Begin the journey toward your own
successful Android 3 apps

Beginning

ndroid 3

Mark Murphy

Apress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

N

Apress®

Contents at a Glance

L1 11 1
About the AUtROF..........cccunsmmmismnmssmn s e XVi
About the Technical REVIEWETcccussmssssamsssssnsssssnsssssssssssnsssssnsssssasssssnssnssnnss Xvii
Acknowledgments..........ccuccmmmssmmmmsmsmssnsmssssssssssssssssssnsssnsssssnsssssnsssssnssnssnnsnnnns Xviii
o Xix
Part I: Core ConCept.......ccccurusummnmmssssnnnmsssssnsnssssssnsnssssssnsnsssssnnnnsssssnnnnnssssnnnnssssnnns
Chapter 1: The Big Picture.....cccusremmmmmmmnmnmsssssssssssmmmssssssssssssssssssssssssssssssssssnnss
Chapter 2: How to Get Started........ccccccvciniinsesnnncnns s
Chapter 3: Your First Android Projectcccceemmmnnrinsssssssssssnssmsssssssssssssnsnnnas 23
Chapter 4: Examining Your First Project.........cccccivinnssnseesemmmnnnnsssssssssssnnnnns 31
Chapter 5: A Bit About EClipS€.....ccccummmrrrsmsssssssmssnmmmsssssssssssssnsssssssssssssssssnnnnnss 37
Chapter 6: Enhancing Your First Projectccccccciirrnnnnssssssemnnnnsssssssssssssnsnnnas 47
Part Il: ACtiVItIeS.....ccccurssemsmssamsmsssmsmsssnsssssnsssssnnssssnnssssansssssnsssssnsssssnnssssnnsnssnnnnsns 49
Chapter 7: Rewriting Your First Projectccccccciirrnnnsnsssssssmmnnnnssssssssssssnnnnnns 51
Chapter 8: Using XML-Based Layoutscccuseemmmmsssnnnsmsssssnsssssssssnsssssssnnnsnsss 55
Chapter 9: Employing Basic Widgets........cccuuummmmmmssssnnmmssssssssssssssnssssssssnnnsnsss 61
Chapter 10: Working with Containersccccememmmmrnmsssssssssennssmsssssssssssssnsnns 73
Chapter 11: The Input Method Framework.........cccccuernsssssssesnsmmsssssssssssssnssnnas 93
Chapter 12: Using Selection Widgetscccuummmmmmsmmmmmssssssmmssssssssmssssssssssns 103
Chapter 13: Getting Fancy with Listscccccmmmnninnnnnssssssnmnmnsnsssssssssssnns 119
Chapter 14: Still More Widgets and Containers......cccusseemmmmmmnnsssssssssssnnnsnnas 135
Chapter 15: Embedding the WebKit BrOWSErcccuunmmmmmmmnmmmesssssssssssnsssnnns 159
Chapter 16: Applying Menuscccoumssmmmmmssssnsnmsssssssnsssssssssssssssnssssssssnsnsssss 167
Chapter 17: Showing Pop-Up MeSSages.....c.ussummmssssnsnmsssssnnsssssssnnsssssssnnnsssss 179
Chapter 18: Handling Activity Lifecycle Events..........occcemmmmmnnnnsssssssssnnnnnnnas 183
Chapter 19: Handling Rotationcccccnnnneemmmnninnnssssssssnnessssssssssnns 187
Chapter 20: Dealing with Threadsccccuunemmmmmmnmmnmsnssssssnnr s ———— 203

iv

CONTENTS AT A GLANCE

Chapter 21: Creating Intent Filters.........cccounmmmmmmnnnnnnnnssssssnnnnesssssssssssnnns 221
Chapter 22: Launching Activities and Subactivities.......cccccvrrrrssssnnnnnnnnneas 227
Chapter 23: Working with ReSOUrCesuuusmmmmmmmrrrsssssssssssnnsssssssssssssssnnssnnss 235
Chapter 24: Defining and Using Stylesccccmmmmmrnmssssssssssnnnmmsssssssssssssssnns 251
Chapter 25: Handling Multiple Screen Sizesccccunmmmmmmnnnnnnmmnssssssnnns 257
Part 11l: Honeycomb and Tablets.........c.cccuvemmismmsmsmsssmmsmsmmsssmsssmsss s s snsnsnns 279
Chapter 26: ntroducing the Honeycomb Ul.............ccccinnnnmmmmnsssnnnnmssssssnnsnns 281
Chapter 27: Using the Action Barcccocnnemmmmmmnninnnnssssssssnmsmsssssssssssssnns 289
Chapter 28: Fragments........cccunnmmmmmmmmnmmnmsssssssssnmssmmssssssssssnssssssssssssssssnns 297
Chapter 29: Handling Platform Changescccccirrnmnsssssmssnnsmsssssssssssssnssnnns 313
Chapter 30: Accessing FIlesccuucemmmmssmmmmmssssnnnmmssssssnmsssssssssssssssssssssssssnnssss 323
Part IV: Data Stores, Network Services, and APISccccvvnnmmnnnnnnnnsssssnnssnnnnn 337
Chapter 31: Using Preferencesccccuuseemmmssssnsnmsssssnsnsssssssnnsssssssnssssssssnnsssss 339
Chapter 32: Managing and Accessing Local Databases.........ccccunnmsemennnnnnas 357
Chapter 33: Leveraging Java Librariesc.cccnmmmssssmmmssssssnmsssssssssssssssssssns 369
Chapter 34: Communicating via the Internetc.coirmrriicinnnnseesennnn, 377
Part V: SEIrVICEeScuscummsssmsmsssnsmsssnsssssnsssssnsssssnsssssansssssnsssssnsssssnssnssnssnssnnssssnnnnss 393
Chapter 35: Services: The Theory........cccmumssmnnmmssssssnmssssssssssssssssssssssssssssss 395
Chapter 36: Basic Service Patterns...........cccccmvsmmsmmsssmmssssmsssssssssssssssssassns 403
Chapter 37: Alerting Users via Notificationsccccuunnmmmmmmnnnnsssssssssssnnnnnns 423
Part VI: Other Android Capabilities..........ccoussmmmnsmsmssnsmsssnsmsssnsssssnsssssnsssssnnnnns 435
Chapter 38: Requesting and Requiring Permissions........cccccurersssssssssssnssnnas 437
Chapter 39: Accessing Location-Based ServiCesc.ccuusesmmmsssssssssssssnsnsssss 443
Chapter 40: Mapping with MapView and MapActivityccccnnnnnnnnnnnnnnnas 449
Chapter 41: Handling Telephone CallS........cccccmmmmnrrmssssssssssnsnmmmsssssssssssssssnnas 463
Chapter 42: FONtScccusmmmmsmsmmssnsmmssssmmsssssssssssssssssssssssssssssssssnsssssnssnssnnnnns 467
Chapter 43: More Development TOOISccuusemmmssssnnnmmssssnsnmsssssnsnsnsssansnsssass 473
Part VII: Alternative Application Environmentscccccccinnssssssssnnnnsssssssssssnnns 489
Chapter 44: The Role of Alternative Environments.............ccousmmmsssnnssssnnsnns 491
Chapter 45: HTMLSccccounnmmmmnmmmmmssmmmssmssssssssssssssssssssssssssssnsssssnssnssnnsnns 495
Chapter 46: PhONeGAPccusmerrmmsssnnnmmssssnnnssssssnnnssssssnsnssssssnnnsssssnnnnsssssnnnnsssss 507
Chapter 47: Other Alternative Environments..........ccccusmmmnsmsmssssssssssssssassnns 523
Part VIII: The Ever-Evolving Androidcccccumssemmmssansmsssnsmsssnsssssnsssssnsssssnnnnas 529
Chapter 48: Dealing with DeviCes........ccccuummmmmmmmmmmmmmmsssssssssssmmmesssssssssssssnnns 531
Chapter 49: Where Do We Go From Here?ccccummsemmmsssnsssssnsssssnsssssnnnnns 537
INA@X ceiuemnnrnsssnnnnnasssnnnnmsssssnnnnsssssnnnnessssnnnnessssnnnsessssnnnnessssnnnnessssnnnnesssnnnnnsssssnnnnss 541

Part I

Core Goncept

Chapter

The Big Picture

Android is everywhere. Phones. Tablets. TVs and set-top boxes powered by Google TV.
Soon, Android will be in cars and all sort of other places as well.

However, the general theme of Android devices will be smaller screens and/or no
hardware keyboard. And, by the numbers, Android will probably be associated mostly
with smartphones for the foreseeable future. For developers, this has both benefits and
drawbacks, as described next. This chapter also describes the main components in an
Android application and the Android features that you can exploit when developing your
applications.

Benefits and Drawbacks of Smartphone
Programming

On the plus side, Android-style smartphones are sexy. Offering Internet services over
mobile devices dates back to the mid-1990s and the Handheld Device Markup
Language (HDML). However, only in recent years have phones capable of Internet
access taken off. Now, thanks to trends like text messaging and products like Apple’s
iPhone, phones that can serve as Internet-access devices are rapidly gaining popularity.
So, working on Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones), which is always a
good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the pain of phones
simply being small in all sorts of dimensions:

B Screens are small (you will not get comments like, “Is that a 24-inch
LCD in your pocket, or...?").

B Keyboards, if they exist, are small.

CHAPTER 1: The Big Picture

B Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and “multitouch” LCDs
can sometimes be...problematic).

B CPU speed and memory are limited compared to what’s available on
desktops and servers.

Moreover, applications running on a phone have to deal with the fact that they’re on a
phone.

People with mobile phones tend to get very irritated when those phones do not work.
Similarly, those same people will get irritated if your program “breaks” their phones by

B Tying up the CPU such that calls can’t be received.

B Not quietly fading into the background when a call comes in or needs
to be placed, because the program doesn’t work properly with the rest
of the phone’s operating system.

B Crashing the phone’s operating system, such as by leaking memory
like a sieve.

Hence, developing programs for a phone is a different experience than developing
desktop applications, web sites, or back-end server processes. The tools look different,
the frameworks behave differently, and you have more limitations on what you can do
with your programs.

What Android tries to do is meet you halfway:

B You get a commonly used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to using (Eclipse).

B You get a fairly rigid and uncommon framework in which your
programs need to run so they can be “good citizens” on the phone
and not interfere with other programs or the operation of the phone
itself.

As you might expect, much of this book deals with that framework and how you write
programs that work within its confines and take advantage of its capabilities.

What Androids Are Made Of

When you write a desktop application, you are “master of your own domain.” You
launch your main window and any child windows —like dialog boxes—that are needed.
From your standpoint, you are your own world, leveraging features supported by the
operating system, but largely ignorant of any other program that may be running on the
computer at the same time. If you do interact with other programs, it is typically through
an application programming interface (API), such as Java Database Connectivity (JDBC),
or frameworks atop it, to communicate with MySQL or another database.

CHAPTER 1: The Big Picture

Android has similar concepts, but they are packaged differently and structured to make
phones more crash-resistant:

B Activities: The building block of the user interface is the activity. You
can think of an activity as being the Android analogue for the window
or dialog box in a desktop application or the page in a classic web
application. Android is designed to support lots of cheap activities, so
you can allow users to keep tapping to open new activities and
tapping the Back button to back up, just like they do in a web browser.

B Services: Activities are short-lived and can be shut down at any time.
Services, on the other hand, are designed to keep running, if needed,
independent of any activity. You might use a service to check for
updates to an RSS feed or to play back music even if the controlling
activity is no longer operating. You will also use services for scheduled
tasks (“cron jobs”) and for exposing custom APIs to other applications
on the device, though those are relatively advanced capabilities.

B Content providers: Content providers provide a level of abstraction for
any data stored on the device that is accessible by multiple
applications. The Android development model encourages you to
make your own data available to other applications, as well as your
own applications. Building a content provider lets you do that, while
maintaining complete control over how your data gets accessed.

B ntents: Intents are system messages that run around the inside of the
device and notify applications of various events, from hardware state
changes (e.g., an SD card was inserted), to incoming data (e.g., a
Short Message Service [SMS] message arrived), to application events
(e.g., your activity was launched from the device’s main menu). Not
only can you respond to an Intent, but you can create your own to
launch other activities or to let you know when specific situations arise
(e.g., raise such-and-so Intent when the user gets within 100 meters
of this-and-such location).

Stuff at Your Disposal

B Storage: You can package data files with your application for things
that do not change, such as icons or help files. You also can carve out
a small bit of space on the device itself, for databases or files
containing user-entered or retrieved data needed by your application.
And, if the user supplies bulk storage, like an SD card, you can read
and write files on there as needed.

CHAPTER 1: The Big Picture

B Network: Android devices generally are Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the
way up to a built-in WebKit-based web browser widget you can
embed in your application.

B Multimedia: Android devices have the ability to play back and record
audio and video. While the specifics may vary from device to device,
you can query the device to learn its capabilities and then take
advantage of the multimedia capabilities as you see fit, whether that is
to play back music, take pictures with the camera, or use the
microphone for audio note-taking.

B Global Positioning System (GPS): Android devices frequently have
access to location providers, such as GPS, that can tell your
applications where the device is on the face of the Earth. In turn, you
can display maps or otherwise take advantage of the location data,
such as to track a device’s movements if the device has been stolen.

B Phone services: Because Android devices are typically phones, your
software can initiate calls, send and receive SMS messages, and do
everything else you expect from a modern bit of telephony technology.

The Big Picture...of This Book

Now that you have the Android big picture, here is what’s coming in the rest of this
book:

B The next two chapters are designed to get you going quickly with the
Android environment, through a series of step-by-step, tutorial-style
instructions for setting up the tools you need, creating your first
project, and getting that first project running on the Android emulator.

B The three chapters that follow explain a bit more about what just
happened in Chapters 2 and 3. We examine the Android project that
we created, talk a bit more about Eclipse, and discuss some things we
could add to the project to help it run on more devices and enhance its
capabilities.

B The bulk of the book explores the various capabilities of the Android
APIs—how to create components like activities, how to access the
Internet and local databases, how to get your location and show it on
a map, and so forth.

Chapter

How to Get Started

Without further ado, let’s get you set up with the pieces and parts necessary to build an
Android app.

NOTE: The instructions presented here are accurate as of the time of this writing. However, the
tools change rapidly, so these instructions may be out of date by the time you read this. Please
refer to the Android Developers web site for current instructions, using this as a base guideline of
what to expect.

Step 1: Set Up Java

When you write Android applications, you typically write them in Java source code. That
Java source code is then turned into the stuff that Android actually runs (Dalvik
bytecode in an Android package [APK] file).

Hence, the first thing you need to do is get set up with a Java development environment
so that you are prepared to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java web site for Windows and Linux, and presumably from
Apple for Mac OS X. The plain JDK (sans any “bundles”) should suffice. Follow the
instructions supplied by Oracle or Apple for installing it on your machine. At the time of
this writing, Android supports Java 5 and Java 6, the latter being the now-current
edition.

Alternative Java Compilers

In principle, you are supposed to use the official Sun/Oracle Java SE Development Kit
(JDK) In practice, it appears that OpenJDK also works, at least on Ubuntu. However, the

CHAPTER 2: How to Get Started

further removed you get from the official Sun/Oracle implementation, the less likely it is
that it will work. For example, the GNU Compiler for Java (GCJ) may not work with
Android.

Learn Java

This book, like most books and documentation on Android, assumes that you have
basic Java programming experience. If you lack this, you really should consider
spending a bit of time on Java fundamentals, before you dive into Android. Otherwise,
you may find the experience to be frustrating.

If you are in need of a crash course in Java to get involved in Android development, here
are the concepts you need to learn, presented in no particular order:

B Language fundamentals (flow control, etc.)
Classes and objects

Methods and data members

Public, private, and protected

Static and instance scope

Exceptions

Threads and concurrency control
Collections

Generics

File 1/0

Reflection

B Interfaces

One of the easiest ways of acquiring this knowledge is to read Learn Java for Android
Development by Jeff Friesen (Apress, 2010).

Step 2: Install the Android SDK

The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, and version-specific SDKs and
related add-ons.

Install the Base Tools

You can find the Android developer tools on the Android Developers web site. Download
the ZIP file that is appropriate for your platform and unzip it in a logical location on your

CHAPTER 2: How to Get Started

machine —no specific path is required. Windows users also have the option of running a
self-installing EXE file.

Install the SDKs and Add-ons

Inside the tools/ directory of your Android SDK installation from the previous step, you
will see an android batch file or shell script. If you run that, you will be presented with
the Android SDK and AVD Manager, shown in Figure 2—1.

Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avc

Installed packages ||| oyp Name Target Name Platf APl Leve | (NERN

Available packages

Settings clete

About Re
Refresh

~ A valid Android Virtual Device. A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 2-1. Android SDK and AVD Manager

At this point, you have some of the build tools, but you lack the Java files necessary to
compile an Android application. You also lack a few additional build tools, and the files
necessary to run an Android emulator. To address this, click the Available packages
option on the left to open the screen shown in Figure 2-2.

CHAPTER 2: How to Get Started

Android SDK and AVD Manager

Virtual devices SDK Location: /home/android/android-sdk-linux_86

Installed packages || packages available for download

Available packages [IN

Settings >
About

Android Repository
= Third party Add-ons

Description

Refresh | | Install Selected

IAdd Add-on Site...‘ Delete Add-on Site... | @ Dis

Figure 2-2. Android SDK and AVD Manager available packages

Open the Android Repository branch of the tree. After a short pause, you will see a
screen similar to Figure 2-3.

Virtual devices SDK Location: /home/android/android-sdk-linux_86

Installed packages | | packages available for download

Settings # SDK Platform Android 2.2, API 8, revision 2
About # SDK Platform Android 2.1, API 7, revision 2
SDK Platform Android 1.6, API 4, revision 3
SDK Platform Android 1.5, API 3, revision 4
& Samples for SDK API 8, revision 1

& samples for SDK API 7, revision 1

» [i Third party Add-ons

vV vV v Vv v Vv

Description

& Dis Refresh‘ Install Selected

Figure 2-3. Android SDK and AVD Manager available Android packages

‘Add Add-on Site...J Delete Add-on Site...

Check the boxes for the following items:
B “SDK Platform” for all Android SDK releases you want to test against
B “Documentation for Android SDK” for the latest Android SDK release

B “Samples for SDK” for the latest Android SDK release, and perhaps for
older releases if you wish

Then, open the Third party Add-ons branch of the tree. After a short pause, you will see

a screen similar to Figure 2—-4.

CHAPTER 2: How to Get Started 11

Virtual devices SDK Location: /home/android/android-sdk-linux_86

Installed packages | | packages available for download ~
Available packages |, | 5 spk platform Android 2.1, APl 7, revision 2

Settings # SDK Platform Android 1.6, API 4, revision 3

About

SDK Platform Android 1.5, API 3, revision 4
& samples for SDK API 8, revision 1
& samples for SDK API 7, revision 1
v [& Third party Add-ons
» | @ Google Inc. add-ons (dI-ssl.google.com)
» [@ Samsung Electronics add-ons (innovator.samsungmobile.com) =

vV v v v

Description

‘»Add Add-on Site...} Delete Add-on Site... @ Dis [RefreshJ Install Selected
Figure 2-4. Android SDK and AVD Manager available third-party add-ons

Click the “Google Inc. add-ons” branch to open it, as shown in Figure 2-5.

Virtual devices SDK Location: /home/android/android-sdk-linux_86
Installed packages ||| packages available for download
Available packages % Third party Add-ons
Settings v 1@ Google Inc. add-ons (dI-ssl.google.com)
About » (| & Google APIs by Google Inc., Android API 8, revision 2
> [& Google APIs by Google Inc., Android API 7, revision 1
» [& Google APIs by Google Inc., Android API 4, revision 2
> [% Google APIs by Google Inc., Android API 3, revision 3
» [@ Google Market Licensing package, revision 1
» [@ Samsung Electronics add-ons (innovator.samsungmobile.com)

] »

Description

\»Add Add-on Site‘..J Delete Add-on Site... @& Dis ‘»Refreshj Install Selected
Figure 2-5. Android SDK and AVD Manager available Google add-ons

Most likely, you will want to check the boxes for the “Google APIs by Google Inc.” items
that match up with the SDK versions you selected in the Android Repository branch. The
Google APlIs include support for Google Maps, both from your code and in the Android
emulator.

After you have checked all the items you want to download, click the Install Selected
button, which brings up a license confirmation dialog box, shown in Figure 2-6.

CHAPTER 2: How to Get Started

™ Choose Packages to Install

Packages Package Description & License

SDK Platform Android 2.2, API 8, Package Description

? Google APIs by Google Inc., Andri Android SDK Platform 2.2 r1
Revision 2

Dependencies

This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

@® Accept () Reject) Accept All

[Install J | Cancel |

Figure 2-6. Android SDK and AVD Manger license agreement screen

Review and accept the licenses if you agree with the terms, and then click the Install
button. At this point, this is a fine time to go get lunch or dinner. Unless you have a
substantial Internet connection, downloading all of this data and unpacking it will take a
fair bit of time.

When the download is complete, you can close the SDK and AVD Manager if you wish,
though you will use it to set up the emulator in Step 5 of this chapter.

Step 3: Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip to the next
section. If you will be using Eclipse but have not yet installed it, you will need to do that
first. Eclipse can be downloaded from the Eclipse web site, www.eclipse.org/. The
Eclipse IDE for Java Developers package will work fine.

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, open
Eclipse and choose Help » Install New Software. Then, in the Install dialog box, click the
Add button to add a new source of plug-ins. Give it a name (e.g., Android) and supply
the following URL: https://d1l-ssl.google.com/android/eclipse/. That should trigger
Eclipse to download the roster of plug-ins available from that site (see Figure 2-7).

http://www.eclipse.org/
https://dl-ssl.google.com/android/eclipse/

CHAPTER 2: How to Get Started

Available Software |

Check the items that you wish to install. \f)f

Work with: |Android - https://dl-ssl.google.com/android/eclipse/ v || Add... ‘

Find more software by working with the "Available Software Sites" preferences.

@&

Name Version

v [000 Developer Tools
§* Android DDMS 8.0.1.v201012062107-82219
§* Android Development Tools 8.0.1.v201012062107-82219
4* Android Hierarchy Viewer 8.0.1.v201012062107-82219

| select All | Deselect All |

Details

[Show only the latest versions of available software Hide items that are already installed

[Group items by category What is already installed?

[Contact all update sites during install to find required software

@ < Back Next > cancel Finish

Figure 2-7. Eclipse ADT plug-in installation

Check the Developer Tools check box and click the Next button. Follow the rest of the
wizard steps to review the tools to be downloaded and review and accept their respective
license agreements. When the Finish button is enabled, click it, and Eclipse will download
and install the plug-ins. When it’s done, Eclipse will ask to restart; let it do so.

Then, you need to show ADT where to locate your Android SDK installation from the
preceding section. To do this, choose Window » Preferences from the Eclipse main
menu (or the equivalent Preferences option for Mac OS X). Click the Android entry in the
list pane of the Preferences dialog box, as shown in Figure 2-8.

CHAPTER 2: How to Get Started

™ Preferences

@| @ Vvalue must be an existing directory v -

General Android Preferences
Android] ‘

SDK Location:
Ant
Help
Install/Update Target Name vendor Platform API Le
Java
Run/Debug
Tasks

Browse...

Note: The list of SDK Targets below is only reloaded once you hit 'Apply" or 'OK".

Team
Usage Data Collecto

vV vV VvV vV V VvV vV V VvV V

Validation
» XML

| Restore Defaults Apply

@ | cancel |

Figure 2-8. Eclipse ADT configuration

Then, click the Browse button to find the directory where you installed the SDK. After
choosing it, click Apply in the Preferences dialog box, and you should see the Android
SDK versions you installed previously. Then, click OK, and the ADT will be ready for use.

Step 4: Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to the next
section. If you wish to develop using command-line build tools, you need to install
Apache Ant. You may have this installed already from previous Java development work,
as it is fairly common in Java projects. However, you need Ant version 1.8.1 or later, so
check your current copy (e.g., ant -version).

If you do not have Ant or do not have the correct version, you can obtain it from the
Apache Ant web site, at http://ant.apache.org/. Full installation instructions are
available in the Ant manual, but the basic steps are as follows:

1. Unpack the ZIP archive in a logical place on your machine.

2. Add a JAVA_HOME environment variable, pointing to where your JDK is
installed, if you do not have one already.

3. Add an ANT_HOME environment variable, pointing to the directory where
you unpacked Ant in step 1.

http://ant.apache.org/

CHAPTER 2: How to Get Started 15

4. Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH.

5. Runant -version to confirm that Ant is installed properly.

Step 5: Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development—it not only enables you to get
started on your Android development without a device, but also enables you to test
device configurations for devices that you do not own.

The Android emulator can emulate one or several Android devices. Each configuration
you want is stored in an Android Virtual Device (AVD). The Android SDK and AVD
Manager, which you used to download the SDK components earlier in this chapter, is
where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via the android
command from your SDK’s tools/ directory, or via Window » SDK and AVD Manager
from Eclipse. It opens with a screen listing the AVDs you have available; initially, the list
will be empty, as shown in Figure 2-9.

®® @ Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avc
Installed packages ‘ New...
Available packages

Settings

About

Refresh

~ A valid Android Virtual Device. A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 2-9. Android SDK and AVD Manager Android Virtual Devices list

Click the New button to create a new AVD file. This opens the dialog box shown in
Figure 2-10, where you can configure how this AVD should look work.

CHAPTER 2: How to Get Started

Name:

Target:

SD Card:

skin:

[

1o

® Size: | [ImiB ¢
O File:

@ Built-in:

© Resolution: X

Property Value New...

Hardware:

Cancel

Figure 2-10. Adding a new AVD

You need to provide the following:

B A name for the AVD: Since the name goes into files on your

development machine, you are limited by the file name conventions for
your operating system (e.g., no backslashes on Windows).

The Android version (target) you want the emulator to run: Choose one
of the SDKSs you installed via the Target drop-down list. Note that in
addition to “pure” Android environments, you will have options based
on the third-party add-ons you selected. For example, you probably
have some options for setting up AVDs containing the Google APIs,
and you will need such an AVD for testing an application that uses
Google Maps.

Details about the SD card the emulator should emulate: Since Android
devices invariably have some form of external storage, you probably
want to set up an SD card, by supplying a size in the associated field.
However, since a file will be created on your development machine of
whatever size you specify for the card, you probably do not want to
create a 2GB emulated SD card. 32MB is a nice starting point, though
you can go larger if needed.

CHAPTER 2: How to Get Started 17

B The “skin” or resolution the emulator should run in: The skin options
you have available depend upon what target you chose. The skins let
you choose a typical Android screen resolution (e.g., WVGAS800 for
800x480). You can also manually specify a resolution when you want
to test a nonstandard configuration.

You can skip the Hardware section of the dialog box for now, as changing those
settings is usually only required for advanced configurations.

The resulting dialog box might look something like Figure 2-11.

Name: |2.3-WVGA800
Target: Google APIs (Google Inc.) -APl Level9 ¢
SD Card: B .
@ Size: |32 [|miB ¢
O File:
skin: X e
@ Built-in: WVGAS800 Ci
O Resolution: X
Hardware:
Property Value New...

Abstracted LCD densi 240
Max VM application i} 24

Create AVD Cancel

Figure 2-11. Adding a new AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, select it in the Android Virtual Devices list and click Start. You can
skip the launch options for now and just click Launch. The first time you launch a new
AVD, it will take a long time to start up. The second and subsequent times you start the
AVD, it will come up a bit faster, and usually you need to start it only once per day (e.g.,
when you start development). You do not need to stop and restart the emulator every
time you want to test your application, in most cases.

The emulator will go through a few startup phases, the first of which displays a plain-text
ANDROID label, as shown in Figure 2-12.

CHAPTER 2: How to Get Started

ANDROTID

Figure 2-12. Android emulator, initial startup segment

The second phase displays a graphical Android logo, as shown in Figure 2—-13.

CHAPTER 2: How to Get Started 19

Figure 2-13. Android emulator, secondary startup segment

Finally, the emulator reaches the home screen (the first time you run the AVD; see Figure
2-14) or the keyguard (see Figure 2-15).

CHAPTER 2: How to Get Started

Figure 2-14. Android home screen
If you get the keyguard, press the Menu button or slide the green lock on the screen to
the right, to get to the emulator’s home screen.

& 10:48

Android

10:48..

Sunday, December 26
€ Charging (50%)

Figure 2-15. Android keyguard

CHAPTER 2: How to Get Started

Step 6: Set Up the Device

With an emulator set up, you do not need an Android device to get started in Android
application development. Having one is a good idea before you try to ship an application
(e.g., upload it to the Android Market). But perhaps you already have a device—maybe
that is what is spurring your interest in developing for Android.

The first step to make your device ready for use with development is to go into the
Settings application on the device. From there, choose Applications, then Development.
That should give you a set of check boxes for choosing development-related options,
similar to what’s shown in Figure 2—-16.

3 =l 09:51
USB debugging ‘7’

Debug mode when USB is connected

Stay awake E

Screen will never sleep while charging

Allow mock locations D

Allow mock locations

Figure 2-16. Android device development settings

Generally, you will want to enable USB debugging so that you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the Stay awake option to be handy, as it saves you from having to
unlock your phone repeatedly while it is plugged into USB.

Next, you need to set up your development machine to talk to your device. That process
varies by the operating system of your development machine, as covered in the
following sections.

Windows

When you first plug in your Android device, Windows attempts to find a driver for it. It is
possible that, by virtue of other software you have installed, the driver is ready for use. If
Windows finds a driver, you are probably ready to go.

If Windows doesn’t find the driver, here are some options for getting one:

B Windows Update: Some versions of Windows (e.g., Vista) prompt you
to search Windows Update for drivers. This is certainly worth a shot,
though not every device will have supplied its driver to Microsoft.

21

22

CHAPTER 2: How to Get Started

B Standard Android driver: In your Android SDK installation, you will find
a google-usb_driver directory, containing a generic Windows driver
for Android devices. You can try pointing the driver wizard at this
directory to see if it thinks this driver is suitable for your device.

B Manufacturer-supplied driver: If you still do not have a driver, search
the CD that came with the device (if any) or search the web site of the
device manufacturer. Motorola, for example, has drivers available for
all of its devices in one spot for download.

Mac 0S X and Linux

Odds are decent that simply plugging in your device will “just work.” You can see if
Android recognizes your device by running adb devices in a shell (e.g., OS X Terminal),
where adb is in your platform-tools/ directory of your SDK. If you get output similar to
the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps another Linux variant) and this command did not
work, you may need to add some udev rules. For example, here is a 51-android.rules
file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01", MODE="0666"
OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, and then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reload). Then,
unplug the device, plug it in again, and see if it is detected.

Chapter

Your First Android Project

Now that you have the Android SDK, it is time to make your first Android project. The
good news is that this requires zero lines of code—Android’s tools create a “Hello,
world!” application for you as part of creating a new project. All you need to do is build
it, install it, and watch it open on your emulator or device.

Step 1: Create the New Project

Android’s tools can create a complete skeleton project for you, with everything you need
for a complete (albeit very trivial) Android application. The process differs depending on
whether you are using Eclipse or the command line.

Eclipse

From the Eclipse main menu, choose File » New » Project to open the New Project
dialog box, which gives you a list of project type wizards to choose from. Expand the
Android option and click Android Project, as shown in Figure 3—1.

23

24

CHAPTER 3: Your First Android Project

New Project

Select a wizard [

=

Wizards:

> (= General
¥ (= Android
J& Android Test Project
> = CVS
> = Java
> (= Examples

©) <sack ([Next= || cancel | Finish

Figure 3-1. Selecting a wizard in the Eclipse New Project dialog box

Click Next to advance to the first page of the New Android Project wizard, shown in

Figure 3-2.

CHAPTER 3: Your First Android Project

New Android Project

New Android Project

@ Project name must be specified

Project name:

Contents
@ Create new project in workspace
) Create project from existing source

& Use default location

) Create project from existing sample

Samples:

Build Target

Target Name Vendor
Android 2.3
Google APIs

Android Open Source Project
Google Inc.

Properties

Application name:
Package name:
[Create Activity:

Min SDK Version:

@ | <Back | Next > \

Platform API Levt

2.3 9

2.3 9
Cancel Finish

Browse

Figure 3-2. Eclipse New Android Project wizard, ready to fill in

Fill in the following and leave the default settings otherwise (the completed example for

this project is shown in Figure 3-3):

B Project name: The name of the project (e.g., Now)

B Build Target: The Android SDK you wish to compile against (e.g.,

Google APIs for Android 2.3.3)

B Application name: The display name of your application, which will be
used for the caption under your icon in the launcher (e.g., Now)

B Package name: The name of the Java package in which this project
belongs (e.g., com.commonsware.android.skeleton)

B Create Activity: The name of the initial activity to create (e.g., Now)

25

26

CHAPTER 3: Your First Android Project

New Android Project

New Android Project

Creates a new Android Project resource.

Project name: /Now

Contents

@ Create new project in workspace
Create project from existing source

[Use default location

Browse.
) Create project from existing sample
Samples:
Build Target
Target Name Vendor Platform API Lev¢
Android 2.3 Android Open Source Project 2.3 9
& Google APIs Google Inc. 23 9

Android + Google APIs

Properties

Application name:

Package name: com.commonsware.android.skeleton

& Create Activity: [Now

Min SDK Version:

@ | <Back ’M Next > || Cancel | ﬂ_'

Figure 3-3. Eclipse New Android Project wizard, completed

At this point, click Finish to create your Eclipse project.

Command Line

Here is a sample command that creates an Android project from the command line:

android create project --target "Google Inc.:Google APIs:7" --path Skeleton/Now+
--activity Now --package com.commonsware.android.skeleton

This creates an application skeleton for you, complete with everything you need to build
your first Android application: Java source code, build instructions, and so forth.

CHAPTER 3: Your First Android Project

However, you’ll probably need to customize this somewhat. Here are what those
command-line switches mean:

B --target: Indicates which version of Android you are targeting in terms
of your build process. You need to supply the ID of a target that is
installed on your development machine, one you downloaded via the
Android SDK and AVD Manager. You can find out which targets are
available via the android 1list targets command. Typically, your build
process will target the newest version of Android that you have
available.

B --path: Indicates where you want the project files to be generated.
Android will create a directory if the one you name does not exist. For
example, in the preceding command, a Skeleton/Now/ directory will be
created (or used if it exists) under the current working directory, and
the project files will be stored there.

B --activity: Indicates the Java class name of your first activity for this
project. Do not include a package name, and make sure the name
meets Java class-naming conventions.

B --package: Indicates the Java package in which your first activity will
be located. This package name also uniquely identifies your project on
any device on which you install it, and it must be unique on the
Android Market if you plan on distributing your application there.
Hence, typically, you should construct your package based on a
domain name you own (e.g., com.commonsware.android.skeleton), to
reduce the odds of an accidental package name collision with
somebody else.

For your development machine, you need to pick a suitable target, and you may wish to
change the path. You can ignore the activity and package for now.

Step 2: Build, Install, and Run the Application in
Your Emulator or Device

Having a project is nice and all, but it would be even better if you could build and run it,
whether on the Android emulator or on your Android device. Once again, the process
differs somewhat depending on whether you are using Eclipse or the command line.

Eclipse

With your project selected on the Package Explorer panel of Eclipse, click the green play
button in the Eclipse toolbar to run your project. The first time you do this, you have to go
through a few steps to set up a run configuration, so Eclipse knows what you want to do.

First, in the Run As dialog box, choose Android Application, as shown in Figure 3—4.

27

28

CHAPTER 3: Your First Android Project

Select a way to run 'Now':

@ Android Application
J& Android JUnit Test
5 Java Applet

3] Java Application

Ju JUnit Test

Description
Runs an Android Application

@ Cancel | oK |

Figure 3-4. Choosing to run as an Android application in the Eclipse Run As dialog box

Click OK. If you have more than one emulator AVD or device available, you will then get
an option to choose which you wish to run the application on. Otherwise, if you do not
have a device plugged in, the emulator will start up with the AVD you created earlier.
Then, Eclipse will install the application on your device or emulator and start it.

Command Line

For developers who are not using Eclipse, in your terminal, change into the
Skeleton/Now directory, then run the following command:

ant clean install

The Ant-based build should emit a list of steps involved in the installation process, which
looks like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml
[setup] Android SDK Tools Revision 10
[setup] Project Target: Android 1.6
[setup] API level: 4
[setup
[setup] ------------------
[setup] Resolving library dependencies:
[setup] No library dependencies.
[setup
[setup] ------------------
[setup
[setup] WARNING: No minSdkVersion value set. Application will install on all Android
versions.

[setup]

[setup] Importing rules file: tools/ant/main_rules.xml

clean:

CHAPTER 3: Your First Android Project

[delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin
[delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/gen

-debug-obfuscation-check:
-set-debug-mode:
-compile-tested-if-test:
-pre-build:

-dirs:
[echo] Creating output directories if needed...
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen
[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes

-aidl:
[echo] Compiling aidl files into Java classes...

-renderscript:
[echo] Compiling RenderScript files into Java classes and RenderScript bytecode...

-resource-src:
[echo] Generating R.java / Manifest.java from the resources...

-pre-compile:

compile:

[javac] /opt/android-sdk-1linux/tools/ant/main_rules.xml:384: warning:
"includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for
repeatable builds

[javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:
-obfuscate:

-dex:
[echo] Converting compiled files and external libraries into /home/some-balding-
guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
[echo] Packaging resources
[aapt] Creating full resource package...

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:

[echo] Running zip align on final apk...

[echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

install:

29

CHAPTER 3: Your First Android Project

[echo] Installing /home/some-balding-guy/projects/Skeleton/Now/bin/Now-debug.apk
onto default emulator or device...

[exec] 98 KB/s (4626 bytes in 0.045s)

[exec] pkg: /data/local/tmp/Now-debug.apk

[exec] Success

BUILD SUCCESSFUL
Total time: 10 seconds

Note the BUILD SUCCESSFUL at the bottom—that is how you know the application
compiled successfully.

When you have a clean build, in your emulator or device, open the application launcher,
shown in Figure 3-5, which typically is found at the bottom of the home screen.

Ml @ 4:04pPm

V) i

‘' m @ &

Alarm Clock APIDemos Browser Calculator

CBEE

Camera Contacts Custom DevTools
Locale

83: @

Email Gallery Gestures Messaging
Builder

O O A ™

Music Now Phone Settings

Figure 3-5. Android emulator application launcher

Notice there is an icon for your Now application. Click it to open it and see your first
activity in action. To leave the application and return to the launcher, press the Back
button, which is located to the right of the Menu button and looks like an arrow pointing
to the left.

Chapter

Examining Your First
Project

The previous chapter stepped you through creating a stub project. This chapter
describes what is inside of this project, so you understand what Android gives you at the
outset and what the roles are for the various directories and files.

Project Structure

The Android build system is organized around a specific directory tree structure for your
Android project, much like any other Java project. The specifics, though, are fairly
unique to Android—the Android build tools do a few extra things to prepare the actual
application that will run on the device or emulator. Here’s a quick primer on the project
structure, to help you make sense of it all, particularly for the sample code referenced in
this book.

Root Contents

When you create a new Android project (e.g., via android create project), you get
several items in the project’s root directory, including the following:

B AndroidManifest.xml: An XML file that describes the application being
built and what components (activities, services, etc.) are being
supplied by that application

B bin/: The directory that holds the application once it is compiled

B 1libs/: The directory that holds any third-party JARs your application
requires

B res/: The directory that holds resources, such as icons, GUI layouts,
and the like, that are packaged with the compiled Java in the application

B src/: The directory that holds the Java source code for the application

31

CHAPTER 4: Examining Your First Project

In addition to the preceding file and directories, you may find any of the following in
Android projects:

B assets/: The directory that holds other static files that you want
packaged with the application for deployment onto the device

B gen/: The directory in which Android’s build tools place source code
that they generate

B build.xml and *.properties: Files that are used as part of the Ant-
based command-line build process, if you are not using Eclipse

B proguard.cfg: A file that is used for integration with ProGuard to
obfuscate your Android code

The Sweat Off Your Brow

When you create an Android project (e.g., via android create project), you supply the
fully qualified class name of the main activity for the application (e.g.,
com.commonsware.android.SomeDemo). You will then find that your project’s src/ tree
already has the namespace directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/SomeDemo. java). You
are welcome to modify this file and add others to the src/ tree as needed to implement
your application.

The first time you compile the project (e.g., via ant), out in the main activity’s namespace
directory, the Android build chain will create R. java. This contains a number of
constants tied to the various resources you placed in the res/ directory tree. You should
not modify R.java yourself, but instead let the Android tools handle it for you. You will
see throughout this book that many of the examples reference things in R. java (e.g.,
referring to a layout’s identifier via R.layout.main).

And Now, the Rest of the Story

The res/ directory tree in your project holds resources — static files that are packaged
along with your application, either in their original form or, occasionally, in a preprocessed
form. Following are some of the subdirectories you will find or create under res/:

res/drawable/: For images (PNG, JPEG, etc.)
res/layout/: For XML-based Ul layout specifications

res/menu/: For XML-based menu specifications

res/raw/: For general-purpose files (e.g., an audio clip or a CSV file of
account information)

res/values/: For strings, dimensions, and the like

res/xml/: For other general-purpose XML files you wish to ship

CHAPTER 4: Examining Your First Project

Some of the directory names may have suffixes, like res/drawable-hdpi/. This indicates
that the directory of resources should be used only in certain circumstances—in this
case, the drawable resources should be used only on devices with high-density screens.

We will cover all of these resources, and more, in later chapters of this book.
In your initial project, you will find the following:

B res/drawable-hdpi/icon.png, res/drawable-1dpi/icon.png, and
res/drawable-mdpi/icon.png: Three renditions of a placeholder icon
for your application for high-, low-, and medium-density screens,
respectively

B res/layout/main.xml: An XML file that describes the very simple
layout of your user interface

B res/values/strings.xml: An XML file that contains externalized
strings, notably the placeholder name of your application

What You Get Out of It

When you compile your project (via ant or the IDE), the results go into the bin/ directory
under your project root, as follows:

B bin/classes/: Holds the compiled Java classes

B bin/classes.dex: Holds the executable created from those compiled
Java classes

B bin/yourapp.ap_: Holds your application’s resources, packaged as a
ZIP file (where yourapp is the name of your application)

B bin/yourapp-*.apk: The actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of your
resources (resources.arsc), any uncompiled resources (such as what you put in
res/raw/), and the AndroidManifest.xml file. If you build a debug version of the
application (which is the default), you will have yourapp-debug.apk and yourapp-debug-
aligned.apk as two versions of your APK. The latter has been optimized with the
zipalign utility to make it run faster.

Inside Your Manifest

The foundation for any Android application is the manifest file, AndroidManifest.xml, in
the root of your project. This is where you declare what is inside your application—the
activities, the services, and so on. You also indicate how these pieces attach themselves
to the overall Android system; for example, you indicate which activity (or activities)
should appear on the device’s main menu (a.k.a., the launcher).

33

34

CHAPTER 4: Examining Your First Project

When you create your application, a starter manifest is generated for you automatically.
For a simple application, offering a single activity and nothing else, the autogenerated
manifest will probably work out fine, or perhaps require a few minor modifications. On
the other end of the spectrum, the manifest file for the Android API demo suite is over
1,000 lines long. Your production Android applications will probably fall somewhere in
the middle.

In the Beginning, There Was the Root, and It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

;}ﬁanifest>
Note the namespace declaration. Curiously, the generated manifests apply it only on the

attributes, not the elements (e.g., manifest, not android:manifest). This pattern works,
so, unless Android changes, you should stick with it.

The biggest piece of information you need to supply on the manifest element is the
package attribute (also curiously not namespaced). Here, you can provide the name of
the Java package that will be considered the “base” of your application. Then,
everywhere else in the manifest file that needs a class name, you can just substitute a
leading dot as shorthand for the package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in the preceding manifest, you could
just use .Snicklefritz, since com.commonsware.android.search is defined as the
application’s package.

As noted in the previous chapter, your package also is a unique identifier for your
application. A device can have only one application installed with a given package, and
the Android Market will list only one project with a given package.

Your manifest also specifies android:versionName and android:versionCode attributes.
These represent the versions of your application. The android:versionName value is what
the user will see in the Applications list in their Settings application. Also, the version
name is used by the Android Market listing, if you are distributing your application that
way. The version name can be any string value you want. The android:versionCode, on
the other hand, must be an integer, and newer versions must have higher version codes
than do older versions. Android and the Android Market will compare the version code
of a new APK to the version code of an installed application to determine if the new APK
is indeed an update. The typical approach is to start the version code at 1 and increment
it with each production release of your application, though you can choose another
convention if you wish.

http://schemas.android.com/apk/res/android

CHAPTER 4: Examining Your First Project

An Application for Your Application

In your initial project’s manifest, the only child of the <manifest> element is an
<application> element. The children of the <application> element represent the core of
the manifest file.

One attribute of the <application> element that you may need in select circumstances
is the android:debuggable attribute. This needs to be set to true if you are installing the
application on an actual device, you are using Eclipse (or another debugger), and your
device precludes debugging without this flag. For example, the Google/HTC Nexus One
requires android:debuggable = "true", according to some reports.

By default, when you create a new Android project, you get a single <activity> element
inside the <application> element:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an <intent-filter>
child element describing under what conditions this activity will be displayed. The stock
<activity> element sets up your activity to appear in the launcher, so users can choose
to run it. As you’ll see later in this book, you can have several activities in one project, if
you so choose.

35

http://schemas.android.com/apk/res/android

Chapter

A Bit About Eclipse

Eclipse is an extremely popular integrated development environment (IDE),
particularly for Java development. It is also designed to be extensible via an add-in
system. To top it off, Eclipse is open source. That combination made it an ideal choice
of IDE for the core Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins for
the Eclipse environment. Primary among these is the Android Developer Tools (ADT)
add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to work
with Android projects. For example, with Eclipse, you get the following features (among
others):

B New project wizards to create regular Android projects, Android test
projects, and so forth

B The ability to run an Android project just like you might run a regular
Java application—via the green Run button in the toolbar—despite the
fact that this really involves pushing the Android application over to an
emulator or device, possibly even starting up the emulator if it is not
running

B Tooltip support for Android classes and methods

In addition, the latest version of the ADT provides you with preliminary support for drag-
and-drop GUI editing. While this book will focus on the XML files that Eclipse generates,
Eclipse now lets you assemble those XML files by dragging GUI components around on
the screen, adjusting properties as you go. Drag-and-drop GUI editing is fairly new, so
there may be a few rough edges for a while as the community and Google identify the
problems and limitations with the current implementation.

37

CHAPTER 5: A Bit About Eclipse

Coping with Eclipse

Eclipse is a powerful tool. Like many powerful tools, Eclipse is sometimes confounding.
Determining how to solve some specific development problem can be a challenge,
exacerbated by the newness of Android itself.

This section offers some tips for handling some common issues in using Eclipse with
Android.

How to Import a Non-Eclipse Project

Not all Android projects ship with Eclipse project files, such as the sample projects
associated with this book. However, you can easily add them to your Eclipse
workspace, if you wish. Here’s how to do it!

First, choose File » New » Project from the Eclipse main menu, as shown in Figure 5-1.

= Java - Eclipse
Edit Run Source Refactor Navigate Search Project Window Help

New Alt+Shift+N » | (2% Java Project E
-
Open File... Y Project..
Close Ctrl+W | ¥ Package
Close All Ctrl+Shift+ W & Class
- ., « | & Interface
Save Ctrl+S
h (& Enum
2adVve A
Save All Cirteshift:s | & |Annotation
Revert &Y Source Folder
15 Java Working Set
Move... % Folder
Rename... F2 ¢ File
FERET F5 | 2 Untitled Text File
Convert Line Delimiters To 4 E¥ JUnit Test Case
Print... Ctrl+P | T Task
Switch Workspace » | Example...
Restart F% Other... Ctrl+N
gy Import...
iy Export..
Properties Alt+Enter
Exit

Figure 5-1. File menu in Eclipse

CHAPTER 5: A Bit About Eclipse

Then, choose Android » Android Project from the tree of available project types, as
shown in Figure 5-2, and click Next.

= New Project =) @@

Select a wizard —

Wizards:
type filter text

= General
4 (= Android
&% Android Project
JJ Android Test Project
= CvVS
= Java
(= Examples

773

Figure 5-2. New Project wizard in Eclipse

NOTE: If you do not see this option, you have not installed Android Developer Tools.

Then, on the first page of the New Android Project wizard, choose the “Create project
from existing source” radio button, click the Browse button, and open the directory
containing your project’s AndroidManifest.xml file. This will populate most of the rest of
the wizard page, though you may need to also specify a build target from the table, as
shown in Figure 5-3.

39

40

CHAPTER 5: A Bit About Eclipse

2 New Android Project =3 N =<

New Android Project
@ An SDK Target must be specified.

Project name: CrudeBench

Contents
(©) Create new project in workspace
@ Create project from existing source

Use default location

Location: C:\Users\CommonsWare\Desktop\commonsguy-crudeb:

(©) Create project from existing sample

Samples: | Please select a target.

Build Target
Target Name Vendor Platform API.. *
[T] Android 2.2 Android Open Source Project 22 8 B
[7] Google APIs Google Inc. 22 8 -

Standard Android platform 2.2
Properties
Application name: | CrudeBench
Package name: com.commonsware.android.crude
Create Activity: | .CrudeBench

Min SDK Version:

®

Figure 5-3. New Android Project wizard in Eclipse

Then, click Finish. This will return you to Eclipse, with the imported project in your
workspace, as shown in Figure 5-4.

I:g Package Exp 52 Tg Hierarchy" =8|

P <
BE|e
&

4 ‘_L_—j- CrudeBench
b 5B src
L:';,‘* gen [Generated Java Files]
> =, Android 2.2
Jj assets
b 22 res
|2 AndroidManifest.xml
build.properties
&) build.xml
default.properties
\=| LICENSE
\=| README.markdown

5

il

Figure 5-4. Android project tree in Eclipse

CHAPTER 5: A Bit About Eclipse

Next, right-click the project name and choose Build Path » Configure Build Path from

the context menu, as shown in Figure 5-5.

41

2 Packageﬁ—‘v’ ® .. L= H
New >
EE— Go Into
4 3= Crude
B sr Open in New Window
& ge Open Type Hierarchy F4
B AT Showln Alt=Shift= W »
> as
& re [Copy Ctrl+C
AT S Copy Qualified Name
@ Past Ctrl+V
— =N aste r+
Hlbd =
dd ¥ Delete Delete
u EE Remove from Context Ctrl+Alt+Shift+ Down
= Build Path » | § Link Source...
Source Alt+Shift+S » | &% New Source Folder...
ey et 2 Useas Source Folder
g2y Import... (g Add External Archives...
5y Export.. =) Add Libraries...
«® Refresh F5 | g2 Configure Build Path...

Figure 5-5. Project context menu in Eclipse

This brings up the Java Build Path portion of the project Properties window, as shown in
Figure 5-6.

= Properties for CrudeBench [o e ==
Java Build Path M 4
Resource = =
Android [& Source | = Projects | =i Libraries| “ Order and Export I—
Builders Build class path order and exported entries:

Java Build Path
Java Code Style
Java Compiler

(Exported entries are contributed to dependent projects)

(2 CrudeBench/src
(2 CrudeBench/gen

H

Java Editor [F] =4 Android 2.2

Javadoc Location

Project References Top
Run/Debug Settings

Tosk Repostory
Task Tags

WikiText

Deselect All

@ l oK] [Cancel

Figure 5-6. Project Properties window in Eclipse

42

CHAPTER 5: A Bit About Eclipse

If the Android JAR is not checked (the Android 2.2 entry in Figure 5-6), check it, and
then click OK to close the Properties window. At this point, your project should be ready

for use.

How to Get to DDMS

Many times, you will be told to take a look at something in DDMS, such as the LogCat
tab to examine Java stack traces. In Eclipse, DDMS is a perspective. To open this
perspective in your workspace, choose Window » Open Perspective » Other from the

main menu, as shown in Figure 5-7.

New Window
New Editor

!

Open Perspective

Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Navigation

Android SDK and AVD Manager

Preferences

» | %5 Debug
» | &2 Java Browsing

Other...

Figure 5-7. Perspective menu in Eclipse

Then, in the list of perspectives, shown in Figure 5-8, choose DDMS.

CHAPTER 5: A Bit About Eclipse

7 ~

= Open Perspective =N @

Eacvs Repository Exploring
DDMS
fSDebug
aJJava (default)
1&:\JJava Browsing
EJJava Type Hierarchy
') Planning
L9 Resource
E9Team Synchronizing
X XML

Cancel

Figure 5-8. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your Eclipse IDE.

DDMS is covered in greater detail in a later chapter of this book.

How to Create an Emulator

By default, your Eclipse environment has no Android emulators set up. You will need
one before you can run your project successfully.

To do this, first choose Window » Android SDK and AVD Manager from the main menu,
as shown in Figure 5-9.

43

44 CHAPTER 5: A Bit About Eclipse

e

New Window

New Editor

Open Perspective

Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Navigation

Android SDK and AVD Manager

Preferences

w

Figure 5-9. Android SDK and AVD Manager menu option in Eclipse

That brings up the same window as you get by running android from the command line.

You can now define an Android Virtual Device (AVD) by following the instructions given
in Chapter 2, in the section “Step 5: Set Up the Emulator.”

How to Run a Project

Given that you have an AVD defined, or that you have a device set up for debugging and
connected to your development machine, you can run your project in the emulator.

First, click the Run toolbar button, or choose Project » Run from the main menu. This brings
up the Run As dialog box the first time you run the project, as shown in Figure 5-10.

CHAPTER 5: A Bit About Eclipse

e ~

= Run As o ||-E |@

Select a way to run 'CrudeBench”:

[@] Android Application
Ji Android JUnit Test
] Java Applet

31 Java Application
JuJUnit Test

Description

3\ _
'\?) Ok Cancel

Figure 5-10. The Run As dialog box in Eclipse

Choose Android Application and click OK. If you have more than one AVD or device
available, you will be presented with a window in which you choose the desired target
environment. Then, the emulator will start up to run your application. Note that you will
need to unlock the lock screen on the emulator (or device) if it is locked.

How Not to Run Your Project

When you go to run your project, be sure that an XML file is not the active tab in the
editor. Attempting to “run” this will result in a .out file being created in whatever
directory the XML file lives in (e.g., res/layout/main.xml.out). To recover, simply delete
the offending .out file and try running again, this time with a Java file as the active tab.

Alternative IDEs

If you really like Eclipse and the ADT, you may want to consider MOTODEV Studio for

Android. This is another set of add-ins for Eclipse, augmenting the ADT and offering a

number of other Android-related development features, including the following (among
many others):

B More wizards for helping you create Android classes

B Integrated SQLite browsing, so you can manipulate a SQLite database
in your emulator right from your IDE

45

46

CHAPTER 5: A Bit About Eclipse

B More validators to check for common bugs, and a library of code
snippets to have fewer bugs at the outset

B Assistance with translating your application to multiple languages

While MOTODEYV Studio for Android is published by Motorola, you can use it to build
applications for all Android devices, not only those manufactured by Motorola
themselves.

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal assistance
from Google. For example, IntelliJ’s IDEA has a module for Android. It was originally
commercial, but now it is part of the open source community edition of IDEA as of
version 10.

And, of course, you do not need to use an IDE at all. While this may sound sacrilegious
to some, IDEs are not the only way to build applications. Much of what is accomplished
via the ADT can be accomplished through command-line equivalents, meaning a shell
and an editor is all you truly need. For example, the author of this book does not
presently use an IDE and has no intention of adopting Eclipse any time soon.

IDEs and This Book

You are welcome to use Eclipse as you work through this book. You are welcome to use
another IDE if you wish. You are even welcome to skip the IDE outright and just use an
editor.

This book is focused on demonstrating Android capabilities and the APlIs for exploiting
those capabilities. It is not aimed at teaching the use of any one IDE. As such, the
sample code shown should work in any IDE, particularly if you follow the instructions in
this chapter for importing non-Eclipse projects into Eclipse.

Chapter

Enhancing Your First
Project

The AndroidManifest.xml file that Android generated for your first project gets the job
done. However, for a production application, you may wish to consider adding a few
attributes and elements, such as those described in this chapter.

Supporting Multiple Screen Sizes

Android devices come with a wide range of screen sizes, from 2.8-inch tiny
smartphones to 46-inch Google TVs. Android divides these into four categories, based
on physical screen size and the distance at which they are usually viewed:

B Small (under 3 inches)

B Normal (3 inches to around 4.5 inches)
B Large (4.5 inches to around 10 inches)
B Extra-large (over 10 inches)

By default, your application will not support small screens, will support normal screens,
and may support large and extra-large screens via some automated conversion code
built into Android.

To truly support all the screen sizes you want to target, you should consider adding a
<supports-screens> element. This enumerates the screen sizes you have explicit
support for. For example, if you want to support small screens, you need to include the
<supports-screens> element. Similarly, if you are providing custom Ul support for large
or extra-large screens, you will want to have the <supports-screens> element. So, while
the default settings in the starting manifest file work, you should consider adding
support for handling multiple screen sizes.

Much more information about providing solid support for all screen sizes can be found in
Chapter 25.

47

48

CHAPTER 6: Enhancing Your First Project

Specifying Versions

As noted in the previous chapter, your manifest already contains some version
information about your application’s version. However, you probably want to add to your
AndroidManifest.xml file a <uses-sdk> element as a child of the <manifest> element, to
specify what versions of Android your application supports. By default, your application
is assumed to support every Android version from 1.0 to the current 3.0 and onward to
any version in the future. Most likely, that is not what you want.

The most important attribute for your <uses-sdk> element is android:minSdkVersion.
This indicates what is the oldest version of Android you are testing with your application.
The value of the attribute is an integer representing the Android SDK version:

H 1: Android 1.0
2: Android 1.1
3: Android 1.5
4: Android 1.6
5: Android 2.0
6: Android 2.0.1
7: Android 2.1
8: Android 2.2
9: Android 2.3
10: Android 2.3.3
E 11: Android 3.0

So, if you are testing your application only on Android 2.1 and newer versions of
Android, you would set the android:minSdkVersion attribute to 7.

You may also wish to specify an android:targetSdkVersion attribute. This indicates
what version of Android you are targeting as you are writing your code. If your
application is run on a newer version of Android, Android may do some things to try to
improve compatibility of your code with respect to changes made in the newer Android.
So, for example, you might specify android:targetSdkVersion="10", indicating you are
writing your application with Android 2.3.3 in mind; if your app someday is run on an
Android 3.0 device, Android may take some extra steps to make sure your 2.3.3-centric
code runs correctly on the 3.0 device. In particular, to get the new Honeycomb look and
feel when running on an Android 3.0 (or higher) tablet, you need to specify a target SDK
version of 11. This topic will be covered in more detail in Chapters 26 and 27.

Activities

Part I I

Chapter

Rewriting Your First
Project

The project you created in Chapter 3 is composed of just the default files generated by
the Android build tools—you did not write any Java code yourself. In this chapter, you
will modify that project to make it somewhat more interactive. Along the way, you will
examine the basic Java code that comprises an Android activity.

NOTE: The instructions in this chapter assume you followed the original instructions in Chapter 3
in terms of the names of packages and files. If you used different names, you will need to adjust
the names in the following steps to match yours.

The Activity

Your project’s src/ directory contains the standard Java-style tree of directories based
on the Java package you used when you created the project (e.g.,

com. commonsware.android results in src/com/commonsware/android/). Inside the
innermost directory you should find a pregenerated source file named Now. java, which is
where your first activity will go.

Open Now. java in your editor and paste in the following code (or, if you downloaded the
source files from the Apress web site, you can just use the Skeleton/Now project
directly):

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {

51

52

CHAPTER 7: Rewriting Your First Project

Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());

}
}

Dissecting the Activity

Let’s examine this Java code piece by piece, starting with the package declaration and
imported classes:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when creating the
project. And, as with any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

NOTE: Not every Java SE class is available to Android programs. Visit the Android class reference
to see what is and is not available.

Activities are public classes, inheriting from the android.app.Activity base class. In this
case, the activity holds a button (btn):

public class Now extends Activity implements View.OnClickListener {
Button btn;

Since, for simplicity, we want to trap all button clicks just within the activity itself, we
also have the activity class implement OnClickListener.

CHAPTER 7: Rewriting Your First Project

The onCreate() method is invoked when the activity is started. The first thing you should
do is chain upward to the superclass, so the stock Android activity initialization can be
done:

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

In our implementation, we then create the button instance (new Button(this)), tell it to
send all button clicks to the activity instance itself (via setOnClickListener()), call a
private updateTime() method, and then set the activity’s content view to be the button
itself (via setContentView()). We will take a look at that magical Bundle icicle in a later
chapter. For the moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();

In Swing, a JButton click raises an ActionEvent, which is passed to the ActionListener
configured for the button. In Android, a button click causes onClick() to be invoked in
the OnClickListener instance configured for the button. The listener is provided the view
that triggered the click (in this case, the button). All we do here is call that private
updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());

When we open the activity (onCreate()) or when the button is clicked (onClick()), we
update the button’s label to be the current time via setText(), which functions much the
same as the JButton equivalent.

Building and Running the Activity

To build the activity, use your IDE’s built-in Android packaging tool, or run ant clean
install in the base directory of your project (as described in Chapter 3). Then, run the
activity. It should be launched for you automatically if you are using Eclipse; otherwise,
find the activity in the home screen launcher. You should see an activity akin to what's
shown in Figure 7-1.

53

54

CHAPTER 7: Rewriting Your First Project

B & 10:33rPm
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

Figure 7-1. The Now demonstration activity

Clicking the button—in other words, clicking pretty much anywhere on the device’s
screen—will update the time shown in the button’s label.

Note that the label is centered horizontally and vertically, as those are the default styles
applied to button captions. We can control that formatting, which will be covered in a
later chapter.

After you are finished gazing at the awesomeness of Advanced Push-Button
Technology, you can click the Back button on the emulator to return to the launcher.

Chapter

Using XML-Based Layouts

While it is technically possible to create and attach widgets to your activity purely
through Java code, as we did in the preceding chapter, the more common approach is
to use an XML-based layout file. Dynamic instantiation of widgets is reserved for more
complicated scenarios, where the widgets are not known at compile time (e.g.,
populating a column of radio buttons based on data retrieved from the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android activity
views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’ relationships
to each other—and to containers—encoded in XML format. Specifically, Android
considers XML-based layouts to be resources, and as such, layout files are stored in the
res/layout directory inside your Android project.

Each XML file contains a tree of elements specifying a layout of widgets and containers
that make up one View. The attributes of the XML elements are properties, describing
how a widget should look or how a container should behave. For example, if a Button
element has an attribute value of android:textStyle = "bold", that means that the text
appearing on the face of the button should be rendered in a boldface font style.

Android’s SDK ships with a tool (aapt) that uses the layouts. This tool should be
automatically invoked by your Android tool chain (e.g., Eclipse or Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates the R. java source file
within your project’s gen/ directory, allowing you to access layouts and widgets within
those layouts directly from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through Java code. For
example, you could use setTypeface() to have a button render its text in bold, instead

55

56

CHAPTER 8: Using XML-Based Layouts

of using a property in an XML layout. Since XML layouts are yet another file for you to
keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition, such
as a GUI builder in an IDE like Eclipse or a dedicated Android GUI designer like
DroidDraw. Such GUI builders could, in principle, generate Java code instead of XML.
The challenge is rereading the definition in to support edits, which is far simpler when
the data is in a structured format like XML rather than in a programming language.
Moreover, keeping the generated bits separated from handwritten code makes it less
likely that somebody’s custom-crafted source will get clobbered by accident when the
generated bits get regenerated. XML forms a nice middle ground between something
that is easy for tool writers to use and something that is easy for programmers to work
with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
Extensible Application Markup Language (XAML), Adobe’s Flex, Google’s Google Web
Toolkit (GWT), and Mozilla’s XML User Interface Language (XUL) all take a similar
approach to that of Android: put layout details in an XML file and put programming
smarts in source files (e.g., JavaScript for XUL). Many less-well-known GUI frameworks,
such as ZK, also use XML for view definition. While “following the herd” is not
necessarily the best policy, it does have the advantage of helping to ease the transition
to Android from any other XML-centered view description language.

OK, So What Does It Look Like?

Here is the Button from the previous chapter’s sample application, converted into an
XML layout file, found in the Layouts/NowRedux sample project:
<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""

android:layout width="fill parent"
android:layout_height="fill parent"/>

The class name of the widget, Button, forms the name of the XML element. Since Button
is an Android-supplied widget, we can just use the bare class name. If you create your
own widgets as subclasses of android.view.View, you will need to provide a full
package declaration as well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:
xmlns:android="http://schemas.android.com/apk/res/android"
All other elements will be children of the root and will inherit that namespace declaration.

Because we want to reference this button from our Java code, we need to give it an
identifier via the android:id attribute. We will cover this concept in greater detail in the
next section.

The remaining attributes are properties of this Button instance:

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 8: Using XML-Based Layouts 57

B android:text: Indicates the initial text to be displayed on the button
face (in this case, an empty string)

B android:layout_width and android:layout_height: Tell Android to
have the button’s width and height fill the parent, which in this case is
the entire screen

These attributes will be covered in greater detail in Chapter 10.

Since this single widget is the only content in our activity’s view, we need only this single
element. Complex views will require a whole tree of elements, representing the widgets
and containers that control their positioning. All the remaining chapters of this book will
use the XML layout form whenever practical, so there are dozens of other examples of
more complex layouts for you to peruse.

What’s with the @ Signs?

Many widgets and containers need to appear only in the XML layout file and do not need
to be referenced in your Java code. For example, a static label (TextView) frequently
needs to be in the layout file only to indicate where it should appear. These sorts of
elements in the XML file do not need to have the android:id attribute to give them a
name.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/. .. as the id value, where the ... represents your locally
unique name for the widget in question, for the first occurrence of a given id value in
your layout file. In the XML layout example in the preceding section, @+id/button is the
identifier for the Button widget. The second and subsequent occurrences in the same
layout file should drop the + sign—a feature we will use in Chapter 10.

Android provides a few special android:id values, of the form @android:id/.... You will
see some of these values in various examples throughout this book.

And How Do We Attach These to the Java?

Given that you have painstakingly set up the widgets and containers for your view in an
XML layout file named main.xml stored in res/layout, all you need is one statement in
your activity’s onCreate() callback to use that layout:

setContentView(R.layout.main);

This is the same setContentView() we used earlier, passing it an instance of a View
subclass (in that case, a Button). The Android-built View, constructed from our layout, is
accessed from that code-generated R class. All of the layouts are accessible under
R.layout, keyed by the base name of the layout file; for example, res/layout/main.xml
results in R.layout.main.

To access your identified widgets, use findViewById(), passing it the numeric identifier
of the widget in question. That numeric identifier was generated by Android in the R

58

CHAPTER 8: Using XML-Based Layouts

class as R.1id.something (where something is the specific widget you are seeking). Those
widgets are simply subclasses of View, just like the Button instance we created in the
previous chapter.

The Rest of the Story

In the original Now demo, the button’s face would show the current time, which would
reflect when the button was last pushed (or when the activity was first shown, if the
button had not yet been pushed). Most of that logic still works, even in this revised
demo (NowRedux). However, rather than instantiating the Button in our activity’s
onCreate() callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

btn=(Button)findViewById(R.id.button);
btn.setOnClickListener(this);
updateTime();

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());

}

The first difference is that, rather than setting the content view to be a view we created
in Java code, we set it to reference the XML layout (setContentView(R.layout.main)).
The R. java source file will be updated when we rebuild this project to include a
reference to our layout file (stored as main.xml in our project’s res/layout directory).

The other difference is that we need to get our hands on our Button instance, for which
we use the findViewById() call. Since we identified our button as @+id/button, we can
reference the button’s identifier as R.id.button. Now, with the Button instance in hand,
we can set the callback and set the label as needed.

CHAPTER 8: Using XML-Based Layouts 59

The results look the same as with the original Now demo, as shown in Figure 8-1.

Nl & 9:50 Pm

Tue Aug 19 21:59:51 GMT+00:00 2008

Figure 8-1. The NowRedux sample activity

Chapter

Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, and so forth. Android’s
toolkit is no different in scope, and the basic widgets provide a good introduction to how
widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. As in most GUI
toolkits, labels are bits of text that can’t be edited directly by users. Typically, labels are
used to identify adjacent widgets (e.g., a “Name:” label next to a field where the user fills
in a name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to the
layout, with an android:text property to set the value of the label itself. If you need to
swap labels based on certain criteria, such as internationalization, you may wish to use a
string resource reference in the XML instead, as will be described later in this book.

TextView has numerous other properties of relevance for labels, such as the following:

B android:typeface: Sets the typeface to use for the label (e.g.,
monospace)

B android:textStyle: Indicates that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold italic)

B android:textColor: Sets the color of the label’s text, in RGB hex
format (e.g., #FF0000 for red)

For example, in the Basic/Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"
/>

61

http://schemas.android.com/apk/res/android

62

CHAPTER 9: Employing Basic Widgets

Just that layout alone, with the stub Java source provided by Android’s project builder
(e.g., android create project), gives you the result shown in Figure 9-1.

Gl @ 12:56 PM

LabelDemo

You were expec ething profound?

Figure 9-1. The LabelDemo sample application

Button, Button, Who’s Got the Button?

You've already seen the use of the Button widget in the previous two chapters. As it
turns out, Button is a subclass of TextView, so everything discussed in the preceding
section also applies to formatting the face of the button.

However, Android 1.6 added a new feature for the declaration of the “on-click” listener
for a Button. In addition to the classic approach of defining some obiject (such as the
activity) as implementing the View.0OnClickListener interface, you can now take a
somewhat simpler approach:

B Define some method on your Activity that holds the button that takes
a single View parameter, has a void return value, and is public.

B Inyour layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined in
the previous step.

For example, we might have a method on our Activity that looks like this:

public void someMethod(View theButton) {
// do something useful here

CHAPTER 9: Employing Basic Widgets

Then, we could use this XML declaration for the Button itself, including android:onClick:

<Button
android:onClick="someMethod"

s

This is enough for Android to wire together the Button with the click handler.

Fleeting Images

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView and
Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify which picture
to use. These attributes usually reference a drawable resource, described in greater
detail in the chapter on resources.

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot. For example, take a peek at the main.xml layout from
the Basic/ImageView sample project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout width="fill parent"
android:layout_height="fill parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"
/>

The result, just using the code-generated activity, is simply the image, as shown in
Figure 9-2.

63

http://schemas.android.com/apk/res/android

64

CHAPTER 9: Employing Basic Widgets

Gl @ 12:59 PM

ImageViewDemo

Figure 9-2. The ImageViewDemo sample application

Fields of Green...or Other Colors

Along with buttons and labels, fields are the third anchor of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle), EditText has
many other properties that will be useful to you in constructing fields, including the
following:

B android:autoText: Controls if the field should provide automatic
spelling assistance

B android:capitalize: Controls if the field should automatically
capitalize the first letter of entered text (e.g., in name and city fields)

B android:digits: Configures the field to accept only certain digits

B android:singlelLine: Controls if the field is for single-line input or
multiple-line input (e.g., does pressing Enter move you to the next
widget or add a newline?)

Most of the preceding properties are also available from the new android:inputType
attribute, added in Android 1.5 as part of adding “soft keyboards” to Android (discussed
in Chapter 11).

For example, from the Basic/Field project, here is an XML layout file showing an
EditText widget:

CHAPTER 9: Employing Basic Widgets

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout width="fill parent"
android:layout_height="fill parent"
android:singleline="false"
/>

Note that android:singleline is set to "false", so users will be able to enter several
lines of text.

For this project, the FieldDemo. java file populates the input field with some prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);

fld.setText("Licensed under the Apache License, Version 2.0 " +
"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +
"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

}
}

The result, once built and installed into the emulator, is shown in Figure 9-3.

Another flavor of field is one that offers autocompletion, to help users supply a value
without typing in the whole text. That is provided in Android as the
AutoCompleteTextView widget, discussed in greater detail later in this book.

65

http://schemas.android.com/apk/res/android
http://www.apache.org/licenses/LICENSE-2.0

CHAPTER 9: Employing Basic Widgets

il & 1:00Pm
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

ﬁ

Figure 9-3. The FieldDemo sample application

Just Another Box to Check

The classic check box has two states: checked and unchecked. Clicking the check box
toggles between those states to indicate a choice (e.g., “Add rush delivery to my order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an ancestor,
S0 you can use TextView properties like android:textColor to format the widget.

Within Java, you can invoke the following:
B isChecked(): Determines if the check box has been checked

B setChecked(): Forces the check box into a checked or unchecked
state

B toggle(): Toggles the check box as if the user checked it

Also, you can register a listener object (in this case, an instance of
OnCheckedChangelistener) to be notified when the state of the check box changes.

For example, from the Basic/CheckBox project, here is a simple check box layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo. java retrieves and configures the behavior of the
check box:

http://schemas.android.com/apk/res/android

CHAPTER 9: Employing Basic Widgets

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangelListener {
CheckBox cb;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.1id.check);
cb.setOnCheckedChangelListener(this);

}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");

}
else {
cb.setText("This checkbox is: unchecked");

}

}
}
Note that the activity serves as its own listener for check box state changes, since it
implements the OnCheckedChangelListener interface (via
cb.setOnCheckedChangelListener(this)). The callback for the listener is
onCheckedChanged(), which receives the check box whose state has changed and the
new state. In this case, we update the text of the check box to reflect what the actual
box contains.

The result? Clicking the check box immediately updates its text, as shown in Figures 9-
4 and 9-5.

67

68

CHAPTER 9: Employing Basic Widgets

EhH & 1:38PM

\ CheckBoxDemo

.This checkbox is: unchecked

Figure 9-4. The CheckBoxDemo sample application, with the check box unchecked

BNl & 1:38pPM

CheckBoxDemo

. This checkbox is: checked

Figure 9-5. The same application, now with the check box checked

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android’s radio buttons
are two-state, like check boxes, but can be grouped such that only one radio button in
the group can be checked at any time.

CHAPTER 9: Employing Basic Widgets

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits from
TextView. Hence, all the standard TextView properties for font face, style, color, and so
forth are available for controlling the look of radio buttons. Similarly, you can call
isChecked() on a RadioButton to see if it is selected, toggle() to select it, and so on, as
you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside a RadioGroup. The
RadioGroup indicates a set of radio buttons whose state is tied, meaning only one button
in the group can be selected at any time. If you assign an android:id to your RadioGroup
in your XML layout, you can access the group from your Java code and invoke the
following:

B check(): Checks a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

B clearCheck(): Clears all radio buttons, so none in the group are
checked

B getCheckedRadioButtonId(): Gets the ID of the currently checked
radio button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup applies only to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers—discussed in the next chapter—between the RadioGroup and its
RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML layout
showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<RadioButton android:id="@+id/radio1"
android:layout width="wrap content"”
android:layout_height="wrap_content
android:text="Rock" />

<RadioButton android:id="@+id/radio2"
android:layout width="wrap content"
android:layout_height="wrap_content
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout width="wrap content"
android:layout_height="wrap_content
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get the
result shown in Figure 9-6.

http://schemas.android.com/apk/res/android

70

CHAPTER 9: Employing Basic Widgets

M @ 1:39Pm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 9-6. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked at the outset.
To preset one of the radio buttons to be checked, use either setChecked() on the
RadioButton or check() on the RadioGroup from within your onCreate() callback in your
activity.

I’s Quite a View

All widgets, including the ones shown in the previous sections, extend View, which gives
all widgets an array of useful properties and methods beyond those already described.

Padding

Widgets have a minimum size, which may be influenced by what is inside of them. So,
for example, a Button will expand to accommodate the size of its caption. You can
control this size by using padding. Adding padding will increase the space between the
contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-side
basis (android:paddinglLeft, etc.). Padding can also be set in Java via the setPadding()
method.

The value of any of these is a dimension, a combination of a unit of measure and a
count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, and 2mm is 2
millimeters. We will examine dimension in greater detail in an upcoming chapter.

CHAPTER 9: Employing Basic Widgets

Other Useful Properties

In addition to the properties presented in this chapter and in the next chapter, some of
the other properties on View that are most likely to be used include the following:

B android: visibility: Controls whether the widget is initially visible

B android:nextFocusDown, android:nextFocusLeft,
android:nextFocusRight, and android:nextFocusUp: Control the focus
order if the user uses the D-pad, trackball, or similar pointing device

B android:contentDescription: Roughly equivalent to the alt attribute
on an HTML tag, used by accessibility tools to help people who
cannot see the screen navigate the application

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some widgets
based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via isFocused().
You might use this in concert with disabling widgets to ensure the proper widget has the
focus once your disabling operation is complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

B getParent(): Finds the parent widget or container
B findViewById(): Finds a child widget with a certain ID

B getRootView(): Gets the root of the tree (e.g., what you provided to the
activity via setContentView())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses), can take a
ColorStatelist, including via the Java setter (in this case, setTextColor()).

A ColorStatelist allows you to specify different colors for different conditions. For
example, a TextView can have one text color when it is the selected item in a list and
another color when it is not selected (Chapter 12 covers selection widgets). This is
handled via the default ColorStatelist associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

72

CHAPTER 9: Employing Basic Widgets

B Use ColorStatelist.valueOf(), which returns a ColorStatelist in
which all states are considered to have the same color, which you
supply as the parameter to the valueOf() method. This is the Java
equivalent of the android:textColor approach, to make the TextView
always a specific color regardless of circumstances.

B Create a ColorStatelList with different values for different states,
either via the constructor or via an XML drawable resource, a concept
discussed in a later chapter.

Chapter

Working with Containers

Containers pour a collection of widgets (and possibly child containers) into specific
structures you like. If you want a form with labels on the left and fields on the right, you
need a container. If you want OK and Cancel buttons to be beneath the rest of the form,
next to one another, and flush to right side of the screen, you need a container. Just
from a pure XML perspective, if you have multiple widgets (beyond RadioButton widgets
in a RadioGroup), you need a container just to have a root element in which to place the
widgets.

Most GUI toolkits have some notion of layout management, frequently organized into
containers. In Java/Swing, for example, you have layout managers like BoxLayout and
containers that use them (e.g., Box). Some toolkits, such as XUL and Flex, stick strictly
to the box model, figuring that any desired layout can be achieved through the right
combination of nested boxes. Android, through LinearLayout, also offers a box model,
but in addition supports a range of containers that provide different layout rules.

In this chapter, we will look at three commonly used containers, LinearLayout (the box
model), Relativelayout (a rule-based model), and TablelLayout (the grid model), along
with ScrollView, a container designed to assist with implementing scrolling containers.

Thinking Linearly

As just noted, LinearlLayout is a box model—widgets or child containers are lined up in
a column or row, one after the next. This works similarly to FlowLayout in Java/Swing,
vbox and hbox in Flex and XUL, and so forth.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers. Getting
the visual representation you want is mostly a matter of identifying where boxes should
nest and which properties those boxes should have, such as their alignment relative to
other boxes.

73

74

CHAPTER 10: Working with Containers

LinearLayout Concepts and Properties

To configure a LinearlLayout, you have five main areas of control besides the container’s
contents: the orientation, the fill model, the weight, the gravity, and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just add
the android:orientation property to your LinearLayout element in your XML layout, and
set the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearlLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let’s imagine a row of widgets, such as a pair of radio buttons. These widgets have a
“natural” size based on their text. Their combined size probably does not exactly match
the width of the Android device’s screen—particularly since screens come in various
sizes. We then have the issue of what to do with the remaining space.

All widgets inside a LinearLayout must supply android:layout width and
android:layout_height properties to help address this issue. These properties’ values
have three flavors:

B You can provide a specific dimension, such as 125dip to indicate the
widget should take up exactly a certain size.

B You can provide wrap_content, which means the widget should fill up
its natural space, unless that is too big, in which case Android can use
word-wrap as needed to make it fit.

B You can provide fill parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets are
taken care of.

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill_parent was renamed to match_parent, for unknown
reasons. You can still use fill parent, as it will be supported for the foreseeable future.
However, at such point in time as you are supporting only API level 8 or higher (e.qg.,
android:minSdkVersion="8" in your manifest), you should probably switch over to
match_parent.

CHAPTER 10: Working with Containers 75

Weight

But what happens if we have two widgets that should split the available free space? For
example, suppose we have two multiline fields in a column, and we want them to take
up the remaining space in the column after all other widgets have been allocated their
space.

To make this work, in addition to setting android:layout width (for rows) or
android:layout_height (for columns) to fill parent, you must also set
android:layout_weight. This property indicates the proportion of the free space that
should go to that widget. For example, if you set android:layout_weight to be the same
nonzero value for a pair of widgets (e.g., 1), the free space will be split evenly between
them. If you set it to be 1 for one widget and 2 for the other widget, the second widget
will use up twice the free space that the first widget does. And so on. The weight for a
widget is 0 by default.

Another pattern for using weights is if you want to allocate sizes on a percentage basis.
To use this technique for, say, a horizontal layout, do the following:

B Set all the android:layout_width values to be 0 for the widgets in the
layout.

B Set the android:layout_weight values to be the desired percentage
size for each widget in the layout.

B Make sure all those weights add up to 100.

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a row
of widgets via a horizontal LinearLayout, the row will start flush on the left side of the
screen. If that is not what you want, you need to specify a gravity value. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on the widget’s
Java object), you can tell the widget and its container how to align it vis-a-vis the screen.

For a column of widgets, common gravity values are left, center_horizontal, and
right for left-aligned, centered, and right-aligned widgets, respectively.

For a row of widgets, the default is for them to be aligned so their text is aligned on the
baseline (the invisible line that letters seem to “sit on”). You can specify a gravity of
center vertical to center the widgets along the row’s vertical midpoint.

Margins

By default, widgets are tightly packed next to each other. You can change this via the
use of margins, a concept that is similar to that of padding, described in Chapter 9.

The difference between padding and margins is apparent only for widgets with a
nontransparent background. For widgets with a transparent background —like the

76

CHAPTER 10: Working with Containers

default look of a TextView—padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. For widgets with a nontransparent
background—like a Button—padding is considered to be inside the background, while
margins are considered to be outside the background. In other words, adding padding
will increase the space between the contents (e.g., the caption of a Button) and the
edges, while adding margins increases the empty space between the edges and
adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g., android:layout_marginTop)
or on all sides via android:layout_margin. As with padding, the value of any of these is a
dimension—a combination of a unit of measure and a count, such as 5px for 5 pixels.

LinearLayout Example

Let’s look at an example (Containers/Linear) that shows LinearLayout properties set
both in the XML layout file and at runtime. Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<RadioGroup android:id="@+id/orientation"”
android:orientation="horizontal"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:padding="5dip">
<RadioButton
android:id="@+id/horizontal”
android:text="horizontal" />
<RadioButton
android:id="@+id/vertical"
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="5dip">
<RadioButton
android:id="@+id/left"
android:text="left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is a
subclass of LinearLayout, so our example demonstrates nested boxes as if they were all
LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5dip of padding on all sides, separating it
from the other RadioGroup, where dip stands for density-independent pixels (think of
them as ordinary pixels for now —we will get into the distinction later in the book). The
width and height are both set to wrap_content, so the radio buttons will take up only the
space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of three
RadioButton widgets. Again, we have 5dip of padding on all sides and a natural height
(android:layout_height = "wrap_content"). However, we have set
android:layout width to be fill parent, meaning the column of radio buttons claims
the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java code:

package com.commonsware.android.linear;

import android.app.Activity;

import android.os.Bundle;

import android.view.Gravity;

import android.text.TextWatcher;
import android.widget.Llinearlayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
implements RadioGroup.OnCheckedChangelistener {
RadioGroup orientation;
RadioGroup gravity;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangelListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangelistener(this);

}

public void onCheckedChanged(RadioGroup group, int checkedId) {
switch (checkedId) {
case R.id.horizontal:
orientation.setOrientation(LinearlLayout.HORIZONTAL);
break;

case R.id.vertical:
orientation.setOrientation(Linearlayout.VERTICAL);
break;

77

78

CHAPTER 10: Working with Containers

case R.id.left:
gravity.setGravity(Gravity.LEFT);
break;

case R.id.center:
gravity.setGravity(Gravity.CENTER_HORIZONTAL);
break;

case R.id.right:
gravity.setGravity(Gravity.RIGHT);
break;
}
}
}

In onCreate(), we look up our two RadioGroup containers and register a listener on each,
so we are notified when the radio buttons change state
(setOnCheckedChangelListener(this)). Since the activity implements
OnCheckedChangelistener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which RadioButton had a
state change. Based on the clicked-upon item, we adjust either the orientation of the
first LinearLayout or the gravity of the second LinearLayout.

Figure 10-1 shows the result when the demo is first launched inside the emulator.

G ® 12:22Am

LinearlayoutDemo!
. horizontal . vertical
. left

. center

. right

Figure 10-1. The LinearLayoutDemo sample application, as initially launched

If we toggle on the “vertical” radio button, the top RadioGroup adjusts to match, as
shown in Figure 10-2.

CHAPTER 10: Working with Containers

Gl @ 12:22Am

\ LinearLayoutDemo

. horizontal
° vertical

0
. center

. right

Figure 10-2. The same application, with the vertical radio button selected

If we toggle the “center” or “right” radio button, the bottom RadioGroup adjusts to
match, as shown in Figures 10-3 and 10-4.

G @ 12:23AM

Lineal

. horizontal
. vertical

dyoutbemo

‘ left
. center
. right

Figure 10-3. The same application, with the vertical and center radio buttons selected

79

80

CHAPTER 10: Working with Containers

G ® 12:23Am

LinearLayoutvemo

. horizontal
. vertical

Figure 10-4. The same application, with the vertical and right radio buttons selected

The Box Model

As noted earlier in this chapter, some GUI frameworks treat everything as boxes—what
Android calls LinearLayout containers. In Flex and XUL, for example, you create boxes
and indicate how big they should be, as a percentage of the available space, and then
you put widgets in the boxes. A similar pattern exists in Android for LinearLayout, as is
demonstrated in the Containers\LinearPercent project.

Here we have a layout XML file that contains a vertical LinearLayout wrapping three
Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button
android:text="Fifty Percent"
android:layout width="fill parent"
android:layout_height="odip"
android:layout weight="50"
/>
<Button
android:text="Thirty Percent"
android:layout width="fill parent"
android:layout_height="odip"
android:layout weight="30"
/>

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 81

<Button
android:text="Twenty Percent"
android:layout width="fill parent"
android:layout_height="0dip"
android:layout_weight="20"
/>
</Linearlayout>

Each of the three widgets will take up a certain percentage of the vertical space for the
LinearLayout. Since the LinearLayout is set to fill the screen, this means that the three
widgets will divide up the screen based on their requested percentages.

To request a percentage, each Button does the following:

B Sets its android:layout_height to be odip (note that we use height
here because it is a vertical LinearLayout we are subdividing)

B Sets its android:layout_weight to be the desired percentage (e.g.,
android:layout_weight="50")

So long as the weights sum to 100, as they do in this case, you will get your desired
breakdown by percentage, as shown in Figure 10-5.

Ml @ 9:29am

Fifty Percent

Thirty Percent

Twenty Percent

Figure 10-5. A LinearLayout split among three Buttons by percentage

All Things Are Relative

Relativelayout, as the name suggests, lays out widgets based on their relationship to
other widgets in the container and the parent container. You can place widget X below
and to the left of widget Y, have widget Z’'s bottom edge align with the bottom of the

82

CHAPTER 10: Working with Containers

container, and so on. This is reminiscent of James Elliot’s RelativeLayout for use with
Java/Swing.

RelativeLayout Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML layout
file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container

The easiest relationships to set up are those that tie a widget’s position to that of its
container, using the following properties:

B android:layout_alignParentTop: Aligns the widget’s top with the top
of the container

B android:layout_alignParentBottom: Aligns the widget’s bottom with
the bottom of the container

B android:layout_alignParentLeft: Aligns the widget’s left side with the
left side of the container

B android:layout_alignParentRight: Aligns the widget’s right side with
the right side of the container

B android:layout centerHorizontal: Positions the widget horizontally at
the center of the container

B android:layout_centerVertical: Positions the widget vertically at the
center of the container

B android:layout centerInParent: Positions the widget both
horizontally and vertically at the center of the container

All of these properties take a simple Boolean value (true or false).

Note that the padding of the widget is taken into account when performing these various
alignments. The alignments are based on the widget’s overall cell (combination of its
natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to Relativelayout take as a value the identity of a
widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will need
to address.

2. Reference other widgets using the same identifier value.

CHAPTER 10: Working with Containers 83

The first occurrence of an id value should include the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file, the plus sign
should be omitted (@id/widget_a). This allows the build tools to better help you catch
typos in your widget id values—if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time.

For example, if widget A is identified as @+id/widget_a, widget B can refer to widget A in
one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets
The following four properties control the position of a widget relative to other widgets:

B android:layout above: Indicates that the widget should be placed
above the widget referenced in the property

B android:layout_below: Indicates that the widget should be placed
below the widget referenced in the property

B android:layout_toleftOf: Indicates that the widget should be placed
to the left of the widget referenced in the property

B android:layout_toRightOf: Indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four properties, five additional properties can be used to control one
widget’s alignment relative to another:

B android:layout_alignTop: Indicates that the widget’s top should be
aligned with the top of the widget referenced in the property

B android:layout_alignBottom: Indicates that the widget’'s bottom
should be aligned with the bottom of the widget referenced in the
property

B android:layout_alignleft: Indicates that the widget’s left should be
aligned with the left of the widget referenced in the property

B android:layout_alignRight: Indicates that the widget’s right should
be aligned with the right of the widget referenced in the property

B android:layout_alignBaseline: Indicates that the baseline of the two
widgets should be aligned (where the baseline is the invisible line that
text appears to sit on)

The android:layout_alignBaseline property is useful for aligning labels and fields so
that the text appears natural. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field’s box with the top of the label,
causing the text of the label to be higher on the screen than the text entered into the
field.

84

CHAPTER 10: Working with Containers

So, if we want widget B to be positioned to the right of widget A, in the XML element for
widget B, we need to include android:layout_toRightOf = "@id/widget_a" (assuming
@id/widget_a is the identity of widget A).

Order of Evaluation

Android formerly used a single pass to process Relativelayout-defined rules. That
meant you could not reference a widget (e.g., via android:1layout_above) until it had
been declared in the XML. This made defining some layouts a bit complicated. Starting
in Android 1.6, Android uses two passes to process the rules, so you can now safely
have forward references to as-yet-undefined widgets.

RelativeLayout Example

With all that in mind, let’s examine a typical form with a field, a label, and a pair of
buttons labeled OK and Cancel. Here is the XML layout, pulled from the
Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content">
<TextView android:id="@+id/label"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentlLeft="true"/>
<EditText
android:id="@id/entry"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>
<Button
android:id="@+id/ok"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />
<Button
android:id="@+id/cancel"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:layout_toleftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />
</Relativelayout>

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers

First, we open the Relativelayout. In this case, we want to use the full width of the
screen (android:layout width = "fill parent") and only as much height as we need
(android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge aligned
with the left edge of the Relativelayout (android:layout_alignParentlLeft="true") and
its baseline aligned with the baseline of the yet-to-be-defined EditText. Since the
EditText has not been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of the
label, have the field be aligned with the top of the Relativelayout, and have the field
take up the rest of this “row” in the layout. These requirements are handled by the
following three properties, respectively:

B android:layout_toRightOf = "@id/label”
B android:layout_alignParentTop = "true"
B android:layout width = "fill parent”

Then, the OK button is set to be below the field (android:layout_below = "@id/entry")
and have its right side align with the right side of the field (android:layout_alignRight =
"@id/entry"). The Cancel button is set to be to the left of the OK button
(android:layout_toleft = "@id/ok") and have its top aligned with the OK button
(android:layout_alignTop = "@id/ok").

With no changes to the autogenerated Java code, the emulator gives us the result
shown in Figure 10-6.

GG 12:33 AM

RelativeLayoutbemo

Figure 10-6. The RelativeLayoutDemo sample application

85

86

CHAPTER 10: Working with Containers

Overlap

Relativelayout also has a feature that LinearLayout lacks —the ability to have widgets
overlap one another. Later children of a Relativelayout are “higher in the Z axis” than
are earlier children, meaning that later children will overlap earlier children if they are set
up to occupy the same space in the layout.

This will be clearer with an example. Here is a layout, from Containers/RelativeOverlap,
with a Relativelayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button
android:text="I AM BIG"
android:textSize="120dip"
android:textStyle="bold"
android:layout width="fill parent"
android:layout_height="fill parent"
/>
<Button
android:text="I am small"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:layout centerInParent="true"
/>
</Relativelayout>

The first Button is set to fill the screen. The second Button is set to be centered inside
the parent and to take up only as much space as is needed for its caption. Hence, the
second Button will appear to float over the first Button, as shown in Figure 10-7.

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers

DR @ 10:114m

Overlap Demo

Iam small

Figure 10-7. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking the smaller Button does not
also click the bigger Button. Your clicks will be handled by the widget on top in the case
of an overlap like this.

Tahula Rasa

If you like HTML tables, spreadsheet grids, and similar layout options, you will like

Android’s TablelLayout, which allows you to position your widgets in a grid to your

specifications. You control the number of rows and columns, which columns might
shrink or stretch to accommodate their contents, and so on.

TablelLayout works in conjunction with TableRow. TablelLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

TableLayout Concepts and Properties

For your table layout to work as you intend, you need to understand how widgets work
with rows and columns, and how to handle widgets that live outside of rows.

87

CHAPTER 10: Working with Containers

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a TableRow
inside the overall TableLayout. You, therefore, control directly how many rows appear in
the table.

The number of columns is determined by Android; you control the number of columns in
an indirect fashion. First, there will be at least one column per widget in your longest
row. So if you have three rows—one with two widgets, one with three widgets, and one
with four widgets—there will be at least four columns. However, you can have a widget
take up more than one column by including the android:layout_span property,
indicating the number of columns the widget spans. This is akin to the colspan attribute
one finds in table cells in HTML. In this XML layout fragment, the field spans three
columns:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
Ordinarily, widgets are put into the first available column. In the preceding fragment, the
label would go in the first column (column 0, as columns are counted starting from 0),
and the field would go into a spanned set of three columns (columns 1 through 3).
However, you can put a widget into a different column via the android:layout column
property, specifying the 0-based column the widget belongs to:
<TableRow>
<Button
android:id="@+id/cancel"
android:layout _column="2"
android:text="Cancel" />

<Button android:id="@+id/ok" android:text="0K" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the fourth
column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
Tablelayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to Till parent, so they will fill the same space that
the longest row does.

One pattern for this is to use a plain View as a divider. For example, you could use <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a two-pixel-
high blue bar across the width of the table.

CHAPTER 10: Working with Containers

Stretch, Shrink, and Collapse

By default, each column will be sized according to the natural size of the widest widget
in that column (taking spanned columns into account). Sometimes, though, that does
not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of column
numbers. Those columns will be stretched to take up any available space on the row.
This helps if your content is narrower than the available space.

Conversely, you can place an android:shrinkColumns property on the TablelLayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column—by default, widgets are not word-wrapped.
This helps if you have columns with potentially wordy content that might cause some
columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TablelLayout, again
with a column number or comma-delimited list of column numbers. These columns will
start out collapsed, meaning they will be part of the table information but will be
invisible. Programmatically, you can collapse and uncollapse columns by calling
setColumnCollapsed() on the TableLayout. You might use this to allow users to control
which columns are of importance to them and should be shown versus which ones are
less important and can be hidden.

You can also control stretching and shrinking at runtime via setColumnStretchable()
and setColumnShrinkable().

TableLayout Example

The XML layout fragments previously shown, when combined, give us a TablelLayout
rendition of the form we created for Relativelayout, with the addition of a divider line
between the label/field and the two buttons (found in the Containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2dip"
android:background="#0000FF" />
<TableRow>

89

http://schemas.android.com/apk/res/android

90

CHAPTER 10: Working with Containers

<Button android:id="@+id/cancel"
android:layout _column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</Tablelayout>

When compiled against the generated Java code and run on the emulator, we get the
result shown in Figure 10-8.

G @ 12:35 AM

TableLayoutDemo

Figure 10-8. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is to
use scrolling, so that only part of the information is visible at one time, and the rest is
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a layout
that might be too big for some screens, wrap it in a ScrollView, and still use your
existing layout logic. The user can see only part of your layout at one time, and see the
rest via scrolling.

For example, here is a ScrollView used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>

<Scrollview
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers

android:layout_height="wrap_content">

<Tablelayout

android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="0">

<TableRow>
<View
android:
android:
<TextView
android:
android
</TableRow>
<TableRow>
<View
android:
android
<TextView
android:
android
</TableRow>
<TableRow>
<View
android:
android:
<TextView
android:
android
</TableRow>
<TableRow>
<View
android:
android:
<TextView
android:
android:
</TableRow>
<TableRow>
<View
android:
android:
<TextView
android
android:
</TableRow>
<TableRow>
<View
android
android:
<TextView
android
android:
</TableRow>
<TableRow>
<View
android:
android:

layout_height="8odip"
background="#000000"/>
android:text="#000000"
paddinglLeft="4dip"

:layout_gravity="center vertical"

layout_height="8odip"

:background="#440000" />

android:text="#440000"
paddingleft="4dip"

:layout_gravity="center vertical"

layout_height="8odip"
background="#884400" />
android:text="#884400"
paddinglLeft="4dip"

:layout_gravity="center vertical"

layout_height="80odip"
background="#aa8844" />
android:text="#aa8844"
paddinglLeft="4dip"
layout_gravity="center vertical"

layout_height="8odip"
background="#ffaa88" />
android:text="#ffaa88"

:paddingleft="4dip"

layout_gravity="center vertical"

:layout_height="80dip"

background="#ffffaa" />
android:text="#ffffaa"

:paddingleft="4dip"

layout_gravity="center vertical"

layout_height="80dip"
background="#fffFf " />

/>

/>

/>

/>

/>

/>

91

92

CHAPTER 10: Working with Containers

<TextView android:text="#ffffff"
android:paddingleft="4dip"
android:layout_gravity="center vertical" />
</TableRow>
</Tablelayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (seven rows at 80
pixels each, based on the View declarations). There may be some devices with screens
capable of showing that much information, but many will be smaller. The ScrollView lets
us keep the table as is, but present only part of it at a time.

On the stock Android emulator, when the activity is first viewed, it appears as shown in
Figure 10-9.

G B 12:36 AM
9‘:“@ "t(r wDemo

#00000(

#88440(

Figure 10-9. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the D-pad, you can scroll up and down to see the remaining rows. Also note
how the right side of the content is clipped by the scrollbar—be sure to put some
padding on that side or otherwise ensure your own content does not get clipped in that
fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView, but
horizontally. This is useful for forms that might be too wide rather than too tall. Note that
neither ScrollView nor HorizontalScrollView will give you bidirectional scrolling, so you
have to choose vertical or horizontal.

Also, note that you cannot put scrollable items into a Scrol1lView. For example, a
ListView widget—which we will see in an upcoming chapter—already knows how to
scroll. If you put a ListView in a ScrollView, it will not work very well.

Chapter

The Input Method
Framework

Android 1.5 introduced the input method framework (IMF), which is commonly referred
to as soft keyboards. However, this term is not necessarily accurate, as IMF could be
used for handwriting recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the time (when
it is slid out). A few Android devices have a hardware keyboard that is always visible (so-
called “bar” or “slab” phones). Most Android devices, though, have no hardware
keyboard at all. The IMF handles all of these scenarios.

In short, if there is no hardware keyboard, an input method editor (IME) will be available
to the user when they tap an enabled EditText. If the default functionality of the IME is
what you want to offer, you don’t need to make any code changes to your application.
Fortunately, Android is fairly smart about guessing what you want, so you may simply
need to test with the IME and make no specific code changes.

But the IME may not quite behave how you would like it to for your application. For
example, in the Basic/Field sample project, the FieldDemo activity has the IME
overlaying the multiple-line EditText, as shown in Figure 11-1. It would be nice to have
more control over how this appears, and to be able to control other behavior of the IME.
Fortunately, the IMF as a whole gives you many options for this, as described in this
chapter.

93

94

CHAPTER 11: The Input Method Framework

_ i@ 1235 rm

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file except in

compliance with the License. You

Figure 11-1. The input method editor, as seen in the FieldDemo sample application

Tailored to Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to control their style
of input, such as android:password to indicate a field should be for password entry
(shrouding the password keystrokes from prying eyes). Starting in Android 1.5, with the
IMF, many of these attributes have been combined into a single android: inputType
attribute.

The android: inputType attribute takes a class plus modifiers, in a pipe-delimited list
(where | is the pipe character). The class generally describes what the user is allowed to
input, and this determines the basic set of keys available on the soft keyboard. The
available classes are as follows:

B text (the default)

B number

B phone

B datetime
B date

B time

Many of these classes offer one or more modifiers to further refine what the user will be
allowed to enter. To get a better understanding of how these modifiers work, take a look
at the res/layout/main.xml file from the InputMethod/IMEDemo1 project:

CHAPTER 11: The Input Method Framework

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1"

>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number |numberSigned|numberDecimal”
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultiline|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</Tablelayout>

This shows a Tablelayout containing five rows, each demonstrating a slightly different
flavor of EditText:

95

http://schemas.android.com/apk/res/android

96

CHAPTER 11: The Input Method Framework

B The first row has no attributes at all on the EditText, meaning you get
a plain text-entry field.

B The second row has android:inputType = "text|textEmailAddress",
meaning it is a text-entry field that specifically seeks an e-mail
address.

B The third row allows for signed decimal numeric input, via
android:inputType = "number |numberSigned|numberDecimal".

B The fourth row is set up to allow for data entry of a date
(android:inputType = "date").

B The last allows for multiline input with autocorrection of probable
spelling errors (android:inputType =
"text|textMultilLine|textAutoCorrect").

The class and modifiers tailor the keyboard. So, a plain text-entry field results in a plain
soft keyboard, as shown in Figure 11-2.

TN @ 9:19Am

No special rules:

Email address:

P

Figure 11-2. A standard input method editor (a.k.a., soft keyboard)

An e-mail address field might put the @ symbol on the soft keyboard, at the cost of a
smaller spacebar, as shown in Figure 11-3.

CHAPTER 11: The Input Method Framework 97

RN @ 9:19Am

No special rules:

Email address:

Signed decimal number:

Date:

Figure 11-3. The input method editor for e-mail addresses

Note, though, that this behavior is specific to the IME. Some editors might put the @
symbol on the primary keyboard for an e-mail field. Some might put a .com button on the
primary keyboard. Some might not react at all. It is up to the implementation of the
IME—all you can do is supply the hint.

Number and date fields restrict the keys to numeric keys, plus a set of symbols that may
or may not be valid on a given field, as shown in Figure 11-4.

98

CHAPTER 11: The Input Method Framework

RN @ 9:19Am

Signed decimal number:

Date:

123456 7 890

@ # $ % & *

Figure 11-4. The input method editor for signed decimal numbers

These are just a few examples of the possible IMEs. By choosing the appropriate
android:inputType, you can give users a soft keyboard that best suits the type of data
they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the IME shown in Figure 11-2 and
the IME shown in Figure 11-3, beyond the addition of the @ key. The lower-right corner
of the soft keyboard in Figure 11-3 has a Next button, whereas the one in Figure 11-2
has a newline button. This points out two things:

B EditText widgets are multiline by default if you do not specify
android:inputType.

B You can control what goes on with that lower-right button, called the
accessory button.

By default, on an EditText where you have specified android: inputType, the accessory
button will be Next, moving you to the next EditText in sequence, or Done, if you are on
the last EditText on the screen. You can manually stipulate what the accessory button
will be labeled via the android:imeOptions attribute. For example, in the
res/layout/main.xml file from InputMethod/IMEDemo2, you will see an augmented
version of the previous example, where two input fields specify what their accessory
button should look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"

http://schemas.android.com/apk/res/android

CHAPTER 11: The Input Method Framework

android:layout

<Tablelayout
android:layo
android:layo
android:stre
>
<TableRow>
<TextView
android
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:
/>
<EditText
android
android:
/>
</TableRow>
<TableRow>
<TextView
android:
/>
<EditText
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
/>
<EditText
android
/>
</TableRow>
<TableRow>
<TextView
android:
/>
<EditText
android
android:
android
/>
</TableRow>
</Tablelayout>

</ScrollView>

_height="fill parent"

ut_width="fill parent"
ut_height="fill parent"”
tchColumns="1"

:text="No special rules:"

text="Email address:"

:inputType="text|textEmailAddress"

imeOptions="actionSend"

text="Signed decimal number:"

inputType="number |numberSigned|numberDecimal”
imeOptions="actionDone"

text="Date:"

:inputType="date"

text="Multi-line text:"

:inputType="text|textMultilLine|textAutoCorrect"

minLines="3"

:gravity="top"

Here, we attach a Send action to the accessory button for the e-mail address
(android:imeOptions = "actionSend"), and the Done action on the middle field
(android:imeOptions = "actionDone").

100

CHAPTER 11: The Input Method Framework

By default, Next moves the focus to the next EditText and Done closes the IME.
However, for those actions, or for any others like Send, you can use
setOnEditorActionListener() on EditText (technically, on the TextView superclass) to
get control when the accessory button is clicked or the user presses the Enter key. You
are provided with a flag indicating the desired action (e.g., IME_ACTION_SEND), and you
can then do something to handle that request (e.g., send an e-mail to the supplied e-
mail address).

Fitting In

Notice that the IMEDemo2 layout shown in the preceding section has another difference
from its IMEDemo1 predecessor: the use of a ScrollView container wrapping the
Tablelayout. This ties into another level of control you have over the IMEs: what
happens to your activity’s own layout when the IME appears. There are three
possibilities, depending on circumstances:

B Android can “pan” your activity, effectively sliding the whole layout up
to accommodate the IME, or overlaying your layout, depending on
whether the EditText being edited is at the top or bottom. This has the
effect of hiding some portion of your Ul.

B Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the IME to sit below the activity
itself. This is great when the layout can readily be shrunk (e.g., it is
dominated by a list or multiline input field that does not need the whole
screen to be functional).

B In landscape mode, Android may display the IME full-screen,
obscuring your entire activity. This allows for a bigger keyboard and
generally easier data entry.

Android controls the full-screen option purely on its own. And, by default, Android will
choose between pan and resize modes depending on what your layout looks like. If you
want to specifically choose between pan and resize, you can do so via an
android:windowSoftInputMode attribute on the <activity> element in your
AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two" android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".IMEDemo2" android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>

http://schemas.android.com/apk/res/android

CHAPTER 11: The Input Method Framework

<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Because we specified resize, Android will shrink our layout to accommodate the IME.
With the ScrollView in place, this means the scroll bar will appear as needed, as shown
in Figure 11-5.

T @ 10:58 AM
V’I’H]Eim]

Signed decimal number:

Date:

Multi-line text:

Figure 11-5. The shrunken, scrollable layout

Jane, Stop This Crazy Thing!

Sometimes, you need the IME to just go away. For example, if you make the accessory
button a Search button, the IME won’t be hidden automatically when the user taps that
button, whereas you may want it to be hidden. To hide the IME, you need to make a call
to the InputMethodManager, a system service that controls these IMEs:

InputMethodManager mgr=(InputMethodManager)getSystemService(INPUT METHOD SERVICE);
mgr .hideSoftInputFromWindow(fld.getWindowToken(), 0);
(In the preceding line, f1d is the EditText whose IME you want to hide.)

This will always close the designated IME. However, bear in mind that there are two
ways a user can open the IME in the first place:

B If the user’s device does not have a hardware keyboard exposed, and
the user taps the EditText, the IME should appear.

B If the user previously dismissed the IME or is using the IME for a
widget that does not normally pop one up (e.g., ListView), and the
user presses the Menu button, the IME should appear.

101

102 CHAPTER 11: The Input Method Framework

If you want to close the IME only for the first scenario, but not the second, use
InputMethodManager .HIDE_IMPLICIT ONLY as a flag for the second parameter to your call
to hideSoftInputFromWindow(), instead of the 0 shown in the previous example.

Chapter

Using Selection Widgets

In Chapter 11, you saw how fields could have constraints placed on them to limit
possible input, such as numeric-only or phone-number-only. These sorts of constraints
help users “get it right” when entering information, particularly on mobile devices with
cramped keyboards.

Of course, the ultimate in constrained input is to allow selection only from a set of items,
such as a group of radio buttons. Classic Ul toolkits have list boxes, combo boxes,
drop-down lists, and the like for that very purpose. Android provides many of the same
sorts of widgets, plus others of particular interest for mobile devices (e.g., the Gallery
for examining saved photos).

Moreover, Android offers a flexible framework for determining which choices are
available in these widgets. Specifically, Android offers a framework of data adapters that
provides a common interface for selection lists, ranging from static arrays to database
contents. Selection views—widgets for presenting lists of choices—are handed an
adapter to supply the actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate APIs. More
specifically, in Android’s case, adapters provide a common interface to the data model
behind a selection-style widget, such as a list box. This use of Java interfaces is fairly
common (e.g., Java/Swing’s model adapters for JTable), and Java is far from the only
environment offering this sort of abstraction (e.g., Flex’s XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible not only for providing the roster of data for a
selection widget, but also for converting individual elements of data into specific views
to be displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality, it is not that different from other GUI toolkits’ ways of
overriding default display behavior. For example, in Java/Swing, if you want a JList-
backed list box to actually be a checklist (where individual rows are a check box plus
label, and clicks adjust the state of the check box), you inevitably wind up calling

103

104 CHAPTER 12: Using Selection Widgets

setCellRenderer() to supply your own ListCellRenderer, which in turn converts strings
for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter. You simply wrap one of these around a Java
array or java.util.List instance, and you have a fully functioning adapter:

String[] items={"this", "is", "a",
"really", "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple 1ist item 1, items);

One flavor of the ArrayAdapter constructor takes three parameters:
B The Context to use (typically this will be your activity instance)

B The resource ID of a view to use (such as a built-in system resource
ID, as shown in the preceding example)

B The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and wrap
each of those strings in the view designated by the supplied resource.
android.R.layout.simple list item_1 simply turns those strings into TextView objects.
Those TextView widgets, in turn, will be shown in the list, spinner, or whatever widget
uses this ArrayAdapter. If you want to see what android.R.layout.simple list item 1
looks like, you can find a copy of it in your SDK installation—just search for
simple list item 1.xml.

In Chapter 13, you’ll see how to subclass an adapter and override row creation, to give
you greater control over how rows appear.

Lists of Naughty and Nice

The classic list box widget in Android is known as ListView. Include one of these in your
layout, invoke setAdapter() to supply your data and child views, and attach a listener
via setOnItemSelectedListener() to find out when the selection has changed. With that,
you have a fully functioning list box.

However, if your activity is dominated by a single list, you might consider creating your
activity as a subclass of ListActivity, rather than the regular Activity base class. If
your main view is just the list, you do not even need to supply a layout—ListActivity
will construct a full-screen list for you. If you do want to customize the layout, you can,
as long as you identify your ListView as @android:id/1list, so ListActivity knows
which widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project, a simple
list with a label on top to show the current selection:

CHAPTER 12: Using Selection Widgets

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent" >
<TextView
android:id="@+id/selection"
android:layout width="fill parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"
android:drawSelectorOnTop="false"
/>
</Linearlayout>

The Java code to configure the list and connect the list with the label is as follows:

public class ListViewDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,
items));
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);

}
}

With ListActivity, you can set the list adapter via setListAdapter()—in this case,
providing an ArrayAdapter wrapping an array of nonsense strings. To find out when the
list selection changes, override onListItemClick() and take appropriate steps based on
the supplied child view and position—in this case, updating the label with the text for
that position. The results are shown in Figure 12-1.

105

http://schemas.android.com/apk/res/android

106

CHAPTER 12: Using Selection Widgets

O G @ 5:38 P

amet

consectetuer

Figure 12-1. The ListViewDemo sample application

The second parameter to our ArrayAdapter, android.R.layout.simple list item 1,
controls the appearance of the rows. The value used in the preceding example provides
the standard Android list row: big font, a lot of padding, and white text.

Selection Modes

By default, ListView is set up to simply collect clicks on list entries. If you want a list that
tracks a user’s selection, or possibly multiple selections, ListView can handle that as
well, but it requires a few changes.

First, you need to call setChoiceMode() on the ListView in Java code to set the choice
mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the value. You
can get your ListView from a ListActivity via getListView(). You can also declare this
via the android:choiceMode attribute in your layout XML.

Then, instead of using android.R.layout.simple list item 1 as the layout for the list
rows in your ArrayAdapter constructor, you need to use either
android.R.layout.simple list item_single choice or

android.R.layout.simple list item multiple choice for single-choice or multiple-
choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 107

android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"
/>

It is a full-screen ListView, with the android:choiceMode="multipleChoice" attribute to
indicate that we want multiple-choice support.

Our activity simply uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple 1list item multiple choice as the row layout:

package com.commonsware.android.checklist;

import android.os.Bundle;

import android.app.ListActivity;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ChecklistDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item multiple choice,
items));

}
}

The user sees the list of words on the left with check boxes down the right edge, as
shown in Figure 12-2.

108 CHAPTER 12: Using Selection Widgets

Ml @ 11:08am

lorem

ipsum

dolor

sit

amet
consectetuer

adipiscing

Figure 12-2. Multiple-select mode

If we wanted to, we could call getCheckedItemPositions() on our ListView to find out
which items the user checked, or setItemChecked() to check (or uncheck) a specific
entry ourselves.

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you might find in
other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the D-pad
pops up a selection dialog box from which the user can choose an item. The Spinner
basically provides list selection capabilities without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via setAdapter(),
and hook in a listener object for selections via setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you need
to configure the adapter, not the Spinner widget. Use the setDropDownViewResource()
method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML layout
for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets

android:layout_height="fill parent"

>

<TextView
android:id="@+id/selection"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>

<Spinner android:id="@+id/spinner"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>

</Linearlayout>

This is the same view as shown in the previous section, but with a Spinner instead of a
ListView. The Spinner property android:drawSelectorOnTop controls whether the arrow
is drawn on the selector button on the right side of the Spinner UL.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

}

implements AdapterView.OnItemSelectedlListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple spinner dropdown item);
spin.setAdapter(aa);
}

public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

109

110

CHAPTER 12: Using Selection Widgets

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity implements
the OnItemSelectedlListener interface. We configure the adapter not only with the list of
fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple spinner_ item as the built-in View for showing items in the
spinner itself.

Finally, we implement the callbacks required by OnItemSelectedListener to adjust the
selection label based on user input. Figures 12-3 and 12—-4 show the results.

Gl & 11:36 PM

SpinnerDemo

Figure 12-3. The SpinnerDemo sample application, as initially launched

CHAPTER 12: Using Selection Widgets

consectetuer

Ml @ 11:36 PM

Figure 12-4. The same application, with the spinner drop-down list displayed

Grid Your Lions (or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the number
of rows is dynamically determined based on the number of items the supplied adapter
says are available for viewing.

There are a few properties that, when combined, determine the number of columns and
their sizes:

android:numColumns: Indicates how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of
columns based on the available space and the following properties in
this list.

android:verticalSpacing and android:horizontalSpacing: Indicate
how much whitespace should exist between items in the grid.

android:columnWidth: Indicates how many pixels wide each column
should be.

android:stretchMode: Indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing. This can be columniWidth, to have the
columns take up available space, or spacingWidth, to have the
whitespace between columns absorb extra space.

111

112

CHAPTER 12: Using Selection Widgets

Otherwise, the GridView works much like any other selection widget—use setAdapter()
to provide the data and child views, invoke setOnItemSelectedListener() to register a
selection listener, and so on.

For example, here is an XML layout from the Selection/Grid sample project, showing a
GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout width="fill parent"
android:layout_height="fill parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto fit"
android:columnWidth="100dip"
android:stretchMode="columniWidth"
android:gravity="center"
/>
</Linearlayout>

For this grid, we take up the entire screen except for what our selection label requires.
The number of columns is computed by Android (android:numColumns = "auto fit")
based on our horizontal spacing (android:horizontalSpacing = "5dip") and column
width (android:columnWidth = "100dip"), with the columns absorbing any “slop” width
left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is as follows:

package com.commonsware.android.grid;

import android.app.Activity;

import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity
implements AdapterView.OnItemSelectedlListener {
private TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 113

"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",

"etiam", "vel", "erat", "placerat", "ante",

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Gridview g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,
R.layout.cell,
items));
g.setOnItemSelectedListener(this);
}

public void onItemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>

With the vertical spacing from the XML layout (android:verticalSpacing = "40dip"), the
grid overflows the boundaries of the emulator’s screen, as shown in Figures 12-5 and
12-6.

http://schemas.android.com/apk/res/android

114 CHAPTER 12: Using Selection Widgets

Ml @ 11:55am
GridDemo

consectetuer

lorem ipsum
adipiscing morbi
ligula
aliquet mollis
etiam
placerat porttitor
sodales pellentesque augue

Figure 12-5. The GridDemo sample application, as initially launched

Ml & 11:56am

amet consectetuer

adipiscing morbi

ligula

aliquet mollis

etiam

placerat porttitor

sodales pellentesque

Figure 12-6. The same application, scrolled to the bottom of the grid

CHAPTER 12: Using Selection Widgets

Fields: Now with 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With autocompletion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are shown

in a selection list that drops down from the field (as with Spinner). The user can either
type the full entry (e.g., something not in the list) or choose an item from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard look-
and-feel aspects, such as font face and color. In addition, AutoCompleteTextView has a
android:completionThreshold property, to indicate the minimum number of characters a
user must enter before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate values
via setAdapter(). However, since the user could type something that is not in the list,
AutoCompleteTextView does not support selection listeners. Instead, you can register a
TextWatcher, as you can with any EditText widget, to be notified when the text changes.
These events will occur either because of manual typing or from a selection from the
drop-down list.

The following is a familiar XML layout, this time containing an AutoCompleteTextView
(pulled from the Selection/AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</Linearlayout>

The corresponding Java code is as follows:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

115

http://schemas.android.com/apk/res/android

116 CHAPTER 12: Using Selection Widgets

import android.widget.TextView;

public class AutoCompleteDemo extends Activity

implements TextWatcher {

private TextView selection;

private AutoCompleteTextView edit;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item 1line,
items));

}

public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());
}

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

public void afterTextChanged(Editable s) {
// needed for interface, but not used

}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(),beforeTextChanged(), and afterTextChanged(). In this case, we are
interested only in onTextChanged(), and we update the selection label to match the
AutoCompleteTextView’s current contents. Figures 12-7, 12-8, and 12-9 show the
results.

CHAPTER 12: Using Selection Widgets 117

Gl ® 11:47pPM

AutoCompleteDemo

Figure 12-7. The AutoCompleteDemo sample application, as initially launched

B @ 11:47PM
AutoCompleteDemo

lor

Figure 12-8. The same application, after a few matching letters were entered, showing the autocomplete drop-
down

118

CHAPTER 12: Using Selection Widgets

Gl ® 11:47pPM

AutoCompleteDemo

lorem
lorem|

Figure 12-9. The same application, after the autocomplete value was selected

Galleries, Give or Take the Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a list box
that is laid out horizontally. One choice follows the next across the horizontal plane, with
the currently selected item highlighted. On an Android device, one rotates through the
options via the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space, while still showing
multiple choices at one time (assuming they are short enough). Compared to the
Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview. Given a collection of
photos or icons, the Gallery lets people preview the pictures in the process of choosing
one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout, you
have a few properties at your disposal:

B android:spacing: Controls the number of pixels between entries in the list.

B android:spinnerSelector: Controls what is used to indicate a
selection. This can either be a reference to a Drawable (see the
resources chapter) or an RGB value in #AARRGGBB or similar notation.

android:drawSelectorOnTop: Indicates if the selection bar (or Drawable) should be drawn
before (false) or after (true) drawing the selected child. If you choose true, be sure that
your selector has sufficient transparency to show the child through the selector;
otherwise, users will not be able to read the selection.

Chapter

Getting Fancy with Lists

The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call, an e-mail message
to forward, or an e-book to read, ListView widgets are employed in a wide range of
activities. Of course, it would be nice if they were more than just plain text.

The good news is that Android lists can be as fancy as you want, within the limitations of
a mobile device’s screen, of course. However, making them fancy takes some work,
requiring the features of Android that are covered in this chapter.

Getting to First Base

The classic Android ListView is a plain list of text—solid but uninspiring. Basically, we
hand the ListView a bunch of words in an array and tell Android to use a simple built-in
layout for pouring those words into a list.

However, we can have a list whose rows are made up of icons, icons and text, check
boxes and text, or whatever we want. It is merely a matter of supplying enough data to
the adapter and helping the adapter to create a richer set of View objects for each row.

For example, suppose we want a ListView whose entries are made up of an icon,
followed by some text. We could construct a layout for the row that looks like this, found
in res/layout/row.xml in the FancylLists/Static sample project:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"”
android:layout_height="fill parent" >
<TextView
android:id="@+id/selection"
android:layout width="fill parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout width="fill parent"

119

http://schemas.android.com/apk/res/android

120

CHAPTER 13: Getting Fancy with Lists

android:layout_height="fill parent"
android:drawSelectorOnTop="false"
/>

</LinearlLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and the text (in
a nice big font) on the right.

However, by default, Android has no idea that we want to use this layout with our
ListView. To make the connection, we need to supply our Adapter with the resource ID
of the custom layout shown previously:

public class StaticDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,
items));
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, 1long id) {
selection.setText(items[position]);

}
}

This follows the general structure for the previous ListView sample. The key difference
here is that we have told ArrayAdapter that we want to use our custom layout
(R.layout.row) and that the TextView where the word should go is known as R.1id.label
within that custom layout.

NOTE: Remember that to reference a layout (row.xml), use R.layout as a prefix on the base
name of the layout XML file (R. layout. row).

The result is a ListView with icons down the left side; in this example, all the icons are
the same, as shown in Figure 13-1.

CHAPTER 13: Getting Fancy with Lists

DRl @ 1:15em

staticbemo

v lorem
v ipsum
v dolor
v sit

v’ amet

v’ consectetuer
v adipiscing

v elit

\/mnv-lf\:

Figure 13-1. The StaticDemo application

A Dynamic Presentation

As shown in the previous section, the technique of supplying an alternate layout to use
for rows handles simple cases very nicely. However, what if we want the icon to change
based on the row data? For example, suppose we want to use one icon for small words
and a different icon for large words. In the case of ArrayAdapter, we will need to extend
it, creating our own custom subclass (e.g., IconicAdapter) that incorporates our
business logic. In particular, it will need to override getView().

The getView() method of an Adapter is what an AdapterView (like ListView or Spinner)
calls when it needs the View associated with a given piece of data the Adapter is
managing. In the case of an ArrayAdapter, getView() is called as needed for each
position in the array —“get me the View for the first row,” “get me the View for the second
row,” and so forth.

As an example, let’s rework the code in the preceding section to use getView(), so we
can show different icons for different rows —in this case, one icon for short words and
one for long words (from the FancylLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {
TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",
"sit") "amet”,
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",

121

122

CHAPTER 13: Getting Fancy with Lists

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super (DynamicDemo.this, R.layout.row, R.id.label, items);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

else {
icon.setImageResource(R.drawable.ok);

}

return(row);

}
}
}

Our IconicAdapter—an inner class of the activity —has two methods. First, it has the
constructor, which simply passes to ArrayAdapter the same data we used in the
ArrayAdapter constructor in StaticDemo. Second, it has our getView() implementation,
which does two things:

B |t chains to the superclass’s implementation of getView(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

B |t finds our ImageView and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R.drawable.ok and R.drawable.delete).

The result of our revised example is shown in Figure 13-2.

CHAPTER 13: Getting Fancy with Lists

Dl @ 1:24em

DynamicDemo

Blorem
Bipsum
B dolor
v sit

v’ amet
B consectetuer
B adipiscing

v elit
™.

Figure 13-2. The DynamicDemo application

Inflating Rows Ourselves

The preceding version of the DynamicDemo application works fine. However, sometimes
ArrayAdapter cannot be used even to set up the basics of our row. For example, it is
possible to have a ListView where the rows are materially different, such as category
headers interspersed among regular rows. In that case, we may need to do all the work
ourselves, starting with inflating our rows. We will do that after a brief introduction to
inflation.

A Sidebar About Inflation

“Inflation” means the act of converting an XML layout specification into the actual tree of
View objects the XML represents. This is undoubtedly a tedious bit of code: take an
element, create an instance of the specified View class, walk the attributes, convert
those into property setter calls, iterate over all child elements, lather, rinse, and repeat.

The good news is that the fine folks on the Android team wrapped up all that into a
class called LayoutInflater, which we can use ourselves. When it comes to fancy
lists, for example, we want to inflate a View for each row shown in the list, so we can
use the convenient shorthand of the XML layout to describe what the rows are
supposed to look like.

For example, let’s look at a slightly different implementation of the DynamicDemo class,
from the FancylLists/DynamicEx project:

123

124 CHAPTER 13: Getting Fancy with Lists

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {

IconicAdapter() {
super (DynamicDemo.this, R.layout.row, items);

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

else {
icon.setImageResource(R.drawable.ok);
}

return(row);

}
}
}

Here we inflate our R.1ayout.row layout by use of a LayoutInflater object, obtained
from our Activity via getLayoutInflater(). This gives us a View object back, which, in
reality, is our LinearLayout with an ImageView and a TextView, just as R.layout.row
specifies. However, rather than having to create all those objects ourselves and wire
them together, the XML and LayoutInflater handle the “heavy lifting” for us.

CHAPTER 13: Getting Fancy with Lists 125

And Now, Back to Our Story

So we have used LayoutInflater to give us a View representing the row. This row is
“empty,” since the static layout file has no idea what actual data goes into the row. It is
our job to customize and populate the row as we see fit before returning it, as follows:

B Fill in the text label for our label widget, using the word at the supplied position

B See if the word is longer than four characters and, if so, find our ImageView
icon widget and replace the stock resource with a different one

The user sees nothing different—we have simply changed how those rows are being
created. Obviously, this was a fairly contrived example, but you can see that this
technique could be used to customize rows based on any sort of criteria.

Better. Stronger. Faster.

The getView() implementation shown in the FancylLists/DynamicEx project works, but
it’s inefficient. Every time the user scrolls, we have to create a bunch of new View
objects to accommodate the newly shown rows. This is bad.

It might be bad for the immediate user experience, if the list appears to be sluggish.
More likely, though, it will be bad due to battery usage —every bit of CPU that is used
eats up the battery. This is compounded by the extra work the garbage collector needs
to do to get rid of all those extra objects we create. So the less efficient our code, the
more quickly the phone’s battery will be drained, and the less happy the user will be.
And we want happy users, right?

So, let’s take a look at a few tricks to make our fancy ListView widgets more efficient.

Using convertView

The getView() method receives, as one of its parameters, a View named, by convention,
convertView. Sometimes, convertView will be null. In those cases, we need to create a
new row View from scratch (e.g., via inflation), just as we did in the previous example.
However, if convertView is not null, then it is actually one of our previously created View
objects! This will happen primarily when the user scrolls the ListView. As new rows
appear, Android will attempt to recycle the views of the rows that scrolled off the other
end of the list, to save us from having to rebuild them from scratch.

Assuming that each of our rows has the same basic structure, we can use
findViewById() to get at the individual widgets that make up our row and change their
contents, and then return convertView from getView(), rather than create a whole new
row. For example, here is the getView() implementation from the earlier example, now
optimized via convertView (from the FancylLists/Recycling project):

126 CHAPTER 13: Getting Fancy with Lists

public class RecyclingDemo extends ListActivity {
private TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",

"etiam", "vel", "erat", "placerat", "ante",

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {

}

super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

public void onListItemClick(ListView parent, View v,

}

int position, long id) {

selection.setText(items[position]);

class IconicAdapter extends ArrayAdapter<String> {

IconicAdapter() {

super(RecyclingDemo.this, R.layout.row, items);

public View getView(int position, View convertView,

ViewGroup parent) {
View row=convertView;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);

}

TextView label=(TextView)row.findViewById(R.id.label);
label.setText(items[position]);

ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

else {
icon.setImageResource(R.drawable.ok);

}

return(row);

CHAPTER 13: Getting Fancy with Lists 127

Here, we check to see if the convertView is null. If so, we inflate our row; otherwise, we
just reuse it. The work to fill in the contents (icon image and text) is the same in either
case. The advantage is that we avoid the potentially expensive inflation step. In fact,
according to statistics cited by Google at the 2010 Google I|O conference, a ListView
that uses a recycling ListAdapter will perform 150 percent faster than one that does not.
For complex rows, that might even understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or container—in other
words, each subclass of View—holds onto up to 2KB of data, not counting things like
images in ImageView widgets. Each of our rows, therefore, might be as big as 6KB. For
our list of 25 nonsense words, consuming as much as 150KB for a nonrecycling list (25
rows at 6KB each) would be inefficient but not a huge problem. A list of 1000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much bigger issue.
Bear in mind that your application may have only 16MB of Java heap memory to work
with. Recycling allows us to handle arbitrary list lengths with only as much View memory
consumed as is needed for the rows visible onscreen.

Note that row recycling is an issue only if we are creating the rows ourselves. If we let
ArrayAdapter create the rows, by leveraging its implementation of getView(), as shown
in the FancyLists/Dynamic project, then it deals with the recycling.

Using the Holder Pattern

Another somewhat expensive operation commonly done with fancy views is calling
findviewById(). This dives into our inflated row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., to change the text of a
TextView or change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number of
instructions to execute, particularly if we need to find the same widgets repeatedly.

In some GUI toolkits, this problem is avoided by having the composite View objects, like
rows, be declared totally in program code (in this case, Java). Then, accessing individual
widgets is merely a matter of calling a getter or accessing a field. And we can certainly
do that with Android, but the code gets rather verbose. What would be nice is a way that
enables us still to use the layout XML, yet cache our row’s key child widgets so that we
need to find them only once. That’s where the holder pattern comes into play, in a class
we’ll call ViewHolder.

All View objects have getTag() and setTag() methods. These allow us to associate an
arbitrary object with the widget. The holder pattern uses that “tag” to hold an object
that, in turn, holds each of the child widgets of interest. By attaching that holder to the
row View, every time we use the row, we already have access to the child widgets we
care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancylLists/ViewHolder sample project):

128

CHAPTER 13: Getting Fancy with Lists

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
ImageView icon=null;

ViewHolder (View base) {
this.icon=(ImageView)base.findViewById(R.id.icon);

}
}

ViewHolder holds onto the child widgets, initialized via findvViewById() in its constructor.
The widgets are simply package-protected data members, accessible from other
classes in this project, such as a ViewHolderDemo activity. In this case, we are holding
onto only one widget—the icon—since we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

else {
holder.icon.setImageResource(R.drawable.ok);

}

return(row);

}

Here, we go back to allowing ArrayAdapter to handle our row inflation and recycling for
us. If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder. The first time the ListView is displayed, all new rows need to be inflated, and we
wind up creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic. Whereas recycling
can give you a 150 percent performance improvement, adding in a holder increases the
improvement to 175 percent. Hence, while you may wish to implement recycling up front

CHAPTER 13: Getting Fancy with Lists

when you create your adapter, adding in a holder might be something you deal with
later, when you are working specifically on performance tuning.

In this particular case, we certainly could simplify all of this by skipping ViewHolder and
using getTag() and setTag() with the ImageView directly. This example is written as it is
to demonstrate how to handle a more complex scenario, where you might have several
widgets that would need to be cached via the holder pattern.

Interactive Rows

Lists with pretty icons next to them are all fine and well. But, can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets like
TextView and ImageView? For example, there is a RatingBar widget that allows users to
assign a rating by clicking on a set of star icons. Could we combine the RatingBar with
text to allow people to scroll a list of, say, songs and rate them right inside the list?
There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is that it
is a little tricky, specifically when it comes to taking action when the interactive widget’s
state changes (e.g., a value is typed into a field). We need to store that state
somewhere, since our RatingBar widget will be recycled when the ListView is scrolled.
We need to be able to set the RatingBar state based on the actual word being viewed as
the RatingBar is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
which item in the ArrayAdapter it represents. After all, the RatingBar is just a widget,
used in a row of a ListView. We need to teach the rows which item in the ArrayAdapter
they are currently displaying, so when their RatingBar is checked, they know which
item’s state to modify.

So, let’s see how this is done, using the activity in the FancyLists/Ratelist sample
project. We will use the same basic classes that we used in our previous example. We
are displaying a list of nonsense words, which can then be rated. In addition, words
given a top rating are put in all caps.

package com.commonsware.android.fancylists.six;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LlinearlLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

129

130 CHAPTER 13: Getting Fancy with Lists

public class RatelListDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

ArraylList<RowModel> list=new ArraylList<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
}

setListAdapter(new RatingAdapter(list));
}

private RowModel getModel(int position) {
return(((RatingAdapter)getListAdapter()).getItem(position));

class RatingAdapter extends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {
super(RateListDemo.this, R.layout.row, R.id.label, list);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

RatingBar.OnRatingBarChangelistener 1=
new RatingBar.OnRatingBarChangeListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel (myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());

};

CHAPTER 13: Getting Fancy with Lists

holder.rate.setOnRatingBarChangelListener(1l);
}

RowModel model=getModel(position);

holder.rate.setTag(new Integer(position));
holder.rate.setRating(model.rating);

y return(row);
}

class RowModel {
String label;
float rating=2.0f;

RowModel (String label) {
this.label=1abel;

}

public String toString() {
if (rating>=3.0) {
return(label.toUpperCase());
}

return(label);

}
}

The following explains what is different in this activity and getView() implementation
from before:

B We are still using String[] items as the list of nonsense words, but
instead of pouring that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model: it
holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

B We updated utility methods such as onListItemClick()to reflect the
change from a pure-String model to use a RowModel.

B The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, and then checks to see if we
have a ViewHolder in the row’s tag. If not, we create a new ViewHolder
and associate it with the row. For the row’s RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row’s tag
(getTag()) and converts that into an Integer, representing the position
within the ArrayAdapter that this row is displaying. Using that, the
rating bar can get the actual RowModel for the row and update the
model based on the new state of the rating bar. It also updates the text
adjacent to the RatingBar when checked, to match the rating bar state.

131

132 CHAPTER 13: Getting Fancy with Lists

B We always make sure that the RatingBar has the proper contents and
has a tag (via setTag()) pointing to the position in the adapter the row
is displaying.

The row layout is very simple, just a RatingBar and a TextView inside a LinearlLayout:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:orientation="horizontal"

<RatingBar
android:id="@+id/rate"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />

<TextView
android:id="@+id/label"
android:padding="2dip"
android:textSize="18sp"
android:layout gravity="left|center vertical"
android:layout width="fill parent"
android:layout_height="wrap_content"/>

</Linearlayout>

The ViewHolder is similarly simple, just extracting the RatingBar out of the row View for
caching purposes:

package com.commonsware.android.fancylists.six;

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {
RatingBar rate=null;

ViewHolder (View base) {
this.rate=(RatingBar)base.findViewById(R.id.rate);

}
}

And the result is what you would expect, visually, as shown in Figure 13-3.

http://schemas.android.com/apk/res/android

CHAPTER 13: Getting Fancy with Lists 133

Gl & 6:14PMm

RateListDemo

‘ ; i consect

etuer
A A A e . .

Figure 13-3. The RateListDemo application, as initially launched

Figure 13-4 shows a toggled rating bar turning its word into all caps.

£ RN @ 7:46 AM

LELG RSO

v ¥ W consect

etuer

Figure 13-4. The same application, showing a top-rated word

Chapter

Still More Widgets and
Containers

This book has covered a number of widgets and containers so far. This chapter is the
last that focuses exclusively on widgets and containers, covering a number of popular
options, from date and time widgets to tabs. After this chapter, we introduce new
widgets occasionally, but in the context of some other topic, such as introducing the
ProgressBar in Chapter 20 (covering threads).

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are aware of the
type of stuff a user is supposed to be entering is very helpful. They minimize keystrokes
and screen taps and reduce the chance that a user will make some sort of error (e.g.,
entering a letter somewhere only numbers are expected).

As shown in Chapter 9, EditText has content-aware flavors for entering numbers and
text. Android also supports widgets (DatePicker and TimePicker) and dialogs
(DatePickerDialog and TimePickerDialog) for helping users enter dates and times.

DatePicker and DatePickerDialog allow you to set the starting date for the selection, in
the form of a year, month, and day of month value. Note that the month runs from 0 for
January through 11 for December. Most importantly, both let you provide a callback
object (OnDateChangedListener or OnDateSetListener) where you are informed of a new
date selected by the user. It is up to you to store that date someplace, particularly if you
are using the dialog, since there is no other way for you to access the chosen date later.

Similarly, TimePicker and TimePickerDialog let you do the following:

B Set the initial time the user can adjust, in the form of an hour (0
through 23) and a minute (0 through 59)

135

136

CHAPTER 14: Still More Widgets and Containers

B Indicate if the selection should be in 12-hour mode with an AM/PM
toggle or in 24-hour mode (what is thought of in the United States as
“military time” and in much of the rest of the world as “the way times
are supposed to be”)

B Provide a callback object (OnTimeChangedlListener or
OnTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

As an example of using date and time pickers, from the Fancy/Chrono sample project,
here’s a trivial layout containing a label and two buttons, which will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView android:id="@+id/dateAndTime"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/dateBtn"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>
<Button android:id="@+id/timeBtn"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Set the Time"
android:onClick="chooseTime"
/>
</Linearlayout>

The more interesting stuff comes in the Java source:

package com.commonsware.android.chrono;

import android.app.Activity;

import android.os.Bundle;

import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.view.View;

import android.widget.DatePicker;
import android.widget.TimePicker;
import android.widget.TextView;
import java.text.DateFormat;

import java.util.Calendar;

public class ChronoDemo extends Activity {
DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
TextView dateAndTimelabel;

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers

Calendar dateAndTime=Calendar.getInstance();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

dateAndTimelLabel=(TextView)findViewById(R.id.dateAndTime);

updateLabel();

public void chooseDate(View v) {
new DatePickerDialog(ChronoDemo.this, d,
dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY_OF MONTH))
.show();

public void chooseTime(View v) {
new TimePickerDialog(ChronoDemo.this, t,
dateAndTime.get(Calendar.HOUR_OF DAY),
dateAndTime.get(Calendar .MINUTE),
true)
.show();

private void updatelabel() {
dateAndTimelLabel.setText(fmtDateAndTime
.format(dateAndTime.getTime()));
}

DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener() {
public void onDateSet(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF MONTH, dayOfMonth);
updatelabel();
}
};

TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener() {

public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR_OF DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updateLabel();

};

137

138

CHAPTER 14: Still More Widgets and Containers

The model for this activity is just a Calendar instance, initially set to be the current date
and time. We pour it into the view via a DateFormat formatter. In the updateLabel()
method, we take the current Calendar, format it, and put it in the TextView.

Each button has a corresponding method that will get control when the user clicks it
(chooseDate() and chooseTime()). When the button is clicked, either a DatePickerDialog
or a TimePickerDialog is shown. In the case of the DatePickerDialog, we give it an
OnDateSetListener callback that updates the Calendar with the new date (year, month,
and day of month). We also give the dialog the last-selected date, getting the values
from the Calendar. In the case of the TimePickerDialog, it gets an OnTimeSetListener
callback to update the time portion of the Calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like Figures 14-1, 14-2, and 14-3.
il & 6:50 PM

ChronoDemo

\ A
Set the Date
Set the Time

Figure 14-1. The ChronoDemo sample application, as initially launched

CHAPTER 14: Still More Widgets and Containers

Ml @ 6:51PMm

@ Sat, August 23, 2008

& + +
Aug i 23 § 2008

Cancel

Figure 14-2. The same application, showing the date picker dialog

Ml & 6:51pPMm

Figure 14-3. The same application, showing the time picker dialog

139

140

CHAPTER 14: Still More Widgets and Containers

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you may wish to
use the DigitalClock widget or AnalogClock widget. These widgets are extremely easy
to use, as they automatically update with the passage of time. All you need to do is put
them in your layout and let them do their thing.

For example, from the Fancy/Clocks sample application, here is an XML layout
containing both DigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"

>

<AnalogClock android:id="@+id/analog"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_alignParentTop="true"
/>

<DigitalClock android:id="@+id/digital"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_below="@id/analog"
/>

</Relativelayout>

Without any Java code other than the generated stub, we can build this project and get
the activity shown in Figure 14-4.

6:52:36 PM

Figure 14-4. The ClocksDemo sample application

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 141

If you are looking for more of a timer, Chronometer may be of interest. With a
Chronometer, you can track elapsed time from a starting point, as shown in the example
in Figure 14-5. You simply tell it when to start() and stop(), and possibly override the
format string that displays the text.

BNl @ 9:23 AMm

Views/Chronometer

Initial format: 00:12

Set format string
Clear format string

Figure 14-5. The Views/Chronometer APl Demo from the Android 2.0 SDK

Seeking Resolution

The SeekBar is an input widget that allows the user to select a value along a range of
possible values. Figure 14-6 shows an example.

142

CHAPTER 14: Still More Widgets and Containers

TMl @ 9:38 AMm

84 from touch=true
racking off

Figure 14-6. The Views/SeekBar APl Demo from the Android 2.0 SDK

The user can either drag the thumb or click on either side of the thumb to reposition it.
The thumb then points to a particular value along a range. That range will be 0 to some
maximum value, 100 by default, which you control via a call to setMax(). You can find
out what the current position is via getProgress(), or find out when the user makes a
change to the thumb’s position by registering a listener via
setOnSeekBarChangelListener().

We saw a variation on this theme with the RatingBar example in Chapter 13.

Putting It on My Tab

The general Android philosophy is to keep activities short and sweet. If there is more
information than can reasonably fit on one screen, albeit perhaps with scrolling, then it
perhaps belongs in another activity kicked off via an Intent, as will be described in
Chapter 22. However, that can be complicated to set up. Moreover, sometimes there
legitimately is a lot of information that needs to be collected to be processed as an
atomic operation.

In a traditional Ul, you might use tabs to collect and display information, such as a
JTabbedPane in Java/Swing. In Android, you now have the option of using a TabHost
container in much the same way. A portion of your activity’s screen is taken up with
tabs, which, when clicked, swap out part of the view and replace it with something else.
For example, you might have an activity with a tab for entering a location and a second
tab for showing a map of that location.

Some GUI toolkits refer to “tabs” as only the things that a user clicks to toggle from one
view to another. Other GUI toolkits refer to “tabs” as the combination of the clickable

CHAPTER 14: Still More Widgets and Containers

button-like element and the content that appears when that element is chosen. Android
treats the tab buttons and contents as discrete entities, so they are referred to as “tab
buttons” and “tab contents” in this section.

The Pieces

You use the following widgets and containers to set up a tabbed portion of a view:

B TabHost: The overarching container for the tab buttons and tab
contents.

B TabWidget: Implements the row of tab buttons, which contain text
labels and, optionally, icons.

B Framelayout: The container for the tab contents. Each tab content is a
child of the FrameLayout.

This is similar to the approach that Mozilla’s XUL takes. In XUL’s case, the tabbox
element corresponds to Android’s TabHost, the tabs element corresponds to TabWidget,
and tabpanels corresponds to FramelLayout.

For example, here is a layout definition for a tabbed activity, from Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout width="fill parent"
android:layout_height="fill parent">
<LinearlLayout
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<Framelayout android:id="@android:id/tabcontent"
android:layout width="fill parent"
android:layout_height="fill parent">
<AnalogClock android:id="@+id/tab1"
android:layout width="fill parent"
android:layout_height="fill parent"
/>
<Button android:id="@+id/tab2"
android:layout width="fill parent"
android:layout_height="fill parent"
android:text="A semi-random button"
/>
</FramelLayout>
</LinearlLayout>
</TabHost>

Note that the TabWidget and FrameLayout are indirect children of the TabHost, and the
FrameLayout itself has children representing the various tabs. In this case, there are two

143

http://schemas.android.com/apk/res/android

144

CHAPTER 14: Still More Widgets and Containers

tabs: a clock and a button. In a more complicated scenario, the tabs could be some
form of container (e.g., LinearLayout) with their own contents.

Wiring It Together

You can put these widgets in a regular Activity or a TabActivity. TabActivity, like
ListActivity, wraps a common Ul pattern (an activity made up entirely of tabs) into a
pattern-aware activity subclass. If you wish to use the TabActivity, you must give the
TabHost an android:id of @android:id/tabhost. Conversely, if you do not wish to use
TabActivity, you need to get your TabHost via findViewById(), and then call setup() on
the TabHost, before you do anything else.

The rest of the Java code needs to tell the TabHost which views represent the tab
contents and what the tab buttons should look like. This is all wrapped up in TabSpec
objects. You get a TabSpec instance from the host via newTabSpec(), fill it out, and then
add it to the host in the proper sequence.

TabSpec has two key methods:

B setContent(): Indicates what goes in the tab content for this tab,
typically the android:id of the view you want shown when this tab is
selected

B setIndicator(): Sets the caption for the tab button and, in some
flavors of this method, supplies a Drawable to represent the icon for
the tab

Note that tab “indicators” can actually be views in their own right, if you need more
control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these
TabSpec objects. The call to setup() is not needed if you are using the TabActivity base
class for your activity.

For example, here is the Java code to wire together the tabs from the preceding layout
example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);

tabs.setup();

CHAPTER 14: Still More Widgets and Containers

TabHost.TabSpec spec=tabs.newTabSpec("tagi");

spec.setContent(R.id.tab1);
spec.setIndicator("Clock");
tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);

}
}

We find our TabHost via the familiar findviewById() method, and then have it setup().
After that, we get a TabSpec via newTabSpec(), supplying a tag whose purpose is
unknown at this time. Given the spec, we call setContent() and setIndicator(), and
then call addTab() back on the TabHost to register the tab as available for use. Finally,
we can choose which tab is the one to show via setCurrentTab(), providing the 0-based
index of the tab.

The results are shown in Figures 14-7 and 14-8.

il @ 6:54 PM

Figure 14-7. The TabDemo sample application, showing the first tab

145

146

CHAPTER 14: Still More Widgets and Containers

Ml @ 6:54PM

TabDemo

Button

A semi-random button

Figure 14-8. The same application, showing the second tab

Adding Them Up

TabWidget is set up to allow you to easily define tabs at compile time. However,
sometimes you may want to add tabs to your activity during runtime. For example,
imagine an e-mail client where individual e-mail messages are opened in their own tab,
for easy toggling between messages. In this case, you do not know how many tabs you
will need or what their contents will be until runtime, when the user chooses to open a
message. Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs previous
described, except you use a different flavor of setContent(), one that takes a
TabHost.TabContentFactory instance. This is just a callback that will be invoked. You
provide an implementation of createTabContent() and use it to build and return the View
that becomes the content of the tab.

Let’s take a look at an example (Fancy/DynamicTab). First, here is some layout XML for
an activity that sets up the tabs and defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout width="fill parent"
android:layout_height="fill parent">
<LinearlLayout
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout width="fill parent"

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 147

android:layout_height="wrap_content"
/>
<Framelayout android:id="@android:id/tabcontent"
android:layout width="fill parent"
android:layout_height="fill parent">
<Button android:id="@+id/buttontab”
android:layout width="fill parent"
android:layout_height="fill parent"
android:text="A semi-random button"
android:onClick="addTab"
/>
</FramelLayout>
</Linearlayout>
</TabHost>

We want to add new tabs whenever the button is clicked, which we can accomplish with
the following code:

package com.commonsware.android.dynamictab;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.AnalogClock;
import android.widget.TabHost;

public class DynamicTabDemo extends Activity {
private TabHost tabs=null;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

tabs=(TabHost)findViewById(R.id.tabhost);
tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("buttontab");

spec.setContent(R.id.buttontab);
spec.setIndicator("Button");
tabs.addTab(spec);

}

public void addTab(View v) {
TabHost.TabSpec spec=tabs.newTabSpec("tagi");

spec.setContent(new TabHost.TabContentFactory() {
public View createTabContent(String tag) {
return(new AnalogClock(DynamicTabDemo.this));

}
D;
spec.setIndicator("Clock");

tabs.addTab(spec);
}

148

CHAPTER 14: Still More Widgets and Containers

In our button’s addTab() callback, we create a TabHost.TabSpec object and give it an
anonymous TabHost.TabContentFactory. The factory, in turn, returns the View to be
used for the tab—in this case, just an AnalogClock. The logic for constructing the tab’s
View could be much more elaborate, such as using LayoutInflater to construct a view
from layout XML.

Initially, when the activity is launched, we just have the one tab, as shown in Figure 14-9.
Figure 14—10 shows the three dynamically created tabs.

£ M @ 3:49PM
Dynamic Tabs

Button

A semi-random button

Figure 14-9. The DynamicTab application, with the single initial tab

CHAPTER 14: Still More Widgets and Containers

£ G Ml @ 3:49PM

Dynamic Tabs

Button Clock Clock

A semi-random button

Figure 14-10. The DynamicTab application, with three dynamically created tabs

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some Views visible at a time) but not
the actual Ul implementation of tabs. Maybe the tabs take up too much screen space.
Maybe you want to switch between perspectives based on a gesture or a device shake.
Or maybe you just like being different.

The good news is that the guts of the view-flipping logic from tabs can be found in the
ViewFlipper container, which can be used in other ways than the traditional tab.

ViewFlipper inherits from FrameLayout, in the same way we use it to describe the
innards of a TabWidget. However, initially, ViewFlipper just shows the first child view. It
is up to you to arrange for the views to flip, either manually by user interaction or
automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a Button and a
ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button android:id="@+id/flip_me"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Flip Me!"
android:onClick="flip"
/>

149

http://schemas.android.com/apk/res/android

150 CHAPTER 14: Still More Widgets and Containers

<ViewFlipper android:id="@+id/details"

android:layout width="fill parent"

android:layout_height="fill parent"

>

<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFOOFF00"
android:text="This is the first panel"

/>

<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFFF0000"
android:text="This is the second panel”

/>

<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFFFFF00"
android:text="This is the third panel"

/>

</ViewFlipper>
</Linearlayout>

Notice that the layout defines three child views for the ViewFlipper, each a TextView
with a simple message. Of course, you could have very complicated child views, if you
so chose.

To manually flip the views, we need to hook into the Button and flip them ourselves
when the button is clicked:

package com.commonsware.android.flipperi;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.ViewFlipper;

public class FlipperDemo extends Activity {
ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

public void flip(View v) {
flipper.showNext();

CHAPTER 14: Still More Widgets and Containers 151

This is just a matter of calling showNext () on the ViewFlipper, as you can on any
ViewAnimator class. The result is a trivial activity: click the button, and the next TextView
in sequence is displayed, wrapping around to the first after viewing the last, as shown in
Figures 14-11 and 14-12.

£ G Ml @ 3:49pPm

FlipperDemo

Flip Me!

This is the first panel

Figure 14-11. The Flipper1 application, showing the first panel

£ G Ml @ 3:49pPMm
FlipperDemo

Figure 14-12. The same application, after switching to the second panel

152

CHAPTER 14: Still More Widgets and Containers

Of course, this could be handled more simply by having a single TextView and changing
the text and color on each click. However, you can imagine that the ViewFlipper
contents could be much more complicated, like the contents you might put into a
TabView.

As with the TabWidget, sometimes your ViewFlipper contents may not be known at
compile time. And as with TabWidget, you can add new contents on-the-fly with ease.

For example, let’s look at another sample activity (Fancy/Flipper2), using this layout:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>

<ViewFlipper android:id="@+id/details"

android:layout width="fill parent"
android:layout_height="fill parent"

>
</ViewFlipper>
</Linearlayout>

Notice that the ViewFlipper has no contents at compile time. Also notice that there is no
Button for flipping between the contents—more on this in a moment.

For the ViewFlipper contents, we will create large Button widgets, each containing one
of the random words used in many chapters in this book. And, we will set up the
ViewFlipper to automatically rotate between the Button widgets.

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

public class FlipperDemo2 extends Activity {

static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@0verride
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

for (String item : items) {

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 153

Button btn=new Button(this);
btn.setText(item);

flipper.addView(btn,
new ViewGroup.LayoutParams(
ViewGroup.LayoutParams.FILL PARENT,
ViewGroup.LayoutParams.FILL PARENT));

}

flipper.setFlipInterval(2000);
flipper.startFlipping();

}

After iterating over the funky words, turning each into a Button, and adding the Button
as a child of the ViewFlipper, we set up the flipper to automatically flip between children
(flipper.setFlipInterval(2000);) and to start flipping (flipper.startFlipping();).

The result is an endless series of buttons, each of which appears, as shown in Figure
14-13, and then is replaced by the next button in sequence after 2 seconds, wrapping

around to the first after the last has been shown.

Ml @ 7:00em

consectetuer

Figure 14-13. The Flipper2 application

The autoflipping ViewFlipper is useful for status panels or other situations where you
have a lot of information to display, but not much room. However, since it automatically
flips between views, expecting users to interact with individual views is dicey, because
the view might switch away partway through their interaction.

154

CHAPTER 14: Still More Widgets and Containers

Getting in Somebody’s Drawer

For a long time, Android developers yearned for a sliding-drawer container that worked
like the one on the home screen, containing the icons for launching applications. The
official implementation was in the open source code but was not part of the SDK, until
Android 1.5, when the developers released S1idingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching from a closed to
an open position. This puts some restrictions on which container can hold the
SlidingDrawer. It needs to be in a container that allows multiple widgets to sit atop each
other. Relativelayout and FrameLayout satisfy this requirement. FrameLayout is a
container purely for stacking widgets atop one another. On the flip side, LinearlLayout
does not allow widgets to stack (they fall one after another in a row or column), and so
you should not have a SlidingDrawer as an immediate child of a LinearLayout.

Here is a layout showing a SlidingDrawer in a FrameLayout, from the Fancy/DrawerDemo
project:

<?xml version="1.0" encoding="utf-8"?>
<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:background="#FF4444CC"
>
<SlidingDrawer
android:id="@+id/drawer"
android:layout width="fill parent"”
android:layout_height="fill parent"
android:handle="@+id/handle"
android:content="@+id/content">
<ImageView
android:id="@id/handle"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:src="@drawable/tray handle normal"
/>
<Button
android:id="@id/content"
android:layout width="fill parent"
android:layout_height="fill parent"
android:text="I'm in here!"
/>
</SlidingDrawer>
</FramelLayout>

The SlidingDrawer should contain two things:

B A handle, frequently an ImageView or something along those lines,
such as the one used here, pulled from the Android open source
project

B The contents of the drawer itself, usually some sort of container, but a
Button in this example

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers

Moreover, SlidingDrawer needs to know the android:id values of the handle and
contents, via the android:handle and android:content attributes, respectively. These
tell the drawer how to animate itself as it slides open and closed.

Figure 14-14 shows what the SlidingDrawer looks like closed, using the supplied
handle, and Figure 14-15 shows what it looks like open.

O B G s:28pm

DrawerDemo

Figure 14-14. A SlidingDrawer, closed

O Gl @ s:28 Pm

DrawerDemo

I'm in here!

Figure 14-15. A SlidingDrawer, open

155

156

CHAPTER 14: Still More Widgets and Containers

As you might expect, you can open and close the drawer from Java code, as well as via
user touch events. However, you have two sets of these methods: ones that take place
instantaneously (open(),close(), and toggle()) and ones that use the animation
(animateOpen(),animateClose(), and animateToggle()). You can also lock() and
unlock() the drawer; while locked, the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:
B Alistener to be invoked when the drawer is opened
B Alistener to be invoked when the drawer is closed

B Alistener to be invoked when the drawer is “scrolled” (i.e., the user
drags or flings the handle)

For example, the Android launcher’s SlidingDrawer toggles the icon on the handle from
open to closed to “delete” (if you long-tap something on the desktop). It accomplishes
this, in part, through callbacks like these.

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its orientation
despite the screen orientation. In other words, if you rotate the Android device or
emulator running DrawerDemo, the drawer always opens from the bottom—it does not
always “stick” to the original side it opened from. This means that if you want the drawer
to always open from the same side, like the launcher does, you will need separate
layouts for portrait versus landscape, a topic discussed in Chapter 23.

Other Good Stuff

Android offers Absolutelayout, where the contents are laid out based on specific
coordinate positions. You tell AbsolutelLayout where to place a child in precise x and y
coordinates, and Android puts it there, no questions asked. On the plus side, this gives
you precise positioning. On the minus side, it means your views will look right only on
screens of a certain dimension, or you will need to write a bunch of code to adjust the
coordinates based on screen size. Since Android screens might run the gamut of sizes,
with new sizes cropping up periodically, using Absolutelayout could get quite annoying.
Also, note that Absolutelayout is officially deprecated, meaning that although it is
available to you, its use is discouraged.

Android also has the ExpandablelListView. This provides a simplified tree representation,
supporting two levels of depth: groups and children. Groups contain children; children
are “leaves” of the tree. This requires a new set of adapters, since the ListAdapter
family does not provide any sort of group information for the items in the list.

Here are some other widgets available in Android beyond those covered so far in this
book:

B CheckedTextView: A TextView that can have either a check box or a
radio button next to it, used with single- and multiple-choice lists

B Chronometer: A stopwatch-style countdown timer

CHAPTER 14: Still More Widgets and Containers

Gallery: A horizontal scrolling selection widget, designed for
thumbnail previews of images (e.g., camera photos and album covers)

MultiAutoCompleteTextView: Like an AutoCompleteTextView, except
that the user can make multiple choices from the drop-down list,
rather than just one

QuickContactBadge: Given the identity of a contact from the user’s
contacts database, displays a roster of icons representing actions to
be performed on that contact (place a call, send a text message, send
an e-mail, etc.)

ToggleButton: A two-state button where the states are indicated by a
“light” and prose ("ON", "OFF") instead of a check mark

ViewSwitcher (and the ImageSwitcher and TextSwitcher subclasses):
Like a simplified ViewFlipper for toggling between two views

157

Chapter

Embedding the WebKit
Browser

Other GUI toolkits let you use HTML for presenting information, from limited HTML
renderers (e.g., Java/Swing and wxWidgets) to embedding Internet Explorer into .NET
applications. Android is much the same, in that you can embed the built-in web browser
as a widget in your own activities, for displaying HTML or full-fledged browsing. The
Android browser is based on WebKit, the same engine that powers Apple’s Safari web
browser.

The Android browser is sufficiently complex that it gets its own Java package
(android.webkit). Using the WebView widget itself can be simple or powerful, based on
your requirements.

A Browser, Writ Small

For simple stuff, WebView is not significantly different from any other widget in Android—
pop it into a layout, tell it which URL to navigate to via Java code, and you are finished.

For example, here is a simple layout with a WebView (from WebKit/Browser1):

<?xml version="1.0" encoding="utf-8"?>

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

As with any other widget, you need to tell it how it should fill up the space in the layout
(in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browseri;

import android.app.Activity;

159

http://schemas.android.com/apk/res/android

160 CHAPTER 15: Embedding the WebKit Browser

import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");

}
}

The only thing unusual with this edition of onCreate() is that we invoke loadUrl() on the
WebView widget, to tell it to load a web page (in this case, the home page of some
random firm).

However, we also need to make one change to AndroidManifest.xml, requesting
permission to access the Internet:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browser1">
<uses-permission android:name="android.permission.INTERNET"/>
<application android:icon="@drawable/cw">
<activity android:name=".BrowserDemol1" android:label="BrowserDemo1">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

If we fail to add this permission, the browser will refuse to load pages. Permissions will
be covered in greater detail in Chapter 38.

The resulting activity looks like a web browser, but with hidden scrollbars, as shown in
Figure 15-1.

http://commonsware.com
http://schemas.android.com/apk/res/android

CHAPTER 15: Embedding the WebKit Browser

Bl @ s:13pPm
BrowserDemo1
Home
Comm
All
About
the
R R e comm
What We Offer The
> N firm's
> F alr
S ce mission
is to
o help
General Info people
> Privacy Policy and
> Founder’s Bio organizatior

Figure 15-1. The BrowserDemo1 sample application

As with the regular Android browser, you can pan around the page by dragging it, while
the D-pad moves you around all the focusable elements on the page. What is missing is
all the extra stuff that make up a web browser, such as a navigational toolbar.

Now, you may be tempted to replace the URL in that source code with something that
relies on JavaScript, such as Google’s home page. By default, JavaScript is turned off in
WebView widgets. If you want to enable JavaScript, call
getSettings().setJavaScriptEnabled(true); on the WebView instance. This option is
covered in a bit more detail later in this chapter.

Loading It Up

There are two main ways to get content into the WebView. One, described in the previous
section, is to provide the browser with a URL and have the browser display that page via
loadurl(). The browser will access the Internet through whatever means are available to
that specific device at the present time (Wi-Fi, 2G, 3G, WiMAX, well-trained tiny carrier
pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the browser to view.
You might use this to do the following:

B Display a manual that was installed as a file with your application
package

B Display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

161

162

CHAPTER 15: Embedding the WebKit Browser

B Generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadData(). The simpler one allows you to provide the content,
the MIME type, and the encoding, all as strings. Typically, your MIME type will be
text/html and your encoding will be UTF-8 for ordinary HTML.

For example, you could replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html"”, "UTF-8");

You would get the result shown in Figure 15-2.

il @ 8:18pPM
BrowserDemo2

Hello, world!

Figure 15-2. The BrowserDemoZ2 sample application

This is also available as a fully buildable sample, as WebKit/Browser2.

Navigating the Waters

As previously mentioned, the WebView widget doesn’t have a navigation toolbar. This
allows you to use it in places where such a toolbar would be pointless and a waste of
screen real estate. That being said, if you want to offer navigational capabilities, you can,
but you have to supply the Ul.

WebView offers ways to perform garden-variety browser navigation, including the
following methods:

B reload(): Refreshes the currently viewed web page

CHAPTER 15: Embedding the WebKit Browser

goBack(): Goes back one step in the browser history
canGoBack(): Determines if there is any history to go back to
goForward(): Goes forward one step in the browser history

canGoForward(): Determines if there is any history to go forward to

goBackOrForward(): Goes backward or forward in the browser history,
where a negative number as an argument represents how many steps
to go backward, and a positive number represents how many steps to
go forward

B canGoBackOrForward(): Determines if the browser can go backward or
forward the stated number of steps (following the same
positive/negative convention as goBackOrForward())

B clearCache(): Clears the browser resource cache

B clearHistory(): Clears the browsing history

Entertaining the Client

If you are going to use the WebView as a local Ul (versus browsing the Web), you will
want to be able to get control at key times, particularly when users click links. You will
want to make sure those links are handled properly, either by loading your own content
back into the WebView, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see Chapter 22).

Your hook into the WebView activity is via setWebViewClient(), which takes an instance
of a WebViewClient implementation as a parameter. The supplied callback object will be
notified of a wide range of events, from when parts of a page have been retrieved
(onPageStarted(), etc.) to when you, as the host application, need to handle certain
user- or circumstance-initiated events, such as onTooManyRedirects() or
onReceivedHttpAuthRequest().

A common hook will be shouldOverrideUrlLoading(), where your callback is passed a
URL (plus the WebView itself), and you return true if you will handle the request or false if
you want default handling (e.g., actually fetch the web page referenced by the URL). In
the case of a feed reader application, for example, you will probably not have a full
browser with navigation built into your reader. In this case, if the user clicks a URL, you
probably want to use an Intent to ask Android to load that page in a full browser. But if
you have inserted a “fake” URL into the HTML, representing a link to some activity-
provided content, you can update the WebView yourself.

163

164

CHAPTER 15: Embedding the WebKit Browser

As an example, let’s amend the first browser demo to make it an application that, upon
a click, shows the current time. From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);
browser.setWebViewClient(new Callback());

loadTime();
}

void loadTime() {
String page="<html><body>"
+new Date().toString()
+"</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

private class Callback extends WebViewClient {
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);

}
}

Here, we load into the browser (LoadTime()) a simple web page that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance of a
WebViewClient subclass, providing our implementation of shouldOverrideUrlLoading().
In this case, no matter what the URL, we want to just reload the WebView via loadTime().

Running this activity gives the result shown in Figure 15-3.

CHAPTER 15: Embedding the WebKit Browser 165

Ml @ 9:46 Pm
BrowserDemo3

Thu Aug 21 21:46:26 GMT+00:00 2008

Figure 15-3. The BrowserDemo3 sample application

Selecting the link and clicking the D-pad center button will “click” the link, causing the
page to be rebuilt with the new time.

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop web browser, you have some sort of settings, preferences, or
options window. Between that and the toolbar controls, you can tweak and twiddle the
behavior of your browser, from preferred fonts to the behavior of JavaScript. Similarly,
you can adjust the settings of your WebView widget as you see fit, via the WebSettings
instance returned from calling the widget’s getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly esoteric (e.g.,
setFantasyFontFamily()). However, here are some that you may find more useful:

B Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like LARGER
and SMALLEST)

B Control JavaScript via setJavaScriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows)

B Control web site rendering via setUserAgent(), so you can supply your
own user agent string to make the web server think you are a desktop
browser, another mobile device (e.g., an iPhone), or whatever

166 CHAPTER 15: Embedding the WebKit Browser

The settings you change are not persistent, so you should store them somewhere (such
as via the Android preferences engine) if you are allowing your users to determine the
settings, versus hard-wiring the settings in your application.

Chapter

Applying Menus

Like applications for the desktop and some mobile operating systems, Android supports
activities with application menus. Most Android phones have a dedicated menu key for
popping up the menu; other devices offer alternate means for triggering the menu to
appear, such as the onscreen button used by the Archos 5 Android tablet.

Also, as with many GUI toolkits, you can create context menus for your Android
applications. On a traditional GUI, a context menu might be triggered by the user
clicking with the right-mouse button. On mobile devices, context menus typically appear
when the user taps and holds over a particular widget. For example, if a TextView had a
context menu, and the device was designed for finger-based touch input, you could
push the TextView with your finger, hold it for a second or two, and a pop-up menu
would appear.

Flavors of Menu

Android refers to the two types of menu described in the preceding section as options
menus and context menus. The options menu is triggered by pressing the hardware
Menu button on the device, while the context menu is raised by a tap-and-hold on the
widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and expanded. When
the user first presses the Menu button, the icon mode will appear, showing up to the first
six menu choices as large, finger-friendly buttons in a grid at the bottom of the screen. If
the menu has more than six choices, the sixth button will be labeled More. Tapping the
More option will bring up the expanded mode, showing the remaining choices not visible
in the regular menu. The menu is scrollable, so the user can get to any of the menu
choices.

167

168

CHAPTER 16: Applying Menus

Menus of Options

Instead of building your activity’s options menu during onCreate(), the way you wire up
the rest of your Ul, you need to implement onCreateOptionsMenu(). This callback
receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in any menu
choices it feels are necessary. Then you can go about adding your own options, as
described in this section.

If you will need to adjust the menu during your activity’s use (e.g., disable a now-invalid
menu choice), just hold onto the Menu instance you receive in onCreateOptionsMenu().
Alternatively, you can implement onPrepareOptionsMenu(), which is called just before
displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you add menu
choices by calling add(). There are many flavors of this method, which require some
combination of the following parameters:

B A group identifier (int), which should be NONE unless you are creating a
specific grouped set of menu choices for use with
setGroupCheckable() (described shortly)

B A choice identifier (also an int), for use in identifying this choice in the
onOptionsItemSelected() callback when a menu choice is chosen

B An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own; for now, just use NONE

B The text of the menu choice, as a String or a resource ID

The add() family of methods all return an instance of MenuItem, where you can adjust
any of the menu item settings you have already set (e.g., the text of the menu choice).

You can also set the shortcuts for the menu choice, which are single-character
mnemonics that choose that menu item when the menu is visible. Android supports both
an alphabetic (or QWERTY) set of shortcuts and a numeric set of shortcuts. These are
set individually by calling setAlphabeticShortcut() and setNumericShortcut(),
respectively. The menu is placed into alphabetic shortcut mode by calling
setQuwertyMode() on the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu features, such
as the following:

B Calling MenuItem#tsetCheckable() with a choice identifier, to control if
the menu choice has a two-state check box alongside the title, where
the check box value is toggled when the user chooses that menu item

CHAPTER 16: Applying Menus

B Calling MenuttsetGroupCheckable() with a group identifier, to turn a set
of menu choices into ones with a mutual-exclusion radio button
between them, so that only one item in the group can be in the
checked state at any time

Finally, you can create fly-out submenus by calling addSubMenu(), supplying the same
parameters as addMenu(). Android will eventually call onCreatePanelMenu(), passing it
the choice identifier of your submenu, along with another Menu instance representing the
submenu itself. As with onCreateOptionsMenu(), you should chain upward to the
superclass, and then add menu choices to the submenu. One limitation is that you
cannot indefinitely nest submenus—a menu can have a submenu, but a submenu
cannot have a sub-submenu.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are given the
MenuItem object corresponding to the selected menu choice. A typical pattern is to
switch() onthe menu ID (item.getItemId()) and take appropriate behavior. Note that
onOptionsItemSelected() is used regardless of whether the chosen menu item was in
the base menu or a submenu.

Menus in Context

By and large, context menus use the same guts as options menus. The two main
differences are how you populate the menu and how you are informed of menu choices.

First, you need to indicate which widget(s) on your activity have context menus. To do
this, call registerForContextMenu() from your activity, supplying the View that is the
widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other things, is
passed the View you supplied in registerForContextMenu(). You can use that to
determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the context
menu is associated with, and a ContextMenu.ContextMenuInfo, which tells you which
item in the list the user did the tap-and-hold over, in case you want to customize the
context menu based on that information. For example, you could toggle a checkable
menu choice based on the current state of the item.

It is also important to note that onCreateContextMenu() gets called each time the context
menu is requested. Unlike the options menu (which is built only once per activity),
context menus are discarded after they are used or dismissed. Hence, you do not want
to hold onto the supplied ContextMenu object; just rely on getting the chance to rebuild
the menu to suit your activity’s needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you get only the MenuItem instance
that was chosen in this callback. As a result, if your activity has two or more context
menus, you may want to ensure they have unique menu item identifiers for all their

169

170

CHAPTER 16: Applying Menus

choices, so you can distinguish between them apart in this callback. Also, you can call
getMenuInfo() on the MenuItem to get the ContextMenu.ContextMenuInfo you received in
onCreateContextMenu(). Otherwise, this callback behaves the same as
onOptionsItemSelected() as described in the previous section.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the ListView
sample (List) with associated menus. Since the menus do not affect the layout, the XML
layout file does not need to be changed and thus is not reprinted here. However, the
Java code has a few new behaviors:

package com.commonsware.android.menus;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.DialogInterface;
import android.os.Bundle;

import android.view.ContextMenu;
import android.view.Menu;

import android.view.MenuItem;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class MenuDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae", "arcu", "aliquet",
"mollis", "etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

public static final int MENU_ADD = Menu.FIRST+1;

public static final int MENU_RESET = Menu.FIRST+2;

public static final int MENU_CAP = Menu.FIRST+3;

public static final int MENU_REMOVE = Menu.FIRST+4 ;

private Arraylist<String> words=null;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

initAdapter();
registerForContextMenu(getListView());

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
menu
.add(Menu.NONE, MENU ADD, Menu.NONE, "Add")
.setIcon(R.drawable.ic_menu_add);

CHAPTER 16: Applying Menus 171

menu
.add(Menu.NONE, MENU RESET, Menu.NONE, "Reset")
.setIcon(R.drawable.ic_menu_refresh);

return(super.onCreateOptionsMenu(menu));

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menulnfo) {
menu.add(Menu.NONE, MENU CAP, Menu.NONE, "Capitalize");

menu.add(Menu.NONE, MENU REMOVE, Menu.NONE, "Remove");
}

@0verride

public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case MENU_ADD:
add();
return(true);

case MENU_RESET:

initAdapter();
return(true);

return(super.onOptionsItemSelected(item));

@0verride

public boolean onContextItemSelected(MenuItem item) {
AdapterView.AdapterContextMenuInfo info=

(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case MENU_CAP:
String word=words.get(info.position);
word=word.toUpperCase();

adapter.remove (words.get(info.position));
adapter.insert(word, info.position);

return(true);

case MENU_REMOVE:
adapter.remove (words.get(info.position));
return(true);

return(super.onContextItemSelected(item));

private void initAdapter() {

172 CHAPTER 16: Applying Menus

words=new ArraylList<String>();

for (String s : items) {
words.add(s);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1, words));
}

private void add() {
final View addView=getLayoutInflater().inflate(R.layout.add, null);

new AlertDialog.Builder(this)
.setTitle("Add a Word")
.setView(addView)
.setPositiveButton("0K",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
EditText title=(EditText)addView.findViewById(R.id.title);

adapter.add(title.getText().toString());

}
b
.setNegativeButton("Cancel", null)
.show();

}

In onCreate(), we register our ListView widget as having a context menu. We also
delegate loading the adapter to an initAdapter() private method, one that copies the
data out of our static String array and pours it into an ArraylList, using the Arraylist
for the ArrayAdapter. The reason we do this is that we want to be able to change the
contents of the list on-the-fly, and that is much easier if we use an ArraylList rather than

an ordinary String array.

For the options menu, we override onCreateOptionsMenu() and add two menu items,
one to add a new word to the list and one to reset the words to their initial state. These
menu items have IDs defined locally as static data members (MENU_ADD and MENU_RESET),
and they also sport icons copied from the Android open source project. If the user

displays the menu, it looks as shown in Figure 16-1.

CHAPTER 16: Applying Menus 173

Nl & 2:37em

amet

consectetuer

) =
@ [¥
Add Reset

Figure 16-1. The MenuDemo sample application and its options menu

We also override onOptionsItemSelected(), which will be called if the user makes a
choice from the menu. The supplied MenuItem has a getItemId() method that should
map to either MENU_ADD or MENU_RESET. In the case of MENU_ADD, we call a private add()
method that displays an AlertDialog with a custom View as its contents, inflated from
res/layout/add.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="wrap_content"
>
<TextView
android:text="Word:"
android:layout width="wrap content"
android:layout_height="wrap_content"
/>
<EditText
android:id="@+id/title"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
/>
</Linearlayout>

That produces a dialog like the one shown in Figure 16-2.

http://schemas.android.com/apk/res/android

174

CHAPTER 16: Applying Menus

DMl @ 2:38em

@ Add a Word

Figure 16-2. The same application, showing the Add a Word dialog

If the user taps the OK button, we get our ArrayAdapter and call add() on it, adding the
entered word to the end of the list.

If the user chooses MENU_RESET, we call initAdapter() again, setting up a new
ArrayAdapter and attaching it to our ListActivity.

For the context menu, we override onCreateContextMenu(). Once again, we define a pair
of menu items with local IDs, MENU_CAP (to capitalize the long-tapped-upon word) and
MENU_REMOVE (to remove the word). Since context menus have no icons, we can skip that
part. That gives the user the context menu shown in Figure 16-3 if they long-tap on a
word.

CHAPTER 16: Applying Menus

Ml & 2:39em

Capitalize

Remove

Figure 16-3. The same application, showing the context menu

We also override onContextMenuSelected(). Since this is a context menu for a ListView,
our MenuItem has some extra information for us —specifically, which item was long-
tapped upon in the list. To do that, we call getMenuInfo() on the MenuItem and cast the
result to be an AdapterView.AdapterContextMenuInfo. That object, in turn, has a position
data member, which is the index into our array of the word the user chose. From there,
we work with our ArrayAdapter to capitalize or remove the word, as requested.

Yet More Inflation

Chapter 13 explained how you can describe Views via XML files and “inflate” them into
actual View objects at runtime. Android also allows you to describe menus via XML files
and inflate them when a menu is needed. This helps you keep your menu structure
separate from the implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types of resources
that your project might employ. As with layouts, you can have several menu XML files in
your project, each with its own filename and the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called
option.xml:

175

176

CHAPTER 16: Applying Menus

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add" />
<item android:id="@+id/reset"
android:title="Reset"
android:icon="@drawable/ic_menu_refresh" />
</menu>

B You must start with a menu root element.

B Inside a menu element are item elements and group elements, the latter
representing a collection of menu items that can be operated upon as
a group.

B Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents of
the submenu.

B If you want to detect when an item is chosen, or to reference an item
or group from your Java code, be sure to apply an android:id, just as
you do with View layout XML.

Menu Options and XML

Inside the item and group elements, you can specify various options, matching up with

corresponding methods on Menu or MenuItem, as follows:

B Title: The title of a menu item is provided via the android:title
attribute on an item element. This can be either a literal string or a
reference to a string resource (e.g., @string/foo).

B /con: Menu items optionally have icons. To provide an icon, in the form
of a reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

B Order: By default, the order of the items in the menu is determined by
the order in which they appear in the menu XML. You can change that
order by specifying the android:orderInCategory attribute on the item
element. This is a 0-based index of the order for the items associated
with the current category. There is an implicit default category; groups
can provide an android:menuCategory attribute to specify a different
category to use for items in that group. Generally, though, it is simplest
just to put the items in the XML in the order you want them to appear.

B Enabled: Items and groups can be enabled or disabled, controlled in
the XML via the android:enabled attribute on the item or group
element. By default, items and groups are enabled. Disabled items and
groups appear in the menu but cannot be selected. You can change

http://schemas.android.com/apk/res/android

CHAPTER 16: Applying Menus 177

an item’s status at runtime via the setEnabled() method on MenuItem,
or change a group’s status via setGroupEnabled() on Menu.

B Visible: Items and groups can be visible or invisible, controlled in the
XML via the android:visible attribute on the item or group element.
By default, items and groups are visible. Invisible items and groups do
not appear in the menu. You can change an item’s status at runtime
via the setVisible() method on MenuItem, or change a group’s status
via setGroupVisible() on Menu.

B Shortcut: Items can have shortcuts—single letters
(android:alphabeticShortcut) or numbers (android:numericShortcut)
that can be pressed to choose the item without having to use the
touchscreen, D-pad, or trackball to navigate the full menu.

Inflating the Menu

Actually using the menu, once it’s defined in XML, is easy. Just create a MenuInflater
and tell it to inflate your menu.

The Menus/Inflation project is a clone of the Menus/Menus project, with the menu
creation converted to use menu XML resources and MenuInflater. The options menu
was converted to the XML shown previously in this section; here is the context menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/cap"
android:title="Capitalize" />
<item android:id="@+id/remove"
android:title="Remove" />
</menu>

The Java code is nearly identical, changing mostly in the implementation of
onCreateOptionsMenu() and onCreateContextMenu():

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
new MenuInflater(this).inflate(R.menu.context, menu);

}

Here, we see how MenuInflater “pours” the menu items specified in the menu resource
(e.g., R.menu.option) into the supplied Menu or ContextMenu object.

We also need to change onOptionsItemSelected() and onContextItemSelected() to use
the android:id values specified in the XML:

http://schemas.android.com/apk/res/android

178 CHAPTER 16: Applying Menus

@0verride

public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.add:
add();
return(true);

case R.id.reset:

initAdapter();
return(true);

return(super.onOptionsItemSelected(item));

@0verride
public boolean onContextItemSelected(MenuItem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case R.id.cap:
String word=words.get(info.position);
word=word.toUpperCase();

adapter.remove(words.get(info.position));
adapter.insert(word, info.position);

return(true);

case R.id.remove:
adapter.remove(words.get(info.position));

return(true);

return(super.onContextItemSelected(item));

In the Land of Menus and Honey

Android 3.0 (a.k.a. Honeycomb) introduced a new look and feel for Android applications,
particularly on tablets. Options menus in particular change from being something
triggered by a Menu button to a drop-down menu from the action bar. Fortunately, this
is backward-compatible, so your existing menus will not need to change to adopt this
new look. The concept of the new Honeycomb look is covered in Chapter 26, and the

action bar itself is covered in Chapter 27.

Chapter

Showing Pop-Up
Messages

Sometimes, your activity (or other piece of Android code) will need to speak up.

Not every interaction with Android users will be tidy and containable in activities
composed of views. Errors will crop up. Background tasks may take much longer than
expected. Something asynchronous may occur, such as an incoming message. In these
and other cases, you may need to communicate with the user outside the bounds of the
traditional user interface.

Of course, this is nothing new. Error messages in the form of dialog boxes have been
around for a long time. More subtle indicators also exist, from task tray icons to
bouncing dock icons to vibrating cell phones.

Android has quite a few systems for letting you alert your users outside the bounds of an
Activity-based Ul. One, notifications, is tied heavily into intents and services and, as
such, is covered Chapter 37. In this chapter, you will learn about two means of raising
pop-up messages: toasts and alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently active
Activity, so if the user is busy writing the next Great Programming Guide, keystrokes
will not be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it. You
get no acknowledgment from the user, nor does the message stick around for a long
time to pester the user. Hence, the Toast is mostly for advisory messages, such as
indicating a long-running background task is completed, the battery has dropped to a
low level, and so on.

179

180

CHAPTER 17: Showing Pop-Up Messages

Making a Toast is fairly easy. The Toast class offers a static makeText() method that
accepts a String (or string resource ID) and returns a Toast instance. The makeText()
method also needs the Activity (or other Context) plus a duration. The duration is
expressed in the form of the LENGTH_SHORT constant or LENGTH_LONG constant to indicate,
on a relative basis, how long the message should remain visible.

If you would prefer your Toast be made out of some other View, rather than be a boring
old piece of text, simply create a new Toast instance via the constructor (which takes a
Context), and then call setView() to supply it with the view to use and setDuration() to
set the duration.

Once your Toast is configured, call its show() method, and the message will be
displayed. You will see an example of this in action later in this chapter.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you want is an
AlertDialog. As with any other modal dialog box, an AlertDialog pops up, grabs the
focus, and stays there until closed by the user. You might use this for a critical error, a
validation message that cannot be effectively displayed in the base activity Ul, or some
other situation where you are sure that the user needs to see the message immediately.

The simplest way to construct an AlertDialog is to use the Builder class. Following in
true builder style, Builder offers a series of methods to configure an AlertDialog, each
method returning the Builder for easy chaining. At the end, you call show() on the
builder to display the dialog.

Commonly used configuration methods on Builder include the following:

B setMessage(): Sets the “body” of the dialog to be a simple textual
message, from either a supplied String or a supplied string resource ID

B setTitle() and setIcon(): Configure the text and/or icon to appear in
the title bar of the dialog box

B setPositiveButton(),setNegativeButton(): Indicate which button(s)
should appear across the bottom of the dialog, where they should be
positioned (left, center, or right, respectively), what their captions
should be, and what logic should be invoked when the button is
clicked (besides dismissing the dialog).

If you need to configure the AlertDialog beyond what the builder allows, instead of
calling show(), call create() to get the partially built AlertDialog instance, configure it
the rest of the way, and then call one of the flavors of show() on the AlertDialog itself.
Once show() is called, the dialog will appear and await user input.

Note that pressing any of the buttons will close the dialog, even if you have registered a
listener for the button in question. Hence, if all you need a button to do is close the
dialog, give it a caption and a null listener. There is no option, with AlertDialog, to have
a button at the bottom invoke a listener yet not close the dialog.

CHAPTER 17: Showing Pop-Up Messages 181

Checking Them Qut

To see how these work in practice, take a peek at Messages/Message, containing the
following layout:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/alert"
android:text="Raise an alert"
android:layout width="fill parent"
android:layout_height="fill parent"
android:onClick="showAlert"

/>

The following is the Java code:

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

}

public void showAlert(View view) {
new AlertDialog.Builder(this)
.setTitle("MessageDemo")
.setMessage("Let's raise a toast!")
.setNeutralButton("Here, here!", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dlg, int sumthin) {
Toast
.makeText(MessageDemo.this, "<clink, clink>",
Toast.LENGTH_SHORT)
.show();

}
)
.show();
}

}
The layout is unremarkable—just a really large Button to show the AlertDialog.
When you click the Button, we use a builder (new Builder(this)) to set the title
(setTitle("MessageDemo")), message (setMessage("Let's raise a toast!")), and
neutral button (setNeutralButton("Here, here!", new OnClickListener() ...) before
showing the dialog. When the button is clicked, the OnClickListener callback triggers
the Toast class to make us a text-based toast (makeText(this, "<clink, clink>",
LENGTH_SHORT)), which we then show(). The result is a typical dialog, as shown in Figure
17-1.

http://schemas.android.com/apk/res/android

182 CHAPTER 17: Showing Pop-Up Messages

Ml & 9:57am

(® MessageDemo

Let's raise a toast!

Here, here!

Figure 17-1. The MessageDemo sample application, after clicking the Raise an alert button

When you close the dialog via the button, it raises the toast, as shown in Figure 17-2.

G 9:57 am

Raise an alert

<clink, clink>

Figure 17-2. The same application, after clicking the Make a toast button

Chapter

Handling Activity
Lifecycle Events

As you know, Android devices, by and large, are phones. As such, some activities are
more important than others—taking a call is probably more important to users than
playing Sudoku. And, since it is a phone, it probably has less RAM than your current
desktop or notebook.

As a result of the phone’s limited RAM, your activity may find itself being killed off
because other activities are going on and the system needs your activity’s memory.
Think of it as the Android equivalent of the circle of life—your activity dies so others may
live, and so on. You cannot assume that your activity will run until you think it is
complete, or even until the user thinks it is complete. This is one example, perhaps the
most important, of how an activity’s life cycle will affect your own application logic.

This chapter covers the various states and callbacks that make up an activity’s life cycle,
and how you can hook into them appropriately.

Schroedinger’s Activity

An activity, generally speaking, is in one of four states at any point in time:

B Active: The activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

B Paused: The activity was started by the user, is running, and is visible,
but a notification or something is overlaying part of the screen. During
this time, the user can see your activity but may not be able to interact
with it. For example, if a call comes in, the user will get the opportunity
to take the call or ignore it.

183

184

CHAPTER 18: Handling Activity Lifecycle Events

B Stopped: The activity was started by the user, is running, but is hidden
by other activities that have been launched or switched to. Your
application will not be able to present anything meaningful to the user
directly, but may communicate by way of a Notification.

B Dead: Either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of available
memory.

Life, Death, and Your Activity

Android uses the methods described in this section to call into your activity as the
activity transitions between the four states listed in the previous section. Some
transitions may result in multiple calls to your activity, and sometimes Android will kill
your application without calling it. This whole area is rather murky and probably subject
to change, so pay close attention to the official Android documentation as well as this
section when deciding which events deserve attention and which you can safely ignore.

Note that for all of these methods, you should chain upward and invoke the superclass’s
edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This method will be called in three situations:

B When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

B If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSavelnstanceState() as a parameter (as described in the next
section).

B [f the activity had been running and you have set up your activity to
have different resources based on different device states (e.qg.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called. Working with resources is covered in
Chapter 23.

Here is where you initialize your Ul and set up anything that needs to be done once,
regardless of how the activity is used.

On the other end of the life cycle, onDestroy() may be called when the activity is
shutting down, either because the activity called finish() (which “finishes” the activity)
or because Android needs RAM and is closing the activity prematurely. Note that
onDestroy() may not be called if the need for RAM is urgent (e.g., an incoming phone

CHAPTER 18: Handling Activity Lifecycle Events 185

call), but the activity will still be shut down. Hence, onDestroy() is mostly for cleanly
releasing resources you obtained in onCreate() (if any).

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being launched or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity or by an incoming phone call). The onStart() method is called in either
of those cases.

The onRestart() method is called in the case where the activity had been stopped and
is now restarting.

Conversely, onStop() is called when the activity is about to be stopped.

onPause() and onResume()

The onResume() method is called just before your activity comes to the foreground,
either after being initially launched, after being restarted from a stopped state, or after a
pop-up dialog (e.g., an incoming call) is cleared. This is a great place to refresh the Ul
based on things that may have occurred since the user was last looking at your activity.
For example, if you are polling a service for changes to some information (e.g., new
entries for a feed), onResume() is a fine time to both refresh the current view and, if
applicable, kick off a background thread to update the view (e.g., via a Handler).

Conversely, anything that steals your user away from your activity —typically, the
activation of another activity — will result in your onPause() being called. Here, you
should undo anything you did in onResume(), such as stopping background threads,
releasing any exclusive-access resources you may have acquired (e.g., camera), and the
like.

Once onPause() is called, Android reserves the right to kill off your activity’s process at
any point. Hence, you should not be relying on receiving any further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the application-
general level (e.g., wiring together the last pieces of your Ul in onCreate() or closing
down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of seamlessness.
Activities may come and go as dictated by memory requirements, but ideally, users are
unaware that this is going on. If, for example, a user was using a calculator, took a lunch
break, and returned to that calculator, he should see whatever number he was working
on before the break, unless he took some action to close down the calculator (e.g.,
pressed the Back button to exit it).

186

CHAPTER 18: Handling Activity Lifecycle Events

To make all this work, activities need to be able to save their application-instance state,
and to do so quickly and cheaply. Since activities could be killed off at any time,
activities may need to save their state more frequently than you might expect. Then,
when the activity restarts, the activity should get its former state back, so it can restore
the activity to the way it appeared previously. Think of it as establishing a bookmark,
such that when the user returns to that bookmark, you can restore the application to the
same state that it was in when the user left it.

Saving instance state is handled by onSaveInstanceState(). This supplies a Bundle, into
which activities can pour whatever data they need (e.g., the number showing on the
calculator’s display). This method implementation needs to be speedy, so do not try to
be fancy—just put your data in the Bundle and exit the method.

That instance state is provided to you again in two places: in onCreate() and in
onRestoreInstanceState(). It is your choice when you wish to reapply the state data to
your activity —either callback is a reasonable option.

The built-in implementation of onSaveInstanceState() will save likely mutable state from
a subset of widgets. For example, it will save the text in an EditText, but it will not save
the status of whether a Button is enabled or disabled. This works as long as the widgets
are uniquely identified via their android:id attributes.

Hence, if you implement onSaveInstanceState(), you can either chain upward and
leverage the inherited implementation or not and override the inherited implementation.
Similarly, some activities may not need onSavelnstanceState() to be implemented at all,
as the built-in one handles everything that is needed.

Chapter

Handling Rotation

Some Android devices offer a slide-out keyboard that triggers rotating the screen from
portrait to landscape orientation. Other devices use accelerometers to determine when
the screen rotates. As a result, it is reasonable to assume that switching from portrait to
landscape orientation and back again may be something that users of your application
will want to do.

As this chapter describes, Android has a number of ways for you to handle screen
rotation so that your application can properly handle either orientation. Keep in mind,
though, that these facilities only help you to detect and manage the rotation process—
you still must make sure your layouts look decent in each orientation.

A Philosophy of Destruction

By default, when there is a change in the device configuration that might affect resource
selection, Android will destroy and re-create any running or paused activities the next
time they are to be viewed. This could happen for a variety of different configuration
changes, including these:

B Rotating the screen (i.e., orientation change)

B Extending or hiding a physical keyboard on devices that have a sliding
keyboard

B Putting the device in a car or desk dock, or removing it from a dock
B Changing the locale, and thereby changing the preferred language

Screen rotation is the change most likely to trip you up, since a change in orientation
can cause your application to load a different set of resources (e.g., layouts).

The key here is that Android’s default behavior of destroying and re-creating any running
or paused activities is probably the behavior that is best for most of your activities. You
do have some control over the matter, though, and can tailor how your activities
respond to orientation changes or similar configuration switches.

187

188 CHAPTER 19: Handling Rotation

It’s All the Same, Just Different

Since, by default, Android destroys and re-creates your activity on a rotation, you may
only need to hook into the same onSavelInstanceState() that you would if your activity
were destroyed for any other reason (e.g., low memory). Implement that method in your
activity and fill in the supplied Bundle with enough information to get you back to your
current state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick the
data out of the Bundle and use it to restore your activity to the way it was.

To demonstrate this, let’s take a look at the Rotation/RotationOne project. This and the
other sample projects in this chapter use a pair of main.xml layouts, one in res/layout/
for use in portrait mode and one in res/layout-1and/ for use in landscape mode. Here is
the portrait layout:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"

>

<Button android:id="@+id/pick"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"

/>

<Button android:id="@+id/view"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"

/>

</Linearlayout>

Here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="fill parent"

>

<Button android:id="@+id/pick"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"

/>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation

<Button android:id="@+id/view"
android:layout width="fill parent"”
android:layout_height="fill parent"

android:layout weight="1
android:text="View"
android:enabled="false"
android:onClick="viewContact"
/>
</Linearlayout>

Basically, both layouts contain a pair of buttons, each taking up half the screen. In
portrait mode, the buttons are stacked; in landscape mode, they are side by side.

If you were to simply create a project, put in those two layouts, and compile it, the
application would appear to work just fine—a rotation (Ctrl+F12 in the emulator) will
cause the layout to change. And while buttons lack state, if you were using other
widgets (e.g., EditText), you would even find that Android hangs onto some of the
widget state for you (e.g., the text entered in the EditText).

What Android cannot help you with automatically is anything held outside the widgets.

Picking and Viewing a Contact

This application lets users pick a contact and then view the contact, via separate
buttons. The View button is enabled only after the user picks a contact via the Pick
button. Let’s take a closer look at how this feat is accomplished.

When the user clicks the Pick button, we call startActivityForResult(). Thisis a
variation on startActivity(), designed for activities that are set up to return some sort
of result—a user’s choice of file, contact, or whatever. Relatively few activities are set up
this way, so you cannot expect to call startActivityForResult() and get answers from
any activity you choose.

In this case, we want to pick a contact. There is an ACTION_PICK Intent action available
in Android that is designed for this sort of scenario. An ACTION_PICK Intent indicates to
Android that we want to pick...something. That “something” is determined by the Uri we
put in the Intent.

In our case, it turns out that we can use an ACTION_PICK Intent for certain system-
defined Uri values to let the user pick a contact from the device’s list of contacts. In
particular, on Android 2.0 and higher, we can use
android.provider.ContactsContract.Contacts.CONTENT URI for this purpose:

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT_URI);

startActivityForResult(i, PICK REQUEST);
}

For Android 1.6 and earlier, there is a separate android.provider.Contacts.CONTENT URI
that we could use.

189

190

CHAPTER 19: Handling Rotation

The second parameter to startActivityForResult() is an identifying number, to help us
distinguish this call to startActivityForResult() from any others we might make.
Calling startActivityForResult() with an ACTION PICK Intent for the
Contacts.CONTENT _URI will bring up a contact-picker activity, supplied by Android.

When the user taps a contact, the picker activity ends (e.g., via finish()), and control
returns to our activity. At that point, our activity is called with onActivityResult().
Android supplies us with three pieces of information:

B The identifying number we supplied to startActivityForResult(), so
we can match this result to its original request

B Aresult status, either RESULT_OK or RESULT_CANCELED, to indicate
whether the user made a positive selection or abandoned the picker
(e.g., by pressing the Back button)

B An Intent that represents the result data itself, for a RESULT_OK
response

The details of what is in the Intent will need to be documented by the activity that you
called. In the case of an ACTION_PICK Intent for the Contacts.CONTENT URI, the returned
Intent has its own Uri (via getData()) that represents the chosen contact. In the
RotationOne example, we stick that in a data member of the activity and enable the View
button:

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK _REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);

}
}
}

If the user clicks the now-enabled View button, we create an ACTION_VIEW Intent on the
contact’s Uri, and call startActivity() on that Intent:

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION VIEW, contact));
}

This will bring up an Android-supplied activity to view details of that contact.

Saving Your State

Given that we have used startActivityForResult() to pick a contact, now we need to
hang onto that contact when the screen orientation changes. In the RotationOne
example, we do this via onSaveInstanceState():

package com.commonsware.android.rotation.one;

import android.app.Activity;

CHAPTER 19: Handling Rotation

import
import
import
import
import
import
import

android.
android.
android.
android.
android.
android.
android.

content.Intent;

net.Uri;

0s.Bundle;
provider.ContactsContract.Contacts;
view.View;

widget.Button;

util.Llog;

public class RotationOneDemo extends Activity {
static final int PICK _REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
restoreMe(savedInstanceState);

viewButton.setEnabled(contact!=null);

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

if (requestCode==PICK REQUEST) {

}
}

if (resultCode==RESULT OK) {

contact=data.getData();
viewButton.setEnabled(true);

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,

Contacts.CONTENT _URI);

startActivityForResult(i, PICK REQUEST);

}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION VIEW, contact));

@0verride
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);

if (contact!=null) {

}
}

outState.putString("contact"”, contact.toString());

private void restoreMe(Bundle state) {

191

192

CHAPTER 19: Handling Rotation

contact=null;

if (state!=null) {
String contactUri=state.getString("contact");

if (contactUri!=null) {
contact=Uri.parse(contactUri);

}
}
}
}
By and large, it looks like a normal activity...because it is. Initially, the “model”—a Uri
named contact—is null. It is set as the result of spawning the ACTION_PICK subactivity.
Its string representation is saved in onSaveInstanceState() and restored in restoreMe()
(called from onCreate()). If the contact is not null, the View button is enabled and can

be used to view the chosen contact.
Visually, it looks pretty much as you would expect, as shown in Figures 19-1 and 19-2.

£ M@ 7:48 Am

RotationOne Demo

Pick

View

Figure 19-1. The RotationOne application, in portrait mode

CHAPTER 19: Handling Rotation

£ M@ 7:48Am

RotationOne Demo

Pick View

Figure 19-2. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system events beyond
mere rotation, such as being closed by Android due to low memory.

For fun, comment out the restoreMe() call in onCreate() and try running the application.
You will see that the application “forgets” a contact selected in one orientation when you
rotate the emulator or device.

Now with More Savings!

The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s
because this callback is also used in cases where your whole process might be
terminated (e.g., low memory), so the data to be saved must be something that can be
serialized and has no dependencies on your running process.

For some activities, that limitation is not a problem. For others, it is more annoying. Take
an online chat, for example. You have no means of storing a socket in a Bundle, so by
default, you have to drop your connection to the chat server and reestablish it. That not
only may be a performance hit, but it might also affect the chat itself, such as showing in
the chat logs that you are disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of
onSavelnstanceState() for “light” changes like a rotation. Your activity’s
onRetainNonConfigurationInstance() callback can return an Object, which you can
retrieve later via getLastNonConfigurationInstance(). The Object can be just about
anything you want. Typically, it will be some kind of “context” object holding activity
state, such as running threads, open sockets, and the like. Your activity’s onCreate()
can call getLastNonConfigurationInstance(), and if you get a non-null response, you
now have your sockets and threads and whatnot. The biggest limitation is that you do
not want to put in the saved context anything that might reference a resource that will
get swapped out, such as a Drawable loaded from a resource.

193

194 CHAPTER 19: Handling Rotation

Let’s take a look at the Rotation/RotationTwo sample project, which uses this approach
to handling rotations. The layouts, and hence the visual appearance, is the same as with
Rotation/RotationOne. Where things differ slightly is in the Java code:

package com.commonsware.android.rotation.two;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.Button;

import android.util.log;

public class RotationTwoDemo extends Activity {
static final int PICK _REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
restoreMe();

viewButton.setEnabled(contact!=null);

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);
}
}
}

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT URI);

startActivityForResult(i, PICK REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION VIEW, contact));
}

@0verride
public Object onRetainNonConfigurationInstance() {
return(contact);

CHAPTER 19: Handling Rotation

}

private void restoreMe() {
contact=null;

if (getLastNonConfigurationInstance()!=null) {
contact=(Uri)getLastNonConfigurationInstance();

}
}

In this case, we override onRetainNonConfigurationInstance(), returning the actual Uri
for our contact, rather than a string representation of it. In turn, restoreMe() calls
getLastNonConfigurationInstance(), and if it is not null, we hold onto it as our contact
and enable the View button.

The advantage here is that we are passing around the Uri rather than a string
representation. In this case, that is not a big saving. But our state could be much more
complicated, including threads, sockets, and other things we cannot pack into a Bundle.

However, even the onRetainNonConfigurationInstance() approach to handling
rotations may be too intrusive to your application. Suppose, for example, you are
creating a real-time game, such as a first-person shooter. The “hiccup” your users
experience as your activity is destroyed and re-created might be enough to get them
shot, which they may not appreciate. While this would be less of an issue on the T-
Mobile G1, since a rotation requires sliding open the keyboard and therefore is unlikely
to be done mid-game, other devices might rotate based solely on the device’s position
as determined by accelerometers. For applications such as this, there is a third
possibility for handling rotations, which is to tell Android that you will handle them
yourself, without any assistance from the framework.

DIY Rotation

To handle rotations without Android’s assistance, do the following:

1. Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus
allowing Android to handle them for you.

2. Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs.

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

To see this in action, turn to the Rotation/RotationThree sample application. Once
again, our layouts are the same, so the application looks the same as the preceding two
samples. However, the Java code is significantly different, because we are no longer
concerned with saving our state, but rather with updating our Ul to deal with the layout.

195

196

CHAPTER 19: Handling Rotation

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.rotation.three" android:versionCode="1"«
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationThreeDemo" android:label="@string/app_name"«
android:configChanges="keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Here, we state that we will handle keyboardHidden and orientation configuration
changes ourselves. This covers us for any cause of the rotation, whether it is a sliding
keyboard or a physical rotation. Note that this is set on the activity, not the application. If
you have several activities, you will need to decide for each which of the tactics outlined
in this chapter you wish to use.

In addition, we need to add an android:id to our LinearLayout containers, such as
follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/container"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"

>

<Button android:id="@+id/pick"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"

/>

<Button android:id="@+id/view"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"

/>

</Linearlayout>

The Java code for this project is shown here:

package com.commonsware.android.rotation.three;

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation

import android.app.Activity;

import android.content.Intent;

import android.content.res.Configuration;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.Button;

import android.widget.LlinearlLayout;

public class RotationThreeDemo extends Activity {
static final int PICK _REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);
viewButton=(Button)findViewById(R.id.view);
viewButton.setEnabled(contact!=null);

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);

}
}
}

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT _URI);

startActivityForResult(i, PICK REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION VIEW, contact));

public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);
LinearLayout container=(LinearLayout)findViewById(R.id.container);

if (newConfig.orientation==Configuration.ORIENTATION LANDSCAPE) {
container.setOrientation(LinearLayout.HORIZONTAL);

}
else {

197

198

CHAPTER 19: Handling Rotation

container.setOrientation(Linearlayout.VERTICAL);

}
}
}

Our onConfigurationChanged() needs to update the Ul to reflect the orientation change.
Here, we find our LinearlLayout and tell it to change its orientation to match that of the
device. The orientation field on the Configuration object will tell us how the device is
oriented.

...But Google Does Not Recommend This

You might think that onConfigurationChanged() and android:configChanges would be
the ultimate solution. After all, we no longer have to worry about all that messy passing
of data to the new activity as the old one is being destroyed. The
onConfigurationChanged() approach is very sexy.

However, Google does not recommend it.

The primary concern is forgetting about resources. With the onConfigurationChanged()
approach, you must ensure that every resource that might possibly have changed as a
result of this configuration change gets updated. That includes strings, layouts,
drawables, menus, animations, preferences, dimensions, colors, and all the others. If
you fail to ensure that everything is updated completely, your app will have a whole
series of little (or not so little) bugs as a result.

Allowing Android to destroy and re-create your activity guarantees you will get the
proper resources. All you need to do is arrange to pass the proper data from the old
activity to the new activity.

The onConfigurationChanged() approach is appropriate only where the user would be
directly affected by a destroy-and-create cycle. For example, imagine a video-player
application that is playing a streaming video. Destroying and re-creating the activity
would necessarily cause the application to have to reconnect to the stream, losing
buffered data in the process. Users will get frustrated if an accidental movement causes
the device to change orientation and interrupt their video playback. In this case, since
the user will perceive problems with a destroy-and-create cycle,
onConfigurationChanged() is an appropriate choice.

Forcing the Issue

Some activities simply are not meant to change orientation. Games, camera previews,
video players, and the like may make sense only in landscape orientation, for example.
While most activities should allow the user to work in any desired orientation, for
activities where only one orientation makes sense, you can control it.

To block Android from rotating your activity, all you need to do is add
android:screenOrientation = "portrait" (or "landscape", as you prefer) to your
AndroidManifest.xml file, as follows (from the Rotation/RotationFour sample project):

CHAPTER 19: Handling Rotation

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" «
package="com.commonsware.android.rotation.four" android:versionCode="1"«
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android: targetSdeer51on—"6"/>
<application android:1abe1="@str1ng/app_name android:icon="@drawable/cw">
<activity android:name=".RotationFourDemo" android:screenOrientation=«
"portrait" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of your
activities may need this turned on.

At this point, your activity is locked into whatever orientation you specified, regardless of
what you do. Figures 19-3 and 19-4 show the same activity as in the previous three
sections, but using the preceding manifest and with the emulator set for both portrait
and landscape orientation. Note that the Ul does not move a bit, but remains in portrait
mode.

Al @ 6:11pm

RotationFourDemo

o (o)) ™
» (D

13

2 fx s lols oo ls o]
o e Jo Jr Jv Ju s Jo [o

Figure 19-3. The RotationFour application, in portrait mode

199

http://schemas.android.com/apk/res/android

200

CHAPTER 19: Handling Rotation

T @3 6:11pPM

)
E
o

(=}
=
5
o
™
=

o
=
3
=)
(4

[FEEIEEEAE O © @ O
o e [n |1 v Ju 1 o |» [P
MEREEIEENE 6 ;¢ ®
s lclulo s ol

Figure 19-4. The RotationFour application, in landscape mode

Note that Android will still destroy and re-create your activity, even if you have the
orientation set to a specific value as shown here. If you wish to avoid that, you also need
to set android:configChanges in the manifest, as described earlier in this chapter. Or,
you can still use onSaveInstanceState() or onRetainNonConfigurationInstance() to
save your activity’s mutable state.

Making Sense of It All

As noted at the beginning of this chapter, devices with a slide-out keyboard (such as
T-Mobile G1, Motorola DROID/Milestone, etc.) change screen orientation when the
keyboard is exposed or hidden, whereas other devices change screen orientation based
on the accelerometer. If you have an activity that should change orientation based on
the accelerometer, even if the device has a slide-out keyboard, just add
android:screenOrientation = "sensor" to your AndroidManifest.xml file as follows
(from the Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.rotation.five" android:versionCode="1"«
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android: targetSdeer51on—"6"/>
<application android:1abe1="@str1ng/app_name android:icon="@drawable/cw">

http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation 201

<activity android:name=".RotationFiveDemo" android:screenOrientation="sensor"«
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The sensor, in this case, tells Android you want the accelerometers to control the screen
orientation, so the physical shift in the device orientation controls the screen orientation.

Android 2.3 adds a number of other possible values for android:screenOrientation:

B reverselandscape and reversePortrait: Indicate that you want the
screen to be in landscape or portrait orientation, respectively, but
upside down compared to the normal landscape and portrait
orientations

B sensorlandscape and sensorPortrait: Indicate that you want the
screen to be locked in landscape or portrait orientation, respectively,
but the sensors can be used to determine which side is “up”

B fullSensor: Allows the sensors to put the screen in any of the four
possible orientations (portrait, reverse portrait, landscape, reverse
landscape), whereas sensor toggles only between portrait and
landscape

Chapter

Dealing with Threads

Users like snappy applications. Users do not like applications that feel sluggish. The way
to help make your application feel snappy to users is to use the standard threading
capabilities built into Android. This chapter will walk you through the issues involved
with thread management in Android and some of the options for keeping the Ul crisp
and responsive.

The Main Application Thread

You might think that when you call setText() on a TextView, the screen is updated with
the text you supply, right then and there. That is not how it works. Rather, everything
that modifies the widget-based Ul goes through a message queue. Calls to setText()
do not update the screen; they just pop a message on a queue telling the operating
system to update the screen. The operating system pops these messages off of this
queue and does what the messages require.

The queue is processed by one thread, variously called the main application thread and
the Ul thread. As long as that thread can keep processing messages, the screen will
update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(),onClick(),onListItemClick(), and similar methods are all
called on the main application thread. While your code is executing in these methods,
Android is not processing messages on the queue, meaning the screen does not
update, user input is not handled, and so on.

This, of course, is bad. So bad, in fact, that if you take more than a few seconds to do
work on the main application thread, Android may display the dreaded “application not
responding” (ANR) error, and your activity may be killed off. Hence, you want to make
sure that all of your work on the main application thread happens quickly. This means
that anything slow should be done in a background thread, so as not to tie up the main
application thread. This includes activities such as the following:

B Internet access, such as sending data to a web service or
downloading an image

203

204

CHAPTER 20: Dealing with Threads

B Significant file operations, since flash storage can be remarkably slow
at times

B Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java, plus
all the wrappers and control structures you would expect, such as the
java.util.concurrent class package.

However, there is one big limitation: you cannot modify the Ul from a background
thread. You can modify the Ul only from the main application thread. Hence, you need
to move long-running work into background threads, but those threads need to do
something to arrange to update the Ul using the main application thread. Android
provides a wide range of tools to do just that, and these tools are the primary focus of
this chapter.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the user, you should
consider keeping the user informed that work is going on. This is particularly true if the
user is effectively waiting for that background work to complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range—which value
indicates progress is complete—via setMax(). By default, a ProgressBar starts with a
progress of 0, though you can start from some other position via setProgress(). If you
prefer your progress bar to be indeterminate, use setIndeterminate() and set it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via
incrementProgressBy()). You can find out how much progress has been made via
getProgress().

There are other alternatives for displaying progress—ProgressDialog, a progress
indicator in the activity’s title bar, and so on—but a ProgressBar is a good place to start.

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread is to create
an instance of a Handler subclass. You need only one Handler object per activity, and
you do not need to manually register it. Merely creating the instance is sufficient to
register it with the Android threading subsystem.

CHAPTER 20: Dealing with Threads

Your background thread can communicate with the Handler, which will do all of its work
on the activity’s Ul thread. This is important, as Ul changes, such as updating widgets,
should occur only on the activity’s Ul thread.

You have two options for communicating with the Handler: messages and Runnable
objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the Message object
out of the pool. There are a few flavors of obtainMessage(), allowing you to create empty
Message objects or ones populated with message identifiers and arguments. The more
complicated your Handler processing needs to be, the more likely it is you will need to
put data into the Message to help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one of the
sendMessage. .. () family of methods, such as the following:

B sendMessage(): Puts the message on the queue immediately

B sendMessageAtFrontOfQueue(): Puts the message on the queue
immediately and places it at the front of the message queue (versus
the back, which is the default), so your message takes priority over all
others

B sendMessageAtTime(): Puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock.uptimeMillis())

B sendMessageDelayed(): Puts the message on the queue after a delay,
expressed in milliseconds

B sendEmptyMessage(): Sends an empty Message object to the queue,
allowing you to skip the obtainMessage() step if you were planning on
leaving it empty anyway

To process these messages, your Handler needs to implement handleMessage(), which
will be called with each message that appears on the message queue. There, the
Handler can update the Ul as needed. However, it should still do that work quickly, as
other Ul work is suspended until the Handler is finished.

For example, let’s create a ProgressBar and update it via a Handler. Here is the layout
from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"

205

http://schemas.android.com/apk/res/android

206 CHAPTER 20: Dealing with Threads

android:layout width="fill parent"
android:layout_height="wrap_content" />
</Linearlayout>

The ProgressBar, in addition to setting the width and height as normal, also employs the
style property. This particular style indicates the ProgressBar should be drawn as the
traditional horizontal bar showing the amount of work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.widget.ProgressBar;

import java.util.concurrent.atomic.AtomicBoolean;

public class HandlerDemo extends Activity {
ProgressBar bar;
Handler handler=new Handler() {
@0verride
public void handleMessage(Message msg) {
bar.incrementProgressBy(5);

}
};

AtomicBoolean isRunning=new AtomicBoolean(false);

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
bar=(ProgressBar)findViewById(R.id.progress);

public void onStart() {
super.onStart();
bar.setProgress(0);

Thread background=new Thread(new Runnable() {
public void run() {
try {
for (int i=0;i<20 &3 isRunning.get();i++) {
Thread.sleep(1000);
handler.sendMessage(handler.obtainMessage());

}
catch (Throwable t) {
// just end the background thread
}
1;

isRunning.set(true);
background.start();

CHAPTER 20: Dealing with Threads 207

}

public void onStop() {
super.onStop();
isRunning.set(false);

}

As part of constructing the Activity, we create an instance of Handler, with our
implementation of handleMessage(). Basically, for any message received, we update the
ProgressBar by 5 points, and then exit the message handler.

We then take advantage of onStart() and onStop(). In onStart(), we set up a
background thread. In a real system, this thread would do something meaningful. Here,
we just sleep 1 second, post a Message to the Handler, and repeat for a total of 20
passes. This, combined with the 5-point increase in the ProgressBar position, will march
the bar clear across the screen, as the default maximum value for ProgressBar is 100.
You can adjust that maximum via setMax(). For example, you might set the maximum to
be the number of database rows you are processing, and update once per row.

Note that we then leave onStart(). This is crucial. The onStart() method is invoked on
the activity Ul thread, so it can update widgets and such. However, that means we need
to get out of onStart(), both to let the Handler get its work done and to inform Android
that our activity is not stuck.

The resulting activity is simply a horizontal progress bar, as shown in Figure 20-1.
@ «l (D 8:58AM

HandlerDemo

—m

Figure 20-1. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code arranging to
update the progress on the Ul thread, for this specific widget, that is not necessary. At

208

CHAPTER 20: Dealing with Threads

least as of Android 1.5, ProgressBar is now Ul thread safe, in that you can update it from
any thread, and it will handle the details of performing the actual Ul update on the Ul
thread.

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable objects to
the Handler, which will run those Runnable objects on the activity Ul thread. Handler
offers a set of post... () methods for passing Runnable objects in for eventual
processing.

Just as Handler supports post() and postDelayed() to add Runnable objects to the
event queue, you can use those same methods on any View (i.e., any widget or
container). This slightly simplifies your code, in that you can then skip the Handler
object.

Where Oh Where Has My Ul Thread Gone?

Sometimes, you may not know if you are currently executing on the Ul thread of your
application. For example, if you package some of your code in a JAR for others to reuse,
you might not know whether your code is being executed on the Ul thread or from a
background thread.

To help combat this problem, Activity offers runOnUiThread(). This works similar to the
post() methods on Handler and View, in that it queues up a Runnable to run on the Ul
thread, if you are not on the Ul thread right now. If you already are on the Ul thread, it
invokes the Runnable immediately. This gives you the best of both worlds: no delay if
you are on the Ul thread, yet safety in case you are not.

Asyncing Feeling

Android 1.5 introduced a new way of thinking about background operations: AsyncTask.
In one (reasonably) convenient class, Android will handle all of the chores of doing work
on the Ul thread versus on a background thread. Moreover, Android itself allocates and
removes that background thread. And, it maintains a small work queue, further
accentuating the fire-and-forget feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles, “When a man buys a 1/4-inch drill bit at a
hardware store, he does not want a 1/4-inch drill bit—he wants 1/4-inch holes.”
Hardware stores cannot sell holes, so they sell the next-best thing: devices (drills and
drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread management
do not strictly want background threads. Rather, they want work to be done off the Ul

CHAPTER 20: Dealing with Threads

thread, so users are not stuck waiting and activities do not get the dreaded ANR error.
And while Android cannot magically cause work to not consume Ul thread time, it can
offer things that make such background operations easier and more transparent.
AsyncTask is one such example.

To use AsyncTask, you must do the following:

B Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

B Override one or more AsyncTask methods to accomplish the
background work, plus whatever work associated with the task that
needs to be done on the Ul thread (e.g., update progress)

B When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is
B Create your own background thread
B Terminate that background thread at an appropriate time

B Call all sorts of methods to arrange for bits of processing to be done
on the Ul thread

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data
types:

B The type of information that is needed to process the task (e.g., URLs
to download)

B The type of information that is passed within the task to indicate
progress

B The type of information that is passed when the task is completed to
the post-task code

What makes this all the more confusing is that the first two data types are actually used
as varargs, meaning that an array of these types is used within your AsyncTask subclass.

This should become clearer as we work our way toward an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This will
be called by AsyncTask on a background thread. It can run as long as is necessary to

209

210

CHAPTER 20: Dealing with Threads

accomplish whatever work needs to be done for this specific task. Note, though, that
tasks are meant to be finite; using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first of
the three data types listed in the preceding section—the data needed to process the
task. So, if your task’s mission is to download a collection of URLs, doInBackground()
will receive those URLs to process. The doInBackground() method must return a value
of the third data type listed in the preceding section—the result of the background work.

You may wish to override onPreExecute(). This method is called, from the Ul thread,
before the background thread executes doInBackground(). Here, you might initialize a
ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the Ul
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss the
ProgressBar and make use of the work done in the background, such as updating the
contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground() calls the
task’s publishProgress() method, the object(s) passed to that method are provided to
onProgressUpdate(), but in the Ul thread. That way, onProgressUpdate() can alert the
user as to the progress that has been made on the background work, such as updating
a ProgressBar or continuing an animation. The onProgressUpdate() method will receive
a varargs of the second data type from the preceding list—the data published by
doInBackground() via publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as implementing a
Runnable. However, once you get past the generics and varargs, it is not too bad.

For example, the following is an implementation of a ListActivity that uses an
AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;

import android.os.Bundle;

import android.os.SystemClock;
import android.widget.ArrayAdapter;
import android.widget.Toast;

import java.util.Arraylist;

public class AsyncDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",

CHAPTER 20: Dealing with Threads

"placerat”, "ante",
"porttitor", "sodales",

"pellentesque", "augue",

"purus"};
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,
new ArraylList()));

new AddStringTask().execute();

class AddStringTask extends AsyncTask<Void, String, Void> {

@0verride
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(200);
}

return(null);

@0verride
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

@0verride
protected void onPostExecute(Void unused) {
Toast

.makeText(AsyncDemo.this, "Done!", Toast.LENGTH_ SHORT)

.show();

}
}

This is another variation on the lorem ipsum list of words, used frequently throughout
this book. This time, rather than simply hand the list of words to an ArrayAdapter, we
simulate having to work to create these words in the background using AddStringTask,

our AsyncTask implementation.

Let’s examine this project’s code piece by piece.

The AddStringTask Declaration

The AddStringTask declaration is as follows:

class AddStringTask extends AsyncTask<Void, String, Void> {

211

212 CHAPTER 20: Dealing with Threads

Here, we use the generics to set up the specific types of data we are going to leverage
in AddStringTask:

B We do not need any configuration information in this case, so our first
type is Void.

B We want to pass each string generated by our background task to
onProgressUpdate(), to allow us to add it to our list, so our second
type is String.

B We do not have any results, strictly speaking (beyond the updates), so
our third type is Void.

The doinBackground() Method

The doInBackground() method is next in the code:

@0verride
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(200);
}

return(null);

The doInBackground() method is invoked in a background thread. Hence, we can take
as long as we like. In a production application, we might be doing something like
iterating over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 200 milliseconds to
simulate real work being done.

Since we elected to have no configuration information, we should not need parameters
to doInBackground(). However, the contract with AsyncTask says we must accept a
varargs of the first data type, which is why our method parameter is Void. .. unused.

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we must return an object of the third data type.
Since that data type is Void, our returned object is null.

The onProgressUpdate() Method
Next up is the onProgressUpdate() method:

@0verride
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

The onProgressUpdate() method is called on the Ul thread, and we want to do
something to let the user know we are making progress on loading these strings. In this

CHAPTER 20: Dealing with Threads 213

case, we simply add the string to the ArrayAdapter, so it is appended to the end of the
list.

The onProgressUpdate() method receives a String... varargs because that is the
second data type in our class declaration. Since we are passing only one string per call
to publishProgress(), we need to examine only the first entry in the varargs array.

The onPostExecute() Method

The next method is onPostExecute():

@0verride
protected void onPostExecute(Void unused) {
Toast
.makeText(AsyncDemo.this, "Done!", Toast.LENGTH_ SHORT)
.show();

The onPostExecute() method is called on the Ul thread, and we want to do something to
indicate that the background work is complete. In a real system, there may be some
ProgressBar to dismiss or some animation to stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters. The contract
with AsyncTask says we must accept a single value of the third data type. Since that
data type is Void, our method parameter is Void unused.

The Activity
The activity is as follows:
new AddStringTask().execute();

To use AddStringTask, we simply create an instance and call execute() on it. That starts
the chain of events eventually leading to the background thread doing its work.

If AddStringTask required configuration parameters, we would have not used Void as our
first data type, and the constructor would accept zero or more parameters of the defined
type. Those values would eventually be passed to doInBackground().

The Results

If you build, install, and run this project, you will see the list being populated in real time
over a few seconds, followed by a Toast indicating completion, as shown in Figure 20-2.

214

CHAPTER 20: Dealing with Threads

LMl @ 3:24PMm

amet

consectetuer

adinicerino

Figure 20-2. The AsyncDemo, partway through loading the list of words

Threads and Rotation

One problem with the default destroy-and-create cycle that activities go through on an
orientation change comes from background threads. If the activity has started some
background work—through an AsyncTask, for example—and then the activity is
destroyed and re-created, the AsyncTask needs to know about this somehow.
Otherwise, the AsyncTask might well send updates and final results to the old activity,
with the new activity none the wiser. In fact, the new activity might start the background
work again, wasting resources.

One way to deal with this is to disable the destroy-and-create cycle, by taking over
configuration changes, as described in a previous section. Another alternative is to have
a smarter activity and AsyncTask. You can see an example of that in the
Rotation/RotationAsync sample project. As shown next, this project uses a
ProgressBar, much like the Handler demo from earlier in this chapter. It also has a
TextView to indicate when the background work is completed, initially invisible.

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>

http://schemas.android.com/apk/res/android

CHAPTER 20: Dealing with Threads

<TextView android:id="@+id/completed"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Work completed!"
android:visibility="invisible"
/>
</Linearlayout>

The “business logic” is for an AsyncTask to do some (fake) work in the background,
updating the ProgressBar along the way, and making the TextView visible when it is
finished. More importantly, it needs to do this in such a way as to behave properly if the
screen is rotated. This means the following:

B We cannot “lose” our AsyncTask, having it continue doing work and
updating the wrong activity.

B We cannot start a second AsyncTask, thereby doubling our workload.

We need to have the Ul correctly reflect our work’s progress or
completion.

Manual Activity Association

Earlier, this chapter showed the use of an AsyncTask that was implemented as a regular
inner class of the Activity class. That works well when you are not concerned about
rotation. For example, if the AsyncTask is not affecting the Ul—such as uploading a
photo—rotation will not be an issue for you. Having the AsyncTask as an inner class of
the Activity means you get ready access to the Activity for any place where you need a
Context.

However, for the rotation scenario, a regular inner class will work poorly. The AsyncTask
will think it knows which Activity it is supposed to work with, but in reality it will be
holding onto an implicit reference to the old activity, not one after an orientation change.

So, in RotationAsync, the RotationAwareTask class is a static inner class. This means
RotationAwareTask does not have any implicit reference to any RotationAsync Activity
(old or new):

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;

import android.os.SystemClock;
import android.util.log;

import android.view.View;

import android.widget.ProgressBar;

public class RotationAsync extends Activity {
private ProgressBar bar=null;
private RotationAwareTask task=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

215

216 CHAPTER 20: Dealing with Threads

bar=(ProgressBar)findViewById(R.id.progress);
task=(RotationAwareTask)getLastNonConfigurationInstance();

if (task==null) {
task=new RotationAwareTask(this);
task.execute();

else {
task.attach(this);
updateProgress(task.getProgress());

if (task.getProgress()>=100) {
markAsDone();

}
}

@0verride
public Object onRetainNonConfigurationInstance() {
task.detach();

return(task);

void updateProgress(int progress) {
bar.setProgress(progress);

}

void markAsDone() {
findViewById(R.id.completed).setVisibility(View.VISIBLE);

static class RotationAwareTask extends AsyncTask<Void, Void, Void> {
RotationAsync activity=null;
int progress=0;

RotationAwareTask(RotationAsync activity) {
attach(activity);
}

@0verride
protected Void doInBackground(Void... unused) {
for (int i=0;i<20;i++) {
SystemClock.sleep(500);
publishProgress();

return(null);

@0verride
protected void onProgressUpdate(Void... unused) {
if (activity==null) {
Log.w("RotationAsync", "onProgressUpdate() skipped - no activity");

CHAPTER 20: Dealing with Threads 217

else {
progress+=5;
activity.updateProgress(progress);

}

@0verride
protected void onPostExecute(Void unused) {
if (activity==null) {
Log.w("RotationAsync", "onPostExecute() skipped - no activity");

else {
activity.markAsDone();

}
}

void detach() {
activity=null;

}

void attach(RotationAsync activity) {
this.activity=activity;

}

int getProgress() {
return(progress);

}
}

Since we want RotationAwareTask to update the current RotationAsync Activity, we
supply that Activity when we create the task, via the constructor. RotationAwareTask
also has attach() and detach() methods to change which Activity the task knows
about, as we will see shortly.

Flow of Events

When RotationAsync starts up for the first time, it creates a new instance of the
RotationAwareTask class and executes it. At this point, the task has a reference to the
RotationAsync Activity and can do its (fake) work, telling RotationAsync to update the
progress along the way.

Now, suppose that during the middle of the doInBackground() processing, the user
rotates the screen. Our Activity will be called with
onRetainNonConfigurationInstance(). Here, we want to do two things:

B Since this Activity instance is being destroyed, we need to make sure
the task no longer holds onto a reference to it. Hence, we call detach(),
causing the task to set its RotationAsync data member (activity) to null.

B We return the RotationAwareTask object, so that our new
RotationAsync instance can get access to it.

218

CHAPTER 20: Dealing with Threads

Eventually, the new RotationAsync instance will be created. In onCreate(), we try to get
access to any current RotationAwareTask instance via
getLastNonConfigurationInstance(). If that was null, then we know that this is a newly
created activity, and so we create a new task. If, however,
getlLastNonConfigurationInstance() returned the task object from the old
RotationAsync instance, we hold onto it and update our Ul to reflect the current
progress that has been made. We also attach() the new RotationAsync to the
RotationAwareTask, so as further progress is made, the task can notify the proper
activity.

The net result is that our ProgressBar smoothly progresses from 0 to 100, even while
rotations are going on.

Why This Works

Most callback methods in Android are driven by messages on the message queue being
processed by the main application thread. Normally, this queue is being processed
whenever the main application thread is not otherwise busy, such as running our code.
However, when a configuration change occurs, like a screen rotation, that no longer
holds true. In between the call to the onRetainNonConfigurationInstance() instance of
the old activity and the completion of onCreate() of the new activity, the message queue
is left alone.

So, let’s suppose that, in between onRetainNonConfigurationInstance() activity and the
subsequent onCreate(), our AsyncTask’s background work completes. This will trigger
onPostExecute() to be called...eventually. However, since onPostExecute() is actually
launched from a message on the message queue, onPostExecute() will not be called
until after our onCreate() has completed. Hence, our AsyncTask can keep running during
the configuration change, as long as we do two things:

B InonCreate() of the new activity instance, we update the AsyncTask to
have it work with our new activity, rather than the old one.

B We do not attempt to use the activity from doInBackground().

And Now, the Caveats

Background threads, while eminently possible using the Android Handler system, are
not all happiness and warm puppies. Background threads not only add complexity, but
also have real-world costs in terms of available memory, CPU, and battery life. Hence,
you need to account for a wide range of scenarios with your background thread,
including the following:

CHAPTER 20: Dealing with Threads

The possibility that users will interact with your activity’s Ul while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need
to communicate this to the background thread. Android includes many
classes in the java.util.concurrent package that will help you
communicate safely with your background thread.

The possibility that the activity will be killed off while background work
is going on. For example, after starting your activity, the user might
have a call come in, followed by a text message, followed by a need to
look up a contact—all of which might be sufficient to kick your activity
out of memory. Chapter 18 covers the various events Android will take
your activity through; hook to the proper ones, and be sure to shut
down your background thread cleanly when you have the chance.

The possibility that users will get irritated if you chew up a lot of CPU
time and battery life without giving any payback. Tactically, this means
using ProgressBar or other means of letting users know that
something is happening. Strategically, this means you still need to be
efficient at what you do—background threads are no panacea for
sluggish or pointless code.

The possibility that you will encounter an error during background
processing. For example, if you are gathering information from the
Internet, the device might lose connectivity. Alerting the user of the
problem via a notification (covered in Chapter 37) and shutting down
the background thread may be your best option.

219

Chapter

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by the user
from the device’s launcher. This is the most obvious case for getting your activity up and
visible to the user. And, in many cases, it is the primary way the user will start using your
application.

However, remember that the Android system is based on many loosely coupled
components. The things that you might accomplish in a desktop GUI via dialog boxes,
child windows, and the like are mostly supposed to be independent activities. While one
activity will be “special,” in that it shows up in the launcher, the other activities all need
to be reached...somehow.

The “somehow” is via intents.

An intent is basically a message that you pass to Android saying, “Yo! | want to
do...er...something! Yeah!” How specific the “something” is depends on the situation—
sometimes you know exactly what you want to do (e.g., open one of your other
activities), and sometimes you do not.

In the abstract, Android is all about intents and receivers of those intents. So, now that
you are well-versed in creating activities, let’s dive into intents, so we can create more
complex applications while simultaneously being “good Android citizens.”

What’s Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol (HTTP), he set up
a system of verbs plus addresses in the form of URLs. The address indicates a resource,
such as a web page, graphic, or server-side program. The verb indicates what should be
done: GET to retrieve it, POST to send form data to it for processing, and so on.

Intents are similar, in that they represent an action plus context. There are more actions
and more components to the context with Android intents than there are with HTTP
verbs and resources, but the concept is still the same. Just as a web browser knows
how to process a verb+URL pair, Android knows how to find activities or other
application logic that will handle a given intent.

221

222

CHAPTER 21: Creating Intent Filters

Pieces of Intents

The two most important pieces of an intent are the action and what Android refers to as
the data. These are almost exactly analogous to HTTP verbs and URLs: the action is the
verb, and the data is a Uri, such as content://contacts/people/1, representing a
contact in the contacts database. Actions are constants, such as ACTION_VIEW (to bring
up a viewer for the resource), ACTION EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a Uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android would know to
find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an Intent object),
besides the action and data Uri, such as the following:

B Category: Your “main” activity will be in the LAUNCHER category,
indicating it should appear on the launcher menu. Other activities will
probably be in the DEFAULT or ALTERNATIVE categories.

B MIME type: This indicates the type of resource you want to operate on,
if you do not know a collection Uri.

B Component: This is the class of the activity that is supposed to receive
this intent. Using components this way obviates the need for the other
properties of the intent. However, it does make the intent more fragile,
as it assumes specific implementations.

B Extras: A Bundle of other information you want to pass along to the
receiver with the intent, that the receiver might want to take advantage
of. Which pieces of information a given receiver can use is up to the
receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android SDK
documentation for the Intent class.

Intent Routing

As noted in the previous section, if you specify the target component in your intent,
Android has no doubt where the intent is supposed to be routed to, and it will launch the
named activity. This might be fine if the target intent is in your application. It definitely is
not recommended for sending intents to other applications. Component names, by and
large, are considered private to the application and are subject to change. Content Uri
templates and MIME types are the preferred ways of identifying services you wish third-
party code to supply.

If you do not specify the target component, then Android has to figure out which
activities (or other receivers) are eligible to receive the intent. Note the use of the plural

CHAPTER 21: Creating Intent Filters 223

activities, as a broadly written intent might well resolve to several activities. That is
the...ummm...intent (pardon the pun), as you will see later in this chapter. This routing
approach is referred to as implicit routing.

Basically, there are three rules, all of which must be true for a given activity to be eligible
for a given intent:

B The activity must support the specified action.
B The activity must support the stated MIME type (if supplied).
B The activity must support all of the categories named in the intent.

The upshot is that you want to make your intents specific enough to find the right
receiver(s), and no more specific than that. This will become clearer as we work through
some examples later in this chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare intent filters, so
Android knows which intents should go to that component. To do this, you need to add
intent-filter elements to your AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the Android
application-building script (android create project or the IDE equivalent). They look
something like this:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
</manifest>

Note the intent-filter element under the activity element. Here, we declare that this
activity:
B Is the main activity for this application

B [sin the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows this is the
component it should launch when somebody chooses the application from the main
menu.

http://schemas.android.com/apk/res/android

224

CHAPTER 21: Creating Intent Filters

You are welcome to have more than one action or more than one category in your intent
filters. That indicates that the associated component (e.g., activity) handles multiple
different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN) activities specify
the MIME type of data they work on. Then, if an intent is targeted for that MIME type—
either directly, or indirectly by the Uri referencing something of that type—Android will
know that the component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
</intent-filter>
</activity>

This activity will be launched by an intent requesting to view a Uri representing a
vnd.android.cursor.item/vnd.commonsware.tour piece of content. That Intent could
come from another activity in the same application (e.g., the MAIN activity for this
application) or from another activity in another Android application that happens to know
a Uri that this activity handles.

Narrow Receivers

In the preceding examples, the intent filters were set up on activities. Sometimes, tying
intents to activities is not exactly what you want, as in the following cases:

B Some system events might cause you to want to trigger something in
a service rather than an activity.

B Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if we get intent X and the database
has a Y, then launch activity M; if the database does not have a 'Y,
then launch activity N).

For these cases, Android offers the receiver, defined as a class implementing the
BroadcastReceiver interface. Broadcast receivers are disposable objects designed to
receive intents —specifically, broadcast intents—and take action.

The BroadcastReceiver interface has only one method: onReceive(). Receivers
implement that method, where they do whatever it is they wish to do upon an incoming
intent. To declare a receiver, add a receiver element to your AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />
A receiver is alive for only as long as it takes to process onReceive()—as soon as that

method returns, the receiver instance is subject to garbage collection and will not be
reused. This means receivers are somewhat limited in what they can do, mostly to avoid

CHAPTER 21: Creating Intent Filters 225

anything that involves any sort of callback. For example, they cannot bind to a service,
and they cannot open a dialog box.

The exception is if the BroadcastReceiver is implemented on some longer-lived
component, such as an activity or service. In that case, the receiver lives as long as its
“host” does (e.g., until the activity is frozen). However, in this case, you cannot declare
the receiver via AndroidManifest.xml. Instead, you need to call registerReceiver() on
your Activity’s onResume() callback to declare interest in an intent, and then call
unregisterReceiver() from your Activity’s onPause() when you no longer need those
intents.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages around: it
works only when the receiver is active. To quote from the documentation for
BroadcastReceiver:

If registering a receiver in your Activity.onResume() implementation, you
should unregister it in Activity.onPause(). (You will not receive intents when
paused, and this will cut down on unnecessary system overhead). Do not
unregister in Activity.onSaveInstanceState(), because this will not be called
if the user moves back in the history stack.

Hence, you can use the Intent framework as an arbitrary message bus only in the
following situations:

B Your receiver does not care if it misses messages because it was not
active.

B You provide some means of getting the receiver “caught up” on
messages it missed while it was inactive.

B Your receiver is registered in the manifest.

Chapter

Launching Activities
and Subactivities

The theory behind the Android Ul architecture is that developers should decompose
their application into distinct activities. For example, a calendar application could have
activities for viewing the calendar, viewing a single event, editing an event (including
adding a new one), and so forth. This implies that one of your activities has the means to
start up another activity. For example, if a user selects an event from the view-calendar
activity, you might want to show the view-event activity for that event. This means that
you need to be able to cause the view-event activity to launch and show a specific event
(the one the user chose).

This can be further broken down into two scenarios:

B You know what activity you want to launch, probably because it is
another activity in your own application.

B You have a content Uri to do something, and you want your users to
be able to do something with it, but you do not know up front what the
options are.

This chapter covers the first scenario; the second is beyond the scope of this book.

Peers and Subs

One key question you need to answer when you decide to launch an activity is this:
does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect authentication
information for some web service you are connecting to—maybe you need to
authenticate with OpenlID in order to use an OAuth service. In this case, your main
activity will need to know when the authentication is complete so it can start to use the
web service.

227

228 CHAPTER 22: Launching Activities and Subactivities

On the other hand, imagine an e-mail application in Android. When the user elects to
view an attachment, neither you nor the user necessarily expects the main activity to
know when the user is done viewing that attachment.

In the first scenario, the launched activity is clearly subordinate to the launching activity.
In that case, you probably want to launch the child as a subactivity, which means your
activity will be notified when the child activity is complete.

In the second scenario, the launched activity is more a peer of your activity, so you
probably want to launch the child just as a regular activity. Your activity will not be
informed when the child is done, but, then again, your activity really does not need to
know.

Start ’Em Up

The two pieces for starting an activity are an intent and your choice of how to start it up.

Make an Intent

As discussed in the previous chapter, intents encapsulate a request, made to Android,
for some activity or other receiver to do something. If the activity you intend to launch is
one of your own, you may find it simplest to create an explicit intent, naming the
component you wish to launch. For example, from within your activity, you could create
an intent like this:

new Intent(this, HelpActivity.class);

This stipulates that you want to launch the HelpActivity. This activity would need to be
named in your AndroidManifest.xml file, though not necessarily with any intent filter,
since you are trying to request it directly.

Or, you could put together an intent for some Uri, requesting a particular action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION VIEW, uri);

Here, given that you have the latitude and longitude of some position (lat and lon,
respectively) of type Double, you construct a geo scheme Uri and create an intent
requesting to view this Uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child activity to
launch. You have two choices:

B The simplest option is to call startActivity() with the Intent. This
will cause Android to find the best-match activity and pass the intent
to it for handling. Your activity will not be informed when the child
activity is complete.

CHAPTER 22: Launching Activities and Subactivities

B You can call startActivityForResult(), passing it the Intent and a
number (unique to the calling activity). Android will find the best-match
activity and pass the intent to it for handling. Your activity will be
notified when the child activity is complete, via the
onActivityResult() callback.

With startActivityForResult(), as noted, you can implement the onActivityResult()
callback to be notified when the child activity has completed its work. The callback
receives the unique number supplied to startActivityForResult(), so you can
determine which child activity is the one that has completed. You also get the following:

B A result code, from the child activity calling setResult(). Typically, this
is RESULT_OK or RESULT_CANCELED, though you can create your own
return codes (pick a number starting with RESULT _FIRST USER).

B An optional String containing some result data, possibly a URL to
some internal or external resource. For example, a ACTION_PICK intent
typically returns the selected bit of content via this data string.

B An optional Bundle containing additional information beyond the result
code and data string.

To demonstrate launching a peer activity, take a peek at the Activities/Launch sample
application. The XML layout is fairly straightforward: two fields for the latitude and
longitude, plus a button.

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Tablelayout
android:layout width="fill parent"”
android:layout_height="wrap_content"
android:stretchColumns="1,2"
>
<TableRow>
<TextView
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:paddingleft="2dip"
android:paddingRight="4dip"
android:text="Location:"
/>
<EditText android:id="@+id/lat"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singleline="true"
android:layout_weight="1"
/>
<EditText android:id="@+id/lon"

229

http://schemas.android.com/apk/res/android

230 CHAPTER 22: Launching Activities and Subactivities

android:layout width="fill parent"”
android:layout_height="wrap_content
android:cursorVisible="true"
android:editable="true"
android:singleline="true"
android:layout_weight="1"
/>
</TableRow>
</Tablelayout>
<Button android:id="@+id/map"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Show Me!"
android:onClick="showMe"
/>
</Linearlayout>

The button’s showMe () callback method simply takes the latitude and longitude, pours
them into a geo scheme Uri, and then starts the activity:

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.1lon);

public void showMe(View v) {
String lat=lat.getText().toString();
String lon=lon.getText().toString();

Uri uri=Uri.parse("geo:"+ lat+","+ lon);

startActivity(new Intent(Intent.ACTION VIEW, uri));

}
}

The activity is not much to look at, as shown in Figure 22-1.

CHAPTER 22: Launching Activities and Subactivities 231

Bl @ 2:11pPm

| LaunchDemo |

R 38.8891| -77.0492

Figure 22-1. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and click the
button, the resulting map is more interesting, as shown in Figure 22-2. Note that this is
the built-in Android map activity—we did not create our own activity to display this map.

Gl & 2:11pm
— z]
2 $
S s
qg;?
? &
Qg}‘
\)‘f"'\“ Memoria; Cir AW
x %
| B
o ! o
Lincoln National »
Memorial _| g

\ Lincon Memotd
)
7 .

West \o %@
Potomac Park

kz00gle
haoesle 8

Figure 22-2. The map launched by LaunchDemo, showing the Lincoln Memorial in Washington DC

In Chapter 40, you will see how you can create maps in your own activities, in case you
need greater control over how the map is displayed.

232

CHAPTER 22: Launching Activities and Subactivities

NOTE: This geo: Intent will work only on devices or emulators that have Google Maps
installed, or on devices that have some other mapping application that supports the geo: URL.

Tabbed Browsing, Sort Of

One of the main features of the modern desktop web browser is tabbed browsing,
where a single browser window can show several pages split across a series of tabs. On
a mobile device, this may not make a lot of sense, given that you lose screen real estate
for the tabs themselves. In this book, however, we do not let little things like sensibility
stop us, so this section demonstrates a tabbed browser, using TabActivity and Intent
objects.

As you may recall from the Chapter 14 section “Putting It on My Tab,” a tab can have
either a View or an Activity as its content. If you want to use an Activity as the content
of a tab, you provide an Intent that will launch the desired Activity; Android’s tab-
management framework will then pour the Activity’s Ul into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo: Uri in the
previous example:

Intent i=new Intent(Intent.ACTION VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in browser application and get all the features that it
offers. Alas, this does not work. You cannot host other applications’ activities in your
tabs; only your own activities are allowed, for security reasons. So, we dust off our
WebView demos from Chapter 15 and use those instead, repackaged as
Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.app.TabActivity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.webkit.WebView;
import android.widget.TabHost;

public class IntentTabDemo extends TabActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

TabHost host=getTabHost();
Intent i=new Intent(this, CWBrowser.class);

i.putExtra(CWBrowser.URL, "http://commonsware.com");

http://commonsware.com
http://commonsware.com

CHAPTER 22: Launching Activities and Subactivities

host.addTab(host.newTabSpec("one"
.setIndicator("CW")
.setContent(i));

i=new Intent(i);
i.putExtra(CWBrowser.URL, "http://www.android.com");
host.addTab(host.newTabSpec("two")
.setIndicator("Android")
.setContent(i));

}
}

As you can see, we are using TabActivity as the base class, and so we do not need our
own layout XML—TabActivity supplies it for us. All we do is get access to the TabHost
and add two tabs, each specifying an Intent that directly refers to another class. In this
case, our two tabs will each host a CWBrowser, with a URL to load supplied via an Intent
extra.

The CWBrowser activity is a simple modification to the earlier browser demos:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.webkit.WebView;

public class CWBrowser extends Activity {
public static final String URL="com.commonsware.android.intenttab.URL";
private WebView browser;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

browser=new WebView(this);
setContentView(browser);
browser.loadUrl(getIntent().getStringExtra(URL));

}

They simply load a different URL into the browser: the CommonsWare home page in
one, the Android home page in the other.

The resulting Ul shows what tabbed browsing could look like on Android, as shown in
Figures 22-3 and 22—4.

233

http://www.android.com

234

CHAPTER 22: Launching Activities and Subactivities

Ml @ 6:00 PM

IntentTabDemo

Android

€@ CoMMONSWARE

Three Android
Books, One Low
Price.

Fresh

Tht by a0l T By s ol . = htles
Adv. +* Android
And‘:(’:il;f'y Andl’OId Programming from

Development Development Tutorials the
t |

Figure 22-3. The IntentTabDemo sample application, showing the first tab

O B @ 5:37Pm

IntentTabDemo

Android

N SDK Dev Guide

Developer Announcements

m@ DEVELOPER ;i
CONFERENCE

th

vic

Figure 22-4. The IntentTabDemo sample application, showing the second tab

However, this approach is rather wasteful. There is a fair bit of overhead in creating an
activity that you do not need just to populate tabs in a TabHost. In particular, it increases
the amount of stack space needed by your application, and running out of stack space
is a significant problem in Android, as will be described in a later chapter.

Chapter

Working with Resources

Resources are static bits of information held outside the Java source code. You have
seen one type of resource—the layout—frequently in the examples in this book. There
are many other types of resources, such as images and strings, that you can take
advantage of in your Android applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android project layout.
With the exception of raw resources (res/raw/), all the other types of resources are
parsed for you, either by the Android packaging system or by the Android system on the
device or emulator. So, for example, when you lay out an activity’s Ul via a layout
resource (res/layout/), you do not have to parse the layout XML yourself because
Android handles that for you.

In addition to layout resources (introduced in Chapter 8), there are several other types of
resource available to you, including the following:

B Images (res/drawable/), for putting static icons or other pictures in a
user interface

B Raw (res/raw/), for arbitrary files that have meaning to your
application but not necessarily to Android frameworks

B Strings, colors, arrays, and dimensions (res/values/), to both give
these sorts of constants symbolic names and to keep them separate
from the rest of the code (e.g., for internationalization and localization)

B XML (res/xml/), for static XML files containing your own data and
structure

String Theory

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with

235

236

CHAPTER 23: Working with Resources

internationalization and localization, covered in the “Different Strokes for Different Folks”
section later in this chapter. Even if you are not going to translate your strings to other
languages, it is easier to make corrections if all the strings are in one spot instead of
scattered throughout your source code.

Android supports regular externalized strings, along with string formats, where the string
has placeholders for dynamically inserted information. On top of that, Android supports
simple text formatting, called styled text, so you can make your words be bold or italic
intermingled with normal text.

Plain Strings

Generally speaking, all you need for plain strings is an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root element, and
one child string element for each string you wish to encode as a resource. The string
element takes a name attribute, which is the unique name for this string, and a single text
element containing the text of the string, as shown in this example:
<{resources>

<string name="quick">The quick brown fox...</string>

<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote mark (") or an apostrophe (').
In those cases, you will want to escape those values, by preceding them with a
backslash (e.g., These are the times that try men\'s souls). Or, ifitis just an
apostrophe, you could enclose the value in quote marks (e.g., "These are the times
that try men's souls.").

You can then reference this string from a layout file (as @string/. .., where the ellipsis is
the unique name, such as @string/laughs). Or you can get the string from your Java
code by calling getString() with the resource ID of the string resource, which is the
unique name prefixed with R.string. (e.g., getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android’s Dalvik virtual machine
supports string formats. Here, the string contains placeholders representing data to be
replaced at runtime by variable information (e.g., My name is %1$s). Plain strings stored
as resources can be used as string formats:

String strFormat=getString(R.string.my name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.id.some label)).setText(strResult);

There is also a flavor of getString() that does the String.format() call for you:

String strResult=getString(R.string.my name, "Tim");
((TextView)findViewById(R.id.some label)).setText(strResult);

CHAPTER 23: Working with Resources 237

It is very important that you use the version of the placeholders that takes an index—
%1$s instead of just %s. Strategically, translations of your string resources may cause you
to apply the variable data in a different order than did your original translation, and using
nonindexed placeholders lock you into a particular order. Tactically, your project will fail
to compile, as the Android build tools reject nonindexed placeholders nowadays.

Styled Text

If you want really rich text, you should have raw resources containing HTML, and then
pour those into a WebKit widget. However, for light HTML formatting, using inline
elements such as , <i>, and <u>, you can just use them in a string resource:

<resources>
<string name="b">This has bold in it.</string>
<string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these via getText(), which gives you back an object supporting the
android.text.Spanned interface and therefore has all of the formatting applied:

((TextView)findViewById(R.id.another label))
.setText(getText(R.string.b));

Styled Text and Formats

Where styled text gets tricky is with styled string formats, as String.format() works on
String objects, not Spanned objects with formatting instructions. If you really want to
have styled string formats, here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is
&1t;blgt;%1$s8&1t; /bigt;).

2. Retrieve the string resource as normal, though it will not be styled at this
point (e.g., getString(R.string.funky_format)).

3. Generate the format results, being sure to escape any string values you
substitute, in case they contain angle brackets or ampersands:

String.format(getString(R.string.funky format),
TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via
Html.fromHtml():

someTextView.setText(Html
.fromHtml(resultFromStringFormat));

To see this in action, let’s look at the Resources/Strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

http://schemas.android.com/apk/res/android

238 CHAPTER 23: Working with Resources

android:layout width="fill parent"
android:layout_height="fill parent"
>
<LinearlLayout
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="wrap content"
>
<Button android:id="@+id/format"
android:layout width="wrap content"
android:layout_height="wrap_content
android:text="@string/btn_name"
android:onClick="applyFormat"
/>
<EditText android:id="@+id/name"
android:layout width="fill parent"
android:layout_height="wrap_content
/>
</Linearlayout>
<TextView android:id="@+id/result"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
</Linearlayout>

As you can see, it is just a button, a field, and a label. The idea is for users to enter their
name in the field, and then click the button to cause the label to be updated with a
formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name), so we need
a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">StringsDemo</string>

<string name="btn_name">Name:</string>

<string name="funky format">My name is &1t;b8gt;%1$s81t;/b8gt;</string>
</resources>

The app_name resource is automatically created by the android create project
command. The btn_name string is the caption of the Button, while our styled string
format is in funky format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
EditText name;
TextView result;

CHAPTER 23: Working with Resources

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
result=(TextView)findViewById(R.id.result);
}

public void applyFormat(View v) {
String format=getString(R.string.funky format);
String simpleResult=String.format(format,
TextUtils.htmlEncode(name.getText().toString()));
result.setText(Html.fromHtml(simpleResult));

}

The string resource manipulation can be found in applyFormat(), which is called when
the button is clicked. First, we get our format via getString() —something we could
have done at onCreate() time for efficiency. Next, we format the value in the field using
this format, getting a String back, since the string resource is in entity-encoded HTML.
Note the use of TextUtils.htmlEncode() to entity-encode the entered name, in case
somebody decides to use an ampersand or something. Finally, we convert the simple
HTML into a styled text object via Html.fromHtml() and update our label.

When the activity is first launched, we have an empty label, as shown in Figure 23-1.

Ml & 1:03PMm
StringsDemo

Figure 23-1. The StringsDemo sample application, as initially launched

If we fill in a name and click the button, we get the result shown in Figure 23-2.

239

240

CHAPTER 23: Working with Resources

il & 1:03Pm
StringsDemo

Inigo Montoya

My name Is Inigo Montoya

Figure 23-2. The same application, after filling in some heroic figure’s name

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however. PNG is the overall preferred format. Images can be used
anywhere that you require a Drawable, such as the image and background of an
ImageView.

Using images is simply a matter of putting your image files in res/drawable/ and then
referencing them as a resource. Within layout files, images are referenced as
@drawable/..., where the ellipsis is the base name of the file (e.g., for
res/drawable/foo.png, the resource name is @drawable/foo). In Java, where you need
an image resource ID, use R.drawable. plus the base name (e.g., R.drawable.f00).

So, let’s update the previous example to use an icon for the button instead of the string
resource. This can be found as Resources/Images. We slightly adjust the layout file, using
an ImageButton and referencing a drawable named @drawable/icon, which refers to an
image file in res/drawable with a base name of icon. In this case, we use a 32-by-32 PNG
file from the Nuvola icon set.

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<LinearlLayout
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 23: Working with Resources 241

>
<ImageButton android:id="@+id/format"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:src="@drawable/icon"
android:onClick="applyFormat"
/>
<EditText android:id="@+id/name"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
</Linearlayout>
<TextView android:id="@+id/result"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
</Linearlayout>

Now, our button has the desired icon, as shown in Figure 23-3.
BHl @ 1:04PMm

ImagesDemo

7]

Figure 23-3. The ImagesDemo sample application

XML: The Resource Way

If you wish to package static XML with your application, you can use an XML resource.
Simply put the XML file in res/xml/, and you can access it by getXml() on a Resources
object, supplying it a resource ID of R.xml. plus the base name of your XML file. For
example, in an activity, with an XML file of words.xml, you could call
getResources().getXml(R.xml.words). This returns an instance of an XmlPullParser,
found in the org.xmlpull.v1 Java hamespace.

242

CHAPTER 23: Working with Resources

An XML pull parser is event-driven: you keep calling next() on the parser to get the next
event, which could be START_TAG, END_TAG, END_DOCUMENT, and so on. On a START_TAG
event, you can access the tag’s name and attributes; a single TEXT event represents the
concatenation of all text nodes that are direct children of this element. By looping,
testing, and invoking per-element logic, you parse the file.

To see this in action, let’s rewrite the Java code for the Files/Static sample project to
use an XML resource. This new project, Resources/XML, requires that you place the
words.xml file from Static not in res/raw/, but in res/xml/. The layout stays the same,
so all that needs to be replaced is the Java source:

package com.commonsware.android.resources;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

import java.io.InputStream;

import java.util.Arraylist;

import org.xmlpull.vi.XmlPullParser;
import org.xmlpull.vi.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
TextView selection;
Arraylist<String> items=new ArraylList<String>();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {
XmlPullParser xpp=getResources().getXml(R.xml.words);

while (xpp.getEventType()!=XmlPullParser.END DOCUMENT) {
if (xpp.getEventType()==XmlPullParser.START TAG) {
if (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(0));
}
}

xpp.next();

catch (Throwable t) {
Toast
.makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
.show();

CHAPTER 23: Working with Resources

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,
items));

}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());

}
}

Now, inside our try...catch block, we get our Xm1PullParser and loop until the end of
the document. If the current event is START_TAG and the name of the element is word
(xpp.getName().equals("word")), then we get the one and only attribute and pop that
into our list of items for the selection widget. Since we have complete control over the
XML file, it is safe enough to assume there is exactly one attribute. In other cases, if you
are not sure that the XML is properly defined, you might consider checking the attribute
count (getAttributeCount()) and the name of the attribute (getAttributeName()),
instead of assuming the 0-index attribute is what you think it is.

The result looks the same as before, albeit with a different name in the title bar, as
shown in Figure 23—4.

il & 1:06 Pm

XMLResourceDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 23-4. The XMLResourceDemo sample application

Miscellaneous Values

In the res/values/ directory, in addition to string resources, you can place one or more
XML files describing other simple resources, such as dimensions, colors, and arrays.
You have already seen uses of dimensions and colors in previous examples, where they

243

244 CHAPTER 23: Working with Resources

were passed as simple strings (e.g., "10dip") as parameters to calls. You could set these
up as Java static final objects and use their symbolic names, but that works only inside
Java source, not in layout XML files. By putting these values in resource XML files, you
can reference them from both Java and layouts, plus have them centrally located for
easy editing.

Resource XML files have a root element of resources; everything else is a child of that root.

Dimensions

Dimensions are used in several places in Android to describe distances, such as a
widget’s padding. There are several different units of measurement available to you:

B in and mm for inches and millimeters, respectively. These are based on
the actual size of the screen.

B pt for points. In publishing terms, a point is 1/72 inch (again, based on
the actual physical size of the screen)

B dip and sp for device-independent pixels and scale-independent
pixels, respectively. One pixel equals one dip for a 160-dpi resolution
screen, with the ratio scaling based on the actual screen pixel density.
Scale-independent pixels also take into account the user’s preferred
font size.

To encode a dimension as a resource, add a dimen element, with a name attribute for
your unique name for this resource, and a single child text element representing the
value:

<resources>
<dimen name="thin">10px</dimen>
<dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/.. ., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
preceding sample). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, with the option to also specify an alpha
channel. You have your choice of single-character hex values or double-character hex
values, providing four styles:

#RGB
B #ARGB
B #RRGGBB
B #AARRGGBB

CHAPTER 23: Working with Resources 245

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or layout
resources. If you wish to turn them into resources, though, all you need to do is add
color elements to the resource file, with a name attribute for your unique name for this
color, and a single text element containing the RGB value itself:

<resources>
<color name="yellow_orange">#FFD555</color>
<color name="forest green">#005500</color>
<color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/.. ., replacing the ellipsis with your
unique name for the color (e.g., burnt_umber). In Java, you reference color resources by
the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.color.forest_green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of honorifics
(Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a name attribute
for the unique name you are giving the array. Then, add one or more child item
elements, each with a single text element containing the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>
</string-array>
<string-array name="airport codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A0O</item>
<item>MDT</item>
</string-array>
</resources>

246

CHAPTER 23: Working with Resources

From your Java code, you can then use Resources.getStringArray() to get a String|[]
of the items in the list. The parameter to getStringArray() is your unique name for the
array, prefixed with R.array. (e.g., Resources.getStringArray(R.array.honorifics)).

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may be used. One
obvious area comes with string resources and dealing with internationalization (118N)
and localization (L10N). Putting strings all in one language works fine—at least for the
developer—but covers only one language.

That is not the only scenario where resources might need to differ, though. Here are
others:

B Screen orientation: Is the screen in a portrait or landscape orientation?
Or is the screen square and, therefore, without an orientation?

B Screen size: How many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

B Touchscreen: Does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

B Keyboard: Which keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

B Other input: Does the device have some other form of input, like a D-
pad or click-wheel?

The way Android currently handles this is by having multiple resource directories, with
the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you would create two
folders, res/values-en/ and res/values-es/, where the value after the hyphen is the
ISO 639-1 two-letter code for the language. Your English strings would go in
res/values-en/strings.xml and the Spanish ones would go in res/values-
es/strings.xml. Android will choose the proper file based on the user’s device settings.

An even better approach is for you to consider some language to be your default, and
put those strings in res/values/strings.xml. Then, create other resource directories for
your translations (e.g., res/values-es/strings.xml for Spanish). Android will try to
match a specific language set of resources; failing that, it will fall back to the default of
res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple disparate criteria
for your resources. For example, suppose you want to develop for the following devices:

CHAPTER 23: Working with Resources

T-Mobile G1, which has a normal-size, medium-density screen and a
hardware keyboard

Samsung Galaxy Tab, which has a large-size, high-density screen and
no hardware keyboard

Motorola Charm, which has a small-size, medium-density screen and
a hardware keyboard

You may want to have somewhat different layouts for these devices, to take advantage
of different screen real estate and different input options. Specifically, you may want the
following:

Different layouts for each combination of size, orientation, and
keyboard

Different drawables for each density

Once you get into these sorts of situations, though, all sorts of rules come into play,
such as the following:

The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that order.
The Android documentation outlines the specific order in which these
options can appear. For the purposes of this example, screen size is
more important than screen orientation, which is more important than
screen density, which is more important than whether or not the
device has a keyboard.

There can be only one value of each configuration option category per
directory.

Options are case sensitive.

So, for the sample scenario, in theory, we would need the following directories,
representing the possible combinations:

res/layout-large-port-mdpi-querty
res/layout-large-port-mdpi-nokeys
res/layout-large-port-hdpi-querty
res/layout-large-port-hdpi-nokeys
res/layout-large-land-mdpi-querty
res/layout-large-land-mdpi-nokeys
res/layout-large-land-hdpi-querty
res/layout-large-land-hdpi-nokeys
res/layout-normal-port-mdpi-querty

res/layout-normal-port-mdpi-nokeys

247

248 CHAPTER 23: Working with Resources

res/layout-normal-port-finger-qwerty
res/layout-normal-port-hdpi-nokeys
res/layout-normal-land-mdpi-querty
res/layout-normal-land-mdpi-nokeys
res/layout-normal-land-hdpi-querty
res/layout-normal-land-hdpi-nokeys
res/drawable-large-port-mdpi-qwerty
res/drawable-large-port-mdpi-nokeys
res/drawable-large-port-hdpi-qwerty
res/drawable-large-port-hdpi-nokeys
res/drawable-large-land-mdpi-qwerty
res/drawable-large-land-mdpi-nokeys
res/drawable-large-land-hdpi-qwerty
res/drawable-large-land-hdpi-nokeys
res/drawable-normal-port-mdpi-qwerty
res/drawable-normal-port-mdpi-nokeys
res/drawable-normal-port-finger-qwerty
res/drawable-normal-port-hdpi-nokeys
res/drawable-normal-land-mdpi-qwerty

res/drawable-normal-land-mdpi-nokeys

res/drawable-normal-land-hdpi-qwerty
B res/drawable-normal-land-hdpi-nokeys
Don’t panic! We will shorten this list in just a moment!

Note that there is nothing preventing you from also having a directory with the
unadorned base name (res/layout). In fact, this is really a good idea, in case future
editions of the Android runtime introduce other configuration options you did not
consider—having a default layout might make the difference between your application
working or failing on that new device.

As promised, we can cut the number of required directories substantially. We do so by
decoding the rules Android uses for determining which, among a set of candidates, is
the correct resource directory to use:

1. Android tosses out directories that are specifically invalid. So, for
example, if the screen size of the device is normal, Android drops the -
large directories as candidates, since they call for some other size.

CHAPTER 23: Working with Resources

Android counts the number of matches for each folder, and pays
attention to only those with the most matches.

Android goes in the order of precedence of the options; in other words,
it goes from left to right in the directory name.

Also, our drawables vary only by density, and our layouts do not vary by density, so we
can clear out a lot of combinations by focusing on only the relevant platform differences.

So, we could skate by with only the following configurations:

res/layout-large-land-qwerty
res/layout-large-querty
res/layout-large-land
res/layout-large
res/layout-normal-land-qwerty
res/layout-normal-querty
res/layout-normal-land
res/layout

res/drawable-hdpi

res/drawable

Here, we take advantage of the fact that specific matches take precedence over
unspecified values. So, a device with a QWERTY keyboard will choose a resource with
gwerty in the directory over a resource that does not specify its keyboard type.

We could refine this even further, to cover only the specific devices we are targeting
(e.g., there is no large device with querty):

res/layout-large-land
res/layout-large
res/layout-land-querty
res/layout-qwerty
res/layout-land
res/layout
res/drawable-hdpi

res/drawable

If we did not care about having different layouts depending on whether the device had a
hardware keyboard, we could drop the two -qwerty resource sets.

We will see these resource sets again in Chapter 25, which describes how to support
multiple screen sizes.

249

250

CHAPTER 23: Working with Resources

RTL Languages: Going Both Ways

Android 2.3 added support for many more languages than it supported in previous
versions of the platform. As such, you now have greater opportunity to localize your
application where it is needed.

In particular, Android 2.3 added support for right-to-left (RTL) languages, notably
Hebrew and Arabic. Previously, Android supported only languages written horizontally
from left to right, such as English. This means you may create localized versions for RTL
languages, but first you need to consider whether your Ul in general will work properly
for RTL languages. For example:

B Are your TextView widgets aligned on the left side with other widgets
or containers? If so, is that the right configuration for your RTL users?

B Will there be any issues with your EditText widgets when users start
entering RTL text, such as inappropriate scrolling because you have
not properly constrained the EditText widget’s width?

B If you created your own forms of text input, outside of EditText and
the input method framework (e.g., custom onscreen virtual keyboards),
will they support RTL languages?

Chapter

Defining and Using Styles

Every now and then, you will find some code with a cryptic style attribute in a layout
element. For example, in the chapter on threading, the following ProgressBar was
presented:
<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout width="fill parent"
android:layout_height="wrap_content" />
</Linearlayout>

Something about that magic style attribute changed our ProgressBar from a normal
circle to a horizontal bar.

This chapter will briefly explore the concept of styles, including how you create them
and how you apply them to your own widgets.

Styles: DIY DRY

The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise keep separate from your layouts proper. The
primary use case is “don’t repeat yourself” (DRY)—if you have a bunch of widgets that
look the same, use a style to use a single definition for “look the same,” rather than
copying the look from widget to widget.

That paragraph will make a bit more sense if we look at an example, specifically the
Styles/NowStyled sample project. This is the same project we examined in an earlier
chapter, with a full-screen button that shows the date and time at which the activity was
launched or the button was pushed. In this example, we want to change the appearance
of the text on the face of the button, which we will accomplish by using a style.

251

http://schemas.android.com/apk/res/android

252

CHAPTER 24: Defining and Using Styles

The res/layout/main.xml file in this project is the same as it was in Chapter 20, but with
the addition of a style attribute:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""
android:layout width="fill parent"
android:layout_height="fill parent"
style="@style/bigred"

/>

NOTE: Because the style attribute is part of stock XML, and therefore is not in the android
namespace, it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-vi11/ for values resources to be used only on API level
11 or higher). The convention is to keep style resources in a styles.xml file, such as the
following from the NowStyled project:
<?xml version="1.0" encoding="utf-8"?>
<{resources>
<style name="bigred">
<item name="android:textSize">30sp</item>
<item name="android:textColor">#FFFF0000</item>

</style>
</resources>

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element represent
values of attributes to be applied to whatever the style is applied to—in our example, our
Button widget. So, our Button will have a comparatively large font (android:textSize set
to 30sp) and its text will appear in red (android:textColor set to #FFFF0000).

No changes are needed elsewhere in the project—nothing needs to be adjusted in the
manifest, in the Java code of the activity, and so on. Just defining the style and applying
it to the widget gives us the result shown in Figure 24-1.

http://schemas.android.com/apk/res/android

CHAPTER 24: Defining and Using Styles

Ml & s:16am

P ——

Wed Mar 30 08:04:49

EDT 2011

Figure 24-1. The Styles/NowStyled sample application

Elements of Style

There are four questions to consider when applying a style:

B Where do you put the style attributes to say you want to apply a style?
B Which attributes can you define via a style?
B How do you inherit from a previously defined style (your own or one
from Android)?
B What values can the attributes have in a style definition?
Where to Apply a Style

The style attribute can be applied to a widget, which affects only that widget.

The style attribute can also be applied to a container, which affects only that container.
However, doing this does not automatically style its children. For example, suppose
res/layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
style="@style/bigred"

253

http://schemas.android.com/apk/res/android

254

CHAPTER 24: Defining and Using Styles

<Button
android:id="@+id/button"
android:text=""
android:layout width="fill parent"
android:layout_height="fill parent"
/>
</Linearlayout>

The resulting Ul would not have the Button text in a big red font, despite the style
attribute. The style affects only the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, in which case it is
referred to as a theme, as covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it appears in the “XML Attributes” or “Inherited XML
Attributes” section of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to the
LinearLayout as shown above, everything would run fine, just with no visible results.
Despite the fact that LinearLayout has no android:textSize or android:textColor
attribute, no compile-time failure or runtime exception occurs.

Also, layout directives, such as android:layout width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element. For example, take a look at this
style resource (which you will see again in Chapter 28, which covers the new fragment
Ul framework):

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/activatedBackgroundIndicator</item>
</style>
</resources>

Here, we are indicating that we want to inherit the Theme.Holo style from within Android.
Hence, in addition to specifying all of our own attribute definitions, we are specifying
that we want all the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your attribute
definitions will be blended into whatever default style is being applied to the widget or
container.

CHAPTER 24: Defining and Using Styles

The Possible Values

Typically, the value that you will give the attributes in the style will be some constant, like
30sp or #FFFF0000. Sometimes, though, you may want to perform a bit of indirection, by
applying some other attribute value from the theme you are inheriting from. In that case,
you need to use the somewhat cryptic ?android:attr/ syntax, along with a few related
magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/activatedBackgroundIndicator</item>
</style>
</resources>

Here, we are indicating that the value of android:background is not some constant value,
or even a reference to a drawable resource (e.g., @drawable/my_background). Instead, we
are referring to the value of some other attribute—activatedBackgroundIndicator —from
our inherited theme. Whatever the theme defines as being the
activatedBackgroundIndicator is what our background should be.

Sometimes this is applied to a style as a whole. For example, let’s look again at the
ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout width="fill parent"
android:layout_height="wrap_content" />
</Linearlayout>

Here, our style attribute—not a style resource —is pointing to a theme-supplied attribute
(progressBarStyleHorizontal). If you poke through the Android source code, you will
see that this is defined as being a style resource, specifically
@android:style/Widget.ProgressBar.Horizontal. Hence, we are saying to Android that
we want our ProgressBar styled as @android:style/Widget.ProgressBar.Horizontal,
via the indirection of ?android:attr/progressBarStyleHorizontal.

This portion of the Android style system is very underdocumented, to the point where
Google itself recommends that you look at the Android source code listing the various
styles to see what is possible.

This is one place where inheriting a style becomes important. In the first example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the
activatedBackgroundIndicator value from Theme.Holo. That value might not exist in
other styles, or it might not have the value we want.

255

http://schemas.android.com/apk/res/android

256

CHAPTER 24: Defining and Using Styles

Themes: A Style by Any Other Name...

Themes are styles, applied to an activity or application, via an android:theme attribute
on the <activity> or <application> element. If the theme you are applying is your own,
simply reference it as @style/..., just as you would in a style attribute of a widget. If
the theme you are applying comes from Android, though, typically you will use a value
with @android:style/ as the prefix, such as @android:style/Theme.Dialog or
@android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity itself.
For example, here is the definition of @android:style/Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->
<style name="Theme.NoTitleBar.Fullscreen">
<item name="android:windowFullscreen">true</item>
<item name="android:windowContentOverlay">@null</item>
</style>

It specifies that the activity should take over the entire screen, removing the status bar
on Android 1.x and 2.x devices (android:windowFullscreen set to true). It also specifies
that the content overlay—a layout that wraps around your activity’s content view —
should be set to nothing (android:windowContentOverlay set to @null), having the effect
of removing the title bar.

A theme might also specify other styles that are applied to specific widgets. For
example, we see the following in the root theme (Theme):

<item name="progressBarStyleHorizontal">@android:style/Widget.ProgressBar«
.Horizontal</item>

Here, progressBarStyleHorizontal is pointing to @android:style/
Widget.ProgressBar.Horizontal. This is how we are able to reference
?android:attr/progressBarStyleHorizontal in our ProgressBar widget, and we could
create our own theme that redefines progressBarStyleHorizontal to point to some
other style (e.g., if we want to change the rounded rectangle used for the actual
progress bar image itself).

Chapter 25

Handling Multiple Screen
Sizes

For the first year or so after Android 1.0 was released, all production Android devices
had the same screen resolution (HVGA, 320x480) and size (around 3.5 inches, or 9
centimeters). Starting in the fall of 2009, though, devices started arriving with widely
disparate screen sizes and resolutions, from tiny QVGA (240x320) screens to much
larger WVGA (480x800) screens. And, in the fall of 2010, tablets and Google TV devices
appeared, offering yet more screen sizes.

Of course, users will expect your application to be functional on all of these screens, and
perhaps take advantage of larger screen sizes to add greater value. To that end, Android
1.6 added new capabilities to help better support these differing screen sizes and
resolutions, and these capabilities have been extended in subsequent Android releases.
The Android documentation has extensive coverage of the mechanics of handling
multiple screen sizes. You are encouraged to read that documentation along with this
chapter, to get the best understanding of how best to cope with, and perhaps take
advantage of, multiple screen sizes.

After a number of sections discussing the screen size options and theory, the chapter
provides an in-depth look at how to make a fairly simple application handle multiple
screen sizes well.

Taking the Default

Let’s suppose that you start off by totally ignoring the issue of screen sizes and
resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will assume your
application was designed to look good on the classic screen size and resolution.
Android will then automatically do the following:

257

258 CHAPTER 25: Handling Multiple Screen Sizes

B If your application is installed on a device with a larger screen, Android
will run your application in compatibility mode, scaling everything
based on the actual screen size. So, suppose you have a 24-pixel
square PNG file, and Android installs and runs your application on a
device with the standard physical size but a WVGA resolution (a so-
called high-density screen). Android might scale your PNG file to be 36
pixels when it displays it, so it will take up the same visible space on
the screen. On the plus side, Android handles this automatically; on
the minus side, bitmap-scaling algorithms tend to make the images a
bit fuzzy.

B If your application is installed on a device with a smaller screen,
Android will block your application from running. Hence, QVGA
devices, like the HTC Tattoo, will be unable to get your application,
even if it is available on the Android Market.

To give you an example of how this affects your app, Figure 25-1 shows the
Containers/Table sample application as viewed on an HTC Tattoo, with its QVGA
screen.

Figure 25-1. Table sample in QVGA via compatibility mode

If your application is compiled for Android 1.6 or higher, Android assumes that you are
properly handling all screen sizes, and therefore will not run your application in
compatibility mode. You will see how to tailor this in a later section.

Whole in One

The simplest approach to handling multiple screen sizes in Android is to design your
user interface (Ul) so that it automatically scales for the screen size, without any size-
specific code or resources. In other words, “it just works.”

CHAPTER 25: Handling Multiple Screen Sizes

This implies, though, that everything you use in your Ul can be gracefully scaled by
Android and that everything will fit, even on a QVGA screen.

The following sections provide some tips for achieving this all-in-one solution.

Think About Rules, Not Positions

Some developers, perhaps those coming from the drag-and-drop school of Ul
development, think first and foremost about the positions of widgets. They think that
they want certain widgets to be certain fixed sizes at certain fixed locations. They get
frustrated with Android layout managers (containers) and gravitate to the deprecated
Absolutelayout as a way to design Uls in the way they are used to doing it.

That approach rarely works well, even on desktops, as can be seen by applications that
do not handle window resizing very well. Similarly, that approach will not work on mobile
devices, particularly Android, with their wide range of screen sizes and resolutions.

Instead of thinking about positions, think about rules. You need to teach Android the
“business rules” about where widgets should be sized and placed, and then Android will
interpret those rules based upon what the device’s screen actually supports in terms of
resolution.

The simplest rules are the fill parent and wrap_content values for
android:layout_width and android:layout_height. They do not specify specific sizes,
but rather adapt to the space available.

The richest environment for easily specifying rules is Relativelayout. While complicated
on the surface, Relativelayout does an excellent job of letting you control your layout
while still adapting it to other screen sizes. For example, you can do the following:

B Explicitly anchor widgets to the bottom or right side of the screen,
rather than hoping they will wind up there courtesy of some other
layout

B Control the distances between widgets that are connected (e.g., a
label for a field should be to the left of the field) without having to rely
on padding or margins

The greatest control for specifying rules is to create your own layout class. For example,
suppose you are creating a series of applications that implement card games. You may
want to have a layout class that knows the following about playing cards: how they
overlap, which are face up versus face down, how big to be to handle varying numbers
of cards, and so forth. While you could achieve the desired look with, say, a
Relativelayout, you may be better served implementing a PlayingCardLayout or a
HandOfCardsLayout or something that is more explicitly tailored for your application.
Unfortunately, creating custom layout classes is underdocumented at this point in time.

259

260

CHAPTER 25: Handling Multiple Screen Sizes

Consider Physical Dimensions

Android offers a wide range of available units of measure for dimensions. The most
popular has been the pixel (px), because it is easy to wrap your head around the
concept. After all, every Android device has a screen with a certain number of pixels in
each direction.

However, pixels start to become troublesome as screen density changes. As the number
of pixels in a given screen size increases, the pixels effectively shrink. A 32-pixel icon on
a traditional Android device might be finger-friendly, but on a high-density device (say,
WVGA in a mobile phone form factor), 32 pixels may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had been
specifying a size in pixels, you might consider switching to using millimeters (mm) or
inches (in) as the unit of measure. 10 millimeters is 10 millimeters regardless of the
screen resolution or the screen size. This way, you can ensure that your widget is sized
to be finger-friendly, regardless of the number of pixels that might take.

Avoid “Real” Pixels

In some circumstances, using millimeters for dimensions does not make sense. In such
cases, you may want to consider using other units of measure while still avoiding “real”
pixels.

Android offers dimensions measured in density-independent pixels (dip). These map 1:1
to pixels for a 160-dpi screen (e.g., a classic HVYGA Android device) and scale from
there. For example, on a 240-dpi device (e.g., a phone-sized WVGA device), the ratio is
2:3, so 50dip = 50px at 160 dpi = 75px at 240 dpi. The advantage to the user of going
with dip is that the actual size of the dimension stays the same, so visibly there is no
difference between 50dip at 160 dpi and 50dip at 240 dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled pixels, in theory,
are scaled based on the user’s choice of font size (FONT_SCALE value in
System.Settings).

Choose Scalable Drawables

Classic bitmaps—PNG, JPG, and GIF—are not intrinsically scalable. If you are not
running in compatibility mode, Android will not even try to scale them for you based on
screen resolution and size. Whatever size of bitmap you supply is the size it will be, even
if that makes the image too large or too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch bitmaps and
XML-defined drawables (e.g., GradientDrawable) as alternatives. A nine-patch bitmap is
a PNG file specially encoded to have rules indicating how that image can be stretched
to take up more space. XML-defined drawables use a quasi-SVG XML language to
define shapes, their strokes and fills, and so on.

CHAPTER 25: Handling Multiple Screen Sizes

Tailor-Made, Just for You (and You, and You, and...)

There will be times when you want to have different looks or behaviors based upon
screen size or density. Android has techniques that you can use to switch out resources
or code blocks based on the environment in which your application runs. When these
techniques are properly used in combination with the techniques described in the
preceding section, achieving screen size- and density-independence is eminently
possible, at least for devices running Android 1.6 and newer.

Adding the <supports-screens> Element

The first step to proactively supporting different screen sizes is to add the <supports-
screens> element to your AndroidManifest.xml file. This specifies which screen sizes
your application explicitly supports and which it does not support. Those that it does not
explicitly support will be handled by the automatic compatibility mode, described
previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eudyou"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

The android:smallScreens, android:normalScreens, and android:largeScreens
attributes are fairly self-explanatory: each takes a Boolean value that indicates whether
your application explicitly supports screens of that size (true) or requires compatibility
mode assistance (false). Android 2.3 has also added android:xlargeScreens for larger
tablets and (perhaps) televisions.

The android:anyDensity attribute indicates whether you are taking density into account
in your calculations (true) or not (false). If false, Android will treat all of your
dimensions (e.g., 4px) as if they were for a normal-density (160-dpi) screen. If your

261

http://schemas.android.com/apk/res/android

262

CHAPTER 25: Handling Multiple Screen Sizes

application is running on a screen with lower or higher density, Android will scale your
dimensions accordingly. If you indicate that android:anyDensity = "true", you are
telling Android not to do that, putting the onus on you to use density-independent units,
such as dip, mm, or in.

Resources and Resource Sets

The primary way to toggle different things based on screen size or density is to create
resource sets. By creating resource sets that are specific to different device
characteristics, you teach Android how to render each, and Android then switches
among those sets automatically.

Default Scaling

By default, Android scales all drawable resources. Those that are intrinsically scalable,
as previously described, will scale nicely. Ordinary bitmaps are scaled using a normal
scaling algorithm, which may or may not give you great results. It also may slow down
your application a bit. To avoid this, you need to set up separate resource sets
containing your nonscalable bitmaps.

Density-Based Sets

If you wish to have different layouts, dimensions, or the like based upon different screen
densities, you can use the -1dpi, -mdpi, -hdpi, and -xhdpi resource set labels. For
example, res/values-hdpi/dimens.xml would contain dimensions used in high-density
devices.

Note that there is a bug in Android 1.5 (API level 3) when it comes to working with these
screen-density resource sets. Even though all Android 1.5 devices are medium density,
Android 1.5 might pick one of the other densities by accident. If you intend to support
Android 1.5 and use screen-density resource sets, you need to clone the contents of
your -mdpi set, with the clone named -mdpi-v3. This version-based set is described in
greater detail a bit later in this section.

Size-Based Sets

Similarly, if you wish to have different resource sets based upon screen size, Android
offers -small, -normal, and -large resource set labels. Creating res/layout-large-
land/ would indicate layouts to use on large screens (e.g., WVGA) in landscape
orientation.

Version-Based Sets

There may be times when earlier versions of Android get confused by newer resource
set labels. To help with that, you can include a version label to your resource set, of the

CHAPTER 25: Handling Multiple Screen Sizes

form -vN, where N is an API level. Hence, res/drawable-large-v4/ indicates these
drawables should be used on large screens at API level 4 (Android 1.6) and newer.

So, if you find that Android 1.5 emulators or devices are grabbing the wrong resource
sets, consider adding -v4 to their resource set names to filter them out.

Finding Your Size

If you need to take different actions in your Java code based on screen size or density,
you have a few options.

If there is something distinctive in your resource sets, you can “sniff” on that and branch
accordingly in your code. For example, as you will see in the code sample later in this
chapter, you can have extra widgets in some layouts (e.g., res/layout-large/main.xml);
simply seeing if an extra widget exists will tell you if you are running a large screen or
not.

You can also find out your screen size class via a Configuration object, typically
obtained by an Activity via getResources().getConfiguration(). A Configuration
object has a public field named screenlLayout that is a bitmask indicating the type of
screen the application is running on. You can test to see if your screen is small, normal,
or large, or if it is long (where “long” indicates a 16:9 or similar aspect ratio, compared to
4:3). For example, here we test to see if we are running on a large screen:
if (getResources().getConfiguration().screenLayout

& Configuration.SCREENLAYOUT SIZE LARGE)

==Configuration.SCREENLAYOUT SIZE LARGE) {
// yes, we are large

else {
// no, we are not

}

Similarly, you can find out your screen density, or the exact number of pixels in your
screen size, using the DisplayMetrics class.

Ain’t Nothing Like the Real Thing

The Android emulators will help you test your application on different screen sizes.
However, that will only get you so far, because mobile device LCDs have different
characteristics than your desktop or notebook, such as the following:

B Mobile device LCDs may have a much higher density than that of your
development machine.

B A mouse allows for much more precise touchscreen input than does
an actual fingertip.

Where possible, you are going to need to either use the emulator in new and exciting
ways or try to get your hands on actual devices with alternative screen resolutions.

263

264

CHAPTER 25: Handling Multiple Screen Sizes

Density Differs

The Motorola DROID has a 240-dpi, 3.7-inch, 480x854-pixel screen (an FWVGA
display). To emulate a DROID screen, based on pixel count, takes up one-third of a 19-
inch, 1280x1024-pixel LCD monitor, because the LCD monitor’s density is much lower
than that of the DROID —around 96 dpi. So, when you fire up your Android emulator for
an FWVGA display like that of the DROID, you will get a massive emulator window.

This is still perfectly fine for determining the overall look of your application in an FWVGA
environment. Regardless of density, widgets will still align the same, sizes will have the
same relationships (e.g., widget A might be twice as tall as widget B, and that will be
true regardless of density), and so on.

However, keep the following in mind:

B Things that might appear to be a suitable size when viewed on a 19-
inch LCD may be entirely too small on a mobile device screen of the
same resolution.

B Things that you can easily click with a mouse in the emulator may be
much too small to pick out on a physically smaller and denser screen
when used with a finger.

Adjusting the Density

By default, the emulator keeps the pixel count accurate at the expense of density, which
is why you get the really big emulator window. You do have an option, though, of having
the emulator keep the density accurate at the expense of pixel count.

The easiest way to do this is to use the Android AVD Manager, introduced in Android
1.6. The Android 2.0 edition of this tool has a Launch Options dialog box that pops up
when you start an emulator instance via the Start button, as shown in Figure 25-2.

skin: WVGAS800 (480x800)
Density: High (240)

 Scale display to real size

Screen Size (in):
Monitor dpi: E‘

(J Wipe user data

N

Launch ‘ ‘ Cancel |

Figure 25-2. The Launch Options dialog box

CHAPTER 25: Handling Multiple Screen Sizes

By default, the “Scale display to real size” check box is unchecked, and Android will
open the emulator window normally. You can check that check box and then provide
two bits of scaling information:

B The screen size of the device you wish to emulate, in inches (e.g., 3.7
inches for the Motorola DROID)

B The dpi of your monitor (click the ? button to open a calculator that
helps you determine what your dpi value is)

This gives you an emulator window that more accurately depicts what your user
interface will look like on a physical device, at least in terms of sizes. However, since the
emulator is using far fewer pixels than will a device, fonts may be difficult to read,
images may be blocky, and so forth.

Ruthlessly Exploiting the Situation

So far, we have focused on how you can ensure that your layouts look decent on other
screen sizes. For screens that are smaller than the norm (e.g., QVGA), that is perhaps all
you can hope to achieve.

Once you get into larger screens, though, another possibility emerges: using different
layouts designed to take advantage of the extra screen space. This is particularly useful
when the physical screen size is larger (e.g., a 5-inch LCD like that on the Dell Streak
Android tablet, or a 7-inch LCD like that on the Samsung Galaxy Tab), rather than simply
having more pixels in the same physical space.

The following sections describe some ways you might take advantage of additional
space.

Replace Menus with Buttons

An options menu selection requires two physical actions: press the Menu button, and
then tap on the appropriate menu choice. A context menu selection requires two
physical actions as well: long-tap on the widget, and then tap on the menu choice.
Context menus have the additional problem of being effectively invisible; for example,
users may not realize that your ListView has a context menu.

You might consider augmenting your Ul to provide direct onscreen ways of
accomplishing things that might otherwise be hidden away on a menu. This not only
reduces the number of steps a user needs to take to do things, but also makes those
options more obvious.

For example, suppose you are creating a media player application, and you want to offer
manual playlist management. You have an activity that displays the songs in a playlist in
a ListView. On an options menu, you have an Add choice, to add a new song from the
ones on the device to the playlist. On a context menu on the ListView, you have a
Remove choice, plus Move Up and Move Down choices to reorder the songs in the list.
For large screens, though, you might consider adding four ImageButton widgets to your

265

266

CHAPTER 25: Handling Multiple Screen Sizes

Ul for these four options, with the three from the context menu enabled only when a row
is selected by the D-pad or trackball. On regular or small screens, you would stick with
just using the menus.

Replace Tabs with a Simple Activity

You may have introduced a TabHost into your Ul to allow you to display more widgets in
the available screen space. As long as the widget space you save by moving them to a
separate tab is more than the space taken up by the tabs themselves, you win.
However, having multiple tabs means more user steps to navigate your Ul, particularly if
the user needs to flip back and forth between tabs frequently.

If you have only two tabs, consider changing your Ul to offer a large-screen layout that
removes the tabs and puts all the widgets on one screen. This enables the user to see
everything without having to switch tabs all the time.

If you have three or more tabs, you probably lack screen space to put all those tabs’
contents on one activity. However, you might consider going half and half: have popular
widgets be on the activity all of the time, leaving your TabHost to handle the rest on
(roughly) half of the screen.

Consolidate Multiple Activities

The most powerful technique is to use a larger screen to get rid of activity transitions
outright. For example, if you have a ListActivity where clicking on an item brings up
that item’s details in a separate activity, consider supporting a large-screen layout where
the details are on the same activity as the ListView (e.g., ListView on the left, details on
the right, in a landscape layout). This eliminates the user having to constantly press the
Back button to leave one set of details before viewing another.

You will see this technique applied in the sample code presented in the following
section.

Example: EU4You

To examine how to use some of the techniques introduced in the previous sections, let’s
look at the ScreenSizes/EU4You sample application. This application has one activity
(EU4You) that contains a ListView with the roster of European Union members and their
respective flags. Clicking on one of the countries brings up the mobile Wikipedia page
for that country.

In the source code to this book, you will find four versions of this application. We start
with an application that is ignorant of screen size and slowly add in more screen-related
features.

CHAPTER 25: Handling Multiple Screen Sizes

The First Cut

First, here is our AndroidManifest.xml file, which looks distinctly like the one shown
earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eusyou"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Note that we have included the <supports-screens> element, saying that we do indeed
support all screen sizes. This blocks most of the automatic scaling that Android would
do if we did not specify that we support certain screen sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

<?xml version="1.0" encoding="utf-8"?>

<ListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout width="wrap content"”
android:layout_height="wrap_ content"
android:layout gravity="center vertical|left"
android:paddingRight="4dip"

/>

267

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

268 CHAPTER 25: Handling Multiple Screen Sizes

<TextView android:id="@+id/name"
android:layout width="wrap content"”
android:layout_height="wrap_ content"
android:layout gravity="center vertical|right"
android:textSize="20dip"
/>
</Linearlayout>

For example, right now, our font size is set to 20dip, which will not vary by screen size or
density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU members, so
we need to have the smarts to display the flag and the text in the row:

package com.commonsware.android.eudyou;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class EU4You extends ListActivity {
static private ArraylList<Country> EU=new ArrayList<Country>();

static {

EU.add(new Country(R.string.austria, R.drawable.austria,
R.string.austria url));

EU.add(new Country(R.string.belgium, R.drawable.belgium,
R.string.belgium url));

EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
R.string.bulgaria url));

EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
R.string.cyprus_url));

EU.add(new Country(R.string.czech republic,
R.drawable.czech republic,
R.string.czech republic_url));

EU.add(new Country(R.string.denmark, R.drawable.denmark,
R.string.denmark _url));

EU.add(new Country(R.string.estonia, R.drawable.estonia,
R.string.estonia url));

EU.add(new Country(R.string.finland, R.drawable.finland,
R.string.finland url));

EU.add(new Country(R.string.france, R.drawable.france,
R.string.france url));

EU.add(new Country(R.string.germany, R.drawable.germany,
R.string.germany url));

EU.add(new Country(R.string.greece, R.drawable.greece,
R.string.greece url));

EU.add(new Country(R.string.hungary, R.drawable.hungary,
R.string.hungary url));

CHAPTER 25: Handling Multiple Screen Sizes

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU

EU.

EU.

EU.

}

add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new

add(new

.add(new

add(new
add(new

add(new

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
setListAdapter(new CountryAdapter());

@0verride
protected void onListItemClick(ListView 1, View v,

Country(R.string.ireland, R.drawable.ireland,
R.string.ireland url));
Country(R.string.italy, R.drawable.italy,
R.string.italy url));
Country(R.string.latvia, R.drawable.latvia,
R.string.latvia url));
Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));
Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg url));
Country(R.string.malta, R.drawable.malta,
R.string.malta_url));
Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));
Country(R.string.poland, R.drawable.poland,
R.string.poland url));
Country(R.string.portugal, R.drawable.portugal,
R.string.portugal url));
Country(R.string.romania, R.drawable.romania,
R.string.romania url));
Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia url));
Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia url));
Country(R.string.spain, R.drawable.spain,
R.string.spain url));
Country(R.string.sweden, R.drawable.sweden,
R.string.sweden url));
Country(R.string.united kingdom,
R.drawable.united kingdom,
R.string.united kingdom url));

int position, long id) {

startActivity(new Intent(Intent.ACTION VIEW,

}

Uri.parse(getString(EU.get(position).url))));

static class Country {
int name;
int flag;
int url;

Country(int name, int flag, int url) {

this.name=name;
this.flag=flag;
this.url=url;

269

270 CHAPTER 25: Handling Multiple Screen Sizes

}
}

class CountryAdapter extends ArrayAdapter<Country> {
CountryAdapter() {
super (EU4You.this, R.layout.row, R.id.name, EU);

@0verride
public View getView(int position, View convertView,
ViewGroup parent) {
CountryWrapper wrapper=null;

if (convertView==null) {
convertView=getLayoutInflater().inflate(R.layout.row, null);
wrapper=new CountryWrapper(convertView);
convertView.setTag(wrapper);

else {
wrapper=(CountryWrapper)convertView.getTag();

wrapper.populateFrom(getItem(position));

return(convertView);

}
}

class CountryWrapper {
private TextView name=null;
private ImageView flag=null;
private View row=null;

CountryWrapper(View row) {
this.row=row;

TextView getName() {
if (name==null) {
name=(TextView)row.findViewById(R.id.name);

}

return(name);

ImageView getFlag() {
if (flag==null) {
flag=(ImageView)row.findViewById(R.id.flag);

return(flag);

void populateFrom(Country nation) {
getName().setText(nation.name);
getFlag().setImageResource(nation.flag);

CHAPTER 25: Handling Multiple Screen Sizes 271

}
}
}

Figures 25-3, 25-4, and 25-5 show what the activity looks like in an ordinary HVGA
emulator, a WVGA emulator, and a QVGA screen, respectively.

Y] Zafl @3 5:05 PMm

Germany

E=creece

i Hungary
Bl ireland
I Italy

Figure 25-3. EU4You, original version, HV/GA

&Ml @ 5:08 Pm

EGreece
]

Rz

-Ireland

I Italy

Lithuania

- Luxembourg

Figure 25-4. EU4You, original version, WVGA (800 x 480 pixels)

272

CHAPTER 25: Handling Multiple Screen Sizes

@& 5:13pPMm

Bl Ireland

Figure 25-5. EU4You, original version, QVGA

Fixing the Fonts

The first problem that should be fixed is the font size. As you can see, with a fixed 20-
pixel size, the font ranges from big to tiny, depending on screen size and density. For a
WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have different
versions of that resource based on screen size or density. However, it is simpler to just
specify a density-independent size, such as 5mm, as seen in the ScreenSizes/EU4You 2

project:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout width="wrap content"”
android:layout_height="wrap content"
android:layout gravity="center vertical|left"
android:paddingRight="4dip"

/>

<TextView android:id="@+id/name"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:layout gravity="center vertical|right
android:textSize="5mm"

/>

</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 25: Handling Multiple Screen Sizes 273

Figures 25-6, 25-7, and 25-8 show what the new activity looks like on HVGA, WVGA,
and QVGA screens, respectively.

Y] AN 3 6:03PM
m Austria
I Belgium

®= Bulgaria

Bl Cyprus

"W Czech Republic

== Denmark

Fctnnina

Figure 25-6. EU4You, 5mm font version, HVGA

Al 8 6:10pPMm

A Stria

I Belgium

®= Bulgaria

Bl Cyprus

"W (Czech Republic
==Denmark 7

= EStONIA

Figure 25-7. EU4You, 5mm font version, WVGA (800 x 480 pixels)

274 CHAPTER 25: Handling Multiple Screen Sizes

@@ 6:01PM

I Belgium

™= Bulgaria

Bl Cyprus

"W Czech Republic

== Denmark

Figure 25-8. EU4You, 5mm font version, QVGA

Now our font is a consistent size and large enough to match the flags.

Fixing the Icons

So, what about those icons? They should vary in size as well, since they are the same
for all three emulators.

However, Android automatically scales bitmap resources, even with <supports-screens>
and its attributes set to true. On the plus side, this means you may not have to do
anything with these bitmaps. However, you are relying on a device to do the scaling,
which definitely costs CPU time (and, hence, battery life). Also, the scaling algorithms
that the device uses may not be optimal, compared to what you can do with graphics
tools on your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-1dpi and res/drawable-hdpi,
putting in smaller and larger renditions of the flags, respectively. This project also
renames res/drawable to res/drawable-mdpi. Android will use the flags for the
appropriate screen density, depending on what the device or emulator needs.

Because this effect is subtle and will not show up well in this book, screenshots aren’t
provided.

Using the Space

While the activity looks fine on WVGA in portrait mode, it really wastes a lot of space in
landscape mode, as shown in Figure 25-9.

CHAPTER 25: Handling Multiple Screen Sizes 275

Ml @ 6:36 PM

A U Stria

I Belgium

-Bulgaria

-Cyprus

Figure 25-9. EU4You, landscape WVGA (800 x 480 pixels)

We can put that to better use by having the Wikipedia content appear directly on the
main activity when in large-screen landscape mode; that saves having to spawn a
separate browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-land
rendition that incorporates a WebView widget, as seen in ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ListView
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout weight="1"
/>
<WebView
android:id="@+id/browser"
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout weight="1"
/>
</Linearlayout>

Then, we need to adjust our activity to look for that WebView and use it if found, and
otherwise to default to launching a browser activity:

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.browser);
setListAdapter(new CountryAdapter());

@0verride
protected void onListItemClick(ListView 1, View v,

http://schemas.android.com/apk/res/android

276

CHAPTER 25: Handling Multiple Screen Sizes

int position, long id) {
String url=getString(EU.get(position).url);

if (browser==null) {
startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse(url)));

else {
browser.loadUrl(url);

}
}

This gives us a more space-efficient edition of the activity, as shown in Figure 25-10.
M @ 6:49 Pm

W %Austrla ‘ Q

\ Text WIKI to 25383 to donate $10 to Wikipedia!

I Belgium Austria

This article is about the country. For other uses of terms redirecting
here, see Austria (disambiguaticn) and Osterreich (disambiguation).

=== Bulgaria

Republic of Austria
Republik Osterreich

Blcyprus

"W Czech Republic

== Denmark

Cetnnin

Figure 25-10. EU4You, landscape WVGA (800 < 480 pixels), set for normal density, and showing the embedded
WebView

If the user clicks a link in the Wikipedia page, the full browser opens, for easier surfing.

Note that testing this version of the activity, to see this behavior, requires a bit of extra
emulator work. By default, Android sets up WVGA devices as being high-density,
meaning WVGA is not large in terms of resource sets, but rather normal. You will need to
create a different emulator AVD that is set for normal (medium) density, which will result
in a large screen size.

What If It Is Not a Browser?

Of course, EU4You does cheat a bit. The second activity is a browser (or WebView in the
embedded form), not some activity of your own creation. Things get slightly more
complicated if the second activity is some activity of yours, with many widgets in a
layout, and you want to both use it as an activity (for smaller screens) and have it
embedded in your main activity Ul (for larger screens).

CHAPTER 25: Handling Multiple Screen Sizes 277

The best way to approach this problem, for Android 1.6 and newer, is to employ the new
fragments system. Although this was introduced with Android 3.0, the Android
Compatibility Library makes fragments available in earlier versions of Android. The basic

use of fragments—complete with another edition of the EU4You sample—will be covered
later in this book.

Part III

Honeycomb and Tablets

Chapter

Introducing the
Honeycomb Ul

February 2011 saw the introduction of Android 3.0 and a Ul paradigm that, for now, we
will refer to by the Android 3.0 codename, Honeycomb. Android 3.0 itself is exclusively
targeted at tablets, though elements of the Honeycomb Ul system will make it into future
versions of Android that support phones as well. The Honeycomb Ul is perhaps the
biggest single change in Android since Android 0.9, before the first phones were
available. The impacts of Honeycomb will resound throughout the Android ecosystem
for a long time as people adjust to make use of its features.

Leading off a series of chapters on the Honeycomb capabilities, this chapter is focused
more on the big picture of Honeycomb and its place within Android.

Why Honeycomb?

In principle, Android’s original phone-centric Ul can run on tablets. After all, a few tablets
shipped with Android 2.2 support, such as the Samsung Galaxy Tab. Clearly, those
manufacturers thought the Android of the time was strong enough for their tablet
devices.

That being said, as you get into larger tablets (e.g., the Motorola XOOM with its 10-inch
diagonal screen), the Android phone Ul starts to become clunkier. Although applications
can scale up to use the larger screen, the default way to scale up is just to make
everything bigger, frequently resulting in a lot of wasted space. Whereas an e-mail client
on a phone might dedicate an activity to showing the list of e-mails in the inbox, an e-
mail client on a tablet really ought to show the list of e-mails plus something else, such
as the content of a selected e-mail. We have the room, so we may as well use it.

Similarly, the dependence on menus, while reasonable on a phone, makes less sense on
a tablet. We have the space to show more of those functions right on the screen. Hiding
them in menus makes them less discoverable to users and requires extra taps to
access.

281

282

CHAPTER 26: Introducing the Honeycomb Ul

So, Honeycomb is designed to retain the essence of the Android user experience, while
allowing applications to (relatively) gracefully take advantage of the space that is
available.

What the User Sees

An Android 3.0 screen looks a bit different from an Android 2.x screen, as shown in
Figure 26-1.

My apps

Action Bar De
Custom Locale
ay

»
r Der
oc

ps

®

Settings

Figure 26-1. The Android 3.0 app launcher, as seen on the emulator

The status bar at the top of the screen has been moved to the bottom of the screen and
is now called the system bar. On the left end of the system bar are onscreen buttons for
Back, Home, and recent tasks (which formerly would take a long-press of the Home
button). Notification icons appear on the right, along with the clock and the signal and
battery strength indicators (the concept of notifications will be covered later in this
book).

The Ul of an application that has not been optimized for Android 3.x appears much the
same, as shown in Figure 26-2.

CHAPTER 26: Introducing the Honeycomb Ul

lorem
ipsum
B dolor

V' sit

v’ amet

B consectetuer
B adipiscing

v elit

morbi
v vel
ligula
Bvitae

v arcu
S o O ==

Figure 26-2. The FancyLists/Dynamic sample project, on Android 3.0

The only substantive difference is the new icon in the system bar, which will open an
Android 2.x options menu, if the application has one.

Android 3.0-optimized applications will look a bit different, as shown in Figure 26-3.

r
Q New contact \/ Done Cancel =
Phone-only, unsynced contact ‘a
Name ©
Organization Company S
Title
Phone Phone Home 40 ®
Email Email Home 40 ®
Adress Address Home 40 ®
Notes Notes €]
Website Website o @

Add another field

Figure 26-3. Adding a contact on Android 3.0

At the top of the screen is the action bar. The action bar largely replaces options menus,
though you define the action bar in the same way as you define an options menu. In
Figure 26-3, Done and Cancel are the first two options menu choices. The icon to the

283

284 CHAPTER 26: Introducing the Honeycomb Ul

right of them represents other options menu choices, which appear when the user taps
that icon, as shown in Figure 26—4.

o
@ New contact v/ Done Cancel

Phone-only, unsynced contact H Delete contact

Join

Organization Company S
Title

Phone Phone Home 40 ®

Email Email Home 40 ®

Address Address Home 40 ®

Notes Notes €]

Website Website e ®

Add another field

Figure 26-4. The options menu portion (right side) of the action bar in Android 3.0

The icon on the left end of the action bar is tappable, and in this case takes the user up
in the hierarchy of actions in this application, as indicated by the northwest-pointing
arrowhead. In this case, going “up” from adding a new contact takes you to the list of
existing contacts, as shown in Figure 26-5.

g M All contacts 4 Q Find contacts H+ New ,0‘\'

)
ohn Doe
Jane Smith *]
Somebody Not So Important, That Firm Over There
. g <
Phone 1-703-555-1212

Emall johndoe@bar.com

I 2 contacts

K

Figure 26-5. The roster of available contacts as displayed in Android 3.0

CHAPTER 26: Introducing the Honeycomb Ul

In Android 2.x, the contacts Ul would have one activity with the list of contacts, and a
separate activity to view the details of that contact. In Android 3.0, these are combined
into a single activity. In the future, when the Honeycomb Ul is applied to phones, the
same code base will revert to the one-activity-per-operation mode. This is accomplished
through the use of fragments, which will be covered later in this book.

ia M All contacts /) Q, Find contacts M New s

2 cor M All contacts b

i % Starred *
John Doe
L JETS T Somebody Not So Important, That Firm Over There
. g <
Phone 1-703-555-1212

Emall johndoe@bar.com

K

Figure 26-6. The contact filter spinner in Android 3.0

To the right of “All contacts” is a “Find contacts” search field, built into the action bar.

Also, the menu items on the right side of the action bar now represent a mix of options
menu items (e.g., add a new contact) and context menu items for the selected contact
(e.g., edit the contact).

Functionally, everything is there that you would see in Android 2.x. It has been
reorganized for Android 3.x, with an emphasis on taking formerly hidden things like
menus and adding them to the main screen for ease of discovery and use.

The Holographic Theme

Android applications that are updated for Android 3.0 will have a different look and feel,
not only for the activity as a whole, but for individual widgets. The so-called Holographic
theme is applied by default to Honeycomb-capable applications. This can have some
significant impact on the way widgets look. While they work the same, they look
different, so you may want to update documentation and such to show the classic
theme as well as the new Holographic look.

For example, the “All contacts” item in the action bar of Figure 26-6 is a Spinner, one
that opens to show the available options. The former pop-up dialog box for choosing the
Spinner value is gone, replaced by a true drop-down menu.

285

286

CHAPTER 26: Introducing the Honeycomb Ul

Similarly, tabs, as implemented with TabWidget, will look substantially different, as
shown in Figure 26-7.

W Dynamic Tabs

Button Clock Clock Clock Clock Clock

A semi-random button

Figure 26-7. The Fancy/DynamicTabs sample application, updated for Android 3.0

If you are creating your own custom styles, there are two that you will want to consider
inheriting from:

B Theme.Holo is the standard dark Holographic theme (dark background,
light text).

B Theme.Holo.Light is the light equivalent (light background, dark text).

Dealing with the Rest of the Devices

Of course, all the Android phones in the world haven’t up and vanished just because
Android 3.0 has been released. The goal is for you to create an application that supports
both phones and tablets from a single code base.

Your phone-centric app will run just fine on a tablet, though you may wish to do some
things to take advantage of larger screen sizes, as was discussed earlier in this book. If
you want to adopt the general look and feel of the Honeycomb Ul, you will need to
include android:targetSdkVersion="11" in your <uses-sdk> element in the manifest.
Also, if you want the gradient background for your Honeycomb activities, add the
android:hardwareAccelerated="true" attribute to the <application> or <activity>
elements in the manifest to turn on hardware acceleration for 2D graphics. For example,
from the ScreenSizes/EU4You_5 sample project, here is the AndroidManifest.xml file,
showing both of these changes:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

CHAPTER 26: Introducing the Honeycomb Ul

package="com.commonsware.android.eudyou"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
<application android:label="@string/app_name"
android:icon="@drawable/cw"
android:hardwareAccelerated="true">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

The resulting application works fine on older devices, but with no other changes, we get
the result shown in Figure 26-8 on a Motorola XOOM.

3" Euavou

Q)

Text WIKI to 25383 to donate $10.
Msg & Data Rates May Apply

— A stria WX [oenmark

I Belgium

Denmark

This article is about the country. For other uses, see Denmark (disambiguation).

™™ Bulgaria

-Cyprus

W Czech Republic

-I—Denmark

e EStONIA

Kingdom of Denmark
Kongeriget Danmark

Figure 26-8. The EU4You sample application, lightly updated for Android 3.0

If you want to take advantage of some of the newer features described in this set of
Honeycomb chapters, you will also need to think about backward compatibility, to make
sure that what you implement in your application will work successfully on both newer
and older versions of Android. This topic is also covered later in this book.

287

288 CHAPTER 26: Introducing the Honeycomb Ul

If you have resources, such as styles, that need to be version-specific, you can use the -
v11 resource set suffix. For example, you could have a res/values/styles.xml and a
res/values-vi1/styles.xml—the latter would be used on Honeycomb, and the former
would be used on older versions of Android. But first, you need to explore all the
Honeycomb Ul features that you can take advantage of, which is the point of the next
few chapters.

Chapter

Using the Action Bar

One of the easiest ways to make your application blend in better with the Honeycomb Ul
is to enable the action bar, introduced in Chapter 26. What makes it “easy” is that most
of the basic functionality of the action bar is backward compatible —the Honeycomb
settings will not cause the application to crash on earlier versions of Android.

The sample project shown in this chapter is Menus/ActionBar, which extends the
Menus/Inflation project shown in a previous chapter.

Enabling the Action Bar

By default, your Android application will not use the action bar. In fact, it will not even be
displayed on the screen. If you want the action bar to appear on the screen, you need to
include android:targetSdkVersion="11" in your <uses-sdk> element in the manifest,
such as the manifest for the Menus/ActionBar project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android. inflation">
<application android:label="@string/app_name"
android:icon="@drawable/cw"
android:hardwareAccelerated="true">
<activity android:name=".InflationDemo" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
<supports-screens android:xlargeScreens="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"/>
</manifest>

289

http://schemas.android.com/apk/res/android

290

CHAPTER 27: Using the Action B

This will cause your options menu to appear in the upper-right corner of the screen,
under a menu icon in the action bar, as shown in Chapter 26. Also, your activity’s icon
will appear in the upper-left corner, with your activity’s name (from the android:1label
attribute in the manifest) alongside of it.

While this gives you the basic Honeycomb look and feel—including the Honeycomb-
themed widgets, such as the new Spinner with the southeast-pointing arrowhead —it
does not really change the user experience all that much.

Promoting Menu Items to the Action Bar

The next step for integrating with the action bar is to promote certain options menu
items from being part of the options menu to being always visible on the action bar
itself. This makes them easier to find and saves the user a tap when the time comes to
use them.

To do this, in your menu XML resource, you can add the android: showAsAction attribute
to an <item> element. A value of ifRoom means that the menu item will appear in the
action bar if there is space for it, while a value of always means that the menu item will
always be put in the action bar. All else being equal, ifRoom is the better choice, as it will
adapt better to smaller screens, once the Honeycomb Ul moves onto phones. You can
also combine this with the withText value (e.g., ifRoom|withText) to make the title of the
menu item appear adjacent to the item’s icon (otherwise, only the icon appears in the
action bar).

For example, the Menus/ActionBar project’s options.xml menu resource has
android:showAsAction on the first two menu items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add"
android:actionlLayout="@layout/add"
android: showAsAction="ifRoom"/>
<item android:id="@+id/reset"
android:title="Reset"
android:icon="@drawable/ic_menu_refresh"
android:showAsAction="ifRoom|withText"/>
<item android:id="@+id/about"
android:title="About"
android:icon="@drawable/ic_menu_info_details" />
</menu>

The second menu item, Reset—for resetting the contents of the list—is a normal “with
text” action bar button. The first menu item, Add, does something a bit different, which
we will examine later in this chapter. The fact that the third menu item, About, does not
have android:showAsAction means that it will remain in the menu, even if there is room
in the action bar.

http://schemas.android.com/apk/res/android

CHAPTER 27: Using the Action B

Note that the Java code does not change—onCreateOptionsMenu() and
onOptionsItemSelected() for our InflationDemo activity do not need to be adjusted
because menu items are promoted into the action bar via the menu XML resource alone.

Responding to the Logo

The activity icon in the upper-left corner of the screen is tappable. If the user taps it, it
triggers onOptionsItemSelected()...but not for one of the options menu items you may
have defined yourself. Rather, the magic value of android.R.id.home is used. In the
Menus/ActionBar project, we wire it to the same code that is invoked if the user chooses
the About options menu item—displaying a Toast:

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.add:
add();
return(true);

case R.id.reset:
initAdapter();
return(true);

case R.id.about:
case android.R.id.home:
Toast
.makeText(this,
"Action Bar Sample App",
Toast.LENGTH_LONG)
.show();
return(true);

return(super.onOptionsItemSelected(item));

In a project with multiple activities, though, the expectation is that tapping the logo will
take you to the “home” activity for the application, whatever that might mean.

Adding Custom Views to the Action Bar

You can do more with the action bar than simply convert options menu items into what
amount to toolbar buttons. You can add your own custom Ul to the action bar. In the
case of Menus/ActionBar, we’ll replace the Add menu choice and resulting dialog box
with an Add field right in the action bar itself.

This, however, is a bit tricky to implement, as described next.

291

292 CHAPTER 27: Using the Action B

Defining the Layout

To put something custom in the action bar, we need to define what the “something
custom” is, in the form of a layout XML file. Fortunately, we already have a layout XML
file for adding a word to the list—it is the one that the Menus/Inflation sample wrapped
in a custom AlertDialog for when the Add options menu item was tapped. That original
layout looked like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="wrap_content"
>
<TextView
android:text="Word:"
android:layout width="wrap content"
android:layout_height="wrap_content"
/>
<EditText
android:id="@+id/title"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
/>
</Linearlayout>

We need to make some minor adjustments to this layout to use it for the action bar:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="wrap_content"
>
<TextView
android:text="Word:"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:textAppearance="@android:style/TextAppearance.Medium"
/>
<EditText
android:id="@+id/title"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
android:width="160sp"
android:inputType="text"
android:imeActionId="1337"
android:imeOptions="actionDone"
/>
</Linearlayout>

Specifically, we made these minor adjustments:

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 27: Using the Action B

B We added an android:textAppearance attribute to the TextView
representing our Add caption. The android:textAppearance attribute
allows us to define the font type, size, color, and weight (e.g., bold) in
one shot. We specifically used a magic value of
@android:style/TextAppearance.Medium so that the caption matches
the styling of the Reset label on the other menu item we promoted to
the action bar.

B We specified android:width="160sp" for the EditText widget, because
android:layout width="fill parent" is ignored in the action bar—
otherwise, we would take up the rest of the bar.

B We specified android:inputType="text" on the EditText widget,
which, among other things, restricts us to a single line of text.

B We specified android:imeActionId and android:imeOptions on the
EditText widget to control the action button of the soft keyboard, so
we get control when the user presses the Enter key on the soft
keyboard.

Putting the Layout in the Menu

Next, we need to teach Android to use this layout for our Add options menu item if we
are running on Honeycomb. To do this, we use the android: actionlayout attribute on
our <item> element, referencing our layout resource (@layout/add), as was shown earlier
in this chapter. This attribute will be ignored on earlier versions of Android, so it is safe
to use.

If we did nothing else, we would get the desired Ul, shown in Figure 27-1.
%@’ Action Bar Demo

lorem

ipsum

dolor

sit

amet

consectetuer

adipiscing

elit

Figure 27-1. The Menus/ActionBar sample application

293

294

CHAPTER 27: Using the Action B

However, while the user could type something in, we have no way to find out what they
type in, when they are done, and so forth.

Getting Control of User Input

Given our soft keyboard settings we put on the EditText widget, we can arrange to find
out when the user presses the Enter key either on the soft keyboard or on a hardware
keyboard. To do that, though, we need to get our hands on the EditText widget itself.
You might think it is added when the Ul is inflated in onCreate()...but you would be
mistaken.

In a Honeycomb environment, with an action bar, onCreateOptionsMenu() is called after
onCreate() as part of setting up the Ul. On classic versions of Android,
onCreateOptionsMenu() would not be called until the user pressed the Menu button. But,
since some of the options menu items might be promoted into the action bar, Android
calls onCreateOptionsMenu() automatically now. The EditText will exist after we inflate
our options.xml menu resource.

However, the best way to get the EditText is not to use findViewById() on the activity.
Rather, we should call getActionView() on the MenuItem associated with our Add option.
This will return the root of the view hierarchy inflated from the layout resource we
defined in the android:actionLayout attribute in the menu resource. In this case, that is
the LinearLayout from res/layout/add.xml, so we need to call findViewById() on it to
get the EditText:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

EditText add=(EditText)menu
.findItem(R.id.add)
.getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(onSearch);

return(super.onCreateOptionsMenu(menu));

Then, we can call setOnEditorActionListener() on the EditText, to register an
OnEditorActionlListener object that will get control when the user presses Enter on the
hard or soft keyboard:

private TextView.OnEditorActionlListener onSearch=
new TextView.OnEditorActionListener() {
public boolean onEditorAction(TextView v, int actionld,
KeyEvent event) {
if (event==null || event.getAction()==KeyEvent.ACTION UP) {
addWord(v);

InputMethodManager imm=(InputMethodManager)getSystemService(INPUT METHOD SERVICE);

CHAPTER 27: Using the Action B

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

return(true);

};
That in turn calls an addWord() method, supplying the EditText, which adds the word to
the list via the ArrayAdapter:

private void addWord(TextView title) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

adapter.add(title.getText().toString());

That same addWord() method can also be used from the add() method that displays the
AlertDialog, even though that will not be used on a Honeycomb tablet, since the Add
menu choice no longer exists as a menu choice:

private void add() {
final View addView=getLayoutInflater().inflate(R.layout.add, null);

new AlertDialog.Builder(this)

.setTitle("Add a Word")
.setView(addView)

.setPositiveButton("0K",

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
addWord((TextView)addView.findViewById(R.id.title));

b
.setNegativeButton("Cancel"”, null)

.show();

The net result is that when the user types something in the Add field and presses the
Enter key, the word is added to the bottom of the list. This saves some taps over the
phone Ul, as the user does not have to open the options menu, does not have to tap the
options menu item, and does not have to tap a button on the dialog box.

Note that our OnEditorActionlListener does something more than simply add the word
to the list: it hides the soft keyboard. It does this using the InputMethodManager, as was
seen in a previous chapter.

Don’t Forget the Phones!

With the exception of the custom view feature described in the preceding section,
everything shown in this chapter regarding the action bar is automatically backward
compatible. The code and resources that work on Honeycomb-flavored versions of
Android will work on classic versions of Android unmodified.

295

296

CHAPTER 27: Using the Action B

If, however, you want to use the custom view feature, you have a problem—the
getActionView() method is new to API Level 11 and will be unavailable on older
versions of Android. This means you will need to compile for API Level 11 (e.g., set your
Eclipse target or Ant default.properties to reference android-11), and you will need to
take steps to avoid calling getActionView() on older devices. We will explore how to pull
off this feat in a later chapter.

Chapter

Fragments

Perhaps the largest change in Android 3.0 facing Android developers is the introduction
of the fragment system. This is an optional layer you can put between your activities and
your widgets, designed to help you reconfigure your activities to support screens both
large (e.g., tablets) and small (e.g., phones). However, the fragment system also adds an
extra layer of complexity, one that will take the Android developer community some time
to adjust to. Hence, for the time being, you will find few blog posts or sample apps using
fragments because they were introduced so long after Android itself was.

This chapter covers basic uses of fragments, including supporting fragments on pre-
Android 3.0 devices.

Introducing Fragments

Fragments are not widgets, like Button or EditText.
Fragments are not containers, like LinearLayout or Relativelayout.
Fragments are not activities.

Rather, fragments aggregate widgets and containers. Fragments then can be placed
into activities—sometimes several fragments for one activity, sometimes one fragment
per activity.

And the reason for this is the variation in Android screen sizes.

The Problem Addressed by Fragments

A tablet has a larger screen than does a phone. A TV has a larger screen than does a tablet.
Taking advantage of that extra screen space makes sense, as outlined in Chapter 25, which
explained how to handle multiple screen sizes. In that chapter, we profiled an EU4You
sample application, eventually winding up with an activity that would load in a different
layout for larger-sized screens, one that had an embedded WebView widget. The activity
would detect that widget’s existence and use it to load web content related to a

297

298

CHAPTER 28: Fragments

selected country, rather than launching a separate browser activity or some activity
containing only a WebView.

However, the scenario outlined in Chapter 25 was fairly trivial. Imagine that, instead of a
WebView, we have a TableLayout containing 28 widgets. On larger-sized screens, we
want the TablelLayout in the same activity as an adjacent ListView; on smaller screens,
we want the TablelLayout to be in a separate activity, since there would not be enough
room otherwise. To do this using pre-Honeycomb technology, we would either need to
duplicate all of the TableLayout-handling logic in both activities, or create an activity
base class and hope they can both inherit from it, or turn the TablelLayout and its
contents into a custom ViewGroup, or something. And that would just be for one such
scenario—multiply that by many activities in a larger application, and the complexity
mounts.

The Fragments Solution

Fragments reduce, but do not eliminate, that complexity.

With fragments, each discrete chunk of user interface that could be used in multiple
activities (based on screen size) goes in a fragment. The activities in question determine,
based on screen size, who gets the fragment.

In the case of EU4You, we have two fragments. One fragment represents the list of
countries. The other fragment represents the details for that country (in our case, a
WebView). On a larger-screen device, we want both fragments to be in one activity, while
on a smaller-screen device, we will house those fragments in two separate activities.
This provides to users with larger screens the same benefits they got with the last
version of EU4You: getting more information in fewer clicks. Yet the techniques we
demonstrate with fragments will be more scalable, able to handle more complex Ul
patterns than the simple WebView-or-not scenario of EU4You.

In this case, our entire Ul will be inside of fragments. That is not necessary. Fragments
are an opt-in technology —you need them only for the parts of your Ul that could appear
in different activities in different scenarios. In fact, your activities that do not change at
all (say, a help screen) might not use fragments whatsoever.

Fragments also give us a few other bells and whistles, including the following:

B Capability to add fragments dynamically based on user interaction: For
example, the Gmail application initially shows a ListFragment of the
user’s mail folders. Tapping a folder adds a second ListFragment to
the screen, showing the conversations in that folder. Tapping a
conversation adds a third Fragment to the screen, showing the
messages in that conversation.

CHAPTER 28: Fragments

B Capability to animate dynamic fragments as they move on and off the
screen: For example, when the user taps a conversation in Gmail, the
folders ListFragment slides off the screen to the left, the conversations
ListFragment slides left and shrinks to take up less room, and the
messages Fragment slides in from the right.

B Automatic Back button management for dynamic fragments: For
example, when the user presses Back while viewing the messages
Fragment, that Fragment slides off to the right, the conversations
ListFragment slides right and expands to fill more of the screen, and
the folders ListFragment slides back in from the left. None of that has
to be managed by developers—simply adding the dynamic fragment
via a FragmentTransaction allows Android to automatically handle the
Back button, including reversing all animations.

B Capability to add options to the options menu, and therefore to the
action bar: Call setHasOptionsMenu() in onCreate() of your fragment to
register an interest in this, and then override onCreateOptionsMenu()
and onOptionsItemSelected() in the fragment the same way you might
in an activity. A fragment can also register widgets to have context
menus, and handle those context menus the same way as an activity
would.

B Capability to add tabs to the action bar: The action bar can have tabs,
replacing a TabHost, where each tab’s content is a fragment. Similarly,
the action bar can have a navigation mode, with a Spinner to switch
between modes, where each mode is represented by a fragment.

The Android Compatibility Library

If fragments were available only for Android 3.0 and higher, we would be right back
where we started, as not all Android devices today run Android 3.0 and higher.

However, this is not the case, because Google has released the Android Compatibility
Library (ACL), which is available via the Android SDK and AVD Manager (where you
install the other SDK support files, create and start your emulator AVDs, and so forth).
The ACL gives you access to the fragment system on versions of Android going back to
Android 1.6. Since the vast majority of Android devices are running 1.6 or higher, this
allows you to start using fragments while maintaining backward compatibility. Over time,
this library may add other features to help with backward compatibility, for applications
that wish to use it.

The material in this chapter focuses on using the ACL when employing fragments.
Generally speaking, using the ACL for fragments is almost identical to using the native
Android 3.0 fragment classes directly.

299

300

CHAPTER 28: Fragments

Since the ACL only supports versions back to Android 1.6, Android 1.5 devices will not
be able to use fragment-based applications. This is a very small percentage of the
Android device spectrum at this time—3 percent as of the time of this writing.

Creating Fragment Classes

The first step toward setting up a fragment-based application is to create fragment
classes for each of your fragments. Just as you inherit from Activity (or a subclass) for
your activities, you inherit from Fragment (or a subclass) for your fragments.

Here, we will examine the Fragments/EU4You_6 sample project and the fragments that it
defines.

NOTE: The convention of this book will be to use “fragment” as a generic noun and Fragment
to refer to the actual Fragment class.

General Fragments

Besides inheriting from Fragment, the only thing required of a fragment is to override
onCreateView(). This will be called as part of putting the fragment on the screen. You
need to return a View that represents the body of the fragment. Most likely, you will
create your fragment’s Ul via an XML layout file, and onCreateView() will inflate that
fragment layout file.

For example, here is DetailsFragment from EU4You_6, which will wrap around our
WebView to show the web content for a given country:

import android.support.v4.app.Fragment;
import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

import android.webkit.WebView;

public class DetailsFragment extends Fragment {
@0verride
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return(inflater.inflate(R.layout.details fragment, container, false));

}

public void loadUrl(String url) {
((WebView)(getView().findViewById(R.id.browser))).loadUrl(url);

}

Note that we are inheriting not from android.app.Fragment but from
android.support.v4.app.Fragment. The latter is the Fragment implementation from the
ACL, so it can be used across Android versions.

CHAPTER 28: Fragments 301

The onCreateView() implementation inflates a layout that happens to have a WebView in it:

<?xml version="1.0" encoding="utf-8"?>

<WebView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/browser"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

It also exposes a loadUrl() method, to be used by a hosting activity both to tell the
fragment that it is time to display some web content and to supply the URL for doing the
same. The implementation of loadUrl() in DetailsFragment uses getView() to retrieve
the View created in onCreateView(), finds the WebView in it, and delegates the loadUrl()
call to the WebView.

There are a myriad of other lifecycle methods available on Fragment. The more important
ones include mirrors of the standard
onCreate(),onStart(),onResume(),onPause(),onStop(), and onDestroy() methods of an
activity. Since the fragment is the one with the widgets, it will implement more of the
business logic that formerly might have resided in the activity for these methods. For
example, in onPause() or onStop(), since the user may not be returning to your
application, you may wish to save any unsaved edits to some temporary storage. In the
case of DetailsFragment, there was nothing that really qualified here, so those lifecycle
methods were left alone.

ListFragment

One Fragment subclass that is sure to be popular is ListFragment. This wraps a ListView
in a Fragment, designed to simplify setting up lists of things such as countries, mail
folders, mail conversations, and so forth. Similar to a ListActivity, all you need to do is
call setListAdapter() with your chosen and configured ListAdapter, plus override
onListItemClick() to respond to when the user clicks on a row in the list.

In EU4You_6, we have a CountriesFragment that represents the list of available countries.
It initializes the ListAdapter in onActivityCreated(), which is called after onCreate()
has wrapped up in the activity that holds the fragment:

@0verride

public void onActivityCreated(Bundle state) {
super.onActivityCreated(state);

setListAdapter(new CountryAdapter());

if (state!=null) {
int position=state.getInt(STATE CHECKED, -1);

if (position>-1) {
getListView().setItemChecked(position, true);

http://schemas.android.com/apk/res/android

302 CHAPTER 28: Fragments

The code dealing with the Bundle supplied to onCreate() will be explained a bit later in
this chapter.

The CountryAdapter is nearly identical to the one from previous EU4You samples, except
that there is no getLayoutInflater() method on a Fragment, so we have to use the
static from() method on LayoutInflater and supply our activity via getActivity():

class CountryAdapter extends ArrayAdapter<Country> {
CountryAdapter() {
super(getActivity(), R.layout.row, R.id.name, EU);

@0verride
public View getView(int position, View convertView,
ViewGroup parent) {
CountryWrapper wrapper=null;

if (convertView==null) {
convertView=LayoutInflater
.from(getActivity())
.inflate(R.layout.row, null);
wrapper=new CountryWrapper(convertView);
convertView.setTag(wrapper);

}
else {
wrapper=(CountryWrapper)convertView.getTag();

wrapper .populateFrom(getItem(position));

return(convertView);

}
}

Similarly, the CountryWrapper is no different from previous EU4You samples:

static class CountryWrapper {
private TextView name=null;
private ImageView flag=null;
private View row=null;

CountryWrapper (View row) {
this.row=row;
name=(TextView)row.findViewById(R.id.name);
flag=(ImageView)row.findViewById(R.id.flag);

TextView getName() {
return(name);

ImageView getFlag() {
return(flag);

void populateFrom(Country nation) {

CHAPTER 28

}

getName().setText(nation.name);
getFlag().setImageResource(nation.flag);

The list of countries is the same as well:

stat
EU

EU

EU.

EU.

EU.

EU

EU.

EU

EU.

EU

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

ic {
.add(new

.add(new
add(new
add(new

add(new

.add(new
add(new
.add(new
add(new
.add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new

add(new

Country(R.string.austria, R.drawable.austria,
R.string.austria url));
Country(R.string.belgium, R.drawable.belgium,
R.string.belgium url));
Country(R.string.bulgaria, R.drawable.bulgaria,
R.string.bulgaria url));
Country(R.string.cyprus, R.drawable.cyprus,
R.string.cyprus_url));
Country(R.string.czech_republic,
R.drawable.czech republic,
R.string.czech_republic_url));
Country(R.string.denmark, R.drawable.denmark,
R.string.denmark url));
Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));
Country(R.string.finland, R.drawable.finland,
R.string.finland url));
Country(R.string.france, R.drawable.france,
R.string.france url));
Country(R.string.germany, R.drawable.germany,
R.string.germany url));
Country(R.string.greece, R.drawable.greece,
R.string.greece url));
Country(R.string.hungary, R.drawable.hungary,
R.string.hungary url));
Country(R.string.ireland, R.drawable.ireland,
R.string.ireland url));
Country(R.string.italy, R.drawable.italy,
R.string.italy url));
Country(R.string.latvia, R.drawable.latvia,
R.string.latvia url));
Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania url));
Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg url));
Country(R.string.malta, R.drawable.malta,
R.string.malta_url));
Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));
Country(R.string.poland, R.drawable.poland,
R.string.poland url));
Country(R.string.portugal, R.drawable.portugal,
R.string.portugal url));
Country(R.string.romania, R.drawable.romania,
R.string.romania url));
Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia url));
Country(R.string.slovenia, R.drawable.slovenia,

: Fragments

303

304 CHAPTER 28: Fragments

R.string.slovenia url));

EU.add(new Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

EU.add(new Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));

EU.add(new Country(R.string.united kingdom,
R.drawable.united kingdom,
R.string.united kingdom url));

}

...as is the definition of a Country, from a separate public class:

public class Country {
int name;
int flag;
int url;

Country(int name, int flag, int url) {
this.name=name;
this.flag=flag;
this.url=url;

Persistent Highlight

One thing leaps out at you when you use fragment-based applications like Gmail. When
you tap on a row in a list, and another fragment is shown (or updated) within the same
activity, the row you tapped remains highlighted. This runs counter to the traditional use
of a ListView, where the list selector is present only when using a D-pad, trackball, or
similar pointing device. The purpose is to show the user the context of the adjacent
fragment.

The actual implementation differs from what you might expect.

These ListView widgets are actually implementing CHOICE_MODE_SINGLE, what normally
would be rendered using a RadioButton along the right side of the rows. In a
ListFragment, though, the typical styling for a single-choice ListFragment is via an
“activated” background.

In EU4You_6, this is handled via the row layout (res/layout/row.xml) used by our
CountryAdapter:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"
style="@style/activated"

<ImageView android:id="@+id/flag"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|left"

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments

android:paddingRight="4dip"

/>

<TextView android:id="@+id/name"
android:layout width="wrap content"”
android:layout_height="wrap_content"
android:layout gravity="center vertical|right"
android:textSize="5mm"

/>

</Linearlayout>

Notice the style attribute, pointing to an activated style. That is defined by EU4You 6 as
a local style, versus one provided by the operating system. In fact, it has to have two
implementations of the style, because the “activated” concept is new to Android 3.0 and
cannot be used in previous versions of Android.

So, EU4You_6 has res/values/styles.xml with a backward-compatible empty style:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="activated">

</style>
</resources>

It also has res/values-vi1/styles.xml. The -v11 resource set suffix means that this will
be used only on API Level 11 (Android 3.0) and higher. Here, the style inherits from the
standard Android Holographic theme and uses the standard activated background
color:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/activatedBackgroundIndicator</item>
</style>
</resources>

In CountriesFragment, the activity will let us know if CountriesFragment appears
alongside DetailsFragment —therefore requiring single-choice mode—via a
enablePersistentSelection() method:

public void enablePersistentSelection() {
getListView().setChoiceMode(ListView.CHOICE MODE_SINGLE);

Also, in onListItemClick(),CountriesFragment “checks” the row the user clicked upon,
thereby enabling the persistent highlight:

@0verride
public void onListItemClick(ListView 1, View v, int position,
long id) {
1.setItemChecked(position, true);

if (listener!=null) {
listener.onCountrySelected(EU.get(position));

}
}

305

306

CHAPTER 28: Fragments

The listener object and call to onCountrySelected() will be explained later in this
chapter.

Other Fragment Base Classes

The ACL has one other subclass of Fragment: DialogFragment. This is used to help
coordinate between a modal Dialog and a fragment-based Ul.

Android 3.0 itself has two more subclasses of Fragment, which are not available in the
ACL as of the time of this writing:

B PreferenceFragment: For use in the new Honeycomb-style
PreferenceActivity (covered in a later chapter)

B lWebViewFragment: A Fragment wrapped around a WebView

Fragments, Layouts, Activities, and Multiple Screen
Sizes

Having some fragment classes and their accompanying layouts is all well and good, but
we need to hook them up to activities and get them on the screen. Along the way, we
have to think about dealing with multiple screen sizes, much like we went with the
WebView-or-browser approach with the previous version of the EU4You sample.

In Android 3.0 and higher, any activity can host a fragment. However, for the ACL, you
need to inherit from FragmentActivity to use fragments. This limitation of the ACL
definitely causes challenges, particularly if you were aiming to put a map in a fragment, a
topic we will discuss later in this book. Other activity base classes pose less of an
issue—ListActivity would be replaced by ListFragment, for example.

Fragments can be added in either of two ways to an activity:

B You can define them via <fragment> elements in the activity’s layout.
These fragments are fixed and will always exist for the lifetime of this
activity instance.

B You can add them on-the-fly via FragmentManager and a
FragmentTransaction. This gives you more flexibility, but adds a
degree of complexity. This technique is not covered in this book.

One big limitation of dealing with multiple screen sizes is that the layouts need to have
the same starting fragments for any configuration change. So, a small-screen version of
an activity and a large-screen version of an activity can have different mixes of
fragments, but a portrait layout and a landscape layout for the same screen size must
have the same fragments defined. Otherwise, when the screen is rotated, Android will
have problems, trying to work with a fragment that does not exist, for example.

CHAPTER 28: Fragments

We also need to work out communications between our fragments and our activities.
The activities define what fragments they hold, so they typically know which classes
implement those fragments and can call methods on them directly. The fragments,
though, only know that they are hosted by some activity, and that activity may differ
from case to case. Hence, the typical pattern is to use interfaces for fragment-to-activity
communication:

B Define an interface for the methods that the fragment will want to call
on its activity (or some other object supplied by that activity).

B The activity provides an implementation of that interface via some
setter method on the fragment when the fragment is created.

B The fragment uses that interface implementation as needed.

We will see all of this as we work through the EU4You_6 activities and their corresponding
layouts.

EU4You

In the earlier versions of the EU4You project, we had only one activity, also named
EU4You. In EU4You_6, though, we have two activities:

B EU4You: Handles displaying the CountriesFragment in all screen sizes,
plus the DetailsFragment on larger screens

B DetailsActivity: Hosts the DetailsFragment on smaller screens

While we could probably get away with having EU4You launch the browser activity for
smaller screens, rather than have a DetailsActivity host a WebView-only
DetailsFragment, the latter approach is more realistic for more fragment-based
applications.

With that in mind, let’s take a look at the pieces of the EU4You activity.

The Layout

For normal-screen devices, we want to display only the CountriesFragment. That is
accomplished via res/layout/main.xml just having the appropriate <fragment> element:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
class="com.commonsware.android.eu4you.CountriesFragment"
android:id="@+id/countries”
android:layout width="fill parent"
android:layout_height="fill parent"

/>

The class attribute indicates what Java class implements the fragment. Otherwise, this
layout is unremarkable.

Note that fragments do not get listed in the manifest file the way activities do.

307

http://schemas.android.com/apk/res/android

308

CHAPTER 28: Fragments

The Other Layout

For large-screen devices, in the landscape mode, we want to have both the
CountriesFragment and the DetailsFragment, side by side. That way, users can tap on a
country and view the details without flipping back and forth between activities. It also
enables us to take advantage of the screen space better.

However, there is a catch. If we want to predefine those two fragments in our layout file,
we have to use that same pair of fragments for both landscape and portrait modes—
despite the fact that we do not want to use the DetailsFragment in EU4You in portrait
mode (having a list vertically stacked over the WebView would be odd looking, at best).
As a workaround, we will use the same layout file for both orientations and then make
adjustments in our Java code. Another approach to the problem would be to have the
layout file only have the CountriesFragment and to use FragmentManager and a
FragmentTransaction to add in the DetailsFragment. Here, though, we will use other
tricks.

Hence, in res/layout-large/ (not res/layout-large-land/), we have this layout:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="fill parent">
<fragment class="com.commonsware.android.eudyou.CountriesFragment"”
android:id="@+id/countries"
android:layout_weight="30"
android:layout width="opx"
android:layout_height="fill parent"
/>
<fragment class="com.commonsware.android.eu4you.DetailsFragment"
android:id="@+id/details"
android:layout_weight="70"
android:layout width="opx"
android:layout_height="fill parent"
/>
</Linearlayout>

Note that we are responsible for the positioning of the fragments, so here we use a
horizontal LinearLayout to wrap around the two <fragment> elements.

The Listener Interface

When the user chooses a country in the CountriesFragment, we want to let our
containing activity know about that. In this case, it so happens that the only activity that
will ever host CountriesFragment is EU4You. However, perhaps in the future that will not
be the case. So, we should abstract out the communications from CountriesFragment to
its hosting activity via a listener interface.

Hence, the EU4You_6 project has a CountrylListener interface:

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments

package com.commonsware.android.eudyou;

public interface CountrylListener {
void onCountrySelected(Country c);

}

The CountriesFragment holds onto an instance of Countrylistener, supplied by the
hosting activity:

public void setCountryListener(CountrylListener listener) {
this.listener=1istener;

}

And, when the user clicks on a country and triggers
onListItemClick(),CountriesFragment calls the onCountrySelected() method on the
interface:

@0verride
public void onListItemClick(ListView 1, View v, int position,
long id) {
1.setItemChecked(position, true);

if (listener!=null) {
listener.onCountrySelected(EU.get(position));
}
}

The Activity
The EU4You activity is not long, though it is a bit tricky:

package com.commonsware.android.eudyou;

import android.content.Intent;

import android.content.res.Configuration;
import android.net.Uri;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentActivity;
import android.view.View;

public class EU4You extends FragmentActivity implements Countrylistener {
private boolean detailsInline=false;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

CountriesFragment countries
=(CountriesFragment)getSupportFragmentManager()
.findFragmentById(R.id.countries);

countries.setCountrylListener(this);

Fragment f=getSupportFragmentManager().findFragmentById(R.id.details);

309

310 CHAPTER 28: Fragments

detailsInline=(f!=null &&
(getResources().getConfiguration().orientation==
Configuration.ORIENTATION LANDSCAPE));

if (detailsInline) {
countries.enablePersistentSelection();

}
else if (f!=null) {
f.getView().setVisibility(View.GONE);

}

@0verride
public void onCountrySelected(Country c) {
String url=getString(c.url);

if (detailsInline) {
((DetailsFragment)getSupportFragmentManager ()
.findFragmentById(R.id.details))
.loadUrl(url);

}
else {
Intent i=new Intent(this, DetailsActivity.class);

i.putExtra(DetailsActivity.EXTRA_URL, url);
startActivity(i);

}
}
}

Our mission in onCreate() is to wire up our fragments. The fragments themselves are
created by our call to setContentView(), inflating our layout and the fragments defined
therein. In addition, though, EU4You does the following:

B Finds the CountriesFragment and registers itself as the
CountrylListener, since EU4You implements that interface.

B Finds the DetailsFragment, if it exists. If it exists and we are in
landscape mode, we tell the CountriesFragment to enable the
persistent highlight, to remind the user what details are being loaded
on the right. If it exists and we are in portrait mode, we actually do not
want DetailsFragment but need it to be consistent with the layout
mode, so we mark the fragment’s contents as being GONE. If the
DetailsFragment does not exist, we do not have to do anything
special.

In Android 3.0, getting the FragmentManager for calls like findFragmentById() is
accomplished via getFragmentManager (). The ACL, however, defines a separate
getSupportFragmentManager (), to ensure you are working with the ACL’s implementation
of FragmentManager and to work across the wider range of Android versions.

In addition, since EU4You implements the CountrylListener interface, it must implement
onCountrySelected(). Here, EU4You notes whether or not we should be routing to an

CHAPTER 28: Fragments

inline edition of DetailsFragment. If we should be, then onCountrySelected() passes the
Country to the DetailsFragment, so it loads that country’s web page. Otherwise, we
launch the DetailsActivity, supplying the URL as an extra.

DetailsActivity

The DetailsActivity will be used where the DetailsFragment is not being shown in the
EU4You activity, including in the following cases:

B When the device has a normal screen size and therefore does not have
the DetailsFragment in the layout

B When the device has a large screen in the portrait size and therefore
EU4You is hiding its own DetailsFragment

The Layout

The layout just has our <fragment> element in it, since there is nothing else to show:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
class="com.commonsware.android.eu4you.DetailsFragment"
android:id="@+id/details"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

The Activity

DetailsActivity simply passes the URL from the Intent extra on to the
DetailsFragment, telling it what web content to display:

package com.commonsware.android.eudyou;

import android.support.v4.app.FragmentActivity;
import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

public class DetailsActivity extends FragmentActivity {
public static final String EXTRA_URL="com.commonsware.android.eudyou.EXTRA_URL";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.details);

DetailsFragment details
=(DetailsFragment)getSupportFragmentManager()
.findFragmentById(R.id.details);

details.loadUrl(getIntent().getStringExtra(EXTRA URL));

311

http://schemas.android.com/apk/res/android

312

CHAPTER 28: Fragments

Fragments and Configuration Changes

In a previous chapter, we reviewed how activities can deal with configuration changes,
such as screen rotations. How does this translate into a world of fragments?

Well, as is typical, there is good news, and there is other news.

The good news is that fragments have onSaveInstanceState() methods that they can
override, behaving much like their activity counterparts. The Bundle then is made
available in a variety of places, such as onCreate() and onActivityCreated(), though
there is no dedicated onRestoreInstanceState().

The other news is that not only do fragments lack
onRetainNonConfigurationInstance(), but the ACL’s FragmentActivity does not allow
you to extend onRetainNonConfigurationInstance(), as that is used internally.
Applications using the Android 3.0 implementation of fragments directly do not suffer
from this problem. This limitation is substantial, and it remains to be seen what
techniques the developer community collectively works out to get past the limitation.

Designing for Fragments

The overall design approach for fragments favors having business logic in the fragment,
with activities serving as an orchestration layer for interfragment navigation and things
that fragments are incapable of (e.g., onRetainNonConfigurationInstance()). For
example, the Gmail application originally probably had much of its business logic
implemented in each activity (e.g., an activity for folders, an activity for a list of
conversations, an activity for a single conversation). Nowadays, that application is
probably built around having that business logic delegated to fragments, with the
activities merely choosing which fragments to display based upon available screen size.

This will cause some amount of restructuring of an existing application, above and
beyond the simple act of refactoring the code. For example, a ListActivity might have
launched another activity from onListItemClick(). The first-cut refactoring of that would
have the fragment’s onListItemClick() launch an activity. However, the fragment does
not know whether or not the content requested by the user should be shown in another
activity —it might go to another fragment within the current activity. Hence, the fragment
should not blindly call startActivity() but rather should call a method on its container
activity (or, more likely, a listener interface implemented by that activity), telling it of the
click event and letting it decide the right course of action.

Right now, fragments are very new, so there are few well-established patterns to follow.
Over time, the Android developer community, in conjunction with Google, will figure out
those patterns, in some cases packaging them in prefabricated activities and fragments
for reuse in the form of libraries and JARs.

Chapter

Handling Platform
Changes

Android has been rapidly evolving since its initial release, and will continue to do so over
the next few years. Perhaps, in time, the rate of change will decline some. However, for
the present, you should assume that there will be significant Android releases every 6 to
12 months, and changes to the lineup of possible Android hardware on an ongoing
basis. So, while right now the focus of Android is phones, soon you will see Android
netbooks, Android tablets, Android media players, and so on.

Many of these changes will have little impact on your existing code. Some, though, will
necessitate at least new rounds of testing for your applications, and perhaps changes to
those applications based upon the test results.

This chapter covers several issues that may cause you trouble in the future as Android
evolves, and provides some recommendations on how to deal with them.

Things That Make You Go Boom

Android will change, not only in terms of what Google introduces, but also in how device
manufacturers tweak Android for their own hardware. This section points out a couple of
places where these changes can affect your application if you’re not prepared for them.

View Hierarchy

Android is not designed to handle arbitrarily complicated view hierarchies. Here, view
hierarchy means containers holding containers holding containers holding widgets. The
hierarchyviewer program, described in a later chapter, depicts such view hierarchies
well.

Android has always had limits as to how deep the view hierarchy can be. In Android 1.5,
though, the limit was reduced, so some applications that worked fine on Android 1.1
would crash with a StackOverflowException in the newer Android. This, of course, was

313

314

CHAPTER 29: Handling Platform Changes

frustrating to developers who never realized there was an issue with view hierarchy
depth and then got caught by this change.

The lessons to take from this are as follows:

B Keep your view hierarchies shallow. Once you drift into double-digit
depth, you are increasingly likely to run out of stack space.

B If you encounter a StackOverflowException and the stack trace looks
like it is somewhere in the middle of drawing your widgets, your view
hierarchy is probably too complex.

Changing Resources

The core Android team may change resources with an Android upgrade, and those may
have unexpected effects in your application. For example, in Android 1.5, the Android
team changed the stock Button background, to allow for smaller buttons. However,
applications that implicitly relied on the former larger minimum size wound up breaking
and needing some Ul adjustment.

Similarly, applications can reuse public resources, such as icons, available inside of
Android proper. While doing so saves some storage space, many of these resources are
public by necessity and are not considered part of the SDK. For example, hardware
manufacturers may change the icons to fit some alternative Ul look and feel. Relying on
the existing ones to always look as they do is a bit dangerous. You are better served by
copying those resources out of the Android open source project into your own code
base.

Handling API Changes

The core Android team has generally done a good job of keeping APIs stable, and
supporting a deprecation model when they do change APls. In Android, when a feature
is deprecated, that does not mean the feature is going away, just that its continued use
is discouraged. And, of course, new APlIs are released with every new Android update.
Changes to the APIs are well documented with each release via an API differences
report.

Unfortunately, the Android Market—the primary distribution channel for Android
applications—allows you to upload only one Android package (APK) file for each
application. Hence, you need that one APK file to deal with as many Android versions as
possible. Many times, your code will “just work” and not require changing. Other times,
though, you will need to make adjustments, particularly if you want to support new APIs
on new versions while not breaking on old versions. Let’s examine some techniques for
handling these cases.

CHAPTER 29: Handling Platform Changes

Minimum, Maximum, Target, and Build Versions

Android goes to great lengths to help you deal with the fact that at any point in time,
there will be many Android OS versions out on the market. Unfortunately, the tools
supplied by Android have given us a somewhat confusing set of overlapping concepts,
such as targets and SDK versions. This section attempts to clarify those concepts.

Targets vs. SDK Versions vs. 0S Versions

The concept of targets was introduced toward the beginning of this book. Targets are
used when defining AVDs, to determine what sort of device those AVDs support.
Targets are also used when creating new projects, primarily to determine what version
of the SDK build tools will be used to build your project.

A target combines an API level with an indicator of whether or not the target includes
Google APIs (e.g., Google Maps support).

An API level is an integer representing a version of the Android API. Each Android OS
release that makes changes to the Android API triggers a new API level. Following are
the API levels:

B 3: Android 1.5r1, 1.5r2, and 1.5r3
: Android 1.6r1 and 1.6r2

: Android 2.0

: Android 2.0.1

: Android 2.1

: Android 2.2

: Android 2.3

10: Android 2.3.3

E 11: Android 3.0

HE B B B B B N
O O N o v N

Google maintains a web page that outlines which versions of Android are in use today,
based on requests made to the Android Market.

Minimum SDK Version

In your AndroidManifest.xml file, you should add a <uses-sdk> element. This element
describes how your application relates to the various SDK versions.

The most critical attribute to have in <uses-sdk> is android:minSdkVersion. This
indicates what the lowest API level is that your application supports. Devices running
Android OS versions associated with lower API levels will not be able to install your

315

316

CHAPTER 29: Handling Platform Changes

application. Your application may not even appear to those devices in the Android
Market listings, should you elect to publish via that distributor.

If you skip this attribute, Android assumes your application works on all Android API
versions. That may be true, but it is rather dangerous to assume if you have not tested it.
Hence, set android:minSdkVersion to the lowest level you are testing and are willing to
support.

Target SDK Version

Another <uses-sdk> attribute is android:targetSdkVersion. This represents the version
of the Android API that you are primarily developing for. Any Android device running a
newer version of the OS may elect to apply some compatibility settings that will help
apps like yours, targeting an older API, run on the newer version.

Most of the time, you should set this to be the current Android API version, as of the
time you are publishing your application.

In particular, with Honeycomb, you need to specify a target of 11 to get the new look
and feel.

Maximum SDK Version

The third <uses-sdk> attribute is android:maxSdkVersion. Any Android device running a
newer Android OS than is indicated by this API level will be prohibited from running your
application.

On the plus side, this ensures that your application will not be used on API levels you
have not tested, particularly if you set this to be the current Android API version as of
your publication date.

However, bear in mind that your application will be filtered out of the Android Market for
these newer devices. Over time, this will limit the reach of your application, if you do not
release an update with a higher maximum SDK version.

The core Android team recommends that you not use this option and instead rely on
Android’s intrinsic backward compatibility —particularly leveraging your
android:targetSdkVersion value—to allow your application to continue to run on new
Android OS versions.

Detecting the Version

If you simply want to take different branches in your code based on version, the easiest
thing to do is inspect android.os.Build.VERSION.SDK INT. This public static integer
value will reflect the same API level as you use when creating AVDs and specifying API
levels in the manifest. So, you can compare that value to, say,
android.os.Build.VERSION CODES.DONUT to see whether you are running on Android 1.6
or newer.

CHAPTER 29: Handling Platform Changes

Wrapping the API

So long as the APlIs you try to use exist across all Android versions you are supporting,
just branching may be sufficient. Where things get troublesome is when the APIs
change, such as when there are new parameters to methods, new methods, or even
new classes. You need code that will work regardless of Android version, while also
letting you take advantage of new APIs where available.

The challenge is that if you try loading code into the virtual machine that refers to
classes, methods, and such that do not exist in the version of Android that the device is
running on, your application will crash with a VerifyError. You need to compile against
the version of Android that contains the latest APIs you are trying to use—you just
cannot load that code into an older Android device.

Note that the key phrase here is “load that code.” You don’t necessarily have a problem
just because a class exists in your application that uses a newer-than-available API. It is
only if you execute code that triggers Android to load that class into your running
process that you will encounter the VerifyError.

With that in mind, there are three primary tricks to deal with this situation, outlined in the
following sections.

Detecting Classes

Perhaps all you need to do is disable some features in your app that lead to things that
are not possible on a given device. For example, suppose you have an activity that uses
the new Android 3.0 fragments feature. You cannot successfully start that activity on a
pre-3.0 device. Stopping that activity may just be a matter of disabling a menu choice or
Button or something.

To see if a certain class (say, ListFragment) is available to you, you can call
Class.forName(). This will either return a Class object representing the requested class
or throw an Exception if it is not available. You can use the exception handler as the
spot to disable the Ul paths that would cause your application to try to start an activity
that uses the unavailable class.

Reflection

If you need limited access to a class that will not exist on older versions of Android, you
can use a bit of reflection.

For example, in the chapter on rotation, we used a series of sample applications that
allowed the user to pick a contact. That relied on an ACTION _PICK Intent, using a
specific Uri for the contact’s content provider. In those samples, we specifically used
ContactsContract, the revised contacts API offered in Android 2.0 and beyond. That
means those projects will not work on older versions of Android.

317

318

CHAPTER 29: Handling Platform Changes

However, all we really need is this magic Uri value. If we can devise a way to get the
right Uri for older versions of Android, as well as the right Uri for newer versions of
Android, without causing problems, we can be more backward compatible.

Fortunately, this is fairly easy to do with some reflection:

static {
int sdk=new Integer(Build.VERSION.SDK).intValue();

if (sdk>=5) {
try {
Class clazz=Class.forName("android.provider.ContactsContract$Contacts");

CONTENT_URI=(Uri)clazz.getField("CONTENT URI").get(clazz);

catch (Throwable t) {
Log.e("PickDemo", "Exception when determining CONTENT URI", t);

else {
CONTENT _URI=android.provider.Contacts.People.CONTENT URI;

}
}
Here, we examine the API level of the device by looking at Build.VERSION.SDK (we could
use Build.VERSION.SDK INT, but that wasn’'t added until Android 1.6 —the code shown
here works on Android 1.5 as well). If we are at Android 2.0 (API level 5) or higher, we
use Class.forName() to get at the new ContactsContract.Contacts class, and then use
reflection to get at the CONTENT_URI static data member on that class. If we are on an
older version of Android, we simply use the Uri published by the older Contacts.People
class.

Since we are not directly referencing ContactsContract.Contacts in our code, we can
safely execute this, even on older versions of Android.

Conditional Class Loading

Reflection works but is a pain for anything complex. Also, it is slower than calling code
directly.

The most powerful technique, therefore, is simply to organize your code such that you
have regular classes using newer APIs, but you do not load those classes on older
devices. We will examine this technique later in this book.

Patterns for Honeycomb

More so than any previous Android release, Honeycomb (Android 3.0) makes supporting
multiple Android versions a significant challenge. The Ul changes required to support
the Honeycomb Ul will, in many cases, require you to take steps to make sure that you
still work successfully on older versions of Android. This section outlines some patterns
for dealing with this area of backward compatibility.

CHAPTER 29: Handling Platform Changes

The Action Bar

As noted in Chapter 27, many of the action bar’s basic features will work in a backward-
compatible fashion. For example, indicating than an options menu item can be shown in
the action bar requires just an attribute in the menu resource XML, an attribute that will
be ignored on older versions of Android. Honeycomb-capable devices will put the item
in the action bar, while devices running previous Android versions will not.

However, not all of the action bar’s features are backward compatible. In the
Menus/ActionBar sample application in Chapter 27, we added a custom View to the
action bar, to allow people to add words to our list without dealing with menus and
dialog boxes. However, this required some code that works only on API level 11 (Android
3.0) and higher. More advanced action bar capabilities—ones beyond the scope of this
book—will have similar requirements.

You need to arrange to use those action bar methods only on devices that run API level
11 or higher. Conditional class loading, outlined earlier in this chapter, is one such
technique, and is the technique used in the Menus/ActionBarBC sample application. Let’s
take a look at how this works.

Checking the API Level

Our original implementation of onCreateOptionsMenu() looked like this:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

EditText add=(EditText)menu
.findItem(R.id.add)
.getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(onSearch);

return(super.onCreateOptionsMenu(menu));

This is fine, but it will work only on API level 11 and higher, as getActionView() only
exists from that API level onward. Hence, we cannot run this code, or even load this
class, on older versions of Android without getting a VerifyError.

The new version of onCreateOptionsMenu() hides the offending code and checks the API
level:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

EditText add=null;

319

320

CHAPTER 29: Handling Platform Changes

if (Build.VERSION.SDK INT>=Build.VERSION CODES.HONEYCOMB) {
View v=HoneycombHelper.getAddActionView(menu);

if (v!=null) {
add=(EditText)v.findViewById(R.id.title);

}

if (add!=null) {
add.setOnEditorActionListener(onSearch);

}

return(super.onCreateOptionsMenu(menu));

}

We hide only the code that retrieves the View that we theoretically have put in the action
bar. If we are on an older version of Android, the HONEYCOMB check will fail, and we will
wind up with a null View, so we skip adding the OnEditorActionListener to the
EditText inside of that View.

This has another benefit: it works if the Android device runs API level 11 or higher but
does not have room for our custom View. Android tablets will have an action bar and
sufficient room, but future Honeycomb-capable phones might have an action bar but
lack sufficient room. In that case, the phone would leave the Add options menu item in
place, and we still would wind up with a null View. This code handles that scenario; the
original code did not.

Isolating the Honeycomb Code

Our Honeycomb-specific code is held in a separate HoneycombHelper class, one that will
only be used on API level 11 (or higher) devices:

package com.commonsware.android.inflation;

import android.view.Menu;
import android.view.View;

class HoneycombHelper {
static View getAddActionView(Menu menu) {
return(menu.findItem(R.id.add).getActionView());

}
}

HoneycombHelper has a single getAddActionView() static method that finds the View for
the Add action bar entry, if there is one.

Since we do not try to execute any code on this class except for inside the HONEYCOMB
check, it is safe to have this class on older versions of Android. The Menus/ActionBarHC
app works on Android 1.6 and newer.

CHAPTER 29: Handling Platform Changes

Writing Tablet-Only Apps

Ideally, your Android applications work on all form factors: phones, tablets, and so forth.
However, you may want to create an app that simply would be unusable on phones.
Ideally, you would want to keep your app off of small-screen devices, so that users are
not disappointed.

To do this, you can take advantage of the fact that Android will scale apps up but will
not scale apps down. In other words, if you specify that your application does not
support some larger screen sizes (e.g., android:xlargeScreens="false" appears in your
<supports-screens> element in your AndroidManifest.xml file), Android still allows your
app to run on such screens and takes steps to help your app run with the additional
screen space. However, if you specify that your application does not support some
smaller screen sizes (e.g., android:smallScreens="false" appears in your <supports-
screens> element), Android will not run your app, and you will be filtered out of the
Android Market for such devices.

Hence, if your application will work well only on larger-screen devices, use a <supports-
screens> element like this:

<supports-screens android:xlargeScreens="true"
android:largeScreens="true"
android:normalScreens="false"
android:smallScreens="false"
android:anyDensity="true"/>

321

Chapter

Accessing Files

While Android offers structured storage, via preferences and databases, sometimes a
simple file will suffice. Android offers two models for accessing files: one for files
prepackaged with your application and one for files created on-device by your
application.

You and the Horse You Rode in On

Let’s suppose you have some static data you want to ship with the application, such as
a list of words for a spell checker. The easiest way to deploy that is to put the file in the
res/raw directory, so that it will be put in the Android application APK file as part of the
packaging process as a raw resource.

To access this file, you need to get yourself a Resources object. From an activity, that is
as simple as calling getResources(). A Resources object offers openRawResource() to get
an InputStream on the file you specify. Rather than a path, openRawResource() expects
an integer identifier for the file as packaged. This works just like accessing widgets via
findviewById(); for example, if you put a file named words.xml in res/raw, the identifier
is accessible in Java as R.raw.words.

Since you can get only an InputStream, you have no means of modifying this file. Hence,
it is useful really only for static reference data. Moreover, since it doesn’t change until
the user installs an updated version of your application package, either the reference
data must be valid for the foreseeable future or you must provide some means of
updating the data. The simplest way to handle that is to use the reference data to
bootstrap some other modifiable form of storage (e.g., a database), but that results in
two copies of the data in storage. An alternative is to keep the reference data as is and
keep modifications in a file or database, and then merge them together when you need a
complete picture of the information. For example, if your application ships a file of URLs,
you could have a second file that tracks URLs added by the user or references URLs
that were deleted by the user.

323

324 CHAPTER 30: Accessing Files

In the Files/Static sample project, you will find a reworking of the list box example
from earlier, this time using a static XML file instead of a hardwired array in Java. The
layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent" >
<TextView
android:id="@+id/selection"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<ListView
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"
android:drawSelectorOnTop="false"
/>
</Linearlayout>

In addition to that XML file, you also need an XML file with the words to show in the list:

<words>
<word value="lorem" />
<word value="ipsum" />
<word value="dolor" />
<word value="sit" />
<word value="amet" />
<word value="consectetuer" />
<word value="adipiscing" />
<word value="elit" />
<word value="morbi" />
<word value="vel" />
<word value="ligula" />
<word value="vitae" />
<word value="arcu" />
<word value="aliquet" />
<word value="mollis" />
<word value="etiam" />
<word value="vel" />
<word value="erat" />
<word value="placerat" />
<word value="ante" />
<word value="porttitor" />
<word value="sodales" />
<word value="pellentesque" />
<word value="augue" />
<word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will suffice for a
demo.

The Java code now must read in that XML file, parse out the words, and put them
someplace for the list to pick up:

http://schemas.android.com/apk/res/android

CHAPTER 30: Accessing Files

public class StaticFileDemo extends ListActivity {
TextView selection;
Arraylist<String> items=new ArraylList<String>();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {
InputStream in=getResources().openRawResource(R.raw.words);
DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();
Document doc=builder.parse(in, null);
NodelList words=doc.getElementsByTagName("word");

for (int i=0;i<words.getLength();i++) {
items.add(((Element)words.item(i)).getAttribute("value"));
in.close();

catch (Throwable t) {
Toast

.makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)

.show();

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item_ 1,
items));

}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());
}
}

The differences mostly lie within onCreate(). We get an InputStream for the XML file
(getResources().openRawResource(R.raw.words)), then use the built-in XML parsing
logic to parse the file into a DOM Document, pick out the word elements, and then pour

the value attributes into an ArraylList for use by the ArrayAdapter.

The resulting activity looks the same as before, as shown in Figure 30-1, since the list of

words is the same, just relocated.

325

326

CHAPTER 30: Accessing Files

M@ 8:51PM

lorem

ipsum

dolor
sit
amet

consectetuer

Figure 30-1. The StaticFileDemo sample application

Of course, there are even easier ways to have XML files available to you as prepackaged
files, such as by using an XML resource. That is covered in Chapter 31. However, while
this example used XML, the file could just as easily have been a simple one-word-per-
line list, or in some other format not handled natively by the Android resource system.

Readin’ ’n Writin’

Reading and writing your own, application-specific data files is nearly identical to what
you might do in a desktop Java application. The key is to use openFileInput() and
openFileOutput() on your Activity or other Context to get an InputStream and
OutputStream, respectively. From that point forward, it is not much different from regular
Java /O logic:

B Wrap those streams as needed, such as by using an
InputStreamReader or OutputStreamiWriter for text-based I/0.

B Read or write the data.
B Use close() to release the stream when done.

If two applications both try to read a notes.txt file via openFileInput(), each will
access its own edition of the file. If you need to have one file accessible from many
places, you probably want to create a content provider, as will be described in an
upcoming chapter.

Note that openFileInput() and openFileOutput() do not accept file paths (e.g.,
path/to/file.txt), just simple file names.

CHAPTER 30: Accessing Files

Following is the layout for the world’s most trivial text editor, pulled from the
Files/ReadWrite sample application:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout width="fill parent"
android:layout_height="fill parent"
android:singleline="false"
android:gravity="top"
/>

All we have here is a large text-editing widget...which is pretty boring.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.File;

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
private final static String NOTES="notes.txt";
private EditText editor;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
editor=(EditText)findViewById(R.id.editor);

}

public void onResume() {
super.onResume();

try {
InputStream in=openFileInput(NOTES);

if (in!=null) {
InputStreamReader tmp=new InputStreamReader(in);
BufferedReader reader=new BufferedReader(tmp);
String str;
StringBuilder buf=new StringBuilder();

while ((str = reader.readLine()) != null) {
buf.append(str+"\n");

327

http://schemas.android.com/apk/res/android

328 CHAPTER 30: Accessing Files

in.close();
editor.setText(buf.toString());

}

catch (java.io.FileNotFoundException e) {
// that's 0K, we probably haven't created it yet

}
catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)

.show();
}

public void onPause() {
super.onPause();

try {
OutputStreamhWriter out=

new OutputStreamhriter(openFileOutput(NOTES, 0));

out.write(editor.getText().toString());
out.close();

catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)

.show();

}
}

First, we hook into onResume(), so we get control when our editor is coming back to life,
from a fresh launch or after having been frozen. We use openFileInput() to read in
notes.txt and pour the contents into the text editor. If the file is not found, we assume
this is the first time the activity was run (or the file was deleted by other means), and we
just leave the editor empty.

Next, we hook into onPause(), so we get control as our activity gets hidden by another
activity or is closed, such as via the device’s Back button. Here, we use
openFileOutput() to open notes.txt, into which we pour the contents of the text editor.

The net result is that we have a persistent notepad, as shown in Figures 30-2 and 30-3.
Whatever is typed in will remain until deleted, surviving our activity being closed (e.g., via
the Back button), the phone being turned off, or similar situations.

CHAPTER 30: Accessing Files 329

Bl € 9:39am
ReadWriteFileDemo

Figure 30-2. The ReadWriteFileDemo sample application, as initially launched

Bl € 9:39am
ReadWriteFileDemo

Hi, Mom!

Figure 30-3. The same application, after entering some text

330

CHAPTER 30: Accessing Files

Another approach for working with application-local files is to use getFilesDir(). This
returns a File object pointing to a place in the onboard flash where an application can
store files. This directory is where openFileInput() and openFileOutput() work.
However, while openFileInput() and openFileOutput() do not support subdirectories,
the File from getFilesDir() can be used to create and navigate subdirectories if
desired.

The files stored here are accessible only to your application, by default. Other
applications on the device have no rights to read, let alone write, to this space.
However, bear in mind that some users “root” their Android phones, gaining superuser
access. These users will be able to read and write whatever files they wish. As a result,
please consider application-local files to be secure against malware but not necessarily
secure against interested users.

External Storage: Giant Economy-Size Space

In addition to application-local storage, you also have access to external storage. This
may be in the form of a removable media card, like an SD card or microSD card, or in
the form of additional onboard flash set aside to serve in the “external storage” role.

On the plus side, external storage tends to have more space available than onboard
storage. Onboard storage can be rather limited; for example, the original T-Mobile G1
(HTC Dream) had a total of 70MB for all applications combined. Although newer phones
offer more onboard space, external storage is usually at least 2GB and can be as big as
32GB.

On the minus side, all applications can, if they wish, read and write external storage, so
these files are not very secure. Furthermore, external storage can be mounted on a host
computer as a USB mass storage device—when it is in use in this mode, Android
applications cannot access it. As a result, files on external storage may or may not be
available to you at any given moment.

Where to Write

If you have files tied to your application that are simply too big to risk putting in the
application-local file area, you can use getExternalFilesDir(), available on any activity
or other Context. This gives you a File object pointing to an automatically created
directory on external storage, unique for your application. While not secure against other
applications, it does have one big advantage: when your application is uninstalled, these
files are automatically deleted, just like the ones in the application-local file area.

If you have files that belong more to the user than to your app (for example, pictures
taken by the camera, downloaded MP3 files, etc.), a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class. This gives
you a File object pointing to a directory set aside for a certain type of file, based on the
type you pass into getExternalStoragePublicDirectory(). For example, you can ask for
DIRECTORY_MOVIES, DIRECTORY MUSIC, or DIRECTORY PICTURES for storing MP4, MP3, or

CHAPTER 30: Accessing Files

JPEG files, respectively. These files will be left behind when your application is
uninstalled.

You will also find a getExternalStorageDirectory() method on Environment, pointing to
the root of the external storage. This is no longer the preferred approach—the methods
previously described help keep the user’s files better organized. However, if you are
supporting older Android devices, you may need to use
getExternalStorageDirectory(), simply because the newer options may not be
available to you.

When to Write

Starting with Android 1.6, you also need to hold permissions to work with external
storage (e.g., WRITE_EXTERNAL_STORAGE). The concept of permissions will be covered in a
later chapter.

Also, external storage may be tied up if the user has mounted it as a USB storage
device. You can use getExternalStorageState() (a static method on Environment) to
determine whether or not the external storage is presently available.

StrictMode: Avoiding Janky Code

Users are more likely to like your application if, to them, it feels responsive. By
“responsive,” we mean that it reacts swiftly and accurately to user operations, like taps
and swipes.

Conversely, users are less likely to be happy with your application if they perceive that
your Ul is “janky” —sluggish to respond to their requests. For example, perhaps your
lists do not scroll as smoothly as users would like, or tapping a button does not yield the
immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be obvious where
you should apply them. A full-scale performance analysis, using Traceview or similar
Android tools, is certainly possible. However, there are a few standard sorts of things
that developers do, sometimes quite by accident, on the main application thread that
tend to cause sluggishness:

B Flash I/O, both for the onboard storage and for external storage (e.g.,
the SD card)

®m Network I/0

However, even here, it may not be obvious that you are performing these operations on
the main application thread. This is particularly true when the operations are really being
done by Android’s code that you are simply calling.

That is where StrictMode comes in. Its mission is to help you determine when you are
doing things on the main application thread that might cause a janky user experience.

331

332

CHAPTER 30: Accessing Files

Setting Up StrictMode

StrictMode works on a set of policies. There are presently two categories of policies: VM
policies and thread policies. VM policies represent bad coding practices that pertain to
your entire application, notably leaking SQLite Cursor objects and kin. Thread policies
represent things that are bad when performed on the main application thread, notably
flash 1/0 and network 1/0.

Each policy dictates what StrictMode should watch for (e.g., flash reads are OK but
flash writes are not) and how StrictMode should react when you violate the rules, such
as

B Log a message to LogCat
B Display a dialog
B Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on StrictMode from
onCreate() of your first activity. This will set up normal operation, reporting all violations
by simply logging to LogCat. However, you can set your own custom policies via
Builder objects if you so choose.

Seeing StrictMode in Action

The Threads/ReadWriteStrict sample application is a reworking of the Files/Readhrite
sample application shown earlier in this chapter. All it adds is a custom StrictMode
thread policy:

StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
.detectAll()
.penaltyLog()
.build());

If you run the application, the user will see no difference. However, you will have a
debug-level log message in LogCat with the following stack trace:

12-28 17:19:40.009: DEBUG/StrictMode(480): StrictMode policy violation; ~duration=169+
ms: android.os.StrictMode$StrictModeDiskReadViolation: policy=23 violation=2

12-28 17:19:40.009: DEBUG/StrictMode(480): at«~
android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode. java:745)
12-28 17:19:40.009: DEBUG/StrictMode(480): at«~
dalvik.system.BlockGuard$WrappedFileSystem.open(BlockGuard.java:228)

12-28 17:19:40.009: DEBUG/StrictMode(480): at«~
android.app.ContextImpl.openFileOutput(ContextImpl.java:410)

12-28 17:19:40.009: DEBUG/StrictMode(480): at«~
android.content.ContextWrapper.openFileOutput(ContextWrapper.java:158)

12-28 17:19:40.009: DEBUG/StrictMode(480): at«~
com.commonsware.android.readwrite.ReadWriteFileDemo.onPause(ReadWriteFileDemo.java:82)

CHAPTER 30: Accessing Files

Here, StrictMode is warning us that we attempted a flash write on the main application
thread (the thread on which we set the StrictMode policy). Ideally, we would rewrite this
project to use an AsyncTask or something for writing out the data.

Development Only, Please!

Do not use StrictMode in production code. It is designed for use when you are building,
testing, and debugging your application. It is not designed to be used in the field.

To deal with this, you could

B Simply comment out or remove the StrictMode setup code when you
prepare your production builds

B Use some sort of production flag to skip the StrictMode setup code
when needed

Conditionally Being Strict

StrictMode is only for Android 2.3 and higher. Hence, if we have it in our code, even in
development mode, it might interfere when we try testing on older emulators or devices.
As we saw in an earlier chapter, there are techniques for dealing with this, but using
reflection for configuring StrictMode would be rather painful.

The right approach, therefore, is simply to organize your code such that you have
regular classes using newer APIs, but you do not load those classes on older devices.
The APIVersions/ReadWriteStrict project demonstrates this, allowing an application to
use Android 2.3’s StrictMode where available and skip it where it is not available.

When we examined StrictMode earlier in this section, we configured StrictMode right in
the onCreate() method of our sample activity. This works, but only on Android 2.3 and
newer.

To allow this to work on older versions of Android, we use StrictWrapper:
package com.commonsware.android.readwrite;

import android.os.Build;

abstract class StrictWrapper {
static private StrictWrapper INSTANCE=null;

static public void init() {
if (Build.VERSION.SDK INT>=Build.VERSION CODES.GINGERBREAD) {
INSTANCE=new StrictForRealz();

}
else {
INSTANCE=new NotAllThatStrict();

}
}

static class NotAllThatStrict extends StrictWrapper {

333

334

CHAPTER 30: Accessing Files

// no methods needed

}
}

This odd-looking class encapsulates our “do-we-or-don’t-we” logic for dealing with
StrictMode. It contains an init() method that, when called, checks to see what version
of Android the application is running on, and creates a singleton instance of a
StrictWrapper subclass based upon it—StrictForRealz for Android 2.3 and higher,
NotAllThatStrict for older versions of Android. The latter class, a static inner class of
StrictWrapper, does nothing, reflecting that there is no StrictMode in newer versions of
Android.

StrictForRealz contains the StrictMode initialization logic:

package com.commonsware.android.readwrite;
import android.os.StrictMode;

class StrictForRealz extends StrictWrapper {
StrictForRealz() {
StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
.detectAll()
.penaltyLog()
.build());
}
}

And, our onCreate() method of our activity calls init() on StrictWrapper, to trigger
creating the proper object:

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

StrictWrapper.init();

editor=(EditText)findViewById(R.id.editor);

When the activity first starts up, neither StrictWrapper nor StrictForRealz is loaded in
the process. As soon as we reach the init() statement in onCreate(), Android loads
StrictWrapper into the process, but this is safe, as it does not refer to any potentially
nonexistent classes. The init() method on StrictWrapper then executes a statement
involving StrictForRealz only if we are safely on a supported version of Android. Hence,
StrictForRealz will be loaded into the process only if we are on a newer Android
release, so our use of StrictMode in StrictForRealz will not trigger a VerifyError.

Here, all we needed was a bit of initialization. The singleton pattern is used to
demonstrate that you could expose a version-dependent APl implementation if you
desired. Simply define the API as abstract methods on the abstract class
(StrictWrapper) and have version-dependent concrete implementations of those
abstract methods on the concrete subclasses (StrictForRealz, NotAllThatStrict).

CHAPTER 30: Accessing Files

Linux File Systems: You Sync, You Win

Android is built atop a Linux kernel and uses Linux file systems for holding its files.
Classically, Android used YAFFS (Yet Another Flash File System), optimized for use on
low-power devices for storing data to flash memory. Many devices still use YAFFS
today.

YAFFS has one big problem: only one process can write to the file system at a time.
Rather than offering file-level locking, YAFFS has partition-level locking. This can
become a bit of a bottleneck, particularly as Android devices grow in power and start
wanting to do more things at the same time, like their desktop and notebook brethren.

Android is starting to move toward ext4, another Linux file system aimed more at
desktops/notebooks. Your applications will not directly perceive the difference.
However, ext4 does a fair bit of buffering, and it can cause problems for applications
that do not take this buffering into account. Linux application developers ran headlong
into this in 2008 and 2009, when ext4 started to become popular. As an Android
developer, you will need to think about it now...for your own file storage.

If you are using SQLite or SharedPreferences, you do not need to worry about this
problem. Android (and SQLite, if you are using it) handles all the buffering issues for you.
If, however, you write your own files, you may wish to contemplate an extra step as you
flush your data to disk. Specifically, you need to trigger a Linux system call known as
fsync(), which tells the file system to ensure all buffers are written to disk.

If you are using java.io. RandomAccessFile in a synchronous mode, this step is handled
for you as well, so you will not need to worry about it. However, Java developers tend to
use FileOutputStream, which does not trigger an fsync(), even when you call close()
on the stream. Instead, you call getFD().sync() on the FileOutputStream to trigger the
fsync(). Note that this may be time consuming, and so disk writes should be done off
the main application thread wherever practical, such as via an AsyncTask.

335

Part IV

Data Stores, Network
Services, and APIs

Chapter

Using Preferences

Android has many different ways for you to store data for long-term use by your activity.
The simplest to use is the preferences system, which is the focus of this chapter.

Android allows activities and applications to keep preferences, in the form of key/value
pairs (akin to a Map), that will hang around between invocations of an activity. As the
name suggests, the primary purpose of preferences is to enable you to store user-
specified configuration details, such as the last feed the user looked at in your feed
reader, the sort order to use by default on a list, or whatever. Of course, you can store in
the preferences whatever you like, as long as it is keyed by a String and has a primitive
value (boolean, String, etc.)

Preferences can be either for a single activity or shared among all activities in an
application. Other components, such as services, also can work with shared
preferences.

Getting What You Want

To get access to the preferences, you have three APIs to choose from:

B getPreferences() from within your Activity, to access activity-
specific preferences

B getSharedPreferences() from within your Activity (or other
application Context), to access application-level preferences

B getDefaultSharedPreferences(), on PreferenceManager, to get the
shared preferences that work in concert with Android’s overall
preference framework

The first two methods take a security mode parameter—the right choice is
MODE_PRIVATE, so that no other applications can access the file. The
getSharedPreferences() method also takes a name of a set of preferences.
getPreferences() effectively calls getSharedPreferences() with the activity’s class
name as the preference set name. The getDefaultSharedPreferences() method takes
the Context for the preferences (e.g., your Activity).

339

340

CHAPTER 31: Using Preferences

All of these methods return an instance of SharedPreferences, which offers a series of
getters to access named preferences, returning a suitably typed result (e.g.,
getBoolean() to return a Boolean preference). The getters also take a default value,
which is returned if there is no preference set under the specified key.

Unless you have a good reason to do otherwise, you are best served using the third
option—getDefaultSharedPreferences()—as that will give you the SharedPreferences
object that works with a PreferenceActivity by default, as will be described later in this
chapter.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an editor for
the preferences. This object has a set of setters that mirror the getters on the parent
SharedPreferences object. It also has the following methods:

m remove(): Deletes a single named preference
B clear(): Deletes all preferences
B commit(): Persists your changes made via the editor

The commit() method is important, because if you modify preferences via the editor and
fail to commit () the changes, those changes will evaporate once the editor goes out of
scope. Note that Android 2.3 has an apply() method, which works like commit() but
runs faster.

Conversely, since the preferences object supports live changes, if one part of your
application (say, an activity) modifies shared preferences, another part of your
application (say, a service) will have access to the changed value immediately.

Introducing PreferenceActivity

You could roll your own activity to collect preferences from the user. On the whole, this
is a bad idea. Instead, use preference XML resources and a PreferenceActivity. Why?
One of the common complaints about Android developers is that they lack discipline,
not following any standards or conventions inherent in the platform. For other operating
systems, the device manufacturer might prevent you from distributing apps that violate
their human interface guidelines. With Android, that is not the case—but this is not a
blanket permission to do whatever you want. Where there is a standard or convention,
please follow it, so that users will feel more comfortable with your app and their device.
Using a PreferenceActivity for collecting preferences is one such convention.

The linchpin to the preferences framework and PreferenceActivity is yet another XML
data structure. You can describe your application’s preferences in an XML file stored in
your project’s res/xml/ directory. Given that, Android can present a pleasant Ul for
manipulating those preferences, which are then stored in the SharedPreferences you get
back from getDefaultSharedPreferences().

CHAPTER 31: Using Preferences 341

The following is the preference XML for the Prefs/Simple preferences sample project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off" />
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. We will explain why it is
named that later in this chapter; for now, take it on faith that it is a sensible name.

Some of the things you can have inside a PreferenceScreen element, not surprisingly,
are preference definitions. These are subclasses of Preference, such as
CheckBoxPreference or RingtonePreference, as shown in the preceding XML. As you
might expect, these allow you to check a check box or choose a ringtone, respectively.
In the case of RingtonePreference, you have the option of allowing users to choose the
system default ringtone or choose Silent as a ringtone.

Letting Users Have Their Say

Given that you have set up the preference XML, you can use a nearly built-in activity for
allowing your users to set their preferences. The activity is “nearly built-in” because you
merely need to subclass it and point it to your preference XML, plus hook the activity
into the rest of your application.

For example, here is the EditPreferences activity of the Prefs/Simple project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);

}
}

As you can see, there is not much to see. All you need to do is call
addPreferencesFromResource() and specify the XML resource containing your
preferences.

http://schemas.android.com/apk/res/android

342 CHAPTER 31: Using Preferences

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.simple">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".SimplePrefsDemo" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<activity android:name=".EditPreferences" android:label="@string/app_name">
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu option. The
following is pulled from SimplePrefsDemo:

public boolean onCreateOptionsMenu(Menu menu) {
menu.add(Menu.NONE, EDIT ID, Menu.NONE, "Edit Prefs")
.setIcon(R.drawable.misc)
.setAlphabeticShortcut('e');

return(super.onCreateOptionsMenu(menu));

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case EDIT ID:

startActivity(new Intent(this, EditPreferences.class));
return(true);

return(super.onOptionsItemSelected(item));

That is all that is required, and it really is not that much code outside of the preferences
XML. What you get for your effort is an Android-supplied preference Ul, as shown in
Figure 31-1.

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 343

£ Ml @ 4:26pm
Checkbox Preference

Check it on, check it off

Ringtone Preference

Pick a tone, any tone

Figure 31-1. The Simple project’s preferences Ul

The check box can be directly checked or unchecked. To change the ringtone
preference, just select the entry in the preference list to bring up a selection dialog box,
as shown in Figure 31-2.

LMl @ s5:40 PM

Default ringtone

Silent

J l Cancel

Figure 31-2. Choosing a ringtone preference

Note that there is no explicit save or commit button or menu on the
PreferenceActivity—changes are persisted automatically.

344 CHAPTER 31: Using Preferences

The SimplePrefsDemo activity, beyond having the aforementioned menu, also displays
the current preferences via a TablelLayout:

<?xml version="1.0" encoding="utf-8"?>

<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"

<TableRow>
<TextView
android:text="Checkbox:"
android:paddingRight="5dip"
/>
<TextView android:id="@®+id/checkbox"
/>
</TableRow>
<TableRow>
<TextView
android:text="Ringtone:"
android:paddingRight="5dip"
/>
<TextView android:id="@+id/ringtone"
/>
</TableRow>
</Tablelayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

checkbox=(TextView)findViewById(R.id.checkbox);
ringtone=(TextView)findViewById(R.id.ringtone);

The fields are updated on each onResume():

public void onResume() {
super.onResume();

SharedPreferences prefs=PreferenceManager
.getDefaultSharedPreferences(this);

checkbox.setText(new Boolean(prefs
.getBoolean("checkbox", false))
.toString());
ringtone.setText(prefs.getString("ringtone", "<unset>"));

This means the fields will be updated when the activity is opened and after the
preferences activity is left (e.g., via the Back button), as shown in Figure 31-3.

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences

il @& 6:19Pm

SimplePrefsDemo
Checkbox: true
Ringtone: content://media/internal/audio/media/{

Figure 31-3. The Simple project’s list of saved preferences

Adding a Wee Bit o’ Structure

If you have a lot of preferences for users to set, having them all in one big list may
become troublesome. Android’s preference Ul gives you a few ways to impose a bit of
structure on your bag of preferences, including categories and screens.

Categories are added via a PreferenceCategory element in your preference XML and are
used to group together related preferences. Rather than have your preferences all as
children of the root PreferenceScreen, you can put a few PreferenceCategory elements
in the PreferenceScreen, and then put your preferences in their appropriate categories.
Visually, this adds a divider with the category title between groups of preferences.

If you have lots and lots of preferences—more than are convenient for users to scroll
through—you can also put them on separate “screens” by introducing the
PreferenceScreen element. Yes, that PreferenceScreen element.

Any children of PreferenceScreen go on their own screen. If you nest PreferenceScreen
elements, the parent screen displays the screen as a placeholder entry, and tapping that
entry brings up the child screen.

For example, from the Prefs/Structured sample project, here is a preference XML file
that contains both PreferenceCategory and nested PreferenceScreen elements:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"

345

http://schemas.android.com/apk/res/android

346 CHAPTER 31: Using Preferences

android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"
android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your PreferenceActivity
implementation, is a categorized list of elements, as shown in Figure 31-4.

£ Ml @ 4:26 Pm

Simple Preferences

Checkbox Preference

Check it on, check it off

Ringtone Preference

Pick a tone, any tone
Detail Screens

Detail Screen @

tional preferences held in another

Figure 31-4. The Structured project’s preference Ul, showing categories and a screen placeholder

If you tap the Detail Screen entry, you are taken to the child preference screen, as
shown in Figure 31-5.

CHAPTER 31: Using Preferences 347

Another Checkbox .

On. Off. It really doesn't matter.

Figure 31-5. The child preference screen of the Structured project’s preference Ul

The Kind of Pop-Ups You Like

Of course, not all preferences are check boxes and ringtones. For others, like entry
fields and lists, Android uses pop-up dialog boxes. Users do not enter their preference
directly in the preference Ul activity, but rather tap a preference, fill in a value, and tap
OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly different from
other preference types, as seen in this preference XML from the Prefs/Dialogs sample
project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"

http://schemas.android.com/apk/res/android

348

CHAPTER 31: Using Preferences

android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
<PreferenceCategory android:title="Other Preferences">
<EditTextPreference
android:key="text"
android:title="Text Entry Dialog"
android:summary="Click to pop up a field for entry"
android:dialogTitle="Enter something useful"
/>
<ListPreference
android:key="1ist"
android:title="Selection Dialog"
android:summary="Click to pop up a list to choose from"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:dialogTitle="Choose a Pennsylvania city" />
</PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary you put on the

preference itself, you can also supply the title to use for the dialog box.

With the list (ListPreference), you supply both a dialog box title and two string-array

resources: one for the display names and one for the values. These need to be in the

same order, because the index of the chosen display name determines which value is
stored as the preference in the SharedPreferences. For example, here are the arrays for

use by the ListPreference shown in the preceding example:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>

</string-array>

<string-array name="airport codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A0O</item>

CHAPTER 31: Using Preferences 349

<item>MDT</item>
</string-array>
</resources>
When you bring up the preference Ul, you start with another category with another pair
of preference entries, as shown in Figure 31-6.
O B @ 12:50 P
D Al 0 S D @10 T

Simple Preferences

Checkbox Preference

Check it on, check it off
Ringtone Preference ®
Pick a tone, any tone

Detail Screens

Detail Screen

Additional preferences held in another page

Other Preferences

Text Entry Dialog @

Click to pop up a field for entry

Selection Dialog @

Click to pop up a list to choose from

Figure 31-6. The preference screen of the Dialogs project’s preference Ul

Tapping Text Entry Dialog brings up a text entry dialog box—in this case, with the prior
preference entry filled in, as shown in Figure 31-7.

il @ 6:54 PM

o Enter something useful

Figure 31-7. Editing a text preference

350 CHAPTER 31: Using Preferences

Tapping Selection Dialog brings up a selection dialog box showing the display names
from the one array, as shown in Figure 31-8.

Ml @ 6:54PM

@ Choose a Pennsylvania city

Philadelphia J

Pittsburgh O

Allentown/Bethlehem @

Erie O
Reading O

Cancel

Figure 31-8. Editing a list preference

Preferences via Fragments

Android 3.0 revamped PreferenceScreen and PreferenceActivity. On the plus side, the
new system looks great, providing rapid access to a large number of settings, as shown
in Figure 31-9.

Qi’ Preference Fragments

Original
‘The original set from the other examples

Other Stuff

simple Preferences
Well, we needed to show two sets here...

Checkbox Preference
Check it on, check It off

Ringtone Preference
Pick a tone, any tone

Other Preferences.

Text Entry Dialog
Click to pop up a fleld for entry

Selection Dialog
Click to pop up a list to choose from

Figure 31-9. A Honeycomb-based PreferenceActivity

CHAPTER 31: Using Preferences 351

On the minus side, the new system is not part of the Android Compatibility Library, and
as such cannot be used directly on pre-Honeycomb versions of Android. That being
said, it is possible to work out a backward-compatible solution, though it may require
some redesign of your preferences, if you have a lot of them and have been using
nested PreferenceScreen elements. In fact, this is pretty much required, as the nested
PreferenceScreen approach looks lousy on Honeycomb devices.

The Honeycomb Way

In pre-Honeycomb versions of Android, a PreferenceActivity subclass loads
preferences from resource files, to indicate what should go on the screen. In
Honeycomb, a PreferenceActivity subclass loads preference headers from resource
files, to indicate what should go on the screen.

Preference Headers

Visually, preference headers are not preference categories (placing a header over a set
of preferences). Rather, preference headers are the major clusters of preferences. The
headers are listed on the left, with the preferences for the selected header shown on the
right, as depicted in Figure 31-9. So, instead of calling addPreferencesFromResource(),
a Honeycomb PreferenceActivity calls loadHeadersFromResource(), pointing to
another XML resource, this time describing the preference headers. For example, here is
res/xml/preference_headers.xml from the Prefs/Fragments sample project:

<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">
<header android:fragment="com.commonsware.android.preffrags.StockPreferenceFragment"
android:title="0Original"
android:summary="The original set from the other examples">
<extra android:name="resource" android:value="preferences" />
</header>
<header android:fragment="com.commonsware.android.preffrags.StockPreferenceFragment"
android:title="Other Stuff"
android:summary="Well, we needed to show two sets here...">
<extra android:name="resource" android:value="preferences2" />
</header>
</preference-headers>

Each <header> element indicates the PreferenceFragment subclass that will describe the
preferences that belong to the header. In addition, the <header> describes the title and
summary for the header, along with an optional icon (android:icon attribute). A <header>
element may also have one or more <extra> child elements, providing a key/value pair
of extra data that a PreferenceFragment can use for configuration. In the preceding
example, each <header> element has one <extra> element defining the name of an XML
resource that will hold the preferences for that header.

Hence, the PreferenceActivity is still as short as before, just with a slightly different
structure:

http://schemas.android.com/apk/res/android

352

CHAPTER 31: Using Preferences

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceActivity;
import java.util.list;

public class EditPreferences extends PreferenceActivity {
@0verride
public void onBuildHeaders(List<Header> target) {
loadHeadersFromResource(R.xml.preference_headers, target);

}
}

Instead of defining the headers in onCreate(), you override an onLoadHeaders() method
and call loadHeadersFromResource() there.

PreferenceFragment and StockPreferenceFragment

As previously mentioned, the preference headers point to subclasses of
PreferenceFragment. The job of PreferenceFragment is to do what PreferenceActivity
does in older versions of Android—call addPreferencesFromResource() to define the
preferences to be displayed on the right when the associated header is tapped on the
left.

What is odd about PreferenceFragment is that it requires subclasses. Considering that
the vast majority of such fragments would simply call addPreferencesFromResource()
once on a single resource, it would seem logical to have that built into Android, allowing
subclasses of PreferenceFragment for more complicated cases. Yet, that is not presently
supported. Official Android samples would have you create one PreferenceFragment
subclass for each preference header, which seems wasteful.

Another approach is to use StockPreferenceFragment, a PreferenceFragment subclass
that is implemented in the Prefs/Fragments project but can be used wherever. It
assumes that you have added an <extra> to the <header> identifying the name of the
preference XML resource to load, and it loads it. No extra subclasses are required. That
is how both headers shown in the previous section can point to the single
StockPreferenceFragment implementation.

StockPreferenceFragment is not especially long, but it does employ one trick:

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceFragment;

public class StockPreferenceFragment extends PreferenceFragment {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

int res=getActivity()
.getResources()
.getIdentifier(getArguments().getString("resource"),

CHAPTER 31: Using Preferences

1",
getActivity().getPackageName());

addPreferencesFromResource(res);

}
}

To get at the extras, a PreferenceFragment can call getArguments(), which returns a
Bundle. In our case, we can get the resources extra value via
getArguments().getString("resource"). The problem is, this is a String, not a resource
ID. In order to call addPreferencesFromResource(), we need the resource ID of the
preference that we know only by name.

The trick is to use getIdentifier(). The getIdentifier() method on the Resources
object—itself obtained by calling getResources() on an Activity—will use reflection to
find the resource ID when given three pieces of information:

B The name of the resource (in this case, the value from the arguments)
B The type of the resource (in this case, xml)

B The package where this ID should reside (typically, your own package,
obtained by calling getPackageName() on an Activity)

So, StockPreferenceFragment uses getIdentifier() to convert the resource extrainto a
resource ID, which it then uses with addPreferencesFromResource().

Note that getIdentifier() is not particularly fast, since it uses reflection. Do not use this
in a tight loop, in getView() of an Adapter, or any place where it may be called
thousands of times.

Avoiding Nested PreferenceScreen Elements

In pre-Honeycomb Android, if you have a lot of preferences, you might consider turning
them into nested PreferenceScreen elements. It is better, on Honeycomb, to break them
out into separate preference headers. Partly, this is to provide a better user
experience—users can directly see and access the various headers, versus having to
wade through your preferences to find ones that lead to nested PreferenceScreens. It is
also partly because the nested PreferenceScreen Ul does not adopt the Honeycomb
look and feel (e.g., there are no nested preference headers), so there will be a visual
clash.

Intents for Headers or Preferences

If you need to collect some preferences that are beyond what the standard preferences
can handle, you have some choices.

One choice is to create a custom Preference. Extending DialogPreference to create
your own Preference implementation is not especially hard. However, it does constrain
you to something that can fit in a dialog box.

353

354

CHAPTER 31: Using Preferences

Another option is to specify an <intent> element as a child of a <header> element. When
the user taps this header, your specified Intent is used with startActivity(), giving
you a gateway to your own activity for collecting things that are beyond what the
preference Ul can handle. For example, you could have the following <header>:

<header android:icon="@drawable/something"
android:title="Fancy Stuff"
android:summary="Click here to transcend your plane of existence">
<intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />
</header>

Then, as long as you have an activity with an <intent-filter> specifying your desired
action (com.commonsware.android.MY_CUSTOM ACTION), that activity will get control when
the user taps the associated header.

Adding Backward Compatibility

Of course, everything described in this section works only on Android 3.0 and higher.
What about the millions of other Android devices? Are they chopped liver? No. For one
thing, chopped liver has notoriously bad cellular reception. However, they will have to
retreat to the original PreferenceActivity approach. Since older versions of Android
cannot load classes that refer to other classes or methods that are from newer versions
of Android, the simplest approach is to have two PreferenceActivity classes, one new
and one old.

For example, the Prefs/FragmentsBC sample project has all the code from
Prefs/Fragments, with a few alterations. First, the Honeycomb-specific EditPreferences
class is renamed EditPreferencesHC. Another EditPreferences class, based on our
original prefragment implementation, is added:

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
addPreferencesFromResource(R.xml.preferences2);

}
}

Here, we take advantage of the fact that addPreferencesFromResource() can be called
multiple times to simply chain together our two preference headers’ worth of
preferences. And, the options menu choice for opening our PreferenceActivity
changes to choose the right one, based on our Build.VERSION.SDK INT value:

@0verride
public boolean onOptionsItemSelected(MenuItem item) {

CHAPTER 31: Using Preferences

switch (item.getItemId()) {
case EDIT ID:
if (Build.VERSION.SDK INT<Build.VERSION CODES.HONEYCOMB)

{

EditPreferences.class));

startActivity(new Intent(this,

}
else {
startActivity(new Intent(this,
EditPreferencesHC.class));

}

return(true);

}

return(super.onOptionsItemSelected(item));

Hence, we use the EditPreferencesHC class only when that is known to be safe.
Otherwise, we use the older one.

355

Chapter

Managing and Accessing
Local Databases

SQLite is a very popular embedded database, as it combines a clean SQL interface with
a very small memory footprint and decent speed. Moreover, it is public domain, so
everyone can use it. Many firms (e.g., Adobe, Apple, Google, Sun, and Symbian) and
open source projects (e.g., Mozilla, PHP, and Python) ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android application
can create SQLite databases. Since SQLite uses a SQL interface, it is fairly
straightforward to use for people with experience in other SQL-based databases.
However, its native APl is not JDBC, and JDBC might be too much overhead for a
memory-limited device like a phone, anyway. Hence, Android programmers have a
different API to learn. The good news is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working on Android. It
by no means is a thorough coverage of SQLite as a whole. If you want to learn more
about SQLite and how to use it in environments other than Android, a fine book is The
Definitive Guide to SQLite by Michael Owens (Apress, 2006).

Much of the sample code shown in this chapter comes from the Database/Constants
application. This application presents a list of physical constants, with names and values
culled from Android’s SensorManager, as shown in Figure 32-1.

357

358 CHAPTER 32: Managing and Accessing Local Databases

M @ 9:10 Am
ConstantsBrowser
Gravity, Death Star I
Gravity, Earth
Gravity, Jupiter
Gravity, Mars
Gravity, Mercury
Gravity, Moon
Gravity, Neptune
Gravity, Pluto
Gravity, Saturn
Gravity, Sun
Gravity, The Island
Gravity, Uranus
Gravity, Venus

Figure 32-1. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to fill in the
name and value of the constant, as shown in Figure 32-2.

LMl @ 9:10Am

(® Add Constant

Cancel

Figure 32-2. The Constants sample application’s add-constant dialog

The constant is then added to the list. A long-tap on an existing constant will bring up a
context menu with a Delete option, which, after confirmation, will delete the constant.

CHAPTER 32: Managing and Accessing Local Databases

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT), data
manipulation (INSERT, et al.), and data definition (CREATE TABLE, et al.). SQLite has a few
places where it deviates from the SQL-92 standard, which is no different from most SQL
databases. The good news is that SQLite is so space-efficient that the Android runtime
can include all of SQLite, not some arbitrary subset to trim it down to size.

The biggest difference between SQLite and other SQL databases is the data typing.
While you can specify the data types for columns in a CREATE TABLE statement, and
SQLite will use those as a hint, that is as far as it goes. You can put whatever data you
want in whatever column you want. Put a string in an INTEGER column? Sure, no
problem! Vice versa? That works, too! SQLite refers to this as manifest typing, as
described in the documentation:

In manifest typing, the datatype is a property of the value itself, not of the
column in which the value is stored. SQLite thus allows the user to store any
value of any datatype into any column regardless of the declared type of that
column.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to use SQLite,
you will need to create your own database, and then populate it with your own tables,
indexes, and data.

To create and open a database, your best option is to craft a subclass of
SQLiteOpenHelper. This class wraps up the logic to create and upgrade a database, per
your specifications, as needed by your application. Your subclass of SQLiteOpenHelper
will need three methods:

B The constructor, chaining upward to the SQLiteOpenHelper
constructor. This takes the Context (e.g., an Activity), the name of the
database, an optional cursor factory (typically, just pass null), and an
integer representing the version of the database schema you are
using.

B onCreate(), which passes you a SQLiteDatabase object that you
populate with tables and initial data, as appropriate.

B onUpgrade(), which passes you a SQLiteDatabase object and the old
and new version numbers, so you can figure out how best to convert
the database from the old schema to the new one. The simplest, albeit
least friendly, approach is to drop the old tables and create new ones.

359

360

CHAPTER 32: Managing and Accessing Local Databases

For example, here is a DatabaseHelper class from Database/Constants that, in

onCreate(), creates a table and adds a number of rows, and in onUpgrade() cheats by

dropping the existing table and executing onCreate():

package com.commonsware.android.constants;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

public class DatabaseHelper extends SQLiteOpenHelper {
private static final String DATABASE_NAME="db";
static final String TITLE="title";
static final String VALUE="value";

public DatabaseHelper(Context context) {
super(context, DATABASE NAME, null, 1);

@0verride
public void onCreate(SQLiteDatabase db) {
db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
TEXT, value REAL);");

ContentValues cv=new ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY DEATH_STAR I);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Earth");
cv.put(VALUE, SensorManager.GRAVITY EARTH);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Jupiter");
cv.put(VALUE, SensorManager.GRAVITY JUPITER);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Mars");
cv.put(VALUE, SensorManager.GRAVITY MARS);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Mercury");
cv.put(VALUE, SensorManager.GRAVITY MERCURY);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Moon");
cv.put(VALUE, SensorManager.GRAVITY_MOON);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Neptune");

titlee

CHAPTER 32: Managing and Accessing Local Databases

cv.put(VALUE, SensorManager.GRAVITY NEPTUNE);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Pluto");
cv.put(VALUE, SensorManager.GRAVITY_ PLUTO);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Saturn");
cv.put(VALUE, SensorManager.GRAVITY_SATURN);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Sun");
cv.put(VALUE, SensorManager.GRAVITY SUN);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, The Island");
cv.put(VALUE, SensorManager.GRAVITY THE_ISLAND);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Uranus");
cv.put(VALUE, SensorManager.GRAVITY_URANUS);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Venus");
cv.put(VALUE, SensorManager.GRAVITY_ VENUS);
db.insert("constants", TITLE, cv);

}

@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
android.util.Log.w("Constants", "Upgrading database, which will destroy alle
old data");
db.execSQL("DROP TABLE IF EXISTS constants");
onCreate(db);

}

We will take a closer look at what onCreate() is doing—in terms of execSQL() and
insert() calls—Iater in this chapter.

To use your SQLiteOpenHelper subclass, create and hold onto an instance of it. Then,
when you need a SQLiteDatabase object to do queries or data modifications, ask your
SQLiteOpenHelper to getReadableDatabase() or getWriteableDatabase(), depending on
whether or not you will be changing its contents. For example, our ConstantsBrowser
activity opens the database in onCreate() as part of doing a query:

constantsCursor=db
.getReadableDatabase()
.rawQuery("SELECT _ID, title, value "+
"FROM constants ORDER BY title",
null);

When you are done with the database (e.g., your activity is being closed), simply call
close() on your SQLiteOpenHelper to release your connection.

361

362

CHAPTER 32: Managing and Accessing Local Databases

For onUpgrade() to work properly, your version numbers for your database schema must
increase as you move forward. A typical pattern is to start with 1 and work your way up
from there.

There are two other methods you can elect to override in your SQLiteOpenHelper, if you
feel the need:

B onOpen(): You can override this to get control when somebody opens
this database. Usually, this is not required.

B onDowngrade(): Introduced in Android 3.0, this method will be called if
the code requests a schema that is older than what is in the database
presently. This is the converse of onUpgrade(). If your version numbers
differ, one of these two methods will be invoked. Since normally you
are moving forward with updates, you can usually skip onDowngrade().

Setting the Table

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the Data Definition Language (DDL) statement you wish to
apply against the database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in the
DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT,
value REAL);");

This will create a table, named constants, with a primary key column named _id that is
an autoincremented integer (i.e., SQLite will assign the value for you when you insert
rows), plus two data columns: title (text) and value (a float, or real in SQLite terms).
SQLite will automatically create an index for you on your primary key column. You could
add other indexes here via some CREATE INDEX statements.

Most likely, you will create tables and indexes when you first create the database, or
possibly when the database needs upgrading to accommodate a new release of your
application. If you do not change your table schemas, you might never drop your tables
or indexes, but if you do, just use execSOL() to invoke DROP INDEX and DROP TABLE
statements as needed.

Makin’ Data

Given that you have a database and one or more tables, you probably want to put some
data in them. You have two major approaches for doing this:

B Use execSQL(), just as you did for creating the tables. The execSQL()
method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, and so forth just fine.

CHAPTER 32: Managing and Accessing Local Databases

B Use the insert(),update(), and delete() methods on the
SQLiteDatabase object, which eliminates much of the SQL syntax
required to do basic operations.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
ContentValues values=new ContentValues(2);

values.put(DatabaseHelper.TITLE, wrapper.getTitle());
values.put(DatabaseHelper.VALUE, wrapper.getValue());

db.getWritableDatabase().insert("constants", DatabaseHelper.TITLE, values);
constantsCursor.requery();

}

These methods make use of ContentValues objects, which implement a Map-esque
interface, albeit one that has additional methods for working with SQLite types. For
example, in addition to get() to retrieve a value by its key, you have
getAsInteger(),getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column as the “null
column hack,” and a ContentValues with the initial values you want put into this row. The
null column hack is for the case where the ContentValues instance is empty—the
column named as the null column hack will be explicitly assigned the value NULL in the
SQL INSERT statement generated by insert(). This is required due to a quirk in SQLite’s
support for the SQL INSERT statement.

The update() method takes the name of the table, a ContentValues representing the
columns and replacement values to use, an optional WHERE clause, and an optional list of
parameters to fill into the WHERE clause, to replace any embedded question marks (?).
Since update()replaces only columns with fixed values, versus ones computed based
on other information, you may need to use execSQL() to accomplish some ends. The
WHERE clause and parameter list work akin to the positional SQL parameters you may be
used to from other SQL APIs.

The delete() method works akin to update(), taking the name of the table, the optional
WHERE clause, and the corresponding parameters to fill into the WHERE clause. For
example, here we delete() a row from our constants table, given its _ID:

private void processDelete(long rowId) {
String[] args={String.valueOf(rowId)};

db.getWritableDatabase().delete("constants", " ID=?", args);
constantsCursor.requery();

}

363

364

CHAPTER 32: Managing and Accessing Local Databases

What Goes Around, Comes Around

As with INSERT, UPDATE, and DELETE, you have two main options for retrieving data from a
SQLite database using SELECT:

B Use rawQuery() to invoke a SELECT statement directly
B Use query() to build up a query from its component parts

Confounding matters further is the SQLiteQueryBuilder class and the issue of cursors
and cursor factories. Let’s take all of this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery(). Simply call it with your
SQL SELECT statement. The SELECT statement can include positional parameters; the
array of these forms your second parameter to rawQuery(). So, we wind up with this:

constantsCursor=db
.getReadableDatabase()
.rawQuery("SELECT _ID, title, value "+
"FROM constants ORDER BY title",
null);

The return value is a Cursor, which contains methods for iterating over results
(discussed shortly, in the “Using Cursors” section).

If your queries are pretty much “baked into” your application, this is a very
straightforward way to use them. However, it gets complicated if parts of the query are
dynamic, beyond what positional parameters can really handle. For example, if the set of
columns you need to retrieve is not known at compile time, puttering around
concatenating column names into a comma-delimited list can be annoying...which is
where query() comes in.

Regular Queries

The query() method takes the discrete pieces of a SELECT statement and builds the query
from them. The pieces, in the order they appear as parameters to query(), are as follows:

The name of the table to query against

The list of columns to retrieve

The WHERE clause, optionally including positional parameters
The list of values to substitute in for those positional parameters
The GROUP BY clause, if any

The HAVING clause, if any

The ORDER BY clause, if any

CHAPTER 32: Managing and Accessing Local Databases

These can be null when they are not needed (except the table name, of course):

String[] columns={"ID", "inventory"};

String[] parms={"snicklefritz"};

Cursor result=db.query("widgets", columns, "name=?",
parms, null, null, null);

Using Cursors

No matter how you execute the query, you get a Cursor back. This is the Android/SQLite
edition of the database cursor, a concept used in many database systems. With the
cursor, you can do the following:

B Find out how many rows are in the result set via getCount()

B [terate over the rows via moveToFirst(),moveToNext(), and
isAfterLast()

B Find out the names of the columns via getColumnNames (), convert
those into column numbers via getColumnIndex(), and get values for
the current row for a given column via methods like
getString(),getInt(), and so on

B Reexecute the query that created the cursor via requery()
B Release the cursor’s resources via close()

For example, here we iterate over a widgets table entries:

Cursor result=
db.rawQuery("SELECT ID, name, inventory FROM widgets", null);

while (!result.moveToNext()) {
int id=result.getInt(0);
String name=result.getString(1);
int inventory=result.getInt(2);

// do something useful with these
}

result.close();

You can also wrap a Cursor in a SimpleCursorAdapter or other implementation, and then
hand the resulting adapter to a ListView or other selection widget. Note, though, that if
you are going to use CursorAdapter or its subclasses (such as SimpleCursorAdapter),
the result set of your query must contain an integer column named _ID that is unique for
the result set. This “id” value is then supplied to methods such as onListItemClick(), to
identify which item the user clicked upon in the AdapterView.

For example, after retrieving the sorted list of constants, we pop those into the ListView
for the ConstantsBrowser activity in just a few lines of code:

ListAdapter adapter=new SimpleCursorAdapter(this,
R.layout.row, constantsCursor,

365

366

CHAPTER 32: Managing and Accessing Local Databases

new String[] {DatabaseHelper.TITLE,
DatabaseHelper.VALUE},
new int[] {R.id.title, R.id.value});

Custom CursorAdapters

You may recall from an earlier chapter that you can override getView() in ArrayAdapter
to provide more custom control over how rows are displayed. However, CursorAdapter
and its subclasses have a default implementation of getView(),which inspects the
supplied View to recycle. If it is null, getView() calls newView() and then bindView(). If it
is not null, getView() just calls bindView(). If you are extending CursorAdapter —used
for displaying results of a database or content provider query—you should override
newView() and bindView() instead of getView().

All this does is remove your if() test you would have had in getView() and puts each
branch of that test in an independent method, akin to the following:

public View newView(Context context, Cursor cursor,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, null);
Viewhrapper wrapper=new ViewWrapper(row);

row.setTag(wrapper);

return(row);

}

public void bindView(View row, Context context, Cursor cursor) {
Viewhrapper wrapper=(ViewWrapper)row.getTag();

// actual logic to populate row from Cursor goes here

Making Your Own Cursors

There may be circumstances in which you want to use your own Cursor subclass, rather
than the stock implementation provided by Android. In those cases, you can use
queryWithFactory() and rawQueryWithFactory(), which take a
SQLiteDatabase.CursorFactory instance as a parameter. The factory, as you might
expect, is responsible for creating new cursors via its newCursor() implementation.

Finding and implementing a valid use for this facility is left as an exercise for you. Suffice
it to say that you should not need to create your own cursor classes much, if at all, in
ordinary Android development.

CHAPTER 32: Managing and Accessing Local Databases

Flash: Sounds Faster Than It Is

Your database will be stored on flash memory, normally the onboard flash for the
device. Reading data off of flash is relatively quick. While the memory is not especially
fast, there is no seek time to move hard drive heads around, as you find with magnetic
media, so performing a query against a SQLite database tends to be speedy.

Writing data to flash is another matter entirely. Sometimes, this may happen fairly
quickly, on the order of a couple of milliseconds. Sometimes, though, it may take
hundreds of milliseconds, even for writing small amounts of data. Moreover, flash tends
to get slower the fuller it is, so the speed your users will see varies even more.

The net result is that you should seriously consider doing all database write operations
off the main application thread, such as via an AsyncTask, as is described in Chapter 20.
That way, the database write operations will not slow down your Ul.

Note that the emulator behaves differently, because it is typically using a file on your
hard drive for storing data, rather than flash. While the emulator tends to be much
slower than hardware for CPU and GPU operations, the emulator will tend to be much
faster for writing data to flash. Hence, just because you are not seeing any Ul
slowdowns due to database I/0 in the emulator, do not assume that will be the same
when your code is running on a real Android device.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably used to having
tools to inspect and manipulate the contents of the database, beyond merely the
database’s API. With Android’s emulator, you have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program and make it
available from the adb shell command. Once you are in the emulator’s shell, just
execute sqlite3, providing it the path to your database file. Your database file can be
found at the following location:

/data/data/your.app.package/databases/your-db-name

Here, your.app.package is the Java package for your application (e.g.,
com.commonsware.android) and your-db-name is the name of your database, as supplied
to createDatabase().

The sqlite3 program works, and if you are used to poking around your tables using a
console interface, you are welcome to use it. If you prefer something a little friendlier,
you can always copy the SQLite database off the device onto your development
machine, and then use a SQLite-aware client program to putter around. Note, though,
that you are working off a copy of the database; if you want your changes to go back to
the device, you will need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or the
equivalent in your IDE, or the File Manager in the Dalvik Debug Monitor Service), which

367

368 CHAPTER 32: Managing and Accessing Local Databases

takes the path to the on-device database and the local destination as parameters. To
store a modified database on the device, use adb push, which takes the local path to the
database and the on-device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension for Firefox,
shown in Figure 32-3, as it works across all platforms.

(%7 SQLite Manager (el [34]
Database Table Index View Trigger Tools Help Profile Database: [(Select Profile Database) ¢] Go

Refresh ‘ DNew Database ﬁcannect Database ‘ ﬁcreate Table ﬁDrop Table ‘ Eﬁh‘create Index ﬂDrop Index ‘

Structure | Browse & Search] Execute SQL l DB Settings

Database

Database Not Selected

— T

Figure 32-3. SQLite Manager Firefox extension

You can find other client tools on the SQLite web site.

Chapter 33

Leveraging Java Libraries

Java has as many third-party libraries as any other modern programming language, if
not more. These third-party libraries are the innumerable JARs that you can include in a
server or desktop Java application—the things that the Java SDKs themselves do not
provide.

In the case of Android, the Dalvik virtual machine (VM) at its heart is not precisely Java,
and what it provides in its SDK is not precisely the same as any traditional Java SDK.
That being said, many Java third-party libraries still provide capabilities that Android
lacks natively, and therefore may be of use to you in your project, if you can get them to
work with Android’s flavor of Java.

This chapter explains what it will take for you to leverage such libraries and describes
the limitations on Android’s support for arbitrary third-party code.

Ants and JARs

You have two choices for integrating third-party code into your project: use the source
code or use prepackaged JARs.

If you choose to use the source code, all you need to do is copy it into your own source
tree (under src/ in your project), so it can sit alongside your existing code, and then let
the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the source
code, you will need to teach your build chain how to use the JAR. First, place the JAR in
the 1ibs/ directory in your Android project. Then, if you are using an IDE, you probably
need to add the JAR to your build path (Ant will automatically pick up all JARs found in
libs/). This is definitely required for Eclipse.

And that’s it. Adding third-party code to your Android application is fairly easy. Getting it
to actually work may be somewhat more complicated, however.

369

370

CHAPTER 33: Leveraging Java Libraries

The Quter Limits

Not all available Java code will work well with Android. There are a number of factors to
consider, including the following:

B Expected platform APIs: Does the code assume a newer JVM than the
one Android is based on? Or, does the code assume the existence of
Java APlIs that ship with Java 2 Platform, Standard Edition (J2SE) but
not with Android, such as Swing?

B Size: Existing Java code designed for use on desktops or servers does
not need to be concerned much about on-disk size or, to some extent,
even in-RAM size. Android, of course, is short on both. Using third-
party Java code, particularly when prepackaged as JARs, may balloon
the size of your application.

B Performance: Does the Java code effectively assume a much more
powerful CPU than what you may find on many Android devices? Just
because a desktop can run it without issue does not mean your
average mobile phone will handle it well.

B Interface: Does the Java code assume a console interface? Or is it a
pure API that you can wrap your own interface around?

B Operating system: Does the Java code assume the existence of
certain console programs? Does the Java code assume it can use a
Windows DLL?

B [anguage version: Was the JAR compiled with an older version of Java
(1.4.2 or older)? Was the JAR compiled with a different compiler than
the official one from Sun (e.g., GCJ)?

B Dependencies: Does the Java code depend on other third-party JARs
that might have some of these problems as well? Does the Java code
depend on third-party libraries (e.g., the JSON library from
http://json.org) that are built into Android, but expect a different
version of those libraries?

One trick for addressing some of these concerns is to use open source Java code and
actually work with the code to make it more Android-friendly. For example, if you are
using only 10 percent of the third-party library, maybe it’s worthwhile to recompile the
subset of the project to be only what you need, or at least to remove the unnecessary
classes from the JAR. The former approach is safer, in that you get compiler help to
make sure you are not discarding some essential piece of code, although it may be
more tedious to do.

http://json.org

CHAPTER 33: Leveraging Java Libraries 371

Following the Script

Unlike other mobile device operating systems, Android has no restrictions on what you
can run on it, as long as you can do it in Java using the Dalvik VM. This includes
incorporating your own scripting language into your application, something that is
expressly prohibited on some other devices.

One possible Java scripting language is BeanShell (www.beanshell.org/). BeanShell
gives you Java-compatible syntax with implicit typing and no compilation required.

To add BeanShell scripting, you need to put the BeanShell interpreter’s JAR file in your
libs/ directory. Unfortunately, the 2.0b4 JAR available for download from the BeanShell
site does not work out of the box with the Android 0.9 and newer SDKs, perhaps due to
the compiler that was used to build it. Instead, you should probably check out the
source code from Subversion and execute ant jarcore to build it, and then copy the
resulting JAR (in BeanShell’s dist/ directory) to your own project’s 1ibs/. Or, just use
the BeanShell JAR that accompanies the source code for this book, up in the
Java/AndShell project.

From there, using BeanShell on Android is no different from using BeanShell in any other
Java environment:

1. Create an instance of the BeanShell Interpreter class.
2. Set any globals for the script’s use via Interpretertset().

3. Call Interpretertteval() to run the script and, optionally, get the result
of the last statement.

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>

<Button
android:id="@+id/eval"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Go!"
android:onClick="go"
/>

<EditText
android:id="@+id/script"”
android:layout width="fill parent"
android:layout_height="fill parent
android:singleline="false"
android:gravity="top"
/>

</Linearlayout>

http://www.beanshell.org/
http://schemas.android.com/apk/res/android

372 CHAPTER 33: Leveraging Java Libraries

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

public class MainActivity extends Activity {
private Interpreter i=new Interpreter();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

}

public void go(View v) {
EditText script=(EditText)findViewById(R.id.script);
String src=script.getText().toString();

try {
i.set("context", MainActivity.this);
i.eval(src);

catch (bsh.EvalError e) {
AlertDialog.Builder builder=
new AlertDialog.Builder(MainActivity.this);

builder
.setTitle("Exception!")
.setMessage(e.toString())
.setPositiveButton("0K", null)
.show();
}
}
}

Compile and run it (including incorporating the BeanShell JAR as previously mentioned),
and install it on the emulator. Fire it up, and you get a trivial IDE, with a large text area
for your script and a big Go! button to execute it, as shown in Figure 33-1.

CHAPTER 33: Leveraging Java Libraries 373

Bl & 1:57pPm

Beanshell Demo

s ———————
Figure 33-1. The AndShell BeanShell IDE

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", Toast.LENGTH_LONG).show();

Note the use of context to refer to the activity when making the Toast. That is the global
set by the activity to reference back to itself. You could call this global variable anything
you want, as long as the set() call and the script code use the same name.

Click the Go! button, and you get the result shown in Figure 33-2.
Bl @ 2:01pPm

Beanshell Demo

import android.widget.Toast;

Toast.makeText(context, "Hello,
world!", 5000).show();

Hello, world!

—
Figure 33-2. The AndShell BeanShell IDE, executing some code

374

CHAPTER 33: Leveraging Java Libraries

And now, some caveats:

B Not all scripting languages will work. For example, those that
implement their own form of just-in-time (JIT) compilation, generating
Java bytecodes on-the-fly, would probably need to be augmented to
generate Dalvik VM bytecodes instead of those for stock Java
implementations. Simpler languages that execute from parsed scripts,
calling Java reflection APIs to call back into compiled classes, will
likely work better. Even there, though, not every feature of the
language may work, if it relies on some facility in a traditional Java API
that does not exist in Dalvik. For example, there could be stuff hidden
inside BeanShell or the add-on JARs that does not work on today’s
Android.

B Scripting languages without JIT will inevitably be slower than compiled
Dalvik applications. Slower may mean users experience sluggishness.
Slower definitely means more battery life is consumed for the same
amount of work. So, building a whole Android application in
BeanShell, simply because you feel it is easier to program in, may
cause your users to be unhappy.

B Scripting languages that expose the whole Java API, like BeanShell,
can pretty much do anything the underlying Android security model
allows. So, if your application has the READ_CONTACTS permission,
expect any BeanShell scripts your application runs to have the same
permission.

B Last, but certainly not least, is that language interpreter JARs tend to
be...portly. The BeanShell JAR used in this example is 200KB. That is
not ridiculous, considering what it does, but it will make applications
that use BeanShell that much bigger to download, take up that much
more space on the device, and so on.

Reviewing the Script

Since this chapter covers scripting in Android, you may be interested to know that you
have options beyond embedding BeanShell directly in your project.

Some experiments have been conducted with other JVM-based programming
languages, such as JRuby and Jython. At present, their support for Android is
incomplete, but progress is being made.

Additionally, Scripting Layer for Android (SL4A), described at
http://code.google.com/p/android-scripting/, allows you to write scripts in a wide
range of scripting languages, beyond BeanShell, such as the following:

m Perl

B Python

http://code.google.com/p/android-scripting/

CHAPTER 33: Leveraging Java Libraries 375

B JRuby
B lua

JavaScript (implemented via Rhino, the Mozilla JavaScript interpreter
written in Java)

B PHP

These scripts are not full-fledged applications, though the SL4A team is working on
allowing you to turn them into APK files complete with basic Uls. For on-device
development, SL4A is a fine choice.

Chapter

Communicating via the
Internet

The expectation is that most, if not all, Android devices will have built-in Internet access.
That could be Wi-Fi, cellular data services (EDGE, 3G, etc.), or possibly something else
entirely. Regardless, most people—or at least those with a data plan or Wi-Fi access—
will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to make
use of this Internet access. Some offer high-level access, such as the integrated WebKit
browser component. If you want, you can drop all the way down to using raw sockets. In
between, you can leverage APIs—both on-device and from third-party JARs—that give
you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit
component, discussed in Chapter 15, and Internet-access APls, , discussed in this
chapter. As busy coders, we should be trying to reuse existing components wherever
possible, versus rolling our own on-the-wire protocol.

REST and Relaxation

Android does not have built-in SOAP or XML-RPC client APIs. However, it does have the
Apache HttpClient library baked in. You can either layer a SOAP/XML-RPC layer atop
this library or use it “straight” for accessing REST-style web services. For the purposes
of this book, REST-style web services are considered simple HTTP requests for ordinary
URLs over the full range of HTTP verbs, with formatted payloads (XML, JSON, etc.) as
responses.

More expansive tutorials, FAQs, and HOWTOs can be found at the HttpClient web site
(http://hc.apache.org/). Here, we’ll cover the basics, while checking the weather.

377

http://hc.apache.org/

378

CHAPTER 34: Communicating via the Internet

HTTP Operations via Apache HttpClient

The first step to using HttpClient is, not surprisingly, to create an HttpClient object. The
client object handles all HTTP requests on your behalf. Since HttpClient is an interface,
you will need to actually instantiate some implementation of that interface, such as
DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different HttpRequest
implementations for each different HTTP verb (e.g., HttpGet for HTTP GET requests). You
create an HttpRequest implementation instance, fill in the URL to retrieve and other
configuration data (e.g., form values if you are doing an HTTP POST via HttpPost), and
then pass the method to the client to actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want. You can
get an HttpResponse object back, with response code (e.g., 200 for OK), HTTP headers,
and the like. Or, you can use a flavor of execute() that takes a ResponseHandler<String>
as a parameter, with the net result being that execute() returns just the String
representation of the response body. In practice, this is not a recommended approach,
because you really should be checking your HTTP response codes for errors. However,
for trivial applications, like book examples, the ResponseHandler<String> approach
works just fine.

For example, let’s take a look at the Internet/Weather sample project. This implements
an activity that retrieves weather data for your current location from the National
Weather Service. (Note that this probably works only for geographic locations in the
United States.) That data is converted into an HTML page, which is poured into a WebKit
widget for display. Rebuilding this demo using a ListView is left as an exercise for the
reader. Also, since this sample is relatively long, we will show only relevant pieces of the
Java code here in this chapter, though you can always download the full source from the
CommonsWare web site.

To make this a bit more interesting, we use the Android location services to figure out
where we are...sort of. The full details of how that works are provided in Chapter 39.

In the onResume() method, we toggle on location updates, so we will be informed where
we are now and when we move a significant distance (10 kilometers). When a location is
available—either at the start or based on movement—we retrieve the National Weather
Service data via our updateForecast() method:

private void updateForecast(Location loc) {
String url=String.format(format, loc.getlLatitude(),
loc.getLlongitude());
HttpGet getMethod=new HttpGet(url);

try {
ResponseHandler<String> responseHandler=new BasicResponseHandler();
String responseBody=client.execute(getMethod,
responseHandler);
buildForecasts(responseBody);

CHAPTER 34: Communicating via the Internet

String page=generatePage();

browser.loadDataWithBaseURL(null, page, "text/html",
"UTF-8", null);

}
catch (Throwable t) {
android.util.Log.e("WeatherDemo", "Exception fetching data", t);
Toast
.makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
.show();

}

The updateForecast() method takes a Location as a parameter, obtained from the
location update process. For now, all you need to know is that Location sports
getlatitude() and getLongitude() methods that return the latitude and longitude of the
device’s position, respectively.

We hold the URL to the National Weather Service XML in a string resource, and pour in
the latitude and longitude at runtime. Given our HttpClient object created in
onCreate(), we populate an HttpGet with that customized URL, and then execute that
method. Given the resulting XML from the REST service, we build the forecast HTML
page, as described next, and pour that into the WebKit widget. If the HttpClient blows
up with an exception, we provide that error as a Toast.

Note that we also shut down the HttpClient object in onDestroy().

Parsing Responses

The response you get will be formatted using some system—HTML, XML, JSON, or
whatever. It is up to you, of course, to pick out the information you need and do
something useful with it. In the case of the WeatherDemo, we need to extract the forecast
time, temperature, and icon (indicating sky conditions and precipitation) and generate an
HTML page from it.

Android includes the following parsers:

B Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX
parser (org.xml.sax), and the XML pull parser (discussed in Chapter
23)

B A JSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to handle other
formats, such as a dedicated RSS/Atom parser for a feed reader. The use of third-party
Java code is discussed in Chapter 33.

For WeatherDemo, we use the W3C DOM parser in our buildForecasts() method:

void buildForecasts(String raw) throws Exception {
DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();

379

380

CHAPTER 34: Communicating via the Internet

Document doc=builder.parse(new InputSource(new StringReader(raw)));
NodelList times=doc.getElementsByTagName("start-valid-time");

for (int i=0;i<times.getLength();i++) {
Element time=(Element)times.item(i);
Forecast forecast=new Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());

NodelList temps=doc.getElementsByTagName("value");

for (int i=0;i<temps.getLength();i++) {
Element temp=(Element)temps.item(i);
Forecast forecast=forecasts.get(i);

forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
}

NodelList icons=doc.getElementsByTagName("icon-1link");

for (int i=0;i<icons.getLength();i++) {
Element icon=(Element)icons.item(i);
Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());

}
}

The National Weather Service XML format is curiously structured, relying heavily on
sequential position in lists versus the more object-oriented style you find in formats like
RSS or Atom. That being said, we can take a few liberties and simplify the parsing
somewhat, taking advantage of the fact that the elements we want (start-valid-time
for the forecast time, value for the temperature, and icon-1ink for the icon URL) are all
unique within the document.

The HTML comes in as an InputStream and is fed into the DOM parser. From there, we
scan for the start-valid-time elements and populate a set of Forecast models using
those start times. Then, we find the temperature value elements and icon-1link URLs
and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with the
forecasts:

String generatePage() {
StringBuilder bufResult=new StringBuilder("<html><body><table>");

bufResult.append("<tr><th width=\"50%\">Time</th>"+
"<th>Temperature</th><th>Forecast</th></tr>");

for (Forecast forecast : forecasts) {
bufResult.append("<tr><td align=\"center\">");
bufResult.append(forecast.getTime());

CHAPTER 34: Communicating via the Internet

bufResult.append("</td><td align=\"center\">");
bufResult.append(forecast.getTemp());
bufResult.append("</td><td><img src=\"");
bufResult.append(forecast.getIcon());
bufResult.append("\"></td></tr>");

}

bufResult.append("</table></body></html>");

return(bufResult.toString());

The result looks like Figure 34-1.

Bl & 9:40PM
WeatherDemo

Time Temperature Forecast
ST |
S |
A ©
S |
SN
SN *
2008-09-01 !1

Figure 34-1. The WeatherDemo sample application

NOTE: You may have to set your location in Eclipse if you are using the emulator. Open the
DDMS perspective with Window » Open Perspective » Other » DDMS. Select your emulator in
the Devices » Name panel, and then set your emulator’s location in the Emulator Control panel
using the Longitude and Latitude boxes. When you are ready, click Send.

Stuff to Consider

If you need to use SSL, bear in mind that the default HttpClient setup does not include
SSL support. Mostly, this is because you need to decide how to handle SSL certificate
presentation: Do you blindly accept all certificates, even self-signed or expired ones? Or
do you want to ask users if they really want to use some strange certificates?

381

382

CHAPTER 34: Communicating via the Internet

Similarly, HttpClient, by default, is designed for single-threaded use. If you will be using
HttpClient from some other place where multiple threads might be an issue, you can
readily set up HttpClient to support multiple threads.

For these sorts of topics, you are best served by checking out the HttpClient web site
for documentation and support.

AndroidHttpClient

Starting in Android 2.2 (API level 8), you can use the AndroidHttpClient class, found in
the android.net.http package. This is an implementation of the HttpClient interface,
like DefaultHttpClient. However, it is preconfigured with settings that the core Android
team feels make sense for the platform.

What you gain are the following:
B SSL management

B A direct way to specify the user agent string, which is supplied in your
call to the static newInstance() method to get an instance of
AndroidHttpClient

B Utility methods for working with material compressed via GZIP, for
parsing dates in HTTP headers, and so on

What you lose is automatic cookie storage. A regular DefaultHttpClient will cache
cookies in memory and use them on subsequent requests where they are needed.
AndroidHttpClient does not. There are ways to fix that, by using an HttpContext object,
as is described in the AndroidHttpClient documentation.

Also, AndroidHttpClient prevents you from using it on the main application thread —
requests can be made only on a background thread. This is a feature, even if some
people might consider it to be a bug.

Since this class is available only in Android 2.2 and beyond, it may not make sense to
do much with it until such time as you are supporting only API level 8 or higher.

Leveraging Internet-Aware Android Components

Wherever possible, use built-in Android components that can handle your Internet
access for you. Such components will have been fairly rigorously tested and are more
likely to handle edge cases well, such as dealing with users on Wi-Fi who move out of
range of the access point and fail over to mobile data connections (e.g., 3G).

For example, the WebView widget (introduced in Chapter 15 “WebKit Browser) and the
MapView widget (covered in Chapter 40 "Mapping with MapView and MapActivity) both
handle Internet access for you. While you still need the INTERNET permission, you do not
have to perform HTTP requests or the like yourself.

CHAPTER 34: Communicating via the Internet

This section outlines some other ways you can take advantage of built-in Internet
capability.

Downloading Files

Android 2.3 introduced a DownloadManager, designed to handle a lot of the complexities
of downloading larger files, such as:

B Determining whether the user is on Wi-Fi or mobile data, and if so,
whether the download should occur

B Handling when the user, previously on Wi-Fi, moves out of range of
the access point and fails over to mobile data

B Ensuring the device stays awake while the download proceeds

DownloadManager itself is less complicated than the alternative of writing all of it yourself.
However, it does present a few challenges. In this section, we will examine the
Internet/Download sample project that uses DownloadManager.

The Permissions

To use DownloadManager, you will need to hold the INTERNET permission. Depending on
where you elect to download the file, you may also need the WRITE_EXTERNAL STORAGE
permission.

However, at the time of this writing, if you lack sufficient permissions, you may get an
error complaining that you are missing ACCESS_ALL_DOWNLOADS. This appears to be a bug
in the DownloadManager implementation. It should be complaining about the lack of
INTERNET or WRITE_EXTERNAL_ STORAGE, or both. You do not need to hold the

ACCESS_ALL DOWNLOADS permission, which is not even documented as of Android 3.0.

For example, here is the manifest for the Internet/Download application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.download" android:versionCode="1"«
android:versionName="1.0">
<!-- <uses-permission android:name="android.permission.ACCESS_ALL_DOWNLOADS" /> -->
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name="DownloadDemo" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

383

http://schemas.android.com/apk/res/android

384

CHAPTER 34: Communicating via the Internet

NOTE: You need to make sure your emulator is configured with an SD card for this example.
Open the Android SDK and AVD Manager and select your emulator, and then click Edit. You can
then set the size of the SD card your emulator uses for storage.

The Layout

Our sample application has a simple layout, consisting of three buttons:
B One to kick off a download
B One to query the status of a download

B One to display a system-supplied activity containing the roster of
downloaded files

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"

>

<Button
android:id="@+id/start"
android:text="Start Download"
android:layout width="fill parent
android:layout_height="0dip"
android:layout_weight="1"
android:onClick="startDownload"

/>

<Button
android:id="@+id/query"
android:text="Query Status"
android:layout width="fill parent
android:layout_height="0dip"
android:layout_weight="1"
android:onClick="queryStatus"
android:enabled="false"

/>

<Button
android:text="View Log"
android:layout width="fill parent
android:layout_height="0dip"
android:layout_weight="1"
android:onClick="viewlLog"

/>

</Linearlayout>

Requesting the Download

To kick off a download, we first need to get access to the DownloadManager. This is a
system service. We can call getSystemService() on any activity (or other Context),

http://schemas.android.com/apk/res/android

CHAPTER 34: Communicating via the Internet

provide it the identifier of the system service you want, and receive the system service
object back. However, since getSystemService() supports a wide range of these
objects, we need to cast it to the proper type for the service we requested.

So, for example, here is a line from onCreate() of the DownloadDemo activity where we
get the DownloadManager:

mgr=(DownloadManager)getSystemService (DOWNLOAD_SERVICE);

Most of these managers have no close(), release(), or goAwayPlease() sort of
methods —we can just use them and let garbage collection take care of cleaning them

up.

Given the DownloadManager, we can now call an enqueue() method to request a
download. The name is relevant—do not assume that your download will begin
immediately, though often times it will. The enqueue() method takes a
DownloadManager.Request object as a parameter. The Request object uses the builder
pattern, in that most methods return the Request itself, so we can chain a series of calls
together with less typing.

For example, the topmost button in our layout is tied to a startDownload() method in
DownloadDemo, shown here:

public void startDownload(View v) {
Uri uri=Uri.parse("http://commonsware.com/misc/test.mp4");

Environment
.getExternalStoragePublicDirectory(Environment.DIRECTORY DOWNLOADS)
.mkdirs();

lastDownload=
mgr .enqueue(new DownloadManager.Request(uri)

.setAllowedNetworkTypes (DownloadManager.Request .NETWORK WIFI |
DownloadManager .Request.NETWORK_MOBILE)

.setAllowedOverRoaming(false)

.setTitle("Demo")

.setDescription("Something useful. No, really.")

.setDestinationInExternalPublicDir(Environment.DIRECTORY DOWNLOADS,

"test.mp4"));

v.setEnabled(false);
findViewById(R.id.query).setEnabled(true);

We are downloading a sample MP4 file, and we want to download it to the external
storage area. To do the latter, we are using getExternalStoragePublicDirectory() on
Environment, which gives us a directory suitable for storing a certain class of content. In
this case, we are going to store the download in Environment.DIRECTORY DOWNLOADS,
though we could just as easily have chosen Environment.DIRECTORY MOVIES, since we
are downloading a video clip. Note that the File object returned by
getExternalStoragePublicDirectory() may point to a not-yet-created directory, which
is why we call mkdirs() on it, to ensure the directory exists.

We then create the DownloadManager .Request object, with the following attributes:

385

http://commonsware.com/misc/test.mp4

386

CHAPTER 34: Communicating via the Internet

B We are downloading the specific URL we want, courtesy of the Uri
supplied to the Request constructor.

B We are willing to use either mobile data or Wi-Fi for the download
(setAllowedNetworkTypes()), but we do not want the download to
incur roaming charges (setAllowedOverRoaming()).

B We want the file downloaded as test.mp4 in the downloads area on
the external storage (setDestinationInExternalPublicDir()).

We also provide a name (setTitle()) and description (setDescription()), which are
used as part of the notification drawer entry for this download. The user will see these
when they slide down the drawer while the download is progressing.

The enqueue() method returns an ID of this download, which we hold onto for use in
querying the download status.

Keeping Track of Download Status

If the user presses the Query Status button, we want to find out the details of how the
download is progressing. To do that, we can call query() on the DownloadManager. The
query() method takes a DownloadManager.Query object, describing what download(s) we
are interested in. In our case, we use the value we got from the enqueue() method when
the user requested the download:

public void queryStatus(View v) {
Cursor c=mgr.query(new DownloadManager.Query().setFilterById(lastDownload));

if (c==null) {
Toast.makeText(this, "Download not found!", Toast.LENGTH_LONG).show();

else {
c.moveToFirst();

Log.d(getClass().getName(), "COLUMN_ID: "+
c.getlong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
Log.d(getClass().getName(), "COLUMN_BYTES DOWNLOADED SO FAR: "+
c.getlong(c.getColumnIndex(DownloadManager.COLUMN_BYTES DOWNLOADED SO FAR)));
Log.d(getClass().getName(), "COLUMN_LAST MODIFIED TIMESTAMP: "+
c.getlong(c.getColumnIndex(DownloadManager.COLUMN_LAST MODIFIED TIMESTAMP)));
Log.d(getClass().getName(), "COLUMN_LOCAL_URI: "+
c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
Log.d(getClass().getName(), "COLUMN STATUS: "+
c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));
Log.d(getClass().getName(), "COLUMN REASON: "+
c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

Toast.makeText(this, statusMessage(c), Toast.LENGTH_LONG).show();

CHAPTER 34: Communicating via the Internet

The query() method returns a Cursor, containing a series of columns representing the
details about our download. There are a series of constants on the DownloadManager
class outlining what is possible. In our case, we retrieve (and dump to LogCat) the

following:

B The ID of the download (COLUMN_ID)

B The amount of data that has been downloaded to date
(COLUMN_BYTES DOWNLOADED SO FAR)

B What the last-modified timestamp is on the download
(COLUMN_LAST MODIFIED TIMESTAMP)

B Where the file is being saved to locally (COLUMN_LOCAL_URT)

B What the actual status is (COLUMN_STATUS)

B What the reason is for that status (COLUMN_REASON)

There are a number of possible status codes (e.g., STATUS_FAILED, STATUS_SUCCESSFUL,
and STATUS_RUNNING). Some, like STATUS_FAILED, may have an accompanying reason
providing more details.

What the User Sees

The user, upon launching the application, sees our three buttons, as shown in Figure 34-2.

= all B 853

Start Download

View Log

Figure 34-2. The DownloadDemo sample application, as initially launched

387

388 CHAPTER 34: Communicating via the Internet

Clicking the first button disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see, given the poor
contrast between Android’s icon and Android’s status bar), as shown in Figure 34-3.

Query Status

View Log

Figure 34-3. The DownloadDemo sample application, performing a download

Sliding down the notification drawer shows the user the progress of the download in the
form of a ProgressBar widget, as shown in Figure 34-4.

December 9, 2010 # 853

3 Demo Something useful. No, really.

615 ——

Figure 34-4. The notification drawer, during a download using DownloadManager

CHAPTER 34: Communicating via the Internet 389

Tapping the entry in the notification drawer returns control to our original activity, where
the user sees a Toast, as shown in Figure 34-5.

= ull B 843

Download Demo

Query Status

Figure 34-5. The DownloadDemo sample application, after coming to the foreground from the notification

If the user taps the middle button during the download, a Toast will appear indicating
that the download is in progress, as shown in Figure 34-6.

i ull @ 845

Query Status

Download in progress!

Figure 34-6. The DownloadDemo sample application, showing the status mid-download

390 CHAPTER 34: Communicating via the Internet

Additional details are also dumped to LogCat, visible via DDMS or adb logcat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_ID: 12

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_LAST_MODIFIED TIMESTAMP: 1291988696232

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4

12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_STATUS: 2

12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_REASON: o

Once the download is complete, tapping the middle button will indicate that the
download is, indeed, complete, and final information about the download is emitted to
LogCat:

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_ID: 12

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_BYTES_DOWNLOADED SO FAR: 6219229

12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_LAST _MODIFIED TIMESTAMP: 1291988713409

12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4

12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_STATUS: 8

12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):«
COLUMN_REASON: o

Tapping the bottom button brings up the activity displaying all downloads, including
both successes and failures, as shown in Figure 34-7.

CHAPTER 34: Communicating via the Internet

% all B 849

mioads

@ Today

Demo

\j Something useful. No, really.
Complete 5.93MB 8:45 AM
Demo

D . Something useful. No, really.

Failed 5.93MB 8:43 AM

@ Yesterday
@ Last 7 days

Figure 34-7. The Downloads screen, showing everything downloaded by the DownloadManager

And, of course, the file is downloaded. In Android 2.3, in the emulator, our chosen

location maps to /mnt/sdcard/Downloads/test.mp4.

Limitations

DownloadManager works with HTTP URLs, but not HTTPS (SSL) URLs. This is
unfortunate, as more and more sites are switching to SSL encryption across the board,
to deal with various security challenges. Hopefully, in the future, DownloadManager will

have more options here.

If you display the list of all downloads, and your download is among them, it is a really
good idea to make sure that some activity (perhaps one of yours) is able to respond to
an ACTION_VIEW Intent on that download’s MIME type. Otherwise, when the user taps
the entry in the list, they will get a Toast indicating that there is nothing available to view
the download. This may confuse users. Alternatively, use setVisibleInDownloadsUi() on
your request, passing in false, to suppress it from this list.

Continuing Our Escape from Janky Code

The rule is simple: do not access the Internet from the main application thread. Always
use a background thread with HttpClient, HttpUrlConnection, or any other Internet

access API you wish to use.

391

392

CHAPTER 34: Communicating via the Internet

StrictMode, introduced in an earlier chapter, will warn you if you attempt to access the
Internet on the main application thread. AndroidHttpClient will simply crash if you
attempt to make web requests on the main application thread. However, these
capabilities are available only in newer versions of Android. That being said, there are
ways to have StrictMode in your application but use it only in newer versions of Android
using conditional class loading—this technique was covered earlier in this book.

Services

Chapter

Services: The Theory

As noted previously, Android services are for long-running processes that may need to
keep running even when decoupled from any activity. Examples include playing music
even if the player activity gets garbage-collected, polling the Internet for RSS/Atom feed
updates, and maintaining an online chat connection even if the chat client loses focus
due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity tries
connecting to the service via interprocess communication (IPC). Services will live until
specifically shut down or until Android is desperate for RAM and destroys them
prematurely. Running for a long time has its costs, though, so services need to be
careful not to use too much CPU or keep radios active too much of the time, lest the
service cause the device’s battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming services. The next
chapter presents a few specific patterns for services, ones that may closely match your
particular needs. Hence, this chapter has limited code examples, whereas the next
chapter serves up several code examples.

Why Services?

Services are a “Swiss Army knife” for a wide range of functions that do not require direct
access to an activity’s user interface, such as the following:

B Performing operations that need to continue even if the user leaves the
application’s activities, such as a long download (e.g., downloading an app
from the Android Market) or playing music (e.g., an Android music app)

B Performing operations that need to exist regardless of activities
coming and going, such as maintaining a chat connection in support
of a chat application

B Providing a local API to remote APls, such as might be provided by a
web service

395

396

CHAPTER 35: Services: The Theory

B Performing periodic work without user intervention, akin to cron jobs
or Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist with long-
running work.

Many applications do not need any services. Very few applications need more than one.
However, services are a powerful tool in an Android developer’s toolbox and their
functionality is a subject with which any qualified Android developer should be familiar.

Setting Up a Service

Creating a service implementation shares many characteristics with building an activity.
You inherit from an Android-supplied base class, override some lifecycle methods, and
hook the service into the system via the manifest.

Service Class

Just as an activity in your application extends either Activity or an Android-supplied
Activity subclass, a service in your application extends either Service or an Android-
supplied Service subclass. The most common Service subclass is IntentService, used
primarily for the command pattern. That being said, many services simply extend
Service.

Lifecycle Methods

Just as activities have onCreate(),onResume(),onPause() and similar methods, Service
implementations have their own lifecycle methods, such as the following:

B onCreate(): As with activities, called when the service process is
created, by any means

B onStartCommand(): Called each time the service is sent a command via
startService()

B onBind(): Called whenever a client binds to the service via
bindService()

B onDestroy(): Called as the service is being shut down

As with activities, services initialize whatever they need in onCreate() and clean up
those items in onDestroy(). And, as with activities, the onDestroy() method of a service
might not be called if Android terminates the entire application process, such as for
emergency RAM reclamation.

The onStartCommand() and onBind() lifecycle methods will be implemented based on
your choice of communicating to the client, as will be explained later in this chapter.

CHAPTER 35: Services: The Theory

Manifest Entry

Finally, you need to add the service to your AndroidManifest.xml file, for it to be
recognized as an available service for use. That is simply a matter of adding a <service>
element as a child of the application element, providing android:name to reference your
service class.

Since the service class is in the same Java namespace as everything else in this
application, we can use the shorthand ("WeatherService" or ".WeatherService") to
reference our class.

If you want to require some permission of those who wish to start or bind to the service,
add an android:permission attribute naming the permission you are mandating—see
the chapter on permissions for more details.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.downloader" android:versionCode="1"+«
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name="DownloaderDemo" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<service android:name="Downloader"/>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Communicating to Services

Clients of services—frequently activities, though not necessarily —have two main ways
to send requests or information to a service. One approach is to send a command,
which creates no lasting connection to the service. The other approach is to bind to the
service, establishing a bidirectional communications channel that lasts as long as the
client needs it.

Sending Commands with startService()

The simplest way to work with a service is to call startService(). The startService()
method takes an Intent parameter, much like startActivity() does. In fact, the Intent
supplied to startService() has the same two-part role as it does with startActivity():

397

http://schemas.android.com/apk/res/android

398

CHAPTER 35: Services: The Theory

B Identify the service to communicate with

B Supply parameters, in the form of Intent extras, to tell the service
what it is supposed to do

For a local service (the focus of this book), the simplest form of Intent is one that
identifies the class that implements the Intent (e.g., new Intent(this,
MyService.class);).

The call to startService() is asynchronous, so the client will not block. The service will
be created if it is not already running, and it will receive the Intent via a call to the
onStartCommand() lifecycle method. The service can do whatever it needs to in
onStartCommand(), but since onStartCommand() is called on the main application thread,
it should do its work very quickly. Anything that might take a while should be delegated
to a background thread.

The onStartCommand() method can return one of several values, mostly to indicate to
Android what should happen if the service’s process is killed while it is running. The
most likely return values are the following:

B START_STICKY: The service should be moved back into the started state
(as if onStartCommand() had been called), but the Intent should not be
redelivered to onStartCommand()

B START REDELIVER INTENT: The service should be restarted via a call to
onStartCommand(), supplying the same Intent as was delivered this
time

B START_NOT_STICKY: The service should remain stopped until explicitly
started by application code

By default, calling startService() not only sends the command, but tells Android to
keep the service running until something tells it to stop. One way to stop a service is to
call stopService(), supplying the same Intent used with startService(), or at least
one that is equivalent (e.g., identifies the same class). At that point, the service will stop
and will be destroyed. Note that stopService() does not employ any sort of reference
counting, so three calls to startService() will result in a single service running, which
will be stopped by a call to stopService().

Another possibility for stopping a service is to have the service call stopSelf() on itself.
You might do this if you use startService() to have a service begin running and doing
some work on a background thread, then having the service stop itself when that
background work is completed.

Binding with bindService()

Binding allows a service to expose an API to activities (or other services) that bind to it.
When an activity (or other client) binds to a service, it primarily is requesting to be able to
access the public APl exposed by that service via the service’s “binder,” as returned by

CHAPTER 35: Services: The Theory

the service’s onBind() method. When doing this, the activity can also indicate, via the
BIND AUTO CREATE flag, to have Android automatically start up the service if it is not
already running.

The service’s binder is usually a subclass of Binder, on which you can put whatever
methods you want to expose to clients. For local services, you can have as many
methods as you want, with whatever method signatures (parameters, return type, etc.)
that you want. The service returns an instance of the Binder subclass in onBind().

Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an optional
BIND AUTO CREATE flag. As with startService(),bindService() is asynchronous. The
client will not know anything about the status of the binding until the ServiceConnection
object is called with onServiceConnected(). This not only indicates the binding has been
established, but, for local services, it provides the Binder object that the service
returned via onBind(). At this point, the client can use the Binder to ask the service to
do work on its behalf. Note that if the service is not already running and you provide
BIND AUTO CREATE, the service will be created first before being bound to the client. If
you skip BIND_AUTO_CREATE, bindService() will return false, indicating there was no
existing service to bind to.

Eventually, the client will need to call unbindService(), to indicate it no longer needs to
communicate with the service. For example, an activity might call bindService() in its
onCreate() method, then call unbindService() in its onDestroy() method. The call to
unbindService() eventually triggers onServiceDisconnected() to be called on the
ServiceConnection object—at this point, the client can no longer safely use the Binder
object.

If there are no other bound clients to the service, Android will shut down the service as
well, releasing its memory. Hence, we do not need to call stopService() ourselves—
Android handles that, if needed, as a side effect of unbinding.

If the client is an activity, there are two important steps to take to ensure that the binding
survives a configuration change, like a screen rotation:

1. Instead of calling bindService() on the activity itself, call bindService()
on the Application Context (obtained via getApplicationContext()).

2. Make sure the ServiceConnection gets from the old instance of the
activity to the new one, probably via
onRetainNonConfigurationInstance().

This allows the binding to persist between activity instances.

Communicating from Services

Of course, the approaches listed in the previous section work only for a client calling out
to a service. The reverse is also frequently needed, so the service can let an activity or
something know about asynchronous events.

399

400

CHAPTER 35: Services: The Theory

Callback/Listener Objects

An activity or other service client could provide some sort of callback or listener object
to the service, which the service could then call when needed. To make this work, you
would need to do the following:

1. Define a Java interface for that listener object.
2. Give the service a public API to register and retract listeners.

3. Have the service use those listeners at appropriate times, to notify those
who registered the listener of some event.

4. Have the activity register and retract a listener as needed.

5. Have the activity respond to the listener-based events in some suitable
fashion.

The biggest catch is to make sure that the activity retracts the listeners when it is done.
Listener objects generally know their activity, explicitly (via a data member) or implicitly
(by being implemented as an inner class). If the service is holding onto defunct listener
objects, the corresponding activities will linger in memory, even if the activities are no
longer being used by Android. This represents a big memory leak. You may wish to use
WeakReferences, SoftReferences, or similar constructs to ensure that if an activity is
destroyed, any listeners it registers with your service will not keep that activity in
memory.

Broadcast Intents

An alternative approach, first mentioned in the chapter on Intent filters, is to have the
service send a broadcast Intent that can be picked up by the activity...assuming the
activity is still around and is not paused. The service can call sendBroadcast(),
supplying an Intent that identifies the broadcast, designed to be picked up by a
BroadcastReceiver. This could be a component-specific broadcast (e.g., new
Intent(this, MyReceiver.class)), if the BroadcastReceiver is registered in the
manifest. Or, it could be based on some action string, perhaps even one documented
and designed for third-party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via registerReceiver(), though
this approach will work only for Intent objects specifying some action, not ones
identifying a particular component. But, when the activity’s BroadcastReceiver receives
the broadcast, it can do what it wants to inform the user or otherwise update itself.

Pending Results

Your activity can call createPendingResult(). This returns a PendingIntent, an object
that represents an Intent and the corresponding action to be performed upon that

CHAPTER 35: Services: The Theory

Intent (e.g., use it to start an activity). In this case, the PendingIntent will cause a result
to be delivered to your activity’s implementation of onActivityResult(), just as if
another activity had been called with startActivityForResult() and, in turn, called
setResult() to send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent extra, your
activity can pass this PendingIntent to the service. The service, in turn, can call one of
several flavors of the send() method on the PendingIntent, to notify the activity (via
onActivityResult()) of an event, possibly even supplying data (in the form of an Intent)
representing that event.

Messenger

Yet another possibility is to use a Messenger object. A Messenger sends messages to an
activity’s Handler. Within a single activity, a Handler can be used to send messages to
itself, as was demonstrated in the chapter on threads. However, between components —
such as between an activity and a service—you will need a Messenger to serve as the
bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an Intent
extra. The activity calling startService() or bindService() would attach a Messenger as

an extra on the Intent. The service would obtain that Messenger from the Intent. When
it is time to alert the activity of some event, the service would do the following:

1. Call Message.obtain() to get an empty Message object.

2. Populate that Message object as needed, with whatever data the service
wishes to pass to the activity.

3. Call send() on the Messenger, supplying the Message as a parameter.

The Handler would then receive the message via handleMessage(), on the main
application thread, and thus would be able to update the Ul or do whatever is
necessary.

Notifications

Another approach is for the service to let the user know directly about the work that was
completed. To do that, a service can raise a Notification—putting an icon in the status
bar and optionally shaking or beeping or something. This technique is covered in an
upcoming chapter.

401

Chapter

Basic Service Patterns

Now that you have seen the pieces that make up services and their clients, let us
examine a few scenarios that employ services and how those scenarios might be
implemented.

The Downloader

If you elect to download something from the Android Market, you are welcome to back
out of the Market application entirely. This does not cancel the download - the
download and installation run to completion, despite no Market activity being on-screen.

You may have similar circumstances in your application, from downloading a purchased
e-book to downloading a map for a game to downloading a file from some sort of “drop
box” file-sharing service.

Android 2.3 introduced the DownloadManager (covered in a previous chapter), which
would handle this for you. However, you might need that sort of capability on older
versions of Android, at least through 2011.

The sample project reviewed in this section is Services/Downloader.

The Design

This sort of situation is a perfect use for the command pattern and an IntentService.
The IntentService has a background thread, so downloads can take as long as needed.
An IntentService will automatically shut down when the work is done, so the service
will not linger and you do not need to worry about shutting it down yourself. Your activity
can simply send a command via startService() to the IntentService to tell it to go do
the work.

Admittedly, things get a bit trickier when you want to have the activity find out when the
download is complete. This example will show the use of Messenger for this.

403

404

CHAPTER 36: Basic Service Patterns

The Service Implementation

Here is the implementation of this IntentService, named Downloader:

package com.commonsware.android.downloader;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

android.app.Activity;
android.app.IntentService;
android.content.Intent;

android.os.Bundle;

android.os.Environment;

android.os.Message;

android.os.Messenger;

android.util.log;

java.io.File;

java.io.FileOutputStream;

java.io.IOException;
org.apache.http.client.ResponseHandler;
org.apache.http.client.HttpClient;
org.apache.http.client.methods.HttpGet;
org.apache.http.impl.client.BasicResponseHandler;
org.apache.http.impl.client.DefaultHttpClient;

class Downloader extends IntentService {

public static final String

EXTRA_MESSENGER="com.commonsware.android.downloader.EXTRA MESSENGER";

private HttpClient client=null;

public Downloader() {
super ("Downloader");

@0verride
public void onCreate() {
super.onCreate();

client=new DefaultHttpClient();
}

@0verride
public void onDestroy() {
super.onDestroy();

client.getConnectionManager().shutdown();

@0verride

public void onHandleIntent(Intent i) {
HttpGet getMethod=new HttpGet(i.getData().toString());
int result=Activity.RESULT CANCELED;

try {
ResponseHandler<byte[]> responseHandler=new ByteArrayResponseHandler();
byte[] responseBody=client.execute(getMethod, responseHandler);
File output=new File(Environment.getExternalStorageDirectory(),

CHAPTER 36: Basic Service Patterns 405

i.getData().getLastPathSegment());

if (output.exists()) {
output.delete();

FileOutputStream fos=new FileOutputStream(output.getPath());

fos.write(responseBody);
fos.close();
result=Activity.RESULT OK;

}
catch (IOException e2) {
Log.e(getClass().getName(), "Exception in download", e2);

Bundle extras=i.getExtras();

if (extras!=null) {
Messenger messenger=(Messenger)extras.get(EXTRA_MESSENGER);
Message msg=Message.obtain();

msg.argl=result;

try {
messenger.send(msg);

catch (android.os.RemoteException e1) {
Log.w(getClass().getName(), "Exception sending message", el);

}
}
}

In onCreate(), we obtain a DefaultHttpClient object, as was described in the chapter on
Internet access. In onDestroy(), we shut down the client. This way, if several download
requests are invoked in sequence, we can use a single DefaultHttpClient object - the
IntentService will only shut down after all enqueued work has been completed.

The bulk of the work is accomplished in onHandleIntent(), which is called on the
IntentService, on a background thread, every time startService() is called. For the
Intent, we obtain the URL of the file to download via a call to getData() on the supplied
Intent. Actually downloading the file uses the DefaultHttpClient object, along with an
HttpGet object. However, since the file might be binary (e.g., MP3) instead of text, we
cannot use a BasicResponseHandler. Instead, we use a ByteArrayResponseHandler — a
custom ResponseHandler cloned from the source for BasicResponseHandler, but one that
returns a byte[] instead of a String:

package com.commonsware.android.downloader;

import java.io.IOException;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.StatuslLine;

import org.apache.http.client.ResponseHandler;

406

CHAPTER 36: Basic Service Patterns

import org.apache.http.client.HttpResponseException;
import org.apache.http.util.EntityUtils;

public class ByteArrayResponseHandler implements ResponseHandler<byte[]> {
public byte[] handleResponse(final HttpResponse response)
throws IOException, HttpResponseException {
StatusLine statusLine=response.getStatusLine();

if (statusLine.getStatusCode()>=300) {
throw new HttpResponseException(statusLine.getStatusCode(),
statusLine.getReasonPhrase());
}

HttpEntity entity=response.getEntity();

if (entity==null) {
return(null);

return(EntityUtils.toByteArray(entity));

}
}

Once the file is downloaded to external storage, we need to alert the activity that the
work is completed. If the activity is interested in this sort of message, it will have
attached a Messenger object as EXTRA_MESSENGER to the Intent. Downloader gets the
Messenger, creates an empty Message object, and puts a result code in the arg1 field of
the Message. It then sends the Message to the activity. If the activity was destroyed before
this point, the request to send the message will fail with a RemoteObjectException.

Since this is an IntentService, it will automatically shut down when onHandleIntent()
completes, if there is no more work queued to be done.

Using the Service

The activity demonstrating the use of Downloader has a trivial Ul, consisting of one large
button:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:layout width="fill parent"
android:layout_height="fill parent"
android:text="Do the Download"
android:onClick="doTheDownload"

/>

That Ul is initialized in onCreate(), as usual:

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

b=(Button)findViewById(R.id.button);

http://schemas.android.com/apk/res/android

CHAPTER 36: Basic Service Patterns 407

When the user clicks the button, doTheDownload() is called to disable the button (to
prevent accidental duplicate downloads) and call startService():

public void doTheDownload(View v) {
b.setEnabled(false);

Intent i=new Intent(this, Downloader.class);

i.setData(Uri.parse("http://commonsware.com/Android/excerpt.pdf"));
i.putExtra(Downloader.EXTRA MESSENGER, new Messenger(handler));

startService(i);

Here, the Intent we pass over has the URL of the file to download (in this case, a URL
pointing to a PDF), plus a Messenger in the EXTRA_MESSENGER extra. That Messenger is
created with an attachment to the activity’s Handler:

private Handler handler=new Handler() {
@0verride
public void handleMessage(Message msg) {
b.setEnabled(true);

Toast
.makeText(DownloaderDemo.this, "Download complete!",
Toast.LENGTH_LONG)
.show();

}
};
If the activity is still around when the download is complete, the Handler enables the
button and displays a Toast to let the user know that the download is complete. Note

that the activity is ignoring the result code supplied by the service, though in principle it
could do something different in both the success and failure cases.

The Music Player

Most audio player applications in Android — for music, audiobooks, or whatever — do not
require the user to remain in the player application itself. Rather, the user can go on and
do other things with their device, with the audio playing in the background. This is
similar in many respects to the download scenario from the previous section. However,
in this case, the user is the one that controls when the work (playing audio) ends.

The sample project reviewed in this section is Services/FakePlayer.

The Design

Once again, we will use startService(), since we want the service to run even when the
activity starting it has been destroyed. However, this time, we will use a regular Service,
rather than an IntentService. An IntentService is designed to do work and stop itself,
whereas in this case, we want the user to be able to stop the music playback.

http://commonsware.com/Android/excerpt.pdf

408 CHAPTER 36: Basic Service Patterns

Since music playback is outside the scope of this book, the service will simply stub out
those particular operations.

The Service Implementation

Here is the implementation of this Service, named PlayerService:

package com.commonsware.android.fakeplayer;

import android.app.Service;
import android.content.Intent;
import android.os.Bundle;
import android.os.IBinder;
import android.util.log;

public class PlayerService extends Service {
public static final String EXTRA_PLAYLIST="EXTRA PLAYLIST";
public static final String EXTRA SHUFFLE="EXTRA_SHUFFLE";
private boolean isPlaying=false;

@0verride

public int onStartCommand(Intent intent, int flags, int startId) {
String playlist=intent.getStringExtra(EXTRA PLAYLIST);
boolean useShuffle=intent.getBooleanExtra(EXTRA SHUFFLE, false);

play(playlist, useShuffle);

return(START _NOT_STICKY);

@0verride
public void onDestroy() {

stop();

@0verride
public IBinder onBind(Intent intent) {
return(null);

private void play(String playlist, boolean useShuffle) {
if (!isPlaying) {
Log.w(getClass().getName(), "Got to play()!");
isPlaying=true;

}

private void stop() {
if (isPlaying) {
Log.w(getClass().getName(), "Got to stop()!");
isPlaying=false;

CHAPTER 36: Basic Service Patterns

In this case, we really do not need anything for onCreate(), so that lifecycle method is
skipped. On the other hand, we have to implement onBind(), because that is a required
method of Service subclasses. IntentService implements onBind() for us, which is why
that was not needed for the Downloader sample.

When the client calls startService(),onStartCommand() is called in PlayerService. Here,
we get the Intent and pick out some extras to tell us what to play back
(EXTRA_PLAYLIST) and other configuration details (e.g., EXTRA_SHUFFLE). onStartCommand()
calls play(), which simply flags that we are playing and logs a message to LogCat - a
real music player would use MediaPlayer to start playing the first song in the playlist.
onStartCommand() returns START _NOT_STICKY, indicating that if Android has to kill off this
service (e.g., low memory), it should not restart it once conditions improve.

onDestroy() stops the music from playing — theoretically, anyway — by calling a stop()
method. Once again, this just logs a message to LogCat, plus updates our internal are-
we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and discuss the use
of startForeground() to make it easier for the user to get back to the music player, plus
let Android know that the service is delivering part of the foreground experience and
therefore should not be shut down.

Using the Service

The FakePlayer activity demonstrating the use of PlayerService has a Ul twice as
complex as the previous sample, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"”
android:layout_height="fill parent"
>
<Button
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Start the Player"
android:onClick="startPlayer"
/>
<Button
android:layout width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Stop the Player"
android:onClick="stopPlayer"
/>
</Linearlayout>

The activity itself is not much more complex:

package com.commonsware.android.fakeplayer;

409

http://schemas.android.com/apk/res/android

410

CHAPTER 36: Basic Service Patterns

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class FakePlayer extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void startPlayer(View v) {
Intent i=new Intent(this, PlayerService.class);

i.putExtra(PlayerService.EXTRA _PLAYLIST, "main");
i.putExtra(PlayerService.EXTRA_SHUFFLE, true);

startService(i);

}

public void stopPlayer(View v) {
stopService(new Intent(this, PlayerService.class));

}
}
The onCreate() method merely loads the Ul. The startPlayer() method constructs an
Intent with fake values for EXTRA_PLAYLIST and EXTRA SHUFFLE, then calls
startService(). After you press the top button, you will see the corresponding message
in LogCat. Similarly, stopPlayer() calls stopService(), triggering the second LogCat

message. Notably, you do not need to keep the activity running in between those button
clicks — you can exit the activity via BACK and come back later to stop the service.

The Web Service Interface

If you are going to consume a REST-style Web service, you may wish to create a Java
client-side API for that service. This allows you to isolate details about the Web service
(URLs, authorization credentials, etc.) in one place, with the rest of your application just
able to use the published API. If the client-side APl might involve state, such as a
session ID or cached results, you may wish to use a service to implement the client-side
API. In this case, the most natural form of service would be one that publishes a Binder,
so clients can call a “real” API, that the service translates into HTTP requests.

In this case, we want to create a client-side Java API for the US National Weather
Service’s forecast Web service, so we can get a weather forecast (timestamps,
projected temperatures, and projected precipitation) for a given latitude and longitude.
As you may recall, we examined this Web service back in the chapter on Internet
access.

The sample project reviewed in this section is Services/WeatherAPI.

CHAPTER 36: Basic Service Patterns 411

The Design

To use the binding pattern, we will need to expose an API from a “binder” object. Since
the weather forecast arrives in a singularly awful XML structure, we will have the binder
be responsible for parsing the XML. Hence, we can say that the binder will have a
getForecast() method to get us an ArraylList of Forecast objects, each Forecast
representing one timestamp/temperature/precipitation triple.

Once again, to supply the latitude and longitude of the forecast roster to retrieve, we will
use a Location object, which will be obtained from GPS. This part of the sample will be
described in greater detail in the chapter on location management.

Since the Web service call may take a while, it is unsafe to do this on the main
application thread. In this sample, we will have the service use an AsyncTask to call our
weather API, so the activity largely can be ignorant of threading issues.

The Rotation Challenge

Back in the chapter on threading, we noted the issues involved with orientation changes
(or other configuration changes) and background threads in activities. The solution was
to use onRetainNonConfigurationInstance() with a static inner class AsyncTask
implementation, which we would manually associate with the new, post-configuration-
change activity.

That same problem crops up with the binding pattern as well, one of the reasons why
binding is difficult to use. If you bind to a service from an activity, that binding will not
magically pass to the new activity instance after an orientation change. Instead, you
need to do two things:

B Bind to the service not using the activity as the Context, but rather by
using getApplicationContext(), as that Context is one that will live for
the lifetime of your process

B Pass the ServiceConnection representing this binding from the old
activity instance to the new one as part of the configuration change

To accomplish the second feat, you will need to use the same
onRetainNonConfigurationInstance() trick as was used with threads.

The Service Implementation

Our service-side logic is broken into three classes, Forecast, WeatherBinder, and
WeatherService, plus one interface, WeatherListener.

412

CHAPTER 36: Basic Service Patterns

The Forecast

The Forecast class merely encapsulates the three pieces of the forecast data triple: the
timestamp, the temperature, and the icon indicating the expected precipitation (if any):

package com.commonsware.android.weather;

class Forecast {

String time="";
Integer temp=null;

String iconUrl="";

String getTime() {
return(time);

void setTime(String time) {
this.time=time.substring(0,16).replace('T"', ' ');

}

Integer getTemp() {
return(temp);

void setTemp(Integer temp) {
this.temp=temp;

String getIcon() {
return(iconUrl);

void setIcon(String iconUrl) {
this.iconUrl=iconUrl;

}
}

The Interface

Because we are going to fetch the actual weather forecast on a background thread in
the service, we have a slight API challenge - calls on our binder are synchronous.
Hence, we cannot have a getForecast() method that returns our forecast. Rather, we
need to give some way for the service to get the forecast back to our activity. In this
case, we will pass in a listener object (WeatherListener), that the service will use when a
forecast is ready:

package com.commonsware.android.weather;
import java.util.Arraylist;

public interface WeatherListener {
void updateForecast(ArraylList<Forecast> forecast);
void handleError(Exception e);

}

CHAPTER 36: Basic Service Patterns 413

The Binder

The WeatherBinder extends Binder, a requirement for the local binding pattern. Other
than that, the APl is up to us.

Hence, we expose three methods:

B onCreate(), to be called when the WeatherBinder is set up, so we can
get a DefaultHttpClient object to use with the Web service

B onDestroy(), to be called when the WeatherBinder is no longer
needed, so we can shut down that DefaultHttpClient object

B getForecast(), the main public API for use by our activity, to kick off
the background work to create our Arraylist of Forecast objects
given a Location

package com.commonsware.android.weather;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.location.location;

import android.os.AsyncTask;

import android.os.Binder;

import android.os.Bundle;

import java.io.IOException;

import java.io.StringReader;

import java.util.Arraylist;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;
import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Nodelist;

import org.xml.sax.InputSource;

public class WeatherBinder extends Binder {
private String forecast=null;
private HttpClient client=null;
private String format=null;

void onCreate(Context ctxt) {
client=new DefaultHttpClient();
format=ctxt.getString(R.string.url);

}

void onDestroy() {
client.getConnectionManager().shutdown();

}

414 CHAPTER 36: Basic Service Patterns

void getForecast(Location loc, WeatherListener listener) {
new FetchForecastTask(listener).execute(loc);

}

private ArraylList<Forecast> buildForecasts(String raw) throws Exception {
ArraylList<Forecast> forecasts=new ArraylList<Forecast>();
DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();
Document doc=builder.parse(new InputSource(new StringReader(raw)));
NodelList times=doc.getElementsByTagName("start-valid-time");

for (int i=0;i<times.getLength();i++) {
Element time=(Element)times.item(i);
Forecast forecast=new Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());

}

NodelList temps=doc.getElementsByTagName("value");

for (int i=0;i<temps.getLength();i++) {
Element temp=(Element)temps.item(i);
Forecast forecast=forecasts.get(i);

forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));

}

NodeList icons=doc.getElementsByTagName("icon-1ink");

for (int i=0;i<icons.getLength();i++) {
Element icon=(Element)icons.item(i);
Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());

}

return(forecasts);

}

class FetchForecastTask extends AsyncTask<Location, Void, ArraylList<Forecast>> {
Exception e=null;
WeatherListener listener=null;

FetchForecastTask(WeatherListener listener) {
this.listener=listener;
}

@0verride
protected ArraylList<Forecast> doInBackground(Location... locs) {
Arraylist<Forecast> result=null;

try {
Location loc=locs[0];
String url=String.format(format, loc.getlatitude(),

CHAPTER 36: Basic Service Patterns

loc.getLongitude());
HttpGet getMethod=new HttpGet(url);
ResponseHandler<String> responseHandler=new BasicResponseHandler();
String responseBody=client.execute(getMethod, responseHandler);

result=buildForecasts(responseBody);

catch (Exception e) {
this.e=e;

}

return(result);

@0verride
protected void onPostExecute(ArraylList<Forecast> forecast) {
if (listener!=null) {
if (forecast!=null) {
listener.updateForecast(forecast);

}

if (e!=null) {
listener.handleError(e);

Most of this is merely doing the Web service request using DefaultHttpClient and an
HttpGet object, plus using the DOM parser to convert the XML into the Forecast
objects. However, this is wrapped in a FetchForecastTask —an AsyncTask that will do the
HTTP operation and parsing on a background thread. In onPostExecute(), the task
invokes our WeatherListener, either to supply the forecast (updateForecast()) or hand
over an Exception that was raised (handleError()).

The Service

The WeatherService, therefore, is fairly short, with the business logic delegated to
WeatherBinder:

package com.commonsware.android.weather;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import java.util.Arraylist;

public class WeatherService extends Service {

private final WeatherBinder binder=new WeatherBinder();

@0verride

public void onCreate() {
super.onCreate();

415

416 CHAPTER 36: Basic Service Patterns

binder.onCreate(this);

}

@0verride
public IBinder onBind(Intent intent) {
return(binder);

@0verride
public void onDestroy() {
super.onDestroy();

binder.onDestroy();

}
}

Our onCreate() and onDestroy() methods delegate to the WeatherBinder, and onBind()
returns the WeatherBinder itself.

Using the Service

On the surface, the WeatherDemo activity should be simple:
B Bind to the service in onCreate()
B Arrange to get GPS fixes, in the form of Location objects

B When a fix comes in, use the WeatherBinder to get a forecast, convert
it to HTML, and display it in a WebView

B Unbind from the service in onDestroy()

However, our decision to use the binding pattern and to have the activity deal with the
background thread means there is more work involved than those bullet points.

First, here is the full WeatherDemo implementation:

package com.commonsware.android.weather;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;
import android.content.ServiceConnection;
import android.location.location;

import android.location.LocationListener;
import android.location.LlocationManager;
import android.os.AsyncTask;

import android.os.Bundle;

import android.os.DeadObjectException;
import android.os.RemoteException;

import android.os.IBinder;

import android.util.log;

CHAPTER 36: Basic Service Patterns 417

import android.webkit.WebView;
import java.util.Arraylist;

public class WeatherDemo extends Activity {
private WebView browser;
private LocationManager mgr=null;
private State state=null;
private boolean isConfigurationChanging=false;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.webkit);
state=(State)getLastNonConfigurationInstance();

if (state==null) {
state=new State();
getApplicationContext()
.bindService(new Intent(this, WeatherService.class),
state.svcConn, BIND AUTO CREATE);

}
else if (state.lastForecast!=null) {
showForecast();

state.attach(this);

mgr=(LocationManager)getSystemService (LOCATION SERVICE);
mgr . requestLocationUpdates(LocationManager.GPS_PROVIDER,
3600000, 1000, onlLocationChange);
}

@0verride
public void onDestroy() {
super.onDestroy();

if (mgr!=null) {
mgr . removeUpdates (onLocationChange);
}

if (!isConfigurationChanging) {
getApplicationContext().unbindService(state.svcConn);

}

@0verride
public Object onRetainNonConfigurationInstance() {
isConfigurationChanging=true;

return(state);

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

418 CHAPTER 36: Basic Service Patterns

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("0K", null)
.show();
}

static String generatePage(ArraylList<Forecast> forecasts) {
StringBuilder bufResult=new StringBuilder("<html><body><table>");

bufResult.append("<tr><th width=\"50%\">Time</th>"+
"<th>Temperature</th><th>Forecast</th></tr>");

for (Forecast forecast : forecasts) {
bufResult.append("<tr><td align=\"center\">");
bufResult.append(forecast.getTime());
bufResult.append("</td><td align=\"center\">");
bufResult.append(forecast.getTemp());
bufResult.append("</td><td><img src=\"");
bufResult.append(forecast.getIcon());
bufResult.append("\"></td></tr>");

}

bufResult.append("</table></body></html>");

return(bufResult.toString());
}

void showForecast() {
browser.loadDataWithBaseURL(null, state.lastForecast,
"text/html", "UTF-8", null);
}

LocationListener onLocationChange=new LocationListener() {
public void onLocationChanged(Location location) {
if (state.weather!=null) {
state.weather.getForecast(location, state);

else {
Log.w(getClass().getName(), "Unable to fetch forecast - no WeatherBinder");

}

public void onProviderDisabled(String provider) {
// required for interface, not used

public void onProviderEnabled(String provider) {
// required for interface, not used

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used

CHAPTER 36: Basic Service Patterns

};

static class State implements WeatherListener {
WeatherBinder weather=null;
WeatherDemo activity=null;
String lastForecast=null;

void attach(WeatherDemo activity) {
this.activity=activity;

}

public void updateForecast(ArraylList<Forecast> forecast) {
lastForecast=generatePage(forecast);
activity.showForecast();

}

public void handleError(Exception e) {
activity.goBlooey(e);

ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder rawBinder) {
weather=(WeatherBinder)rawBinder;

}

public void onServiceDisconnected(ComponentName className) {
weather=null;

}
};
}
}

Now, let us look at the highlights of the service connection and the background thread.

Managing the State

We need to ensure that our ServiceConnection can be passed between activity
instances on a configuration change. Hence, we have a State static inner class to hold
that, plus two other bits of information: the Activity the state is associated with, and a
String showing the last forecast we retrieved:

static class State implements WeatherListener {
WeatherBinder weather=null;
WeatherDemo activity=null;
String lastForecast=null;

void attach(WeatherDemo activity) {
this.activity=activity;

}

public void updateForecast(ArraylList<Forecast> forecast) {
lastForecast=generatePage(forecast);
activity.showForecast();

}

419

420

CHAPTER 36: Basic Service Patterns

public void handleError(Exception e) {
activity.goBlooey(e);

ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder rawBinder) {
weather=(WeatherBinder)rawBinder;

}

public void onServiceDisconnected(ComponentName className) {
weather=null;

}
b
}
The lastForecast String is to allow us to re-display the generated HTML after a
configuration change. Otherwise, if the user rotates the screen, we will lose our forecast
(only held in the old instance’s WebView) and either have to retrieve a fresh one or wait for
a GPS fix.

We return this State object from onRetainNonConfigurationInstance():

@0verride
public Object onRetainNonConfigurationInstance() {
isConfigurationChanging=true;

return(state);

In onCreate(), if there is no non-configuration instance, we create a fresh State and bind
to the service, since we do not have a service connection at present. On the other hand,
if onCreate() gets a State from getLastNonConfigurationInstance(), it simply holds
onto that state and reloads our forecast in the WebView. In either case, onCreate()
indicates to the State that the new activity instance is the current one:

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.webkit);
state=(State)getLastNonConfigurationInstance();

if (state==null) {
state=new State();
getApplicationContext()
.bindService(new Intent(this, WeatherService.class),
state.svcConn, BIND AUTO CREATE);

}
else if (state.lastForecast!=null) {
showForecast();

state.attach(this);

CHAPTER 36: Basic Service Patterns

mgr=(LocationManager)getSystemService(LOCATION SERVICE);
mgr . requestLocationUpdates(LocationManager.GPS_PROVIDER,
3600000, 1000, onLocationChange);

Time to Unbind

We bind to the service when onCreate() is called, if it did not receive a State via
getLastNonConfigurationInstance() (in which case, we are already bound). This begs
the question: when do we unbind from the service?

We want to unbind when the activity is destroyed...but not if the activity is being
destroyed because of a configuration change.

Unfortunately, there is no built-in way to make that determination from onDestroy().
There is an isFinishing() method you can call on an Activity, which will return true if
the activity is going away for good or false otherwise. This does return false for a
configuration change, but it will also return false if the activity is being destroyed to free
up RAM and the user might be able to return to it via the BACK button.

This is why onRetainNonConfigurationInstance() flips a isConfigurationChanging flag
in WeatherDemo to true. That flag is initially false. We then check that flag to see if we
should unbind from the service or not:

@0verride
public void onDestroy() {
super.onDestroy();

if (mgr!=null) {
mgr . removeUpdates (onLocationChange);

}

if (!isConfigurationChanging) {
getApplicationContext().unbindService(state.svcConn);

421

Chapter

Alerting Users via
Notifications

Pop-up messages, tray icons and their associated “bubble” messages, bouncing dock
icons...you are no doubt used to programs trying to get your attention, sometimes for
good reason. Your phone also probably chirps at you for more than just incoming calls:
low battery, alarm clocks, appointment notifications, incoming text and e-mail
messages, and so on.

Not surprisingly, Android has a whole framework for dealing with these sorts of things,
collectively called notifications, as described in this chapter.

Notification Configuration

A service, running in the background, needs a way to let users know something of
interest has occurred, such as when e-mail has been received. Moreover, the service
may need some way to steer users to an activity where they can act upon the event,
such as reading a received message. For this, Android supplies status bar icons,
flashing lights, and other indicators collectively known as notifications.

Your current phone may already have such icons, to indicate battery life, signal strength,
whether Bluetooth is enabled, and the like. With Android, applications can add their own
status bar icons, with an eye toward having them appear only when needed (e.g., a
message has arrived).

In Android, you can raise notifications via the NotificationManager, which is a system
service. To use it, you need to get the service object via

getSystemService (NOTIFICATION _SERVICE) from your activity. The NotificationManager
gives you three methods: one to raise a Notification (notify()) and two to get rid of an
existing Notification (cancel() and cancelAll()).

423

424

CHAPTER 37: Alerting Users via Notifications

The notify() method takes a Notification, which is a data structure that spells out
what form your pestering should take. The capabilities of this object are described in the
following sections.

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying the color (as
an #ARGB value in 1edARGB) and what pattern the light should blink in (by providing off/on
durations in milliseconds for the light via 1edOnMS and 1edOffMS). Note, however, that
Android devices will apply best efforts to meet your color request, meaning that different
devices may give you different colors, or perhaps no control over color at all. For
example, the Motorola CLIQ has only a white LED, so you can ask for any color you
want, and you will get white. Note that you will need to OR (|) the
Notification.FLAG_SHOW_LIGHTS value into the public flags field on the Notification
object for flashing of the LED to work.

You can play a sound, using a Uri to a piece of content held, perhaps, by a
ContentManager (sound). Think of this as a ringtone for your application.

You can vibrate the device, controlled via a long[], indicating the on/off patterns (in
milliseconds) for the vibration (vibrate). You might do this by default, or you might make
it an option the user can choose when circumstances require a more subtle notification
than a ringtone. To use this, though, you will need to request the VIBRATE permission
(permissions are discussed in Chapter 38).

All of these options, by default, happen once (e.g., one LED flash or one playback of the
sound). If you want to have them persist until the Notification is canceled, you will
need to set the flags public field in your Notification to include FLAG_INSISTENT.

Instead of manually specifying the hardware options, you can also use the defaults field
in the Notification, setting it to DEFAULT LIGHTS, DEFAULT SOUND, DEFAULT VIBRATE, or
DEFAULT_ALL, which will use platform defaults for all hardware options.

Icons

While the flashing lights, sounds, and vibrations are aimed at getting somebody to look
at the device, icons are designed to take them the next step and tell them what’s so
important.

To set up an icon for a Notification, you need to set two public fields: icon, where you
provide the identifier of a Drawable resource representing the icon, and contentIntent,
where you supply a PendingIntent to be raised when the icon is clicked. A
PendingIntent is a wrapper around a regular Intent that allows the Intent to be invoked
later, by another process, to start an activity or whatever. Typically, a Notification will
trigger an activity, in which case you would create the PendingIntent via the static
getActivity() method and give it an Intent that identifies one of your activities. That
being said, you could have the Notification send a broadcast Intent instead, by using
a getBroadcast() version of a PendingIntent.

CHAPTER 37: Alerting Users via Notifications 425

You can also supply a text blurb to appear when the icon is put on the status bar
(tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(), which wraps
all three of those in a single call.

You can also set a value in the number public field of your Notification. This will cause
the number you supply to be drawn over the top of the icon in one corner. This is used,
for example, to show the number of unread e-mail messages, so that you don’t need to
have a bunch of different icons, one for each possible number of unread messages. By
default, the number field will be ignored and not used.

Note that the size of the icons used with a Notification changed with Android 2.3.
Before that version, 25-pixel square was the desired size. Now, per-density icons in a
more rectangular shape are preferred:

B 24-pixel square (inside a 24-pixel wide by 38-pixel high bounding box)
for high-density screens

B 16-pixel square (inside a 16x25-pixel bounding box) for medium-
density screens

B 12-pixel square (inside a 12x19-pixel bounding box) for low-density
screens

Applications following these rules will want to use specific resource sets for the new
icons:

B res/drawable-hdpi-v9/: For high-density Android 2.3 editions
B res/drawable-mdpi-v9/: For medium-density Android 2.3 editions
B res/drawable-1ldpi-v9/: For low-density Android 2.3 editions
B res/drawable/: For the icon to use on Android 2.2 and earlier

More details on guidelines for all icons, including status bar icons, can be found in the
Android developer documentation.

Notifications in Action

Let’s now take a peek at the Notifications/Notifyl sample project, in particular the
NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;

import android.app.Notification;

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

426 CHAPTER 37: Alerting Users via Notifications

public class NotifyDemo extends Activity {
private static final int NOTIFY_ME_ID=1337;
private int count=0;
private NotificationManager mgr=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(NotificationManager)getSystemService (NOTIFICATION SERVICE);

public void notifyMe(View v) {
Notification note=new Notification(R.drawable.stat notify chat,
"Status message!",
System.currentTimeMillis());
PendingIntent i=PendingIntent.getActivity(this, o,
new Intent(this, NotifyMessage.class),

)

note.setlLatestEventInfo(this, "Notification Title",

"This is the notification message", i);
note.number=++count;
note.vibrate=new long[] {500L, 200L, 200L, 500L};
note.flags|=Notification.FLAG_AUTO CANCEL;

mgr.notify(NOTIFY ME_ID, note);
}

public void clearNotification(View v) {
mgr.cancel(NOTIFY_ME_ID);

}
}
As shown in Figure 37-1, this activity sports two large buttons, one to kick off a
notification after a 5-second delay and one to cancel that notification (if it is active).

CHAPTER 37: Alerting Users via Notifications

Za Ml & 10:10am

Click to raise a notification

Click to clear the notification

Figure 37-1. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in seven steps:

1.

N o g &

Hence, if we click the top button, our icon will appear in the status bar, briefly along with

Create a Notification object with our icon, a message to flash on the
status bar as the notification is raised, and the time associated with this
event.

Create a PendingIntent that will trigger the display of another activity
(NotifyMessage).

Use setlatestEventInfo() to specify that, when the notification is
clicked, we are to display a certain title and message, and if that is
clicked, we launch the PendingIntent.

Update the number associated with the notification.

Specify a vibration pattern: 500ms on, 200ms off, 200ms on, 500ms off.

Include FLAG_AUTO_CANCEL in the Notification object’s flags field.

Tell the NotificationManager (obtained in onCreate()) to display the
notification.

our status message, as shown in Figure 37-2.

427

428 CHAPTER 37: Alerting Users via Notifications

9 Status message!

Click to raise a notification

Click to clear the notification

Figure 37-2. Our notification as it appears on the status bar, with our status message

After the status message goes away, the icon will have our number (initially 1)
superimposed on its lower-right corner, as shown in Figure 37-3. You might use this to
signify the number of unread messages, for example.

D Z Ml & 10:10am

Click to raise a notification

Click to clear the notification

Figure 37-3. Our notification with the superimposed number

CHAPTER 37: Alerting Users via Notifications

If you drag down the icon, a drawer will appear beneath the status bar. Drag that drawer
all the way to the bottom of the screen to show the outstanding notifications, including
our own, as shown in Figure 37-4.

October 22, 2010 Bl & 10:11am

Android Clear

Notifications
63 Notification Title
This is the notification message 10:10 AM

Figure 37-4. The notifications drawer, fully expanded, with our notification

If you click the notification entry in the drawer, you'll be taken to a trivial activity
displaying a message. In a real application, this activity would do something useful
based upon the event that occurred (e.g., take users to the newly arrived mail
messages).

Clicking the cancel button, clicking the Clear button in the drawer, or clicking the
notification entry in the drawer will remove the icon from the status bar. The latter occurs
because we included FLAG_AUTO_CANCEL in the Notification, indicating that a tap on the
drawer entry should cancel the Notification itself.

Staying in the Foreground

Notifications have another use: keeping select services around.

Services do not live forever. Android may terminate your application’s process to free up
memory in an emergency situation, or just because it seems to have been hanging
around memory too long. Ideally, you design your services to deal with the fact that they
may not run indefinitely.

However, some services will be missed by the user if they mysteriously vanish. For
example, the default music player application that ships with Android uses a service for

429

430 CHAPTER 37: Alerting Users via Notifications

the actual music playback. That way, users can listen to music while continuing to use
their phone for other purposes. The service stops only when the user presses the stop
button in the music player activity. If that service were to shut down unexpectedly, the
user would wonder what is wrong.

Services like this can declare themselves as being part of the foreground. This will cause
their priority to rise and make them less likely to be bumped out of memory. The trade-
off is that the service has to maintain a Notification, so the user knows that this service
is claiming part of the foreground. And, ideally, that Notification should provide an
easy path back to some activity where the user can stop the service.

To do this, in onCreate() of your service (or wherever else in the service’s life it would
make sense), call startForeground(). This takes a Notification and a locally unique
integer, just like the notify() method on NotificationManager. It causes the
Notification to appear and moves the service into foreground priority. Later on, you
can call stopForeground() to return to normal priority.

Note that this method was added with Android 2.0 (API level 5). There was an earlier
method, setForeground(), that performed a similar function in earlier versions of
Android.

FakePlayer, Redux

The previous chapter, covering service patterns, presented a fake music player,
implemented with an Activity (FakePlayer) and a Service (PlayerService). The
PlayerService is actually what plays the music, so the music can play even while the
FakePlayer activity is not open.

However, Android may not consider PlayerService to be part of the user experience,
since services normally interact very little directly with users. This means Android may
run PlayerService in a way that caps CPU usage (not necessarily bad) and might elect
to shut down the service if it thinks it has been running too long (probably bad).

The answer is to use startForeground() and stopForeground(). We can call
startForeground() when we start the music playing in our play() method:

private void play(String playlist, boolean useShuffle) {
if (!isPlaying) {
Log.w(getClass().getName(), "Got to play()!");
isPlaying=true;

Notification note=new Notification(R.drawable.stat notify chat,
"Can you hear the music?",
System.currentTimeMillis());
Intent i=new Intent(this, FakePlayer.class);

i.setFlags(Intent.FLAG ACTIVITY_CLEAR TOP|
Intent.FLAG ACTIVITY SINGLE TOP);

PendingIntent pi=PendingIntent.getActivity(this, o,
i, 0);

CHAPTER 37: Alerting Users via Notifications

note.setLatestEventInfo(this, "Fake Player",
"Now Playing: \"Ummmm, Nothing\"",

pi);
note.flags|=Notification.FLAG_NO CLEAR;

startForeground(1337, note);

}
}

The plus side is that our service will have more CPU availability if needed and will be far
less likely to be killed by Android. Users will see an icon in the status bar. If they slide
down the notification drawer and tap our Notification’s entry, they will be taken back
to FakePlayer —the existing instance, if there is one, or a fresh instance otherwise,
courtesy of our Intent flags (Intent.FLAG_ACTIVITY CLEAR_TOP|

Intent.FLAG _ACTIVITY SINGLE_TOP). For a music player, this Ul pattern makes it easy for
users to quickly go back to stop the music when needed.

Stopping the music, via our stop() method, will call stopForeground():

private void stop() {
if (isPlaying) {
Log.w(getClass().getName(), "Got to stop()!");
isPlaying=false;
stopForeground(true);

}

The true value passed to stopForeground() tells Android to remove the Notification,
which would be the typical approach for this pattern.

Notifications and Honeycomb

The Honeycomb Ul introduced in Android 3.0 supports naotifications, just like all previous
versions of Android. However, the user experience is a bit different, owing to the tablet
metaphor and its additional screen space.

Figure 37-5 shows the unmodified Notifications/Notify1 project, as seen in the
Android 3.0 emulator.

431

432

CHAPTER 37: Alerting Users via Notifications

Click to raise a notification

Click to clear the notification

Figure 37-5. Notify1 as seen on an Android 3.0 emulator

Other than the Android 3.0 version of the status bar, and the extra-huge buttons, this is
no different from what you would see on a pre-Honeycomb phone.

If we click the top button, our Notification appears, this time in the lower-right corner,
with the icon and ticker text, as shown in Figure 37-6.

Click to raise a notification

Click to clear the notification

= Status message!

Figure 37-6. Notify1 with a notification added

Note that if the user taps the ticker, it triggers our PendingIntent, just as if they had
tapped the notification drawer entry on a phone.

CHAPTER 37: Alerting Users via Notifications 433

When the ticker is removed, our icon remains...without the number, as shown in
Figure 37-7.

Click to raise a notification

Click to clear the notification

Figure 37-7. Notify1 with a numberless notification icon

If the user taps that icon, a notification drawer-style pop-up appears nearby, as shown
in Figure 37-8.

Click to raise a notification

Click to clear the notification

= Notification Title
% This is the notification message

Figure 37-8. Notify1 with the notification content appearing

Tapping the icon or the text triggers the PendingIntent, while tapping the x on the right
cancels this Notification.

PartV I

Other Android Capabilities

Chapter

Requesting and Requiring
Permissions

In the late 1990s, a wave of viruses spread through the Internet, delivered via e-mail,
using contact information culled from Microsoft Outlook. A virus would simply e-mail
copies of itself to each of the Outlook contacts that had an e-mail address. This was
possible because, at the time, Outlook did not take any steps to protect data from
programs using the Outlook API, since that APl was designed for ordinary developers,
not virus authors.

Nowadays, many applications that hold onto contact data secure that data by requiring
that a user explicitly grant rights for other programs to access the contact information.
Those rights could be granted on a case-by-case basis or all at once at install time.

Android is no different, in that it requires permissions for applications to read or write
contact data. Android’s permission system is useful well beyond contact data, and for
content providers and services beyond those supplied by the Android framework.

You, as an Android developer, will frequently need to ensure that your applications have
the appropriate permissions to do what you want to do with other applications’ data.
You may also elect to require permissions for other applications to use your data or
services, if you make those available to other Android components. This chapter covers
how to accomplish both these ends.

Mother, May 1?

Requesting the use of other applications’ data or services requires the uses-permission
element to be added to your AndroidManifest.xml file. Your manifest may have zero or
more uses-permission elements, all as direct children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is the name
of the permission your application requires:

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

437

438

CHAPTER 38: Requesting and Requiring Permissions

All of the stock system permissions begin with android.permission and are listed in the
Android SDK documentation for Manifest.permission. Third-party applications may
have their own permissions, which, hopefully, they have documented for you. Here are
some of the more useful permissions:

B INTERNET, if your application wishes to access the Internet through any
means, from raw Java sockets through the WebView widget

B WRITE_EXTERNAL_STORAGE, for writing data to the SD card (or whatever
the device has designated as external storage)

B ACCESS_COARSE_LOCATION and ACCESS FINE LOCATION, for determining
where the device is

B CALL_PHONE, to allow the application to place phone calls directly,
without user intervention

Permissions are confirmed at the time the application is installed. The user will be
prompted to confirm that it is acceptable for your application to do what the permission
calls for. Hence, it is important that you ask for as few permissions as possible and
justify those you ask for, so users do not elect to skip installing your application because
you ask for too many unnecessary permissions. This prompt will not appear when
loading an application via USB, such as during development.

If you do not have the desired permission and try to do something that needs it, you
should get a SecurityException informing you of the missing permission. Note that you
will fail on a permission check only if you forgot to ask for the permission—it is
impossible for your application to be running and not have been granted your requested
permissions.

Halt! Who Goes There?

The other side of the coin is to secure your own application. If your application is mostly
activities, security may be just an “outbound” thing, where you request the right to use
resources of other applications. If, on the other hand, you put content providers or
services in your application, you will want to implement “inbound” security to control
which applications can do what with the data.

Note that the issue here is less about whether other applications might mess up your
data, but rather about privacy of the user’s information or use of services that might
incur expense. That is where the stock permissions for built-in Android applications are
focused: whether you can read or modify contacts, send SMS messages, and so forth. If
your application does not store information that might be considered private, security is
less of an issue. If, on the other hand, your application stores private data, such as
medical information, security is much more important.

The first step to securing your own application using permissions is to declare said
permissions, once again in the AndroidManifest.xml file. In this case, instead of uses-
permission, you add permission elements. Once again, you can have zero or more
permission elements, all as direct children of the root manifest element.

CHAPTER 38: Requesting and Requiring Permissions

Declaring a permission is slightly more complicated than using a permission. You need
to supply three pieces of information:

B The symbolic name of the permission: To keep your permissions from
colliding with those from other applications, you should use your
application’s Java namespace as a prefix.

B A label for the permission: Choose something short that would be
understandable by users.

B A description for the permission: Choose something a wee bit longer
that is understandable by your users.

Following is an example:

<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
android:label="@string/see_sekrits_label"
android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a possible permission;
your application must still flag security violations as they occur.

There are two ways for your application to enforce permissions, dictating where and
under what circumstances they are required. The easier option is to indicate in the
manifest where permissions are required. The more difficult option is to enforce
permissions in your code. Both options are discussed next.

Enforcing Permissions via the Manifest

Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is required to
access those items:

<activity
android:name=".SekritApp"
android:label="Top Sekrit"
android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Only applications that have requested your indicated permission will be able to access
the secured component. In this case, “access” means the following:

B Activities cannot be started without the permission.

B Services cannot be started, stopped, or bound to an activity without
the permission.

439

440

CHAPTER 38: Requesting and Requiring Permissions

B Intent receivers ignore messages sent via sendBroadcast() unless the
sender has the permission.

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions:

First, your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or PERMISSION_DENIED
depending on whether the caller has the permission you specified. For example, if your
service implements separate read and write methods, you could require separate read
and write permissions in code by checking those methods for the permissions you need
from Java.

Second, you can include a permission when you call sendBroadcast(). This means that
eligible broadcast receivers must hold that permission; those without the permission are
ineligible to receive it. We will examine sendBroadcast() in greater detail elsewhere in
this book.

May | See Your Documents?

There is no automatic discovery of permissions at compile time; all permission failures
occur at runtime. Hence, it is important that you document the permissions required for
your public APIs, including content providers, services, and activities intended for
launching from other activities. Otherwise, programmers who are attempting to interface
with your application will have to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be prompted to
confirm any permissions your application says it needs. Hence, you need to document
for your users what they should expect, lest they get confused by the question posed by
the device and elect to not install or use your application. You may wish to use string
resources for this, so you can internationalize your permission details the way you
internationalize all the other messages and prompts in your application.

New Permissions in Old Applications

Sometimes, Android introduces new permissions that govern behavior that formerly did
not require permissions. WRITE_EXTERNAL STORAGE is one example. Originally,
applications could write to external storage without any permission at all. Android 1.6
introduced WRITE_EXTERNAL STORAGE, which is required before you can write to external
storage. However, applications that were written before Android 1.6 could not possibly
request that permission, since it did not exist at the time. Breaking those applications
would seem to be a harsh price for progress.

What Android does is grandfather in certain permissions for applications supporting

earlier SDK versions. In particular, if you have <uses-sdk android:minSdkVersion="3"> in

CHAPTER 38: Requesting and Requiring Permissions

your manifest, saying that you support Android 1.5, your application will automatically
request WRITE_EXTERNAL STORAGE and READ PHONE_STATE, even if you do not explicitly
request those permissions. People installing your application on an Android 1.5 device
will see these requests.

Eventually, when you drop support for the older version (e.g., switch to <uses-sdk
android:minSdkVersion="4">), Android will no longer automatically request those
permissions. Hence, if your code really does need those permissions, you will need to
ask for them yourself.

Permissions: Up Front or Not at All

The permission system in Android is not especially flexible. Notably, you have to ask for
all permissions you might ever need up front, and the user has to agree to all of them or
abandon the installation of your app.

This means you cannot do the following:

B Create optional permissions, ones the user could say “no, thanks” to,
that your application could react to dynamically

B Request new permissions after installation, which means that even if a
permission is needed only for some lightly used feature, you have to
ask for it anyway

Hence, as you determine the feature list for your app, it is important that you keep
permissions in mind. Every additional permission that you request is a filter that will cost
you some portion of your prospective audience. Certain combinations—such as
INTERNET and READ_CONTACTS —will have a stronger effect, as users may fear what the
combination can do. You will need to decide for yourself whether attracting additional
users by offering the feature is worth the cost of requiring the permissions the feature
needs to operate.

aM

Chapter

Accessing Location-Based
Services

A popular feature on current mobile devices is GPS capability, so the device can tell you
where you are at any point in time. While the most popular uses of GPS service are for
mapping and getting directions, there are other things you can do if you know your
location. For example, you might set up a dynamic chat application based on physical
location, so users can chat with those people who are nearest to them. Or, you could
automatically geo-tag posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location. Alternatives include
the following:

B The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

B Cell tower triangulation, where your position is determined based on
signal strength to nearby cell towers

B Proximity to public Wi-Fi hotspots that have known geographic
locations

Android devices may have one or more of these services available to them. You, as a
developer, can ask the device for your location, plus details on which providers are
available. There are even ways for you to simulate your location in the emulator, for use
in testing your location-enabled applications.

Location Providers: They Know Where You're Hiding

Android devices can have access to several different means of determining your
location. Some will have better accuracy than others. Some may be free, while others
may have a cost associated with them. Some may be able to tell you more than just
your current position, such as your elevation over sea level or your current speed.

443

444

CHAPTER 39: Accessing Location-Based Services

Android has abstracted all this out into a set of LocationProvider objects. Your Android
environment will have zero or more LocationProvider instances, one for each distinct
locating service that is available on the device. Providers know not only your location,
but their own characteristics, in terms of accuracy, cost, and so on.

You, as a developer, will use a LocationManager, which holds the LocationProvider set,
to figure out which LocationProvider is right for your particular circumstance. You will
also need a permission in your application, or the various location APIs will fail due to a
security violation. Depending on which location providers you wish to use, you may
need ACCESS COARSE_LOCATION, ACCESS_FINE LOCATION, or both (see Chapter 38).

Finding Yourself

The obvious thing to do with a location service is to figure out where you are right now.
To do that, you first need to get a LocationManager, so call

getSystemService (LOCATION_SERVICE) from your activity or service and cast it to be a
LocationManager. The next step is to get the name of the LocationProvider you want to
use. Here, you have two main options:

B Ask the user to pick a provider
B Find the best-match provider based on a set of criteria

If you want the user to pick a provider, calling getProviders() on the LocationManager
will give you a List of providers, which you can then present to the user for selection.

If you want to find the best-match provider based on a set of criteria, create and
populate a Criteria object, stating the particulars of what you want out of a
LocationProvider. Following are some of the methods that you can use to specify
criteria:

B setAltitudeRequired(): Indicates whether or not you need the current
altitude

B setAccuracy(): Sets a minimum level of accuracy, in meters, for the
position

B setCostAllowed(): Controls whether the provider must be free or can
incur a cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your LocationManager, and
Android will sift through the criteria and give you the best answer. Note that not all of
your criteria may be met; all but the monetary cost criterion might be relaxed if nothing
matches.

You are also welcome to hard-wire in a LocationProvider name (e.g., GPS_PROVIDER),
perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownPosition() to find out where you were recently. However, unless
something else is causing the desired provider to collect fixes (e.g., unless the GPS

CHAPTER 39: Accessing Location-Based Services 445

radio is on), getLastKnownPosition() will return null, indicating that there is no known
position. On the other hand, getLastKnownPosition() incurs no monetary or power cost,
since the provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude and longitude
of the device in degrees as a Java double. If the particular location provider offers other
data, you can get that as well:

B For altitude, hasAltitude() will tell you if there is an altitude value, and
getAltitude() will return the altitude in meters.

B For bearing (i.e., compass-style direction), hasBearing() will tell you if
there is a bearing available, and getBearing() will return it as degrees
east of true north.

B For speed, hasSpeed() will tell you if the speed is known, and
getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider, though, is to
register for updates, as described in the next section.

On the Move

Not all location providers are necessarily immediately responsive. GPS, for example,
requires activating a radio and getting a fix from the satellites before you get a location.
That is why Android does not offer a getMeMyCurrentLocationNow() method. Combine
that with the fact that your users may want their movements to be reflected in your
application, and you are probably best off registering for location updates and using that
as your means of getting the current location.

The Internet/Weather and Service/WeatherAPI sample applications show how to
register for updates—call requestLocationUpdates() on your LocationManager instance.
This method takes four parameters:

B The name of the location provider you wish to use

B How long, in milliseconds, should have elapsed before we might get a
location update

B How far, in meters, the device must have moved before we might get a
location update

B A LocationListener that will be notified of key location-related events,
as shown in the following example:

LocationListener onLocationChange=new LocationListenexr() {
public void onLocationChanged(Location location) {
if (state.weather!=null) {
state.weather.getForecast(location, state);

}
else {
Log.w(getClass().getName(), "Unable to fetch forecast - no WeatherBinder");

446

CHAPTER 39: Accessing Location-Based Services

}
}

public void onProviderDisabled(String provider) {
// required for interface, not used

public void onProviderEnabled(String provider) {
// required for interface, not used

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used

}
}

Here, all we do is trigger a FetchForecastTask with the Location supplied to the
onLocationChanged() callback method.

Bear in mind that the time parameter is only a guide to help steer Android from a power
consumption standpoint. You may get many more location updates than this. To get the
maximum number of location updates, supply 0 for both the time and distance constraints.

When you no longer need the updates, call removeUpdates() with the LocationListener
you registered. If you fail to do this, your application will continue receiving location
updates even after all activities and such are closed up, which will also prevent Android
from reclaiming your application’s memory.

There is another version of requestLocationUpdates() that takes a PendingIntent rather
than a LocationListener. This is useful if you want to be notified of changes in your
position even when your code is not running. For example, if you are logging
movements, you could use a PendingIntent that triggers a BroadcastReceiver
(getBroadcast()) and have the BroadcastReceiver add the entry to the log. This way,
your code is in memory only when the position changes, so you do not tie up system
resources while the device is not moving.

Are We There Yet? Are We There Yet?

Sometimes, you are not interested in where you are now, or even when you move, but
want to know when you get to where you are going. This could be an end destination, or
it could be getting to the next step on a set of directions, so you can give the user the
next instruction.

To accomplish this, LocationManager offers addProximityAlert(). This registers an
PendingIntent, which will be fired off when the device gets within a certain distance of a
certain location. The addProximityAlert() method takes the following as parameters:

B The latitude and longitude of the position of interest.

B Aradius, specifying how close you should be to that position for the
Intent to be raised.

CHAPTER 39: Accessing Location-Based Services 447

B A duration for the registration, in milliseconds. After this period, the
registration automatically lapses. A value of -1 means the registration
lasts until you manually remove it via removeProximityAlert().

B The PendingIntent to be raised when the device is within the target
zone expressed by the position and radius.

Note that it is not guaranteed that you will actually receive an Intent. There may be an
interruption in location services, or the device may not be in the target zone during the
period of time the proximity alert is active. For example, if the position is off by a bit, and
the radius is a little too tight, the device might only skirt the edge of the target zone, or it
might go by the target zone so quickly that the device’s location isn’t sampled during
that time.

It is up to you to arrange for an activity or receiver to respond to the Intent you register
with the proximity alert. What you do when the Intent arrives is up to you. For example,
you might set up a notification (e.g., vibrate the device), log the information to a content
provider, or post a message to a web site. Note that you will receive the Intent
whenever the position is sampled and you are within the target zone, not just upon
entering the zone. Hence, you may get the Intent several times, perhaps quite a few
times, depending on the size of the target zone and the speed of the device’s
movement.

Testing...Testing...

The Android emulator does not have the ability to get a fix from GPS, triangulate your
position from cell towers, or identify your location by some nearby Wi-Fi signal. So, if
you want to simulate a moving device, you will need to have some means of providing
mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes as Android
itself has evolved. It used to be that you could provide mock location data within your
application, which was very handy for demonstration purposes. Alas, those options have
all been removed as of Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug Monitor Service
(DDMS). This is an external program, separate from the emulator, which can feed the
emulator single location points or full routes to traverse, in a few different formats.
DDMS is described in greater detail in Chapter 43.

Chapter

Mapping with MapView
and MapActivity

One of Google’s most popular services—after Search, of course—is Google Maps,
which enables you to map everything from the location of the nearest pizza parlor to
directions from New York City to San Francisco (only 2,905 miles!), and includes street
views and satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those that do, there
is a mapping activity available to users straight from the main Android launcher. More
relevant to you, as a developer, are MapView and MapActivity, which allow you to
integrate maps into your own applications. Not only can you display maps, control the
zoom level, and allow people to pan around, but you can tie in Android’s location-based
services to show where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project is fairly easy.
And with a bit more effort, you can integrate more sophisticated mapping features.

Terms, Not of Endearment

Integrating Google Maps into third-party applications requires agreeing to a fairly
lengthy set of legal terms. These terms include clauses that you may find unpalatable.

If you are considering Google Maps, please review these terms closely to determine if
your intended use will run afoul of any clauses. You are strongly recommended to seek
professional legal counsel if there are any potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based on other sources of map
data, such as OpenStreetMap.

449

450

CHAPTER 40: Mapping with MapView and MapActivity

Piling On

As of Android 1.5, Google Maps is not strictly part of the Android SDK. Instead, it is part
of the Google APIs Add-On, an extension of the stock SDK. The Android add-on system
provides hooks for other subsystems that may be part of some devices but not others.

NOTE: Because Google Maps is not part of the Android open source project, some devices lack
Google Maps due to licensing issues. For example, at the time of this writing, the Archos 5
Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your day-to-day
development. However, bear in mind the following:

B You will need to create your project with an appropriate target to
ensure the Google Maps APIs will be available.

B To test your Google Maps integration, you will also need an AVD that
uses an appropriate target.

The Key to It All

If you download the source code for this book, compile the Maps/NooYawk project, install
it in your emulator, and run it, you will probably see a screen with a grid and a couple of
pushpins, but no actual maps. That’s because the API key in the source code is invalid
for your development machine. Instead, you will need to generate your own API key(s)
for use with your application. This also holds true for any map-enabled projects you
create on your own from scratch.

Full instructions for generating API keys, for development and production use, can be
found on the Android web site. In the interest of brevity, let’s focus on the narrow case
of getting NooYawk running in your emulator. Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Reread those terms of service and make really sure you want to agree to
them.

3. Find the MD5 digest of the certificate used for signing your debug-mode
applications (described in detail following this list).

4. On the API key signup page, paste in that MD5 signature and submit the
form.

5. On the resulting page, copy the API key and paste it as the value of
apiKey in your MapView-using layout.

CHAPTER 40: Mapping with MapView and MapActivity

The trickiest part is finding the MD5 signature of the certificate used for signing your
debug-mode applications. Much of the complexity is merely in making sense of the
concept.

All Android applications are signed using a digital signature generated from a certificate.
You are automatically given a debug certificate when you set up the SDK, and there is a
separate process for creating a self-signed certificate for use in your production

applications. This signature process involves the use of the Java keytool and jarsigner
utilities. For the purposes of getting your API key, you only need to worry about keytool.

To get your MD5 digest of your debug certificate, if you are on Mac OS X or Linux, use
the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore«
-storepass android -keypass android

On other development platforms, such as Windows, you will need to replace the value of
the -keystore switch with the location for your platform and user account (where <user>
is your account name):

B On Windows XP, use C:\Documents and
Settings\<user>\.android\debug.keystore.

B On Windows Vista, use C:\Users\<user>\.android\debug.keystore.

The second line of the output contains your MD5 digest, as a series of pairs of hex digits
separated by colons.

The Bare Bones

To put a map into your application, you need to create your own subclass of
MapActivity. Like ListActivity, which wraps up some of the smarts behind having an
activity dominated by a ListView, MapActivity handles some of the nuances of setting
up an activity dominated by a MapView. A MapView can be used only by a MapActivity,
not by any other type of Activity.

In your layout for the MapActivity subclass, you need to add an element named
com.google.android.maps.MapView. This is the “longhand” way to spell out the names of
widget classes, by including the full package name along with the class name. This is
necessary because MapView is not in the android.widget namespace. You can give the
MapView widget whatever android:id attribute value you want, plus handle all the layout
details to have it render properly alongside your other widgets.

However, you do need to have the following items:
B android:apiKey, your Google Maps API key

B android:clickable = "true", if you want users to be able to click and
pan through your map

For example, from the Maps/NooYawk sample application, here is the main layout:

451

452 CHAPTER 40: Mapping with MapView and MapActivity

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent">
<com.google.android.maps.MapView android:id="@+id/map"
android:layout width="fill parent"
android:layout_height="fill parent"
android:apiKey="00yHjok7_7vxbuQ9zwyXI4bNMIrAjYrI9KKHgbQ"
android:clickable="true" />
</Relativelayout>

In addition, you will need a couple of extra things in your AndroidManifest.xml file:

B The INTERNET and ACCESS_FINE_LOCATION permissions (the latter for
use with the MyLocationOverlay class, described later in this chapter)

B Inside your <application>, a <uses-library> element with
android:name = "com.google.android.maps", to indicate you are using
one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.maps">
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<application android:label="@string/app_name" android:icon="@drawable/cw">
<uses-library android:name="com.google.android.maps"/>
<activity android:name=".NooYawk" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity from
MapActivity. If you were to do nothing else, and built that project and tossed it in the
emulator, you’d get a nice map of the world. Note, however, that MapActivity is
abstract—you need to implement isRouteDisplayed() to indicate whether you are
supplying some sort of driving directions. Since displaying driving directions is not
supported by the current edition of the terms of service, you should have
isRouteDisplayed() return false.

Optional Maps

While most mainstream Android devices have Google Maps, a small percentage do not,
because their manufacturers did not elect to license it from Google. Therefore, you need
to decide whether Google Maps is essential to your application’s operation.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 40: Mapping with MapView and MapActivity

If Google Maps is essential, then include the <uses-library> element in your
application, as shown previously, as that will require any device running your app to
have Google Maps.

If Google Maps isn’t essential, you can make it optional, via an undocumented
android:required attribute available on <uses-library>. Set that to false, and Google
Maps will be loaded into your application if it is available, but your application will run
fine regardless. You will then need to use something like
Class.forName("com.google.android.maps.MapView") to see if Google Maps is available
to your application. If it is not, you can disable the menu items for it, or whatever would
lead the user to your MapActivity.

NOTE: Although the android:required attribute currently is undocumented, Google has
indicated that it is an available option. Hopefully, that means it will be officially documented in a
future Android release.

Exercising Your Control

You can find your MapView widget by findViewById(), just as with any other widget. The
widget itself then offers a getController() method. Between the MapView and
MapController, you have a fair bit of capability to determine what the map shows and
how it behaves. Zoom and center are two features you will likely want to use, so they are
covered next.

Zoom

The map of the world you start with is rather broad. Usually, people looking at a map on
a phone will be expecting something a bit narrower in scope, such as a few city blocks.

You can control the zoom level directly via the setZoom() method on the MapController.
This takes an integer representing the level of zoom, where 1 is the world view and 21 is
the tightest zoom you can get. Each level is a doubling of the effective resolution: 1 has
the equator measuring 256 pixels wide, while 21 has the equator measuring 268,435,456
pixels wide. Since the phone’s display probably does not have 268,435,456 pixels in
either dimension, the user sees a small map focused on one tiny corner of the globe. A
level of 17 will show several city blocks in each dimension, which is probably a
reasonable starting point for you to experiment with.

If you wish to allow users to change the zoom level, call
setBuiltInZoomControls(true);, and the user will be able to zoom in and out of the
map via zoom controls found at the bottom center of the map.

453

454

CHAPTER 40: Mapping with MapView and MapActivity

Center

Typically, you will need to control what the map is showing, beyond the zoom level,
such as the user’s current location or a location saved with some data in your activity.
To change the map’s position, call setCenter() on the MapController.

The setCenter() method takes a GeoPoint as a parameter. A GeoPoint represents a
location, via latitude and longitude. The catch is that the GeoPoint stores latitude and
longitude as integers representing the actual latitude and longitude in microdegrees
(degrees multiplied by 1E6). This saves a bit of memory versus storing a float or double,
and it greatly speeds up some internal calculations Android needs to do to convert the
GeoPoint into a map position. However, it does mean you have to remember to multiply
the real-world latitude and longitude by 1EG6.

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably used to
seeing things overlaid atop the map itself, such as pushpins indicating businesses near
the location being searched. In map parlance (and, for that matter, in many serious
graphic editors), the pushpins are on a separate layer from the map itself, and what you
are seeing is the composition of the pushpin layer atop the map layer.

Android’s mapping allows you to create layers as well, so you can mark up the maps as
you need to based on user input and your application’s purpose. For example, NooYawk
uses a layer to show where select buildings are located on the island of Manhattan.

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a subclass of
Overlay. There is an ItemizedOverlay subclass available if you are looking to add
pushpins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your MapView and
add() your Overlay instance to it, as we do here with a custom SitesOverlay:

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will look at that marker in the next section.

Drawing the ItemizedQverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points of interest
to be displayed on the map —specifically, instances of OverlayItem. The overlay, then,

CHAPTER 40: Mapping with MapView and MapActivity

handles much of the drawing logic for you. Here are the minimum steps to make this
work:

1. Override ItemizedOverlay<OverlayItem> as your own subclass (in this
example, SitesOverlay).

2. In the constructor, build your roster of OverlayItem instances, and call
populate() when they are ready for use by the overlay.

3. Implement size() to return the number of items to be handled by the
overlay.

4. Override createItem() to return OverlayItem instances given an index.

5. When you instantiate your ItemizedOverlay subclass, provide it with a
Drawable that represents the default icon (e.g., a pushpin) to display for
each item, on which you call boundCenterBottom() to enable the drop-
shadow effect.

The marker from the NooYawk constructor is the Drawable used for step 5, which shows a
pushpin.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
private List<OverlayItem> items=new ArraylList<OverlayItem>();
private Drawable marker=null;

public SitesOverlay(Drawable marker) {
super(marker);
this.marker=marker;

boundCenterBottom(marker);

items.add(new OverlayItem(getPoint(40.748963847316034,
-73.96807193756104),
"UN", "United Nations"));
items.add(new OverlayItem(getPoint(40.76866299974387,
-73.98268461227417),
"Lincoln Center",
"Home of Jazz at Lincoln Center"));
items.add(new OverlayItem(getPoint(40.765136435316755,
-73.97989511489868) ,
"Carnegie Hall",
"Where you go with practice, practice, practice"));
items.add(new OverlayItem(getPoint(40.70686417491799,
-74.01572942733765),
"The Downtown Club",
"Original home of the Heisman Trophy"));

populate();

@0verride
protected OverlayItem createItem(int i) {

455

456 CHAPTER 40: Mapping with MapView and MapActivity

return(items.get(i));

@0verride
protected boolean onTap(int i) {
Toast.makeText(NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

@0verride
public int size() {
return(items.size());

}
}

Handling Screen Taps

An Overlay subclass can also implement onTap(), to be notified when the user taps the
map, so the overlay can adjust what it draws. For example, in full-size Google Maps,
clicking a pushpin pops up a bubble with information about the business at that pin’s
location. With onTap(), you can do much the same in Android.

The onTap() method for ItemizedOverlay receives the index of the OverlayItem that was
tapped. It is up to you to do something worthwhile with this event.

In the case of SitesOverlay, as shown in the preceding section, onTap() looks like this:

@0verride
protected boolean onTap(int i) {
Toast.makeText(NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

Here, we just toss up a short Toast with the snippet from the OverlayItem, returning
true to indicate we handled the tap.

My, Myself, and MyLocationOverlay

Android has a built-in overlay to handle two common scenarios:

B Showing where you are on the map, based on GPS or other location-
providing logic

B Showing where you are pointed, based on the built-in compass
sensor, where available

CHAPTER 40: Mapping with MapView and MapActivity

All you need to do is create a MyLocationOverlay instance, add it to your MapView’s list of
overlays, and enable and disable the desired features at appropriate times.

The “at appropriate times” notion is for maximizing battery life. There is no sense in
updating locations or directions when the activity is paused, so it is recommended that
you enable these features in onResume() and disable them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay. To do this,
we first need to create the overlay and add it to the list of overlays (where me is the
MyLocationOverlay instance as a private data member):

me=new MyLocationOverlay(this, map);
map.getOverlays().add(me);

Then, we enable and disable the compass rose as appropriate:

@0verride
public void onResume() {
super.onResume();

me .enableCompass();

}

@0verride
public void onPause() {
super.onPause();

me .disableCompass();

This gives us a compass rose while the activity is onscreen, as shown in Figure 40-1.

DG 36 ., = 11:51am

Circle (12

Cq%"m{ %
o%‘
w = Museum of
S, B s
% Arts & Design
b 3
w @
O £ g S
@
R
w
L L7
S % s,

57th St /.7th Ave
(Mictown) [N G, R] D

2
Cﬁoglé’ g,

Figure 40-1. The NooYawk map, showing a compass rose and two Overlayltems

457

458

CHAPTER 40: Mapping with MapView and MapActivity

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display satellite
imagery, so too can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on and off the
satellite perspective on the area being viewed. You can allow the user to trigger this via
an options menu or, in the case of NooYawk, via key taps:

@0verride
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE S) {
map.setSatellite(!map.isSatellite());
return(true);

else if (keyCode == KeyEvent.KEYCODE Z) {
map .displayZoomControls(true);
return(true);

return(super.onKeyDown(keyCode, event));

Figure 40-2 shows a satellite view in NooYawk, courtesy of tapping the S key.

AT @) 36 i &= 11:53am

NooYawk'
M W Ll
d

mcolrik

us_ 8. @
P e
©

Figure 40-2. The NooYawk map, showing a compass rose and two Overlayltems, overlaid on the satellite view

CHAPTER 40: Mapping with MapView and MapActivity

Maps and Fragments

You might think that maps would be an ideal place to use fragments. After all, on a large
tablet screen, you could allocate most of the space to the map but still have other stuff
alongside it. Alas, as of the time of this writing, maps and fragments are two great tastes
that do not taste so great together.

First, MapView requires you to inherit from MapActivity. This has a few ramifications:

B You cannot use the Android Compatibility Library (ACL), because that
requires you to inherit from FragmentActivity, and Java does not
support multiple inheritance. Hence, you can use maps in fragments
only on Android 3.0 and higher, requiring that you fall back to some
alternative implementation on older versions of Android.

B Any activity that might host a map in a fragment has to inherit from
MapActivity, even if in some cases it might not host a map in a
fragment.

Also, MapView makes some assumptions about the timing of various events, in a fashion
that makes setting up a map-based fragment a bit more complex than it might otherwise
have to be.

It is entirely possible that someday these problems will be resolved, through a
combination of an updated Google APIs Add-On for Android with fragment support, and
possibly an updated ACL. In the meantime, here is the recipe for getting maps to work,
as well as they can, in fragments.

Limit Yourself to Android 3.0

In the manifest, make sure that you set both your android:minSdkVersion and your
android:targetSdkVersion to 11, so your application runs only on Android 3.0 and
newer. For example, here is the manifest from the Maps/NooYawkFragments sample

project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.maps">
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<application android:label="@string/app_name"
android:icon="@drawable/cw"
android:hardwareAccelerated="true">
<uses-library android:name="com.google.android.maps"/>
<activity android:name=".NooYawk" android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>

459

http://schemas.android.com/apk/res/android

460

CHAPTER 40: Mapping with MapView and MapActivity

</application>
<uses-sdk android:minSdkVersion="11" android:targetSdkVersion="11" />
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Use onCreateView() and onActivityCreated()

A map-based fragment is simply a Fragment that shows a MapView. By and large, this
code can look and work much like a MapActivity would, configuring the MapView, setting
up an ItemizedOverlay, and so on.

However, there is a timing problem: you cannot reliably return a MapView widget, or an
inflated layout containing such a widget, from onCreateView(). For whatever reason, it
works fine the first time, but on a configuration change (e.g., screen rotation) it fails.

The solution is to return a container from onCreateView(), such as a FramelLayout, as
shown here in the MapFragment class from NooYawkFragments:

@0verride
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return(new FrameLayout(getActivity()));

Then, in onActivityCreated() —once onCreate() has been completed in the hosting
MapActivity —you can add a MapView to that container and continue with the rest of your
normal setup:

@0verride

public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);

map=new MapView(getActivity(), "00yHjok7_ 7vxbuQ9zwyXI4bNMJrAjYrI9KKHgbQ");
map.setClickable(true);

map.getController().setCenter(getPoint(40.76793169992044,
-73.98180484771729));

map.getController().setZoom(17);

map.setBuiltInZoomControls(true);

Drawable marker=getResources().getDrawable(R.drawable.marker);

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map .getOverlays().add(new SitesOverlay(marker));

me=new MyLocationOverlay(getActivity(), map);
map .getOverlays().add(me);

((viewGroup)getView()).addView(map);

CHAPTER 40: Mapping with MapView and MapActivity

Note that we are creating a MapView in Java code, which means our Maps API key
resides in the Java code (or something reachable from the Java code, such as a string
resource). You could inflate a layout containing a MapView here if you wished —the
change for MapFragment was simply to illustrate creating a MapView from Java code.

Host the Fragment in a MapActivity

You must make sure that whatever activity hosts the map-enabled fragment is a
MapActivity. So, even though the NooYawk activity no longer has much to do with
mapping, it must still be a MapActivity:

package com.commonsware.android.maps;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class NooYawk extends MapActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@0verride
protected boolean isRouteDisplayed() {
return(false);

}

}

The layout now points to a <fragment> instead of a MapView:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
class="com.commonsware.android.maps.MapFragment"
android:id="@+id/map_fragment"
android:layout width="fill parent"

android:layout_height="fill parent"
/>

The resulting application, shown in Figure 40-3, looks like the original NooYawk activity
would on a large screen, because we are not doing anything much else with the
fragment system (e.g., having other fragments alongside in a landscape layout).

461

http://schemas.android.com/apk/res/android

462 CHAPTER 40: Mapping with MapView and MapActivity

e e,

NooYawk
R & ey S s
Z #
o, y Y oe s
Ve, i 3
& o e, £ 2
g, & o < s & § N
o, & s $ S ¢ s
o AN W, & & W, & &
oot § 5
ey, < g KLY g
o & d &
.
¢
w, 70
oy 5
w, o
® s
g, 8 3
"é @<
= o S
£ 6
A
&
W, i 65ih Sueot Transverso
S Ry
D
Devrt w
Clnton Park
P
B
3! £,
s *a, Pond Vg,
2 e
9 4,
s, s
"
S Y, ®
§ S o $
ol &
1 £ <
Sy, e
g &
Sy
S
J
Sy
W B

A

Figure 40-3. The NooYawkFragments map, rendered on a Motorola XOOM

Chapter 4 1

Handling Telephone Calls

Many, if not most, Android devices will be phones. As such, not only will users be
expecting to place and receive calls using Android, but you will have the opportunity to
help them place calls, if you wish.

Why might you want to?

B Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the ability
to call prospects with a single button tap, and without them having to
keep those contacts both in your application and in the phone’s
contacts application.

B Maybe you are writing a social networking application, and the roster
of phone numbers that you can access shifts constantly, so rather
than try to sync the social network contacts with the phone’s contact
database, you want to let people place calls directly from your
application.

B Maybe you are creating an alternative interface to the existing contacts
system, perhaps for users with reduced motor control (e.g., the
elderly), sporting big buttons and the like to make it easier for them to
place calls.

Whatever the reason, Android has the means to let you manipulate the phone just like
any other piece of the Android system.

Report to the Manager

To get at much of the phone API, you use the TelephonyManager. That class lets you do
things like the following:

B Determine if the phone is in use via getCallState(), with return values of
CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call requested
but still being connected), and CALL_STATE_OFFHOOK (call in progress)

463

464

CHAPTER 41: Handling Telephone Calls

B Find out the SIM ID (IMSI) via getSubscriberId()

B Find out the phone type (e.g., GSM) via getPhoneType() or find out the data
connection type (e.g., GPRS or EDGE) via getNetworkType()

You Make the Gall!

You can also initiate a call from your application, such as from a phone number you
obtained through your own web service. To do this, simply craft an ACTION_DIAL Intent
with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial) and use that
Intent with startActivity(). This will not actually dial the phone; rather, it activates the
dialer activity, from which the user can then press a button to place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude but

effective layout:

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"

>

<LinearlLayout
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="wrap_content"

>
<TextView

android:
android:
android:

/>
<EditText
android

/>

layout_width="wrap_ content"
layout_height="wrap_content"
text="Number to dial:"

android:id="@+id/number"

:layout_width="fill parent"
android:
android:
android:
android:

layout_height="wrap_content"
cursorVisible="true"
editable="true"
singlelLine="true"

</LinearlLayout>

<Button android:id="@+id/dial"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
android:onClick="dial"

/>

</Linearlayout>

We have a labeled field for typing in a phone number, plus a button for dialing that

number.

The Java code simply launches the dialer using the phone number from the field:

http://schemas.android.com/apk/res/android

CHAPTER 41: Handling Telephone Calls 465

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class DialerDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

}

public void dial(View v) {
EditText number=(EditText)findViewById(R.id.number);
String toDial="tel:"+number.getText().toString();

startActivity(new Intent(Intent.ACTION DIAL, Uri.parse(toDial)));

}
}

The activity’s own Ul is not that impressive, as shown in Figure 41-1.
BHl @ 7:34Pm

DialerDemo

\J um bi—r 0 ‘7“ ° ‘ _

Dial It!

Figure 41-1. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing you the
number you are about to dial, as shown in Figure 41-2.

466

CHAPTER 41: Handling Telephone Calls

B @ 7:34 PM

Contacts Favorites

2

Figure 41-2. The Android Dialer activity, as launched from DialerDemo

No, Really, You Make the Gall!

The good news is that ACTION_DIAL works without any special permissions. The bad
news is that it takes the user only to the dialer. The user still has to take action (press the
green call button) to actually place the phone call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION CALL Intent will immediately place the phone call,
without any other Ul steps required. However, you need the CALL_PHONE permission to
use ACTION_CALL (see Chapter 38).

Chapter

Fonts

The question you’ll inevitably get when developing any type of application is, “Hey, can
we change this font?” The answer depends on which fonts come with the platform,
whether you can add other fonts, and how to apply them to the widget or whatever
needs the font change. Android is no different. It comes with some fonts, plus a means
for adding new fonts. However, as with any new environment, there are a few
idiosyncrasies to deal with, as described in this chapter.

Love the One You’re With

Android natively knows three fonts, by the shorthand names sans, serif, and
monospace. These fonts are actually the Droid series of fonts, created for the Open
Handset Alliance by Ascender (www.ascendercorp.com/). To use these three fonts, you
can just reference them in your layout XML, such as the following layout from the
Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1">
<TableRow>
<TextView
android:text="sans:"
android:layout_marginRight="4dip"
android:textSize="20sp"
/>
<TextView
android:id="@+id/sans"
android:text="Hello, world!"
android:typeface="sans"
android:textSize="20sp"
/>
</TableRow>
<TableRow>
<TextView

467

http://www.ascendercorp.com/
http://schemas.android.com/apk/res/android

468

android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
/>
</TableRow>
<TableRow>
<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
/>
</TableRow>

CHAPTER 42: Fonts

text="serif:"
layout_marginRight="4dip"
textSize="20sp"

id="@+id/serif"
text="Hello, world!"
typeface="serif"
textSize="20sp"

text="monospace:"
layout_marginRight="4dip"
textSize="20sp"

id="@+id/monospace"
text="Hello, world!"
typeface="monospace"
textSize="20sp"

text="Custom:"
layout_marginRight="4dip'
textSize="20sp"

id="@+id/custom"
text="Hello, world!"
textSize="20sp"

<TableRow android:id="@+id/filerow">

<TextView
android:
android:
android:
/>
<TextView
android:
android:
android:
/>
</TableRow>

text="Custom from File:"
layout_marginRight="4dip'
textSize="20sp"

id="@+id/file"
text="Hello, world
textSize="20sp"

</Tablelayout>

This layout builds a table showing short samples of five fonts. Notice that the first three
have the android:typeface attribute, whose value is one of the three built-in font faces
(e.g., "sans").

CHAPTER 42: Fonts

Additional Fonts

The three built-in fonts are very nice. However, a designer, a manager, or a customer
may want a different font. Or perhaps you want to use a font for specialized purposes,
such as a dingbats font instead of a series of PNG graphics. The easiest way to
accomplish this is to package the desired font(s) with your application. To do this,
simply create an assets/ folder in the project root, and put your TrueType (TTF) fonts in
that folder. You might, for example, create assets/fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can no longer
use layout XML for this, since the XML does not know about any fonts you may have
tucked away as an application asset. Instead, you need to make the change in Java
code:

import android.widget.TextView;
import java.io.File;

public class FontSampler extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewById(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),
"fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);

File font=new File(Environment.getExternalStorageDirectory(),
"MgOpenCosmeticaBold.ttf");

if (font.exists()) {
tv=(TextView)findViewById(R.id.file);
face=Typeface.createFromFile(font);

tv.setTypeface(face);

else {
findViewById(R.id.filerow).setVisibility(View.GONE);

}
}

Here, we grab the TextView for our custom sample, and then create a Typeface object
via the static createFromAsset() builder method. This takes the application’s
AssetManager (from getAssets()) and a path within your assets/ directory to the font
you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing the Typeface
we just created. In this case, we are using the Handmade Typewriter font. You can also
load a font out of a local file and use it. The benefit is that you can customize your fonts

469

470 CHAPTER 42: Fonts

after your application has been distributed. On the other hand, you have to somehow
arrange to get the font onto the device. But, just as you can get a Typeface via
createFromAsset(), you can get a Typeface via createFromFile(). In our FontSampler,
we look in the root of “external storage” (typically the SD card) for the
MgOpenCosmeticaBold TrueType font file, and if it is found, we use it for the fifth row of
the table. Otherwise, we hide that row.

Figure 42—1 shows the results.

Tl & 9:31am

FontSampler

Hello, world!
Hello, world!
Hello, world!
Hello, world!
Custom from File: Hello, world!

Figure 42-1. The FontSampler application

We will go into more details regarding assets and local files in an upcoming chapter.

Note that Android does not seem to like all TrueType fonts. When Android dislikes a
custom font, rather than raise an Exception, it seems to substitute Droid Sans ("sans")
quietly. So, if you try to use a different font and it does not appear to be working, it
might be incompatible with Android, for whatever reason.

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an extensive subset of
the available Unicode characters. The Handmade Typewriter font used in the previous
section runs over 70KB; the DejaVu free fonts can run upwards of 500KB apiece. Even
compressed, these add bulk to your application, so be careful not to go overboard with
custom fonts, lest your application take up too much room on your users’ phones.

CHAPTER 42: Fonts

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As an
example, let’s talk about the ellipsis.

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and
adding an ellipsis if the text is longer than the available space. You can use this via the
android:ellipsize attribute, for example. This works fairly well, at least for single-line
text.

The ellipsis that Android uses is not three periods. Rather, it uses an actual ellipsis
character, where the three dots are contained in a single glyph. Hence, any font that you
use that you also use the “ellipsizing” feature will need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on the screen, such
that the length (in characters) is the same before and after ellipsizing. To make this work,
Android replaces one character with the ellipsis, and replaces all other removed
characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’ (U+FEFF). As a
result, the extra characters after the ellipsis do not take up any visible space onscreen,
yet they can be part of the string. However, this means any custom fonts you use for
TextView widgets that you use with android:ellipsize must also support this special
Unicode character. Not all fonts do, and you will get artifacts in the onscreen
representation of your shortened strings if your font lacks this character (e.g., rogue Xs
appear at the end of the line).

And, of course, Android’s international deployment means your font must handle any
language your users might be looking to enter, perhaps through a language-specific
input method editor.

Hence, while using custom fonts in Android is very possible, there are many potential
problems, and so you must weigh carefully the benefits of the custom fonts versus their
potential costs.

471

Chapter

More Development Tools

The Android SDK is more than a library of Java classes and API calls. It also includes a
number of tools to assist in application development. Eclipse, of course, tends to
dominate the discussion. However, that is not the only tool at your disposal, so, let’s
take a quick tour of what else is available to you.

Hierarchy Viewer: How Deep Is Your Code?

Android comes with a Hierarchy Viewer tool, designed to help you visualize your layouts
as they are seen in a running activity in a running emulator. So, for example, you can
determine how much space a certain widget is taking up, or try to find where a widget
that does not appear on the screen is hiding.

To use Hierarchy Viewer, you first need to fire up your emulator, install your application,
launch your activity, and navigate to the spot you wish to examine. Note that you cannot
use Hierarchy Viewer with a production Android device.

You can launch Hierarchy Viewer via the hierarchyviewer program, found in the tools/
directory in your Android SDK installation, or from inside of Eclipse. The main window is
shown in Figure 43-1.

473

474 CHAPTER 43: More Development Tools

File Devices Help
= Refresh

~ @ emulator-5554
Keyguard
StatusBar
StatusBarExpanded
TrackingView
com.commonsware.android.readwrite/com.commonsware.android.readwrite.ReadWriteFileDemo
com.android.launcher/com.android.launcher2.Launcher
com.android.internal.service.wallpaper.Imagewallpaper

Figure 43-1. Hierarchy Viewer main window

The roots of the table show the emulator instances presently running on your
development machine. The leaves represent applications running on that particular
emulator. Your activity will be identified by application package and class (e.g.,
com.commonsware.android.files/...).

Things get interesting when you choose a window and click Load View Hierarchy. After
a few seconds, the details spring into view, as shown in Figure 43-2.

CHAPTER 43: More Development Tools 475

File TreeView Help

H Save as PNG & Capture Layers ~2§ Load View Hierarchy

] Show Extras 2 Load All Views

i

M Filter by class orid: 20% (< >] 200%

Figure 43-2. Hierarchy Viewer Layout View

The main area of the Layout View shows a tree of the various widgets and stuff that
make up your activity, starting from the overall system window and driving down into the
individual Ul widgets that users will interact with. This includes both the widgets and
containers defined by your application and others that are supplied by the system,
including the title bar.

Clicking one of the views adds more information to this perspective, as shown in
Figure 43-3.

476

CHAPTER 43: More Development Tools

3 ApplicationsPlaces system @ €3) o B @ anoroi X 2 P 3 TR @ 7 1516

Dalvik Debug Monitor

) Komodo Edit 5:(-))X
siiporordzcipy | eile_edi_cod project_Tnolhox_Taols_window_tel

SnTracker sysinfo emulator Control | Event Log
J Eile Treeview Help

H saveas NG

5554:2.3-WVGAB0O

Filter by class orid:

28): Gtk-WARNING **: Loading IM context type 'ibus’ failed

GK-WARNING ++: /usr/1ib/gtk-2.0/2.10.0/imnodules/in- iby
ELFCLASS6

U8 Lm1Cok1 25/12/2010 17:08.17
Opeie

[Android SOKand AV... | &) 55542.3WVGAB00 | 4 Hierarchy Viewer

Figure 43-3. Hierarchy Viewer View properties

Now, in the middle-right region of Hierarchy Viewer, you see properties of the selected
widget or container, plus timing details for how long it took to render that container and
its children.

Also, the widget is highlighted in red in the wireframe of the activity, shown beneath the
properties (by default, views are shown as white outlines on a black background). This
can help you ensure you have selected the right widget, if, say, you have several buttons
and cannot readily tell from the tree which button is which.

You can also do the following in the main Hierarchy Viewer window:
B Save the tree diagram as a PNG file

B Save the Ul as a Photoshop PSD file, with different layers for the
different widgets and containers

B Force the Ul to repaint in the emulator or reload the hierarchy, in case
you have made changes to a database or to the app’s contents and
need a fresh diagram

Instead of clicking Load View Hierarchy in the main window, you can click Inspect
Screenshot. This puts Hierarchy Viewer in a whole new perspective, called the Pixel
Perfect View, as shown in Figure 43-4.

CHAPTER 43: More Development Tools

File Pixel Perfect Help
H save as PNG ‘ 2 Refresh Screenshot +z§ Refresh Tree H % Load Overlay [J © Auto Refresh

~ @8 com.android.internal.policy.impl.P
< @ android.widget.LinearLayout
~ @ android.widget.FrameLayout
android.widget.TextView
v @ android.widget.FrameLayout
android.widget.EditText

R:90 X:129px
G:89 Y:59px

#5a595a B: 90

overlay: 0% (] | 1) 100%
Refresh Rate:1s (<] [l [>) a0s O]
a [>] Zoom: 2x [« | Dl2ax [] D

Figure 43-4. Hierarchy Viewer Pixel Perfect View

On the left, you see a tree representing the widgets and other Views in your activity. In
the middle, you see a zoomed view of your activity, which is shown at normal size on the
right.

The crosshairs overlaying the activity show the position being zoomed. Just click a new
area to change what you are seeing. There is a slider to control the level of zoom.
Clicking a pixel also indicates the position and color of that pixel.

If you check the Auto Refresh check box in the toolbar, Hierarchy Viewer will poll and
reload the Ul from your activity periodically, with the frequency controlled by another
slider.

DDMS: Under Android’s Hood

Another tool in the Android developer’s arsenal is the Dalvik Debug Monitor Service
(DDMS). This is like a Swiss army knife, allowing you to do everything from browse log
files, update the GPS location provided by emulator, simulate incoming calls and
messages, and browse the on-emulator storage to push and pull files.

To launch DDMS, run the ddms program inside the tools/ directory in your Android SDK
distribution or open the DDMS perspective in Eclipse. It will initially display just a tree of
emulators and running programs on the left, as shown in Figure 43-5.

477

478

CHAPTER 43: More Development Tools

Dalvik Debug Montor:

File Edit Actions Device Help

2 8 1) ﬂ Info |Threads] VM Heap l Allocation Tracker l Sysinfo]’
~ DDM-aware? -
Name - o
App description: -
< B emulator-555¢ Online 1.0)
- VM version: -
system_prc 48 Y 8600
) - Process ID: -
com.androi 83 Y 8601
android.pro 89 ¥ 8602
com.google 110 3 8603
com.androi 125 % 8604
com.androi 134 ¥ 8605 |
android.pro 142 ¥ 8606
com.comm 166 % 8607)

+ & OO OOE B R

Log

Time pid tag Message

< I D)

Filter: [

Figure 43-5. DDMS initial view

Clicking an emulator allows you to browse the event log on the bottom and manipulate
the emulator via the tabs on the right, as shown in Figure 43-6.

CHAPTER 43: More Development Tools 479

DA DebugVionto E@E

File Edit Actions Device Help

‘l Allocation Tracker I Sysinfo | VEmulatorCVontro|”;\:

Telephony Status

Name e —
: Voice: |home ~ | Speed: |Full -
< B emulator-555¢ Online 1.0 |7D P |—|:J
system_prc 48 B 8600 Data: |home E] Latency: |None |~
] <2 el
com.androi 83 3 8601 Telephony Actions
: <,
android.pro 89 3 8602 [T mmE l ‘
com.google 110 % 8603
com.androi 125 ¥ 8604
com.androi 134 ¥ 8605 B
android.pro 142 % 8606
com.comm 166 % 8607 =) v
+ PeO00® B R
Log
Time pid | tag Message =

09-28 18:43:15. D 48 PackageM Activities: com.commonsware.android.fancy.TabDemo
09-28 18:43:15. D 48 PackageM Scanning package com.commonsware.android.fancy
09-28 18:43:15, | 48 PackagelV /data/app/vmd|13291.tmp changed; unpacking

09-28 18:43:15. D 27 installd Dexinv: --- BEGIN '/datajapp/vmd|13291 tmp' ---

N9-28 18:43:15. N 552 dalvikvm DNexOnt: load 49ms. verifv 139ms. ont 2ms b

Filter: ‘

Figure 43-6. DDMS, with emulator selected

Logging

Rather than use adb logcat, DDMS lets you view your logging information in a scrollable
table. Just highlight the emulator or device you want to monitor, and the bottom half of
the screen shows the logs.

In addition, you can do the following:

B Filter the Log tab by any of the five logging levels, shown as the V
through E toolbar buttons.

B Create a custom filter, so you can view only those entries tagged with
your application’s tag, by clicking the + toolbar button and completing
the form (shown in Figure 43-7). The name you enter in the form will
be used as the name of another logging output tab in the bottom
portion of the DDMS main window.

B Save the log information to a text file for later perusal, or for searching.

480

CHAPTER 43: More Development Tools

ﬁ =)

Filter Name: [|]
by Log Tag: []
by pid: []

by Log level: [<none> E]

Figure 43-7. DDMS logging filter

File Push and Pull

While you can use adb pull and adb push to get files to and from an emulator or device,
DDMS lets you do that visually. Just highlight the emulator or device you wish to work
with, and then choose Device » File Explorer from the main menu. That will bring up
your typical directory browser, as shown in Figure 43-8.

Ly | "3
Name Size Date Time = Permission Info
< @ data 2008-09-22 16:44 drwxrwx--x
b @ anr 2008-10-28 20:03 drwxrwxrwx
P @8 app 2008-09-22 16:44 drwxrwx--x
b @ app-private 2008-10-28 20:02 drwxrwx--x
P @@ dalvik-cache 2008-10-28 20:02 drwxrwx--x
v @ data 2008-10-28 20:02 drwxrwx--x =
P @8 com.android.alarmclock 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.browser 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.calculator2 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.camera 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.contacts 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.development 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.fallback 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.googlesearch 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.htmiviewer 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.launcher 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.mms 2008-10-28 20:03 drwxr-xr-x
D @ com.android.music 200R8-10-28 20:03 drwxr-xr-x [] ‘3
»

Figure 43-8. DDMS File Explorer

Just browse to the file you want and click either the pull (leftmost) or push (middle)
toolbar button to transfer the file to or from your development machine. To delete a file,
click the delete (rightmost) toolbar button.

CHAPTER 43: More Development Tools

Using File Explorer has a few caveats:

B You cannot create directories through this tool. You will need to either
use adb shell or create them from within your application.

B While you can putter through most of the files on an emulator, you can
access very little outside of /sdcard on an actual device, due to
Android security restrictions.

Screenshots

To take a screenshot of the Android emulator or device, simply press Ctrl+S or choose
Device » Screen capture from the main menu. This will bring up a dialog box containing
an image of the current screen, as shown in Figure 43-9.

Refresh Rotate Save ‘ Copy Done
Captured image:

Ml @ 6:09PMm

IntentTabDemo
€@ CoMMONSWARE l
X

Three Android
Books, One Low
Price.

-~ - Fresh

ety g titles
ced w3 s Android
m‘:ﬂﬂfg Andrmd Programming from
Development Development Tutorials the
- ot

Figure 43-9. DDMS screen capture

From here, you can click Save to save the image as a PNG file somewhere on your
development machine, click Refresh to update the image based on the current state of
the emulator or device, or click Done to close the dialog box.

Location Updates

To use DDMS to supply location updates to your application, the first thing you must do
is have your application use the gps LocationProvider, as that is the one that DDMS is
set to update. Then, click the Emulator Control tab and scroll down to the Location
Controls section. Here, you will find a smaller tabbed pane with three options for
specifying locations: Manual, GPX, and KML, as shown in Figure 43-10.

481

482 CHAPTER 43: More Development Tools

File Edit Actions Device Help

’ 4| Allocation Tracker | sysinfo || Emulator Control |P

Location Controls
Name

) Manual ﬁ
v & emulator-555¢ Online 1.0 GPX | KML

system_prc 48 8600 @ Decimal

com.androi 83 8601 () Sexagesimal

android.pro 89 8602 Longitude m =
com.google 110 8603

Latitude |37.422006 |
8604 —

8605 B -

com.androi 125

com.androi 134

St ot ot b wb ot e

android.pro 142 8606

com.comm 166 8607) v
+ B OO0 ® B H
Log
Time pid tag Message =

09-28 18:43:15. D 48 PackageM Activities: com.commonsware.android fancy.TabDemo
09-28 18:43:15. D 48 PackageV Scanning package com.commonsware.android fancy
09-28 18:43:15. | 48 PackageV /data/app/vmdI13291.tmp changed: unpacking

09-28 18:43:15. D 27 installd Dexinv: --- BEGIN ‘/data/app/vmdI13291.tmp' ---

09-28 18:43:15. D552 daliikvm DNexOnt: load 49ms. verifv 139ms. ont 2ms &
{ 1)

Filter: ’ ‘

Figure 43-10. DDMS location controls

To use the Manual tab, provide a latitude and longitude and click the Send button to
submit that location to the emulator. The emulator, in turn, will notify any location
listeners of the new position.

Placing Calls and Messages

If you want to simulate incoming calls or SMS messages to the Android emulator, DDMS
can handle that as well. On the Emulator Control tab, above the Location Controls
group, is the Telephony Actions group, as shown in Figure 43-11.

CHAPTER 43: More Development Tools

File Edit Actions Device Help

Name
~ & emulator-5554

system_process

com.android.inputmethod.latin

com.android.phone

com.android.launcher
com.android.systemui
com.google.process.gapps

android.process.media

com.android.quicksearchbox
com.commonsware.android.readwrite

Onlin|
161
118
1122
129
1126
1198
1235
1334
| 363

Info Threads VM Heap Allocation Tracker Sysinfo ! Emulator Control | Event Log
Telephony Status
Voice: | home < |speed: |Full ¢

Data: | home < | Latency: | None ¢ |

Telephony Actions

Incoming number: |17035551 212

@® Voice
O SMS

call\ \Hang Up\
Location Controls
Manual | GPX | KML
@® Decimal

© Sexagesimal

Longitude [-122.084095 |

() -
+ Qeoo® & H
Log
Time pid tag Message
12-28 15:20:45.768 I3 DEBUG debuggerd: Nov 24 2010 13:29:00
12-28 15:20:45.828 D 38 gemud entering main loop
12-28 15:20:45.848 I 30 Netd Netd 1.0 starting
12-28 15:20:45.868 1 29 Vold Vold 2.1 (the revenge) firing up
12-28 15:20:45.868 D 29 Vold USB mass storage support is not enabled in the kernel
D 29

12-28 15:20:45.868

Filter: [

Vold

usb_configuration switch is not enabled in the kernel

Figure 43-11. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice radio button,
and click Call. At that point, the emulator will show the incoming call, allowing you to
accept it (via the green phone button) or reject it (via the red phone button), as shown

in Figure 43-12.

483

484 CHAPTER 43: More Development Tools

B Rl e 11:02Am

Incoming call

Jane Doe
Mobile 1-703-555-1212

Figure 43-12. Simulated incoming call

To simulate in an incoming text message, fill in a phone number, choose the SMS radio
button, enter a message in the provided text area, and click Send. The text message will
then appear as a notification, as shown in Figure 43-13.

November 30, 2008 G5l @ 11:02AM

Android Clear notifications

Jane Doe
This Is a test text message 11:58 AM

Figure 43-13. Simulated text message

And, of course, you can click on the notification to view the message in the full-fledged
Messaging application, as shown in Figure 43-14.

CHAPTER 43: More Development Tools 485

TR @ 11:02Am

Jane Doe

Jane Doe: This is a test text message
Sent: 11:58 AM

"Open keyboard to compose
message

Send

Figure 43-14. Simulated text message, in Messaging application

Memory Management

DDMS also helps you diagnose issues related to how your application uses memory,
particularly heap space.

On the Sysinfo tab, you can see a pie chart of the overall memory allocation for the
emulator, as shown in Figure 43-15.

486 CHAPTER 43: More Development Tools

File Edit Actions Device Help

Info Threads VMHeap Allocation Tracker | Sysinfo | Emulator Control EventLog
Name \,Memoryusage < | Load from File || Update from Device
~ & emulator-5554 00! | Pssinks
system_process 161
com.android.inputmethod.latin i118
com.android.phone 122 4
com.android.launcher 129 com.android.
droid.systemui 1126 Sucieren
com.an I
[android proces:
com.google.process.gapps 198
android.process.media 1235
com.android.quicksearchbox 1334
com.commonsware.android.readwrite | 363 o
gapps
‘om.android| -om.android|
systemui launcher
@ D)
+ P06 & K
Log
Time pid tag Message
12-28 15:20:45.768 | 31 DEBUG debuggerd: Nov 24 2010 13:29:00 [I
12-28 15:20:45.828 D 38 gemud entering main loop
12-28 15:20:45.848 I 30 Netd Netd 1.0 starting
12-28 15:20:45.868 1 29 Vold Vold 2.1 (the revenge) firing up
12-28 15:20:45.868 D 29 Vold USB mass storage support is not enabled in the kernel
12-28 15:20:45.868 D 29 Vold usb_configuration switch is not enabled in the kernel i
i S .. : P 5
Filter: [

Figure 43-15. DDMS memory usage chart

On the Allocation Tracker tab, you can record every time your code (or code you call
inside of Android) allocates memory. Simply highlight your application’s process in the
tree table, and then click the Start Tracking button. When you want to see what you
have allocated since you clicked Start Tracking, click the Get Allocations button, which
will fill in a table showing each allocation, how much memory was allocated, and where
in the code the memory was allocated, as shown in Figure 43-16.

CHAPTER 43: More Development Tools

File Edit Actions Device Help

FRCREYE - Info Threads VM Heap Allocation Tracker | Sysinfo Emulator Control EventLog
Name ~ ‘SlopTracking Get Allocations | Filter: | O Inc. trace
< @ emulator-5554 onlin
system_process | 61 -
e . | Alloc Order *Allocationsiz Allocated Class Thread Id Allocated in Allocated in '
com.android.inputmethod.latin ‘118 - i — — e - u
com.android.phone 1122 A Q! droid view <init>__________|
com.android.launcher 129 491 300 android.widget.Te; 1 inil
com.android.systemui 1126 475 300 android.widget.Te; 1 android.wid <init>
com.google.process.gapps 198 466 300 android.widget.Te; 1 : android.wid¢ <init>
zss; 164 byte[] 5 org.apache.l: getThreadStats
490 160 ; android.widget.Po 1 | android.widg <init>
474 160 android.widaet.Po. 1 android.wid¢ <init> : ¥
| >
Class Method File Line
android.view.Motionl <init> MotionEvent.java 354
android.view.Motionl obtain | MotionEvent.java | 368
android.os.MessageC nativePollOnce | MessageQueue.java 2]
android.os.MessageC next MessageQueue.java 119
android.os.Looper loop Looper.java 110
android.app.Activityl main | ActivityThread.java 3647
| I Bl (@ [[>)
+ ®e0oee &8 H
[Log|
Time pid tag Message ﬁ
12-28 15:20:45.768 | 31 DEBUG debuggerd: Nov 24 2010 13:29:00 I
12-28 15:20:45.828 D 38 gemud entering main loop
12-28 15:20:45.848 I 30 Netd Netd 1.0 starting
12-28 15:20:45.868 1 29 Vold Vold 2.1 (the revenge) firing up
12-28 15:20:45.868 D 29 Vold USB mass storage support is not enabled in the kernel
12-28 15:20:45.868 D

29 Vold usb_configuration switch is not enabled in the kernel

'a I

Filter: |

Figure 43-16. DDMS allocation tracker

And, you can even dump the entire heap for your application via the Dump HPROF
option, which is the toolbar button that looks like a half-empty can with a red
downward-pointing arrow to its right. The resulting HPROF file can be used with MAT,
an add-in for Eclipse, to see what objects are still on the heap and who is causing them
to stick around.

Before dumping the HPROF file, you may wish to force a garbage collection run on your
process. You do so by clicking the toolbar button that looks like a classic metal garbage
can.

adb: Like DDMS, with More Typing

The Android Debug Bridge, or adb utility, serves two roles:

B Behind the scenes, it serves as a bridge between your emulators/devices
and the rest of the tools. For example, ADT, Hierarchy Viewer, and
DDMS all communicate with your emulator via the adb bridge. This
bridge comes in the form of a daemon process, spawned the first time
you try using any of those tools since your last reboot.

487

488 CHAPTER 43: More Development Tools

B [t offers command-line equivalents for many features of the other
tools, notably DDMS.

Some of the things you can do with adb include the following:

B Start (adb start-server) or stop (adb kill-server) the aforementioned
daemon process

m List all of the recognized Android devices and emulators presently
visible (adb devices)

B Get access to a Linux shell inside your device or emulator (adb shell)

B Install or uninstall Android applications on your device or emulator (adb
install)

B Copy files to (adb push) or from (adb pull) the emulator, much like
DDMS'’s File Explorer

B Examine LogCat (adb logcat)

PartVI I

Alternative Application
Environments

Chapter

The Role of Alternative
Environments

You might think that Android is all about Java. The official Android Software
Development Kit (SDK) is for Java development, the build tools are for Java
development, the Android discussion groups and blog posts are all about Java, and,
yes, most Android books are for Java development. Heck, most of this book is about
Java.

However (and with apologies to William Goldman), it just so happens that Android is only
mostly Java. There’s a big difference between mostly Java and all Java. Mostly Java is
slightly not Java.

So, while Android’s “sweet spot” will remain Java-based applications for the near term,
you can still create applications using other technologies. This chapter and the three
that follow introduce some of those alternative technologies.

This chapter starts with an examination of the pros and cons of Android’s Java-centric
strategy. It then enumerates some reasons why you might want to use something else
for your Android applications. The downsides of alternative Android application
environments —lack of support and technical challenges—are also discussed.

In the Beginning, There Was Java...

The core Android team made a fairly reasonable choice of language when they chose
Java. It is a very popular language, and in the mobile community it had a clear
predecessor in Java 2 Platform, Micro Edition (J2ME). Lacking direct access to memory
addresses (so-called pointers), a Java-based application will be less prone to developer
errors that might lead to buffer overruns and expose the application to possible hacks.
And there is a fairly robust ecosystem around Java, in terms of educational materials,
existing code bases, integrated development environments (IDEs), and so on.

However, while you can program Android in the Java language, an Android device does
not run a Java application. Instead, your Java code is converted into something that

491

492

CHAPTER 44: The Role of Alternative Environments

runs on the Dalvik virtual machine. This is akin to the technology used for regular Java
applications, but Dalvik is specifically tuned for Android’s environment. Moreover, it
limits the dependency of Android on Java itself to a handful of programming tools, which
is important as Java’s stewardship moves from Sun to Oracle to wherever.

The Dalvik virtual machine is also capable of running code from other programming
languages, a feature that makes possible much of what this book covers.

..And It Was 0K

No mobile development environment is perfect, and the combination of Java and
Android is no exception.

In the beginning, Java, as implemented for the Dalvik virtual machine, was interpreted,
without any of the just-in-time (JIT) compiler tricks regular Java uses to boost
performance. This is a bigger problem in mobile, since the devices Android runs on tend
to be less powerful than your average desktop, notebook, or web server. Android 2.3
added a JIT compiler, which helps a lot, but it is still slow compared to native compiled
code. Hence, there will be some things you just can’t do on Android with Java because
it is too slow.

Java uses garbage collection to save people from having to keep track of all their
memory allocations. That works for the most part, and is generally a boon to developer
productivity. However, it is not a cure-all for every memory and resource allocation
problem. You can still have what amounts to “memory leaks” in Java, even if the precise
mechanics of those leaks differ from the classic leaks you get in C, C++, and other
languages.

Most importantly, though, not everybody likes Java. It could be because they lack
experience with it, or perhaps they have had experience with it and did not enjoy that
experience. Certainly, Java is often seen as a language for big enterprise systems and,
therefore, not necessarily “cool.” Advocates of other languages will have their own pet
peeves with Java as well (e.g., to a Ruby developer, Java is really verbose).

So, while Java was not a bad choice for Android, it was not perfect, either.

Bucking the Trend

Just because Java is the dominant way to build apps for Android, that does not mean it
is the only way, and for you, it may not even be the best way.

Perhaps Java is not in your existing skill set. You might be a web developer, more
comfortable with HTML, CSS, and JavaScript. There are frameworks to help you with
that. Or, maybe you cut your teeth on server-side scripting languages like Perl or
Python—there are ways to sling that code on Android as well. Or perhaps you already
have a bunch of code in C/C++, such as game physics algorithms, that would be painful
to rewrite in Java. You should be able to reuse that code, too.

CHAPTER 44: The Role of Alternative Environments

Even if you would be willing to learn Java, it may be that your inexperience with Java
and the Android APlIs will just slow you down. You might be able to get something built
much more quickly with another framework, even if you wind up replacing it with a Java-
based implementation in the future. Rapid development and prototyping is frequently
important, to get early feedback with minimal investment in time.

And, of course, you might just find Java programming to be irritating. You would not be
the first, nor the last, to have that sentiment. If you are getting into Android as a hobby,
rather than as part of your “day job,” having fun will be particularly important to you, and
you might not find Java to be much fun.

Fortunately, Android is friendly toward alternative ways of building applications, unlike
some mobile platforms.

Support, Structure

However, “friendly” and “fully supported” are two different things. Some alternatives to
Java-based development are officially supported by the core Android team, such as
C/C++ development via the Native Development Kit (NDK) and web-style development
via HTML5. Some alternatives to Java-based development are supported by companies.
Adobe supports the Adobe Integrated Runtime (AIR), Nitobi supports PhoneGap
(described in detail in Chapter 46), Rhomobile supports Rhodes, and so on. Other
alternatives are supported by standards bodies. For example, the World Wide Web
Consortium (W3C) supports HTMLS5. Still others are just tiny projects with the backing of
only a couple of developers.

You will need to make the decision for yourself which of these levels of support will meet
your requirements. For many development activities, support is not much of an issue,
but in some cases, support might be paramount (e.g., enterprise application
development).

Caveat Developer

Of course, going outside the traditional Java environment for Android development has
its issues, beyond just how much support might be available.

Some environments may be less efficient, in terms of processor time, memory, or
battery life, than Java. C/C++, on the whole, is probably better than Java, but HTML5
may be worse, for example. Depending on what you are writing and how heavily it will
be used will determine how critical that inefficiency will be.

Some environments may not be available on all devices. Right now, Flash is the best
example of this; some devices offer some amount of Flash support, while other devices
have no Flash support at all. Similarly, HTML5 support was added to Android only as of
Android 2.0, so devices running older versions of Android do not have HTMLS5 as a built-
in option.

493

494 CHAPTER 44: The Role of Alternative Environments

Every layer between you and officially supported environments makes it that much more
difficult for you to ensure compatibility with new versions of Android, when they arise.
For example, if you create an application using PhoneGap, and a new Android version
becomes available, there may be incompatibilities that only the PhoneGap team can
address. While they will probably address those quickly —and they may provide to you
some measure of insulation from those incompatibilities —the response time is outside
of your control. In some cases, that is not a problem, but in other cases, that might be
bad for your project.

Hence, just because you are developing outside of Java does not mean everything is
perfect. You simply have to trade off between these problems and the ones Java-based
development might cause you. Where the balance lies is up to each individual developer
or firm.

Chapter

HTMLS

Prior to the current wave of interest in mobile applications, the technology du jour was
web applications. A lot of attention was paid to AJAX, Ruby on Rails, and other
techniques and technologies that made the experience of using web applications close
to, and sometimes even superior to, the experience of using a desktop application.

The explosion of web applications eventually drove the next round of enhancements to
web standards, collectively called HTML5. Android 2.0 was the first version to add
support for these HTML5 enhancements. Notably, Android supports offline applications
and Web storage, meaning that HTML5 becomes a relevant technique for creating
Android applications, without dealing with Java.

Offline Applications

The linchpin for using HTMLS5 for offline applications—on Android or elsewhere—is that
those applications can be used when there is no Internet connectivity, either on the
client side (e.g., on an airplane sans Wi-Fi) or on the server side (e.g., due to web server
maintenance).

What Does It Mean?

Historically, web applications have had this annoying tendency to require web servers.
This led to all sorts of workarounds for offline use, up to and including shipping a web
server and deploying it to the desktop.

HTMLS5 solves this problem by allowing web pages to specify their own caching rules. A
web app can publish a cache manifest, describing which resources

B Can be safely cached, such that if the web server is unavailable, the
browser can use the cached copy.

B Cannot be safely cached, such that if the web server is unavailable,
the browser should fail as it normally would.

495

496

CHAPTER 45: HTMLS5

B Have a “fallback” resource, such that if the web server is unavailable,
the cached fallback resource should be used instead.

For mobile devices, this means that a fully HTML5-capable browser should be able to
load all its assets up front and keep them cached. If the user loses connectivity, the
application will still run. In this respect, the web app behaves almost identically to a
regular app.

How Do You Use It?

For this chapter, we will use the Checklist “mini app” created by Alex Gibson. While the
most up-to-date version of this app can be found at the MiniApps web site
(http://miniapps.co.uk/), this chapter will review the HTML5/Checklist copy found in
the Source Code/Download area of the Apress web site (www.apress.com). This copy is
also hosted online on the CommonsWare site, and you can easily locate it directly via
the shortened URL http://bit.1ly/cw-html5.

About the Sample App

Checklist is, as the name suggests, a simple checklist application. When you first
launch it, the list will be empty, as shown in Figure 45-1.

Tl @ 12:29pm

http://commonsware.... %]

Total: 0 Remaining: 0
List empty
=D

Figure 45-1. The Checklist app, as initially launched

You can enter some text in the top field and click the Add button to add it to the list, as
shown in Figure 45-2.

http://miniapps.co.uk/
http://www.apress.com
http://bit.ly/cw-html5

CHAPTER 45: HTML5

Z M & 12:30pm

[<] http://commonsware....

Mail Checklist

]Tap to enter a new item

. Write this chapter

Delete Checked Delete All

Figure 45-2. The Checklist, with one item added

You can “check off” individual items, which are then displayed in strikethrough, as

shown in Figure 45-3.
Hll & 12:31pm

El http://commonsware....

Mail Checklist

Tap to enter a new item...

& Write this.ct “

Delete Checked Delete All

Figure 45-3. The Checklist, with one item marked as completed

497

498 CHAPTER 45: HTML5

You can also delete the checked entries (via the Delete Checked button) or all entries
(via the Delete All button), which will pop up a confirmation dialog box before
proceeding, as shown in Figure 45-4.

Tl @ 12:32pM

@ The page at 'http://
commonsware.com' says:

Delete all items?

Figure 45-4. The Checklist’s delete confirmation dialog box

“Installing” Checklist on Your Android Device

To access Checklist on your Android device, visit the hosted edition at
http://bit.ly/cw-htmls. You can then add a bookmark for it (choose More » Add
bookmark in the browser’s options menu) to come back to it later.

You can even set up a shortcut for the bookmark on your home screen, if you so
choose—just long-tap the background, choose Bookmark, and then choose the
Checklist bookmark you set up before.

Examining the HTML

All the functionality in the Checklist app is accomplished using just a handful of lines of
HTML:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Checklist</title>
<meta name="viewport"
content="width=device-width; initial-scale=1.0; maximum-scale=1.0;+

http://bit.ly/cw-html5

CHAPTER 45: HTMLS5

user-scalable=0;" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" />
<link rel="apple-touch-startup-image" href="splashscreen.png" />
<link rel="stylesheet" href="styles.css" />
<link rel="apple-touch-icon-precomposed"
href="apple-touch-icon-precomposed.png" />
</head>
<body>
<section>
<header>
<button type="button" id="sendmail">Mail</button>
<h1>Checklist</h1>
</header>
<article>
<form id="inputarea" onsubmit="addNewItem()">
<input type="text" name="name" id="name" maxlength="75"
autocorrect placeholder="Tap to enter a new item…" />
<button type="button" id="add">Add</button>
</form>
<ul id="maillist">
<li class="empty">Mail remaining items

<p id="totals">Total: 0
Remaining: 0</p>
<ul id="checklist">
<li class="empty">Loading…</1i>

</article>
<fieldset>
<button type="button" id="deletechecked">Delete Checked</button>
<button type="button" id="deleteall">Delete All</button>
</fieldset>
</section>
<script src="main.js"></script>
</body>
</html>

For the purposes of offline applications, though, the key is the manifest attribute of our
html element:

<html lang="en" manifest="checklist.manifest">

Here, we specify the relative path to a manifest file, indicating what the rules are for
caching various portions of this application offline.

Examining the Manifest

Because the manifest is where all the fun is, let’s look at Checklist’s manifest:

CACHE MANIFEST
#version 54
styles.css
main.js
splashscreen.png

499

500

CHAPTER 45: HTMLS5

The HTML5 manifest format is extremely simple. It starts with a CACHE MANIFEST line,
followed by a list of files (technically, relative URLs) that should be cached. It also
supports comments, which are lines beginning with #.

The manifest can also have a NETWORK: line, followed by relative URLs that should never

be cached. Similarly, the manifest can have a FALLBACK: line, followed by pairs of relative
URLs: the URL to try to fetch off the network, followed by the URL of a cached resource
to use if the network is not available.

In principle, the manifest should request caching for everything that the application
needs to run, though the page that requested the caching (index.html in this case) is
also cached.

Web Storage

Caching the HTMLS5 application’s assets for offline use is all well and good, but that will
be rather limiting on its own. In an offline situation, the application would not be able to
use AJAX techniques to interact with a web service. So, if the application is going to be
able to store information, it will need to do so on the browser itself.

Google Gears and related tools pioneered this concept and blazed the trail for what is
now variously called Web Storage or DOM Storage for HTML5 applications. An HTML5
app can store data persistently on the client, within client-imposed limits. That, in
conjunction with offline asset caching, means an HTMLS5 application can deliver far more
value when it lacks an Internet connection, or for data that just does not make sense to
store “in the cloud.”

NOTE: Technically, Web Storage is not part of HTML5, but rather is a related specification.
However, it tends to get lumped in with HTML5 in common conversation.

What Does It Mean?

On a Web Storage—-enabled browser, your JavaScript code will have access to a
localStorage object, representing your application’s data. More accurately, each origin
(i.e., domain) will have a distinct localStorage object on the browser.

The localStorage object is an associative array, meaning you can work with it via either
numerical indexes or string-based keys. Values typically are strings. You can do the
following with localStorage:

B Find out how many entries are in the array via length()
B Get and set items by key via getItem() and setItem()

B Get the key for a numerical index via key ()
]

Remove individual entries via removeItem() or remove all items via
clear()

CHAPTER 45: HTML5 501

This means you do not have the full richness of a SQL database, like you might have
with SQLite in a native Android application. But, for many applications, this should
suffice.

How Do You Use It?

Checklist stores the list items as keys in the associative array, with a value of 0 for a
regular item and 1 for a deleted item. Here, we see the code for putting a new item into
the checklist:

try {
localStorage.setItem(strippedString, data);

catch (e) {
if (e == QUOTA_EXCEEDED ERR) {
alert('Quota exceeded!');

}
}

Here is the code where those items are pulled back out of storage and put into an array
for sorting and, later, display as DOM elements on the web page itself:

/*get all items from localStorage and push them one by one into an array.*/

for (i = 0; i <= listlength; i++) {

var item = localStorage.key(i);
myArray.push(item);

/*sort the array into alphabetical order.*/
myArray.sort();

When the user checks the check box next to an item, the storage is updated to toggle
the checked setting persistently:

/*toggle the check flag.*/
if (target.previousSibling.checked) {

data = 0;
}
else {
data = 1;
}
/*save item in localStorage.*/
try {

localStorage.setItem(name, data);
} catch (e) {

if (e == QUOTA EXCEEDED ERR) {
alert('Quota exceeded!');

}
}

Checklist also has code to delete items from storage, either all items marked as
checked or all items. Following is the code to delete all checked items:

502

CHAPTER 45: HTMLS5

/*remove every item from localStorage that has the data flag checked.*/
while (i <= localStorage.length-1) {

var key = localStorage.key(i);
if (localStorage.getItem(key) === '1') {
localStorage.removeItem(key);

else { i++; }

And here is the code to delete all items:

/*deletes all items in the list.*/
deleteAll: function() {

/*ask for user confirmation.*/
var answer = confirm("Delete all items?");

/*if yes.*/
if (answer) {

/*remove all items from localStorage.*/
localStorage.clear();

/*update view.*/
checklistApp.getAllItems();

/*clear up.*/
delete checklistApp.deleteAll;
b

Web SQL Database

Android’s built-in browser also supports a Web SQL Database option, which enables
you to use SQLite-style databases from JavaScript. This adds a lot more power than
basic Web Storage, albeit at a complexity cost. It is also not part of an active standard—
the Web Hypertext Application Technology Working Group (WHATWG) team working on
this standard has set it aside for the time being.

You might consider evaluating Lawnchair, which is a JavaScript API that allows you to
store arbitrary JavaScript Object Notation (JSON)-encoded objects. It will use whatever
storage options are available, and therefore will help you deal with cross-platform
variety. In particular, it supports the Google Gears facility found in some older versions
of Android.

Going to Production

Creating a little test application requires nothing magical. Presumably, though, you are
interested in having other people use your application—perhaps many others. Classic
Java-based Android applications have to deal with testing, having the application
digitally signed for production, distribution through various channels (such as the
Android Market), and providing updates to the application by one means or another.

CHAPTER 45: HTML5 503

Those issues do not all magically vanish because HTMLS is used as the application
environment. However, HTML5 does change things significantly from what Java
developers have to do.

Testing

Since HTML5 works in other browsers, testing your business logic could easily take
advantage of any number of HTML and JavaScript testing tools, from Selenium to QUnit
to Jasmine.

For testing on Android proper—to ensure there are no issues related to Android’s
browser implementation—you can use Selenium’s Android Driver or Remote Control
modes.

Signing and Distribution

Unlike native Android applications, you do not need to worry about signing your HTMLS
applications. The downside of this is that there is no support for distribution of HTML5
applications through the Android Market, which today supports only native Android
apps. Users will have to find your application by one means or another, visit it in the
browser, bookmark the page, and possibly create a home screen shortcut to that
bookmark.

Updates

Unlike native Android applications, which by default must be updated manually, HTML5
applications will be transparently updated the next time the user runs the app while
connected to the Internet. The offline caching protocol will check the web server for new
editions of files before falling back to the cached copies. Hence, there is nothing more
for you to do other than publish the latest web app assets.

Issues You May Encounter

Unfortunately, nothing is perfect. While HTML5 may make many things easier, it is not a
panacea for all Android development problems.

This section covers some potential areas of concern you will want to consider as you
move forward with HTML5 applications for Android.

Android Device Versions

Not all Android devices support HTMLS —only those running Android 2.x or higher.
Ideally, therefore, you should do a bit of user-agent sniffing on your web server and
redirect older Android users to some other page explaining the limitations in their device.

504

CHAPTER 45: HTMLS5

Here is the user-agent string for a Google/HTC Nexus One device running Android 2.1:

Mozilla/5.0 (Linux; U; Android 2.1-updatel; en-us; Nexus One Build/ERE27)+«
ApplelebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17

As you can seg, it is formatted like a typical modern user-agent string, meaning it is
quite a mess. It does indicate it is running Android 2.1-updatei.

Eventually, somebody will create a database of user-agent strings for different device
models, and from there we can derive appropriate regular expressions or similar
algorithms to determine whether a given device can support HTML5 applications.

Screen Sizes and Densities

HTML5 applications can be run on a wide range of screen sizes, from QVGA Android
devices to 1080p LCDs and beyond. Similarly, screen densities may vary quite a bit, so
while a 48 x48-pixel image on a smartphone may be an appropriate size, it may be too
big for a 1080p television, let alone a 24-inch LCD desktop monitor.

Other than increasing the possible options on the low end of screen sizes, none of this is
unique to Android. You will need to determine how best to design your HTML and CSS
to work on a range of sizes and densities, even if Android were not part of the picture.

Limited Platform Integration

HTML5, while offering more platform integration than ever before, does not come close
to covering everything an Android application might want to be able to do. For example,
an ordinary HTML5 application cannot do the following:

B Launch another application
Work with the contacts database

Raise a notification

Do work truly in the background (though web workers may alleviate
this somewhat someday)

Interact with Bluetooth devices

Record audio or video

Use the standard Android preference system
B Use speech recognition or text-to-speech

Many applications will not need these capabilities, of course. And other application
environments, like PhoneGap, will likely evolve into “HTML5 Plus” for Android. That way,
you could create a stock application that works across all devices and a separate
enhanced Android application that leverages greater platform integration, at the cost of
some additional amount of programming.

CHAPTER 45: HTMLS5

Performance and Battery

There has been a nagging concern for some time that HTML-based user interfaces are
inefficient compared to native Android Uls, in terms of processor time, memory, and
battery. For example, one of the stated reasons for avoiding BONDI-style web widgets
for the Android home screen is the performance impact.

Certainly, it is possible to design HTMLS5 applications that will suck down the battery.
For example, if you have a hunk of JavaScript code running every second indefinitely,
that is going to consume a fair amount of processor time. However, outside of that, it
seems unlikely that an ordinary application would be used so heavily as to materially

impact battery life. Certainly, more testing will need to be done in this area.

Also, an HTMLS5 application may start up a be a bit slower than other applications,
particularly if the browser has not been used in a while or if the network connection is
there but has minimal bandwidth to your server.

Look and Feel

HTML5 applications can certainly look very slick and professional—after all, they are
built with web technologies, and web apps can look very slick and professional.

However, HTML5 applications will not necessarily look like standard Android
applications, at least not initially. Some enterprising developers will, no doubt, create
some reusable CSS, JavaScript, and images that will, for example, mirror an Android
native Spinner widget (a type of drop-down control). Similarly, HTML5 applications will
tend to lack options menus, notifications, or other Ul features that a native Android
application may well use.

This is not necessarily bad. Considering the difficulty in creating a very slick-looking
Android application, HTML5 applications may tend to look better than their Android
counterparts. After all, there are many more people skilled in creating slick web apps
than there are people skilled in creating slick Android apps.

However, some users may complain about the look-and-feel disparity, just because it is
different.

Distribution

HTML5 applications can be trivially added to a user’s device—browse, bookmark, and
add a shortcut to the home screen. However, HTML5 applications will not show up in
the Android Market, so users trained to look at the Market for available applications will
not find HTML5 applications, even ones that may be better than their native
counterparts.

It is conceivable that, someday, the Android Market will support HTML5 applications. It
is also conceivable that, someday, Android users will tend to find their apps by means

505

506

CHAPTER 45: HTMLS5

other than searching the Android Market, and will be able to get their HTML5 apps that
way. However, until one of those becomes true, HTML5 applications may be less
“discoverable” than their native equivalents.

HTML5 and Alternative Android Browsers

While the built-in Android browser will be the choice of many Android users, there are
other browsers available. Here is how some of the better-known alternatives stand in
terms of HTML5 support:

B Firefox Mobile: Presently in beta form, supports offline caching and
local storage. However, it is unable to run the Checklist sample
correctly at this time, for reasons presently unknown.

B Opera Mobile: Also in beta, does not support local storage, rendering
Checklist moot. It also does not support offline caching at this time.

B Dolphin Browser HD 4.0: Supports offline caching and local storage.
While there are slight rendering problems—perhaps CSS-related —in
Checklist, the application otherwise runs fine, even without an
Internet connection.

HTML5: The Baseline

HTMLS5 is likely to become rather popular for conventional application development. It
gives web developers a route to the desktop. It may be the only option for Google’s
Chrome OS. And, with ever-improving support on popular mobile devices—Android
among them —developers will certainly be enticed by another round of “write once, run
anywhere” promises.

It is fairly likely that, over time, HTML5 will be the number two option for Android
application development, after the conventional Java application written to the Android
SDK. That will make HTMLS5 the baseline for comparing alternative Android development
options—not only will those options be compared to using the SDK, they will be
compared to using HTMLS5.

Chapter

PhoneGap

PhoneGap is perhaps the original alternative application framework for Android, arriving
on the scene in early 2009. PhoneGap (www.phonegap.com/) is open source, backed by
Nitobi, which offers a mix of open source and commercial products, along with
consulting and training services.

What Is PhoneGap?

As the PhoneGap web site puts it:

The PhoneGap mission is to web-enable native device functionality with open standards
like HTML, CSS and JavaScript so that developers can focus on the app they’re
building, not on authoring complex platform compatibility layers.'PhoneGap focuses on
bridging the gap between web technologies and native mobile development, with
access to more features than HTML5 applications have.

What Do You Write In?

A PhoneGap application is made up of HTML, CSS, and JavaScript, no different from a
mobile web site or HTMLS5 application, except that in PhoneGap the web assets are
packaged with the application rather than downloaded on-the-fly.

A preinstalled PhoneGap application, therefore, can contain comparatively large assets,
such as complex JavaScript libraries, that might be too slow to download over slower
EDGE connections. However, PhoneGap is still limited by the speed of mobile devices
and how quickly the WebKit browser can load and process those assets.

Also, development for WebKit for mobile differs from development for WebKit for
desktops, particularly with respect to touch versus mouse events. You may want to
develop using mobile layers of JavaScript frameworks (e.g., jQTouch versus plain
jQuery) where practical.

"http://www.phonegap.com/case_study/it's-a-goodday-for-a-phonegap-app/

507

http://www.phonegap.com/
http://www.phonegap.com/case_study/it's-a-goodday-for-a-phonegap-app/

508

CHAPTER 46: PhoneGap

What Features Do You Get?

As with an HTMLS5 application, PhoneGap gives you the basic capabilities of a web
browser, including AJAX support. Beyond that, PhoneGap adds a number of JavaScript
APIs to allow you to get at the underlying features of the Android platform. At the time of
this writing, that includes the following:

B Accelerometer access, for detecting movement of the device
B Audio recording

B Camera access, for taking still pictures

[]

Database access, both to databases that you create (SQLite) and to
others built into Android (e.g., contacts)

B File system access, such as to the SD card or other external storage
B Geolocation, for determining where the device is
B Vibration, for shaking the phone (e.g., force-feedback)

Since some of these are part of the HTMLS5 specification (e.g., geolocation), you have
your choice of APIs. Also, this list will change over time, so by the time you are reading
this, you may have access to more than what is described here.

What Do Apps Look Like?

PhoneGap apps look like web pages, more so than native Android apps, as shown in
Figure 46-1, a screenshot of the example application that ships with PhoneGap. You
can use CSS and images to mimic the Android look and feel to some extent, but only for
those sorts of widgets that can be created in both Android and HTML. For example, the
Android Spinner widget, which resembles a drop-down list, may be difficult to mimic in
HTML.

CHAPTER 46: PhoneGap

%5 M) (3 5:34 PM

Welcome to PhoneGap!

Platform:
Version:

UUID:

Watch Accelerometer

Get Location

Call 411

Beep

Vibrate

Get a Picture

Figure 46-1. The example application that comes with PhoneGap

How Does Distribution Work?

Distributing a PhoneGap application is pretty much identical to distributing any other
standard Android application. After testing, you create a standard APK file with the
Android build tools, from an Android project generated for you by PhoneGap. This
project will contain the Java, XML, and other necessary bits to wrap around your HTML,
CSS, and JavaScript to make up your application. Then, you digitally sign the
application and upload it to the Android Market or any other distribution mechanism you
wish to use.

What About Other Platforms?

PhoneGap is not just for Android. You can create PhoneGap applications for iPhone,
Blackberry, some flavors of Symbian, and Palm’s WebOS. In theory, at least, you can
create one application using HTML, CSS, JavaScript, and the PhoneGap JavaScript
APls, and have it run across many devices.

509

510 CHAPTER 46: PhoneGap

There are a couple of limitations that will hamper your progress to that goal:

B The web browsing component used by PhoneGap across all those
platforms is not identical. Even multiple platforms using WebKit will
have different WebKit releases, based on what was available when
WebKit was integrated into a given device’s firmware. Hence, you will
want to test to ensure that your CSS, in particular, works as you
expect on as many devices as possible.

B Not all PhoneGap JavaScript APIs are available on all devices yet, due
to a variety of factors (e.g., not exposed in the platform’s native APIs,
lack of engineering time to hoist the capability into the PhoneGap
APls, etc.). The PhoneGap wiki can keep you apprised of what works
and what does not across the devices. You will want to restrict your
feature use to match your desired platforms, or restrict your platforms
to match your desired features.

Using PhoneGap

Now, let’s look at more of the mechanics for using PhoneGap. PhoneGap’s installation
and usage, as of the time of this writing, normally requires an expert in Java-based
Android development. You need to install a whole bunch of tools, edit configuration files
by hand, and so forth. If you want to do all of that, documentation is available on the
PhoneGap web site and I'll cover it briefly below. If you are reading this chapter, there’s
a decent chance that you would rather skip all of that. Hence, for many, the best answer
is the PhoneGap Build service (http://build.phonegap.com/), still in private beta at the
time of this writing (which means you have to register to obtain the download).

Installation

You can download the latest PhoneGap tools as a ZIP archive from the PhoneGap web
site. Unpack those tools wherever it makes sense for your development machine and
platform. For Android development, that is all the PhoneGap-specific installation you will
need. However, you will need the Android SDK and related tools (e.g., Eclipse, if you
wish to use Eclipse) for setting up the project.

Creating and Installing Your Project

A PhoneGap Android project is, at its core, a regular Android project, which you can
create following the instructions outlined earlier in this book. To convert the standard
generated “Hello, World” application into a PhoneGap project, you need to do the
following:

http://build.phonegap.com/

CHAPTER 46: PhoneGap 511

1. From the Android/ directory of wherever you unzipped the PhoneGap
ZIP file, copy the PhoneGap JAR file to the 1ibs/ directory of your
project. If you are using Eclipse, you also need to add it to your build
path.

2. Create an assets/www/ directory in your project. Then, copy over the
PhoneGap JS file from the Android/ directory of wherever you unzipped
the PhoneGap ZIP file.

3. Adjust the standard “Hello, World” activity to inherit from DroidGap
instead of Activity. This requires you to import com.phonegap.DroidGap.

4. In your activity’s onCreate() method, replace setContentView() with
super.loadUrl("file:///android_asset/www/index.html");.

5. In your manifest, add all the permissions that PhoneGap requests, listed
later in this chapter.

6. Also in your manifest, add a suitable <supports-screens> element based
on what screen sizes you want to test and support.

7. Also in your manifest, add android:configChanges=
"orientation|keyboardHidden" to your <activity> element, as DroidGap
handles orientation-related configuration changes.

At this point, you can create an assets/www/index.html file in your project and start
creating your PhoneGap application using HTML, CSS, and JavaScript. You need to
include a reference to the PhoneGap JavaScript file (e.g., <script
type="text/javascript" charset="utf-8" src="phonegap.0.9.4.js" />). When you
want to test the application, you can build and install it like any other Android application
(e.g., ant clean install if you are using the command-line build process).

For somebody experienced in Android SDK development, setting this up is not a big
challenge.

PhoneGap Build

PhoneGap Build is a tools-as-a-service (TaaS) hosted approach to creating PhoneGap
projects. All of the Android build process is handled for you by PhoneGap-supplied
servers. You just focus on creating your HTML, CSS, and JavaScript as you see fit.

As noted earlier, PhoneGap Build is still in private beta at the time of this writing, though
hopefully it will be open to the public in the near future.

When you log into PhoneGap Build, you are first prompted to create your initial project,
by supplying a name and the web assets to go into the app, as shown in Figure 46-2.

512

CHAPTER 46: PhoneGap

PhOnCGap/bU”d Help Docs Yourapps mmurphy@commonsware.com sign out

Welcome to PhoneGap Build!

Get started by adding your application.
If you want to kick the tires quickly, just copy & paste
the sample repo below into the url field:
http://github.com/phonegap/phonegap-start.git

) pull from a git/svn repo url

or

) upload an archive Or index. htnl file

Choose File | No file chosen

UPLOAD

m PhoneGap

© Copyright 2008-2010 Nitobi Drop us a line: sales@nitobi.com, +1 604 685 9287

Figure 46-2. Creating your first project in PhoneGap Build

You will be able to add new projects later via a New App button, which gives you the
same set of options.

Your choices for supplying the assets are to upload a ZIP file containing all of them or to
specify the URL to a public GitHub repository that PhoneGap Build can pull from. The
latter method tends to be more convenient, if you are used to using Git for version
control and your project is open source (and therefore has a public repository).

Once you click the Upload button, the PhoneGap Build server immediately starts
building your application for Android, plus Blackberry, Symbian, and webOS, as shown
in Figure 46-3.

Phon(\Gap/l)uild Docs Yourapps mmurphy@commonsware.com sign out
Your Apps NEW APP
ANDROID WEBOS SYMBIAN BLACKBERRY
S N
PhoneGap: Getting Started = = ipk wgz i 5 Edit
N s

@ PhoneGap

© Copyright 2008-2010 Nitobi Drop us a line: sales@nitobi.com, +1 604 685 9287

Figure 46-3. Building your first project in PhoneGap Build

CHAPTER 46: PhoneGap 513

Each of the targets has its own file extension (e.g., apk for Android). Clicking that link will
let you download that file. Or, click the name of the project, and you get Quick
Response (QR) codes to enable downloads straight to your test device, as shown in
Figure 46—4.

ign out

DELETE

PhoneGap/build

Your Apps / PhoneGap: Getting Started (gi=slis

A template for Android
getting started APK
with PhoneGap .

development and
build.phonegap.com

com.phonegap.getting.
startedat1.0.0

tracking git repo
http://github.com/pho

Blackberry

OTA INSTALL

negap/phonegap-
start.git atSHA:
5364¢5

Update this app from
its repo

D PhoneGap

© Copyright 2008-2010 Nitobi Drop us a line: sales@nitobi.com, +1 604 685 9287

Figure 46-4. Your project’s QR codes in PhoneGap Build

This page also gives you a link to update the app from its GitHub repository (if you
chose that option). Or, you can click Edit to specify more options, such as the version of
your application or its launcher icon, as shown in Figure 46-5.

514

CHAPTER 46: PhoneGap

€« C M © build.phonegap.com/apps/133/edit w5 . A
CJAdmin & (COAM. @« S Uy A [Mooch & & ©'TV » [other Bookmarks

Your apps / PhoneGap: Getting Started / edit

App settings Upload a new icon

APPTME ICON FILE (PNG)
Choose File
PhoneGap: Getting Started No file chosen

UPLOAD
PACKAGE

com.phonegap.getting.started

VERSION

1.00

REPO URL

http://github.com/phonegap/phonegap-ste

DESCRIPTION

A template for getting started with
PhoneGap development and
build.phonegap.com

| & :

Figure 46-5. Your project’s settings in PhoneGap Build

All'in all, if you do not otherwise need the Android SDK and related tools on your
development machine, PhoneGap Build certainly simplifies the PhoneGap building
process.

Note, though, that at the time of writing, Nitobi (the firm behind PhoneGap and
PhoneGap Build) is planning on making PhoneGap Build a commercial service for non-
open-source applications, though it has not announced rates yet.

PhoneGap and the Checklist Sample

The beauty of PhoneGap is that it wraps around HTML, CSS, and JavaScript. In other
words, you do not have to do much of anything PhoneGap-specific to be able to take
advantage of PhoneGap delivering to you an APK suitable for installation on an Android
device. That being said, PhoneGap does expose more stuff to you than you can get
from the standards, if you need them and are willing to use proprietary PhoneGap APIs
for them.

CHAPTER 46: PhoneGap 515

Sticking to the Standards

Given an existing HTML5 application, all you need to do to make it an installable APK is
wrap it in PhoneGap. For example, to convert the HTMLS5 version of Checklist (from
Chapter 45) into an APK file, you need to do the following:

1. Follow the steps to create an empty PhoneGap project, as outlined
earlier in this chapter.

2. Copy the HTML, CSS, JavaScript, and images from the HTML5 project
into the assets/www/ directory of the PhoneGap project (note that you
do not need anything unique to HTML5, such as the cache manifest).

3. Make sure that your HTML entry point file name matches the path you
used with the loadUrl() call in your activity (e.g., index.html).

4. Add areference to the PhoneGap JavaScript file from your HTML.
5. Build and install the project.

Here is the DroidGap activity for our app, from the PhoneGap/Checklist project:

package com.commonsware.pg.checklist;

import android.app.Activity;
import android.os.Bundle;
import com.phonegap.DroidGap;

public class Checklist extends DroidGap {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
super.loadUrl("file:///android_asset/www/index.html");

}
Here is the manifest, with all of the PhoneGap-requested settings added:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.pg.checklist"
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name="Checklist"
android:configChanges="orientation|keyboardHidden"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<supports-screens
android:largeScreens="true"

http://schemas.android.com/apk/res/android

516 CHAPTER 46: PhoneGap

android:normalScreens="true"

android:smallScreens="true"

android:resizeable="true"

android:anyDensity="true"
/>
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA COMMANDS" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.MODIFY_AUDIO SETTINGS" />
<uses-permission android:name="android.permission.READ_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK STATE" />

</manifest>

And here is the HTML, which is almost identical to the HTML5 original, but with some
HTMLS5 offline stuff removed (e.g., iPhone icons) and the reference to PhoneGap’s
JavaScript file added:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Checklist</title>
<meta name="viewport"
content="width=device-width; initial-scale=1.0; maximum-scale=1.0;+
user-scalable=0;" />
<link rel="stylesheet" href="styles.css" />
<script type="text/javascript" charset="utf-8" src="phonegap.0.9.4.js"></script>

</head>
<body>
<section>
<header>
<button type="button" id="sendmail">Mail</button>
<h1>Checklist</h1>
</header>
<article>

<form id="inputarea" onsubmit="addNewItem()">
<input type="text" name="name" id="name" maxlength="75"
autocorrect placeholder="Tap to enter a new item8hellip;" />
<button type="button" id="add">Add</button>
</form>
<ul id="maillist">
<li class="empty">Mail remaining items

<p id="totals">Total: 0
Remaining: 0</p>
<ul id="checklist">
<li class="empty">Loading8hellip;</1i>

</article>

CHAPTER 46: PhoneGap

<fieldset>
<button type="button" id="deletechecked">Delete Checked</button>
<button type="button" id="deleteall">Delete All</button>
</fieldset>
</section>
<script src="main.js"></script>
</body>
</html>

For many applications, this is all you will need. You are simply looking at PhoneGap to
give you something you can distribute on the Android Market, on the iOS App Store, and
SO on.

Adding PhoneGap APIs

If you want to take advantage of more device capabilities, you can augment your HTML5
application to use PhoneGap-specific APIs. These run the gamut from telling you the
device’s model to letting you get compass readings. Hence, their complexity will vary.
For the purposes of this chapter, we will look at some of the simpler ones.

Set Up Device-Ready Event Handler

For various reasons, PhoneGap will not be ready to respond to all of its APIs right away
when your page is loaded. Instead, you need to look for a deviceready event to confirm
that it is safe to use PhoneGap-specific JavaScript globals. The following is the typical
recipe:

1. Add an onload attribute to your <body> tag, referencing a global
JavaScript function (e.g., onLoad()).

2. InonLoad(), use addEventListener() to register another global
JavaScript function (e.g., onDeviceReady()) for the deviceready event.

3. In onDeviceReady(), start using the PhoneGap APIs.

Use What PhoneGap Gives You

PhoneGap makes a number of methods available to you through a series of virtual
JavaScript objects. Here, “virtual” means that you cannot check to see if the objects
exist, but you can call methods and read properties on them. So, for example, there is a
device object that has a handful of useful properties, such as phonegap to return the
PhoneGap version and version to return the OS version. These virtual objects are ready
for use in or after the deviceready event.

For example, here is a JavaScript file (props.js from the PhoneGap/ChecklistEx project)
that implements an onLoad() function (to register for deviceready) and an
onDeviceReady() function (to use the device object’s properties):

// PhoneGap's APIs are not immediately ready, so set up an
// event handler to find out when they are ready

517

518 CHAPTER 46: PhoneGap

function onLoad() {
document.addEventListener("deviceready”, onDeviceReady, false);

}

// Now PhoneGap's APIs are ready

function onDeviceReady() {
var element=document.getElementById('props');

element.innerHTML="'<1li>Model: '+device.name+'</1i>"' +
'<1i>0S and Version: '+device.platform +' '+device.version+'</1li>"' +
'<1li>PhoneGap Version: '+device.phonegap+'</1i>";

}

The onDeviceReady() function needs a list element with an id of props. That, plus
loading this JavaScript in the first place, will require some minor modifications to our
HTML:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Checklist</title>
<meta name="viewport"
content="width=device-width; initial-scale=1.0; maximum-scale=1.0;+
user-scalable=0;" />
<link rel="stylesheet" href="styles.css" />
<script type="text/javascript" charset="utf-8" src="phonegap.0.9.4.js"></script>
<script type="text/javascript" charset="utf-8" src="props.js"></script>
</head>
<body onload="onLoad()">
<section>
<header>
<button type="button" id="sendmail">Mail</button>
<h1>Checklist</h1>
</header>
<article>
<form id="inputarea" onsubmit="addNewItem()">
<input type="text" name="name" id="name" maxlength="75"
autocorrect placeholder="Tap to enter a new item…" />
<button type="button" id="add">Add</button>
</form>
<ul id="maillist">
<li class="empty">Mail remaining items

<p id="totals">Total: 0
Remaining: 0</p>
<ul id="checklist">
<li class="empty">Loading…</1i>

</article>
<fieldset>
<button type="button" id="deletechecked">Delete Checked</button>
<button type="button" id="deleteall">Delete All</button>
</fieldset>
<footer>

CHAPTER 46: PhoneGap 519

<h2>Device Properties</h2>
<ul id="props">
</footer>
</section>
<script src="main.js"></script>
</body>
</html>

Figure 46-6 shows what the resulting app looks like.

Total: 3 Remaining: 2
abc X
X
ghi X

Device Properties

Model: htc_supersonic
0S and Version: Android 2.2

PhoneGap Version: 0.9.4

Figure 46-6. The PhoneGap Checklist application with device properties

Obviously, reading a handful of properties is far simpler than, say, taking a picture with
the device’s camera. However, the difference in complexity is mostly in what
PhoneGap’s virtual JavaScript objects give you and how you can use them, more so
than anything peculiar to Android.

Issues You May Encounter

PhoneGap is a fine choice for creating cross-platform applications. However, it is not
without its issues. Some of these issues may be resolved in time; some may be endemic
to the nature of PhoneGap.

Security

Android applications use a permission system to request access to certain system
features, such as making Internet requests or reading the user’s contacts. Applications

520

CHAPTER 46: PhoneGap

must request these permissions at install time, so the user can elect to abandon the
installation if the requested permissions seem suspect.

A general rule of thumb is that you should request as few permissions as possible, and
make sure that you can justify why you are requesting them.

PhoneGap, for a new project, requests quite a few permissions:
CAMERA

VIBRATE

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
ACCESS_LOCATION EXTRA COMMANDS
READ_PHONE_STATE

INTERNET

RECEIVE SMS

RECORD_AUDIO

MODIFY_AUDIO SETTINGS
READ_CONTACTS

WRITE CONTACTS

WRITE EXTERNAL STORAGE
ACCESS_NETWORK STATE

Leaving this roster intact will give you an application that can use every API that
PhoneGap makes available to your JavaScript...and an application that will scare away
many users. After all, it is unlikely that your application will be able to use, let alone
justify, all of these permissions.

It is certainly possible for you to trim down this list, by modifying the
AndroidManifest.xml file in the root of your PhoneGap project. However, you will then
need to thoroughly test your application to make sure you did not get rid of a permission
that you actually need. Also, it may be unclear to you which permissions you can safely
remove.

Eventually, the PhoneGap project may have tools to help guide you in the choice of
permissions, perhaps by statically analyzing your JavaScript code to see which
PhoneGap APIs you are using. In the meantime, though, getting the proper set of
permissions will involve a lot of trial and error.

CHAPTER 46: PhoneGap

Screen Sizes and Densities

Normal web applications primarily focus on screen resolution and window sizes as their
primary variables. Mobile web applications do not have to worry about window sizes, as
browsers and apps typically run full-screen. Mobile web applications need to deal with
physical size and density, though—issues that are off the radar for traditional web
development.

Netbooks can have screens that are 10 inches or smaller, whereas desktops can have
screens that are 24 inches or larger. So physical screen size would seem to be something
web developers need to address. However, screen resolution (in pixels) generally tracks
well with physical size in the netbook/notebook/desktop realm. That is because screen
density is fairly consistent across their LCDs, and that density is fairly low.

Smartphones, on the other hand, have several different densities, causing the
connection between resolution and size to be broken. Some low-end phones,
particularly with small (e.g., 3 inch) LCDs, have densities on par with nice monitors.
Midrange phones have twice the density (240 dpi versus 120 dpi). Apple’s iPhone 4 has
even higher density, and there likely will soon be some Android devices with so-called
retina displays as well. Hence, an 800x480 resolution could be on a screen ranging
anywhere from 4 inches to 7 inches, for example. Tablets add even more possible sizes
to the mix.

This is compounded by the problems caused by touchscreens. A mouse can get pixel-
level precision in its clicks. Fingers are much less precise. Hence, you may need to
make your buttons and such bigger on a touchscreen, so that it is finger-friendly. This
causes some problems with scaling of assets, particularly images. What might be finger-
friendly on a low-density 3-inch device might be entirely too small for a high-density 4-
inch device.

Native Android applications have built-in logic for dealing with this issue, in the form of
multiple sets of resources (e.g., images) that can be swapped in based on device
characteristics. Eventually, PhoneGap and similar tools will need to provide relevant
advice to their users for how to create applications that can similarly adapt to
circumstances.

Look and Feel

A web app never quite looks like a native one. This is not necessarily a bad thing.
However, some users may find it disconcerting, particularly since they will not
understand why their newly installed app (made with PhoneGap, for example) looks so
different from any other similar app they may already have.

As HTML5 applications become more prominent on Android, this issue should decline in
importance. However, it is something to keep in mind for the next year or two.

521

522 CHAPTER 46: PhoneGap

For More Information

At the time of this writing, there are no books available dedicated to PhoneGap
development. Also, it is still a fast-moving target, particularly as it heads to version 1.0.
Hence, at the moment, the best information on PhoneGap can be found on the
PhoneGap site, including its APl documentation.

Chapter

Other Alternative
Environments

The alternative application environments described in the preceding chapters represent
but a few of the growing flood of such technologies. Here, we will take a brief look at a
few other alternative application environments.

NOTE: This area is changing rapidly, so by the time you read this chapter, the material may be
somewhat out of date relative to the progress each of these technologies has made. Check the
web site of each of the application environments for the latest updates.

Rhodes

Rhodes (http://rhomobile.com/) is similar to PhoneGap insofar as you develop an
Android application whose user interface is defined via HTML, CSS, and JavaScript. The
difference is that Rhodes bakes in a full Ruby environment, with a Rails-esque
framework. Your Ruby code generates HTML and such to be “served” to an activity via
a WebView widget, much like a server-side Ruby web app would generate HTML to be
served to a stand-alone web browser.

Similar to PhoneGap, you can either build the project on your development machine or
use their hosted build process. The latter method is recommended, partly because the
requirements for local builds are higher than those for PhoneGap —notably, Rhodes
requires the Native Development Kit (NDK) for building and linking the Ruby interpreter
to your application.

Rhodes winds up creating larger applications than does PhoneGap, due to the overhead
of the Ruby interpreter (~1.5MB). However, if you are used to server-side web
development, picking up Rhodes may be easier for you than picking up PhoneGap.

523

http://rhomobile.com/

524

CHAPTER 47: Other Alternative Environments

Flash, Flex, and AIR

Adobe has been hard at work extending its Flash, Flex, and AIR technologies to the
mobile space. You can use Flex (the “Hero” edition) and Flash Builder (the “Burrito”
edition) to create Android APK files that can be distributed on the Android Market and
deployed to Android devices. Those devices will need to have the AIR runtime installed,
which is free, but is a large download and works only on Android 2.2 devices. The same
projects can be repackaged for iOS and the Blackberry Playbook tablet, and possibly for
future devices down the road.

AIR (Adobe Integrated Runtime) is not as tightly integrated with the platform as
PhoneGap is (e.g., AIR provides no access to the device’s contacts), though this is an
area to which Adobe likely will devote more resources over time. Besides, Adobe is a big
firm with a large ecosystem behind it and many existing Flash, Flex, and AIR developer
resources to tap into.

JRuby and Ruboto

JRuby (www. jruby.org/) is one of the most popular languages designed to run on the
JVM —besides Java itself. JRuby was quickly ported to run on Android, but with some
optimizations disabled, since JRuby is actually running on the Dalvik virtual machine that
underlies the Android environment, not on a classic JVM.

However, JRuby alone cannot create Android applications. As a scripting language,
there is no way for it to define an activity or other component—those need to be
registered in the application’s manifest as regular Java class files.

This is where Ruboto (http://ruboto.org/) comes in. Ruboto is a framework for a
generic JRuby/Android application. It provides skeletal activities via a code generator
and allows JRuby scripts to define handlers for all of the lifecycle methods (e.g.,
onCreate()), define user interfaces using JRuby code, and so forth. The result can be
packaged as an APK file using supplied Rake script. The results can be uploaded to the
Android Market or distributed however else you desire.

Mono for Android

Mono is an open source reimplementation of C# and .NET for non-Windows
environments. Mono has had its fair share of controversies, mostly stemming from
Microsoft, such as whether Microsoft will someday squash Mono over patent
considerations.

Mono for Android has been in the works for some time. This would allow Mono
developers to target Android for their apps. In principle, one could develop C#
applications for Android this way.

http://www.jruby.org/
http://ruboto.org/

CHAPTER 47: Other Alternative Environments

While Mono itself is an open source project, Mono for Android “is a commercial
product...licensed on a per-developer basis,” according to the Mono project. This may
come as a bit of a shock to developers who are expecting Mono on Android to remain
open source.

App Inventor

App Inventor (http://appinventor.googlelabs.com/) is an Android application
development tool made available by Google, but outside of the normal Android
developer site. App Inventor was originally developed for use in education, but they have
been inviting others into their closed beta.

App Inventor is theoretically a web-based development tool. Here, “theoretically” means
that, in practice, users have to do a fair amount of work outside of the browser to get
everything set up:

B Have Java installed and functioning in the browser, capable of running
Java Web Start (. jnlp) applications

B Download and install a large (~55MB) client-side set of tools

B Have a phone and have it configured to work with App Inventor and
the Android SDK

Once you set it up, App Inventor gives you a drag-and-drop GUI editor, as shown in
Figure 47-1.

$3 App Inventor for Android

€ C | 7t httpy/appinventor.googlelabs.com/ode/Ya htm > O &
CAdmn @ CIAM. @ S B [)Mooch B © ©!TV (3 Dev (] Blogging (J Books (J Projects (J OpenMob V] Gmail @’ Checkist (3 Travel £ Other bookmarks

A —
App Inventor My Projects Design Learn

Ve APP seT Welcome to App Inventor!
TestApp Open the Blocks Editor || Package for Phone ~

Palette Viewer Components Properties
RN & 5:00PMm

© [screent Screen
(A Labeit

Basic

3 Buton BackgroundColor

: Canas Beutont [wite

& CheckBor Lsounat Backgroundimage

& o @ ccoerometersensort | oo

@ mage Rename..] Delete e

Al Lavel odia I L

5 LstPicer kit png
meow.mp3

Add

[PasswordTedSox
) Texgor
= Tinos

Social

Sensors

Screen Arrangement

Other stuff

Non-visible components
Not ready for prime time @ @
Sound1 AccelerometerSensort o

Figure 47-1. The App Inventor “Designer” view

App Inventor also gives you a Blocks Editor (see Figure 47-2), where you attach
behaviors to events (e.g., button clicks) by snapping together various “blocks”
representing events, methods, and properties.

525

http://appinventor.googlelabs.com/

526

CHAPTER 47: Other Alternative Environments

]

Figure 47-2. The App Inventor Blocks Editor

While working in the GUI editor, you see what you are building live on an attached
phone and can test it in real time. Later, when you are ready, you can package the
application into a standard APK file.

However, App Inventor is not really set up for production application use today:
B You cannot distribute App Inventor apps on the Android Market.

B It has more components aimed at “sizzle” (e.g., Twitter integration) and
fewer components delivering capabilities that a typical modern app
might need (e.g., relational databases and lists).

B Only one developer at a time can work on a project.

In the future, it is possible that App Inventor will become a solid option, or that App
Inventor will trigger other firms to create similar sorts of programming-free development
options for Android.

Titanium Mobile

Titanium Mobile’s claim to fame is that it uses JavaScript only to define the user
interface, and eschews HTML entirely. Its JavaScript library, in addition to providing
access to databases and platform capabilities, lets you declare user interface widgets.
But its layout capabilities, for positioning said widgets, leave something to be desired.

As of the time of this writing, Appcelerator (www.appcelerator.com/), the creator of
Titanium Mobile, does not offer a cloud-based set of tools. Its Titanium tool has a very
slick-looking Ul, but it still requires the Java SDK and Android SDK in order to be able to
build Android applications, making the setup a bit daunting for some.

As of the time of this writing, Titanium Mobile supports development for Android and
iOS, with Blackberry support in a private beta.

http://www.appcelerator.com/

CHAPTER 47: Other Alternative Environments

Other JVM Compiled Languages

If you are happy with regular Android development, but you just do not like Java, any
language that can generate compatible JVM bytecode should work with Android. You
would have to modify the build chain for that other language to do the rest of the
Android build process (e.g., generate R. java from the resources and create the APK file
in the end).

Scala (www.scala-lang.org/) and Clojure (http://clojure.org/) are two such
languages, whose communities have put together instructions for using their languages
for Android development.

527

http://www.scala-lang.org/
http://clojure.org/

PartVI I

The Ever-Evolving Android

Chapter

Dealing with Devices

Android is “free as in beer” for device manufacturers, as it is an open source project.
Hence, device manufacturers have carte blanche to do what they want with Android as
they put it on their devices. This means a breadth of choices for device users, who can
choose among Android devices in a variety of shapes, sizes, and colors. This also
means developers have some device differences and idiosyncrasies to take into
account.

This chapter will give you some tips and advice for dealing with these device-specific
issues, to go along with the screen size material in Chapter 25.

This App Contains Explicit Instructions

Originally, the only Android device was the T-Mobile G1. Hence, if you were writing an
Android application, you could assume the existence of a hardware QWERTY keyboard,
a trackball for navigation, and so on. Now, though, over 100 other devices exist, many
with different hardware capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various types of
hardware. Some applications, though, will be unusable without certain hardware
characteristics. For example, a full-screen game may rely on a hardware keyboard or
trackball to indicate player actions—soft keyboards and touchscreens may be
insufficient.

Fortunately, starting with Android 1.5, you can add explicit instructions that tell Android
what you need, so that your application is not installed on devices lacking such
hardware. We'll look at that now, then move onto implied feature requests.

Explicit Feature Requests

In addition to using the target ID system to indicate the level of device your project is
targeting, you can use a new AndroidManifest.xml element to specify hardware that is
required for your application to run properly. You can add one or more <uses-
configuration> elements inside the <manifest> element. Each <uses-configuration>

531

532

CHAPTER 48: Dealing with Devices

element specifies one valid configuration of hardware that your application will work
with. At the present time, there are five possible hardware requirements you can specify
this way:

B android:reqFiveWayNav: Indicates you need a five-way navigation
pointing device of some form (e.g., android:reqFiveWayNav = "true")

B android:regqNavigation: Restricts the five-way navigation pointing
device to a specific type (e.g., android:regNavigation = "trackball")

B android:reqHardKeyboard: Specifies whether a hardware (physical)
keyboard is required (e.g., android:reqHardKeyboard = "true")

B android:regKeyboardType: Used in conjunction with
android:regHardKeyboard, indicates a specific type of hardware
keyboard is required (e.g., android:regKeyboardType = "qwerty")

B android:reqTouchScreen: Indicates what type of touchscreen is
required, if any (e.g., android:reqTouchScreen = "finger")

Starting in Android 1.6, there is a similar manifest element, <uses-feature>, that is
designed to document requirements an application has for other optional features on
Android devices. For example, the following attributes can be placed in a <uses-
feature> element:

B android:glEsVersion: Indicates that your application requires
OpenGL, where the value of the attribute indicates the level of OpenGL
support (e.g., 0x00010002 for OpenGL 1.2 or higher)

B android:name = "android.hardware.camera": Indicates that your
application needs a camera

B android:name = "android.hardware.camera.autofocus": Indicates that
your application specifically needs an autofocus camera

Each Android release adds more features that you can require. These requests will
cause the Android Market—and other, third-party markets, one hopes—to filter your
application out from devices for which it is unsuitable.

The <uses-feature> element has an android:required attribute that you can specify. By
default, it is set to true, meaning your application absolutely needs this feature. If you
set it to false, you are advertising that your application can take advantage of the
feature if it exists, but does not absolutely need it. To find out at runtime whether the
feature exists on the device, you can use the hasSystemFeature() method on
PackageManager to interrogate the device.

Implied Feature Requests

If you have requested permissions like CALL_PHONE or SEND_SMS, unless you take the
proper steps, your application will not be available for the Motorola XOOM, nor
presumably for other Android 3.0-based tablets.

CHAPTER 48: Dealing with Devices

Some permissions imply that you need certain hardware features. Scroll down to the
“Permissions that Imply Feature Requirements” section on the <uses-feature> page to
find the list.’

The Android Market treats as though requesting a permission like CALL_PHONE also
requests:

<uses-feature android:name="android.hardware.telephony" />

The XOOM does not have telephony; it is the first Android Market—-compliant device with
that limitation. While it can have a data plan, it has no voice or SMS capability, so it is
treated as not having android.hardware.telephony. But, if you request permissions like
CALL_PHONE, the Android Market by default will assume you need
android.hardware.telephony. As a result, you will be filtered out of the Android Market
for the XOOM.

The solution is simple: for any hardware features that might be implied by permissions
but that your application does not absolutely need, manually add the appropriate <uses-
feature> element to your manifest with android:required="false":
<uses-feature

android:name="android.hardware.telephony"

android:required="false"
/>

Then, before you try placing a phone call or sending an SMS or something, use
PackageManager and getSystemAvailableFeatures() to find out if
android.hardware.telephony is available on the device. For example, you might check
for telephony early on and disable various menu choices, such as buttons that might
lead the user to place a call or send an SMS.

If your application absolutely needs telephony, then the implied <uses-feature> will
work, though you may wish to consider putting one in explicitly. However, just bear in
mind that this means your app will not work on the XOOM or other tablets that lack
telephony.

A Guaranteed Market

As mentioned in the introduction to the chapter, Android is open source. Specifically, it
is mostly available under the Apache Software License 2.0. This license places few
restrictions on device manufacturers. Therefore, it is very possible for a device
manufacturer to create a device that, frankly, does not run Android very well. It might
work fine for standard applications shipped on the device but do a poor job of handling
third-party applications, like the ones you might write.

To help address this, Google has some applications, such as the Android Market, that it
has not released as open source. While these applications are available to device

" http://developer.android.com/guide/topics/manifext/uses-feature-element.html

533

http://developer.android.com/guide/topics/manifext/uses-feature-element.html

534

CHAPTER 48: Dealing with Devices

manufacturers, the devices that run the Android Market are tested first, to help ensure
that a user’s experience with the device will be reasonable.

A Google engineer cited one case where a device manufacturer was readying a phone
that had a QVGA screen, before the release of Android 1.6, in which QVGA support was
officially added to the platform. While that manufacturer had arranged for the built-in
applications to work acceptably on the smaller-resolution screen, third-party
applications were a mess. Google apparently declined to provide the Android Market to
the manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing a distribution
means for your applications, also serves as a bit of a seal of approval that the device
should support well-written third-party applications. Specifically, any device that has the
Android Market

B Meets the criteria outlined in the Compatibility Definition Document
(CDD)

B Has passed the Compatibility Test Suite (CTS)

Other Stuff That Varies

Other things that vary from device to device include the following:

B Which location technologies are available (e.g., GPS, cell tower
proximity, Galileo)

B Which camera features are available (e.g., flash, autofocus, sepia tone)

B What sensors are available (e.g., accelerometer, gyroscope,
barometer)

The strategy for these is to interrogate the system to find out what the possibilities are,
then decide which to use, where the decision could be made solely by you or with user
input. For example, you can use Criteria to determine which is the best location
provider to use with LocationManager.

Bugs, Bugs, Bugs

Unfortunately, devices inevitably have bugs. Some bugs are truly accidental. Some are
side effects from changes the device manufacturer made to achieve some business
aims. Some are actually intentional, though the engineers who implemented them may
not have fully understood their ramifications.

There is not much you can do tactically about these bugs, beyond try to work around
them. The Build class, in the android.os package, can tell you the make and model of
the device that is running your app. That, plus your own hard-won experience with
certain problems, will help you identify where you need to route around firmware
damage.

CHAPTER 48: Dealing with Devices

Strategically, if you find something that is clearly a device bug, you should file an issue
to have this bug detected via the CTS. The CTS is supposed to filter out devices that
cannot faithfully run Android applications. However, the CTS has many holes, and
device bugs slip through. By collectively improving the CTS, we can help prevent
problems from cropping up in the future. You can file an issue at the Public Issue
Tracker for Android Bugs, http://code.google.com/p/androidbugs/issues/list.

Device Testing

Ideally, you should try to test your apps on a variety of hardware. However, this can get
expensive. Here are some options for doing it more cheaply:

B Sign up for DeviceAnywhere’s independent developer plan, which is a
lower-cost way of being able to access their device farm for remote
testing.

B Some device manufacturers hold device labs at various events, such
as Motorola held at AnDevCon 2011.

B Some carriers have perpetual device labs, such as Orange’s developer
centres.

B You may be able to arrange short-term (e.g., 15-minute) device swaps
as part of a Meetup or Google Technology User Group with fellow
Android developers.

535

http://code.google.com/p/androidbugs/issues/list

Chapter

Where Do We Go from
Here?

Obviously, this book does not cover everything. And while your primary resource
(besides the book) is the Android SDK documentation, you are likely to need information
from additional sources.

Searching online for “android” and a class name is a good way to locate tutorials that
reference a given Android class. However, bear in mind that tutorials written before late
August 2008 are probably written for the M5 SDK and, as such, will require considerable
adjustment to work properly in current SDKs.

Instead of randomly hunting around for tutorials, you can use some of the resources
outlined in this chapter to narrow your search.

Questions, Sometimes with Answers

The official places to get assistance with Android are the Android Google Groups. With
respect to the SDK, there are three to consider:

B StackOverflow’s android tag
(http://stackoverflow.com/questions/tagged/android)

B Android Developers (http://groups.google.com/group/android-
developers), for SDK questions and answers

B Android Discuss (http://groups.google.com/group/android-discuss),
designed for free-form discussion of anything Android-related, not
necessarily for programming questions and answers

You might also consider the following resources:
B The Android tutorials and programming forums at www.anddev.org
B The Open Mob for Android wiki (http://andmob.wikidot.com/)

537

http://stackoverflow.com/questions/tagged/android
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-discuss
http://www.anddev.org
http://andmob.wikidot.com/

538 CHAPTER 49: Where Do We Go from Here?

The #android-dev IRC channel on freenode (http://irc.freenode.net)

The Android forum on JavaRanch

It is important, particularly for StackOverflow and the Google Groups, to write
informative questions. Following are some tips for writing effective questions:

Include relevant portions of the source code (e.g., the method in which
you are getting an exception).

Include the stack trace from LogCat, if the problem is an unhandled
exception.

On StackOverflow, make sure your source code and stack trace are
formatted as source code; on Google Groups, consider posting long
listings on http://gist.github.com or a similar code-paste site.

Explain thoroughly what you are trying to do, how you are trying to do
it, and why you are doing it this way (especially if you think your goal
or approach may be a little offbeat).

On StackOverflow, respond to answers and comments with your own
comments, addressing the person using the @ syntax (e.g.,
@CommonsWare), to maximize the odds you will get a reply.

On the Google Groups, do not “ping” or reply to your own message to
try to elicit a response until a reasonable amount of time has gone by
(e.g., 24 hours).

Heading to the Source

The source code to Android is now available. Mostly, this is for people who are looking
to enhance, improve, or otherwise fuss with the insides of the Android operating system.
But it is possible that you will find the answers you seek in that code, particularly if you
want to see how some built-in Android component does its thing.

The source code and related resources can be found at http://source.android.com,
where you can do the following:

Download or browse the source code
File bug reports against the operating system itself

Submit patches and learn about the process for how such patches are
evaluated and approved

Join a separate set of Google Groups for Android platform
development

Rather than download the multigigabyte Android source code snapshot, you may wish
to use Google Code Search (www.google.com/codesearch) instead. Just add the

http://irc.freenode.net
http://gist.github.com
http://source.android.com
http://www.google.com/codesearch

CHAPTER 49: Where Do We Go from Here? 539

package:android constraint to your search query, and it will search only in Android and
related projects.

Getting Your News Fix

Ed Burnette, a nice guy who happened to write his own Android book, is also the
manager of Planet Android (www.planetandroid.com), a feed aggregator for a number of
Android-related blogs. Subscribing to Planet Android’s feed enables you to monitor
quite a few Android-related blog posts, though not exclusively related to programming.

To try to focus more on programming-related, Android-referencing blog posts, you can
search DZone (www.dzone.com) for “android” and subscribe to a feed based on that
search.

http://www.planetandroid.com
http://www.dzone.com

Index

Symbols and

Numerics

@ symbol
soft keyboard for e-mail address
input, 97
XML-based layouts, 57
@-+id convention, 57, 58
*.properties file, 32
+ (plus) sign
first occurrence of id value, 83

A

aapt tool
XML-based layouts, 55
AbsoluteLayout container, 156
handling multiple screen sizes, 259
accelerometer
changing screen orientation, 187,
200, 201
ACCESS_ALL_DOWNLOADS
permission, 383
ACCESS_COARSE_LOCATION
permission, 438, 444
ACCESS_FINE_LOCATION permission,
438, 444, 452
accessory button, 98, 99, 100, 101
ACL (Android Compatibility Library), 299
Fragment implementation from, 300
inheritance from FragmentActivity,
306
maps and fragments, 459
preferences via fragments, 351
action bar, Android 3.0 apps, 283
Find contacts search field, 285

action bar, Honeycomb Ul, 289-295
adding custom views to, 291-295
defining layout, 292-293
getting control of user input,
294-295
putting layout in menu, 293-294
backward compatibility, 289, 295,
319
enabling, 289-290
fragments adding options to, 299
fragments adding tabs to, 299
handling multiple Android versions,
319-320
checking API level, 319
promoting menu items to, 290-291
responding to activity icon, 291
ACTION_CALL intent, 466
ACTION_DIAL intent, 464, 466
ACTION_PICK intent, 189, 190
saving state, 192
startActivityForResult method, 229
ACTION_VIEW intent, 190
actionDone value, accessory button, 99
actionLayout attribute
adding custom views to action bar,
293
getting control of user input, 294
actions, intents, 221, 222
actionSend value, accessory button, 99
activated style
persistent row highlighting, 305
active state, activities, 183
activities, 5
active state, 183
adding fragments to, 306
Android Ul architecture, 227

541

Index

background threads, 203
bigger keyboard obscuring activity,
100
blocking rotation of activity, 198-200
building, 53
consolidating, 266
cost of using background threads,
219
creating skeleton project in Eclipse,
25
creating/attaching widgets to
activity, 55
CWBrowser activity, 233
dead state, 184
dealing with multiple screen sizes,
306
declaring intent filters, 223
DetailsActivity class, EU4You_6, 311
device configuration changes
affecting, 187
eligibility for intents, 223
embedding images in, 63
enforcing permissions via manifest,
439
EU4You_6 project, 309-311
fragment-to-activity communication,
307
FragmentActivity class, 306
fragments, 297
hosting fragments, 306
imported classes, 52
inheritance from Activity class, 52
intents, 228
Java code for, 51-53
launching, 228-231
calling startActivity(), 228, 230
calling startActivityForResult(),
229
creating intent, 228
launching peer activity, 229-231
layout with IME, 100
life cycle, 183
ListActivity widget, 104-106
manifest file, 33
Now demonstration activity, 54
Now.java file, 51

onCreate method, 53
onRestorelnstanceState method,
188
onSavelnstanceState method, 188
package declaration, 52
panning activity, layout, 100
paused state, 183
peer (not subordinate) activities, 227
launching peer activity, 229-231
startActivity method, 228, 230
PreferenceActivity, 340-341
premature closing of, 183, 184
recreating instance state, 186
resizing activity, layout, 100
running, 53
saving application-instance state,
186
screen rotation, 188
sending button clicks to activity
instance, 53
setting content view, 53
startActivity method, 228, 230
startActivityForResult method, 189,
190, 229
states, 183-184
stopped state, 184
styling with themes, 256
subordinate activities, 227
startActivityForResult method,
229
TabActivity widget, 144
tabbed browsing, 232
taking advantage of bigger screen,
266
target component, intents, 222
threads and screen rotation,
214-218
Activity class, 32
finish method, 184
getLastNonConfigurationlnstance
method, 218
inheritance from, 52
OnClickListener, 52
onCreate method, 184, 218
onDestroy method, 184
onPause method, 185

Index

onRestart method, 185
onResume method, 185
onRetainNonConfigurationlnstance
method, 217, 218
onSavelnstanceState method, 186,
225
onStart method, 185
onStop method, 185
runOnUiThread method, 208
threads and screen rotation, 215,
217,218
activity command-line switch
android create project command, 27
activity element, 35
intent-filter child element, 35
label attribute, 35
name attribute, 35
theme attribute, 256
windowSoftinputMode attribute, 100
activity icon, responding to
action bar, Honeycomb Ul, 291
adapters, 103-104
ArrayAdapter, 104
delegating loading to initAdapter(),
172
getView method, 121—
IconicAdapter class, 1
Java, 103
selection widgets, 103
setAdapter method, 104, 108, 112,
115
setListAdapter method, 105
adb (Android Debug Bridge) utility, 487
adb pull command, 367
adb push command, 368
addEventListener function, JavaScript
PhoneGap Checklist application,
517
addPreferencesFromResource method,
352, 353
backward compatibility, 354
users setting up preferences, 341
addProximityAlert method, 446
AddStringTask class, 211, 213
addSubMenu method, 169
addTab method, 145, 148

123, 125
21-123

addWord method, 295
Adobe Integrated Runtime see AIR
ADT (Android Developer Tools)
installing ADT for Eclipse, 12-14
installing Android SDK, 8
ADT add-in, Eclipse, 37
afterTextChanged callback,
TextWatcher, 116
AIR (Adobe Integrated Runtime), 524
alternatives to Java-based
development, 493
AlertDialog, 180, 181
adding custom views to action bar,
292
alerting users, 179
toasts, 179-180
alerts, 180, 181
notifications, 423-433
Allocation Tracker tab, DDMS, 486
alphabeticShortcut attribute, 177
altitude
hasAltitude method, 445
always value
showAsAction attribute, 290
AnalogClock widget, 140
Android
adding soft keyboards to, 64
alternatives to Java-based
development, 492-494
APl levels, 315
application device hardware
requirements, 531-533
buttons, 62-63
check boxes, 66-68
content providers, 5
creating skeleton project, 23-27
detecting build version, 316
downloading files, 383-391
fields, 64-65
fonts, 467-468
handling API changes, 314-318
handling changes to, 313
resources, 314
view hierarchy, 313
handling increasing variety of
platforms, 313

543

544 Index

handling multiple screen sizes, debuggable, 35
258-260 drawSelectorOnTop, 118
handling multiple versions, 314 ellipsize, 471
highest supported version, 316 enabled, 176
Honeycomb Ul, 318-320 glEsVersion, 532
lowest supported version, 315 hardwareAccelerated, 286
targeted development version, horizontalSpacing, 111
316 icon, 176
intents, 5 id, 56, 57, 83
Java code with, 370 imeActionld, 293
Java-centric strategy, 491 imeOptions, 98, 293
labels, 61-62 inputType, 64, 94, 293
notifications, 423-433 label, 35
Open Mob for Android wiki, 537 largeScreens, 261
parsers, 379 layout_above, 83
Planet Android, 539 layout_alignXyz, 82, 83
preferences, 339-355 layout_below, 83
radio buttons, 68-70 layout_centerXyz, 82
smartphone programming, 4 layout_column, 88
source code, 538 layout_gravity, 75
SQLite, 357-368 layout_height, 57, 74, 81
tutorials, 537 layout_margin, 76
using BeanShell on, 371-373, 374 layout_span, 88
using scripting languages on, 371, layout_toLeftOf, 83
374 layout_toRightOf, 83, 84
versions, 48 layout_weight, 75, 81
Android 2.x options icon layout_width, 57
application Ul, Android 3.0 screen, LinearLayout container, 74, 75,
283 17,293
Android 3.0 see Honeycomb RelativeLayout container, 85
Android 3.0 screen see Honeycomb Ul menuCategory, 176
Android applications see applications minSdkVersion, 48
Android attributes (android:) name, 35
see also attributes nextFocusXyz, 71
actionLayout, 293, 294 normalScreens, 261
alphabeticShortcut, 177 numColumns, 111
anyDensity, 261 numericShortcut, 177
apiKey, 451 orderIinCategory, 176
background, 71 orientation, 74
choiceMode, 106, 107 padding, 70
clickable, 451 password, 94
collapseColumns, 89 reqFiveWayNav, 532
columnWidth, 111 reqHardKeyboard, 532
completionThreshold, 115 reqKeyboardType, 532
configChanges, 195, 198 reqNavigation, 532

contentDescription, 71 reqTouchScreen, 532

Index

required, 532

screenOrientation, 198, 200

shortcut, 177

showAsAction, 290

shrinkColumns, 89

smallScreens, 261

spacing, 118

spacingWidth, 111

spinnerSelector, 118

src, 63

stretchColumns, 89

stretchMode, 111

targetSdkVersion, 48

text, 57

textAppearance, 293

theme, 256

title, 176

typeface, 468

versionCode, 34

versionName, 34

verticalSpacing, 111

visibility, 71

visible, 177

windowSoftinputMode, 100

xlargeScreens, 261
Android AVD Manager

see also Android SDK and AVD

Manager

creating AVDs, 15

emulator screen densities, 264
android batch file

installing Android SDK, 9
Android Compatibility Library see ACL
android create project command, 26,

27,31

Android Debug Bridge (adb) utility, 487
Android Developer Tools see ADT
Android Developers web site, 7, 537

Android developer tools, 8
Android devices

building/running applications, 27-30

changing screen orientation, 200

GPS (Global Positioning System), 6

Honeycomb Ul, 286-288

Internet access, 6, 377

keyboards, 93-94

multimedia capabilities, 6
networks, 6
phone services, 6
setting up, 21
setting up development machine to
talk to, 21
Mac OD X and Linux, 22
Windows, 21-22
storage, 5
Android devices see devices
Android Discuss web site, 537
Android emulators see emulators
Android Google Groups, 537
Android JAR
importing non-Eclipse project into
Eclipse, 42
android list targets command, 27
Android Market
creating skeleton project at
command line, 27
filtering applications, 533
handling multiple Android versions,
314
android package
Java code for activities, 52
Android packaging tool
building activity, 53
Android phones see phones
Android programs
Java SE classes availability to, 52
Android Project option
creating skeleton project in Eclipse,
23
Android projects see projects, Android
Android properties see Android
attributes (android:)
Android Repository
Android SDK and AVD Manager, 10
Android SDK and AVD Manager
Android Repository, 10
Android Virtual Devices list, 15
Available packages option, 9
creating Android emulator, 43
Google add-ons, 11
installing Android SDK, 9-12
license confirmation dialog, 11

545

Index

running, 15
Third party Add-ons, 10
Android toolkit
Button widget, 62-63
CheckBox widget, 66-68
EditText widget, 64-65
ImageButton widget, 63
ImageView widget, 63
RadioButton widget, 68-70
TextView widget, 61-62
widgets, 61-70
Android Virtual Device see AVD
android.R.id.home
responding to activity icon, 291
AndroidHttpClient class, 382
cookies, 382
threads, 382, 392
AndroidManifest.xml file, 31, 33-35
see also manifest file
activity element, 35
adding service to, 397
application element, 35
explicit hardware feature
requirements, 531
importing non-Eclipse project into
Eclipse, 39
intent-filter element, 35, 223
launching activities, 228
manifest element, 34
namespace declaration, 34
putting maps into applications, 452
receiver element, 224
requesting permission to access
Internet, 160
supports-screens element, 47
writing tablet-only apps, 321
users setting up preferences, 342
uses-permission element, 437, 438
uses-sdk element, 48
maximum SDK version, 316
minimum SDK version, 315
target SDK version, 316
version information, 48
versionCode attribute, 34
versionName attribute, 34

Android-style smartphones
benefits/drawbacks of smartphone
programming, 3-4
ANR (application not responding) error,
209
Ant
adding JARs to project, 369
installing Apache Ant, 14
ant clean install command, 28
building activity, 53
ant jarcore command
using BeanShell on Android, 371
ANT_HOME environment variable
installing Apache Ant, 14
anyDensity attribute
screen densities, 261
Apache Ant see Ant
Apache HttpClient library see HttpClient
interface
API keys
generating, Google Maps, 450
apiKey attribute
putting maps into applications, 451
APls
APl levels, 315
action bar, Honeycomb Ul, 319
examining API level of device,
318
HoneycombHelper class, 320
conditional class loading, 318
detecting classes, 317
documenting required permissions,
440
Java code with Android, 370
reflection, 317-318
wrapping, 317
.apk file, 33
converting HTML5 Checklist app
into, 515
handling multiple Android versions,
314
App Inventor, 525-526
application element, 35
debuggable attribute, 35
theme attribute, 256

Index

application launcher
activity element, manifest, 35
Android 3.0, 282
Android emulator, 30
application name
creating skeleton project in Eclipse,
25
application not responding (ANR) error
Ul (main) thread, 203
application resource (.ap) file
bin directory, 33
application Ul
Android 3.0 screen, 282
applications
accessing files prepackaged with,
323-326
alternative environments, 523-527
Android 3.0-optimized apps, 283
Android Market filtering, 533
.apk file, bin directory, 33
avoiding unresponsive code,
331-334
building/running, 27-30
command line, 28-30
Eclipse, 2728
device hardware requirements,
531-533
HTMLS5 for offline apps, 495-500
initiating phone call from, 464-466
manifest file, 33
menus, 167-178
onSavelnstanceState method, 186
premature closing of activities, 184
putting maps into, 451-452
reading/writing data files, 326-330
recreating instance state, 186
requesting permissions pre
installation, 441
running project in emulator, 45
saving application-instance state,
186
securing, 438-440
setting up to build, 7-22
threads, 203-219
writing tablet-only apps, 321

apply method, SharedPreferences, 340

applyFormat method
styled text and strings, 239
apps see applications
ArrayAdapter class, 104
changing list icon based on row
data, 121
enhancing lists, 120
getView method, 121, 366
ListActivity widget, 105, 106
ListView widget, 107
RatingBar widget, 129, 131
res/layout/cell.xml file, 113
TextView widget, 104
using convertView parameter,
getView(), 127
using holder pattern, 128
arrays, 245-246
getStringArray method, 246
res/values directory, 243
assets directory, 32
assets folder
packaging fonts, 469
AsyncDemo class
implementing ListActivity using
AsyncTask, 210-213
AsyncTask class, 208-213
database write operations, 367
dolnBackground method, 209, 210
implementing ListActivity, 212
threads and screen rotation, 217,
218
generics, 209
implementing ListActivity using,
210-213
AddStringTask class, 211
onPostExecute method, 210
implementing ListActivity, 213
threads and screen rotation, 218
onPreExecute method, 210
onProgressUpdate method, 210
implementing ListActivity, 212
overridable methods, 209
threads and screen rotation,
214-218
varargs, 209

547

548

Index

attach method, RotationAwareTask,
217,218
attributes

see also android attributes (android:)

android: prefix, 252
getAttributeCount method, 243
getAttributeName method, 243
inheriting style attributes, 254
AutoCompleteTextView widget, 65,
115-118
completionThreshold property, 115
MultiAutoCompleteTextView widget,
157
setAdapter method, 115
TextWatcher, 115, 116
autoText property, EditText widget, 64
Available packages option
Android SDK and AVD Manager, 9
AVD (Android Virtual Device)
adding, 15-17
Android SDK and AVD Manager, 15
creating Android emulator, 44
setting up Android emulator, 15
starting emulator, 17
targets, 315
AVD Manager see Android AVD
Manager

Back button
Android 3.0 screen, 282
managing dynamic fragments, 299
background attribute, widgets, 71
background threads, 203
AsyncTask class, 208-213
cost of using, 218-219
current execution on Ul or, 208
Downloader service, 403
Handler class, 204-208
communicating via messages,
205-208
communicating via runnables,
208
Internet access, 391
modifying Ul, 204

ProgressBar widget, 204
threads and screen rotation,
214-218
backward compatibility
Android Compatibility Library (ACL),
299
action bar, Honeycomb Ul, 319
persistent row highlighting, 305
PreferenceActivity class, 354
preferences via fragments, 351
reflection, 318
battery life
cost of using background threads,
219
HTML5 application concerns, 505
battery strength indicator
Android 3.0 screen, 282

BeanShell
using scripting languages, 371-373,
374
bearings

hasBearing method, 445
beforeTextChanged callback, 116
bin directory, 31, 33
BIND_AUTO_CREATE flag, 399
Binder class, 399

WeatherBinder class, 413
bindService method, 398-399
bindView method, CursorAdapter, 366
bin/classes directory, 33
box model

LinearLayout container, 73, 80-81
boxes

CheckBox widget, 66-68
broadcast intents, 400
BroadcastReceiver interface, 224

implementing on longer-lived

component, 225

onReceive method, 224
browser navigation

WebView widget, 162
browsing

HTML5 and alternative Android

browsers, 506

tabbed browsing, 232-234

Index

bugs
see also debugging
devices, 534-535
Build class
bugs on devices, 534
Build Path menu option
importing non-Eclipse project into
Eclipse, 41
build system, Android
directory tree structure, 31
build target
creating skeleton project at
command line, 27
creating skeleton project in Eclipse,
25
build tools, Android, 31
PhoneGap Build service, 511-514
build version, Android
detecting, 316
Build.VERSION.SDK
detecting build version, 316
examining API level of device, 318
build.xml file, 32
Builder class
constructing AlertDialog, 180
methods, 180
buildfile
ant clean install command, 28
buildForecasts method, 379
building activities, 53
building/running applications, 27-30
command line, 28-30
Eclipse, 27-28
setting up to build application, 7-22
Bundle
fragments, 312
intents, 222
recreating instance state, 186
saving state in, 186, 190-193
screen rotation, 188, 190-193
startActivityForResult method, 229
Bundle icicle
Java code for activities, 53
Button class/widget, 62-63
padding property, 70
XML-based layouts, 56, 57

buttons

ImageButton widget, 63

RadioButton widget, 68-70

sending button clicks to activity
instance, 53

setNegativeButton method, Builder,
180

setPositiveButton method, Builder,
180

setting activity’s content view to, 53

taking advantage of bigger screen,
265

ToggleButton widget, 157

C

CACHE MANIFEST line
manifest file, Checklist app, 500

caching
HTMLS5 rules for, 495, 499
calculations

background threads, 204
Calendar object
time/date widgets/dialogs, 138
CALL_PHONE permission, 438
implicit hardware feature
requirements, 532
initiating call from application, 466
CALL_STATE_XYZ values
getCallState() returning, 463
callbacks
communicating from services, 400
threads and screen rotation, 218
Ul (main) thread, 203
calls
simulating with DDMS, 482-484
camera
explicit hardware feature
requirements, 532
variations between devices, 534
cancel/cancelAll methods, notifications,
423
canGoBack/canGoForward methods,
WebView, 163
capitalize property, EditText, 64
category, intents, 222

549

550

Index

category, preferences
PreferenceCategory element, 345
cell.xml file, res/layout directory, 113
check method, RadioGroup, 69, 70
CheckBox widget, 66-68
checkCallingPermission method, 440
CheckedTextView widget, 156
Checklist app, HTML5, 496-500
checking off individual items, 497
deleting checked entries, 498
deleting items from storage, 501
examining HTML, 498-499
examining manifest, 499
installing Checklist on Android
device, 498
setting up shortcut for, 498
Web Storage, 501-502
Checklist app, PhoneGap, 514-519
CHOICE_MODE_SINGLE/MULTIPLE
values
ListView widget, 106
choiceMode attribute
layout XML, 106, 107
Chronometer widget, 141, 156
class attribute, fragment
EU4You_6 layout, 307
classes
see also widgets
AsyncTask class, 208-213
conditional class loading, 318
creating fragment classes, 300-306
detecting, 317
imported classes, activities, 52
LinearLayout container, 73-81
ListFragment class, 301-306
reflection, 317-318
RelativeLayout container, 81-87
ScrollView container, 90-92
TablelLayout container, 87-90
classes directory, bin, 33
classes.dex file, bin, 33
clean install command, ant, 28
clear method, SharedPreferences, 340
clearCache method, WebView, 163
clearCheck method, RadioGroup, 69
clearHistory method, WebView, 163

clickable attribute
putting maps into applications, 451
clocks
AnalogClock widget, 140
Android 3.0 screen, 282
DigitalClock widget, 140
Clojure, 527
close method
Cursor class, 365
SQLiteOpenHelper class, 361
closing activity
onDestroy method, 184
collapseColumns property,
TablelLayout, 89
color attributes, widgets, 71-72
colors, 244-245
res/values directory, 243
ColorStateList object
color attributes, widgets, 71
valueOf method, 72
column properties, TableLayout, 89
columnWidth property, GridView, 111,
112
command line
building/running applications, 28-30
creating skeleton Android project,
26-27
command-line switches
android create project command, 27
commands
android create project command, 26
android list targets command, 27
ant clean install command, 28
commit method, SharedPreferences,
340
compatibility mode
screen sizes, 258, 261
completionThreshold property,
AutoCompleteTextView, 115
complex views
XML-based layouts, 57
components, intents, 222
configChanges attribute
blocking rotation of activity, 200
handling rotations without Android’s
help, 195

Index

Google non-recommendation of,
198
configuration changes
devices, 187
fragments, 312
onConfigurationChanged method,
195,198
Google non-recommendation of,
198
Configuration object
determining screen size, 263
configuration options, resources
order of precedence, 247
console interface
Java code with Android, 370
contact filter spinner, Android 3.0, 285
contacts
available contacts, 284
Find contacts search field, 285
picking/viewing, 189-190
saving state, 190-193
QuickContactBadge widget, 157
containers, 73-92
AbsoluteLayout container, 156
applying styles to, 253
available style attributes, 254
complex views, 57
ExpandableListView container, 156
fill_parent value, 74
FramelLayout container, 143
HorizontalScrollView container, 92
Java code, 57
LinearLayout container, 73-81
match_parent value, 74
overlapping widgets, 86
RelativeLayout container, 81-87
ScrollView container, 90-92
SlidingDrawer container, 154-156
TabHost container, 142, 143
TablelLayout container, 87-90
view hierarchies, 313-314
ViewFlipper container, 149-153
wrap_content value, 74
XML-based layouts, 55
content overlays
styling activity with themes, 256

content providers, Android, 5
content Uri templates
intents, 222
content view
setting activity’s content view, 53
contentDescription property, widgets,
71
ContentValues class, 363
context menus, 167, 169-170
calling getMenulnfo(), 170, 175
ListView widget, 265
registering ListView having, 172
taking advantage of bigger screen,
265
context, intents, 221
ContextMenu class
onContextltemSelected method,
169, 175
onCreateContextMenu method, 169,
174
registerForContextMenu method,
169
convertView parameter, getView(), 125-
127
cookies
AndroidHttpClient class, 382
CountriesFragment class
EU4You_6 project, 301, 307, 308,
310
CountryAdapter class
EU4You_6 project, 302
persistent row highlighting, 304
CountryListener interface
EU4You_6 project, 308, 310
CountryWrapper class
EU4You_6 project, 302
CPU speed
smartphone programming, 4
CPU time
cost of using background threads,
219
createFromAsset method
packaging fonts, 469
Typeface class, 470
createTabContent method, 146

551

552

Index

creating activity
onCreate method, 184
CTS (Compatibility Test Suite)
bugs, 535
current working directory
storing project files, 27
Cursor class, 364, 365
CursorAdapter class, 365, 366
cursors
creating custom cursors, 366
custom cursor adapters, 366
using, 365
wrapping in CursorAdapter, 365
custom views
adding to action bar, 291-295
getting control of user input, 294—
295
defining layout, 292-293
putting layout in menu, 293-294
CWBrowser activity
tabbed browsing, 233

Dalvik Debug Monitor Server see DDMS
Dalvik virtual machine (VM), 369
Java-centric strategy, Android, 491
string formats, 236
using scripting languages on
Android, 371, 374
data
retrieving data, SQLite, 364
data adapters see adapters
data typing, SQLite, 359
data Uri, intents, 222
DatabaseHelper class, 360
databases
creating, 359
inspecting/manipulating contents,
367
write operations, 367
date input
setting date, 135
soft keyboard for, 96, 97, 98
DatePicker widget, 135
DatePickerDialog, 135, 138

DDMS (Dalvik Debug Monitor Server),
477-487
Allocation Tracker tab, 486
browsing event log, 478
Dump HPROF option, 487
Emulator Control tab, 482
File Explorer, 480
file push and pull, 480-481
getting, 42-43
launching, 477
location updates, 481-482
LogCat tab, 42
logging, 479
memory management, 485-487
screen capture, 481
setting location, 381
simulating incoming calls or SMS
messages, 482-484
simulating moving device, 447
Sysinfo tab, 485
Telephony Actions group, 482
dead state, activities, 184
debuggable attribute, 35
debugging
adb (Android Debug Bridge) utility,
487
bugs, 534-535
getting DDMS, 42-43
MOTODEYV Studio for Android, 46
StrictMode, 332
USB debugging, 21
DefaultHttpClient class, 382
Downloader service, 405
WeatherAPI project, 415
delete method, SQLiteDatabase, 363
densities, screens see screen densities
dependencies
Java code with Android, 370
design approach
fragments, 312
destroying activity
onDestroy method, 184
detach method, RotationAwareTask,
217
DetailsActivity class
EU4You_6 project, 307, 311

N

Index

DetailsFragment class
EU4You_6 project, 300, 308, 310,
311
loadUrl method, 301
developer tools
installing ADT for Eclipse, 13
development environment
Java-centric strategy, Android, 492
using StrictMode, 333
Development options
alternatives to Java, 492-494
baseline for comparing, 506
setting up Android devices, 21
DeviceAnywhere
testing devices, 535
deviceready event
PhoneGap Checklist application,
517
devices
see also phones
Android Market filtering applications,
533
application hardware requirements,
531-533
explicit feature requests, 531-532
implicit feature requests, 532-533
bugs, 534
configuration changes, 187
CTS (Compatibility Test Suite), 535
dealing with device-specific issues,
531-535
resource sets, 263
testing, 535
variations between, 534
.dex file, 33
DialogFragment class, 306
dialogs
AlertDialog, 180
DatePickerDialog, 135, 138
New Project dialog, Eclipse, 23, 24
pop-up dialogs, preferences, 347-
350
ProgressDialog, 204
Run As dialog, Eclipse, 27, 44
TimePickerDialog, 135, 138

w

digital signatures
generating API key, Google Maps,
451
DigitalClock widget, 140
digits property, EditText, 64
dimen element
name attribute, 244
dimensions, 244
handling multiple screen sizes, 260
pixels, 260
res/values directory, 243
scaled pixels, 260
dip dimension, 244
directory names
suffixes, 33
directory tree structure
build system, Android, 31
discovery
permissions, 440
disk size
Java code with Android, 370
DisplayMetrics class
determining screen density, 263
distribution
HTML5 application concerns, 505
docking devices
device configuration changes, 187
documentation for Android SDK
installing Android SDK, 10
dolnBackground method, 209, 210
implementing ListActivity, 212
threads and screen rotation, 217,
218
Dolphin Browser HD 4.0
HTMLS5 and alternative Android
browsers, 506
DOM Storage, HTMLS5 apps see Web
Storage
domain names
uniquely identifying project, 27
Done action
accessory button, 98, 99, 100
actionDone value, 99
Downloader service, 403-407
background threads, 403
IntentService class, 404

553

554

Index

Messenger object, 406
downloading files, 383-391
DownloadManager class, 383
permissions, 383
requesting download, 384-386
tracking download status, 386-387
DownloadManager class, 383
enqueue method, 385, 386
HTTPS limitation, 391
permissions, 383
query method, 386, 387
Request object, 385
requesting download, 384-386
tracking download status, 386-387
DownloadManager.Request class
methods, 386
setVisiblelnDownloadsUi method,
391
drag-and-drop GUI editing
ADT add-in, Eclipse, 37
drawable directory see res/drawable
directory
drawables
handling multiple screen sizes, 260
notification icons, 424
scalable drawables, 260
version-based resource sets, 263
drawSelectorOnTop property
Spinner widget, 109
XML-based layouts, 118
drivers
setting up development machine to
talk to devices, 21
Droid series of fonts, 467
DROID, Motorola, 264
DroidGap class, 511, 515
drop-down selector
Spinner widget, 108-111
Dump HPROF option, DDMS, 487

Eclipse, 37-46
ADT add-in, 37
building/running applications, 27-28

creating Android emulator, 43

creating skeleton Android project,
23-26
extensibility of, 37
getting DDMS, 42-43
importing non-Eclipse project into,
38-42
installing ADT for Eclipse, 12-14
New Project dialog, 24
New Project wizard, 39
opening perspectives, 42
Perspective menu, 42
Project Properties window, 41
running activity, 53
running project in emulator, 44-45
edit method, SharedPreferences, 340
EditPreferences activity
users setting up preferences, 341
EditPreferencesHC class, 355
EditText widget, 64-65
flavors of soft keyboard, 95-98
getting control of user input,
Honeycomb Ul, 294
hiding IME, 101
IME (input method editor), 93
imeActionld attribute, 293
imeOptions attribute, 98, 293
inputType attribute, 94
adding custom views to action
bar, 293
multiline input, 98
opening IME, 101
password attribute, 94
properties, 64
right-to-left (RTL) languages, 250
setOnEditorActionListener method,
100
getting control of user input,
Honeycomb Ul, 294
TextWatcher, 115
EditTextPreference element
preferences via pop-up dialogs, 348
elements, AndroidManifest.xml file
activity element, 35
application element, 35
intent-filter element, 35
manifest element, 34

supports-screens element, 47
uses-sdk element, 48
ellipsis character, 471
ellipsize attribute, 471
e-mail addresses
soft keyboard for, 96, 97
Emulator Control tab, DDMS, 482
emulators, Android
adding AVD, 16
Android emulator application
launcher, 30
building/running applications, 27-30
creating, 43
database read/write operations, 367
emulating DROID screen, 264
resource sets, 263
running project in, 44-45
screen densities, 263-265
screen sizes, 263
setting location, 381
setting up, 15-20
simulating moving device, 447
sqlite3 console program, 367
starting, 17
startup phases, 17-20
home screen, 19
keyguard, 20
touchscreen input, 263
enabled attribute, menu items/groups
describing menus via XML files, 176
enableDefaults method, StrictMode,
332
enqueue method, DownloadManager,
385, 386
entity escaping
styled string formats, 237
errors
AlertDialog, 180
application not responding (ANR)
error, 203
cost of using background threads,
219
VerifyError, 317
escape characters, strings, 236
escaping entities
styled string formats, 237

Index
EU4You project, 266-277
activity, 268
activity in HVGA/WVGA/QVGA, 271,
273

density-independent size, 272
font size, 268, 272-274
fragments handling multiple screen
sizes, 298
icons, 274
landscape mode, WVGA, 274, 276
ListView widget, 266, 267
main.xml file, 275
screen sizes, 266
supports-screens element, 267, 274
WebView widget, 275
WVGA emulator, 274, 276
EU4You_6 project, 307-311
activities, 307, 309-311
CountriesFragment class, 301
CountryAdapter class, 302
CountryWrapper class, 302
creating fragment classes, 300
DetailsActivity class, 307, 311
DetailsFragment class, 300
EU4You activity, 307
layout XML file, 307-308
listener interface, 308-309
persistent row highlighting, 304
events
XML pull parser, 242
execSQL method, 362
execute method, AddStringTask, 213
ExpandableListView container, 156
ext4 file system, Linux, 335
external storage, 330-331
getExternalFilesDir method, 330
getExternalStorageXyz methods,
330, 331
security, 330
writing to, 330-331

extras, intents, 222

F

FakePlayer activity, 407, 409
notifications, 430

555

556

Index

FALLBACK line
manifest file, Checklist app, 500
fields
EditText widget, 64-65
File Explorer
DDMS (Dalvik Debug Monitor
Server), 480
file operations
background threads, 204
file push and pull
DDMS (Dalvik Debug Monitor
Server), 480-481
files
accessing, 323-330
files prepackaged with
application, 323-326
Linux ext4 file system, 335
SharedPreferences, 335
SQLite, 335
StrictMode, 331-334
YAFFS (Yet Another Flash File
System), 335
downloading, 383-391
external storage, 330-331
getExternalFilesDir method, 330
reading/writing, 326-330
getFilesDir method, 330
openFilelnput method, 326, 328,

330
openFileOutput method, 326,
328, 330

writing to external storage, 330-331
fill model

LinearLayout container, 74
fill_parent value, containers, 74

handling multiple screen sizes, 259
Find contacts search field

action bar, Android 3.0 apps, 285
findFragmentByld method, 310
findViewByld method

accessing identified widgets, 57

finding MapView widget, 453

getting control of user input,

Honeycomb Ul, 294
getting TabHost, 144, 145
navigating widgets, 71

NowRedux demo, 58
using convertView parameter,
getView(), 125
using holder pattern, 127-1
finish method, Activity class, 184
Firefox
SQLite Manager extension, 368
Firefox Mobile, 506
FLAG_AUTO_CANCEL value,
notifications, 427, 429
Flash, 524
alternatives to Java-based
development, 493
flash memory, 367
Flex, 524
XML data-binding framework, 103
flipping between views
ViewFlipper container, 149-153
fly-out submenus, creating, 169
focus, widgets
requestFocus method, 71
font size
EU4You project, 268, 272-274
setDefaultFontSize method, 165
fonts, 467-471
additional fonts, 469-470
built-in, Android, 467-468
Droid series of, 467
glyphs, 470
packaging, 469
substituting, 470
Forecast class, WeatherAPI project, 412
foreground
declaring services as part of,
429-430
format method, strings, 236
styled text, 237
forums, 537, 538
Fragment class
creating fragment classes, 300
implementation from ACL, 300
lifecycle methods, 301
map-based fragment, 460
onPause method, 301
onStop method, 301

©

Index

fragment classes
creating, 300-306
DetailsFragment class, 300
DialogFragment class, 306
Fragment class, 300
FragmentActivity class, 306
FragmentManager class, 306
FragmentTransaction class, 306
ListFragment class, 301-306
PreferenceFragment class, 306
WebViewFragment class, 306
fragment elements
adding fragments to activities, 306
layout, DetailsActivity, 311
FragmentActivity class, 306
maps and fragments, 459
FragmentManager class
adding fragments to activities, 306
EU4You_6, 308, 310
fragments, 285, 297-312
ACL (Android Compatibility Library),
299
activities, 297
activities hosting, 306
adding options to options
menu/action bar, 299
adding tabs to action bar, 299
adding to activities, 306
Bundle, 312
class attribute, EU4You_6, 307
configuration changes, 312
creating fragment classes, 300-306
dealing with multiple screen sizes,
306
design approach, 312
dynamic fragments
adding based on user interaction,
298
animating as move on/off screen,
299
automatic Back button
management for, 299
fragment-to-activity communication,
307
handling multiple screen sizes,
297-299

inheriting from FragmentActivity, 306
lack of

onRetainNonConfigurationinsta
nce(), 312
maps and, 459-461
onSavelnstanceState method, 312
overriding onCreateView(), 300
persistent row highlighting, 304-306
PreferenceFragment class, 351, 352,
353
preferences via, 350-355
StockPreferenceFragment class,
352, 353
supporting on pre-Android 3.0
devices, 299
when to use, 298
FragmentTransaction class
adding fragments to activities, 306
automatic Back button management
for dynamic fragments, 299
EU4You_6 layout, 308
Framelayout container, 143
SlidingDrawer container, 154
TabHost container, 143
fromHtml method, 237, 239
fsync function, Linux, 335
fullSensor value
screenQOrientation attribute, 201

G

Galileo, 443
Gallery widget, 118, 157
garbage collection
Java-centric strategy, Android, 492
gen directory, 32
generatePage method, 380
generics
AsyncTask class, 209
geo: intent
launching activities, 232
GeoPoint, 454
get methods, ContentValues class, 363
getActionView method
API levels for action bar, 319

557

558

Index

Menultem, 294
older versions of Android, 296
getActivity method, notifications, 424
getAddActionView method,
HoneycombHelper, 320
getApplicationContext method
Web service interface, 411
getArguments method,
PreferenceFragment, 353
getAttributeCount method, 243
getAttributeName method, 243
getBestProvider method, 444
getBroadcast method, notifications, 424
getCallState method, 463
getCheckedltemPositions method,
ListView, 108
getCheckedRadioButtonld method, 69
getColumnindex method, Cursor, 365
getColumnNames method, Cursor, 365
getController method, widgets, 453
getCount method, Cursor, 365
getDefaultSharedPreferences method,
339, 340
getExternalFilesDir method, 330
getExternalStorageDirectory method,
331
getExternalStoragePublicDirectory
method, 330, 385
getExternalStorageState method, 331
getFilesDir method, 330
getForecast method, 413
getFragmentManager method, 310
getldentifier method, 353
getint method, Cursor, 365
getltemld method, Menultem, 169, 173
getLastKnownPosition method, 444
getLastNonConfigurationlnstance
method
Activity class, 218
screen rotation, 193, 195, 218
Web service interface, 420
getLayoutinflater method, 124
getListView method, 106
getMeMyCurrentLocationNow method,
445
getMenulnfo method, 170, 175

getOverlays method, MapView, 454
getPackageName method, 353
getParent method, widgets, 71
getPhoneType method, 464
getPreferences method, Activity, 339
getProgress method
ProgressBar widget, 204
SeekBar widget, 142
getProviders method, 444
getReadableDatabase method, 361
getResources method, 323
getRootView method, 71
getSettings method, WebView, 161, 165
getSharedPreferences method, Activity,
339
getString method, 236
Cursor class, 365
strings, 236, 237, 239
getStringArray method, 246
getSubscriberld method, 464
getSupportFragmentManager method,
310
getSystemAvailableFeatures method,
533
getSystemService method
identifying location, 444
requesting download, 384
retrieving NotificationManager via,
423
getTag method, View objects
using holder pattern, 127, 128, 129
getText method, 237
getView method, adapters, 121-123,
125
ArrayAdapter, 121, 366
convertView parameter, 125-127
CursorAdapter, 366
IconicAdapter, 121, 122
RatingBar widget, 131
using holder pattern, 128
getWriteableDatabase method, 361
getXml method, 241
GIF format, images, 240
glEsVersion attribute, 532
glyphs, fonts, 470

~

goBack/goForward methods, WebView,
163
Google add-ons
Android SDK and AVD Manager, 11
Google Groups, 537, 538
Google Maps, 449, 450
see also maps
creating MyLocationOverlay, 457
displaying satellite imagery, 458
generating API keys, 450
integrating into third-party
applications, 449
legal terms when integrating, 449,
450
licensing issues, 450
maps and fragments, 459-461
optional or essential to application,
452
overlays, 454-456
showing your direction on map, 456
showing your position on map, 456
testing integration of, 450
google-usb_driver directory, 22
GPS (Global Positioning System), 443
Android devices, 6
LocationProvider, 481
simulating moving device, 447
gravity
LinearLayout container, 75
grid model
TablelLayout container, 87-90
GridView widget, 111-114
columnWidth property, 111, 112
horizontalSpacing property, 111, 112
numColumns property, 111, 112
properties, 111
res/layout/cell.xml file, 113
setAdapter method, 112
setOnltemSelectedListener method,
112
spacingWidth property, 111
stretchMode property, 111, 112
verticalSpacing property, 111, 113
group element, menus
describing menus via XML files, 176

Index
GUI builders
reasons for using XML layouts, 56
GUI editing

ADT add-in, Eclipse, 37

handleMessage method, 205, 207
Handler class
background threads, 204-208
communicating with Handler, 205
Message objects, 208
messages, 205
Runnable objects, 208
cost of using background threads,
218
handleMessage method, 205, 207
obtainMessage method, 205
post methods, 208
registering Handler objects, 204
sendEmptyMessage method, 205
sendMessageXyz methods, 205
Ul (main) thread, 205
hardware requirements, application,
531-533
explicit feature requests, 531-532

implicit feature requests, 532-533
hardwareAccelerated attribute
running phone-centric app on tablet,
286
hasAltitude method, 445
hasBearing method, 445
hasSpeed method, 445
hasSystemFeature method,
PackageManager, 532
hdpi suffix
res/drawable-hdpi directory, 33
header element
intents for headers or preferences,
354
preferences via Honeycomb
fragments, 351
help
Android Google Groups, 537
HIDE_IMPLICIT_ONLY flag,
InputMethodManager, 102

559

560

Index

hideSoftinputFromWindow method, 102
Hierarchy Viewer tool, 473-477
Layout View, 474, 475
main window, 473, 474
Pixel Perfect View, 476, 477
View properties, 476
hierarchyviewer program, 313
holder pattern, using, 127-129
Holographic themes, Honeycomb,
285-286
Theme.Holo, 286
Theme.Holo.Light, 286
Home button, Android 3.0 screen, 282
home screen
emulator startup phases, 19
Honeycomb (Android 3.0), 281-288
Android 3.0-optimized applications,
283
Android devices, 286-288
avoiding nested PreferenceScreen
elements, 353
fragments, 285
Holographic themes, 285-286
intents for headers or preferences,
353
maps and fragments, 459
notifications, 431-433
options menus, 178
preference headers, 351-352
PreferenceFragment class, 352
preferences via fragments, 351-354
reasons for, 281
running phone-centric app on tablet,
286
StockPreferenceFragment class, 352
tablets, 281
user’s view, 282, 285
v11 resource set suffix, 288
Honeycomb Ul, 282-285
action bar, 283, 289-295
adding custom views to, 290-295
enabling, 289-290
Find contacts search field, 285
options menu, 283
responding to activity icon, 291
app launcher, 282

application Ul, 282
Android 2.x options icon, 283
Back button, 282
battery strength indicator, 282
clock, 282
contact filter spinner, 285
fragments, 297-312
Home button, 282
notification icons, 282
recent tasks, 282
signal strength indicator, 282
status bar, 282
supporting multiple Android
versions, 318-320
system bar, 282
HoneycombHelper class
handling multiple versions, 320
horizontal orientation
LinearLayout container, 74
RelativeLayout container, 82
HorizontalScrollView container, 92
horizontalSpacing property, GridView,
111, 112
HPROF file
Dump HPROF option, DDMS, 487
Html class
fromHtml method, 237, 239
HTML5, 495-506
alternative Android browsers, 506
alternatives to Java-based
development, 493
caching rules, 495, 499
Checklist app, 496-500
comparing alternative development
options, 506
offline applications, 495-500
Web Storage, 500-502
HTML5 applications for Android
adding PhoneGap APls, 517-519
PhoneGap Checklist application
converting into APK file, 515
JavaScript file, 516
setting up device-ready event
handler, 517
potential areas of concern, 503-506
Android device versions, 503

Index

battery, 505
distribution, 505
look-and-feel of apps, 505
performance, 505
platform integration, 504
screen sizes and densities, 504
production applications, 502
signing and distribution, 503
testing tools, 503
updates, 503
htmlIEncode method, TextUtils, 239
HttpClient interface, 377
AndroidHttpClient class, 382
creating HttpClient objects, 378
DefaultHttpClient class, 378, 382
HTTP operations via, 378-379
parsing responses, 379-381
single/multiple threading, 382
SSL support, 381
HttpGet/HttpPost/HttpRequest
HTTP operations via HttpClient, 378
HVGA emulator
EU4You project, 271, 273

icon attribute, menus, 176
icon.png file
res/drawable directory, 33
IconicAdapter class, 121-123
constructor, 122
getView method, 121, 122
icons
changing based on row data,
121-123
enhancing lists, 120
EU4You project, 274
notifications, 423, 424-425
resource sets for, 425
setlcon method, Builder, 180
size of, 425
id attribute, XML layouts, 56, 57, 83
IDEA, Intellid, 46
IDEs (integrated development
environments)
Eclipse, 37-46

IDEA, 46
MOTODEYV Studio for Android, 45
ifRoom value, showAsAction attribute,
290
ImageButton widget, 63
taking advantage of bigger screen,
265
images, 240-241
formats, 240
Gallery widget, 118
layout files, 240
res/drawable directory, 235, 240
ImageSwitcher widget, 157
ImageView widget, 63
IME (input method editor), 93
accessory button, 98
Done action, 100
hiding, 101, 102
layout of activities, 100
opening, 101
soft keyboard input flavors, 94-98
imeActionld attribute, EditText
adding custom views to action bar,
293
imeOptions attribute, EditText, 98
adding custom views to action bar,
293
IMF (input method framework), 93-102
controlling input method editor, 93
keyboards, 93
soft keyboard input flavors, 94-98
imported classes
Java code for activities, 52
importing non-Eclipse project into
Eclipse, 38-42
in dimension, 244
incoming calls
simulating with DDMS, 482-484
incrementProgressBy method, 204
indexes, SQLite, 362
inflation, XML layouts
getLayoutInflater method, 124
inflating XML files into menus, 175,
177-178
inflating XML files into View objects,
123-124

561

562

Index

LayoutlInflater class, 123, 125
using convertView parameter,
getView(), 127
inheritance
multiple inheritance, 459
inheriting style attributes, 254
inheriting styles, 255
initAdapter method, MenuDemo, 172,
174
input method editor see IME
input method framework see IMF
InputMethodManager
getting control of user input, 295
HIDE_IMPLICIT_ONLY flag, 102
hiding IME, 101
inputs, resources, 246
InputStream class, Java
accessing files, 323
inputType attribute, 64
EditText widget, 94
adding custom views to action
bar, 293
soft keyboards, 94, 98
insert method, SQLiteDatabase, 363
install command, ant, 28
installations
ADT for Eclipse, 12-1

Android SDK, 8-12
Apache Ant, 14
JDK, 7
PhoneGap, 510
intent element
intents for headers or preferences,
354
Intent object
notification icons, 424

tabbed browsing, 232

using Activity as content of tab, 232

intent-filter elements
activity element, manifest, 35
AndroidManifest.xml file, 223
intents, 5, 221-225, 228
actions, 221, 222
activity eligibility for, 223
broadcast intents, 400
Bundle, 222

category, 222
components, 222
content Uri templates, 222
context, 221
creating to launch activity, 228
data Uri, 222
declaring intent filters, 223-224
enforcing permissions via manifest,
440
extras, 222
MIME type, 222, 224
pause caveat, 225
Pendinglntent object, 400
routing, 222
implicit routing, 223
target component, 222
IntentService class, 396
Downloader service, 403, 404, 405
music player service, 407
onHandlelntent method, 405, 406
threads, 403
interactive widgets
RatingBar widget, 129-133
interfaces
fragment-to-activity communication,
307
internationalization
string resources, 246
Internet access
Android components, 382
Android devices, 6, 377
background threads, 203, 391
downloading files, 383-391
main application thread, 391
MapView widget, 382
StrictMode, 392
WebView widget, 382
INTERNET permission, 383, 438
putting maps into applications, 452
requesting permissions pre
installation, 441
Internet-enabled phones
smartphone programming, 3
Interpreter class, BeanShell, 371
isAfterLast method, Cursor, 365

Index

isChecked method
CheckBox widget, 66
RadioButton widget, 69
isEnabled method, widgets, 71
isFinishing method
unbinding from service, 421
isRouteDisplayed method, 452
item element, menus
actionLayout attribute, 293
describing menus via XML files, 176
detecting when item chosen, 176
showAsAction attribute, 290
submenus, 176
item element, style, 252
IltemizedOverlay class, 454
drawing ltemizedOverlay, 454
onTap method, 456

J

JAR files (JARs)
adding third-party code to project,
369
importing non-Eclipse project into
Eclipse, 42
using BeanShell on Android, 371
using scripting languages on
Android, 374
jarcore command, ant, 371
jarsigner utility, Java
generating API key, Google Maps,
451
Java
adapters, 103
alternative compilers, 7
creating client-side API for Web
service, 410
installing JDK, 7
Java-centric strategy, Android, 491
learning, 8
Now.java file, 51
setting up, 7-8
third-party libraries, 369
Thread class, 204
using BeanShell on Android,
371-373, 374

using scripting languages on
Android, 371, 374
Java 2 Platform, Micro Edition (J2ME)
Java-centric strategy, Android, 491
Java Build Path
importing non-Eclipse project into
Eclipse, 41
Java class name
first activity for project, 27
Java code
activities, 51-53
android:id attribute, 57
attaching widgets to, 57
creating/attaching widgets to
activity, 55
working with Android, 370
Java package name
creating skeleton project
at command line, 27
in Eclipse, 25
Java SE classes
availability to Android programs, 52
JAVA_HOME environment variable
installing Apache Ant, 14
Java/Swing
setCellRenderer method, 103
JavaScript
enabling, WebView widget, 161, 165
PhoneGap Checklist application,
516
setJavaScriptEnabled method, 165
Titanium Mobile, 526
Jbutton click, Swing, 53
JDK (Java Development Kit), 7
JIT (just-in-time) compilation
Java-centric strategy, Android, 492
using scripting languages on
Android, 374
JPEG format, images, 240
JRuby, 524
JSON parser, 379
just-in-time see JIT compilation
JVM (Java Virtual Machine)
Java code with Android, 370
JVM compiled languages, 527

563

Index

K

keyboards, 93-94
see also soft keyboards
device configuration changes, 187
explicit hardware feature
requirements, 532
handling keyboardHidden
configuration changes, 196
IMF (input method framework), 93
reqHardKeyboard attribute, 532
reqKeyboardType attribute, 532
resources, 246
smartphone programming, 3
keyguard
emulator startup phases, 20
keys
generating API key, Google Maps,
450
keytool utility, Java
generating API key, Google Maps,
451

L

label attribute, activity element, 35
labels
TextView widget, 61-62
landscape orientation
EU4You project, 274, 276
screenOrientation attribute values,
201
landscape value, screenQOrientation, 198
languages
default language, 246
right-to-left (RTL) languages, 250
strings, 246
strings in multiple languages, 246
largeScreens attribute, 261
launcher see application launcher
Lawnchair, 502
layers, maps see overlays, Google
Maps
layout containers
FramelLayout container, 143
IME and activities, 100

LinearLayout container, 73-81

RelativeLayout container, 81-87

TabHost container, 142, 143

TablelLayout container, 87-90
layout directory see res/layout directory
layout files

images, 240

referencing layouts, 120

referencing string from, 236
Layout View

Hierarchy Viewer tool, 474, 475
layout XML see XML layouts
layout_above property, 83
layout_alignParentXyz properties, 82
layout_alignXyz properties, 83
layout_below property, 83
layout_centerXyz properties, 82
layout_column property, 88
layout_gravity property, 75
layout_height property, 57, 74, 81
layout_margin property, 76
layout_span property, 88
layout_toLeftOf property, 83
layout_toRightOf property, 83, 84
layout_weight property, 75, 81
layout_width property

adding custom views to action bar,

293

LinearLayout container, 74, 75, 77

RelativelLayout container, 85

XML-based layouts, 57
LayoutlInflater class, 123, 125
Idpi suffix

res/drawable-Idpi directory, 33
libraries

third-party libraries, Java, 369
libs directory, 31

using BeanShell on Android, 371
license confirmation dialog

Android SDK and AVD Manager, 11
lights, notifications, 424
LinearLayout container, 73-81

enhancing lists, 120

EU4You_6 layout, 308

fill model, 74

fill_parent value, 74

Index

gravity, 75
layout_gravity property, 75
layout_height property, 74, 81
layout_margin property, 76
layout_weight property, 75, 81
layout_width property, 74, 75, 77
margins, 75
match_parent value, 74
non-row children of TableLayout, 88
orientation, 74
setGravity method, 75
setOrientation method, 74
weight, 75
wrap_content value, 74
wrapping two RadioGroups, 77
links
handling, WebView, 163
Linux
setting up development machine to
talk to devices, 22
Linux ext4 file system, 335
list box
ListActivity widget, 104—106
ListView widget, 104, 106-108
ListActivity widget, 104—106
consolidating multiple activities, 266
implementing using AsyncTask,
210-213
AddStringTask class, 211
dolnBackground method, 212
onPostExecute method, 213
onProgressUpdate method, 212
onListltemClick method, 105, 365
setListAdapter method, 105
listener interface
EU4You_6 project, 308-309
listeners
CheckBox widget, 66
communicating from services, 400
OnClickListener, 52, 53
setOnltemSelectedListener, 104,
108, 112
setOnSeekBarChangelListener, 142
SlidingDrawer container, 156
TextWatcher, 115

ListFragment class, 301-306
adding fragments dynamically, 298
animating dynamic fragments, 299
onActivityCreated method, 301
onListltemClick method, 301
persistent row highlighting, 304-306
setListAdapter method, 301
ListPreference element, 348
lists
enhancing, 119-133
changing icon based on row
data, 121-123
ListView widget, 119-120
ExpandableListView container, 156
rows, 119
ListView class/widget, 104, 106-108
ArrayAdapter, 107
context menus, 265
enhancing lists, 119-120
EU4You project, 266, 267
getCheckedltemPositions method,
108
getListView method, 106
getView method, 121
convertView parameter, 125-127
interactive widgets, 129-133
registering as having context menu,
172
row highlighting, 304
setChoiceMode method, 106
setltemChecked method, 108
taking advantage of bigger screen,
265
using holder pattern, 127-129
loadData method, WebView, 161
loadHeadersFromResource method,
351, 352
loadUrl method
DetailsFragment class, 301
WebView widget, 160, 161
localization
device configuration changes, 187
right-to-left (RTL) languages, 250
string resources, 246

~

565

566

Index

localStorage object, Web Storage, 500
location
addProximityAlert method, 446
arrival in proximity of, 446
getBestProvider method, 444
getLastKnownPosition method, 444
getMeMyCurrentLocationNow
method, 445
getProviders method, 444
GPS service, 443
identifying, 443-445
onlLocationChanged method, 446
registering for updates, 445
removeProximityAlert method, 447
requestLocationUpdates method,
445, 446
setting, 381
simulating moving device, 447
technology variations between
devices, 534
updates, DDMS, 481-482
LocationListener class
identifying location, 445
removeUpdates method, 446
LocationManager class
addProximityAlert method, 446
identifying location, 444
removeProximityAlert method, 447
LocationProvider class
hard-wiring, 444
identifying location, 444, 445
location updates, 481
LogCat
downloading files, 390
StrictMode, 332
LogCat tab, DDMS, 42
logging, DDMS, 479

Mac OS X
setting up development machine to
talk to devices, 22
main application thread see Ul (main)
thread
main.xml file

EU4You project, 275
res/layout directory, 33, 252
attaching widgets to Java code,
57
screen rotation, 188
makeText method, toasts, 180
manifest attribute, html element
Checklist app, HTMLS5, 499
manifest element, 34
child elements in initial project
manifest, 35
package attribute, 34
uses-sdk child element, 48
manifest file
see also AndroidManifest.xml file
Checklist app, HTML5, 499
creating and installing PhoneGap
projects, 511
elements in initial project manifest,
35
enforcing permissions, 439-440
PhoneGap settings, 515
root of, 34
manifest typing, 359
MapActivity class/widget, 449
maps and fragments, 459, 461
putting maps into applications, 451,
452
MapController class
setCenter method, 454
setZoom method, 453
MapFragment class, 460
maps
see also Google Maps
fragments and, 459-461
Google Maps, 449
mapping options, 449
putting into applications, 451-452
MapView widget, 449
finding, 453
getOverlays method, 454
Internet access, 382
maps and fragments, 459, 460, 461

putting maps into applications, 451

setBuiltinZoomControls method, 453
toggleSatellite method, 458

Index

margins
LinearLayout container, 75
match_parent value, containers, 74
maxSdkVersion attribute, uses-sdk
element, 316
MD5 signature
generating API key, Google Maps,
451
mdpi suffix
res/drawable-mdpi directory, 33
measurements see dimensions
memory
flash memory, 367
managing with DDMS, 485-487
saving state due to low memory, 193
smartphone programming, 4
Menu button
opening IME, 101
menu directory, res, 32
menu element, 176
menu items
promoting to action bar, Honeycomb
Ul, 290-291
Menu object
addSubMenu method, 169
onCreateOptionsMenu method, 168,
169
onCreatePanelMenu method, 169
onOptionsltemSelected method,
168, 169, 173
onPrepareOptionsMenu method,
168
setAlphabeticShortcut method, 168
setGroupCheckable method, 168,
169
setGroupEnabled method, 177
setGroupVisible method, 177
setNumericShortcut method, 168
setQwertyMode method, 168
menuCategory attribute, groups
describing menus via XML files, 176
MenuDemo class
initAdapter method, 172, 174
overriding onContextltemSelected)),
175

overriding onCreateContextMenu(),
174
overriding onCreateOptionsMenu(),
172
overriding onOptionsltemSelected(),
173
Menultem class
getActionView method, 294
getltemld method, 169, 173
getMenulnfo method, 170, 175
setCheckable method, 168
setEnabled method, 177
setVisible method, 177
menus, 167-178
context menus, 167, 169-170
creating fly-out submenus, 169
describing menus via XML files,
175177
detecting when item chosen, 176
inflating XML files into, 175, 177-178
More option, 167
options menus, 167, 168-169
Honeycomb (Android 3.0), 178
taking advantage of bigger screen,
265
messages
advisory messages, 179
communicating with Handler,
205-208
handleMessage method, 205, 207
obtainMessage method, 205
pop-up messages, 179-180
sendMessage method, 205
setMessage method, 180
validation messages, 180
Messenger object
communicating from services, 401
Downloader service, 406, 407
MIME type, intents, 222, 224
minSdkVersion attribute, uses-sdk
element, 48, 315
maps and fragments, 459
new permissions in old applications,
440
mm dimension, 244

567

568

Index

mobile phones
resources, 246
smartphone programming, 4
Mono for Android, 524
More option, menus, 167
MOTODEYV Studio for Android, 45
Motorola Charm
resources for, 247
Motorola DROID, 264
moveToFirst method, Cursor, 365
moveToNext method, Cursor, 365
MultiAutoCompleteTextView widget,
157
multiline input
EditText widget, 98
soft keyboard for, 96
multimedia capabilities
Android devices, 6
multiple inheritance, 459
music player service, 407-410
keeping services in foreground, 429
MyLocationOverlay class, creating, 457

name attribute

activity element, 35

dimen element, 244

string element, 236

string-array element, 245
namespace declaration

AndroidManifest.xml file, 34
namespace directory tree

Android projects, 32
Native Development Kit (NDK), 493
navigation

explicit hardware feature

requirements, 532

reqFiveWayNav attribute, 532

regNavigation attribute, 532

tree of widgets, 71

WebView widget, 162
NETWORK line

manifest file, Checklist app, 500
networks, Android devices, 6

New Android Project wizard
creating skeleton project in Eclipse,
24-26
importing non-Eclipse project into
Eclipse, 39-40
New Project dialog, Eclipse
selecting wizard, 23, 24, 39
newTabSpec method, TabHost, 144,
145
newView method, CursorAdapter, 366
Next action, accessory button, 98, 100
nextFocusXyz properties, widgets, 71
normalScreens attribute, 261
NotAllThatStrict class
conditional use of StrictMode, 334
notification icons
Android 3.0 screen, 282
Notification object, 427
NotificationManager class, 423, 427
keeping services in foreground, 430
notifications, 423-433
canceling, 423
communicating from services, 401
configuration of, 423-425
creating, 427
declaring services as part of
foreground, 429-430
defaults field, 424
hardware options, 424
Honeycomb (Android 3.0), 431-433
icons, 423, 424-425
lights, 424
raising, 423
setForeground method, 430
sounds, 424
startForeground method, 430
stopForeground method, 430, 431
vibrations, 424
notify method, NotificationManager, 424
keeping services in foreground, 430
NotifyDemo class, 425
notifyMe method, 427
Now demonstration activity, 54, 58
Now.java file, 51
NowRedux demo, 58
null column hack, 363

Index

numColumns property, GridView, 111,
112
numeric input
soft keyboard for, 96, 97, 98

numericShortcut attribute, 177
0
obtainMessage method, Handler, 205
offline applications, HTML5, 495-500
onActivityCreated method
ListFragment class, 301
maps and fragments, 460
onActivityResult callback
picking/viewing contact, 190
startActivityForResult method, 229
onBind method, Service class, 396, 399
music player service, 409
onCheckedChanged callback
CheckBox widget, 67
LinearLayout wrapping
RadioGroups, 78
OnCheckedChangelistener interface
CheckBox widget, 67
LinearLayout wrapping
RadioGroups, 78
onClick method, invoking, 53
OnClickListener
implementing, 52
invoking onClick method, 53
onConfigurationChanged method
handling rotations without Android’s
help, 195, 198
onContextltemSelected method, 169
inflating XML files into menus, 177
MenuDemo overriding, 175
onCountrySelected method
EU4You_6 activity, 310
onCreate method
Activity class, 184
EU4You_6 activity, 310
threads and screen rotation, 218
getting control of user input,
Honeycomb Ul, 294
LinearLayout wrapping
RadioGroups, 78

NowRedux demo, 58
recreating instance state, 186
Service class, 396
Downloader service, 405
Web service interface, 413, 416,
420
SQLiteOpenHelper class, 359, 361
starting activities, 53
WebView widget, 160
onCreateContextMenu method, 169
inflating XML files into menus, 177
MenuDemo overriding, 174
onCreateOptionsMenu method, 168,
169
API levels for action bar, 319
getting control of user input,
Honeycomb Ul, 294
inflating XML files into menus, 177
MenuDemo overriding, 172
promoting menu items to action bar,
291
onCreatePanelMenu method, 169
onCreateView method
fragments overriding, 300
inflating layout, 301
maps and fragments, 460
OnDateChangedListener callback
DatePickerDialog, 135
OnDateSetListener callback
DatePickerDialog, 135, 138
onDestroy method
Activity class, 184
Service class, 396
Downloader service, 405
music player service, 409
Web service interface, 413, 416
onDeviceReady function, JavaScript
PhoneGap Checklist application,
517,518
onDowngrade method,
SQLiteOpenHelper, 362
OnEditorActionListener interface
getting control of user input, 295
onHandlelntent method, IntentService
Downloader service, 405, 406

569

570

Index

onListltemClick method
fragment design, 312
ListActivity widget, 105, 365
ListFragment class, 301
persistent row highlighting, 305
RatingBar widget, 131
onload function, JavaScript
PhoneGap Checklist application,
517
onlLocationChanged method, 446
onOpen method, SQLiteOpenHelper,
362
onOptionsltemSelected method, Menu,
168, 169
inflating XML files into menus, 177
MenuDemo overriding, 173
promoting menu items to action bar,
291
responding to activity icon, 291
onPause method
Activity class, 185
reading/writing data files, 328
unregistering receivers, 225
Fragment class, 301
onPostExecute method, AsyncTask,
210
implementing ListActivity, 213
threads and screen rotation, 218
WeatherAPI project, 415
onPreExecute method, AsyncTask, 210
onPrepareOptionsMenu method, 168
onProgressUpdate method, AsyncTask,
210
implementing ListActivity, 212
onRatingChanged listener, RatingBar,
131
onReceive method, 224
onRestart method, Activity, 185
onRestorelnstanceState method, 186
screen rotation, 188
onResume method, Activity, 185
location updates, 378
reading/writing data files, 328
registering receivers, 225

onRetainNonConfigurationinstance
method
blocking rotation of activity, 200
fragments lack of, 312
screen rotation, 193-195
threads and screen rotation, 217,
218
Web service interface, 411, 420, 421
onSavelnstanceState method, activities,
186
blocking rotation of activity, 200
screen rotation, 188, 190-192, 193
unregistering receivers, 225
onSavelnstanceState method,
fragments, 312
onServiceConnected method
binding services, 399
onStart method, Activity class, 185
communicating with Handler via
messages, 207
onStartCommand method, Service
class, 396
music player service, 409
sending commands with
startService(), 398
values returned by, 398
onStop method
Activity class, 185
communicating with Handler via
messages, 207
Fragment class, 301
onTap method, Overlay class, 456
onTextChanged callback, 116
OnTimeChangedListener callback, 136
OnTimeSetListener callback, 136, 138
onUpgrade method, SQLiteOpenHelper,
359, 362
Open Mob for Android wiki, 537
openFilelnput/openFileOutput methods
reading/writing data files, 326, 328,
330
OpenGL
glEsVersion attribute, 532
OpendDK, 7
openRawResource method, 323

Index

Opera Mobile
HTML5 and alternative Android
browsers, 506
options menus, 167, 168-169
adding menu choices, 168
addSubMenu method, 169
Android 3.0 action bar, 283
choice identifier, 168
creating fly-out submenus, 169
displaying action bar, 290
fragments adding options to, 299
getltemld method, 169
group identifier, 168, 169
onCreateOptionsMenu method, 168,
169
onCreatePanelMenu method, 169
onOptionsltemSelected method,
168, 169
onPrepareOptionsMenu method,
168
order identifier, 168
promoting menu items to action bar,
290
setAlphabeticShortcut method, 168
setCheckable method, 168
setGroupCheckable method, 168,
169
setNumericShortcut method, 168
setQwertyMode method, 168
taking advantage of bigger screen,
265
orderinCategory attribute, menu items
describing menus via XML files, 176
orientation
see also screen rotation
blocking rotation of activity, 198-200
handling configuration changes, 196
LinearLayout container, 74
screen orientation, 246
threads and screen rotation,
214-218
Web service interface, 411
.out file
running project in emulator, 45
overlapping widgets, 86

Overlay class, 454
onTap method, 456
Overlayltem class
drawing ltemizedOverlay, 454
overlays, Google Maps, 454-456
classes, 454
drawing ltemizedOverlay, 454-455
handling screen taps, 456
IltemizedOverlay class, 454
MyLocationOverlay class, 457

P

package attribute, manifest element, 34
package command-line switch
android create project command, 27
package declaration
Java code for activities, 52
package name
creating skeleton project in Eclipse,
25
PackageManager class
getSystemAuvailableFeatures
method, 533
hasSystemFeature method, 532
packages
Available packages option, Android
SDK and AVD Manager, 9
packaging tool, Android
building activity, 53
padding
setPadding method, Java, 70
padding property, widgets, 70
panning activity, layout, 100
parent attribute, style element
inheriting style attributes, 254
parsing
Android parsers, 379
parsing responses, 379-381
XmlPullParser class, 241, 243
password attribute, EditText widget, 94
path command-line switch
android create project command, 27
pause caveat, intents, 225
paused state, activities, 183

57

572

Index

pausing activity
onPause method, 185
PDAs
smartphone programming, 3
peer (not subordinate) activities, 227
launching peer activity, 229-231
startActivity method, 228, 230
Pendinglntent object, 400
creating notifications, 427
notification icons, 424
performance
HTML5 application concerns, 505
Java code with Android, 370
permissions, 437-441
ACCESS_ALL_DOWNLOADS, 383
ACCESS_COARSE_LOCATION, 438
ACCESS_FINE_LOCATION, 438
CALL_PHONE, 438
declaring, 439
discovery of, 440
documenting for public APIs, 440
DownloadManager class, 383
enforcing, 439-440
identifying location, 444
implicit hardware feature
requirements, 532, 533
INTERNET, 383, 438
new permissions in old applications,
440
PhoneGap application concerns,
519-520
READ_PHONE_STATE, 441
requesting before installation, 441

requesting to access Internet, 160
securing applications, 438-440
SecurityException, 438
services, 397
uses-permission element, 437
using data/services of apps, 437
WRITE_EXTERNAL_STORAGE, 383,
438, 440

persistent row highlighting
backward compatibility, 305
fragments, 304-306

perspectives, Eclipse, 42

phone API, accessing, 463

phone calls
simulating with DDMS, 482-484
phone services
Android devices, 6
phone-centric app
running on tablet, 286
PhoneGap, 507-522
alternatives to Java-based
development, 493, 494
creating and installing projects,
510-511
features, 508
installation, 510
mission, 507
more information on, 522
PhoneGap application concerns,
519-521
look-and-feel of apps, 521
permissions, 519-520
screen sizes and densities, 521
security, 519-520
PhoneGap applications, 507, 508
Checklist app, 514-519
distributing, 509
other platforms (non-Android), 509
PhoneGap Build service, 510, 511-514
PhoneGap Checklist application,
514-519
adding PhoneGap APls, 517-519
converting HTMLS5 app into apk file,
515
JavaScript file, 516
manifest file, 515
setting up device-ready event
handler, 517
using available methods, 517-519

phones

see also devices
backward compatibility, action bar,
295
determining if phone is in use, 463
finding phone type, 464
Honeycomb Ul, 286-288
initiating call from application,
464-466
immediately placing call, 466

Index

smartphone programming, 3, 4
ways to help users place calls, 463
physical dimensions see dimensions
Pick button
picking/viewing contact, 189
Pixel Perfect View
Hierarchy Viewer tool, 476, 477
pixels, scaled
handling multiple screen sizes, 260
placeholders, strings, 237
Planet Android, 539
platform APls
Java code with Android, 370
platform integration
HTML5 application concerns, 504
PlayerService, 408-410
notifications, 430
plus(+) sign
first occurrence of id value, 83
PNG format, images, 240
pointing devices
smartphone programming, 4
pop-up dialogs, preferences, 347-350
pop-up messages, 179-180
portrait orientation, screenOrientation
attribute
portrait value, 198
reversePortrait value, 201
sensorPortrait value, 201
post methods, Handler class
communicating via runnables, 208
preference headers
preferences via Honeycomb
fragments, 351-352
PreferenceActivity class, 340-341
backward compatibility, 354
loadHeadersFromResource method,
351, 352
preferences via fragments, 350
preferences via Honeycomb
fragments, 351
SharedPreferences object, 340
structuring preferences, 346
users setting up preferences, 343
PreferenceCategory element, 345

PreferenceFragment class, 306
addPreferencesFromResource
method, 341, 352, 353
backward compatibility, 354
getArguments method, 353
preferences via Honeycomb
fragments, 351, 352, 353
preferences, 339-355
accessing, 339
avoiding nested PreferenceScreen
elements, 353
getDefaultSharedPreferences
method, 339
getPreferences method, 339
getSharedPreferences method, 339
intents for headers or preferences,
353
pop-up dialogs, 347-350
structuring preferences, 345-346
users setting up preferences,
341-344
via fragments, 350-355
PreferenceScreen element
avoiding nesting of, 353
preferences via fragments, 350, 351
structuring preferences, 345
XML files, 341
production environment
using StrictMode, 333
ProgressBar widget, 204
communicating with Handler via
messages, 205-208
downloading files, 388
getProgress method, 204
incrementProgressBy method, 204
setindeterminate method, 204
setMax method, 204, 207
setProgress method, 204
style attribute, 206, 251
ProgressDialog, 204
proguard.cfg file, 32
project name
creating skeleton project in Eclipse,
25
Project Properties window, Eclipse, 41

573

574 Index

project wizards
ADT add-in, Eclipse, 37
projects, Android
*.properties file, 32
Activity subclass, 32
ADT add-in, Eclipse, 37
AndroidManifest.xml file, 31
assets directory, 32
bin directory, 31, 33
build.xml file, 32
building activity, 53
building/running applications, 27-30
creating and installing PhoneGap
projects, 510-511
creating Android emulator, 43
creating skeleton project, 23-27
command line, 26-27
Eclipse, 23-26
enhancing, 47-48
EU4You project, 266277
gen directory, 32
importing non-Eclipse project into
Eclipse, 38-42
Java code for activities, 51-53
libs directory, 31
manifest file, 33
namespace directory tree, 32
proguard.cfg file, 32
R.java file, 32
res directory, 31, 32
res/xyz directories, 32
root directory, 31
running activity, 53
running in emulator, 44-45
screen sizes, supporting multiple, 47
src directory, 31, 32, 51
structure of, 31-33
uniquely identifying, 27
proximity
addProximityAlert method, 446
removeProximityAlert method, 447
pt dimension, 244
publishProgress method
Ul (main) thread, 210
pull command, adb, 367
pulling files, DDMS, 480-481

push command, adb, 368

pushing files, DDMS, 480-481

Q

query method

DownloadManager class, 386, 387
SQLiteDatabase class, 364

queryWithFactory method

SQLiteDatabase class, 366

QuickContactBadge widget, 157
QVGA screen

compatibility mode, 258
EU4You project, 271, 273

gwerty mode

setQwertyMode method, Menu, 168

R.array file, 246
R.color file, 245
R.dimen file, 244
R.drawable file, 240
R.id.home file, 291
R.java file, 32

aapt tool generating, 55
NowRedux demo, 58

R.layout file, 120, 124
R.layout.main file, 57
R.menu file, 177

R.string file, 236

R.xml file, 241
RadioButton widget, 68-70

isChecked method, 69
RadioGroup wrapping, 69
setChecked method, 70
toggle method, 69

RadioGroup class

check method, 69, 70

clearCheck method, 69

getCheckedRadioButtonld method,
69

LinearLayout container wrapping, 77

RadioButton widgets, 69

RAM

Java code with Android, 370

Index

RatingBar widget, 129-133
raw directory see res/raw directory
rawQuery method, SQLiteDatabase,
364
rawQueryWithFactory method, 366
READ_CONTACTS permission, 374,
441
READ_PHONE_STATE permission, 441
receiver element
AndroidManifest.xml file, 224
receivers, 224-225
BroadcastReceiver interface, 224
declaring, 224
onReceive method, 224
registerReceiver method, 225
unregisterReceiver method, 225
recent tasks
Android 3.0 screen, 282
reflection, 317-318
registerForContextMenu method, 169
registerReceiver method, 225, 400
RelativeLayout container, 81-87
handling multiple screen sizes, 259
layout_above property, 83
layout_alignParentXyz properties, 82
layout_alignXyz properties, 83
layout_below property, 83
layout_centerXyz properties, 82
layout_toLeftOf property, 83
layout_toRightOf property, 83, 84
layout_width property, 85
order of evaluation, 84
overlapping widgets, 86
positions relative to container, 82
positions relative to other widgets,
83
relative notation in properties, 82
SlidingDrawer container, 154
reload method, WebView, 162
remove method, SharedPreferences,
340
removeProximityAlert method, 447
removeUpdates method,
LocationListener, 446
reqFiveWayNav attribute

explicit hardware feature
requirements, 532
reqHardKeyboard attribute, 532
reqKeyboardType attribute, 532
regNavigation attribute, 532
reqTouchScreen attribute, 532
requery method, Cursor, 365
Request object, DownloadManager,
385
requestFocus method, widgets, 71
requestLocationUpdates method, 445,
446
requests, HttpClient interface, 378
required attribute
explicit hardware feature
requirements, 532
implicit hardware feature
requirements, 533
res directory, 31, 32
resource files, 235
res/drawable directory, 32, 235
icon.png file, 33
images, 240
res/drawable-hdpi directory, 33
res/drawable-Idpi directory, 33
res/drawable-mdpi directory, 33
res/layout directory, 32, 55, 235
cell.xml file, 113
main.xml file, 33, 252
EU4You_6, 307
screen rotation, 188
res/menu directory, 32
res/raw directory, 32, 235
files prepackaged with applications,
323
res/values directory, 32, 235
arrays, 243, 245-246
colors, 243, 244-245
dimensions, 243, 244
strings in multiple languages, 246
strings.xml file, 33, 236
styles, 252
res/xml directory, 32, 235, 241
resizing activity, layout, 100
resolution
adding AVD, 17

575

576

Index

resolution see screen resolution
resource sets, 262-263
resources, 235-249
application resource (.ap) file, bin
directory, 33
configuration options order of
precedence, 247
cutting number of directories, 248
device configuration changes
affecting, 187
handling change to, 314
images, 235, 240-241
inputs, 246
keyboards, 246
mobile devices, 246
res directory, 32, 235
right-to-left (RTL) languages, 250
screen orientation, 246
screen size, 246
strings, 235-239
switching resources based on
environment, 261
touchscreen, 246
values, 235
XML files, 235, 241-243
XML layouts, 235
Resources class
accessing files, 323
getldentifier method, 353
responses, parsing, 379-381
restarting activity
onRestart method, 185
restoreMe method
saving state, 192, 195
REST-style web services
Apache HttpClient library, 377
RESULT_OK/RESULT_CANCELED
statuses, 190
startActivityForResult method, 229
resuming activity
onResume method, 185
retrieving data, SQLite, 364
reverseLandscape/reversePortrait
values
screenQOrientation attribute, 201
Rhino JavaScript, 375

Rhodes, 523
alternatives to Java-based
development, 493
right-to-left (RTL) languages, 250
RingtonePreference element
XML files, 341
root directory, Android projects, 31
root element, menus, 176
rotation see screen rotation
RotationAsync class, 215-218
RotationAwareTask class, 215-218
attach method, 217, 218
detach method, 217
routing, intents, 222
implicit routing, 223
RowModel objects
RatingBar widget, 131
rows
persistent row highlighting, 304-306
putting cells in rows, TableLayout,
88
rows, lists, 119
changing icon based on row data,
121-123
inflating rows, 123-125
interactive widgets, 129-133
LinearLayout container, 120
R.layout file, 120
RSS/Atom parser, 379
Ruboto, 524
Ruby environment
Rhodes, 523
rule-based model
handling multiple screen sizes, 259
RelativeLayout container, 81-87
Run As dialog, Eclipse
building/running applications, 27
running project in emulator, 44
Runnable objects
communicating with Handler, 208
runOnUiThread method, Activity, 208

S

samples for SDK
installing Android SDK, 10

Index

Samsung Galaxy Tab
resources for, 247
satellite imagery
displaying, Google Maps, 458
SAX parser, 379
Scala, 527
scalable drawables
default scaling, 262
handling multiple screen sizes, 260
scaled pixels, 260
screen capture
DDMS (Dalvik Debug Monitor
Server), 481
screen densities
creating resource sets, 262-263
density-based resource sets, 262
determining, 263
emulators, 263-265
EU4You project, 272
HTML5 application concerns, 504
PhoneGap application concerns,
521
supporting, 261
switching resources based on
environment, 261
screen orientation
resources, 246
screen resolution
adding AVD, 17
Android devices, 257
default, 257
screen rotation, 187-201
see also orientation
affect on activities, 188

blocking rotation of activity, 198-200

device configuration changes, 187

getLastNonConfigurationlnstance
method, 193, 195

handling configuration changes,
195-198

handling rotations without Android’s

help, 195-198
onRestorelnstanceState method,
188
onRetainNonConfigurationinstance
method, 193-195

onSavelnstanceState method, 188,
190-192, 193

picking/viewing contact, 190

restoreMe method, 192, 195

saving state, 190-193

shortcut in emulator, 189

state, 189

threads and, 214-218

widgets, 189

screen size

Android devices, 257
compatibility mode, 258, 261
consolidating multiple activities, 266
creating resource sets, 262-263
dealing with multiple sizes, 306
default, 257
default scaling, 262
determining, 263
emulators, 263
EU4You project, 266
EU4You_6 layouts, 307-308
fragments handling multiple sizes,
297-299
handling multiple sizes, 258-260
physical dimensions, 260
pixels, 260
rules (not positions), 259
scalable drawables, 260
HTML5 application concerns, 504
PhoneGap application concerns,
521
resources, 246
size-based resource sets, 262
supporting different sizes, 261
supporting multiple sizes, 47
supports-screens element, 47
switching resources based on
environment, 261
taking advantage of bigger screen,
265-266
version-based resource sets, 262
writing tablet-only apps, 321

screenlLayout field, Configuration object

determining screen size, 263

screenOrientation attribute

blocking rotation of activity, 198-200

577

Index

fullSensor value, 201

landscape value, 198
portrait value, 198
reverseLandscape value, 201
reversePortrait value, 201
sensor value, 200
sensorLandscape value, 201
sensorPortrait value, 201
screens
emulating DROID screen, 264
smartphone programming, 3
scripting languages
using on Android, 371, 374
Scripting Layer for Android (SL4A), 374
scrolling
bidirectional scrolling, 92
HorizontalScrollView container, 92
ScrollView container, 90-92
ScrollView container, 90-92
wrapping TableLayout, 100
SD card
adding AVD, 16
SDK and AVD Manager see Android
SDK and AVD Manager
SDKs (software development kits)
installing Android SDK, 8-12
installing JDK, 7
maximum SDK version, 316

minimum SDK version, 315
target SDK version, 316
Search button
hiding IME, 101
security
enforcing permissions, 439-440
external storage, 330
permissions, 437-441
PhoneGap application concerns,
519-520
securing applications, 438-440
SecurityException
missing permissions, 438
SeekBar widget, 141-142
getProgress method, 142
setMax method, 142
setOnSeekBarChangelListener, 142
SELECT statement, SQLite, 364

selection widgets
adapters, 103-104
ArrayAdapter adapter, 104
AutoCompleteTextView widget,
115-118
drawSelectorOnTop property, 118
Gallery widget, 118
GridView widget, 111-114
ListActivity widget, 104-106
ListView widget, 104, 106-108
enhancing lists, 119-120
setAdapter method, 104, 108
setOnltemSelectedListener method,
104, 108
spacing property, 118
Spinner widget, 108-111
spinnerSelector property, 118
Send action
actionSend value, accessory button,
99
sendBroadcast method
broadcast intents, 400
enforcing permissions, 440
sendEmptyMessage method, Handler,
205
sendMessage method, Handler, 205
sendMessageAtFrontOfQueue method,
205
sendMessageAtTime method, 205
sendMessageDelayed method, 205
sensor value, screenOrientation
attribute, 200
sensorLandscape value,
screenQOrientation, 201
sensorPortrait value, screenOrientation,
201
Sensors
variations between devices, 534
Service class
creating services, 396
Downloader service, 405
lifecycle methods, 396
music player service, 407
onBind method, 396, 399
onCreate method, 396, 405
onDestroy method, 396, 405

Index

onStartCommand method, 396, 398
stopSelf method, 398
ServiceConnection interface, 419
services, 5, 395-401
broadcast intents, 400
callback/listener objects, 400
communicating from, 399-401
pending results, 400
communicating to, 397-399
binding with bindService(),
398-399
sending commands with
startService(), 397-398
creating, 395, 396-397
creating client-side Java API for Web
service, 410-421
declaring as part of foreground,
429-430
Downloader service, 403-407
enforcing permissions via manifest,
439
Messenger object, 401
notifications, 401
PlayerService, 407-410
reasons for, 395
stopping, 398
stopService method, 399
unbindService method, 399
setAccuracy method
identifying location, 444
setAdapter method, 104
AutoCompleteTextView widget, 115
GridView widget, 112
Spinner widget, 108
setAllowedNetworkTypes method, 386
setAllowedOverRoaming method, 386
setAlphabeticShortcut method, 168
setAltitudeRequired method, 444
setBuiltinZoomControls method, 453
setCellRenderer method, Java/Swing,
103
setCenter method, MapController, 454
setCheckable method, Menultem, 168
setChecked method
CheckBox widget, 66
RadioButton widget, 70

setChoiceMode method, ListView, 106
setColumnXyz methods
TablelLayout container, 89
setContent method, TabSpec, 144, 145
setContentView method
EU4You_6 activity, 310
NowRedux demo, 58
setting activity’s content view, 53
setCostAllowed method, 444
setCurrentTab method, 145
setDefaultFontSize method, 165
setDescription method
DownloadManager.Request class,
386
setDestinationInExternalPublicDir
method, 386
setDropDownViewResource method,
Spinner, 108, 110
setDuration method, toasts, 180
setEnabled method
Menultem, 177
widgets, 71
setFliplnterval method, 153
setForeground method, notifications,
430
setGravity method, LinearLayout, 75
setGroupCheckable method, Menu,
168, 169
setGroupEnabled method, Menu, 177
setGroupVisible method, Menu, 177
setlcon method, Builder, 180
setindeterminate method, ProgressBar,

204
setindicator method, TabSpec, 144,
145

setltemChecked method, ListView, 108
setJavaScriptEnabled method,
WebSettings, 165
setLatestEventinfo method,
notifications, 425, 427
setListAdapter method
ListActivity widget, 105
ListFragment class, 301
setMax method
ProgressBar widget, 204, 207
SeekBar widget, 142

579

580

Index

setMessage method, Builder, 180
setNegativeButton method, Builder, 180
setNumericShortcut method, Menu, 168
setOnClickListener method, 53
setOnEditorActionListener method,
EditText, 100, 294
setOnltemSelectedListener method,
104
GridView widget, 112
Spinner widget, 108, 110
setOnSeekBarChangelListener, 142
setOrientation method, LinearLayout, 74
setPadding method, Java, 70
setPositiveButton method, Builder, 180
setProgress method, ProgressBar, 204
setQwertyMode method, Menu, 168
setTag method, View objects
RatingBar widget, 132
using holder pattern, 127, 128, 129
setText method
updating button label, 53
setTitle method
Builder class, 180
DownloadManager.Request class,
386
setTypeface method, TextView, 469
setup method, TabHost, 144
setUserAgent method, WebSettings,
165
setView method, toasts, 180
setVisible method, Menultem, 177
setVisibleInDownloadsUi method, 391
setWebViewClient method, 163
setZoom method, MapController, 453
shared preferences
getDefaultSharedPreferences
method, 339
getSharedPreferences method, 339
SharedPreferences object
accessing files, 335
apply method, 340
clear method, 340
commit method, 340
edit method, 340
getDefaultSharedPreferences|()
returning, 340

preferences via pop-up dialogs, 348
remove method, 340
shortcut attribute, menu items
describing menus via XML files, 177
shortcuts
screen rotation in emulator, 189
setAlphabeticShortcut method,
Menu, 168
setNumericShortcut method, Menu,
168
shouldOverrideUrlLoading method,
WebView, 163, 164
show method, toasts, 180
showAsAction attribute, 290
showMe callback method
launching peer activity, 230
showNext method, ViewFlipper, 151
shrinkColumns property, TableLayout,
89
signal strength indicator
Android 3.0 screen, 282
SIM ID (IMSI)
finding, 464
singleLine property, EditText, 64, 65
SitesOverlay class
drawing ltemizedOverlay, 455
onTap method, 456
size, screens see screen size
sizzle
App Inventor, 526
skin options
adding AVD, 17
sliding keyboard
changing screen orientation, 200
device configuration changes, 187
handling keyboardHidden
configuration, 196
SlidingDrawer container, 154-156
callbacks, 156
listeners, 156
locking/unlocking drawer, 156
opening/closing/toggling drawer,
156
smallScreens attribute, 261

Index

smartphones

benefits/drawbacks of smartphone

programming, 3-4

SMS messages

simulating with DDMS, 482-484
SOAP/XML-RPC layer

Apache HttpClient library, 377
sockets, storing, 193
soft keyboards

accessory button, 98

adding to Android, 64

date input, 96, 97, 98

e-mail addresses, 96, 97

flash memory, 367

inspecting/manipulating database
contents, 367

populating tables, 362

retrieving data, 364

SELECT statement, 364

using cursors, 365-366

Web SQL Database option, 502

wrapping cursor in CursorAdapter,
365

SQLite browsing

MOTODEYV Studio for Android, 45

inputType attribute, 98
inputType attribute classes, 94

SQLite Manager

Firefox extension, 368
sqlite3 console program, 367
SQLiteDatabase class

multiline input, 96
numeric input, 96, 97, 98
plain text-entry field, 96
sounds
notifications, 424
source code, Android, 538
sp dimension, 244
spacing property
XML-based layouts, 118
spacingWidth property, GridView, 111
Spanned objects, 237
speed
hasSpeed method, 445
Spinner widget, 108-111
drawSelectorOnTop property, 109
getView method, 121
Holographic themes, Honeycomb,
285
populating/using, 109
setAdapter method, 108

creating object, 359, 361

delete method, 363

execSQL method, 362

insert method, 363

query method, 364
queryWithFactory method, 366
rawQuery method, 364
rawQueryWithFactory method, 366
update method, 363

SQLiteOpenHelper class

close method, 361

creating databases, 359
getReadableDatabase method, 361
getWriteableDatabase method, 361
onCreate method, 359, 361
onDowngrade method, 362
onOpen method, 362

onUpgrade method, 359, 362

using, 361

setDropDownViewResource method,
108, 110

setOnltemSelectedListener method,
108, 110

spinnerSelector property

XML-based layouts, 118

SQLite, 357-368

accessing files, 335

creating databases, 359
creating tables and indexes, 362
data typing, 359

SQLiteQueryBuilder class, 364
src attribute, widgets, 63
src directory, 31, 32, 51

adding third-party code to project,

369

SSL support

HttpClient interface, 381
StackOverflow, 537, 538
StackOverflowException

view hierarchy depth, 313, 314

581

582

Index

START_NOT_STICKY value
communicating to services, 398, 409
START_REDELIVER_INTENT value, 398
START_STICKY value, 398
startActivity method
ACTION_CALL intent, 466
ACTION_DIAL intent, 464
launching peer activity, 228,
229-231
startActivityForResult method, 229
picking/viewing contact, 189, 190
startForeground method, notifications,
430
starting activity
onStart method, 185
startPlayer method, FakePlayer activity,
410
startService method
communicating to services, 397-398
Downloader service, 403, 405
FakePlayer activity, 410
music player service, 407
state
getExternalStorageState method,
331
getLastNonConfigurationlnstance
method, 193, 195
onCreate method, 186
onRestorelnstanceState method,
186
onRetainNonConfigurationinstance
method, 193-195
onSavelnstanceState method, 186,
190-192, 193
recreating instance state, 186
restoreMe method, 192, 195
saving application-instance state,
186
saving state in Bundle, 186, 190-193
screen rotation, 189
Web service interface, 419
states, activities, 183-184
active state, 183
dead state, 184
paused state, 183
stopped state, 184

status bar, Android 3.0 screen, 282
Stay awake option
setting up Android devices, 21
StockPreferenceFragment class, 352,
353
stopForeground method, notifications,
430, 431
stopped state, activities, 184
stopping activity
onStop method, 185
stopSelf method, Service class, 398
stopService method, 399
stopping services, 398
FakePlayer activity, 410
stopwatch
Chronometer widget, 156
storage
accessing files in
files prepackaged with
application, 323-326
Android devices, 5
external storage, 330-331
Lawnchair, 502
project files, 27
Web Storage, 500-502
stretchColumns property, TableLayout,

89
stretchMode property, GridView, 111,
112

StrictForRealz class
conditional use of StrictMode, 334
StrictMode class, 331-334
avoiding unresponsive code, 331
conditional use of, 333-334
debugging, 332
development/production
environments, 333
enableDefaults method, 332
Internet access, 392
setting up, 332
thread policies, 332
using StrictWrapper, 333-334
VM policies, 332
StrictWrapper class
conditional use of StrictMode,
333-334

Index

string element
name attribute, 236
string formats, 236
styled text and, 237-239
String objects
styled text and strings, 237
string-array element
name attribute, 245
strings, 235-239
escape characters, 236
format method, 236
getString method, 236
handling multiple languages, 246
internationalization, 246
languages, 246
localization, 246
placeholders, 237
referencing from layout file, 236
res/values directory, 236
styled text, 237-239
strings.xml file
res/values directory, 33, 236
style attribute
applying styles, 253
inheriting, 254
LinearLayout container, 305
ProgressBar widget, 206, 251
res/layout/main.xml file, 252
values, 255
style element, 252
inheriting style attributes, 254
item child elements of, 252
style resources
res/values directory, 252
styled text
strings, 237-239
styled string formats, 237-239
styles, 251-256
available attributes, 254
inheriting, 255
inheriting style attributes, 254
invalid styles, 254
res/values directory, 252
themes, 256
using single definition, 251

v11 resource set suffix, 288

values, 255
stylus
smartphone programming, 4
submenus
menu element, menus, 176
subordinate activities, 227
startActivityForResult method, 229
suffixes, directory names, 33
supports-screens element, 47
creating/installing PhoneGap
projects, 511
EU4You project, 267, 274
supporting different screen sizes,
261
writing tablet-only apps, 321
Swing
Jbutton click, 53
switcher widgets, 157
Sysinfo tab, DDMS, 485
system bar, Android 3.0 screen, 282,
283

T

TabActivity widget, 144
tabbed browsing, 232
tabbed browsing, 232-234
TabHost container, 142, 143
adding tabs dynamically at runtime,
146,148
addTab method, 145
Framelayout container, 143
getting via findViewByld(), 144, 145
newTabSpec method, 144, 145
registering tab, 145
setCurrentTab method, 145
setup method, 144
TabWidget widget, 143
taking advantage of bigger screen,
266
views representing tab contents, 144
TablelLayout container, 87-90
collapseColumns property, 89
fragments handling multiple screen
sizes, 298
layout_column property, 88

583

Index

layout_span property, 88
non-row children of, 88
putting cells in rows, 88
ScrollView container wrapping, 100
setColumnXyz methods, 89
shrinkColumns property, 89
stretchColumns property, 89
users setting up preferences, 344
TableRow class
putting cells in rows, 88
tables, SQLite, 362
tablets
fragments handling multiple screen
sizes, 297
Honeycomb, 281
running phone-centric app, 286
writing tablet-only apps, 321
tabs, 232
adding dynamically at runtime,
146-149
fragments adding tabs to action bar,
299
tabbed browsing, 232-234
using Activity as content of, 232
TabSpec objects, 144, 145
TabWidget widget, 143, 146
Holographic themes, Honeycomb,
286
target command-line switch
android create project command, 27
target component, intents, 222
targets
AVD (Android Virtual Device), 315
finding available targets, 27
targetSdkVersion attribute, uses-sdk
element, 48, 316
displaying action bar, 289
maps and fragments, 459
running phone-centric app on tablet,
286
tasks
AsyncTask class, 208-213
telephony
implicit hardware feature
requirements, 533
Telephony Actions group, DDMS, 482

TelephonyManager class, 463, 464
testing devices, 535
text
styled text, 237-239
text attribute
XML-based layouts, 57
textAppearance attribute, TextView, 293
text-entry field, soft keyboards, 96
TextSwitcher widget, 157
TextUtils class
htmIEncode method, 239
TextView class/widget, 61-62
ArrayAdapter creating, 104
CheckedTextView widget, 156
ellipsis character, 471
enhancing lists, 120
packaging fonts, 469
right-to-left (RTL) languages, 250
setTypeface method, 469
textAppearance attribute, 293
TextWatcher interface, 115, 116
theme attribute, 256
Theme.Holo theme, Honeycomb, 286
Theme.Holo.Light theme, Honeycomb,
286
themes, 256
Third party Add-ons
Android SDK and AVD Manager, 10
third-party libraries, Java, 369
Thread class, Java, 204
thread policies
StrictMode, 332
threads, 203-219
AndroidHttpClient class, 382, 392
background threads, 203
Handler class, 204-208
communicating via messages,
205-208
communicating via runnables,
208
HttpClient interface, 382
IntentService class, 403
modifying Ul, 204
ProgressBar widget, 204
registering Handler objects, 204
runOnUiThread method, 208

Index

screen rotation and, 214-218
Ul (main) thread, 203-204, 205
time
AnalogClock widget, 140
DigitalClock widget, 140
displaying, 140
setting time, 135
TimePicker widget, 135
TimePickerDialog, 135, 138
Titanium Mobile, 526
title attribute, menu items, 176
titles
setTitle method, Builder, 180
T-Mobile G1
resources for, 247
toasts, 179-180
downloading files, 389
example, 181
methods, 180
using BeanShell on Android, 373
toggle method
CheckBox widget, 66
RadioButton widget, 69
ToggleButton widget, 157
toggleSatellite method, MapView, 458
tools
Android Debug Bridge (adb), 487
Dalvik Debug Monitor Service
(DDMS), 477-487
Eclipse, 37-46
Hierarchy Viewer tool, 473-477
tools directory
installing Android SDK, 9
tooltip support
ADT add-in, Eclipse, 37
touchscreen
emulators, 263
explicit hardware feature
requirements, 532
reqTouchScreen attribute, 532
resources, 246
Traceview, 331
tutorials, 537
Twitter
App Inventor, 526
typeface attribute, 468

Typeface class
createFromAsset method, 470

creating Typeface object, 469
U
Ubuntu
setting up development machine to
talk to devices, 22
Ul (main) thread, 203-204
application not responding error, 203
AsyncTask class, 208-213
callbacks, 203
causes of slow response, 331
current execution on, 208
Handler objects, 205
Internet access, 391
modifying Ul, 204
publishProgress method, 210
runOnUiThread method, 208
screen rotation, 218
unbindService method, 399
units of measurement see dimensions
unregisterReceiver method, 225
update method, SQLiteDatabase, 363
updateForecast method, 378, 379
updateTime method, 53
USB debugging option
setting up Android devices, 21
user agent
setUserAgent method, 165
user input
cost of using background threads,
219
getting control of, 294-295
user interface
Android 3.0 screen, 282
avoiding unresponsive code,
331-334
fragments handling multiple screen
sizes, 298
users
notifications, 423-433
setting up preferences, 341-344
uses-configuration element, 531

585

586

Index

uses-feature element
explicit hardware requirements, 532
implicit hardware requirements, 533
uses-permission element
AndroidManifest.xml file, 437
declaring permissions, 439
securing applications, 438
uses-sdk element, 48
maxSdkVersion attribute, 316
minSdkVersion attribute, 48, 315
targetSdkVersion attribute, 48, 316
displaying action bar, 289
running phone-centric app on
tablet, 286

'}

v11 resource set suffix, styles, 288
persistent row highlighting, 305
validation messages
AlertDialog, 180
valueOf method, ColorStateList, 72
values
res/values directory, 235
style attributes, 255
values directory see res/values directory
varargs, AsyncTask, 209
VerifyError, 317
version-based resource sets, 262
versionCode/versionName attributes,
manifest element, 34
versions, 48
APl levels, 315
conditional use of StrictMode,
333-334
detecting build version, 316
handling multiple Android versions,
314
highest supported version, 316
Honeycomb Ul, 318-320
lowest supported version, 315
targeted development version,
316
HTML5 applications concerns, 503
Java code with Android, 370
maxSdkVersion attribute, 316

minSdkVersion attribute, 48
targetSdkVersion attribute, 48
uses-sdk element, 48
vertical orientation
LinearLayout container, 74
RelativeLayout container, 82
vertical scrolling see ScrollView
container
verticalSpacing property, GridView,
111, 113
vibrations
notifications, 424, 427
View button
picking/viewing contact, 189
View class
inflating XML files into View objects,
123-124
methods, 71
properties, 70-71
widgets extending, 70
view hierarchies, 313-314
View properties
Hierarchy Viewer tool, 476
ViewAnimator class
showNext method, 151

ViewFlipper container, 149-153

setFlipInterval method, 153
showNext method, 151
ViewHolder class
RatingBar widget, 131, 132
using holder pattern, 127-129
views
adding to action bar, Honeycomb UlI,
291-295
convertView parameter, getView(),
125-127
ExpandableListView container, 156
getView method, 121-123
ImageView widget, 63
inflating XML files into View objects,
123-124
ListView widget, 104, 106-108
enhancing lists, 119-120
ScrollView container, 90-92
setting activity’s content view, 53
TextView widget, 61-62

Index

using holder pattern, 127-129
WebView widget, 159-166
ViewSwitcher widget, 157
visibility property, widgets, 71
visible attribute, menu items/groups,
177
VM see Dalvik virtual machine
VM policies
StrictMode, 332

W

W3C DOM parser, 379
watchers
TextWatcher, 115
WeatherAPI project, 410
WeatherBinder class, 413-415
WeatherDemo activity, 416-419
WeatherListener object, 412
WeatherService class, 415-416
web browsing
tabbed browsing, 232-234
Web service interface
creating client-side Java API,
410-421
Forecast class, 412
orientation changes, 411
state, 419
unbinding from service, 421
WeatherBinder class, 413-415
WeatherDemo activity, 416-419
WeatherListener object, 412
WeatherService class, 415-416
Web SQL Database option, 502
Web Storage, 500-502
Checklist app, HTML5, 501-502
deleting items from storage, 501
localStorage object, 500
WebKit browser component
HTTP operations via HttpClient, 378
Internet access, Android, 377
PhoneGap development for, 507
PhoneGap limitations, 510
WebSettings object, WebView, 165

WebView widget, 159-166
adjusting settings via WebSettings,
165
browser navigation, 162
canGoBack/canGoForward
methods, 163
clearCache/clearHistory methods,
163
enabling JavaScript, 161, 165
EU4You project, 275
getSettings method, 161, 165
getting content into, 161
goBack/goForward methods, 163
handling links, 163
Internet access, 382
loadData method, 161
loadUrl method, 160, 161
onCreate method, 160
reload method, 162
requesting permission to access
Internet, 160
settings/preferences/options, 165
setWebViewClient method, 163
shouldOverrideUrlLoading method,
163, 164
using as local Ul, 163-165
WebViewFragment class, 306
weight
LinearLayout container, 75
widgets
see also classes
accessing identified widgets, 57
adapters, 103-104
AnalogClock widget, 140
Android toolkit, 61-70
applying styles to, 253
ArrayAdapter class, 104
attaching to Java code, 57
AutoCompleteTextView widget, 65,
115-118
available style attributes, 254
Button widget, 62-63
CheckBox widget, 66-68
CheckedTextView widget, 156
Chronometer widget, 141, 156
color attributes, 71-72

587

Index

complex views, 57

containers, 73-92

contentDescription property, 71

creating/attaching to activity, 55

DatePicker widget, 135

DigitalClock widget, 140

drawSelectorOnTop property, 118

EditText widget, 64-65

findViewByld method, 71

Gallery widget, 118, 157

getParent method, 71

getRootView method, 71

GridView widget, 111-114

Holographic themes, Honeycomb,
285

ImageButton widget, 63

ImageSwitcher widget, 157

ImageView widget, 63

interactive widgets, 129-133

isEnabled method, 71

Java code, 57

LinearLayout container, 73-81

ListActivity widget, 104—106

ListFragment class, 301-306

ListView widget, 104, 106-108

enhancing lists, 119-120

MultiAutoCompleteTextView widget,
157

navigating tree of, 71

nextFocusXyz properties, 71

onSavelnstanceState method, 186

overlapping, 86

padding property, 70

ProgressBar widget, 204

properties/methods from View class,
70

QuickContactBadge widget, 157

RadioButton widget, 68-70

RatingBar widget, 129-133

RelativeLayout container, 81-87

requestFocus method, 71

screen rotation, 189

ScrollView container, 90-92

SeekBar widget, 141-142

setEnabled method, 71

spacing property, 118

specifying relationships between, 55
Spinner widget, 108-111
spinnerSelector property, 118
src attribute, 63
TabActivity widget, 144, 232
TablelLayout container, 87-90
TabWidget widget, 143, 146
TextSwitcher widget, 157
TextView widget, 61-62, 104
TimePicker widget, 135
ToggleButton widget, 157
ViewSwitcher widget, 157
visibility property, 71
WebView widget, 159-166
wikis, 537
Windows
setting up development machine to
talk to devices, 21-22
windowSoftinputMode attribute, 100
withText value, showAsAction attribute,
290
wrap_content value, containers, 74
handling multiple screen sizes, 259
write operations, database, 367
WRITE_EXTERNAL_STORAGE
permission, 383, 438, 440
WVGA emulator
EU4You project, 271, 273, 274, 276

X

xlargeScreens attribute, 261
XML data-binding framework, Flex, 103
xml directory see res/xml directory
XML files, 241-243
accessing, 324
describing menus via, 175-177
getXml method, 241
inflating into menus, 175, 177-178

inflating into View objects, 123-124
Java code reading, 324
PreferenceScreen element, 341
res/xml directory, 235
RingtonePreference element, 341

running project in emulator, 45

Index

XML layouts, 55, 56
@ signs, 57
@-+id convention, 57
adding custom views to action bar,
Honeycomb Ul

defining layout, 292-293

putting layout in menu, 293-294
attaching widgets to Java code, 57
Button class, 56, 57
choiceMode attribute, 106, 107
complex views, 57
containers, 73-92
creating/attaching widgets to

activity, 55

DetailsActivity class, EU4You_6, 311
drawSelectorOnTop property, 118
EU4You_6 project, 307-308
id attribute, 56, 57
layout_height attribute, 57
layout_width attribute, 57
LinearLayout container, 73-81
NowRedux demo, 58
properties, 118
reasons for using, 55
RelativeLayout container, 81-8

res/layout directory, 235

root element, 56
screen rotation, 188
ScrollView container, 90-92
spacing property, 118
specification of widget relationships,
55
spinnerSelector property, 118
TablelLayout container, 87-90
text attribute, 57
WebView widget, 159
XML pull parser, 242
XmlPullParser class, 241, 243
XML-RPC layer, SOAP
Apache HttpClient library, 377

Y

YAFFS (Yet Another Flash File System),
335

/4

zooming
setZoom method, MapController,
453

589

Beginning Android 3

Mark Murphy

Apress:

Beginning Android 3
Copyright © 2011 by Mark Murphy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3297-1
ISBN-13 (electronic): 978-1-4302-3298-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Development Editor: Tom Welsh

Technical Reviewer: Dylan Philips

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan
Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, James Markham,
Jeff Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger

Copy Editor: William McManus

Compositor: MacPS, LLC

Indexer: John Collin

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales-eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

Contents

LT T T T A —m— | |
About the Author...........cconsmmmnsmmmmsmsmmssssssssssessssssssassssssssssasssssasssssansnsssnnss XVI
About the Technical REVIEWETcossumsssssmsssssmsssssmsssssnsssssnssssssnssssanssssanssssanns XVII
JAT0 G LA T Lo T —— (| | |

o USSR () {

Part I: Core CoNCept........cccurussmmnmmssssnnnmsssssnnnsssssssnnssssssnnnsssssnnnnsssssnnnnnssssnnnnssssnnns

1
Chapter 1: The Big PiCture........c.cuccmmmsmmmmssmsmsssssmmssssssssssssssssssssssssssssssssssssssanses 3
Benefits and Drawbacks of Smartphone Programming 3
What Androids Are MAOE OFoeeeeeeeeeceecereri e e e se e e se e e e e e e e s s s s e se e nenenenens
(0L L 0T g D] 0T | T
The Big PiCtUre...0f THIS BOOK..........ceueeeuccceecseresesesesssssseseeeesesesesesesessssssesess s e e e e e e e e sesesessssssssssssessssssnsnsas

H F: T CT o TR T T T (- A —
TG]J RTcL UJ TTRTT 7
INSEAIL T8 JDK.....eeie e e 7

Learn Javaccceverenienernnnnnens
Step 2: Install the Android SDK

Install the Base ToolS............ccounee.

Install the SDKS @and AQU-0NS ... s 9
Step 3: Install the ADT for Eclipse
Step 4: Install Apache Ant..................
Step 5: Set Up the Emulator
Step 6: Set Up the Device

WINAOWS ..o 21

s To T G o I X 1T G 22

Chapter 3: Your First Android Projectccccinnsmmmnsmmmmssmsmmssnsmssssssssssssssans 23

Step 1: Create the NEW PrOJECT....... ..o se s se e e ne e
ECHIPSE ovcuetticsst it s 23
00T 01T T 26

Step 2: Build, Install, and Run the Application in Your Emulator or Device
o [0 OO
Command Line

CONTENTS

Chapter 4: Examining Your First Projectccccinnsmmnssmnmnssnsssssnsssssnnsssnns 31
PrOJECT STIUCIUIE... ..t 31
ROOE CONEENTS ... et e e e e e s e s e R e se e e e e e e e ne e nenenennnnnnan

The Sweat Off YOUr BIOWccvuieniiniininiiss s s s ssasesssnas 32
And Now, the Rest 0f the STOry ... —————— 32
What You Get Out of It
Inside Your Manifestooerererernneesescseseeese e
In the Beginning, There Was the Root, and It Was Good.............
An Application for YOUr APPICALIONceceeeececcrcre e se s 35

Chapter 5: A Bit About EClipSe........ccuscmmmsssmsmsssnsmssssssssssnsssssnsssssssssssnssssanssssans 37
WRAt the ADT GIVES YOU...couiueierriuiierinesesssesesseesss e e sss e e ss e sesss e ss e e st s b e b e s b e sasse e ensaese e ese e e saese e ssenenns
Coping With EClIPSEcceceeeererererererereeeeneeens
How to Import a Non-Eclipse Project
How to Get to DDMSconnnerererererenns
How 10 Create an EMUIALON..........cccviiiiicsrs e sp e n e
LT (I 1T W o (0] 44
How NOt 10 RUN YOUF PrOJECEc.cuvuiiricininirics st s sesssss s 45
AREINALIVE IDES........coiueieeiieceesecres et ss s e r s e s s e s e e e e A e e s Re e ne A e Re e e e e Re e e be e e s e ae e s s e rnnns
IDES @Nd THiS BOOKcucvureiaisisisresiissssssssisisssss s sss sttt s 46

Supporting Multiple Screen Sizes
SPECITYING VEISIONS ...vuerririerissierisese st e s et s s e se s e d s e e e e se e e s e Re et s A e Re e e A e R e s R e ae e e ae e e nanaen

L T () (L |)

vi

Chapter 7: Rewriting Your First Projectcccuccmmnsmmmmsmsmsssnsssssssssssnnsnsnns 91
L (T

Dissecting the Activity
Building and Running the Activity

Chapter 8: Using XML-Based Layoutscccuccemsssamsssssnsssssnsssssnsssssnsssssnnsnnns 5_3

What I an XML-BaSed LAYOUL?cevevnniiiniisss s s sessssss s 55
Why USe XML-BaSEd LAYOULS?ooeeeeerereeeeceeeecre e e se e e e e e sasa s ss e senens 55
0K, So What Does It Look Like?......

What's with the @ Signs?..........cccoveeeveeecnnee

And How Do We Attach These to the Java?...

The Rest 0f the STOrY ... ———— 58
Chapter 9: Employing Basic Widgets..........coiusmmmmsmsmmssmsssssnsssssssssssssssssnsnsssnns 61
ASSIGNING LADEIScceeererererereeeeeeeuesccsesesesesesesessssssessssses