PC DE ESCRITORIO Y PORTÁTILES I TABLETS I CELULARES ¡Y MUCHO MÁS!

SALIDA LABORAL

ARGENTINA \$17,40 .- // MÉXICO \$45 .-

CURSO VISUAL Y PRÁCTICO DE CONTROL DE CONTRO

MANTENIMIENTO Y REPARACIÓN

MOTHERBOARD: PARTES Y FUNCIONAMIENTO

EN ESTA ENTREGA CONOCEREMOS Y ANALIZAREMOS EL FUNCIONAMIENTO Y CADA UNA DE LAS PARTES E INTEGRADOS QUE COMPONEN EL MOTHERBOARD.

En esta clase Veremos...

LAS DIVERSAS PARTES QUE COMPONEN EL MOTHERBOARD, ASÍ COMO TAMBIÉN LOS FUNDAMENTOS TEÓRICOS DE SU FUNCIONAMIENTO. ADEMÁS, ANALIZAREMOS LA IMPORTANCIA DEL CHIPSET Y LOS COMPONENTES INTEGRADOS.

En la clase anterior **revisamos** las características de dos piezas de hardware importantes para la computadora: la fuente de poder y el gabinete. Revisamos el funcionamiento de la fuente, calculamos el consumo energético de la PC y probamos su **accionar**. También aprendimos a discriminar los distintos tipos de fuentes de poder y gabinetes existentes. Para terminar, dimos algunos consejos importantes para optimizar la ventilación interna, y minimizar el ruido y las vibraciones emitidas por la computadora.

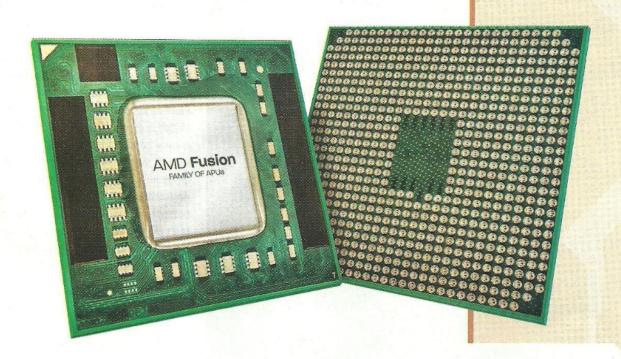
En la presente clase nos centraremos en la tarea de conocer en profundidad el funcionamiento y las partes que integran el motherboard, elemento fundamental para la computadora. Conoceremos qué es y cuáles son sus partes principales, así como también veremos las características del circuito impreso correspondiente. Además, analizaremos el funcionamiento y la importancia del chipset y las funciones incluidas en el motherboard como componentes integrados. 04

MOTHERBOARDS

08

SOCKETS Y CHIPSETS

12


PARTES DEL MOTHERBOARD

15

EL CHIPSET

20

COMPONENTES INTEGRADOS

Motherboards

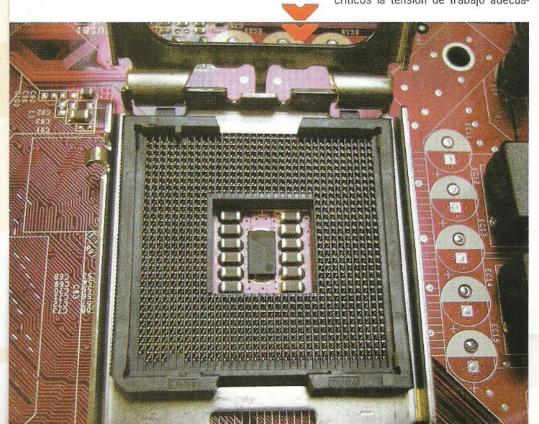
EN LAS PRÓXIMAS PÁGINAS DE ESTA CLASE CONOCEREMOS LAS PRINCIPALES CARACTERÍSTICAS DE UN MOTHERBOARD, VEREMOS QUÉ COMPONENTES Y PIEZAS LO CONFORMAN, DESCRIBIREMOS LOS MÁS IMPORTANTES Y EXPLICAREMOS LA FUNCIÓN DE CADA UNO DE ELLOS.

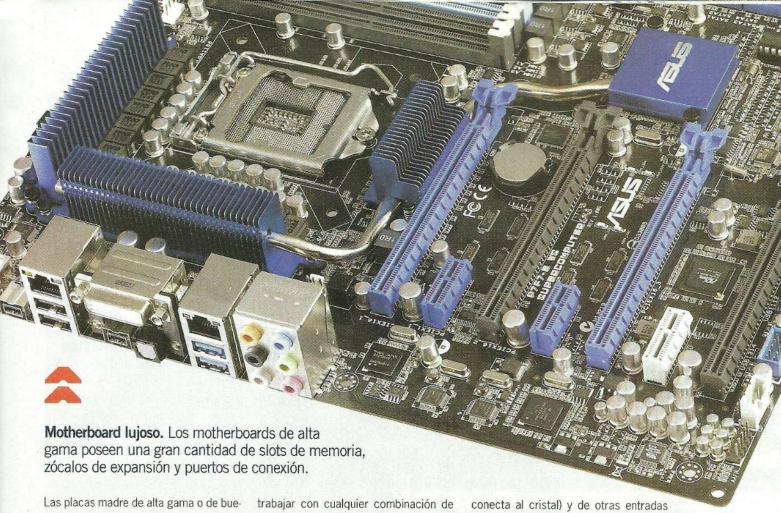
El motherboard es una placa del tipo PCB multicapa, con una gran cantidad de microcomponentes y diminutos chips soldados. Determinados grupos de esos componentes soldados conforman las distintas partes esenciales de la placa; algunos son más claramente visibles y fáciles de identificar, mientras que otros no son tangibles en forma directa y parecen permanecer abstractos a simple vista. A continuación, listaremos las piezas o conjuntos de piezas más importantes, la función que desempeña cada una y sus características básicas, para obtener un panorama general de la placa madre.

Zócalo LGA. En este tipo de zócalos, los contactos no están ubicados en la CPU sino en el motherboard, para que no se doblen al manipular el chip.

PCB

La sigla PCB proviene de la frase en inglés *Printed Circuit Board*, que significa placa de circuito impreso. Debido a la gran cantidad de microcomponentes soldados al motherboard, los modelos actuales suelen basarse en un PCB multicapa, es decir, en distintas capas independientes de algún metal conductor, generalmente cobre, separadas por un aislante, como baquelita o fibra de vidrio. Puede haber ocho o más capas conductoras, cada una trazando distintos circuitos entre los *Plated-Through Holes*.


MÓDULO REGULADOR DE TENSIÓN


El VRM (Voltage Regulator Module) o VRD (Voltage Regulator Down) es un circuito electrónico que les suministra al procesador y a otros componentes críticos la tensión de trabajo adecua-

da. El VRM es capaz de brindar energía a distintos procesadores con diferentes tensiones en un mismo motherboard. Un VRD es un circuito que cumple la misma función que un módulo VRM, con la diferencia de que forma parte de la placa en sí, es decir que sus compo-

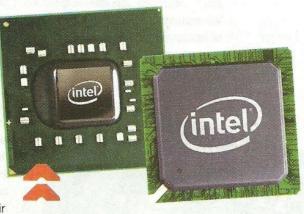
Los motherboards
Incluyen una cantidad
Y variedad de dispositivos
Integrados que van
Más allá de las típicas
Interfaces de video,
Audio y red.

nentes vienen soldados al PCB. Esto, entre otras ventajas, disminuye los costos de producción. Los componentes que integran el circuito VRD pueden encontrarse en el motherboard justo alrededor del zócalo del procesador. En los circuitos encargados de administrar la energía en el motherboard hav: controladores PWM, transistores fabricados con una tecnología denominada MOSFET (Metal-Oxide Semiconductor Field Effect Transistor), chips llamados MOSFET driver, bobinas (de hierro o ferrita) y capacitores (electrolíticos o de estado sólido). Algunos motherboards emplean circuitos integrados en vez de transistores. Estos transistores de potencia generan calor, motivo por el cual los fabricantes suelen instalar algún sistema de refrigeración sobre ellos para enfriarlos (disipador metálico pasivo, heat-pipes, etc.).

Las placas madre de alta gama o de buena calidad emplean capacitores de estado sólido (más estables y de mayor vida útil que los electrolíticos) y bobinas de ferrita (por la misma razón que los capacitores). El empleo de estos componentes en la fabricación de motherboards impacta en el costo final del producto y, también, en su estabilidad y vida útil.

CHIPSET

El chipset es un conjunto de chips (principalmente, dos), llamados northbridge y southbridge, cuya función es administrar el flujo de información entre todos los dispositivos de la placa madre.

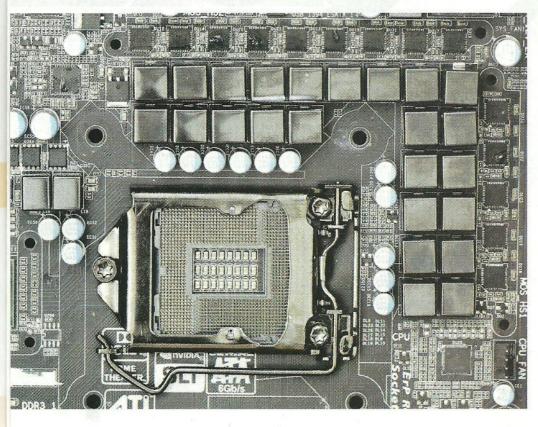

El northbridge es la mano derecha del procesador, ya que se ocupa de recibir todos los pedidos de este y de manejar el tráfico de datos (desde y hacia la memoria RAM, la interfaz gráfica y el southbridge), para entregar lo que se le pide en tiempo y forma. Por supuesto que este corazón, que sincroniza los diversos componentes, no puede

trabajar con cualquier combinación de frecuencias. Es decir, debe haber una cierta armonía entre las distintas frecuencias (procesador, buses, memoria, etc.) para que el chipset pueda relacionarlas correctamente. Por su parte, el southbridge controla diversos buses, como el Serial ATA, el PCI Express x1 y los puertos USB, entre otros.

GENERADOR DE PULSOS

Las diferentes señales de reloj que existen en el motherboard se generan mediante un pequeño cristal de cuarzo que está conectado a un circuito integrado llamado generador de clock. Dependiendo del motherboard, pueden existir más cápsulas en la misma placa; el valor al que estos dispositivos oscilan suele venir indicado sobre su superficie.

El integrado que contiene el clock generator dispone de una entrada llamada clock (que es, justamente, la que se conecta al cristal) y de otras entradas para la configuración de las salidas. Por supuesto que el resto de los pines son para las diversas salidas: las señales de clock del bus PCI Express, el PCI, el chipset, la memoria RAM, los puertos USB y la frecuencia base del procesador (entre otros componentes).


El chipset.

Típico chipset de Intel sin disipador de calor. El de arriba es el northbridge, y el de abajo, el southbridge.

¿DÓNDE ESTÁ EL MÓDULO REGULADOR DE TENSIÓN?

Podemos reconocer fácilmente los circuitos encargados de gestionar la energía en el motherboard porque se encuentran junto al zócalo del procesador (prácticamente todo alrededor de él).

Hay algunos inductores y transistores distribuidos en otras áreas de la placa, como los zócalos de memoria RAM, y cerca del southbridge, ya que también reciben energía de estos componentes cercanos.

Recordemos que la frecuencia final

del procesador depende de un multi-

plicador que es interno. Físicamente,

en cualquier motherboard podemos

encontrar, de una manera sencilla,

el o los cristales. Del generador de

clock dependen las cualidades de

los motherboards para incrementar

la frecuencia del bus frontal y de la

Módulo de energía.

El VRD, o módulo regulador de tensión, se ubica alrededor del zócalo del microprocesador.

ZÓCALOS DE EXPANSIÓN

El tipo y la cantidad de buses y zócalos de expansión varían en cada modelo de motherboard. Los buses de expansión son los encargados de transportar la información desde el chipset hasta los zócalos de expansión. En equipos de gama baja a media, no se suelen utilizar los dos o tres zócalos de expansión disponibles, ya que desde hace años los motherboards incorporan las interfaces de uso más frecuente: tarjeta de video, interfaz de audio, placa de red Ethernet, etc.

ADEMÁS DE TARJETAS
GRÁFICAS, LOS ZÓCALOS
DE EXPANSIÓN PERMITEN
CONECTAR SINTONIZADORAS
DE TV, CONTROLADORAS
DE DISCO, CONTROLADORAS
USB y FireWire.

Sin embargo, las placas madre de gama alta no suelen incorporar interfaz de gráficos, de modo que el usuario puede conectar una o más tarjetas gráficas a elección y según sus requerimientos. Además de tarjetas gráficas, los zócalos de expansión permiten conectar todo tipo de placas, como sintonizadoras de TV, controladoras de disco, controladoras USB o FireWire, etcétera.

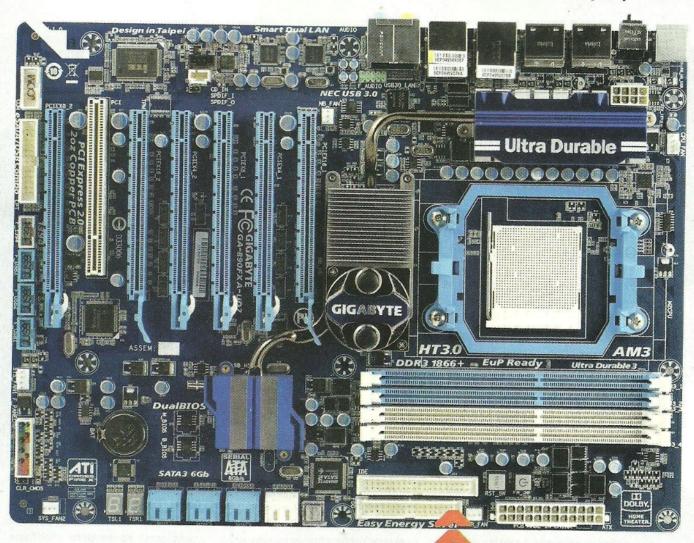
PUERTOS DE CONEXIÓN

Los motherboards incluyen una cantidad y variedad de dispositivos integrados que van más allá de las clásicas interfaces de video, audio y red.

ZÓCALO PARA EL PROCESADOR

El zócalo principal del motherboard está destinado a conectar el procesador. Las placas madre para equipos de escritorio suelen incluir un único zócalo para el procesador, mientras que las destinadas a servidores de red pueden tener dos, cuatro o más zócalos para dicho elemento.

ZÓCALOS PARA I A MEMORIA RAM


Los slots destinados a los módulos de memoria RAM en el motherboard tienen un aspecto fino y alargado. El tipo de zócalo depende de la plataforma, es decir, del procesador y de la clase de controlador de memoria que este incorpora (DDR2, DDR3, FB-DIMM). La cantidad de slots de memoria disponibles depende, por su parte, del tipo de motherboard: gama alta, media o baja.

EI BIOS

Uno de los posibles formatos adoptados por los fabricantes para el chip del BIOS, encastrado en su zócalo.

Cada modelo de placa madre disponible en el mercado posee una combinación de interfaces y puertos que lo diferencian del resto y lo vuelven útil para distintas necesidades. Las placas madre modernas ofrecen una gran variedad de puertos externos, desde PS/2 y Ethernet, pasando por USB y FireWire, hasta otras tecnologías, como Thunderbolt, HDMI y DisplayPort.

Para los dispositivos del interior del gabinete, los motherboards incluyen los puertos de las controladoras de disco incorporadas: Parallel ATA, Serial ATA y SAS, dependiendo del modelo. También hay conectores para enchufar puertos USB adicionales, tan comunes hoy.

BIOS

Su sigla significa Basic Input/Output System (sistema básico de entrada/salida), y no es más que un software –o, en realidad, un firmware–, es decir, un programa alojado en un chip. Es el programa de inicio a bajo nivel que todo motherboard posee.

El BIOS es el encargado de gestionar

Modelo exclusivo.

Ciertos modelos de motherboard ofrecen una cantidad enorme de zócalos PCI Express.

el proceso inicial de arranque enviándole órdenes al hardware. Además, realiza comprobaciones de verificación para determinar si los dispositivos están en condiciones de funcionar, y ejecuta la orden llamada **bootstrap**, que lleva a cabo la búsqueda y carga del sistema operativo.

Todos los motherboards poseen su BIOS específico, ya que es él quien abre o cierra los switches correspondientes para configurar diversas opciones del chipset, como la memoria o la velocidad de clock, y hasta de los dispositivos integrados. Al tratarse de un software, no puede modificar por sí solo la configuración del hardware, por lo que está conectado a diversos dispositivos diseñados exclusivamente para alterar esas llaves y permitir una configuración dinámica de los parámetros del generador de clock y del regulador de tensión del procesador, la memoria, los puertos PCI Express y otros componentes.

DATASHEETS

Los datasheets son documentos que incluyen texto, tablas y esquemas de circuitos de toda clase de componentes electrónicos, incluyendo los motherboards. Son útiles para despejarnos dudas acerca de cómo conectarlos y a qué bornes del circuito o placa que los aloja. A continuación, recomendamos un sitio web con decenas de datasheets muy útiles: www.hardwaresecrets.com/datasheets/all.

Sockets y chipsets

EL MERCADO DE PROCESADORES ESTÁ CUBIERTO POR DOS FABRICANTES QUE COMPITEN CAREZA A CABEZA PARA LOGRAR CADA VEZ MEJOR PERFORMANCE.

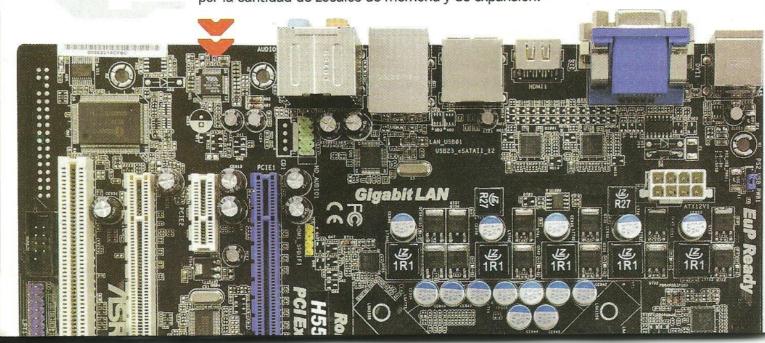
En Informática, el término plataforma se refiere a la base empleada por determinado equipo, ya sea de escritorio o portátil. Esta plataforma está dada por los tres componentes principales del sistema: el procesador, el motherboard y los módulos de memoria RAM.

Exceptuando el caso de los módulos de memoria RAM, las dos plataformas existentes (AMD e Intel) no son compatibles entre sí a nivel hardware. Es decir. si queremos instalar un procesador Intel en un motherboard diseñado para la plataforma AMD, no podremos hacerlo, porque el zócalo del procesador estará diseñado para recibir solo determinados procesadores del otro fabricante.

Las memorias RAM sí son compatibles: al menos hasta el momento, ambas plataformas soportan módulos DDR. DDR2 v DDR3. La compatibilidad sí existe a nivel de software gracias a las arquitecturas x86 y x64.

Los procesadores más modernos, tanto de AMD como de Intel, pueden ejecutar los mismos sistemas operativos (Windows y GNU/Linux, por ejemplo) y las mismas aplicaciones. Por más que sean plataformas distintas, tienen idéntica arquitectura, que es 100% compatible.

¿QUÉ OFRECE EL MERCADO ACTUAL?


El mercado actual cuenta con dos fabricantes de procesadores: AMD e Intel, ya que Cyrix, IBM y VIA abandonaron hace años el desarrollo y la fabricación de procesadores para PCs de escritorio. Por suerte para los usuarios, Intel no quedó sola. Una pequeña empresa californiana llamada AMD continuó fabricando procesadores para PCs como lo hizo desde principios de la década de 1980. Actualmente, al existir dos empresas que compiten arduamente entre sí, el principal beneficiado es el usuario: la competencia implica aumentar el rendimiento en cada nuevo modelo, reducir su consumo energético y, dentro de lo posible, disminuir los costos de los procesadores para captar la atención del público por una u otra marca.

AMD O INTEL?

La elección depende, sobre todo, de la época. En la actualidad, Intel ofrece procesadores de excelente rendimiento a costos medianamente aceptables para la mayoría de los usuarios. Pero esto no significa que Intel sea mejor, ni mucho menos. En la era del procesador Pentium 4 (de Intel), AMD lanzó al mercado unos excelentes procesadores,

Gama media. Típico motherboard de gama media, fácilmente identificable por la cantidad de zócalos de memoria y de expansión.

Memoria RAM.

Afortunadamente, hasta el momento los módulos de memoria RAM no dependen de la plataforma elegida.

los famosos Athlon XP, que rendían más que los de la competencia y se comercializaban a un costo muchísimo menor. Años antes, AMD desarrolló los procesadores K6-II, que, si bien es cierto que no eran tan veloces como su competidor directo (el Pentium II), resultaban tan económicos que permitieron el acceso a la computación hogareña a millones de usuarios en todo el mundo.

EXCEPTUANDO EL CASO
DE LOS MÓDULOS DE
MEMORIA RAM, LAS DOS
PLATAFORMAS EXISTENTES
(AMD E INTEL) NO SON
COMPATIBLES ENTRE SÍ
A NIVEL HARDWARE.

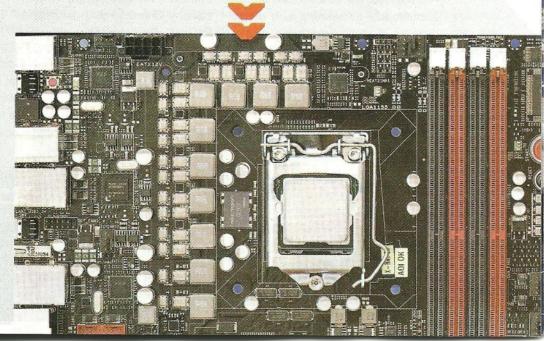
Es un error muy frecuente medir a un fabricante por sobre otro solo considerando la performance que sus procesadores son capaces de ofrecer. Debemos analizar una serie de factores y, sobre todo, ver si nuestro presupuesto llega a cubrir el costo del procesador que necesitamos.

Al armar parte por parte o presupuestar un equipo nuevo, lo primero que debemos tener en cuenta es el objetivo al que se destinará esa computadora. No es lo mismo pensar en un equipo para jugar, que en uno para una oficina básica, o para realizar diseño gráfico, animación tridimensional o análisis científico.

Una vez que conocemos el uso al que se destinará la máquina, tendremos una idea clará con respecto al poder de procesamiento con el que deberá contar y, así, podremos elegir el componente inicial: el microprocesador.

Tanto uno como el otro fabricante ofrecen procesadores de gama baja,

AMD FUSION


También conocida como APU (Accelerated Processor Unit), esta tecnología fusiona un procesador principal (CPU) y uno gráfico (GPU) dentro de un mismo encapsulado, prescindiendo del northbridge. Empezó a utilizarse primero en equipos portátiles y media centers, pero luego alcanzó a los equipos de escritorio.

media y alta para todos los gustos, necesidades y posibilidades económicas: desde los usuarios que solo navegan o escriben documentos, hasta los gamers más exigentes, pasando por los diseñadores multimedia.

Una vez escogido el procesador, hay que elegir la plataforma del motherboard. Actualmente, AMD comercializa procesadores de zócalo AM3+ y socket FM1. Por su parte, Intel ofrece procesadores de socket 1155 (H) y 1156 (H2). Dependiendo del socket que tenga el procesador elegido, debemos escoger entre diversos modelos de motherboards que se correspondan con él.

Plataforma.

La plataforma está definida por la compatibilidad entre la CPU, el motherboard y la memoria RAM.

Zócalo principal. El socket del procesador define la compatibilidad con el motherboard y, por lo tanto, con el chipset.

Dentro de esta elección, la del motherboard, dispondremos también de modelos de gama baja, media y alta, ente los cuales optaremos considerando las necesidades, prestaciones y disponibilidad económica.

EL ROL DE LA MEMORIA

Afortunadamente, los módulos de memoria RAM son compatibles tanto con
la plataforma AMD como con la de Intel.
Todos los modelos de procesadores
mencionados cuentan con un controlador de memoria integrado en el mismo
procesador (en modelos anteriores, el
controlador de memoria venía integrado en el motherboard, más precisamente, en el chipset). El controlador de
memoria integrado es solo compatible
con módulos de memoria DDR3; por lo

tanto, los zócalos disponibles en la placa madre también serán solo para ese tipo de módulos de RAM.

Al igual que la memoria RAM, el resto de los dispositivos, como la tarjeta gráfica, la de sonido, la interfaz de red o las unidades de disco duro, son totalmente independientes de la plataforma que se haya escogido; sirven para cualquiera de las dos: AMD e Intel. sobre los procesadores y sus características, haremos un breve recorrido por los modelos que ofrece cada fabricante, divididos según su potencia y performance.

Gama baja

AMD tiene procesadores básicos de rendimiento acotado, como los Athlon II y Sempron de socket AM3+. Por su parte, Intel cuenta con modelos como los Pentium DC (Dual Core) para el socket 1155.

EN LA ACTUALIDAD, AL EXISTIR DOS EMPRESAS QUE COMPITEN ARDUAMENTE ENTRE SÍ, EL ÚNICO BENEFICIADO ES EL USUARIO: LA COMPETENCIA IMPLICA AUMENTAR EL RENDIMIENTO.

DIFERENCIAS ENTRE GAMAS Y MODELOS

Estamos frente a un mercado muy cambiante y dinámico, pero para darnos una idea e ir aprendiendo a diferenciar las distintas gamas, haremos un breve repaso por los modelos disponibles. Si bien ya hablaremos más en profundidad

g Gama media

Dentro de esta gama, AMD desarrolló modelos que se consiguen actualmente en el mercado, como los APU A4, A6 y A8 (de dos, tres y cuatro núcleos, respectivamente). Intel comercializa los modelos Core i3 y Core i5 (de dos y cuatro núcleos, respectivamente).

🕱 Gama alta

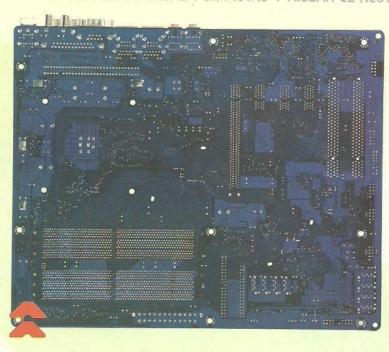
Para las tareas más difíciles, AMD diseñó modelos extremos, como los FX-4100, FX-6100 y FX-8120, por nombrar solo algunos (de cuatro, seis y ocho núcleos, respectivamente). Intel tiene su procesador estrella para cautivar a los usuarios exigentes: el Core i7, disponible en varios modelos con cantidades variables de memoria caché L3, entre otras características.

MEMORIA DDR3

Con la llegada al mercado de procesadores de cuatro, seis, ocho y más núcleos, la memoria DDR2 comenzó a quedarse rezagada. Fue entonces cuando, en el año 2009, se diseñaron los módulos de memoria DDR3, de menor consumo energético (del orden del 40%), menor tensión de trabajo (1,5 V) y mayor tasa de transferencia que los módulos DDR2.

El circuito impreso

LOS COMPONENTES DEL MOTHERBOARD SE MONTAN Y SUELDAN SOBRE UNA PLACA LLAMADA PCB, QUE CUMPLE LA FUNCIÓN DE CONDUCIR ELECTRICIDAD POR PISTAS Y AISLAR EL RESTO.



El PCB, Printed Circuit Board o placa de circuito impreso, es un elemento que debemos conocer. Debido a la gran cantidad de microcomponentes soldados al motherboard y a las placas de expansión, actualmente encontramos PCBs multicapa. En efecto, puede haber ocho o más capas conductoras, cada una trazando distintos circuitos entre los plated-through holes.

EN LA ACTUALIDAD,
LOS CIRCUITOS MULTICAPA
SON LOS MÁS UTILIZADOS
EN DISTINTAS ÁREAS
Y LLEGAN A TENER HASTA
MÁS DE 15 CAPAS
EN UN MISMO SUSTRATO.

Las capas aislantes pueden ser de diversos materiales. En la industria de la informática no suele usarse papel embebido en resina fenólica, como en otras áreas de la industria electrónica, por no ser suficientemente eficaz en resistir el calor.

En cambio, los PCB utilizados en motherboards son más seguros y resistentes al estar basados en materiales FR2 (Flame Retardant, o retardador de llamas, de nivel 2). Estas placas están compuestas por finas láminas de fibra de vidrio impregnadas en resina epóxica o fenólica, la cual, además de ofrecer alta seguridad, resulta más fácil de cortar, perforar y mecanizar.

PCB multicapa. PCB de un motherboard moderno que puede llegar a tenér entre ocho y diez capas intermedias para la interconexión de los componentes soldados a él.

PLATED-THROUGH HOLES

Los PTH son pequeños tubos metálicos que recubren las paredes de las diminutas perforaciones efectuadas en el motherboard para soldar componentes como capacitores e inductores. Estos minitubos, también llamados vías, hacen las veces de terminales que, de forma interna, van soldados a las pistas que corresponda en las múltiples capas que el circuito impreso del motherboard alberga. Los circuitos impresos de alta densidad pueden tener vías ciegas, que son visibles en un solo lado de la tarjeta;

o vías enterradas, que no son visibles en el exterior de la tarjeta.

Los orificios del PCB se perforan con diminutas brocas construidas de wolframio. Las perforaciones se hacen con equipos automatizados, controlados por un mecanismo que contiene información sobre el trabajo por realizar. Si en un circuito se precisan vías muy delgadas, resulta muy costoso perforar con brocas, porque se está mecanizando un material frágil. En estos casos, las vías pueden hacerse por medio de un haz láser, y reciben el nombre de microvías.

SOLDADURA EN CIRCUITOS IMPRESOS

La superficie en la que se montan los componentes electrónicos se metaliza porque el cobre no es fácil de soldar. Este tipo de soldadura estaba basada en una aleación de estaño y plomo, pero por cuestiones

ecológicas, actualmente se usan nuevos materiales -como pequeñísimas dosis de oro- con el fin de reducir el uso de elementos contaminantes para el ambiente, como el plomo.

Partes del motherboard

HAREMOS UN RECORRIDO VISUAL POR PARTES QUE CONFORMAN UN MOTHERBOARD: DESDE LOS COMPONENTES MÁS SIMPLES DE IDENTIFICAR, COMO EL ZÓCALO PARA EL PROCESADOR; HASTA OTROS EXTRAÑOS, COMO EL LPCIO Y EL CONJUNTO QUE INTEGRA EL GENERADOR DE CLOCK.

Referencias

Puertos externos de comunicación.

Los motherboards incluyen una cantidad y variedad de dispositivos integrados que van más allá de las clásicas interfaces de video, audio y red. Cada modelo disponible en el mercado combina interfaces y puertos que lo diferencian del resto, y lo vuelven útil para distintas necesidades.

Módulo regulador de tensión.

Además de la fuente de alimentación que poseen las PCs, los motherboards también cuentan con una fuente de energía que podría considerarse secundaria, ya que recibe la tensión que le suministra la fuente principal (12 V) y se encarga de convertirla a valores inferiores, admisibles por el procesador, la memoria RAM y el chipset.

Zócalo del procesador.

Este receptáculo es el encargado de alojar el procesador en el motherboard. Los hay de varios tipos: LGA775, LGA1156, LGA1155 (Intel); y socket AM2+, socket AM3+ y socket FM1 (AMD).

Northbridge.

El puente norte gestiona las operaciones entre el procesador y los dispositivos de alta velocidad, como la memoria RAM, la interfaz de video y el bus PCI Express x16.

Southbridge.

El puente sur controla las conexiones con los dispositivos de menor velocidad (buses PCI Express x1 y PCI, controladora de discos, controlador USB, audio integrado, etc.).

Zócalos para memoria RAM.

Al tratarse de un motherboard básico, este modelo solo posee dos slots para módulos de memoria. Los modelos de gama media duplican esta cifra, y los de gama alta pueden llegar a triplicarla.

Puerto para unidades Parallel ATA.

Los fabricantes continúan incluyendo al menos un puerto Parallel ATA en sus motherboards, a modo de retrocompatibilidad.

Conector de alimentación ATX.

Conector ATX
de 24 contactos.
La versión anterior
de esta ficha era
de 20 contactos.
Afortunadamente, fuentes
y motherboards de un tipo
y otro son compatibles
entre sí.

Puertos para unidades Serial ATA.

Puertos SATA para conectar discos duros, unidades SSD y unidades ópticas. Existen tres revisiones: de 150 MB/s, 300 MB/s y 600 MB/s.

Conectores USB.

Se trata de conectores o jack USB. mediante los cuales podemos conectar los paneles USB frontales.

Batería CR-2032.

Esta batería alimenta la memoria CMOS RAM para que no pierda la configuración del Setup del BIOS. Tiene una duración de unos tres años, aproximadamente.

Integrado y cristales generadores de clock.

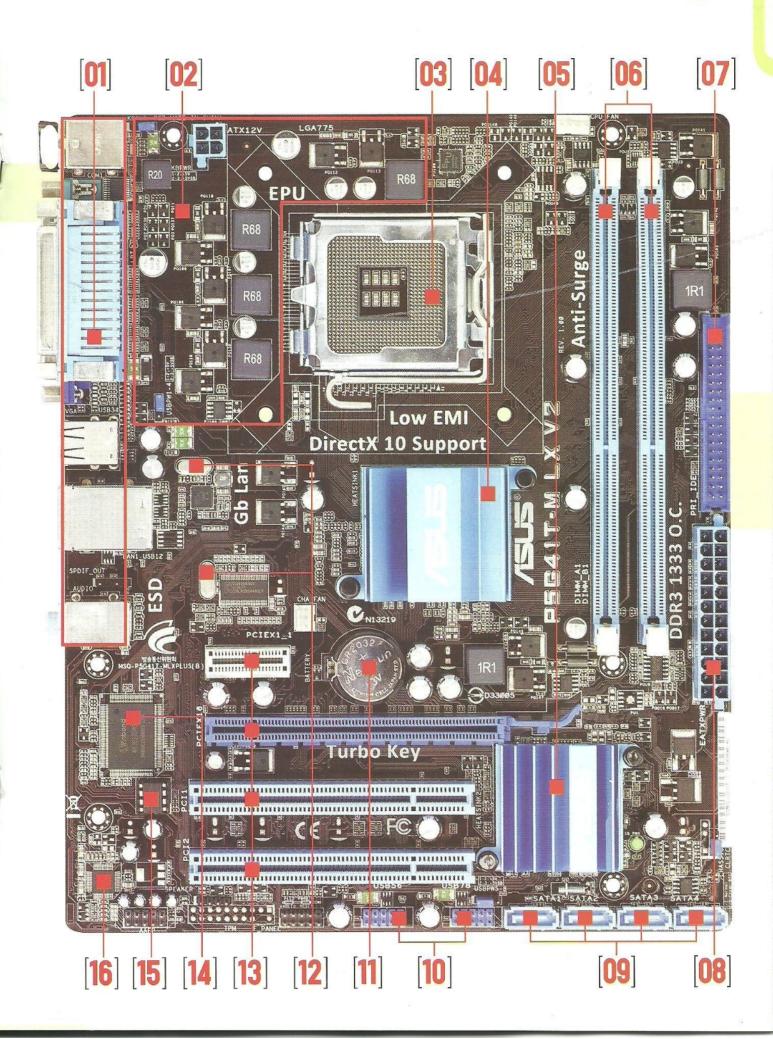
Las cápsulas metálicas de color plateado y bordes redondeados encierran el cristal que genera el pulso inicial para hacer funcionar los componentes del motherboard.

Zócalos de expansión. De arriba hacia abajo: zócalo PCI Express x1, PCI Express x16 y dos ranuras PCI. Los motherboards de alta gama pueden llegar

a tener el doble de slots

que en este ejemplo.

Chip LPCIO.

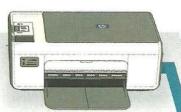

También conocido como Super I/O, este integrado se encarga de administrar diversas funciones simultáneamente: puertos serie, puerto paralelo, FDC, controlador de teclado y mouse PS/2, y sensores encargados de monitorear las temperaturas.

Chip BIOS.

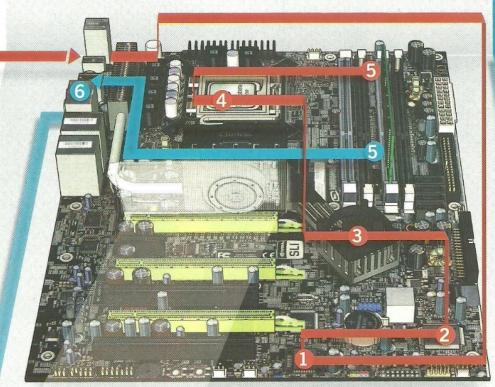
El chip del BIOS aloja el programa de inicio a bajo nivel que todo motherboard posee. Gestiona el proceso inicial de arranque enviándole órdenes al hardware.

[16] Chip de la interfaz de sonido integrada.

Este pequeño chip integra una completa interfaz de audio, de alta calidad y con soporte multi-channel.



El recorrido de la información


LOS DATOS LLEGAN A NUESTRO MONITOR Y NUESTRA IMPRESORA LUEGO DE UN TRAYECTO A TRAVÉS DEL MOTHERBOARD, EL PROCESADOR Y LA TARJETA GRÁFICA.

Teclado: los caracteres que ingresamos vía teclado son recibidos por el controlador de teclado (1) en el motherboard, donde pasan al southbridge (2), de allí al northbridge (3), de este al procesador (4) y de este último a la memoria RAM (5).

Impresora: al imprimir, se dispara esta cadena: el software recibe la orden, el procesador recoge de la RAM (5) la información por imprimir y la envía al puerto de la impresora (6) mediante el driver de la impresora y el servicio de impresión.

Tarjeta gráfica: si se encuentra activo un proceso o aplicación encargado de mostrar inmediatamente lo que escribimos en pantalla, entra en juego también la interfaz gráfica (o GPU), que recibirá la información desde la CPU y el northbridge para generar los cambios necesarios en la pantalla.

Monitor: este dispositivo recibe las señales eléctricas desde la tarjeta gráfica para que se muestren en pantalla los píxeles necesarios que formarán los números, letras y símbolos.

El chioset

EL CHIPSET DEL MOTHERBOARD (O CIRCUITO AUXILIAR INTEGRADO) DEFINE LA ESTABILIDAD, RENDIMIENTO, CALIDAD EN EL FUNCIONAMIENTO Y CAPACIDAD DE OVERCLOCKING, NO SOLAMENTE DE LA PLACA MADRE, SINO TAMBIÉN DEL EQUIPO COMPLETO. CONOZCAMOS SUS DETALLES.

El chipset es el componente más importante del motherboard: especifica sus prestaciones, como, por ejemplo, qué procesadores soportará la placa madre, a qué frecuencia operarán sus buses, qué tipo de memoria RAM será compatible, y qué interfaces de disco, video y demás puertos serán soportadas. El significado de su nombre proviene del conjunto de chips, ya que, en un principio, el chipset estaba formado por decenas de pequeños circuitos integrados; al menos, esto era así en los motherboards para procesadores Intel 80286 y 80386. Luego, gracias a la miniaturización, el número de chips se fue reduciendo hasta integrar decenas de chips en tan solo un puñado; actualmente, la tendencia de los fabricantes es a concentrar todo en dos o tres encapsulados.

EL NORTHBRIDGE

El northbridge (o puente norte) es la parte principal que conforma el chipset, y fue concebido como concepto junto con la especificación ATX. Controla el tráfico entre el procesador –a través del bus QPI o del Front Side Bus–, la memoria RAM –por medio del bus de memoria–, la interfaz de video –por medio del bus PCI Express– y el southbridge, a través de un bus que los interconecta, del cual hablaremos más adelante.

Todas las tareas que lleva a cabo el puente norte implican una gran cantidad de cálculos, por lo que el integrado suele generar altas temperaturas. Esta es la razón por la cual la mayoría de los fabricantes opta por colocar encima del northbridge un disipador de calor, un cooler o heatpipes (como se está viendo en los modelos de motherboards más avanzados y recientes).

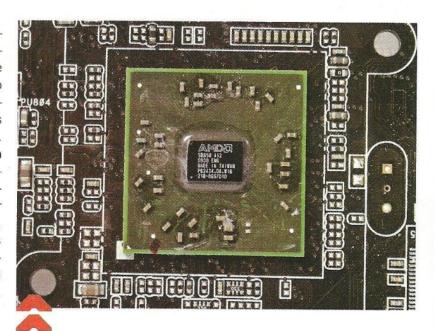
El northbridge solía conectarse al procesador por medio de un bus de datos muy especial, el FSB (*Front Side Bus*), el cual define el rendimiento de la placa madre. Este componente del chipset En plataformas anteriores, el controlador del bus PCI se encontraba en el northbridge, elemento que actualmente está incorporado en el puente sur. En realidad, lo que se intenta lograr con

EL SOUTHBRIDGE ES TAMBIÉN EL ENCARGADO DE ALOJAR UNA PEQUEÑA MEMORIA CONOCIDA COMO CMOS RAM, LA CUAL ALMACENA LA CONFIGURACIÓN ESTABLECIDA MEDIANTE EL SETUP DEL BIOS.

se ocupa de mantener la sincronización entre los distintos buses del sistema y el FSB. Los procesadores más recientes emplean buses como el QPI (de Intel) o el DirectConnect (en el caso de AMD). Esta distribución ha ido cambiando con el corrèr del tiempo. Por ejemplo, los chipsets para procesadores AMD Athlon 64 o Intel Core i7 no poseen controlador de memoria, ya que esa función viene implementada en el propio procesador.

estos cambios es su dedicación exclusiva a las transacciones entre el procesador y la interfaz gráfica. Es más, en algunos casos, los northbridge incorporan el controlador gráfico en el mismo encapsulado, con el fin de ganar rendimiento al acceder más rápidamente a la memoria que comparte con la del sistema. Para acelerar aún más la comunicación entre procesador y GPU, los fabricantes de procesadores están

Chipset. Disipadores de gran tamaño sobre el chipset de este motherboard, sobre todo, el que cubre el northbridge.

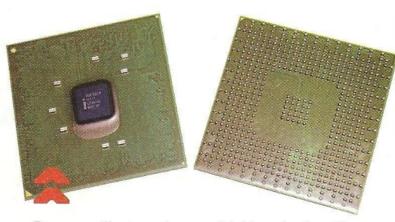

integrando la GPU en el mismo encapsulado que la CPU (en algunos modelos), y prescinden del northbridge (o lo reemplazan con un chip llamado PCI-E Bridge, encargado solo de administrar transacciones entre el bus PCI Express y el o los procesadores). Antes de la llegada de procesadores con el controlador de memoria RAM incorporado, el northbridge también era conocido como MCH (Memory Controller Hub, o vinculo controlador de memoria), al menos en los chipsets desarrollados por Intel. Como hoy en día todos los procesadores incorporan el controlador de memoria, este nombre cayó en desuso.

EL NORTHBRIDGE SE
ENCARGA DE CONTROLAR
EL TRÁFICO ENTRE
EL MICROPROCESADOR,
LA MEMORIA RAM,
LA INTERFAZ DE VIDEO
Y EL OTRO CHIP QUE
CONFORMA EL CHIPSET:
EL SOUTHBRIDGE.

EL SOUTHBRIDGE

El objetivo de este integrado es controlar gran número de dispositivos, como la controladora del bus PCI, los puertos USB y FireWire, y las controladoras para unidades Serial ATA y Parallel ATA, entre otras funciones.

Vale aclarar que el fabricante Intel suele denominar al southbridge (y a ciertas funciones que dependen de él) con

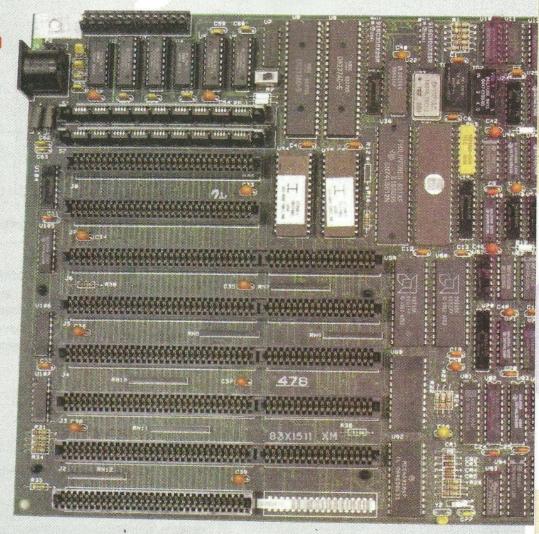

Sin disipador. Al retirar el disipador de calor, uno de los componentes del chipset luce de esta forma.

determinados nombres. Por ejemplo, durante la década de 1990. Intel denominaba al southbridge con una famosa sigla: PIIX (PCI IDE ISA Xcelerator). implementación que llegó a contar convarias versiones que fueron evolucionando (PIIX3 y PIIX4 para motherboards de escritorio, y PIIX5 para servidores). En la actualidad, Intel se refiere al southbridge como ICH (I/O Controller Hub). Esta denominación nació en 1999 con la primera versión del southbridge de Intel 82801, y evolucionó hasta su versión actual (ICH10). La empresa también utiliza otras siglas para referirse a ciertas funciones que administra el ICH: OHCI (Open Host Controller Interface), que se encarga de administrar las conexiones USB 1.1

y FireWire; UHCI (Universal Host Controller Interface), que es la parte del southbridge encargada de gestionar las conexiones USB 1.0; y EHCI (Enhanced Host Controller Interface), que controla funciones USB 2.0. Es muy común ver estas interfaces coexistiendo en un motherboard moderno, cada una asumiendo el rol correspondiente según se conecten al sistema dispositivos USB de distintas versiones. Como solución a este pequeño enjambre de controladoras, Intel propuso la interfaz xHCI (Extensible Host Controller Interface), que proporciona compatibilidad con todas las normas USB (3.0, 2.0 y 1.1) junto con importantes ventajas: menor consumo, mayor velocidad y mejor soporte para tecnologías de

ENCAPSULADOS DEL CHIPSET

Actualmente, para la fabricación del northbridge y del southbridge se emplean chips del tipo BGA (*Ball Grid Array*), basados en la soldadura superficial de pequeñas gotas de estaño puro al PCB. Es decir, estos integrados no poseen patas propiamente dichas, sino que entran en contacto con la placa en forma directa por su lado inferior.



Dos caras. El reverso de un northbridge aún sin soldar al PCB. Cada cápsula de metal se derrite para adherirse a su correspondiente pista.

De museo. Un viejo motherboard para procesadores Intel 80286, en el que el chipset ocupaba el 60% del espacio.

virtualización. Existe, además, una especificación llamada AHCI (Advanced Host Controller Interface), que va ha alcanzado su revisión 1.3, y se encarga de controlar las unidades Serial ATA. El southbridge también tiene la función de alojar una pequeña memoria conocida como CMOS RAM, la cual almacena la configuración que se establece mediante el Setup del BIOS: cantidad y tipos de discos duros conectados, y parámetros sobre el procesador, la memoria RAM y el bus PCI Express, entre otros. Un componente relacionado con la memoria CMOS RAM es el RTC (Real Time Clock), o reloi de tiempo real, que también suele estar integrado en el southbridge. Se trata de un simple contador digital de fecha y hora que impacta constantemente su valor actual en la memoria CMOS RAM. El southbridge también administra las peticiones de interrupción (IRQ) y el acceso directo a memoria (DMA) que los dispositivos necesitan para comunicarse con el procesador y la RAM, respectivamente.

BUSES DE INTERCONEXIÓN ENTRE LOS PUENTES

Existe un bus que une el northbridge con el southbridge, y hay varias especificaciones y versiones disponibles. Cada fabricante de chipsets puede desarrollar su propio bus o adquirir licencias de uso de alguno ya existente. En un principio, el northbridge se comunicaba con el southbridge por medio de un canal del bus PCI. Esa situación debía cambiar cuanto antes, ya que el bus PCI ofrecía solo 32 bits operando a 33 MHz, con el agravante de ser un bus compartido con las placas de expansión conectadas a él. Hace unos años, la cantidad de dispositivos estaba superando la capacidad de esta conexión entre northbridge y southbridge, lo cual forzó a los desarrolladores a crear nuevas soluciones.

Super I/O.

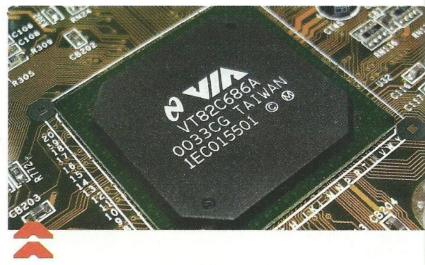
Este pequeño chip es el encargado de controlar los puertos USB, el teclado y el mouse PS/2, entre otros componentes.

Cada fabricante diseñó su propio canal de conexión con sus propias características, ventajas y desventajas. Algunas de estas tecnologías ya han caído en desuso, pero las mencionaremos de todos modos porque fueron las precursoras de tecnologías actuales.

Hub Link

Intel estrenó su propia plataforma llamada Hub Link en la línea de chipsets i810/i845/i850, con un ancho de banda de 266 MB/s. Luego de un par de años de la aparición de su primer bus de interconexión entre puentes, la misma empresa incluyó en sus motherboards el bus Hub Link 2.0, que cuadruplicaba la velocidad de la versión anterior: alcanzaba un ancho de banda de 1 GB/s.

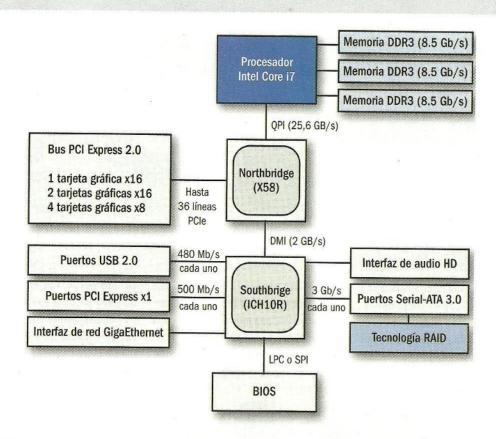
□ Direct Media Interface


El sucesor de la tecnología Hub Link fue el bus DMI (*Direct Media Interface*, o interfaz de acceso directo al medio), que duplicaba la velocidad del Hub Link 2.0, para llegar a 2 GB/s. El bus DMI está basado en el bus PCI Express de cuatro líneas, es decir, el PCI Express x4. Esta tecnología también recibe el nombre de IHA (Intel Hub Architecture) y comenzó a emplearse desde el chipset Intel 810.

MyperTransport

Es un tanto confuso interpretar las características del bus HyperTransport, debido a que es muy flexible y puede adaptarse a las necesidades de cada sistema o fabricante. Por eso, es común asegurar que la misma especificación o versión de HyperTransport trabaja en determinado sistema a 800 MB/s, y en otro, a 400 MB/s.

Por su parte, NVIDIA utilizó el famosísimo HyperTransport, cuya primera versión (chipsets nForce y nForce2) operaba a 800 MB/s de ancho de banda. Su segunda versión trabajó a 8 GB/s y fue incluida en chipsets como el nForce 3. HyperTransport 3.0 fue utilizado por chipsets de AMD y NVIDIA, y logró velocidades de hasta 41,6 GB/s (20,8 GB/s en cada sentido). La última revisión, la 3.1, alcanza 51,2 GB/s (20,6 GB/s en cada sentido).


AMD utiliza este bus no solo para comunicar el northbridge y el southbridge del chipset, sino también para comunicar procesadores (en sistemas multiprocesador basados en *Direct Connect*

Southbridge. Chip del fabricante VIA que no requiere disipación de calor por mantenerse en márgenes seguros.

SUPER I/O

El chip Super I/O se encarga de realizar la combinación de las interfaces para una variedad de dispositivos, los cuales necesitan un bajo ancho de banda. Entre los dispositivos para los cuales provee entrada/salida se encuentran los siguientes: controlador de disquetera de discos flexibles, puerto paralelo, puertos seriales, interfaz de teclado y mouse.

Conexionado. Diagrama que representa el mecanismo interno y las funciones que cumplen el northbridge y el southbridge.

Architecture) y, a su vez, estos con el northbridge. Por su parte, Intel emplea actualmente la interfaz QPI (Quick Path Interconnect) para reemplazar el FSB (Front Side Bus).

VIA empleó su propia tecnología, conocida como V-Link, como bus de interconexión, operando a 533 MB/s de transferencia. Luego utilizó la evolución de V-Link, que recibió el nombre de Ultra V-Link y operaba a una velocidad de transferencia de 1 GB/s.

MultiOL

El fabricante SiS utilizó su bus MultiOL de 533 MB/s de ancho de banda en su línea de chips SiS6xx, y una versión mejorada de 1,2 GB/s en su línea SiS7xx.

CHIP SUPER I/O

El northbridge y el southbridge no suelen ser los únicos integrados que conforman el chipset: también son necesarios algunos chips adicionales que se encargan de gestionar otros servicios, tales como audio, gráficos, controladoras de disco, puertos serie, puertos

PS/2 y controladoras de puertos USB, entre otros. Estos chips no son más que tarjetas, con la diferencia de que sus componentes están soldados directamente sobre el motherboard. La ventaja es la reducción de costos y la comodidad de tener todo en una sola unidad, además de facilitar la circulación de aire dentro del gabinete. La desventaja es el rendimiento, que no es comparable con el de una placa discreta, y una menor flexibilidad a la hora de la libre elección de componentes por parte del usuario. En la mayoría de los casos (interfaces de sonido y red) no hay diferencias con respecto a una placa PCI, pero en dispositivos como las tarjetas gráficas, la diferencia puede ser considerablemente notoria. Opcionalmente, algunos integrados Super I/O pueden incluir funciones como un puerto para joystick/MIDI y un puerto IR (infrarrojo).

Este chip también suele denominarse LPCIO, nombre alternativo que proviene del bus o puente que, en algunos casos, el integrado utiliza para conectarse al southbridge: se lo conoce como LPC (Low Pin Count). Todo

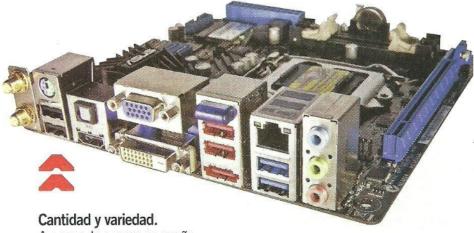
depende de si, efectivamente, el bus empleado es del tipo LPC, ya que existen diversos buses de interconexión entre el southbridge, el BIOS y el integrado Super I/O, como el SPI (Serial Peripheral Interface, de Motorola). Antiguamente, el integrado Super I/O y el BIOS se conectaban al southbridge mediante el bus ISA, siendo esta la única razón por la cual este permaneció en los motherboards durante un período adicional al estimado, a pesar de la exitosa implementación del bus PCI.

QPI

El bus QPI (Quick Path Interconnect) es la propuesta de Intel para competir con el HyperTransport. QPI se emplea desde procesadores de la línea Core, Core2 y Xeon, vinculando el procesador con el northbridge a una velocidad de transferencia de 25,6 GB/s. Intel ofrece más información sobre este bus en el siguiente sitio web: http://goo.gl/4kwtZ.

Componentes integrados

LOS MOTHERBOARDS INCLUYEN UNA CANTIDAD Y VARIEDAD DE DISPOSITIVOS INTEGRADOS QUE VAN MÁS ALLÁ DE LAS CLÁSICAS INTERFACES DE VIDEO. AUDIO Y RED QUE CONOCEMOS. VEREMOS SUS CARACTERÍSTICAS PRINCIPALES Y APRENDEREMOS A DIFERENCIARLOS.



Detallaremos las características principales de los dispositivos integrados en el motherboard, más precisamente, de los puertos de comunicación que estos se encargan de controlar, qué ventajas ofrecen y para qué se utiliza cada uno.

alta calidad, el diseño gráfico, la edimaciones 3D, una interfaz incorporada para un uso hogareño estándar o de oficina, es más que suficiente.

ción de video y la renderización de anino suele ser la mejor solución, pero

La interfaz de red es casi un asunto obligado en todo tipo de motherboard. La mayoría cuenta con un puerto Ethernet de 10/100, pero algunos de gama media o alta pueden llegar a incorporar un GigaEthernet o de 1000 Mbps. Incluso, algunos modelos de lujo incluyen dos puertos Ethernet. Algunos motherboards, sobre todo los de formato ITX, poseen una interfaz de red inalámbrica lista para conectarse a Internet y a redes locales.

A pesar de ser un pequeño motherboard de formato ITX, este modelo posee múltiples interfaces.

LOS CLÁSICOS

La interfaz de video está presente actualmente en el 100% de los motherboards de gama baja y media, e incluso, en algunos de gama alta, donde la instalación de una o más tarjetas gráficas discretas es uno de sus principales objetivos.

A finales de la década de 1990, los primeros motherboards que incorporaban la interfaz gráfica eran realmente de muy mala calidad (tanto la interfaz de video como el motherboard en si). Con el correr de los años, esta situación se revirtió, y las placas madre con este tipo de interfaz incorporada ya no son cuestionadas por su calidad. Para usos específicos, como los videojuegos de Los motherboards con interfaz gráfica incorporada no incrementan su costo al contar con esta función. Sin embargo, la desventaja radica en que la interfaz onboard consume memoria RAM del sistema para poder funcionar.

Los conectores de salida de la interfaz pueden ser VGA, DVI, HDMI, DisplayPort o, también, la combinación de algunos de ellos.

En cuanto al sonido, ocurre lo mismo que con el video: para un uso estándar, la interfaz incorporada puede cumplir las expectativas del usuario, pero no sucede lo mismo con asuntos más avanzados, como la edición, composición, mezcla o grabación multipista de audio semiprofesional y profesional. En ese caso, existen interfaces internas y externas para cubrir esos objetivos.

BLUETOOTH

La tecnología inalámbrica Bluetooth es más común en equipos portátiles que en motherboards para equipos de escritorio, pero existen modelos que incluyen esta tecnología. Bluetooth permite conectar entre sí una gran variedad de dispositivos, como teléfonos celulares, auriculares, computadoras, impre-

Relámpago.

Cable empleado para conectar dispositivos compatibles con la tecnología Thunderbolt.

Alta gama.
Los modelos
de gama alta
ofrecen todo
tipo de puertos
integrados para
maximizar
la conectividad.

soras y agendas personales, sin preocuparse por los cables ni por la posición de los dispositivos. Hay que recordar que en la tecnología por infrarrojo, emisor y receptor deben estar enfrentados. Diseñado por un conjunto de importantes multinacionales (IBM, Intel, Nokia, Ericsson y Toshiba), Bluetooth es capaz de operar en entornos ruidosos, utilizando un esquema de saltos de frecuencia y enlaces rápidos que contribuyen a hacer las conexiones más eficientes.

Una de las ventajas de Thunderbolt es que sirve para transferir video, lo que permite, por ejemplo, conectar una notebook a un proyector, o un equipo de escritorio a un monitor externo.

La velocidad de transmisión en la versión 1.0 es de 1 Mbps, sus módulos de radio actúan en la banda de los 2,4 GHz, y distribuye su espectro en 79 canales distintos, con un desplazamiento de 1 MHz en cada uno, empezando en

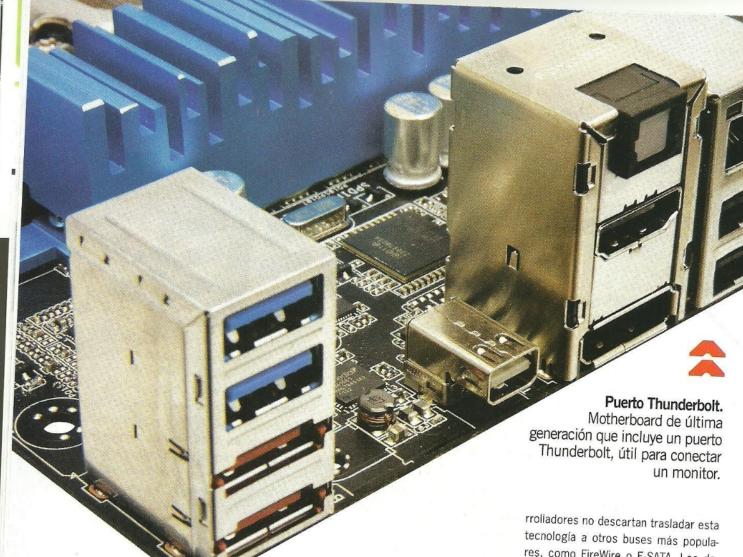
2,402 GHz y terminando en 2,480 GHz. En algunos países, este rango de frecuencias se ha visto temporalmente reducido, por haber tenido que adaptarse a regulaciones particulares respecto a la asignación del espectro radioeléctrico. Es así que España y Francia, por ejemplo, emplean un sistema reducido de 23 canales. En la versión 2.0

se incrementó la tasa de transferencia a

3 Mbps, y en la versión 3.0, a 24 Mbps.

THUNDERBOLT

Durante la prolongada fase de prueba en equipos Apple, esta tecnología se llamó Light Peak, ya que en su etapa inicial de desarrollo operaba mediante transmisión óptica (es decir, impulsos de luz). En la actualidad, algunos modelos de motherboards de gama alta están incorporando esta tecnología. Thunderbolt fue inicialmente concebido para funcionar mediante cables de fibra


Thunderbolt fue inicialmente concebido para funcionar mediante cables de fibra óptica, pero luego migró hacia cables convencionales de cobre para reducir costos y poder brindar alimentación eléctrica a los dispositivos (10 W, más precisamente). Esta interfaz externa maneja un ancho de banda bidireccional de 10 Gbps, al igual que las redes de fibra óptica conocidas como 10GbE.

Recordemos que el pico máximo teórico del bus USB 3.0 es de casi 5 Gbps de velocidad de transferencia, pero ese ancho de banda no es bidireccional. Un caso similar se ha dado en las redes Ethernet de 10 Gbps, en las cuales se pueden utilizar cables de fibra óptica y cables eléctricos. Semejante ancho de banda difícilmente puede ser alcanzado en la actualidad por los dispositivos:

DISPLAYPORT

DisplayPort es el bus en el cual se basa la tecnología Thunderbolt. Ofrece un ancho de banda de casi 11 Gb/s, con una longitud máxima del cable de 15 metros a 1080p de resolución. La resolución máxima soportada es de 2560 x 1600 píxeles, y también puede transportar sonido a un máximo de 192 KHz, a 24 bits y con ocho canales.

de manera irremediable, se producirá un cuello de botella. Un valor de 10 Gbps representa alrededor de 1,25 GB/s, y en la actualidad ningún dispositivo externo alcanza esa tasa.

Con un disco externo que pueda soportar la interfaz Thunderbolt, es posible enviar y recibir archivos simultáneamente sin perder rendimiento alguno (punto a favor con respecto a USB en cualquiera de sus versiones, donde esto se nota y bastante). Claramente, por sus características, Thunderbolt apunta a usuarios que manejan grandes canti-

dades de información (rendering 3D o edición de audio y video, por ejemplo). Este último aspecto de la bidireccionalidad es muy favorable para aquellos usuarios que realicen sincronizaciones de grandes cantidades de información (es decir, envío y recepción de datos a la vez). Otra de las ventajas de Thunderbolt es que también sirve para transferir video, lo que permite, por ejemplo, conectar una notebook a un proyector, o un equipo de escritorio a un monitor externo. Todo esto se logra gracias a la compatibilidad nativa con PCI Express (para datos) y con DisplayPort (para video).

Thunderbolt usa como conector estándar el mini-DisplayPort, pero sus desa-

res, como FireWire o E-SATA. Los datos viajan gracias al protocolo PCI Express, mientras que el video se mueve mediante la especificación DisplayPort. Al igual que FireWire, esta tecnología permite conectar dispositivos en cadena (en este caso, hasta siete), como notebook, disco externo, monitor y proyector.

PARA USOS ESPECÍFICOS, COMO LOS VIDEOJUEGOS DE ALTA CALIDAD, EL DISEÑO GRÁFICO Y LA EDICIÓN DE VIDEO, UNA INTERFAZ GRÁFICA INCORPORADA NO ES LA MEJOR SOLUCIÓN.

Para terminar, debemos tener en cuenta una de las desventajas más importantes de Thunderbolt. Es una tecnología que tiene mucho camino por recorrer para integrarse en una variedad de dispositivos más amplia, y de esta forma hacer frente a la masificación que ha obtenido el USB en la actualidad. Por esta razón, pasará algún tiempo antes que abarque una cuota de mercado más amplia.

DISPLAYLINK

La tecnología DisplayLink permite conectar múltiples pantallas a través de un mismo puerto USB 2.0 fácilmente. Cada pantalla posee un puerto de entrada y otro de salida, al cual se podrá conectar otra pantalla, o dispositivo de imágenes, para continuar la cadena indefinidamente (o hasta que se agoten los recursos del equipo).