blocks an address, it communicates this status to the other cells. Consequently, at 
any given time each cell can compute that X other blocks are in place, and thereby 
reduces T by (1 — 0)'^, where ^ is a parameter that controls how aggressively to 
reduce the threshold as a worm spreads. For our algorithm, the cell also needs to 
increase Cmin by a similar amount, to limit the scanning allowed by a previously 
normal machine. 

In our simulations, very small values of 9 make a significant difference in perfor­
mance. This is good, since reducing the threshold also tends to increase false positive 
rates.' 

® Large values of 6 risk introducing catastrophic failure modes in which some initial false 
positive drives thresholds low enough to create more false positives, which drive thresholds 
still lower. This could lead to a complete blockage of traffic due to a runaway positive 
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However, we can liave the threshold return to its normal (initial) value using an 
exponentially weighted time delay to ensure that this effect is short lived. 

A related policy question is whether this function should allow a complete shut­
down of the network (no new connections tolerated), or should have a minimum 
threshold below which the containment devices simply will not go, potentially al­
lowing a worm to still operate at a slower spreading rate, depending on its epi­
demic threshold. The basic tradeoff is ensuring a degree of continued operation, vs. 
a stronger assure that we will limit possible damage from the worm. 

6.6.1 Testing Cooperation 

To evaluate the effects of cooperation, we started with the simulation program used in 
the previous evaluation of containment [27]. We modified the simulator so that each 
response would reduce the threshold by 6. We then reran some of the simulations 
examined in [27] to assess the effect on the epidemic threshold for various values of 
e. 

The particular set of parameters we experimented with involved an enterprise 
network of size 2̂ "̂ addresses. We assumed a worm that had a 50% probability of 
scanning inside the network, with the rest falling outside the enterprise. We also 
assumed an initial threshold of T = 10, that the network was divided into 512 cells 
of 256 addresses each, and that the worm had no special preference to scan within 
its cell. We considered a uniform vulnerability density. These choices correspond to 
Figure 2 in [27], and, as shown there, the epidemic threshold is then at a vulnerability 
density of t; = 0.2 (that is, it occurs when 20% of the addresses are vulnerable to the 
worm). 

We varied the vulnerability density across this epidemic threshold for different 
values of 9, and studied the resulting average infection density (the proportion of 
vulnerable machines which actually got infected). This is shown in Figure 6.3, where 
each point represents the average of 5,000 simulated worm runs. The top curve shows 
the behavior when communication does not modify the threshold (i.e., 9 = 0), and 
successively lower curves have 9 = 0.00003, 9 = 0.0001, and 9 = 0.0003. It is to 
be emphasized that these are tiny values of 9 (less than 3/100 of 1%). One would not 
expect there to be any significant problem of increased false positives with such small 
changes; but that they are larger than zero suffices to introduce significant positive 
feedback in the presence of a propagating worm (i.e., the overall rate of blocked 
scans within the network rises over time). 

The basic structure of the results is clear. Changing 9 does not significantly 
change the epidemic threshold, but we can greatly reduce the infection density that 

feedback loop. This is unlikely with the small values of 9 in this study, and moreover 
could be addressed by introducing a separate threshold for communication that was not 
adaptively modified. The two thresholds would begin at the same value, but the blocking 
threshold would lower as the worm spread, while the communication threshold — i.e., 
the degree of scanning required before a device tells other devices that it has blocked the 
corresponding address — would stay fixed. This would sharply limit the positive feedback 
of more false positives triggering ever more changes to the threshold. 
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Fig. 6.3. Plot of worm infection density against vulnerability density v for varying values of 
the threshold modification value 0. See the text for more details. 

the worm can achieve above the epidemic threshold. It makes sense that the epidemic 
threshold is not changed, since below the epidemic threshold, the worm cannot gain 
much traction and so the algorithm that modifies T has no chance to engage and al­
ter the situation. However, above the epidemic threshold, adaptively changing T can 
greatly reduce the infection density a worm can achieve. Clearly, inter-cell communi­
cation mechanisms hold great promise at improving the performance of containment 
systems.^ 

We must however discuss a simplification we made in our simulation. We effec­
tively assumed that communication amongst cells occurs instantaneously compared 
to the worm propagation. Clearly, this an idealization. A careless design of the com­
munication mechanism could result in speeds that cause the threshold modification 
to always substantially lag behind the propagation of the worm, greatly limiting its 
usefulness. (See [18] for a discussion of the competing dynamics of a response to a 
worm and the worm itself). 

For example, it can be shown that a design in which we send a separate packet to 
each cell that needs notification allows worm instances to scan (on average) a number 
of addresses equal to half the number of cells before any threshold modification 
occurs (assuming that the worm can scan at the same speed as the communication 
mechanism can send notifications). This isn't very satisfactory. 

One simple approach to achieve very fast inter-cell communication is to use 
broadcast across the entire network. However, this is likely to pose practical risks 

' Particularly in parts of the parameter space where the epidemic threshold vulnerability 
density is much lower than 20% — e.g., if the worm has the ability to differentially target 
its own cell. 
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to network performance in the case where there are significant numbers of false pos­
itives. 

A potentially better approach is for the containment devices to cache recently 
contacted addresses. Then when a source IP crosses the threshold for scan detection, 
the cells it recently communicated with can be contacted first (in order). These cells 
will be the ones most in need of the information. In most cases, this will result in 
threshold modification occurring before the threshold is reached on any cells that got 
infected as a result (rather than the message arriving too late and the old unmodified 
threshold being used). 

6.7 Attacking Worm Containment 

Security devices do not exist in a vacuum, but represent both targets and obstacles 
for possible attackers. By creating a false positive, an attacker can trigger responses 
which wouldn't otherwise occur. Since worm containment /«M.y< restrict network traf­
fic, false positives create an attractive DOS target. Likewise, false negatives allow a 
worm or attacker to slip by the defenses. 

General containment can incur inadvertent false positives both from detection 
artifacts and from "benign" scanning. Additionally, attackers can generate false pos­
itives if they can forge packets, or attempt to evade containment if they detect it 
in operation. When we also use cooperation, an attacker who controls machines in 
several cells can cause significant network disruption through cooperative collapse: 
using the network of compromised machines to trigger an institution-wide response 
by driving down the thresholds used by the containment devices through the insti­
tute (if 9 is large enough to allow this). Our scan detection algorithm also has an 
algorithm-specific, two-sided evasion, though we can counter these evasions with 
some policy changes, which we discuss below. Although we endeavor in this section 
to examine the full range of possible attacks, undoubtedly there are more attacks we 
haven't considered. 

6.7.1 Inadvertent False Positives 

There are two classes of inadvertent false positives: false positives resulting from 
artifacts of the detection routines, and false positives arising from "benign" scan­
ning. The first are potentially the more severe, as these can severely limit the use of 
containment devices, while the second is often amenable to white-listing and other 
policy-based techniques. 

In our primary testing trace, we observed only one instance of an artifact-induced 
false positive, due to unidirectional AFS control traffic. Thus, this does not appear 
to be a significant problem for our algorithm. Our implementation of Williamson's 
mechanism showed artifact-induced false positives involving 3 HTTP clients that 
would have only created a minor disruption. Also, Williamson's algorithm is specif­
ically not designed to apply to traffic generated by servers, requiring these machines 
to be white-listed. 
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Alerting on benign scanning is less severe. Indeed, such scans should trigger 
all good scan-detection devices. More generally, "benign" is fundamentally a policy 
distinction: is this particular instance of scanning a legitimate activity, or something 
to prohibit? 

We have observed benign scanning behavior from Windows File Sharing (Net­
BIOS) and applications such as Gnutella which work through a list of previously-
connected peers to find access into a peer-to-peer overlay. We note that if these pro­
tocols were modified to use a rendezvous point or a meta-server then we could elim­
inate their scanning behavior. The other alternative is to whitelist these services. By 
whitelisting, their scanning behavior won't trigger a response, but the containment 
devices can no longer halt a worm targeting these services. 

6.7.2 Detecting Worm Containment 

If a worm is propagating within an enterprise that has a containment system operat­
ing, then the worm could slow to a sub-threshold scanning rate to avoid being sup­
pressed. But in the absence of a containment system, the worm should instead scan 
quickly. Thus, attackers will want to devise ways for a worm to detect the presence 
of a containment system. 

Assuming that the worm instance knows the address of the host that infected it, 
and was told by it of a few other active copies of the worm in the enterprise, then the 
worm instance can attempt to establish a normal communication channel with the 
other copies. If each instance sets up these channels, together they can form a large 
distributed network, allowing the worm to learn of all other active instances. 

Having established the network, the worm instance then begins sending out 
probes at a low rate, using its worm peers as a testing ground: if it can't establish 
communication with already-infected hosts, then it is likely the enterprise has a con­
tainment system operating. This information can be discovered even when the block 
halts all direct communication: the infection can send a message into the worm's 
overlay network, informing the destination worm that it will attempt to probe it. If 
the ensuing direct probe is blocked, the receiving copy now knows that the sender is 
blocked, as it was informed about the experimental attempt. 

This information can then be spread via the still-functional connections among 
the worm peers in order to inform future infections in the enterprise. Likewise, if the 
containment system's blocks are only transient, the worm can learn this fact, and its 
instances can remain silent, waiting for blocks to lift, before resuming sub-threshold 
scanning. 

Thus we must assume that a sophisticated worm can determine that a network 
employs containment, and probably deduce both the algorithm and parameters used 
in the deployment. 

6.7.3 Malicious False Negatives 

Malicious false negatives occur when a worm is able to scan in spite of active scan-
containment. The easiest evasion is for the worm to simply not scan, but propa­
gate via a different means: topological, meta-server, passive, and target-list (hit-list) 
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worms all use non-scanning techniques [33]. Containing such worms is outside the 
scope of our work. We note, however, that scanning worms represent the largest class 
of worms seen to date and, more generally, a broad class of attack. Thus, eliminating 
scanning worms from a network clearly has a great deal of utility even if it does not 
address the entire problem space. 

In addition, scanning worms that operate below the sustained-scanning threshold 
can avoid detection. Doing so requires more sophisticated scanning strategies, as the 
worms must bias their "random" target selection to effectively exploit the internal 
network in order to take advantage of the low rate of allowed scanning. The best 
countermeasure for this evasion technique is simply a far more sensitive threshold. 
We argue that a threshold of 1 scan per second (as in Williamson [36]), although 
effective for stopping current worms, is too permissive when a worm is attempting to 
evade containment. Thus we targeted a threshold of 1 scan per minute in our work. 

Additionally, if scanning of some particular ports has been white-listed (such as 
Gnutella, discussed above), a worm could use that port to scan for liveness—i.e., 
whether a particular address has a host running on it, even though the host rejects 
the attempted connection—and then use followup scans to determine if the machine 
is actually vulnerable to the target service. While imperfect—failed connection at­
tempts will still occur—the worm can at least drive the failure rate lower because the 
attempts will fail less often. 

Another substantial evasion technique can occur if a corrupted system can obtain 
multiple network addresses. If a machine can gain k distinct addresses, then it can 
issue k times as many scans before being detected and blocked. This has the effect of 
reducing the epidemic threshold by a factor of k, a huge enhancement on a worm's 
ability to evade containment. 

6.7.4 Malicious False Positives 

If attackers can forge packets, they can frame other hosts in the same cell as scanners. 
We can engineer a local area network to resist such attacks by using the MAC address 
and switch features that prevent spoofing and changing of MAC addresses. This is 
not an option, though, for purported scans inbound to the enterprise coming from the 
external Internet. While the attacker can use this attack to deny service to external 
addresses, preventing them from initiating new connections to the enterprise, at least 
they can't block new connections initiated by internal hosts. 

There is an external mechanism which could cause this internal DOS: a mali­
cious web page or HTML-formatted email message could direct an internal client to 
attempt a slew of requests to nonexistent servers. Since this represents an attacker 
gaining a limited degree of control over the target machine (i.e., making it execute 
actions on the attacker's behalf), we look to block the attack using other types of 
techniques, such as imposing HTTP proxies and mail filtering to detect and block 
the malicious content. 
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6.7.5 Attacking Cooperation 

Although cooperation helps defenders, an attacker can still attempt to outrace con­
tainment if the initial threshold is highly permissive. However, this is unlikely to 
occur simply because the amount of communication is very low, so it is limited by 
network latency rather than bandwidth. Additionally, broadcast packets could allow 
quick, efficient communication between all of the devices. Nevertheless, this sug­
gests that the communication path should be optimized. 

The attacker could also attempt to flood the containment coordination channels 
before beginning its spread. Thus, containment-devices should have reserved com­
munication bandwidth, such as a dedicated LAN or prioritized VLAN channels, to 
prevent an attacker from disrupting the inter-cell communication. 

Of greater concern is cooperative collapse. If the rate of false positives is high 
enough, the containment devices respond by lowering their thresholds, which can 
generate a cascade of false positives, which further reduces the threshold. Thus, it is 
possible that a few initial false positives, combined with a highly-sensitive response 
function, could trigger a maximal network-wide response, with major collateral dam­
age. 

An attacker that controls enough of the cells could attempt to trigger or ampUfy 
this effect by generating scanning in those cells. From the viewpoint of the worm 
containment, this appears to reflect a rapidly spreading worm, forcing a system-wide 
response. Thus, although cooperation appears highly desirable due to the degree to 
which it allows us to begin the system with a high tolerance setting (minimizing 
false positives), we need to develop models of containment cooperation that enable 
us to understand any potential exposure an enterprise has to the risk of maliciously 
induced cooperative collapse. 

6.7.6 Attacking Our Algorithm 

Our approximation algorithm adds two other risks: attackers exploiting the approx­
imation caches' hash and permutation functions, and vulnerability to a two-sided 
evasion technique. We discussed attacking the hash functions earlier, which we ad­
dress by using a block-cipher based hash. In the event of a delayed response due to 
a false negative, the attacker will have difficulty determining which possible entry 
resulted in a collision. 

Another evasion is for the attacker to embed their scanning within a large storm 
of spoofed packets which cause thrashing in the address cache and which pollute 
the connection cache with a large number of half-open connections. Given the level 
of resources required to construct such an attack (hundreds of thousands or millions 
of forged packets), however, the attacker could probably spread just as well simply 
using a slow, distributed scan. Determining the tradeoffs between cache size and 
where it becomes more profitable to perform distributed scanning is an area for future 
work. 

A more severe false negative is a two-sided evasion: two machines, one on each 
side of the containment device, generate normal traffic establishing connections on 
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a multitude of ports. A worm could use this evasion technique to balance out the 
worm's scanning, making up for each failed scanning attempt by creating another 
successful connection between the two cooperating machines. Since our algorithm 
treats connections to distinct TCP ports as distinct attempts, two machines can gen­
erate enough successes to mask any amount of TCP scanning. 

There is a counter-countermeasure available, however. Rather than attempting 
to detect both vertical and horizontal TCP scanning, we can modify the algorithm 
to detect only horizontal scans by excluding port information from the connection-
cache tuple. This change prevents the algorithm from detecting vertical scans, but 
greatly limits the evasion potential, as now any pair of attacker-controlled machines 
can only create a single success. 

More generally, however, for an Internet-wide worm infection, the huge number 
of external infections could allow the worm to generate a large amount of successful 
traffic even when we restrict the detector to only look for horizontal scans. We can 
counter this technique, though, by splitting the detector's per-address count into one 
count associated with scanning within the internal network and a second count to 
detect scanning on the Internet. By keeping these counts separate, an attacker could 
use this evasion technique to allow Internet scanning, but they could not exploit it to 
scan the internal network. Since our goal is to protect enterprise and not the Internet 
in the large, this is acceptable. 

A final option is to use two containment implementations, operating simultane­
ously, one targeting scans across the Internet and the other only horizontal scans 
within the enterprise. This requires twice the resources, although any hardware can 
be parallelized, and allows detection of both general scanning and scanning behavior 
designed to evade containment. 

6.8 Related Work 

In addition to the TRW algorithm used as a starting point for our work [11], a number 
of other algorithms to detect scanning have appeared in the literature. 

Both the Network Security Monitor [10] and Snort [26] attempt to detect scan­
ning by monitoring for systems which exceed a count of unique destination addresses 
contacted during a given interval. Both systems can exhibit false positives due to ac­
tive, normal behavior, and may also have a significant scanning sub-threshold which 
an attacker can exploit. 

Bro [20] records failed connections on ports of interest and triggers after a user-
configurable number of failures. Robinson et al. [23] used a similar method. 

Leckie et al [14] use a probabilistic model based on attempting to learn the 
probabiUstic structure of normal network behavior. The model assumes that access 
to addresses made by scanners follows a uniform distribution rather than the non-
homogeneous distribution learned for normal traffic, and attempts to classify possi­
ble scanning sources based on the degree to which one distribution or the other better 
fits their activity. 
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Finally, Staniford et a/'s work on SPICE [28] detects very stealthy scans by cor­
relating anomalous events. Although effective, it requires too much computation to 
use it for line-rate detection on high-speed networks. 

In addition to Williamson's [36, 32] and Staniford's [27, 29] work on worm con­
tainment, Jung et al [12] have developed a similar containment technique based on 
TRW. Rather than using an online algorithm which assumes that all connections fail 
until proven successful, it uses the slightly delayed (until response seen or timeout) 
TRW combined with a mechanism to limit new connections similar to Williamson's 
algorithm. 

Zou et al. [38] model some requirements for dynamic-quarantine defenses. They 
also demonstrate that, with a fixed threshold of detection and response, there are 
epidemic thresholds. Additionally, Moore et al. have studied abstract requirements 
for containment of worms on the Internet [16], and Nojiri et al have studied the 
competing spread of a worm and a not-specifically-modeled response to it [18]. 

There have been two other systems attempting to commercialize scan contain­
ment: Mirage networks [17] and Forescout [9]. Rather than directly detecting scan­
ning, these systems intercept communication to unallocated (dark) addresses and 
respond by blocking the infected systems. 

6.9 Future Work 

We have plans for future work in several areas: implementing the system in hardware 
and deploying it; integrating the algorithm into a software-based IDS; attempting to 
improve the algorithm further by reducing the sub-threshold scanning available to an 
attacker; exploring optimal communication strategies; and developing techniques to 
obtain a complete enterprise-trace for further testing. 

The hardware implementation will target the ML300 demonstration platform by 
Xilinx [37]. This board contains 4 gigabit Ethernet connections, a small FPGA, and 
a single bank of DDR-DRAM. The DRAM bank is sufficiently large to meet our 
design goals, while the DRAM's internal banking should enable the address and 
connection tables to be both implemented in the single memory. 

We will integrate our software implementation into the Bro IDS, with the neces­
sary hooks to pass IP blocking information to routers (which Bro already does for 
its current, less effective scan-detection algorithm). Doing so will require selecting a 
different 32-bit block cipher, as our current cipher is very inefficient in software. For 
both hardware and software, we aim to operationally deploy these systems. 

Finally, we are investigating ways to capture a full-enterprise trace: record every 
packet in an large enterprise network of many thousands of users. We believe this 
is necessary to test worm detection and suppression devices using realistic traffic, 
while reflecting the diversity of use which occurs in real, large intranets. Currently, 
we are unaware of any such traces of contemporary network traffic. 
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6.10 Conclusions 

We have demonstrated a highly sensitive approximate scan-detection and suppres­
sion algorithm suitable for worm containment. It offers substantially higher sensi­
tivity over previously published algorithms for worm containment, while easily op­
erating within an 8 MB memory footprint and requiring only 2 uncached memory 
accesses per packet. This algorithm is suitable for both hardware and software im­
plementations. 

The scan detector used by our system can limit worm infectees to sustained scan­
ning rates of 1 per minute or less. We can configure it to be highly sensitive, detecting 
scanning from an idle machine after fewer than 10 attempts in short succession, and 
from an otherwise normal machine in less than 30 attempts. 

We developed how to augment the containment system with using cooperation 
between the containment devices that monitor different cells. By introducing com­
munication between these devices, they can dynamically adjust their thresholds to 
the level of infection. We showed that introducing a very modest degree of bias that 
grows with the number of infected cells makes a dramatic difference in the efficacy 
of containment above the epidemic threshold. Thus, the combination of containment 
coupled with cooperation holds great promise for protecting enterprise networks 
against worms that spread by address-scanning. 

6.11 Revisited 

Since we target our algorithm for use in a local network, we needed to construct a 
LAN implementation to evaluate it. Although we were confident in the basic cor­
rectness of our algorithm (now called Approximate-Cache TRW, or AC-TRW), we 
appreciated a need to determine if any difficulties might arise when operating it in a 
full LAN environment. 

We implemented AC-TRW in Click[13], a software framework for building 
router forwarding planes. Our implementation is designed to run transparently in 
Ethernet networks: unless blocking packets, it behaves like a wire, completely pre­
serving Ethernet packets (including not changing the MAC addresses). The only sig­
nificant change we made to our algorithm was to use a truncated RC5 variant (RC5 
with a 32-bit wordsize and 6 rounds) as our permutation function. We discuss it fur­
ther below. 

We tested this implementation both in our own LAN and using sythentic traf­
fic generated in the DETER [6] testbed (an Emulab[34] environment). During our 
testing in both the testbed and the LAN, we discovered unanticipated interactions 
between end-system ARP caches, Ethernet switches, and our algorithm, which led 
to false positives. Additionally, we came to realize that IP scanning might not occur 
at all, as the standard system calls will not generate IP packets to the LAN unless a 
previous ARP is successful. 

As a result, we needed to modify our system to passively map the local network. 
This map is used to determine whether a packet crossing through our device is a spu­
rious broadcast packet (such as from the use of a hub on one side of the network, or an 
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uninitialized MAC cache). If we determine the packet to be a spurious broadcast, we 
ignore it (but pass it unchanged). We also use this map to determine if an ARP ought 
to cross our viewpoint. If so, we incorporate ARP requests and responses into our 
TRW implementation, with a modification. Failed or unacknowledged ARPs count 
as +1, the same as for initial IP traffic; but acknowledged ARPs count as 0 rather 
than -1 , as an ARP is invariably a prelude to further IP communication. We also need 
to whitehst the gateway system, as this system generates ARPs based on incoming 
communication. 

Although this mechanism differs from the one described by Whyte et al[35], 
the goal is the same: to detect ARPs used during scans of the local environment 
in addition to IP scans of machines as they are discovered. We also use the map 
we construct to recognize and ignore packets that are initially broadcast onto the 
network, but would not normally cross the device if the Ethernet switch's MAC cache 
was complete. Without the map, we would erroneously charge these as the equivalent 
of a failed connection attempt. 

6.11.1 Containment on Ethernet Networks 

We implemented our Click-based algorithm as a software Ethernet bridge: it reads 
packets from one Ethernet and, unless it blocks a packet, forwards the packet un­
changed (including the original Ethernet MAC addresses) to the other Ethernet on 
the system, with any non-IP/non-ARP packets simply passed without examination. 
This allows us to deploy our devices anywhere in the network, rather than only at 
IP gateways, without affecting the spanning tree protocol or other non-IP network 
mechanisms. Additionally, since other containment algorithms have been integrated 
commercially into Ethernet switches such as the HP ProCurve 5300x1 [19]^, it is im­
portant to understand the issues in integrating IP-derived containment devices into 
Ethernet-based networks. 

Our device does not just monitor but also actively blocks, to give us a direct 
imperative (i.e., displeased end users) to uncover and remove any lingering bugs. 
We were particularly interested whether a liberal threshold (block at -Hi8, max H-20, 
min -20) would incur false positives from normal Windows background chatter. 
However, we found that such a liberal threshold did not prove a problem: except 
for the false-positive due to packets not always being switched (discussed below, 
and subsequently addressed through our passive network mapping), and an expected 
false-positive when as a test we ran the Limewire installer (an unstructured P2P pro­
gram), we had no false positives over several weeks of normal operation, including 
a Windows system, several Linux systems, and an occasional Macintosh connecting 
through the device. 

Initially we made an assumption that because the network is fully switched, only 
packets that were supposed to cross through the spliced link would pass through 

"^ The HP technology, however, ignores many of the issues we've encountered because it only 
performs containment between distinct subnets on distinct VLANs, using the switch's IP 
routing facility. 
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our device. As we discuss below, however, this assumption is not correct: switched 
networks occasionally broadcast IP packets, which can create false positives. 

6.11.2 ARPs and the ARP/MAC-cache interaction 

The normal means for one system to find another on an Ethernet network is ARP[21]. 
When IP host A wants to contact IP host B on the same subnet, it broadcasts an ARP 
request to the Ethernet broadcast (FF:FF:FF:FF:FF:FF) address. B then replies 
directly to A with an ARP response, sending B's Ethernet MAC address to A. In the 
future (until host A's ARP cache expires), any request for A to talk to B will just use 
the entry in the ARP cache. 

At the same time as the ARP reply is sent, any Ethernet switch along the path 
between B and A will initialize its MAC cache with B's MAC address. Thus any 
subsequent packets destined for B's MAC will not be broadcast on the network, but 
will be directly routed along the path to B's port. Our initial implementation passed 
ARPs without modification; thus, if our monitor is not on the path between A and B, 
we assumed that it would not see the initial TCP S YN or any subsequent packets. Or, 
if it did see the TCP SYN (because a broadcast hub rather than a switch was used), 
it would also see the subsequent packets in the connection. 

These caches do not expire at an equal rate, however. If a system's ARP cache 
is still valid, but the switch's MAC cache has expired, when A initiates a new con­
nection to B, the SYN from Ato B will be broadcast throughout the network. The 
response (and all subsequent packets) will reinitialize the MAC cache, causing all 
further packets to be switched. Thus, if our device is not on the path between A and 
B, it will see the initial SYN, counting it as a scan attempt, but not see the subsequent 
dialog. 

We have observed this in practice, both in testbed experiments and on our live 
network. In our LAN, there is a system outside our containment device that regularly 
performs a global update to all clients on the LAN. Our device once detected and 
blocked this system as a scanner during its nightly update; the connections to off-
path systems were treated as scan attempts, as the system's ARP cache remained 
valid, but the switch's MAC cache entries had timed out. 

Additionally, AC-TRW needs to examine the ARPs themselves. In most cases, a 
connection attempt to the local network is proceeded by an ARP. If the receiving host 
is live, the initiating host will see an ARP response, which it then uses to follow up 
with the IP-level connection request. But if the receiving host is down, the subsequent 
IP packets will never be sent. Thus, we need to count unacknowledged ARPs as scan 
attempts. 

A problem arises, however, in that although the ARP request is a broadcast 
packet, the ARP reply is not. Thus, if our device is not on the path between the 
two hosts in question, it will see the ARP request but not the ARP reply, so we must 
not blindly count ARPs as scan attempts. We now turn to addressing this problem. 
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6.11.3 The LAN Map 

Our solution to both the ARP/MAC cache interactions and detecting ARP scanning 
is to passively gather and maintain a map of all active addresses in the subnet. For 
each host on the subnet, we track when it was last seen and on which side of the 
network. We also track on which side of the network the gateway system resides. If 
these locations ever change (such as a system moving from one side to the other), we 
simply note the change without taking action. 

AC-TRW then uses this map to determine if a packet is a spurious broadcast. If 
the destination (if on the same subnet) or gateway (if to a non-local address) is on 
the same side of the network as the originating packet, AC-TRW assumes that this 
packet is a spurious broadcast packet and simply ignores it during its analysis. If 
AC-TRW does not know which side the destination should be on, it always analyzes 
the packet, assuming the packet was supposed to cross through the link. 

We also use this approach to determine whether to consider an ARP request as a 
connection attempt. If the destination might be on the other side of the network, we 
increment the source's count by -fl, a provisional scan attempt. Then the subsequent 
reply, which we will observe, results in the count being reduced by —1, rather than by 
—2 as we would for an IP-level response. By doing so, we count an unacknowledged 
ARP as + 1 , but a successful ARP as 0 (compared with +1 for failed IP connections 
and —1 for successful connections). This is because although an unacknowledged 
ARP needs to be considered a scan attempt, an acknowledged ARP is not a successful 
contact: the ARP will be followed by an IP-based connection attempt. 

This passive mapping can introduce a rare false-positive: If system A and B are 
on the same side of the network, and B has never sent a packet across our monitored 
link (including broadcast ARP requests), or if B has moved from the other side to the 
same side without ever sending a packet across our monitored link, an ARP from A 
to B will be considered falsely as a scan attempt. Since it takes several scan attempts 
before a system is actually blocked, and because most systems are not completely 
silent, we do not believe this false positive will be a problem in practice. 

6.11.4 Software Performance 

Although we only designed our CUck implementation for prototyping, it's pure-
software performance is actually respectable, suggesting that many networks can use 
a software-only implementation. On a 2.8 GHz, dual processor system with 2 Gigabit 
Ethernet cards in the DETER testbed, we were able to stream 450 Mbps of TCP data 
(in two streams) through our AC-TRW implementation. This represents the best-case 
performance for our implementation: there are no cache misses, and all the packets 
are maximum size. 

However, we did not optimize our implementation. We used user-level Click, 
which means every packet crosses through the kernel twice. We also did not optimize 
our implementation beyond correctly implementing the AC-TRW algorithm. Thus, 
it should be possible to significantly increase performance through a combination 
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of profiling to determine locations to recode and compiling our module into kernel-
space Click. 

Another useful property of our implementation is that after startup, it performs 
no dynamic memory allocation; we have run our algorithm on our own network for 
weeks without memory leaks. 

6.11.5 Open Problem: Broadcast Packets 

One item which we have yet to address is a proper policy for broadcast and multi­
cast packets. A broadcast packet, especially a broadcast ping, can instantly reveal all 
live systems on the local LAN. A natural proposal would be to block all broadcast 
packets, but this could prove untenable in some environments. Of particular concern 
are the broadcast and multicast packets used by both Windows and Macs to discover 
other systems in the network. 

Currently, we falsely count broadcast and multicast packets as scan attempts. 
But since these are UDP, each broadcast or multicast address contacted by a host 
only counts as a single failure, which quickly gets forgiven. Determining a proper 
policy for such packets remains an open question. Any solution will need to carefully 
consider the requirements of the target network. 

6.11.6 Reverse TRW 

Concurrent with our work, Jung et al developed a TRW variant called "Reverse 
TRW" [24]. It analyzes connection events looking backward through time rather 
than forward, in order to more quickly detect that a system has transitioned from a 
benign to a scanning state. We have not implemented reverse TRW, but our use of a 
floor on the count accomplishes a similar task, albeit with some loss of promptness 
of detection for systems that transition from benign to scanning. 

6.11.7 Network Construction 

All these scan containment algorithms suffer from the epidemic threshold prob­
lem [27]: if they are not suitably sensitive, a worm can still spread exponentially. 
We believe that network construction, rather than attempting to make the algorithms 
more sensitive (and therefore risking more false positives), likely provides the best 
solution to the epidemic threshhold problem. 

A promising architecture for doing so is to restructure networks which deploy 
scan-containment technology using NAT [8] to make the address space sparser, and 
thus increase the likelihood that blind scanning generates numerous connection fail­
ures. For example, rather than providing end hosts with routable IP addresses, al­
locate their addresses allocated from the 10.0.0.0/8 private address space in a uni­
formly random fashion. By creating far less dense networks, where only 1 in 100 or 
1 in 1000 internal addresses are actually live, even a very insensitive algorithm can 
successfully contain a scanning worm. 
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One issue with this approach, however, is that broadcast or multicast packets can 
still discover hosts in the current subnet. Thus, there needs to be a mechanism for 
suitably addressing and restricting broadcast packets. 
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7.1 Introduction 

We increasingly rely on highly available systems in all areas of society, from the 
economy, to military, to the government. Unfortunately, much software, including 
critical applications, contains vulnerabilities unknown at the time of deployment, 
with memory-overwrite vulnerabilities (such as buffer overflow and format string 
vulnerabilities) accounting for more than 60% of total vulnerabilities [10]. These vul­
nerabilities, when exploited, can cause devastating effects, such as self-propagating 
worm attacks which can compromise millions of vulnerable hosts within a matter 
of minutes or even seconds [32, 61], and cause millions of dollars of damage [30]. 
Therefore, we need to develop effective mechanisms to protect vulnerable hosts from 
being compromised and allow them to continue providing critical services, even un­
der aggressively spreading attacks on previously unknown vulnerabilities. 

We need automatic defense techniques because manual response to new vulnera­
bilities is slow and error prone. A worm exploiting a previously unknown vulnerabil­
ity and advanced techniques such as hit-lists can infect the vulnerable population on 
a time scale orders of magnitude faster than a human mediated response [7, 61, 60]. 
Automatic techniques have the potential to be more accurate than manual efforts be­
cause vulnerabilities exploited by worms tend to be complex and require intricate 
knowledge of details such as realizable program paths and comer conditions. Un­
derstanding the complexities of a vulnerability has consistently proven very difficult 
and time consuming for humans at even the source code level [9], let alone COTS 
software at the assembly level. 

Overview and Contributions. By carefully uniting a suite of new techniques, we 
create a new end-to-end self-healing architecture, called Sting, as a first step towards 
automatically defending against fast Internet-scale worm attacks. 

At a high level, the Sting self-healing architecture enables programs to efficiently 
and automatically (1) self-monitor their own execution behavior to detect a large 
class of errors and exploit attacks, (2) self-diagnose the root cause of an error or 
exploit attack, (3) self-harden to be resilient against further attacks, and (4) quickly 
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self-recover to a safe state after a state corruption. Furthermore, once a Sting host 
detects and diagnoses an error or attack, it can generate a verifiable antibody, which 
is then distributed to other vulnerable hosts, who verify the correctness of the anti-
bodyand use it to self-harden against attacks on that vulnerability. We provide a more 
detailed overview below. 

First, we propose dynamic taint analysis to detect new attacks, and to provide 
information about discovered attacks which can be used to automatically generate 
antibodies that protect against further attacks on the corresponding vulnerability. Dy­
namic taint analysis monitors software execution at the instruction level to track what 
data was derived from untrusted sources, and detect when untrusted data is used in 
ways that signify that an attack has taken place. This technique reliably detects a 
large class of exploit attacks, and does not require access to source code, allowing it 
to be used on commodity software. This work is described in detail in [43, 44]. 

Once a new attack is detected, there are several types of antibodies that can be 
generated, and several methods to generate them. We have investigated automatic 
methods of generating input-filters by finding common byte-patterns in collected 
worm samples, even for polymorphic worms. This work is described in detail in [41]. 
However, we have found that a worm author can severely cripple such methods by 
including spurious features in samples of the worm [42]. 

In [8], we propose vulnerability-based signatures, in which signatures are cre­
ated based upon the vulnerability itself. Vulnerability signatures are input signatures 
which provably have zero-false positives (or false negatives, if desired). Therefore, 
vulnerability signatures are appropriate even in an adversarial environment where 
malicious parties may try to mislead the signature creation algorithm. 

In some circumstances input-based filters may not be practical. For example, per­
formance requirements may only allow for token-based signatures, but token-based 
signatures may be too imprecise to be useful. Therefore, we propose an alternative 
of automatically generating execution filters, which are specifications of where the 
vulnerability lies in the vulnerable program. These are used to automatically insert 
a small piece of instrumentation into the vulnerable program, which in turn allows 
the vulnerable program to efficiently and reliably detect when that vulnerability is 
exploited. This work is described in [39]. 

Once a new attack has been found, and an antibodygenerated for that attack, we 
disseminate that antibodyto other vulnerable hosts. These vulnerable hosts can verify 
both that an attack exists and that the antibodysuccessfully stops it by replaying the 
attack against the antibody-protected software in a confined environment. 

Finally, we integrate the above techniques to form Sting, an end-to-end self-
healing system capable of defending commodity software against even zero-day hit-
list worm attacks. In this system, users use light-weight detectors (such as address 
randomization [45, 5,6,11,20, 22, 68]) and random sampling to initially detect new 
attacks with little performance cost. When a potential attack is detected, we then use 
dynamic taint analysis to perform automatic self-diagnosis, which verifies whether 
it is truly an attack, and automatically generates an execution filter. That execution 
filter is used to harden the vulnerable binary, and is distributed to others running 
the vulnerable software to allow them to also harden their own vulnerable binaries. 
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When an exploit is detected, the system performs diagnosis-directed self-recovery 
using process checkpointing and recovery [59, 46]. To the best of our knowledge, 
we are the first to demonstrate that we can defend against even hit-list worms under 
realistic deployment scenarios. 

Organization. In Section 7.2, we briefly describe the design .space for worm de­
fense systems. Our analysis indicates that the best designs incorporate both a proac­
tive protection component and a reactive antibodycomponent. This analysis moti­
vates our Sting architecture. We then describe TaintCheck in Section 7.3, which is 
one of the primary mechanism we use to detect new exploits and vulnerabilities. In 
Section 7.4, we discuss automatic input-based signature creation. We show many 
proposed algorithms are fragile and can be mislead by an adversary into creating 
incorrect signatures. We then describe a new class of signatures called vulnerability 
signatures which are provably correct, even in an adversarial environment. In Sec­
tion 7.5, we describe an alternative to input-based filters called vulnerability-based 
execution filters (VSEF). Section 7.6 describes the complete Sting architecture and 
our experiences creating it. We then present related work, and conclude. 

7.2 Worm Defense Design Space 

The design space for worm defense systems is vast. For example, should a worm 
defense system try to contain infected machines from further propagation of the 
worm, blacklist known infected hosts, or filter infection attempts? In [7], we propose 
a taxonomy for worm defense strategies and perform theoretical and experimental 
evaluation to compare different strategies in the design space. Our analysis shows a 
hybrid scheme using proactive protection and a reactive antibodydefense is the most 
promising approach. Thus, we adopt this strategy in the Sting architecture. 

7.2.1 Defense Strategy Taxonomy 

We analyze a taxonomy of possible solutions in the worm defense design space in [7]. 
The taxonomy is depicted in Figure 7.1. At a high level, the four defense strategies 
are: 

Reactive Defense. This approach reactively generates an antibody, which is a pro­
tective measure that prevents further infections. The scheme is reactive because 
the antibodyis created based upon a known worm sample. Many input-based fil­
tering schemes such as in Section 7.4 and [27, 29,41] are examples of a reactive 
antibodydefense since the input filters are created from known worm samples. 
Vulnerability-specific execution filters (Section 7.5) are another example. 

Proactive Protection. A proactive protection scheme is always in place and pre­
vents at least some worm infection attempts from succeeding. Running Taint-
Check on all programs, all the time is an example of a proactive protection 
scheme. However, running TaintCheck all the time is unreahstic due to the po­
tentially high overhead. An example of a probabilistic proactive protection is 
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Fig. 7.1. Worm Defense Strategy Taxonomy 

address space randomization [45, 5, 6, 11, 20, 22, 68], in which each infection 
attempt succeeds with some probability p. 

Reactive Address Blacklisting. Blacklisting generates a worm defense based upon 
the address of an attacking host. For example, filtering any subsequent connec­
tions from a known infected host [34]. 

Local Containment. Local containment is a "good neighbor" strategy in which a 
site filters outgoing infection attempts to other sites. Scan rate throttling schemes 
such [64, 67] are an example of this strategy. 

7.2.2 The Sting Architecture 

We show in [7] that the most effective strategy in a realistic setting is combining 
proactive protection with a reactive antibodydefense. The intuition is that proactive 
protection will slow down the initial worm outbreak, which allows time to develop 
and deploy a permanent antibody. 

Sting is designed around the hybrid proactive protection with reactive anti­
bodydefense. Sting utilizes TaintCheck, address space randomization, and random 
sampling as proactive protection mechanisms. The combination of these mechanisms 
provides efficient probabilistic protection. Sting develops verifiable antibodies which 
can be distributed and installed. The antibodies provide efficient protection against 
subsequent infections. 

7.3 Dynamic Taint Analysis for Automatic Detection of New 
Exploits 

Many approaches have been proposed to detect new attacks. These approaches 
roughly fall into two categories: coarse-grained detectors, that detect anomalous 
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behavior, such as scanning or unusual activity at a certain port; and fine-grained de­
tectors, that detect attacks on a program's vulnerabilities. While coarse-grained de­
tectors are relatively inexpensive, they can have frequent false positives, and do not 
provide detailed information about the vulnerability and how it is exploited. Thus, it 
is desirable to develop fine-grained detectors that produce fewer false positives, and 
provide detailed information about the vulnerability and exploit. 

Several approaches for fine-grained detectors have been proposed that detect 
when a program is exploited. Most of these previous mechanisms require source code 
or special recompilation of the program, such as StackGuard [16], PointGuard [15], 
full-bounds check [25, 51], LibsafePlus [3], FormatGuard [14], and CCured [36]. 
Some of them also require recompiling the libraries [25, 51], or modifying the orig­
inal source code, or are not compatible with some programs [36, 15]. These con­
straints hinder the deployment and applicability of these methods, especially for 
commodity software, because source code or specially recompiled binaries are of­
ten unavailable, and the additional work required (such as recompiling the libraries 
and modifying the original source code) makes it inconvenient to apply these meth­
ods to a broad range of applications. Note that most of the large-scale worm attacks 
to date are attacks on commodity software. 

Thus, it is important to design fine-grained detectors that work on commodity 
software, i.e., work on arbitrary binaries without requiring source code or specially 
recompiled binaries. This goal is difficult to achieve because important information, 
such as data types, is not generally available in binaries. As a result, existing ex­
ploit detection mechanisms that do not use source code or specially compiled binary 
programs, such as LibSafe [4], LibFormat [50], Program Shepherding [28], and the 
Nethercote-Fitzhardinge bounds check [37], are typically tailored for narrow types 
of attacks and fail to detect many important types of common attacks. 

We propose a new approach, dynamic taint analysis, for the automatic detection 
of exploits on commodity software. In dynamic taint analysis, we label data origi­
nating from or arithmetically derived from untrusted sources such as the network as 
tainted. We keep track of the propagation of tainted data as the program executes 
{i.e., what data in memory is tainted), and detect when tainted data is used in danger­
ous ways that could indicate an attack. This approach allows us to detect overwrite 
attacks, attacks that cause a sensitive value (such as return addresses, function point­
ers, format strings, etc.) to be overwritten with the attacker's data. Most commonly 
occurring exploits fall into this class of attacks. We have developed an automatic 
tool, TaintCheck, to demonstrate our dynamic taint analysis approach. 

7.3.1 Dynamic Taint Analysis 

Our technique is based on the observation that in order for an attacker to change 
the execution of a program illegitimately, he must cause a value that is normally 
derived from a trusted source to instead be derived from his own input. For example, 
values such as return addresses, function pointers, and format strings should usually 
be supplied by the code itself, not from external untrusted inputs. In an overwrite 
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attack, an attacker exploits a program by overwriting sensitive values such as these 
with his own data, allowing him to arbitrarily change the execution of the program. 

We refer to data that originates or is derived arithmetically from an untrusted 
input as being tainted. In our dynamic taint analysis, we first mark input data from 
untrusted sources tainted, then monitor program execution to track how the tainted 
attribute propagates {i.e., what other data becomes tainted) and to check when tainted 
data is used in dangerous ways. For example, use of tainted data as a function pointer 
or a format string indicates an exploit of a vulnerability such as a buffer overrun or 
format string vulnerability ' , respectively. 

Note that our approach detects attacks at the time of use, i.e., when tainted data 
is used in dangerous ways. This significantly differs from many previous approaches 
which attempt to detect when a certain part of memory is illegitimately overwritten 
by an attacker at the time of the write. Without source code, it is not always possi­
ble at the time of a write to detect whether an illegitimate overwrite is taking place, 
because it cannot always be statically determined what kind of data is being over­
written, e.g. whether the boundary of a buffer has been exceeded. Hence, techniques 
that detect attacks at the time of write without source code are only applicable to 
certain type of attacks and/or suffer from limited accuracy. However, at the time that 
data is used in a sensitive way, such as as a function pointer, we know that if that 
data is tainted, then a previous write was an illegitimate overwrite, and an attack has 
taken place. By detecting attacks at the time of use instead of the time of write, we 
reliably detect a broad range of overwrite attacks. 

7.3.2 Design and Implementation Overview 

We have designed and implemented TaintCheck, a new tool for performing dynamic 
taint analysis. TaintCheck performs dynamic taint analysis on a program by running 
the program in its own emulation environment. This allows TaintCheck to monitor 
and control the program's execution at a fine-grained level. We have two implemen­
tations of TaintCheck: we implemented TaintCheck using Valgrind [38]. Valgrind is 
an open source x86 emulator that supports extensions, called skins, which can instru­
ment a program as it is run.^ We also have a Windows implementation of TaintCheck 
that uses DynamoRIO [21], another dynamic binary instrumentation tool. For sim-

^ Note that the use of tainted data as a format string often indicates a format string vulner­
ability, whether or not there is an actual exploit. That is, the program unsafely uses un­
trusted data as a format string ( p r i n t f (user_input) instead of p r i n t f ( ' ''%s' ' , 
u se r - inpu t ) ) , though the data provided by a particular user input may be innocuous. 

^ Note that while Memcheck, a commonly used Valgrind extension, is able to assist in de­
bugging memory errors, it is not designed to detect attacks. It can detect some conditions 
relevant to vulnerabilities and attacks, such as when unallocated memory is used, when 
memory is freed twice, and when a memory write passes the boundary of a mal l De­
allocated block. However, it does not detect other attacks, such as overflows within an area 
allocated by one mal loc call (such as a buffer field of a struct), format string attacks, or 
stack-allocated buffer overruns. 
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plicity of explanation, for the remainder of this section, we refer to the Valgrind 
implementation unless otherwise specified. 

Whenever program control reaches a new basic block, Valgrind first translates 
the block of x86 instructions into its own RISC-like instruction set, called UCode. 
It then passes the UCode block to TaintCheck, which instruments the UCode block 
to incorporate its taint analysis code. TaintCheck then passes the rewritten UCode 
block back to Valgrind, which translates the block back to x86 code so that it may be 
executed. Once a block has been instrumented, it is kept in Valgrind's cache so that 
it does not need to be re-instrumented every time it is executed. 
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Fig. 7.2. TaintCheck detection of an attack. (Exploit Analyzer not shown). 

To use dynamic taint analysis for attack detection, we need to answer three ques­
tions: (1) What inputs should be tainted? (2) How should the taint attribute propa­
gate? (3) What usage of tainted data should raise an alarm as an attack? To make 
TaintCheck flexible and extensible, we have designed three components: TaintSeed, 
TaintTracker, and TaintAssert to address each of these three questions in turn. Figure 
7.2 shows how these three components work together to track the flow of tainted 
data and detect an attack. Each component has a default policy and can easily in­
corporate user-defined policies as well. In addition, each component can be config­
ured to log information about taint propagation, which can be used by the fourth 
component we have designed, the Exploit Analyzer. When an attack is detected, the 
Exploit Analyzer performs post-analysis to provide information about the attack, in­
cluding identifying the input that led to the attack, and semantic information about 
the attack payload. This information can be used to automatically generate antibod­
ies against the attack, including input-based filters (Section 7.4) and execution filters 
(Section 7.5). 

7.4 Automatic Generation of Input-based Filters 

We first describe previous attempts at automatically generating signatures by syn­
tax pattern-extraction techniques. These techniques find and create signatures based 
on syntactic differences between exploits and benign inputs. Our experience shows 
these methods are fragile, and thus not suitable in an adversarial environment where 
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an adversary may try to mislead the signature generation algorithm. We then in­
troduce vulnerability signatures, which produce signatures with zero false positives 
(even in an adversarial setting). In addition, vulnerability signatures are generally of 
a higher quality (i.e., more accurate and less fragile) than signatures generated by 
syntax pattern-extraction techniques. 

7.4.1 Limitations of Pattern-Extraction based tecliniques 

First generation worms: identical byte strings. Motivated by the slow pace of 
manual signature generation, researchers have recently given attention to automating 
the generation of signatures used by IDSes to match worm traffic. Systems such as 
Honeycomb [29], Autograph [27], and EarlyBird [57] monitor network traffic to 
identify novel Internet worms, and produce signatures for them using pattern-based 
analysis, i.e., by extracting common byte patterns across different suspicious flows. 

These systems all generate signatures consisting of a single, contiguous substring 
of a worm's payload, of sufficient length to match only the worm, and not innocu­
ous traffic. The shorter the byte string, the greater the probability it will appear in 
some flow's payload, regardless of whether the flow is a worm or innocuous. These 
syntax pattern-extraction signature generation systems all make the same underlying 
assumption: that there exists a single payload substring that will remain invariant 
across worm connections, and will be sufficiently unique to the worm such that it 
can be used as a signature without causing false positives. 

Second generation worms: polymorphism. Regrettably, the above payload in-
variance assumption is naive, and gives rise to a critical weakness in these previ­
ously proposed signature generation systems. A worm author may craft a worm that 
substantially changes its payload on every successive connection, and thus evades 
matching by any single substring signature that does not also occur in innocuous 
traffic. Polymorphism techniques^, through which a program may encode and re-
encode itself into successive, different byte strings, enable production of changing 
worm payloads. It is pure serendipity that worm authors thus far have not chosen 
to render worms polymorphic; virus authors do so routinely [35, 63]. The effort re­
quired to do so is trivial, given that libraries to render code polymorphic are readily 
available [1,18]. 

In Polygraph [41], we showed that for many vulnerabilities, there are several 
invariant byte strings that must be present to exploit that vulnerability. While us­
ing a single one of these strings would not be specific enough to generate an ac­
curate signature, they can be combined to create an accurate conjunction signature, 
subsequence signature, or Bayes signature. We proposed algorithms that automati­
cally generate accurate signatures of these types, for maximally varying polymorphic 
worms. That is, we assumed the worm minimized commonality between each in­
stance, such that only the invariant byte strings necessary to trigger the vulnerability 
were present. 

^ We refer to both polymorphism and metamorphism as polymorphism, in the interest of 
brevity. 
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Third generation worms: Attaclcs on learning. The maximal variation model of 
a polymorphic worm's content bears further scrutiny. If one seeks to understand 
whether a worm can vary its content so widely that a particular signature type, e.g., 
one comprised of multiple disjoint substrings, cannot sufficiently discriminate worm 
instances from innocuous traffic, this model is appropriate, as it represents a worst 
case, in which as many of a worm's bytes vary randomly as possible. But the maxi­
mally varying model is one of many choices a worm author may adopt. Once a worm 
author knows the signature generation algorithm in use, he may adopt payload vari­
ation strategies chosen specifically in an attempt to defeat that algorithm or class of 
algorithm. Thus, maximal variation is a distraction when assessing the robustness of 
a signature generation algorithm in an adversarial environment; some other strategy 
may be far more effective in causing poor signatures {i.e., those that cause many false 
negatives and/or false positives) to be generated . 

In Paragraph [42], we demonstrated several attacks that make the problem of au­
tomatic signature generation via pattern-extraction significantly more difficult. The 
approach taken by pattern-extraction based signature generation systems such as 
Polygraph is to find common byte patterns in samples of a worm, and then apply 
some type of learning algorithm to generate a classifier, or signature. Most research 
in machine learning algorithms is in the context in which the content of samples is 
determined randomly, or even by a helpful teacher, who constructs examples in an 
effort to assist learning. 

However, learning algorithms, when applied to polymorphic worm signature gen­
eration, attempt to function with examples provided by a malicious teacher. That is, 
a clever worm author may manipulate the particular features found in the worm sam­
ples, innocuous samples, or both—not to produce maximal variation in payload, but 
to thwart learning itself. 

We demonstrate this concept in Paragraph [42] by constructing attacks against 
the signature generation algorithms in Polygraph [41]. We have shown that these 
attacks are practical to perform, and that they prevent an accurate signature from 
being generated quickly enough to prevent wide-spread infection. From our analysis, 
we conclude that generating worm signatures purely by syntax pattern-extraction 
techniques seems limited in robustness against a determined adversary. 

7.4.2 Automatic Vulnerability Signature Generation 

A realistic signature generation mechanism should succeed in an adversarial environ­
ment without requiring assumptions about the amount of polymorphism an unknown 
vulnerabiUty may have. Thus, to be effective, the signature should be constructed 
based on the property of the vulnerabiUty, instead of an exploit (this observation has 
been made by others as well [66]). 

We show that signatures with zero false positives, even in an adversarial setting, 
can be created by analyzing the vulnerability itself. We call these signatures vulner­
ability signatures [8], Vulnerability signatures are provably correct with respect to 
the goal of the administrator: they are constructed with zero false positives or zero 
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false negatives regardless of how the attacker may try and deceive the generation 
algorithm. 

Requirements for Vulnerability Signature Generation 

We motivate our work and approach to vulnerability signatures in the following set­
ting: a new exploit is just released for an unknown vulnerabiUty. A site has detected 
the exploit through some means such as dynamic taint analysis (Section 7.3), and 
wishes to create a signature that recognizes any further exploits. The site can fur­
nish our analysis with the tuple {V, T, x, c} where V is the program, x is the exploit 
string, c is a vulnerability condition, and T is the execution trace of V on x. Since 
our experiments are at the assembly level, we assume P is a binary program and T 
is an instruction trace, though our techniques also work at the source-code level. Our 
goal is to create a vulnerability signature which will match future malicious inputs 
x' by examining them without running V. 

Vulnerability Signature Definition 

A vulnerability is 2-tuple (7-", c), where T' is a program (which is a sequence of in­
structions («i, • • • , ik)), and c is a vulnerability condition (defined formally below). 
The execution trace obtained by executing a program V on input x is denoted by 
T{V, x). An execution trace is simply a sequence of actual instructions that are exe­
cuted. A vulnerability condition c is evaluated on an execution trace T. If T satisfies 
the vulnerability condition c, we denote it by T |= c. The language of a vulnerabiUty 
L-p^c consists of the set of all inputs a; to a program V such that the resulting exe­
cution trace satisfies c. Let E" be the domain of inputs to V. Formally, L-p^c is the 
language defined by: 

Lv,c = {xeE* I T{V,x)^c] 

An exploit for a vulnerability {V, c) is simply an input x e L-p^^, i-e., executing 
V on input x results in a trace that satisfies the vulnerability condition c. A vulner­
ability signature is a matching function MATCH which for an input x returns either 
EXPLOIT or BENIGN without running P . A perfect vulnerability signature satis­
fies the following property: 

, - f EXPLOIT when x e L-p c 
MATCH(cr) = < DCMTr-xT u d T 

^ ' [ BENIGN when x f L-p^c 

As we show in Section 7.4.2, the language L-p^c can be represented in many 
different ways ranging from Turing machines which are precise, i.e., accept exactly 
L-p^cy to regular expressions which may not be precise, i.e., have an error rate. 

Soundness and completeness for signatures.. We define completeness for a vul­
nerability signature MATCH to be Vi : a; £ L-p^c =»MATCH(a;) = EXPLOIT, i.e., 
MATCH accepts everything L-p^c does. Incomplete solutions will have false nega­
tives. We define soundness as Vx : a; ^ L-p^c => MATCH(a;) = BENIGN, i.e., MATCH 
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does not accept anything extra not in Lp,o. '̂  Unsound solutions will have false posi­
tives. A consequence of Rice's theorem [23] is that no signature representation other 
than a Turing machine can be both sound and complete, and therefore for other repre­
sentations we must pick one or the other. In our setting, we focus on soundness, i.e., 
we tolerate false negatives but not false positives. Vulnerability signature creation 
algorithms can easily be adapted to generate complete by unsound signatures [8]. 

Vulnerability Signature Representation Classes 

We explore the space of different language classes that can be used to represent 
L-p^c as a vulnerability signature. Which signature representation we pick determines 
the precision and matching efficiency. We investigate three concrete signature rep­
resentations which reflect the intrinsic trade-offs between accuracy and matching 
efficiency: Turing machine signatures, symbolic constraint signatures, and regular 
expression signatures. A Turing machine signature can be precise, i.e., no false pos­
itives or negatives. However, matching a Turing machine signature may take an un­
bounded amount of time because of loops and thus is not applicable in all scenar­
ios. Symbolic constraint signatures guarantee that matching will terminate because 
they have no loops, but must approximate certain constructs in the program such as 
looping and memory aliasing, which may lead to imprecision in the signature. Reg­
ular expression signatures are the other extreme point in the design space because 
matching is efficient but many elementary constructions such as counting must be 
approximated, and thus the least accurate of the three representations. 

"Hiring machine signatures. A Turing machine (TM) signature is a program T con­
sisting of those instructions which lead to the vulnerability point with the vulnerabil­
ity condition algorithm in-lined. Paths that do not lead to the vulnerability point will 
return BENIGN, while paths that lead to the vulnerability point and satisfy the vul­
nerability condition return EXPLOIT. ' TM signatures can be precise, e.g., a trivial 
TM signature with no error rate is emulating the full program. 

Symbolic constraint signatures. A symboUc constraint signature is a set of boolean 
formulas which approximate a Turing machine signature. Unlike Turing machine 
signatures which have loops, matching (evaluating) a symbolic constraint signature 
on an input x will always terminate because there are no loops. SymboUc constraint 
signatures only approximate constructs such as loops and memory updates statically. 
As a result, symboUc constraint signatures may not be as precise as the Turing ma­
chine signature. 

Regular expression signatures. Regular expressions are the least powerful signature 
representation of the three, and may have a considerable false positive rate in some 
circumstances. For example, a well-known limitation is regular expressions cannot 
count [23], and therefore cannot succinctly express conditions such as checking a 

Normally soundness is Va; : a; 6 S =?• a; e I/p.c- Here we are stating the equivalent 
contra-positive. 

^ A path in a program is a path in the program's control flow graph. 
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message has a proper checksum or even simple inequalities such as x[i] < x\j]. 
However, regular expression signatures are widely used in practice. 

Vulnerability Signature Generation 

At a high level, our algorithm for computing a vulnerability signature for program V, 
vulnerability condition c, a sample exploit x, and the corresponding instruction trace 
T is depicted in Figure 7.3. Our algorithm for computing vulnerability signatures is: 

1. Pre-process the program before any exploit is received by: 
a) Disassembling the program V. Disassemblers are available for all modem 

architectures and OS's. 
b) Converting the assembly into an intermediate representation (IR). The IR 

disambiguates any machine-level instructions. For example, an assembly 
statement add a, b may perform a + b but also set a hardware overflow 
flag. The IR captures both operations. 

2. Compute a chop with respect to the execution trace T of a sample exploit. The 
chop includes all paths to the vulnerability point including that taken by the 
sample exploit [24,48]. Intuitively, the chop contains all and only those program 
paths any exploit of the vulnerability may take. 

3. Compute the signature: 
a) Compute the Turing machine signature. Stop if this is the final representa­

tion. 
b) Compute the symbolic constraint signature from the TM signature. Stop if 

this is the final representation. 
c) Solve the regular expression signature from the symbolic constraint signa­

ture. 
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Fig. 7.3. A high level view of the steps to compute a vulnerability signature. 

At a high level, the resulting signature is provably correct since only input strings 
that can be proved to exploit the vulnerability are included, i.e., a TM signature 
by construction accepts an input iff the input would exploit the original program; 
the symbolic constraints are satisflable iff the TM signature would accept the in­
put; and the regular expression contains only those strings that satisfy the symbolic 
constraints. 

Turing Machine Signature Symbolic Constraint Regular 
S'S°^n^ Signatui 
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Vulnerability Signature Results 

We show in [8] that our automatically generated vulnerability signatures are of much 
higher quality than those generated with syntax pattern-extraction techniques. The 
higher quality is because given only a single exploit sample, our vulnerability sig­
nature creation algorithm will deduce properties of other unseen exploits. For ex­
ample, in the atphttpd webserver vulnerability the g e t HTTP request method is 
case-insensitive [47], and in the DNS TSIG vulnerability that there must be multiple 
DNS "questions" (which is a field in DNS protocol messages) present for any exploit 
to work [65]. 

7.5 Automatic Generation of Vulnerability-Specific Execution 
Filters 

In some situations input-based filters are not an appropriate solution. For some vul­
nerabilities, it is not possible to generate an input-based filter that is accurate, ef­
ficient, and of reasonable size. In addition, while one of the desirable properties 
of input-based filters is that they can be evaluated off the host {e.g., by a network 
intrusion detection system), this advantage is largely negated in cases where it is 
impossible to perform accurate filtering without knowledge of state that is on the 
vulnerable host, such as what encryption key is being used for a particular connec­
tion. On the other hand, various host-based approaches have been proposed which are 
more accurate, but have other drawbacks. For example, previous approaches have fo­
cused on: (1) Patching: patching a new vulnerability can be a time-consuming task— 
generating high quality patches often require source code, manual effort, and exten­
sive testing. Applying patches to an existing system also often requires extensive 
testing to ensure that the new patches do not lead to any undesirable side effects on 
the whole system. Patching is far too slow to respond effectively to a rapidly spread­
ing worm. (2) Binary-based full execution monitoring: many approaches have been 
proposed to add protection to a binary program. However, these previous approaches 
are either inaccurate and only defend against a small classes of attacks [4, 50,28,37] 
or require hardware modification or incur high performance overhead when used to 
protect the entire program execution [17, 43, 62, 13]. 

We propose a new approach for automatic defense: vulnerability-specific execu­
tion-based filtering (VSEF) [39]. At a high-level, VSEF filters out exploits based on 
the program's execution, as opposed to filtering based solely upon the input string. 
However, instead of instrumenting and monitoring the full execution, VSEF only 
monitors and instruments the part of program execution which is relevant to the 
specific vulnerability. VSEF therefore takes the best of both input-based filtering and 
full execution monitoring: it is much more accurate than input-based filtering and 
much more efficient than full execution monitoring. 

We also develop the first system for automatically creating a VSEF filter for a 
known vulnerability given only a program binary, and a sample input that exploits 
that vulnerability. Our VSEF Filter Generator automatically generates a VSEF filter 
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which encodes the information needed to detect future attacks against the vulnerabil­
ity. Using the VSEF filter, the vulnerable host can use our VSEF Binary Instrumen­
tation Engine to automatically add instrumentation to the vulnerable binary program 
to obtain a hardened binary program. The hardened program introduces very little 
overhead and for normal requests performs just as the original program. On the other 
hand, the hardened program detects and filters out attacks against the same vulner­
ability. Thus, VSEF protects vulnerable hosts from attacks and allow the vulnerable 
hosts to continue providing critical services. 

Using the execution trace of an exploit of a vulnerability, our VSEF automati­
cally generates a hardened program which can defend against further (polymorphic) 
exploits of the same vulnerability. VSEF achieves the following desirable properties: 
• Our VSEF is an extremely fast defense. In general, it takes a few milliseconds 

for our VSEF to generate the hardened program from an exploit execution trace. 
• Our VSEF filtering techniques provide a way of detecting exploits of a vulnera­

bility more accurately than input-based filters and more efficiently than full exe­
cution monitoring. 

• Our techniques do not require access to source code, and are thus applicable in 
realistic environments. 

• Our experiments show that the performance overhead of the hardened program 
is usually only a few percent. 

• Our approach is general, and could potentially be appUed to other faults such as 
integer overflow, divide-by-zero, etc. 

These properties make VSEF an attractive approach toward building an auto­
matic worm defense system that can react to extremely fast worms. 

7.6 Sting Self-healing Architecture and Experience 

We integrate the aforementioned new techniques with each-other and with existing 
techniques to form a new end-to-end self-healing architecture, called Sting [40], as a 
first step towards automatically defending against fast Internet-scale worm attacks. 

U D 

I Self-Harden | 

^=> 

V < C s e [ f - H a r d M ^ 

T Hardened 
1 candidate 

^- '^andboxe 1 ^ ^ Verified 
\ ^ eri ficali o j / 

Unverified 1 

candidate 

Sting Consumer 

_ ^ / R e f i n o \ 
^ Q a n d i d a t e / " 

( 
Install 

candidate 

Fig. 7.4. Sting distributed architecture 

Figure 7.4 illustrates Sting's distributed architecture. At a high level, the Sting 
self-healing architecture enables programs to efficiently and automatically (1) self-
monitor their own execution behavior to detect a large class of errors and exploit 
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attacks, (2) self-diagnose the root cause of an error or exploit attack, (3) self-harden 
to be resilient against further attacks, and (4) quickly self-recover to a safe state 
after a state corruption. Further, once a Sting host detects and diagnoses an error or 
attack, it generates a Self-Verifiable antibody Alert (SVAA), to be distributed to other 
vulnerable hosts, who verify the correctness of the antibodyand use it to self-harden 
against attacks against that vulnerability. 

Our Sting self-healing architecture achieves the following properties: Our tech­
niques are accurate, apply to a large class of vulnerabilities and attacks, and enable 
critical applications and services to continue providing high-quality services even 
under new attacks on previously unknown vulnerabilities. Moreover, our techniques 
work on black-box applications and commodity software since we do not require 
access to source code. Furthermore, such a system integration allows us to achieve 
a set of salient new features that were not possible in previous systems: (1) By in­
tegrating checkpointing and system call logging with diagnosis-directed replay, we 
can quickly recover a compromised program to a safe and consistent state for a large 
class of applications. In fact, our self-recovery procedure does not require program 
restart for a large class of applications, and our experiments demonstrate that our 
self-recovery can be orders of magnitude faster than program restart. (2) By inte­
grating faithful and zero side-effect system replay with in-depth diagnosis, we can 
seamlessly combine light-weight detectors and heavy-weight diagnosis to obtain the 
benefit of both: the system is efficient due to the low overhead of the light-weight 
detectors; and the system is able to faithfully replay the attack with no side effect 
for in-depth diagnosis once the light-weight detectors have detected an attack, which 
are important properties lacking in previous work [12, 2]. Such seamless integra­
tion is also particularly important for retro-active random sampling, where randomly 
selected requests can be later examined by in-depth diagnosis without the attacker 
being able to tell which request has been sampled. This is a property that previous 
approaches such as [2] do not guarantee. 

Moreover, our self-healing approach not only allows a computer program to self-
heal, but also allows a community of nodes that run the same program to share au­
tomatically generated antibodies quickly and effectively. In particular, once a node 
self-heals, it generates an Self-Verifiable Antibody Alerts containing an antibodythat 
other nodes can use to self-harden before being attacked. The antibodyis a response 
generated in reaction to a new exploit and can be used to prevent future exploits of 
the underlying vulnerability. Moreover, the disseminated alerts containing the anti-
bodyare self-verifiable, so recipients of alerts need not trust each other. We call this 
type of defense reactive anti-body defense, similar to Vigilante [12]. 

Our evaluation demonstrates that our system has an extremely fast response time 
to an attack: it takes under one second to diagnose, recover from, and harden against 
a new attack. And it takes about one second to generate and verify a Self-Verifiable 
Antibody Alerts. Furthermore, our evaluation demonstrates that with reasonably low 
deployment ratio of nodes creating antibodies (Sting producers), our approach will 
protect most of the vulnerable nodes which can receive and deploy antibodies (Sting 
consumers) from very fast worm attacks such as the Slammer worm attack. 



162 David Brumley, James Newsome, and Dawn Song 

Finally, despite earlier work showing that proactive protection mechanisms such 
as address randomization are not effective as defense mechanisms [52], we show that 
reactive anti-body defense alone (as proposed in [12]) is insufficient to defend against 
extremely fast worms such as hit-list worms. By combining proactive protection and 
reactive anti-body defense, we demonstrate for the first time that it is possible to 
defend against even hit-list worms. We demonstrate that if the Sting consumers also 
deploy address space randomization techniques, then our system will also be able to 
protect most of the Sting consumers from extremely fast worm attacks such as hit-
list worms. To the best of our knowledge, we are the first to demonstrate a practical 
end-to-end approach which can defend against hit-list worms. 

By developing and carefully uniting a suite of new techniques, we design and 
build the first end-to-end system that has reasonable performance overhead, yet can 
respond to worm attacks quickly and accurately, and enable safe self-recovery faster 
than program restart. The system also achieves properties not possible in previous 
work as described above. Furthermore, by proposing a hybrid defense strategy, a 
combination of reactive anti-body defense and proactive protection, we show for the 
first time that it is possible to defend against hit-list worms. 

7.7 Evaluation 

7.7.1 Reactive Anti-body Defense Evaluation 

In this section, we evaluate the effectiveness of our reactive anti-body defense against 
fast worm outbreaks, using the Slammer Worm and a hit-list worm as concrete ex­
amples. In particular, given a worm's contact rate /3 (the number of vulnerable hosts 
an infected host contacts within a unit of time), the effectiveness of our reactive anti­
body defense depends on two factors: the deployment ratio of Sting producers a (the 
fraction of the vulnerable hosts which are Sting producers) and the response time r 
(the time it takes from a producer receiving an infection attempt to all the vulnerable 
hosts receiving the SVAA generated by the producer). We illustrate below the total 
infection ratio (the fraction of vulnerable hosts infected throughout the worm break) 
under our collaborative community defense vs. a given different j3 and r. 

Defense against Slammer worm. Figure 5(a) shows the overall infection ratio vs. 
the producer deployment ratio a for a Slammer worm outbreak (where /? = 0.1 [33]) 
with different response time r. For example, the figure indicates that given a = 
0.0001 and r = 5 seconds, the overall infection ratio is only 15%; and for a = 0.001 
and r = 20 seconds, the overall infection ratio is only about 5%. This analysis shows 
that our reactive anti-body defense can be very effective against fast worms such as 
Slammer. Next we investigate the effectiveness of this defense against hit-list worms. 

Defense against Hit-list worm. Figure 6(c) shows the result of a hit-list worm for 
P = 1000 and /? = 4000, and n = 100,000*". From the figure we see that (ignoring 

" This is basically the same parameters as the Slammer worm, except that instead of a random 
scanning worm, the worm is a hit-list. 
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(c) Hybrid Defense against Hit-list 
(/? = 4000) 

Fig. 7.5. Effectiveness of Community Defense 

network delay) a hit-list worm can infect the entire vulnerable population (Sting 
consumers) in a fraction of a second. This is similar to earlier estimates [32, 61] 
which shows that a hit-list worm can propagate through the entire Internet within a 
fraction of a second. Thus, our reactive anti-body defense alone will be insufficient 
to defend against such fast worms because the anti-bodies will not be generated and 
disseminated fast enough to protect the Sting consumers. 

7.7.2 Proactive Protection against Hit-list Worm 

Another defense strategy is a proactive one instead reactive. For example, for a large 
class of attacks, address space randomization can provide proactive protection, al­
beit a probabilistic one. The attack, with high probability, will crash the program 
instead of successfully compromise it. This probabilistic protection is an instant de­
fense, which does not need to wait for the anti-body to be generated and distributed. 
However, because the protection is only probabilistic, repeated or brute-force attacks 
may succeed. Figure 6(a) and 6(b) show the effectiveness of such proactive pro­
tection against hit-list worms when a certain fraction a of the total vulnerable hosts 
deploy the proactive protection mechanism, where p = 1/2^^ (the probability of an 
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(a) Proactive Protection against Hit-list 
(/3 = 1000) 

(b) Proactive Protection against Hit-
list (/3 = 4000) 

(c) Reactive Anti-body Defense 
against Hit-list 

Fig. 7.6. Defense Effectiveness Evaluation 

attack trial succeeding), and (5 = 1000 and (3 = 4000 respectively. As shown in the 
figure, for (5 = 1000, when a = 0.5 50% of the vulnerable hosts deploy the proactive 
protection defense, it will take about 10 seconds for the worm to infect 90% of the 
vulnerable population; whereas if 100% of the vulnerable hosts deploy the proactive 
protection defense, it only slows down the worm to about 45 seconds to infect 90% 
of the vulnerable population. When /? = 4000, the worm propagates even faster as 
shown in Figure 6(b). 

Thus, proactive protection alone can slow down the worm propagation to a cer­
tain extent, but is clearly not a completely effective defense. 

7.7.3 Hybrid Defense against Hit-list Worm: Combining Proactive Protection 
and Reactive Anti-body Defense 

As explained above, our reactive anti-body defense alone is not fast enough to de­
fend against hit-list worms. Thus, we propose a hybrid defense mechanism where 
the Sting consumers deploy proactive protection mechanisms such as address space 
randomization in addition to receiving SVAA using the reactive anti-body defense. 
In both cases, we assume the probability that an infection attempt succeeds against 
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the proactive protection mechanism (e.g., guessing the correct program internal state 
with address space randomization) is again 2~^^. 

Figure 5(b) and Figure 5(c) show the effectiveness of this hybrid defense ap­
proach, i.e., the overall infection ratio vs. the producer deployment ratio a, with dif­
ferent response time r, under two different Hit-list worm outbreaks (where /? = 1000 
and (3 = 4000 respectively). For example, the figures indicate that given a = 0.0001 
and r = 10 seconds, the overall infection ratio is only 5%; for /? = 1000 and 40% 
for /3 = 4000; and for a = 0.0001 and r = 5 seconds, the overall infection ratio is 
negligible (less than 1%) for both cases. 

Our simulations show a total end-to-end time (self-detection, self-diagnosis, dis­
semination, and self-hardening) of about 5 seconds will stop a hit-list worm. Note 
that our experiments show that self-detection and self-hardening are almost instanta­
neous, and the total time it takes for a producer to self-diagnose to create a SVAA and 
for a consumer to verify a SVAA is under 2 seconds. Vigilante shows that the dis­
semination of an alert could take less than 3 seconds [12]. Thus our system achieves 
an r = 2 -F 3 = 5, demonstrating that our system is the first to effectively defend 
against even hit-list worms. 

7.8 Related Work 

Antibody Generation Systems. Vigilante has independently proposed a distributed 
architecture, where dynamic taint analysis is used to detect new attacks and automat­
ically generate verifiable antibodies [12]. It was a very nice piece of work. There are 
several important technical differences between Vigilante and Sting. Unlike Sting, 
Vigilante does not provide self-recovery, and also does not allow the seamless com­
bination of light-weight detectors and heavy-weight detectors. Vigilante automati­
cally generates a specific type of input-based filters, where Sting automatically pro­
duces a suite of different antibodies including a wider range of input-based filters 
and execution-based filters which could provide higher accuracy. 

Sidiroglou et al. have proposed a method for automatically generating patches 
when source code is available [53, 54]. They have also proposed application com­
munities [55], in which entities running the same software share the burden of mon­
itoring for flaws and attacks, and notify the rest of the community when such are 
detected. 

Anagnostakis et al. propose shadow honeypots to enable a suspicious request 
to be examined by a more expensive detector [2]. However, their approach requires 
source code access and manual identification of beginning and end of transactions 
and thus does not work on commodity software. In addition, because they only re­
verse memory states but do not perform system call logging and replay, their ap­
proach can cause side effects. Moreover, because the suspicious request is handled 
directly by the more expensive detector instead of the background analysis as in our 
approach, the attacker could potentially detect when its attack request is being mon­
itored by a more expensive detector and thus end the attack prematurely and retry 
later, whereas our retro-active random sampling addresses this issue. 
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Liang and Sekar [31] and Xu et. al. [69] independently propose different ap­
proaches to use address space randomization as a protection mechanism and auto­
matically generate a signature by analyzing the corrupted memory state after a crash. 

Recovery. Our diagnosis-directed self-recovery provides a different point in the de­
sign space compared to previous work. For example, Rinard et. al. has proposed an 
interesting line of research, failure-oblivious computing in which invalid memory op­
erations are discarded and manufactured values are returned [49]. Instead of rolling 
back execution to a known safe point, Sidiroglou et al have explored aborting the 
active function when an error is detected [56]. While interesting, these approaches 
do not provide semantic correctness, and is thus unsuitable for automatic deploy­
ment on critical services. DIRA is another approach that modifies the source code so 
that overwrites of control data structures can be rolled back and undone [58]. All of 
these approaches require source code access, and thus cannot be used on commodity 
software. 

There is a considerable body of research on rollback schemes: see [46] for a 
more detailed discussion. We choose to use FlashBack [59], a kernel-level approach 
for transactional rollback that does not require access to source code and determin-
istically replays execution. Another approach is to use virtual machines (VM) for 
rollback [19, 26]. This approach is more heavy-weight but has advantages such as it 
is secure against kernel attacks. We plan to explore this direction in the future. 

Rx proposes an interesting new approach of using environmental changes to de­
fend against failures, using execution rollback and environment perturbation [46]. 
However, their approach does not support detailed self-diagnosis and self-hardening, 
and simply retries execution with different environmental changes until the failure is 
successfully avoided. 

Dynamic Taint Analysis. We use TaintCheck [43, 44] to perform dynamic taint 
analysis on the binary for self-diagnosis. Others have implemented similar tools [12] 
which can also be used. Hardware-assisted taint analysis has also been proposed [62, 
17]. Unfortunately, such hardware does not yet exist, though we can take advantage 
of any developments in this area. 

7.9 Conclusion 

We presented a self-healing architecture for software systems where programs (1) 
self-monitor and detect exploits, (2) self-diagnose the root cause of the vulnerabihty, 
(3) self-harden against future attacks, and (4) self-recover from attacks. We develop 
the first architecture, called Sting, that realizes this four step self-healing architecture 
for commodity software. Moreover, our approach allows a community to share an­
tibodies through Self-Verifiable Antibody Alerts, which eliminate the need for trust 
among nodes. We validate our design through (1) experiments which shows our sys­
tem can react quickly and efficiently and (2) deployment models which show Sting 
can defend against hit-list worms. To the best of our knowledge, we are the first 
to design and develop a complete architecture capable of defending against hit-Hst 
worms. 
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We are one of the first to realize a self-healing architecture that protects software 
with light-weight techniques, and enables more sophisticated techniques to perform 
accurate post-analysis. We are also the first to provide semantically correct recovery 
of a process after an attack without access to its source code, and our experiments 
demonstrate that our self-recovery can be orders of magnitude faster than program 
restart which significantly reduces the down time of critical services under continu­
ous attacks. 
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Summary. The continued growth and diversification of the Internet has been accompanied 
by an increasing prevalence of attacks and intrusions [40]. It can be argued, however, that a 
significant change in motivation for malicious activity has taken place over the past several 
years: from vandalism and recognition in the hacker coimnunity, to attacks and intrusions for 
financial gain. This shift has been marked by a growing sophistication in the tools and methods 
used to conduct attacks, thereby escalating the network security arms race. 

Our thesis is that the reactive methods for network security that are predominant today 
are ultimately insufficient and that more proactive methods are required. One such approach 
is to develop a foundational understanding of the mechanisms employed by malicious soft­
ware (malware) which is often readily available in source form on the Internet. While it is 
well known that large IT security companies maintain detailed databases of this informa­
tion, these are not openly available and we are not aware of any such open repository. In 
this chapter we begin the process of codifying the capabilities of malware by dissecting four 
widely-used Internet Relay Chat (IRC) botnet codebases. Each codebase is classitied along 
seven key dimensions including botnet control mechanisms, host control mechanisms, prop­
agation mechanisms, exploits, delivery mechanisms, obfuscation and deception mechanisms. 
Our study reveals the complexity of botnet software, and we discusses implications for defense 
strategies based on our analysis. 

8.1 Introduction 

Software for malicious attacks and intrusions (malware) has evolved a great deal over 
the past several years. This evolution is driven primarily by the desire of the authors 
(black hats) to elude improvements in network defense systems and to expand and 
enhance malware capabilities. The evolution of malcode can be seen both in terms 
of variants of existing tools (e.g., there are over 580 variants of the Agobot malware 
since it's first release in 2002 [33]) and in the relatively frequent emergence of com­
pletely new codebases (e.g., there were six major Internet worm families introduced 
in 2004: Netsky, Bagle, MyDoom, Sassser, Korgo and Witty as well as the Cabir 
virus - the first for cell phones [11]). 

While worm outbreaks and DoS attacks have been widely reported in the popular 
press and evaluated extensively by the network and security research communities 
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{e.g., [25, 23, 24, 9]), perhaps the most serious threat to the Internet today are col­
lections of compromised systems that can be controlled by a single person. These 
botnets have actually been in existence for quite some time and trace their roots to 
the Eggdrop bot created by Jeff Fisher for benign network management in 1993. 
High level overviews of malicious botnet history and their basic functionality can 
be found in [29, 4]. Over the years botnet capability has increased substantially to 
the point of blurring the lines between traditional categories of malware. There have 
been numerous reports of botnets of over one hundred thousand systems (although 
the average size appears to be dropping) and the total number of estimated systems 
used in botnets today is in the millions [13, 19, 10]. 

A plausible reason for the rise of malicious botnets is that the basic motivations 
for malicious activity are shifting. In the past, the primary motivations for attacks 
appear to have been simple (but potent) "script kiddie" vandalism and demonstra­
tions of programming prowess in the black hat community. However, there are an 
increasing number of reports of for-profit malicious activity including identity theft 
and extortion that may be backed by organized crime (e.g., [28, 35, 37]). This trend 
toward an economic motivation is likely to catalyze development of new capabilities 
in botnet code making the task of securing networks against this threat much more 
difficult. 

The thesis for our work is that effective network security in the future will be 
based on detailed understanding of the mechanisms used by malware. While this 
high level statement does not represent a significant departure from what has been the 
modus operandi of the IT security industry for some time, unfortunately, data sharing 
between industry and research to date has not been common. We argue that greater 
openness and more detailed evaluations of the mechanisms of malware are required 
across the network security research community. In some respects this broadens the 
Internet Center for Disease Control vision outlined by Staniford et al. in [34]. We 
advocate analysis that includes both static inspection of malware source code when 
it is available and dynamic profiling of malware executables in a controlled environ­
ment. An argument for the basic feasibility of this approach is that a good deal of 
malware is, in fact, available on line {e.g., [22]) and there are emerging laboratory 
environments such as WAIL [3] and DETER [8] that enable safe evaluation of exe­
cutables. It is important to emphasize that these analyses are meant to complement 
the ongoing empirical measurement-based studies (e.g., [36, 26, 2]) which provide 
important insight on how malware behaves in the wild, and are critical in identifying 
new instances of outbreaks and attacks. 

This chapter presents a first step in the process of codification of malware mech­
anisms. In particular, we present an initial breakdown of four of the major botnet 
source codebases including Agobot, SDBot, SpyBot and GT Bot. We conduct this 
analysis by creating a taxonomy of seven key mechanisms and then describe the 
associated capabilities for specific instances of each bot family. Our taxonomy em­
phasizes botnet architecture, control mechanisms, and methods for propagation and 
attack. Our objectives are to highlight the richness and diversity of each codebase, to 
identify commonalities between codebases and to consider how knowledge of these 
mechanisms can lead to development of more effective defense mechanisms. 
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A summary of our findings and their implications are as follows: 

• Finding: The overall architecture and implementation of botnets is complex, and 
is evolving toward the use of common software engineering techniques such as 
modularity. Implication: The regularization of botnet architecture provides in­
sight on potential extensibility and could help to facilitate systematic evaluation 
of botnet code in the future. 

• Finding: The predominant remote control mechanism for botnets remains Inter­
net Relay Chat (IRC) and in general includes a rich set of commands enabling a 
wide range of use. Implication: Monitors of botnet activity on IRC channels and 
disruption of specific channels on IRC servers should continue to be an effective 
defensive strategy for the time being. 

• Finding: The host control mechanisms used for harvesting sensitive informa­
tion from host systems are ingenious and enable data from passwords to mailing 
lists to credit card numbers to be gathered. Implication: This is one of the most 
serious results of our study and suggests design objectives for future operating 
systems and applications that deal with sensitive data. 

• Finding: There is a wide diversity of exploits for infecting target systems written 
into botnet codebases including many of those used by worms that target well 
known Microsoft vulnerabilities. Implication: This is yet additional evidence 
that keeping OS patches up to date is essential and also informs requirements for 
network intrusion detection and prevention systems. 

• Finding: All botnets include denial of service (DoS) attack capability. Implica­
tion: The specific DoS mechanisms in botnets can inform designs for future DoS 
defense architectures. 

• Finding: Shell encoding and packing mechanisms that can enable attacks to cir­
cumvent defensive systems are common. However, Agobot is the only botnet 
codebase that includes support for (limited) polymorphism. Implication: A sig­
nificant focus on methods for detecting polymorphic attacks may not be war­
ranted at this time but encodings will continue to present a challenge for defen­
sive systems. 

• Finding: All botnets include a variety of sophisticated mechanisms for avoiding 
detection (e.g., by anti-virus software) once installed on a host system. Impli­
cation: Development of methods for detecting and disinfecting compromised 
systems will need to keep pace. 

• Finding: There are at present only a limited set of propagation mechanisms avail­
able in botnets with Agobot showing the widest variety. Simple horizontal and 
vertical scanning are the most common mechanism. Implication: The specific 
propagation methods used in these botnets can form the basis for modeling and 
simulating botnet propagation in research studies. 

The remainder of this chapter is structured as follows. While there have been 
relatively few studies of botnets in the research literature to date, we discuss other 
related work in Section 8.2. In Section 8.3 we present our taxonomy of botnet code 
and the results of evaluating four instances of botnet source code. In Section 8.4 we 
summarize our work and comment on our next steps. 
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8.2 Related Work 

Empirical studies have been one of the most important sources of information on 
malicious activity for some time. Moore et at. characterized the Code Red I/II worm 
outbreaks in [25] and the Sapphire/Slammer worm outbreak [23] providing key de­
tails on propagation methods and infection rates. Recently, Kumar et al. show how a 
broad range of details of the Witty worm outbreak can be inferred using information 
about that malware's random number generator [20]. In [40], firewall and intrusion 
detection system logs collected from sites distributed throughout the Internet are 
used to characterize global attack activity. Several recent studies have demonstrated 
the utility of unused address space monitors (honeynets) [15] that include active re­
sponse capability as a means for gathering details on network attacks [2, 39, 26]. 
Honeynet measurement studies have also provided valuable information on botnet 
activity [39, 12]. Cooke et al. discuss the potential of correlating data from multi­
ple sources as a means for detecting the botnet command and control traffic in [5]. 
Finally, the virtual honeyfarm capabilities described in [38] could prove to be very 
useful for botnet tracking in the future. 

As we advocated in the prior section, another way to study malware is to gather 
and then decompose instances of both source code (many instances of malware 
source code can be found by searching the Web and Usenet news groups) and ex­
ecutable code (executables can be gathered by enhancing honeynet environments). 
There are standard tools available for reverse engineering executables including dis­
assemblers, debuggers and system monitors such as [17, 30, 27]. Despite the capa­
bilities of these tools, the complexity and deception techniques of certain instances 
of malware executables often complicate this analysis [16]. Likewise, there are many 
tools available for static analysis of source code such as [7, 6]. While these tools are 
often focused on the problems of identifying run time errors and security vulnera­
bilities, the general information they provide such as parse trees, symbol tables and 
call graphs could be valuable in our malware analysis. While we present a simple 
taxonomy of malware mechanisms in this chapter, we look forward to using both 
static and dynamic analysis tools for in depth study in the future. 

8.3 Evaluation 

Our process of codification of malware begins with a comparison of four botnet 
families: Agobot, SDBot, SpyBot and GT Hot. These were selected based on the 
age of their first known instances, the diversity in their design and capabilities, and 
reports in the popular press, commercial and research communities identifying these 
as the most commonly used bot families. While each of these families have many 
versions and variants, for this study we evaluate one version of source code from 
each: Agotbot (4.0 pre-release), SDBot (05b) and SpyBot (1.4). GT Bot variants 
are commonly Usted with extensions after the word "Bot" e.g., "GT Bot Foo" - we 
evaluated the "GT Bot with DCOM" version of this code. 
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The attributes we consider in our analysis include: (i) architecture, (ii) botnet 
control mechanisms, (in) host control mechanisms, (iv) propagation mechanisms, 
(v) target exploits and attack mechanisms, (vi) malware delivery mechanisms, (v) 
obfuscation methods, and (vii) deception strategies. This taxonomy was developed 
based on our goal of improving both host and network-based defensive systems by 
exploiting knowledge of basic features of botnet systems. 

8.3.1 Architecture 

Architecture refers to the design and implementation characteristics of bot code. Ar­
chitecture is readily analyzed from source code and includes assessment of the over­
all organization, data design, interface design and component design of the system. 
An important additional objective in this analysis is to assess the potential long term 
viability of each bot family by considering how each codebase might be extended to 
include new functionality. 

• Agobot: The earliest references to Agobot that we could find were in the Oc­
tober, 2002 time frame [31]. There are now many hundreds of variants of this 
code which is also commonly referred to as Phatbot. It is arguably the most so­
phisticated and best-written source code among the four famiUes we evaluated. 
A typical source bundle is around 20,000 lines of C/C++. The bot consists of 
several high level components including, (i) an IRC-based command and control 
mechanism, (ii) a large collection of target exploits, (iii) the ability to launch dif­
ferent kinds of DoS attacks, (iv) modules that support shell encodings and lim­
ited polymorphic obfuscations, (v) the ability to harvest the local host for Paypal 
passwords, AOL keys and other sensitive information either through traffic sniff­
ing, key logging or searching registry entries, (vi) mechanisms to defend and 
fortify compromised systems either through closing back doors, patching vulner­
abilities or disabling access to anti-virus sites, and (vii) mechanisms to frustrate 
disassembly by well known tools such as Softlce, Ollydbg and others. Agobot has 
a monolithic architecture, demonstrates creativity in design, and adheres to struc­
tured design and software engineering principles through its modularity, standard 
data structures and code documentation. 

• SDBot: The earliest references to SDBot that we could find were in the Octo­
ber, 2002 time frame [32]. There are now hundreds of variants of this code that 
provide a wide range of capabilities. In contrast with Agobot, SDBot is a fairly 
simple, more compact instance of bot code written in slightly over 2,000 lines 
of C. The main source tree does not include any overtly malicious code modules 
such as target exploits or DoS capabilities, and is published under GPL. SDBot 
primarily provides a utilitarian IRC-based command and control system. How­
ever, the code is obviously easy to extend, and a large number of patches are 
readily available that provide more sophisticated malicious capabilities such as 
scanning, DoS attacks, sniffers, information harvesting routines and encryption 
routines. This organization facilitates generation of custom botnets with special­
ized capabilities that suit a specific botmaster. We speculate that an important 
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motivation for this patch-style dissemination strategy is diffusion of accountabil­
ity. We easily found around 80 patches for SDBot ^ on the Web, not all of which 
were malicious. 

• SpyBot: The earliest references to SpyBot that we could find were in the April, 
2003 time frame [21]. Like Agobot and SDBot there are now hundreds of vari­
ants of SpyBot. The codebase is relatively compact, written in under 3,000 lines 
of C. Much of SpyBot's command and control engine appears to be shared with 
SDBot, and it is likely, in fact, that it evolved from SDBot. However, unlike 
SDBot, there is no expUcit attempt to diffuse accountability or to hide the mali­
cious intent of this codebase. The version of SpyBot that we evaluated includes 
NetBIOS/Kuang/Netdevil/KaZaa exploits, scanning capability, and modules for 
launching flooding attacks. Overall, the codebase for Spybot is efficient, but does 
not exhibit the modularity or breadth of capabilities of Agobot. 

• GT Dot: The earliest references to GT Bot that we could find were in the April, 
1998 time frame [1]. At present there are well over a hundred variants of GT 
(Global Threat) Bot which is also referred to as Aristotles. GT Bot's design is 
quite simple, providing a limited set of functions based on the scripting capabil­
ities of mIRC which is a widely used shareware IRC client for Windows. mIRC 
provides functionality for writing event handlers that responds to commands re­
ceived by remote nodes. GT Bot also includes the Hide Window program which 
keeps the bot hidden on the local system. While this bot has proved easy to mod­
ify, there is nothing that suggests it was designed with extensibility in mind. GT 
Bot capabilities including port scanning, DoS attacks, and exploits for RPC and 
NetBIOS services. GT Bot scripts are commonly stored in a file called mirc.ini 
on compromised local hosts. However GT Bot is often packaged with its own 
version of the mIRC.exe that has been hex-edited to include other configuration 
files. Other useful pieces of software that are often packaged with GT Bot in­
clude BNC (pronounced "bounce") which is a proxy system that allows users to 
bounce through shells to a IRC server providing anonymity and DoS protection, 
and psexec.exe (Syslntemals) which is a utifity that facilitates remote process 
execution. Based on the limited capabilities in GT Bot, it appears that differ­
ent versions have been generated for specific malicious intent, instead of general 
enhancement of the code to provide a broad set of capabilities. As the name sug­
gests, the "with DCOM" version of GT Bot that we evaluated includes DCOM 
exploit capabilities. 

Implications: While bot codebases vary in size, structure, complexity, and imple­
mentation approach, there appears to be a convergence in the set of functions that are 
available (this will be further highlighted in subsequent sections of this report). This 
suggests the possibility that defensive systems may be eventually be effective across 
bot famiUes. Further, as demonstrated by the fact that there are so many variants in 
each codebase, all of the bot families are at least somewhat extensible. However, we 
project that over the next several years, due to economic motivations, capabilities 

^ These are not UNIX-style patches, rather they are simply well-commented source code 
fragments that can be copied and inserted before recompilation. 
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and open availability, the Agobot codebase is likely to become dominant. It's mod­
ular design makes it easy to extend, and we anticipate future enhancements such as 
improved command and control systems (e.g.., peer-to-peer) and additional target 
exploits. While an open-source-like approach to Agobot's development is somewhat 
daunting, it's open availability means that it can be examined for elements which can 
be exploited by defensive systems. 

8.3.2 Botnet Control Mechanisms 

Botnet control refers to the command language and control protocols used to operate 
botnets remotely after target systems have been compromised. The command and 
control mechanisms for the bots that we evaluated are all based on IRC. Thus, an 
understanding of that system {e.g., see IETF RFC #1459 which defines IRC) will help 
to make sense out of the botnet commands detailed in this section. In general, there 
is a broad range of commands that are available. These include directing botnets to 
deny service, send spam, phish, forward sensitive information about hosts, and look 
for new systems to add to the botnet. 

The most important reason for understanding the details of the communication 
mechanisms is that their disruption can render a botnet useless. For example, by 
sniffing for specific commands in IRC traffic, network operators can identify com­
promised systems, and IRC server operators can shutdown channels that are used 
by botnets (this is commonly done today). Additionally, knowledge of these mecha­
nisms can be used in development of large botnet monitors {e.g., via active honeynet 
systems), and it also facilitates the process of detecting new variants. While con­
trol mechanisms occasionally change between versions, there is strong commonality 
within each family we analyzed. This bodes well for continued focus on these mech­
anisms when designing network defenses against botnets. 

• Agobot: The command and control system implemented in Agobot is a deriva­
tive of IRC. The protocol used by compromised systems to establish connec­
tions to control channels is standard IRC. The command language consists of 
both standard IRC commands and specific commands developed for this bot. De­
tails of the command language are summarized in Table 8.1. The bot command 
set includes directives that request the bot to perform a specific function e.g., 
b o t . open which opens a specific file on the host. The control variables are used 
in conjunction with the c v a r . s e t command to turn on/off features or other­
wise manipulate fields that affect modes of operation e.g. ddos-max-threads 
which directs the bot to SYN flood a specified host using a maximum number of 
threads. 

• SDBot: The command language implemented in SDBot is essentially a light­
weight version of IRC. Figure 8.1 illustrates the state transition sequence of a 
compromised host interacting with an IRC server. The bot begins by establishing 
a connection to the IRC server through the following steps: (i) send NICK (name) 
and USER (name) to login to the server, {ii) if a PING is received, respond with 
a PONG, {in) when connected to the server {i.e., return code 001 or 005), send 
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Table 8.1. Partial listing of the Agobot command and control language. The "variables" are passed as parameters 
to the c v a r . s e t set command. 

Variable Description 
bot_ftrans_port Set hot - file transfer port 
bot-ftrans-port-ftp Set bot - file transfer port for FTP 
si^chanpass IRC server information - channel password 
si_mainchan IRC server information - main channel 
si-nickprefix IRC server information - nickname prefix 
si-port IRC server information - server port 
si-server IRC server information - server address 
si_servpass IRC server information - server password 
si_usessl IRC server information - use SSL ? 
si-nick IRC server information - nickname 
bot_version Bot - version 
bot-filename Bot - runtime filename 
botJd Bot - current ID 
bot_prefix Bot - command prefix 
bot-timeo Bot - timeout for receiving {in milliseconds) 
bot-seclogin Bot - enable login only by channel messages 
bot-compnick Bot - use the computer name as a nickname 
bot-randnick Bot ~ random nicknames of letters and numbers 
bot-meltserver Bot - melt the original server file 
bot-topiccmd Bot - execute topic commands 
do-Speedtest Bot - do speed test on startup 
do_avkill Bot - enable anti-virus kill 
do_steallh Bot - enable stealth operation 
as-valname Autostart - value name 
as-enabled Autostart - enabled 
as-service Autostart - start as service 
as^service_name Autostart - short service name 
scan-maxthreads Scanner - maximum number of threads 
scan_maxsockets Scanner - Maximum number of sockets 
ddos-maxthreads DDoS - maximum number of threads 
redir-maxthreads Redirect - maximum number of threads 
identd-enabled IdentD - enable the server 
cdkey-windows Return windows product keys on cdkey.get 
scaninfo-chan Scanner - output channel 
scaninfo Jevel Info level 1 (less) - (3) more 
spam^aoLchannel AOL spam - channel name 
spam-aoLenabled AOL spam - enabled ? 
sniffer-enabled Sniffer - enabled ? 
sniffer-channel Sniffer - output channel 
vuln_channel Vulnerability daemon sniffer channel 
inst-polymorph Installer - polymorphoic on install ? 

Command Description 
bot.about Displays information (e.g., version) about the bot code 
bot.die Terminates the bot 
bot.dns Resolves IP/hostname via DNS 
bot.execute Makes the bot execute a specific .exe 
botJd Displays the ID of the current bot code 
bot.nick Changes the nickname of the bot 
bot.open Opens a specified file 
bot.remove Removes the bot from the host 
bot.removeallbut Removes the bot if ID does not match 
bot.mdnick Makes the bot generate a new random nickname 
bot.status Echo bot status information 
bot.sysinfo Echo the bot's system information 
bot.longuptime If uptime > 7 days then bot will respond 
bothighspeed If speed > 5000 then bot will respond 
bot.quit Quits the bot 
botflushdns Flushes the bot's DNS cache 
bot.secure Delete specified shares and disable DCOM 
bot.unsecure Enable specified shares and enables DCOM 
bot.command Executes a specified command with systemQ 
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Fig. 8.1. Typical interaction between an SDBot and IRC server. 

a JOIN message followed by a USERHOST request to obtain the hostname, (iv) 
wait for a 302 response that indicates a connection is established, (v) listen and 
react to commands sent by the master which can include the following: 
1. KICK: the bot rejoins the channel if it is kicked off. Otherwise the bot resets 

the master if the master is kicked. 
2. NICK: if master's nickname is replaced, then it is updated on the bot. 
3. PART (or QUIT): resets the master if the master parts or quits. 
4. 353: return code that indicates that the bot has successfully joined the IRC 

channel. 

The bot then expects all other commands will be sent as part of the PRIVMSG, 
NOTICE or TOPIC IRC messages. The commands available in SDBot are listed 
in Table 8.2. Additional features supported by SDBot but absent from Agobot 
include IRC cloning and spying. Cloning is when a bot connects to an IRC chan­
nel multiple times. This can be used to deny service on a particular IRC server. 
Spying is simply the act of logging activity on a specified IRC channel. 
SpyBot: The command language implemented in SpyBot is quite simple and es­
sentially represents a subset of the SDBot command language. The commands 
available in SpyBot are listed in Table 8.3. The IRC connection set up proto­
col for SpyBot is the same as SDBot, and the mechanisms to pass and execute 
commands on bots are also identical. 
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Table 8.2. Partial listing of the SDBot command language. These commands are passed to hots via the PRIVMSG, 
NOTICE or TOPIC IRC commands. 

Command Description 
about 
action <channel/user>, <text> 
addalias <aUas, command> 
aliases 
cycle<N> <channel> 
die 
disconnect 
id 
join <channel> <key> 
log 
nick <newnick> 
part 
prefix 
quit 
raw <text> 
reconnect 
repeat <numtimes> <command> 
mdnick 
server <servername> 
status 

Displays information about the bot code 
Perform specified action on the channel 
Add an alias 
Return a current list of aliases 
Leave channel and return after N seconds 
Kill all threads, close IRC connection and stop running 
Disconnect from channel and reconnect in 30 minutes 
Return the bot ID 
Join specified channel with specified key 
Return a log of connections, logins and time stamps 
Changes hot's nickname 
Part the specified channel 
Temporary change to bot's IP prefix 
Quit the channel, kill threads and close the bot 
Send the following text to server 
Disconnect and reconnect to receive new nickname and ID 
Act as if command was received numtimes 
Change to random nickname 
Temporarily changes bot's IRC server 
Echo with version number and bot's uptime 

Clones and Spies 
clone <server><port><channel> 
CJTidnick <threadnum> 
c_raw <threadnum> <text> 
c-quit <threadnum> 
cjiick <threadnum> <nick> 
cprivmsg <threadnum> <user> <text> 
C-part <threadnum> <channel> 
c_mode <threadnum> <channel> <mode> 
c_join <threadnum> <channel> 
c_action <threadnum> <channel> <text> 
spy <nick> <server> <port> <channel> 

Create clone on specified channel 
Causes clone to change to random nickname 
Causes clone to send text to server 
Causes the clone/spy to quit the IRC server 
Causes the clone/spy to change its nickname 
Causes clone/spy to send message channel with text 
Causes clone/spy to part channel 

<user> Causes clone to set a channel or user mode 
Causes clone/spy to join channel 
Causes clone/spy to perform an action to the given channel. 
Creates spy with specified nickname on server,port,channei 

T^ble 8.3. Partial listing of the SpyBot command language. These commands are passed to bots via the PRIVMSG, 
NOTICE or TOPIC IRC commands. 

Command Description 
login < password > 
info 
passwords 
disconnect < sees > 
reconnect 
server < new server addr > 
quit 
uninstall 
redirect <inport> <host> <outport> 
raw < command > 
download <url> <filename> 
list <path+filter> 
spy 
stopspy 
redirectspy 
stopredirectspy 
loadclones <server> <port> <numclones> 
killclones 
rawclones <command> 

Login to the bot 
Provides information about host system 
Lists the RAS passwords in MS Windows 9x versions 
Disconnect bot for t seconds (default is 30 minutes) 
Disconnect and then reconnect 
Temporarily changes the bot's IRC server 
Quit the channel, kill threads and close bot 
Uninstalls the bot 
Redirect traffic from host to output port 
Echo command to server 
Copy contents of ml to filename 
Listc:\ * .* 
Redirects all traffic from the IRC server to the DCC chat 
Stops the spy 
Redirects all traffic from the port redirect to the DCC chat 
Stops redirect spy 
Load numclones clones on server 
Kills all the clones 
Execute raw command on all clones 
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GT Bot: Like the other families, GT Bot uses IRC as its control infrastructure. 
The command language implemented in GT Bot is the simplest of all of those 
that we evaluated, but it varies quite a bit across versions within this family. This 
is likely due to the architecture of GT Bot which facilitates creation of versions 
with specific intent instead of developing a broad range of capabilities within a 
single line of the codebase. We provide a list of the commands supported by the 
GTBot-with-dcom source code used in our analysis in Table 8.4. 

Table 8.4. Partial listing of the GT Bot command language. These commands are passed to bots via the PRIVMSG, 
NOTICE or TOPIC IRC commands. 

Command Description 
!ver Returns the version of the botnet 
!info Returns local host information e.g., OS, uptime, etc. 
!scan <ip.*><port> Scan specified address prefix on .specified port 
Iportscan <IP> <sport><eport> Scan specified address across specified ports 
!.stopscan Stops all scans 
Ipacket <IP><number> Start denial of service attack (ping.exe) of IP 
!bnc Execute commands specific to the bounce proxy system 
!clone.* Directs ail IRC clone behavior (attacks, etc.) 
!update<url> Update version of bot code from a specified Web page 
!- Executes command on local host 

Implications: Understanding command and control systems has direct and im­
mediate implications for creation of methods and systems to disrupt botnets. The 
continued reliance on IRC as the foundation for botnet command and control means 
that IRC server operators can play a central role in blocking botnet traffic (anec-
dotally, they already do). However, monitoring and shutting down botnet channels 
by hand is arduous, and automated mechanisms for identifying botnet traffic are re­
quired. The botnet command languages outlined in this section can be used in the 
development of such systems and we project this will be a fruitful short term focus 
area. However, we anticipate that future botnet development will include the use of 
encrypted communication, eventually a movement away from IRC and adopt peer-
to-peer style communication (some versions of Phatbot are already reported to have 
rudimentary P2P capability). While this will certainly make defending against bot­
nets more difficult, botnet traffic may still be able to be identified via statistical finger 
printing methods. 

8.3.3 Host Control Mechanisms 

Host control refers to the mechanisms used by the bot to manipulate a victim host 
once it has been compromised. The general intent of host control is to fortify the 
local system against other malicious attacks, to disable anti-virus software, and to 
harvest sensitive information. 

• Agobot: The set of host control capabilities provided in Agobot is quite compre­
hensive. These include, (i) commands to secure the system e.g., close NetBIOS 
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shares, RPC-DCOM, etc. (ii) a broad set of commands to harvest sensitive in­
formation (Hi) p c t r l commands to list the processes running on the host and 
kill specific processes (iv) i n s t commands to add or delete autostart entries. A 
summary of Agobot host control commands is provided in Table 8.5. 

Table 8.5. Agobot host control commands. 
Command 
harvest.cdkeys 
harvest.emails 
harvest.emailshttp 
harvest, aol 
harvest.registry 

Description 
Return a list of CD keys 
Return a list of emails 
Return a list of emails via HTTP 
Return a list of AOL specific information 
Return registry information for specific registry path 

harvest.windowskeys Return Windows registry information 
pctrl.list 
pctrl.kill 
pclrl. lists vc 
pctrl.kills vc 
pclrl.killpid 
inst.asadd 
insl.asdel 
inst.svcadd 
inst.svcdel 

Return list of all processes 
Kill specified process set from service file 
Return list of all services that are running 
Delete/stop a specified service 
Kill specified process 
Add an autostart entry 
Delete an autostart entry 
Adds a service to SCM 
Delete a service from SCM 

• SDBot: The host control capabilities provided in the base distribution of SDBot 
are somewhat limited. They include some basic remote execution commands and 
some capability to gather local information. The lack of host control capabilities 
in the basic distribution is likely due to SDBot's benign intent as described above. 
However, these capabilities can be easily enhanced through auxiliary patches and 
a large number of these are readily available. A summary of SDBot host control 
commands is provided in Table 8.6. 

Table 8.6. SDBot host control commands. 
Command Description 
download <url> <dest> <action> Downloaded specified file and execute if action is 1 
killthread <thread#> Kill specified thread 
update <url> <id> If hot ID is different than current, download "sdbot executable" and update 
sysinfo List host system information (CPU/RAM/OS and uptime) 
execute <visibility> <file> parameters Run a specified program (visibiUty is 0/1) 
cdkey/getcdkey Return Iceys of popular games e.g., Halflifc, Soldier of Fortune etc. 

SpyBot: The host control capabilities included in SpyBot are relatively rich, and 
similar in most respects to what is provided by Agobot. These include commands 
for local file manipulation, key logging, process/system manipulation and remote 
command execution. A summary of the SpyBot host control commands is pro­
vided in Table 8.7. 
GT Dot: The set of host control commands provided in GT Bot is the most 
limited of all of the families we evaluated. The base capabilities include only 
gathering local system information and the ability to run or delete local files. 
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Table 8.7. SpyBot host control commands. 
Command Description 
delete <filename> Delete a specified file 
execute <filename> Execute a specified file 
rename <origfilename> <newfile> Rename a specified file 
makedir <dirname> Create a specified directory 
startkeylogger Starts the on-line keylogger 
stopkeylogger Stops the keylogger 
sendkeys <keys> Simulates key presses 
keyboardlights Flashes remote keyboard lights 50x 
passwords Lists the RAS passwords in Windows 9x systems 
listprocesses Return a fist of all running processes 
killprocess <processname> Kills the specified process 
threads Returns a list of all running threads 
killthread < number > Kills a specified thread 
disconnect <number> Disconnect the bot for number seconds 
reboot Reboot the system 
cd-rom <0/l > Open/close cd-rom. cd-rom 1 - open, cd-rom 0 = close 
opencmd Starts cmd.exe (hidden) 
cmd <command> Sends a command to cmd.exe 
get <filename> Triggers DCC send on bot 
update <url> Updates local copy of the bot code 

However, like SDBot, there are many versions of GT Bot that include diverse 
capabilities for malicious host control. 

Implications: The capabilities and diversity of the host control mechanisms in 
botnets are frightening and have serious implications. First they underscore the need 
to patch and protect systems from known vulnerabilities. Second, they informs soft­
ware development and the need for stronger protection boundaries across applica­
tions in operating systems. Third, the capabilities of gathering sensitive information 
such as Paypal passwords and software keys provide clear economic incentives for 
people to operate botnets and for sponsorship by organized crime. 

8.3.4 Propagation Mechanisms 

Propagation refers to the mechanisms used by bots to search for new host systems. 
Traditional propagation mechanisms consist of simple horizontal scans on a single 
port across a specified address range, or vertical scans on a single IP address across a 
specified range of ports. However, as botnet capability expands, it is likely that they 
will adopt more sophisticated propagation methods such as those proposed in [34]. 

• Agobot: The scanning mechanisms included in Agobot are relatively simple and 
do not extend very far beyond horizontal and vertical scanning. Agobot scanning 
is based on the notion of network ranges (network prefixes) that are configured 
on individual bots. When so directed, a bot can scan across a range or randomly 
select IP addresses within a range. However, the current scanning command set 
provides no means for efficient distribution of a target address space among a 
collection of bots. Table 8.8 provides a summary of the scanning commands in 
Agobot. 
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Table 8.8. Agobot propagation and scanning commands. 
Command Description 
.scan.addnetrange <IP range> <priority> Adds a network range to a bot 
scan.delnetrange<IP range> Deletes a network range from a bot 
scan.lislnetranges Returns all network ranges registered with a bot 
scan.cleametranges Clears all network ranges registered with a bot 
scan.resetnetranges Resets the network ranges to the localhost 
scan.enable <module name> Enables a scanner module e.g., DCOM 
scan.disable <module name> Disables a scanner module 
scan.startall Directs ail bots to start scanning their network ranges 
scan.stopall Directs all bots to stop scanning 
.scan.start Directs all enabled bots start scanning 
scan.stop Directs all bots to stop scanning 
scan.stats Returns results of scans 

• SDBot: As discussed in Section 8.3.1, by virtue of its benign intent, SDBot does 
not have scanning or propagation capability in its base distribution. However, 
many variants of SDBot include scanning and propagation capability. Among 
these, the scanning control interface is often quite similar to Agobot providing 
horizontal and vertical search capabiHties. There are also instance vi/here slightly 
more complex scanning methods are available. For example, the interface for a 
NetBIOS scanner for SDBot accepts starting and ending IP addresses as param­
eters and then randomly selects addresses between these two markers. 

• SpyBot: The command interface for Spybot scanning is quite simple, consisting 
of horizontal and vertical capability. A typical example is given below: 

Command: 
scan <start IP address> <port> <delay> 

<spreaders> <logfilename> 
Example: 

scan 127.0.0.1 17300 1 netbios portscan.txt 

Scanning begins at the start address and opens MAX_PORTSCAN_SOCKETS_-
TO-USE sockets. The default value for this parameter is set to 20. Scanning then 
proceeds sequentially. The only spreader supported by the version of SpyBot that 
we evaluated is via NetBIOS. 

• GTBot: As shown in Table 8.4, GT Bot only includes support for simple hori­
zontal and vertical scanning. 

Implications: There are several implications for bot propagation mechanisms. 
First, at present, botnets use relatively simple scanning techniques. This means that 
it may be possible to develop statistical finger printing methods to identify scans from 
botnets in distributed monitors. Second, scanning methods inform requirements for 
building and configuring network defenses based on firewalls and intrusion detection 
systems that consider scanning frequency. Finally, source code examination reveals 
detail of scanning mechanisms that can enable development of accurate botnet prop­
agation models for analytic and simulation-based evaluation. We project that future 
versions of bot codebases will focus on propagation as an area of improvement, in­
cluding both flash mechanisms and more stealthy mechanisms. 
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8.3.5 Exploits and Attack Mechanisms 

Exploits refer to the specific methods for attacking known vulnerabilities on target 
systems. Exploits are usually attempted in conjunction with scanning for target hosts. 
In this section we discuss the specific exploit modules included in each hot, and other 
capabilities for launching remote attacks against target systems. 

• Agobot: The most elaborate set of exploit modules among the families that 
we analyzed is included with Agobot. In contrast with the other bot families, 
Agobot's evolution has included an ever broadening set of exploits instead of 
individual versions with their own exploits. This increases Agobot's potential 
for compromising targeted hosts. The exploits in the version of Agobot that we 
evaluated include: 

1. Bagle scanner: scans for back doors left by Bagle variants on port 2745. 
2. Dcom scanners (1/2): scans for the well known DCE-RPC buffer overflow. 
3. My Doom scanner: scans for back doors left by variants of the MyDoom 

worm on port 3127. 
4. Dameware scanner: scans for vulnerable versions of the Dameware network 

administration tool. 
5. NetBIOS scanner: brute force password scanning for open NetBIOS shares. 
6. Radmin scanner: scans for the Radmin buffer overflow. 
7. MS-SQL scanner: brute force password scanning for open SQL servers. 
8. Generic DDoS module: enables seven types of denial service attack against 

a targeted host. A list of the commands used to control these attacks is given 
in Table 8.9. 

Table 8.9. Agobot DDos attack commands. 
Command Description 
ddos.udpfiood<target> <port><0=:rand> <time>(secs) <delay>{ms) Starts a UDP flood 
ddos.synflood<host> <time> <delay> <port> Starts a SYN flood 
ddos.httpflood <url> <number> <referrer> <delay> <recursive> Starts an HTTP flood 
ddos.phatsyn <host> <time> <delay> <port> Starts a PHAT SYN flood 
ddos.phaticmp <host> <time> <delay> Starts PHAT ICMP flood 
ddos.phatwonk <host> <time> <delay> Starts PHATVonk flood 
ddos.targa3 <target> <time>(secs} Start a targa3 flood 
ddos.stop stops aU floods 

SDBot: As discussed in Section 8.3.1, by virtue of its benign intent, SDBot does 
not have any exploits packaged in its standard distribution. There are, however, 
numerous variants that include specific exploits. SDBot does include modules 
for sending both UDP and ICMP packets. While not overtly malicious, these can 
certainly be used for simple flooding attacks. Commands to control these capa­
bilities are listed in Table 8.10. As might be expected, there are also numerous 
variants of SDBot that include different kinds of DDoS attack modules. 
Spybot: The exploits included in the version of Spybot that we evaluated only 
included attacks on NetBIOS open shares. However, as with SDBot, there are 
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Table 8.10. SDBot commands which could be used for DDoS attacks. 

Command Description 
udp <host> <#pkts> <pktsz> <delay> <porl> Seitd a specified number of UDP packets 
ping <host> <# pkts> <pkt sz> <timeout> Send a specified number of ICMP echo packets 

many variants that include a wide range of exploits. SpyBot's DDoS interface is 
also closely related to SDBot and includes the capabilities for launching simple 
UDP, ICMP and TCP SYN floods. 

• GTBot: As mentioned earlier, the exploit set for the GT Bot code that we eval­
uated was developed to include RPC-DCOM exploits. Like SDBot and Spybot, 
there are many variants of GT Bot that include other well known exploits. Our 
version of GT Bot only included capability to launch simple ICMP floods. How­
ever, there are many variants of GT Bot that have other DDoS capabilities such 
as UDP and TCP SYN floods. 

Implications: The set of exploits packaged with botnets suggest basic require­
ments for host-based anti-virus systems and network intrusion detection and preven­
tion signature sets. It seems clear that in the future, more bots will include the ability 
to launch multiple exploits as in Agobot since this increases the opportunity for suc­
cess. The DDoS tools included in bots, while fairly straightforward, highlight the 
potential danger of large botnets. They also inform possibilities for DDoS protection 
strategies such as [18]. 

8.3.6 Malware Delivery Mechanisms 

Packers and shell encoders have long been used in legitimate software distribution 
to compress and obfuscate code. The same techniques have been adopted in botnet 
malware for the same reasons. GT/SD/Spy Bots all deliver their exploit and encoded 
malware packaged in a single script. However, Agobot has adopted a new strategy for 
malware delivery based on separating exploits and delivery. The idea is to first exploit 
a vulnerability (e.g., via buffer overflow) and open a shell on the remote host. The 
encoded malware binary is then uploaded using either HTTP or FTP. This separation 
enables an encoder to be used across exploits thereby streamlining the codebase and 
potentially diversifying the resulting bit streams. 

In Figure 8.2 we provide an example of the shell-encoder used in Agobot for 
malware delivery. An important function of a shell-encoder is to remove null bytes 
(that terminate c-strings) from x86 instruction sequences. As can be seen in the Fig­
ure, the code begins with an XOR key value of 0x98 then checks to see if this results 
in a string without null characters. If the check fails, it simply tries successive values 
for the XOR key until it finds a value that works. This value is then copied over to 
the shell code at position ENCODER-OFFSETJXORKEY. 

Implications: The malware delivery mechanisms used by botnets have implica­
tions for network intrusion detection and prevention signatures. In particular, NID-
S/NIPS benefit from knowledge of commonly used shell codes and ability to perform 
simple decoding. If the separation of exploit and delivery becomes more widely 
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adopted in bot code (as we anticipate it will), it suggests that NIDS could benefit 
greatly by incorporating rules that can detect follow-up connection attempts. 

char encoder[]= 
"\xEB\x02\xEB\x05\xE8\xF9\xFF\xFF\xFF\x5B\x31\xC9\x66\xB9\xFF\xFF" 
"\x80\x73\x0E\xFF\x43\xE2\xF9"; 

int xorkey=0x98,-

// Create local copies of the shellcode and encoder 
char *szShellCopy=(char*)malloc(iSCSize) ; 
memset(szShellCopy/ 0, iSCSize); memcpy(szShellCopy, szOrigShell, iSCSize); 
char *szEncoderCopy=(char*)malloc(iEncoderSize); 
memset(szEncoderCopy, 0, iEncoderSize); 
memcpy(szEncoderCopy, encoder, iEncoderSize); 

if(pfnSC) 
pfnSC(szShellCopy, iSCSize); 

char *szShellBackup=(char*)malloc(iSCSize); 
memset(szShellBackup, 0, iSCSize); 
memcpy(szShellBackup, szShellCopy, iSCSize); 

// Set the content size in the encoder copy 
char *szShellLength=(char*)&iSCSize; 
szEncoderCopy[ENCODER_OFFSET_SIZE]=(char)szShellLength[0]; 
szEncoderCopy[ENC0DER_0FFSET_SIZE+11=(char)szShellLength[1]; 

// XOR the shellcode while it contains 0x5C, 0x00, OxOA or OxOD 
while(contains(szShellCopy, iSCSize, '\x5C') 11 

contains(szShellCopy, iSCSize, '\xOO') II \ 
contains(szShellCopy, iSCSize, '\xOA') I I 
contains(szShellCopy, iSCSize, '\xOD')) 

{ 

memcpy(szShellCopy, szShellBackup, iSCSize); xorkey++; 
for(int i=0;i<iSCSize;i++) szShellCopy[i]^SzShellCopy[i]"xorkey; 
szEncoderCopy[ENCODER_OFFSET_XORKEY]=xorkey; 

) 

free(szShellBackup); 

Fig. 8.2. Agobot shell-encoding routine for malware delivery. 

8.3.7 Obfuscation Mechanisms 

Obfuscation refers to mechanisms that are used to hide the details of what is be­
ing transmitted through the network and what arrives for execution on end hosts. 
While none of the bots we evaluated included TCP obfuscations such as those de­
scribed in [14], the aforementioned encoders provide obfuscation in a limited way. 
However, if the same key is used in each encoded delivery, then signatures could be 
generated quickly that would recognize a particular bit sequence. Polymorphism has 
been suggested as a means for evading signatures based on specific bit sequences by 
generating random encodings. 
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The only bot that currently supports any kind of polymorphism is Agobot. There 
are currently four different polymorphic encoding strategies that are supported: 
POLY_TYPEJXOR, POLY_TYPE_SWAP (swap consecutive bytes), POLY_TYPE_-
ROR (rotate right), POLY_TYPE_ROL (rotate left). While this code appears to func­
tion as advertised, thorough analysis of its capabilities is left for future work. 

Implications: While polymorphic botnet delivery appears to be a reality, it is not 
yet widely available across bot families. As such, a concentrated focus on polymor­
phism by the network security community may not be warranted at this time. How­
ever, while the polymorphic routine packaged with Agobot is rather simplistic, it is 
conceivable that future botnets will have significantly support for polymorphism. As 
a result, anti-virus systems and NIDS will need to eventually develop mechanisms to 
account for this capability. 

8.3.8 Deception Mechanisms 

Deception refers to the mechanisms used to evade detection once a bot is installed 
on a target host. These mechanisms are also referred to as rootkits. Of the four bots 
we analyzed, only Agobot had elaborate deception mechanisms. These include {i) 
tests for debuggers such as OllyDebug, Softlce and procdump, iii) test for VMWare, 
{in) killing anti-virus processes, and {iv) altering DNS entries of anti-virus software 
companies to point to localhost. 

Implications: The elaborate deception strategy of Agobot some ways represents 
a merging of botnets with other forms of malware such as trojans and has several 
implications. First, honeynet monitors need to be aware of malware that specifically 
targets virtual machine environments. Second, it suggests the need for better tools 
for dynamic analysis of this malware since simply executing them in VMware or 
debuggers will provide false information. Finally, as these mechanisms improve, it is 
likely to become increasingly difficult to know that a system has been compromised, 
thereby complicating the task for host-based anti-virus and rootkit detection systems. 

8.4 Conclusions 

Continued improvements and diversification of malware are making the task of se­
curing networks against attacks and intrusions increasingly difficult. The objective 
of our work is to expand the knowledge base for security research through system­
atic evaluation of malicious codebases. We advocate an approach that includes both 
static analysis of source code and dynamic profiling of executables. In this chapter 
we take a first step in this process by presenting an evaluation of four instances of 
botnet source code. We selected botnet code as our initial focus due to its relatively 
recent emergence as one of the most lethal classes of Internet threats. 

Overall, our source code evaluation highlights the sophistication and diverse ca­
pabilities of botnets. The details of our findings include descriptions of the primary 
functional components of botnets organized into seven categories. Some of the most 
important of findings within these categories include the diverse mechanisms for 
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sensitive information gathering on compromised hosts, the effective mechanisms for 
remaining invisible once installed on a local host, and the relatively simple com­
mand and control systems that are currently used. While the IRC-based command 
and control systems remain an area that the network security community can poten­
tially exploit for defensive purposes, it is likely that these systems will evolve toward 
something like a peer-to-peer infrastructure in the near future (if they are not already 
doing so). 

The results in this chapter represent a first step in a much larger process of de­
composing and documenting malware of all types. Ultimately, we anticipate that the 
resulting database will enable proactive network security. Our immediate next steps 
will be to begin the process of dynamic profiling of botnet executables using tools 
like IDA Pro [17] and by running the executables in our own laboratory environ­
ment. Beyond that, we plan to use the lessons learned from this study to begin an 
IRC monitoring effort at our university border router with the objective of develop­
ing new methods for identifying botnet communications. We also plan to expand our 
on-going honeynet measurement efforts to include botnet monitoring. 
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9.1 Introduction 

In recent years, researchers have focused on the abihty of intrusion detection sys­
tems to resist evasion: techniques attackers use to bypass intrusion detectors and 
avoid detection. Researchers have developed successful evasion techniques either 
for network-based (e.g., [14, 19]) or host-based (e.g., [18, 20]) detectors. 

Unlike the problem of evasion, the problem of false positives has yet to attract 
much attention. False positives, cases in which a IDS raises an alert but no intrusion 
has occurred, are a major problem for IDS users [6, 16]. If the number of false posi­
tives is large, the security officer that uses the IDS quickly learns to treat every alert 
as false, rendering the IDS useless. 

In a recent work, Axelsson [2] mathematically showed that even with a reason­
ably accurate detector, one out of three alerts is likely to be false positive. Axelsson 
observed that a few IDS mistakes are translated into a large number of false positives 
because of the volume of benign events dwarfs the volume of intrusions. Axelsson 
concluded that false positives will always remain a major problem and called this 
phenomenon, the base-rate fallacy of intrusion detection. 

We attempt to address the base-rate fallacy. We claim that, even though the fallacy 
mandates the use of detectors with a low false positive rate, it also suggests that it is 
feasible to build such a detector. 

Our approach is based on two observations. First, we observe that false positives 
occur not because it is impossible to distinguish between benign and malicious events 
but only because it is difficult to do so efficiently. For example, there is a simple pro­
cedure to determine whether an HTTP request triggers a buffer overflow: executing 
it in a protected environment (sandbox). Sandboxing, however, is too expensive [1]; 
an IDS that must analyze thousands of HTTP requests per second cannot afford to 
sandbox all of them. 

Second, like Axelsson, we observe that most events are benign. However, we 
extend the observation further and notice that it is possible to efficiently distinguish 
between the majority of benign events and malicious events. It is possible to split the 
set of benign events into subsets based on the effort required to determine whether 



194 Mihai Christodorescu and Shai Rubin 

an event is malicious or benign. For the vast majority of benign events, it is easy to 
determine that they are benign. We believe that false positives occur not because it is 
difficult to distinguish between an intrusion and any other benign event, but because 
it is difficult to distinguish between an intrusion and a small set of benign events. 

We leverage these observations to build a detection system with a low false-
positive rate and a low cost. We know that ideal detectors exist, but only with a high 
cost of detection. We also know that detectors with a low cost exist, but only with a 
high rate of false positives. The goal is then to design a detector that bridges the gap 
between these two extremes. To achieve such a detector, we use the concept of detec­
tor combination. Intuitively, we first use an efficient detector to distinguish between 
the majority of benign events and might-be-intrusion events. Then, as a second step, 
a less efficient detector can further distinguish between might-be-intrusion events 
and malicious events. We show that Axelsson's fallacy actually facilitates efficiency. 
Since the majority of the events are benign, and since it is possible to efficiently dis­
tinguish between the majority of benign events and malicious ones, the efficiency of 
the combined detector is close to the efficiency of the more efficient detector. 

In particular, this chapter makes the following contributions: 

1. We formulate the detector-combination problem: given two detectors Di and 
D2, find a function, / , that combines the two such that the combined detector, 
/ ( D i , D2) is (i) more accurate than both detectors and (ii) its operation cost is 
smaller than some upper bound. 

2. We mathematically analyze solutions to the detector-combination problem. 
We investigate three potential solutions to the detector-combination problem. 
For each solution, we investigate the conditions that must hold for Di and D2, 
so the function is a valid solution. 

3. We derive recommendations for IDS development. Base on our analysis, we 
derive recommendations for IDS developers. Example recommendations are: 
• To achieve a combined detector with a low false positive rate, design two 

detectors with high false positive rates such that they eliminate the false pos­
itive of each other. 

• It is not always more efficient to use the most efficient detector to distinguish 
between benign and might-be-attack events. The decision depends on the 
relation between costs of the two detectors and their false positive rates. 

9.2 Overview 

In this section we present in detail the false-positive problem, initially formulated by 
Stefan Axelsson as the base-rate fallacy. Then we introduce our proposed solution 
for reducing false positives with no significant increase in cost and no decrease in 
intrusion-detection rate. The discussion of our solution makes use of a practical ex­
ample highlighting the choices a security analyst makes when building an intrusion 
detection system. 
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9.2.1 The Base-Rate Fallacy of Intrusion Detection 

Axelsson's Base-Rate Fallacy [2] is best understood via an example. Consider a 
network-based IDS that attempts to identify an FTP attack, called ftp-cwd (CAN-
2002-0126 [13]), which causes a buffer overflow in the Blackmoon FTP server for 
Windows. The overflow occurs when the attacker supplies an overly long, more than 
256 bytes, directory name for the CWD (change directory) command. In an effective 
ftp-cwd attack, this long name must contain shell code that hijacks the control from 
the FTP server into the hands of an attacker. 

Like Axelsson, we assume that effective instances of the ftp-cwd attack are rare. 
For example, assume that out of a million packets observed by a network-based IDS 
(NIDS), only half a dozen packets are realftp-cwd attacks. Recall that a false positive 
is a situation in which the NIDS raises an alert given a non-attack event. Then, a 
NIDS that mistakenly generates an alert once every 100,000 non-attack packets (this 
means the false-positive rate of this NIDS is 10~^), would raise about 10 alerts per 
a million packets. In total, such a NIDS would raise about 16 alerts: 6 alerts because 
of the real instances oi ftp-cwd and 10 alerts that are false. 

9.2.2 Our Observations 

We embrace Axelsson assumption that the number of intrusions is significantly 
smaller than the number of benign events. We also understand that false positives 
would always be a major problem because they are dominated by the number of 
non-attack events. We understand that the only way to address Axelsson's fallacy is 
to develop a highly accurate detector. However, we believe that Axelsson's fallacy 
can be used as a guideline for building such accurate detectors. 

We illustrate our observation using \he. ftp-cwd example. Assume that the ex­
ample IDS monitors both the FTP and HTTP servers of our organization. We first 
describe two detectors that distinguish between benign events and might-be-ftp-cwd 
attacks. As we argue, the operational cost of these two detectors is moderate. 

Detector 1: Identify benign HTTP events. 
HTTP events are clearly not our attack. It is easy to differentiate between HTTP 
and FTP events just by looking at the port numbers in the TCP header. 

Detector 2: Identify possibly malicious CWD commands with long arguments. 
The computational effort requires to identify a Level 3 event is equivalent to 
the effort to identify a regular expression of the form ('\nCWD')('-i\n'){256,}: a 
line starts with CWD, followed by at least 256 characters that are not ' \n ' . This 
requires matching of a regular expression that can be done in a linear time (with 
respect to the length of the input stream). 

Detectors 1 and 2 above can be combined to differentiate between benign and 
might-be-ftp-cwd events. It is important to understand that, in our scenario, an FTP 
CWD command with an argument longer than 256 bytes is an extremely rare event. 
In other words. Detectors 1 and 2 can be used to determine that more than 99.9% of 
the events on our site are not ftp-cwd attacks. 
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Detector 3: Identify CWD commands vfith long arguments containing shell 
code. 
Detector 3 requires the highest computational effort. Like Detector 2, it requires 
regular expression matching. However, it also requires inspection of the FTP 
payload to determine whether the payload contains valid shell code. One way 
to determine whether the FTP command contains shell code is sandboxing [1], 
which simulates the CWD command on a shadow FTP server where a successful 
buffer overflow cannot cause any damage. 

Note that Detector 3 requires significant computational effort, several orders of 
magnitudes larger than the cost of Detector 2. However, Detector 3 false positive rate 
is zero (if we assume that a CWD command that does not cause an overflow on the 
shadow FTP server also does not cause an overflow on the real FTP server). Below, 
we show that one can combine all three detectors to get the false positive rate of 
Detector 3 at an operational cost close to the cost of Detector 2. 

9.2.3 Combining Detectors 

Consider a developer that builds a network-based IDS (NIDS). Assume that accord­
ing to the developer's measurement, the NIDS has to handle 4,000 TCP packets per 
second, both FTP and HTTP traffic. For the sake of computation, assume that the de­
veloper implements the NIDS on a 3.5 MHz processor. Thus, on average, the NIDS 
must analyze a single packet using less than 8.75 x 10^ cycles per packet: 

3.5 X 10^ 
— ^ = 8.75 X 10^ cycles/packet 
4 X 10^ 

The developer notices that it is possible to define a Snort signature to match CWD 
FTP commands with arguments longer than 256 bytes (i.e.. Snort could serve as both 
Detector 1 and Detector 2 above). The developer measures Snort's performance and 
notices that (i) Snort requires, on average, 20,000 cycles to analyze a single packet, 
and (ii) Snort generates only one ftp-cwd alert per 100,000 packets it analyzes, that 
is P{As„ori) = 10~^ (we chose these number based on our experience with Snort). 

While Snort meets the cost bound of 8.75 x 10^ cycles per packet, its false-
alert rate is too high for the given volume of traffic. In this scenario. Snort would 
generate approximately 58 false alerts per hour for 86 actual intrusions per hour. The 
developer realizes that the false alert rate is too high; it will cause the NIDS user to 
ignore all alerts. The developer decides to consider a different detection approach. 

The developer implements a shadow FTP honeypot. The developer measures the 
performance of this shadow FTP server and discovers that it requires half a second 
to simulate a single FTP command. In other words, it takes 1.75 x 10^ cycles to run 
a single FTP command on the shadowed FTP server. 

The developer then implements the following system. All packets, either FTP or 
HTTP, are fed first fed into Snort. Each packet that matches the signature above is 
passed to the shadow FTP server. If the FTP command causes an overflow on the 
shadow server, the system raises an ftp-cwd alert. 
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Let us calculate the average time it takes for the combined system to analyze a 
single packet. Denote the time it takes for Snort to analyze a packet as !,„„„, and the 
time it takes for the shadow server to analyze a packet as Tshadow Then the average 
time per packet for the combined detector is: 

^average — ^snort ~r ^\-^snort) ' ^shadow 

= 2 X 10* + 10~s X 1.75 X 10^ 

= 3.75 X 10* cycle Ues 

That is, the average time per packet is 23 times lower than the upper bound set by 
the developer (8.75 x 10^). 

This example construction shows that, while Axelsson's fallacy holds, it is also 
possible to build a highly accurate detector with a reasonable performance. Snort 
alone is not accurate and requires 2 x 10* cycles per event. However, the combined 
detector, which is highly accurate, requires 3.75 x 10* cycles per event, only 87% 
less efficient than snort. In other words, the high volume of benign events dominates 
the false positive rate, but it also dominates the average cost of detection. 

9.3 The Problem of Detector Combination 

Intuitively speaking, the problem of detector combination is how to combine two 
detectors such that the combined detector is both more accurate than each component 
detector alone and the operational cost of the combined detector is smaller than some 
fixed upper bound. 

A detector is characterized by its true positive rate, false positive rate, and oper­
ational cost. To define the detector's operational cost, we use the notion of universal 
detection cost. The universal detection cost for a detector D, denoted udc, is a pos­
itive integer that represents the effort D invests per event, the higher the cost the 
higher the effort. By effort, we mean computation time, computation space, energy 
consumed, or maintenance cost in person-hours. 

We use the universal detection cost as a design tool rather than a scientific mea­
surement. Developers considering the detector-combination problem should assign 
different costs to the detectors they wish to combine according to their analysis or 
experimental measurement. For example, in Section 9.2.3 we use cycles per packet 
as our cost function. We derive the costs based on our experience with Snort and our 
estimate for a shadow FTP server. 

Definition 1 (Intrusion Detector) Let E be a set of events and I C E a set of 
intrusions. Let f be a detection function f : E —> {A, -^A}, with the universal 

detection cost C. An intrusion detector system is a tuple ID = {E, I, f, C). We 
further define: 

def 
L The true-positive rate o/ID, tp = P{f{e) = A\e £ / ) . 

def 
2. The false-positive false of ID, fp = P{f{e) = A\e ^ / ) . 
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Table 9.1. Notation used throughout the chapter. 
Formal definition Notation Description 
P(/(e) = A\e G /) P{A\I) true positive (tp) rate. 
P(/(e) = A\e i I) P{A\-'I) false positive (fp) rate. 
P(/(e) = ^A\e e J) PhA\I) = 1 - P{A\I) false negative (fn) rate. 
P(/(e) = -.A|e ^ /) P(-.A|-.J) = 1 - P{^A\I) true negative (tn) rate. 

All detectors operate over the same set of events by definition. We chose this 
abstraction because it facilitates detector combination. It is possible to combine a 
network-based detector with a host-based detector. Although in practice such detec­
tors operate over a different set of events, these events are signs of the same attack. 
For example, an attack exploiting a buffer overflow in an FTP server manifests it­
self both at the network level (the FTP session) and at the host audit log level (the 
execution of a new shell). 

We note that it is enough to use the true-positive and false-positive rates to charac­
terize a detector completely. The other two rates, the true-negative and false-negative 
rates, are the complement of the first two rates. For clarity we use the notation used 
by Axelsson as depicted in Table 9.1. 

Definition 2 (The Problem of Detector Combination) Let Di = {E,IJi,Ci) 
and D2 = {E,I, f2,C3) be two detectors. Let X > 0 be the cost upperbound. 
The detector-combination problem is to find a detection function / s ( / i , /2) such that 
the following requirements hold for the combined detector D3 = {E, I, /a, C3): 

tPs ^ naax(ip]^, ip2) (True-Positive Requirement) 

fpg < inin{fpi,fp2) (False-Positive Requirement) 

C3 < X (Cost Requirement) 

Any solution to this problem needs to produce a combined detector D3 with a 
true-positive rate that is at least as high as the maximum between the rates of Di and 
D2, a false-positive rate that is at least as low as the minimum between the rates of 
Di and D2, and with a universal cost smaller than X. 

9.4 Possible Solutions to the Detector-Combination Problem 

We discuss specific solutions to the detector-combination problem and determine for 
which instances of the problem these solutions are valid. A general solution to the 
detector-combination problem, if one exists, is left for future work. 

9.4.1 Trivial Solutions: fs = / i or fa = /a 

There are instances of the detector-combination problem for which one of the de­
tector is a solution. For example, consider detectors Di and D2 such that Cx < X, 
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Fig. 9.1. A schematic view of the cascade-on-alert scheme. The notation Ale means that the 
event e is passed on to the next component if the previous component raised the alert A. 

tPi > P̂2> ^iid/pi < fp2 (an analogous case exists for D2). -Di has true-positive 
and false-positive rates better than D2 and its detection cost is lower than the upper 
bound X. 

Notice though that there are instances in which Ci < X and C2 < X but neither 
/a = / i nor / s = /2 is a feasible solution. For example, consider Di and D2 such 
that tpi > tp2 but fpi > fp2, that is, Di has better true-positive rate but worse 
false-positive rate. Below, we discuss functions that solve the detector-combination 
problem for such cases. 

9.4.2 fs — Cascade on Alert 

We analyze a specific solution to the detector-combination problem called cascade-
on-alert. As we show, the cascade on alert is not a general solution to the problem. 
Therefore, we derive the constraints on Di and D2 that must hold for the cascade-
on-alert function to be a valid solution. 

Definition 3 (Cascade-on-Alert) For every event, e, perform the following. Analyze 
e using D\. If Di returns -^A, then return -^A. If D\ return A, then analyze e using 
D2 and return D2 's answer. Formally: 

/3(e) = 
1 r ( / i ( e ) = A)A(/2(e) = yl) 
^A »//i(e) = - . A v ( / i ( e ) = A A / 2 ( e ) = - .^) 

Cascade-on-alert is not a general solution. For example, consider (a useless) D2 
that returns ^A for every e. Therefore, the combined detector D3 remms ^A for 
every event and its true positive rate is zero. Such D3 is not a valid solution in case 
the true positive rate of Di is greater than zero. 

Satisfying the True-Positive Requirement. 
The true-positive requirement mandates that ipj > max(ip]^, ipg)-

P (y l3 | / )>max(P(Ai l / ) ,P (A2 | J ) ) 

t 
P ( A i n ^ 2 | / ) > m a x ( P ( A i | / ) , P ( A 2 | / ) ) (9.1) 

However, Al(^ A2 '^ Ai and ^1 n ^2 C A2 which means that: 
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P(Ai n A2\I) < mm(P(Ai | / ) , P ( ^ 2 | / ) ) (9.2) 

Hence, the only way to satisfy both Equations 1 and 9.2 is to impose: 

P ( ^ i n A 2 | / ) = P ( A i | / ) = P ( ^ 2 | / ) (9.3) 

and the only way to impose Equation 9.3 is to build Di and D2 such that: 

{Aini} = {A2ni} (9.4) 

Satisfying the False-Positive Requirement. 
The false-positive requirement mandates that/p3 < inin(/pj^,/p2). The cascade-

on-alert function always satisfies this condition because: 

/P3 = P{AinA2H) < m i n ( P ( A i h / ) , P ( ^ 2 h / ) ) = minifp.Jp^) (9.5) 

Moreover, if we want to reduce the false positive rate to zero the we must impose: 

({^1 n ^ / } ) n {{A2 n ^ /} ) = 0 (9.6) 

Satisfying tlie Cost Requirement. 
We want a detector that its cost of operation is lower than X. That is: 

C3 = Ci + P(Ai ) xC2<X^ P(Ai) < ^^^^ (9.7) 

Notice that in Equation 9.7 we use the fact that Di is the "first" detector and D2 
is the "second" one in the cascade-on-alert sequence (Figure 9.1). However, this does 
not mean that that the universal cost of Di is lower than the cost of D2. Indeed, in 
Section 9.5.2 we show there are cases in which it is more efficient to put the more 
expensive detector in front of the less expensive one. 

Summary: Cascade-on-alert is a valid solution to the detector-combination prob­
lem only if Di and D2 satisfy Equations 9.4 and 9.7. If we want a cascade-on-alert 
function with zero false positives, then Di and D2 must satisfy Equation 9.6. 

9.4.3 fs = Cascade on Non-Alert 

The cascade-on-non-alert function is analogous to cascade-on-alert. However, in­
stead of invoking D2 when the output of Di is A, the cascade-on-non-alert invokes 
D2 when Di 's output is -lA. Below we derive the necessary conditions for cascade-
on-non-alert to be a valid solution. 

Definition 4 (Cascade-on-Non-Alert) For every event, e, perform the following. 
Analyze e using Di. If Di returns A, then return A. If Di return -^A, then analyze e 
using D2 and return D2 's answer Formally: 

f<A-\^ '^^i(^) = ^ V ( î̂ "^) = ^ ^ ^ ^2(e) = A) 
J""^^' -^X^A iff,{e) = ^AA /2(e) = ^A 
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Fig. 9.2. A schematic view of the cascade-on-non-alert scheme. The notation -iA?e means 
that the event e is passed on to the next component if the previous component did not raise an 
alert A. 

Analogous to cascade-on-alert, the cascade-on-non-alert is not a general solution. 
We wish to find the constraints that detectors -Di and D2 must satisfy for the cascade-
on-non-alert scheme to be a valid solution to the conditions problem. 

Satisfying tlie True-Positive Requirement. 

The true positive rate of D3 can be derived as follows: 

P[Ai\I) = P{AiU{-^AinA2)\I) 

Note that P(yl3|i") = P(y l i | / ) - | -P( - i^ in>l2 l / ) -P(Ain(-nAinA2) | / ) . Therefore: 

P{A3\I) = P{A^\I) + Pi^Ai n A2\I) 

Given that 0 < P(-iAinA21/) < 1, the true positive rate of Ds is at least as good 
as the true positive rate of Di. For the cascade-on-no-alert to be a valid solution, we 
need to find the conditions under which P{A3\I) is greater than P{A2\I). 

P ( ^ i | / ) -^p(-^^l n A2I/) > P{A2\i) 

As {-.^1 n A2} = {A2} \ {Ai n A2}, we get: 

P ( A i | / ) + P(A2|7-) - P ( ^ i n A2\I) > P{A2\I) (9.8) 

P{Ai\I)>P{AinA2\I) (9.9) 

Because ^ 1 0 ^ 2 ^ Ai, Equation 9.9 is always true. Thus, the true positive rate of 
the combined detector is at least as large as the maximum of the true positive rates 
of the two detectors. 

Furthermore, we can see from Equation 9.8 that the true positive rate of the 
combined detector is maximized when P{Ai n A2I/) = 0. This implies that 
{Ai n i42 n / } = 0, or, equivalently: 

( { A i n 7 } ) n ( { A 2 n J } ) = 0 (9.10) 

In other words, the cascade-on-non-alert scheme achieves maximum true positive 
(detection) rate when the two detectors Di and D2 raise true alerts on distinct sets 
of events. 
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Satisfying the False-Positive Requirement. 
We derive the false positive r a t e^3 = P{A3\^I) for the combination detector 

through a series of steps similar to the derivation for the true positive rate. 

PiAal^I) = P ( y l i h / ) + P{-^Ai n A s h / ) (9.11) 

As Equation 9.11 shows, the false positive rate of the combination detector could 
increase beyond the false positive rate of the first detector, Z?i. The best we can 
achieve is to keep the false positive rate equal to that of detector Di. This implies 
that P{-^Ai n A2\^I) = 0, and the following has to hold: 

{ ^ A i } n { A 2 } n { - / } = 0 (9.12) 

Satisfying the Cost Requirement. 
The average cost (per event) of the cascade-on-non-alert detector is captured by 

the following formula: 

C3 = Ci + P ( - A i ) x C 2 
= Ci + {l-P{Ai))xC2 
= Ci + {\- P(Ai |7) X P{I) - P ( A i h / ) X P(-n/)) X C2 

Then the condition becomes: 

X-Ci 

C. 
> 1 - P{Ai\I) X P{I) - P{Ai\-^I) X P ( ^ / ) (9.13) 

Summary: Cascade-on-non-alert is a valid solution to the detector-combination 
problem only if Di and D2 satisfy Equations 9.12 and 9.13. If we want a cascade-
on-non-alert function with maximum true positive rate, then Di and D2 must satisfy 
Equation 9.10. 

9.5 Recommendations to IDS Developers 

In Section 9.4 we mathematically analyzed solutions to the detector-combination 
problem. In this section we interpret our mathematical results into practical guide­
lines for IDS developers. 

In Section 9.4.2, we showed that cascade-on-alert cannot improve the true-
positive rate of either Di or D2 (Equation 9.3). Similarly, in Section 9.4.3, we 
showed that the cascade-on-non-alert cannot improve the false positive rate of the 
combined detector (Equation 9.11). Since the main motivation of our work is reduc­
ing false positives, we focus on the cascade-on-alert scheme. 

For cascade-on-alert to be a viable solution, one must build two detectors that 
satisfy Equations 9.4 and 9.7. We translate these equations into practical considera­
tions. 
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Fig. 9.3. True positives for cascade-on-alert 

9.5.1 Satisfying Equation 9.4: The True-Positive Requirement 

Equation 9.4 requires that {Ai n / } = {A2 n / } . Practically, this means that both 
detectors must agree when a real attack occurs. Note that this does not mean that both 
detectors should detect all real attacks, but only that they should detect the same set 
of attacks (Figure 9.3). Detectors Di and D2 in Figure 9.3 detect that same set of 
real attacks (the crosshatched half of the set of real attacks) and miss the same set of 
real attacks (the bottom half of the set of real attacks). The combined detector detects 
the same set of real attacks as either component detector, but it cannot do better than 
that. 

To increase the set of detected real attacks of a cascade-on-alert combination, 
both sets of real attacks detected by the component detectors must increase. The best 
case is shown in Figure 9.4, where both component detectors Di and D2 detect all 
of the real attacks. In this case, the cascade-on-alert combination detects all of the 
real attacks as well. 

9.5.2 Satisfying Equation 9.7: The Cost Requirement 

Notice that satisfying the false positive and true positive requirement does not impose 
an order between £>r and D2: we can either put Di in front of D2, or vice versa. This 
is evident from Equation 9.4 which does not reflect the order between the detectors. 
Thus, we need to look at the cost requirement to determine how to order the detectors. 

The cost requirements for the cascade-on-alert scheme when detector Di is first 
and when D2 is first are, respectively, as follows: 

Ci^2 = Ci + P{Ai) xC2<X 

C2-.1 =C2 + P{A2) XCi<X 

(9.14) 

(9.15) 

If none of these requirements are satisfiied, then the cascade-on-alert scheme can­
not solve this instance of the detector-combination problem. If only one of these 
requirements is satisfied, then the solution is to choose the order corresponding to 
that requirement. If both of these requirements are satisfied, then either order (Di 
followed by D2 and D2 followed by Di) are possible solutions. 
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We favor the order that leads to the lowest cost for the combined detector. We 
assume, without loss of generality, that Di is less expensive to run than D2, by a 
factor of A; > 1: 

C2 = fc X Ci (9.16) 

Let us consider the conditions under which Di should be placed first: 

Ci + P{Ai) X C2 < C2 + P(A2) X Ci 

which holds if: 
k X P{Ai) - P{A2) < k - 1 (9.17) 

If Equation 9.17 holds, then Di should be placed first in the cascade-on-alert 
scheme. However, if Equation 9.17 does not hold, we reach a surprising result. The 
expensive detector, D2, should be placed first. Intuitively, the reason is that even 
though Di is less expensive, it will invoke D2 too frequently (because P{Ai) > 
k-l+P{A2)-. 

k >• 

9.5.3 Optimizing Cascade-On-Alert for False Positives 

Recall that cascade-on-alert scheme always improves the false-positive rate (Equa­
tion 9.5). Furthermore, cascade-on-alert enables us to reduce the false-positive rate 
to zero when we satisfy Equation 9.6. 

There can be four cases that satisfy Equation 9.6: 

1. 
2. 
3. 

When attempting to satisfy Equation 9.6, we also need to remember that we must 
satisfy Equation 9.4, which ensures that the true-positive rate requirement holds. In 
Case (1) above, this means that {Ai] n {A2} = 0 and {^1 n / } = {^2 n J} , thus, 
{A\ n / } = {A2 n J} = 0 . This scenario is not useful, because both the component 
detectors and the combined detector fail to detect any attacks. 

Case (2) describe scenarios in which the detector Di has no false positives. Given 
the fact that {AifM} = {^2 n / } (Equation 9.4), it means that Di detects all attacks 
detected by D2 and does not produce false positives. In this case, we would like to 
use L>i alone. The only reason to use D2 is to reduce the operational cost. This case 
is similar to the example case presented in Section 9.2. 

Case (3) is analogous to case (2). 
Case (4) means that the Di and £>2 have some false positives, but none of these 

false positives are common to both detectors. In other words, whatever the false 
positives from the two component detectors, as long as they are distinct, the cascade-
on-alert detector will have no false positives. We can combine this case with the 

Condition 
{Ai}n{A2}=0 
{yli}n{-7} = 0 
{A2} n {-/} = 0 
{^i}n{A2}n{-n7} = 0 

Description 
Detectors D\ and D2 have no alerts in common. 
Detector Di produces no false alerts. 
Detector D2 produces no false alerts. 
None of the three cases above applies. 
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Fig. 9.4. Best case for cascade-on-alert. 

best case for the true-positive requirement (described next) to obtain the only ideal 
detector that cascade-on-alert can build. 

The Ideal Cascade-On-Alert Combination. 
Based on the analysis for the true-positive requirement, a cascade-on-alert de­

tector can attain 100% true positives only if both component detectors have 100% 
true positives. Based on the analysis for the false-positive requirement, a cascade-on-
alert detector can attain 0% false positives if the two component detectors have no 
false positives in common. This scenario is illustrated in Figure 9.4. In this scenario, 
the resulting cascade-on-alert detector is ideal (no false alerts with 100% attacks 
detected). 

If we furthermore assume that both component detectors have low detection costs 
detectors (since they can have relatively large numbers of false positives), then the 
resulting cascade-on-alert detector has a relatively low detection cost as well. Thus 
cascade-on-alert can combine two low-cost detectors with large false positive rates 
(which further satisfy the true-positive and false-positive requirements) to obtain a 
low-cost ideal detector\ 

Realistic Cascade-On-Alert Combinations. 
The best case for the cascade-on-alert scenario, as discussed above, holds the 

promise of building ideal detectors from low-cost, high false-positive detectors. Un­
fortunately, it is unrealistic to expect to find detectors with disjoint false-alert sets. 
We discuss two cascade-on-alert cases that, although do not yield ideal detectors, 
have realistic requirements. 

The first case was presented in Section 9.2, where multiple detectors of increasing 
cost and decreasing false positives are chained in a cascade-on-alert setup. This is 
best illustrated using the diagram in figure 9.5. We show here three detectors (the 
three outer areas around the black circle) that could correspond to levels 1,3, and 4 
from Section 9.2. Both the true-positive and the false-positive requirements from 
Section 9.3 hold true: 
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Fig. 9.5. An implementation of the cascade-on-alert scheme that combines three detectors 
with decreasing false positives, P(All-17) > P{A2\~'I) > P(A3|-n/), and corresponding 
increasing costs, udc(i3i) < udc^Di) < udc{D3). 

{A,ni} = {A2ni} = {A3ni} 

{Ai n A2 n A3 n -./} = {A3 n -./} 
c {A2 n ^7} 
c {Ai n -./} 

(True-Positive Requirement) 

(False-Positive Requirement) 

This design scenario reflect the intuition expressed in the beginning of the chapter. 
We can chain multiple detectors using cascade-on-alert to obtain a combined detector 
with the lowest false positive rate and an averaged detection cost. 

The second design scenario for cascade-on-alert combinations is a more realistic 
version of the ideal cascade-on-alert combination. The difference is that we allow 
some false positives to occur from the combined detector, while maintaining the 
focus on getting disjoint sets of false positives. This still allows us to minimize the 
resulting number of false positives, as shown in Figure 9.6. The key element of this 
design scenario is the choice of the component detectors. The detectors Di and D2 
can have high false positive rates, as long as the rate of false positives they have in 
common is small. We believe this option provides a lot of latitude to the IDS designer, 
because many existing detectors have high false positive rates, making them valid 
candidates for this design process. 

9.6 Related Work 

We review related work in the areas of the false positives and combining detectors. 

The Problem of False Positives. 
Researchers [2, 6, 17] and users [16] of intrusion detection systems have ac­

knowledged that false positives are a major problem in adopting and using intrusion 
detection devices. 

In our opinion, Axelsson's fallacy [2] is the best explanation for the large number 
of false positives. Our work is based on the same observation as Axelsson's: unless a 
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Alerts from 
detector Dl 

Alerts from 
detector D2 

Intrusions 

Fig. 9.6. Combining detectors with disjoint false positives in a cascade-on-alert scheme results 
in a detector with (almost) no false positives. If {/} C {Ai} n {A2}, then the combined 
detector has few false positives and no false negatives. 

detector does not produce any false positives, the large number of benign events leads 
to a high number of false positives. We extended Axelsson's work by adding the cost 
of detection into the equation. We observed that the majority of benign events can be 
efficiently and safely classified as benign. This means that the average classification 
cost can be close to the cost of classifying benign events. 

In the literature, one can find two main methods to fight false positives: alarm 
clustering and accurate signatures. The goal of alarm clustering [3, 5, 9] is to group 
together related alerts, so the security administrator can analyze a group of alerts 
rather than each alert individually. Generally speaking, alarm clustering deals with 
the symptoms rather the causes. In comparison, the detector-combination approach 
attempts to reduce the overall number of false alerts. 

Using more accurate signatures is an attractive approach for fighting false posi­
tives. Unfortunately, accurate signatures usually require a higher computational cost. 
For example, researchers have suggested to use victim responses [15, 17] as part 
of signatures or to verify the alert [11], using a monitoring tool like Nessus [7]. 
Our work is based on the assumption that even inaccurate signatures are enough to 
distinguish between benign and might-be-malicious events, thus leaving the use of 
more expensive signatures to distinguish between might-be-malicious and malicious 
events. 

Combining Detectors. 
A common way to combine detectors is by using a voting scheme, where the out­

put of the combined detector is the output that the majority vote among all detectors. 
Giacinto et al. [8] found that a voting-based detector is more accurate than detectors 
that were used in the DARPA evaluation [12]. Our work considers other combina­
tion schemes like cascading (Section 9.4.2). Furthermore, we consider the question 
of operating under cost constraints, which was not addressed by Giacinto et al. 

Other researchers consider hierarchical architectures for intrusion detection. In a 
typical hierarchical architecture (e.g., [21]), the detectors are ordered in layers, and 
the input for a detector in a lower layer is the output of a detector in a higher layer. 
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Our cascading approach is similar to a hierarchical architecture, but our cascading 
architecture "bypasses", in some cases, a lower level detector (Figure 9.1). 

9.7 Future Vision 

We believe that our results demonstrate the potential benefits of combining detectors. 
Based on these results, we propose that future work in intrusion detection (and pre­
vention) targets the issue of building new detectors that cooperate well with existing 
detectors. 

There are two research problems that require solutions before cooperative IDS 
development becomes practical. First, for the development of a new detector not to 
overlap existing detectors, a way to evaluate the event space covered by existing 
detectors is needed. Note that the goal is not to measure the true-positive and false-
positive rates, but to identify the sets of true positives and false positives in the event 
space. Recent work on language-based techniques for NIDS evaluation could prove 
useful in developing analytic solutions [15]. Another possible approach is based on 
the empirical assessment of an IDS. By learning the rules used by network-based 
and host-based intrusion detection systems, the event space covered by a particular 
IDS can be characterized precisely [4, 10]. Extending these techniques to answer the 
problem of event-space coverage for an existing IDS accurately is one direction for 
future research. 

The second research goal in support of cooperative IDS development is to iden­
tify additional solutions to the detector-combination problem. In this chapter we pre­
sented a set of possible solutions (the cascade-on-alert and the cascade-on-non-alert 
schemes) that each enable multiple design strategies (Section 9.5). Other ways of 
combining detectors could provide different tradeoffs between true positives, false 
positives, and cost. Decision trees, based on the idea of breaking up a complex deci­
sion ("Is this event a real attack?") into multiple simpler decisions, can provide the 
conceptual framework for finding other ways to combine detectors. At each node in 
the decision tree a intrusion detector is placed, and the output of this detector in­
fluences that path taken through the tree. The problem of constructing an optimal 
decision tree, given a set of intrusion detectors as blackbox decision procedures, is 
another direction for future research. 
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Summary. We investigate the use of hybrid techniques as a defensive mechanism against 
targeted attacks and introduce Shadow Honeypots, a novel hybrid architecture that combines 
the best features of honeypots and anomaly detection. At a high level, we use a variety of 
anomaly detectors to monitor all traffic to a protected network/service. Traffic that is con­
sidered anomalous is processed by a "shadow honeypot" to determine the accuracy of the 
anomaly prediction. The shadow is an instance of the protected software that shares all inter­
nal state with a regular ("production") instance of the application, and is instrumented to detect 
potential attacks. Attacks against the shadow are caught, and any incurred state changes are 
discarded. Legitimate traffic that was misclassifled will be validated by the shadow and will 
be handled correctly by the system transparently to the end user. The outcome of processing a 
request by the shadow is used to filter future attack instances and could be used to update the 
anomaly detector. 

Our architecture allows system designers to fine-tune systems for performance, since false 
positives will be filtered by the shadow. Contrary to regular honeypots, our architecture can 
be used both for server and client applications. We also explore the notion of using Shadow 
Honeypots in Application Communities in order to amortize the cost of instrumentation and 
detection across a number of autonomous hosts. 

10.1 Introduction 

Due to the increasing level of malicious activity seen on today's Internet, organiza­
tions are beginning to deploy mechanisms for detecting and responding to new at­
tacks or suspicious activity, called Intrusion Prevention Systems (IPS). Since current 
IPS's use rule-based intrusion detection systems (IDS) such as Snort [37] to detect 
attacks, they are limited to protecting, for the most part, against already known at­
tacks. As a result, new detection mechanisms are being developed for use in more 
powerful reactive-defense systems. The two primary such mechanisms are honey­
pots [32, 13, 62, 45, 20, 4] and anomaly detection systems (ADS) [53, 57, 52, 6, 19]. 
In contrast with IDS's, honeypots and ADS's offer the possibility of detecting (and 
thus responding to) previously unknown attacks, also referred to as zero-day attacks. 
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Honeypots and anomaly detection systems offer different tradeoffs between ac­
curacy and scope of attacks that can be detected, as shown in Figure 10.1. Honeypots 
can be heavily instrumented to accurately detect attacks, but depend on an attacker 
attempting to exploit a vulnerability against them. This makes them good for de­
tecting scanning worms [8, 9, 13], but ineffective against manual directed attacks or 
topological and hit-list worms [48, 47]. Furthermore, honeypots can typically only 
be used for server-type applications. Anomaly detection systems can theoretically 
detect both types of attacks, but are usually much less accurate. Most such systems 
offer a tradeoff between false positive (FP) and false negative (FN) rates. For ex­
ample, it is often possible to tune the system to detect more potential attacks, at an 
increased risk of misclassifying legitimate traffic (low FN, high FP); alternatively, it 
is possible to make an anomaly detection system more insensitive to attacks, at the 
risk of missing some real attacks (high FN, low FP). Because an ADS-based IPS can 
adversely affect legitimate traffic {e.g., drop a legitimate request), system designers 
often tune the system for low false positive rates, potentially misclassifying attacks 
as legitimate traffic. 

Accuracy 

A 
Honeypot 

Shadow 

Honeypot 

Anomaly Detection 

Scan/Random All Attacks ^COpc 
Attacks Only (Random + Targeted) 

Fig. 10.1. A simple classification of honeypots and anomaly detection systems, based on at­
tack detection accuracy and scope of detected attacks. Targeted attacks may use lists of known 
(potentially) vulnerable servers, while scan-based attacks will target any system that is be­
lieved to run a vulnerable service. AD systems can detect both types of attacks, but with lower 
accuracy than a specially instrumented system (honeypot). However, honeypots are blind to 
targeted attacks, and may not see a scanning attack until after it has succeeded against the real 
server. 

We propose a novel hybrid approach that combines the best features of honey­
pots and anomaly detection, named Shadow Honeypots. At a high level, we use a 
variety of anomaly detectors to monitor all traffic to a protected network. Traffic that 



10 Composite Hybrid Teciiniques For Defending Against Targeted Attacks 215 

is considered anomalous is processed by a shadow lioneypot. The shadow version 
is an instance of the protected apphcation {e.g., a web server or client) that shares 
all internal state with a "normal" instance of the application, but is instrumented to 
detect potential attacks. Attacks against the shadow honeypot are caught and any in­
curred state changes are discarded. Legitimate traffic that was misclassified by the 
anomaly detector will be validated by the shadow honeypot and will be transparently 
handled correctly by the system (i.e., an HTTP request that was mistakenly flagged 
as suspicious will be served correctly). Our approach offers several advantages over 
stand-alone ADS's or honeypots: 

• First, it allows system designers to tune the anomaly detection system for low 
false negative rates, minimizing the risk of misclassifying a real attack as legiti­
mate traffic, since any false positives will be weeded out by the shadow honeypot. 

• Second, and in contrast to typical honeypots, our approach can defend against 
attacks that are tailored against a specific site with a particular internal state. 
Honeypots may be blind to such attacks, since they are not typically mirror im­
ages of the protected application. 

• Third, shadow honeypots can also be instantiated in a form that is particu­
larly well-suited for protecting against client-side attacks, such as those directed 
against web browsers and P2P file sharing clients. 

• Finally, our system architecture facilitates easy integration of additional detection 
mechanisms. 

In addition to the server-side scenario, we also investigate a client-targeting 
attack-detection scenario, unique to shadow honeypots, where we apply the detec­
tion heuristics to content retrieved by protected clients and feed any positives to 
shadow honeypots for further analysis. Unlike traditional honeypots, which are idle 
whilst waiting for active attackers to probe them, this scenario enables the detection 
of passive attacks, where the attacker lures a victim user to download malicious data. 

Finally, we explore the combination of Shadow Honeypots with Application 
Communities to create a distributed collaborative environment where detection and 
the processing cost incured by the use Shadow Honeypots is shared across a large 
number of hosts. 

Chapter Organization. The remainder of this chapter is organized as follows. Sec­
tion 10.2 discusses the shadow honeypot architecture in greater detail. Some of 
the limitations of our approach are briefly discussed in Section 10.3. We give an 
overview of related work in Section 10.4, and conclude the chapter with a summary 
of our work and plans for future work in Section 10.5. 

10.2 Architecture 

The Shadow Honeypot architecture is a systems approach to handling network-based 
attacks, combining filtering, anomaly detection systems and honeypots in a way that 
exploits the best features of these mechanisms, while shielding their limitations. We 
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focus on transactional applications, i.e., those that handle a series of discrete requests. 
Our architecture is not limited to server applications, but can be used for client-side 
applications such as web browsers, P2P clients, etc. As illustrated in Figure 10.2, the 
architecture is composed of three main components: a filtering engine, an array of 
anomaly detection sensors and the shadow honeypot, which validates the predictions 
of the anomaly detectors. The processing logic of the system is shown graphically in 
Figure 10.3. 

The filtering component blocks known attacks. Such filtering is done based ei­
ther on payload content [56, 1] or on the source of the attack, if it can be identified 
with reasonable confidence {e.g., confirmed traffic bi-dircctionality). Effectively, the 
filtering component short-circuits the detection heuristics or shadow testing results 
by immediately dropping specific types of requests before any further processing is 
done. 

Traffic passing the first stage is processed by one or more anomaly detectors. 
There are several types of anomaly detectors that may be used in our system, includ­
ing payload analysis [57, 42, 18, 52] and network behavior [16, 60]. Although we 
do not impose any particular requirements on the AD component of our system, it 
is preferable to tune such detectors towards high sensitivity (at the cost of increased 
false positives). The anomaly detectors, in turn, signal to the protected application 
whether a request is potentially dangerous. 

Protected System 

Regular 
Service 
Code \ 

State Rollback 

Update filters 

Traffic from the networi< 

Fig. 10.2. Shadow Honeypot architecture. 
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Update AD Model 
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Update Filtering Component 

Indicate False Negative to AD 
Update AD Model 
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Fig. 10.3. System workflow. 

Depending on this prediction by the anomaly detectors, the system invokes either 
the regular instance of the application or its shadow. The shadow is an instrumented 
instance of the application that can detect specific types of failures and rollback any 
state changes to a known (or presumed) good state, e.g., before the malicious request 
was processed. Because the shadow is (or should be) invoked relatively infrequently, 
we can employ computationally expensive instrumentation to detect attacks. The 
shadow and the regular application fully share state, to avoid attacks that exploit 
differences between the two; we assume that an attacker can only interact with the 
application through the filtering and AD stages, i.e., there are no side-channels. The 
level of instrumentation used in the shadow depends on the amount of latency we 
are willing to impose on suspicious traffic (whether truly malicious or misclassified 
legitimate traffic). In our reference implementation, described in [3], we focus on 
memory-violation attacks, but any attack that can be determined algorithmically can 
be detected and recovered from, at the cost of increased complexity and potentially 
higher latency. 

If the shadow detects an actual attack, we notify the filtering component to block 
further attacks. If no attack is detected, we update the prediction models used by 



218 Stelios Sidiroglou and Angelos D. Keromytis 

the anomaly detectors. Thus, our system could in fact self-train and fine-tune itself 
using veriflably bad traffic and known mis-predictions, although this aspect of the 
approach is outside the scope of the present chapter. 

As we mentioned above, shadow honeypots can be integrated with servers as 
well as clients. In this work, we focus our attention on tight coupling with both 
server and client applications, where the shadow resides in the same address space 
as the protected appHcation. 

• Tightly coupled with server This is the most practical scenario, in which we 
protect a server by diverting suspicious requests to its shadow. The application 
and the honeypot are tightly coupled, mirroring functionality and state. We have 
implemented this configuration with the Apache web server, described in [3]. 

• Tightly coupled with client Unlike traditional honeypots, which remain idle 
while waiting for active attacks, this scenario targets passive attacks, where the 
attacker lures a victim user to download data containing an attack, as with the 
recent buffer overflow vulnerability in Internet Explorer's JPEG handling. In this 
scenario, the context of an attack is an important consideration in replaying the 
attack in the shadow. It may range from data contained in a single packet to an 
entire flow, or even set of flows. Alternatively, it may be defined at the application 
layer. For our testing scenario, specifically on HTTP, the request/response pair is 
a convenient context. 

• Loosely coupled with server In this scenario, we detect novel attacks against 
protected servers by diverting suspicious requests to shadow honeypots. The ap­
plication is not tightly coupled with the shadow honeypot system, so multiple 
versions of the application may have to be maintained, and its exact configura­
tion is not known. The requests are captured using passive monitoring and no 
attempt is made to prevent the attack. This approach has the benefit of being able 
to "outsource" the detection of vulnerabilities to third entities, potentially taking 
advantage of economies of scale. 

• Loosely coupled with client For this approach, suspicious flows are redirected to 
loosely coupled (do not share state or configuration) versions of an application. 
One can envision protected client farms where suspicious traffic is tested against 
multiple versions of the application one is trying to protect. 

Tight coupling assumes that the application can be modified. The advantage of 
this configuration is that attacks that exploit differences in the state of the shadow 
vs. the application itself become impossible. However, it is also possible to deploy 
shadow honeypots in a loosely coupled configuration, where the shadow resides on a 
different system and does not share state with the protected application. The advan­
tage of this configuration is that management of the shadows can be "outsourced" to 
a third entity as a service. 

Note that the filtering and anomaly detection components can also be tightly 
coupled with the protected application, or may be centralized at a natural aggregation 
point in the network topology (e.g., at the firewall). 

Finally, it is worth considering how our system would behave against different 
types of attacks. For most attacks we have seen thus far, once the AD component 
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Fig. 10.4. Application Community worlcHow 

has identified an anomaly and the shadow has vahdated it, the filtering component 
will block all future instances of it from getting to the application. However, we 
cannot depend on the filtering component to prevent polymorphic or metamorphic 
[51] attacks. For low-volume events, the cost of invoking the shadow for each attack 
may be acceptable. For high-volume events, such as a Slammer-like outbreak, the 
system will detect a large number of correct AD predictions (verified by the shadow) 
in a short period of time; should a configurable threshold be exceeded, the system can 
enable filtering at the second stage, based on the unverified verdict of the anomaly 
detectors. Although this will cause some legitimate requests to be dropped, this could 
be acceptable for the duration of the incident. Once the number of (perceived) attacks 
seen by the ADS drop beyond a threshold, the system can revert to normal operation. 
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Application Communities 

Using shadow honeypots in a collaborative distributed environment presents another 
set of interesting tradeoffs and deployment configurations. For this purpose, we ex­
plore the use of shadow honeypots with Application Communities [21]. 

Application Communities (AC) are a collection of almost-identical instances of 
the same application running autonomously across a wide area network. Members 
of an AC collaborate in identifying previously unknown (zero day) flaws/attacks and 
exchange information so that such failures are prevented from re-occurring. Individ­
ual members may succumb to new flaws; however, over time the AC should converge 
to a state of immunity against that specific fault. The system learns new faults and 
adapts to them, exploiting the AC size to achieve both coverage (in detecting faults) 
and fairness (in distributing the monitoring task). 

Shadow honeypots, in collaboration with Application Communities, provides a 
systemic framework where the cost of validating false positives is amortized across 
a large number of hosts and collaboration in anomaly detection can result in more 
robust vulnerability sensing. Shadow honeypots and AG's can be used in both tightly 
and loosely coupled configurations. As illustrated in 10.4, each host in an application 
community participates in protecting portions of an application. For example, if an 
AC is comprised of four nodes, one (naive) way to split the monitoring cost would 
be to assign each node responsibility for 25% of the code. For a detailed analysis 
on work distribution mechanisms and fairness measures, refer to [21]. AC hosts are 
solely responsible for dealing with their traffic. Traffic that is tagged suspicious by 
the local AD is processed either by the local instance of the shadow code in a tightly 
coupled scenario or forwarded to a third party in loosely coupled configuration. 

In the tightly coupled scenario, suspicious requests are processed locally by a 
shadow version of the code that monitors a subset of the application code. This 
translates into a lower per host cost for processing false positives but relies on col­
laboration and the size of an AC to achieve both coverage and low overhead. If a 
vulnerability is detected, it is first processed locally and then information pertinent 
to the attack is propagated to the AC. In more detail, given a fault, the application 
is modified so that it can both detect and recover from any future manifestations of 
the specific fault and the anomaly detectors are updated with signatures derived from 
the attack vector. This information, along with the attack vector, is then dispatched 
to the rest of the AC, where hosts can independently validate the vulnerability. 

Similarly, for the loosely couple configuration, suspicious requests to a host are 
sent to a remote sensor that is responsible for monitoring one portion of the appli­
cation. If the remote sensor detects a fault, the vulnerability specific information is 
reported back to the host that will, in turn, update the anomaly detector filters and 
update the application with a version that is protected against the specific fault. At 
that point, information derived from the remote sensor is communicated to the rest 
of the AC. 
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10.3 Limitations 

There are three limitations of the shadow honeypot design presented in this chapter 
that we are aware of. First, the effectiveness of the rollback mechanism depends on 
the detection and recovery capabilities of the vulnerabiUty sensor, and the latency 
of the detector. The detector used in [3] can instantly detect attempts to overwrite a 
buffer, and therefore the system cannot be corrupted. Other detectors [41], however, 
may have higher latency, and the placement of commit calls is critical to recovering 
from the attack. Depending on the detector latency and how it relates to the cost of 
implementing rollback, one may have to consider different approaches. The trade­
offs involved in designing such mechanisms are thoroughly examined in the fault-
tolerance literature (c.f. [15]). 

Second, the loosely coupled client shadow honeypot is limited to protecting 
against relatively static attacks. The honeypot cannot effectively emulate user be­
havior that may be involved in triggering the attack, for example, through DHTML 
or Javascript. The loosely coupled version is also weak against attacks that depend 
on local system state on the user's host that is difficult to replicate. This is not a prob­
lem with tightly coupled shadows, because we accurately mirror the state of the real 
system. In some cases, it may be possible to mirror state on loosely coupled shadows 
as well, but we have not considered this case in the experiments presented in this 
chapter. 

Finally, we have not explored in depth the use of feedback from the shadow 
honeypot to tune the anomaly detection components. Although this is likely to lead 
to substantial performance benefits, we need to be careful so that an attacker cannot 
launch blinding attacks, e.g., "softening" the anomaly detection component through 
a barrage of false positives before launching a real attack. 

10.4 Related Work 

Much of the work in automated attack reaction has focused on the problem of net­
work worms, which has taken truly epidemic dimensions (pun intended). For exam­
ple, the system described in [60] detects worms by monitoring probes to unassigned 
IP addresses ("dark space") or inactive ports and computing statistics on scan traffic, 
such as the number of source/destination addresses and the volume of the captured 
traffic. By measuring the increase on the number of source addresses seen in a unit 
of time, it is possible to infer the existence of a new worm when as little as 4% of the 
vulnerable machines have been infected. A similar approach for isolating infected 
nodes inside an enterprise network [46] is taken in [16], where it was shown that as 
little as 4 probes may be sufficient in detecting a new port-scanning worm. [58] de­
scribes an approximating algorithm for quickly detecting scanning activity that can 
be efficiently implemented in hardware. [38] describes a combination of reverse se­
quential hypothesis testing and credit-based connection throttling to quickly detect 
and quarantine local infected hosts. These systems are effective only against scan­
ning worms (not topological, or "hit-list" worms), and rely on the assumption that 
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most scans will result in non-connections. As such, they as susceptible to false pos­
itives, either accidentally {e.g., when a host is joining a peer-to-peer network such 
as Gnutella, or during a temporary network outage) or on purpose (e.g., a malicious 
web page with many links to images in random/not-used IP addresses). Furthermore, 
it may be possible for several instances of a worm to collaborate in providing the il­
lusion of several successful connections, or to use a list of known repliers to blind 
the anomaly detector. Another algorithm for finding fast-spreading worms using 2-
level filtering based on sampling from the set of distinct source-destination pairs is 
described in [54]. 

[59] correlates DNS queries/replies with outgoing connections from an enterprise 
network to detect anomalous behavior. The main intuition is that connections due to 
random-scanning (and, to a degree, hit-list) worms will not be preceded by DNS 
transactions. This approach can be used to detect other types of malicious behavior, 
such as mass-mailing worms and network reconnaissance. 

[18] describes an algorithm for correlating packet payloads from different traffic 
flows, towards deriving a worm signature that can then be filtered [24]. The tech­
nique is promising, although further improvements are required to allow it to operate 
in real time. Earlybird [42] presents a more practical algorithm for doing payload 
sifting, and correlates these with a range of unique sources generating infections and 
destinations being targeted. However, polymorphic and metamorphic worms [51] re­
main a challenge; Spinelis [44] shows that it is an NP-hard problem. Buttercup [28] 
attempts to detect polymorphic buffer overflow attacks by identifying the ranges of 
the possible return memory addresses for existing buffer overflow vulnerabilities. 
Unfortunately, this heuristic cannot be employed against some of the more sophis­
ticated overflow attack techniques [30]. Furthermore, the false positive rate is very 
high, ranging from 0.01% to 1.13%. Vigna etal. [55] discuss a method for testing de­
tection signatures against mutations of known vulnerabilities to determine the quality 
of the detection model and mechanism. Polygraph [27] attempts to detect polymor­
phic exploits by identifying common invariants among the various attack instances, 
such as return addresses, protocol framing and poor obfuscation. Toth and Kruegel 
[52] propose to detect buffer overflow payloads (including previously unseen ones) 
by treating inputs received over the network as code fragments. The use restricted 
symbolic execution to show that legitimate requests will appear to contain relatively 
short sequences of valid x86 instruction opcodes, compared to attacks that will con­
tain long sequences. They integrate this mechanism into the Apache web server, 
resulting in a small performance degradation. STRIDE [2] is a similar system that 
seeks to detect polymorphic NOP-sleds in buffer overflow exploits. [29] describes a 
hybrid polymorphic-code detection engine that combines several heuristics, includ­
ing NOP-sled detector and abstract payload execution. 

HoneyStat [13] runs sacrificial services inside a virtual machine, and monitors 
memory, disk, and network events to detect abnormal behavior. For some classes 
of attacks (e.g., buffer overflows), this can produce highly accurate alerts with rela­
tively few false positives, and can detect zero-day worms. Although the system only 
protects against scanning worms, "active honeypot" techniques [62] may be used 
to make it more difficult for an automated attacker to differentiate between Hon-
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eyStats and real servers. FLIPS (Feedback Learning IPS) [22] is a similar hybrid 
approach that incorporates a supervision framework in the presence of suspicious 
traffic. Instruction-set randomization is used to isolate attack vectors, which are used 
to train the anomaly detector. Shadow honeypots [3] combine the best features found 
in anomaly detectors and honeypots to create what an application-aware network in­
trusion detection system. The anomaly detectors differentiate between trusted and 
untrusted traffic; trusted traffic is processed normally whilst untrusted traffic is for­
warded to a protected instance of the application, its "shadow." The system provides 
an elegant way to deal with false positives, since all requests are processed albeit 
some incur additional latency. The authors of [14] propose to enhance NIDS alerts 
using host-based IDS information. Nemean [63] is an architecture for generating 
semantics-aware signatures, which are signatures aware of protocol semantics (as 
opposed to general byte strings). Shield [56] is a mechanism for pushing to work­
stations vulnerability-specific, application-aware filters expressed as programs in a 
simple language. These programs roughly mirror the state of the protected service, 
allowing for more intelligent application of content filters, as opposed to simplistic 
payload string matching. 

The Internet Motion Sensor [4] is a distributed blackhole monitoring system 
aimed at measuring, characterizing, and tracking Internet-based threats, including 
worms. [11] explores the various options in locating honeypots and correlating their 
findings, and their impact on the speed and accuracy in detecting worms and other 
attacks. [33] shows that a distributed worm monitor can detect non-uniform scanning 
worms two to four times as fast as a centraUzed telescope [25], and that knowledge of 
the vulnerability density of the population can further improve detection time. How­
ever, other recent work has shown that it is relatively straightforward for attackers to 
detect the placement of certain types of sensors [5, 39]. Shadow Honeypots [3] are 
one approach to avoiding such mapping by pushing honeypot-like functionality at 
the end hosts. 

The Worm Vaccine system [40] proposes the use of honeypots with instrumented 
versions of software services to be protected, coupled with an automated patch-
generation facility. This allows for quick (< 1 minute) fixing of buffer overflow 
vulnerabilities, even against zero-day worms, but depends on scanning behavior on 
the part of worms. 

The HACQIT architecture [17, 36, 34, 35] uses various sensors to detect new 
types of attacks against secure servers, access to which is limited to small numbers 
of users at a time. Any deviation from expected or known behavior results in the 
possibly subverted server to be taken off-line. A sandboxed instance of the server 
is used to conduct "clean room" analysis, comparing the outputs from two different 
implementations of the service (in their prototype, the Microsoft IIS and Apache web 
servers were used to provide application diversity). Machine-learning techniques are 
used to generalize attack features from observed instances of the attack. Content-
based filtering is then used, either at the firewall or the end host, to block inputs 
that may have resulted in attacks, and the infected servers are restarted. Due to the 
feature-generalization approach, trivial variants of the attack will also be caught by 
the filter. [53] takes a roughly similar approach, although filtering is done based 
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on port numbers, which can affect service availability. Cisco's Network-Based Ap­
plication Recognition (NBAR) [1] allows routers to block TCP sessions based on 
the presence of specific strings in the TCP stream. This feature was used to block 
CodeRed probes, without affecting regular web-server access. Porras et al. [31] ar­
gue that hybrid defenses using complementary techniques (in their case, connection 
throttling at the domain gateway and a peer-based coordination mechanism), can be 
much more effective against a wide variety of worms. 

DOMINO [61] is an overlay system for cooperative intrusion detection. The sys­
tem is organized in two layers, with a small core of trusted nodes and a larger col­
lection of nodes connected to the core. The experimental analysis demonstrates that 
a coordinated approach has the potential of providing early warning for large-scale 
attacks while reducing potential false alarms. A similar approach using a DHT-based 
overlay network to automatically correlate all relevant information is described in 
[7]. Reference [64] describes an architecture and models for an early warning sys­
tem, where the participating nodes/routers propagate alarm reports towards a central­
ized site for analysis. The question of how to respond to alerts is not addressed, and, 
similar to DOMINO, the use of a centralized collection and analysis facility is weak 
against worms attacking the early warning infrastructure. 

Suh et al. [49], propose a hardware-based solution that can be used to thwart 
control-transfer attacks and restrict executable instructions by monitoring "tainted" 
input data. In order to identify "tainted" data, they rely on the operating system. If 
the processor detects the use of this tainted data as a jump address or an executed 
instruction, it raises an exception that can be handled by the operating system. The 
authors do not address the issue of recovering program execution and suggest the 
immediate termination of the offending process. DIRA [43] is a technique for auto­
matic detection, identification and repair of control-hijaking attacks. This solution is 
implemented as a GCC compiler extension that transforms a program's source code 
adding heavy instrumentation so that the resulting program can perform these tasks. 
The use of checkpoints throughout the program ensures that corruption of state can 
be detected if control sensitive data structures are overwritten. Unfortunately, the 
performance implications of the system make it unusable as a front line defense 
mechanism. Song and Newsome [26] propose dynamic taint analysis for automatic 
detection of overwrite attacks. Tainted data is monitored throughout the program ex­
ecution and modified buffers with tainted information will result in protection faults. 
Once an attack has been identified, signatures are generated using automatic seman­
tic analysis. The technique is implemented as an extension to Valgrind and does 
not require any modifications to the program's source code but suffers from severe 
performance degradation. One way of minimizing this penalty is to make the CPU 
aware of memory tainting [10]. Crandall et al. report on using a taint-based system 
for capturing live attacks in [12]. 

The Safe Execution Environment (SEE) [50] allows users to deploy and test un-
trusted software without fear of damaging their system. This is done by creating a 
virtual environment where the software has read access to the real data; all writes 
are local to this virtual environment. The user can inspect these changes and de­
cide whether to commit them or not. We envision use of this technique for unrolling 
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the effects of filesystem changes in our system, as part of our liiture worlc plans. A 
similar proposal is presented in [23] for executing untrusted Java applets in a safe 
"playground" that is isolated from the user's environment. 

10.5 Conclusion 

We have described a novel approach to dealing with zero-day attacks by combining 
features found today in honeypots and anomaly detection systems. The main advan­
tage of this architecture is providing system designers the ability to fine tune systems 
with impunity, since any false positives (legitimate traffic) will be filtered by the 
underlying components. 

We have implemented this approach in an architecture called Shadow Honeypots. 
In this approach, we employ an array of anomaly detectors to monitor and classify 
all traffic to a protected network; traffic deemed anomalous is processed by a shadow 
honeypot, a protected instrumented instance of the application we are trying to pro­
tect. Attacks against the shadow honeypot are detected and caught before they infect 
the state of the protected application. This enables the system to implement policies 
that trade off between performance and risk, retaining the capability to re-evaluate 
this trade-off effortlessly. We also explore the use of Shadow Honeypots in Appli­
cation Communities where, the cost of instrumentation is spread across numerous 
hosts and anomaly detector models can be updated to reflect the findings of hosts 
that service a variety of different traffic flows. 

Finally, the preliminary performance experiments indicate that despite the con­
siderable cost of processing suspicious traffic on our Shadow Honeypots and over­
head imposed by instrumentation, our system is capable of sustaining the overall 
workload of protecting services such as a Web server farm, as well as vulnerable 
Web browsers. In the future, we expect that the impact on performance can be min­
imized by reducing the rate of false positives and tuning the AD heuristics using 
a feedback loop with the shadow honeypot. Our plans for future work also include 
evaluating different components and extending the performance evaluation. 

References 

1. .. *. Using Network-Based Application Recognition and Access Control Lists for Block­
ing the "Code Red" Worm at Network Ingress Points. Technical report, Cisco Systems, 
Inc., 2006. 

2. R Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis. STRIDE: Polymor­
phic Sled Detection through Instruction Sequence Analysis. In Proceedings of the 20"' 
IFIP International Information Security Conference (IFIP/SEC), June 2005. 

3. K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D. 
Keromytis. Detecting Targetted Attacks Using Shadow Honeypots. In Proceedings of 
the 14*'' USENIX Security Symposium, pages 129-144, August 2005. 



226 Stelios Sidiroglou and Angelos D. Keromytis 

4. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion Sensor: 
A Distributed Blackhole Monitoring System. In Proceedings of the 12*'' ISOC Sympo­
sium on Network and Distributed Systems Security (SNDSS), pages 167-179, February 
2005. 

5. J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet Sensors With Probe Re­
sponse Attacks. In Proceedings of the 14"' USENIX Security Symposium, pages 193-208, 
August 2005. 

6. M. Bhattacharyya, M. G. Schultz, E. Eskin, S. Hershkop, and S. J. Stolfo. MET: An 
Experimental System for Malicious Email Tracking. In Proceedings of the New Security 
Paradigms Workshop (NSPW), pages 1-12, September 2002. 

7. M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen. Collaborative Internet Worm 
Containment. IEEE Security & Privacy Magazine, 3(3):25-33, May/June 2005. 

8. CERT Advisory CA-2001-19; 'Code Red' Worm Exploiting Buffer Overflow in IIS 
Indexing Service DLL. h t t p : / /www. c e r t . o r g / a d v i s o r i e s / C A - 2 0 0 1 - 1 9 . 
h t m l , July 2001. 

9. Cert Advisory CA-2003-04: MS-SQL Server Worm, h t t p : / / w w w . c e r t . o r g / 
a d v i s o r i e s / C A - 2 0 0 3 - 0 4 . h t m l , January 2003. 

10. S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and C. Verbowski. Defeating Memory Cor­
ruption Attacks via Pointer Taintedness Detection. In Proceedings of the International 
Conference on Dependable Systems and Networks (DSN), pages 378-387, June 2005. 

11. E. Cook, M. Bailey, Z. M. Mao, and D. McPherson. Toward Understanding Distributed 
Blackhole Placement. In Proceedings of the ACM Workshop on Rapid Malcode (WORM), 
pages 54-64, October 2004. 

12. J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences Using Minos as a Tool for Captur­
ing and Analyzing Novel Worms for Unknown Vulnerabilities. In Proceedings of the Con­
ference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), 
July 2005. 

13. D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat; Local 
Worm Detection Using Honepots. In Proceedings of the 7*'' International Symposium on 
Recent Advances in Intrusion Detection (RAID), pages 39-58, October 2004. 

14. H. Dreger, C. Kreibich, V. Paxson, and R. Sommer. Enhancing the Accuracy of Network-
based Intrusion Detection with Host-based Context. In Proceedings of the Conference on 
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 2005. 

15. E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery 
protocols in message-passing systems. ACM Comput. Surv., 34(3):375^08, 2002. 

16. J. Jung, V. Paxson, A. W Berger, and H. Balakrishnan. Fast Portscan Detection Using 
Sequential Hypothesis Testing. In Proceedings of the IEEE Symposium on Security and 
Privacy, May 2004. 

17. J. E. Just, L. A. Clough, M. Danforth, K. N. Levitt, R. Maglich, J. C. Reynolds, and 
J. Rowe. Learning Unknown Attacks - A Start. In Proceedings of the 5" ' International 
Symposium on Recent Advances in Intrusion Detection (RAID), October 2002. 

18. H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature Detec­
tion. In Proceedings of the 13"" USENIX Security Symposium, pages 271-286, August 
2004. 

19. C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In Proceedings 
of the lO"' ACM Conference on Computer and Communications Security (CCS), pages 
251-261, October 2003. 

20. J. G. Levine, J. B. Grizzard, and H. L. Owen. Using Honeynets to Protect Large Enterprise 
Networks. IEEE Security & Privacy, 2(6):73-75, November/December 2004. 



10 Composite Hybrid Techniques For Defending Against Targeted Attacks 227 

21. M. Locasto, S. Sidiroglou, and A. D. Keromytis. Application Communities; Using Mono­
culture for Dependability. In Proceedings of the 1"* Workshop on Hot Topics in System 
Dependability (HotDep), pages 288-292, June 2005. 

22. M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. FLIPS: Hybrid Adaptive Intrusion 
Prevention. In Proceedings of the 8*^ Symposium on Recent Advances in Intrusion De­
tection (RAID), September 2005. 

23. D. Malldii and M. K. Reiter. Secure Execution of Java Applets Using a Remote Play­
ground. IEEE Trans. Softw. Eng., 26(12):1197-1209, 2000. 

24. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quarantine: Requirements 
for Containing Self-Propagating Code. In Proceedings of the IEEE Infocom Conference, 
April 2003. 

25. D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial-of-Service Activity. In 
Proceedings of the 10*'' USENIX Security Symposium, pages 9-22, August 2001. 

26. J. Newsome and D. Dong. Dynamic Taint Analysis for Automatic Detection, Analysis, 
and Signature Generation of Exploits on Commodity Software. In Proceedings of the 12"* 
ISOC Symposium on Network and Distributed System Security (SNDSS), pages 221-237, 
February 2005. 

27. J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for 
Polymorphic Worms. In Proceedings of the IEEE Security & Privacy Symposium, pages 
226-241, May 2005. 

28. A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C. Kuo, and K. R Fan. Buttercup: On 
Network-based Detection of Polymorphic Buffer Overflow Vulnerabilities. In Proceed­
ings of the Network Operations and Management Symposium (NOMS), pages 235-248, 
vol. 1, April 2004. 

29. U. Payer, P. Teufl, and M. Lamberger. Hybrid Engine for Polymorphic Shellcode De­
tection. In Proceedings of the Conference on Detection of Intrusions and Malware & 
Vulnerability Assessment (DIMVA), July 2005. 

30. J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances in Exploiting Buffer 
Overflows. IEEE Security & Privacy, 2(4):20-27, July/August 2004. 

31. P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and Y.-C. A. Ting. A Hybrid Quarantine 
Defense. In Proceedings of the ACM Workshop on Rapid Malcode (WORM), pages 7 3 -
82, October 2004. 

32. N. Provos. A Virtual Honeypot Framework. In Proceedings of the 13*'* USENIX Security 
Symposium, pages 1-14, August 2004. 

33. M. A. Rajab, F. Monrose, and A. Terzis. On the Effectiveness of Distributed Worm Moni­
toring. In Proceedings of the 14*'* USENIX Security Symposium, pages 225-237, August 
2005. 

34. J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. On-line Intrusion Protec­
tion by Detecting Attacks with Diversity. In Proceedings of the 16*'* Annual IFIP 11.3 
Working Conference on Data and Application Security Conference, April 2002. 

35. J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line Intrusion Detection and 
Attack Prevention Using Diversity, Generate-and-Test, and Generalization. In Proceed­
ings of the 36*'* Annual Hawaii International Conference on System Sciences (HICSS), 
January 2003. 

36. J. C. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The Design and Implemen­
tation of an Intrusion Tolerant System. In Proceedings of the International Conference 
on Dependable Systems and Networks (DSN), June 2002. 

37. M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of 
USENIX LISA, November 1999. (software available from http://www.snort.org/). 



228 Stelios Sidiroglou and Angelos D. Keromytis 

38. S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scanning Worm Infections. 
In Proceedings of the 7*^ International Symposium on Recent Advances in Intrusion De­
tection (RAID), pages 59-81, October 2004. 

39. Y. Shinoda, K. Ikai, and M. Itch. Vulnerabilities of Passive Internet Threat Monitors. In 
Proceedings of the 14"* USENIX Security Symposium, pages 209-224, August 2005. 

40. S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Architecture. In Proceed­
ings of the IEEE Workshop on Enterprise Technologies: Infrastructure for Collaborative 
Enterprises (WETICE), Workshop on Enterprise Security, pages 220-225, June 2003. 

41. S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. K. omytis. Building A Reactive 
Immune System for Software Services. In Proceedings of the l l " " USENIX Annual 
Technical Conference, pages 149-161, April 2005. 

42. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In Pro­
ceedings of the e*** Symposium on Operating Systems Design & Implementation (OSDI), 
December 2004. 

43. A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair of 
Control-Hijacking Attacks. In Proceedings of the 12*'' ISOC Symposium on Network and 
Distributed System Security (SNDSS), February 2005. 

44. D. Spinellis. Reliable identification of bounded-length viruses is NP-complete. IEEE 
Transactions on Information Theory, 49(l):280-284, January 2003. 

45. L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003. 
46. S. Staniford. Containment of Scanning Worms in Enterprise Networks. Journal of Com­

puter Security, 2005. (to appear). 
47. S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed of Flash Worms. In 

Proceedings of the ACM Workshop on Rapid Malcode (WORM), pages 3 3 ^ 2 , October 
2004. 

48. S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In 
Proceedings of the 11*'' USENIX Security Symposium, pages 149-167, August 2002. 

49. G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via dynamic 
information ilow tracking. SIGOPS Operating Systems Review, 38(5):85-96, 2004. 

50. W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-way Isolation: An Effec­
tive Approach for Realizing Safe Execution Environments. In Proceedings of the 12*'' 
ISOC Symposium on Network and Distributed Systems Security (SNDSS), pages 265-278, 
February 2005. 

51. P. Szor and P. Ferrie. Hunting for Metamorphic. Technical report, Symantec Corporation, 
June 2003. 

52. T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload Exe­
cution. In Proceedings of the 5*'' Symposium on Recent Advances in Intrusion Detection 
(RAID), October 2002. 

53. T. Toth and C. Kruegel. Connection-history Based Anomaly Detection. In Proceedings 
of the IEEE Workshop on Information Assurance and Security, June 2002. 

54. S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New Streaming Algorithms 
for Fast Detection of Superspreaders. In Proceedings of the 12*'' ISOC Symposium on 
Network and Distributed Systems Security (SNDSS), pages 149-166, February 2005. 

55. G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based Intrusion Detection 
Signatures Using Mutant Exploits. In Proceedings of the 11*'' ACM Conference on Com­
puter and Communications Security (CCS), pages 21-30, October 2004. 

56. H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerabihty-Driven 
Network Filters for Preventing Known Vulnerability Exploits. In Proceedings of the ACM 
SIGCOMM Conference, pages 193-204, August 2004. 



10 Composite Hybrid Techniques For Defending Against Targeted Attacks 229 

57. K. Wang and S. J. Stolfo. Anomalous Payload-based Network Intrusion Detection. In 
Proceedings of the 7*'' International Symposium on Recent Advanced in Intrusion Detec­
tion (RAID), pages 201-222, September 2004. 

58. N. Weaver, S, Staniford, and V. Paxson. Very Fast Containment of Scanning Worms. In 
Proceedings of the IS"* USENIX Security Symposium, pages 29-44, August 2004. 

59. D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based Detection of Scanning Worms 
in an Enterprise Network. In Proceedings of the 12"* ISOC Symposium on Network and 
Distributed Systems Security (SNDSS), pages 181-195, February 2005. 

60. J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architecture and Algorithm for 
Detecting Worms with Various Scan Techniques. In Proceedings of the ISOC Symposium 
on Network and Distributed System Security (SNDSS), pages 143-156, February 2004. 

61. V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection in the DOMINO 
Overlay System. In Proceedings of the ISOC Symposium on Network and Distributed 
System Security (SNDSS), February 2004. 

62. V. Yegneswaran, P. Barford, and D. Plonka. On the Design and Use of Internet Sinks 
for Network Abuse Monitoring. In Proceedings of the T"" International Symposium on 
Recent Advances in Intrusion Detection (RAID), pages 146-165, October 2004. 

63. V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An Architecture for Generating 
Semantics-Aware Signatures. In Proceedings of the 14"' USENIX Security Symposium, 
pages 97-112, August 2005. 

64. C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and Early Warning for Internet 
Worms. In Proceedings of the lO' ACM International Conference on Computer and 
Communications Security (CCS), pages 190-199, October 2003. 



n 
1 

Towards Stealthy Malware Detection 

Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li 

Department of Computer Science, Columbia University 
{sal,kewang,wei-jen}@cs.Columbia.edu 

Abstract 

Malcode can be easily hidden in document files and go undetected by 
standard technology. We demonstrate this opportunity of stealthy malcode 
insertion in several experiments using a standard COTS Anti-Virus (AV) 
scanner. Furthermore, in the case of zero-day malicious exploit code, sig­
nature-based AV scanners would fail to detect such malcode even if the 
scanner knew where to look. We propose the use of statistical binary con­
tent analysis of files in order to detect suspicious anomalous file segments 
that may suggest insertion of malcode. Experiments are performed to de­
termine whether the approach of n-gram analysis may provide useful evi­
dence of a tainted file that would subsequently be subjected to further scru­
tiny. We further perform tests to determine whether known malcode can be 
easily distinguished from otherwise "normal" Windows executables, and 
whether self-encrypted files may be easy to spot. Our goal is to develop an 
efficient means by static content analysis of detecting suspect infected 
files. This approach may have value for scanning a large store of collected 
information, such as a database of shared documents. The preliminary ex­
periments suggest the problem is quite hard requiring new research to de­
tect stealthy malcode. 
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11.1 Introduction 

Attackers have used a variety of ways of embedding malicious code in 
otherwise normal appearing files to infect systems. Viruses that attach 
themselves to system files, or normal appearing media files, are nothing 
new. State-of-the-art COTS products scan and apply signature analysis to 
detect these known malware. For various performance optimization rea­
sons, however, COTS Anti-Virus (AV) scanners may not perform a deep 
scan of all files in order to detect known malcode that may have been em­
bedded in an arbitrary file location. Other means of stealth to avoid detec­
tion are well known. Various self-encryption or code obfuscation tech­
niques may be used to avoid detection simply making the content of 
malcode unavailable for inspection by an AV scanner. In the case of new 
zero day malicious exploit code, signature-based AV scanners would fail 
to detect such malcode even if the scanner had access to the content and 
knew where to look. 

In this chapter we explore the use of statistical content analysis of files 
in order to detect anomalous file segments that may suggest infection by 
malcode. Our goal is to develop an efficient means of detecting suspect in­
fected files for application to scanning a large store of collected informa­
tion, such as a database of content in a file sharing network. The work re­
ported in this chapter is preliminary. Our ongoing studies have uncovered 
a number of other techniques that are under development and evaluation. 
Here we present background summary on our work on Fileprints, followed 
by several experiments applying the method to malcode detection. 

The threat model needs to be clarified in this work. We do not consider 
the methods by which stealthy malcode embedded in tainted files may be 
automatically launched and executed. One may posit that detecting a 
tainted file may be easy simply by opening the file and detecting whether 
the application issues a fault. This might be the case if the malcode was 
embedded in such a way as to damage the expected file format causing the 
application to fault. As we show in Section 11.2 , one can embed malcode 
without creating such a fault when opening a tainted file. In this work, we 
focus specifically on static analysis techniques to determine whether or not 
we may be able to identify a tainted file. The approach we propose is to 
use generic statistical feature analysis of binary content irrespective of the 
type of file used to transport the malcode into a protected environment. 

Files typically follow naming conventions that use standard extensions 
describing its type or the applications used to open and process the file. 
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However, although a file may be named Paper, doc^, it may not be a le­
gitimate Word document file unless it is successfiiUy opened and displayed 
by Microsoft Word, or parsed and checked by tools, such as the Unix file 
command, if such tools exist for the file type in question. We proposed a 
method to analyze the contents of exemplar files using statistical modeling 
techniques. In particular, we apply n-gram analysis to the binary content of 
a set of exemplar "training" files and produce normalized n-gram distribu­
tions representing all files of a specific type. Our aim is to determine the 
validity of files claiming to be of a certain type (even though the header 
may indicate a certain file type, the actual content may not be what is 
claimed) or to determine the type of an unnamed file object. 

The conjecture is that we may model different types of files to produce a 
model of what all files of that type should look like. Any significant devia­
tion fi-om this model may indicate the file is infected with embedded mal-
code. Suspect files identified using this technique may then be more 
deeply analyzed using a variety of techniques under investigation by other 
researchers (e.g., [9, 16, 18].) 

In our prior work [11, 19, 20], we demonstrated an efficient statistical n-
gram method to analyze the binary contents of network packets and files. 
This work followed our earlier work on applying machine learning tech­
niques applied to binary content to detect malicious email attachments 
[15]. The method trains n-gram models from a collection of input data, and 
uses these models to test whether other data is similar to the training data, 
or sufficiently different to be deemed an anomaly. The method allows for 
each file type to be represented by a compact representation of statistical 
n-gram models. Using this technique, we can successfiilly classify files 
into different types, or validate the declared type of a file, according to 
their content, instead of using the file extension only or searching for em­
bedded "magic numbers" [11] (that may be spoofed). 

We do not presume to replace other detection techniques, but rather to 
augment approaches with perhaps new and usefiil evidence to detect suspi­
cious files. Under severe time constraints, such as real-time testing of net­
work file shares, or inspection of large amounts of newly acquired media, 
the technique may be usefiil in prioritizing files that are subjected to a 
deeper analysis for early detection of malcode infection. 

In the next section, we describe some simple experiments of inserting 
malware into normal files and how well a commercial AV scanner per­
formed in detecting these infected files. Amazingly, in several cases the 

^ For our purposes here, we refer to .DOC as Microsoft Word documents, al­
though other applications use the .DOC extension such as Adobe Framemaker, In­
terleaf Document Format and Palm Pilot format, to name a few. 
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tainted files were opened without problem by the associated application. 
Section 11.3 summarizes our work on fileprints using 1-gram distributions 
for pedagogical reasons. The same principles apply to higher order grams. 
We present several experiments using these techniques to detected infected 
files. Our concluding remarks in Section 11.4 identify several areas of new 
work to extend the preliminary ideas explored in this paper. 

11.2 Deceiving anti-virus software 

Malware may be easily transmitted among machines as (P2P) network 
shares. One possible stealthy way to infect a machine is by embedding the 
malicious payload into files that appear normal and that can be opened 
without incident. A later penetration by an attacker or an embedded Trojan 
may search for these files on disk to extract the embedded payload for exe­
cution or assembly with other malcode. Or an unsuspecting user may be 
tricked into launching the embedded malcode in some crafty way. In the 
latter case, malcode placed at the head of a PDF file can be directly exe­
cuted to launch the malicious software. Social engineering can be em­
ployed to do so. One would presume that an AV scanner can check and de­
tect such infected file shares if they are infected with known malcode for 
which a signature is available. The question is whether a commercial AV 
scanner can do so. Will the scanning and pattern-matching techniques cap­
ture such embeddings successfiilly? An intuitive answer would be "yes". 
We show that is not so in all cases. 

We conducted the following experiments. First we collected a set of 
malware [22], and each of them was tested to verify they can be detected 
by a COTS anti-virus system- .̂ We concatenate each of them to normal 
PDF files, both at the head and tail of the file. Then we manually test 
whether the COTS AV can still detect each of them, and whether Acrobat 
can open the PDF file without error. These tests were performed on a 
Windows platform. The results are summarized in Table 11.1. The COTS 
anti-virus system has surprisingly low detection rate on these infected files 
with embedded malware, especially when malware is attached at the tail. 
For those that were undetected, quite a few can still be successfully opened 
by Acrobat appearing exactly as the untouched original file. Thus, the mal-

^ This work does not intend to evaluate nor denigrate any particular COTS 
product. We chose a widely used AV scanner that was fully updated at the time 
the tests were performed. We prefer not to reveal which particular COTS AV 
scanner was used. It is not germane to the research reported in this paper. 
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code can easily reside inside a PDF file without being noticed at all. An 
example of the manipulated PDF file is displayed in Figure 11.1. The ap­
parent reason Adobe Acrobat Reader (version 7.0) opens infected files 
with no trouble is that it scans the head of a file looking for the PDF 
"magic numbers" signaling the beginning header meta-data necessary to 
interpret the rest of the binary content. Thus, the portions passed over by 
the reader while searching for its header data provides a convenient place 
to hide malcode. 

Table 11.1. COTS AV detection rate and Acrobat behavior on embedded mal­
code. 

Total vi­
rus/worm 

223 

Virus at the head of PDF 
AV can de- Acrobat can 
tect open 
162 (72.6%) 4 /not detected 

Virus at the tail of PDF 
AV can de­
tect 
43 (19.3%) 

Acrobat can 
open 
17 /not de­
tected 

- O t J 

MostBii ^unDa i cStolic^^ 
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Fig. 11.1. Screenshot of original and malware embedded PDF file 

We also performed another experiment by inserting the malware into 
some random position in the middle of the PDF file. But since PDF has its 
own encoding and such blind insertion can easily break the encoding, gen-



236 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li 

erally this is easily noticed by the Acrobat Reader when opening the file. 
This was the case and hence malware simply appended to the head/tail is 
obviously easier without causing any errors by the reader. We repeated this 
experiment on DOC files using some selected malwares, and got a similar 
result. The following table provides the detailed results of several malware 
insertion experiments using well known malware. Only CRII can be relia­
bly detected no matter where it is inserted, while Slammer and Sasser were 
missed. 

Table 11.2. Detailed example of insertion using several well-known malware 

Slammer 

PDF file 

DOC file 

Virus at head 
Not detect/open 
fine 
Not detect/open 
error 

In the middle 
Not detect/open er­
ror 
Not detect/open er­
ror 

At tail 
Not detect/open 
fine 
Not detecfopen 
fine 

CodeRed II 
Can be detected anywhere 

Sasser 

PDF file 

DOC file 

Virus at head 
Can detect 

Can detect 

In the middle 
Not detect/open er­
ror 
Not detect/open er­
ror 

At tail 
Not detecfopen 
error 
Not detect/open 
fine 

Another experiment focused on Windows executables, like 
WINWORD.EXE. After analyzing the byte value distributions of executa­
bles, we noticed that byte value 0 dominated all others. Application execu­
tables are stored on disk using a standard block alignment strategy of pad­
ding of executables (falling at addresses n*4096) for fast disk loading. 
These zero'ed portions of application files provide ample opportunity to 
insert hidden malcode. Instead of concatenating malcode, in this case we 
insert the malcode in a continuous block of O's long enough to hold the 
whole malcode and store the file back on disk. Again, we tested whether a 
COTS AY scanner would detect these poisoned applications. It did not. 
We performed this experiment by replacing the padded segments of 
WINWORD .EXE, from byte positions 2079784 to 2079848. Figure 11.2 
shows two versions of the application, the normal executable and the other 
infected with malcode, and both were able to open DOC files with no 
trouble. 
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Fig. 11.2. Opening of a normal DOC file using the original WINWORD.EXE 
(left) and the infected one WINWORD-Modified.EXE (right). 

11.3 N-gram experiments on files 

Here we introduce the modeling and testing techniques and present the re­
sults of applying these techniques to detect tainted malware-embedded 
files fi-om normal files of the same type. 

11.3.1 Fileprints - n-gram distributions of file content 

An n-gram [4] is a subsequence of n consecutive tokens in a stream of to­
kens. N-gram analysis has been applied in many tasks, and is well under-
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stood and efficient to implement. By converting a string of data to a fea­
ture vector of n-grams, one can map and embed the data in a vector space 
to efficiently compare two or more streams of data. Alternatively, one may 
compare the distributions of n-grams contained in a set of data to deter­
mine how consistent some new data may be with the set of data in ques­
tion. In our work to date, we experimented with both 1-gram and 2-gram 
analysis of ASCII byte values. The sequence of binary content is analyzed, 
and the frequency and variance of each gram is computed. Thus, in the 
case of 1-grams, two 256-element vectors (histograms) are computed. This 
is a highly compact and efficient representation, but it may not have suffi­
cient resolution to represent a class of file types. Nevertheless, we test this 
conjecture by starting with 1-grams. The following plot shows that differ­
ent file types do indeed have significant distinct 1-gram patterns. Thus, dif­
ferent file types can be reasonably well classified using this technique 
(see [11]). 

HTML 

c ^M zm 3Ê  ^ ^m 

Fig. 11.3. 1-gram distribution for different file types. 

Once a set of models are computed irom a set of normal files, a test file 
is measured to determine how closely its content conforms to the normal 
models. This is accomplished by computing the Mahalanobis distance [20] 
between the test file in question and the normal (centroid) models previ­
ously computed. The score produced is a distance measure; a distance 
threshold is then used to determine whether to declare the file normal or 
not. 
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11.3.2 Truncation and multiple centroids 

Truncation simply means we model only a fixed portion of a file when 
computing a byte distribution. That portion may be a fixed prefix, say the 
first 1000 bytes, or a fixed portion of the tail of a file, as well as perhaps a 
middle portion. This has several advantages. First, for most files, it can be 
assumed that the most relevant part of the file, as far as its particular type 
is concerned, is located early in the file to allow quick loading of meta­
data by the handler program that processes the file type. Second, viruses 
often have their malicious code at the very beginning of a file. Hence, vi­
ruses may be more readily detected from this portion of the file. However, 
viruses indeed may also be appended to the end of a file, hence truncation 
may also be applied to the tail of a file to determine whether a file varies 
substantially fi-om the expected distribution of that file type. The last, trun­
cation dramatically reduces the computing time for model building and file 
testing. 

On the other hand, files with the same extension do not always have a 
distribution similar enough to be represented by a single model. For exam­
ple, EXE files might be totally different when created for different pur­
pose, such as system files, games, or media handlers. Thus, an alternative 
strategy for representing files of a particular type is to compute "multiple 
models". We do this via a clustering strategy. Rather than computing a 
single model MA for files of type A, we compute a set of models A^A, k>l. 
The multiple model strategy requires a different test methodology, how­
ever. During testing, a test file is measured against all centroids to deter­
mine if it matches at least one of the centroids. The set of such centroids is 
considered a composite fileprint for the entire class. The multiple model 
technique creates more accurate models, and separates foreign files from 
the normal files of a particular type in more precise manner. The multiple 
models are computed by the K-Means algorithm under Manhattan Dis­
tance as the similarity metric. The result is a set ofK centroid models. MA 
which are later used in testing files for various purposes. 

11.3.3 Data sets 

To test the effectiveness of the n-gram analysis on files, we conducted sev­
eral experiments to determine whether it can correctly classify files and 
whether it can detect malcode. 

The test files used in the experiments include 140 PDF files. The mali­
cious files used for embedding were collected from emails, internet 
sources [22] and some target honeypot machines setup for this purpose in 
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our lab. The PDF files were collected fi'om the internet using a general 
search on Google. In this way, they can be considered randomly chosen as 
an unbiased sample. These tests are preliminary; considerable more effort 
is needed to compose a proper set of training and test data to ensure the 
files in question represent a true sample of interest. Here we collected 
documents fi'om an open source and have no means to accurately charac­
terize whether this sample is truly representative of a collection of interest. 
Nevertheless, this experiment provides some evidence of whether the pro­
posed techniques show promise or not. 

11.3.4 Detecting malware embedded files 

First we revisit our malcode embedding experiment. We've seen that the 
COTS AV system we used can easily miss the malcode hidden inside 
normal appearing files. Here we apply the 1-gram analysis and see how 
well it may be able to detect the malicious code sequences. 100 of the 140 
PDF files were used to build head and tail 1-gram models. Then we tested 
the remaining 40 normal PDF files and hundreds of malware-embedded 
files against the model. Since we know ground truth, we measure the de­
tection rate exactly when the false positive rate is zero, i.e., no normal PDF 
files been misclassified as malware-infected. The result is displayed in Ta­
ble 11.3, which is much higher than the COTS anti-virus software detec­
tion rate, which for these files is effectively zero. Notice that the total 
number of malware-embedded files is different for different truncation 
sizes. That is because the malware used in this study differ in size and we 
only consider the problem of classifying a pure malcode block fiilly em­
bedded in a portion of the PDF file. We consider a concatenated PDF file 
as a test candidate only if the malcode size is equal to or greater than the 
truncation size used for modeling. 

Table 11.3. Detection rate using truncated head and tail modeling 

Models head N bytes 
1000 bytes 500 bytes 200 bytes 

"gfect 49/gg(g7 504) 314/347(90.5%) 477/505(94.5%) 
Models tail N bytes 
„ 1000 bytes 500 bytes 200 bytes 
Detect 42/56(75o/„) 278/347(80.1%) 364/505(72.1%) 

It may be the case that it is easier to detect the malcode if it is concate­
nated at the head or tail of a file, since different file types usually have 
their own standard header information and ending encoding. Malcode may 
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be significantly different fi-om these standardized encodings. However, we 
test whether malware can effectively be hidden in some middle portion of 
a file (presuming that the file would still possibly be opened correctly). A 
reasonable assumption about such insertion is that the malware is inserted 
as a continuous whole block. So we apply the n-gram detection method to 
each block of a file's binary content and test whether the model can distin­
guish PDF blocks fi-om malware blocks. If so, then we can detect the mal-
code hidden inside PDF files. 

We compute byte distribution models using N consecutive byte blocks 
fi-om 100 PDF files, then test the blocks of the malware and another 40 
PDF files against the model, using Mahalanobis distance. Figure 11.4 
shows the distance of the malware blocks and PDF blocks to the normal 
model, using N=500 byte blocks and N=1000 byte blocks, respectively. In 
the plot we display the distance of the malcode blocks on the left; side of 
the separating line and the normal PDF on the right. As the plots show, 
there is a large overlap between malcode and PDF blocks. The poor results 
indicate that malware blocks cannot be easily distinguished fi-om normal 
PDF file blocks using 1-gram distributions. 
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Fig. 11.4. The Mahalanobis distance of the normal PDF and malware blocks to the 
trained PDF block model. The left is 500-byte block and the right plot is 1000-
byte block. 

In order to understand why the block-based detection using 1-grams 
does not work well, we plot the byte distribution of each block of a normal 
PDF file and the Sasser worm code. The first 9 blocks of the PDF file and 
the first 6 blocks of Sasser are displayed in the following plots. These plots 
clearly show that different blocks inside a PDF file differ much in their 
byte distribution, and we cannot determine an absolute difference of the 
malcode blocks from PDF blocks. Therefore, it appears that a 1-gram sta­
tistical content analysis might not have sufficient resolution for malware 
block detection. Either higher order grams (perhaps 2-grams or 3-grams) 
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may suffice, or we may need more syntactic information about tlie file 
formats to adequately distinguish malcode embedded in PDF files. A 
search for better statistical features is part of our ongoing research. 
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Fig. 11.5. Byte value distributions of blocks of the PDF file and Sasser worm. 
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11.3.5 Classifying normal executables and viruses 

In this experiment, we use a collection of malcode executables gathered 
from other external sources, and compare the 1-gram and 2-gram distribu­
tions of these to the corresponding distributions of "normal" Windows ex­
ecutables to determine whether viruses exhibit any clear separating charac­
teristics. We conjecture that the Windows executables are generated by 
programming environments and compilers that may create standard "head­
ers" different from those used by virus writers who deliver their viruses via 
email or file shares. 

We apply three modeling methods to these experiments, which are one-
centroid, multi-centroids and exemplar files as centroids. The one centroid 
method trains one single model for each class (or type) of file. We build n 
models Mi, M2, ..., M„, from n different file types. Then, we compute the 
distance of the test file F to each model, and F is classified to the model 
with the closest distance. 

Alternatively, the multi-centroids method, we build k models M";, M'2, 
..., Mk using k-means algorithm for each file type t as described in Sec­
tion 11.3.2 . There are k*T models in total, where T is the number of file 
types, k is set to 10 in this test. The test strategy is the same as in the case 
of one centroid. The test file F is classified to the model with the closest 
distance. 

A third method is also tested. Here we use a set of exemplar files of 
each type as centroids. Thus, a set of randomly chosen normal files for 
each file type are used as centroids. There are N models if there are N cho­
sen exemplar files. We also analyze the accuracy of the method using dif­
ferent truncations - first 10, 50, 100, 200, 400, 600, 1000, 2000, 4000, 
6000, and 8000 bytes, and the entire file. In this experiment, we evaluate 
both 1-gram and 2-gram analysis. 

We trained models on 80% of the randomly selected files of each group 
(normal and malicious) to build a set of models for each class. The remain­
ing 20% of the files are used as test files. Again, we know ground truth and 
hence can accurately evaluate performance. Note that all of the malicious 
files extensions are EXE. For each of the test files, we evaluate their dis­
tance from both the "normal model" and the "malicious model". 31 normal 
application executable files, 45 spy ware, 331 normal executable under 
folder System32 and 571 viruses were tested. Three "pairs" of groups of 
files are tested - Normal executable vs. spyware, normal application vs. 
spyware and normal executable vs. viruses. We report the average accu­
racy over 100 trials using cross validation for each of the modeling tech­
niques. 
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The results are shown in Figure 11.6. Each column represents each 
modeling method: one-centroid, muli-centroids and exemplar file cen-
troids. The rows indicate the testing "pairs". In each plot, the X and Y-axis 
are the false positive rate and detection rate, respectively. The asterisk 
marks are 1-gram tests using different truncation sizess, and the circle 
marks represent the results of 2-gram centoids. In these plots, the trunca­
tion sizes are not arranged in order. In these two dimensional plots, the op­
timum performance appears closest to the upper left comer of each plot. 
That is to say, a false positive rate of 0 and a detection rate of 1 is perfect 
performance. 

The results show relatively good performance in some case of normal 
executable vs. spyware and normal executable vs. virus. Because viruses 
and worms usually target the System32 folder, we can reasonable well de­
tect non-standard malicious files in that folder. Moreover, the performance 
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Fig. 11.6. 2-class classification of malware and normal EXE files. X-Axis: false 
positive, Y-Axis: detection rate. Asterisk marks; 1-gram test, Circle marks: 2-
gram test. 
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results varied under different truncation sizes. Thus, we have considerable 
additional analysis to perform in our future work to identify appropriate 
file sizes (and normalization strategies) to improve detection performance. 
However, the plots clearly indicate that performance varies widely, which 
suggests the comparison method is too weak to reliably detect malicious 
code. 

Notice that there is a high false positive rate in the case of testing nor­
mal applications to the Spyware samples. This is due to two reasons. First, 
the range of the normal application file size is too large, ranging from 
10KB to 10MB. It is hard to normalize the models when the data ranges so 
widely. Second, the spyware files are somewhat similar to normal applica­
tion files. They are both MS Windows applications, and they may be used 
for similar purposes. Hence, other features may be necessary to explore 
ways of better distinguishing this class of files. 

In the experiments performed to date, there is no strong evidence to in­
dicate that 2-gram analysis is better than 1-gram analysis. Even though the 
1-gram memory usage is much smaller and the computation speed is much 
faster, we may need to analyze far more many files to determine whether 
the heavy price paid in performing 2-gram analysis will perform better ul­
timately. 

11.3.6 Uniform Distributions of 1-gram analysis: encrypted files and 
spyware 

In this experiment we scan Windows files to determine whether any are 
close to a uniform 1-gram distribution. We thus test whether spyware that 
is obfuscated by self-encryption technology may be revealed as substan­
tially different from other executable files on a Windows host platform. 
We conjecture that self-encrypted files, such as stealthy Trojans and spy-
ware, may be detectable easily via 1-gram analysis. 

The normal EXE from System32, spyware and virus files used in the 
experiments reported in the previous section are used here again. More­
over, we randomly select 600 files (DOC, PPT, GIF, JPG, PDF, DLL) 
from Google, 100 for each fype. Since the models are normalized, the uni­
form distribution is an array with uniform value 1/n, where n is the length 
of the array and n is 256 in the 1-gram test. For each of the test files, we 
compute the Manhattan distance against the uniform model and plot the 
distance in Figure 11.7. The files that are closest to uniform distribution 
are listed in Table 11.4. 

As the plot shows, JPG, GIF and PDF files are self-encoded, so they are 
more similar to the uniform distribution. System32 files and DLL files are 
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not self-encrypted, and most of the virus and spyware tested are also not 
self-encrypted. However, some of the normal files are self-encrypted and 
quite similar to the random distribution. An interesting example is the ap­
plication ad-aware, exe, which is a COTS adware detection application that 
apparently uses self-encryption, perhaps to attempt to protect its intellec­
tual property. 

Fig. 11.7. The distance of testing files against the uniform distribution. X-Axis: 
the test files, Y-Axis: the distance. 

Table 11.4. Files whose content is deemed close to a uniform 1-gram dis­
tribution (hence likely encrypted). 

File name Description 
leee-submission-
instruct.doc 
Ad-Aware.exe 

msgfix.exe 

Qazxswcc.exe 
Asm. exe 

An ieee submission format instruction Word file. It is 
unclear why this file follows a normal distribution. 
Ad-Aware.exe: ad-aware from lavasoft, searches and 
removes spyware and/or adware programs from your 
computer. 
msgfix.exe is the W32.Gaobot.SN Trojan. This Trojan 
allows attackers to access your computer, stealing 
passwords and personal data. 
qazxswcc.exe is as a backdoor Trojan. 
asm.exe is a commercial spyware program by Gator. 
This program monitors browsing habits and distributes 
the data back to a Gator server for analysis. This also 
prompts advertising pop-ups. 
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wast2.exe wast2.exe is an adware based Internet Explorer 
browser helper object that delivers targeted ads based 

______^ on a user's browsing patterns. 

11.4 Concluding Remarks 

In this paper, we demonstrate that simple techniques to embed known mal-
code in normal files can easily bypass signature-based detection. We suc­
cessfully inserted known malcode in non-executable (PDF and DOC) files 
without being detected by AV scanners, and several were normally opened 
and executed. Various code obfiiscation techniques can also be used by 
crafty attackers to avoid inspection by signature-based methods. We pro­
pose an alternative approach to augment existing signature-based protec­
tion mechanisms with statistical content analysis techniques. Rather than 
only scanning for signatures, we compute the statistical binary content of 
files in order to detect anomalous files or portions of files which may indi­
cate a malcode embedding. Although it may be relatively easy to detect 
tainted files where malcode is embedded in the head (where normal meta­
data is expected) or at the tail of a file, detecting embeddings within the in­
terior portion of a file poses a significant challenge. The results show that 
far more work is needed to identify files tainted by stealthy malcode em-
beddings. On the positive side, self-encrypted files are relatively easy to 
spot. 

The results reported here are preliminary, and have opened up other 
avenues of future work. For example, adherence to a 1-gram model may 
not be the right strategy. Higher order grams may reveal more structure in 
files, and help identify unusual segments worthy of deeper analysis. Fur­
thermore, file formats are defined by, typically, proprietary and unpub­
lished syntactic conventions providing markers delimiting regions of files 
handled different (eg., embedded objects with specialized methods for 
their processing) that may be analyzed by alternative methods. Utilizing 
this information may provide a finer granularity of modeling normal file 
formats and perhaps produce improved performance. 

Finally, we believe another path may be useful, profiling application 
execution when opening typical/normal files. It may be possible to identify 
portions of files that harbor malcode by finding possible deviations from 
normal application behavior. Combining static analysis with dynamic pro­
gram behavior analysis may be the best option for detecting tainted files 
with embedded stealthy malcode. 
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Summary. We propose a primitive, called Pioneer, as a first step towards verifiable code exe­
cution on untrusted legacy hosts. Pioneer does not require any hardware support such as secure 
co-processors or CPU-architecture extensions. We implement Pioneer on an Intel Pentium IV 
Xeon processor. Pioneer can be used as a basic building block to build security systems. We 
demonstrate this by building a kernel rootkit detector. 

12.1 Introduction 

Obtaining a guarantee that a given code has executed untampered on an untrusted 
legacy computing platform has been an open research challenge. We refer to this 
as the problem of verifiable code execution. An untrusted computing platform can 
tamper with code execution in at least three ways: 1) by modifying the code before 
invoking it; 2) executing alternate code; or 3) modifying execution state such as 
memory or registers when the code is running. 

In this chapter, we propose a software-based primitive called Pioneer^ as a first 
step towards addressing the problem of verifiable code execution on legacy comput­
ing platform without relying on secure co-processors or CPU architecture extensions 
such as secure virtualization support. Pioneer is based on a challenge-response pro­
tocol between an external trusted entity, called the dispatcher, and an untrusted com­
puting platform, called the untrusted platform. The dispatcher communicates with 

* This research was supported in part by CyLab at the Carnegie Mellon University under 
grant DAAD19-02-1-0389 from the Army Research Office, by NSF under grant CNS-
0509004, and by a gift from IBM, Intel and Microsoft. The views and conclusions con­
tained here are those of the authors and should not be interpreted as necessarily representing 
the official policies or endorsements, either express or implied, of ARO, Carnegie Mellon 
University, IBM, Intel, Microsoft, NSF, or the U.S. Government or any of its agencies. 

^ We call our primitive Pioneer because it can be used to instantiate a trusted base on an 
untrusted platform. 
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the untrasted platfonn over a communication link, such as a network connection. 
After a successful invocation of Pioneer, the dispatcher obtains assurance that: 1) an 
arbitrary piece of code, called the executable, on the untrusted platform is unmodi­
fied; 2) the unmodified executable is invoked for execution on the untrusted platform; 
and 3) the executable is executed untampered, despite the presence of malicious soft­
ware on the untrusted platform. 

To provide these properties, we assume that the dispatcher knows the hardware 
configuration of the untrusted platform, and that the untrusted platform cannot col­
lude with other devices during verification. We also assume that the communication 
channel between the dispatcher and the untrusted platform provides the property of 
message-origin authentication, i.e., the communication channel is configured so that 
the dispatcher obtains the guarantee that the Pioneer packets it receives originate 
from the untrusted platform. Furthermore, to provide the guarantee of untampered 
code execution, we assume that the executable is self-contained, not needing to in­
voke any other software on the untrusted platform, and that it can execute at the 
highest processor privilege level with interrupts turned off. 

The dispatcher uses Pioneer to dynamically establish a trusted computing base 
on the untrusted platform, called the dynamic root of trust. All code contained in the 
dynamic root of trust is guaranteed to be unmodified and is guaranteed to execute in 
an untampered execution environment. Once established, the dynamic root of trust 
measures the integrity of the executable and invokes the executable. The executable is 
guaranteed to execute in the untampered execution environment of the dynamic root 
of trust. In Pioneer, the dynamic root of trust is instantiated through the verification 
function, a self-checking function that computes a checksum over its own instruc­
tions. The checksum computation slows down noticeably if the adversary tampers 
with the computation. Thus, if the dispatcher receives the correct checksum from the 
untrusted platform within the expected amount of time, it obtains the guarantee that 
the verification function code on the execution platform is unmodified. 

Pioneer can be used as a basic primitive for developing security applications. 
We illustrate this by designing a kernel rootkit detector. Our rootkit detector uses a 
software-based kernel integrity monitor. Instead of using rootkit signatures or low 
level filesystem scans to find files hidden by a rootkit, our kernel integrity monitor 
computes periodic hashes of the kernel code segment and static data structures to 
detect unauthorized kernel changes. The trusted computer uses Pioneer to obtain 
a guarantee that the kernel integrity monitor is unmodified and runs untampered. 
When implemented on version 2.6 of the Linux kernel, our rootkit detector was able 
to detect all publically-known rootkits for this series of the Linux kernel. 

An important property of Pioneer is that it enables software-based code attesta­
tion [19]. Code attestation allows a trusted entity, known as the verifier, to verify the 
software stack running on another entity, known as the attestation platform. The ver­
ifier and the attestation platform are usually different physical computing devices. A 
measurement agent on the attestation platform takes integrity measurements of the 
platform's software stack and sends them to the verifier. The verifier uses the in­
tegrity measurements obtained from the attestation platform to detect modifications 
in the attestation platform's software stack. 
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The Trusted Computing Group (TCG) has released standards for secure comput­
ing platforms, based on a tamper-resistant chip called the Trusted Platform Module 
(TPM) [22]. All code is measured before it is loaded and the measurements are stored 
inside the TPM. In response to an attestation request, the attestation platform sends 
the load-time measurements to the verifier. The verifier can the load-time measure­
ments to obtain the guarantee of load-time attestation, whereby the verifier obtains a 
guarantee of what code was loaded into the system memory initially. 

The load-time attestation mechanism proposed by the TCG standards has two 
disadvantages: 1) it requires hardware extensions to the attestation platform in the 
form of a TPM chip and is hence not suitable for legacy systems, and 2) the mech­
anism is not field upgradable using software means. It is not possible to update the 
software running on the TPM using software methods. The only way to update the 
TPM software is to physically replace the TPM. TPMs are designed this way to 
prevent an adversary from loading malicious software into the TPM via the update 
mechanism. However, this also means that whenever the cryptographic primitives 
used by the TPM are compromised or any vulnerabilities are found in the TPM soft­
ware, the only way to re-secure already deployed systems is to physically replace 
their hardware. 

The software-based code attestation provided by Pioneer does not require any 
hardware extensions to the attestation platform. The verifier depends on Pioneer to 
guarantee the verifiably correct execution of the measurement agent. Pioneer-based 
code attestation has three main advantages: 1) it can be updated using software meth­
ods if the underlying primitives are compromised, 2) it works on legacy systems that 
lack secure co-processors or other hardware enhancements to protect the measure­
ment agent from a malicious attestation platform, and 3) it provides the property of 
run-time attestation, i.e., the verifier can verify the integrity of software running on 
the attestation platform at the present time. Run-time attestation provides a stronger 
guarantee than the TCG-based load-time attestation, since software can be compro­
mised by dynamic attacks, such as buffer overflows, after software is loaded into 
memory. 

The chapter is organized as follows. Section 12.2 describes the problem we ad­
dress, our assumptions, and attacker model. In Section 12.3, we give an overview of 
Pioneer. We then describe the design of the verification function and its implementa­
tion on the Intel Pentium IV Xeon processor in Sections 12.4 and 12.5, respectively. 
Section 12.6 describes our kernel rootkit detector. We discuss related work in Sec­
tion 12.7 and conclude in Section 12.8. 

12.2 Problem Definition, Assumptions & Attacker Model 

In this section, we describe the problem we address, discuss the assumptions we 
make, and describe our attacker model. 
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12.2.1 Problem Definition 

We define the problem of verifiable code execution, in which the dispatcher wants a 
guarantee that some arbitrary code has executed untampered on an untrasted external 
platform, even in the presence of malicious software on the untrusted platform. 

The untrusted platform has a self-checking function, called the verification func­
tion. The dispatcher invokes the verification function by sending a challenge to the 
untrusted platform. The verification function returns a checksum to the dispatcher. 
The dispatcher has a copy of the verification function and can independently verify 
the checksum. If the checksum returned by the untrusted platform is correct and is 
returned within the expected time, the dispatcher obtains the guarantee that a dy­
namic root of trust exists on the untrusted platform. The code in the dynamic root 
of trust measures the executable, sends the measurement to the dispatcher, and in­
vokes the executable. The executable runs in an untampered execution environment, 
which was set up as part of instantiating the dynamic root of trust. The dispatcher 
can verify the measurement since it has a copy of the executable. Taken together, the 
correctness of the checksum and correctness of the executable measurement provide 
the guarantee of verifiable code execution to the dispatcher. 

Even if malicious software runs on the untrusted platform, it cannot tamper with 
the execution of the executable. The adversary can perform an active DoS attack 
and thwart Pioneer from being run at all. However, the adversary cannot cheat by 
introducing a false negative, where the correct checksum value has been reported 
within the expected time to the dispatcher, without the correct code executing on the 
untrusted platform. 

12.2.2 Assumptions 

We assume that the dispatcher knows the exact hardware configuration of the un­
trusted platform, including the CPU model, the CPU clock speed, and the memory 
latency. We also assume that the CPU of the untrusted platform is not overclocked. 
In addition, the untrusted platform has a single CPU, that does not have support for 
Symmetric Multi-Threading (SMT). For the x86 architecture, we also assume that 
the adversary does not generate a System Management Interrupt (SMI) on the un­
trusted platform during the execution of Pioneer. 

We assume the communication channel between the dispatcher and the untrusted 
platform provides message-origin authentication i.e., the dispatcher is guaranteed 
that all Pioneer packets it receives originate at the untrusted platform. Also, we as­
sume that the untrusted platform can only communicate with the dispatcher during 
the time Pioneer runs. Equivalently, the dispatcher can detect the untrusted platform 
attempting to contact other computing platforms. We make this assumption to elim­
inate the proxy attack, where the untrusted platform asks a faster computing device 
(proxy), to compute the checksum on its behalf. 

Assuming that the untrusted platform has only one wired communication inter­
face, we can provide message-origin authentication and eliminate the proxy attack 
by physically connecting the untrusted platform to dispatcher with a cable. Also, if 
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the untrasted platform can only communicate over a Local Area Network (LAN), 
the network administrators can configure the network switches such that any packets 
sent by the untrusted platform will reach only the dispatcher. 

12.2.3 Attacker Model 

We assume an adversary who has complete control over the software of the untrusted 
platform. In other words, the adversary has administrative privileges and can tamper 
with all software on the untrusted platform including the OS. However, we assume 
that the adversary does not modify the hardware on the untrusted platform. For exam­
ple, the adversary does not load malicious firmware onto peripheral devices such as 
network cards or disk controllers, or replace the CPU with a faster one. In addition, 
the adversary does not perform DMA-based attacks like scheduling a DMA-write 
causing a benign peripheral device to overwrite the executable between the time of 
measurement and time of invocation. 

12.3 Pioneer Overview 

In this section, we give an overview of the verification function and describe the 
challenge-response protocol used to set up a dynamic root of trust on the execution 
platform and to obtain the guarantee of verifiable code execution. 

12.3.1 The Verification Function 

The verification function is the central component of the Pioneer system. It is re­
sponsible for performing an integrity measurement on the executable, setting up an 
execution environment for the executable that ensures untampered execution, and 
invoking the executable. As Figure 12.1 shows, the verification function has three 
parts: a checksum code, a hash function and a send function. 

Checlisum code. The checksum code computes a checksum over the entire verifica­
tion function, and sets up an execution environment in which the send function, the 
hash function and the executable are guaranteed to run untampered by any malicious 
software on the untrusted platform. The checksum code computes a fingerprint of 
the verification function, i.e., if even a single byte of the verification function code 
is different, the checksum will be different with a high probability. Thus, a correct 
checksum provides a guarantee to the dispatcher that the verification function code 
is unmodified. However, an adversary could attempt to manipulate the checksum 
computation to forge the correct checksum value in spite of having modified the ver­
ification function. For example, the adversary could detect when the checksum code 
reads the altered memory locations and redirect the read to other memory locations 
where the adversary has stored the correct values. To detect such manipulations, 
we construct the verification function such that if an adversary tries to manipulate 
the checksum computation, the computation time will noticeably increase. Thus, a 
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Fig. 12.1. Overview of Pioneer. The numbers represent the temporal ordering of events. 

correct checksum obtained within the expected amount of time is a guarantee to the 
dispatcher that the verification function code on the untrusted platform is unmodified 
and that there is an environment for untampered execution on the untrusted platform. 
In other words, the dispatcher obtains the guarantee that there is a dynamic root of 
trust on the untrusted platform. 

Hash function. We use SHA-1 as the hash function to perform the integrity mea­
surement of the executable. Although the collision resistance property of SHA-1 has 
been compromised, we rely on the second-preimage collision resistance property for 
which SHA-1 is still considered secure [25]. To achieve this property, we design the 
hash function so that it computes the hash of the executable as a function of a nonce 
that is sent by the dispatcher. Thus, the adversary cannot take advantage of the com­
promised colUsion resistance property of SHA-1 to create to two different copies of 
the executable both of which have the same hash value. After the measurement, the 
hash function invokes the executable. 

Send function. The send function returns the checksum and integrity measurement 
to the dispatcher over the communication link. 

12.3.2 The Pioneer Protocol 

The dispatcher uses a challenge-response protocol to obtain the guarantee of veri­
fiable code execution on the untrusted platform. The protocol has two steps. First, 
the dispatcher obtains an assurance that there is a dynamic root of trust on the un­
trusted platform. Second, the dispatcher uses the dynamic root of trust to obtain the 
guarantee of verifiable code execution. 
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Fig. 12.2. The Pioneer protocol. The numbering of events is the same as in Figure 12.1. D is 
the dispatcher, P the verification function, and E is the executable. 

We describe the challenge-response protocol in Figure 12.2. The dispatcher first 
sends a challenge containing a random nonce to the untrusted platform, initiating the 
checksum computation of the verification function. The untrusted platform uses the 
checksum code that is part of the verification function to compute the checksum. The 
checksum code also sets up an execution environment to ensure that the send func­
tion, the hash function and the executable can execute untampered. After computing 
the checksum, the checksum code invokes the send function to return the checksum 
to the dispatcher. The dispatcher has a copy of the verification function and can inde­
pendently verify the checksum. Also, since the dispatcher knows the exact hardware 
configuration of the untrusted platform, the dispatcher knows the expected time du­
ration of the checksum computation. After the send function returns the checksum 
to the dispatcher, it invokes the hash function. The hash function measures the ex­
ecutable by computing a hash over it as a function of the dispatcher's nonce and 
retams the hash of the executable to the dispatcher using the send function. The 
dispatcher also has a copy of the executable and can independently verify the hash 
value. The hash function then invokes the executable, which optionally returns the 
execution result to the dispatcher. 

12.4 Design of the Checksum Code 

In this section, we discuss the design of the checksum code that is part of the verifi­
cation function. The design is presented in a CPU-architecture-independent manner. 
First, we discuss the properties of the checksum code, and explain how we achieve 
these properties and what attacks these properties can prevent or help detect. Then, 
we explain how we set up an execution environment in which the hash function, the 
send function and the executable execute untampered. In Section 12.5, we shall de­
scribe how to implement the checksum code on an Intel Pentium IV Xeon processor. 
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12.4.1 Required Properties of tlie Ciieclisum Code 

The checksum code has to be constracted such that adversarial tampering results in 
either a wrong checksum or a noticeable time delay. We now describe the required 
properties of the checksum code and explain how these properties achieve the goals 
mentioned above. 

Time-optimal implementation. Our checksum code needs to be the checksum code 
sequence with the fastest running time; otherwise the adversary could use a faster 
implementation of the checksum code and use the time saved to forge the checksum. 
Unfortunately, it is an open problem to devise a proof of optimality for our checksum 
function. Promising research directions to achieve a proof of optimality are tools 
such as Denali [13] or superopt [8] that automatically generate the most optimal 
code sequence for basic code blocks in a program. However, Denali currently only 
optimizes simple code that can be represented by assignments, and superopt would 
not scale to the code size of our checksum function. 

To achieve a time-optimal implementation, we use simple instructions such as 
add and x o r that are challenging to implement faster or with fewer operations. 
Moreover, the checksum code is structured as code blocks such that operations in 
one code block are dependent on the result of operations in the previous code block. 
This prevents operation reordering optimizations across code blocks. 

Instruction sequencing to eliminate empty issue slots. Most modem CPUs are su­
perscalar, i.e., they issue multiple instructions in every clock cycle. If our checksum 
code does not have a sufficient number of issuable instructions every clock cycle, 
then one or more instruction issue slots will remain empty. An adversary could ex­
ploit an empty issue slot to execute additional instructions without overhead. To pre­
vent such an attack, we need to arrange the instruction sequence of the checksum 
code so that the processor issue logic always has a sufficient number of issuable in­
structions for every clock cycle. Note that we cannot depend solely on the processor 
out-of-order issue logic for this since it is not guaranteed that the out-of-order issue 
logic will always be able to find a sufficient number of issuable instructions. 

CPU state inputs. The checksum code is self-checksumming, i.e., it computes a 
checksum over its own instruction sequence. The adversary can modify the checksum 
code so that instead of checksumming its own instructions, the adversary's check­
sum code computes a checksum over a correct copy of the instructions that is stored 
elsewhere in memory. We call this attack a memory copy attack. This attack is also 
mentioned by Wurster et al. in connection with their attack on software tamperproof-
ing [28]. The adversary can perform the memory copy attack in three different ways: 
1) as shown in Figure 3(b), the adversary executes an altered checksum function from 
the correct location in memory, but computes the checksum over a correct copy of 
the checksum function elsewhere in memory; 2) as shown in Figure 3(c), the adver­
sary does not move the correct checksum code, but executes its modified checksum 
code from other locations in memory; or 3) the adversary places both the correct 
checksum code and its modified checksum code in memory locations that are differ-
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ent from the memory locations where the correct checksum code originally resided, 
as shown in Figure 3(d). 

It is obvious from the above description that when the adversary performs a 
memory copy attack, either the adversary's Program Counter (PC) value or the data 
pointer value or both will differ from the correct execution. We cause the adversary 
to suffer an execution time overhead for the memory copy attack by incorporating 
both the PC and the data pointer value into the checksum. In a memory copy attack, 
the adversary will be forced to forge one or both of these values in order to generate 
the correct checksum, leading to an increase in execution time. 

Both the PC and the data pointer hold virtual addresses. The verification func­
tion is assumed to execute from a range of virtual addresses that is known to the 
dispatcher. As a result, the dispatcher knows the excepted value of the PC and the 
data pointer and can compute the checksum independently. 

— 3 
— 2 
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t xxxxx> 
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DP incorrect. 
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(d) Memory copy at­
tack 3. PC and DP in­
correct. 

Fig. 12.3. Memory copy attacks. PC refers to the program counter, DP refers to the data 
pointer, V.func refers to the verification function, and Mai. func refers to the malicious verifi­
cation function. 

Iterative checlcsum code. As Figure 12.4 shows, the checksum code consists of 
three parts; the initialization code, the checksum loop and the epilog code. The most 
important part is the checksum loop. Each checksum loop reads one memory location 
of the verification function and updates the running value of the checksum with the 
memory value read, a pseudo-random value and some CPU state information. If the 
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Fig. 12.4. Functional structure of the verification function. The checksum code consists of an 
initialization code, the checksum loop which computes the checksum, and the epilog code that 
runs after the checksum loop but before the send function. 

adversary alters the checksum function but wants to forge a correct checksum output, 
it has to manipulate the values of one or more of the inputs in every iteration of the 
checksum code, causing a constant time overhead per iteration. 

Strongly-ordered checksum function. A strongly-ordered function is a function 
whose output differs with high probability if the operations are evaluated in a dif­
ferent order. A strongly-ordered function requires an adversary to perform the same 
operations on the same data in the same sequence as the original function to obtain 
the correct result. For example, if a i , 02,03,04 and 05 are random inputs, the func­
tion ai © a2 -I- 03 © 04 + 05 is strongly-ordered. We use a strongly ordered function 
consisting of alternate add and xor operations for two reasons. First, this prevents 
parallelization, as at any step of the computation the current value is needed to com­
pute the succeeding values. For example, the correct order of evaluating the function 
ai ® a2 + as ffi 04 is (((ai ffi 02) -I- as) ® 04). If the adversary tries to parallelize 
the computation by computing the function in the order ((ai © a2) + (as ® 04)), the 
output will be different with high probability. Second, the adversary cannot change 
the order of operations in the checksum code to try to speed up the checksum com­
putation. For example, if the adversary evaluates ai © a2 -f as ® a4 in the order 
(ai © (a2 + (03 ® 04))), the output will be different with high probabiUty. 

In addition to using a strongly ordered checksum function, we also rotate the 
checksum. Thus, the bits of the checksum change their positions from one iteration 
of the checksum loop to the next, which makes our checksum function immune to 
the attack against the Genuinity function that we point out in our paper [19]. 

Small code size. The size of the checksum loop needs to be small for two main rea­
sons. First, the code needs to fit into the processor cache to achieve a fast and deter­
ministic execution time. Second, since the adversary usually has a constant overhead 
per iteration, the relative overhead increases with a smaller checksum loop. 

Low variance of execution time. Code execution time on modern CPUs is non-
deterministic for a number of reasons. We want a low variance for the execution time 
of the checksum code so that the dispatcher can easily find a threshold value for 
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the correct execution time. We leverage three mechanisms to reduce the execution 
time variance of the checksum code. One, the checksum code executes at the highest 
privilege CPU privilege level with all maskable interrupts turned off, thus ensuring 
that no other code can run when the checksum code executes. Two, the checksum 
code is small enough to fit completely inside the CPU's LI instruction cache. Also, 
the memory region containing the verification function is small enough to fit inside 
the CPU's LI data cache. Thus, once the CPU caches are warmed up, no more cache 
misses occur. The time taken to warm up the CPU caches is a small fraction of the to­
tal execution time. As a result, the variance in execution time caused by cache misses 
during the cache warm-up period is small. Three, we sequence the instructions of the 
checksum code such that a sufficient number of issuable instructions are available 
at each clock cycle. This eliminates the non-determinism due to out-of-order execu­
tion. As we show in our results in Section 12.5.3, the combination of the above three 
factors leads to a checksum code with very low execution time variance. 

Keyed-checksum. To prevent the adversary from pre-computing the checksum be­
fore making changes to the verification function, and to prevent the replaying of old 
checksum values, the checksum needs to depend on a unpredictable challenge sent 
by the dispatcher. We achieve this in two ways. First, the checksum code uses the 
challenge to seed a Pseudo-Random Number Generator (PRNG) that generates in­
puts for computing the checksum. Second, the challenge is also used to initialize the 
checksum variable to a deterministic yet unpredictable value. 

We use a T-function as the PRNG [16]. A T-function is a function from n-bit 
words to n-bit words that has a single cycle length of 2". That is, starting from any 
n-bit value, the T-function is guaranteed to produce all the other 2" — 1 n-bit values 
before starting to repeat the values. The T-function we use is a: <— a;4- (a;̂  V5)mod2'', 
where V is the bitwise-or operator. Since every iteration of the checksum code uses 
one random number to avoid repetition of values from the T-function, we have to 
ensure that the number of iterations of the checksum code is less than 2" when we 
use an n-bit T-function. We use n = 64 in our implementation to avoid repetition. 

It would appear that we could use a Message Authentication Code (MAC) func­
tion instead of the simple checksum function we use. MAC functions derive their 
output as a function of their input and a secret key. We do not use a MAC function 
for two reasons. First, the code of current cryptographic MAC functions is typically 
large, which is against our goal of a small code size. Also, MAC functions have 
much stronger properties than what we require. MAC functions are constructed to 
be resilient to MAC-forgery attacks. In a MAC-forgery attack, the adversary knows 
a finite number of (data, MAC(data)) tuples, where each MAC value is generated 
using the same secret key. The task of the adversary is to generate a MAC for a new 
data item that will be valid under the unknown key. It is clear that we do not require 
resilience to the MAC forgery attack, as the nonce sent by the Pioneer dispatcher is 
not a secret but is sent in the clear. We only require that the adversary be unable to 
pre-compute the checksum or replay old checksum values. 

Pseudo-random memory traversal. The adversary can keep a correct copy of any 
memory locations in the verification function it modifies. Then, at the time the check­
sum code tries to read one of the modified memory locations, the adversary can redi-
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rect the read to the location where the adversary has stored the correct copy. Thus, the 
adversary's final checksum will be correct. We call this attack the data substitution 
attack. To maximize the adversary's time overhead for the data substitution attack, 
the checksum code reads the memory region containing the verification function in 
a pseudo-random pattern. A pseudo-random access pattern prevents the adversary 
from predicting which memory read(s) will read the modified memory location(s). 
Thus, the adversary is forced to monitor every memory read by the checksum code. 
This approach is similar to our earlier work in SWATT [19]. 

We use the result of the Coupon Collector's Problem to guarantee that the check­
sum code will read every memory location of the verification function with high 
probability, despite the pseudo-random memory access pattern. If the size of the ver­
ification function is n words, the result of the Coupon Collector's Problem states: if 
X is the number of memory reads required to read each of the n words at least once, 
then Pr[X > en Inn] < n~''~^^. Thus, after 0 ( n I n n ) memory reads, each memory 
location is accessed at least once with high probability. 

12.4.2 Execution Environment for Untampered Code Execution 

We now explain how the checksum code sets up an untampered environment for the 
hash function, the send function, and the executable. 

Execution at highest privilege level with maskable interrupts turned off. All 
CPUs have an instruction to disable maskable interrupts. Executing this instruction 
changes the state of the i n t e r r u p t e n a b l e / d i s a b l e bit in the CPU con­
dition codes (flags) register. The d i s a b l e - m a s k a b l e - i n t e r r u p t instruction 
can only be executed by code executing at the highest privilege level. The initial­
ization code, which runs before the checksum loop (see Figure 12.4), executes the 
d i s a b l e - m a s k a b l e - i n t e r r u p t instruction. If the checksum code is execut­
ing at the highest privilege level, the instruction execution proceeds normally and the 
i n t e r r u p t e n a b l e / d i s a b l e flag in the flags register is set to the d i s a b l e 
state. If the checksum code is executing at lower privilege levels one of two things 
can happen: 1) the d i s a b l e m a s k a b l e - i n t e r r u p t s instruction fails and the 
status of the i n t e r r u p t e n a b l e / d i s a b l e flag is not set to d i s a b l e , or 2) 
the d i s a b l e - m a s k a b l e - i n t e r r u p t instruction traps into software that runs at 
the highest privilege level. Case 2 occurs when the checksum code is running inside 
a virtual machine (VM). Since we assume a legacy computer system where the CPU 
does not have support for virtualization, the VM must be created using a software-
based virtual machine monitor (VMM) such as VMware [24]. The VMM internally 
maintains a copy of the flags register for each VM. When the VMM gains control as 
a result of the checksum code executing the d i s a b l e - m a s k a b l e - i n t e r r u p t 
instructions, the VMM changes the state of the i n t e r r u p t e n a b l e / d i s a b l e 
flag in the copy of the flags register it maintains for the VM and returns control to 
the VM. This way, the actual CPU flags register remains unmodified. 

We incorporate the flags register into the checksum in each iteration of the check­
sum loop. Note that the adversary cannot replace the flags register with an immediate 
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since the flags register contains status flags, such as the carry and zero flag, whose 
state changes as a result of arithmetic and logical operations. If the adversary directly 
tries to run the checksum code at privilege levels lower than the highest privilege 
level, the final checksum will be wrong since the i n t e r r u p t e n a b l e / d i s a b l e 
flag will not be set to the d i s a b l e state. On the other hand, if the adversary tries to 
cheat by using a software VMM, then each read of the flags register will trap into the 
VMM or execute dynamically generated code, thereby increasing the adversary's 
checksum computation time. In this way, when the dispatcher receives the correct 
checksum within the expected time, it has the guarantee that the checksum code ex­
ecuted at the highest CPU privilege level with all maskable interrupts turned off. 
Since the checksum code transfers control to the hash function and the hash function 
in turn invokes the executable, the dispatcher also obtains the guarantee that both 
the hash function and executable will run at the highest CPU privilege level with all 
maskable interrupts turned off. 

Replacing exception handlers and non-maskable interrupt handlers. Unlike 
maskable interrupts, exceptions and non-maskable interrupts cannot be temporar­
ily turned off. To ensure that the hash function and executable will run untampered, 
we have to guarantee that the exception handlers and the handlers for non-maskable 
interrupts are non-malicious. We achieve this guarantee by replacing the existing ex­
ception handlers and the handlers for non-maskable interrupts with our own handlers 
in the checksum code. Since both the hash function and the executable operate at the 
highest privilege level, they should not cause any exceptions. Also, non-maskable in­
terrupts normally indicate catastrophic conditions, such as hardware failures, which 
are low probability events. Hence, during normal execution of the hash function and 
the executable, neither non-maskable interrupts nor exceptions should occur. There­
fore, we replace the existing exception handlers and handlers for non-maskable in­
terrupts with code that consists only of an interrupt return instruction (e.g., i r e t on 
x86). Thus, our handler immediately returns control to whatever code was running 
before the interrupt or exception occurred. 

An intriguing problem concerns where in the checksum code we should replace 
the exception and non-maskable interrupt handlers. We cannot do this in the check­
sum loop since the instructions that replace the exception and non-maskable interrupt 
handlers do not affect the value of the checksum. Thus, the adversary can remove 
these instructions and still compute the correct checksum within the expected time. 
Also, we cannot place the instructions to replace the exception and non-maskable 
interrupt handlers in the initialization code, since the adversary can skip these in­
structions and jump directly into the checksum loop. 

We therefore place the instructions that replace the handlers for exceptions and 
non-maskable interrupts in the epilog code. The epilog code (see Figure 12.4) is 
executed after the checksum loop is finished. If the checksum is correct and is com­
puted within the expected time, the dispatcher is guaranteed that the epilog code is 
unmodified, since the checksum is computed over the entire verification function. 
The adversary can, however, generate a non-maskable interrupt or exception when 
the epilog code tries to run, thereby gaining control. For example, the adversary can 
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Fig. 12.5. The stack trick. A part of the checksum (6 words long in the figure) is on the stack. 
The stack pointer is randomly moved to one of the locations between the markers by each 
iteration of the checksum code. Note that the stack pointer never points to either end of the 
checksum. 

set an execution break-point in the epilog code. The processor will then generate a 
debug exception when it tries to execute the epilog code. The existing debug excep­
tion handler could be controlled by the adversary. This attack can be prevented by 
making use of the stack to store a part of the checksum. The key insight here is that 
all CPUs automatically save some state on the stack when an interrupt or exception 
occurs. If the stack pointer is pointing to the checksum that is on the stack, any in­
terrupt or exception will cause the processor to overwrite the checksum. We ensure 
that the stack pointer always points to the middle of the checksum on the stack (see 
Figure 12.5) so that part of the checksum will always be overwritten regardless of 
whether the stack grows up or down in memory. 

Each iteration of the checksum loop randomly picks a word of the stack-based 
checksum for updating. It does this by moving the stack pointer to a random location 
within the checksum on the stack, taking care to ensure that the stack pointer is never 
at either end of the checksum (see Figure 12.5). The new value of the stack pointer is 
generated using the current value of the checksum and the current value of the stack 
pointer, thereby preventing the adversary from predicting its value in advance. 

The epilog code runs before the send function, which sends the checksum back 
to the dispatcher. Thereby, a valid piece of checksum is still on the stack when the 
epilog code executes. Thus, the adversary cannot use a non-maskable interrupt or 
exception to prevent the epilog code from running without destroying a part of the 
checksum. Once the epilog code finishes running, all the exception handlers and the 
handlers for non-maskable interrupts will have been replaced. In this manner, the 
dispatcher obtains the guarantee that any code that runs as a result of an exception or 
a non-maskable interrupt will be non-malicious. 

12.5 Checksum Code Implementation on the Netburst 
Microarchitecture 

In this section we describe our implementation of the checksum code on an Intel 
Pentium IV Xeon processor with EM64T extensions. First, we briefly describe the 
Netburst microarchitecture, which is implemented by all Intel Pentium IV proces­
sors, and the EM64T extensions. Next, we describe how we implement the check­
sum code on the Intel x86 architecture. Section 12.5.3 shows the results of ourexperi-
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Fig. 12.6. The Intel Netburst Microarchitecture. The execution units are LU: Load Unit; SU: 
Store Unit; AGU: Address Generation Unit; 2xALU: Double-speed Integer ALUs that execute 
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unit. 

ments measuring the time overhead of the different attacks. Finally, in Section 12.5.4 
we discuss some points related to the practical deployment of Pioneer and extensions 
to the current implementation of Pioneer. 

12.5.1 The Netburst Microarchitecture and EM64T Extensions 

In this section, we present a simplified overview of the Intel Netburst microarchitec­
ture that is implemented in the Pentium IV family of CPUs. We also describe the 
EM64T extensions that add support for 64-bit addresses and data to the 32-bit x86 
architecture. 

Figure 12.6 shows a simplified view of the front-end and execution units in the 
Netburst architecture. The figure and our subsequent description are based on a de­
scription of the Netburst microarchitecture by Boggs et al. [5]. 

The instruction decoder in Pentium IV CPUs can only decode one instruction 
every clock cycle. To prevent the instruction decoder from creating a performance 
bottleneck, the Netburst microarchitecture uses a trace cache instead of a regular LI 
instructions cache. The trace cache holds decoded x86 instructions in the form of 
|a,ops. fxops are RISC-style instructions that are generated by the instruction decoder 
when it decodes the x86 instructions. Every x86 instruction breaks down into one or 
more dependent |Xops. The trace cache can hold up to 12000 |a,ops and can issue up to 
three |i,ops to the execution core per clock cycle. Thus, the Netburst microarchitecture 
is a 3-way issue superscalar microarchitecture. 

The Netburst microarchitecture employs seven execution units. The load and 
store units have dedicated Arithmetic Logic Units (ALU) called Address Generation 
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Units (AGU) to generate addresses for memory access. Two double-speed integer 
ALUs execute two n,ops every clock cycle. The double speed ALUs handle simple 
arithmetic operations like add, subtract and logical operations. 

The LI-data cache is 16KB in size, 8-way set associative and has a 64 byte line 
size. The L2 cache is unified (holds both instructions and data). Its size varies de­
pending on the processor family. The L2 cache is 8 way set associative and has a 64 
byte line size. 

The EM64T extensions add support for a 64-bit address space and 64-bit operands 
to the 32-bit x86 architecture. The general purpose registers are all extended to 64 
bits and eight new general purpose registers are added by the EM64T extensions. In 
addition, a feature called segmentation"* allows a process to divide up its data seg­
ment into multiple logical address spaces called segments. Two special CPU registers 
(f s and gs) hold pointers to segment descriptors that provide the base address and 
the size of a segment as well as segment access rights. To refer to data in a particular 
segment, the process annotates the pointer to the data with the segment register that 
contains the pointer to the descriptor of the segment. The processor adds the base ad­
dress of the segment to the pointer to generate the full address of the reference. Thus, 
f s : 0 0 0 0 would refer to the first byte of the segment whose descriptor is pointed to 
by f s. 

12.5.2 Implementation of Pioneer on x86 

We now discuss how we implement the checksum code so that it has all the properties 
we describe in Section 12.4.1. Then we describe how the checksum code sets up the 
execution environment described in Section 12.4.2 on the x86 architecture. 

Every iteration of the checksum code performs these five actions: 1) deriving the 
next pseudo-random number from the T-function, 2) reading the memory word for 
checksum computation, 3) updating the checksum, 4) rotating the checksum using a 
r o t a t e instruction, and 5) updating some program state such as the data pointer. 
Except for reading the CPU state and our defense against the memory copy attack, 
all properties are implemented on the x86 architecture exactly as we describe in 
Section 12.4.1. Below, we describe the techniques we employ to obtain the CPU 
state on the x86 architecture. We also describe how we design our defense against 
the memory copy attacks. 

CPU state inputs. The CPU state inputs, namely the Program Counter (PC) and the 
data pointer, are included in the checksum to detect the three memory copy attacks. 
On the x86 architecture with EM64T extensions, the PC cannot be used as an operand 
for any instruction other than the l e a instruction. So, if we want to include the 
value of the PC in the checksum, the fastest way to do it is to use the following two 
instructions: first, the l e a instruction moves the current value of PC into a general 
purpose register, and next, we incorporate the value in the general purpose register 

* The EM64T extensions to the IA32 architecture support segmentation in a limited way. 
When running in 64-bit mode, the CPU does not use the segment base values present in 
segment descriptors pointed to by the cs, ds, ss and es segment registers. 



12 Pioneer: Untampered Code Execution on Legacy Systems 269 

into the checksum. Since the value of the PC is known in advance, the adversary 
can directly incorporate the corresponding value into the checksum as an immediate. 
Doing so makes the adversary's checksum computation faster since it does not need 
the l e a instruction. Hence, on the x86 platform we cannot directly include the PC 
in the checksum. 

Instead of directly including the PC in the checksum, we construct the check­
sum code so that correctness of the checksum depends on executing a sequence of 
absolute jumps. By including the jump target of each jump into the checksum, we 
indirectly access the value of the PC. 

Block 1 

jmp *reg .-

Fig. 12.7. Structure of the checksum code. There are 4 code blocks. Each block is 128 bytes 
in size. The arrows show one possible sequence of control transfers between the blocks. 

As Figure 12.7 shows, we construct the checksum code as a sequence of four 
code blocks. Each code block generates the absolute address of the entry point of 
any of the four code blocks using the current value of the checksum as a parameter. 
Both the code block we are jumping from and the code block we are jumping to 
incorporate the jump address in the checksum. The last instruction of code block 
jumps to the absolute address that was generated earlier. 

All of the code blocks execute the same set of instructions to update the check­
sum but have a different ordering of the instructions. Since the checksum function is 
strongly ordered, the final value of the checksum depends on executing the checksum 
code blocks in the correct sequence, which is determined by the sequence of jumps 
between the blocks. 
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The checksum code blocks are contiguously placed in memory. Each block is 
128 bytes in size. The blocks £ire aligned in memory so that the first instruction of 
each block is at an address that is a multiple of 128. This simplifies the jump target 
address generation since the jump targets can be generated by appropriately masking 
the current value of the checksum. 

Memory copy attacks. Memory copy attacks are the most difficult attacks to de­
fend against on the x86 architecture, mainly for of three reasons: 1) the adversary 
can use segmentation to have the processor automatically add a displacement to the 
data pointer without incurring a time overhead; 2) the adversary can utilize mem­
ory addressing with an immediate or register displacement, without incurring a time 
overhead because of the presence of dedicated AGUs in the load and the store execu­
tion units; and 3) the PC cannot be used like a general purpose register in instructions, 
which limits our flexibility in designing defenses for the memory copy attacks. 

We now describe how the adversary can implement the three memory copy at­
tacks on the x86 architecture and how we construct the checksum code so that the 
memory copy attacks increase the adversary's checksum computation time. 

In the first memory copy attack shown in Figure 3(b), the adversary runs a mod­
ified checksum code from the correct memory location and computes the checksum 
over a copy of the unmodified verification function placed elsewhere in memory. 
This attack requires the adversary to add a constant displacement to the data pointer. 
There are two ways the adversary can do this efficiently: 1) it can annotate all in­
structions that use the data pointer with one of the segment registers, f s or gs , and 
the processor automatically adds the segment base address to the data pointer, or 2) 
the adversary can use an addressing mode that adds an immediate or a register value 
to the data pointer, and the AGU in the load execution unit will add the correspond­
ing value to the data pointer. However, our checksum code uses all sixteen general 
purpose registers, so the adversary can only use an immediate to displace the data 
pointer. 

Neither of these techniques adds any time overhead to the adversary's check­
sum computation. Also, both techniques retain the correct value of the data pointer. 
Thus, this memory copy attack cannot be detected by including the data pointer in 
the checksum. However, both these techniques increase the instruction length. We 
leverage this fact in designing our defense against this memory copy attack. The seg­
ment register annotation adds one byte to the length of any instruction that accesses 
memory, whereas addressing with immediate displacement increases the instruction 
length by the size of the immediate. Thus, in this memory copy attack, the adver­
sary's memory reference instructions increase in length by a minimum of one byte. 
An instruction that reads memory without a segment register annotation or an imme­
diate displacement is 3 bytes long on the x86 architecture with EM64T extensions. 
We place an instruction having a memory reference, such as add mem, r e g , as 
the first instruction of each of the four checksum code blocks. In each checksum 
code block, we construct the jump target address so that, the jump lands with equal 
probability on either the first instruction of a checksum code block or at an offset 
of 3 bytes from the start of a code block. In an unmodified code block, the second 
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instruction is at an offset of 3 bytes from the start of the block. When the adver­
sary modifies the code blocks to do a memory copy attack, the second instruction 
of the block cannot begin before the 4th byte of the block. Thus, 50% of the jumps 
would land in the middle of the first instruction, causing the processor to generate an 
i l l e g a l opcode exception. 
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Fig. 12.8. Comparison of the code block lengths in the original verification function and an 
adversary-modified verification function. The adversary moves its code blocks in memory so 
that the entry points of its code blocks are at addresses that are a power of two. 

To accommodate the longer first instruction, the adversary would move its code 
blocks farther apart, as Figure 12.8 shows. The adversary can generate its jump target 
addresses efficiently by ahgning its checksum code blocks in memory in the follow­
ing way. The adversary places its code blocks on 256 byte boundaries and separates 
its first and second instruction by 8 bytes. Then, the adversary can generate its jump 
addresses by left-shifting the correct jump address by 1. We incorporate the jump 
address into the checksum both before and after the jump. So, the adversary has to 
left-shift the correct jump address by 1 before the jump instruction is executed and 
restore the correct jump address by right-shifting after the jump is complete. Thus, 
the adversary's overhead for the first memory copy attack is the execution latency of 
one left-shift instruction and one right-shift instruction. 

In the second memory copy attack shown in Figure 3(c), the adversary keeps the 
unmodified verification function at the correct memory location, but computes the 
checksum using a modified checksum code that runs at different memory locations. 
In this case, the entry points of the adversary's code blocks will be different, so the 
adversary would have to generate different jump addresses. Since we include the 
jump addresses in the checksum, the adversary would also have to generate the cor­
rect jump addresses. Hence, the adversary's checksum code blocks would be larger 
than 128 bytes. As before, to accommodate the larger blocks, the adversary would 
move its code blocks apart and align the entry points at 256 byte boundaries (Fig­
ure 12.8). Then, the adversary can generate its jump address by left-shifting the cor­
rect jump address and by changing one or more bits in the resulting value using a 
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Fig. 12.9. The layout of the stack on an x86 processor with EM64T extensions. Both checksum 
pieces are 8 bytes long and are aligned on 16-byte boundaries. The empty regions are also 8 
bytes long. The stack pointer is assigned at random to one of the two locations SPl or SP2. 

logical operation. To restore the correct jump address, the adversary has to undo the 
changes either by loading an immediate value or by using a right-shift by 1 and a 
logical operation. In any case, the adversary's time overhead for this memory copy 
attack is greater than the time overhead for first memory copy attack. 

In the third memory copy attack shown in Figure 3(d), both the unmodified ver­
ification function and the adversary's checksum code are not present at the correct 
memory locations. Thus, this attack is a combination of the first and the second mem­
ory copy attacks. The adversary's time overhead for this memory copy attack is the 
same as the time overhead for the second memory copy attack. 

Variable instruction length. The x86 Instruction Set Architecture (ISA) supports 
variable length instructions. Hence, the adversary can reduce the size of the check­
sum code blocks by replacing one or more instructions with shorter variants that 
implement the same operation with the same or shorter latency. The adversary can 
use the space saved in this manner to implement the memory copy attacks without 
its code block size exceeding 128 bytes. To prevent this attack, we carefully select 
the instructions used in the checksum code blocks so that they are the smallest in­
structions able to perform a given operation with minimum latency. 

Execution environment for untampered code execution. In order to get the guar­
antee of execution at the highest privilege level with maskable interrupts turned off, 
the checksum code incorporates the CPU flags in the checksum. The flags register 
on the x86 architecture, r f l a g s , can only be accessed if it is pushed onto the stack. 
Since we use to the stack to hold a part of the checksum, we need to ensure that 
pushing the r f l a g s onto the stack does not overwrite the part of the checksum that 
is on the stack. Also, a processor with EM64T extensions always pushes the proces­
sor state starting at a 16-byte boundary on receiving interrupts or exceptions. Thus, 
we need to make sure that the checksum pieces on the stack are aligned on 16-byte 
boundaries so they will be overwritten when an interrupt or exception occurs. 

Figure 12.9 shows the stack layout we use for x86 processors with EM64T ex­
tensions. Our stack layout has checksum pieces alternating with empty slots. All four 
elements are eight bytes in size. The checksum code moves the stack pointer so that 
the stack pointer points either to location SPl or to location SP2. On the x86 architec­
ture, the stack grows downwards from high addresses to low addresses. To push an 
item onto the stack, the processor first decrements the stack pointer and then writes 
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the item to the memory location pointed to by the stack pointer. With EM64T exten­
sions, pushes and pops normally operate on 8-byte data. Since the stack pointer is 
always initialized to either SPl or to SP2, a push of the r f l a g s register will always 
write the flags to one of the empty 8-byte regions. If an interrupt or exception were to 
occur, the processor would push 40 bytes of data onto the stack, thereby overwriting 
either checksum piece 1 or both checksum pieces. 

We keep checksum pieces on the stack to prevent the adversary from getting 
control through an exception or a non-maskable interrupt. However, the x86 archi­
tecture has a special non-maskable interrupt called System Management Interrupt 
(SMI), which switches the processor into the System Management Mode (SMM). 
The purpose of SMM is to fix chipset bugs and for hardware control. 

The SMI does not save the processor state on the stack. So, it is not possible 
to prevent the SMI by keeping checksum pieces on the stack. Since the SMI is a 
special-purpose interrupt, we assume that it never occurs when the verification func­
tion runs. During our experiments, we found this assumption to be true all the time. 
In Section 12.5.4, we discuss how we can extend the current implementation of Pio­
neer to handle the SMI. 

Description of verification function code. Figure 12.10 shows the pseudocode of 
one code block of the verification function. The block performs six actions: 1) de­
riving the next pseudo-random value from the T-function; 2) generating the jump 
address, the stack pointer, and the data pointer using the current value of the check­
sum, 3) pushing r f l a g s onto the stack, 4) reading a memory location containing 
the verification function, 5) updating the checksum using the memory read value, 
previous value of the checksum, the output of the T-function, the r f l a g s register, 
and the jump address, and 6) rotating the checksum using the rotate instruction. 

The checksum is made up of twelve 64-bit pieces, ten in the registers and two on 
the stack. The checksum code uses all sixteen general purpose registers. 

Figure 12.11 shows the assembler code of one block of the verification function. 
The code shown is not the optimized version but a verbose version to aid readability. 

12.5.3 Experiments and Results 

Any attack that the adversary uses has to be combined with a memory copy attack 
because the adversary's checksum code will be different from the correct checksum 
code. Hence, the memory copy attack is the attack with the lowest overhead. Of the 
three memory copy attacks, the first has the lowest time overhead for the adversary. 
Hence, we implemented two versions of the checksum code using x86 assembly: a 
legitimate version and a malicious version that implements the first memory copy 
attack (the correct code plus two extra shift instructions). 

Experimental setup. The dispatcher is a PC with a 2.2 GHz Intel Pentium IV pro­
cessor and a 3Com 3c905C network card, running Linux kernel version 2.6.11-8. 
The untrusted platform is a PC with a 2.8 GHz Intel Pentium IV Xeon processor 
with EM64T extensions and an Intel 82545GM Gigabit Ethernet Controller, running 
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//Input: y number of iterations of the verification procedure 
//Output; Checksum C, (10 segments in registers CQ to Cg, 
// and 2 on stack Cstfci . ^stk2 > ®̂ *̂ ^ being 64 bits) 
//Variables: [codestart, code.end] - bounds of memory address imder verification 
// daddr - address of current memory access 
// X - value of T function 
// I - counter of iterations 
// r flags - flags register 
// jumpJ^arget[l : 0] - determines which code block to execute 
// temp - temp register used to compute checksum 
daddr <— codestart 
for / = y to 0 do 

Checksum 1 
//T function updates x where 0 < a; < 2"' 
X *— X + (x^ V 5) mod 2 ^ 
//Read r flags and incorporate into daddr 
daddr <— daddr 4- fflags 
//Read from memory address daddr, calculate checksum.Let C be the checksum vector and j be the current 
index. 
jumpJ-arget *— not{jumpJ^arget) -(- loop-ctr @ x 
temp *— a; © C j - i + daddr © Cj 
\tjumpJ.arget{l\ =— Oandjump-target[0] ~~ 0 then 

Cj <— Cj -\- meni[daddr + 8] + jump-±arget 
else 

Cj ^^ Cj + jump-target 
end if 
Cj-i <— Cj-i + temp 
Cstk <— Cstk © jum.p-target 
Cj~2 *— Cj^2 + Cj 
Cj-3 ^ C j _ 3 + Cj-i 
Cj *— rotatejright{Cj) 
//Update daddr to perform pseudo-random memory traversal 
daddr *— daddr + x 
//Update rsp and jump-target 
rsp[l\^Cj[l] 
3 ^ 0 + 1) m o d 11 
jum.p^target[8 : 7] <— Cj[S : 7] 
jump-target[l : 0] <— temp[0], temp[0] 
it jump-tar get [8 : 7] — 0 then 

goto Checksum 1 
elseit jump-tar get[8 : 7] = 1 then 

goto Checksum 2 
elseif jum,p-target[8 : 7] = 2 then 

goto Checksum 3 
e\stit jump-tar get[8 : 7] = 3 then 

goto Checksum 4 
end if 
Checksum 2 

Checksum 3 

Checksum 4 

end for 

Fig. 12.10. Verification Function Pseudocode 
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Assembly Instruction Explanation 
//Read memory 
add (rbx), rl5 memory read 
sub 1, ecx decrement loop counter 
add rdi, rax a; <— (a; * s) OR 5 + a; 
//modifies jumpJarget register rdx and rdi 
xor rl4, rdi rdi <— rdi (B Cj-i 
add rex, rdx rdx <— rdx + loopctr 
add rbx, rdi rdi <— rdi + daddr 
xor rax, rdx input x (from T junction) 
xor rl5, rdi rdi <— rdi ffi Cj 
//modifies checksum with rdx and rdi 
add rdx, rl5 modify checksum Cj 
add rdi, rl4 modify checksum Cj-i 
xor rdx, -8(rsp) modify checksum on stack 
xorrlS, r l3 
add rl4, r l2 
ro l r l5 

Cj -2 —̂ Cj^2 © Cj 
Cj-3 <— C3-3 + C j - l 
r l 5 <— rotate[rl5] 

//Pseudorandom memory access 
xor rdi, rbx 
and maskl, ebx 
or mask2, rbx 
//Modify stack pointer and 
xor rdx, rsp 
and masks, esp 
or mask4, rsp 
and 0x180, edx 
and 0x1, rdi 
add rdi, rdx 
add rdi, rdi 
add rdi, rdx 
or mask, rdx 
xor rdx, r l5 

daddr <— daddr ffi randombits 
modify daddr 
modify daddr 

target jump address 
Modify rsp 
create rsp 
create rsp 
jumpJbarget <— r l 5 
rdi <— rdi AND 0x1 
rdx <— rdx + rdi 
shift rdi 
rdx <— rdx + rdi 
create jump Jarget address 
add jump target address into chec 

//Tfunction updates x, at rax 
movrax, rdi save value of Tfunction 
imul rax, rax x = x*x 
or 0x5, rax x <— x * x OR 5 
//Readflags 
pushfq push rflags 
add (rsp), rbx daddr *— daddr + rflags 
jmp *rdx jump to 1 of the 4 blocks 

Fig. 12.11. Checksum Assembly Code 
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Linux kernel version 2.6.7. The dispatcher code and the verification function are im­
plemented inside the respective network card interrupt handlers. Implementing code 
inside the network card interrupt handler enables both the dispatcher and the un-
trusted platform to receive the Pioneer packets as early as possible. The dispatcher 
and the untrusted platform are on the same LAN segment. 

Empty instruction issue slots. In Section 12.4.1, we mentioned that the checksum 
code instruction sequence has to be carefully arranged to eliminate empty instruc­
tion issue slots. The Netburst Microarchitecture issues |Llops, which are derived from 
decoding x86 instructions. Hence, to properly sequence the instructions, we need to 
know what jtops are generated by the instructions we use in the checksum code. This 
information is not publically available. In the absence of this information, we try to 
sequence the instructions through trial-and-error. To detect the presence of empty 
instruction issue slots we place n o - o p instructions at different places in the code. If 
there are no empty instruction issue slots, placing n o - o p instructions should always 
increase the execution time of the checksum code. We found this assertion to be only 
partially true in our experiments. There are places in our code where n o - o p instruc­
tions can be placed without increasing the execution time, indicating the presence of 
empty instruction issue slots. 

Determining number of verification function iterations. The adversary can try to 
minimize the Network Round-Trip Time (RTT) between the untrusted platform and 
dispatcher. Also, the adversary can pre-load its checksum code and the verification 
function into the CPU's LI instruction and data caches respectively to ensure that it 
does not suffer any cache misses during execution. We prevent the adversary from 
using the time gained by these two methods to forge the checksum. 

The theoretically best adversary has zero RTT and no cache misses, which is a 
constant gain over the execution time of the correct checksum code. We call this 
constant time gain as the adversary time advantage. However, the time overhead of 
the adversary's checksum code increases linearly with the number of iterations of 
the checksum loop. Thus, the dispatcher can ask the untrusted platform to perform a 
sufficient number of iterations so that the adversary's time overhead is at least greater 
than the adversary time advantage. 

The expression for the number of iterations of the checksum loop to be performed 
by the untrusted platform can be derived as follows. Let c be the clock speed of the 
CPU, a be the time advantage of the theoretically best adversary, o be the adversary's 
overhead per iteration of the checksum loop represented in CPU cycles, and n is the 
number of iterations. Then n > ^ ^ to prevent false negatives' in the case of the 
theoretically best adversary. 

Experimental results. To calculate the time advantage of the theoretically best ad­
versary, we need to know the upper bound on the RTT and the time saved by pre-
warming the caches. We determine the RTT upper bound by observing the p i n g 
latency for different hosts on our LAN segment. This gives us an RTT upper bound 

^ A false negative occurs when Pioneer claims that the untrusted platform is uncompromised 
when the untrusted platform is actually compromised. 
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of 0.25 ms since all ping latencies are smaller than this value. Also, we calculate the 
amount of time that cache pre-warming saves the adversary by running the checksum 
code with and without pre-warming the caches and observing the running times us­
ing the CPU's r d t s c instruction. The upper bound on the cache pre-warming time 
is 0.0016 ms. Therefore, for our experiments we fix the theoretically best adversary's 
time advantage to be 0.2516 ms. The attack that has the least time overhead is the 
first memory copy attack, which has an overhead of 0.6 CPU cycles per iteration of 
the checksum loop. The untrusted platform has a 2.8 GHz CPU. Using these values, 
we determine the required number of checksum loop iterations to be 1,250,000. To 
prevent false positives due to RTT variations, we double the number of iterations to 
2,500,000. 

The dispatcher knows, r, the time taken by the correct checksum code to carry out 
2,500,000 iterations. It also knows that the upper bound on the RTT, rtt. Therefore, 
the dispatcher considers any checksum result that is received after time r -I- rtt to be 
late. This threshold is the adversary detection threshold. 

We place the dispatcher at two different physical locations on our LAN seg­
ment. We run our experiments for 2 hours at each location. Every 2 minutes, the dis­
patcher sends a challenge to the untrusted platform. The untrusted platform returns 
a checksum computed using the correct checksum code. On receiving the response, 
the dispatcher sends another challenge. The untrusted platform returns a checksum 
computed using the adversary's checksum code, in response to this challenge. Both 
the dispatcher and the untrusted platform measure the time taken to compute the two 
checksums using the CPU's r d t s c instruction. The time measured on the untrusted 
platform for the adversary's checksum computation is the checksum computation 
time of the theoretically best adversary. 

Figures 12.12 and 12.13 show the results of our experiments at the two physi­
cal locations on the LAN segment. Based on the results, we observe the following 
points: 1) even the running time of the theoretically best adversary is greater than the 
Adversary Detection Threshold, yielding a false negative rate of 0%; 2) the check­
sum computation time shows a very low variance, that we have a fairly deterministic 
runtime; 3) we observe some false positives (5 out of 60) at location 2, which we can 
avoid by better estimating the RTT. 

We suggest two methods for RTT estimation. First, the dispatcher measures the 
RTT to the untrusted platform just before it sends the challenge and assumes that 
the RTT will not significantly increase in the few tens of milliseconds between the 
time it measures the RTT and the time it receives the checksum packet from the 
untrusted platform. Second, the dispatcher can take RTT measurements at coarser 
time granularity, say every few seconds, and use these measurements to update its 
current value of the RTT. 

12.5.4 Discussion 

We now discuss virtual-memory-based attacks, issues concerning the practical de­
ployment of Pioneer, and potential extensions to the current implementation of Pio­
neer to achieve better properties. 
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Fig. 12.12. Results from Location 1. 

Implementing the verification function as SMM module. The System Manage­
ment Mode (SMM) is a special operating mode present on all x86 CPUs. Code 
running in the SMM mode runs at the highest CPU privilege level. The execution 
environment provided by SMM has the following properties that are useful for im­
plementing Pioneer: 1) all interrupts, including the Non-Maskable Interrupt (NMI) 
and the System Management Interrupt (SMI), and all exceptions are disabled by 
the processor, 2) paging and virtual memory are disabled in SMM, which precludes 
virtual-memory-based attacks, and 3) real-mode style segmentation is used, making 
it easier to defend against the segmentation-based memory copy attack. 

Virtual-memory-based attacks. There are two ways in which the adversary might 
use virtual memory to attack the verification function: 1) the adversary could cre­
ate memory protection exceptions by manipulating the page table entries and obtain 
control through the exception handler, or 2) the adversary could perform a memory 
copy attack by loading the instruction and data Translation Lookaside Buffer (TLB) 
entries that correspond to the same virtual address with different physical addresses. 
Since we use the stack to hold checksum pieces during checksum computation and 
later replace the exception handlers, the adversary cannot use memory protection 
exceptions to gain control. 
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Fig. 12.13. Result from Location 2. 

The adversary can, however, use the CPU TLBs to perform a memory copy at­
tack. Wurster et aL discuss how the second attack can be implemented on the Ultra-
Sparc processor [28]. Their attack can be adapted to the Intel x86 architecture in the 
context of Pioneer as follows: 1) the adversary loads the page table entry correspond­
ing to the virtual address of the verification function with the address of the physical 
page where the adversary keeps an unmodified copy of the verification function, 
2) the adversary does data accesses to virtual addresses of the verification function, 
thereby loading the its mapping into the CPU's D-TLB, and 3) the adversary replaces 
the page table entry corresponding to the virtual address of the verification function 
with the address of the physical page where the adversary keeps the modified check­
sum code is kept. When the CPU starts to execute the adversary's checksum code, 
it will load its I-TLB entry with the mapping the adversary set up in step 3. Thus, 
the CPU's I-TLB and D-TLB will have different physical addresses corresponding 
to the same virtual address and the adversary will be able to perform the memory 
copy attack. 

The current implementation of Pioneer does not defend against this memory copy 
attack. However, a promising idea to defend against the attack is as follows. We 
create virtual address aliases to the physical pages contaning the verification function 
so that the number of aliases is greater than the number of entries in the CPU's TLB. 
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Each iteration of the checksum code loads the PC and the data pointer with two of the 
virtual address aliases, selected in a pseudo-random manner. If the checksum loop 
performs a sufficient number of iterations so that with high probability all virtual 
address aliases are guaranteed to be used then the CPU will eventually evict the 
adversary's entry from the TLB. 

The adversary can prevent its entry from being evicted from the TLB by not using 
all the virtual address aliases. However, in this case, the adversary will have to fake 
the value of the PC and the data pointer for the unused virtual address aliases. Since 
each iteration of the checksum code selects the virtual address aliases with which to 
load the PC and the data pointer in a pseudo-random manner, the adversary will have 
to check which aliases are used to load the PC and the data pointer in each iteration of 
the checksum code. This will increase the adversary's checksum computation time. 

The TLB-based memory copy attack can also be prevented by implementing the 
verification function as an SMM module. Since the CPU uses physical addresses in 
SMM and all virtual memory support is disabled, the memory copy attack that uses 
the TLBs is not possible anymore. 

Why use Pioneer instead of trusted network boot?. In trusted network boot, the 
BIOS on a host fetches the boot image from a trusted server and executes the boot 
image. In order to provide the guarantee of verifiable code execution, trusted network 
boot has to assume that: 1) the host has indeed rebooted; 2) the correct boot image has 
indeed reached the host; and 3) the BIOS will correctly load and transfer control to 
the boot image. To guarantee that the BIOS cannot be modified by the adversary, the 
BIOS will have to stored on an immutable storage medium like Read-Only Memory 
(ROM). This makes it impossible to update the BIOS without physically replacing 
the ROM, should any vulnerability be discovered in the BIOS code. 

Pioneer does not require any code to reside in immutable storage media, thereby 
making it easy to update. Also, Pioneer provides the property of verifiable code ex­
ecution without having to reboot the untrusted platform, without having to transfer 
code over the network and without relying on any unverified software on the un­
trusted platform to transfer control to the executable. 

MMX and SSE instructions. x86 processors provide support for Single Instruction 
Multiple Data (SIMD) instructions in the form of MMX and SSE technologies [11]. 
These instructions can simultaneously perform the same operation on multiple data 
items. This is faster than operating on the data items one at a time. However, the 
adversary cannot use the MMX or SSE instructions to speed up its checksum code, 
since we design the checksum code to be non-parallelizable. 

Pioneer and TCG. A promising approach for reducing exposure to network RTT 
and for achieving a trusted channel to the untrusted platform is to leverage a Trusted 
Platform Module (TPM). The TPM could issue the challenge and time the execution 
of the checksum code and return the signed result and computation time to the dis­
patcher. However, this would require that the TPM be an active device, whereas the 
current generation of TPMs are passive. 
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Directly computing cliecksum over the executable. Why do we need a hash func­
tion? Why can the checksum code not simply compute the checksum over the exe­
cutable? While this simpler approach may work in most cases, an adversary could ex­
ploit redundancy in the memory image of the executable to perform data-dependent 
optimizations. A simple example is a executable image that contains a large area ini­
tialized to zeros, which allows the adversary to suppress memory reads to that region 
and also to suppress updating the checksum with the memory value read (in case of 
add or x o r operations). 

s k i n i t and s e n t e r . AMD's Pacifica technology has an instruction called s k -
i n i t , which can verifiably transfer control to an executable after measuring it [2]. 
Intel's LaGrande Technology (LT) has a similar instruction, s e n t e r [10]. Both 
s e n t e r and s k i n i t also set up an execution environment in which the executable 
that is invoked is guaranteed to execute untampered. These instructions can be used 
to start-up a Virtual Machine Monitor (VMM) or a Secure Kernel (SK). Both instruc­
tions rely on the TCG load-time attestation property to guarantee that the SK or the 
VMM is uncompromised at start-up. Unlike Pioneer, however, neither Pacifica nor 
LT can be used on legacy computing systems. 

Implementing Pioneer on otlier architectures. We use the x86 architecture as our 
implementation platform example for the following reasons: 1) since x86 is the most 
widely deployed architecture today, our implementation of Pioneer on x86 can im­
mediately be used on many legacy systems; and 2) due to requirements of backward 
compatibility, the x86 is a complex architecture, with a non-orthogonal ISA. There­
fore, implementing Pioneer on the x86 architecture is more challenging than imple­
menting it on RISC architectures with more orthogonal instruction sets, such as the 
MIPS, and the Alpha. 

Verifying the timing overhead. Pioneer relies on the execution time of the check­
sum code. Therefore, the dispatcher has to know ahead of time what the correct 
checksum computation time should be for the untrusted platform. The checksum 
computation time depends on the CPU of the untrusted platform. There are two ways 
by which the dispatcher can find out the correct checksum computation time: 1) if 
the dispatcher has access to a trusted platform having the same CPU as the untrusted 
platform, or a CPU simulator for the untrusted platform, it can run experiments to 
get the correct execution time; or 2) we can publish the correct execution time for 
different CPUs on a trusted web-site. 

12.6 Applications 

In this section, we first discuss the types of applications that can leverage Pioneer 
to achieve security, given the assumptions we make. Then, we describe the kernel 
rootkit detector, the sample application we have built using Pioneer. 
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12.6.1 Potential Security Applications 

Pioneer can be applied to build security applications that run over networks con­
trolled by a single administrative entity. On such networks, the network administrator 
could configure the network switches so that an untrusted host can only communi­
cate with the dispatcher during the execution of Pioneer. This provides the property 
of message-origin-authentication while eliminating proxy attacks. Examples of net­
works that can be configured in this manner are corporate networks and cluster com­
puting environments. On these networks the network administrator often needs to 
perform security-critical administrative tasks on untrusted hosts, such as installing 
security patches or detecting malware like viruses and rootkits. For such applica­
tions, the administrator has to obtain the guarantee that the tasks are executed cor­
rectly, even in the presence of malicious code on the untrusted host. This guarantee 
can be obtained through Pioneer. 

As an example of how Pioneer could be used, we briefly discuss secure code 
updates. To verifiably install a code update, we can invoke the program that installs 
the code update using Pioneer. Pioneer can also be used to measure software on 
an untrusted host after a update to check if the code update has been successfully 
installed. 

12.6.2 Kernel Rootkit Detection 

In this section, we describe how we build a kernel rootkit detector using Pioneer. 
Our kernel rootkit detector allows a trusted verifier to detect kernel rootkits that may 
be installed on an external untrusted host without relying on signatures of specific 
rootkits or on low-level file system scans. Sailer et al. propose to use the load-time at­
testation guarantees provided by a TPM to detect rootkits when the kernel boots [18]. 
However, their technique cannot detect rootkits that do not make changes to the disk 
image of the kernel but only infect the in-memory image. Such rootkits do not sur­
vive reboots. Our rootkit detector is capable of detecting both kinds of rootkits. The 
only rootkit detection technique we are aware of that achieves similar properties to 
ours is Copilot [17]. However, unlike our rootkit detector. Copilot requires additional 
hardware in the form of an add-in PCI card to achieve its guarantees. Hence, it cannot 
be used on systems that do not have this PCI card installed. Also, our rootkit detector 
runs on the CPU of the untrusted host, making it immune to the dummy kernel attack 
that we describe in Section 12.7 in the context of Copilot. 

Rootkits primer. Rootkits are software installed by an intruder on a host that 
allow the intruder to gain privileged access to that host, while remaining unde­
tected [17, 29]. Rootkits can be classified into two categories: those that modify 
the OS kernel, and those that do not. Of the two, the second category of rootkits can 
be easily detected. These rootkits typically modify system binaries (e.g.. Is, ps, and 
netstat) to hide the intruder's files, processes, network connections, etc. These rootk­
its can be detected by a kernel that checks the integrity of the system binaries against 
known good copies, e.g., by computing checksums. There are also tools like Trip-
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wire that can be used to check the integrity of binaries [23]. These tools are invoked 
from read-only or write-protected media so that the tools do not get compromised. 

As kernel rootkits subvert the kernel, we can no longer trust the kernel to de­
tect such rootkits. Therefore, Copilot uses special trusted hardware (a PCI add-on 
card) to detect kernel rootkits. All rootkit detectors other than Copilot, including 
AskStrider [26], Carbonite [12] and St. Michael [7], rely on the integrity of one 
or more parts of the kernel. A sophisticated attacker can circumvent detection by 
compromising the integrity of the rootkit detector. Recently Wang et al. proposed a 
method to detect stealth software that try to hide files [27]. Their approach does not 
rely on the integrity of the kernel; however, it only applies when the stealth software 
makes modifications to the file system. 

Implementation. We implement our rootkit detector on the x86_64 version of the 
Linux kernel that is part of the Fedora Core 3 Linux distribution. The x86_64 
version of the Linux kernel reserves the range of virtual address space above 
OxffffSOOOOOOOOOOO. The code segment of the kernel starts at virtual ad­
dress OxffffffffSOlOOOOO. The kernel text segment contains immutable bi­
nary code which remains static throughout its lifetime. Loadable Kernel Modules 
(LKM) occupy virtual addresses from O x f f f f f f f f 8 8 0 0 0 0 0 0 to O x f f f f f f -
fffffOOOOO. 

We build our kernel rootkit detector using a Kernel Measurement Agent (KMA). 
The KMA hashes the kernel image and sends the hash values to the verifier. The 
verifier uses Pioneer to obtain the guarantee of verifiable code execution of the KMA. 
Hence, the verifier knows that the hash values it receives from the untrusted host were 
computed correctly. 

The KMA runs on the CPU at the kernel privilege level, i.e., CPLO; hence, it 
has access to all the kernel resources (e.g., page tables, interrupt descriptor tables, 
jump tables, etc.), and the processor state, and can execute privileged instructions. 
The KMA obtains the virtual address ranges of the kernel over which to compute 
the hashes by reading the System.map file. The following symbols are of interest 
to the KMA: 1) _ t e x t and _ e t e x t , which indicate the start and the end of the 
kernel code segment; 2) s y s - c a l l - t a b l e which is the kernel system call table; 
and 3) m o d u l e - l i s t which is a pointer to the linked Hst of all loadable kernel 
modules (LKM) currently linked into the kernel. When the Kernel Measurement 
Agent (KMA) is invoked, it performs the following steps: 

1. The KMA hashes the kernel code segment between dext and ^etext. 
2. The KMA reads kernel version information to check which LKMs have been 

loaded and hashes all the LKM code. 
3. The KMA checks that the function pointers in the system call table only refer 

to the kernel code segment or to the LKM code. The KMA also verifies that the 
return address on the stack points back to the kernel/LKM code segment. The 
return address is the point in the kernel to which control returns after the KMA 
exits. 

4. The KMA returns the following to the verifier: 1) the hash of the kernel code 
segment; 2) the kernel version information and a list indicating which kernel 
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modules have been loaded; 3) the hash of all the LKM code; 4) a success/failure 
indicator stating whether the function pointer check has succeeded. 

5. The KMA flushes processor caches, restores the register values, and finally re­
turns to the kernel. The register values and the return address were saved on the 
stack when the kernel called invoked the Pioneer verification function. 

We now explain how the verifier verifies the hash values returned by the untrustcd 
platform. First, because the kernel text is immutable, it suffices for the verifier to 
compare the hash value of the kernel code segment to the known good hash value for 
the corresponding kernel version. However, the different hosts may have different 
LKMs installed, and so the hash value of the LKM code can vary. Therefore, the 
verifier needs to recompute the hash of the LKM text on the fly according to the list 
of installed modules reported by the KMA. The hash value reported by the KMA is 
then compared with the one computed by the verifier. 

Experimental results. We implemented our rootkit detector on the Fedora Core 2 
Linux distribution, using SHA-1 as the hash function. The rootkit detector ran every 5 
seconds and successfully detected adore-ng-0.53, the only publically-known rootkit 
for the 2.6 version of the Linux kernel. 

Table 12.1. Overhead of the Pioneer-based rootkit detector 

Standalone (s) Rootkit Detect (s) % Overhead 

52.99 1.9 
21.713 1.5 

385 3.2 

We monitor the performance overhead of running our rootkit detector in the back­
ground. We use three representative tasks for measurements: PostMark, bunzip2, and 
copying the entire contents of a directory. The first task, PostMark [3], is a file sys­
tem benchmark that carries out transactions on small files. As a result, PostMark is a 
combination of I/O intensive and computationally intensive tasks. We used bunzip2 
to to uncompress the Firefox source code, which is a computationally intensive task. 
Finally, we modeled an I/O intensive task by copying the entire / u s r / s r c / l i n u x 
directory, which totaled to 1.33 GB, from one harddrive to another. As the table above 
shows, all three tasks perform reasonably well in the presence of our rootkit detector. 

Discussion. As with Copilot, one limitation of our approach is that we do not verify 
the integrity of data segments or CPU register values. Therefore, the following types 
of attacks are still possible: 1) attacks that do not modify code segments but rely 
merely on the injection of malicious data; 2) if the kernel code contains jump/branch 
instructions whose target address is not read in from the verified jump tables, the 
jump/branch instructions may jump to some unverified address that contains mali­
cious code. For instance, if the jump address is read from an unverified data segment, 
we cannot guarantee that the jump will only reach addresses that have been verified. 

PostMark 
Bunzip2 
Copy Directory 

52 
21.396 

373 
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Also, if jump/branch target addresses are stored temporarily in the general purpose 
registers, it is possible to jump to an unverified code segment, after the KMA returns 
to the kernel since the KMA restores the CPU register values. In conclusion. Pioneer 
limits a kernel rootkit to be placed solely in mutable data segments; it requires any 
pointer to the rootkit to reside in a mutable data segment as well. These properties 
are similar to what Copilot achieves. 

Our rootkit detection scheme does not provide backward security. A malicious 
kernel can uninstall itself when it receives a Pioneer challenge, and our Pioneer-based 
rootkit detector cannot detect bad past events. Backward security can be achieved if 
we combine our approach with schemes that backtrack intrusions through analyzing 
system event logs [15]. 

12.7 Related Work 

In this section, we survey related work that addresses the verifiable code execution 
problem. We also describe the different methods of code attestation proposed in the 
literature and discuss how the software-based code attestation provided by Pioneer 
is different from other code attestation techniques. 

12.7.1 Verifiable Code Execution 

Two techniques, Cerium [6] and BIND [21], have been proposed. These use hard­
ware extensions to the execution platform to provide a remote host with the guarantee 
of verifiable code execution. Cerium relies on a physically tamper-resistant CPU with 
an embedded public-private key pair and a /x-kemel that runs from the CPU cache. 
BIND requires that the execution platform has a TPM chip and CPU architectural 
enhancements similar to those found in Intel's LaGrande Technology (KT) [10] or 
AMD's Secure Execution Mode (SEM) [1] and Pacifica technology [2]. Unlike Pio­
neer, neither Cerium nor BIND can be used on legacy computing platforms. As far 
as we are aware, Pioneer is the only technique that attempts to provide the verifiable 
code execution property solely through software techniques. 

12.7.2 Code Attestation 

Code attestation can be broadly classified into hardware-based and software-based 
approaches. While the proposed hardware-based attestation techniques work on gen­
eral purpose computing systems, to the best of our knowledge, there exists no 
software-based attestation technique for general purpose computing platforms. 

Hardware-based code attestation. Sailer et al. describe a load-time attestation 
technique that relies on the TPM chip standardized by the Trusted Computing 
Group [18]. Their technique allows a remote verifier to verify what software was 
loaded into the memory of a platform. However, a malicious peripheral could over­
write code that was just loaded into memory with a DMA-write, thereby breaking 



286 Arvind Seshadri et al. 

the load-time attestation guarantee. Also, as we discussed in Section 12.1, the load-
time attestation property provided by the TCG standard is no longer secure since the 
collision resistance property of SHA-1 has been compromised. Terra uses a Trusted 
Virtual Machine Monitor (TVMM) to partition a tamper-resistant hardware platform 
in multiple virtual machines (VM) that are isolated from each other [9]. CPU-based 
virtualization and protection are used to isolate the TVMM from the VMs and the 
VMs from each other. Although the authors only discuss load-time attestation using a 
TPM, Terra is capable of performing run-time attestation on the software stack of any 
of the VMs by asking the TVMM to take integrity measurements at any time. All the 
properties provided by Terra are based on the assumption that the TVMM is uncom-
promised when it is started and that it cannot be compromised subsequently. Terra 
uses the load-time attestation property provided by TCG to guarantee that the TVMM 
is uncompromised at start-up. Since this property of TCG is compromised, none of 
the properties of Terra hold. Even if TCG were capable of providing the load-time 
attestation property, the TVMM could be compromised at run-time if there are vul­
nerabilities in its code. In Copilot, Petroni et al. use an add-in card connected to the 
PCI bus to perform periodic integrity measurements of the in-memory Linux kernel 
image [17]. These measurements are sent to the trusted verifier through a dedicated 
side channel. The verifier uses the measurements to detect unauthorized modifica­
tions to the kernel memory image. The Copilot PCI card cannot access CPU-based 
state such as the pointer to the page table and pointers to interrupt and exception han­
dlers. Without access to such CPU state, it is impossible for the PCI card to determine 
exactly what resides in the memory region that the card measures. The adversary can 
exploit this lack of knowledge to hide malicious code from the PCI card. For in­
stance, the PCI card assumes that the Linux kernel code begins at virtual address 
OxcOOOOOOO, since it does not have access to the CPU register that holds the pointer 
to the page tables. While this assumption is generally true on 32-bit systems based 
on the Intel x86 processor, the adversary can place a correct kernel image starting 
at address OxcOOOOOOO while in fact running a malicious kernel from another mem­
ory location. The authors of Copilot were aware of this attack [4]. It is not possible 
to prevent this attack without access to the CPU state. The kernel rootkit detector 
we build using Pioneer is able to provide properties equivalent to Copilot without 
the need for additional hardware. Further, because our rootkit detector has access 
to the CPU state, it can determine exactly which memory locations contain the ker­
nel code and static data. This ensures that our rootkit detector measures the running 
kernel and not a correct copy masquerading as a running kernel. Also, if the host 
running Copilot has an lOMMU, the adversary can re-map the addresses to perform 
a data substitution attack. When the PCI card tries to read a location in the kernel, 
the lOMMU automatically redirects the read to a location where the adversary has 
stored the correct copy. 

Software-based attestation. Genuinity is a technique proposed by Kennell and 
Jamieson that explores the problem of detecting the difference between a simula­
tor-based computer system and an actual computer system [14]. Genuinity relies on 
the premise that simulator-based program execution is bound to be slower because 
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a simulator has to simulate the CPU architectural state in software, in addition to 
simulating the program execution. A special checksum function computes a check­
sum over memory, while incorporating different elements of the architectural state 
into the checksum. By the above premise, the checksum function should run slower 
in a simulator than on an actual CPU. While this statement is probably true when 
the simulator runs on an architecturally different CPU than the one it is simulat­
ing, an adversary having an architecturally similar CPU can compute the Genuinity 
checksum within the alloted time while maintaining all the necessary architectural 
state in software. As an example, in their implementation on the x86, Kennell and 
Jamieson propose to use special registers, called Model Specific Registers (MSR), 
that hold various pieces of the architectural state like the cache and TLB miss count. 
The MSRs can only be read and written using the special r d m s r and wrmsr in­
structions. We found that these instructions have a long latency (« 300 cycles). An 
adversary that has an x86 CPU could simulate the MSRs in software and still com­
pute the Genuinity checksum within the alloted time, even if the CPU has a lower 
clock speed than what the adversary claims. Also, Shankar et al. show weaknesses 
in the Genuinity approach [20]. SWATT is a technique proposed by Seshadri et al. 
that performs attestation on embedded devices with simple CPU architectures using 
a software verification function [19]. Similar to Pioneer, the verification function is 
constructed so that any attempt to tamper with it will increase its running time. How­
ever, SWATT cannot be used in systems with complex CPUs. Also, since SWATT 
checks the entire memory, its running time becomes prohibitive on systems with 
large memories. 

12.8 Conclusions and Future Work 

We present Pioneer, which is a first step towards addressing the problem of verifi­
able code execution on untrusted legacy computing platforms. The current version 
of Pioneer leaves open research problems. We need to: 1) deriving a formal proof 
of the optimality of the checksum code implementation; 2) proving that an adver­
sary cannot use mathematical methods to generate a shorter checksum function that 
generates the same checksum output when fed with the same input; 3) deriving a 
checksum function that is largely CPU architecture independent, so that it can be 
easily ported to different CPU architectures; and 4) increasing the time overhead for 
different attacks, so that it is harder for an adversary to forge the correct checksum 
within the expected time. There are also low-level attacks that need to be addressed: 
1) the adversary could overclock the processor, making it run faster; 2) malicious pe­
ripherals, a malicious CPU in a multi-processor system or a DMA-based write could 
overwrite the executable code image in memory after it is checked but before it is 
invoked; and 3) dynamic processor clocking techniques could lead to false positives. 
We plan to address these open research problems in our future work. 

There are also two known issues with the current version of Pioneer: 1) On the 
x86 architecture with 64-bit extensions, any interrupt and exception handler can be 
set up to have a dedicated stack. The CPU will unconditionally switch to this stack 
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when it calls the corresponding interrupt or exception handler. This feature can be 
used to defeat the stack trick used by Pioneer, thereby allowing the attacker to tamper 
with the execution of the executable by generating an exception. 2) The attacker 
can run the Pioneer verification function in user space with interrupts turned off 
while running a malicious operating system kernel in kernel space. The malicious 
kernel could obtain control through an exception after the checksum code returns the 
checksum to the verifier. We will address these issues in our liiture work. 

This chapter shows an implementation of Pioneer on an Intel Pentium IV Xeon 
processor based on the Netburst Microarchitecture. The architectural complexity of 
Netburst Microarchitecture and the complexity of the x86_64 instruction set archi­
tecture make it challenging to design a checksum code that executes slower when 
the adversary tampers with it in any manner. We design a checksum code that ex­
hausts the issue bandwidth of the Netburst microarchitecture, so that any additional 
instructions the adversary inserts will require extra cycles to execute. 

Pioneer can be used as a new basic building block to build security applications. 
We have demonstrated one such application, the kernel rootkit detector, and we pro­
pose other potential applications. We hope these examples motivate other researchers 
to embrace Pioneer, extend it, and apply it towards building secure systems. 
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In today's world of the Internet, the World-Wide Web, and Google, information is 
more accessible than ever before. An unfortunate corollary is that it is harder than 
ever to protect the privacy of sensitive information. In this chapter, we explore a 
technique called secure information flow analysis. 

Suppose that some sensitive information is stored on a computer system. How 
can we prevent it from being leaked improperly? Probably the first approach that 
comes to mind is to limit access to the information, either by using some access 
control mechanism, or else by using encryption. These are important and useful ap­
proaches, of course, but they have a fundamental limitation—they can prevent infor­
mation from being released, but they cannot prevent it from being propagated. If a 
program legitimately needs access to a piece of information, how can we be sure that 
it will not somehow leak the information improperly? Simply trusting the program is 
dangerous. We might try to monitor its output, but the program could easily disguise 
the information. Furthermore, after-the-fact detection is often too late. 

Consider for example a scenario involving e-filing of taxes. I might download a 
tax preparation program from some vendor to my home computer. I could use the 
program to prepare my tax return, entering my private financial information. The 
program might then send my tax return to the IRS electronically, encrypting it first 
to protect its confidentiality. But the program might also send billing information 
back to the vendor so that I could be charged for the use of the program. How can 
I be sure that this billing information does not covertly include my private financial 
information? 

The approach of secure information flow analysis involves performing a static 
analysis of the program with the goal of proving that it will not leak sensitive infor­
mation. If the program passes the analysis, then it can be executed safely. 

This idea has a long history, going back to the pioneering work of the Dennings 
in the 1970s [9]. It has since been heavily studied, as can be seen from the survey 
by Sabelfeld and Myers [22], which cites about 150 papers. Our goal here is not to 
duplicate that survey, but instead to explain the principles underlying secure informa­
tion flow analysis and to discuss some challenges that have so far prevented secure 
information flow analysis from being employed much in practice. 
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13.1 Basic Principles 

The starting point in secure information flow analysis is the classification of program 
variables into different security levels. The most basic distinction is to classify some 
variables as L, meaning low security, public information; and other variables as H, 
meaning high security, private information. The security goal is to prevent informa­
tion in H variables from being leaked improperly. Such leaks could take a variety of 
forms, of course, but certainly we need to prevent information in H variables from 
flowing to L variables. 

More generally, we might want a lattice of security levels, and we would wish to 
ensure that information flows only upwards in the lattice [8]. For example, if L < H, 
then we would allow flows from L to L, from H to H, and from L to H, but we would 
disallow flows from H to L. 

Another interesting case involves integrity rather than confidentiality. If we view 
some variables as containing possibly tainted information, then we may wish to pre­
vent information from such variables from flowing into untainted variables, as in 
Orbaek [19]. We can model this using a lattice with Untainted < Tainted. This idea 
is also the basis of recent work by Newsome and Song [18] that attempts to detect 
worms via a dynamic taint analysis. 

Let us consider some examples from Denning [9], assuming that s e c r e t : H 
and l e a k : L. Clearly illegal is an explicit flow: 

l e a k = s e c r e t ; 

On the other hand, the following should be legal: 

s e c r e t = l e a k ; 

as should 

l e a k = 7 5 3 1 8 ; 

Also dangerous is an implicit flow: 

if ( (secret % 2)==0) 

leak = 0; 
else 

leak = 1; 

This copies the last bit of s e c r e t to l e a k . 
Arrays can lead to subtle information leaks. If array a is initially all 0, then the 

program 

a [ s e c r e t ] = 1; 
for (int i = 0; i < a.length; i++) { 

if (a[i] == 1) 
leak = i; 
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leaks s e c r e t . 
How can we formalize the idea that program c does not leak information from 

H variables to L variables? In Volpano, Smith, and Irvine [32], the desired security 
property is formulated as follows: 

Deflnition 1 (Noninterference). Program c satisfies noninterference if, for any mem­
ories /i and V that agree on L variables, the memories produced by running c on fi 
and on v also agree on L variables (provided that both runs terminate successfully). 

The name "noninterference" was chosen because of its similarity to a property pro­
posed earlier by Goguen and Meseguer [10]. The idea behind noninterference is that 
someone observing the final values of L variables cannot conclude anything about 
the initial values of H variables. 

Notice that the noninterference property defined above is applicable only to de­
terministic programs. In later sections, we will consider noninterference properties 
that are appropriate for nondeterministic programs. 

Of course, leaking H information into L variables is not the only way that H 
information might be leaked. Consider 

w h i l e ( s e c r e t != 0) 

This program loops iff s e c r e t is nonzero. So an attacker who can observe termi-
nation/nontermination can deduce some information about s e c r e t . Similarly, the 
running time of a program may depend on H information. Such timing leaks are very 
hard to prevent, because they can exploit low-level implementation details. Consider 
the following example, adapted from Agat [1]. 

int i, count, xs[4095], Y S [ 4 0 9 6 ] ; 

for (count = 0; count < 100000; count++) { 
if (secret != 0) 

for (i = 0; i < 4096; i += 2) 
xs[i]++; 

else 
for (i = 0; i < 4095; i += 2) 

ys[i]++; 
for (i = 0; i < 4096; i += 2) 

xs[i]++; 
} 

At an abstract level, the amount of work done by this program does not seem to 
depend on the value of s e c r e t . But, when run on a local Sparc server with a 16K 
data cache, it takes twice as long when s e c r e t is 0 as it takes when s e c r e t is 
nonzero. (When s e c r e t is nonzero, the array xs can remain in the data cache 
throughout the program's execution; when s e c r e t is 0, the data cache holds xs 
and ys alternately.) 
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Because outside observations of the running program make it so hard to prevent 
information leaks, most work on secure information flow addresses only leaks of 
information from H variables to L variables, as captured by the noninterference 
property. Focusing on noninterlference can also be justified by noting that when we 
run a program on our own computer (as in the e-tax example above) we may be able 
to prevent outside observations of its execution. 

13.2 Typing Principles 

In this section, we describe how type systems can be used to ensure noninterference 
properties. For simplicity, we assume that the only security levels are H and L. We 
begin by considering a very simple imperative language with the following syntax: 

(phrases) p ::= e \ c 

(expressions) e ::= X \ n \ 61 + 62 | . . . 

(commands) c ::= x := e \ 
skip { 
if e tlien ci else C2 | 
wliile e do c I 
ci;c2 

Here metavariable x ranges over identifiers and n over integer literals. Integers are 
the only values; we use 0 for false and nonzero for true. 

A program c is executed under a memory /i, which maps identifiers to values. We 
assume that expressions are total and evaluated atomically, with /i(e) denoting the 
value of expression e in memory ^. Execution of commands is given by a standard 
structural operational semantics as in Gunter [11], shown in Figure 13.1. These 
rules define a transition relation —> on configurations. A configuration is either 
a pair (c, fj) or simply a memory ji. In the first case, c is the command yet to be 
executed; in the second case, the command has terminated, yielding final memory JJL. 
We write —>* for the reflexive, transitive closure of — K 

Going back to Denning's original work [9], we can identify the following princi­
ples: 

• First, we classify expressions by saying that an expression is H if it contains any 
H variables; otherwise it is L. 

• Next we prevent explicit flows by forbidding a H expression from being assigned 
to a L variable. 

• Finally, we prevent implicit flows by forbidding a guarded command with a H 
guard from assigning to L variables. 

We can express these classifications and restrictions using a type system. The 
security types that we need are as follows: 

(data types) T ::= L \ H 
(phrase types) p ::= r | T var \ T cmd 
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(UPDATE) X € dom{^i) 

{x := e,/j.)—>/i[a; := /^(e)] 

(NO-OP) (skip, ij) —>/i 

(BRANCH) jU(e) / 0 
(if e tlien ci else 02, M)—>(ci > M) 

/^(e) = 0 
(if e tlien ci else C2, M) —* (c2, jtt) 

(LOOP) jit(e) = 0 
(while e do c, /i)—>/^ 

M(e) 7̂  0 
(while e do c, /^)—>(c; while e do c, [i) 

(SEQUENCE) (ci.ju) >;̂ ' 
(ci;c2,Ai)—>(C2,M') 

(CI,M)—>(C'I,M') 

(ci;c2,yu)—>(ci;C2,/u') 

Fig. 13.1. Structural Operational Semantics 

The intuition is that an expression e of type T contains only variables of level T or 
lower, and a command c of type r cmd assigns only to variables of level T or higher. 

Next, we need an identifier typing F that maps each variable to a type of the form 
r var, giving its security level. A typing judgment has the form F h p : p, which can 
be read as "from identifier typing F, it follows that phrase p has type p". In addition, 
it is convenient to have subtyping judgments of the form pi C p2. For instance, we 
would want H cmd C L cmd, because if a command assigns only to variables of 
level H or higher then, a fortiori, it assigns only to variables of level L or higher. 
The typing rules are shown in Figures 13.2 and 13.3; they first appeared in Volpano, 
Smith, and Irvine [32]. 

Programs that are well typed under this type system are guaranteed to satisfy 
noninterference. First, the following two lemmas show that the type system enforces 
the intended meanings of expression types and command types: 

Lemma 1 (Simple Security). If F \- e : T, then e contains only variables of level r 
or lower 

Lemma 2 (Confinement). If F \- c : r cmd, then c assigns to only to variables of 
level T or higher 

Next, we say that memories p and v are L-equivalent, written p ~£, u, if p and 
v agree on the values of L variables. Now we can show noninterference: 
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(R-VAL) r{x) = T var 

r\- X:T 

(INT) rhn: L 

(PLUS) r h ei : r , T h 62 : r 
/"• h ei + 62 : T 

(ASSIGN) r{x) = r var, F \- e : T 
r h X := e : T cmd 

(SKIP) r \- skip : H cmd 

(IF) r\- e-.T 
r \- ci : T cmd 
r \- C2 : T cmd 
r i - if e then ci else C2 : r cmrf 

(WHILE) r\- e-.T 
r 'r c: T cmd 
r h wliile e do c : r cmd 

(COMPOSE) r i - ci : r cmd 
r \- C2 • T cmd 

r\-ci;c2 : r cmd 

Fig. 13.2. Typing rules 

(BASE) LCH 

(CMD~) r ' C 
r cm<i? C r ' cmd 

(REFLEX) P Q p 

(TRANS) pi C p2, /92 C /?3 

Pi C p3 

(SUBSUMP) r i - p : p i , pi C p2 

r h p : p2 

Fig. 13.3. Subtyping rules 
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Theorem 1 (Noninterference). Ifc is well typed and n ~L v and c runs successfully 
under both ji and v, producing final memories pi and v', respectively, then p! ^L V' . 

Proof The proof is by induction on the length of the execution (c, ^)—»/i' . We 
describe two interesting cases: 

• Suppose c is an assignment x := e. If x is H, then fJ ~ i i^' trivially. And if x is 
L, then the type system requires that e : L, which means that by Simple Security, 
e contains only L variables. Hence fi{e) = ^{e), which means that fi' ~ £ (/'. 

• Suppose c is while e do c'. If e is L, then by Simple Security fi{e) — v{e), which 
means that the executions from (while e do c', ji) and from (while e do c', u) 
begin in the same way; they go either to fi and to v (if /x(e) = v{e) = 0) or to 
(c'; while e do c', p) and to (c'; while e do c', f) (otherwise). In the former case 
we are done immediately, and in the latter case the result follows by induction. 
If, instead, e is H, then the type system requires that c' has type H cmd. So, 
by Confinement, c' assigns only to H variables. It follows that fj, ^L M' a^d 
V ~L v', which implies that ji' ~ i nu'. 

The remaining cases are similar. D 

Of course the language that we have considered so far is very small. In the next 
subsections, we consider a number of extensions to it. 

13.2.1 Concurrency 

Suppose that we extend our language with multiple threads, under a shared memory. 
This introduces nondeterminism, which makes the noninterference property in Def­
inition 1 inappropriate—now running a program twice under the same memory can 
produce two memories that disagree on the values of L variables. 

As a starting point, we might generalize to a possibilistic noninterference prop­
erty that says that changing the initial values of H variables cannot change the set of 
possible final values of L variables: 

Definition 2 (Possibilistic Noninterference). Program c satisfies possibilistic non­
interference if, for any memories ji and v that agree on L variables, if running c on 
p, can produce final memory p', then running conv can produce a final memory v' 
such that pi and u' agree on L variables. 

Do the typing rules in Figures 13.2 and 13.3 suffice to ensure possibilistic non­
interference? They do not, as is shown by the example in Figure 13.4, which is from 
Smith and Volpano [28]. The initial values of all variables are 0, except mask, whose 
value is a power of 2, and s e c r e t , whose value is arbitrary. It can be seen that, un­
der any fair scheduler, this program always copies s e c r e t to l e a k . Yet all three 
threads are well typed provided that s e c r e t , t r i g g e r O , and t r i g g e r l are H, 
and l e a k , m a i n t r i g g e r , and mask are L. 

So we need to impose additional restrictions on multi-threaded programs. Be­
fore considering such restrictions, however, we must first address the specification of 
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Thread a: 

while (mask != 0) { 

while (triggerO == 0) 

leak = leak | mask; // bitwise 'or' 

triggerO = 0; 

maintrigger = maintrigger+1; 

if (maintrigger == 1) 

trigger1 = 1; 

Thread /?: 

while (mask != 0) { 

while (triggerl == 0) 

r 

leak = leak & "mask; // bitwise 'and' with 

// complement of mask 

triggerl = 0; 

maintrigger = maintrigger+1; 

if (maintrigger == 1) 

triggerO = 1; 

Thread 7: 

while (mask != 0) { 

maintrigger = 0; 

if (secret & mask == 0) 

triggerO = 1; 

else 

triggerl = 1; 

while (maintrigger != 2) 

mask = mask/2; 

} 

triggerO = 1; 

triggerl = 1; 

Fig. 13.4. A muUi-threaded program that leaks s e c r e t 

the thread scheduler more carefully. Possibilistic noninterference is sufficient only 
if we assume a purely nondeterministic scheduler, which at each step can choose 
any thread to run for the next step. Under this model, there is no likelihood associ­
ated with the memories that can result from running a program—each final mem­
ory is simply possible or impossible. But a real scheduler would inevitably be more 
predictable. For example, a scheduler might flip coins at each step to choose which 
thread to run next. Under such a probabilistic scheduler, possibilistic noninterference 
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is insufficient. Consider the following example from McLean [14], Let the program 
consist of two threads: 

leak = secret; 

and 

leak = random(100); 

Assume that random (10 0) returns a random number between 1 and 100 and that 
the value of s e c r e t is between 1 and 100. This program satisfies possibilistic non­
interference, because the final value of l e a k can be any number between 1 and 100, 
regardless of the value of s e c r e t . But, under a probabilistic scheduler that flips a 
coin to decide which thread to execute first, the value of l e a k will be the value of 
s e c r e t with probability 101/200, and each other number between 1 and 100 with 
probability 1/200. This example motivates a stronger security property, probabilistic 
noninterference, which says that changing the initial values of H variables cannot 
affect t\\e, joint probability distribution on the final values of L variables. Further dis­
cussion of possibilistic and probabilistic security properties can be found in McLean 
[15]. 

We now describe a type system for ensuring probabilistic noninterference in 
multi-threaded programs. The first such systems (Smith and Volpano [28, 31] and 
Sabelfeld and Sands [23]) adopted the severe restriction that guards of while-loops 
must be L. This rules out the program in Figure 13.4 ( t r i g g e r O and t r i g g e r l 
are H), but it also makes it hard to write useful programs. 

Later, inspired by Honda, Vasconcelos, and Yoshida [12], a better type system 
was presented by Smith [26, 27]. (Remarkably, almost the same system was devel­
oped independently by Boudol and Castellani [5].) This type system allows while-
loop guards to contain H variables, but to prevent timing flows it demands that a 
command whose running time depends on H variables cannot be followed sequen­
tially by an assignment to a L variable. The intuition is that such an assignment to a 
L variable is dangerous in a multi-threaded setting, because if another thread assigns 
to the same variable, then the likely order in which the assignments occur (and hence 
the likely final value of the L variable) depends on H information. 

The type system uses the following set of types: 

{data types) r ::= L \ H 
(phrase types) p ::= r \ r var j TI cmd T2 \ T cmd n 

The new command types have the following intuition: 

• A command c is classified as TI cmd TI if it assigns only to variables of type r\ 
(or higher) and its running time depends only on variables of type r-i (or lower). 

• A command c is classified as r cmd n if it assigns only to variables of type T (or 
higher) and it is guaranteed to terminate in exactly n steps. 

The new typing and subtyping rules are presented in Figures 13.5 and 13.6. 
These rules make use of the lattice join and meet operations, denoted V and A, 
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(R-VAL) 

(INT) 

(PLUS) 

(ASSIGN) 

r{x) = r var 

r\- X:T 

r\-n:L 

r \- ei : T, r \- €2 : T 

r h e i + 62 : T 

r{x) = r var, F \- e : r 

(SKIP) 

(IF) 

(WHILE) 

(COMPOSE) 

( P R O T E C T ) 

r h X := e : T and 1 

r \- sk ip : H cmd 1 

r i - e : T 

r \- ci : T cmd n 

r \- C2 : T cmd n 

r h if e then a else C2 : r cmd n + 1 

r \- e : Ti 

n C T2 

r \- 01 : T2 cmd ra 

r \- C2 • T2 cmd T3 

r ' l- if e then ci else C2 : T2 cmd T\ V ra 

-T h e : Ti 

Tl C T2 

T3 C T2 

r h c : T2 cmd Ta 

r h while edoc : T2 cmd TI V TS 

r h ci : T cmd m 
r \- C2 • T cmd n 

r \- ci;C2 : T cmd m + n 

r \- ci : Tl cmd T2 

T2 Q T3 
r \- C2 : T3 cmd Ti 

r \- ci;C2 : Tl A ra cmd T2 V T^ 

r \- c: Tl cmd T2 

c contains no while loops 

r h protect c : ri cmd 1 

Fig. 13.5. Typing rules for multi-threaded programs 
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(BASE) 

(CMD") 

(REFLEX) 

(TRANS) 

(SUBSUMP) 

L<ZH 

Tl C Tl, r2 C T2 

T\ cmd T-2 C Ti cmd T2 

T' Cr 

T cmd n C T' cmd n 

T cmd n C T cmd L 

P^P 

Pi Q P2, P2 C p3 

P\ C p3 

r i - p : p i , p i C p2 

r h p : p2 

Fig. 13.6. Subtyping rules for multi-threaded programs 

respectively. Also, we extend the language with a new command, protect c, which 
runs command c atomically. This is helpful in masking timing variations. 

The key idea behind the soundness of this type system is that if a well-typed 
thread c is run under two L-equivalent memories, then in both runs it makes ex­
actly the same assignments to L variables, at the same times. Given this property, we 
are able to show that well-typed multi-threaded programs satisfy probabilistic non­
interference. The proof involves establishing a weak probabilistic bisimulation; the 
details are in Smith [27]. 

13.2.2 Exceptions 

Another language feature that can cause subtle information flows is exceptions. For 
example, here is a Java program that uses exceptions from out-of-bounds array in­
dices to leak a secret: 

int secret; 
int leak = 0; 
int [] a = new int [ 1]; 

for (int bit = 0; bit < 30; bit++) { 
try { 

a[l - (secret >> bit) % 2] = 0 ; 
leak 1= (1 << bit); 

} 

catch (ArraylndexOutOfBoundsException e) { } 

} 

In this code, b i t is L. Here the key is that array a has length 1, so the assignment 
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a [ l - ( s e c r e t >> b i t ) % 2] = 0; 

raises an exception iff the current bit of s e c r e t is 0. As a result, the assignment 

l e a k 1= (1 << b i t ) ; 

is executed iff the current bit of s e c r e t is 1. 
How should leaks due to exceptions be prevented? One possibility is to use an 

approach similar to what was used for concurrency: we can require that a command 
that might raise exceptions based on the values of H variables must not be followed 
sequentially by an assignment to L variables. This is the approach taken by Jif [16]. 

Because this would seem to be quite restrictive in practice, Deng and Smith [6] 
propose a different approach. If we change the language semantics so that array 
operations never raise exceptions, then we can type them much more permissively. 
The idea is to treat commands with out-of-bounds array indices as no-ops that are 
simply skipped. 

Under this approach, we give an array type r i arr r^ to indicate that its contents 
have level TI and its length has level T2. Then, for example, we can use the following 
straightforward and permissive typing rule for array assignment; 

r{x) = Ti arr T2, T h ei : r i , T h 62 : n 
r h x[ei] := 62 : TJ cmd 

The full type system is given in [6]. 
In contrast, but with the same intent, Flow Caml [25] specifies that an out-of-

bounds array index causes the program to abort. This also prevents out-of-bounds 
exceptions from being observed internally, allowing more permissive typing rules. 

13.2.3 Other Language Features 

Secure information flow analysis can treat larger languages than we have consid­
ered here. Notable is the work of Myers [16] and Banerjee and Naumann [3], which 
treats object-oriented languages, and that of Pottier and Simonet [20] which treats a 
functional language. 

Another useful technology in this context is type inference, which frees the pro­
gramming from having to specify the security levels of all the variables in the pro­
gram. He or she can specify the levels of just the variables of interest, and have 
appropriate security levels of all other variables be inferred automatically. 

Interestingly, the desire to do type inference is one reason for assuming that the 
set of security levels forms a lattice, because type inference is NP-complete over an 
arbitrary partial order. This follows from a result of Pratt and Tiuryn [21]. They show 
that over the "2-crown" given by 
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A B 

the problem of testing the satisfiability of a set of inequalities between variables {x, 
y, z, . . . ) and constants (A, B, C, D) is NP-complete. We can easily reduce the 
satisfiability problem to the inference problem by mapping a set of inequalities C 
to a program p such that C is satisfiable iff some choice of security levels for the 
inferable variables of p makes p vi'ell typed. For example, we map 

{x<A,B <y,x<y) 

to the program 
a:=x;y:=b;y := x 

where a and b are variables of levels A and B, respectively, and x and y are variables 
whose levels are to be inferred. 

In contrast, type inference can be done efficiently over a lattice. Work on type 
inference for secure information flow includes Volpano and Smith [30], Pottier and 
Simonet [20], Sun, Banerjee, and Naumann [29], and Deng and Smith [7]. 

13.3 Challenges 

In spite of a great deal of research, secure information flow analysis has had lit­
tle practical impact so far. (See, for example, Zdancewic's discussion [33].) In this 
section we discuss some challenges that need to be overcome to make secure infor­
mation flow analysis more useful in practice. 

One obvious concern is that much of the work in the research literature has been 
theoretical, treating "toy" languages rather than full production languages. While 
this has surely hindered adoption of this technology somewhat, in fact there are two 
mature implementations of rich languages with secure information flow analysis, 
namely Jif [17] and Flow Caml [25]. This fact suggests that the problems largely lie 
elsewhere. 

In exploring this issue further, it seems helpful to distinguish between two differ­
ent application scenarios: developing secure software and stopping malicious soft­
ware. We consider these in turn. 

13.3.1 Scenario 1: Developing Secure Software 

In this scenario, the idea is to use secure information flow analysis to help in the de­
velopment of software that satisfies some security goals. Here the analysis serves as 
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a program development tool. We could imagine such a tool being used interactively 
to help the programmer to eliminate improper information leaks. Here, the analysis 
could be carried out on source code. 

The static analysis tool would alert the programmer to potential leaks. The pro­
grammer could respond to such alerts by rewriting the code as necessary. We also 
might allow the programmer to insert explicit declassification statements (in effect, 
type casts) to deal with situations where the analysis is overly restrictive. (Such de­
classification statements are allowed in Jif, for example.) Allowing declassification 
statements is risky, of course, but it might be reasonable in situations where we can 
trust that the programmer is not malicious or incompetent. 

An example of this scenario can be found in Askarov and Sablefeld [2] which dis­
cusses the implementation of a "mental poker" protocol in Jif. The program is about 
4500 lines long, and it uses a number of declassification statements, for example to 
model the intuition that encrypting H information makes it L. 

13.3.2 Scenario 2: Stopping Malicious Software 

In this scenario, the idea is to use secure information flow analysis as a kind of 
filter to stop malicious software ("malware"). We might imagine analyzing a piece 
of untrusted downloaded code before executing it, with the goal of guaranteeing its 
safety. 

This scenario is clearly much more challenging than Scenario 1. First of all, we 
probably would not have access to the source code, requiring us to analyze binaries. 
Analyzing binaries is more difficult than analyzing source code and has not received 
much attention in the literature, aside from some recent work on analyzing Java 
bytecodes, such as Barthe and Rezk [4]. 

A further challenge here is that the analysis would need to be fully automatic, 
without the possibility of interaction with the programmer. Moreover, declassifica­
tion statements certainly cannot be bUndly accepted in this scenario. If we do allow 
declassification statements, then it becomes unclear what (if any) security properties 
are guaranteed. 

13.3.3 Flow Policies 

In both scenarios we have a key question: what information flow policies do we 
want? As we have discussed above, secure information flow analysis has focused 
on enforcing noninterference. But noninterference requires absolutely no flow of 
information. As it turns out, this does not seem to be quite what we want in practice. 

A first concern is that "small" information leaks are acceptable in practice. For 
instance, a password checker certainly must not leak the correct password, but it 
must allow a user to enter a purported password, which it will either accept or re­
ject. And, of course, rejecting a password leaks some information about the correct 
password, by eliminating one possibility. Similarly, encrypting some H information 
would seem to make it L, but there is a flow of information from the plaintext to the 
ciphertext, since the ciphertext depends on the plaintext. 



13 Principles of Secure Information How Analysis 305 

As another example, consider census data. Individual census data is expected 
to be private {H) but aggregate census data needs to be public (L), since otherwise 
the census data is useless. But, of course, aggregate data depends on individual data, 
contrary to what noninterference demands. 

Flow policies sometimes involve a temporal aspect as well. For example, we 
might want to release some secret information after receiving a payment for it. 

These examples suggest that, in many practical situations, enforcing noninter­
ference on a static lattice of security levels is too heavy-handed. At the same time, 
it seems difficult to allow "small" information leaks without allowing a malicious 
program to exploit such loopholes to leak too much. 

A major challenge for secure information flow analysis, then, is to develop a good 
formalism for specifying useful information flow policies that are more flexible than 
noninterference. The formalism must be general enough for a wide variety of appli­
cations, but not too complicated for users to understand. In addition, we must find 
enforcement mechanisms that can provably ensure that the flow policy is satisfied. 
Such richer information flow policies and their enforcement are the subject of much 
current research. One interesting approach is Li and Zdancewic [13], which uses 
downgrading policies as security levels, so that the security level specifies what must 
be done to "sanitize" a piece of information. More broadly, the survey by Sabelfeld 
and Sands [24] gives a useful framework for thinking about recent approaches to 
declassification. 

13.4 Conclusion 

Secure information flow analysis has the potential to guarantee strong security prop­
erties in computer software. But if it is to become broadly useful, it must better 
address the security properties that are important in practice. 

This work was partially supported by the National Science Foundation under 
grants CCR-9900951 and HRD-0317692. 
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detector combination, 194, 197-198 
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dynamic root of trust, 254 
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