

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 488

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

Contents .. v
About the Author ... xvi
About the Technical Reviewer ... xvii
Acknowledgments .. xviii
Preface ... xix
Part I: Core Concept .. 1
■Chapter 1: The Big Picture ... 3
■Chapter 2: How to Get Started ... 7
■Chapter 3: Your First Android Project ... 23
■Chapter 4: Examining Your First Project ... 31
■Chapter 5: A Bit About Eclipse ... 37
■Chapter 6: Enhancing Your First Project ... 47
Part II: Activities ... 49
■Chapter 7: Rewriting Your First Project .. 51
■Chapter 8: Using XML-Based Layouts ... 55
■Chapter 9: Employing Basic Widgets ... 61
■Chapter 10: Working with Containers ... 73
■Chapter 11: The Input Method Framework .. 93
■Chapter 12: Using Selection Widgets .. 103
■Chapter 13: Getting Fancy with Lists .. 119
■Chapter 14: Still More Widgets and Containers ... 135
■Chapter 15: Embedding the WebKit Browser .. 159
■Chapter 16: Applying Menus ... 167
■Chapter 17: Showing Pop-Up Messages .. 179
■Chapter 18: Handling Activity Lifecycle Events ... 183
■Chapter 19: Handling Rotation .. 187
■Chapter 20: Dealing with Threads ... 203

■ CONTENTS AT A GLANCE

iv

■Chapter 21: Creating Intent Filters .. 221
■Chapter 22: Launching Activities and Subactivities 227
■Chapter 23: Working with Resources .. 235
■Chapter 24: Defining and Using Styles .. 251
■Chapter 25: Handling Multiple Screen Sizes ... 257
Part III: Honeycomb and Tablets ... 279
■Chapter 26: ntroducing the Honeycomb UI .. 281
■Chapter 27: Using the Action Bar .. 289
■Chapter 28: Fragments .. 297
■Chapter 29: Handling Platform Changes ... 313
■Chapter 30: Accessing Files .. 323
Part IV: Data Stores, Network Services, and APIs .. 337
■Chapter 31: Using Preferences .. 339
■Chapter 32: Managing and Accessing Local Databases 357
■Chapter 33: Leveraging Java Libraries ... 369
■Chapter 34: Communicating via the Internet .. 377
Part V: Services .. 393
■Chapter 35: Services: The Theory .. 395
■Chapter 36: Basic Service Patterns ... 403
■Chapter 37: Alerting Users via Notifications ... 423
Part VI: Other Android Capabilities ... 435
■Chapter 38: Requesting and Requiring Permissions 437
■Chapter 39: Accessing Location-Based Services .. 443
■Chapter 40: Mapping with MapView and MapActivity 449
■Chapter 41: Handling Telephone Calls ... 463
■Chapter 42: Fonts .. 467
■Chapter 43: More Development Tools ... 473
Part VII: Alternative Application Environments .. 489
■Chapter 44: The Role of Alternative Environments 491
■Chapter 45: HTML5 .. 495
■Chapter 46: PhoneGap ... 507
■Chapter 47: Other Alternative Environments ... 523
Part VIII: The Ever-Evolving Android .. 529
■Chapter 48: Dealing with Devices .. 531
■Chapter 49: Where Do We Go From Here? ... 537
Index ... 541

 Part

Core Concept

I

 3

 Chapter

The Big Picture
Android is everywhere. Phones. Tablets. TVs and set-top boxes powered by Google TV.

Soon, Android will be in cars and all sort of other places as well.

However, the general theme of Android devices will be smaller screens and/or no

hardware keyboard. And, by the numbers, Android will probably be associated mostly

with smartphones for the foreseeable future. For developers, this has both benefits and

drawbacks, as described next. This chapter also describes the main components in an

Android application and the Android features that you can exploit when developing your

applications.

Benefits and Drawbacks of Smartphone
Programming
On the plus side, Android-style smartphones are sexy. Offering Internet services over

mobile devices dates back to the mid-1990s and the Handheld Device Markup

Language (HDML). However, only in recent years have phones capable of Internet

access taken off. Now, thanks to trends like text messaging and products like Apple’s

iPhone, phones that can serve as Internet-access devices are rapidly gaining popularity.

So, working on Android applications gives you experience with an interesting technology

(Android) in a fast-moving market segment (Internet-enabled phones), which is always a

good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the pain of phones

simply being small in all sorts of dimensions:

 Screens are small (you will not get comments like, “Is that a 24-inch

LCD in your pocket, or...?”).

 Keyboards, if they exist, are small.

1

CHAPTER 1: The Big Picture 4

 Pointing devices, if they exist, are annoying (as anyone who has lost

their stylus will tell you) or inexact (large fingers and “multitouch” LCDs

can sometimes be...problematic).

 CPU speed and memory are limited compared to what’s available on

desktops and servers.

Moreover, applications running on a phone have to deal with the fact that they’re on a
phone.

People with mobile phones tend to get very irritated when those phones do not work.

Similarly, those same people will get irritated if your program “breaks” their phones by

 Tying up the CPU such that calls can’t be received.

 Not quietly fading into the background when a call comes in or needs

to be placed, because the program doesn’t work properly with the rest

of the phone’s operating system.

 Crashing the phone’s operating system, such as by leaking memory

like a sieve.

Hence, developing programs for a phone is a different experience than developing

desktop applications, web sites, or back-end server processes. The tools look different,

the frameworks behave differently, and you have more limitations on what you can do

with your programs.

What Android tries to do is meet you halfway:

 You get a commonly used programming language (Java) with some

commonly used libraries (e.g., some Apache Commons APIs), with

support for tools you may be used to using (Eclipse).

 You get a fairly rigid and uncommon framework in which your

programs need to run so they can be “good citizens” on the phone

and not interfere with other programs or the operation of the phone

itself.

As you might expect, much of this book deals with that framework and how you write

programs that work within its confines and take advantage of its capabilities.

What Androids Are Made Of
When you write a desktop application, you are “master of your own domain.” You

launch your main window and any child windows—like dialog boxes—that are needed.

From your standpoint, you are your own world, leveraging features supported by the

operating system, but largely ignorant of any other program that may be running on the

computer at the same time. If you do interact with other programs, it is typically through

an application programming interface (API), such as Java Database Connectivity (JDBC),

or frameworks atop it, to communicate with MySQL or another database.

CHAPTER 1: The Big Picture 5

Android has similar concepts, but they are packaged differently and structured to make

phones more crash-resistant:

 Activities: The building block of the user interface is the activity. You

can think of an activity as being the Android analogue for the window

or dialog box in a desktop application or the page in a classic web

application. Android is designed to support lots of cheap activities, so

you can allow users to keep tapping to open new activities and

tapping the Back button to back up, just like they do in a web browser.

 Services: Activities are short-lived and can be shut down at any time.

Services, on the other hand, are designed to keep running, if needed,

independent of any activity. You might use a service to check for

updates to an RSS feed or to play back music even if the controlling

activity is no longer operating. You will also use services for scheduled

tasks (“cron jobs”) and for exposing custom APIs to other applications

on the device, though those are relatively advanced capabilities.

 Content providers: Content providers provide a level of abstraction for

any data stored on the device that is accessible by multiple

applications. The Android development model encourages you to

make your own data available to other applications, as well as your

own applications. Building a content provider lets you do that, while

maintaining complete control over how your data gets accessed.

 Intents: Intents are system messages that run around the inside of the

device and notify applications of various events, from hardware state

changes (e.g., an SD card was inserted), to incoming data (e.g., a

Short Message Service [SMS] message arrived), to application events

(e.g., your activity was launched from the device’s main menu). Not

only can you respond to an Intent, but you can create your own to

launch other activities or to let you know when specific situations arise

(e.g., raise such-and-so Intent when the user gets within 100 meters

of this-and-such location).

Stuff at Your Disposal
 Storage: You can package data files with your application for things

that do not change, such as icons or help files. You also can carve out

a small bit of space on the device itself, for databases or files

containing user-entered or retrieved data needed by your application.

And, if the user supplies bulk storage, like an SD card, you can read

and write files on there as needed.

CHAPTER 1: The Big Picture 6

 Network: Android devices generally are Internet-ready, through one

communications medium or another. You can take advantage of the

Internet access at any level you wish, from raw Java sockets all the

way up to a built-in WebKit-based web browser widget you can

embed in your application.

 Multimedia: Android devices have the ability to play back and record

audio and video. While the specifics may vary from device to device,

you can query the device to learn its capabilities and then take

advantage of the multimedia capabilities as you see fit, whether that is

to play back music, take pictures with the camera, or use the

microphone for audio note-taking.

 Global Positioning System (GPS): Android devices frequently have

access to location providers, such as GPS, that can tell your

applications where the device is on the face of the Earth. In turn, you

can display maps or otherwise take advantage of the location data,

such as to track a device’s movements if the device has been stolen.

 Phone services: Because Android devices are typically phones, your

software can initiate calls, send and receive SMS messages, and do

everything else you expect from a modern bit of telephony technology.

The Big Picture...of This Book
Now that you have the Android big picture, here is what’s coming in the rest of this

book:

 The next two chapters are designed to get you going quickly with the

Android environment, through a series of step-by-step, tutorial-style

instructions for setting up the tools you need, creating your first

project, and getting that first project running on the Android emulator.

 The three chapters that follow explain a bit more about what just

happened in Chapters 2 and 3. We examine the Android project that

we created, talk a bit more about Eclipse, and discuss some things we

could add to the project to help it run on more devices and enhance its

capabilities.

 The bulk of the book explores the various capabilities of the Android

APIs—how to create components like activities, how to access the

Internet and local databases, how to get your location and show it on

a map, and so forth.

7

 Chapter

How to Get Started
Without further ado, let’s get you set up with the pieces and parts necessary to build an

Android app.

NOTE: The instructions presented here are accurate as of the time of this writing. However, the
tools change rapidly, so these instructions may be out of date by the time you read this. Please
refer to the Android Developers web site for current instructions, using this as a base guideline of

what to expect.

Step 1: Set Up Java
When you write Android applications, you typically write them in Java source code. That

Java source code is then turned into the stuff that Android actually runs (Dalvik

bytecode in an Android package [APK] file).

Hence, the first thing you need to do is get set up with a Java development environment

so that you are prepared to start writing Java classes.

Install the JDK
You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can

obtain this from the Oracle Java web site for Windows and Linux, and presumably from

Apple for Mac OS X. The plain JDK (sans any “bundles”) should suffice. Follow the

instructions supplied by Oracle or Apple for installing it on your machine. At the time of

this writing, Android supports Java 5 and Java 6, the latter being the now-current

edition.

Alternative Java Compilers
In principle, you are supposed to use the official Sun/Oracle Java SE Development Kit

(JDK) In practice, it appears that OpenJDK also works, at least on Ubuntu. However, the

2

CHAPTER 2: How to Get Started 8

further removed you get from the official Sun/Oracle implementation, the less likely it is

that it will work. For example, the GNU Compiler for Java (GCJ) may not work with

Android.

Learn Java
This book, like most books and documentation on Android, assumes that you have

basic Java programming experience. If you lack this, you really should consider

spending a bit of time on Java fundamentals, before you dive into Android. Otherwise,

you may find the experience to be frustrating.

If you are in need of a crash course in Java to get involved in Android development, here

are the concepts you need to learn, presented in no particular order:

 Language fundamentals (flow control, etc.)

 Classes and objects

 Methods and data members

 Public, private, and protected

 Static and instance scope

 Exceptions

 Threads and concurrency control

 Collections

 Generics

 File I/O

 Reflection

 Interfaces

One of the easiest ways of acquiring this knowledge is to read Learn Java for Android
Development by Jeff Friesen (Apress, 2010).

Step 2: Install the Android SDK
The Android SDK gives you all the tools you need to create and test Android

applications. It comes in two parts: the base tools, and version-specific SDKs and

related add-ons.

Install the Base Tools
You can find the Android developer tools on the Android Developers web site. Download

the ZIP file that is appropriate for your platform and unzip it in a logical location on your

CHAPTER 2: How to Get Started 9

machine—no specific path is required. Windows users also have the option of running a

self-installing EXE file.

Install the SDKs and Add-ons
Inside the tools/ directory of your Android SDK installation from the previous step, you

will see an android batch file or shell script. If you run that, you will be presented with

the Android SDK and AVD Manager, shown in Figure 2–1.

Figure 2–1. Android SDK and AVD Manager

At this point, you have some of the build tools, but you lack the Java files necessary to

compile an Android application. You also lack a few additional build tools, and the files

necessary to run an Android emulator. To address this, click the Available packages

option on the left to open the screen shown in Figure 2–2.

CHAPTER 2: How to Get Started 10

Figure 2–2. Android SDK and AVD Manager available packages

Open the Android Repository branch of the tree. After a short pause, you will see a

screen similar to Figure 2–3.

Figure 2–3. Android SDK and AVD Manager available Android packages

Check the boxes for the following items:

 “SDK Platform” for all Android SDK releases you want to test against

 “Documentation for Android SDK” for the latest Android SDK release

 “Samples for SDK” for the latest Android SDK release, and perhaps for

older releases if you wish

Then, open the Third party Add-ons branch of the tree. After a short pause, you will see

a screen similar to Figure 2–4.

CHAPTER 2: How to Get Started 11

Figure 2–4. Android SDK and AVD Manager available third-party add-ons

Click the “Google Inc. add-ons” branch to open it, as shown in Figure 2–5.

Figure 2–5. Android SDK and AVD Manager available Google add-ons

Most likely, you will want to check the boxes for the “Google APIs by Google Inc.” items

that match up with the SDK versions you selected in the Android Repository branch. The

Google APIs include support for Google Maps, both from your code and in the Android

emulator.

After you have checked all the items you want to download, click the Install Selected

button, which brings up a license confirmation dialog box, shown in Figure 2–6.

CHAPTER 2: How to Get Started 12

Figure 2–6. Android SDK and AVD Manger license agreement screen

Review and accept the licenses if you agree with the terms, and then click the Install

button. At this point, this is a fine time to go get lunch or dinner. Unless you have a

substantial Internet connection, downloading all of this data and unpacking it will take a

fair bit of time.

When the download is complete, you can close the SDK and AVD Manager if you wish,

though you will use it to set up the emulator in Step 5 of this chapter.

Step 3: Install the ADT for Eclipse
If you will not be using Eclipse for your Android development, you can skip to the next

section. If you will be using Eclipse but have not yet installed it, you will need to do that

first. Eclipse can be downloaded from the Eclipse web site, www.eclipse.org/. The

Eclipse IDE for Java Developers package will work fine.

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, open

Eclipse and choose Help ➤ Install New Software. Then, in the Install dialog box, click the

Add button to add a new source of plug-ins. Give it a name (e.g., Android) and supply

the following URL: https://dl-ssl.google.com/android/eclipse/. That should trigger

Eclipse to download the roster of plug-ins available from that site (see Figure 2–7).

http://www.eclipse.org/
https://dl-ssl.google.com/android/eclipse/

CHAPTER 2: How to Get Started 13

Figure 2–7. Eclipse ADT plug-in installation

Check the Developer Tools check box and click the Next button. Follow the rest of the

wizard steps to review the tools to be downloaded and review and accept their respective

license agreements. When the Finish button is enabled, click it, and Eclipse will download

and install the plug-ins. When it’s done, Eclipse will ask to restart; let it do so.

Then, you need to show ADT where to locate your Android SDK installation from the

preceding section. To do this, choose Window ➤ Preferences from the Eclipse main

menu (or the equivalent Preferences option for Mac OS X). Click the Android entry in the

list pane of the Preferences dialog box, as shown in Figure 2–8.

CHAPTER 2: How to Get Started 14

Figure 2–8. Eclipse ADT configuration

Then, click the Browse button to find the directory where you installed the SDK. After

choosing it, click Apply in the Preferences dialog box, and you should see the Android

SDK versions you installed previously. Then, click OK, and the ADT will be ready for use.

Step 4: Install Apache Ant
If you will be doing all of your development from Eclipse, you can skip to the next

section. If you wish to develop using command-line build tools, you need to install

Apache Ant. You may have this installed already from previous Java development work,

as it is fairly common in Java projects. However, you need Ant version 1.8.1 or later, so

check your current copy (e.g., ant -version).

If you do not have Ant or do not have the correct version, you can obtain it from the

Apache Ant web site, at http://ant.apache.org/. Full installation instructions are

available in the Ant manual, but the basic steps are as follows:

1. Unpack the ZIP archive in a logical place on your machine.

2. Add a JAVA_HOME environment variable, pointing to where your JDK is

installed, if you do not have one already.

3. Add an ANT_HOME environment variable, pointing to the directory where

you unpacked Ant in step 1.

http://ant.apache.org/

CHAPTER 2: How to Get Started 15

4. Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH.

5. Run ant -version to confirm that Ant is installed properly.

Step 5: Set Up the Emulator
The Android tools include an emulator, a piece of software that pretends to be an

Android device. This is very useful for development—it not only enables you to get

started on your Android development without a device, but also enables you to test

device configurations for devices that you do not own.

The Android emulator can emulate one or several Android devices. Each configuration

you want is stored in an Android Virtual Device (AVD). The Android SDK and AVD

Manager, which you used to download the SDK components earlier in this chapter, is

where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via the android

command from your SDK’s tools/ directory, or via Window ➤ SDK and AVD Manager

from Eclipse. It opens with a screen listing the AVDs you have available; initially, the list

will be empty, as shown in Figure 2–9.

Figure 2–9. Android SDK and AVD Manager Android Virtual Devices list

Click the New button to create a new AVD file. This opens the dialog box shown in

Figure 2–10, where you can configure how this AVD should look work.

CHAPTER 2: How to Get Started 16

Figure 2–10. Adding a new AVD

You need to provide the following:

 A name for the AVD: Since the name goes into files on your

development machine, you are limited by the file name conventions for

your operating system (e.g., no backslashes on Windows).

 The Android version (target) you want the emulator to run: Choose one

of the SDKs you installed via the Target drop-down list. Note that in

addition to “pure” Android environments, you will have options based

on the third-party add-ons you selected. For example, you probably

have some options for setting up AVDs containing the Google APIs,

and you will need such an AVD for testing an application that uses

Google Maps.

 Details about the SD card the emulator should emulate: Since Android

devices invariably have some form of external storage, you probably

want to set up an SD card, by supplying a size in the associated field.

However, since a file will be created on your development machine of

whatever size you specify for the card, you probably do not want to

create a 2GB emulated SD card. 32MB is a nice starting point, though

you can go larger if needed.

CHAPTER 2: How to Get Started 17

 The “skin” or resolution the emulator should run in: The skin options

you have available depend upon what target you chose. The skins let

you choose a typical Android screen resolution (e.g., WVGA800 for

800 480). You can also manually specify a resolution when you want

to test a nonstandard configuration.

You can skip the Hardware section of the dialog box for now, as changing those

settings is usually only required for advanced configurations.

The resulting dialog box might look something like Figure 2–11.

Figure 2–11. Adding a new AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, select it in the Android Virtual Devices list and click Start. You can

skip the launch options for now and just click Launch. The first time you launch a new

AVD, it will take a long time to start up. The second and subsequent times you start the

AVD, it will come up a bit faster, and usually you need to start it only once per day (e.g.,

when you start development). You do not need to stop and restart the emulator every

time you want to test your application, in most cases.

The emulator will go through a few startup phases, the first of which displays a plain-text

ANDROID label, as shown in Figure 2–12.

CHAPTER 2: How to Get Started 18

Figure 2–12. Android emulator, initial startup segment

The second phase displays a graphical Android logo, as shown in Figure 2–13.

CHAPTER 2: How to Get Started 19

Figure 2–13. Android emulator, secondary startup segment

Finally, the emulator reaches the home screen (the first time you run the AVD; see Figure

2–14) or the keyguard (see Figure 2–15).

CHAPTER 2: How to Get Started 20

Figure 2–14. Android home screen

If you get the keyguard, press the Menu button or slide the green lock on the screen to

the right, to get to the emulator’s home screen.

Figure 2–15. Android keyguard

CHAPTER 2: How to Get Started 21

Step 6: Set Up the Device
With an emulator set up, you do not need an Android device to get started in Android

application development. Having one is a good idea before you try to ship an application

(e.g., upload it to the Android Market). But perhaps you already have a device—maybe

that is what is spurring your interest in developing for Android.

The first step to make your device ready for use with development is to go into the

Settings application on the device. From there, choose Applications, then Development.

That should give you a set of check boxes for choosing development-related options,

similar to what’s shown in Figure 2–16.

Figure 2–16. Android device development settings

Generally, you will want to enable USB debugging so that you can use your device with

the Android build tools. You can leave the other settings alone for now if you wish,

though you may find the Stay awake option to be handy, as it saves you from having to

unlock your phone repeatedly while it is plugged into USB.

Next, you need to set up your development machine to talk to your device. That process

varies by the operating system of your development machine, as covered in the

following sections.

Windows
When you first plug in your Android device, Windows attempts to find a driver for it. It is

possible that, by virtue of other software you have installed, the driver is ready for use. If

Windows finds a driver, you are probably ready to go.

If Windows doesn’t find the driver, here are some options for getting one:

 Windows Update: Some versions of Windows (e.g., Vista) prompt you

to search Windows Update for drivers. This is certainly worth a shot,

though not every device will have supplied its driver to Microsoft.

CHAPTER 2: How to Get Started 22

 Standard Android driver: In your Android SDK installation, you will find

a google-usb_driver directory, containing a generic Windows driver

for Android devices. You can try pointing the driver wizard at this

directory to see if it thinks this driver is suitable for your device.

 Manufacturer-supplied driver: If you still do not have a driver, search

the CD that came with the device (if any) or search the web site of the

device manufacturer. Motorola, for example, has drivers available for

all of its devices in one spot for download.

Mac OS X and Linux
Odds are decent that simply plugging in your device will “just work.” You can see if

Android recognizes your device by running adb devices in a shell (e.g., OS X Terminal),

where adb is in your platform-tools/ directory of your SDK. If you get output similar to

the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps another Linux variant) and this command did not

work, you may need to add some udev rules. For example, here is a 51-android.rules

file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01", MODE="0666",
 OWNER="[me]"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, and then either reboot the

computer or otherwise reload the udev rules (e.g., sudo service udev reload). Then,

unplug the device, plug it in again, and see if it is detected.

23

 Chapter

Your First Android Project
Now that you have the Android SDK, it is time to make your first Android project. The

good news is that this requires zero lines of code—Android’s tools create a “Hello,

world!” application for you as part of creating a new project. All you need to do is build

it, install it, and watch it open on your emulator or device.

Step 1: Create the New Project
Android’s tools can create a complete skeleton project for you, with everything you need

for a complete (albeit very trivial) Android application. The process differs depending on

whether you are using Eclipse or the command line.

Eclipse
From the Eclipse main menu, choose File ➤ New ➤ Project to open the New Project

dialog box, which gives you a list of project type wizards to choose from. Expand the

Android option and click Android Project, as shown in Figure 3–1.

3

CHAPTER 3: Your First Android Project 24

Figure 3–1. Selecting a wizard in the Eclipse New Project dialog box

Click Next to advance to the first page of the New Android Project wizard, shown in

Figure 3–2.

CHAPTER 3: Your First Android Project 25

Figure 3–2. Eclipse New Android Project wizard, ready to fill in

Fill in the following and leave the default settings otherwise (the completed example for

this project is shown in Figure 3–3):

 Project name: The name of the project (e.g., Now)

 Build Target: The Android SDK you wish to compile against (e.g.,

Google APIs for Android 2.3.3)

 Application name: The display name of your application, which will be

used for the caption under your icon in the launcher (e.g., Now)

 Package name: The name of the Java package in which this project

belongs (e.g., com.commonsware.android.skeleton)

 Create Activity: The name of the initial activity to create (e.g., Now)

CHAPTER 3: Your First Android Project 26

Figure 3–3. Eclipse New Android Project wizard, completed

At this point, click Finish to create your Eclipse project.

Command Line
Here is a sample command that creates an Android project from the command line:

android create project --target "Google Inc.:Google APIs:7" --path Skeleton/Now
 --activity Now --package com.commonsware.android.skeleton

This creates an application skeleton for you, complete with everything you need to build

your first Android application: Java source code, build instructions, and so forth.

CHAPTER 3: Your First Android Project 27

However, you’ll probably need to customize this somewhat. Here are what those

command-line switches mean:

 --target: Indicates which version of Android you are targeting in terms

of your build process. You need to supply the ID of a target that is

installed on your development machine, one you downloaded via the

Android SDK and AVD Manager. You can find out which targets are

available via the android list targets command. Typically, your build

process will target the newest version of Android that you have

available.

 --path: Indicates where you want the project files to be generated.

Android will create a directory if the one you name does not exist. For

example, in the preceding command, a Skeleton/Now/ directory will be

created (or used if it exists) under the current working directory, and

the project files will be stored there.

 --activity: Indicates the Java class name of your first activity for this

project. Do not include a package name, and make sure the name

meets Java class-naming conventions.

 --package: Indicates the Java package in which your first activity will

be located. This package name also uniquely identifies your project on

any device on which you install it, and it must be unique on the

Android Market if you plan on distributing your application there.

Hence, typically, you should construct your package based on a

domain name you own (e.g., com.commonsware.android.skeleton), to

reduce the odds of an accidental package name collision with

somebody else.

For your development machine, you need to pick a suitable target, and you may wish to

change the path. You can ignore the activity and package for now.

Step 2: Build, Install, and Run the Application in
Your Emulator or Device
Having a project is nice and all, but it would be even better if you could build and run it,

whether on the Android emulator or on your Android device. Once again, the process

differs somewhat depending on whether you are using Eclipse or the command line.

Eclipse
With your project selected on the Package Explorer panel of Eclipse, click the green play

button in the Eclipse toolbar to run your project. The first time you do this, you have to go

through a few steps to set up a run configuration, so Eclipse knows what you want to do.

First, in the Run As dialog box, choose Android Application, as shown in Figure 3–4.

CHAPTER 3: Your First Android Project 28

Figure 3–4. Choosing to run as an Android application in the Eclipse Run As dialog box

Click OK. If you have more than one emulator AVD or device available, you will then get

an option to choose which you wish to run the application on. Otherwise, if you do not

have a device plugged in, the emulator will start up with the AVD you created earlier.

Then, Eclipse will install the application on your device or emulator and start it.

Command Line
For developers who are not using Eclipse, in your terminal, change into the

Skeleton/Now directory, then run the following command:

ant clean install

The Ant-based build should emit a list of steps involved in the installation process, which

looks like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml
 [setup] Android SDK Tools Revision 10
 [setup] Project Target: Android 1.6
 [setup] API level: 4
 [setup]
 [setup] ------------------
 [setup] Resolving library dependencies:
 [setup] No library dependencies.
 [setup]
 [setup] ------------------
 [setup]
 [setup] WARNING: No minSdkVersion value set. Application will install on all Android
versions.
 [setup]
 [setup] Importing rules file: tools/ant/main_rules.xml

clean:

CHAPTER 3: Your First Android Project 29

 [delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin
 [delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/gen

-debug-obfuscation-check:

-set-debug-mode:

-compile-tested-if-test:

-pre-build:

-dirs:
 [echo] Creating output directories if needed...
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes

-aidl:
 [echo] Compiling aidl files into Java classes...

-renderscript:
 [echo] Compiling RenderScript files into Java classes and RenderScript bytecode...

-resource-src:
 [echo] Generating R.java / Manifest.java from the resources...

-pre-compile:

compile:
 [javac] /opt/android-sdk-linux/tools/ant/main_rules.xml:384: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for
repeatable builds
 [javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:

-obfuscate:

-dex:
 [echo] Converting compiled files and external libraries into /home/some-balding-
guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
 [echo] Packaging resources
 [aapt] Creating full resource package...

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:
 [echo] Running zip align on final apk...
 [echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

install:

CHAPTER 3: Your First Android Project 30

 [echo] Installing /home/some-balding-guy/projects/Skeleton/Now/bin/Now-debug.apk
onto default emulator or device...
 [exec] 98 KB/s (4626 bytes in 0.045s)
 [exec] pkg: /data/local/tmp/Now-debug.apk
 [exec] Success

BUILD SUCCESSFUL
Total time: 10 seconds

Note the BUILD SUCCESSFUL at the bottom—that is how you know the application

compiled successfully.

When you have a clean build, in your emulator or device, open the application launcher,

shown in Figure 3–5, which typically is found at the bottom of the home screen.

Figure 3–5. Android emulator application launcher

Notice there is an icon for your Now application. Click it to open it and see your first

activity in action. To leave the application and return to the launcher, press the Back

button, which is located to the right of the Menu button and looks like an arrow pointing

to the left.

31

 Chapter

Examining Your First
Project
The previous chapter stepped you through creating a stub project. This chapter

describes what is inside of this project, so you understand what Android gives you at the

outset and what the roles are for the various directories and files.

Project Structure
The Android build system is organized around a specific directory tree structure for your

Android project, much like any other Java project. The specifics, though, are fairly

unique to Android—the Android build tools do a few extra things to prepare the actual

application that will run on the device or emulator. Here’s a quick primer on the project

structure, to help you make sense of it all, particularly for the sample code referenced in

this book.

Root Contents
When you create a new Android project (e.g., via android create project), you get

several items in the project’s root directory, including the following:

 AndroidManifest.xml: An XML file that describes the application being

built and what components (activities, services, etc.) are being

supplied by that application

 bin/: The directory that holds the application once it is compiled

 libs/: The directory that holds any third-party JARs your application

requires

 res/: The directory that holds resources, such as icons, GUI layouts,

and the like, that are packaged with the compiled Java in the application

 src/: The directory that holds the Java source code for the application

4

3

CHAPTER 4: Examining Your First Project 32

In addition to the preceding file and directories, you may find any of the following in

Android projects:

 assets/: The directory that holds other static files that you want

packaged with the application for deployment onto the device

 gen/: The directory in which Android’s build tools place source code

that they generate

 build.xml and *.properties: Files that are used as part of the Ant-

based command-line build process, if you are not using Eclipse

 proguard.cfg: A file that is used for integration with ProGuard to

obfuscate your Android code

The Sweat Off Your Brow
When you create an Android project (e.g., via android create project), you supply the

fully qualified class name of the main activity for the application (e.g.,

com.commonsware.android.SomeDemo). You will then find that your project’s src/ tree

already has the namespace directory tree in place, plus a stub Activity subclass

representing your main activity (e.g., src/com/commonsware/android/SomeDemo.java). You

are welcome to modify this file and add others to the src/ tree as needed to implement

your application.

The first time you compile the project (e.g., via ant), out in the main activity’s namespace

directory, the Android build chain will create R.java. This contains a number of

constants tied to the various resources you placed in the res/ directory tree. You should

not modify R.java yourself, but instead let the Android tools handle it for you. You will

see throughout this book that many of the examples reference things in R.java (e.g.,

referring to a layout’s identifier via R.layout.main).

And Now, the Rest of the Story
The res/ directory tree in your project holds resources—static files that are packaged

along with your application, either in their original form or, occasionally, in a preprocessed

form. Following are some of the subdirectories you will find or create under res/:

 res/drawable/: For images (PNG, JPEG, etc.)

 res/layout/: For XML-based UI layout specifications

 res/menu/: For XML-based menu specifications

 res/raw/: For general-purpose files (e.g., an audio clip or a CSV file of

account information)

 res/values/: For strings, dimensions, and the like

 res/xml/: For other general-purpose XML files you wish to ship

CHAPTER 4: Examining Your First Project 33

Some of the directory names may have suffixes, like res/drawable-hdpi/. This indicates

that the directory of resources should be used only in certain circumstances—in this

case, the drawable resources should be used only on devices with high-density screens.

We will cover all of these resources, and more, in later chapters of this book.

In your initial project, you will find the following:

 res/drawable-hdpi/icon.png, res/drawable-ldpi/icon.png, and

res/drawable-mdpi/icon.png: Three renditions of a placeholder icon

for your application for high-, low-, and medium-density screens,

respectively

 res/layout/main.xml: An XML file that describes the very simple

layout of your user interface

 res/values/strings.xml: An XML file that contains externalized

strings, notably the placeholder name of your application

What You Get Out of It
When you compile your project (via ant or the IDE), the results go into the bin/ directory

under your project root, as follows:

 bin/classes/: Holds the compiled Java classes

 bin/classes.dex: Holds the executable created from those compiled

Java classes

 bin/yourapp.ap_: Holds your application’s resources, packaged as a

ZIP file (where yourapp is the name of your application)

 bin/yourapp-*.apk: The actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of your

resources (resources.arsc), any uncompiled resources (such as what you put in

res/raw/), and the AndroidManifest.xml file. If you build a debug version of the

application (which is the default), you will have yourapp-debug.apk and yourapp-debug-
aligned.apk as two versions of your APK. The latter has been optimized with the

zipalign utility to make it run faster.

Inside Your Manifest
The foundation for any Android application is the manifest file, AndroidManifest.xml, in

the root of your project. This is where you declare what is inside your application—the

activities, the services, and so on. You also indicate how these pieces attach themselves

to the overall Android system; for example, you indicate which activity (or activities)

should appear on the device’s main menu (a.k.a., the launcher).

CHAPTER 4: Examining Your First Project 34

When you create your application, a starter manifest is generated for you automatically.

For a simple application, offering a single activity and nothing else, the autogenerated

manifest will probably work out fine, or perhaps require a few minor modifications. On

the other end of the spectrum, the manifest file for the Android API demo suite is over

1,000 lines long. Your production Android applications will probably fall somewhere in

the middle.

In the Beginning, There Was the Root, and It Was Good
The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
...
</manifest>

Note the namespace declaration. Curiously, the generated manifests apply it only on the

attributes, not the elements (e.g., manifest, not android:manifest). This pattern works,

so, unless Android changes, you should stick with it.

The biggest piece of information you need to supply on the manifest element is the

package attribute (also curiously not namespaced). Here, you can provide the name of

the Java package that will be considered the “base” of your application. Then,

everywhere else in the manifest file that needs a class name, you can just substitute a

leading dot as shorthand for the package. For example, if you needed to refer to

com.commonsware.android.search.Snicklefritz in the preceding manifest, you could

just use .Snicklefritz, since com.commonsware.android.search is defined as the

application’s package.

As noted in the previous chapter, your package also is a unique identifier for your

application. A device can have only one application installed with a given package, and

the Android Market will list only one project with a given package.

Your manifest also specifies android:versionName and android:versionCode attributes.

These represent the versions of your application. The android:versionName value is what

the user will see in the Applications list in their Settings application. Also, the version

name is used by the Android Market listing, if you are distributing your application that

way. The version name can be any string value you want. The android:versionCode, on

the other hand, must be an integer, and newer versions must have higher version codes

than do older versions. Android and the Android Market will compare the version code

of a new APK to the version code of an installed application to determine if the new APK

is indeed an update. The typical approach is to start the version code at 1 and increment

it with each production release of your application, though you can choose another

convention if you wish.

http://schemas.android.com/apk/res/android

CHAPTER 4: Examining Your First Project 35

An Application for Your Application
In your initial project’s manifest, the only child of the <manifest> element is an

<application> element. The children of the <application> element represent the core of

the manifest file.

One attribute of the <application> element that you may need in select circumstances

is the android:debuggable attribute. This needs to be set to true if you are installing the

application on an actual device, you are using Eclipse (or another debugger), and your

device precludes debugging without this flag. For example, the Google/HTC Nexus One

requires android:debuggable = "true", according to some reports.

By default, when you create a new Android project, you get a single <activity> element

inside the <application> element:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

This element supplies android:name for the class implementing the activity,

android:label for the display name of the activity, and (frequently) an <intent-filter>

child element describing under what conditions this activity will be displayed. The stock

<activity> element sets up your activity to appear in the launcher, so users can choose

to run it. As you’ll see later in this book, you can have several activities in one project, if

you so choose.

http://schemas.android.com/apk/res/android

37

 Chapter

A Bit About Eclipse
Eclipse is an extremely popular integrated development environment (IDE),

particularly for Java development. It is also designed to be extensible via an add-in

system. To top it off, Eclipse is open source. That combination made it an ideal choice

of IDE for the core Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins for

the Eclipse environment. Primary among these is the Android Developer Tools (ADT)

add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You
The ADT add-in, in essence, takes regular Eclipse operations and extends them to work

with Android projects. For example, with Eclipse, you get the following features (among

others):

 New project wizards to create regular Android projects, Android test

projects, and so forth

 The ability to run an Android project just like you might run a regular

Java application—via the green Run button in the toolbar—despite the

fact that this really involves pushing the Android application over to an

emulator or device, possibly even starting up the emulator if it is not

running

 Tooltip support for Android classes and methods

In addition, the latest version of the ADT provides you with preliminary support for drag-

and-drop GUI editing. While this book will focus on the XML files that Eclipse generates,

Eclipse now lets you assemble those XML files by dragging GUI components around on

the screen, adjusting properties as you go. Drag-and-drop GUI editing is fairly new, so

there may be a few rough edges for a while as the community and Google identify the

problems and limitations with the current implementation.

5

CHAPTER 5: A Bit About Eclipse 38

Coping with Eclipse
Eclipse is a powerful tool. Like many powerful tools, Eclipse is sometimes confounding.

Determining how to solve some specific development problem can be a challenge,

exacerbated by the newness of Android itself.

This section offers some tips for handling some common issues in using Eclipse with

Android.

How to Import a Non-Eclipse Project
Not all Android projects ship with Eclipse project files, such as the sample projects

associated with this book. However, you can easily add them to your Eclipse

workspace, if you wish. Here’s how to do it!

First, choose File ➤ New ➤ Project from the Eclipse main menu, as shown in Figure 5–1.

Figure 5–1. File menu in Eclipse

CHAPTER 5: A Bit About Eclipse 39

Then, choose Android ➤ Android Project from the tree of available project types, as

shown in Figure 5–2, and click Next.

Figure 5–2. New Project wizard in Eclipse

NOTE: If you do not see this option, you have not installed Android Developer Tools.

Then, on the first page of the New Android Project wizard, choose the “Create project

from existing source” radio button, click the Browse button, and open the directory

containing your project’s AndroidManifest.xml file. This will populate most of the rest of

the wizard page, though you may need to also specify a build target from the table, as

shown in Figure 5–3.

CHAPTER 5: A Bit About Eclipse 40

Figure 5–3. New Android Project wizard in Eclipse

Then, click Finish. This will return you to Eclipse, with the imported project in your

workspace, as shown in Figure 5–4.

Figure 5–4. Android project tree in Eclipse

CHAPTER 5: A Bit About Eclipse 41

Next, right-click the project name and choose Build Path ➤ Configure Build Path from

the context menu, as shown in Figure 5–5.

Figure 5–5. Project context menu in Eclipse

This brings up the Java Build Path portion of the project Properties window, as shown in

Figure 5–6.

Figure 5–6. Project Properties window in Eclipse

CHAPTER 5: A Bit About Eclipse 42

If the Android JAR is not checked (the Android 2.2 entry in Figure 5–6), check it, and

then click OK to close the Properties window. At this point, your project should be ready

for use.

How to Get to DDMS
Many times, you will be told to take a look at something in DDMS, such as the LogCat

tab to examine Java stack traces. In Eclipse, DDMS is a perspective. To open this

perspective in your workspace, choose Window ➤ Open Perspective ➤ Other from the

main menu, as shown in Figure 5–7.

Figure 5–7. Perspective menu in Eclipse

Then, in the list of perspectives, shown in Figure 5–8, choose DDMS.

CHAPTER 5: A Bit About Eclipse 43

Figure 5–8. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your Eclipse IDE.

DDMS is covered in greater detail in a later chapter of this book.

How to Create an Emulator
By default, your Eclipse environment has no Android emulators set up. You will need

one before you can run your project successfully.

To do this, first choose Window ➤ Android SDK and AVD Manager from the main menu,

as shown in Figure 5–9.

CHAPTER 5: A Bit About Eclipse 44

Figure 5–9. Android SDK and AVD Manager menu option in Eclipse

That brings up the same window as you get by running android from the command line.

You can now define an Android Virtual Device (AVD) by following the instructions given

in Chapter 2, in the section “Step 5: Set Up the Emulator.”

How to Run a Project
Given that you have an AVD defined, or that you have a device set up for debugging and

connected to your development machine, you can run your project in the emulator.

First, click the Run toolbar button, or choose Project ➤ Run from the main menu. This brings

up the Run As dialog box the first time you run the project, as shown in Figure 5–10.

CHAPTER 5: A Bit About Eclipse 45

Figure 5–10. The Run As dialog box in Eclipse

Choose Android Application and click OK. If you have more than one AVD or device

available, you will be presented with a window in which you choose the desired target

environment. Then, the emulator will start up to run your application. Note that you will

need to unlock the lock screen on the emulator (or device) if it is locked.

How Not to Run Your Project
When you go to run your project, be sure that an XML file is not the active tab in the

editor. Attempting to “run” this will result in a .out file being created in whatever

directory the XML file lives in (e.g., res/layout/main.xml.out). To recover, simply delete

the offending .out file and try running again, this time with a Java file as the active tab.

Alternative IDEs
If you really like Eclipse and the ADT, you may want to consider MOTODEV Studio for

Android. This is another set of add-ins for Eclipse, augmenting the ADT and offering a

number of other Android-related development features, including the following (among

many others):

 More wizards for helping you create Android classes

 Integrated SQLite browsing, so you can manipulate a SQLite database

in your emulator right from your IDE

CHAPTER 5: A Bit About Eclipse 46

 More validators to check for common bugs, and a library of code

snippets to have fewer bugs at the outset

 Assistance with translating your application to multiple languages

While MOTODEV Studio for Android is published by Motorola, you can use it to build

applications for all Android devices, not only those manufactured by Motorola

themselves.

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal assistance

from Google. For example, IntelliJ’s IDEA has a module for Android. It was originally

commercial, but now it is part of the open source community edition of IDEA as of

version 10.

And, of course, you do not need to use an IDE at all. While this may sound sacrilegious

to some, IDEs are not the only way to build applications. Much of what is accomplished

via the ADT can be accomplished through command-line equivalents, meaning a shell

and an editor is all you truly need. For example, the author of this book does not

presently use an IDE and has no intention of adopting Eclipse any time soon.

IDEs and This Book
You are welcome to use Eclipse as you work through this book. You are welcome to use

another IDE if you wish. You are even welcome to skip the IDE outright and just use an

editor.

This book is focused on demonstrating Android capabilities and the APIs for exploiting

those capabilities. It is not aimed at teaching the use of any one IDE. As such, the

sample code shown should work in any IDE, particularly if you follow the instructions in

this chapter for importing non-Eclipse projects into Eclipse.

47

 Chapter

Enhancing Your First
Project
The AndroidManifest.xml file that Android generated for your first project gets the job

done. However, for a production application, you may wish to consider adding a few

attributes and elements, such as those described in this chapter.

Supporting Multiple Screen Sizes
Android devices come with a wide range of screen sizes, from 2.8-inch tiny

smartphones to 46-inch Google TVs. Android divides these into four categories, based

on physical screen size and the distance at which they are usually viewed:

 Small (under 3 inches)

 Normal (3 inches to around 4.5 inches)

 Large (4.5 inches to around 10 inches)

 Extra-large (over 10 inches)

By default, your application will not support small screens, will support normal screens,

and may support large and extra-large screens via some automated conversion code

built into Android.

To truly support all the screen sizes you want to target, you should consider adding a

<supports-screens> element. This enumerates the screen sizes you have explicit

support for. For example, if you want to support small screens, you need to include the

<supports-screens> element. Similarly, if you are providing custom UI support for large

or extra-large screens, you will want to have the <supports-screens> element. So, while

the default settings in the starting manifest file work, you should consider adding

support for handling multiple screen sizes.

Much more information about providing solid support for all screen sizes can be found in

Chapter 25.

6

CHAPTER 6: Enhancing Your First Project 48

Specifying Versions
As noted in the previous chapter, your manifest already contains some version

information about your application’s version. However, you probably want to add to your

AndroidManifest.xml file a <uses-sdk> element as a child of the <manifest> element, to

specify what versions of Android your application supports. By default, your application

is assumed to support every Android version from 1.0 to the current 3.0 and onward to

any version in the future. Most likely, that is not what you want.

The most important attribute for your <uses-sdk> element is android:minSdkVersion.

This indicates what is the oldest version of Android you are testing with your application.

The value of the attribute is an integer representing the Android SDK version:

 1: Android 1.0

 2: Android 1.1

 3: Android 1.5

 4: Android 1.6

 5: Android 2.0

 6: Android 2.0.1

 7: Android 2.1

 8: Android 2.2

 9: Android 2.3

 10: Android 2.3.3

 11: Android 3.0

So, if you are testing your application only on Android 2.1 and newer versions of

Android, you would set the android:minSdkVersion attribute to 7.

You may also wish to specify an android:targetSdkVersion attribute. This indicates

what version of Android you are targeting as you are writing your code. If your

application is run on a newer version of Android, Android may do some things to try to

improve compatibility of your code with respect to changes made in the newer Android.

So, for example, you might specify android:targetSdkVersion="10", indicating you are

writing your application with Android 2.3.3 in mind; if your app someday is run on an

Android 3.0 device, Android may take some extra steps to make sure your 2.3.3-centric

code runs correctly on the 3.0 device. In particular, to get the new Honeycomb look and

feel when running on an Android 3.0 (or higher) tablet, you need to specify a target SDK

version of 11. This topic will be covered in more detail in Chapters 26 and 27.

 Part

Activities

II

51

 Chapter

Rewriting Your First
Project
The project you created in Chapter 3 is composed of just the default files generated by

the Android build tools—you did not write any Java code yourself. In this chapter, you

will modify that project to make it somewhat more interactive. Along the way, you will

examine the basic Java code that comprises an Android activity.

NOTE: The instructions in this chapter assume you followed the original instructions in Chapter 3

in terms of the names of packages and files. If you used different names, you will need to adjust

the names in the following steps to match yours.

The Activity
Your project’s src/ directory contains the standard Java-style tree of directories based

on the Java package you used when you created the project (e.g.,

com.commonsware.android results in src/com/commonsware/android/). Inside the

innermost directory you should find a pregenerated source file named Now.java, which is

where your first activity will go.

Open Now.java in your editor and paste in the following code (or, if you downloaded the

source files from the Apress web site, you can just use the Skeleton/Now project

directly):

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {

7

CHAPTER 7: Rewriting Your First Project 52

 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

Dissecting the Activity
Let’s examine this Java code piece by piece, starting with the package declaration and

imported classes:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when creating the

project. And, as with any other Java project, you need to import any classes you

reference. Most of the Android-specific classes are in the android package.

NOTE: Not every Java SE class is available to Android programs. Visit the Android class reference

to see what is and is not available.

Activities are public classes, inheriting from the android.app.Activity base class. In this

case, the activity holds a button (btn):

public class Now extends Activity implements View.OnClickListener {
 Button btn;

Since, for simplicity, we want to trap all button clicks just within the activity itself, we

also have the activity class implement OnClickListener.

CHAPTER 7: Rewriting Your First Project 53

The onCreate() method is invoked when the activity is started. The first thing you should

do is chain upward to the superclass, so the stock Android activity initialization can be

done:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
}

In our implementation, we then create the button instance (new Button(this)), tell it to

send all button clicks to the activity instance itself (via setOnClickListener()), call a

private updateTime() method, and then set the activity’s content view to be the button

itself (via setContentView()). We will take a look at that magical Bundle icicle in a later

chapter. For the moment, consider it an opaque handle that all activities receive upon

creation.

public void onClick(View view) {
 updateTime();
}

In Swing, a JButton click raises an ActionEvent, which is passed to the ActionListener

configured for the button. In Android, a button click causes onClick() to be invoked in

the OnClickListener instance configured for the button. The listener is provided the view

that triggered the click (in this case, the button). All we do here is call that private

updateTime() method:

private void updateTime() {
 btn.setText(new Date().toString());
}

When we open the activity (onCreate()) or when the button is clicked (onClick()), we

update the button’s label to be the current time via setText(), which functions much the

same as the JButton equivalent.

Building and Running the Activity
To build the activity, use your IDE’s built-in Android packaging tool, or run ant clean
install in the base directory of your project (as described in Chapter 3). Then, run the

activity. It should be launched for you automatically if you are using Eclipse; otherwise,

find the activity in the home screen launcher. You should see an activity akin to what’s

shown in Figure 7–1.

CHAPTER 7: Rewriting Your First Project 54

Figure 7–1. The Now demonstration activity

Clicking the button—in other words, clicking pretty much anywhere on the device’s

screen—will update the time shown in the button’s label.

Note that the label is centered horizontally and vertically, as those are the default styles

applied to button captions. We can control that formatting, which will be covered in a

later chapter.

After you are finished gazing at the awesomeness of Advanced Push-Button

Technology, you can click the Back button on the emulator to return to the launcher.

55

 Chapter

Using XML-Based Layouts
While it is technically possible to create and attach widgets to your activity purely

through Java code, as we did in the preceding chapter, the more common approach is

to use an XML-based layout file. Dynamic instantiation of widgets is reserved for more

complicated scenarios, where the widgets are not known at compile time (e.g.,

populating a column of radio buttons based on data retrieved from the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android activity

views that way.

What Is an XML-Based Layout?
As the name suggests, an XML-based layout is a specification of widgets’ relationships

to each other—and to containers—encoded in XML format. Specifically, Android

considers XML-based layouts to be resources, and as such, layout files are stored in the

res/layout directory inside your Android project.

Each XML file contains a tree of elements specifying a layout of widgets and containers

that make up one View. The attributes of the XML elements are properties, describing

how a widget should look or how a container should behave. For example, if a Button

element has an attribute value of android:textStyle = "bold", that means that the text

appearing on the face of the button should be rendered in a boldface font style.

Android’s SDK ships with a tool (aapt) that uses the layouts. This tool should be

automatically invoked by your Android tool chain (e.g., Eclipse or Ant’s build.xml). Of

particular importance to you as a developer is that aapt generates the R.java source file

within your project’s gen/ directory, allowing you to access layouts and widgets within

those layouts directly from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?
Most everything you do using XML layout files can be achieved through Java code. For

example, you could use setTypeface() to have a button render its text in bold, instead

8

CHAPTER 8: Using XML-Based Layouts 56

of using a property in an XML layout. Since XML layouts are yet another file for you to

keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition, such

as a GUI builder in an IDE like Eclipse or a dedicated Android GUI designer like

DroidDraw. Such GUI builders could, in principle, generate Java code instead of XML.

The challenge is rereading the definition in to support edits, which is far simpler when

the data is in a structured format like XML rather than in a programming language.

Moreover, keeping the generated bits separated from handwritten code makes it less

likely that somebody’s custom-crafted source will get clobbered by accident when the

generated bits get regenerated. XML forms a nice middle ground between something

that is easy for tool writers to use and something that is easy for programmers to work

with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s

Extensible Application Markup Language (XAML), Adobe’s Flex, Google’s Google Web

Toolkit (GWT), and Mozilla’s XML User Interface Language (XUL) all take a similar

approach to that of Android: put layout details in an XML file and put programming

smarts in source files (e.g., JavaScript for XUL). Many less-well-known GUI frameworks,

such as ZK, also use XML for view definition. While “following the herd” is not

necessarily the best policy, it does have the advantage of helping to ease the transition

to Android from any other XML-centered view description language.

OK, So What Does It Look Like?
Here is the Button from the previous chapter’s sample application, converted into an

XML layout file, found in the Layouts/NowRedux sample project:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

The class name of the widget, Button, forms the name of the XML element. Since Button

is an Android-supplied widget, we can just use the bare class name. If you create your

own widgets as subclasses of android.view.View, you will need to provide a full

package declaration as well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

All other elements will be children of the root and will inherit that namespace declaration.

Because we want to reference this button from our Java code, we need to give it an

identifier via the android:id attribute. We will cover this concept in greater detail in the

next section.

The remaining attributes are properties of this Button instance:

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 8: Using XML-Based Layouts 57

 android:text: Indicates the initial text to be displayed on the button

face (in this case, an empty string)

 android:layout_width and android:layout_height: Tell Android to

have the button’s width and height fill the parent, which in this case is

the entire screen

These attributes will be covered in greater detail in Chapter 10.

Since this single widget is the only content in our activity’s view, we need only this single

element. Complex views will require a whole tree of elements, representing the widgets

and containers that control their positioning. All the remaining chapters of this book will

use the XML layout form whenever practical, so there are dozens of other examples of

more complex layouts for you to peruse.

What’s with the @ Signs?
Many widgets and containers need to appear only in the XML layout file and do not need

to be referenced in your Java code. For example, a static label (TextView) frequently

needs to be in the layout file only to indicate where it should appear. These sorts of

elements in the XML file do not need to have the android:id attribute to give them a

name.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/... as the id value, where the ... represents your locally

unique name for the widget in question, for the first occurrence of a given id value in

your layout file. In the XML layout example in the preceding section, @+id/button is the

identifier for the Button widget. The second and subsequent occurrences in the same

layout file should drop the + sign—a feature we will use in Chapter 10.

Android provides a few special android:id values, of the form @android:id/.... You will

see some of these values in various examples throughout this book.

And How Do We Attach These to the Java?
Given that you have painstakingly set up the widgets and containers for your view in an

XML layout file named main.xml stored in res/layout, all you need is one statement in

your activity’s onCreate() callback to use that layout:

setContentView(R.layout.main);

This is the same setContentView() we used earlier, passing it an instance of a View

subclass (in that case, a Button). The Android-built View, constructed from our layout, is

accessed from that code-generated R class. All of the layouts are accessible under

R.layout, keyed by the base name of the layout file; for example, res/layout/main.xml

results in R.layout.main.

To access your identified widgets, use findViewById(), passing it the numeric identifier

of the widget in question. That numeric identifier was generated by Android in the R

CHAPTER 8: Using XML-Based Layouts 58

class as R.id.something (where something is the specific widget you are seeking). Those

widgets are simply subclasses of View, just like the Button instance we created in the

previous chapter.

The Rest of the Story
In the original Now demo, the button’s face would show the current time, which would

reflect when the button was last pushed (or when the activity was first shown, if the

button had not yet been pushed). Most of that logic still works, even in this revised

demo (NowRedux). However, rather than instantiating the Button in our activity’s

onCreate() callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
 implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 btn=(Button)findViewById(R.id.button);
 btn.setOnClickListener(this);
 updateTime();
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

The first difference is that, rather than setting the content view to be a view we created

in Java code, we set it to reference the XML layout (setContentView(R.layout.main)).

The R.java source file will be updated when we rebuild this project to include a

reference to our layout file (stored as main.xml in our project’s res/layout directory).

The other difference is that we need to get our hands on our Button instance, for which

we use the findViewById() call. Since we identified our button as @+id/button, we can

reference the button’s identifier as R.id.button. Now, with the Button instance in hand,

we can set the callback and set the label as needed.

CHAPTER 8: Using XML-Based Layouts 59

The results look the same as with the original Now demo, as shown in Figure 8–1.

Figure 8–1. The NowRedux sample activity

61

 Chapter

Employing Basic Widgets
Every GUI toolkit has some basic widgets: fields, labels, buttons, and so forth. Android’s

toolkit is no different in scope, and the basic widgets provide a good introduction to how

widgets work in Android activities.

Assigning Labels
The simplest widget is the label, referred to in Android as a TextView. As in most GUI

toolkits, labels are bits of text that can’t be edited directly by users. Typically, labels are

used to identify adjacent widgets (e.g., a “Name:” label next to a field where the user fills

in a name).

In Java, you can create a label by creating a TextView instance. More commonly,

though, you will create labels in XML layout files by adding a TextView element to the

layout, with an android:text property to set the value of the label itself. If you need to

swap labels based on certain criteria, such as internationalization, you may wish to use a

string resource reference in the XML instead, as will be described later in this book.

TextView has numerous other properties of relevance for labels, such as the following:

 android:typeface: Sets the typeface to use for the label (e.g.,

monospace)

 android:textStyle: Indicates that the typeface should be made bold

(bold), italic (italic), or bold and italic (bold_italic)

 android:textColor: Sets the color of the label’s text, in RGB hex

format (e.g., #FF0000 for red)

For example, in the Basic/Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="You were expecting something profound?"
 />

9

http://schemas.android.com/apk/res/android

CHAPTER 9: Employing Basic Widgets 62

Just that layout alone, with the stub Java source provided by Android’s project builder

(e.g., android create project), gives you the result shown in Figure 9–1.

Figure 9–1. The LabelDemo sample application

Button, Button, Who’s Got the Button?
You’ve already seen the use of the Button widget in the previous two chapters. As it

turns out, Button is a subclass of TextView, so everything discussed in the preceding

section also applies to formatting the face of the button.

However, Android 1.6 added a new feature for the declaration of the “on-click” listener

for a Button. In addition to the classic approach of defining some object (such as the

activity) as implementing the View.OnClickListener interface, you can now take a

somewhat simpler approach:

 Define some method on your Activity that holds the button that takes

a single View parameter, has a void return value, and is public.

 In your layout XML, on the Button element, include the

android:onClick attribute with the name of the method you defined in

the previous step.

For example, we might have a method on our Activity that looks like this:

public void someMethod(View theButton) {
 // do something useful here
}

CHAPTER 9: Employing Basic Widgets 63

Then, we could use this XML declaration for the Button itself, including android:onClick:

<Button
 android:onClick="someMethod"
 ...
/>

This is enough for Android to wire together the Button with the click handler.

Fleeting Images
Android has two widgets to help you embed images in your activities: ImageView and

ImageButton. As the names suggest, they are image-based analogues to TextView and

Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify which picture

to use. These attributes usually reference a drawable resource, described in greater

detail in the chapter on resources.

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for

responding to clicks and whatnot. For example, take a peek at the main.xml layout from

the Basic/ImageView sample project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/icon"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:adjustViewBounds="true"
 android:src="@drawable/molecule"
 />

The result, just using the code-generated activity, is simply the image, as shown in

Figure 9–2.

http://schemas.android.com/apk/res/android

CHAPTER 9: Employing Basic Widgets 64

Figure 9–2. The ImageViewDemo sample application

Fields of Green…or Other Colors
Along with buttons and labels, fields are the third anchor of most GUI toolkits. In

Android, they are implemented via the EditText widget, which is a subclass of the

TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle), EditText has

many other properties that will be useful to you in constructing fields, including the

following:

 android:autoText: Controls if the field should provide automatic

spelling assistance

 android:capitalize: Controls if the field should automatically

capitalize the first letter of entered text (e.g., in name and city fields)

 android:digits: Configures the field to accept only certain digits

 android:singleLine: Controls if the field is for single-line input or

multiple-line input (e.g., does pressing Enter move you to the next

widget or add a newline?)

Most of the preceding properties are also available from the new android:inputType

attribute, added in Android 1.5 as part of adding “soft keyboards” to Android (discussed

in Chapter 11).

For example, from the Basic/Field project, here is an XML layout file showing an

EditText widget:

CHAPTER 9: Employing Basic Widgets 65

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 />

Note that android:singleLine is set to "false", so users will be able to enter several

lines of text.

For this project, the FieldDemo.java file populates the input field with some prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 EditText fld=(EditText)findViewById(R.id.field);
 fld.setText("Licensed under the Apache License, Version 2.0 " +
 "(the \"License\"); you may not use this file " +
 "except in compliance with the License. You may " +
 "obtain a copy of the License at " +
 "http://www.apache.org/licenses/LICENSE-2.0");
 }
}

The result, once built and installed into the emulator, is shown in Figure 9–3.

Another flavor of field is one that offers autocompletion, to help users supply a value

without typing in the whole text. That is provided in Android as the

AutoCompleteTextView widget, discussed in greater detail later in this book.

http://schemas.android.com/apk/res/android
http://www.apache.org/licenses/LICENSE-2.0

CHAPTER 9: Employing Basic Widgets 66

Figure 9–3. The FieldDemo sample application

Just Another Box to Check
The classic check box has two states: checked and unchecked. Clicking the check box

toggles between those states to indicate a choice (e.g., “Add rush delivery to my order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an ancestor,

so you can use TextView properties like android:textColor to format the widget.

Within Java, you can invoke the following:

 isChecked(): Determines if the check box has been checked

 setChecked(): Forces the check box into a checked or unchecked

state

 toggle(): Toggles the check box as if the user checked it

Also, you can register a listener object (in this case, an instance of

OnCheckedChangeListener) to be notified when the state of the check box changes.

For example, from the Basic/CheckBox project, here is a simple check box layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/check"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo.java retrieves and configures the behavior of the

check box:

http://schemas.android.com/apk/res/android

CHAPTER 9: Employing Basic Widgets 67

public class CheckBoxDemo extends Activity
 implements CompoundButton.OnCheckedChangeListener {
 CheckBox cb;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 cb=(CheckBox)findViewById(R.id.check);
 cb.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 cb.setText("This checkbox is: checked");
 }
 else {
 cb.setText("This checkbox is: unchecked");
 }
 }
}

Note that the activity serves as its own listener for check box state changes, since it

implements the OnCheckedChangeListener interface (via

cb.setOnCheckedChangeListener(this)). The callback for the listener is

onCheckedChanged(), which receives the check box whose state has changed and the

new state. In this case, we update the text of the check box to reflect what the actual

box contains.

The result? Clicking the check box immediately updates its text, as shown in Figures 9–

4 and 9–5.

CHAPTER 9: Employing Basic Widgets 68

Figure 9–4. The CheckBoxDemo sample application, with the check box unchecked

Figure 9–5. The same application, now with the check box checked

Turn the Radio Up
As with other implementations of radio buttons in other toolkits, Android’s radio buttons

are two-state, like check boxes, but can be grouped such that only one radio button in

the group can be checked at any time.

CHAPTER 9: Employing Basic Widgets 69

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits from

TextView. Hence, all the standard TextView properties for font face, style, color, and so

forth are available for controlling the look of radio buttons. Similarly, you can call

isChecked() on a RadioButton to see if it is selected, toggle() to select it, and so on, as

you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside a RadioGroup. The

RadioGroup indicates a set of radio buttons whose state is tied, meaning only one button

in the group can be selected at any time. If you assign an android:id to your RadioGroup

in your XML layout, you can access the group from your Java code and invoke the

following:

 check(): Checks a specific radio button via its ID (e.g.,

group.check(R.id.radio1))

 clearCheck(): Clears all radio buttons, so none in the group are

checked

 getCheckedRadioButtonId(): Gets the ID of the currently checked

radio button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup applies only to RadioButton

widgets that are immediate children of the RadioGroup. You cannot have other

containers—discussed in the next chapter—between the RadioGroup and its

RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML layout

showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioButton android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Rock" />

 <RadioButton android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Scissors" />

 <RadioButton android:id="@+id/radio3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get the

result shown in Figure 9–6.

http://schemas.android.com/apk/res/android

CHAPTER 9: Employing Basic Widgets 70

Figure 9–6. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked at the outset.

To preset one of the radio buttons to be checked, use either setChecked() on the

RadioButton or check() on the RadioGroup from within your onCreate() callback in your

activity.

It’s Quite a View
All widgets, including the ones shown in the previous sections, extend View, which gives

all widgets an array of useful properties and methods beyond those already described.

Padding
Widgets have a minimum size, which may be influenced by what is inside of them. So,

for example, a Button will expand to accommodate the size of its caption. You can

control this size by using padding. Adding padding will increase the space between the

contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-side

basis (android:paddingLeft, etc.). Padding can also be set in Java via the setPadding()

method.

The value of any of these is a dimension, a combination of a unit of measure and a

count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, and 2mm is 2

millimeters. We will examine dimension in greater detail in an upcoming chapter.

CHAPTER 9: Employing Basic Widgets 71

Other Useful Properties
In addition to the properties presented in this chapter and in the next chapter, some of

the other properties on View that are most likely to be used include the following:

 android: visibility: Controls whether the widget is initially visible

 android:nextFocusDown, android:nextFocusLeft,

android:nextFocusRight, and android:nextFocusUp: Control the focus

order if the user uses the D-pad, trackball, or similar pointing device

 android:contentDescription: Roughly equivalent to the alt attribute

on an HTML tag, used by accessibility tools to help people who

cannot see the screen navigate the application

Useful Methods
You can toggle whether or not a widget is enabled via setEnabled() and see if it is

enabled via isEnabled(). One common use pattern for this is to disable some widgets

based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via isFocused().

You might use this in concert with disabling widgets to ensure the proper widget has the

focus once your disabling operation is complete.

To help navigate the tree of widgets and containers that make up an activity’s overall

view, you can use:

 getParent(): Finds the parent widget or container

 findViewById(): Finds a child widget with a certain ID

 getRootView(): Gets the root of the tree (e.g., what you provided to the

activity via setContentView())

Colors
There are two types of color attributes in Android widgets. Some, like

android:background, take a single color (or a graphic image to serve as the

background). Others, like android:textColor on TextView (and subclasses), can take a

ColorStateList, including via the Java setter (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For

example, a TextView can have one text color when it is the selected item in a list and

another color when it is not selected (Chapter 12 covers selection widgets). This is

handled via the default ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main

choices:

CHAPTER 9: Employing Basic Widgets 72

 Use ColorStateList.valueOf(), which returns a ColorStateList in

which all states are considered to have the same color, which you

supply as the parameter to the valueOf() method. This is the Java

equivalent of the android:textColor approach, to make the TextView
always a specific color regardless of circumstances.

 Create a ColorStateList with different values for different states,

either via the constructor or via an XML drawable resource, a concept

discussed in a later chapter.

73

 Chapter

Working with Containers
Containers pour a collection of widgets (and possibly child containers) into specific

structures you like. If you want a form with labels on the left and fields on the right, you

need a container. If you want OK and Cancel buttons to be beneath the rest of the form,

next to one another, and flush to right side of the screen, you need a container. Just

from a pure XML perspective, if you have multiple widgets (beyond RadioButton widgets

in a RadioGroup), you need a container just to have a root element in which to place the

widgets.

Most GUI toolkits have some notion of layout management, frequently organized into

containers. In Java/Swing, for example, you have layout managers like BoxLayout and

containers that use them (e.g., Box). Some toolkits, such as XUL and Flex, stick strictly

to the box model, figuring that any desired layout can be achieved through the right

combination of nested boxes. Android, through LinearLayout, also offers a box model,

but in addition supports a range of containers that provide different layout rules.

In this chapter, we will look at three commonly used containers, LinearLayout (the box

model), RelativeLayout (a rule-based model), and TableLayout (the grid model), along

with ScrollView, a container designed to assist with implementing scrolling containers.

Thinking Linearly
As just noted, LinearLayout is a box model—widgets or child containers are lined up in

a column or row, one after the next. This works similarly to FlowLayout in Java/Swing,

vbox and hbox in Flex and XUL, and so forth.

Flex and XUL use the box as their primary unit of layout. If you want, you can use

LinearLayout in much the same way, eschewing some of the other containers. Getting

the visual representation you want is mostly a matter of identifying where boxes should

nest and which properties those boxes should have, such as their alignment relative to

other boxes.

10

CHAPTER 10: Working with Containers 74

LinearLayout Concepts and Properties
To configure a LinearLayout, you have five main areas of control besides the container’s

contents: the orientation, the fill model, the weight, the gravity, and the padding.

Orientation
Orientation indicates whether the LinearLayout represents a row or a column. Just add

the android:orientation property to your LinearLayout element in your XML layout, and

set the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the

LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model
Let’s imagine a row of widgets, such as a pair of radio buttons. These widgets have a

“natural” size based on their text. Their combined size probably does not exactly match

the width of the Android device’s screen—particularly since screens come in various

sizes. We then have the issue of what to do with the remaining space.

All widgets inside a LinearLayout must supply android:layout_width and

android:layout_height properties to help address this issue. These properties’ values

have three flavors:

 You can provide a specific dimension, such as 125dip to indicate the

widget should take up exactly a certain size.

 You can provide wrap_content, which means the widget should fill up

its natural space, unless that is too big, in which case Android can use

word-wrap as needed to make it fit.

 You can provide fill_parent, which means the widget should fill up

all available space in its enclosing container, after all other widgets are

taken care of.

The latter two flavors are the most common, as they are independent of screen size,

allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill_parent was renamed to match_parent, for unknown
reasons. You can still use fill_parent, as it will be supported for the foreseeable future.

However, at such point in time as you are supporting only API level 8 or higher (e.g.,
android:minSdkVersion="8" in your manifest), you should probably switch over to

match_parent.

CHAPTER 10: Working with Containers 75

Weight
But what happens if we have two widgets that should split the available free space? For

example, suppose we have two multiline fields in a column, and we want them to take

up the remaining space in the column after all other widgets have been allocated their

space.

To make this work, in addition to setting android:layout_width (for rows) or

android:layout_height (for columns) to fill_parent, you must also set

android:layout_weight. This property indicates the proportion of the free space that

should go to that widget. For example, if you set android:layout_weight to be the same

nonzero value for a pair of widgets (e.g., 1), the free space will be split evenly between

them. If you set it to be 1 for one widget and 2 for the other widget, the second widget

will use up twice the free space that the first widget does. And so on. The weight for a

widget is 0 by default.

Another pattern for using weights is if you want to allocate sizes on a percentage basis.

To use this technique for, say, a horizontal layout, do the following:

 Set all the android:layout_width values to be 0 for the widgets in the

layout.

 Set the android:layout_weight values to be the desired percentage

size for each widget in the layout.

 Make sure all those weights add up to 100.

Gravity
By default, everything in a LinearLayout is left- and top-aligned. So, if you create a row

of widgets via a horizontal LinearLayout, the row will start flush on the left side of the

screen. If that is not what you want, you need to specify a gravity value. Using

android:layout_gravity on a widget (or calling setGravity() at runtime on the widget’s

Java object), you can tell the widget and its container how to align it vis-à-vis the screen.

For a column of widgets, common gravity values are left, center_horizontal, and

right for left-aligned, centered, and right-aligned widgets, respectively.

For a row of widgets, the default is for them to be aligned so their text is aligned on the

baseline (the invisible line that letters seem to “sit on”). You can specify a gravity of

center_vertical to center the widgets along the row’s vertical midpoint.

Margins
By default, widgets are tightly packed next to each other. You can change this via the

use of margins, a concept that is similar to that of padding, described in Chapter 9.

The difference between padding and margins is apparent only for widgets with a

nontransparent background. For widgets with a transparent background—like the

CHAPTER 10: Working with Containers 76

default look of a TextView—padding and margins have similar visual effect, increasing

the space between the widget and adjacent widgets. For widgets with a nontransparent

background—like a Button—padding is considered to be inside the background, while

margins are considered to be outside the background. In other words, adding padding

will increase the space between the contents (e.g., the caption of a Button) and the

edges, while adding margins increases the empty space between the edges and

adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g., android:layout_marginTop)

or on all sides via android:layout_margin. As with padding, the value of any of these is a

dimension—a combination of a unit of measure and a count, such as 5px for 5 pixels.

LinearLayout Example
Let’s look at an example (Containers/Linear) that shows LinearLayout properties set

both in the XML layout file and at runtime. Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioGroup android:id="@+id/orientation"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="5dip">
 <RadioButton
 android:id="@+id/horizontal"
 android:text="horizontal" />
 <RadioButton
 android:id="@+id/vertical"
 android:text="vertical" />
 </RadioGroup>
 <RadioGroup android:id="@+id/gravity"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dip">
 <RadioButton
 android:id="@+id/left"
 android:text="left" />
 <RadioButton
 android:id="@+id/center"
 android:text="center" />
 <RadioButton
 android:id="@+id/right"
 android:text="right" />
 </RadioGroup>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 77

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is a

subclass of LinearLayout, so our example demonstrates nested boxes as if they were all

LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of

RadioButton widgets. The RadioGroup has 5dip of padding on all sides, separating it

from the other RadioGroup, where dip stands for density-independent pixels (think of

them as ordinary pixels for now—we will get into the distinction later in the book). The

width and height are both set to wrap_content, so the radio buttons will take up only the

space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of three

RadioButton widgets. Again, we have 5dip of padding on all sides and a natural height

(android:layout_height = "wrap_content"). However, we have set

android:layout_width to be fill_parent, meaning the column of radio buttons claims

the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java code:

package com.commonsware.android.linear;

import android.app.Activity;
import android.os.Bundle;
import android.view.Gravity;
import android.text.TextWatcher;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
 implements RadioGroup.OnCheckedChangeListener {
 RadioGroup orientation;
 RadioGroup gravity;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 orientation=(RadioGroup)findViewById(R.id.orientation);
 orientation.setOnCheckedChangeListener(this);
 gravity=(RadioGroup)findViewById(R.id.gravity);
 gravity.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.horizontal:
 orientation.setOrientation(LinearLayout.HORIZONTAL);
 break;

 case R.id.vertical:
 orientation.setOrientation(LinearLayout.VERTICAL);
 break;

CHAPTER 10: Working with Containers 78

 case R.id.left:
 gravity.setGravity(Gravity.LEFT);
 break;

 case R.id.center:
 gravity.setGravity(Gravity.CENTER_HORIZONTAL);
 break;

 case R.id.right:
 gravity.setGravity(Gravity.RIGHT);
 break;
 }
 }
}

In onCreate(), we look up our two RadioGroup containers and register a listener on each,

so we are notified when the radio buttons change state

(setOnCheckedChangeListener(this)). Since the activity implements

OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which RadioButton had a

state change. Based on the clicked-upon item, we adjust either the orientation of the

first LinearLayout or the gravity of the second LinearLayout.

Figure 10–1 shows the result when the demo is first launched inside the emulator.

Figure 10–1. The LinearLayoutDemo sample application, as initially launched

If we toggle on the “vertical” radio button, the top RadioGroup adjusts to match, as

shown in Figure 10–2.

CHAPTER 10: Working with Containers 79

Figure 10–2. The same application, with the vertical radio button selected

If we toggle the “center” or “right” radio button, the bottom RadioGroup adjusts to

match, as shown in Figures 10–3 and 10–4.

Figure 10–3. The same application, with the vertical and center radio buttons selected

CHAPTER 10: Working with Containers 80

Figure 10–4. The same application, with the vertical and right radio buttons selected

The Box Model
As noted earlier in this chapter, some GUI frameworks treat everything as boxes—what

Android calls LinearLayout containers. In Flex and XUL, for example, you create boxes

and indicate how big they should be, as a percentage of the available space, and then

you put widgets in the boxes. A similar pattern exists in Android for LinearLayout, as is

demonstrated in the Containers\LinearPercent project.

Here we have a layout XML file that contains a vertical LinearLayout wrapping three

Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:text="Fifty Percent"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="50"
 />
 <Button
 android:text="Thirty Percent"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="30"
 />

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 81

 <Button
 android:text="Twenty Percent"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="20"
 />
</LinearLayout>

Each of the three widgets will take up a certain percentage of the vertical space for the

LinearLayout. Since the LinearLayout is set to fill the screen, this means that the three

widgets will divide up the screen based on their requested percentages.

To request a percentage, each Button does the following:

 Sets its android:layout_height to be 0dip (note that we use height

here because it is a vertical LinearLayout we are subdividing)

 Sets its android:layout_weight to be the desired percentage (e.g.,

android:layout_weight="50")

So long as the weights sum to 100, as they do in this case, you will get your desired

breakdown by percentage, as shown in Figure 10–5.

Figure 10–5. A LinearLayout split among three Buttons by percentage

All Things Are Relative
RelativeLayout, as the name suggests, lays out widgets based on their relationship to

other widgets in the container and the parent container. You can place widget X below

and to the left of widget Y, have widget Z’s bottom edge align with the bottom of the

CHAPTER 10: Working with Containers 82

container, and so on. This is reminiscent of James Elliot’s RelativeLayout for use with

Java/Swing.

RelativeLayout Concepts and Properties
To make all this work, we need ways to reference other widgets within an XML layout

file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container
The easiest relationships to set up are those that tie a widget’s position to that of its

container, using the following properties:

 android:layout_alignParentTop: Aligns the widget’s top with the top

of the container

 android:layout_alignParentBottom: Aligns the widget’s bottom with

the bottom of the container

 android:layout_alignParentLeft: Aligns the widget’s left side with the

left side of the container

 android:layout_alignParentRight: Aligns the widget’s right side with

the right side of the container

 android:layout_centerHorizontal: Positions the widget horizontally at

the center of the container

 android:layout_centerVertical: Positions the widget vertically at the

center of the container

 android:layout_centerInParent: Positions the widget both

horizontally and vertically at the center of the container

All of these properties take a simple Boolean value (true or false).

Note that the padding of the widget is taken into account when performing these various

alignments. The alignments are based on the widget’s overall cell (combination of its

natural space plus the padding).

Relative Notation in Properties
The remaining properties of relevance to RelativeLayout take as a value the identity of a

widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will need

to address.

2. Reference other widgets using the same identifier value.

CHAPTER 10: Working with Containers 83

The first occurrence of an id value should include the plus sign (@+id/widget_a); the

second and subsequent times that id value is used in the layout file, the plus sign

should be omitted (@id/widget_a). This allows the build tools to better help you catch

typos in your widget id values—if you do not have a plus sign for a widget id value that

has not been seen before, that will be caught at compile time.

For example, if widget A is identified as @+id/widget_a, widget B can refer to widget A in

one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets
The following four properties control the position of a widget relative to other widgets:

 android:layout_above: Indicates that the widget should be placed

above the widget referenced in the property

 android:layout_below: Indicates that the widget should be placed

below the widget referenced in the property

 android:layout_toLeftOf: Indicates that the widget should be placed

to the left of the widget referenced in the property

 android:layout_toRightOf: Indicates that the widget should be placed

to the right of the widget referenced in the property

Beyond those four properties, five additional properties can be used to control one

widget’s alignment relative to another:

 android:layout_alignTop: Indicates that the widget’s top should be

aligned with the top of the widget referenced in the property

 android:layout_alignBottom: Indicates that the widget’s bottom

should be aligned with the bottom of the widget referenced in the

property

 android:layout_alignLeft: Indicates that the widget’s left should be

aligned with the left of the widget referenced in the property

 android:layout_alignRight: Indicates that the widget’s right should

be aligned with the right of the widget referenced in the property

 android:layout_alignBaseline: Indicates that the baseline of the two

widgets should be aligned (where the baseline is the invisible line that

text appears to sit on)

The android:layout_alignBaseline property is useful for aligning labels and fields so

that the text appears natural. Since fields have a box around them and labels do not,

android:layout_alignTop would align the top of the field’s box with the top of the label,

causing the text of the label to be higher on the screen than the text entered into the

field.

CHAPTER 10: Working with Containers 84

So, if we want widget B to be positioned to the right of widget A, in the XML element for

widget B, we need to include android:layout_toRightOf = "@id/widget_a" (assuming

@id/widget_a is the identity of widget A).

Order of Evaluation
Android formerly used a single pass to process RelativeLayout-defined rules. That

meant you could not reference a widget (e.g., via android:layout_above) until it had

been declared in the XML. This made defining some layouts a bit complicated. Starting

in Android 1.6, Android uses two passes to process the rules, so you can now safely

have forward references to as-yet-undefined widgets.

RelativeLayout Example
With all that in mind, let’s examine a typical form with a field, a label, and a pair of

buttons labeled OK and Cancel. Here is the XML layout, pulled from the

Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"/>
 <EditText
 android:id="@id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignParentTop="true"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 85

First, we open the RelativeLayout. In this case, we want to use the full width of the

screen (android:layout_width = "fill_parent") and only as much height as we need

(android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge aligned

with the left edge of the RelativeLayout (android:layout_alignParentLeft="true") and

its baseline aligned with the baseline of the yet-to-be-defined EditText. Since the

EditText has not been declared yet, we use the + sign in the ID

(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of the

label, have the field be aligned with the top of the RelativeLayout, and have the field

take up the rest of this “row” in the layout. These requirements are handled by the

following three properties, respectively:

 android:layout_toRightOf = "@id/label"

 android:layout_alignParentTop = "true"

 android:layout_width = "fill_parent"

Then, the OK button is set to be below the field (android:layout_below = "@id/entry")

and have its right side align with the right side of the field (android:layout_alignRight =
"@id/entry"). The Cancel button is set to be to the left of the OK button

(android:layout_toLeft = "@id/ok") and have its top aligned with the OK button

(android:layout_alignTop = "@id/ok").

With no changes to the autogenerated Java code, the emulator gives us the result

shown in Figure 10–6.

Figure 10–6. The RelativeLayoutDemo sample application

CHAPTER 10: Working with Containers 86

Overlap
RelativeLayout also has a feature that LinearLayout lacks—the ability to have widgets

overlap one another. Later children of a RelativeLayout are “higher in the Z axis” than

are earlier children, meaning that later children will overlap earlier children if they are set

up to occupy the same space in the layout.

This will be clearer with an example. Here is a layout, from Containers/RelativeOverlap,

with a RelativeLayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:text="I AM BIG"
 android:textSize="120dip"
 android:textStyle="bold"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
 <Button
 android:text="I am small"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 />
</RelativeLayout>

The first Button is set to fill the screen. The second Button is set to be centered inside

the parent and to take up only as much space as is needed for its caption. Hence, the

second Button will appear to float over the first Button, as shown in Figure 10–7.

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 87

Figure 10–7. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking the smaller Button does not

also click the bigger Button. Your clicks will be handled by the widget on top in the case

of an overlap like this.

Tabula Rasa
If you like HTML tables, spreadsheet grids, and similar layout options, you will like

Android’s TableLayout, which allows you to position your widgets in a grid to your

specifications. You control the number of rows and columns, which columns might

shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the overall

behavior of the container, with the widgets themselves poured into one or more

TableRow containers, one per row in the grid.

TableLayout Concepts and Properties
For your table layout to work as you intend, you need to understand how widgets work

with rows and columns, and how to handle widgets that live outside of rows.

CHAPTER 10: Working with Containers 88

Putting Cells in Rows
Rows are declared by you, the developer, by putting widgets as children of a TableRow

inside the overall TableLayout. You, therefore, control directly how many rows appear in

the table.

The number of columns is determined by Android; you control the number of columns in

an indirect fashion. First, there will be at least one column per widget in your longest

row. So if you have three rows—one with two widgets, one with three widgets, and one

with four widgets—there will be at least four columns. However, you can have a widget

take up more than one column by including the android:layout_span property,

indicating the number of columns the widget spans. This is akin to the colspan attribute

one finds in table cells in HTML. In this XML layout fragment, the field spans three

columns:

<TableRow>
 <TextView android:text="URL:" />
 <EditText
 android:id="@+id/entry"
 android:layout_span="3"/>
</TableRow>

Ordinarily, widgets are put into the first available column. In the preceding fragment, the

label would go in the first column (column 0, as columns are counted starting from 0),

and the field would go into a spanned set of three columns (columns 1 through 3).

However, you can put a widget into a different column via the android:layout_column

property, specifying the 0-based column the widget belongs to:

<TableRow>
 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column

(column 2). The OK button then goes into the next available column, which is the fourth

column.

Non-Row Children of TableLayout
Normally, TableLayout contains only TableRow elements as immediate children.

However, it is possible to put other widgets in between rows. For those widgets,

TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets

automatically have their width set to fill_parent, so they will fill the same space that

the longest row does.

One pattern for this is to use a plain View as a divider. For example, you could use <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a two-pixel-

high blue bar across the width of the table.

CHAPTER 10: Working with Containers 89

Stretch, Shrink, and Collapse
By default, each column will be sized according to the natural size of the widest widget

in that column (taking spanned columns into account). Sometimes, though, that does

not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The value

should be a single column number (again, 0-based) or a comma-delimited list of column

numbers. Those columns will be stretched to take up any available space on the row.

This helps if your content is narrower than the available space.

Conversely, you can place an android:shrinkColumns property on the TableLayout.

Again, this should be a single column number or a comma-delimited list of column

numbers. The columns listed in this property will try to word-wrap their contents to

reduce the effective width of the column—by default, widgets are not word-wrapped.

This helps if you have columns with potentially wordy content that might cause some

columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TableLayout, again

with a column number or comma-delimited list of column numbers. These columns will

start out collapsed, meaning they will be part of the table information but will be

invisible. Programmatically, you can collapse and uncollapse columns by calling

setColumnCollapsed() on the TableLayout. You might use this to allow users to control

which columns are of importance to them and should be shown versus which ones are

less important and can be hidden.

You can also control stretching and shrinking at runtime via setColumnStretchable()

and setColumnShrinkable().

TableLayout Example
The XML layout fragments previously shown, when combined, give us a TableLayout

rendition of the form we created for RelativeLayout, with the addition of a divider line

between the label/field and the two buttons (found in the Containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>
 <TextView
 android:text="URL:" />
 <EditText android:id="@+id/entry"
 android:layout_span="3"/>
 </TableRow>
 <View
 android:layout_height="2dip"
 android:background="#0000FF" />
 <TableRow>

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 90

 <Button android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok"
 android:text="OK" />
 </TableRow>
</TableLayout>

When compiled against the generated Java code and run on the emulator, we get the

result shown in Figure 10–8.

Figure 10–8. The TableLayoutDemo sample application

Scrollwork
Phone screens tend to be small, which requires developers to use some tricks to

present a lot of information in the limited available space. One trick for doing this is to

use scrolling, so that only part of the information is visible at one time, and the rest is

available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a layout

that might be too big for some screens, wrap it in a ScrollView, and still use your

existing layout logic. The user can see only part of your layout at one time, and see the

rest via scrolling.

For example, here is a ScrollView used in an XML layout file (from the

Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"

http://schemas.android.com/apk/res/android

CHAPTER 10: Working with Containers 91

 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="0">
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#000000"/>
 <TextView android:text="#000000"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#440000" />
 <TextView android:text="#440000"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#884400" />
 <TextView android:text="#884400"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#aa8844" />
 <TextView android:text="#aa8844"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffaa88" />
 <TextView android:text="#ffaa88"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffffaa" />
 <TextView android:text="#ffffaa"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffffff" />

CHAPTER 10: Working with Containers 92

 <TextView android:text="#ffffff"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 </TableLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (seven rows at 80

pixels each, based on the View declarations). There may be some devices with screens

capable of showing that much information, but many will be smaller. The ScrollView lets

us keep the table as is, but present only part of it at a time.

On the stock Android emulator, when the activity is first viewed, it appears as shown in

Figure 10–9.

Figure 10–9. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down

buttons on the D-pad, you can scroll up and down to see the remaining rows. Also note

how the right side of the content is clipped by the scrollbar—be sure to put some

padding on that side or otherwise ensure your own content does not get clipped in that

fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView, but

horizontally. This is useful for forms that might be too wide rather than too tall. Note that

neither ScrollView nor HorizontalScrollView will give you bidirectional scrolling, so you

have to choose vertical or horizontal.

Also, note that you cannot put scrollable items into a ScrollView. For example, a

ListView widget—which we will see in an upcoming chapter—already knows how to

scroll. If you put a ListView in a ScrollView, it will not work very well.

93

 Chapter

The Input Method
Framework
Android 1.5 introduced the input method framework (IMF), which is commonly referred

to as soft keyboards. However, this term is not necessarily accurate, as IMF could be

used for handwriting recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft
Some Android devices have a hardware keyboard that is visible some of the time (when

it is slid out). A few Android devices have a hardware keyboard that is always visible (so-

called “bar” or “slab” phones). Most Android devices, though, have no hardware

keyboard at all. The IMF handles all of these scenarios.

In short, if there is no hardware keyboard, an input method editor (IME) will be available

to the user when they tap an enabled EditText. If the default functionality of the IME is

what you want to offer, you don’t need to make any code changes to your application.

Fortunately, Android is fairly smart about guessing what you want, so you may simply

need to test with the IME and make no specific code changes.

But the IME may not quite behave how you would like it to for your application. For

example, in the Basic/Field sample project, the FieldDemo activity has the IME

overlaying the multiple-line EditText, as shown in Figure 11–1. It would be nice to have

more control over how this appears, and to be able to control other behavior of the IME.

Fortunately, the IMF as a whole gives you many options for this, as described in this

chapter.

11

CHAPTER 11: The Input Method Framework 94

Figure 11–1. The input method editor, as seen in the FieldDemo sample application

Tailored to Your Needs
Android 1.1 and earlier offered many attributes on EditText widgets to control their style

of input, such as android:password to indicate a field should be for password entry

(shrouding the password keystrokes from prying eyes). Starting in Android 1.5, with the

IMF, many of these attributes have been combined into a single android:inputType

attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited list

(where | is the pipe character). The class generally describes what the user is allowed to

input, and this determines the basic set of keys available on the soft keyboard. The

available classes are as follows:

 text (the default)

 number

 phone

 datetime

 date

 time

Many of these classes offer one or more modifiers to further refine what the user will be

allowed to enter. To get a better understanding of how these modifiers work, take a look

at the res/layout/main.xml file from the InputMethod/IMEDemo1 project:

CHAPTER 11: The Input Method Framework 95

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
</TableLayout>

This shows a TableLayout containing five rows, each demonstrating a slightly different

flavor of EditText:

http://schemas.android.com/apk/res/android

CHAPTER 11: The Input Method Framework 96

 The first row has no attributes at all on the EditText, meaning you get

a plain text-entry field.

 The second row has android:inputType = "text|textEmailAddress",

meaning it is a text-entry field that specifically seeks an e-mail

address.

 The third row allows for signed decimal numeric input, via

android:inputType = "number|numberSigned|numberDecimal".

 The fourth row is set up to allow for data entry of a date

(android:inputType = "date").

 The last allows for multiline input with autocorrection of probable

spelling errors (android:inputType =
"text|textMultiLine|textAutoCorrect").

The class and modifiers tailor the keyboard. So, a plain text-entry field results in a plain

soft keyboard, as shown in Figure 11–2.

Figure 11–2. A standard input method editor (a.k.a., soft keyboard)

An e-mail address field might put the @ symbol on the soft keyboard, at the cost of a

smaller spacebar, as shown in Figure 11–3.

CHAPTER 11: The Input Method Framework 97

Figure 11–3. The input method editor for e-mail addresses

Note, though, that this behavior is specific to the IME. Some editors might put the @

symbol on the primary keyboard for an e-mail field. Some might put a .com button on the

primary keyboard. Some might not react at all. It is up to the implementation of the

IME—all you can do is supply the hint.

Number and date fields restrict the keys to numeric keys, plus a set of symbols that may

or may not be valid on a given field, as shown in Figure 11–4.

CHAPTER 11: The Input Method Framework 98

Figure 11–4. The input method editor for signed decimal numbers

These are just a few examples of the possible IMEs. By choosing the appropriate

android:inputType, you can give users a soft keyboard that best suits the type of data

they should be entering.

Tell Android Where It Can Go
You may have noticed a subtle difference between the IME shown in Figure 11–2 and

the IME shown in Figure 11–3, beyond the addition of the @ key. The lower-right corner

of the soft keyboard in Figure 11–3 has a Next button, whereas the one in Figure 11–2

has a newline button. This points out two things:

 EditText widgets are multiline by default if you do not specify

android:inputType.

 You can control what goes on with that lower-right button, called the

accessory button.

By default, on an EditText where you have specified android:inputType, the accessory

button will be Next, moving you to the next EditText in sequence, or Done, if you are on

the last EditText on the screen. You can manually stipulate what the accessory button

will be labeled via the android:imeOptions attribute. For example, in the

res/layout/main.xml file from InputMethod/IMEDemo2, you will see an augmented

version of the previous example, where two input fields specify what their accessory

button should look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"

http://schemas.android.com/apk/res/android

CHAPTER 11: The Input Method Framework 99

 android:layout_height="fill_parent"
>
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 android:imeOptions="actionSend"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 android:imeOptions="actionDone"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
 </TableLayout>
</ScrollView>

Here, we attach a Send action to the accessory button for the e-mail address

(android:imeOptions = "actionSend"), and the Done action on the middle field

(android:imeOptions = "actionDone").

CHAPTER 11: The Input Method Framework 100

By default, Next moves the focus to the next EditText and Done closes the IME.

However, for those actions, or for any others like Send, you can use

setOnEditorActionListener() on EditText (technically, on the TextView superclass) to

get control when the accessory button is clicked or the user presses the Enter key. You

are provided with a flag indicating the desired action (e.g., IME_ACTION_SEND), and you

can then do something to handle that request (e.g., send an e-mail to the supplied e-

mail address).

Fitting In
Notice that the IMEDemo2 layout shown in the preceding section has another difference

from its IMEDemo1 predecessor: the use of a ScrollView container wrapping the

TableLayout. This ties into another level of control you have over the IMEs: what

happens to your activity’s own layout when the IME appears. There are three

possibilities, depending on circumstances:

 Android can “pan” your activity, effectively sliding the whole layout up

to accommodate the IME, or overlaying your layout, depending on

whether the EditText being edited is at the top or bottom. This has the

effect of hiding some portion of your UI.

 Android can resize your activity, effectively causing it to shrink to a

smaller screen dimension, allowing the IME to sit below the activity

itself. This is great when the layout can readily be shrunk (e.g., it is

dominated by a list or multiline input field that does not need the whole

screen to be functional).

 In landscape mode, Android may display the IME full-screen,

obscuring your entire activity. This allows for a bigger keyboard and

generally easier data entry.

Android controls the full-screen option purely on its own. And, by default, Android will

choose between pan and resize modes depending on what your layout looks like. If you

want to specifically choose between pan and resize, you can do so via an

android:windowSoftInputMode attribute on the <activity> element in your

AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two" android:versionCode="1"
android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".IMEDemo2" android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

http://schemas.android.com/apk/res/android

CHAPTER 11: The Input Method Framework 101

 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Because we specified resize, Android will shrink our layout to accommodate the IME.

With the ScrollView in place, this means the scroll bar will appear as needed, as shown

in Figure 11–5.

Figure 11–5. The shrunken, scrollable layout

Jane, Stop This Crazy Thing!
Sometimes, you need the IME to just go away. For example, if you make the accessory

button a Search button, the IME won’t be hidden automatically when the user taps that

button, whereas you may want it to be hidden. To hide the IME, you need to make a call

to the InputMethodManager, a system service that controls these IMEs:

InputMethodManager mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(In the preceding line, fld is the EditText whose IME you want to hide.)

This will always close the designated IME. However, bear in mind that there are two

ways a user can open the IME in the first place:

 If the user’s device does not have a hardware keyboard exposed, and

the user taps the EditText, the IME should appear.

 If the user previously dismissed the IME or is using the IME for a

widget that does not normally pop one up (e.g., ListView), and the

user presses the Menu button, the IME should appear.

CHAPTER 11: The Input Method Framework 102

If you want to close the IME only for the first scenario, but not the second, use

InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the second parameter to your call

to hideSoftInputFromWindow(), instead of the 0 shown in the previous example.

103

 Chapter

Using Selection Widgets
In Chapter 11, you saw how fields could have constraints placed on them to limit

possible input, such as numeric-only or phone-number-only. These sorts of constraints

help users “get it right” when entering information, particularly on mobile devices with

cramped keyboards.

Of course, the ultimate in constrained input is to allow selection only from a set of items,

such as a group of radio buttons. Classic UI toolkits have list boxes, combo boxes,

drop-down lists, and the like for that very purpose. Android provides many of the same

sorts of widgets, plus others of particular interest for mobile devices (e.g., the Gallery

for examining saved photos).

Moreover, Android offers a flexible framework for determining which choices are

available in these widgets. Specifically, Android offers a framework of data adapters that

provides a common interface for selection lists, ranging from static arrays to database

contents. Selection views—widgets for presenting lists of choices—are handed an

adapter to supply the actual choices.

Adapting to the Circumstances
In the abstract, adapters provide a common interface to multiple disparate APIs. More

specifically, in Android’s case, adapters provide a common interface to the data model

behind a selection-style widget, such as a list box. This use of Java interfaces is fairly

common (e.g., Java/Swing’s model adapters for JTable), and Java is far from the only

environment offering this sort of abstraction (e.g., Flex’s XML data-binding framework

accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible not only for providing the roster of data for a

selection widget, but also for converting individual elements of data into specific views

to be displayed inside the selection widget. The latter facet of the adapter system may

sound a little odd, but in reality, it is not that different from other GUI toolkits’ ways of

overriding default display behavior. For example, in Java/Swing, if you want a JList-

backed list box to actually be a checklist (where individual rows are a check box plus

label, and clicks adjust the state of the check box), you inevitably wind up calling

12

CHAPTER 12: Using Selection Widgets 104

setCellRenderer() to supply your own ListCellRenderer, which in turn converts strings

for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter
The easiest adapter to use is ArrayAdapter. You simply wrap one of these around a Java

array or java.util.List instance, and you have a fully functioning adapter:

String[] items={"this", "is", "a",
 "really", "silly", "list"};
new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, items);

One flavor of the ArrayAdapter constructor takes three parameters:

 The Context to use (typically this will be your activity instance)

 The resource ID of a view to use (such as a built-in system resource

ID, as shown in the preceding example)

 The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and wrap

each of those strings in the view designated by the supplied resource.

android.R.layout.simple_list_item_1 simply turns those strings into TextView objects.

Those TextView widgets, in turn, will be shown in the list, spinner, or whatever widget

uses this ArrayAdapter. If you want to see what android.R.layout.simple_list_item_1

looks like, you can find a copy of it in your SDK installation—just search for

simple_list_item_1.xml.

In Chapter 13, you’ll see how to subclass an adapter and override row creation, to give

you greater control over how rows appear.

Lists of Naughty and Nice
The classic list box widget in Android is known as ListView. Include one of these in your

layout, invoke setAdapter() to supply your data and child views, and attach a listener

via setOnItemSelectedListener() to find out when the selection has changed. With that,

you have a fully functioning list box.

However, if your activity is dominated by a single list, you might consider creating your

activity as a subclass of ListActivity, rather than the regular Activity base class. If

your main view is just the list, you do not even need to supply a layout—ListActivity

will construct a full-screen list for you. If you do want to customize the layout, you can,

as long as you identify your ListView as @android:id/list, so ListActivity knows

which widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project, a simple

list with a label on top to show the current selection:

CHAPTER 12: Using Selection Widgets 105

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

The Java code to configure the list and connect the list with the label is as follows:

public class ListViewDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items[position]);
 }
}

With ListActivity, you can set the list adapter via setListAdapter()—in this case,

providing an ArrayAdapter wrapping an array of nonsense strings. To find out when the

list selection changes, override onListItemClick() and take appropriate steps based on

the supplied child view and position—in this case, updating the label with the text for

that position. The results are shown in Figure 12–1.

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 106

Figure 12–1. The ListViewDemo sample application

The second parameter to our ArrayAdapter, android.R.layout.simple_list_item_1,

controls the appearance of the rows. The value used in the preceding example provides

the standard Android list row: big font, a lot of padding, and white text.

Selection Modes
By default, ListView is set up to simply collect clicks on list entries. If you want a list that

tracks a user’s selection, or possibly multiple selections, ListView can handle that as

well, but it requires a few changes.

First, you need to call setChoiceMode() on the ListView in Java code to set the choice

mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the value. You

can get your ListView from a ListActivity via getListView(). You can also declare this

via the android:choiceMode attribute in your layout XML.

Then, instead of using android.R.layout.simple_list_item_1 as the layout for the list

rows in your ArrayAdapter constructor, you need to use either

android.R.layout.simple_list_item_single_choice or

android.R.layout.simple_list_item_multiple_choice for single-choice or multiple-

choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample project:

<?xml version="1.0" encoding="utf-8"?>
<ListView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 107

 android:drawSelectorOnTop="false"
 android:choiceMode="multipleChoice"
/>

It is a full-screen ListView, with the android:choiceMode="multipleChoice" attribute to

indicate that we want multiple-choice support.

Our activity simply uses a standard ArrayAdapter on our list of nonsense words, but

uses android.R.layout.simple_list_item_multiple_choice as the row layout:

package com.commonsware.android.checklist;

import android.os.Bundle;
import android.app.ListActivity;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ChecklistDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_multiple_choice,
 items));
 }
}

The user sees the list of words on the left with check boxes down the right edge, as

shown in Figure 12–2.

CHAPTER 12: Using Selection Widgets 108

Figure 12–2. Multiple-select mode

If we wanted to, we could call getCheckedItemPositions() on our ListView to find out

which items the user checked, or setItemChecked() to check (or uncheck) a specific

entry ourselves.

Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might find in

other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the D-pad

pops up a selection dialog box from which the user can choose an item. The Spinner

basically provides list selection capabilities without taking up all the screen space of a

ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via setAdapter(),

and hook in a listener object for selections via setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you need

to configure the adapter, not the Spinner widget. Use the setDropDownViewResource()

method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML layout

for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 109

 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
</LinearLayout>

This is the same view as shown in the previous section, but with a Spinner instead of a

ListView. The Spinner property android:drawSelectorOnTop controls whether the arrow

is drawn on the selector button on the right side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 items);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

CHAPTER 12: Using Selection Widgets 110

Here, we attach the activity itself as the selection listener

(spin.setOnItemSelectedListener(this)). This works because the activity implements

the OnItemSelectedListener interface. We configure the adapter not only with the list of

fake words, but also with a specific resource to use for the drop-down view (via

aa.setDropDownViewResource()). Also note the use of

android.R.layout.simple_spinner_item as the built-in View for showing items in the

spinner itself.

Finally, we implement the callbacks required by OnItemSelectedListener to adjust the

selection label based on user input. Figures 12–3 and 12–4 show the results.

Figure 12–3. The SpinnerDemo sample application, as initially launched

CHAPTER 12: Using Selection Widgets 111

Figure 12–4. The same application, with the spinner drop-down list displayed

Grid Your Lions (or Something Like That...)
As the name suggests, GridView gives you a two-dimensional grid of items to choose

from. You have moderate control over the number and size of the columns; the number

of rows is dynamically determined based on the number of items the supplied adapter

says are available for viewing.

There are a few properties that, when combined, determine the number of columns and

their sizes:

 android:numColumns: Indicates how many columns there are, or, if you

supply a value of auto_fit, Android will compute the number of

columns based on the available space and the following properties in

this list.

 android:verticalSpacing and android:horizontalSpacing: Indicate

how much whitespace should exist between items in the grid.

 android:columnWidth: Indicates how many pixels wide each column

should be.

 android:stretchMode: Indicates, for grids with auto_fit for

android:numColumns, what should happen for any available space not

taken up by columns or spacing. This can be columnWidth, to have the

columns take up available space, or spacingWidth, to have the

whitespace between columns absorb extra space.

CHAPTER 12: Using Selection Widgets 112

Otherwise, the GridView works much like any other selection widget—use setAdapter()
to provide the data and child views, invoke setOnItemSelectedListener() to register a

selection listener, and so on.

For example, here is an XML layout from the Selection/Grid sample project, showing a

GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <GridView
 android:id="@+id/grid"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:verticalSpacing="40dip"
 android:horizontalSpacing="5dip"
 android:numColumns="auto_fit"
 android:columnWidth="100dip"
 android:stretchMode="columnWidth"
 android:gravity="center"
 />
</LinearLayout>

For this grid, we take up the entire screen except for what our selection label requires.

The number of columns is computed by Android (android:numColumns = "auto_fit")

based on our horizontal spacing (android:horizontalSpacing = "5dip") and column

width (android:columnWidth = "100dip"), with the columns absorbing any “slop” width

left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is as follows:

package com.commonsware.android.grid;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 113

 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 GridView g=(GridView) findViewById(R.id.grid);
 g.setAdapter(new ArrayAdapter<String>(this,
 R.layout.cell,
 items));
 g.setOnItemSelectedListener(this);
 }

 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our

ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip"
/>

With the vertical spacing from the XML layout (android:verticalSpacing = "40dip"), the

grid overflows the boundaries of the emulator’s screen, as shown in Figures 12–5 and

12–6.

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 114

Figure 12–5. The GridDemo sample application, as initially launched

Figure 12–6. The same application, scrolled to the bottom of the grid

CHAPTER 12: Using Selection Widgets 115

Fields: Now with 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the

Spinner. With autocompletion, as the user types, the text is treated as a prefix filter,

comparing the entered text as a prefix against a list of candidates. Matches are shown

in a selection list that drops down from the field (as with Spinner). The user can either

type the full entry (e.g., something not in the list) or choose an item from the list to be the

value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard look-

and-feel aspects, such as font face and color. In addition, AutoCompleteTextView has a

android:completionThreshold property, to indicate the minimum number of characters a

user must enter before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate values

via setAdapter(). However, since the user could type something that is not in the list,

AutoCompleteTextView does not support selection listeners. Instead, you can register a

TextWatcher, as you can with any EditText widget, to be notified when the text changes.

These events will occur either because of manual typing or from a selection from the

drop-down list.

The following is a familiar XML layout, this time containing an AutoCompleteTextView

(pulled from the Selection/AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView android:id="@+id/edit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is as follows:

package com.commonsware.android.auto;

import android.app.Activity;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;

http://schemas.android.com/apk/res/android

CHAPTER 12: Using Selection Widgets 116

import android.widget.TextView;

public class AutoCompleteDemo extends Activity
 implements TextWatcher {
 private TextView selection;
 private AutoCompleteTextView edit;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);
 edit=(AutoCompleteTextView)findViewById(R.id.edit);
 edit.addTextChangedListener(this);

 edit.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 items));
 }

 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 selection.setText(edit.getText());
 }

 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // needed for interface, but not used
 }

 public void afterTextChanged(Editable s) {
 // needed for interface, but not used
 }
}

This time, our activity implements TextWatcher, which means our callbacks are

onTextChanged(),beforeTextChanged(), and afterTextChanged(). In this case, we are

interested only in onTextChanged(), and we update the selection label to match the

AutoCompleteTextView’s current contents. Figures 12–7, 12–8, and 12–9 show the

results.

CHAPTER 12: Using Selection Widgets 117

Figure 12–7. The AutoCompleteDemo sample application, as initially launched

Figure 12–8. The same application, after a few matching letters were entered, showing the autocomplete drop-
down

CHAPTER 12: Using Selection Widgets 118

Figure 12–9. The same application, after the autocomplete value was selected

Galleries, Give or Take the Art
The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a list box

that is laid out horizontally. One choice follows the next across the horizontal plane, with

the currently selected item highlighted. On an Android device, one rotates through the

options via the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space, while still showing

multiple choices at one time (assuming they are short enough). Compared to the

Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview. Given a collection of

photos or icons, the Gallery lets people preview the pictures in the process of choosing

one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout, you

have a few properties at your disposal:

 android:spacing: Controls the number of pixels between entries in the list.

 android:spinnerSelector: Controls what is used to indicate a

selection. This can either be a reference to a Drawable (see the

resources chapter) or an RGB value in #AARRGGBB or similar notation.

android:drawSelectorOnTop: Indicates if the selection bar (or Drawable) should be drawn

before (false) or after (true) drawing the selected child. If you choose true, be sure that

your selector has sufficient transparency to show the child through the selector;

otherwise, users will not be able to read the selection.

119

 Chapter

Getting Fancy with Lists
The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call, an e-mail message
to forward, or an e-book to read, ListView widgets are employed in a wide range of
activities. Of course, it would be nice if they were more than just plain text.

The good news is that Android lists can be as fancy as you want, within the limitations of
a mobile device’s screen, of course. However, making them fancy takes some work,
requiring the features of Android that are covered in this chapter.

Getting to First Base
The classic Android ListView is a plain list of text—solid but uninspiring. Basically, we
hand the ListView a bunch of words in an array and tell Android to use a simple built-in
layout for pouring those words into a list.

However, we can have a list whose rows are made up of icons, icons and text, check
boxes and text, or whatever we want. It is merely a matter of supplying enough data to
the adapter and helping the adapter to create a richer set of View objects for each row.

For example, suppose we want a ListView whose entries are made up of an icon,
followed by some text. We could construct a layout for the row that looks like this, found
in res/layout/row.xml in the FancyLists/Static sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"

13

http://schemas.android.com/apk/res/android

CHAPTER 13: Getting Fancy with Lists 120

 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and the text (in
a nice big font) on the right.

However, by default, Android has no idea that we want to use this layout with our
ListView. To make the connection, we need to supply our Adapter with the resource ID
of the custom layout shown previously:

public class StaticDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 R.layout.row, R.id.label,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }
}

This follows the general structure for the previous ListView sample. The key difference
here is that we have told ArrayAdapter that we want to use our custom layout
(R.layout.row) and that the TextView where the word should go is known as R.id.label
within that custom layout.

NOTE: Remember that to reference a layout (row.xml), use R.layout as a prefix on the base

name of the layout XML file (R.layout.row).

The result is a ListView with icons down the left side; in this example, all the icons are
the same, as shown in Figure 13-1.

CHAPTER 13: Getting Fancy with Lists 121

Figure 13-1. The StaticDemo application

A Dynamic Presentation
As shown in the previous section, the technique of supplying an alternate layout to use
for rows handles simple cases very nicely. However, what if we want the icon to change
based on the row data? For example, suppose we want to use one icon for small words
and a different icon for large words. In the case of ArrayAdapter, we will need to extend
it, creating our own custom subclass (e.g., IconicAdapter) that incorporates our
business logic. In particular, it will need to override getView().

The getView() method of an Adapter is what an AdapterView (like ListView or Spinner)
calls when it needs the View associated with a given piece of data the Adapter is
managing. In the case of an ArrayAdapter, getView() is called as needed for each
position in the array—“get me the View for the first row,” “get me the View for the second
row,” and so forth.

As an example, let’s rework the code in the preceding section to use getView(), so we
can show different icons for different rows—in this case, one icon for short words and
one for long words (from the FancyLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {
 TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",

CHAPTER 13: Getting Fancy with Lists 122

 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, R.id.label, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Our IconicAdapter—an inner class of the activity—has two methods. First, it has the
constructor, which simply passes to ArrayAdapter the same data we used in the
ArrayAdapter constructor in StaticDemo. Second, it has our getView() implementation,
which does two things:

It chains to the superclass’s implementation of getView(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

It finds our ImageView and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R.drawable.ok and R.drawable.delete).

The result of our revised example is shown in Figure 13-2.

CHAPTER 13: Getting Fancy with Lists 123

Figure 13-2. The DynamicDemo application

Inflating Rows Ourselves
The preceding version of the DynamicDemo application works fine. However, sometimes
ArrayAdapter cannot be used even to set up the basics of our row. For example, it is
possible to have a ListView where the rows are materially different, such as category
headers interspersed among regular rows. In that case, we may need to do all the work
ourselves, starting with inflating our rows. We will do that after a brief introduction to
inflation.

A Sidebar About Inflation
“Inflation” means the act of converting an XML layout specification into the actual tree of
View objects the XML represents. This is undoubtedly a tedious bit of code: take an
element, create an instance of the specified View class, walk the attributes, convert
those into property setter calls, iterate over all child elements, lather, rinse, and repeat.

The good news is that the fine folks on the Android team wrapped up all that into a
class called LayoutInflater, which we can use ourselves. When it comes to fancy
lists, for example, we want to inflate a View for each row shown in the list, so we can
use the convenient shorthand of the XML layout to describe what the rows are
supposed to look like.

For example, let’s look at a slightly different implementation of the DynamicDemo class,
from the FancyLists/DynamicEx project:

CHAPTER 13: Getting Fancy with Lists 124

public class DynamicDemo extends ListActivity {
 TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Here we inflate our R.layout.row layout by use of a LayoutInflater object, obtained
from our Activity via getLayoutInflater(). This gives us a View object back, which, in
reality, is our LinearLayout with an ImageView and a TextView, just as R.layout.row
specifies. However, rather than having to create all those objects ourselves and wire
them together, the XML and LayoutInflater handle the “heavy lifting” for us.

CHAPTER 13: Getting Fancy with Lists 125

And Now, Back to Our Story
So we have used LayoutInflater to give us a View representing the row. This row is
“empty,” since the static layout file has no idea what actual data goes into the row. It is
our job to customize and populate the row as we see fit before returning it, as follows:

 Fill in the text label for our label widget, using the word at the supplied position

 See if the word is longer than four characters and, if so, find our ImageView
icon widget and replace the stock resource with a different one

The user sees nothing different—we have simply changed how those rows are being
created. Obviously, this was a fairly contrived example, but you can see that this
technique could be used to customize rows based on any sort of criteria.

Better. Stronger. Faster.
The getView() implementation shown in the FancyLists/DynamicEx project works, but
it’s inefficient. Every time the user scrolls, we have to create a bunch of new View
objects to accommodate the newly shown rows. This is bad.

It might be bad for the immediate user experience, if the list appears to be sluggish.
More likely, though, it will be bad due to battery usage—every bit of CPU that is used
eats up the battery. This is compounded by the extra work the garbage collector needs
to do to get rid of all those extra objects we create. So the less efficient our code, the
more quickly the phone’s battery will be drained, and the less happy the user will be.
And we want happy users, right?

So, let’s take a look at a few tricks to make our fancy ListView widgets more efficient.

Using convertView
The getView() method receives, as one of its parameters, a View named, by convention,
convertView. Sometimes, convertView will be null. In those cases, we need to create a
new row View from scratch (e.g., via inflation), just as we did in the previous example.
However, if convertView is not null, then it is actually one of our previously created View
objects! This will happen primarily when the user scrolls the ListView. As new rows
appear, Android will attempt to recycle the views of the rows that scrolled off the other
end of the list, to save us from having to rebuild them from scratch.

Assuming that each of our rows has the same basic structure, we can use
findViewById() to get at the individual widgets that make up our row and change their
contents, and then return convertView from getView(), rather than create a whole new
row. For example, here is the getView() implementation from the earlier example, now
optimized via convertView (from the FancyLists/Recycling project):

CHAPTER 13: Getting Fancy with Lists 126

public class RecyclingDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(RecyclingDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 }

 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

CHAPTER 13: Getting Fancy with Lists 127

Here, we check to see if the convertView is null. If so, we inflate our row; otherwise, we
just reuse it. The work to fill in the contents (icon image and text) is the same in either
case. The advantage is that we avoid the potentially expensive inflation step. In fact,
according to statistics cited by Google at the 2010 Google I|O conference, a ListView
that uses a recycling ListAdapter will perform 150 percent faster than one that does not.
For complex rows, that might even understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or container—in other
words, each subclass of View—holds onto up to 2KB of data, not counting things like
images in ImageView widgets. Each of our rows, therefore, might be as big as 6KB. For
our list of 25 nonsense words, consuming as much as 150KB for a nonrecycling list (25
rows at 6KB each) would be inefficient but not a huge problem. A list of 1000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much bigger issue.
Bear in mind that your application may have only 16MB of Java heap memory to work
with. Recycling allows us to handle arbitrary list lengths with only as much View memory
consumed as is needed for the rows visible onscreen.

Note that row recycling is an issue only if we are creating the rows ourselves. If we let
ArrayAdapter create the rows, by leveraging its implementation of getView(), as shown
in the FancyLists/Dynamic project, then it deals with the recycling.

Using the Holder Pattern
Another somewhat expensive operation commonly done with fancy views is calling
findViewById(). This dives into our inflated row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., to change the text of a
TextView or change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number of
instructions to execute, particularly if we need to find the same widgets repeatedly.

In some GUI toolkits, this problem is avoided by having the composite View objects, like
rows, be declared totally in program code (in this case, Java). Then, accessing individual
widgets is merely a matter of calling a getter or accessing a field. And we can certainly
do that with Android, but the code gets rather verbose. What would be nice is a way that
enables us still to use the layout XML, yet cache our row’s key child widgets so that we
need to find them only once. That’s where the holder pattern comes into play, in a class
we’ll call ViewHolder.

All View objects have getTag() and setTag() methods. These allow us to associate an
arbitrary object with the widget. The holder pattern uses that “tag” to hold an object
that, in turn, holds each of the child widgets of interest. By attaching that holder to the
row View, every time we use the row, we already have access to the child widgets we
care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancyLists/ViewHolder sample project):

CHAPTER 13: Getting Fancy with Lists 128

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
 ImageView icon=null;

 ViewHolder(View base) {
 this.icon=(ImageView)base.findViewById(R.id.icon);
 }
}

ViewHolder holds onto the child widgets, initialized via findViewById() in its constructor.
The widgets are simply package-protected data members, accessible from other
classes in this project, such as a ViewHolderDemo activity. In this case, we are holding
onto only one widget—the icon—since we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ViewHolder holder=(ViewHolder)row.getTag();

 if (holder==null) {
 holder=new ViewHolder(row);
 row.setTag(holder);
 }

 if (getModel(position).length()>4) {
 holder.icon.setImageResource(R.drawable.delete);
 }
 else {
 holder.icon.setImageResource(R.drawable.ok);
 }

 return(row);
}

Here, we go back to allowing ArrayAdapter to handle our row inflation and recycling for
us. If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder. The first time the ListView is displayed, all new rows need to be inflated, and we
wind up creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic. Whereas recycling
can give you a 150 percent performance improvement, adding in a holder increases the
improvement to 175 percent. Hence, while you may wish to implement recycling up front

CHAPTER 13: Getting Fancy with Lists 129

when you create your adapter, adding in a holder might be something you deal with
later, when you are working specifically on performance tuning.

In this particular case, we certainly could simplify all of this by skipping ViewHolder and
using getTag() and setTag() with the ImageView directly. This example is written as it is
to demonstrate how to handle a more complex scenario, where you might have several
widgets that would need to be cached via the holder pattern.

Interactive Rows
Lists with pretty icons next to them are all fine and well. But, can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets like
TextView and ImageView? For example, there is a RatingBar widget that allows users to
assign a rating by clicking on a set of star icons. Could we combine the RatingBar with
text to allow people to scroll a list of, say, songs and rate them right inside the list?
There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is that it
is a little tricky, specifically when it comes to taking action when the interactive widget’s
state changes (e.g., a value is typed into a field). We need to store that state
somewhere, since our RatingBar widget will be recycled when the ListView is scrolled.
We need to be able to set the RatingBar state based on the actual word being viewed as
the RatingBar is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
which item in the ArrayAdapter it represents. After all, the RatingBar is just a widget,
used in a row of a ListView. We need to teach the rows which item in the ArrayAdapter
they are currently displaying, so when their RatingBar is checked, they know which
item’s state to modify.

So, let’s see how this is done, using the activity in the FancyLists/RateList sample
project. We will use the same basic classes that we used in our previous example. We
are displaying a list of nonsense words, which can then be rated. In addition, words
given a top rating are put in all caps.

package com.commonsware.android.fancylists.six;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LinearLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

CHAPTER 13: Getting Fancy with Lists 130

public class RateListDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 ArrayList<RowModel> list=new ArrayList<RowModel>();

 for (String s : items) {
 list.add(new RowModel(s));
 }

 setListAdapter(new RatingAdapter(list));
 }

 private RowModel getModel(int position) {
 return(((RatingAdapter)getListAdapter()).getItem(position));
 }

 class RatingAdapter extends ArrayAdapter<RowModel> {
 RatingAdapter(ArrayList<RowModel> list) {
 super(RateListDemo.this, R.layout.row, R.id.label, list);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ViewHolder holder=(ViewHolder)row.getTag();

 if (holder==null) {
 holder=new ViewHolder(row);
 row.setTag(holder);

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 Integer myPosition=(Integer)ratingBar.getTag();
 RowModel model=getModel(myPosition);

 model.rating=rating;

 LinearLayout parent=(LinearLayout)ratingBar.getParent();
 TextView label=(TextView)parent.findViewById(R.id.label);

 label.setText(model.toString());
 }
 };

CHAPTER 13: Getting Fancy with Lists 131

 holder.rate.setOnRatingBarChangeListener(l);
 }

 RowModel model=getModel(position);

 holder.rate.setTag(new Integer(position));
 holder.rate.setRating(model.rating);

 return(row);
 }
 }

 class RowModel {
 String label;
 float rating=2.0f;

 RowModel(String label) {
 this.label=label;
 }

 public String toString() {
 if (rating>=3.0) {
 return(label.toUpperCase());
 }

 return(label);
 }
 }
}

The following explains what is different in this activity and getView() implementation
from before:

 We are still using String[] items as the list of nonsense words, but
instead of pouring that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model: it
holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

 We updated utility methods such as onListItemClick()to reflect the
change from a pure-String model to use a RowModel.

 The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, and then checks to see if we
have a ViewHolder in the row’s tag. If not, we create a new ViewHolder
and associate it with the row. For the row’s RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row’s tag
(getTag()) and converts that into an Integer, representing the position
within the ArrayAdapter that this row is displaying. Using that, the
rating bar can get the actual RowModel for the row and update the
model based on the new state of the rating bar. It also updates the text
adjacent to the RatingBar when checked, to match the rating bar state.

v

CHAPTER 13: Getting Fancy with Lists 132

We always make sure that the RatingBar has the proper contents and
has a tag (via setTag()) pointing to the position in the adapter the row
is displaying.

The row layout is very simple, just a RatingBar and a TextView inside a LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <RatingBar
 android:id="@+id/rate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="3"
 android:stepSize="1"
 android:rating="2" />
 <TextView
 android:id="@+id/label"
 android:padding="2dip"
 android:textSize="18sp"
 android:layout_gravity="left|center_vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

The ViewHolder is similarly simple, just extracting the RatingBar out of the row View for
caching purposes:

package com.commonsware.android.fancylists.six;

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {
 RatingBar rate=null;

 ViewHolder(View base) {
 this.rate=(RatingBar)base.findViewById(R.id.rate);
 }
}

And the result is what you would expect, visually, as shown in Figure 13-3.

http://schemas.android.com/apk/res/android

CHAPTER 13: Getting Fancy with Lists 133

Figure 13-3. The RateListDemo application, as initially launched

Figure 13-4 shows a toggled rating bar turning its word into all caps.

Figure 13-4. The same application, showing a top-rated word

135

 Chapter

Still More Widgets and
Containers
This book has covered a number of widgets and containers so far. This chapter is the

last that focuses exclusively on widgets and containers, covering a number of popular

options, from date and time widgets to tabs. After this chapter, we introduce new

widgets occasionally, but in the context of some other topic, such as introducing the

ProgressBar in Chapter 20 (covering threads).

Pick and Choose
With limited-input devices like phones, having widgets and dialogs that are aware of the

type of stuff a user is supposed to be entering is very helpful. They minimize keystrokes

and screen taps and reduce the chance that a user will make some sort of error (e.g.,

entering a letter somewhere only numbers are expected).

As shown in Chapter 9, EditText has content-aware flavors for entering numbers and

text. Android also supports widgets (DatePicker and TimePicker) and dialogs

(DatePickerDialog and TimePickerDialog) for helping users enter dates and times.

DatePicker and DatePickerDialog allow you to set the starting date for the selection, in

the form of a year, month, and day of month value. Note that the month runs from 0 for

January through 11 for December. Most importantly, both let you provide a callback

object (OnDateChangedListener or OnDateSetListener) where you are informed of a new

date selected by the user. It is up to you to store that date someplace, particularly if you

are using the dialog, since there is no other way for you to access the chosen date later.

Similarly, TimePicker and TimePickerDialog let you do the following:

 Set the initial time the user can adjust, in the form of an hour (0

through 23) and a minute (0 through 59)

14

CHAPTER 14: Still More Widgets and Containers 136

 Indicate if the selection should be in 12-hour mode with an AM/PM

toggle or in 24-hour mode (what is thought of in the United States as

“military time” and in much of the rest of the world as “the way times

are supposed to be”)

 Provide a callback object (OnTimeChangedListener or

OnTimeSetListener) to be notified of when the user has chosen a new

time, which is supplied to you in the form of an hour and minute

As an example of using date and time pickers, from the Fancy/Chrono sample project,

here’s a trivial layout containing a label and two buttons, which will pop up the dialog

flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:id="@+id/dateAndTime"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/dateBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Date"
 android:onClick="chooseDate"
 />
 <Button android:id="@+id/timeBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Time"
 android:onClick="chooseTime"
 />
</LinearLayout>

The more interesting stuff comes in the Java source:

package com.commonsware.android.chrono;

import android.app.Activity;
import android.os.Bundle;
import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.view.View;
import android.widget.DatePicker;
import android.widget.TimePicker;
import android.widget.TextView;
import java.text.DateFormat;
import java.util.Calendar;

public class ChronoDemo extends Activity {
 DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
 TextView dateAndTimeLabel;

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 137

 Calendar dateAndTime=Calendar.getInstance();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

 updateLabel();
 }

 public void chooseDate(View v) {
 new DatePickerDialog(ChronoDemo.this, d,
 dateAndTime.get(Calendar.YEAR),
 dateAndTime.get(Calendar.MONTH),
 dateAndTime.get(Calendar.DAY_OF_MONTH))
 .show();
 }

 public void chooseTime(View v) {
 new TimePickerDialog(ChronoDemo.this, t,
 dateAndTime.get(Calendar.HOUR_OF_DAY),
 dateAndTime.get(Calendar.MINUTE),
 true)
 .show();
 }

 private void updateLabel() {
 dateAndTimeLabel.setText(fmtDateAndTime
 .format(dateAndTime.getTime()));
 }

 DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener() {
 public void onDateSet(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 dateAndTime.set(Calendar.YEAR, year);
 dateAndTime.set(Calendar.MONTH, monthOfYear);
 dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
 updateLabel();
 }
 };

 TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hourOfDay,
 int minute) {
 dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
 dateAndTime.set(Calendar.MINUTE, minute);
 updateLabel();
 }
 };
}

CHAPTER 14: Still More Widgets and Containers 138

The model for this activity is just a Calendar instance, initially set to be the current date

and time. We pour it into the view via a DateFormat formatter. In the updateLabel()

method, we take the current Calendar, format it, and put it in the TextView.

Each button has a corresponding method that will get control when the user clicks it

(chooseDate() and chooseTime()). When the button is clicked, either a DatePickerDialog

or a TimePickerDialog is shown. In the case of the DatePickerDialog, we give it an

OnDateSetListener callback that updates the Calendar with the new date (year, month,

and day of month). We also give the dialog the last-selected date, getting the values

from the Calendar. In the case of the TimePickerDialog, it gets an OnTimeSetListener

callback to update the time portion of the Calendar, the last-selected time, and a true

indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like Figures 14–1, 14–2, and 14–3.

Figure 14–1. The ChronoDemo sample application, as initially launched

CHAPTER 14: Still More Widgets and Containers 139

Figure 14–2. The same application, showing the date picker dialog

Figure 14–3. The same application, showing the time picker dialog

CHAPTER 14: Still More Widgets and Containers 140

Time Keeps Flowing Like a River
If you want to display the time, rather than have users enter the time, you may wish to

use the DigitalClock widget or AnalogClock widget. These widgets are extremely easy

to use, as they automatically update with the passage of time. All you need to do is put

them in your layout and let them do their thing.

For example, from the Fancy/Clocks sample application, here is an XML layout

containing both DigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <AnalogClock android:id="@+id/analog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_alignParentTop="true"
 />
 <DigitalClock android:id="@+id/digital"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_below="@id/analog"
 />
</RelativeLayout>

Without any Java code other than the generated stub, we can build this project and get

the activity shown in Figure 14–4.

Figure 14–4. The ClocksDemo sample application

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 141

If you are looking for more of a timer, Chronometer may be of interest. With a

Chronometer, you can track elapsed time from a starting point, as shown in the example

in Figure 14–5. You simply tell it when to start() and stop(), and possibly override the

format string that displays the text.

Figure 14–5. The Views/Chronometer API Demo from the Android 2.0 SDK

Seeking Resolution
The SeekBar is an input widget that allows the user to select a value along a range of

possible values. Figure 14–6 shows an example.

CHAPTER 14: Still More Widgets and Containers 142

Figure 14–6. The Views/SeekBar API Demo from the Android 2.0 SDK

The user can either drag the thumb or click on either side of the thumb to reposition it.

The thumb then points to a particular value along a range. That range will be 0 to some

maximum value, 100 by default, which you control via a call to setMax(). You can find

out what the current position is via getProgress(), or find out when the user makes a

change to the thumb’s position by registering a listener via

setOnSeekBarChangeListener().

We saw a variation on this theme with the RatingBar example in Chapter 13.

Putting It on My Tab
The general Android philosophy is to keep activities short and sweet. If there is more

information than can reasonably fit on one screen, albeit perhaps with scrolling, then it

perhaps belongs in another activity kicked off via an Intent, as will be described in

Chapter 22. However, that can be complicated to set up. Moreover, sometimes there

legitimately is a lot of information that needs to be collected to be processed as an

atomic operation.

In a traditional UI, you might use tabs to collect and display information, such as a

JTabbedPane in Java/Swing. In Android, you now have the option of using a TabHost

container in much the same way. A portion of your activity’s screen is taken up with

tabs, which, when clicked, swap out part of the view and replace it with something else.

For example, you might have an activity with a tab for entering a location and a second

tab for showing a map of that location.

Some GUI toolkits refer to “tabs” as only the things that a user clicks to toggle from one

view to another. Other GUI toolkits refer to “tabs” as the combination of the clickable

CHAPTER 14: Still More Widgets and Containers 143

button-like element and the content that appears when that element is chosen. Android

treats the tab buttons and contents as discrete entities, so they are referred to as “tab

buttons” and “tab contents” in this section.

The Pieces
You use the following widgets and containers to set up a tabbed portion of a view:

TabHost: The overarching container for the tab buttons and tab

contents.

TabWidget: Implements the row of tab buttons, which contain text

labels and, optionally, icons.

FrameLayout: The container for the tab contents. Each tab content is a

child of the FrameLayout.

This is similar to the approach that Mozilla’s XUL takes. In XUL’s case, the tabbox
element corresponds to Android’s TabHost, the tabs element corresponds to TabWidget,

and tabpanels corresponds to FrameLayout.

For example, here is a layout definition for a tabbed activity, from Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <AnalogClock android:id="@+id/tab1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
 <Button android:id="@+id/tab2"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

Note that the TabWidget and FrameLayout are indirect children of the TabHost, and the

FrameLayout itself has children representing the various tabs. In this case, there are two

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 144

tabs: a clock and a button. In a more complicated scenario, the tabs could be some

form of container (e.g., LinearLayout) with their own contents.

Wiring It Together
You can put these widgets in a regular Activity or a TabActivity. TabActivity, like

ListActivity, wraps a common UI pattern (an activity made up entirely of tabs) into a

pattern-aware activity subclass. If you wish to use the TabActivity, you must give the

TabHost an android:id of @android:id/tabhost. Conversely, if you do not wish to use

TabActivity, you need to get your TabHost via findViewById(), and then call setup() on

the TabHost, before you do anything else.

The rest of the Java code needs to tell the TabHost which views represent the tab

contents and what the tab buttons should look like. This is all wrapped up in TabSpec

objects. You get a TabSpec instance from the host via newTabSpec(), fill it out, and then

add it to the host in the proper sequence.

TabSpec has two key methods:

 setContent(): Indicates what goes in the tab content for this tab,

typically the android:id of the view you want shown when this tab is

selected

 setIndicator(): Sets the caption for the tab button and, in some

flavors of this method, supplies a Drawable to represent the icon for

the tab

Note that tab “indicators” can actually be views in their own right, if you need more

control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these

TabSpec objects. The call to setup() is not needed if you are using the TabActivity base

class for your activity.

For example, here is the Java code to wire together the tabs from the preceding layout

example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

CHAPTER 14: Still More Widgets and Containers 145

 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(R.id.tab1);
 spec.setIndicator("Clock");
 tabs.addTab(spec);

 spec=tabs.newTabSpec("tag2");
 spec.setContent(R.id.tab2);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }
}

We find our TabHost via the familiar findViewById() method, and then have it setup().

After that, we get a TabSpec via newTabSpec(), supplying a tag whose purpose is

unknown at this time. Given the spec, we call setContent() and setIndicator(), and

then call addTab() back on the TabHost to register the tab as available for use. Finally,

we can choose which tab is the one to show via setCurrentTab(), providing the 0-based

index of the tab.

The results are shown in Figures 14–7 and 14–8.

Figure 14–7. The TabDemo sample application, showing the first tab

CHAPTER 14: Still More Widgets and Containers 146

Figure 14–8. The same application, showing the second tab

Adding Them Up
TabWidget is set up to allow you to easily define tabs at compile time. However,

sometimes you may want to add tabs to your activity during runtime. For example,

imagine an e-mail client where individual e-mail messages are opened in their own tab,

for easy toggling between messages. In this case, you do not know how many tabs you

will need or what their contents will be until runtime, when the user chooses to open a

message. Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs previous

described, except you use a different flavor of setContent(), one that takes a

TabHost.TabContentFactory instance. This is just a callback that will be invoked. You

provide an implementation of createTabContent() and use it to build and return the View

that becomes the content of the tab.

Let’s take a look at an example (Fancy/DynamicTab). First, here is some layout XML for

an activity that sets up the tabs and defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 147

 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button android:id="@+id/buttontab"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 android:onClick="addTab"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

We want to add new tabs whenever the button is clicked, which we can accomplish with

the following code:

package com.commonsware.android.dynamictab;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AnalogClock;
import android.widget.TabHost;

public class DynamicTabDemo extends Activity {
 private TabHost tabs=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 tabs=(TabHost)findViewById(R.id.tabhost);
 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("buttontab");

 spec.setContent(R.id.buttontab);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }

 public void addTab(View v) {
 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(new TabHost.TabContentFactory() {
 public View createTabContent(String tag) {
 return(new AnalogClock(DynamicTabDemo.this));
 }
 });

 spec.setIndicator("Clock");
 tabs.addTab(spec);
 }
}

CHAPTER 14: Still More Widgets and Containers 148

In our button’s addTab() callback, we create a TabHost.TabSpec object and give it an

anonymous TabHost.TabContentFactory. The factory, in turn, returns the View to be

used for the tab—in this case, just an AnalogClock. The logic for constructing the tab’s

View could be much more elaborate, such as using LayoutInflater to construct a view

from layout XML.

Initially, when the activity is launched, we just have the one tab, as shown in Figure 14–9.

Figure 14–10 shows the three dynamically created tabs.

Figure 14–9. The DynamicTab application, with the single initial tab

CHAPTER 14: Still More Widgets and Containers 149

Figure 14–10. The DynamicTab application, with three dynamically created tabs

Flipping Them Off
Sometimes, you want the overall effect of tabs (only some Views visible at a time) but not

the actual UI implementation of tabs. Maybe the tabs take up too much screen space.

Maybe you want to switch between perspectives based on a gesture or a device shake.

Or maybe you just like being different.

The good news is that the guts of the view-flipping logic from tabs can be found in the

ViewFlipper container, which can be used in other ways than the traditional tab.

ViewFlipper inherits from FrameLayout, in the same way we use it to describe the

innards of a TabWidget. However, initially, ViewFlipper just shows the first child view. It

is up to you to arrange for the views to flip, either manually by user interaction or

automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a Button and a

ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/flip_me"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Flip Me!"
 android:onClick="flip"
 />

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 150

 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FF00FF00"
 android:text="This is the first panel"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFF0000"
 android:text="This is the second panel"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFFFF00"
 android:text="This is the third panel"
 />
 </ViewFlipper>
</LinearLayout>

Notice that the layout defines three child views for the ViewFlipper, each a TextView

with a simple message. Of course, you could have very complicated child views, if you

so chose.

To manually flip the views, we need to hook into the Button and flip them ourselves

when the button is clicked:

package com.commonsware.android.flipper1;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.ViewFlipper;

public class FlipperDemo extends Activity {
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);
 }

 public void flip(View v) {
 flipper.showNext();
 }
}

CHAPTER 14: Still More Widgets and Containers 151

This is just a matter of calling showNext() on the ViewFlipper, as you can on any

ViewAnimator class. The result is a trivial activity: click the button, and the next TextView

in sequence is displayed, wrapping around to the first after viewing the last, as shown in

Figures 14–11 and 14–12.

Figure 14–11. The Flipper1 application, showing the first panel

Figure 14–12. The same application, after switching to the second panel

CHAPTER 14: Still More Widgets and Containers 152

Of course, this could be handled more simply by having a single TextView and changing

the text and color on each click. However, you can imagine that the ViewFlipper

contents could be much more complicated, like the contents you might put into a

TabView.

As with the TabWidget, sometimes your ViewFlipper contents may not be known at

compile time. And as with TabWidget, you can add new contents on-the-fly with ease.

For example, let’s look at another sample activity (Fancy/Flipper2), using this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 </ViewFlipper>
</LinearLayout>

Notice that the ViewFlipper has no contents at compile time. Also notice that there is no

Button for flipping between the contents—more on this in a moment.

For the ViewFlipper contents, we will create large Button widgets, each containing one

of the random words used in many chapters in this book. And, we will set up the

ViewFlipper to automatically rotate between the Button widgets.

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

public class FlipperDemo2 extends Activity {
 static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque",
 "augue", "purus"};
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 for (String item : items) {

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 153

 Button btn=new Button(this);

 btn.setText(item);

 flipper.addView(btn,
 new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT));
 }

 flipper.setFlipInterval(2000);
 flipper.startFlipping();
 }
}

After iterating over the funky words, turning each into a Button, and adding the Button
as a child of the ViewFlipper, we set up the flipper to automatically flip between children

(flipper.setFlipInterval(2000);) and to start flipping (flipper.startFlipping();).

The result is an endless series of buttons, each of which appears, as shown in Figure

14–13, and then is replaced by the next button in sequence after 2 seconds, wrapping

around to the first after the last has been shown.

Figure 14–13. The Flipper2 application

The autoflipping ViewFlipper is useful for status panels or other situations where you

have a lot of information to display, but not much room. However, since it automatically

flips between views, expecting users to interact with individual views is dicey, because

the view might switch away partway through their interaction.

CHAPTER 14: Still More Widgets and Containers 154

Getting in Somebody’s Drawer
For a long time, Android developers yearned for a sliding-drawer container that worked

like the one on the home screen, containing the icons for launching applications. The

official implementation was in the open source code but was not part of the SDK, until

Android 1.5, when the developers released SlidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching from a closed to

an open position. This puts some restrictions on which container can hold the

SlidingDrawer. It needs to be in a container that allows multiple widgets to sit atop each

other. RelativeLayout and FrameLayout satisfy this requirement. FrameLayout is a

container purely for stacking widgets atop one another. On the flip side, LinearLayout

does not allow widgets to stack (they fall one after another in a row or column), and so

you should not have a SlidingDrawer as an immediate child of a LinearLayout.

Here is a layout showing a SlidingDrawer in a FrameLayout, from the Fancy/DrawerDemo

project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF4444CC"
 >
 <SlidingDrawer
 android:id="@+id/drawer"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:handle="@+id/handle"
 android:content="@+id/content">
 <ImageView
 android:id="@id/handle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/tray_handle_normal"
 />
 <Button
 android:id="@id/content"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="I'm in here!"
 />
 </SlidingDrawer>
</FrameLayout>

The SlidingDrawer should contain two things:

 A handle, frequently an ImageView or something along those lines,

such as the one used here, pulled from the Android open source

project

 The contents of the drawer itself, usually some sort of container, but a

Button in this example

http://schemas.android.com/apk/res/android

CHAPTER 14: Still More Widgets and Containers 155

Moreover, SlidingDrawer needs to know the android:id values of the handle and

contents, via the android:handle and android:content attributes, respectively. These

tell the drawer how to animate itself as it slides open and closed.

Figure 14–14 shows what the SlidingDrawer looks like closed, using the supplied

handle, and Figure 14–15 shows what it looks like open.

Figure 14–14. A SlidingDrawer, closed

Figure 14–15. A SlidingDrawer, open

CHAPTER 14: Still More Widgets and Containers 156

As you might expect, you can open and close the drawer from Java code, as well as via

user touch events. However, you have two sets of these methods: ones that take place

instantaneously (open(),close(), and toggle()) and ones that use the animation

(animateOpen(),animateClose(), and animateToggle()). You can also lock() and

unlock() the drawer; while locked, the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:

 A listener to be invoked when the drawer is opened

 A listener to be invoked when the drawer is closed

 A listener to be invoked when the drawer is “scrolled” (i.e., the user

drags or flings the handle)

For example, the Android launcher’s SlidingDrawer toggles the icon on the handle from

open to closed to “delete” (if you long-tap something on the desktop). It accomplishes

this, in part, through callbacks like these.

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its orientation

despite the screen orientation. In other words, if you rotate the Android device or

emulator running DrawerDemo, the drawer always opens from the bottom—it does not

always “stick” to the original side it opened from. This means that if you want the drawer

to always open from the same side, like the launcher does, you will need separate

layouts for portrait versus landscape, a topic discussed in Chapter 23.

Other Good Stuff
Android offers AbsoluteLayout, where the contents are laid out based on specific

coordinate positions. You tell AbsoluteLayout where to place a child in precise x and y

coordinates, and Android puts it there, no questions asked. On the plus side, this gives

you precise positioning. On the minus side, it means your views will look right only on

screens of a certain dimension, or you will need to write a bunch of code to adjust the

coordinates based on screen size. Since Android screens might run the gamut of sizes,

with new sizes cropping up periodically, using AbsoluteLayout could get quite annoying.

Also, note that AbsoluteLayout is officially deprecated, meaning that although it is

available to you, its use is discouraged.

Android also has the ExpandableListView. This provides a simplified tree representation,

supporting two levels of depth: groups and children. Groups contain children; children

are “leaves” of the tree. This requires a new set of adapters, since the ListAdapter

family does not provide any sort of group information for the items in the list.

Here are some other widgets available in Android beyond those covered so far in this

book:

 CheckedTextView: A TextView that can have either a check box or a

radio button next to it, used with single- and multiple-choice lists

 Chronometer: A stopwatch-style countdown timer

CHAPTER 14: Still More Widgets and Containers 157

 Gallery: A horizontal scrolling selection widget, designed for

thumbnail previews of images (e.g., camera photos and album covers)

 MultiAutoCompleteTextView: Like an AutoCompleteTextView, except

that the user can make multiple choices from the drop-down list,

rather than just one

 QuickContactBadge: Given the identity of a contact from the user’s

contacts database, displays a roster of icons representing actions to

be performed on that contact (place a call, send a text message, send

an e-mail, etc.)

 ToggleButton: A two-state button where the states are indicated by a

“light” and prose ("ON", "OFF") instead of a check mark

 ViewSwitcher (and the ImageSwitcher and TextSwitcher subclasses):

Like a simplified ViewFlipper for toggling between two views

159

 Chapter

Embedding the WebKit
Browser
Other GUI toolkits let you use HTML for presenting information, from limited HTML

renderers (e.g., Java/Swing and wxWidgets) to embedding Internet Explorer into .NET

applications. Android is much the same, in that you can embed the built-in web browser

as a widget in your own activities, for displaying HTML or full-fledged browsing. The

Android browser is based on WebKit, the same engine that powers Apple’s Safari web

browser.

The Android browser is sufficiently complex that it gets its own Java package

(android.webkit). Using the WebView widget itself can be simple or powerful, based on

your requirements.

A Browser, Writ Small
For simple stuff, WebView is not significantly different from any other widget in Android—

pop it into a layout, tell it which URL to navigate to via Java code, and you are finished.

For example, here is a simple layout with a WebView (from WebKit/Browser1):

<?xml version="1.0" encoding="utf-8"?>
<WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/webkit"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

As with any other widget, you need to tell it how it should fill up the space in the layout

(in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browser1;

import android.app.Activity;

15

http://schemas.android.com/apk/res/android

CHAPTER 15: Embedding the WebKit Browser 160

import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 browser.loadUrl("http://commonsware.com");
 }
}

The only thing unusual with this edition of onCreate() is that we invoke loadUrl() on the

WebView widget, to tell it to load a web page (in this case, the home page of some

random firm).

However, we also need to make one change to AndroidManifest.xml, requesting

permission to access the Internet:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browser1">
 <uses-permission android:name="android.permission.INTERNET"/>
 <application android:icon="@drawable/cw">
 <activity android:name=".BrowserDemo1" android:label="BrowserDemo1">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

If we fail to add this permission, the browser will refuse to load pages. Permissions will

be covered in greater detail in Chapter 38.

The resulting activity looks like a web browser, but with hidden scrollbars, as shown in

Figure 15–1.

http://commonsware.com
http://schemas.android.com/apk/res/android

CHAPTER 15: Embedding the WebKit Browser 161

Figure 15–1. The BrowserDemo1 sample application

As with the regular Android browser, you can pan around the page by dragging it, while

the D-pad moves you around all the focusable elements on the page. What is missing is

all the extra stuff that make up a web browser, such as a navigational toolbar.

Now, you may be tempted to replace the URL in that source code with something that

relies on JavaScript, such as Google’s home page. By default, JavaScript is turned off in

WebView widgets. If you want to enable JavaScript, call

getSettings().setJavaScriptEnabled(true); on the WebView instance. This option is

covered in a bit more detail later in this chapter.

Loading It Up
There are two main ways to get content into the WebView. One, described in the previous

section, is to provide the browser with a URL and have the browser display that page via

loadUrl(). The browser will access the Internet through whatever means are available to

that specific device at the present time (Wi-Fi, 2G, 3G, WiMAX, well-trained tiny carrier

pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the browser to view.

You might use this to do the following:

 Display a manual that was installed as a file with your application

package

 Display snippets of HTML you retrieved as part of other processing,

such as the description of an entry in an Atom feed

CHAPTER 15: Embedding the WebKit Browser 162

 Generate a whole user interface using HTML, instead of using the

Android widget set

There are two flavors of loadData(). The simpler one allows you to provide the content,

the MIME type, and the encoding, all as strings. Typically, your MIME type will be

text/html and your encoding will be UTF-8 for ordinary HTML.

For example, you could replace the loadUrl() invocation in the previous example with

the following:

browser.loadData("<html><body>Hello, world!</body></html>",
 "text/html", "UTF-8");

You would get the result shown in Figure 15–2.

Figure 15–2. The BrowserDemo2 sample application

This is also available as a fully buildable sample, as WebKit/Browser2.

Navigating the Waters
As previously mentioned, the WebView widget doesn’t have a navigation toolbar. This

allows you to use it in places where such a toolbar would be pointless and a waste of

screen real estate. That being said, if you want to offer navigational capabilities, you can,

but you have to supply the UI.

WebView offers ways to perform garden-variety browser navigation, including the

following methods:

 reload(): Refreshes the currently viewed web page

CHAPTER 15: Embedding the WebKit Browser 163

 goBack(): Goes back one step in the browser history

 canGoBack(): Determines if there is any history to go back to

 goForward(): Goes forward one step in the browser history

 canGoForward(): Determines if there is any history to go forward to

 goBackOrForward(): Goes backward or forward in the browser history,

where a negative number as an argument represents how many steps

to go backward, and a positive number represents how many steps to

go forward

 canGoBackOrForward(): Determines if the browser can go backward or

forward the stated number of steps (following the same

positive/negative convention as goBackOrForward())

 clearCache(): Clears the browser resource cache

 clearHistory(): Clears the browsing history

Entertaining the Client
If you are going to use the WebView as a local UI (versus browsing the Web), you will

want to be able to get control at key times, particularly when users click links. You will

want to make sure those links are handled properly, either by loading your own content

back into the WebView, by submitting an Intent to Android to open the URL in a full

browser, or by some other means (see Chapter 22).

Your hook into the WebView activity is via setWebViewClient(), which takes an instance

of a WebViewClient implementation as a parameter. The supplied callback object will be

notified of a wide range of events, from when parts of a page have been retrieved

(onPageStarted(), etc.) to when you, as the host application, need to handle certain

user- or circumstance-initiated events, such as onTooManyRedirects() or

onReceivedHttpAuthRequest().

A common hook will be shouldOverrideUrlLoading(), where your callback is passed a

URL (plus the WebView itself), and you return true if you will handle the request or false if

you want default handling (e.g., actually fetch the web page referenced by the URL). In

the case of a feed reader application, for example, you will probably not have a full

browser with navigation built into your reader. In this case, if the user clicks a URL, you

probably want to use an Intent to ask Android to load that page in a full browser. But if

you have inserted a “fake” URL into the HTML, representing a link to some activity-

provided content, you can update the WebView yourself.

CHAPTER 15: Embedding the WebKit Browser 164

As an example, let’s amend the first browser demo to make it an application that, upon

a click, shows the current time. From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);
 browser.setWebViewClient(new Callback());

 loadTime();
 }

 void loadTime() {
 String page="<html><body>"
 +new Date().toString()
 +"</body></html>";

 browser.loadData(page, "text/html", "UTF-8");
 }

 private class Callback extends WebViewClient {
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 loadTime();

 return(true);
 }
 }
}

Here, we load into the browser (loadTime()) a simple web page that consists of the

current time, made into a hyperlink to the /clock URL. We also attach an instance of a

WebViewClient subclass, providing our implementation of shouldOverrideUrlLoading().

In this case, no matter what the URL, we want to just reload the WebView via loadTime().

Running this activity gives the result shown in Figure 15–3.

CHAPTER 15: Embedding the WebKit Browser 165

Figure 15–3. The BrowserDemo3 sample application

Selecting the link and clicking the D-pad center button will “click” the link, causing the

page to be rebuilt with the new time.

Settings, Preferences, and Options (Oh, My!)
With your favorite desktop web browser, you have some sort of settings, preferences, or

options window. Between that and the toolbar controls, you can tweak and twiddle the

behavior of your browser, from preferred fonts to the behavior of JavaScript. Similarly,

you can adjust the settings of your WebView widget as you see fit, via the WebSettings

instance returned from calling the widget’s getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly esoteric (e.g.,

setFantasyFontFamily()). However, here are some that you may find more useful:

 Control the font sizing via setDefaultFontSize() (to use a point size)

or setTextSize() (to use constants indicating relative sizes like LARGER

and SMALLEST)

 Control JavaScript via setJavaScriptEnabled() (to disable it outright)

and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it

from opening pop-up windows)

 Control web site rendering via setUserAgent(), so you can supply your

own user agent string to make the web server think you are a desktop

browser, another mobile device (e.g., an iPhone), or whatever

CHAPTER 15: Embedding the WebKit Browser 166

The settings you change are not persistent, so you should store them somewhere (such

as via the Android preferences engine) if you are allowing your users to determine the

settings, versus hard-wiring the settings in your application.

167

 Chapter

Applying Menus
Like applications for the desktop and some mobile operating systems, Android supports

activities with application menus. Most Android phones have a dedicated menu key for

popping up the menu; other devices offer alternate means for triggering the menu to

appear, such as the onscreen button used by the Archos 5 Android tablet.

Also, as with many GUI toolkits, you can create context menus for your Android

applications. On a traditional GUI, a context menu might be triggered by the user

clicking with the right-mouse button. On mobile devices, context menus typically appear

when the user taps and holds over a particular widget. For example, if a TextView had a

context menu, and the device was designed for finger-based touch input, you could

push the TextView with your finger, hold it for a second or two, and a pop-up menu

would appear.

Flavors of Menu
Android refers to the two types of menu described in the preceding section as options

menus and context menus. The options menu is triggered by pressing the hardware

Menu button on the device, while the context menu is raised by a tap-and-hold on the

widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and expanded. When

the user first presses the Menu button, the icon mode will appear, showing up to the first

six menu choices as large, finger-friendly buttons in a grid at the bottom of the screen. If

the menu has more than six choices, the sixth button will be labeled More. Tapping the

More option will bring up the expanded mode, showing the remaining choices not visible

in the regular menu. The menu is scrollable, so the user can get to any of the menu

choices.

16

CHAPTER 16: Applying Menus 168

Menus of Options
Instead of building your activity’s options menu during onCreate(), the way you wire up

the rest of your UI, you need to implement onCreateOptionsMenu(). This callback

receives an instance of Menu.

The first thing you should do is chain upward to the superclass

(super.onCreateOptionsMenu(menu)), so the Android framework can add in any menu

choices it feels are necessary. Then you can go about adding your own options, as

described in this section.

If you will need to adjust the menu during your activity’s use (e.g., disable a now-invalid

menu choice), just hold onto the Menu instance you receive in onCreateOptionsMenu().

Alternatively, you can implement onPrepareOptionsMenu(), which is called just before

displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you add menu

choices by calling add(). There are many flavors of this method, which require some

combination of the following parameters:

 A group identifier (int), which should be NONE unless you are creating a

specific grouped set of menu choices for use with

setGroupCheckable() (described shortly)

 A choice identifier (also an int), for use in identifying this choice in the

onOptionsItemSelected() callback when a menu choice is chosen

 An order identifier (yet another int), for indicating where this menu

choice should be slotted if the menu has Android-supplied choices

alongside your own; for now, just use NONE

 The text of the menu choice, as a String or a resource ID

The add() family of methods all return an instance of MenuItem, where you can adjust

any of the menu item settings you have already set (e.g., the text of the menu choice).

You can also set the shortcuts for the menu choice, which are single-character

mnemonics that choose that menu item when the menu is visible. Android supports both

an alphabetic (or QWERTY) set of shortcuts and a numeric set of shortcuts. These are

set individually by calling setAlphabeticShortcut() and setNumericShortcut(),

respectively. The menu is placed into alphabetic shortcut mode by calling

setQwertyMode() on the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu features, such

as the following:

 Calling MenuItem#setCheckable() with a choice identifier, to control if

the menu choice has a two-state check box alongside the title, where

the check box value is toggled when the user chooses that menu item

CHAPTER 16: Applying Menus 169

 Calling Menu#setGroupCheckable() with a group identifier, to turn a set

of menu choices into ones with a mutual-exclusion radio button

between them, so that only one item in the group can be in the

checked state at any time

Finally, you can create fly-out submenus by calling addSubMenu(), supplying the same

parameters as addMenu(). Android will eventually call onCreatePanelMenu(), passing it

the choice identifier of your submenu, along with another Menu instance representing the

submenu itself. As with onCreateOptionsMenu(), you should chain upward to the

superclass, and then add menu choices to the submenu. One limitation is that you

cannot indefinitely nest submenus—a menu can have a submenu, but a submenu

cannot have a sub-submenu.

If the user makes a menu choice, your activity will be notified via the

onOptionsItemSelected() callback that a menu choice was selected. You are given the

MenuItem object corresponding to the selected menu choice. A typical pattern is to

switch() on the menu ID (item.getItemId()) and take appropriate behavior. Note that

onOptionsItemSelected() is used regardless of whether the chosen menu item was in

the base menu or a submenu.

Menus in Context
By and large, context menus use the same guts as options menus. The two main

differences are how you populate the menu and how you are informed of menu choices.

First, you need to indicate which widget(s) on your activity have context menus. To do

this, call registerForContextMenu() from your activity, supplying the View that is the

widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other things, is

passed the View you supplied in registerForContextMenu(). You can use that to

determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the context

menu is associated with, and a ContextMenu.ContextMenuInfo, which tells you which

item in the list the user did the tap-and-hold over, in case you want to customize the

context menu based on that information. For example, you could toggle a checkable

menu choice based on the current state of the item.

It is also important to note that onCreateContextMenu() gets called each time the context

menu is requested. Unlike the options menu (which is built only once per activity),

context menus are discarded after they are used or dismissed. Hence, you do not want

to hold onto the supplied ContextMenu object; just rely on getting the chance to rebuild

the menu to suit your activity’s needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement

onContextItemSelected() on the activity. Note that you get only the MenuItem instance

that was chosen in this callback. As a result, if your activity has two or more context

menus, you may want to ensure they have unique menu item identifiers for all their

CHAPTER 16: Applying Menus 170

choices, so you can distinguish between them apart in this callback. Also, you can call

getMenuInfo() on the MenuItem to get the ContextMenu.ContextMenuInfo you received in

onCreateContextMenu(). Otherwise, this callback behaves the same as

onOptionsItemSelected() as described in the previous section.

Taking a Peek
In the sample project Menus/Menus, you will find an amended version of the ListView

sample (List) with associated menus. Since the menus do not affect the layout, the XML

layout file does not need to be changed and thus is not reprinted here. However, the

Java code has a few new behaviors:

package com.commonsware.android.menus;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class MenuDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae", "arcu", "aliquet",
 "mollis", "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};
 public static final int MENU_ADD = Menu.FIRST+1;
 public static final int MENU_RESET = Menu.FIRST+2;
 public static final int MENU_CAP = Menu.FIRST+3;
 public static final int MENU_REMOVE = Menu.FIRST+4 ;
 private ArrayList<String> words=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 initAdapter();
 registerForContextMenu(getListView());
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu
 .add(Menu.NONE, MENU_ADD, Menu.NONE, "Add")
 .setIcon(R.drawable.ic_menu_add);

CHAPTER 16: Applying Menus 171

 menu
 .add(Menu.NONE, MENU_RESET, Menu.NONE, "Reset")
 .setIcon(R.drawable.ic_menu_refresh);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 menu.add(Menu.NONE, MENU_CAP, Menu.NONE, "Capitalize");
 menu.add(Menu.NONE, MENU_REMOVE, Menu.NONE, "Remove");
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case MENU_ADD:
 add();
 return(true);

 case MENU_RESET:
 initAdapter();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info=
 (AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

 switch (item.getItemId()) {
 case MENU_CAP:
 String word=words.get(info.position);

 word=word.toUpperCase();

 adapter.remove(words.get(info.position));
 adapter.insert(word, info.position);

 return(true);

 case MENU_REMOVE:
 adapter.remove(words.get(info.position));

 return(true);
 }

 return(super.onContextItemSelected(item));
 }

 private void initAdapter() {

CHAPTER 16: Applying Menus 172

 words=new ArrayList<String>();

 for (String s : items) {
 words.add(s);
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, words));
 }

 private void add() {
 final View addView=getLayoutInflater().inflate(R.layout.add, null);

 new AlertDialog.Builder(this)
 .setTitle("Add a Word")
 .setView(addView)
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
 EditText title=(EditText)addView.findViewById(R.id.title);

 adapter.add(title.getText().toString());
 }
 })
 .setNegativeButton("Cancel", null)
 .show();
 }
}

In onCreate(), we register our ListView widget as having a context menu. We also

delegate loading the adapter to an initAdapter() private method, one that copies the

data out of our static String array and pours it into an ArrayList, using the ArrayList

for the ArrayAdapter. The reason we do this is that we want to be able to change the

contents of the list on-the-fly, and that is much easier if we use an ArrayList rather than

an ordinary String array.

For the options menu, we override onCreateOptionsMenu() and add two menu items,

one to add a new word to the list and one to reset the words to their initial state. These

menu items have IDs defined locally as static data members (MENU_ADD and MENU_RESET),

and they also sport icons copied from the Android open source project. If the user

displays the menu, it looks as shown in Figure 16–1.

CHAPTER 16: Applying Menus 173

Figure 16–1. The MenuDemo sample application and its options menu

We also override onOptionsItemSelected(), which will be called if the user makes a

choice from the menu. The supplied MenuItem has a getItemId() method that should

map to either MENU_ADD or MENU_RESET. In the case of MENU_ADD, we call a private add()

method that displays an AlertDialog with a custom View as its contents, inflated from

res/layout/add.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:text="Word:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <EditText
 android:id="@+id/title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 />
</LinearLayout>

That produces a dialog like the one shown in Figure 16–2.

http://schemas.android.com/apk/res/android

CHAPTER 16: Applying Menus 174

Figure 16–2. The same application, showing the Add a Word dialog

If the user taps the OK button, we get our ArrayAdapter and call add() on it, adding the

entered word to the end of the list.

If the user chooses MENU_RESET, we call initAdapter() again, setting up a new

ArrayAdapter and attaching it to our ListActivity.

For the context menu, we override onCreateContextMenu(). Once again, we define a pair

of menu items with local IDs, MENU_CAP (to capitalize the long-tapped-upon word) and

MENU_REMOVE (to remove the word). Since context menus have no icons, we can skip that

part. That gives the user the context menu shown in Figure 16–3 if they long-tap on a

word.

CHAPTER 16: Applying Menus 175

Figure 16–3. The same application, showing the context menu

We also override onContextMenuSelected(). Since this is a context menu for a ListView,

our MenuItem has some extra information for us—specifically, which item was long-

tapped upon in the list. To do that, we call getMenuInfo() on the MenuItem and cast the

result to be an AdapterView.AdapterContextMenuInfo. That object, in turn, has a position

data member, which is the index into our array of the word the user chose. From there,

we work with our ArrayAdapter to capitalize or remove the word, as requested.

Yet More Inflation
Chapter 13 explained how you can describe Views via XML files and “inflate” them into

actual View objects at runtime. Android also allows you to describe menus via XML files

and inflate them when a menu is needed. This helps you keep your menu structure

separate from the implementation of menu-handling logic, and it provides easier ways to

develop menu-authoring tools.

Menu XML Structure
Menu XML goes in res/menu/ in your project tree, alongside the other types of resources

that your project might employ. As with layouts, you can have several menu XML files in

your project, each with its own filename and the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called

option.xml:

CHAPTER 16: Applying Menus 176

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add" />
 <item android:id="@+id/reset"
 android:title="Reset"
 android:icon="@drawable/ic_menu_refresh" />
</menu>

 You must start with a menu root element.

 Inside a menu element are item elements and group elements, the latter

representing a collection of menu items that can be operated upon as

a group.

 Submenus are specified by adding a menu element as a child of an

item element, using this new menu element to describe the contents of

the submenu.

 If you want to detect when an item is chosen, or to reference an item

or group from your Java code, be sure to apply an android:id, just as

you do with View layout XML.

Menu Options and XML
Inside the item and group elements, you can specify various options, matching up with

corresponding methods on Menu or MenuItem, as follows:

 Title: The title of a menu item is provided via the android:title

attribute on an item element. This can be either a literal string or a

reference to a string resource (e.g., @string/foo).

 Icon: Menu items optionally have icons. To provide an icon, in the form

of a reference to a drawable resource (e.g., @drawable/eject), use the

android:icon attribute on the item element.

 Order: By default, the order of the items in the menu is determined by

the order in which they appear in the menu XML. You can change that

order by specifying the android:orderInCategory attribute on the item

element. This is a 0-based index of the order for the items associated

with the current category. There is an implicit default category; groups

can provide an android:menuCategory attribute to specify a different

category to use for items in that group. Generally, though, it is simplest

just to put the items in the XML in the order you want them to appear.

 Enabled: Items and groups can be enabled or disabled, controlled in

the XML via the android:enabled attribute on the item or group

element. By default, items and groups are enabled. Disabled items and

groups appear in the menu but cannot be selected. You can change

http://schemas.android.com/apk/res/android

CHAPTER 16: Applying Menus 177

an item’s status at runtime via the setEnabled() method on MenuItem,

or change a group’s status via setGroupEnabled() on Menu.

 Visible: Items and groups can be visible or invisible, controlled in the

XML via the android:visible attribute on the item or group element.

By default, items and groups are visible. Invisible items and groups do

not appear in the menu. You can change an item’s status at runtime

via the setVisible() method on MenuItem, or change a group’s status

via setGroupVisible() on Menu.

 Shortcut: Items can have shortcuts—single letters

(android:alphabeticShortcut) or numbers (android:numericShortcut)

that can be pressed to choose the item without having to use the

touchscreen, D-pad, or trackball to navigate the full menu.

Inflating the Menu
Actually using the menu, once it’s defined in XML, is easy. Just create a MenuInflater

and tell it to inflate your menu.

The Menus/Inflation project is a clone of the Menus/Menus project, with the menu

creation converted to use menu XML resources and MenuInflater. The options menu

was converted to the XML shown previously in this section; here is the context menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/cap"
 android:title="Capitalize" />
 <item android:id="@+id/remove"
 android:title="Remove" />
</menu>

The Java code is nearly identical, changing mostly in the implementation of

onCreateOptionsMenu() and onCreateContextMenu():

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
}

@Override
public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 new MenuInflater(this).inflate(R.menu.context, menu);
}

Here, we see how MenuInflater “pours” the menu items specified in the menu resource

(e.g., R.menu.option) into the supplied Menu or ContextMenu object.

We also need to change onOptionsItemSelected() and onContextItemSelected() to use

the android:id values specified in the XML:

http://schemas.android.com/apk/res/android

CHAPTER 16: Applying Menus 178

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.add:
 add();
 return(true);

 case R.id.reset:
 initAdapter();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

@Override
public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info=
 (AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

 switch (item.getItemId()) {
 case R.id.cap:
 String word=words.get(info.position);

 word=word.toUpperCase();

 adapter.remove(words.get(info.position));
 adapter.insert(word, info.position);

 return(true);

 case R.id.remove:
 adapter.remove(words.get(info.position));

 return(true);
 }

 return(super.onContextItemSelected(item));
}

In the Land of Menus and Honey
Android 3.0 (a.k.a. Honeycomb) introduced a new look and feel for Android applications,

particularly on tablets. Options menus in particular change from being something

triggered by a Menu button to a drop-down menu from the action bar. Fortunately, this

is backward-compatible, so your existing menus will not need to change to adopt this

new look. The concept of the new Honeycomb look is covered in Chapter 26, and the

action bar itself is covered in Chapter 27.

179

 Chapter

Showing Pop-Up
Messages
Sometimes, your activity (or other piece of Android code) will need to speak up.

Not every interaction with Android users will be tidy and containable in activities

composed of views. Errors will crop up. Background tasks may take much longer than

expected. Something asynchronous may occur, such as an incoming message. In these

and other cases, you may need to communicate with the user outside the bounds of the

traditional user interface.

Of course, this is nothing new. Error messages in the form of dialog boxes have been

around for a long time. More subtle indicators also exist, from task tray icons to

bouncing dock icons to vibrating cell phones.

Android has quite a few systems for letting you alert your users outside the bounds of an

Activity-based UI. One, notifications, is tied heavily into intents and services and, as

such, is covered Chapter 37. In this chapter, you will learn about two means of raising

pop-up messages: toasts and alerts.

Raising Toasts
A Toast is a transient message, meaning that it displays and disappears on its own

without user interaction. Moreover, it does not take focus away from the currently active

Activity, so if the user is busy writing the next Great Programming Guide, keystrokes

will not be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it. You

get no acknowledgment from the user, nor does the message stick around for a long

time to pester the user. Hence, the Toast is mostly for advisory messages, such as

indicating a long-running background task is completed, the battery has dropped to a

low level, and so on.

17

CHAPTER 17: Showing Pop-Up Messages 180

Making a Toast is fairly easy. The Toast class offers a static makeText() method that

accepts a String (or string resource ID) and returns a Toast instance. The makeText()

method also needs the Activity (or other Context) plus a duration. The duration is

expressed in the form of the LENGTH_SHORT constant or LENGTH_LONG constant to indicate,

on a relative basis, how long the message should remain visible.

If you would prefer your Toast be made out of some other View, rather than be a boring

old piece of text, simply create a new Toast instance via the constructor (which takes a

Context), and then call setView() to supply it with the view to use and setDuration() to

set the duration.

Once your Toast is configured, call its show() method, and the message will be

displayed. You will see an example of this in action later in this chapter.

Alert! Alert!
If you would prefer something in the more classic dialog box style, what you want is an

AlertDialog. As with any other modal dialog box, an AlertDialog pops up, grabs the

focus, and stays there until closed by the user. You might use this for a critical error, a

validation message that cannot be effectively displayed in the base activity UI, or some

other situation where you are sure that the user needs to see the message immediately.

The simplest way to construct an AlertDialog is to use the Builder class. Following in

true builder style, Builder offers a series of methods to configure an AlertDialog, each

method returning the Builder for easy chaining. At the end, you call show() on the

builder to display the dialog.

Commonly used configuration methods on Builder include the following:

 setMessage(): Sets the “body” of the dialog to be a simple textual

message, from either a supplied String or a supplied string resource ID

 setTitle() and setIcon(): Configure the text and/or icon to appear in

the title bar of the dialog box

 setPositiveButton(),setNegativeButton(): Indicate which button(s)

should appear across the bottom of the dialog, where they should be

positioned (left, center, or right, respectively), what their captions

should be, and what logic should be invoked when the button is

clicked (besides dismissing the dialog).

If you need to configure the AlertDialog beyond what the builder allows, instead of

calling show(), call create() to get the partially built AlertDialog instance, configure it

the rest of the way, and then call one of the flavors of show() on the AlertDialog itself.

Once show() is called, the dialog will appear and await user input.

Note that pressing any of the buttons will close the dialog, even if you have registered a

listener for the button in question. Hence, if all you need a button to do is close the

dialog, give it a caption and a null listener. There is no option, with AlertDialog, to have

a button at the bottom invoke a listener yet not close the dialog.

CHAPTER 17: Showing Pop-Up Messages 181

Checking Them Out
To see how these work in practice, take a peek at Messages/Message, containing the

following layout:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/alert"
 android:text="Raise an alert"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:onClick="showAlert"
/>

The following is the Java code:

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);
 }

 public void showAlert(View view) {
 new AlertDialog.Builder(this)
 .setTitle("MessageDemo")
 .setMessage("Let's raise a toast!")
 .setNeutralButton("Here, here!", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast
 .makeText(MessageDemo.this, "<clink, clink>",
 Toast.LENGTH_SHORT)
 .show();
 }
 })
 .show();
 }
}

The layout is unremarkable—just a really large Button to show the AlertDialog.

When you click the Button, we use a builder (new Builder(this)) to set the title

(setTitle("MessageDemo")), message (setMessage("Let's raise a toast!")), and

neutral button (setNeutralButton("Here, here!", new OnClickListener() ...) before

showing the dialog. When the button is clicked, the OnClickListener callback triggers

the Toast class to make us a text-based toast (makeText(this, "<clink, clink>",
LENGTH_SHORT)), which we then show(). The result is a typical dialog, as shown in Figure

17–1.

http://schemas.android.com/apk/res/android

CHAPTER 17: Showing Pop-Up Messages 182

Figure 17–1. The MessageDemo sample application, after clicking the Raise an alert button

When you close the dialog via the button, it raises the toast, as shown in Figure 17–2.

Figure 17–2. The same application, after clicking the Make a toast button

183

 Chapter

Handling Activity
Lifecycle Events
As you know, Android devices, by and large, are phones. As such, some activities are

more important than others—taking a call is probably more important to users than

playing Sudoku. And, since it is a phone, it probably has less RAM than your current

desktop or notebook.

As a result of the phone’s limited RAM, your activity may find itself being killed off

because other activities are going on and the system needs your activity’s memory.

Think of it as the Android equivalent of the circle of life—your activity dies so others may

live, and so on. You cannot assume that your activity will run until you think it is

complete, or even until the user thinks it is complete. This is one example, perhaps the

most important, of how an activity’s life cycle will affect your own application logic.

This chapter covers the various states and callbacks that make up an activity’s life cycle,

and how you can hook into them appropriately.

Schroedinger’s Activity
An activity, generally speaking, is in one of four states at any point in time:

 Active: The activity was started by the user, is running, and is in the

foreground. This is what you are used to thinking of in terms of your

activity’s operation.

 Paused: The activity was started by the user, is running, and is visible,

but a notification or something is overlaying part of the screen. During

this time, the user can see your activity but may not be able to interact

with it. For example, if a call comes in, the user will get the opportunity

to take the call or ignore it.

18

CHAPTER 18: Handling Activity Lifecycle Events 184

Stopped: The activity was started by the user, is running, but is hidden

by other activities that have been launched or switched to. Your

application will not be able to present anything meaningful to the user

directly, but may communicate by way of a Notification.

Dead: Either the activity was never started (e.g., just after a phone

reset) or the activity was terminated, perhaps due to lack of available

memory.

Life, Death, and Your Activity
Android uses the methods described in this section to call into your activity as the

activity transitions between the four states listed in the previous section. Some

transitions may result in multiple calls to your activity, and sometimes Android will kill

your application without calling it. This whole area is rather murky and probably subject

to change, so pay close attention to the official Android documentation as well as this

section when deciding which events deserve attention and which you can safely ignore.

Note that for all of these methods, you should chain upward and invoke the superclass’s

edition of the method, or Android may raise an exception.

onCreate() and onDestroy()
We have been implementing onCreate() in all of our Activity subclasses in all the

examples. This method will be called in three situations:

When the activity is first started (e.g., since a system restart),

onCreate() will be invoked with a null parameter.

If the activity had been running, then sometime later was killed off,

onCreate() will be invoked with the Bundle from

onSaveInstanceState() as a parameter (as described in the next

section).

If the activity had been running and you have set up your activity to

have different resources based on different device states (e.g.,

landscape versus portrait), your activity will be re-created and

onCreate() will be called. Working with resources is covered in

Chapter 23.

Here is where you initialize your UI and set up anything that needs to be done once,

regardless of how the activity is used.

On the other end of the life cycle, onDestroy() may be called when the activity is

shutting down, either because the activity called finish() (which “finishes” the activity)

or because Android needs RAM and is closing the activity prematurely. Note that

onDestroy() may not be called if the need for RAM is urgent (e.g., an incoming phone

CHAPTER 18: Handling Activity Lifecycle Events 185

call), but the activity will still be shut down. Hence, onDestroy() is mostly for cleanly

releasing resources you obtained in onCreate() (if any).

onStart(), onRestart(), and onStop()
An activity can come to the foreground either because it is first being launched or

because it is being brought back to the foreground after having been hidden (e.g., by

another activity or by an incoming phone call). The onStart() method is called in either

of those cases.

The onRestart() method is called in the case where the activity had been stopped and

is now restarting.

Conversely, onStop() is called when the activity is about to be stopped.

onPause() and onResume()
The onResume() method is called just before your activity comes to the foreground,

either after being initially launched, after being restarted from a stopped state, or after a

pop-up dialog (e.g., an incoming call) is cleared. This is a great place to refresh the UI

based on things that may have occurred since the user was last looking at your activity.

For example, if you are polling a service for changes to some information (e.g., new

entries for a feed), onResume() is a fine time to both refresh the current view and, if

applicable, kick off a background thread to update the view (e.g., via a Handler).

Conversely, anything that steals your user away from your activity—typically, the

activation of another activity—will result in your onPause() being called. Here, you

should undo anything you did in onResume(), such as stopping background threads,

releasing any exclusive-access resources you may have acquired (e.g., camera), and the

like.

Once onPause() is called, Android reserves the right to kill off your activity’s process at

any point. Hence, you should not be relying on receiving any further events.

The Grace of State
Mostly, the aforementioned methods are for dealing with things at the application-

general level (e.g., wiring together the last pieces of your UI in onCreate() or closing

down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of seamlessness.

Activities may come and go as dictated by memory requirements, but ideally, users are

unaware that this is going on. If, for example, a user was using a calculator, took a lunch

break, and returned to that calculator, he should see whatever number he was working

on before the break, unless he took some action to close down the calculator (e.g.,

pressed the Back button to exit it).

CHAPTER 18: Handling Activity Lifecycle Events 186

To make all this work, activities need to be able to save their application-instance state,

and to do so quickly and cheaply. Since activities could be killed off at any time,

activities may need to save their state more frequently than you might expect. Then,

when the activity restarts, the activity should get its former state back, so it can restore

the activity to the way it appeared previously. Think of it as establishing a bookmark,

such that when the user returns to that bookmark, you can restore the application to the

same state that it was in when the user left it.

Saving instance state is handled by onSaveInstanceState(). This supplies a Bundle, into

which activities can pour whatever data they need (e.g., the number showing on the

calculator’s display). This method implementation needs to be speedy, so do not try to

be fancy—just put your data in the Bundle and exit the method.

That instance state is provided to you again in two places: in onCreate() and in

onRestoreInstanceState(). It is your choice when you wish to reapply the state data to

your activity—either callback is a reasonable option.

The built-in implementation of onSaveInstanceState() will save likely mutable state from

a subset of widgets. For example, it will save the text in an EditText, but it will not save

the status of whether a Button is enabled or disabled. This works as long as the widgets

are uniquely identified via their android:id attributes.

Hence, if you implement onSaveInstanceState(), you can either chain upward and

leverage the inherited implementation or not and override the inherited implementation.

Similarly, some activities may not need onSaveInstanceState() to be implemented at all,

as the built-in one handles everything that is needed.

187

 Chapter

Handling Rotation
Some Android devices offer a slide-out keyboard that triggers rotating the screen from

portrait to landscape orientation. Other devices use accelerometers to determine when

the screen rotates. As a result, it is reasonable to assume that switching from portrait to

landscape orientation and back again may be something that users of your application

will want to do.

As this chapter describes, Android has a number of ways for you to handle screen

rotation so that your application can properly handle either orientation. Keep in mind,

though, that these facilities only help you to detect and manage the rotation process—

you still must make sure your layouts look decent in each orientation.

A Philosophy of Destruction
By default, when there is a change in the device configuration that might affect resource

selection, Android will destroy and re-create any running or paused activities the next

time they are to be viewed. This could happen for a variety of different configuration

changes, including these:

 Rotating the screen (i.e., orientation change)

 Extending or hiding a physical keyboard on devices that have a sliding

keyboard

 Putting the device in a car or desk dock, or removing it from a dock

 Changing the locale, and thereby changing the preferred language

Screen rotation is the change most likely to trip you up, since a change in orientation

can cause your application to load a different set of resources (e.g., layouts).

The key here is that Android’s default behavior of destroying and re-creating any running

or paused activities is probably the behavior that is best for most of your activities. You

do have some control over the matter, though, and can tailor how your activities

respond to orientation changes or similar configuration switches.

19

CHAPTER 19: Handling Rotation 188

It’s All the Same, Just Different
Since, by default, Android destroys and re-creates your activity on a rotation, you may

only need to hook into the same onSaveInstanceState() that you would if your activity

were destroyed for any other reason (e.g., low memory). Implement that method in your

activity and fill in the supplied Bundle with enough information to get you back to your

current state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick the

data out of the Bundle and use it to restore your activity to the way it was.

To demonstrate this, let’s take a look at the Rotation/RotationOne project. This and the

other sample projects in this chapter use a pair of main.xml layouts, one in res/layout/

for use in portrait mode and one in res/layout-land/ for use in landscape mode. Here is

the portrait layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 android:onClick="pickContact"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 android:onClick="viewContact"
 />
</LinearLayout>

Here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 android:onClick="pickContact"
 />

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation 189

 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 android:onClick="viewContact"
 />
</LinearLayout>

Basically, both layouts contain a pair of buttons, each taking up half the screen. In

portrait mode, the buttons are stacked; in landscape mode, they are side by side.

If you were to simply create a project, put in those two layouts, and compile it, the

application would appear to work just fine—a rotation (Ctrl+F12 in the emulator) will

cause the layout to change. And while buttons lack state, if you were using other

widgets (e.g., EditText), you would even find that Android hangs onto some of the

widget state for you (e.g., the text entered in the EditText).

What Android cannot help you with automatically is anything held outside the widgets.

Picking and Viewing a Contact
This application lets users pick a contact and then view the contact, via separate

buttons. The View button is enabled only after the user picks a contact via the Pick

button. Let’s take a closer look at how this feat is accomplished.

When the user clicks the Pick button, we call startActivityForResult(). This is a

variation on startActivity(), designed for activities that are set up to return some sort

of result—a user’s choice of file, contact, or whatever. Relatively few activities are set up

this way, so you cannot expect to call startActivityForResult() and get answers from

any activity you choose.

In this case, we want to pick a contact. There is an ACTION_PICK Intent action available

in Android that is designed for this sort of scenario. An ACTION_PICK Intent indicates to

Android that we want to pick...something. That “something” is determined by the Uri we

put in the Intent.

In our case, it turns out that we can use an ACTION_PICK Intent for certain system-

defined Uri values to let the user pick a contact from the device’s list of contacts. In

particular, on Android 2.0 and higher, we can use

android.provider.ContactsContract.Contacts.CONTENT_URI for this purpose:

public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
}

For Android 1.6 and earlier, there is a separate android.provider.Contacts.CONTENT_URI

that we could use.

CHAPTER 19: Handling Rotation 190

The second parameter to startActivityForResult() is an identifying number, to help us

distinguish this call to startActivityForResult() from any others we might make.

Calling startActivityForResult() with an ACTION_PICK Intent for the

Contacts.CONTENT_URI will bring up a contact-picker activity, supplied by Android.

When the user taps a contact, the picker activity ends (e.g., via finish()), and control

returns to our activity. At that point, our activity is called with onActivityResult().

Android supplies us with three pieces of information:

 The identifying number we supplied to startActivityForResult(), so

we can match this result to its original request

 A result status, either RESULT_OK or RESULT_CANCELED, to indicate

whether the user made a positive selection or abandoned the picker

(e.g., by pressing the Back button)

 An Intent that represents the result data itself, for a RESULT_OK

response

The details of what is in the Intent will need to be documented by the activity that you

called. In the case of an ACTION_PICK Intent for the Contacts.CONTENT_URI, the returned

Intent has its own Uri (via getData()) that represents the chosen contact. In the

RotationOne example, we stick that in a data member of the activity and enable the View

button:

@Override
protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
}

If the user clicks the now-enabled View button, we create an ACTION_VIEW Intent on the

contact’s Uri, and call startActivity() on that Intent:

public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
}

This will bring up an Android-supplied activity to view details of that contact.

Saving Your State
Given that we have used startActivityForResult() to pick a contact, now we need to

hang onto that contact when the screen orientation changes. In the RotationOne

example, we do this via onSaveInstanceState():

package com.commonsware.android.rotation.one;

import android.app.Activity;

CHAPTER 19: Handling Rotation 191

import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.Button;
import android.util.Log;

public class RotationOneDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 viewButton=(Button)findViewById(R.id.view);
 restoreMe(savedInstanceState);

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 if (contact!=null) {
 outState.putString("contact", contact.toString());
 }
 }

 private void restoreMe(Bundle state) {

CHAPTER 19: Handling Rotation 192

 contact=null;

 if (state!=null) {
 String contactUri=state.getString("contact");

 if (contactUri!=null) {
 contact=Uri.parse(contactUri);
 }
 }
 }
}

By and large, it looks like a normal activity...because it is. Initially, the “model”—a Uri

named contact—is null. It is set as the result of spawning the ACTION_PICK subactivity.

Its string representation is saved in onSaveInstanceState() and restored in restoreMe()

(called from onCreate()). If the contact is not null, the View button is enabled and can

be used to view the chosen contact.

Visually, it looks pretty much as you would expect, as shown in Figures 19–1 and 19–2.

Figure 19–1. The RotationOne application, in portrait mode

CHAPTER 19: Handling Rotation 193

Figure 19–2. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system events beyond

mere rotation, such as being closed by Android due to low memory.

For fun, comment out the restoreMe() call in onCreate() and try running the application.

You will see that the application “forgets” a contact selected in one orientation when you

rotate the emulator or device.

Now with More Savings!
The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s

because this callback is also used in cases where your whole process might be

terminated (e.g., low memory), so the data to be saved must be something that can be

serialized and has no dependencies on your running process.

For some activities, that limitation is not a problem. For others, it is more annoying. Take

an online chat, for example. You have no means of storing a socket in a Bundle, so by

default, you have to drop your connection to the chat server and reestablish it. That not

only may be a performance hit, but it might also affect the chat itself, such as showing in

the chat logs that you are disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of

onSaveInstanceState() for “light” changes like a rotation. Your activity’s

onRetainNonConfigurationInstance() callback can return an Object, which you can

retrieve later via getLastNonConfigurationInstance(). The Object can be just about

anything you want. Typically, it will be some kind of “context” object holding activity

state, such as running threads, open sockets, and the like. Your activity’s onCreate()

can call getLastNonConfigurationInstance(), and if you get a non-null response, you

now have your sockets and threads and whatnot. The biggest limitation is that you do

not want to put in the saved context anything that might reference a resource that will

get swapped out, such as a Drawable loaded from a resource.

CHAPTER 19: Handling Rotation 194

Let’s take a look at the Rotation/RotationTwo sample project, which uses this approach

to handling rotations. The layouts, and hence the visual appearance, is the same as with

Rotation/RotationOne. Where things differ slightly is in the Java code:

package com.commonsware.android.rotation.two;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.Button;
import android.util.Log;

public class RotationTwoDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 viewButton=(Button)findViewById(R.id.view);
 restoreMe();

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 return(contact);

CHAPTER 19: Handling Rotation 195

 }

 private void restoreMe() {
 contact=null;

 if (getLastNonConfigurationInstance()!=null) {
 contact=(Uri)getLastNonConfigurationInstance();
 }
 }
}

In this case, we override onRetainNonConfigurationInstance(), returning the actual Uri

for our contact, rather than a string representation of it. In turn, restoreMe() calls

getLastNonConfigurationInstance(), and if it is not null, we hold onto it as our contact

and enable the View button.

The advantage here is that we are passing around the Uri rather than a string

representation. In this case, that is not a big saving. But our state could be much more

complicated, including threads, sockets, and other things we cannot pack into a Bundle.

However, even the onRetainNonConfigurationInstance() approach to handling

rotations may be too intrusive to your application. Suppose, for example, you are

creating a real-time game, such as a first-person shooter. The “hiccup” your users

experience as your activity is destroyed and re-created might be enough to get them

shot, which they may not appreciate. While this would be less of an issue on the T-

Mobile G1, since a rotation requires sliding open the keyboard and therefore is unlikely

to be done mid-game, other devices might rotate based solely on the device’s position

as determined by accelerometers. For applications such as this, there is a third

possibility for handling rotations, which is to tell Android that you will handle them

yourself, without any assistance from the framework.

DIY Rotation
To handle rotations without Android’s assistance, do the following:

1. Put an android:configChanges entry in your AndroidManifest.xml file,

listing the configuration changes you want to handle yourself versus

allowing Android to handle them for you.

2. Implement onConfigurationChanged() in your Activity, which will be

called when one of the configuration changes you listed in

android:configChanges occurs.

Now, for any configuration change you want, you can bypass the whole activity-

destruction process and simply get a callback letting you know of the change.

To see this in action, turn to the Rotation/RotationThree sample application. Once

again, our layouts are the same, so the application looks the same as the preceding two

samples. However, the Java code is significantly different, because we are no longer

concerned with saving our state, but rather with updating our UI to deal with the layout.

CHAPTER 19: Handling Rotation 196

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.three" android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".RotationThreeDemo" android:label="@string/app_name"
 android:configChanges="keyboardHidden|orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
 android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Here, we state that we will handle keyboardHidden and orientation configuration

changes ourselves. This covers us for any cause of the rotation, whether it is a sliding

keyboard or a physical rotation. Note that this is set on the activity, not the application. If

you have several activities, you will need to decide for each which of the tactics outlined

in this chapter you wish to use.

In addition, we need to add an android:id to our LinearLayout containers, such as

follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/container"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 android:onClick="pickContact"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 android:onClick="viewContact"
 />
</LinearLayout>

The Java code for this project is shown here:

package com.commonsware.android.rotation.three;

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation 197

import android.app.Activity;
import android.content.Intent;
import android.content.res.Configuration;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.Button;
import android.widget.LinearLayout;

public class RotationThreeDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 viewButton=(Button)findViewById(R.id.view);
 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void pickContact(View v) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 LinearLayout container=(LinearLayout)findViewById(R.id.container);

 if (newConfig.orientation==Configuration.ORIENTATION_LANDSCAPE) {
 container.setOrientation(LinearLayout.HORIZONTAL);
 }
 else {

CHAPTER 19: Handling Rotation 198

 container.setOrientation(LinearLayout.VERTICAL);
 }
 }
}

Our onConfigurationChanged() needs to update the UI to reflect the orientation change.

Here, we find our LinearLayout and tell it to change its orientation to match that of the

device. The orientation field on the Configuration object will tell us how the device is

oriented.

...But Google Does Not Recommend This
You might think that onConfigurationChanged() and android:configChanges would be

the ultimate solution. After all, we no longer have to worry about all that messy passing

of data to the new activity as the old one is being destroyed. The

onConfigurationChanged() approach is very sexy.

However, Google does not recommend it.

The primary concern is forgetting about resources. With the onConfigurationChanged()

approach, you must ensure that every resource that might possibly have changed as a

result of this configuration change gets updated. That includes strings, layouts,

drawables, menus, animations, preferences, dimensions, colors, and all the others. If

you fail to ensure that everything is updated completely, your app will have a whole

series of little (or not so little) bugs as a result.

Allowing Android to destroy and re-create your activity guarantees you will get the

proper resources. All you need to do is arrange to pass the proper data from the old

activity to the new activity.

The onConfigurationChanged() approach is appropriate only where the user would be

directly affected by a destroy-and-create cycle. For example, imagine a video-player

application that is playing a streaming video. Destroying and re-creating the activity

would necessarily cause the application to have to reconnect to the stream, losing

buffered data in the process. Users will get frustrated if an accidental movement causes

the device to change orientation and interrupt their video playback. In this case, since

the user will perceive problems with a destroy-and-create cycle,

onConfigurationChanged() is an appropriate choice.

Forcing the Issue
Some activities simply are not meant to change orientation. Games, camera previews,

video players, and the like may make sense only in landscape orientation, for example.

While most activities should allow the user to work in any desired orientation, for

activities where only one orientation makes sense, you can control it.

To block Android from rotating your activity, all you need to do is add

android:screenOrientation = "portrait" (or "landscape", as you prefer) to your

AndroidManifest.xml file, as follows (from the Rotation/RotationFour sample project):

CHAPTER 19: Handling Rotation 199

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.four" android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".RotationFourDemo" android:screenOrientation=
"portrait" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
 android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of your

activities may need this turned on.

At this point, your activity is locked into whatever orientation you specified, regardless of

what you do. Figures 19–3 and 19–4 show the same activity as in the previous three

sections, but using the preceding manifest and with the emulator set for both portrait

and landscape orientation. Note that the UI does not move a bit, but remains in portrait

mode.

Figure 19–3. The RotationFour application, in portrait mode

http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation 200

Figure 19–4. The RotationFour application, in landscape mode

Note that Android will still destroy and re-create your activity, even if you have the

orientation set to a specific value as shown here. If you wish to avoid that, you also need

to set android:configChanges in the manifest, as described earlier in this chapter. Or,

you can still use onSaveInstanceState() or onRetainNonConfigurationInstance() to

save your activity’s mutable state.

Making Sense of It All
As noted at the beginning of this chapter, devices with a slide-out keyboard (such as

T-Mobile G1, Motorola DROID/Milestone, etc.) change screen orientation when the

keyboard is exposed or hidden, whereas other devices change screen orientation based

on the accelerometer. If you have an activity that should change orientation based on

the accelerometer, even if the device has a slide-out keyboard, just add

android:screenOrientation = "sensor" to your AndroidManifest.xml file as follows

(from the Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.five" android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">

http://schemas.android.com/apk/res/android

CHAPTER 19: Handling Rotation 201

 <activity android:name=".RotationFiveDemo" android:screenOrientation="sensor"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
 android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The sensor, in this case, tells Android you want the accelerometers to control the screen

orientation, so the physical shift in the device orientation controls the screen orientation.

Android 2.3 adds a number of other possible values for android:screenOrientation:

 reverseLandscape and reversePortrait: Indicate that you want the

screen to be in landscape or portrait orientation, respectively, but

upside down compared to the normal landscape and portrait

orientations

 sensorLandscape and sensorPortrait: Indicate that you want the

screen to be locked in landscape or portrait orientation, respectively,

but the sensors can be used to determine which side is “up”

 fullSensor: Allows the sensors to put the screen in any of the four

possible orientations (portrait, reverse portrait, landscape, reverse

landscape), whereas sensor toggles only between portrait and

landscape

203

 Chapter

Dealing with Threads
Users like snappy applications. Users do not like applications that feel sluggish. The way

to help make your application feel snappy to users is to use the standard threading

capabilities built into Android. This chapter will walk you through the issues involved

with thread management in Android and some of the options for keeping the UI crisp

and responsive.

The Main Application Thread
You might think that when you call setText() on a TextView, the screen is updated with

the text you supply, right then and there. That is not how it works. Rather, everything

that modifies the widget-based UI goes through a message queue. Calls to setText()

do not update the screen; they just pop a message on a queue telling the operating

system to update the screen. The operating system pops these messages off of this

queue and does what the messages require.

The queue is processed by one thread, variously called the main application thread and

the UI thread. As long as that thread can keep processing messages, the screen will

update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your

activity. Your onCreate(),onClick(),onListItemClick(), and similar methods are all

called on the main application thread. While your code is executing in these methods,

Android is not processing messages on the queue, meaning the screen does not

update, user input is not handled, and so on.

This, of course, is bad. So bad, in fact, that if you take more than a few seconds to do

work on the main application thread, Android may display the dreaded “application not

responding” (ANR) error, and your activity may be killed off. Hence, you want to make

sure that all of your work on the main application thread happens quickly. This means

that anything slow should be done in a background thread, so as not to tie up the main

application thread. This includes activities such as the following:

 Internet access, such as sending data to a web service or

downloading an image

20

CHAPTER 20: Dealing with Threads 204

 Significant file operations, since flash storage can be remarkably slow

at times

 Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java, plus

all the wrappers and control structures you would expect, such as the

java.util.concurrent class package.

However, there is one big limitation: you cannot modify the UI from a background

thread. You can modify the UI only from the main application thread. Hence, you need

to move long-running work into background threads, but those threads need to do

something to arrange to update the UI using the main application thread. Android

provides a wide range of tools to do just that, and these tools are the primary focus of

this chapter.

Making Progress with ProgressBars
If you are going to fork background threads to do work on behalf of the user, you should

consider keeping the user informed that work is going on. This is particularly true if the

user is effectively waiting for that background work to complete.

The typical approach to keeping users informed of progress is some form of progress

bar, like you see when you copy a bunch of files from place to place in many desktop

operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no

progress has been made. You can define the maximum end of the range—which value

indicates progress is complete—via setMax(). By default, a ProgressBar starts with a

progress of 0, though you can start from some other position via setProgress(). If you

prefer your progress bar to be indeterminate, use setIndeterminate() and set it to true.

In your Java code, you can either positively set the amount of progress that has been

made (via setProgress()) or increment the progress from its current amount (via

incrementProgressBy()). You can find out how much progress has been made via

getProgress().

There are other alternatives for displaying progress—ProgressDialog, a progress

indicator in the activity’s title bar, and so on—but a ProgressBar is a good place to start.

Getting Through the Handlers
The most flexible means of making an Android-friendly background thread is to create

an instance of a Handler subclass. You need only one Handler object per activity, and

you do not need to manually register it. Merely creating the instance is sufficient to

register it with the Android threading subsystem.

CHAPTER 20: Dealing with Threads 205

Your background thread can communicate with the Handler, which will do all of its work

on the activity’s UI thread. This is important, as UI changes, such as updating widgets,

should occur only on the activity’s UI thread.

You have two options for communicating with the Handler: messages and Runnable
objects.

Messages
To send a Message to a Handler, first invoke obtainMessage() to get the Message object

out of the pool. There are a few flavors of obtainMessage(), allowing you to create empty

Message objects or ones populated with message identifiers and arguments. The more

complicated your Handler processing needs to be, the more likely it is you will need to

put data into the Message to help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one of the

sendMessage...() family of methods, such as the following:

sendMessage(): Puts the message on the queue immediately

sendMessageAtFrontOfQueue(): Puts the message on the queue

immediately and places it at the front of the message queue (versus

the back, which is the default), so your message takes priority over all

others

sendMessageAtTime(): Puts the message on the queue at the stated

time, expressed in the form of milliseconds based on system uptime

(SystemClock.uptimeMillis())

sendMessageDelayed(): Puts the message on the queue after a delay,

expressed in milliseconds

sendEmptyMessage(): Sends an empty Message object to the queue,

allowing you to skip the obtainMessage() step if you were planning on

leaving it empty anyway

To process these messages, your Handler needs to implement handleMessage(), which

will be called with each message that appears on the message queue. There, the

Handler can update the UI as needed. However, it should still do that work quickly, as

other UI work is suspended until the Handler is finished.

For example, let’s create a ProgressBar and update it via a Handler. Here is the layout

from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"

http://schemas.android.com/apk/res/android

CHAPTER 20: Dealing with Threads 206

 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also employs the

style property. This particular style indicates the ProgressBar should be drawn as the

traditional horizontal bar showing the amount of work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.widget.ProgressBar;
import java.util.concurrent.atomic.AtomicBoolean;

public class HandlerDemo extends Activity {
 ProgressBar bar;
 Handler handler=new Handler() {
 @Override
 public void handleMessage(Message msg) {
 bar.incrementProgressBy(5);
 }
 };
 AtomicBoolean isRunning=new AtomicBoolean(false);

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 bar=(ProgressBar)findViewById(R.id.progress);
 }

 public void onStart() {
 super.onStart();
 bar.setProgress(0);

 Thread background=new Thread(new Runnable() {
 public void run() {
 try {
 for (int i=0;i<20 && isRunning.get();i++) {
 Thread.sleep(1000);
 handler.sendMessage(handler.obtainMessage());
 }
 }
 catch (Throwable t) {
 // just end the background thread
 }
 }
 });

 isRunning.set(true);
 background.start();

CHAPTER 20: Dealing with Threads 207

 }

 public void onStop() {
 super.onStop();
 isRunning.set(false);
 }
}

As part of constructing the Activity, we create an instance of Handler, with our

implementation of handleMessage(). Basically, for any message received, we update the

ProgressBar by 5 points, and then exit the message handler.

We then take advantage of onStart() and onStop(). In onStart(), we set up a

background thread. In a real system, this thread would do something meaningful. Here,

we just sleep 1 second, post a Message to the Handler, and repeat for a total of 20

passes. This, combined with the 5-point increase in the ProgressBar position, will march

the bar clear across the screen, as the default maximum value for ProgressBar is 100.

You can adjust that maximum via setMax(). For example, you might set the maximum to

be the number of database rows you are processing, and update once per row.

Note that we then leave onStart(). This is crucial. The onStart() method is invoked on

the activity UI thread, so it can update widgets and such. However, that means we need

to get out of onStart(), both to let the Handler get its work done and to inform Android

that our activity is not stuck.

The resulting activity is simply a horizontal progress bar, as shown in Figure 20–1.

Figure 20–1. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code arranging to

update the progress on the UI thread, for this specific widget, that is not necessary. At

CHAPTER 20: Dealing with Threads 208

least as of Android 1.5, ProgressBar is now UI thread safe, in that you can update it from

any thread, and it will handle the details of performing the actual UI update on the UI

thread.

Runnables
If you would rather not fuss with Message objects, you can also pass Runnable objects to

the Handler, which will run those Runnable objects on the activity UI thread. Handler

offers a set of post...() methods for passing Runnable objects in for eventual

processing.

Just as Handler supports post() and postDelayed() to add Runnable objects to the

event queue, you can use those same methods on any View (i.e., any widget or

container). This slightly simplifies your code, in that you can then skip the Handler

object.

Where Oh Where Has My UI Thread Gone?
Sometimes, you may not know if you are currently executing on the UI thread of your

application. For example, if you package some of your code in a JAR for others to reuse,

you might not know whether your code is being executed on the UI thread or from a

background thread.

To help combat this problem, Activity offers runOnUiThread(). This works similar to the

post() methods on Handler and View, in that it queues up a Runnable to run on the UI

thread, if you are not on the UI thread right now. If you already are on the UI thread, it

invokes the Runnable immediately. This gives you the best of both worlds: no delay if

you are on the UI thread, yet safety in case you are not.

Asyncing Feeling
Android 1.5 introduced a new way of thinking about background operations: AsyncTask.

In one (reasonably) convenient class, Android will handle all of the chores of doing work

on the UI thread versus on a background thread. Moreover, Android itself allocates and

removes that background thread. And, it maintains a small work queue, further

accentuating the fire-and-forget feel to AsyncTask.

The Theory
There is a saying, popular in marketing circles, “When a man buys a 1/4-inch drill bit at a

hardware store, he does not want a 1/4-inch drill bit—he wants 1/4-inch holes.”

Hardware stores cannot sell holes, so they sell the next-best thing: devices (drills and

drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread management

do not strictly want background threads. Rather, they want work to be done off the UI

CHAPTER 20: Dealing with Threads 209

thread, so users are not stuck waiting and activities do not get the dreaded ANR error.

And while Android cannot magically cause work to not consume UI thread time, it can

offer things that make such background operations easier and more transparent.

AsyncTask is one such example.

To use AsyncTask, you must do the following:

 Create a subclass of AsyncTask, commonly as a private inner class of

something that uses the task (e.g., an activity)

 Override one or more AsyncTask methods to accomplish the

background work, plus whatever work associated with the task that

needs to be done on the UI thread (e.g., update progress)

 When needed, create an instance of the AsyncTask subclass and call

execute() to have it begin doing its work

What you do not have to do is

 Create your own background thread

 Terminate that background thread at an appropriate time

 Call all sorts of methods to arrange for bits of processing to be done

on the UI thread

AsyncTask, Generics, and Varargs
Creating a subclass of AsyncTask is not quite as easy as, say, implementing the

Runnable interface. AsyncTask uses generics, and so you need to specify three data

types:

 The type of information that is needed to process the task (e.g., URLs

to download)

 The type of information that is passed within the task to indicate

progress

 The type of information that is passed when the task is completed to

the post-task code

What makes this all the more confusing is that the first two data types are actually used

as varargs, meaning that an array of these types is used within your AsyncTask subclass.

This should become clearer as we work our way toward an example.

The Stages of AsyncTask
There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This will

be called by AsyncTask on a background thread. It can run as long as is necessary to

CHAPTER 20: Dealing with Threads 210

accomplish whatever work needs to be done for this specific task. Note, though, that

tasks are meant to be finite; using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first of

the three data types listed in the preceding section—the data needed to process the

task. So, if your task’s mission is to download a collection of URLs, doInBackground()

will receive those URLs to process. The doInBackground() method must return a value

of the third data type listed in the preceding section—the result of the background work.

You may wish to override onPreExecute(). This method is called, from the UI thread,

before the background thread executes doInBackground(). Here, you might initialize a

ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the UI

thread, after doInBackground() completes. It receives, as a parameter, the value

returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss the

ProgressBar and make use of the work done in the background, such as updating the

contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground() calls the

task’s publishProgress() method, the object(s) passed to that method are provided to

onProgressUpdate(), but in the UI thread. That way, onProgressUpdate() can alert the

user as to the progress that has been made on the background work, such as updating

a ProgressBar or continuing an animation. The onProgressUpdate() method will receive

a varargs of the second data type from the preceding list—the data published by

doInBackground() via publishProgress().

A Sample Task
As mentioned earlier, implementing an AsyncTask is not quite as easy as implementing a

Runnable. However, once you get past the generics and varargs, it is not too bad.

For example, the following is an implementation of a ListActivity that uses an

AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;
import android.widget.ArrayAdapter;
import android.widget.Toast;
import java.util.ArrayList;

public class AsyncDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",

CHAPTER 20: Dealing with Threads 211

 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new ArrayList()));

 new AddStringTask().execute();
 }

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
 }

 @Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

This is another variation on the lorem ipsum list of words, used frequently throughout

this book. This time, rather than simply hand the list of words to an ArrayAdapter, we

simulate having to work to create these words in the background using AddStringTask,

our AsyncTask implementation.

Let’s examine this project’s code piece by piece.

The AddStringTask Declaration
The AddStringTask declaration is as follows:

class AddStringTask extends AsyncTask<Void, String, Void> {

CHAPTER 20: Dealing with Threads 212

Here, we use the generics to set up the specific types of data we are going to leverage

in AddStringTask:

 We do not need any configuration information in this case, so our first

type is Void.

 We want to pass each string generated by our background task to

onProgressUpdate(), to allow us to add it to our list, so our second

type is String.

 We do not have any results, strictly speaking (beyond the updates), so

our third type is Void.

The doInBackground() Method
The doInBackground() method is next in the code:

@Override
protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
}

The doInBackground() method is invoked in a background thread. Hence, we can take

as long as we like. In a production application, we might be doing something like

iterating over a list of URLs and downloading each. Here, we iterate over our static list of

lorem ipsum words, call publishProgress() for each, and then sleep 200 milliseconds to

simulate real work being done.

Since we elected to have no configuration information, we should not need parameters

to doInBackground(). However, the contract with AsyncTask says we must accept a

varargs of the first data type, which is why our method parameter is Void... unused.

Since we elected to have no results, we should not need to return anything. Again,

though, the contract with AsyncTask says we must return an object of the third data type.

Since that data type is Void, our returned object is null.

The onProgressUpdate() Method
Next up is the onProgressUpdate() method:

@Override
protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
}

The onProgressUpdate() method is called on the UI thread, and we want to do

something to let the user know we are making progress on loading these strings. In this

CHAPTER 20: Dealing with Threads 213

case, we simply add the string to the ArrayAdapter, so it is appended to the end of the

list.

The onProgressUpdate() method receives a String... varargs because that is the

second data type in our class declaration. Since we are passing only one string per call

to publishProgress(), we need to examine only the first entry in the varargs array.

The onPostExecute() Method
The next method is onPostExecute():

@Override
protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
}

The onPostExecute() method is called on the UI thread, and we want to do something to

indicate that the background work is complete. In a real system, there may be some

ProgressBar to dismiss or some animation to stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters. The contract

with AsyncTask says we must accept a single value of the third data type. Since that

data type is Void, our method parameter is Void unused.

The Activity
The activity is as follows:

new AddStringTask().execute();

To use AddStringTask, we simply create an instance and call execute() on it. That starts

the chain of events eventually leading to the background thread doing its work.

If AddStringTask required configuration parameters, we would have not used Void as our

first data type, and the constructor would accept zero or more parameters of the defined

type. Those values would eventually be passed to doInBackground().

The Results
If you build, install, and run this project, you will see the list being populated in real time

over a few seconds, followed by a Toast indicating completion, as shown in Figure 20–2.

CHAPTER 20: Dealing with Threads 214

Figure 20–2. The AsyncDemo, partway through loading the list of words

Threads and Rotation
One problem with the default destroy-and-create cycle that activities go through on an

orientation change comes from background threads. If the activity has started some

background work—through an AsyncTask, for example—and then the activity is

destroyed and re-created, the AsyncTask needs to know about this somehow.

Otherwise, the AsyncTask might well send updates and final results to the old activity,

with the new activity none the wiser. In fact, the new activity might start the background

work again, wasting resources.

One way to deal with this is to disable the destroy-and-create cycle, by taking over

configuration changes, as described in a previous section. Another alternative is to have

a smarter activity and AsyncTask. You can see an example of that in the

Rotation/RotationAsync sample project. As shown next, this project uses a

ProgressBar, much like the Handler demo from earlier in this chapter. It also has a

TextView to indicate when the background work is completed, initially invisible.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />

http://schemas.android.com/apk/res/android

CHAPTER 20: Dealing with Threads 215

 <TextView android:id="@+id/completed"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Work completed!"
 android:visibility="invisible"
 />
</LinearLayout>

The “business logic” is for an AsyncTask to do some (fake) work in the background,

updating the ProgressBar along the way, and making the TextView visible when it is

finished. More importantly, it needs to do this in such a way as to behave properly if the

screen is rotated. This means the following:

We cannot “lose” our AsyncTask, having it continue doing work and

updating the wrong activity.

We cannot start a second AsyncTask, thereby doubling our workload.

We need to have the UI correctly reflect our work’s progress or

completion.

Manual Activity Association
Earlier, this chapter showed the use of an AsyncTask that was implemented as a regular

inner class of the Activity class. That works well when you are not concerned about

rotation. For example, if the AsyncTask is not affecting the UI—such as uploading a

photo—rotation will not be an issue for you. Having the AsyncTask as an inner class of

the Activity means you get ready access to the Activity for any place where you need a

Context.

However, for the rotation scenario, a regular inner class will work poorly. The AsyncTask
will think it knows which Activity it is supposed to work with, but in reality it will be

holding onto an implicit reference to the old activity, not one after an orientation change.

So, in RotationAsync, the RotationAwareTask class is a static inner class. This means

RotationAwareTask does not have any implicit reference to any RotationAsync Activity
(old or new):

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;
import android.util.Log;
import android.view.View;
import android.widget.ProgressBar;

public class RotationAsync extends Activity {
 private ProgressBar bar=null;
 private RotationAwareTask task=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

CHAPTER 20: Dealing with Threads 216

 bar=(ProgressBar)findViewById(R.id.progress);

 task=(RotationAwareTask)getLastNonConfigurationInstance();

 if (task==null) {
 task=new RotationAwareTask(this);
 task.execute();
 }
 else {
 task.attach(this);
 updateProgress(task.getProgress());

 if (task.getProgress()>=100) {
 markAsDone();
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 task.detach();

 return(task);
 }

 void updateProgress(int progress) {
 bar.setProgress(progress);
 }

 void markAsDone() {
 findViewById(R.id.completed).setVisibility(View.VISIBLE);
 }

 static class RotationAwareTask extends AsyncTask<Void, Void, Void> {
 RotationAsync activity=null;
 int progress=0;

 RotationAwareTask(RotationAsync activity) {
 attach(activity);
 }

 @Override
 protected Void doInBackground(Void... unused) {
 for (int i=0;i<20;i++) {
 SystemClock.sleep(500);
 publishProgress();
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(Void... unused) {
 if (activity==null) {
 Log.w("RotationAsync", "onProgressUpdate() skipped – no activity");

CHAPTER 20: Dealing with Threads 217

 }
 else {
 progress+=5;
 activity.updateProgress(progress);
 }
 }

 @Override
 protected void onPostExecute(Void unused) {
 if (activity==null) {
 Log.w("RotationAsync", "onPostExecute() skipped – no activity");
 }
 else {
 activity.markAsDone();
 }
 }

 void detach() {
 activity=null;
 }

 void attach(RotationAsync activity) {
 this.activity=activity;
 }

 int getProgress() {
 return(progress);
 }
 }
}

Since we want RotationAwareTask to update the current RotationAsync Activity, we

supply that Activity when we create the task, via the constructor. RotationAwareTask

also has attach() and detach() methods to change which Activity the task knows

about, as we will see shortly.

Flow of Events
When RotationAsync starts up for the first time, it creates a new instance of the

RotationAwareTask class and executes it. At this point, the task has a reference to the

RotationAsync Activity and can do its (fake) work, telling RotationAsync to update the

progress along the way.

Now, suppose that during the middle of the doInBackground() processing, the user

rotates the screen. Our Activity will be called with

onRetainNonConfigurationInstance(). Here, we want to do two things:

 Since this Activity instance is being destroyed, we need to make sure

the task no longer holds onto a reference to it. Hence, we call detach(),

causing the task to set its RotationAsync data member (activity) to null.

 We return the RotationAwareTask object, so that our new

RotationAsync instance can get access to it.

CHAPTER 20: Dealing with Threads 218

Eventually, the new RotationAsync instance will be created. In onCreate(), we try to get

access to any current RotationAwareTask instance via

getLastNonConfigurationInstance(). If that was null, then we know that this is a newly

created activity, and so we create a new task. If, however,

getLastNonConfigurationInstance() returned the task object from the old

RotationAsync instance, we hold onto it and update our UI to reflect the current

progress that has been made. We also attach() the new RotationAsync to the

RotationAwareTask, so as further progress is made, the task can notify the proper

activity.

The net result is that our ProgressBar smoothly progresses from 0 to 100, even while

rotations are going on.

Why This Works
Most callback methods in Android are driven by messages on the message queue being

processed by the main application thread. Normally, this queue is being processed

whenever the main application thread is not otherwise busy, such as running our code.

However, when a configuration change occurs, like a screen rotation, that no longer

holds true. In between the call to the onRetainNonConfigurationInstance() instance of

the old activity and the completion of onCreate() of the new activity, the message queue

is left alone.

So, let’s suppose that, in between onRetainNonConfigurationInstance() activity and the

subsequent onCreate(), our AsyncTask’s background work completes. This will trigger

onPostExecute() to be called...eventually. However, since onPostExecute() is actually

launched from a message on the message queue, onPostExecute() will not be called

until after our onCreate() has completed. Hence, our AsyncTask can keep running during

the configuration change, as long as we do two things:

 In onCreate() of the new activity instance, we update the AsyncTask to

have it work with our new activity, rather than the old one.

 We do not attempt to use the activity from doInBackground().

And Now, the Caveats
Background threads, while eminently possible using the Android Handler system, are

not all happiness and warm puppies. Background threads not only add complexity, but

also have real-world costs in terms of available memory, CPU, and battery life. Hence,

you need to account for a wide range of scenarios with your background thread,

including the following:

CHAPTER 20: Dealing with Threads 219

 The possibility that users will interact with your activity’s UI while the

background thread is chugging along. If the work that the background

thread is doing is altered or invalidated by the user input, you will need

to communicate this to the background thread. Android includes many

classes in the java.util.concurrent package that will help you

communicate safely with your background thread.

 The possibility that the activity will be killed off while background work

is going on. For example, after starting your activity, the user might

have a call come in, followed by a text message, followed by a need to

look up a contact—all of which might be sufficient to kick your activity

out of memory. Chapter 18 covers the various events Android will take

your activity through; hook to the proper ones, and be sure to shut

down your background thread cleanly when you have the chance.

 The possibility that users will get irritated if you chew up a lot of CPU

time and battery life without giving any payback. Tactically, this means

using ProgressBar or other means of letting users know that

something is happening. Strategically, this means you still need to be

efficient at what you do—background threads are no panacea for

sluggish or pointless code.

 The possibility that you will encounter an error during background

processing. For example, if you are gathering information from the

Internet, the device might lose connectivity. Alerting the user of the

problem via a notification (covered in Chapter 37) and shutting down

the background thread may be your best option.

 221

 Chapter

Creating Intent Filters
Up to now, the focus of this book has been on activities opened directly by the user

from the device’s launcher. This is the most obvious case for getting your activity up and

visible to the user. And, in many cases, it is the primary way the user will start using your

application.

However, remember that the Android system is based on many loosely coupled

components. The things that you might accomplish in a desktop GUI via dialog boxes,

child windows, and the like are mostly supposed to be independent activities. While one

activity will be “special,” in that it shows up in the launcher, the other activities all need

to be reached...somehow.

The “somehow” is via intents.

An intent is basically a message that you pass to Android saying, “Yo! I want to

do...er...something! Yeah!” How specific the “something” is depends on the situation—

sometimes you know exactly what you want to do (e.g., open one of your other

activities), and sometimes you do not.

In the abstract, Android is all about intents and receivers of those intents. So, now that

you are well-versed in creating activities, let’s dive into intents, so we can create more

complex applications while simultaneously being “good Android citizens.”

What’s Your Intent?
When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol (HTTP), he set up

a system of verbs plus addresses in the form of URLs. The address indicates a resource,

such as a web page, graphic, or server-side program. The verb indicates what should be

done: GET to retrieve it, POST to send form data to it for processing, and so on.

Intents are similar, in that they represent an action plus context. There are more actions

and more components to the context with Android intents than there are with HTTP

verbs and resources, but the concept is still the same. Just as a web browser knows

how to process a verb+URL pair, Android knows how to find activities or other

application logic that will handle a given intent.

21

CHAPTER 21: Creating Intent Filters 222

Pieces of Intents
The two most important pieces of an intent are the action and what Android refers to as

the data. These are almost exactly analogous to HTTP verbs and URLs: the action is the

verb, and the data is a Uri, such as content://contacts/people/1, representing a

contact in the contacts database. Actions are constants, such as ACTION_VIEW (to bring

up a viewer for the resource), ACTION_EDIT (to edit the resource), or ACTION_PICK (to

choose an available item given a Uri representing a collection, such as

content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of

content://contacts/people/1, and pass that intent to Android, Android would know to

find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an Intent object),

besides the action and data Uri, such as the following:

 Category: Your “main” activity will be in the LAUNCHER category,

indicating it should appear on the launcher menu. Other activities will

probably be in the DEFAULT or ALTERNATIVE categories.

 MIME type: This indicates the type of resource you want to operate on,

if you do not know a collection Uri.

 Component: This is the class of the activity that is supposed to receive

this intent. Using components this way obviates the need for the other

properties of the intent. However, it does make the intent more fragile,

as it assumes specific implementations.

 Extras: A Bundle of other information you want to pass along to the

receiver with the intent, that the receiver might want to take advantage

of. Which pieces of information a given receiver can use is up to the

receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android SDK

documentation for the Intent class.

Intent Routing
As noted in the previous section, if you specify the target component in your intent,

Android has no doubt where the intent is supposed to be routed to, and it will launch the

named activity. This might be fine if the target intent is in your application. It definitely is

not recommended for sending intents to other applications. Component names, by and

large, are considered private to the application and are subject to change. Content Uri

templates and MIME types are the preferred ways of identifying services you wish third-

party code to supply.

If you do not specify the target component, then Android has to figure out which

activities (or other receivers) are eligible to receive the intent. Note the use of the plural

CHAPTER 21: Creating Intent Filters 223

activities, as a broadly written intent might well resolve to several activities. That is

the...ummm...intent (pardon the pun), as you will see later in this chapter. This routing

approach is referred to as implicit routing.

Basically, there are three rules, all of which must be true for a given activity to be eligible

for a given intent:

 The activity must support the specified action.

 The activity must support the stated MIME type (if supplied).

 The activity must support all of the categories named in the intent.

The upshot is that you want to make your intents specific enough to find the right

receiver(s), and no more specific than that. This will become clearer as we work through

some examples later in this chapter.

Stating Your Intent(ions)
All Android components that wish to be notified via intents must declare intent filters, so

Android knows which intents should go to that component. To do this, you need to add

intent-filter elements to your AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the Android

application-building script (android create project or the IDE equivalent). They look

something like this:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Note the intent-filter element under the activity element. Here, we declare that this

activity:

 Is the main activity for this application

 Is in the LAUNCHER category, meaning it gets an icon in the Android

main menu

Because this activity is the main one for the application, Android knows this is the

component it should launch when somebody chooses the application from the main

menu.

http://schemas.android.com/apk/res/android

CHAPTER 21: Creating Intent Filters 224

You are welcome to have more than one action or more than one category in your intent

filters. That indicates that the associated component (e.g., activity) handles multiple

different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN) activities specify

the MIME type of data they work on. Then, if an intent is targeted for that MIME type—

either directly, or indirectly by the Uri referencing something of that type—Android will

know that the component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
 </intent-filter>
</activity>

This activity will be launched by an intent requesting to view a Uri representing a

vnd.android.cursor.item/vnd.commonsware.tour piece of content. That Intent could

come from another activity in the same application (e.g., the MAIN activity for this

application) or from another activity in another Android application that happens to know

a Uri that this activity handles.

Narrow Receivers
In the preceding examples, the intent filters were set up on activities. Sometimes, tying

intents to activities is not exactly what you want, as in the following cases:

 Some system events might cause you to want to trigger something in

a service rather than an activity.

 Some events might need to launch different activities in different

circumstances, where the criteria are not solely based on the intent

itself, but some other state (e.g., if we get intent X and the database

has a Y, then launch activity M; if the database does not have a Y,

then launch activity N).

For these cases, Android offers the receiver, defined as a class implementing the

BroadcastReceiver interface. Broadcast receivers are disposable objects designed to

receive intents—specifically, broadcast intents—and take action.

The BroadcastReceiver interface has only one method: onReceive(). Receivers

implement that method, where they do whatever it is they wish to do upon an incoming

intent. To declare a receiver, add a receiver element to your AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />

A receiver is alive for only as long as it takes to process onReceive()—as soon as that

method returns, the receiver instance is subject to garbage collection and will not be

reused. This means receivers are somewhat limited in what they can do, mostly to avoid

CHAPTER 21: Creating Intent Filters 225

anything that involves any sort of callback. For example, they cannot bind to a service,

and they cannot open a dialog box.

The exception is if the BroadcastReceiver is implemented on some longer-lived

component, such as an activity or service. In that case, the receiver lives as long as its

“host” does (e.g., until the activity is frozen). However, in this case, you cannot declare

the receiver via AndroidManifest.xml. Instead, you need to call registerReceiver() on

your Activity’s onResume() callback to declare interest in an intent, and then call

unregisterReceiver() from your Activity’s onPause() when you no longer need those

intents.

The Pause Caveat
There is one hiccup with using Intent objects to pass arbitrary messages around: it

works only when the receiver is active. To quote from the documentation for

BroadcastReceiver:

If registering a receiver in your Activity.onResume() implementation, you
should unregister it in Activity.onPause(). (You will not receive intents when
paused, and this will cut down on unnecessary system overhead). Do not
unregister in Activity.onSaveInstanceState(), because this will not be called
if the user moves back in the history stack.

Hence, you can use the Intent framework as an arbitrary message bus only in the

following situations:

 Your receiver does not care if it misses messages because it was not

active.

 You provide some means of getting the receiver “caught up” on

messages it missed while it was inactive.

 Your receiver is registered in the manifest.

227

 Chapter

Launching Activities
and Subactivities
The theory behind the Android UI architecture is that developers should decompose

their application into distinct activities. For example, a calendar application could have

activities for viewing the calendar, viewing a single event, editing an event (including

adding a new one), and so forth. This implies that one of your activities has the means to

start up another activity. For example, if a user selects an event from the view-calendar

activity, you might want to show the view-event activity for that event. This means that

you need to be able to cause the view-event activity to launch and show a specific event

(the one the user chose).

This can be further broken down into two scenarios:

You know what activity you want to launch, probably because it is

another activity in your own application.

You have a content Uri to do something, and you want your users to

be able to do something with it, but you do not know up front what the

options are.

This chapter covers the first scenario; the second is beyond the scope of this book.

Peers and Subs
One key question you need to answer when you decide to launch an activity is this:

does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect authentication

information for some web service you are connecting to—maybe you need to

authenticate with OpenID in order to use an OAuth service. In this case, your main

activity will need to know when the authentication is complete so it can start to use the

web service.

22

CHAPTER 22: Launching Activities and Subactivities 228

On the other hand, imagine an e-mail application in Android. When the user elects to

view an attachment, neither you nor the user necessarily expects the main activity to

know when the user is done viewing that attachment.

In the first scenario, the launched activity is clearly subordinate to the launching activity.

In that case, you probably want to launch the child as a subactivity, which means your

activity will be notified when the child activity is complete.

In the second scenario, the launched activity is more a peer of your activity, so you

probably want to launch the child just as a regular activity. Your activity will not be

informed when the child is done, but, then again, your activity really does not need to

know.

Start ’Em Up
The two pieces for starting an activity are an intent and your choice of how to start it up.

Make an Intent
As discussed in the previous chapter, intents encapsulate a request, made to Android,

for some activity or other receiver to do something. If the activity you intend to launch is

one of your own, you may find it simplest to create an explicit intent, naming the

component you wish to launch. For example, from within your activity, you could create

an intent like this:

new Intent(this, HelpActivity.class);

This stipulates that you want to launch the HelpActivity. This activity would need to be

named in your AndroidManifest.xml file, though not necessarily with any intent filter,

since you are trying to request it directly.

Or, you could put together an intent for some Uri, requesting a particular action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION_VIEW, uri);

Here, given that you have the latitude and longitude of some position (lat and lon,

respectively) of type Double, you construct a geo scheme Uri and create an intent

requesting to view this Uri (ACTION_VIEW).

Make the Call
Once you have your intent, you need to pass it to Android and get the child activity to

launch. You have two choices:

 The simplest option is to call startActivity() with the Intent. This

will cause Android to find the best-match activity and pass the intent

to it for handling. Your activity will not be informed when the child

activity is complete.

CHAPTER 22: Launching Activities and Subactivities 229

 You can call startActivityForResult(), passing it the Intent and a

number (unique to the calling activity). Android will find the best-match

activity and pass the intent to it for handling. Your activity will be

notified when the child activity is complete, via the

onActivityResult() callback.

With startActivityForResult(), as noted, you can implement the onActivityResult()

callback to be notified when the child activity has completed its work. The callback

receives the unique number supplied to startActivityForResult(), so you can

determine which child activity is the one that has completed. You also get the following:

 A result code, from the child activity calling setResult(). Typically, this

is RESULT_OK or RESULT_CANCELED, though you can create your own

return codes (pick a number starting with RESULT_FIRST_USER).

 An optional String containing some result data, possibly a URL to

some internal or external resource. For example, a ACTION_PICK intent

typically returns the selected bit of content via this data string.

 An optional Bundle containing additional information beyond the result

code and data string.

To demonstrate launching a peer activity, take a peek at the Activities/Launch sample

application. The XML layout is fairly straightforward: two fields for the latitude and

longitude, plus a button.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1,2"
 >
 <TableRow>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="2dip"
 android:paddingRight="4dip"
 android:text="Location:"
 />
 <EditText android:id="@+id/lat"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 android:layout_weight="1"
 />
 <EditText android:id="@+id/lon"

http://schemas.android.com/apk/res/android

CHAPTER 22: Launching Activities and Subactivities 230

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 android:layout_weight="1"
 />
 </TableRow>
 </TableLayout>
 <Button android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Show Me!"
 android:onClick="showMe"
 />
</LinearLayout>

The button’s showMe() callback method simply takes the latitude and longitude, pours

them into a geo scheme Uri, and then starts the activity:

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
 private EditText lat;
 private EditText lon;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 lat=(EditText)findViewById(R.id.lat);
 lon=(EditText)findViewById(R.id.lon);
 }

 public void showMe(View v) {
 String _lat=lat.getText().toString();
 String _lon=lon.getText().toString();
 Uri uri=Uri.parse("geo:"+_lat+","+_lon);

 startActivity(new Intent(Intent.ACTION_VIEW, uri));
 }
}

The activity is not much to look at, as shown in Figure 22–1.

CHAPTER 22: Launching Activities and Subactivities 231

Figure 22–1. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and click the

button, the resulting map is more interesting, as shown in Figure 22–2. Note that this is

the built-in Android map activity—we did not create our own activity to display this map.

Figure 22–2. The map launched by LaunchDemo, showing the Lincoln Memorial in Washington DC

In Chapter 40, you will see how you can create maps in your own activities, in case you

need greater control over how the map is displayed.

CHAPTER 22: Launching Activities and Subactivities 232

NOTE: This geo: Intent will work only on devices or emulators that have Google Maps

installed, or on devices that have some other mapping application that supports the geo: URL.

Tabbed Browsing, Sort Of
One of the main features of the modern desktop web browser is tabbed browsing,

where a single browser window can show several pages split across a series of tabs. On

a mobile device, this may not make a lot of sense, given that you lose screen real estate

for the tabs themselves. In this book, however, we do not let little things like sensibility

stop us, so this section demonstrates a tabbed browser, using TabActivity and Intent

objects.

As you may recall from the Chapter 14 section “Putting It on My Tab,” a tab can have

either a View or an Activity as its content. If you want to use an Activity as the content

of a tab, you provide an Intent that will launch the desired Activity; Android’s tab-

management framework will then pour the Activity’s UI into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo: Uri in the

previous example:

Intent i=new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in browser application and get all the features that it

offers. Alas, this does not work. You cannot host other applications’ activities in your

tabs; only your own activities are allowed, for security reasons. So, we dust off our

WebView demos from Chapter 15 and use those instead, repackaged as

Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.app.TabActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.webkit.WebView;
import android.widget.TabHost;

public class IntentTabDemo extends TabActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TabHost host=getTabHost();
 Intent i=new Intent(this, CWBrowser.class);

 i.putExtra(CWBrowser.URL, "http://commonsware.com");

http://commonsware.com
http://commonsware.com

CHAPTER 22: Launching Activities and Subactivities 233

 host.addTab(host.newTabSpec("one")
 .setIndicator("CW")
 .setContent(i));

 i=new Intent(i);
 i.putExtra(CWBrowser.URL, "http://www.android.com");
 host.addTab(host.newTabSpec("two")
 .setIndicator("Android")
 .setContent(i));
 }
}

As you can see, we are using TabActivity as the base class, and so we do not need our

own layout XML—TabActivity supplies it for us. All we do is get access to the TabHost

and add two tabs, each specifying an Intent that directly refers to another class. In this

case, our two tabs will each host a CWBrowser, with a URL to load supplied via an Intent

extra.

The CWBrowser activity is a simple modification to the earlier browser demos:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.webkit.WebView;

public class CWBrowser extends Activity {
 public static final String URL="com.commonsware.android.intenttab.URL";
 private WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 browser=new WebView(this);
 setContentView(browser);
 browser.loadUrl(getIntent().getStringExtra(URL));
 }
}

They simply load a different URL into the browser: the CommonsWare home page in

one, the Android home page in the other.

The resulting UI shows what tabbed browsing could look like on Android, as shown in

Figures 22–3 and 22–4.

http://www.android.com

CHAPTER 22: Launching Activities and Subactivities 234

Figure 22–3. The IntentTabDemo sample application, showing the first tab

Figure 22–4. The IntentTabDemo sample application, showing the second tab

However, this approach is rather wasteful. There is a fair bit of overhead in creating an

activity that you do not need just to populate tabs in a TabHost. In particular, it increases

the amount of stack space needed by your application, and running out of stack space

is a significant problem in Android, as will be described in a later chapter.

235

 Chapter

Working with Resources
Resources are static bits of information held outside the Java source code. You have

seen one type of resource—the layout—frequently in the examples in this book. There

are many other types of resources, such as images and strings, that you can take

advantage of in your Android applications.

The Resource Lineup
Resources are stored as files under the res/ directory in your Android project layout.

With the exception of raw resources (res/raw/), all the other types of resources are

parsed for you, either by the Android packaging system or by the Android system on the

device or emulator. So, for example, when you lay out an activity’s UI via a layout

resource (res/layout/), you do not have to parse the layout XML yourself because

Android handles that for you.

In addition to layout resources (introduced in Chapter 8), there are several other types of

resource available to you, including the following:

 Images (res/drawable/), for putting static icons or other pictures in a

user interface

 Raw (res/raw/), for arbitrary files that have meaning to your

application but not necessarily to Android frameworks

 Strings, colors, arrays, and dimensions (res/values/), to both give

these sorts of constants symbolic names and to keep them separate

from the rest of the code (e.g., for internationalization and localization)

 XML (res/xml/), for static XML files containing your own data and

structure

String Theory
Keeping your labels and other bits of text outside the main source code of your

application is generally considered to be a very good idea. In particular, it helps with

23

CHAPTER 23: Working with Resources 236

internationalization and localization, covered in the “Different Strokes for Different Folks”

section later in this chapter. Even if you are not going to translate your strings to other

languages, it is easier to make corrections if all the strings are in one spot instead of

scattered throughout your source code.

Android supports regular externalized strings, along with string formats, where the string

has placeholders for dynamically inserted information. On top of that, Android supports

simple text formatting, called styled text, so you can make your words be bold or italic

intermingled with normal text.

Plain Strings
Generally speaking, all you need for plain strings is an XML file in the res/values

directory (typically named res/values/strings.xml), with a resources root element, and

one child string element for each string you wish to encode as a resource. The string

element takes a name attribute, which is the unique name for this string, and a single text

element containing the text of the string, as shown in this example:

<resources>
 <string name="quick">The quick brown fox...</string>
 <string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote mark (") or an apostrophe (').

In those cases, you will want to escape those values, by preceding them with a

backslash (e.g., These are the times that try men\'s souls). Or, if it is just an

apostrophe, you could enclose the value in quote marks (e.g., "These are the times
that try men's souls.").

You can then reference this string from a layout file (as @string/..., where the ellipsis is

the unique name, such as @string/laughs). Or you can get the string from your Java

code by calling getString() with the resource ID of the string resource, which is the

unique name prefixed with R.string. (e.g., getString(R.string.quick)).

String Formats
As with other implementations of the Java language, Android’s Dalvik virtual machine

supports string formats. Here, the string contains placeholders representing data to be

replaced at runtime by variable information (e.g., My name is %1$s). Plain strings stored

as resources can be used as string formats:

String strFormat=getString(R.string.my_name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

There is also a flavor of getString() that does the String.format() call for you:

String strResult=getString(R.string.my_name, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

CHAPTER 23: Working with Resources 237

It is very important that you use the version of the placeholders that takes an index—

%1$s instead of just %s. Strategically, translations of your string resources may cause you

to apply the variable data in a different order than did your original translation, and using

nonindexed placeholders lock you into a particular order. Tactically, your project will fail

to compile, as the Android build tools reject nonindexed placeholders nowadays.

Styled Text
If you want really rich text, you should have raw resources containing HTML, and then

pour those into a WebKit widget. However, for light HTML formatting, using inline

elements such as , <i>, and <u>, you can just use them in a string resource:

<resources>
 <string name="b">This has bold in it.</string>
 <string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these via getText(), which gives you back an object supporting the

android.text.Spanned interface and therefore has all of the formatting applied:

((TextView)findViewById(R.id.another_label))
 .setText(getText(R.string.b));

Styled Text and Formats
Where styled text gets tricky is with styled string formats, as String.format() works on

String objects, not Spanned objects with formatting instructions. If you really want to

have styled string formats, here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is
%1$s).

2. Retrieve the string resource as normal, though it will not be styled at this

point (e.g., getString(R.string.funky_format)).

3. Generate the format results, being sure to escape any string values you

substitute, in case they contain angle brackets or ampersands:

String.format(getString(R.string.funky_format),
 TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via

Html.fromHtml():

someTextView.setText(Html
 .fromHtml(resultFromStringFormat));

To see this in action, let’s look at the Resources/Strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

http://schemas.android.com/apk/res/android

CHAPTER 23: Working with Resources 238

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <Button android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_name"
 android:onClick="applyFormat"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

As you can see, it is just a button, a field, and a label. The idea is for users to enter their

name in the field, and then click the button to cause the label to be updated with a

formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name), so we need

a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">StringsDemo</string>
 <string name="btn_name">Name:</string>
 <string name="funky_format">My name is %1$s</string>
</resources>

The app_name resource is automatically created by the android create project

command. The btn_name string is the caption of the Button, while our styled string

format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
 EditText name;
 TextView result;

CHAPTER 23: Working with Resources 239

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 result=(TextView)findViewById(R.id.result);
 }

 public void applyFormat(View v) {
 String format=getString(R.string.funky_format);
 String simpleResult=String.format(format,
 TextUtils.htmlEncode(name.getText().toString()));
 result.setText(Html.fromHtml(simpleResult));
 }
}

The string resource manipulation can be found in applyFormat(), which is called when

the button is clicked. First, we get our format via getString()—something we could

have done at onCreate() time for efficiency. Next, we format the value in the field using

this format, getting a String back, since the string resource is in entity-encoded HTML.

Note the use of TextUtils.htmlEncode() to entity-encode the entered name, in case

somebody decides to use an ampersand or something. Finally, we convert the simple

HTML into a styled text object via Html.fromHtml() and update our label.

When the activity is first launched, we have an empty label, as shown in Figure 23–1.

Figure 23–1. The StringsDemo sample application, as initially launched

If we fill in a name and click the button, we get the result shown in Figure 23–2.

CHAPTER 23: Working with Resources 240

Figure 23–2. The same application, after filling in some heroic figure’s name

Got the Picture?
Android supports images in the PNG, JPEG, and GIF formats. GIF is officially

discouraged, however. PNG is the overall preferred format. Images can be used

anywhere that you require a Drawable, such as the image and background of an

ImageView.

Using images is simply a matter of putting your image files in res/drawable/ and then

referencing them as a resource. Within layout files, images are referenced as

@drawable/..., where the ellipsis is the base name of the file (e.g., for

res/drawable/foo.png, the resource name is @drawable/foo). In Java, where you need

an image resource ID, use R.drawable. plus the base name (e.g., R.drawable.foo).

So, let’s update the previous example to use an icon for the button instead of the string

resource. This can be found as Resources/Images. We slightly adjust the layout file, using

an ImageButton and referencing a drawable named @drawable/icon, which refers to an

image file in res/drawable with a base name of icon. In this case, we use a 32-by-32 PNG

file from the Nuvola icon set.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 23: Working with Resources 241

 >
 <ImageButton android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/icon"
 android:onClick="applyFormat"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

Now, our button has the desired icon, as shown in Figure 23–3.

Figure 23–3. The ImagesDemo sample application

XML: The Resource Way
If you wish to package static XML with your application, you can use an XML resource.

Simply put the XML file in res/xml/, and you can access it by getXml() on a Resources

object, supplying it a resource ID of R.xml. plus the base name of your XML file. For

example, in an activity, with an XML file of words.xml, you could call

getResources().getXml(R.xml.words). This returns an instance of an XmlPullParser,

found in the org.xmlpull.v1 Java namespace.

CHAPTER 23: Working with Resources 242

An XML pull parser is event-driven: you keep calling next() on the parser to get the next

event, which could be START_TAG, END_TAG, END_DOCUMENT, and so on. On a START_TAG

event, you can access the tag’s name and attributes; a single TEXT event represents the

concatenation of all text nodes that are direct children of this element. By looping,

testing, and invoking per-element logic, you parse the file.

To see this in action, let’s rewrite the Java code for the Files/Static sample project to

use an XML resource. This new project, Resources/XML, requires that you place the

words.xml file from Static not in res/raw/, but in res/xml/. The layout stays the same,

so all that needs to be replaced is the Java source:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;
import java.io.InputStream;
import java.util.ArrayList;
import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 XmlPullParser xpp=getResources().getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 items.add(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }

CHAPTER 23: Working with Resources 243

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

Now, inside our try...catch block, we get our XmlPullParser and loop until the end of

the document. If the current event is START_TAG and the name of the element is word

(xpp.getName().equals("word")), then we get the one and only attribute and pop that

into our list of items for the selection widget. Since we have complete control over the

XML file, it is safe enough to assume there is exactly one attribute. In other cases, if you

are not sure that the XML is properly defined, you might consider checking the attribute

count (getAttributeCount()) and the name of the attribute (getAttributeName()),

instead of assuming the 0-index attribute is what you think it is.

The result looks the same as before, albeit with a different name in the title bar, as

shown in Figure 23–4.

Figure 23–4. The XMLResourceDemo sample application

Miscellaneous Values
In the res/values/ directory, in addition to string resources, you can place one or more

XML files describing other simple resources, such as dimensions, colors, and arrays.

You have already seen uses of dimensions and colors in previous examples, where they

CHAPTER 23: Working with Resources 244

were passed as simple strings (e.g., "10dip") as parameters to calls. You could set these

up as Java static final objects and use their symbolic names, but that works only inside

Java source, not in layout XML files. By putting these values in resource XML files, you

can reference them from both Java and layouts, plus have them centrally located for

easy editing.

Resource XML files have a root element of resources; everything else is a child of that root.

Dimensions
Dimensions are used in several places in Android to describe distances, such as a

widget’s padding. There are several different units of measurement available to you:

 in and mm for inches and millimeters, respectively. These are based on

the actual size of the screen.

 pt for points. In publishing terms, a point is 1/72 inch (again, based on

the actual physical size of the screen)

 dip and sp for device-independent pixels and scale-independent

pixels, respectively. One pixel equals one dip for a 160-dpi resolution

screen, with the ratio scaling based on the actual screen pixel density.

Scale-independent pixels also take into account the user’s preferred

font size.

To encode a dimension as a resource, add a dimen element, with a name attribute for

your unique name for this resource, and a single child text element representing the

value:

<resources>
 <dimen name="thin">10px</dimen>
 <dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is a

placeholder for your unique name for the resource (e.g., thin and fat from the

preceding sample). In Java, you reference dimension resources by the unique name

prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors
Colors in Android are hexadecimal RGB values, with the option to also specify an alpha

channel. You have your choice of single-character hex values or double-character hex

values, providing four styles:

 #RGB

 #ARGB

 #RRGGBB

 #AARRGGBB

CHAPTER 23: Working with Resources 245

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or layout

resources. If you wish to turn them into resources, though, all you need to do is add

color elements to the resource file, with a name attribute for your unique name for this

color, and a single text element containing the RGB value itself:

<resources>
 <color name="yellow_orange">#FFD555</color>
 <color name="forest_green">#005500</color>
 <color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis with your

unique name for the color (e.g., burnt_umber). In Java, you reference color resources by

the unique name prefixed with R.color. (e.g.,

Resources.getColor(R.color.forest_green)).

Arrays
Array resources are designed to hold lists of simple strings, such as a list of honorifics

(Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a name attribute

for the unique name you are giving the array. Then, add one or more child item

elements, each with a single text element containing the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

CHAPTER 23: Working with Resources 246

From your Java code, you can then use Resources.getStringArray() to get a String[]

of the items in the list. The parameter to getStringArray() is your unique name for the

array, prefixed with R.array. (e.g., Resources.getStringArray(R.array.honorifics)).

Different Strokes for Different Folks
One set of resources may not fit all situations where your application may be used. One

obvious area comes with string resources and dealing with internationalization (I18N)

and localization (L10N). Putting strings all in one language works fine—at least for the

developer—but covers only one language.

That is not the only scenario where resources might need to differ, though. Here are

others:

 Screen orientation: Is the screen in a portrait or landscape orientation?

Or is the screen square and, therefore, without an orientation?

 Screen size: How many pixels does the screen have, so you can size

your resources accordingly (e.g., large versus small icons)?

 Touchscreen: Does the device have a touchscreen? If so, is the

touchscreen set up to be used with a stylus or a finger?

 Keyboard: Which keyboard does the user have (QWERTY, numeric,

neither), either now or as an option?

 Other input: Does the device have some other form of input, like a D-

pad or click-wheel?

The way Android currently handles this is by having multiple resource directories, with

the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.

Normally, for a single-language setup, you would put your strings in a file named

res/values/strings.xml. To support both English and Spanish, you would create two

folders, res/values-en/ and res/values-es/, where the value after the hyphen is the

ISO 639-1 two-letter code for the language. Your English strings would go in

res/values-en/strings.xml and the Spanish ones would go in res/values-
es/strings.xml. Android will choose the proper file based on the user’s device settings.

An even better approach is for you to consider some language to be your default, and

put those strings in res/values/strings.xml. Then, create other resource directories for

your translations (e.g., res/values-es/strings.xml for Spanish). Android will try to

match a specific language set of resources; failing that, it will fall back to the default of

res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple disparate criteria

for your resources. For example, suppose you want to develop for the following devices:

CHAPTER 23: Working with Resources 247

T-Mobile G1, which has a normal-size, medium-density screen and a

hardware keyboard

Samsung Galaxy Tab, which has a large-size, high-density screen and

no hardware keyboard

Motorola Charm, which has a small-size, medium-density screen and

a hardware keyboard

You may want to have somewhat different layouts for these devices, to take advantage

of different screen real estate and different input options. Specifically, you may want the

following:

Different layouts for each combination of size, orientation, and

keyboard

Different drawables for each density

Once you get into these sorts of situations, though, all sorts of rules come into play,

such as the following:

The configuration options (e.g., -en) have a particular order of

precedence, and they must appear in the directory name in that order.

The Android documentation outlines the specific order in which these

options can appear. For the purposes of this example, screen size is

more important than screen orientation, which is more important than

screen density, which is more important than whether or not the

device has a keyboard.

There can be only one value of each configuration option category per

directory.

Options are case sensitive.

So, for the sample scenario, in theory, we would need the following directories,

representing the possible combinations:

res/layout-large-port-mdpi-qwerty

res/layout-large-port-mdpi-nokeys

res/layout-large-port-hdpi-qwerty

res/layout-large-port-hdpi-nokeys

res/layout-large-land-mdpi-qwerty

res/layout-large-land-mdpi-nokeys

res/layout-large-land-hdpi-qwerty

res/layout-large-land-hdpi-nokeys

res/layout-normal-port-mdpi-qwerty

res/layout-normal-port-mdpi-nokeys

CHAPTER 23: Working with Resources 248

 res/layout-normal-port-finger-qwerty

 res/layout-normal-port-hdpi-nokeys

 res/layout-normal-land-mdpi-qwerty

 res/layout-normal-land-mdpi-nokeys

 res/layout-normal-land-hdpi-qwerty

 res/layout-normal-land-hdpi-nokeys

 res/drawable-large-port-mdpi-qwerty

 res/drawable-large-port-mdpi-nokeys

 res/drawable-large-port-hdpi-qwerty

 res/drawable-large-port-hdpi-nokeys

 res/drawable-large-land-mdpi-qwerty

 res/drawable-large-land-mdpi-nokeys

 res/drawable-large-land-hdpi-qwerty

 res/drawable-large-land-hdpi-nokeys

 res/drawable-normal-port-mdpi-qwerty

 res/drawable-normal-port-mdpi-nokeys

 res/drawable-normal-port-finger-qwerty

 res/drawable-normal-port-hdpi-nokeys

 res/drawable-normal-land-mdpi-qwerty

 res/drawable-normal-land-mdpi-nokeys

 res/drawable-normal-land-hdpi-qwerty

 res/drawable-normal-land-hdpi-nokeys

Don’t panic! We will shorten this list in just a moment!

Note that there is nothing preventing you from also having a directory with the

unadorned base name (res/layout). In fact, this is really a good idea, in case future

editions of the Android runtime introduce other configuration options you did not

consider—having a default layout might make the difference between your application

working or failing on that new device.

As promised, we can cut the number of required directories substantially. We do so by

decoding the rules Android uses for determining which, among a set of candidates, is

the correct resource directory to use:

1. Android tosses out directories that are specifically invalid. So, for

example, if the screen size of the device is normal, Android drops the -
large directories as candidates, since they call for some other size.

CHAPTER 23: Working with Resources 249

2. Android counts the number of matches for each folder, and pays

attention to only those with the most matches.

3. Android goes in the order of precedence of the options; in other words,

it goes from left to right in the directory name.

Also, our drawables vary only by density, and our layouts do not vary by density, so we

can clear out a lot of combinations by focusing on only the relevant platform differences.

So, we could skate by with only the following configurations:

 res/layout-large-land-qwerty

 res/layout-large-qwerty

 res/layout-large-land

 res/layout-large

 res/layout-normal-land-qwerty

 res/layout-normal-qwerty

 res/layout-normal-land

 res/layout

 res/drawable-hdpi

 res/drawable

Here, we take advantage of the fact that specific matches take precedence over

unspecified values. So, a device with a QWERTY keyboard will choose a resource with

qwerty in the directory over a resource that does not specify its keyboard type.

We could refine this even further, to cover only the specific devices we are targeting

(e.g., there is no large device with qwerty):

 res/layout-large-land

 res/layout-large

 res/layout-land-qwerty

 res/layout-qwerty

 res/layout-land

 res/layout

 res/drawable-hdpi

 res/drawable

If we did not care about having different layouts depending on whether the device had a

hardware keyboard, we could drop the two -qwerty resource sets.

We will see these resource sets again in Chapter 25, which describes how to support

multiple screen sizes.

CHAPTER 23: Working with Resources 250

RTL Languages: Going Both Ways
Android 2.3 added support for many more languages than it supported in previous

versions of the platform. As such, you now have greater opportunity to localize your

application where it is needed.

In particular, Android 2.3 added support for right-to-left (RTL) languages, notably

Hebrew and Arabic. Previously, Android supported only languages written horizontally

from left to right, such as English. This means you may create localized versions for RTL

languages, but first you need to consider whether your UI in general will work properly

for RTL languages. For example:

 Are your TextView widgets aligned on the left side with other widgets

or containers? If so, is that the right configuration for your RTL users?

 Will there be any issues with your EditText widgets when users start

entering RTL text, such as inappropriate scrolling because you have

not properly constrained the EditText widget’s width?

 If you created your own forms of text input, outside of EditText and

the input method framework (e.g., custom onscreen virtual keyboards),

will they support RTL languages?

251

 Chapter

Defining and Using Styles
Every now and then, you will find some code with a cryptic style attribute in a layout

element. For example, in the chapter on threading, the following ProgressBar was

presented:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Something about that magic style attribute changed our ProgressBar from a normal

circle to a horizontal bar.

This chapter will briefly explore the concept of styles, including how you create them

and how you apply them to your own widgets.

Styles: DIY DRY
The purpose of styles is to encapsulate a set of attributes that you intend to use

repeatedly, conditionally, or otherwise keep separate from your layouts proper. The

primary use case is “don’t repeat yourself” (DRY)—if you have a bunch of widgets that

look the same, use a style to use a single definition for “look the same,” rather than

copying the look from widget to widget.

That paragraph will make a bit more sense if we look at an example, specifically the

Styles/NowStyled sample project. This is the same project we examined in an earlier

chapter, with a full-screen button that shows the date and time at which the activity was

launched or the button was pushed. In this example, we want to change the appearance

of the text on the face of the button, which we will accomplish by using a style.

24

http://schemas.android.com/apk/res/android

CHAPTER 24: Defining and Using Styles 252

The res/layout/main.xml file in this project is the same as it was in Chapter 20, but with

the addition of a style attribute:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 style="@style/bigred"
/>

NOTE: Because the style attribute is part of stock XML, and therefore is not in the android

namespace, it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values

resources and can be found in the res/values/ directory in your project, or in other

resource sets (e.g., res/values-v11/ for values resources to be used only on API level

11 or higher). The convention is to keep style resources in a styles.xml file, such as the

following from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="bigred">
 <item name="android:textSize">30sp</item>
 <item name="android:textColor">#FFFF0000</item>
 </style>
</resources>

The <style> element supplies the name of the style, which is what we use when

referring to the style from a layout. The <item> children of the <style> element represent

values of attributes to be applied to whatever the style is applied to—in our example, our

Button widget. So, our Button will have a comparatively large font (android:textSize set

to 30sp) and its text will appear in red (android:textColor set to #FFFF0000).

No changes are needed elsewhere in the project—nothing needs to be adjusted in the

manifest, in the Java code of the activity, and so on. Just defining the style and applying

it to the widget gives us the result shown in Figure 24–1.

http://schemas.android.com/apk/res/android

CHAPTER 24: Defining and Using Styles 253

Figure 24–1. The Styles/NowStyled sample application

Elements of Style
There are four questions to consider when applying a style:

 Where do you put the style attributes to say you want to apply a style?

 Which attributes can you define via a style?

 How do you inherit from a previously defined style (your own or one

from Android)?

 What values can the attributes have in a style definition?

Where to Apply a Style
The style attribute can be applied to a widget, which affects only that widget.

The style attribute can also be applied to a container, which affects only that container.

However, doing this does not automatically style its children. For example, suppose

res/layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 style="@style/bigred"
>

http://schemas.android.com/apk/res/android

CHAPTER 24: Defining and Using Styles 254

 <Button
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

The resulting UI would not have the Button text in a big red font, despite the style

attribute. The style affects only the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, in which case it is

referred to as a theme, as covered a bit later in this chapter.

The Available Attributes
When styling a widget or container, you can apply any of that widget’s or container’s

attributes in the style itself. So, if it appears in the “XML Attributes” or “Inherited XML

Attributes” section of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to the

LinearLayout as shown above, everything would run fine, just with no visible results.

Despite the fact that LinearLayout has no android:textSize or android:textColor

attribute, no compile-time failure or runtime exception occurs.

Also, layout directives, such as android:layout_width, can be put in a style.

Inheriting a Style
You can also indicate that you want to inherit style attributes from another style, by

specifying a parent attribute on the <style> element. For example, take a look at this

style resource (which you will see again in Chapter 28, which covers the new fragment

UI framework):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

Here, we are indicating that we want to inherit the Theme.Holo style from within Android.

Hence, in addition to specifying all of our own attribute definitions, we are specifying

that we want all the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your attribute

definitions will be blended into whatever default style is being applied to the widget or

container.

CHAPTER 24: Defining and Using Styles 255

The Possible Values
Typically, the value that you will give the attributes in the style will be some constant, like

30sp or #FFFF0000. Sometimes, though, you may want to perform a bit of indirection, by

applying some other attribute value from the theme you are inheriting from. In that case,

you need to use the somewhat cryptic ?android:attr/ syntax, along with a few related

magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

Here, we are indicating that the value of android:background is not some constant value,

or even a reference to a drawable resource (e.g., @drawable/my_background). Instead, we

are referring to the value of some other attribute—activatedBackgroundIndicator—from

our inherited theme. Whatever the theme defines as being the

activatedBackgroundIndicator is what our background should be.

Sometimes this is applied to a style as a whole. For example, let’s look again at the

ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Here, our style attribute—not a style resource—is pointing to a theme-supplied attribute

(progressBarStyleHorizontal). If you poke through the Android source code, you will

see that this is defined as being a style resource, specifically

@android:style/Widget.ProgressBar.Horizontal. Hence, we are saying to Android that

we want our ProgressBar styled as @android:style/Widget.ProgressBar.Horizontal,

via the indirection of ?android:attr/progressBarStyleHorizontal.

This portion of the Android style system is very underdocumented, to the point where

Google itself recommends that you look at the Android source code listing the various

styles to see what is possible.

This is one place where inheriting a style becomes important. In the first example shown

in this section, we inherited from Theme.Holo, because we specifically wanted the

activatedBackgroundIndicator value from Theme.Holo. That value might not exist in

other styles, or it might not have the value we want.

http://schemas.android.com/apk/res/android

CHAPTER 24: Defining and Using Styles 256

Themes: A Style by Any Other Name...
Themes are styles, applied to an activity or application, via an android:theme attribute

on the <activity> or <application> element. If the theme you are applying is your own,

simply reference it as @style/..., just as you would in a style attribute of a widget. If

the theme you are applying comes from Android, though, typically you will use a value

with @android:style/ as the prefix, such as @android:style/Theme.Dialog or

@android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity itself.

For example, here is the definition of @android:style/Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
 fills the entire screen -->
<style name="Theme.NoTitleBar.Fullscreen">
 <item name="android:windowFullscreen">true</item>
 <item name="android:windowContentOverlay">@null</item>
</style>

It specifies that the activity should take over the entire screen, removing the status bar

on Android 1.x and 2.x devices (android:windowFullscreen set to true). It also specifies

that the content overlay—a layout that wraps around your activity’s content view—

should be set to nothing (android:windowContentOverlay set to @null), having the effect

of removing the title bar.

A theme might also specify other styles that are applied to specific widgets. For

example, we see the following in the root theme (Theme):

<item name="progressBarStyleHorizontal">@android:style/Widget.ProgressBar
.Horizontal</item>

Here, progressBarStyleHorizontal is pointing to @android:style/
Widget.ProgressBar.Horizontal. This is how we are able to reference

?android:attr/progressBarStyleHorizontal in our ProgressBar widget, and we could

create our own theme that redefines progressBarStyleHorizontal to point to some

other style (e.g., if we want to change the rounded rectangle used for the actual

progress bar image itself).

257

 Chapter

Handling Multiple Screen
Sizes
For the first year or so after Android 1.0 was released, all production Android devices

had the same screen resolution (HVGA, 320 480) and size (around 3.5 inches, or 9

centimeters). Starting in the fall of 2009, though, devices started arriving with widely

disparate screen sizes and resolutions, from tiny QVGA (240 320) screens to much

larger WVGA (480 800) screens. And, in the fall of 2010, tablets and Google TV devices

appeared, offering yet more screen sizes.

Of course, users will expect your application to be functional on all of these screens, and

perhaps take advantage of larger screen sizes to add greater value. To that end, Android

1.6 added new capabilities to help better support these differing screen sizes and

resolutions, and these capabilities have been extended in subsequent Android releases.

The Android documentation has extensive coverage of the mechanics of handling

multiple screen sizes. You are encouraged to read that documentation along with this

chapter, to get the best understanding of how best to cope with, and perhaps take

advantage of, multiple screen sizes.

After a number of sections discussing the screen size options and theory, the chapter

provides an in-depth look at how to make a fairly simple application handle multiple

screen sizes well.

Taking the Default
Let’s suppose that you start off by totally ignoring the issue of screen sizes and

resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will assume your

application was designed to look good on the classic screen size and resolution.

Android will then automatically do the following:

25

CHAPTER 25: Handling Multiple Screen Sizes 258

 If your application is installed on a device with a larger screen, Android

will run your application in compatibility mode, scaling everything

based on the actual screen size. So, suppose you have a 24-pixel

square PNG file, and Android installs and runs your application on a

device with the standard physical size but a WVGA resolution (a so-

called high-density screen). Android might scale your PNG file to be 36

pixels when it displays it, so it will take up the same visible space on

the screen. On the plus side, Android handles this automatically; on

the minus side, bitmap-scaling algorithms tend to make the images a

bit fuzzy.

 If your application is installed on a device with a smaller screen,

Android will block your application from running. Hence, QVGA

devices, like the HTC Tattoo, will be unable to get your application,

even if it is available on the Android Market.

To give you an example of how this affects your app, Figure 25–1 shows the

Containers/Table sample application as viewed on an HTC Tattoo, with its QVGA

screen.

Figure 25–1. Table sample in QVGA via compatibility mode

If your application is compiled for Android 1.6 or higher, Android assumes that you are

properly handling all screen sizes, and therefore will not run your application in

compatibility mode. You will see how to tailor this in a later section.

Whole in One
The simplest approach to handling multiple screen sizes in Android is to design your

user interface (UI) so that it automatically scales for the screen size, without any size-

specific code or resources. In other words, “it just works.”

CHAPTER 25: Handling Multiple Screen Sizes 259

This implies, though, that everything you use in your UI can be gracefully scaled by

Android and that everything will fit, even on a QVGA screen.

The following sections provide some tips for achieving this all-in-one solution.

Think About Rules, Not Positions
Some developers, perhaps those coming from the drag-and-drop school of UI

development, think first and foremost about the positions of widgets. They think that

they want certain widgets to be certain fixed sizes at certain fixed locations. They get

frustrated with Android layout managers (containers) and gravitate to the deprecated

AbsoluteLayout as a way to design UIs in the way they are used to doing it.

That approach rarely works well, even on desktops, as can be seen by applications that

do not handle window resizing very well. Similarly, that approach will not work on mobile

devices, particularly Android, with their wide range of screen sizes and resolutions.

Instead of thinking about positions, think about rules. You need to teach Android the

“business rules” about where widgets should be sized and placed, and then Android will

interpret those rules based upon what the device’s screen actually supports in terms of

resolution.

The simplest rules are the fill_parent and wrap_content values for

android:layout_width and android:layout_height. They do not specify specific sizes,

but rather adapt to the space available.

The richest environment for easily specifying rules is RelativeLayout. While complicated

on the surface, RelativeLayout does an excellent job of letting you control your layout

while still adapting it to other screen sizes. For example, you can do the following:

 Explicitly anchor widgets to the bottom or right side of the screen,

rather than hoping they will wind up there courtesy of some other

layout

 Control the distances between widgets that are connected (e.g., a

label for a field should be to the left of the field) without having to rely

on padding or margins

The greatest control for specifying rules is to create your own layout class. For example,

suppose you are creating a series of applications that implement card games. You may

want to have a layout class that knows the following about playing cards: how they

overlap, which are face up versus face down, how big to be to handle varying numbers

of cards, and so forth. While you could achieve the desired look with, say, a

RelativeLayout, you may be better served implementing a PlayingCardLayout or a

HandOfCardsLayout or something that is more explicitly tailored for your application.

Unfortunately, creating custom layout classes is underdocumented at this point in time.

CHAPTER 25: Handling Multiple Screen Sizes 260

Consider Physical Dimensions
Android offers a wide range of available units of measure for dimensions. The most

popular has been the pixel (px), because it is easy to wrap your head around the

concept. After all, every Android device has a screen with a certain number of pixels in

each direction.

However, pixels start to become troublesome as screen density changes. As the number

of pixels in a given screen size increases, the pixels effectively shrink. A 32-pixel icon on

a traditional Android device might be finger-friendly, but on a high-density device (say,

WVGA in a mobile phone form factor), 32 pixels may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had been

specifying a size in pixels, you might consider switching to using millimeters (mm) or

inches (in) as the unit of measure. 10 millimeters is 10 millimeters regardless of the

screen resolution or the screen size. This way, you can ensure that your widget is sized

to be finger-friendly, regardless of the number of pixels that might take.

Avoid “Real” Pixels
In some circumstances, using millimeters for dimensions does not make sense. In such

cases, you may want to consider using other units of measure while still avoiding “real”

pixels.

Android offers dimensions measured in density-independent pixels (dip). These map 1:1

to pixels for a 160-dpi screen (e.g., a classic HVGA Android device) and scale from

there. For example, on a 240-dpi device (e.g., a phone-sized WVGA device), the ratio is

2:3, so 50dip = 50px at 160 dpi = 75px at 240 dpi. The advantage to the user of going

with dip is that the actual size of the dimension stays the same, so visibly there is no

difference between 50dip at 160 dpi and 50dip at 240 dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled pixels, in theory,

are scaled based on the user’s choice of font size (FONT_SCALE value in

System.Settings).

Choose Scalable Drawables
Classic bitmaps—PNG, JPG, and GIF—are not intrinsically scalable. If you are not

running in compatibility mode, Android will not even try to scale them for you based on

screen resolution and size. Whatever size of bitmap you supply is the size it will be, even

if that makes the image too large or too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch bitmaps and

XML-defined drawables (e.g., GradientDrawable) as alternatives. A nine-patch bitmap is

a PNG file specially encoded to have rules indicating how that image can be stretched

to take up more space. XML-defined drawables use a quasi-SVG XML language to

define shapes, their strokes and fills, and so on.

CHAPTER 25: Handling Multiple Screen Sizes 261

Tailor-Made, Just for You (and You, and You, and...)
There will be times when you want to have different looks or behaviors based upon

screen size or density. Android has techniques that you can use to switch out resources

or code blocks based on the environment in which your application runs. When these

techniques are properly used in combination with the techniques described in the

preceding section, achieving screen size- and density-independence is eminently

possible, at least for devices running Android 1.6 and newer.

Adding the <supports-screens> Element
The first step to proactively supporting different screen sizes is to add the <supports-
screens> element to your AndroidManifest.xml file. This specifies which screen sizes

your application explicitly supports and which it does not support. Those that it does not

explicitly support will be handled by the automatic compatibility mode, described

previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The android:smallScreens, android:normalScreens, and android:largeScreens

attributes are fairly self-explanatory: each takes a Boolean value that indicates whether

your application explicitly supports screens of that size (true) or requires compatibility

mode assistance (false). Android 2.3 has also added android:xlargeScreens for larger

tablets and (perhaps) televisions.

The android:anyDensity attribute indicates whether you are taking density into account

in your calculations (true) or not (false). If false, Android will treat all of your

dimensions (e.g., 4px) as if they were for a normal-density (160-dpi) screen. If your

http://schemas.android.com/apk/res/android

CHAPTER 25: Handling Multiple Screen Sizes 262

application is running on a screen with lower or higher density, Android will scale your

dimensions accordingly. If you indicate that android:anyDensity = "true", you are

telling Android not to do that, putting the onus on you to use density-independent units,

such as dip, mm, or in.

Resources and Resource Sets
The primary way to toggle different things based on screen size or density is to create

resource sets. By creating resource sets that are specific to different device

characteristics, you teach Android how to render each, and Android then switches

among those sets automatically.

Default Scaling
By default, Android scales all drawable resources. Those that are intrinsically scalable,

as previously described, will scale nicely. Ordinary bitmaps are scaled using a normal

scaling algorithm, which may or may not give you great results. It also may slow down

your application a bit. To avoid this, you need to set up separate resource sets

containing your nonscalable bitmaps.

Density-Based Sets
If you wish to have different layouts, dimensions, or the like based upon different screen

densities, you can use the -ldpi, -mdpi, -hdpi, and -xhdpi resource set labels. For

example, res/values-hdpi/dimens.xml would contain dimensions used in high-density

devices.

Note that there is a bug in Android 1.5 (API level 3) when it comes to working with these

screen-density resource sets. Even though all Android 1.5 devices are medium density,

Android 1.5 might pick one of the other densities by accident. If you intend to support

Android 1.5 and use screen-density resource sets, you need to clone the contents of

your -mdpi set, with the clone named -mdpi-v3. This version-based set is described in

greater detail a bit later in this section.

Size-Based Sets
Similarly, if you wish to have different resource sets based upon screen size, Android

offers -small, -normal, and -large resource set labels. Creating res/layout-large-
land/ would indicate layouts to use on large screens (e.g., WVGA) in landscape

orientation.

Version-Based Sets
There may be times when earlier versions of Android get confused by newer resource

set labels. To help with that, you can include a version label to your resource set, of the

CHAPTER 25: Handling Multiple Screen Sizes 263

form -vN, where N is an API level. Hence, res/drawable-large-v4/ indicates these

drawables should be used on large screens at API level 4 (Android 1.6) and newer.

So, if you find that Android 1.5 emulators or devices are grabbing the wrong resource

sets, consider adding -v4 to their resource set names to filter them out.

Finding Your Size
If you need to take different actions in your Java code based on screen size or density,

you have a few options.

If there is something distinctive in your resource sets, you can “sniff” on that and branch

accordingly in your code. For example, as you will see in the code sample later in this

chapter, you can have extra widgets in some layouts (e.g., res/layout-large/main.xml);

simply seeing if an extra widget exists will tell you if you are running a large screen or

not.

You can also find out your screen size class via a Configuration object, typically

obtained by an Activity via getResources().getConfiguration(). A Configuration

object has a public field named screenLayout that is a bitmask indicating the type of

screen the application is running on. You can test to see if your screen is small, normal,

or large, or if it is long (where “long” indicates a 16:9 or similar aspect ratio, compared to

4:3). For example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenLayout
 & Configuration.SCREENLAYOUT_SIZE_LARGE)
 ==Configuration.SCREENLAYOUT_SIZE_LARGE) {
 // yes, we are large
}
else {
 // no, we are not
}

Similarly, you can find out your screen density, or the exact number of pixels in your

screen size, using the DisplayMetrics class.

Ain’t Nothing Like the Real Thing
The Android emulators will help you test your application on different screen sizes.

However, that will only get you so far, because mobile device LCDs have different

characteristics than your desktop or notebook, such as the following:

 Mobile device LCDs may have a much higher density than that of your

development machine.

 A mouse allows for much more precise touchscreen input than does

an actual fingertip.

Where possible, you are going to need to either use the emulator in new and exciting

ways or try to get your hands on actual devices with alternative screen resolutions.

CHAPTER 25: Handling Multiple Screen Sizes 264

Density Differs
The Motorola DROID has a 240-dpi, 3.7-inch, 480 854-pixel screen (an FWVGA

display). To emulate a DROID screen, based on pixel count, takes up one-third of a 19-

inch, 1280 1024-pixel LCD monitor, because the LCD monitor’s density is much lower

than that of the DROID—around 96 dpi. So, when you fire up your Android emulator for

an FWVGA display like that of the DROID, you will get a massive emulator window.

This is still perfectly fine for determining the overall look of your application in an FWVGA

environment. Regardless of density, widgets will still align the same, sizes will have the

same relationships (e.g., widget A might be twice as tall as widget B, and that will be

true regardless of density), and so on.

However, keep the following in mind:

 Things that might appear to be a suitable size when viewed on a 19-

inch LCD may be entirely too small on a mobile device screen of the

same resolution.

 Things that you can easily click with a mouse in the emulator may be

much too small to pick out on a physically smaller and denser screen

when used with a finger.

Adjusting the Density
By default, the emulator keeps the pixel count accurate at the expense of density, which

is why you get the really big emulator window. You do have an option, though, of having

the emulator keep the density accurate at the expense of pixel count.

The easiest way to do this is to use the Android AVD Manager, introduced in Android

1.6. The Android 2.0 edition of this tool has a Launch Options dialog box that pops up

when you start an emulator instance via the Start button, as shown in Figure 25–2.

Figure 25–2. The Launch Options dialog box

CHAPTER 25: Handling Multiple Screen Sizes 265

By default, the “Scale display to real size” check box is unchecked, and Android will

open the emulator window normally. You can check that check box and then provide

two bits of scaling information:

 The screen size of the device you wish to emulate, in inches (e.g., 3.7

inches for the Motorola DROID)

 The dpi of your monitor (click the ? button to open a calculator that

helps you determine what your dpi value is)

This gives you an emulator window that more accurately depicts what your user

interface will look like on a physical device, at least in terms of sizes. However, since the

emulator is using far fewer pixels than will a device, fonts may be difficult to read,

images may be blocky, and so forth.

Ruthlessly Exploiting the Situation
So far, we have focused on how you can ensure that your layouts look decent on other

screen sizes. For screens that are smaller than the norm (e.g., QVGA), that is perhaps all

you can hope to achieve.

Once you get into larger screens, though, another possibility emerges: using different

layouts designed to take advantage of the extra screen space. This is particularly useful

when the physical screen size is larger (e.g., a 5-inch LCD like that on the Dell Streak

Android tablet, or a 7-inch LCD like that on the Samsung Galaxy Tab), rather than simply

having more pixels in the same physical space.

The following sections describe some ways you might take advantage of additional

space.

Replace Menus with Buttons
An options menu selection requires two physical actions: press the Menu button, and

then tap on the appropriate menu choice. A context menu selection requires two

physical actions as well: long-tap on the widget, and then tap on the menu choice.

Context menus have the additional problem of being effectively invisible; for example,

users may not realize that your ListView has a context menu.

You might consider augmenting your UI to provide direct onscreen ways of

accomplishing things that might otherwise be hidden away on a menu. This not only

reduces the number of steps a user needs to take to do things, but also makes those

options more obvious.

For example, suppose you are creating a media player application, and you want to offer

manual playlist management. You have an activity that displays the songs in a playlist in

a ListView. On an options menu, you have an Add choice, to add a new song from the

ones on the device to the playlist. On a context menu on the ListView, you have a

Remove choice, plus Move Up and Move Down choices to reorder the songs in the list.

For large screens, though, you might consider adding four ImageButton widgets to your

CHAPTER 25: Handling Multiple Screen Sizes 266

UI for these four options, with the three from the context menu enabled only when a row

is selected by the D-pad or trackball. On regular or small screens, you would stick with

just using the menus.

Replace Tabs with a Simple Activity
You may have introduced a TabHost into your UI to allow you to display more widgets in

the available screen space. As long as the widget space you save by moving them to a

separate tab is more than the space taken up by the tabs themselves, you win.

However, having multiple tabs means more user steps to navigate your UI, particularly if

the user needs to flip back and forth between tabs frequently.

If you have only two tabs, consider changing your UI to offer a large-screen layout that

removes the tabs and puts all the widgets on one screen. This enables the user to see

everything without having to switch tabs all the time.

If you have three or more tabs, you probably lack screen space to put all those tabs’

contents on one activity. However, you might consider going half and half: have popular

widgets be on the activity all of the time, leaving your TabHost to handle the rest on

(roughly) half of the screen.

Consolidate Multiple Activities
The most powerful technique is to use a larger screen to get rid of activity transitions

outright. For example, if you have a ListActivity where clicking on an item brings up

that item’s details in a separate activity, consider supporting a large-screen layout where

the details are on the same activity as the ListView (e.g., ListView on the left, details on

the right, in a landscape layout). This eliminates the user having to constantly press the

Back button to leave one set of details before viewing another.

You will see this technique applied in the sample code presented in the following

section.

Example: EU4You
To examine how to use some of the techniques introduced in the previous sections, let’s

look at the ScreenSizes/EU4You sample application. This application has one activity

(EU4You) that contains a ListView with the roster of European Union members and their

respective flags. Clicking on one of the countries brings up the mobile Wikipedia page

for that country.

In the source code to this book, you will find four versions of this application. We start

with an application that is ignorant of screen size and slowly add in more screen-related

features.

CHAPTER 25: Handling Multiple Screen Sizes 267

The First Cut
First, here is our AndroidManifest.xml file, which looks distinctly like the one shown

earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Note that we have included the <supports-screens> element, saying that we do indeed

support all screen sizes. This blocks most of the automatic scaling that Android would

do if we did not specify that we support certain screen sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4dip"
 />

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 25: Handling Multiple Screen Sizes 268

 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="20dip"
 />
</LinearLayout>

For example, right now, our font size is set to 20dip, which will not vary by screen size or

density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU members, so

we need to have the smarts to display the flag and the text in the row:

package com.commonsware.android.eu4you;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class EU4You extends ListActivity {
 static private ArrayList<Country> EU=new ArrayList<Country>();

 static {
 EU.add(new Country(R.string.austria, R.drawable.austria,
 R.string.austria_url));
 EU.add(new Country(R.string.belgium, R.drawable.belgium,
 R.string.belgium_url));
 EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
 R.string.bulgaria_url));
 EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
 R.string.cyprus_url));
 EU.add(new Country(R.string.czech_republic,
 R.drawable.czech_republic,
 R.string.czech_republic_url));
 EU.add(new Country(R.string.denmark, R.drawable.denmark,
 R.string.denmark_url));
 EU.add(new Country(R.string.estonia, R.drawable.estonia,
 R.string.estonia_url));
 EU.add(new Country(R.string.finland, R.drawable.finland,
 R.string.finland_url));
 EU.add(new Country(R.string.france, R.drawable.france,
 R.string.france_url));
 EU.add(new Country(R.string.germany, R.drawable.germany,
 R.string.germany_url));
 EU.add(new Country(R.string.greece, R.drawable.greece,
 R.string.greece_url));
 EU.add(new Country(R.string.hungary, R.drawable.hungary,
 R.string.hungary_url));

CHAPTER 25: Handling Multiple Screen Sizes 269

 EU.add(new Country(R.string.ireland, R.drawable.ireland,
 R.string.ireland_url));
 EU.add(new Country(R.string.italy, R.drawable.italy,
 R.string.italy_url));
 EU.add(new Country(R.string.latvia, R.drawable.latvia,
 R.string.latvia_url));
 EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
 R.string.lithuania_url));
 EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
 R.string.luxembourg_url));
 EU.add(new Country(R.string.malta, R.drawable.malta,
 R.string.malta_url));
 EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
 R.string.netherlands_url));
 EU.add(new Country(R.string.poland, R.drawable.poland,
 R.string.poland_url));
 EU.add(new Country(R.string.portugal, R.drawable.portugal,
 R.string.portugal_url));
 EU.add(new Country(R.string.romania, R.drawable.romania,
 R.string.romania_url));
 EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
 R.string.slovakia_url));
 EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
 R.string.slovenia_url));
 EU.add(new Country(R.string.spain, R.drawable.spain,
 R.string.spain_url));
 EU.add(new Country(R.string.sweden, R.drawable.sweden,
 R.string.sweden_url));
 EU.add(new Country(R.string.united_kingdom,
 R.drawable.united_kingdom,
 R.string.united_kingdom_url));
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setListAdapter(new CountryAdapter());
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(getString(EU.get(position).url))));
 }

 static class Country {
 int name;
 int flag;
 int url;

 Country(int name, int flag, int url) {
 this.name=name;
 this.flag=flag;
 this.url=url;

CHAPTER 25: Handling Multiple Screen Sizes 270

 }
 }

 class CountryAdapter extends ArrayAdapter<Country> {
 CountryAdapter() {
 super(EU4You.this, R.layout.row, R.id.name, EU);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 CountryWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row, null);
 wrapper=new CountryWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(CountryWrapper)convertView.getTag();
 }

 wrapper.populateFrom(getItem(position));

 return(convertView);
 }
 }

 class CountryWrapper {
 private TextView name=null;
 private ImageView flag=null;
 private View row=null;

 CountryWrapper(View row) {
 this.row=row;
 }

 TextView getName() {
 if (name==null) {
 name=(TextView)row.findViewById(R.id.name);
 }

 return(name);
 }

 ImageView getFlag() {
 if (flag==null) {
 flag=(ImageView)row.findViewById(R.id.flag);
 }

 return(flag);
 }

 void populateFrom(Country nation) {
 getName().setText(nation.name);
 getFlag().setImageResource(nation.flag);

CHAPTER 25: Handling Multiple Screen Sizes 271

 }
 }
}

Figures 25–3, 25–4, and 25–5 show what the activity looks like in an ordinary HVGA

emulator, a WVGA emulator, and a QVGA screen, respectively.

Figure 25–3. EU4You, original version, HVGA

Figure 25–4. EU4You, original version, WVGA (800 480 pixels)

CHAPTER 25: Handling Multiple Screen Sizes 272

Figure 25–5. EU4You, original version, QVGA

Fixing the Fonts
The first problem that should be fixed is the font size. As you can see, with a fixed 20-

pixel size, the font ranges from big to tiny, depending on screen size and density. For a

WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have different

versions of that resource based on screen size or density. However, it is simpler to just

specify a density-independent size, such as 5mm, as seen in the ScreenSizes/EU4You_2

project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4dip"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="5mm"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 25: Handling Multiple Screen Sizes 273

Figures 25–6, 25–7, and 25–8 show what the new activity looks like on HVGA, WVGA,

and QVGA screens, respectively.

Figure 25–6. EU4You, 5mm font version, HVGA

Figure 25–7. EU4You, 5mm font version, WVGA (800 480 pixels)

CHAPTER 25: Handling Multiple Screen Sizes 274

Figure 25–8. EU4You, 5mm font version, QVGA

Now our font is a consistent size and large enough to match the flags.

Fixing the Icons
So, what about those icons? They should vary in size as well, since they are the same

for all three emulators.

However, Android automatically scales bitmap resources, even with <supports-screens>

and its attributes set to true. On the plus side, this means you may not have to do

anything with these bitmaps. However, you are relying on a device to do the scaling,

which definitely costs CPU time (and, hence, battery life). Also, the scaling algorithms

that the device uses may not be optimal, compared to what you can do with graphics

tools on your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-ldpi and res/drawable-hdpi,

putting in smaller and larger renditions of the flags, respectively. This project also

renames res/drawable to res/drawable-mdpi. Android will use the flags for the

appropriate screen density, depending on what the device or emulator needs.

Because this effect is subtle and will not show up well in this book, screenshots aren’t

provided.

Using the Space
While the activity looks fine on WVGA in portrait mode, it really wastes a lot of space in

landscape mode, as shown in Figure 25–9.

CHAPTER 25: Handling Multiple Screen Sizes 275

Figure 25–9. EU4You, landscape WVGA (800 480 pixels)

We can put that to better use by having the Wikipedia content appear directly on the

main activity when in large-screen landscape mode; that saves having to spawn a

separate browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-land

rendition that incorporates a WebView widget, as seen in ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
 <WebView
 android:id="@+id/browser"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
</LinearLayout>

Then, we need to adjust our activity to look for that WebView and use it if found, and

otherwise to default to launching a browser activity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.browser);

 setListAdapter(new CountryAdapter());
}

@Override
protected void onListItemClick(ListView l, View v,

http://schemas.android.com/apk/res/android

CHAPTER 25: Handling Multiple Screen Sizes 276

 int position, long id) {
 String url=getString(EU.get(position).url);

 if (browser==null) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(url)));
 }
 else {
 browser.loadUrl(url);
 }
}

This gives us a more space-efficient edition of the activity, as shown in Figure 25–10.

Figure 25–10. EU4You, landscape WVGA (800 480 pixels), set for normal density, and showing the embedded
WebView

If the user clicks a link in the Wikipedia page, the full browser opens, for easier surfing.

Note that testing this version of the activity, to see this behavior, requires a bit of extra

emulator work. By default, Android sets up WVGA devices as being high-density,

meaning WVGA is not large in terms of resource sets, but rather normal. You will need to

create a different emulator AVD that is set for normal (medium) density, which will result

in a large screen size.

What If It Is Not a Browser?
Of course, EU4You does cheat a bit. The second activity is a browser (or WebView in the

embedded form), not some activity of your own creation. Things get slightly more

complicated if the second activity is some activity of yours, with many widgets in a

layout, and you want to both use it as an activity (for smaller screens) and have it

embedded in your main activity UI (for larger screens).

CHAPTER 25: Handling Multiple Screen Sizes 277

The best way to approach this problem, for Android 1.6 and newer, is to employ the new

fragments system. Although this was introduced with Android 3.0, the Android

Compatibility Library makes fragments available in earlier versions of Android. The basic

use of fragments—complete with another edition of the EU4You sample—will be covered

later in this book.

r

 Part

Honeycomb and Tablets

III

 281

 Chapter

Introducing the
Honeycomb UI
February 2011 saw the introduction of Android 3.0 and a UI paradigm that, for now, we

will refer to by the Android 3.0 codename, Honeycomb. Android 3.0 itself is exclusively

targeted at tablets, though elements of the Honeycomb UI system will make it into future

versions of Android that support phones as well. The Honeycomb UI is perhaps the

biggest single change in Android since Android 0.9, before the first phones were

available. The impacts of Honeycomb will resound throughout the Android ecosystem

for a long time as people adjust to make use of its features.

Leading off a series of chapters on the Honeycomb capabilities, this chapter is focused

more on the big picture of Honeycomb and its place within Android.

Why Honeycomb?
In principle, Android’s original phone-centric UI can run on tablets. After all, a few tablets

shipped with Android 2.2 support, such as the Samsung Galaxy Tab. Clearly, those

manufacturers thought the Android of the time was strong enough for their tablet

devices.

That being said, as you get into larger tablets (e.g., the Motorola XOOM with its 10-inch

diagonal screen), the Android phone UI starts to become clunkier. Although applications

can scale up to use the larger screen, the default way to scale up is just to make

everything bigger, frequently resulting in a lot of wasted space. Whereas an e-mail client

on a phone might dedicate an activity to showing the list of e-mails in the inbox, an e-

mail client on a tablet really ought to show the list of e-mails plus something else, such

as the content of a selected e-mail. We have the room, so we may as well use it.

Similarly, the dependence on menus, while reasonable on a phone, makes less sense on

a tablet. We have the space to show more of those functions right on the screen. Hiding

them in menus makes them less discoverable to users and requires extra taps to

access.

26

CHAPTER 26: Introducing the Honeycomb UI 282

So, Honeycomb is designed to retain the essence of the Android user experience, while

allowing applications to (relatively) gracefully take advantage of the space that is

available.

What the User Sees
An Android 3.0 screen looks a bit different from an Android 2.x screen, as shown in

Figure 26–1.

Figure 26–1. The Android 3.0 app launcher, as seen on the emulator

The status bar at the top of the screen has been moved to the bottom of the screen and

is now called the system bar. On the left end of the system bar are onscreen buttons for

Back, Home, and recent tasks (which formerly would take a long-press of the Home

button). Notification icons appear on the right, along with the clock and the signal and

battery strength indicators (the concept of notifications will be covered later in this

book).

The UI of an application that has not been optimized for Android 3.x appears much the

same, as shown in Figure 26–2.

CHAPTER 26: Introducing the Honeycomb UI 283

Figure 26–2. The FancyLists/Dynamic sample project, on Android 3.0

The only substantive difference is the new icon in the system bar, which will open an

Android 2.x options menu, if the application has one.

Android 3.0-optimized applications will look a bit different, as shown in Figure 26–3.

Figure 26–3. Adding a contact on Android 3.0

At the top of the screen is the action bar. The action bar largely replaces options menus,

though you define the action bar in the same way as you define an options menu. In

Figure 26–3, Done and Cancel are the first two options menu choices. The icon to the

CHAPTER 26: Introducing the Honeycomb UI 284

right of them represents other options menu choices, which appear when the user taps

that icon, as shown in Figure 26–4.

Figure 26–4. The options menu portion (right side) of the action bar in Android 3.0

The icon on the left end of the action bar is tappable, and in this case takes the user up

in the hierarchy of actions in this application, as indicated by the northwest-pointing

arrowhead. In this case, going “up” from adding a new contact takes you to the list of

existing contacts, as shown in Figure 26–5.

Figure 26–5. The roster of available contacts as displayed in Android 3.0

CHAPTER 26: Introducing the Honeycomb UI 285

In Android 2.x, the contacts UI would have one activity with the list of contacts, and a

separate activity to view the details of that contact. In Android 3.0, these are combined

into a single activity. In the future, when the Honeycomb UI is applied to phones, the

same code base will revert to the one-activity-per-operation mode. This is accomplished

through the use of fragments, which will be covered later in this book.

Figure 26–6. The contact filter spinner in Android 3.0

To the right of “All contacts” is a “Find contacts” search field, built into the action bar.

Also, the menu items on the right side of the action bar now represent a mix of options

menu items (e.g., add a new contact) and context menu items for the selected contact

(e.g., edit the contact).

Functionally, everything is there that you would see in Android 2.x. It has been

reorganized for Android 3.x, with an emphasis on taking formerly hidden things like

menus and adding them to the main screen for ease of discovery and use.

The Holographic Theme
Android applications that are updated for Android 3.0 will have a different look and feel,

not only for the activity as a whole, but for individual widgets. The so-called Holographic

theme is applied by default to Honeycomb-capable applications. This can have some

significant impact on the way widgets look. While they work the same, they look

different, so you may want to update documentation and such to show the classic

theme as well as the new Holographic look.

For example, the “All contacts” item in the action bar of Figure 26–6 is a Spinner, one

that opens to show the available options. The former pop-up dialog box for choosing the

Spinner value is gone, replaced by a true drop-down menu.

CHAPTER 26: Introducing the Honeycomb UI 286

Similarly, tabs, as implemented with TabWidget, will look substantially different, as

shown in Figure 26–7.

Figure 26–7. The Fancy/DynamicTabs sample application, updated for Android 3.0

If you are creating your own custom styles, there are two that you will want to consider

inheriting from:

 Theme.Holo is the standard dark Holographic theme (dark background,

light text).

 Theme.Holo.Light is the light equivalent (light background, dark text).

Dealing with the Rest of the Devices
Of course, all the Android phones in the world haven’t up and vanished just because

Android 3.0 has been released. The goal is for you to create an application that supports

both phones and tablets from a single code base.

Your phone-centric app will run just fine on a tablet, though you may wish to do some

things to take advantage of larger screen sizes, as was discussed earlier in this book. If

you want to adopt the general look and feel of the Honeycomb UI, you will need to

include android:targetSdkVersion="11" in your <uses-sdk> element in the manifest.

Also, if you want the gradient background for your Honeycomb activities, add the

android:hardwareAccelerated="true" attribute to the <application> or <activity>

elements in the manifest to turn on hardware acceleration for 2D graphics. For example,

from the ScreenSizes/EU4You_5 sample project, here is the AndroidManifest.xml file,

showing both of these changes:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

CHAPTER 26: Introducing the Honeycomb UI 287

 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET" />
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw"
 android:hardwareAccelerated="true">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The resulting application works fine on older devices, but with no other changes, we get

the result shown in Figure 26–8 on a Motorola XOOM.

Figure 26–8. The EU4You sample application, lightly updated for Android 3.0

If you want to take advantage of some of the newer features described in this set of

Honeycomb chapters, you will also need to think about backward compatibility, to make

sure that what you implement in your application will work successfully on both newer

and older versions of Android. This topic is also covered later in this book.

CHAPTER 26: Introducing the Honeycomb UI 288

If you have resources, such as styles, that need to be version-specific, you can use the -
v11 resource set suffix. For example, you could have a res/values/styles.xml and a

res/values-v11/styles.xml—the latter would be used on Honeycomb, and the former

would be used on older versions of Android. But first, you need to explore all the

Honeycomb UI features that you can take advantage of, which is the point of the next

few chapters.

289

 Chapter

Using the Action Bar
One of the easiest ways to make your application blend in better with the Honeycomb UI

is to enable the action bar, introduced in Chapter 26. What makes it “easy” is that most

of the basic functionality of the action bar is backward compatible—the Honeycomb

settings will not cause the application to crash on earlier versions of Android.

The sample project shown in this chapter is Menus/ActionBar, which extends the

Menus/Inflation project shown in a previous chapter.

Enabling the Action Bar
By default, your Android application will not use the action bar. In fact, it will not even be

displayed on the screen. If you want the action bar to appear on the screen, you need to

include android:targetSdkVersion="11" in your <uses-sdk> element in the manifest,

such as the manifest for the Menus/ActionBar project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw"
 android:hardwareAccelerated="true">
 <activity android:name=".InflationDemo" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
 <supports-screens android:xlargeScreens="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"/>
</manifest>

27

http://schemas.android.com/apk/res/android

CHAPTER 27: Using the Action B 290

This will cause your options menu to appear in the upper-right corner of the screen,

under a menu icon in the action bar, as shown in Chapter 26. Also, your activity’s icon

will appear in the upper-left corner, with your activity’s name (from the android:label

attribute in the manifest) alongside of it.

While this gives you the basic Honeycomb look and feel—including the Honeycomb-

themed widgets, such as the new Spinner with the southeast-pointing arrowhead—it

does not really change the user experience all that much.

Promoting Menu Items to the Action Bar
The next step for integrating with the action bar is to promote certain options menu

items from being part of the options menu to being always visible on the action bar

itself. This makes them easier to find and saves the user a tap when the time comes to

use them.

To do this, in your menu XML resource, you can add the android:showAsAction attribute

to an <item> element. A value of ifRoom means that the menu item will appear in the

action bar if there is space for it, while a value of always means that the menu item will

always be put in the action bar. All else being equal, ifRoom is the better choice, as it will

adapt better to smaller screens, once the Honeycomb UI moves onto phones. You can

also combine this with the withText value (e.g., ifRoom|withText) to make the title of the

menu item appear adjacent to the item’s icon (otherwise, only the icon appears in the

action bar).

For example, the Menus/ActionBar project’s options.xml menu resource has

android:showAsAction on the first two menu items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add"
 android:actionLayout="@layout/add"
 android:showAsAction="ifRoom"/>
 <item android:id="@+id/reset"
 android:title="Reset"
 android:icon="@drawable/ic_menu_refresh"
 android:showAsAction="ifRoom|withText"/>
 <item android:id="@+id/about"
 android:title="About"
 android:icon="@drawable/ic_menu_info_details" />
</menu>

The second menu item, Reset—for resetting the contents of the list—is a normal “with

text” action bar button. The first menu item, Add, does something a bit different, which

we will examine later in this chapter. The fact that the third menu item, About, does not

have android:showAsAction means that it will remain in the menu, even if there is room

in the action bar.

http://schemas.android.com/apk/res/android

CHAPTER 27: Using the Action B 291

Note that the Java code does not change—onCreateOptionsMenu() and

onOptionsItemSelected() for our InflationDemo activity do not need to be adjusted

because menu items are promoted into the action bar via the menu XML resource alone.

Responding to the Logo
The activity icon in the upper-left corner of the screen is tappable. If the user taps it, it

triggers onOptionsItemSelected()...but not for one of the options menu items you may

have defined yourself. Rather, the magic value of android.R.id.home is used. In the

Menus/ActionBar project, we wire it to the same code that is invoked if the user chooses

the About options menu item—displaying a Toast:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.add:
 add();
 return(true);

 case R.id.reset:
 initAdapter();
 return(true);

 case R.id.about:
 case android.R.id.home:
 Toast
 .makeText(this,
 "Action Bar Sample App",
 Toast.LENGTH_LONG)
 .show();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

In a project with multiple activities, though, the expectation is that tapping the logo will

take you to the “home” activity for the application, whatever that might mean.

Adding Custom Views to the Action Bar
You can do more with the action bar than simply convert options menu items into what

amount to toolbar buttons. You can add your own custom UI to the action bar. In the

case of Menus/ActionBar, we’ll replace the Add menu choice and resulting dialog box

with an Add field right in the action bar itself.

This, however, is a bit tricky to implement, as described next.

CHAPTER 27: Using the Action B 292

Defining the Layout
To put something custom in the action bar, we need to define what the “something

custom” is, in the form of a layout XML file. Fortunately, we already have a layout XML

file for adding a word to the list—it is the one that the Menus/Inflation sample wrapped

in a custom AlertDialog for when the Add options menu item was tapped. That original

layout looked like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:text="Word:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <EditText
 android:id="@+id/title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 />
</LinearLayout>

We need to make some minor adjustments to this layout to use it for the action bar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:text="Word:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="@android:style/TextAppearance.Medium"
 />
 <EditText
 android:id="@+id/title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 android:width="160sp"
 android:inputType="text"
 android:imeActionId="1337"
 android:imeOptions="actionDone"
 />
</LinearLayout>

Specifically, we made these minor adjustments:

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 27: Using the Action B 293

 We added an android:textAppearance attribute to the TextView

representing our Add caption. The android:textAppearance attribute

allows us to define the font type, size, color, and weight (e.g., bold) in

one shot. We specifically used a magic value of

@android:style/TextAppearance.Medium so that the caption matches

the styling of the Reset label on the other menu item we promoted to

the action bar.

 We specified android:width="160sp" for the EditText widget, because

android:layout_width="fill_parent" is ignored in the action bar—

otherwise, we would take up the rest of the bar.

 We specified android:inputType="text" on the EditText widget,

which, among other things, restricts us to a single line of text.

 We specified android:imeActionId and android:imeOptions on the

EditText widget to control the action button of the soft keyboard, so

we get control when the user presses the Enter key on the soft

keyboard.

Putting the Layout in the Menu
Next, we need to teach Android to use this layout for our Add options menu item if we

are running on Honeycomb. To do this, we use the android: actionLayout attribute on

our <item> element, referencing our layout resource (@layout/add), as was shown earlier

in this chapter. This attribute will be ignored on earlier versions of Android, so it is safe

to use.

If we did nothing else, we would get the desired UI, shown in Figure 27–1.

Figure 27–1. The Menus/ActionBar sample application

CHAPTER 27: Using the Action B 294

However, while the user could type something in, we have no way to find out what they

type in, when they are done, and so forth.

Getting Control of User Input
Given our soft keyboard settings we put on the EditText widget, we can arrange to find

out when the user presses the Enter key either on the soft keyboard or on a hardware

keyboard. To do that, though, we need to get our hands on the EditText widget itself.

You might think it is added when the UI is inflated in onCreate()...but you would be

mistaken.

In a Honeycomb environment, with an action bar, onCreateOptionsMenu() is called after

onCreate() as part of setting up the UI. On classic versions of Android,

onCreateOptionsMenu() would not be called until the user pressed the Menu button. But,

since some of the options menu items might be promoted into the action bar, Android

calls onCreateOptionsMenu() automatically now. The EditText will exist after we inflate

our options.xml menu resource.

However, the best way to get the EditText is not to use findViewById() on the activity.

Rather, we should call getActionView() on the MenuItem associated with our Add option.

This will return the root of the view hierarchy inflated from the layout resource we

defined in the android:actionLayout attribute in the menu resource. In this case, that is

the LinearLayout from res/layout/add.xml, so we need to call findViewById() on it to

get the EditText:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 EditText add=(EditText)menu
 .findItem(R.id.add)
 .getActionView()
 .findViewById(R.id.title);

 add.setOnEditorActionListener(onSearch);

 return(super.onCreateOptionsMenu(menu));
}

Then, we can call setOnEditorActionListener() on the EditText, to register an

OnEditorActionListener object that will get control when the user presses Enter on the

hard or soft keyboard:

private TextView.OnEditorActionListener onSearch=
 new TextView.OnEditorActionListener() {
 public boolean onEditorAction(TextView v, int actionId,
 KeyEvent event) {
 if (event==null || event.getAction()==KeyEvent.ACTION_UP) {
 addWord(v);

 InputMethodManager imm=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

CHAPTER 27: Using the Action B 295

 imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
 }

 return(true);
 }
};

That in turn calls an addWord() method, supplying the EditText, which adds the word to

the list via the ArrayAdapter:

private void addWord(TextView title) {
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

 adapter.add(title.getText().toString());
}

That same addWord() method can also be used from the add() method that displays the

AlertDialog, even though that will not be used on a Honeycomb tablet, since the Add

menu choice no longer exists as a menu choice:

private void add() {
 final View addView=getLayoutInflater().inflate(R.layout.add, null);

 new AlertDialog.Builder(this)
 .setTitle("Add a Word")
 .setView(addView)
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 addWord((TextView)addView.findViewById(R.id.title));
 }
 })
 .setNegativeButton("Cancel", null)
 .show();
}

The net result is that when the user types something in the Add field and presses the

Enter key, the word is added to the bottom of the list. This saves some taps over the

phone UI, as the user does not have to open the options menu, does not have to tap the

options menu item, and does not have to tap a button on the dialog box.

Note that our OnEditorActionListener does something more than simply add the word

to the list: it hides the soft keyboard. It does this using the InputMethodManager, as was

seen in a previous chapter.

Don’t Forget the Phones!
With the exception of the custom view feature described in the preceding section,

everything shown in this chapter regarding the action bar is automatically backward

compatible. The code and resources that work on Honeycomb-flavored versions of

Android will work on classic versions of Android unmodified.

CHAPTER 27: Using the Action B 296

If, however, you want to use the custom view feature, you have a problem—the

getActionView() method is new to API Level 11 and will be unavailable on older

versions of Android. This means you will need to compile for API Level 11 (e.g., set your

Eclipse target or Ant default.properties to reference android-11), and you will need to

take steps to avoid calling getActionView() on older devices. We will explore how to pull

off this feat in a later chapter.

297

 Chapter

Fragments
Perhaps the largest change in Android 3.0 facing Android developers is the introduction

of the fragment system. This is an optional layer you can put between your activities and

your widgets, designed to help you reconfigure your activities to support screens both

large (e.g., tablets) and small (e.g., phones). However, the fragment system also adds an

extra layer of complexity, one that will take the Android developer community some time

to adjust to. Hence, for the time being, you will find few blog posts or sample apps using

fragments because they were introduced so long after Android itself was.

This chapter covers basic uses of fragments, including supporting fragments on pre-

Android 3.0 devices.

Introducing Fragments
Fragments are not widgets, like Button or EditText.

Fragments are not containers, like LinearLayout or RelativeLayout.

Fragments are not activities.

Rather, fragments aggregate widgets and containers. Fragments then can be placed

into activities—sometimes several fragments for one activity, sometimes one fragment

per activity.

And the reason for this is the variation in Android screen sizes.

The Problem Addressed by Fragments
A tablet has a larger screen than does a phone. A TV has a larger screen than does a tablet.

Taking advantage of that extra screen space makes sense, as outlined in Chapter 25, which

explained how to handle multiple screen sizes. In that chapter, we profiled an EU4You

sample application, eventually winding up with an activity that would load in a different

layout for larger-sized screens, one that had an embedded WebView widget. The activity

would detect that widget’s existence and use it to load web content related to a

28

CHAPTER 28: Fragments 298

selected country, rather than launching a separate browser activity or some activity

containing only a WebView.

However, the scenario outlined in Chapter 25 was fairly trivial. Imagine that, instead of a

WebView, we have a TableLayout containing 28 widgets. On larger-sized screens, we

want the TableLayout in the same activity as an adjacent ListView; on smaller screens,

we want the TableLayout to be in a separate activity, since there would not be enough

room otherwise. To do this using pre-Honeycomb technology, we would either need to

duplicate all of the TableLayout-handling logic in both activities, or create an activity

base class and hope they can both inherit from it, or turn the TableLayout and its

contents into a custom ViewGroup, or something. And that would just be for one such

scenario—multiply that by many activities in a larger application, and the complexity

mounts.

The Fragments Solution
Fragments reduce, but do not eliminate, that complexity.

With fragments, each discrete chunk of user interface that could be used in multiple

activities (based on screen size) goes in a fragment. The activities in question determine,

based on screen size, who gets the fragment.

In the case of EU4You, we have two fragments. One fragment represents the list of

countries. The other fragment represents the details for that country (in our case, a

WebView). On a larger-screen device, we want both fragments to be in one activity, while

on a smaller-screen device, we will house those fragments in two separate activities.

This provides to users with larger screens the same benefits they got with the last

version of EU4You: getting more information in fewer clicks. Yet the techniques we

demonstrate with fragments will be more scalable, able to handle more complex UI

patterns than the simple WebView-or-not scenario of EU4You.

In this case, our entire UI will be inside of fragments. That is not necessary. Fragments

are an opt-in technology—you need them only for the parts of your UI that could appear

in different activities in different scenarios. In fact, your activities that do not change at

all (say, a help screen) might not use fragments whatsoever.

Fragments also give us a few other bells and whistles, including the following:

 Capability to add fragments dynamically based on user interaction: For

example, the Gmail application initially shows a ListFragment of the

user’s mail folders. Tapping a folder adds a second ListFragment to

the screen, showing the conversations in that folder. Tapping a

conversation adds a third Fragment to the screen, showing the

messages in that conversation.

CHAPTER 28: Fragments 299

Capability to animate dynamic fragments as they move on and off the
screen: For example, when the user taps a conversation in Gmail, the

folders ListFragment slides off the screen to the left, the conversations

ListFragment slides left and shrinks to take up less room, and the

messages Fragment slides in from the right.

Automatic Back button management for dynamic fragments: For

example, when the user presses Back while viewing the messages

Fragment, that Fragment slides off to the right, the conversations

ListFragment slides right and expands to fill more of the screen, and

the folders ListFragment slides back in from the left. None of that has

to be managed by developers—simply adding the dynamic fragment

via a FragmentTransaction allows Android to automatically handle the

Back button, including reversing all animations.

Capability to add options to the options menu, and therefore to the
action bar: Call setHasOptionsMenu() in onCreate() of your fragment to

register an interest in this, and then override onCreateOptionsMenu()
and onOptionsItemSelected() in the fragment the same way you might

in an activity. A fragment can also register widgets to have context

menus, and handle those context menus the same way as an activity

would.

Capability to add tabs to the action bar: The action bar can have tabs,

replacing a TabHost, where each tab’s content is a fragment. Similarly,

the action bar can have a navigation mode, with a Spinner to switch

between modes, where each mode is represented by a fragment.

The Android Compatibility Library
If fragments were available only for Android 3.0 and higher, we would be right back

where we started, as not all Android devices today run Android 3.0 and higher.

However, this is not the case, because Google has released the Android Compatibility

Library (ACL), which is available via the Android SDK and AVD Manager (where you

install the other SDK support files, create and start your emulator AVDs, and so forth).

The ACL gives you access to the fragment system on versions of Android going back to

Android 1.6. Since the vast majority of Android devices are running 1.6 or higher, this

allows you to start using fragments while maintaining backward compatibility. Over time,

this library may add other features to help with backward compatibility, for applications

that wish to use it.

The material in this chapter focuses on using the ACL when employing fragments.

Generally speaking, using the ACL for fragments is almost identical to using the native

Android 3.0 fragment classes directly.

CHAPTER 28: Fragments 300

Since the ACL only supports versions back to Android 1.6, Android 1.5 devices will not

be able to use fragment-based applications. This is a very small percentage of the

Android device spectrum at this time—3 percent as of the time of this writing.

Creating Fragment Classes
The first step toward setting up a fragment-based application is to create fragment

classes for each of your fragments. Just as you inherit from Activity (or a subclass) for

your activities, you inherit from Fragment (or a subclass) for your fragments.

Here, we will examine the Fragments/EU4You_6 sample project and the fragments that it

defines.

NOTE: The convention of this book will be to use “fragment” as a generic noun and Fragment

to refer to the actual Fragment class.

General Fragments
Besides inheriting from Fragment, the only thing required of a fragment is to override

onCreateView(). This will be called as part of putting the fragment on the screen. You

need to return a View that represents the body of the fragment. Most likely, you will

create your fragment’s UI via an XML layout file, and onCreateView() will inflate that

fragment layout file.

For example, here is DetailsFragment from EU4You_6, which will wrap around our

WebView to show the web content for a given country:

import android.support.v4.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.webkit.WebView;

public class DetailsFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(R.layout.details_fragment, container, false));
 }

 public void loadUrl(String url) {
 ((WebView)(getView().findViewById(R.id.browser))).loadUrl(url);
 }
}

Note that we are inheriting not from android.app.Fragment but from

android.support.v4.app.Fragment. The latter is the Fragment implementation from the

ACL, so it can be used across Android versions.

CHAPTER 28: Fragments 301

The onCreateView() implementation inflates a layout that happens to have a WebView in it:

<?xml version="1.0" encoding="utf-8"?>
<WebView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/browser"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

It also exposes a loadUrl() method, to be used by a hosting activity both to tell the

fragment that it is time to display some web content and to supply the URL for doing the

same. The implementation of loadUrl() in DetailsFragment uses getView() to retrieve

the View created in onCreateView(), finds the WebView in it, and delegates the loadUrl()

call to the WebView.

There are a myriad of other lifecycle methods available on Fragment. The more important

ones include mirrors of the standard

onCreate(),onStart(),onResume(),onPause(),onStop(), and onDestroy() methods of an

activity. Since the fragment is the one with the widgets, it will implement more of the

business logic that formerly might have resided in the activity for these methods. For

example, in onPause() or onStop(), since the user may not be returning to your

application, you may wish to save any unsaved edits to some temporary storage. In the

case of DetailsFragment, there was nothing that really qualified here, so those lifecycle

methods were left alone.

ListFragment
One Fragment subclass that is sure to be popular is ListFragment. This wraps a ListView

in a Fragment, designed to simplify setting up lists of things such as countries, mail

folders, mail conversations, and so forth. Similar to a ListActivity, all you need to do is

call setListAdapter() with your chosen and configured ListAdapter, plus override

onListItemClick() to respond to when the user clicks on a row in the list.

In EU4You_6, we have a CountriesFragment that represents the list of available countries.

It initializes the ListAdapter in onActivityCreated(), which is called after onCreate()

has wrapped up in the activity that holds the fragment:

@Override
public void onActivityCreated(Bundle state) {
 super.onActivityCreated(state);

 setListAdapter(new CountryAdapter());

 if (state!=null) {
 int position=state.getInt(STATE_CHECKED, -1);

 if (position>-1) {
 getListView().setItemChecked(position, true);
 }
 }
}

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments 302

The code dealing with the Bundle supplied to onCreate() will be explained a bit later in

this chapter.

The CountryAdapter is nearly identical to the one from previous EU4You samples, except

that there is no getLayoutInflater() method on a Fragment, so we have to use the

static from() method on LayoutInflater and supply our activity via getActivity():

class CountryAdapter extends ArrayAdapter<Country> {
 CountryAdapter() {
 super(getActivity(), R.layout.row, R.id.name, EU);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 CountryWrapper wrapper=null;

 if (convertView==null) {
 convertView=LayoutInflater
 .from(getActivity())
 .inflate(R.layout.row, null);
 wrapper=new CountryWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(CountryWrapper)convertView.getTag();
 }

 wrapper.populateFrom(getItem(position));

 return(convertView);
 }
}

Similarly, the CountryWrapper is no different from previous EU4You samples:

static class CountryWrapper {
 private TextView name=null;
 private ImageView flag=null;
 private View row=null;

 CountryWrapper(View row) {
 this.row=row;
 name=(TextView)row.findViewById(R.id.name);
 flag=(ImageView)row.findViewById(R.id.flag);
 }

 TextView getName() {
 return(name);
 }

 ImageView getFlag() {
 return(flag);
 }

 void populateFrom(Country nation) {

CHAPTER 28: Fragments 303

 getName().setText(nation.name);
 getFlag().setImageResource(nation.flag);
 }
}

The list of countries is the same as well:

static {
 EU.add(new Country(R.string.austria, R.drawable.austria,
 R.string.austria_url));
 EU.add(new Country(R.string.belgium, R.drawable.belgium,
 R.string.belgium_url));
 EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
 R.string.bulgaria_url));
 EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
 R.string.cyprus_url));
 EU.add(new Country(R.string.czech_republic,
 R.drawable.czech_republic,
 R.string.czech_republic_url));
 EU.add(new Country(R.string.denmark, R.drawable.denmark,
 R.string.denmark_url));
 EU.add(new Country(R.string.estonia, R.drawable.estonia,
 R.string.estonia_url));
 EU.add(new Country(R.string.finland, R.drawable.finland,
 R.string.finland_url));
 EU.add(new Country(R.string.france, R.drawable.france,
 R.string.france_url));
 EU.add(new Country(R.string.germany, R.drawable.germany,
 R.string.germany_url));
 EU.add(new Country(R.string.greece, R.drawable.greece,
 R.string.greece_url));
 EU.add(new Country(R.string.hungary, R.drawable.hungary,
 R.string.hungary_url));
 EU.add(new Country(R.string.ireland, R.drawable.ireland,
 R.string.ireland_url));
 EU.add(new Country(R.string.italy, R.drawable.italy,
 R.string.italy_url));
 EU.add(new Country(R.string.latvia, R.drawable.latvia,
 R.string.latvia_url));
 EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
 R.string.lithuania_url));
 EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
 R.string.luxembourg_url));
 EU.add(new Country(R.string.malta, R.drawable.malta,
 R.string.malta_url));
 EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
 R.string.netherlands_url));
 EU.add(new Country(R.string.poland, R.drawable.poland,
 R.string.poland_url));
 EU.add(new Country(R.string.portugal, R.drawable.portugal,
 R.string.portugal_url));
 EU.add(new Country(R.string.romania, R.drawable.romania,
 R.string.romania_url));
 EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
 R.string.slovakia_url));
 EU.add(new Country(R.string.slovenia, R.drawable.slovenia,

CHAPTER 28: Fragments 304

 R.string.slovenia_url));
 EU.add(new Country(R.string.spain, R.drawable.spain,
 R.string.spain_url));
 EU.add(new Country(R.string.sweden, R.drawable.sweden,
 R.string.sweden_url));
 EU.add(new Country(R.string.united_kingdom,
 R.drawable.united_kingdom,
 R.string.united_kingdom_url));
}

...as is the definition of a Country, from a separate public class:

public class Country {
 int name;
 int flag;
 int url;

 Country(int name, int flag, int url) {
 this.name=name;
 this.flag=flag;
 this.url=url;
 }
}

Persistent Highlight
One thing leaps out at you when you use fragment-based applications like Gmail. When

you tap on a row in a list, and another fragment is shown (or updated) within the same

activity, the row you tapped remains highlighted. This runs counter to the traditional use

of a ListView, where the list selector is present only when using a D-pad, trackball, or

similar pointing device. The purpose is to show the user the context of the adjacent

fragment.

The actual implementation differs from what you might expect.

These ListView widgets are actually implementing CHOICE_MODE_SINGLE, what normally

would be rendered using a RadioButton along the right side of the rows. In a

ListFragment, though, the typical styling for a single-choice ListFragment is via an

“activated” background.

In EU4You_6, this is handled via the row layout (res/layout/row.xml) used by our

CountryAdapter:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
 style="@style/activated"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments 305

 android:paddingRight="4dip"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="5mm"
 />
</LinearLayout>

Notice the style attribute, pointing to an activated style. That is defined by EU4You_6 as

a local style, versus one provided by the operating system. In fact, it has to have two

implementations of the style, because the “activated” concept is new to Android 3.0 and

cannot be used in previous versions of Android.

So, EU4You_6 has res/values/styles.xml with a backward-compatible empty style:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated">
 </style>
</resources>

It also has res/values-v11/styles.xml. The -v11 resource set suffix means that this will

be used only on API Level 11 (Android 3.0) and higher. Here, the style inherits from the

standard Android Holographic theme and uses the standard activated background

color:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

In CountriesFragment, the activity will let us know if CountriesFragment appears

alongside DetailsFragment—therefore requiring single-choice mode—via a

enablePersistentSelection() method:

public void enablePersistentSelection() {
 getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
}

Also, in onListItemClick(),CountriesFragment “checks” the row the user clicked upon,

thereby enabling the persistent highlight:

@Override
public void onListItemClick(ListView l, View v, int position,
 long id) {
 l.setItemChecked(position, true);

 if (listener!=null) {
 listener.onCountrySelected(EU.get(position));
 }
}

CHAPTER 28: Fragments 306

The listener object and call to onCountrySelected() will be explained later in this

chapter.

Other Fragment Base Classes
The ACL has one other subclass of Fragment: DialogFragment. This is used to help

coordinate between a modal Dialog and a fragment-based UI.

Android 3.0 itself has two more subclasses of Fragment, which are not available in the

ACL as of the time of this writing:

 PreferenceFragment: For use in the new Honeycomb-style

PreferenceActivity (covered in a later chapter)

 WebViewFragment: A Fragment wrapped around a WebView

Fragments, Layouts, Activities, and Multiple Screen
Sizes
Having some fragment classes and their accompanying layouts is all well and good, but

we need to hook them up to activities and get them on the screen. Along the way, we

have to think about dealing with multiple screen sizes, much like we went with the

WebView-or-browser approach with the previous version of the EU4You sample.

In Android 3.0 and higher, any activity can host a fragment. However, for the ACL, you

need to inherit from FragmentActivity to use fragments. This limitation of the ACL

definitely causes challenges, particularly if you were aiming to put a map in a fragment, a

topic we will discuss later in this book. Other activity base classes pose less of an

issue—ListActivity would be replaced by ListFragment, for example.

Fragments can be added in either of two ways to an activity:

 You can define them via <fragment> elements in the activity’s layout.

These fragments are fixed and will always exist for the lifetime of this

activity instance.

 You can add them on-the-fly via FragmentManager and a

FragmentTransaction. This gives you more flexibility, but adds a

degree of complexity. This technique is not covered in this book.

One big limitation of dealing with multiple screen sizes is that the layouts need to have

the same starting fragments for any configuration change. So, a small-screen version of

an activity and a large-screen version of an activity can have different mixes of

fragments, but a portrait layout and a landscape layout for the same screen size must

have the same fragments defined. Otherwise, when the screen is rotated, Android will

have problems, trying to work with a fragment that does not exist, for example.

CHAPTER 28: Fragments 307

We also need to work out communications between our fragments and our activities.

The activities define what fragments they hold, so they typically know which classes

implement those fragments and can call methods on them directly. The fragments,

though, only know that they are hosted by some activity, and that activity may differ

from case to case. Hence, the typical pattern is to use interfaces for fragment-to-activity

communication:

 Define an interface for the methods that the fragment will want to call

on its activity (or some other object supplied by that activity).

 The activity provides an implementation of that interface via some

setter method on the fragment when the fragment is created.

 The fragment uses that interface implementation as needed.

We will see all of this as we work through the EU4You_6 activities and their corresponding

layouts.

EU4You
In the earlier versions of the EU4You project, we had only one activity, also named

EU4You. In EU4You_6, though, we have two activities:

 EU4You: Handles displaying the CountriesFragment in all screen sizes,

plus the DetailsFragment on larger screens

 DetailsActivity: Hosts the DetailsFragment on smaller screens

While we could probably get away with having EU4You launch the browser activity for

smaller screens, rather than have a DetailsActivity host a WebView-only

DetailsFragment, the latter approach is more realistic for more fragment-based

applications.

With that in mind, let’s take a look at the pieces of the EU4You activity.

The Layout
For normal-screen devices, we want to display only the CountriesFragment. That is

accomplished via res/layout/main.xml just having the appropriate <fragment> element:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="com.commonsware.android.eu4you.CountriesFragment"
 android:id="@+id/countries"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

The class attribute indicates what Java class implements the fragment. Otherwise, this

layout is unremarkable.

Note that fragments do not get listed in the manifest file the way activities do.

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments 308

The Other Layout
For large-screen devices, in the landscape mode, we want to have both the

CountriesFragment and the DetailsFragment, side by side. That way, users can tap on a

country and view the details without flipping back and forth between activities. It also

enables us to take advantage of the screen space better.

However, there is a catch. If we want to predefine those two fragments in our layout file,

we have to use that same pair of fragments for both landscape and portrait modes—

despite the fact that we do not want to use the DetailsFragment in EU4You in portrait

mode (having a list vertically stacked over the WebView would be odd looking, at best).

As a workaround, we will use the same layout file for both orientations and then make

adjustments in our Java code. Another approach to the problem would be to have the

layout file only have the CountriesFragment and to use FragmentManager and a

FragmentTransaction to add in the DetailsFragment. Here, though, we will use other

tricks.

Hence, in res/layout-large/ (not res/layout-large-land/), we have this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <fragment class="com.commonsware.android.eu4you.CountriesFragment"
 android:id="@+id/countries"
 android:layout_weight="30"
 android:layout_width="0px"
 android:layout_height="fill_parent"
 />
 <fragment class="com.commonsware.android.eu4you.DetailsFragment"
 android:id="@+id/details"
 android:layout_weight="70"
 android:layout_width="0px"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Note that we are responsible for the positioning of the fragments, so here we use a

horizontal LinearLayout to wrap around the two <fragment> elements.

The Listener Interface
When the user chooses a country in the CountriesFragment, we want to let our

containing activity know about that. In this case, it so happens that the only activity that

will ever host CountriesFragment is EU4You. However, perhaps in the future that will not

be the case. So, we should abstract out the communications from CountriesFragment to

its hosting activity via a listener interface.

Hence, the EU4You_6 project has a CountryListener interface:

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments 309

package com.commonsware.android.eu4you;

public interface CountryListener {
 void onCountrySelected(Country c);
}

The CountriesFragment holds onto an instance of CountryListener, supplied by the

hosting activity:

public void setCountryListener(CountryListener listener) {
 this.listener=listener;
}

And, when the user clicks on a country and triggers

onListItemClick(),CountriesFragment calls the onCountrySelected() method on the

interface:

@Override
public void onListItemClick(ListView l, View v, int position,
 long id) {
 l.setItemChecked(position, true);

 if (listener!=null) {
 listener.onCountrySelected(EU.get(position));
 }
}

The Activity
The EU4You activity is not long, though it is a bit tricky:

package com.commonsware.android.eu4you;

import android.content.Intent;
import android.content.res.Configuration;
import android.net.Uri;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentActivity;
import android.view.View;

public class EU4You extends FragmentActivity implements CountryListener {
 private boolean detailsInline=false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 CountriesFragment countries
 =(CountriesFragment)getSupportFragmentManager()
 .findFragmentById(R.id.countries);

 countries.setCountryListener(this);

 Fragment f=getSupportFragmentManager().findFragmentById(R.id.details);

CHAPTER 28: Fragments 310

 detailsInline=(f!=null &&
 (getResources().getConfiguration().orientation==
 Configuration.ORIENTATION_LANDSCAPE));

 if (detailsInline) {
 countries.enablePersistentSelection();
 }
 else if (f!=null) {
 f.getView().setVisibility(View.GONE);
 }
 }

 @Override
 public void onCountrySelected(Country c) {
 String url=getString(c.url);

 if (detailsInline) {
 ((DetailsFragment)getSupportFragmentManager()
 .findFragmentById(R.id.details))
 .loadUrl(url);
 }
 else {
 Intent i=new Intent(this, DetailsActivity.class);

 i.putExtra(DetailsActivity.EXTRA_URL, url);
 startActivity(i);
 }
 }
}

Our mission in onCreate() is to wire up our fragments. The fragments themselves are

created by our call to setContentView(), inflating our layout and the fragments defined

therein. In addition, though, EU4You does the following:

 Finds the CountriesFragment and registers itself as the

CountryListener, since EU4You implements that interface.

 Finds the DetailsFragment, if it exists. If it exists and we are in

landscape mode, we tell the CountriesFragment to enable the

persistent highlight, to remind the user what details are being loaded

on the right. If it exists and we are in portrait mode, we actually do not

want DetailsFragment but need it to be consistent with the layout

mode, so we mark the fragment’s contents as being GONE. If the

DetailsFragment does not exist, we do not have to do anything

special.

In Android 3.0, getting the FragmentManager for calls like findFragmentById() is

accomplished via getFragmentManager(). The ACL, however, defines a separate

getSupportFragmentManager(), to ensure you are working with the ACL’s implementation

of FragmentManager and to work across the wider range of Android versions.

In addition, since EU4You implements the CountryListener interface, it must implement

onCountrySelected(). Here, EU4You notes whether or not we should be routing to an

CHAPTER 28: Fragments 311

inline edition of DetailsFragment. If we should be, then onCountrySelected() passes the

Country to the DetailsFragment, so it loads that country’s web page. Otherwise, we

launch the DetailsActivity, supplying the URL as an extra.

DetailsActivity
The DetailsActivity will be used where the DetailsFragment is not being shown in the

EU4You activity, including in the following cases:

 When the device has a normal screen size and therefore does not have

the DetailsFragment in the layout

 When the device has a large screen in the portrait size and therefore

EU4You is hiding its own DetailsFragment

The Layout
The layout just has our <fragment> element in it, since there is nothing else to show:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="com.commonsware.android.eu4you.DetailsFragment"
 android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

The Activity
DetailsActivity simply passes the URL from the Intent extra on to the

DetailsFragment, telling it what web content to display:

package com.commonsware.android.eu4you;

import android.support.v4.app.FragmentActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;

public class DetailsActivity extends FragmentActivity {
 public static final String EXTRA_URL="com.commonsware.android.eu4you.EXTRA_URL";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.details);

 DetailsFragment details
 =(DetailsFragment)getSupportFragmentManager()
 .findFragmentById(R.id.details);

 details.loadUrl(getIntent().getStringExtra(EXTRA_URL));

http://schemas.android.com/apk/res/android

CHAPTER 28: Fragments 312

 }
}

Fragments and Configuration Changes
In a previous chapter, we reviewed how activities can deal with configuration changes,

such as screen rotations. How does this translate into a world of fragments?

Well, as is typical, there is good news, and there is other news.

The good news is that fragments have onSaveInstanceState() methods that they can

override, behaving much like their activity counterparts. The Bundle then is made

available in a variety of places, such as onCreate() and onActivityCreated(), though

there is no dedicated onRestoreInstanceState().

The other news is that not only do fragments lack

onRetainNonConfigurationInstance(), but the ACL’s FragmentActivity does not allow

you to extend onRetainNonConfigurationInstance(), as that is used internally.

Applications using the Android 3.0 implementation of fragments directly do not suffer

from this problem. This limitation is substantial, and it remains to be seen what

techniques the developer community collectively works out to get past the limitation.

Designing for Fragments
The overall design approach for fragments favors having business logic in the fragment,

with activities serving as an orchestration layer for interfragment navigation and things

that fragments are incapable of (e.g., onRetainNonConfigurationInstance()). For

example, the Gmail application originally probably had much of its business logic

implemented in each activity (e.g., an activity for folders, an activity for a list of

conversations, an activity for a single conversation). Nowadays, that application is

probably built around having that business logic delegated to fragments, with the

activities merely choosing which fragments to display based upon available screen size.

This will cause some amount of restructuring of an existing application, above and

beyond the simple act of refactoring the code. For example, a ListActivity might have

launched another activity from onListItemClick(). The first-cut refactoring of that would

have the fragment’s onListItemClick() launch an activity. However, the fragment does

not know whether or not the content requested by the user should be shown in another

activity—it might go to another fragment within the current activity. Hence, the fragment

should not blindly call startActivity() but rather should call a method on its container

activity (or, more likely, a listener interface implemented by that activity), telling it of the

click event and letting it decide the right course of action.

Right now, fragments are very new, so there are few well-established patterns to follow.

Over time, the Android developer community, in conjunction with Google, will figure out

those patterns, in some cases packaging them in prefabricated activities and fragments

for reuse in the form of libraries and JARs.

313

 Chapter

Handling Platform
Changes
Android has been rapidly evolving since its initial release, and will continue to do so over

the next few years. Perhaps, in time, the rate of change will decline some. However, for

the present, you should assume that there will be significant Android releases every 6 to

12 months, and changes to the lineup of possible Android hardware on an ongoing

basis. So, while right now the focus of Android is phones, soon you will see Android

netbooks, Android tablets, Android media players, and so on.

Many of these changes will have little impact on your existing code. Some, though, will

necessitate at least new rounds of testing for your applications, and perhaps changes to

those applications based upon the test results.

This chapter covers several issues that may cause you trouble in the future as Android

evolves, and provides some recommendations on how to deal with them.

Things That Make You Go Boom
Android will change, not only in terms of what Google introduces, but also in how device

manufacturers tweak Android for their own hardware. This section points out a couple of

places where these changes can affect your application if you’re not prepared for them.

View Hierarchy
Android is not designed to handle arbitrarily complicated view hierarchies. Here, view
hierarchy means containers holding containers holding containers holding widgets. The

hierarchyviewer program, described in a later chapter, depicts such view hierarchies

well.

Android has always had limits as to how deep the view hierarchy can be. In Android 1.5,

though, the limit was reduced, so some applications that worked fine on Android 1.1

would crash with a StackOverflowException in the newer Android. This, of course, was

29

CHAPTER 29: Handling Platform Changes 314

frustrating to developers who never realized there was an issue with view hierarchy

depth and then got caught by this change.

The lessons to take from this are as follows:

 Keep your view hierarchies shallow. Once you drift into double-digit

depth, you are increasingly likely to run out of stack space.

 If you encounter a StackOverflowException and the stack trace looks

like it is somewhere in the middle of drawing your widgets, your view

hierarchy is probably too complex.

Changing Resources
The core Android team may change resources with an Android upgrade, and those may

have unexpected effects in your application. For example, in Android 1.5, the Android

team changed the stock Button background, to allow for smaller buttons. However,

applications that implicitly relied on the former larger minimum size wound up breaking

and needing some UI adjustment.

Similarly, applications can reuse public resources, such as icons, available inside of

Android proper. While doing so saves some storage space, many of these resources are

public by necessity and are not considered part of the SDK. For example, hardware

manufacturers may change the icons to fit some alternative UI look and feel. Relying on

the existing ones to always look as they do is a bit dangerous. You are better served by

copying those resources out of the Android open source project into your own code

base.

Handling API Changes
The core Android team has generally done a good job of keeping APIs stable, and

supporting a deprecation model when they do change APIs. In Android, when a feature

is deprecated, that does not mean the feature is going away, just that its continued use

is discouraged. And, of course, new APIs are released with every new Android update.

Changes to the APIs are well documented with each release via an API differences

report.

Unfortunately, the Android Market—the primary distribution channel for Android

applications—allows you to upload only one Android package (APK) file for each

application. Hence, you need that one APK file to deal with as many Android versions as

possible. Many times, your code will “just work” and not require changing. Other times,

though, you will need to make adjustments, particularly if you want to support new APIs

on new versions while not breaking on old versions. Let’s examine some techniques for

handling these cases.

CHAPTER 29: Handling Platform Changes 315

Minimum, Maximum, Target, and Build Versions
Android goes to great lengths to help you deal with the fact that at any point in time,

there will be many Android OS versions out on the market. Unfortunately, the tools

supplied by Android have given us a somewhat confusing set of overlapping concepts,

such as targets and SDK versions. This section attempts to clarify those concepts.

Targets vs. SDK Versions vs. OS Versions
The concept of targets was introduced toward the beginning of this book. Targets are

used when defining AVDs, to determine what sort of device those AVDs support.

Targets are also used when creating new projects, primarily to determine what version

of the SDK build tools will be used to build your project.

A target combines an API level with an indicator of whether or not the target includes

Google APIs (e.g., Google Maps support).

An API level is an integer representing a version of the Android API. Each Android OS

release that makes changes to the Android API triggers a new API level. Following are

the API levels:

 3: Android 1.5r1, 1.5r2, and 1.5r3

 4: Android 1.6r1 and 1.6r2

 5: Android 2.0

 6: Android 2.0.1

 7: Android 2.1

 8: Android 2.2

 9: Android 2.3

 10: Android 2.3.3

 11: Android 3.0

Google maintains a web page that outlines which versions of Android are in use today,

based on requests made to the Android Market.

Minimum SDK Version
In your AndroidManifest.xml file, you should add a <uses-sdk> element. This element

describes how your application relates to the various SDK versions.

The most critical attribute to have in <uses-sdk> is android:minSdkVersion. This

indicates what the lowest API level is that your application supports. Devices running

Android OS versions associated with lower API levels will not be able to install your

CHAPTER 29: Handling Platform Changes 316

application. Your application may not even appear to those devices in the Android

Market listings, should you elect to publish via that distributor.

If you skip this attribute, Android assumes your application works on all Android API

versions. That may be true, but it is rather dangerous to assume if you have not tested it.

Hence, set android:minSdkVersion to the lowest level you are testing and are willing to

support.

Target SDK Version
Another <uses-sdk> attribute is android:targetSdkVersion. This represents the version

of the Android API that you are primarily developing for. Any Android device running a

newer version of the OS may elect to apply some compatibility settings that will help

apps like yours, targeting an older API, run on the newer version.

Most of the time, you should set this to be the current Android API version, as of the

time you are publishing your application.

In particular, with Honeycomb, you need to specify a target of 11 to get the new look

and feel.

Maximum SDK Version
The third <uses-sdk> attribute is android:maxSdkVersion. Any Android device running a

newer Android OS than is indicated by this API level will be prohibited from running your

application.

On the plus side, this ensures that your application will not be used on API levels you

have not tested, particularly if you set this to be the current Android API version as of

your publication date.

However, bear in mind that your application will be filtered out of the Android Market for

these newer devices. Over time, this will limit the reach of your application, if you do not

release an update with a higher maximum SDK version.

The core Android team recommends that you not use this option and instead rely on

Android’s intrinsic backward compatibility—particularly leveraging your

android:targetSdkVersion value—to allow your application to continue to run on new

Android OS versions.

Detecting the Version
If you simply want to take different branches in your code based on version, the easiest

thing to do is inspect android.os.Build.VERSION.SDK_INT. This public static integer

value will reflect the same API level as you use when creating AVDs and specifying API

levels in the manifest. So, you can compare that value to, say,

android.os.Build.VERSION_CODES.DONUT to see whether you are running on Android 1.6

or newer.

CHAPTER 29: Handling Platform Changes 317

Wrapping the API
So long as the APIs you try to use exist across all Android versions you are supporting,

just branching may be sufficient. Where things get troublesome is when the APIs

change, such as when there are new parameters to methods, new methods, or even

new classes. You need code that will work regardless of Android version, while also

letting you take advantage of new APIs where available.

The challenge is that if you try loading code into the virtual machine that refers to

classes, methods, and such that do not exist in the version of Android that the device is

running on, your application will crash with a VerifyError. You need to compile against

the version of Android that contains the latest APIs you are trying to use—you just

cannot load that code into an older Android device.

Note that the key phrase here is “load that code.” You don’t necessarily have a problem

just because a class exists in your application that uses a newer-than-available API. It is

only if you execute code that triggers Android to load that class into your running

process that you will encounter the VerifyError.

With that in mind, there are three primary tricks to deal with this situation, outlined in the

following sections.

Detecting Classes
Perhaps all you need to do is disable some features in your app that lead to things that

are not possible on a given device. For example, suppose you have an activity that uses

the new Android 3.0 fragments feature. You cannot successfully start that activity on a

pre-3.0 device. Stopping that activity may just be a matter of disabling a menu choice or

Button or something.

To see if a certain class (say, ListFragment) is available to you, you can call

Class.forName(). This will either return a Class object representing the requested class

or throw an Exception if it is not available. You can use the exception handler as the

spot to disable the UI paths that would cause your application to try to start an activity

that uses the unavailable class.

Reflection
If you need limited access to a class that will not exist on older versions of Android, you

can use a bit of reflection.

For example, in the chapter on rotation, we used a series of sample applications that

allowed the user to pick a contact. That relied on an ACTION_PICK Intent, using a

specific Uri for the contact’s content provider. In those samples, we specifically used

ContactsContract, the revised contacts API offered in Android 2.0 and beyond. That

means those projects will not work on older versions of Android.

CHAPTER 29: Handling Platform Changes 318

However, all we really need is this magic Uri value. If we can devise a way to get the

right Uri for older versions of Android, as well as the right Uri for newer versions of

Android, without causing problems, we can be more backward compatible.

Fortunately, this is fairly easy to do with some reflection:

static {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk>=5) {
 try {
 Class clazz=Class.forName("android.provider.ContactsContract$Contacts");

 CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);
 }
 catch (Throwable t) {
 Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
 }
 }
 else {
 CONTENT_URI=android.provider.Contacts.People.CONTENT_URI;
 }
}

Here, we examine the API level of the device by looking at Build.VERSION.SDK (we could

use Build.VERSION.SDK_INT, but that wasn’t added until Android 1.6—the code shown

here works on Android 1.5 as well). If we are at Android 2.0 (API level 5) or higher, we

use Class.forName() to get at the new ContactsContract.Contacts class, and then use

reflection to get at the CONTENT_URI static data member on that class. If we are on an

older version of Android, we simply use the Uri published by the older Contacts.People

class.

Since we are not directly referencing ContactsContract.Contacts in our code, we can

safely execute this, even on older versions of Android.

Conditional Class Loading
Reflection works but is a pain for anything complex. Also, it is slower than calling code

directly.

The most powerful technique, therefore, is simply to organize your code such that you

have regular classes using newer APIs, but you do not load those classes on older

devices. We will examine this technique later in this book.

Patterns for Honeycomb
More so than any previous Android release, Honeycomb (Android 3.0) makes supporting

multiple Android versions a significant challenge. The UI changes required to support

the Honeycomb UI will, in many cases, require you to take steps to make sure that you

still work successfully on older versions of Android. This section outlines some patterns

for dealing with this area of backward compatibility.

CHAPTER 29: Handling Platform Changes 319

The Action Bar
As noted in Chapter 27, many of the action bar’s basic features will work in a backward-

compatible fashion. For example, indicating than an options menu item can be shown in

the action bar requires just an attribute in the menu resource XML, an attribute that will

be ignored on older versions of Android. Honeycomb-capable devices will put the item

in the action bar, while devices running previous Android versions will not.

However, not all of the action bar’s features are backward compatible. In the

Menus/ActionBar sample application in Chapter 27, we added a custom View to the

action bar, to allow people to add words to our list without dealing with menus and

dialog boxes. However, this required some code that works only on API level 11 (Android

3.0) and higher. More advanced action bar capabilities—ones beyond the scope of this

book—will have similar requirements.

You need to arrange to use those action bar methods only on devices that run API level

11 or higher. Conditional class loading, outlined earlier in this chapter, is one such

technique, and is the technique used in the Menus/ActionBarBC sample application. Let’s

take a look at how this works.

Checking the API Level
Our original implementation of onCreateOptionsMenu() looked like this:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 EditText add=(EditText)menu
 .findItem(R.id.add)
 .getActionView()
 .findViewById(R.id.title);

 add.setOnEditorActionListener(onSearch);

 return(super.onCreateOptionsMenu(menu));
}

This is fine, but it will work only on API level 11 and higher, as getActionView() only

exists from that API level onward. Hence, we cannot run this code, or even load this

class, on older versions of Android without getting a VerifyError.

The new version of onCreateOptionsMenu() hides the offending code and checks the API

level:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 EditText add=null;

CHAPTER 29: Handling Platform Changes 320

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
 View v=HoneycombHelper.getAddActionView(menu);

 if (v!=null) {
 add=(EditText)v.findViewById(R.id.title);
 }
 }

 if (add!=null) {
 add.setOnEditorActionListener(onSearch);
 }

 return(super.onCreateOptionsMenu(menu));
}

We hide only the code that retrieves the View that we theoretically have put in the action

bar. If we are on an older version of Android, the HONEYCOMB check will fail, and we will

wind up with a null View, so we skip adding the OnEditorActionListener to the

EditText inside of that View.

This has another benefit: it works if the Android device runs API level 11 or higher but

does not have room for our custom View. Android tablets will have an action bar and

sufficient room, but future Honeycomb-capable phones might have an action bar but

lack sufficient room. In that case, the phone would leave the Add options menu item in

place, and we still would wind up with a null View. This code handles that scenario; the

original code did not.

Isolating the Honeycomb Code
Our Honeycomb-specific code is held in a separate HoneycombHelper class, one that will

only be used on API level 11 (or higher) devices:

package com.commonsware.android.inflation;

import android.view.Menu;
import android.view.View;

class HoneycombHelper {
 static View getAddActionView(Menu menu) {
 return(menu.findItem(R.id.add).getActionView());
 }
}

HoneycombHelper has a single getAddActionView() static method that finds the View for

the Add action bar entry, if there is one.

Since we do not try to execute any code on this class except for inside the HONEYCOMB

check, it is safe to have this class on older versions of Android. The Menus/ActionBarHC

app works on Android 1.6 and newer.

CHAPTER 29: Handling Platform Changes 321

Writing Tablet-Only Apps
Ideally, your Android applications work on all form factors: phones, tablets, and so forth.

However, you may want to create an app that simply would be unusable on phones.

Ideally, you would want to keep your app off of small-screen devices, so that users are

not disappointed.

To do this, you can take advantage of the fact that Android will scale apps up but will

not scale apps down. In other words, if you specify that your application does not

support some larger screen sizes (e.g., android:xlargeScreens="false" appears in your

<supports-screens> element in your AndroidManifest.xml file), Android still allows your

app to run on such screens and takes steps to help your app run with the additional

screen space. However, if you specify that your application does not support some

smaller screen sizes (e.g., android:smallScreens="false" appears in your <supports-
screens> element), Android will not run your app, and you will be filtered out of the

Android Market for such devices.

Hence, if your application will work well only on larger-screen devices, use a <supports-
screens> element like this:

<supports-screens android:xlargeScreens="true"
 android:largeScreens="true"
 android:normalScreens="false"
 android:smallScreens="false"
 android:anyDensity="true"/>

323

 Chapter

Accessing Files
While Android offers structured storage, via preferences and databases, sometimes a

simple file will suffice. Android offers two models for accessing files: one for files

prepackaged with your application and one for files created on-device by your

application.

You and the Horse You Rode in On
Let’s suppose you have some static data you want to ship with the application, such as

a list of words for a spell checker. The easiest way to deploy that is to put the file in the

res/raw directory, so that it will be put in the Android application APK file as part of the

packaging process as a raw resource.

To access this file, you need to get yourself a Resources object. From an activity, that is

as simple as calling getResources(). A Resources object offers openRawResource() to get

an InputStream on the file you specify. Rather than a path, openRawResource() expects

an integer identifier for the file as packaged. This works just like accessing widgets via

findViewById(); for example, if you put a file named words.xml in res/raw, the identifier

is accessible in Java as R.raw.words.

Since you can get only an InputStream, you have no means of modifying this file. Hence,

it is useful really only for static reference data. Moreover, since it doesn’t change until

the user installs an updated version of your application package, either the reference

data must be valid for the foreseeable future or you must provide some means of

updating the data. The simplest way to handle that is to use the reference data to

bootstrap some other modifiable form of storage (e.g., a database), but that results in

two copies of the data in storage. An alternative is to keep the reference data as is and

keep modifications in a file or database, and then merge them together when you need a

complete picture of the information. For example, if your application ships a file of URLs,

you could have a second file that tracks URLs added by the user or references URLs

that were deleted by the user.

30

CHAPTER 30: Accessing Files 324

In the Files/Static sample project, you will find a reworking of the list box example

from earlier, this time using a static XML file instead of a hardwired array in Java. The

layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to show in the list:

<words>
 <word value="lorem" />
 <word value="ipsum" />
 <word value="dolor" />
 <word value="sit" />
 <word value="amet" />
 <word value="consectetuer" />
 <word value="adipiscing" />
 <word value="elit" />
 <word value="morbi" />
 <word value="vel" />
 <word value="ligula" />
 <word value="vitae" />
 <word value="arcu" />
 <word value="aliquet" />
 <word value="mollis" />
 <word value="etiam" />
 <word value="vel" />
 <word value="erat" />
 <word value="placerat" />
 <word value="ante" />
 <word value="porttitor" />
 <word value="sodales" />
 <word value="pellentesque" />
 <word value="augue" />
 <word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will suffice for a

demo.

The Java code now must read in that XML file, parse out the words, and put them

someplace for the list to pick up:

http://schemas.android.com/apk/res/android

CHAPTER 30: Accessing Files 325

public class StaticFileDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 InputStream in=getResources().openRawResource(R.raw.words);
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(in, null);
 NodeList words=doc.getElementsByTagName("word");

 for (int i=0;i<words.getLength();i++) {
 items.add(((Element)words.item(i)).getAttribute("value"));
 }

 in.close();
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

The differences mostly lie within onCreate(). We get an InputStream for the XML file

(getResources().openRawResource(R.raw.words)), then use the built-in XML parsing

logic to parse the file into a DOM Document, pick out the word elements, and then pour

the value attributes into an ArrayList for use by the ArrayAdapter.

The resulting activity looks the same as before, as shown in Figure 30–1, since the list of

words is the same, just relocated.

CHAPTER 30: Accessing Files 326

Figure 30–1. The StaticFileDemo sample application

Of course, there are even easier ways to have XML files available to you as prepackaged

files, such as by using an XML resource. That is covered in Chapter 31. However, while

this example used XML, the file could just as easily have been a simple one-word-per-

line list, or in some other format not handled natively by the Android resource system.

Readin’ ’n Writin’
Reading and writing your own, application-specific data files is nearly identical to what

you might do in a desktop Java application. The key is to use openFileInput() and

openFileOutput() on your Activity or other Context to get an InputStream and

OutputStream, respectively. From that point forward, it is not much different from regular

Java I/O logic:

 Wrap those streams as needed, such as by using an

InputStreamReader or OutputStreamWriter for text-based I/O.

 Read or write the data.

 Use close() to release the stream when done.

If two applications both try to read a notes.txt file via openFileInput(), each will

access its own edition of the file. If you need to have one file accessible from many

places, you probably want to create a content provider, as will be described in an

upcoming chapter.

Note that openFileInput() and openFileOutput() do not accept file paths (e.g.,

path/to/file.txt), just simple file names.

CHAPTER 30: Accessing Files 327

Following is the layout for the world’s most trivial text editor, pulled from the

Files/ReadWrite sample application:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/editor"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />

All we have here is a large text-editing widget...which is pretty boring.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
 private final static String NOTES="notes.txt";
 private EditText editor;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 editor=(EditText)findViewById(R.id.editor);
 }

 public void onResume() {
 super.onResume();

 try {
 InputStream in=openFileInput(NOTES);

 if (in!=null) {
 InputStreamReader tmp=new InputStreamReader(in);
 BufferedReader reader=new BufferedReader(tmp);
 String str;
 StringBuilder buf=new StringBuilder();

 while ((str = reader.readLine()) != null) {
 buf.append(str+"\n");
 }

http://schemas.android.com/apk/res/android

CHAPTER 30: Accessing Files 328

 in.close();
 editor.setText(buf.toString());
 }
 }
 catch (java.io.FileNotFoundException e) {
 // that's OK, we probably haven't created it yet
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }
 }

 public void onPause() {
 super.onPause();

 try {
 OutputStreamWriter out=
 new OutputStreamWriter(openFileOutput(NOTES, 0));

 out.write(editor.getText().toString());
 out.close();
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }
 }
}

First, we hook into onResume(), so we get control when our editor is coming back to life,

from a fresh launch or after having been frozen. We use openFileInput() to read in

notes.txt and pour the contents into the text editor. If the file is not found, we assume

this is the first time the activity was run (or the file was deleted by other means), and we

just leave the editor empty.

Next, we hook into onPause(), so we get control as our activity gets hidden by another

activity or is closed, such as via the device’s Back button. Here, we use

openFileOutput() to open notes.txt, into which we pour the contents of the text editor.

The net result is that we have a persistent notepad, as shown in Figures 30–2 and 30–3.

Whatever is typed in will remain until deleted, surviving our activity being closed (e.g., via

the Back button), the phone being turned off, or similar situations.

CHAPTER 30: Accessing Files 329

Figure 30–2. The ReadWriteFileDemo sample application, as initially launched

Figure 30–3. The same application, after entering some text

CHAPTER 30: Accessing Files 330

Another approach for working with application-local files is to use getFilesDir(). This

returns a File object pointing to a place in the onboard flash where an application can

store files. This directory is where openFileInput() and openFileOutput() work.

However, while openFileInput() and openFileOutput() do not support subdirectories,

the File from getFilesDir() can be used to create and navigate subdirectories if

desired.

The files stored here are accessible only to your application, by default. Other

applications on the device have no rights to read, let alone write, to this space.

However, bear in mind that some users “root” their Android phones, gaining superuser

access. These users will be able to read and write whatever files they wish. As a result,

please consider application-local files to be secure against malware but not necessarily

secure against interested users.

External Storage: Giant Economy-Size Space
In addition to application-local storage, you also have access to external storage. This

may be in the form of a removable media card, like an SD card or microSD card, or in

the form of additional onboard flash set aside to serve in the “external storage” role.

On the plus side, external storage tends to have more space available than onboard

storage. Onboard storage can be rather limited; for example, the original T-Mobile G1

(HTC Dream) had a total of 70MB for all applications combined. Although newer phones

offer more onboard space, external storage is usually at least 2GB and can be as big as

32GB.

On the minus side, all applications can, if they wish, read and write external storage, so

these files are not very secure. Furthermore, external storage can be mounted on a host

computer as a USB mass storage device—when it is in use in this mode, Android

applications cannot access it. As a result, files on external storage may or may not be

available to you at any given moment.

Where to Write
If you have files tied to your application that are simply too big to risk putting in the

application-local file area, you can use getExternalFilesDir(), available on any activity

or other Context. This gives you a File object pointing to an automatically created

directory on external storage, unique for your application. While not secure against other

applications, it does have one big advantage: when your application is uninstalled, these

files are automatically deleted, just like the ones in the application-local file area.

If you have files that belong more to the user than to your app (for example, pictures

taken by the camera, downloaded MP3 files, etc.), a better solution is to use

getExternalStoragePublicDirectory(), available on the Environment class. This gives

you a File object pointing to a directory set aside for a certain type of file, based on the

type you pass into getExternalStoragePublicDirectory(). For example, you can ask for

DIRECTORY_MOVIES, DIRECTORY_MUSIC, or DIRECTORY_PICTURES for storing MP4, MP3, or

CHAPTER 30: Accessing Files 331

JPEG files, respectively. These files will be left behind when your application is

uninstalled.

You will also find a getExternalStorageDirectory() method on Environment, pointing to

the root of the external storage. This is no longer the preferred approach—the methods

previously described help keep the user’s files better organized. However, if you are

supporting older Android devices, you may need to use

getExternalStorageDirectory(), simply because the newer options may not be

available to you.

When to Write
Starting with Android 1.6, you also need to hold permissions to work with external

storage (e.g., WRITE_EXTERNAL_STORAGE). The concept of permissions will be covered in a

later chapter.

Also, external storage may be tied up if the user has mounted it as a USB storage

device. You can use getExternalStorageState() (a static method on Environment) to

determine whether or not the external storage is presently available.

StrictMode: Avoiding Janky Code
Users are more likely to like your application if, to them, it feels responsive. By

“responsive,” we mean that it reacts swiftly and accurately to user operations, like taps

and swipes.

Conversely, users are less likely to be happy with your application if they perceive that

your UI is “janky”—sluggish to respond to their requests. For example, perhaps your

lists do not scroll as smoothly as users would like, or tapping a button does not yield the

immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be obvious where

you should apply them. A full-scale performance analysis, using Traceview or similar

Android tools, is certainly possible. However, there are a few standard sorts of things

that developers do, sometimes quite by accident, on the main application thread that

tend to cause sluggishness:

 Flash I/O, both for the onboard storage and for external storage (e.g.,

the SD card)

 Network I/O

However, even here, it may not be obvious that you are performing these operations on

the main application thread. This is particularly true when the operations are really being

done by Android’s code that you are simply calling.

That is where StrictMode comes in. Its mission is to help you determine when you are

doing things on the main application thread that might cause a janky user experience.

CHAPTER 30: Accessing Files 332

Setting Up StrictMode
StrictMode works on a set of policies. There are presently two categories of policies: VM

policies and thread policies. VM policies represent bad coding practices that pertain to

your entire application, notably leaking SQLite Cursor objects and kin. Thread policies

represent things that are bad when performed on the main application thread, notably

flash I/O and network I/O.

Each policy dictates what StrictMode should watch for (e.g., flash reads are OK but

flash writes are not) and how StrictMode should react when you violate the rules, such

as

 Log a message to LogCat

 Display a dialog

 Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on StrictMode from

onCreate() of your first activity. This will set up normal operation, reporting all violations

by simply logging to LogCat. However, you can set your own custom policies via

Builder objects if you so choose.

Seeing StrictMode in Action
The Threads/ReadWriteStrict sample application is a reworking of the Files/ReadWrite

sample application shown earlier in this chapter. All it adds is a custom StrictMode

thread policy:

StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build());

If you run the application, the user will see no difference. However, you will have a

debug-level log message in LogCat with the following stack trace:

12-28 17:19:40.009: DEBUG/StrictMode(480): StrictMode policy violation; ~duration=169
 ms: android.os.StrictMode$StrictModeDiskReadViolation: policy=23 violation=2
12-28 17:19:40.009: DEBUG/StrictMode(480): at
 android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode.java:745)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
 dalvik.system.BlockGuard$WrappedFileSystem.open(BlockGuard.java:228)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
 android.app.ContextImpl.openFileOutput(ContextImpl.java:410)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
 android.content.ContextWrapper.openFileOutput(ContextWrapper.java:158)
12-28 17:19:40.009: DEBUG/StrictMode(480): at
 com.commonsware.android.readwrite.ReadWriteFileDemo.onPause(ReadWriteFileDemo.java:82)
...

CHAPTER 30: Accessing Files 333

Here, StrictMode is warning us that we attempted a flash write on the main application

thread (the thread on which we set the StrictMode policy). Ideally, we would rewrite this

project to use an AsyncTask or something for writing out the data.

Development Only, Please!
Do not use StrictMode in production code. It is designed for use when you are building,

testing, and debugging your application. It is not designed to be used in the field.

To deal with this, you could

 Simply comment out or remove the StrictMode setup code when you

prepare your production builds

 Use some sort of production flag to skip the StrictMode setup code

when needed

Conditionally Being Strict
StrictMode is only for Android 2.3 and higher. Hence, if we have it in our code, even in

development mode, it might interfere when we try testing on older emulators or devices.

As we saw in an earlier chapter, there are techniques for dealing with this, but using

reflection for configuring StrictMode would be rather painful.

The right approach, therefore, is simply to organize your code such that you have

regular classes using newer APIs, but you do not load those classes on older devices.

The APIVersions/ReadWriteStrict project demonstrates this, allowing an application to

use Android 2.3’s StrictMode where available and skip it where it is not available.

When we examined StrictMode earlier in this section, we configured StrictMode right in

the onCreate() method of our sample activity. This works, but only on Android 2.3 and

newer.

To allow this to work on older versions of Android, we use StrictWrapper:

package com.commonsware.android.readwrite;

import android.os.Build;

abstract class StrictWrapper {
 static private StrictWrapper INSTANCE=null;

 static public void init() {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.GINGERBREAD) {
 INSTANCE=new StrictForRealz();
 }
 else {
 INSTANCE=new NotAllThatStrict();
 }
 }

 static class NotAllThatStrict extends StrictWrapper {

CHAPTER 30: Accessing Files 334

 // no methods needed
 }
}

This odd-looking class encapsulates our “do-we-or-don’t-we” logic for dealing with

StrictMode. It contains an init() method that, when called, checks to see what version

of Android the application is running on, and creates a singleton instance of a

StrictWrapper subclass based upon it—StrictForRealz for Android 2.3 and higher,

NotAllThatStrict for older versions of Android. The latter class, a static inner class of

StrictWrapper, does nothing, reflecting that there is no StrictMode in newer versions of

Android.

StrictForRealz contains the StrictMode initialization logic:

package com.commonsware.android.readwrite;

import android.os.StrictMode;

class StrictForRealz extends StrictWrapper {
 StrictForRealz() {
 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build());
 }
}

And, our onCreate() method of our activity calls init() on StrictWrapper, to trigger

creating the proper object:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 StrictWrapper.init();

 editor=(EditText)findViewById(R.id.editor);
}

When the activity first starts up, neither StrictWrapper nor StrictForRealz is loaded in

the process. As soon as we reach the init() statement in onCreate(), Android loads

StrictWrapper into the process, but this is safe, as it does not refer to any potentially

nonexistent classes. The init() method on StrictWrapper then executes a statement

involving StrictForRealz only if we are safely on a supported version of Android. Hence,

StrictForRealz will be loaded into the process only if we are on a newer Android

release, so our use of StrictMode in StrictForRealz will not trigger a VerifyError.

Here, all we needed was a bit of initialization. The singleton pattern is used to

demonstrate that you could expose a version-dependent API implementation if you

desired. Simply define the API as abstract methods on the abstract class

(StrictWrapper) and have version-dependent concrete implementations of those

abstract methods on the concrete subclasses (StrictForRealz, NotAllThatStrict).

CHAPTER 30: Accessing Files 335

Linux File Systems: You Sync, You Win
Android is built atop a Linux kernel and uses Linux file systems for holding its files.

Classically, Android used YAFFS (Yet Another Flash File System), optimized for use on

low-power devices for storing data to flash memory. Many devices still use YAFFS

today.

YAFFS has one big problem: only one process can write to the file system at a time.

Rather than offering file-level locking, YAFFS has partition-level locking. This can

become a bit of a bottleneck, particularly as Android devices grow in power and start

wanting to do more things at the same time, like their desktop and notebook brethren.

Android is starting to move toward ext4, another Linux file system aimed more at

desktops/notebooks. Your applications will not directly perceive the difference.

However, ext4 does a fair bit of buffering, and it can cause problems for applications

that do not take this buffering into account. Linux application developers ran headlong

into this in 2008 and 2009, when ext4 started to become popular. As an Android

developer, you will need to think about it now...for your own file storage.

If you are using SQLite or SharedPreferences, you do not need to worry about this

problem. Android (and SQLite, if you are using it) handles all the buffering issues for you.

If, however, you write your own files, you may wish to contemplate an extra step as you

flush your data to disk. Specifically, you need to trigger a Linux system call known as

fsync(), which tells the file system to ensure all buffers are written to disk.

If you are using java.io. RandomAccessFile in a synchronous mode, this step is handled

for you as well, so you will not need to worry about it. However, Java developers tend to

use FileOutputStream, which does not trigger an fsync(), even when you call close()

on the stream. Instead, you call getFD().sync() on the FileOutputStream to trigger the

fsync(). Note that this may be time consuming, and so disk writes should be done off

the main application thread wherever practical, such as via an AsyncTask.

 Part

Data Stores, Network
Services, and APIs

IV

 339

 Chapter

Using Preferences
Android has many different ways for you to store data for long-term use by your activity.

The simplest to use is the preferences system, which is the focus of this chapter.

Android allows activities and applications to keep preferences, in the form of key/value

pairs (akin to a Map), that will hang around between invocations of an activity. As the

name suggests, the primary purpose of preferences is to enable you to store user-

specified configuration details, such as the last feed the user looked at in your feed

reader, the sort order to use by default on a list, or whatever. Of course, you can store in

the preferences whatever you like, as long as it is keyed by a String and has a primitive

value (boolean, String, etc.)

Preferences can be either for a single activity or shared among all activities in an

application. Other components, such as services, also can work with shared

preferences.

Getting What You Want
To get access to the preferences, you have three APIs to choose from:

 getPreferences() from within your Activity, to access activity-

specific preferences

 getSharedPreferences() from within your Activity (or other

application Context), to access application-level preferences

 getDefaultSharedPreferences(), on PreferenceManager, to get the

shared preferences that work in concert with Android’s overall

preference framework

The first two methods take a security mode parameter—the right choice is

MODE_PRIVATE, so that no other applications can access the file. The

getSharedPreferences() method also takes a name of a set of preferences.

getPreferences() effectively calls getSharedPreferences() with the activity’s class

name as the preference set name. The getDefaultSharedPreferences() method takes

the Context for the preferences (e.g., your Activity).

31

CHAPTER 31: Using Preferences 340

All of these methods return an instance of SharedPreferences, which offers a series of

getters to access named preferences, returning a suitably typed result (e.g.,

getBoolean() to return a Boolean preference). The getters also take a default value,

which is returned if there is no preference set under the specified key.

Unless you have a good reason to do otherwise, you are best served using the third

option—getDefaultSharedPreferences()—as that will give you the SharedPreferences

object that works with a PreferenceActivity by default, as will be described later in this

chapter.

Stating Your Preference
Given the appropriate SharedPreferences object, you can use edit() to get an editor for

the preferences. This object has a set of setters that mirror the getters on the parent

SharedPreferences object. It also has the following methods:

 remove(): Deletes a single named preference

 clear(): Deletes all preferences

 commit(): Persists your changes made via the editor

The commit() method is important, because if you modify preferences via the editor and

fail to commit() the changes, those changes will evaporate once the editor goes out of

scope. Note that Android 2.3 has an apply() method, which works like commit() but

runs faster.

Conversely, since the preferences object supports live changes, if one part of your

application (say, an activity) modifies shared preferences, another part of your

application (say, a service) will have access to the changed value immediately.

Introducing PreferenceActivity
You could roll your own activity to collect preferences from the user. On the whole, this

is a bad idea. Instead, use preference XML resources and a PreferenceActivity. Why?

One of the common complaints about Android developers is that they lack discipline,

not following any standards or conventions inherent in the platform. For other operating

systems, the device manufacturer might prevent you from distributing apps that violate

their human interface guidelines. With Android, that is not the case—but this is not a

blanket permission to do whatever you want. Where there is a standard or convention,

please follow it, so that users will feel more comfortable with your app and their device.

Using a PreferenceActivity for collecting preferences is one such convention.

The linchpin to the preferences framework and PreferenceActivity is yet another XML

data structure. You can describe your application’s preferences in an XML file stored in

your project’s res/xml/ directory. Given that, Android can present a pleasant UI for

manipulating those preferences, which are then stored in the SharedPreferences you get

back from getDefaultSharedPreferences().

CHAPTER 31: Using Preferences 341

The following is the preference XML for the Prefs/Simple preferences sample project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off" />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. We will explain why it is

named that later in this chapter; for now, take it on faith that it is a sensible name.

Some of the things you can have inside a PreferenceScreen element, not surprisingly,

are preference definitions. These are subclasses of Preference, such as

CheckBoxPreference or RingtonePreference, as shown in the preceding XML. As you

might expect, these allow you to check a check box or choose a ringtone, respectively.

In the case of RingtonePreference, you have the option of allowing users to choose the

system default ringtone or choose Silent as a ringtone.

Letting Users Have Their Say
Given that you have set up the preference XML, you can use a nearly built-in activity for

allowing your users to set their preferences. The activity is “nearly built-in” because you

merely need to subclass it and point it to your preference XML, plus hook the activity

into the rest of your application.

For example, here is the EditPreferences activity of the Prefs/Simple project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
}

As you can see, there is not much to see. All you need to do is call

addPreferencesFromResource() and specify the XML resource containing your

preferences.

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 342

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.simple">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".SimplePrefsDemo" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name=".EditPreferences" android:label="@string/app_name">
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu option. The

following is pulled from SimplePrefsDemo:

 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")
 .setIcon(R.drawable.misc)
 .setAlphabeticShortcut('e');

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case EDIT_ID:
 startActivity(new Intent(this, EditPreferences.class));
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

That is all that is required, and it really is not that much code outside of the preferences

XML. What you get for your effort is an Android-supplied preference UI, as shown in

Figure 31–1.

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 343

Figure 31–1. The Simple project’s preferences UI

The check box can be directly checked or unchecked. To change the ringtone

preference, just select the entry in the preference list to bring up a selection dialog box,

as shown in Figure 31–2.

Figure 31–2. Choosing a ringtone preference

Note that there is no explicit save or commit button or menu on the

PreferenceActivity—changes are persisted automatically.

CHAPTER 31: Using Preferences 344

The SimplePrefsDemo activity, beyond having the aforementioned menu, also displays

the current preferences via a TableLayout:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableRow>
 <TextView
 android:text="Checkbox:"
 android:paddingRight="5dip"
 />
 <TextView android:id="@+id/checkbox"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Ringtone:"
 android:paddingRight="5dip"
 />
 <TextView android:id="@+id/ringtone"
 />
 </TableRow>
</TableLayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 checkbox=(TextView)findViewById(R.id.checkbox);
 ringtone=(TextView)findViewById(R.id.ringtone);
}

The fields are updated on each onResume():

public void onResume() {
 super.onResume();

 SharedPreferences prefs=PreferenceManager
 .getDefaultSharedPreferences(this);

 checkbox.setText(new Boolean(prefs
 .getBoolean("checkbox", false))
 .toString());
 ringtone.setText(prefs.getString("ringtone", "<unset>"));
}

This means the fields will be updated when the activity is opened and after the

preferences activity is left (e.g., via the Back button), as shown in Figure 31–3.

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 345

Figure 31–3. The Simple project’s list of saved preferences

Adding a Wee Bit o’ Structure
If you have a lot of preferences for users to set, having them all in one big list may

become troublesome. Android’s preference UI gives you a few ways to impose a bit of

structure on your bag of preferences, including categories and screens.

Categories are added via a PreferenceCategory element in your preference XML and are

used to group together related preferences. Rather than have your preferences all as

children of the root PreferenceScreen, you can put a few PreferenceCategory elements

in the PreferenceScreen, and then put your preferences in their appropriate categories.

Visually, this adds a divider with the category title between groups of preferences.

If you have lots and lots of preferences—more than are convenient for users to scroll

through—you can also put them on separate “screens” by introducing the

PreferenceScreen element. Yes, that PreferenceScreen element.

Any children of PreferenceScreen go on their own screen. If you nest PreferenceScreen

elements, the parent screen displays the screen as a placeholder entry, and tapping that

entry brings up the child screen.

For example, from the Prefs/Structured sample project, here is a preference XML file

that contains both PreferenceCategory and nested PreferenceScreen elements:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 346

 android:summary="Check it on, check it off"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"
 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your PreferenceActivity

implementation, is a categorized list of elements, as shown in Figure 31–4.

Figure 31–4. The Structured project’s preference UI, showing categories and a screen placeholder

If you tap the Detail Screen entry, you are taken to the child preference screen, as

shown in Figure 31–5.

CHAPTER 31: Using Preferences 347

Figure 31–5. The child preference screen of the Structured project’s preference UI

The Kind of Pop-Ups You Like
Of course, not all preferences are check boxes and ringtones. For others, like entry

fields and lists, Android uses pop-up dialog boxes. Users do not enter their preference

directly in the preference UI activity, but rather tap a preference, fill in a value, and tap

OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly different from

other preference types, as seen in this preference XML from the Prefs/Dialogs sample

project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 348

 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
 <PreferenceCategory android:title="Other Preferences">
 <EditTextPreference
 android:key="text"
 android:title="Text Entry Dialog"
 android:summary="Click to pop up a field for entry"
 android:dialogTitle="Enter something useful"
 />
 <ListPreference
 android:key="list"
 android:title="Selection Dialog"
 android:summary="Click to pop up a list to choose from"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:dialogTitle="Choose a Pennsylvania city" />
 </PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary you put on the

preference itself, you can also supply the title to use for the dialog box.

With the list (ListPreference), you supply both a dialog box title and two string-array

resources: one for the display names and one for the values. These need to be in the

same order, because the index of the chosen display name determines which value is

stored as the preference in the SharedPreferences. For example, here are the arrays for

use by the ListPreference shown in the preceding example:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>

CHAPTER 31: Using Preferences 349

 <item>MDT</item>
 </string-array>
</resources>

When you bring up the preference UI, you start with another category with another pair

of preference entries, as shown in Figure 31–6.

Figure 31–6. The preference screen of the Dialogs project’s preference UI

Tapping Text Entry Dialog brings up a text entry dialog box—in this case, with the prior

preference entry filled in, as shown in Figure 31–7.

Figure 31–7. Editing a text preference

CHAPTER 31: Using Preferences 350

Tapping Selection Dialog brings up a selection dialog box showing the display names

from the one array, as shown in Figure 31–8.

Figure 31–8. Editing a list preference

Preferences via Fragments
Android 3.0 revamped PreferenceScreen and PreferenceActivity. On the plus side, the

new system looks great, providing rapid access to a large number of settings, as shown

in Figure 31–9.

Figure 31–9. A Honeycomb-based PreferenceActivity

CHAPTER 31: Using Preferences 351

On the minus side, the new system is not part of the Android Compatibility Library, and

as such cannot be used directly on pre-Honeycomb versions of Android. That being

said, it is possible to work out a backward-compatible solution, though it may require

some redesign of your preferences, if you have a lot of them and have been using

nested PreferenceScreen elements. In fact, this is pretty much required, as the nested

PreferenceScreen approach looks lousy on Honeycomb devices.

The Honeycomb Way
In pre-Honeycomb versions of Android, a PreferenceActivity subclass loads

preferences from resource files, to indicate what should go on the screen. In

Honeycomb, a PreferenceActivity subclass loads preference headers from resource

files, to indicate what should go on the screen.

Preference Headers
Visually, preference headers are not preference categories (placing a header over a set

of preferences). Rather, preference headers are the major clusters of preferences. The

headers are listed on the left, with the preferences for the selected header shown on the

right, as depicted in Figure 31–9. So, instead of calling addPreferencesFromResource(),

a Honeycomb PreferenceActivity calls loadHeadersFromResource(), pointing to

another XML resource, this time describing the preference headers. For example, here is

res/xml/preference_headers.xml from the Prefs/Fragments sample project:

<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">
 <header android:fragment="com.commonsware.android.preffrags.StockPreferenceFragment"
 android:title="Original"
 android:summary="The original set from the other examples">
 <extra android:name="resource" android:value="preferences" />
 </header>
 <header android:fragment="com.commonsware.android.preffrags.StockPreferenceFragment"
 android:title="Other Stuff"
 android:summary="Well, we needed to show two sets here...">
 <extra android:name="resource" android:value="preferences2" />
 </header>
</preference-headers>

Each <header> element indicates the PreferenceFragment subclass that will describe the

preferences that belong to the header. In addition, the <header> describes the title and

summary for the header, along with an optional icon (android:icon attribute). A <header>

element may also have one or more <extra> child elements, providing a key/value pair

of extra data that a PreferenceFragment can use for configuration. In the preceding

example, each <header> element has one <extra> element defining the name of an XML

resource that will hold the preferences for that header.

Hence, the PreferenceActivity is still as short as before, just with a slightly different

structure:

http://schemas.android.com/apk/res/android

CHAPTER 31: Using Preferences 352

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceActivity;
import java.util.List;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preference_headers, target);
 }
}

Instead of defining the headers in onCreate(), you override an onLoadHeaders() method

and call loadHeadersFromResource() there.

PreferenceFragment and StockPreferenceFragment
As previously mentioned, the preference headers point to subclasses of

PreferenceFragment. The job of PreferenceFragment is to do what PreferenceActivity
does in older versions of Android—call addPreferencesFromResource() to define the

preferences to be displayed on the right when the associated header is tapped on the

left.

What is odd about PreferenceFragment is that it requires subclasses. Considering that

the vast majority of such fragments would simply call addPreferencesFromResource()
once on a single resource, it would seem logical to have that built into Android, allowing

subclasses of PreferenceFragment for more complicated cases. Yet, that is not presently

supported. Official Android samples would have you create one PreferenceFragment
subclass for each preference header, which seems wasteful.

Another approach is to use StockPreferenceFragment, a PreferenceFragment subclass

that is implemented in the Prefs/Fragments project but can be used wherever. It

assumes that you have added an <extra> to the <header> identifying the name of the

preference XML resource to load, and it loads it. No extra subclasses are required. That

is how both headers shown in the previous section can point to the single

StockPreferenceFragment implementation.

StockPreferenceFragment is not especially long, but it does employ one trick:

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceFragment;

public class StockPreferenceFragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 int res=getActivity()
 .getResources()
 .getIdentifier(getArguments().getString("resource"),

CHAPTER 31: Using Preferences 353

 "xml",
 getActivity().getPackageName());

 addPreferencesFromResource(res);
 }
}

To get at the extras, a PreferenceFragment can call getArguments(), which returns a

Bundle. In our case, we can get the resources extra value via

getArguments().getString("resource"). The problem is, this is a String, not a resource

ID. In order to call addPreferencesFromResource(), we need the resource ID of the

preference that we know only by name.

The trick is to use getIdentifier(). The getIdentifier() method on the Resources

object—itself obtained by calling getResources() on an Activity—will use reflection to

find the resource ID when given three pieces of information:

 The name of the resource (in this case, the value from the arguments)

 The type of the resource (in this case, xml)

 The package where this ID should reside (typically, your own package,

obtained by calling getPackageName() on an Activity)

So, StockPreferenceFragment uses getIdentifier() to convert the resource extra into a

resource ID, which it then uses with addPreferencesFromResource().

Note that getIdentifier() is not particularly fast, since it uses reflection. Do not use this

in a tight loop, in getView() of an Adapter, or any place where it may be called

thousands of times.

Avoiding Nested PreferenceScreen Elements
In pre-Honeycomb Android, if you have a lot of preferences, you might consider turning

them into nested PreferenceScreen elements. It is better, on Honeycomb, to break them

out into separate preference headers. Partly, this is to provide a better user

experience—users can directly see and access the various headers, versus having to

wade through your preferences to find ones that lead to nested PreferenceScreens. It is

also partly because the nested PreferenceScreen UI does not adopt the Honeycomb

look and feel (e.g., there are no nested preference headers), so there will be a visual

clash.

Intents for Headers or Preferences
If you need to collect some preferences that are beyond what the standard preferences

can handle, you have some choices.

One choice is to create a custom Preference. Extending DialogPreference to create

your own Preference implementation is not especially hard. However, it does constrain

you to something that can fit in a dialog box.

CHAPTER 31: Using Preferences 354

Another option is to specify an <intent> element as a child of a <header> element. When

the user taps this header, your specified Intent is used with startActivity(), giving

you a gateway to your own activity for collecting things that are beyond what the

preference UI can handle. For example, you could have the following <header>:

<header android:icon="@drawable/something"
 android:title="Fancy Stuff"
 android:summary="Click here to transcend your plane of existence">
 <intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />
</header>

Then, as long as you have an activity with an <intent-filter> specifying your desired

action (com.commonsware.android.MY_CUSTOM_ACTION), that activity will get control when

the user taps the associated header.

Adding Backward Compatibility
Of course, everything described in this section works only on Android 3.0 and higher.

What about the millions of other Android devices? Are they chopped liver? No. For one

thing, chopped liver has notoriously bad cellular reception. However, they will have to

retreat to the original PreferenceActivity approach. Since older versions of Android

cannot load classes that refer to other classes or methods that are from newer versions

of Android, the simplest approach is to have two PreferenceActivity classes, one new

and one old.

For example, the Prefs/FragmentsBC sample project has all the code from

Prefs/Fragments, with a few alterations. First, the Honeycomb-specific EditPreferences

class is renamed EditPreferencesHC. Another EditPreferences class, based on our

original prefragment implementation, is added:

package com.commonsware.android.preffrags;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 addPreferencesFromResource(R.xml.preferences2);
 }
}

Here, we take advantage of the fact that addPreferencesFromResource() can be called

multiple times to simply chain together our two preference headers’ worth of

preferences. And, the options menu choice for opening our PreferenceActivity

changes to choose the right one, based on our Build.VERSION.SDK_INT value:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {

CHAPTER 31: Using Preferences 355

 switch (item.getItemId()) {
 case EDIT_ID:
 if (Build.VERSION.SDK_INT<Build.VERSION_CODES.HONEYCOMB)
{
 startActivity(new Intent(this,
EditPreferences.class));
 }
 else {
 startActivity(new Intent(this,
EditPreferencesHC.class));
 }

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

Hence, we use the EditPreferencesHC class only when that is known to be safe.

Otherwise, we use the older one.

357

 Chapter

Managing and Accessing
Local Databases
SQLite is a very popular embedded database, as it combines a clean SQL interface with

a very small memory footprint and decent speed. Moreover, it is public domain, so

everyone can use it. Many firms (e.g., Adobe, Apple, Google, Sun, and Symbian) and

open source projects (e.g., Mozilla, PHP, and Python) ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android application

can create SQLite databases. Since SQLite uses a SQL interface, it is fairly

straightforward to use for people with experience in other SQL-based databases.

However, its native API is not JDBC, and JDBC might be too much overhead for a

memory-limited device like a phone, anyway. Hence, Android programmers have a

different API to learn. The good news is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working on Android. It

by no means is a thorough coverage of SQLite as a whole. If you want to learn more

about SQLite and how to use it in environments other than Android, a fine book is The
Definitive Guide to SQLite by Michael Owens (Apress, 2006).

Much of the sample code shown in this chapter comes from the Database/Constants

application. This application presents a list of physical constants, with names and values

culled from Android’s SensorManager, as shown in Figure 32–1.

32

CHAPTER 32: Managing and Accessing Local Databases 358

Figure 32–1. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to fill in the

name and value of the constant, as shown in Figure 32–2.

Figure 32–2. The Constants sample application’s add-constant dialog

The constant is then added to the list. A long-tap on an existing constant will bring up a

context menu with a Delete option, which, after confirmation, will delete the constant.

CHAPTER 32: Managing and Accessing Local Databases 359

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer
SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT), data

manipulation (INSERT, et al.), and data definition (CREATE TABLE, et al.). SQLite has a few

places where it deviates from the SQL-92 standard, which is no different from most SQL

databases. The good news is that SQLite is so space-efficient that the Android runtime

can include all of SQLite, not some arbitrary subset to trim it down to size.

The biggest difference between SQLite and other SQL databases is the data typing.

While you can specify the data types for columns in a CREATE TABLE statement, and

SQLite will use those as a hint, that is as far as it goes. You can put whatever data you

want in whatever column you want. Put a string in an INTEGER column? Sure, no

problem! Vice versa? That works, too! SQLite refers to this as manifest typing, as

described in the documentation:

In manifest typing, the datatype is a property of the value itself, not of the
column in which the value is stored. SQLite thus allows the user to store any
value of any datatype into any column regardless of the declared type of that
column.

Start at the Beginning
No databases are automatically supplied to you by Android. If you want to use SQLite,

you will need to create your own database, and then populate it with your own tables,

indexes, and data.

To create and open a database, your best option is to craft a subclass of

SQLiteOpenHelper. This class wraps up the logic to create and upgrade a database, per

your specifications, as needed by your application. Your subclass of SQLiteOpenHelper

will need three methods:

 The constructor, chaining upward to the SQLiteOpenHelper

constructor. This takes the Context (e.g., an Activity), the name of the

database, an optional cursor factory (typically, just pass null), and an

integer representing the version of the database schema you are

using.

 onCreate(), which passes you a SQLiteDatabase object that you

populate with tables and initial data, as appropriate.

 onUpgrade(), which passes you a SQLiteDatabase object and the old

and new version numbers, so you can figure out how best to convert

the database from the old schema to the new one. The simplest, albeit

least friendly, approach is to drop the old tables and create new ones.

CHAPTER 32: Managing and Accessing Local Databases 360

For example, here is a DatabaseHelper class from Database/Constants that, in

onCreate(), creates a table and adds a number of rows, and in onUpgrade() cheats by

dropping the existing table and executing onCreate():

package com.commonsware.android.constants;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="db";
 static final String TITLE="title";
 static final String VALUE="value";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
 TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(TITLE, "Gravity, Death Star I");
 cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Earth");
 cv.put(VALUE, SensorManager.GRAVITY_EARTH);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Jupiter");
 cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mars");
 cv.put(VALUE, SensorManager.GRAVITY_MARS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mercury");
 cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Moon");
 cv.put(VALUE, SensorManager.GRAVITY_MOON);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Neptune");

CHAPTER 32: Managing and Accessing Local Databases 361

 cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Pluto");
 cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Saturn");
 cv.put(VALUE, SensorManager.GRAVITY_SATURN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Sun");
 cv.put(VALUE, SensorManager.GRAVITY_SUN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, The Island");
 cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Uranus");
 cv.put(VALUE, SensorManager.GRAVITY_URANUS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Venus");
 cv.put(VALUE, SensorManager.GRAVITY_VENUS);
 db.insert("constants", TITLE, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 android.util.Log.w("Constants", "Upgrading database, which will destroy all
 old data");
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

We will take a closer look at what onCreate() is doing—in terms of execSQL() and

insert() calls—later in this chapter.

To use your SQLiteOpenHelper subclass, create and hold onto an instance of it. Then,

when you need a SQLiteDatabase object to do queries or data modifications, ask your

SQLiteOpenHelper to getReadableDatabase() or getWriteableDatabase(), depending on

whether or not you will be changing its contents. For example, our ConstantsBrowser

activity opens the database in onCreate() as part of doing a query:

constantsCursor=db
 .getReadableDatabase()
 .rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

When you are done with the database (e.g., your activity is being closed), simply call

close() on your SQLiteOpenHelper to release your connection.

CHAPTER 32: Managing and Accessing Local Databases 362

For onUpgrade() to work properly, your version numbers for your database schema must

increase as you move forward. A typical pattern is to start with 1 and work your way up

from there.

There are two other methods you can elect to override in your SQLiteOpenHelper, if you

feel the need:

 onOpen(): You can override this to get control when somebody opens

this database. Usually, this is not required.

 onDowngrade(): Introduced in Android 3.0, this method will be called if

the code requests a schema that is older than what is in the database

presently. This is the converse of onUpgrade(). If your version numbers

differ, one of these two methods will be invoked. Since normally you

are moving forward with updates, you can usually skip onDowngrade().

Setting the Table
For creating your tables and indexes, you will need to call execSQL() on your

SQLiteDatabase, providing the Data Definition Language (DDL) statement you wish to

apply against the database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in the

DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT,
value REAL);");

This will create a table, named constants, with a primary key column named _id that is

an autoincremented integer (i.e., SQLite will assign the value for you when you insert

rows), plus two data columns: title (text) and value (a float, or real in SQLite terms).

SQLite will automatically create an index for you on your primary key column. You could

add other indexes here via some CREATE INDEX statements.

Most likely, you will create tables and indexes when you first create the database, or

possibly when the database needs upgrading to accommodate a new release of your

application. If you do not change your table schemas, you might never drop your tables

or indexes, but if you do, just use execSQL() to invoke DROP INDEX and DROP TABLE

statements as needed.

Makin’ Data
Given that you have a database and one or more tables, you probably want to put some

data in them. You have two major approaches for doing this:

 Use execSQL(), just as you did for creating the tables. The execSQL()

method works for any SQL that does not return results, so it can

handle INSERT, UPDATE, DELETE, and so forth just fine.

CHAPTER 32: Managing and Accessing Local Databases 363

Use the insert(),update(), and delete() methods on the

SQLiteDatabase object, which eliminates much of the SQL syntax

required to do basic operations.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put(DatabaseHelper.TITLE, wrapper.getTitle());
 values.put(DatabaseHelper.VALUE, wrapper.getValue());

 db.getWritableDatabase().insert("constants", DatabaseHelper.TITLE, values);
 constantsCursor.requery();
}

These methods make use of ContentValues objects, which implement a Map-esque

interface, albeit one that has additional methods for working with SQLite types. For

example, in addition to get() to retrieve a value by its key, you have

getAsInteger(),getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column as the “null

column hack,” and a ContentValues with the initial values you want put into this row. The

null column hack is for the case where the ContentValues instance is empty—the

column named as the null column hack will be explicitly assigned the value NULL in the

SQL INSERT statement generated by insert(). This is required due to a quirk in SQLite’s

support for the SQL INSERT statement.

The update() method takes the name of the table, a ContentValues representing the

columns and replacement values to use, an optional WHERE clause, and an optional list of

parameters to fill into the WHERE clause, to replace any embedded question marks (?).

Since update()replaces only columns with fixed values, versus ones computed based

on other information, you may need to use execSQL() to accomplish some ends. The

WHERE clause and parameter list work akin to the positional SQL parameters you may be

used to from other SQL APIs.

The delete() method works akin to update(), taking the name of the table, the optional

WHERE clause, and the corresponding parameters to fill into the WHERE clause. For

example, here we delete() a row from our constants table, given its _ID:

private void processDelete(long rowId) {
 String[] args={String.valueOf(rowId)};

 db.getWritableDatabase().delete("constants", "_ID=?", args);
 constantsCursor.requery();
}

CHAPTER 32: Managing and Accessing Local Databases 364

What Goes Around, Comes Around
As with INSERT, UPDATE, and DELETE, you have two main options for retrieving data from a

SQLite database using SELECT:

 Use rawQuery() to invoke a SELECT statement directly

 Use query() to build up a query from its component parts

Confounding matters further is the SQLiteQueryBuilder class and the issue of cursors

and cursor factories. Let’s take all of this one piece at a time.

Raw Queries
The simplest solution, at least in terms of the API, is rawQuery(). Simply call it with your

SQL SELECT statement. The SELECT statement can include positional parameters; the

array of these forms your second parameter to rawQuery(). So, we wind up with this:

constantsCursor=db
 .getReadableDatabase()
 .rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

The return value is a Cursor, which contains methods for iterating over results

(discussed shortly, in the “Using Cursors” section).

If your queries are pretty much “baked into” your application, this is a very

straightforward way to use them. However, it gets complicated if parts of the query are

dynamic, beyond what positional parameters can really handle. For example, if the set of

columns you need to retrieve is not known at compile time, puttering around

concatenating column names into a comma-delimited list can be annoying...which is

where query() comes in.

Regular Queries
The query() method takes the discrete pieces of a SELECT statement and builds the query

from them. The pieces, in the order they appear as parameters to query(), are as follows:

 The name of the table to query against

 The list of columns to retrieve

 The WHERE clause, optionally including positional parameters

 The list of values to substitute in for those positional parameters

 The GROUP BY clause, if any

 The HAVING clause, if any

 The ORDER BY clause, if any

CHAPTER 32: Managing and Accessing Local Databases 365

These can be null when they are not needed (except the table name, of course):

String[] columns={"ID", "inventory"};
String[] parms={"snicklefritz"};
Cursor result=db.query("widgets", columns, "name=?",
 parms, null, null, null);

Using Cursors
No matter how you execute the query, you get a Cursor back. This is the Android/SQLite

edition of the database cursor, a concept used in many database systems. With the

cursor, you can do the following:

 Find out how many rows are in the result set via getCount()

 Iterate over the rows via moveToFirst(),moveToNext(), and
isAfterLast()

 Find out the names of the columns via getColumnNames(), convert

those into column numbers via getColumnIndex(), and get values for

the current row for a given column via methods like

getString(),getInt(), and so on

 Reexecute the query that created the cursor via requery()

 Release the cursor’s resources via close()

For example, here we iterate over a widgets table entries:

Cursor result=
 db.rawQuery("SELECT ID, name, inventory FROM widgets", null);

while (!result.moveToNext()) {
 int id=result.getInt(0);
 String name=result.getString(1);
 int inventory=result.getInt(2);

 // do something useful with these
}

result.close();

You can also wrap a Cursor in a SimpleCursorAdapter or other implementation, and then

hand the resulting adapter to a ListView or other selection widget. Note, though, that if

you are going to use CursorAdapter or its subclasses (such as SimpleCursorAdapter),

the result set of your query must contain an integer column named _ID that is unique for

the result set. This “id” value is then supplied to methods such as onListItemClick(), to

identify which item the user clicked upon in the AdapterView.

For example, after retrieving the sorted list of constants, we pop those into the ListView

for the ConstantsBrowser activity in just a few lines of code:

ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,

CHAPTER 32: Managing and Accessing Local Databases 366

 new String[] {DatabaseHelper.TITLE,
 DatabaseHelper.VALUE},
 new int[] {R.id.title, R.id.value});

Custom CursorAdapters
You may recall from an earlier chapter that you can override getView() in ArrayAdapter

to provide more custom control over how rows are displayed. However, CursorAdapter

and its subclasses have a default implementation of getView(),which inspects the

supplied View to recycle. If it is null, getView() calls newView() and then bindView(). If it

is not null, getView() just calls bindView(). If you are extending CursorAdapter—used

for displaying results of a database or content provider query—you should override

newView() and bindView() instead of getView().

All this does is remove your if() test you would have had in getView() and puts each

branch of that test in an independent method, akin to the following:

public View newView(Context context, Cursor cursor,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, null);
 ViewWrapper wrapper=new ViewWrapper(row);

 row.setTag(wrapper);

 return(row);
}

public void bindView(View row, Context context, Cursor cursor) {
 ViewWrapper wrapper=(ViewWrapper)row.getTag();

 // actual logic to populate row from Cursor goes here
}

Making Your Own Cursors
There may be circumstances in which you want to use your own Cursor subclass, rather

than the stock implementation provided by Android. In those cases, you can use

queryWithFactory() and rawQueryWithFactory(), which take a

SQLiteDatabase.CursorFactory instance as a parameter. The factory, as you might

expect, is responsible for creating new cursors via its newCursor() implementation.

Finding and implementing a valid use for this facility is left as an exercise for you. Suffice

it to say that you should not need to create your own cursor classes much, if at all, in

ordinary Android development.

CHAPTER 32: Managing and Accessing Local Databases 367

Flash: Sounds Faster Than It Is
Your database will be stored on flash memory, normally the onboard flash for the

device. Reading data off of flash is relatively quick. While the memory is not especially

fast, there is no seek time to move hard drive heads around, as you find with magnetic

media, so performing a query against a SQLite database tends to be speedy.

Writing data to flash is another matter entirely. Sometimes, this may happen fairly

quickly, on the order of a couple of milliseconds. Sometimes, though, it may take

hundreds of milliseconds, even for writing small amounts of data. Moreover, flash tends

to get slower the fuller it is, so the speed your users will see varies even more.

The net result is that you should seriously consider doing all database write operations

off the main application thread, such as via an AsyncTask, as is described in Chapter 20.

That way, the database write operations will not slow down your UI.

Note that the emulator behaves differently, because it is typically using a file on your

hard drive for storing data, rather than flash. While the emulator tends to be much

slower than hardware for CPU and GPU operations, the emulator will tend to be much

faster for writing data to flash. Hence, just because you are not seeing any UI

slowdowns due to database I/O in the emulator, do not assume that will be the same

when your code is running on a real Android device.

Data, Data, Everywhere
If you are used to developing for other databases, you are also probably used to having

tools to inspect and manipulate the contents of the database, beyond merely the

database’s API. With Android’s emulator, you have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program and make it

available from the adb shell command. Once you are in the emulator’s shell, just

execute sqlite3, providing it the path to your database file. Your database file can be

found at the following location:

/data/data/your.app.package/databases/your-db-name

Here, your.app.package is the Java package for your application (e.g.,

com.commonsware.android) and your-db-name is the name of your database, as supplied

to createDatabase().

The sqlite3 program works, and if you are used to poking around your tables using a

console interface, you are welcome to use it. If you prefer something a little friendlier,

you can always copy the SQLite database off the device onto your development

machine, and then use a SQLite-aware client program to putter around. Note, though,

that you are working off a copy of the database; if you want your changes to go back to

the device, you will need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or the

equivalent in your IDE, or the File Manager in the Dalvik Debug Monitor Service), which

CHAPTER 32: Managing and Accessing Local Databases 368

takes the path to the on-device database and the local destination as parameters. To

store a modified database on the device, use adb push, which takes the local path to the

database and the on-device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension for Firefox,

shown in Figure 32–3, as it works across all platforms.

Figure 32–3. SQLite Manager Firefox extension

You can find other client tools on the SQLite web site.

369

 Chapter

Leveraging Java Libraries
Java has as many third-party libraries as any other modern programming language, if

not more. These third-party libraries are the innumerable JARs that you can include in a

server or desktop Java application—the things that the Java SDKs themselves do not

provide.

In the case of Android, the Dalvik virtual machine (VM) at its heart is not precisely Java,

and what it provides in its SDK is not precisely the same as any traditional Java SDK.

That being said, many Java third-party libraries still provide capabilities that Android

lacks natively, and therefore may be of use to you in your project, if you can get them to

work with Android’s flavor of Java.

This chapter explains what it will take for you to leverage such libraries and describes

the limitations on Android’s support for arbitrary third-party code.

Ants and JARs
You have two choices for integrating third-party code into your project: use the source

code or use prepackaged JARs.

If you choose to use the source code, all you need to do is copy it into your own source

tree (under src/ in your project), so it can sit alongside your existing code, and then let

the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the source

code, you will need to teach your build chain how to use the JAR. First, place the JAR in

the libs/ directory in your Android project. Then, if you are using an IDE, you probably

need to add the JAR to your build path (Ant will automatically pick up all JARs found in

libs/). This is definitely required for Eclipse.

And that’s it. Adding third-party code to your Android application is fairly easy. Getting it

to actually work may be somewhat more complicated, however.

33

CHAPTER 33: Leveraging Java Libraries 370

The Outer Limits
Not all available Java code will work well with Android. There are a number of factors to

consider, including the following:

 Expected platform APIs: Does the code assume a newer JVM than the

one Android is based on? Or, does the code assume the existence of

Java APIs that ship with Java 2 Platform, Standard Edition (J2SE) but

not with Android, such as Swing?

 Size: Existing Java code designed for use on desktops or servers does

not need to be concerned much about on-disk size or, to some extent,

even in-RAM size. Android, of course, is short on both. Using third-

party Java code, particularly when prepackaged as JARs, may balloon

the size of your application.

 Performance: Does the Java code effectively assume a much more

powerful CPU than what you may find on many Android devices? Just

because a desktop can run it without issue does not mean your

average mobile phone will handle it well.

 Interface: Does the Java code assume a console interface? Or is it a

pure API that you can wrap your own interface around?

 Operating system: Does the Java code assume the existence of

certain console programs? Does the Java code assume it can use a

Windows DLL?

 Language version: Was the JAR compiled with an older version of Java

(1.4.2 or older)? Was the JAR compiled with a different compiler than

the official one from Sun (e.g., GCJ)?

 Dependencies: Does the Java code depend on other third-party JARs

that might have some of these problems as well? Does the Java code

depend on third-party libraries (e.g., the JSON library from

http://json.org) that are built into Android, but expect a different

version of those libraries?

One trick for addressing some of these concerns is to use open source Java code and

actually work with the code to make it more Android-friendly. For example, if you are

using only 10 percent of the third-party library, maybe it’s worthwhile to recompile the

subset of the project to be only what you need, or at least to remove the unnecessary

classes from the JAR. The former approach is safer, in that you get compiler help to

make sure you are not discarding some essential piece of code, although it may be

more tedious to do.

http://json.org

CHAPTER 33: Leveraging Java Libraries 371

Following the Script
Unlike other mobile device operating systems, Android has no restrictions on what you

can run on it, as long as you can do it in Java using the Dalvik VM. This includes

incorporating your own scripting language into your application, something that is

expressly prohibited on some other devices.

One possible Java scripting language is BeanShell (www.beanshell.org/). BeanShell

gives you Java-compatible syntax with implicit typing and no compilation required.

To add BeanShell scripting, you need to put the BeanShell interpreter’s JAR file in your

libs/ directory. Unfortunately, the 2.0b4 JAR available for download from the BeanShell

site does not work out of the box with the Android 0.9 and newer SDKs, perhaps due to

the compiler that was used to build it. Instead, you should probably check out the

source code from Subversion and execute ant jarcore to build it, and then copy the

resulting JAR (in BeanShell’s dist/ directory) to your own project’s libs/. Or, just use

the BeanShell JAR that accompanies the source code for this book, up in the

Java/AndShell project.

From there, using BeanShell on Android is no different from using BeanShell in any other

Java environment:

1. Create an instance of the BeanShell Interpreter class.

2. Set any globals for the script’s use via Interpreter#set().

3. Call Interpreter#eval() to run the script and, optionally, get the result

of the last statement.

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/eval"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Go!"
 android:onClick="go"
 />
<EditText
 android:id="@+id/script"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />
</LinearLayout>

http://www.beanshell.org/
http://schemas.android.com/apk/res/android

CHAPTER 33: Leveraging Java Libraries 372

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

public class MainActivity extends Activity {
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }

 public void go(View v) {
 EditText script=(EditText)findViewById(R.id.script);
 String src=script.getText().toString();

 try {
 i.set("context", MainActivity.this);
 i.eval(src);
 }
 catch (bsh.EvalError e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(MainActivity.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
}

Compile and run it (including incorporating the BeanShell JAR as previously mentioned),

and install it on the emulator. Fire it up, and you get a trivial IDE, with a large text area

for your script and a big Go! button to execute it, as shown in Figure 33–1.

CHAPTER 33: Leveraging Java Libraries 373

Figure 33–1. The AndShell BeanShell IDE

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", Toast.LENGTH_LONG).show();

Note the use of context to refer to the activity when making the Toast. That is the global

set by the activity to reference back to itself. You could call this global variable anything

you want, as long as the set() call and the script code use the same name.

Click the Go! button, and you get the result shown in Figure 33–2.

Figure 33–2. The AndShell BeanShell IDE, executing some code

CHAPTER 33: Leveraging Java Libraries 374

And now, some caveats:

 Not all scripting languages will work. For example, those that

implement their own form of just-in-time (JIT) compilation, generating

Java bytecodes on-the-fly, would probably need to be augmented to

generate Dalvik VM bytecodes instead of those for stock Java

implementations. Simpler languages that execute from parsed scripts,

calling Java reflection APIs to call back into compiled classes, will

likely work better. Even there, though, not every feature of the

language may work, if it relies on some facility in a traditional Java API

that does not exist in Dalvik. For example, there could be stuff hidden

inside BeanShell or the add-on JARs that does not work on today’s

Android.

 Scripting languages without JIT will inevitably be slower than compiled

Dalvik applications. Slower may mean users experience sluggishness.

Slower definitely means more battery life is consumed for the same

amount of work. So, building a whole Android application in

BeanShell, simply because you feel it is easier to program in, may

cause your users to be unhappy.

 Scripting languages that expose the whole Java API, like BeanShell,

can pretty much do anything the underlying Android security model

allows. So, if your application has the READ_CONTACTS permission,

expect any BeanShell scripts your application runs to have the same

permission.

 Last, but certainly not least, is that language interpreter JARs tend to

be...portly. The BeanShell JAR used in this example is 200KB. That is

not ridiculous, considering what it does, but it will make applications

that use BeanShell that much bigger to download, take up that much

more space on the device, and so on.

Reviewing the Script
Since this chapter covers scripting in Android, you may be interested to know that you

have options beyond embedding BeanShell directly in your project.

Some experiments have been conducted with other JVM-based programming

languages, such as JRuby and Jython. At present, their support for Android is

incomplete, but progress is being made.

Additionally, Scripting Layer for Android (SL4A), described at

http://code.google.com/p/android-scripting/, allows you to write scripts in a wide

range of scripting languages, beyond BeanShell, such as the following:

 Perl

 Python

http://code.google.com/p/android-scripting/

CHAPTER 33: Leveraging Java Libraries 375

 JRuby

 Lua

 JavaScript (implemented via Rhino, the Mozilla JavaScript interpreter

written in Java)

 PHP

These scripts are not full-fledged applications, though the SL4A team is working on

allowing you to turn them into APK files complete with basic UIs. For on-device

development, SL4A is a fine choice.

377

 Chapter

Communicating via the
Internet
The expectation is that most, if not all, Android devices will have built-in Internet access.

That could be Wi-Fi, cellular data services (EDGE, 3G, etc.), or possibly something else

entirely. Regardless, most people—or at least those with a data plan or Wi-Fi access—

will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to make

use of this Internet access. Some offer high-level access, such as the integrated WebKit

browser component. If you want, you can drop all the way down to using raw sockets. In

between, you can leverage APIs—both on-device and from third-party JARs—that give

you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit

component, discussed in Chapter 15, and Internet-access APIs, , discussed in this

chapter. As busy coders, we should be trying to reuse existing components wherever

possible, versus rolling our own on-the-wire protocol.

REST and Relaxation
Android does not have built-in SOAP or XML-RPC client APIs. However, it does have the

Apache HttpClient library baked in. You can either layer a SOAP/XML-RPC layer atop

this library or use it “straight” for accessing REST-style web services. For the purposes

of this book, REST-style web services are considered simple HTTP requests for ordinary

URLs over the full range of HTTP verbs, with formatted payloads (XML, JSON, etc.) as

responses.

More expansive tutorials, FAQs, and HOWTOs can be found at the HttpClient web site

(http://hc.apache.org/). Here, we’ll cover the basics, while checking the weather.

34

http://hc.apache.org/

CHAPTER 34: Communicating via the Internet 378

HTTP Operations via Apache HttpClient
The first step to using HttpClient is, not surprisingly, to create an HttpClient object. The

client object handles all HTTP requests on your behalf. Since HttpClient is an interface,

you will need to actually instantiate some implementation of that interface, such as

DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different HttpRequest

implementations for each different HTTP verb (e.g., HttpGet for HTTP GET requests). You

create an HttpRequest implementation instance, fill in the URL to retrieve and other

configuration data (e.g., form values if you are doing an HTTP POST via HttpPost), and

then pass the method to the client to actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want. You can

get an HttpResponse object back, with response code (e.g., 200 for OK), HTTP headers,

and the like. Or, you can use a flavor of execute() that takes a ResponseHandler<String>

as a parameter, with the net result being that execute() returns just the String

representation of the response body. In practice, this is not a recommended approach,

because you really should be checking your HTTP response codes for errors. However,

for trivial applications, like book examples, the ResponseHandler<String> approach

works just fine.

For example, let’s take a look at the Internet/Weather sample project. This implements

an activity that retrieves weather data for your current location from the National

Weather Service. (Note that this probably works only for geographic locations in the

United States.) That data is converted into an HTML page, which is poured into a WebKit

widget for display. Rebuilding this demo using a ListView is left as an exercise for the

reader. Also, since this sample is relatively long, we will show only relevant pieces of the

Java code here in this chapter, though you can always download the full source from the

CommonsWare web site.

To make this a bit more interesting, we use the Android location services to figure out

where we are...sort of. The full details of how that works are provided in Chapter 39.

In the onResume() method, we toggle on location updates, so we will be informed where

we are now and when we move a significant distance (10 kilometers). When a location is

available—either at the start or based on movement—we retrieve the National Weather

Service data via our updateForecast() method:

private void updateForecast(Location loc) {
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);

 try {
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod,
 responseHandler);
 buildForecasts(responseBody);

CHAPTER 34: Communicating via the Internet 379

 String page=generatePage();

 browser.loadDataWithBaseURL(null, page, "text/html",
 "UTF-8", null);
 }
 catch (Throwable t) {
 android.util.Log.e("WeatherDemo", "Exception fetching data", t);
 Toast
 .makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
 .show();
 }
}

The updateForecast() method takes a Location as a parameter, obtained from the

location update process. For now, all you need to know is that Location sports

getLatitude() and getLongitude() methods that return the latitude and longitude of the

device’s position, respectively.

We hold the URL to the National Weather Service XML in a string resource, and pour in

the latitude and longitude at runtime. Given our HttpClient object created in

onCreate(), we populate an HttpGet with that customized URL, and then execute that

method. Given the resulting XML from the REST service, we build the forecast HTML

page, as described next, and pour that into the WebKit widget. If the HttpClient blows

up with an exception, we provide that error as a Toast.

Note that we also shut down the HttpClient object in onDestroy().

Parsing Responses
The response you get will be formatted using some system—HTML, XML, JSON, or

whatever. It is up to you, of course, to pick out the information you need and do

something useful with it. In the case of the WeatherDemo, we need to extract the forecast

time, temperature, and icon (indicating sky conditions and precipitation) and generate an

HTML page from it.

Android includes the following parsers:

 Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX

parser (org.xml.sax), and the XML pull parser (discussed in Chapter

23)

 A JSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to handle other

formats, such as a dedicated RSS/Atom parser for a feed reader. The use of third-party

Java code is discussed in Chapter 33.

For WeatherDemo, we use the W3C DOM parser in our buildForecasts() method:

void buildForecasts(String raw) throws Exception {
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();

CHAPTER 34: Communicating via the Internet 380

 Document doc=builder.parse(new InputSource(new StringReader(raw)));
 NodeList times=doc.getElementsByTagName("start-valid-time");

 for (int i=0;i<times.getLength();i++) {
 Element time=(Element)times.item(i);
 Forecast forecast=new Forecast();

 forecasts.add(forecast);
 forecast.setTime(time.getFirstChild().getNodeValue());
 }

 NodeList temps=doc.getElementsByTagName("value");

 for (int i=0;i<temps.getLength();i++) {
 Element temp=(Element)temps.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
 }

 NodeList icons=doc.getElementsByTagName("icon-link");

 for (int i=0;i<icons.getLength();i++) {
 Element icon=(Element)icons.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setIcon(icon.getFirstChild().getNodeValue());
 }
}

The National Weather Service XML format is curiously structured, relying heavily on

sequential position in lists versus the more object-oriented style you find in formats like

RSS or Atom. That being said, we can take a few liberties and simplify the parsing

somewhat, taking advantage of the fact that the elements we want (start-valid-time

for the forecast time, value for the temperature, and icon-link for the icon URL) are all

unique within the document.

The HTML comes in as an InputStream and is fed into the DOM parser. From there, we

scan for the start-valid-time elements and populate a set of Forecast models using

those start times. Then, we find the temperature value elements and icon-link URLs

and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with the

forecasts:

String generatePage() {
 StringBuilder bufResult=new StringBuilder("<html><body><table>");

 bufResult.append("<tr><th width=\"50%\">Time</th>"+
 "<th>Temperature</th><th>Forecast</th></tr>");

 for (Forecast forecast : forecasts) {
 bufResult.append("<tr><td align=\"center\">");
 bufResult.append(forecast.getTime());

CHAPTER 34: Communicating via the Internet 381

 bufResult.append("</td><td align=\"center\">");
 bufResult.append(forecast.getTemp());
 bufResult.append("</td><td><img src=\"");
 bufResult.append(forecast.getIcon());
 bufResult.append("\"></td></tr>");
 }

 bufResult.append("</table></body></html>");

 return(bufResult.toString());
}

The result looks like Figure 34-1.

Figure 34–1. The WeatherDemo sample application

NOTE: You may have to set your location in Eclipse if you are using the emulator. Open the
DDMS perspective with Window Open Perspective Other DDMS. Select your emulator in
the Devices Name panel, and then set your emulator’s location in the Emulator Control panel

using the Longitude and Latitude boxes. When you are ready, click Send.

Stuff to Consider
If you need to use SSL, bear in mind that the default HttpClient setup does not include

SSL support. Mostly, this is because you need to decide how to handle SSL certificate

presentation: Do you blindly accept all certificates, even self-signed or expired ones? Or

do you want to ask users if they really want to use some strange certificates?

CHAPTER 34: Communicating via the Internet 382

Similarly, HttpClient, by default, is designed for single-threaded use. If you will be using

HttpClient from some other place where multiple threads might be an issue, you can

readily set up HttpClient to support multiple threads.

For these sorts of topics, you are best served by checking out the HttpClient web site

for documentation and support.

AndroidHttpClient
Starting in Android 2.2 (API level 8), you can use the AndroidHttpClient class, found in

the android.net.http package. This is an implementation of the HttpClient interface,

like DefaultHttpClient. However, it is preconfigured with settings that the core Android

team feels make sense for the platform.

What you gain are the following:

 SSL management

 A direct way to specify the user agent string, which is supplied in your

call to the static newInstance() method to get an instance of
AndroidHttpClient

 Utility methods for working with material compressed via GZIP, for

parsing dates in HTTP headers, and so on

What you lose is automatic cookie storage. A regular DefaultHttpClient will cache

cookies in memory and use them on subsequent requests where they are needed.

AndroidHttpClient does not. There are ways to fix that, by using an HttpContext object,

as is described in the AndroidHttpClient documentation.

Also, AndroidHttpClient prevents you from using it on the main application thread—

requests can be made only on a background thread. This is a feature, even if some

people might consider it to be a bug.

Since this class is available only in Android 2.2 and beyond, it may not make sense to

do much with it until such time as you are supporting only API level 8 or higher.

Leveraging Internet-Aware Android Components
Wherever possible, use built-in Android components that can handle your Internet

access for you. Such components will have been fairly rigorously tested and are more

likely to handle edge cases well, such as dealing with users on Wi-Fi who move out of

range of the access point and fail over to mobile data connections (e.g., 3G).

For example, the WebView widget (introduced in Chapter 15 “WebKit Browser) and the

MapView widget (covered in Chapter 40 "Mapping with MapView and MapActivity) both

handle Internet access for you. While you still need the INTERNET permission, you do not

have to perform HTTP requests or the like yourself.

CHAPTER 34: Communicating via the Internet 383

This section outlines some other ways you can take advantage of built-in Internet

capability.

Downloading Files
Android 2.3 introduced a DownloadManager, designed to handle a lot of the complexities

of downloading larger files, such as:

 Determining whether the user is on Wi-Fi or mobile data, and if so,

whether the download should occur

 Handling when the user, previously on Wi-Fi, moves out of range of

the access point and fails over to mobile data

 Ensuring the device stays awake while the download proceeds

DownloadManager itself is less complicated than the alternative of writing all of it yourself.

However, it does present a few challenges. In this section, we will examine the

Internet/Download sample project that uses DownloadManager.

The Permissions
To use DownloadManager, you will need to hold the INTERNET permission. Depending on

where you elect to download the file, you may also need the WRITE_EXTERNAL_STORAGE

permission.

However, at the time of this writing, if you lack sufficient permissions, you may get an

error complaining that you are missing ACCESS_ALL_DOWNLOADS. This appears to be a bug

in the DownloadManager implementation. It should be complaining about the lack of

INTERNET or WRITE_EXTERNAL_STORAGE, or both. You do not need to hold the

ACCESS_ALL_DOWNLOADS permission, which is not even documented as of Android 3.0.

For example, here is the manifest for the Internet/Download application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.download" android:versionCode="1"
 android:versionName="1.0">
 <!-- <uses-permission android:name="android.permission.ACCESS_ALL_DOWNLOADS" /> -->
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="DownloadDemo" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 34: Communicating via the Internet 384

NOTE: You need to make sure your emulator is configured with an SD card for this example.
Open the Android SDK and AVD Manager and select your emulator, and then click Edit. You can

then set the size of the SD card your emulator uses for storage.

The Layout
Our sample application has a simple layout, consisting of three buttons:

One to kick off a download

One to query the status of a download

One to display a system-supplied activity containing the roster of

downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:id="@+id/start"
 android:text="Start Download"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:onClick="startDownload"
 />
 <Button
 android:id="@+id/query"
 android:text="Query Status"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:onClick="queryStatus"
 android:enabled="false"
 />
 <Button
 android:text="View Log"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:onClick="viewLog"
 />
</LinearLayout>

Requesting the Download
To kick off a download, we first need to get access to the DownloadManager. This is a

system service. We can call getSystemService() on any activity (or other Context),

http://schemas.android.com/apk/res/android

CHAPTER 34: Communicating via the Internet 385

provide it the identifier of the system service you want, and receive the system service

object back. However, since getSystemService() supports a wide range of these

objects, we need to cast it to the proper type for the service we requested.

So, for example, here is a line from onCreate() of the DownloadDemo activity where we

get the DownloadManager:

mgr=(DownloadManager)getSystemService(DOWNLOAD_SERVICE);

Most of these managers have no close(), release(), or goAwayPlease() sort of

methods—we can just use them and let garbage collection take care of cleaning them

up.

Given the DownloadManager, we can now call an enqueue() method to request a

download. The name is relevant—do not assume that your download will begin

immediately, though often times it will. The enqueue() method takes a

DownloadManager.Request object as a parameter. The Request object uses the builder

pattern, in that most methods return the Request itself, so we can chain a series of calls

together with less typing.

For example, the topmost button in our layout is tied to a startDownload() method in

DownloadDemo, shown here:

public void startDownload(View v) {
 Uri uri=Uri.parse("http://commonsware.com/misc/test.mp4");

 Environment
 .getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
 .mkdirs();

 lastDownload=
 mgr.enqueue(new DownloadManager.Request(uri)
 .setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI |
 DownloadManager.Request.NETWORK_MOBILE)
 .setAllowedOverRoaming(false)
 .setTitle("Demo")
 .setDescription("Something useful. No, really.")
 .setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
 "test.mp4"));

 v.setEnabled(false);
 findViewById(R.id.query).setEnabled(true);
}

We are downloading a sample MP4 file, and we want to download it to the external

storage area. To do the latter, we are using getExternalStoragePublicDirectory() on

Environment, which gives us a directory suitable for storing a certain class of content. In

this case, we are going to store the download in Environment.DIRECTORY_DOWNLOADS,

though we could just as easily have chosen Environment.DIRECTORY_MOVIES, since we

are downloading a video clip. Note that the File object returned by

getExternalStoragePublicDirectory() may point to a not-yet-created directory, which

is why we call mkdirs() on it, to ensure the directory exists.

We then create the DownloadManager.Request object, with the following attributes:

http://commonsware.com/misc/test.mp4

CHAPTER 34: Communicating via the Internet 386

 We are downloading the specific URL we want, courtesy of the Uri

supplied to the Request constructor.

 We are willing to use either mobile data or Wi-Fi for the download

(setAllowedNetworkTypes()), but we do not want the download to

incur roaming charges (setAllowedOverRoaming()).

 We want the file downloaded as test.mp4 in the downloads area on

the external storage (setDestinationInExternalPublicDir()).

We also provide a name (setTitle()) and description (setDescription()), which are

used as part of the notification drawer entry for this download. The user will see these

when they slide down the drawer while the download is progressing.

The enqueue() method returns an ID of this download, which we hold onto for use in

querying the download status.

Keeping Track of Download Status
If the user presses the Query Status button, we want to find out the details of how the

download is progressing. To do that, we can call query() on the DownloadManager. The

query() method takes a DownloadManager.Query object, describing what download(s) we

are interested in. In our case, we use the value we got from the enqueue() method when

the user requested the download:

public void queryStatus(View v) {
 Cursor c=mgr.query(new DownloadManager.Query().setFilterById(lastDownload));

 if (c==null) {
 Toast.makeText(this, "Download not found!", Toast.LENGTH_LONG).show();
 }
 else {
 c.moveToFirst();

 Log.d(getClass().getName(), "COLUMN_ID: "+
 c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
 Log.d(getClass().getName(), "COLUMN_BYTES_DOWNLOADED_SO_FAR: "+
 c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)));
 Log.d(getClass().getName(), "COLUMN_LAST_MODIFIED_TIMESTAMP: "+
 c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMESTAMP)));
 Log.d(getClass().getName(), "COLUMN_LOCAL_URI: "+
 c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
 Log.d(getClass().getName(), "COLUMN_STATUS: "+
 c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));
 Log.d(getClass().getName(), "COLUMN_REASON: "+
 c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

 Toast.makeText(this, statusMessage(c), Toast.LENGTH_LONG).show();
 }
}

CHAPTER 34: Communicating via the Internet 387

The query() method returns a Cursor, containing a series of columns representing the

details about our download. There are a series of constants on the DownloadManager

class outlining what is possible. In our case, we retrieve (and dump to LogCat) the

following:

 The ID of the download (COLUMN_ID)

 The amount of data that has been downloaded to date

(COLUMN_BYTES_DOWNLOADED_SO_FAR)

 What the last-modified timestamp is on the download

(COLUMN_LAST_MODIFIED_TIMESTAMP)

 Where the file is being saved to locally (COLUMN_LOCAL_URI)

 What the actual status is (COLUMN_STATUS)

 What the reason is for that status (COLUMN_REASON)

There are a number of possible status codes (e.g., STATUS_FAILED, STATUS_SUCCESSFUL,

and STATUS_RUNNING). Some, like STATUS_FAILED, may have an accompanying reason

providing more details.

What the User Sees
The user, upon launching the application, sees our three buttons, as shown in Figure 34–2.

Figure 34–2. The DownloadDemo sample application, as initially launched

CHAPTER 34: Communicating via the Internet 388

Clicking the first button disables the button while the download is going on, and a

download icon appears in the status bar (though it is a bit difficult to see, given the poor

contrast between Android’s icon and Android’s status bar), as shown in Figure 34–3.

Figure 34–3. The DownloadDemo sample application, performing a download

Sliding down the notification drawer shows the user the progress of the download in the

form of a ProgressBar widget, as shown in Figure 34–4.

Figure 34–4. The notification drawer, during a download using DownloadManager

CHAPTER 34: Communicating via the Internet 389

Tapping the entry in the notification drawer returns control to our original activity, where

the user sees a Toast, as shown in Figure 34–5.

Figure 34–5. The DownloadDemo sample application, after coming to the foreground from the notification

If the user taps the middle button during the download, a Toast will appear indicating

that the download is in progress, as shown in Figure 34–6.

Figure 34–6. The DownloadDemo sample application, showing the status mid-download

CHAPTER 34: Communicating via the Internet 390

Additional details are also dumped to LogCat, visible via DDMS or adb logcat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_ID: 12
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_STATUS: 2
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_REASON: 0

Once the download is complete, tapping the middle button will indicate that the

download is, indeed, complete, and final information about the download is emitted to

LogCat:

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_ID: 12
12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_STATUS: 8
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
 COLUMN_REASON: 0

Tapping the bottom button brings up the activity displaying all downloads, including

both successes and failures, as shown in Figure 34–7.

CHAPTER 34: Communicating via the Internet 391

Figure 34–7. The Downloads screen, showing everything downloaded by the DownloadManager

And, of course, the file is downloaded. In Android 2.3, in the emulator, our chosen

location maps to /mnt/sdcard/Downloads/test.mp4.

Limitations
DownloadManager works with HTTP URLs, but not HTTPS (SSL) URLs. This is

unfortunate, as more and more sites are switching to SSL encryption across the board,

to deal with various security challenges. Hopefully, in the future, DownloadManager will

have more options here.

If you display the list of all downloads, and your download is among them, it is a really

good idea to make sure that some activity (perhaps one of yours) is able to respond to

an ACTION_VIEW Intent on that download’s MIME type. Otherwise, when the user taps

the entry in the list, they will get a Toast indicating that there is nothing available to view

the download. This may confuse users. Alternatively, use setVisibleInDownloadsUi() on

your request, passing in false, to suppress it from this list.

Continuing Our Escape from Janky Code
The rule is simple: do not access the Internet from the main application thread. Always

use a background thread with HttpClient, HttpUrlConnection, or any other Internet

access API you wish to use.

CHAPTER 34: Communicating via the Internet 392

StrictMode, introduced in an earlier chapter, will warn you if you attempt to access the

Internet on the main application thread. AndroidHttpClient will simply crash if you

attempt to make web requests on the main application thread. However, these

capabilities are available only in newer versions of Android. That being said, there are

ways to have StrictMode in your application but use it only in newer versions of Android

using conditional class loading—this technique was covered earlier in this book.

 Part

Services

V

395

 Chapter

Services: The Theory
As noted previously, Android services are for long-running processes that may need to

keep running even when decoupled from any activity. Examples include playing music

even if the player activity gets garbage-collected, polling the Internet for RSS/Atom feed

updates, and maintaining an online chat connection even if the chat client loses focus

due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity tries

connecting to the service via interprocess communication (IPC). Services will live until

specifically shut down or until Android is desperate for RAM and destroys them

prematurely. Running for a long time has its costs, though, so services need to be

careful not to use too much CPU or keep radios active too much of the time, lest the

service cause the device’s battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming services. The next

chapter presents a few specific patterns for services, ones that may closely match your

particular needs. Hence, this chapter has limited code examples, whereas the next

chapter serves up several code examples.

Why Services?
Services are a “Swiss Army knife” for a wide range of functions that do not require direct

access to an activity’s user interface, such as the following:

Performing operations that need to continue even if the user leaves the

application’s activities, such as a long download (e.g., downloading an app

from the Android Market) or playing music (e.g., an Android music app)

Performing operations that need to exist regardless of activities

coming and going, such as maintaining a chat connection in support

of a chat application

Providing a local API to remote APIs, such as might be provided by a

web service

35

CHAPTER 35: Services: The Theory 396

 Performing periodic work without user intervention, akin to cron jobs

or Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist with long-

running work.

Many applications do not need any services. Very few applications need more than one.

However, services are a powerful tool in an Android developer’s toolbox and their

functionality is a subject with which any qualified Android developer should be familiar.

Setting Up a Service
Creating a service implementation shares many characteristics with building an activity.

You inherit from an Android-supplied base class, override some lifecycle methods, and

hook the service into the system via the manifest.

Service Class
Just as an activity in your application extends either Activity or an Android-supplied

Activity subclass, a service in your application extends either Service or an Android-

supplied Service subclass. The most common Service subclass is IntentService, used

primarily for the command pattern. That being said, many services simply extend

Service.

Lifecycle Methods
Just as activities have onCreate(),onResume(),onPause() and similar methods, Service

implementations have their own lifecycle methods, such as the following:

 onCreate(): As with activities, called when the service process is

created, by any means

 onStartCommand(): Called each time the service is sent a command via
startService()

 onBind(): Called whenever a client binds to the service via
bindService()

 onDestroy(): Called as the service is being shut down

As with activities, services initialize whatever they need in onCreate() and clean up

those items in onDestroy(). And, as with activities, the onDestroy() method of a service

might not be called if Android terminates the entire application process, such as for

emergency RAM reclamation.

The onStartCommand() and onBind() lifecycle methods will be implemented based on

your choice of communicating to the client, as will be explained later in this chapter.

CHAPTER 35: Services: The Theory 397

Manifest Entry
Finally, you need to add the service to your AndroidManifest.xml file, for it to be

recognized as an available service for use. That is simply a matter of adding a <service>

element as a child of the application element, providing android:name to reference your

service class.

Since the service class is in the same Java namespace as everything else in this

application, we can use the shorthand ("WeatherService" or ".WeatherService") to

reference our class.

If you want to require some permission of those who wish to start or bind to the service,

add an android:permission attribute naming the permission you are mandating—see

the chapter on permissions for more details.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.downloader" android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="DownloaderDemo" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <service android:name="Downloader"/>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
 android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Communicating to Services
Clients of services—frequently activities, though not necessarily—have two main ways

to send requests or information to a service. One approach is to send a command,

which creates no lasting connection to the service. The other approach is to bind to the

service, establishing a bidirectional communications channel that lasts as long as the

client needs it.

Sending Commands with startService()
The simplest way to work with a service is to call startService(). The startService()

method takes an Intent parameter, much like startActivity() does. In fact, the Intent

supplied to startService() has the same two-part role as it does with startActivity():

http://schemas.android.com/apk/res/android

CHAPTER 35: Services: The Theory 398

 Identify the service to communicate with

 Supply parameters, in the form of Intent extras, to tell the service

what it is supposed to do

For a local service (the focus of this book), the simplest form of Intent is one that

identifies the class that implements the Intent (e.g., new Intent(this,
MyService.class);).

The call to startService() is asynchronous, so the client will not block. The service will

be created if it is not already running, and it will receive the Intent via a call to the

onStartCommand() lifecycle method. The service can do whatever it needs to in

onStartCommand(), but since onStartCommand() is called on the main application thread,

it should do its work very quickly. Anything that might take a while should be delegated

to a background thread.

The onStartCommand() method can return one of several values, mostly to indicate to

Android what should happen if the service’s process is killed while it is running. The

most likely return values are the following:

 START_STICKY: The service should be moved back into the started state

(as if onStartCommand() had been called), but the Intent should not be

redelivered to onStartCommand()

 START_REDELIVER_INTENT: The service should be restarted via a call to

onStartCommand(), supplying the same Intent as was delivered this

time

 START_NOT_STICKY: The service should remain stopped until explicitly

started by application code

By default, calling startService() not only sends the command, but tells Android to

keep the service running until something tells it to stop. One way to stop a service is to

call stopService(), supplying the same Intent used with startService(), or at least

one that is equivalent (e.g., identifies the same class). At that point, the service will stop

and will be destroyed. Note that stopService() does not employ any sort of reference

counting, so three calls to startService() will result in a single service running, which

will be stopped by a call to stopService().

Another possibility for stopping a service is to have the service call stopSelf() on itself.

You might do this if you use startService() to have a service begin running and doing

some work on a background thread, then having the service stop itself when that

background work is completed.

Binding with bindService()
Binding allows a service to expose an API to activities (or other services) that bind to it.

When an activity (or other client) binds to a service, it primarily is requesting to be able to

access the public API exposed by that service via the service’s “binder,” as returned by

CHAPTER 35: Services: The Theory 399

the service’s onBind() method. When doing this, the activity can also indicate, via the

BIND_AUTO_CREATE flag, to have Android automatically start up the service if it is not

already running.

The service’s binder is usually a subclass of Binder, on which you can put whatever

methods you want to expose to clients. For local services, you can have as many

methods as you want, with whatever method signatures (parameters, return type, etc.)

that you want. The service returns an instance of the Binder subclass in onBind().

Clients call bindService(), supplying the Intent that identifies the service, a

ServiceConnection object representing the client side of the binding, and an optional

BIND_AUTO_CREATE flag. As with startService(),bindService() is asynchronous. The

client will not know anything about the status of the binding until the ServiceConnection

object is called with onServiceConnected(). This not only indicates the binding has been

established, but, for local services, it provides the Binder object that the service

returned via onBind(). At this point, the client can use the Binder to ask the service to

do work on its behalf. Note that if the service is not already running and you provide

BIND_AUTO_CREATE, the service will be created first before being bound to the client. If

you skip BIND_AUTO_CREATE, bindService() will return false, indicating there was no

existing service to bind to.

Eventually, the client will need to call unbindService(), to indicate it no longer needs to

communicate with the service. For example, an activity might call bindService() in its

onCreate() method, then call unbindService() in its onDestroy() method. The call to

unbindService() eventually triggers onServiceDisconnected() to be called on the

ServiceConnection object—at this point, the client can no longer safely use the Binder

object.

If there are no other bound clients to the service, Android will shut down the service as

well, releasing its memory. Hence, we do not need to call stopService() ourselves—

Android handles that, if needed, as a side effect of unbinding.

If the client is an activity, there are two important steps to take to ensure that the binding

survives a configuration change, like a screen rotation:

1. Instead of calling bindService() on the activity itself, call bindService()

on the Application Context (obtained via getApplicationContext()).

2. Make sure the ServiceConnection gets from the old instance of the

activity to the new one, probably via

onRetainNonConfigurationInstance().

This allows the binding to persist between activity instances.

Communicating from Services
Of course, the approaches listed in the previous section work only for a client calling out

to a service. The reverse is also frequently needed, so the service can let an activity or

something know about asynchronous events.

CHAPTER 35: Services: The Theory 400

Callback/Listener Objects
An activity or other service client could provide some sort of callback or listener object

to the service, which the service could then call when needed. To make this work, you

would need to do the following:

1. Define a Java interface for that listener object.

2. Give the service a public API to register and retract listeners.

3. Have the service use those listeners at appropriate times, to notify those

who registered the listener of some event.

4. Have the activity register and retract a listener as needed.

5. Have the activity respond to the listener-based events in some suitable

fashion.

The biggest catch is to make sure that the activity retracts the listeners when it is done.

Listener objects generally know their activity, explicitly (via a data member) or implicitly

(by being implemented as an inner class). If the service is holding onto defunct listener

objects, the corresponding activities will linger in memory, even if the activities are no

longer being used by Android. This represents a big memory leak. You may wish to use

WeakReferences, SoftReferences, or similar constructs to ensure that if an activity is

destroyed, any listeners it registers with your service will not keep that activity in

memory.

Broadcast Intents
An alternative approach, first mentioned in the chapter on Intent filters, is to have the

service send a broadcast Intent that can be picked up by the activity...assuming the

activity is still around and is not paused. The service can call sendBroadcast(),

supplying an Intent that identifies the broadcast, designed to be picked up by a

BroadcastReceiver. This could be a component-specific broadcast (e.g., new
Intent(this, MyReceiver.class)), if the BroadcastReceiver is registered in the

manifest. Or, it could be based on some action string, perhaps even one documented

and designed for third-party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via registerReceiver(), though

this approach will work only for Intent objects specifying some action, not ones

identifying a particular component. But, when the activity’s BroadcastReceiver receives

the broadcast, it can do what it wants to inform the user or otherwise update itself.

Pending Results
Your activity can call createPendingResult(). This returns a PendingIntent, an object

that represents an Intent and the corresponding action to be performed upon that

CHAPTER 35: Services: The Theory 401

Intent (e.g., use it to start an activity). In this case, the PendingIntent will cause a result

to be delivered to your activity’s implementation of onActivityResult(), just as if

another activity had been called with startActivityForResult() and, in turn, called

setResult() to send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent extra, your

activity can pass this PendingIntent to the service. The service, in turn, can call one of

several flavors of the send() method on the PendingIntent, to notify the activity (via

onActivityResult()) of an event, possibly even supplying data (in the form of an Intent)

representing that event.

Messenger
Yet another possibility is to use a Messenger object. A Messenger sends messages to an

activity’s Handler. Within a single activity, a Handler can be used to send messages to

itself, as was demonstrated in the chapter on threads. However, between components—

such as between an activity and a service—you will need a Messenger to serve as the

bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an Intent

extra. The activity calling startService() or bindService() would attach a Messenger as

an extra on the Intent. The service would obtain that Messenger from the Intent. When

it is time to alert the activity of some event, the service would do the following:

1. Call Message.obtain() to get an empty Message object.

2. Populate that Message object as needed, with whatever data the service

wishes to pass to the activity.

3. Call send() on the Messenger, supplying the Message as a parameter.

The Handler would then receive the message via handleMessage(), on the main

application thread, and thus would be able to update the UI or do whatever is

necessary.

Notifications
Another approach is for the service to let the user know directly about the work that was

completed. To do that, a service can raise a Notification—putting an icon in the status

bar and optionally shaking or beeping or something. This technique is covered in an

upcoming chapter.

403

 Chapter

Basic Service Patterns
Now that you have seen the pieces that make up services and their clients, let us

examine a few scenarios that employ services and how those scenarios might be

implemented.

The Downloader
If you elect to download something from the Android Market, you are welcome to back

out of the Market application entirely. This does not cancel the download – the

download and installation run to completion, despite no Market activity being on-screen.

You may have similar circumstances in your application, from downloading a purchased

e-book to downloading a map for a game to downloading a file from some sort of “drop

box” file-sharing service.

Android 2.3 introduced the DownloadManager (covered in a previous chapter), which

would handle this for you. However, you might need that sort of capability on older

versions of Android, at least through 2011.

The sample project reviewed in this section is Services/Downloader.

The Design
This sort of situation is a perfect use for the command pattern and an IntentService.

The IntentService has a background thread, so downloads can take as long as needed.

An IntentService will automatically shut down when the work is done, so the service

will not linger and you do not need to worry about shutting it down yourself. Your activity

can simply send a command via startService() to the IntentService to tell it to go do

the work.

Admittedly, things get a bit trickier when you want to have the activity find out when the

download is complete. This example will show the use of Messenger for this.

36

CHAPTER 36: Basic Service Patterns 404

The Service Implementation
Here is the implementation of this IntentService, named Downloader:

package com.commonsware.android.downloader;

import android.app.Activity;
import android.app.IntentService;
import android.content.Intent;
import android.os.Bundle;
import android.os.Environment;
import android.os.Message;
import android.os.Messenger;
import android.util.Log;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;

public class Downloader extends IntentService {
 public static final String
EXTRA_MESSENGER="com.commonsware.android.downloader.EXTRA_MESSENGER";
 private HttpClient client=null;

 public Downloader() {
 super("Downloader");
 }

 @Override
 public void onCreate() {
 super.onCreate();

 client=new DefaultHttpClient();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 client.getConnectionManager().shutdown();
 }

 @Override
 public void onHandleIntent(Intent i) {
 HttpGet getMethod=new HttpGet(i.getData().toString());
 int result=Activity.RESULT_CANCELED;

 try {
 ResponseHandler<byte[]> responseHandler=new ByteArrayResponseHandler();
 byte[] responseBody=client.execute(getMethod, responseHandler);
 File output=new File(Environment.getExternalStorageDirectory(),

CHAPTER 36: Basic Service Patterns 405

 i.getData().getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 FileOutputStream fos=new FileOutputStream(output.getPath());

 fos.write(responseBody);
 fos.close();
 result=Activity.RESULT_OK;
 }
 catch (IOException e2) {
 Log.e(getClass().getName(), "Exception in download", e2);
 }

 Bundle extras=i.getExtras();

 if (extras!=null) {
 Messenger messenger=(Messenger)extras.get(EXTRA_MESSENGER);
 Message msg=Message.obtain();

 msg.arg1=result;

 try {
 messenger.send(msg);
 }
 catch (android.os.RemoteException e1) {
 Log.w(getClass().getName(), "Exception sending message", e1);
 }
 }
 }
}

In onCreate(), we obtain a DefaultHttpClient object, as was described in the chapter on

Internet access. In onDestroy(), we shut down the client. This way, if several download

requests are invoked in sequence, we can use a single DefaultHttpClient object – the

IntentService will only shut down after all enqueued work has been completed.

The bulk of the work is accomplished in onHandleIntent(), which is called on the

IntentService, on a background thread, every time startService() is called. For the

Intent, we obtain the URL of the file to download via a call to getData() on the supplied

Intent. Actually downloading the file uses the DefaultHttpClient object, along with an

HttpGet object. However, since the file might be binary (e.g., MP3) instead of text, we

cannot use a BasicResponseHandler. Instead, we use a ByteArrayResponseHandler – a

custom ResponseHandler cloned from the source for BasicResponseHandler, but one that

returns a byte[] instead of a String:

package com.commonsware.android.downloader;

import java.io.IOException;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.StatusLine;
import org.apache.http.client.ResponseHandler;

CHAPTER 36: Basic Service Patterns 406

import org.apache.http.client.HttpResponseException;
import org.apache.http.util.EntityUtils;

public class ByteArrayResponseHandler implements ResponseHandler<byte[]> {
 public byte[] handleResponse(final HttpResponse response)
 throws IOException, HttpResponseException {
 StatusLine statusLine=response.getStatusLine();

 if (statusLine.getStatusCode()>=300) {
 throw new HttpResponseException(statusLine.getStatusCode(),
 statusLine.getReasonPhrase());
 }

 HttpEntity entity=response.getEntity();

 if (entity==null) {
 return(null);
 }

 return(EntityUtils.toByteArray(entity));
 }
}

Once the file is downloaded to external storage, we need to alert the activity that the

work is completed. If the activity is interested in this sort of message, it will have

attached a Messenger object as EXTRA_MESSENGER to the Intent. Downloader gets the

Messenger, creates an empty Message object, and puts a result code in the arg1 field of

the Message. It then sends the Message to the activity. If the activity was destroyed before

this point, the request to send the message will fail with a RemoteObjectException.

Since this is an IntentService, it will automatically shut down when onHandleIntent()
completes, if there is no more work queued to be done.

Using the Service
The activity demonstrating the use of Downloader has a trivial UI, consisting of one large

button:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Do the Download"
 android:onClick="doTheDownload"
/>

That UI is initialized in onCreate(), as usual:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 b=(Button)findViewById(R.id.button);
}

http://schemas.android.com/apk/res/android

CHAPTER 36: Basic Service Patterns 407

When the user clicks the button, doTheDownload() is called to disable the button (to

prevent accidental duplicate downloads) and call startService():

public void doTheDownload(View v) {
 b.setEnabled(false);

 Intent i=new Intent(this, Downloader.class);

 i.setData(Uri.parse("http://commonsware.com/Android/excerpt.pdf"));
 i.putExtra(Downloader.EXTRA_MESSENGER, new Messenger(handler));

 startService(i);
}

Here, the Intent we pass over has the URL of the file to download (in this case, a URL

pointing to a PDF), plus a Messenger in the EXTRA_MESSENGER extra. That Messenger is

created with an attachment to the activity’s Handler:

private Handler handler=new Handler() {
 @Override
 public void handleMessage(Message msg) {
 b.setEnabled(true);

 Toast
 .makeText(DownloaderDemo.this, "Download complete!",
 Toast.LENGTH_LONG)
 .show();
 }
};

If the activity is still around when the download is complete, the Handler enables the

button and displays a Toast to let the user know that the download is complete. Note

that the activity is ignoring the result code supplied by the service, though in principle it

could do something different in both the success and failure cases.

The Music Player
Most audio player applications in Android – for music, audiobooks, or whatever – do not

require the user to remain in the player application itself. Rather, the user can go on and

do other things with their device, with the audio playing in the background. This is

similar in many respects to the download scenario from the previous section. However,

in this case, the user is the one that controls when the work (playing audio) ends.

The sample project reviewed in this section is Services/FakePlayer.

The Design
Once again, we will use startService(), since we want the service to run even when the

activity starting it has been destroyed. However, this time, we will use a regular Service,

rather than an IntentService. An IntentService is designed to do work and stop itself,

whereas in this case, we want the user to be able to stop the music playback.

http://commonsware.com/Android/excerpt.pdf

CHAPTER 36: Basic Service Patterns 408

Since music playback is outside the scope of this book, the service will simply stub out

those particular operations.

The Service Implementation
Here is the implementation of this Service, named PlayerService:

package com.commonsware.android.fakeplayer;

import android.app.Service;
import android.content.Intent;
import android.os.Bundle;
import android.os.IBinder;
import android.util.Log;

public class PlayerService extends Service {
 public static final String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
 public static final String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
 private boolean isPlaying=false;

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
 boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, false);

 play(playlist, useShuffle);

 return(START_NOT_STICKY);
 }

 @Override
 public void onDestroy() {
 stop();
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(null);
 }

 private void play(String playlist, boolean useShuffle) {
 if (!isPlaying) {
 Log.w(getClass().getName(), "Got to play()!");
 isPlaying=true;
 }
 }

 private void stop() {
 if (isPlaying) {
 Log.w(getClass().getName(), "Got to stop()!");
 isPlaying=false;
 }
 }
}

CHAPTER 36: Basic Service Patterns 409

In this case, we really do not need anything for onCreate(), so that lifecycle method is

skipped. On the other hand, we have to implement onBind(), because that is a required

method of Service subclasses. IntentService implements onBind() for us, which is why

that was not needed for the Downloader sample.

When the client calls startService(),onStartCommand() is called in PlayerService. Here,

we get the Intent and pick out some extras to tell us what to play back

(EXTRA_PLAYLIST) and other configuration details (e.g., EXTRA_SHUFFLE). onStartCommand()

calls play(), which simply flags that we are playing and logs a message to LogCat – a

real music player would use MediaPlayer to start playing the first song in the playlist.

onStartCommand() returns START_NOT_STICKY, indicating that if Android has to kill off this

service (e.g., low memory), it should not restart it once conditions improve.

onDestroy() stops the music from playing – theoretically, anyway – by calling a stop()

method. Once again, this just logs a message to LogCat, plus updates our internal are-

we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and discuss the use

of startForeground() to make it easier for the user to get back to the music player, plus

let Android know that the service is delivering part of the foreground experience and

therefore should not be shut down.

Using the Service
The FakePlayer activity demonstrating the use of PlayerService has a UI twice as

complex as the previous sample, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Start the Player"
 android:onClick="startPlayer"
 />
 <Button
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Stop the Player"
 android:onClick="stopPlayer"
 />
</LinearLayout>

The activity itself is not much more complex:

package com.commonsware.android.fakeplayer;

http://schemas.android.com/apk/res/android

CHAPTER 36: Basic Service Patterns 410

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class FakePlayer extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void startPlayer(View v) {
 Intent i=new Intent(this, PlayerService.class);

 i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
 i.putExtra(PlayerService.EXTRA_SHUFFLE, true);

 startService(i);
 }

 public void stopPlayer(View v) {
 stopService(new Intent(this, PlayerService.class));
 }
}

The onCreate() method merely loads the UI. The startPlayer() method constructs an

Intent with fake values for EXTRA_PLAYLIST and EXTRA_SHUFFLE, then calls

startService(). After you press the top button, you will see the corresponding message

in LogCat. Similarly, stopPlayer() calls stopService(), triggering the second LogCat

message. Notably, you do not need to keep the activity running in between those button

clicks – you can exit the activity via BACK and come back later to stop the service.

The Web Service Interface
If you are going to consume a REST-style Web service, you may wish to create a Java

client-side API for that service. This allows you to isolate details about the Web service

(URLs, authorization credentials, etc.) in one place, with the rest of your application just

able to use the published API. If the client-side API might involve state, such as a

session ID or cached results, you may wish to use a service to implement the client-side

API. In this case, the most natural form of service would be one that publishes a Binder,

so clients can call a “real” API, that the service translates into HTTP requests.

In this case, we want to create a client-side Java API for the US National Weather

Service’s forecast Web service, so we can get a weather forecast (timestamps,

projected temperatures, and projected precipitation) for a given latitude and longitude.

As you may recall, we examined this Web service back in the chapter on Internet

access.

The sample project reviewed in this section is Services/WeatherAPI.

CHAPTER 36: Basic Service Patterns 411

The Design
To use the binding pattern, we will need to expose an API from a “binder” object. Since

the weather forecast arrives in a singularly awful XML structure, we will have the binder

be responsible for parsing the XML. Hence, we can say that the binder will have a

getForecast() method to get us an ArrayList of Forecast objects, each Forecast

representing one timestamp/temperature/precipitation triple.

Once again, to supply the latitude and longitude of the forecast roster to retrieve, we will

use a Location object, which will be obtained from GPS. This part of the sample will be

described in greater detail in the chapter on location management.

Since the Web service call may take a while, it is unsafe to do this on the main

application thread. In this sample, we will have the service use an AsyncTask to call our

weather API, so the activity largely can be ignorant of threading issues.

The Rotation Challenge
Back in the chapter on threading, we noted the issues involved with orientation changes

(or other configuration changes) and background threads in activities. The solution was

to use onRetainNonConfigurationInstance() with a static inner class AsyncTask

implementation, which we would manually associate with the new, post-configuration-

change activity.

That same problem crops up with the binding pattern as well, one of the reasons why

binding is difficult to use. If you bind to a service from an activity, that binding will not

magically pass to the new activity instance after an orientation change. Instead, you

need to do two things:

 Bind to the service not using the activity as the Context, but rather by

using getApplicationContext(), as that Context is one that will live for

the lifetime of your process

 Pass the ServiceConnection representing this binding from the old

activity instance to the new one as part of the configuration change

To accomplish the second feat, you will need to use the same

onRetainNonConfigurationInstance() trick as was used with threads.

The Service Implementation
Our service-side logic is broken into three classes, Forecast, WeatherBinder, and

WeatherService, plus one interface, WeatherListener.

CHAPTER 36: Basic Service Patterns 412

The Forecast
The Forecast class merely encapsulates the three pieces of the forecast data triple: the

timestamp, the temperature, and the icon indicating the expected precipitation (if any):

package com.commonsware.android.weather;

class Forecast {
 String time="";
 Integer temp=null;
 String iconUrl="";

 String getTime() {
 return(time);
 }

 void setTime(String time) {
 this.time=time.substring(0,16).replace('T', ' ');
 }

 Integer getTemp() {
 return(temp);
 }

 void setTemp(Integer temp) {
 this.temp=temp;
 }

 String getIcon() {
 return(iconUrl);
 }

 void setIcon(String iconUrl) {
 this.iconUrl=iconUrl;
 }
}

The Interface
Because we are going to fetch the actual weather forecast on a background thread in

the service, we have a slight API challenge – calls on our binder are synchronous.

Hence, we cannot have a getForecast() method that returns our forecast. Rather, we

need to give some way for the service to get the forecast back to our activity. In this

case, we will pass in a listener object (WeatherListener), that the service will use when a

forecast is ready:

package com.commonsware.android.weather;

import java.util.ArrayList;

public interface WeatherListener {
 void updateForecast(ArrayList<Forecast> forecast);
 void handleError(Exception e);
}

CHAPTER 36: Basic Service Patterns 413

The Binder
The WeatherBinder extends Binder, a requirement for the local binding pattern. Other

than that, the API is up to us.

Hence, we expose three methods:

 onCreate(), to be called when the WeatherBinder is set up, so we can

get a DefaultHttpClient object to use with the Web service

 onDestroy(), to be called when the WeatherBinder is no longer

needed, so we can shut down that DefaultHttpClient object

 getForecast(), the main public API for use by our activity, to kick off

the background work to create our ArrayList of Forecast objects

given a Location

package com.commonsware.android.weather;

import android.app.Service;
import android.content.Context;
import android.content.Intent;
import android.location.Location;
import android.os.AsyncTask;
import android.os.Binder;
import android.os.Bundle;
import java.io.IOException;
import java.io.StringReader;
import java.util.ArrayList;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;

public class WeatherBinder extends Binder {
 private String forecast=null;
 private HttpClient client=null;
 private String format=null;

 void onCreate(Context ctxt) {
 client=new DefaultHttpClient();
 format=ctxt.getString(R.string.url);
 }

 void onDestroy() {
 client.getConnectionManager().shutdown();
 }

CHAPTER 36: Basic Service Patterns 414

 void getForecast(Location loc, WeatherListener listener) {
 new FetchForecastTask(listener).execute(loc);
 }

 private ArrayList<Forecast> buildForecasts(String raw) throws Exception {
 ArrayList<Forecast> forecasts=new ArrayList<Forecast>();
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(new InputSource(new StringReader(raw)));
 NodeList times=doc.getElementsByTagName("start-valid-time");

 for (int i=0;i<times.getLength();i++) {
 Element time=(Element)times.item(i);
 Forecast forecast=new Forecast();

 forecasts.add(forecast);
 forecast.setTime(time.getFirstChild().getNodeValue());
 }

 NodeList temps=doc.getElementsByTagName("value");

 for (int i=0;i<temps.getLength();i++) {
 Element temp=(Element)temps.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
 }

 NodeList icons=doc.getElementsByTagName("icon-link");

 for (int i=0;i<icons.getLength();i++) {
 Element icon=(Element)icons.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setIcon(icon.getFirstChild().getNodeValue());
 }

 return(forecasts);
 }

 class FetchForecastTask extends AsyncTask<Location, Void, ArrayList<Forecast>> {
 Exception e=null;
 WeatherListener listener=null;

 FetchForecastTask(WeatherListener listener) {
 this.listener=listener;
 }

 @Override
 protected ArrayList<Forecast> doInBackground(Location... locs) {
 ArrayList<Forecast> result=null;

 try {
 Location loc=locs[0];
 String url=String.format(format, loc.getLatitude(),

CHAPTER 36: Basic Service Patterns 415

 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod, responseHandler);

 result=buildForecasts(responseBody);
 }
 catch (Exception e) {
 this.e=e;
 }

 return(result);
 }

 @Override
 protected void onPostExecute(ArrayList<Forecast> forecast) {
 if (listener!=null) {
 if (forecast!=null) {
 listener.updateForecast(forecast);
 }

 if (e!=null) {
 listener.handleError(e);
 }
 }
 }
 }
}

Most of this is merely doing the Web service request using DefaultHttpClient and an

HttpGet object, plus using the DOM parser to convert the XML into the Forecast

objects. However, this is wrapped in a FetchForecastTask – an AsyncTask that will do the

HTTP operation and parsing on a background thread. In onPostExecute(), the task

invokes our WeatherListener, either to supply the forecast (updateForecast()) or hand

over an Exception that was raised (handleError()).

The Service
The WeatherService, therefore, is fairly short, with the business logic delegated to

WeatherBinder:

package com.commonsware.android.weather;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import java.util.ArrayList;

public class WeatherService extends Service {
 private final WeatherBinder binder=new WeatherBinder();

 @Override
 public void onCreate() {
 super.onCreate();

CHAPTER 36: Basic Service Patterns 416

 binder.onCreate(this);
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 binder.onDestroy();
 }
}

Our onCreate() and onDestroy() methods delegate to the WeatherBinder, and onBind()
returns the WeatherBinder itself.

Using the Service
On the surface, the WeatherDemo activity should be simple:

Bind to the service in onCreate()

Arrange to get GPS fixes, in the form of Location objects

When a fix comes in, use the WeatherBinder to get a forecast, convert

it to HTML, and display it in a WebView

Unbind from the service in onDestroy()

However, our decision to use the binding pattern and to have the activity deal with the

background thread means there is more work involved than those bullet points.

First, here is the full WeatherDemo implementation:

package com.commonsware.android.weather;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.ServiceConnection;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.DeadObjectException;
import android.os.RemoteException;
import android.os.IBinder;
import android.util.Log;

CHAPTER 36: Basic Service Patterns 417

import android.webkit.WebView;
import java.util.ArrayList;

public class WeatherDemo extends Activity {
 private WebView browser;
 private LocationManager mgr=null;
 private State state=null;
 private boolean isConfigurationChanging=false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 state=(State)getLastNonConfigurationInstance();

 if (state==null) {
 state=new State();
 getApplicationContext()
 .bindService(new Intent(this, WeatherService.class),
 state.svcConn, BIND_AUTO_CREATE);
 }
 else if (state.lastForecast!=null) {
 showForecast();
 }

 state.attach(this);

 mgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 3600000, 1000, onLocationChange);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (mgr!=null) {
 mgr.removeUpdates(onLocationChange);
 }

 if (!isConfigurationChanging) {
 getApplicationContext().unbindService(state.svcConn);
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 isConfigurationChanging=true;

 return(state);
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

CHAPTER 36: Basic Service Patterns 418

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }

 static String generatePage(ArrayList<Forecast> forecasts) {
 StringBuilder bufResult=new StringBuilder("<html><body><table>");

 bufResult.append("<tr><th width=\"50%\">Time</th>"+
 "<th>Temperature</th><th>Forecast</th></tr>");

 for (Forecast forecast : forecasts) {
 bufResult.append("<tr><td align=\"center\">");
 bufResult.append(forecast.getTime());
 bufResult.append("</td><td align=\"center\">");
 bufResult.append(forecast.getTemp());
 bufResult.append("</td><td><img src=\"");
 bufResult.append(forecast.getIcon());
 bufResult.append("\"></td></tr>");
 }

 bufResult.append("</table></body></html>");

 return(bufResult.toString());
 }

 void showForecast() {
 browser.loadDataWithBaseURL(null, state.lastForecast,
 "text/html", "UTF-8", null);
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 if (state.weather!=null) {
 state.weather.getForecast(location, state);
 }
 else {
 Log.w(getClass().getName(), "Unable to fetch forecast – no WeatherBinder");
 }
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }

CHAPTER 36: Basic Service Patterns 419

 };

 static class State implements WeatherListener {
 WeatherBinder weather=null;
 WeatherDemo activity=null;
 String lastForecast=null;

 void attach(WeatherDemo activity) {
 this.activity=activity;
 }

 public void updateForecast(ArrayList<Forecast> forecast) {
 lastForecast=generatePage(forecast);
 activity.showForecast();
 }

 public void handleError(Exception e) {
 activity.goBlooey(e);
 }

 ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder rawBinder) {
 weather=(WeatherBinder)rawBinder;
 }

 public void onServiceDisconnected(ComponentName className) {
 weather=null;
 }
 };
 }
}

Now, let us look at the highlights of the service connection and the background thread.

Managing the State
We need to ensure that our ServiceConnection can be passed between activity

instances on a configuration change. Hence, we have a State static inner class to hold

that, plus two other bits of information: the Activity the state is associated with, and a

String showing the last forecast we retrieved:

static class State implements WeatherListener {
 WeatherBinder weather=null;
 WeatherDemo activity=null;
 String lastForecast=null;

 void attach(WeatherDemo activity) {
 this.activity=activity;
 }

 public void updateForecast(ArrayList<Forecast> forecast) {
 lastForecast=generatePage(forecast);
 activity.showForecast();
 }

CHAPTER 36: Basic Service Patterns 420

 public void handleError(Exception e) {
 activity.goBlooey(e);
 }

 ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder rawBinder) {
 weather=(WeatherBinder)rawBinder;
 }

 public void onServiceDisconnected(ComponentName className) {
 weather=null;
 }
 };
}

The lastForecast String is to allow us to re-display the generated HTML after a

configuration change. Otherwise, if the user rotates the screen, we will lose our forecast

(only held in the old instance’s WebView) and either have to retrieve a fresh one or wait for

a GPS fix.

We return this State object from onRetainNonConfigurationInstance():

@Override
public Object onRetainNonConfigurationInstance() {
 isConfigurationChanging=true;

 return(state);
}

In onCreate(), if there is no non-configuration instance, we create a fresh State and bind

to the service, since we do not have a service connection at present. On the other hand,

if onCreate() gets a State from getLastNonConfigurationInstance(), it simply holds

onto that state and reloads our forecast in the WebView. In either case, onCreate()

indicates to the State that the new activity instance is the current one:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 state=(State)getLastNonConfigurationInstance();

 if (state==null) {
 state=new State();
 getApplicationContext()
 .bindService(new Intent(this, WeatherService.class),
 state.svcConn, BIND_AUTO_CREATE);
 }
 else if (state.lastForecast!=null) {
 showForecast();
 }

 state.attach(this);

CHAPTER 36: Basic Service Patterns 421

 mgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 3600000, 1000, onLocationChange);
}

Time to Unbind
We bind to the service when onCreate() is called, if it did not receive a State via

getLastNonConfigurationInstance() (in which case, we are already bound). This begs

the question: when do we unbind from the service?

We want to unbind when the activity is destroyed...but not if the activity is being

destroyed because of a configuration change.

Unfortunately, there is no built-in way to make that determination from onDestroy().

There is an isFinishing() method you can call on an Activity, which will return true if

the activity is going away for good or false otherwise. This does return false for a

configuration change, but it will also return false if the activity is being destroyed to free

up RAM and the user might be able to return to it via the BACK button.

This is why onRetainNonConfigurationInstance() flips a isConfigurationChanging flag

in WeatherDemo to true. That flag is initially false. We then check that flag to see if we

should unbind from the service or not:

@Override
public void onDestroy() {
 super.onDestroy();

 if (mgr!=null) {
 mgr.removeUpdates(onLocationChange);
 }

 if (!isConfigurationChanging) {
 getApplicationContext().unbindService(state.svcConn);
 }
}

423

 Chapter

Alerting Users via
Notifications
Pop-up messages, tray icons and their associated “bubble” messages, bouncing dock

icons…you are no doubt used to programs trying to get your attention, sometimes for

good reason. Your phone also probably chirps at you for more than just incoming calls:

low battery, alarm clocks, appointment notifications, incoming text and e-mail

messages, and so on.

Not surprisingly, Android has a whole framework for dealing with these sorts of things,

collectively called notifications, as described in this chapter.

Notification Configuration
A service, running in the background, needs a way to let users know something of

interest has occurred, such as when e-mail has been received. Moreover, the service

may need some way to steer users to an activity where they can act upon the event,

such as reading a received message. For this, Android supplies status bar icons,

flashing lights, and other indicators collectively known as notifications.

Your current phone may already have such icons, to indicate battery life, signal strength,

whether Bluetooth is enabled, and the like. With Android, applications can add their own

status bar icons, with an eye toward having them appear only when needed (e.g., a

message has arrived).

In Android, you can raise notifications via the NotificationManager, which is a system

service. To use it, you need to get the service object via

getSystemService(NOTIFICATION_SERVICE) from your activity. The NotificationManager

gives you three methods: one to raise a Notification (notify()) and two to get rid of an

existing Notification (cancel() and cancelAll()).

37

CHAPTER 37: Alerting Users via Notifications 424

The notify() method takes a Notification, which is a data structure that spells out

what form your pestering should take. The capabilities of this object are described in the

following sections.

Hardware Notifications
You can flash LEDs on the device by setting lights to true, also specifying the color (as

an #ARGB value in ledARGB) and what pattern the light should blink in (by providing off/on

durations in milliseconds for the light via ledOnMS and ledOffMS). Note, however, that

Android devices will apply best efforts to meet your color request, meaning that different

devices may give you different colors, or perhaps no control over color at all. For

example, the Motorola CLIQ has only a white LED, so you can ask for any color you

want, and you will get white. Note that you will need to OR (|) the

Notification.FLAG_SHOW_LIGHTS value into the public flags field on the Notification

object for flashing of the LED to work.

You can play a sound, using a Uri to a piece of content held, perhaps, by a

ContentManager (sound). Think of this as a ringtone for your application.

You can vibrate the device, controlled via a long[], indicating the on/off patterns (in

milliseconds) for the vibration (vibrate). You might do this by default, or you might make

it an option the user can choose when circumstances require a more subtle notification

than a ringtone. To use this, though, you will need to request the VIBRATE permission

(permissions are discussed in Chapter 38).

All of these options, by default, happen once (e.g., one LED flash or one playback of the

sound). If you want to have them persist until the Notification is canceled, you will

need to set the flags public field in your Notification to include FLAG_INSISTENT.

Instead of manually specifying the hardware options, you can also use the defaults field

in the Notification, setting it to DEFAULT_LIGHTS, DEFAULT_SOUND, DEFAULT_VIBRATE, or

DEFAULT_ALL, which will use platform defaults for all hardware options.

Icons
While the flashing lights, sounds, and vibrations are aimed at getting somebody to look

at the device, icons are designed to take them the next step and tell them what’s so

important.

To set up an icon for a Notification, you need to set two public fields: icon, where you

provide the identifier of a Drawable resource representing the icon, and contentIntent,

where you supply a PendingIntent to be raised when the icon is clicked. A

PendingIntent is a wrapper around a regular Intent that allows the Intent to be invoked

later, by another process, to start an activity or whatever. Typically, a Notification will

trigger an activity, in which case you would create the PendingIntent via the static

getActivity() method and give it an Intent that identifies one of your activities. That

being said, you could have the Notification send a broadcast Intent instead, by using

a getBroadcast() version of a PendingIntent.

CHAPTER 37: Alerting Users via Notifications 425

You can also supply a text blurb to appear when the icon is put on the status bar

(tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(), which wraps

all three of those in a single call.

You can also set a value in the number public field of your Notification. This will cause

the number you supply to be drawn over the top of the icon in one corner. This is used,

for example, to show the number of unread e-mail messages, so that you don’t need to

have a bunch of different icons, one for each possible number of unread messages. By

default, the number field will be ignored and not used.

Note that the size of the icons used with a Notification changed with Android 2.3.

Before that version, 25-pixel square was the desired size. Now, per-density icons in a

more rectangular shape are preferred:

 24-pixel square (inside a 24-pixel wide by 38-pixel high bounding box)

for high-density screens

 16-pixel square (inside a 16 25-pixel bounding box) for medium-

density screens

 12-pixel square (inside a 12 19-pixel bounding box) for low-density

screens

Applications following these rules will want to use specific resource sets for the new

icons:

 res/drawable-hdpi-v9/: For high-density Android 2.3 editions

 res/drawable-mdpi-v9/: For medium-density Android 2.3 editions

 res/drawable-ldpi-v9/: For low-density Android 2.3 editions

 res/drawable/: For the icon to use on Android 2.2 and earlier

More details on guidelines for all icons, including status bar icons, can be found in the

Android developer documentation.

Notifications in Action
Let’s now take a peek at the Notifications/Notify1 sample project, in particular the

NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

CHAPTER 37: Alerting Users via Notifications 426

public class NotifyDemo extends Activity {
 private static final int NOTIFY_ME_ID=1337;
 private int count=0;
 private NotificationManager mgr=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 }

 public void notifyMe(View v) {
 Notification note=new Notification(R.drawable.stat_notify_chat,
 "Status message!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(this, 0,
 new Intent(this, NotifyMessage.class),
 0);

 note.setLatestEventInfo(this, "Notification Title",
 "This is the notification message", i);
 note.number=++count;
 note.vibrate=new long[] {500L, 200L, 200L, 500L};
 note.flags|=Notification.FLAG_AUTO_CANCEL;

 mgr.notify(NOTIFY_ME_ID, note);
 }

 public void clearNotification(View v) {
 mgr.cancel(NOTIFY_ME_ID);
 }
}

As shown in Figure 37–1, this activity sports two large buttons, one to kick off a

notification after a 5-second delay and one to cancel that notification (if it is active).

CHAPTER 37: Alerting Users via Notifications 427

Figure 37–1. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in seven steps:

1. Create a Notification object with our icon, a message to flash on the

status bar as the notification is raised, and the time associated with this

event.

2. Create a PendingIntent that will trigger the display of another activity

(NotifyMessage).

3. Use setLatestEventInfo() to specify that, when the notification is

clicked, we are to display a certain title and message, and if that is

clicked, we launch the PendingIntent.

4. Update the number associated with the notification.

5. Specify a vibration pattern: 500ms on, 200ms off, 200ms on, 500ms off.

6. Include FLAG_AUTO_CANCEL in the Notification object’s flags field.

7. Tell the NotificationManager (obtained in onCreate()) to display the

notification.

Hence, if we click the top button, our icon will appear in the status bar, briefly along with

our status message, as shown in Figure 37–2.

CHAPTER 37: Alerting Users via Notifications 428

Figure 37–2. Our notification as it appears on the status bar, with our status message

After the status message goes away, the icon will have our number (initially 1)

superimposed on its lower-right corner, as shown in Figure 37–3. You might use this to

signify the number of unread messages, for example.

Figure 37–3. Our notification with the superimposed number

CHAPTER 37: Alerting Users via Notifications 429

If you drag down the icon, a drawer will appear beneath the status bar. Drag that drawer

all the way to the bottom of the screen to show the outstanding notifications, including

our own, as shown in Figure 37–4.

Figure 37–4. The notifications drawer, fully expanded, with our notification

If you click the notification entry in the drawer, you’ll be taken to a trivial activity

displaying a message. In a real application, this activity would do something useful

based upon the event that occurred (e.g., take users to the newly arrived mail

messages).

Clicking the cancel button, clicking the Clear button in the drawer, or clicking the

notification entry in the drawer will remove the icon from the status bar. The latter occurs

because we included FLAG_AUTO_CANCEL in the Notification, indicating that a tap on the

drawer entry should cancel the Notification itself.

Staying in the Foreground
Notifications have another use: keeping select services around.

Services do not live forever. Android may terminate your application’s process to free up

memory in an emergency situation, or just because it seems to have been hanging

around memory too long. Ideally, you design your services to deal with the fact that they

may not run indefinitely.

However, some services will be missed by the user if they mysteriously vanish. For

example, the default music player application that ships with Android uses a service for

CHAPTER 37: Alerting Users via Notifications 430

the actual music playback. That way, users can listen to music while continuing to use

their phone for other purposes. The service stops only when the user presses the stop

button in the music player activity. If that service were to shut down unexpectedly, the

user would wonder what is wrong.

Services like this can declare themselves as being part of the foreground. This will cause

their priority to rise and make them less likely to be bumped out of memory. The trade-

off is that the service has to maintain a Notification, so the user knows that this service

is claiming part of the foreground. And, ideally, that Notification should provide an

easy path back to some activity where the user can stop the service.

To do this, in onCreate() of your service (or wherever else in the service’s life it would

make sense), call startForeground(). This takes a Notification and a locally unique

integer, just like the notify() method on NotificationManager. It causes the

Notification to appear and moves the service into foreground priority. Later on, you

can call stopForeground() to return to normal priority.

Note that this method was added with Android 2.0 (API level 5). There was an earlier

method, setForeground(), that performed a similar function in earlier versions of

Android.

FakePlayer, Redux
The previous chapter, covering service patterns, presented a fake music player,

implemented with an Activity (FakePlayer) and a Service (PlayerService). The

PlayerService is actually what plays the music, so the music can play even while the

FakePlayer activity is not open.

However, Android may not consider PlayerService to be part of the user experience,

since services normally interact very little directly with users. This means Android may

run PlayerService in a way that caps CPU usage (not necessarily bad) and might elect

to shut down the service if it thinks it has been running too long (probably bad).

The answer is to use startForeground() and stopForeground(). We can call

startForeground() when we start the music playing in our play() method:

private void play(String playlist, boolean useShuffle) {
 if (!isPlaying) {
 Log.w(getClass().getName(), "Got to play()!");
 isPlaying=true;

 Notification note=new Notification(R.drawable.stat_notify_chat,
 "Can you hear the music?",
 System.currentTimeMillis());
 Intent i=new Intent(this, FakePlayer.class);

 i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP|
 Intent.FLAG_ACTIVITY_SINGLE_TOP);

 PendingIntent pi=PendingIntent.getActivity(this, 0,
 i, 0);

CHAPTER 37: Alerting Users via Notifications 431

 note.setLatestEventInfo(this, "Fake Player",
 "Now Playing: \"Ummmm, Nothing\"",
 pi);
 note.flags|=Notification.FLAG_NO_CLEAR;

 startForeground(1337, note);
 }
}

The plus side is that our service will have more CPU availability if needed and will be far

less likely to be killed by Android. Users will see an icon in the status bar. If they slide

down the notification drawer and tap our Notification’s entry, they will be taken back

to FakePlayer—the existing instance, if there is one, or a fresh instance otherwise,

courtesy of our Intent flags (Intent.FLAG_ACTIVITY_CLEAR_TOP|
Intent.FLAG_ACTIVITY_SINGLE_TOP). For a music player, this UI pattern makes it easy for

users to quickly go back to stop the music when needed.

Stopping the music, via our stop() method, will call stopForeground():

private void stop() {
 if (isPlaying) {
 Log.w(getClass().getName(), "Got to stop()!");
 isPlaying=false;
 stopForeground(true);
 }
}

The true value passed to stopForeground() tells Android to remove the Notification,

which would be the typical approach for this pattern.

Notifications and Honeycomb
The Honeycomb UI introduced in Android 3.0 supports notifications, just like all previous

versions of Android. However, the user experience is a bit different, owing to the tablet

metaphor and its additional screen space.

Figure 37–5 shows the unmodified Notifications/Notify1 project, as seen in the

Android 3.0 emulator.

CHAPTER 37: Alerting Users via Notifications 432

Figure 37–5. Notify1 as seen on an Android 3.0 emulator

Other than the Android 3.0 version of the status bar, and the extra-huge buttons, this is

no different from what you would see on a pre-Honeycomb phone.

If we click the top button, our Notification appears, this time in the lower-right corner,

with the icon and ticker text, as shown in Figure 37–6.

Figure 37–6. Notify1 with a notification added

Note that if the user taps the ticker, it triggers our PendingIntent, just as if they had

tapped the notification drawer entry on a phone.

CHAPTER 37: Alerting Users via Notifications 433

When the ticker is removed, our icon remains...without the number, as shown in

Figure 37–7.

Figure 37–7. Notify1 with a numberless notification icon

If the user taps that icon, a notification drawer-style pop-up appears nearby, as shown

in Figure 37–8.

Figure 37–8. Notify1 with the notification content appearing

Tapping the icon or the text triggers the PendingIntent, while tapping the on the right

cancels this Notification.

 Part

Other Android Capabilities

VI

 437

 Chapter

Requesting and Requiring
Permissions
In the late 1990s, a wave of viruses spread through the Internet, delivered via e-mail,

using contact information culled from Microsoft Outlook. A virus would simply e-mail

copies of itself to each of the Outlook contacts that had an e-mail address. This was

possible because, at the time, Outlook did not take any steps to protect data from

programs using the Outlook API, since that API was designed for ordinary developers,

not virus authors.

Nowadays, many applications that hold onto contact data secure that data by requiring

that a user explicitly grant rights for other programs to access the contact information.

Those rights could be granted on a case-by-case basis or all at once at install time.

Android is no different, in that it requires permissions for applications to read or write

contact data. Android’s permission system is useful well beyond contact data, and for

content providers and services beyond those supplied by the Android framework.

You, as an Android developer, will frequently need to ensure that your applications have

the appropriate permissions to do what you want to do with other applications’ data.

You may also elect to require permissions for other applications to use your data or

services, if you make those available to other Android components. This chapter covers

how to accomplish both these ends.

Mother, May I?
Requesting the use of other applications’ data or services requires the uses-permission

element to be added to your AndroidManifest.xml file. Your manifest may have zero or

more uses-permission elements, all as direct children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is the name

of the permission your application requires:

<uses-permission
 android:name="android.permission.ACCESS_LOCATION" />

38

CHAPTER 38: Requesting and Requiring Permissions 438

All of the stock system permissions begin with android.permission and are listed in the

Android SDK documentation for Manifest.permission. Third-party applications may

have their own permissions, which, hopefully, they have documented for you. Here are

some of the more useful permissions:

 INTERNET, if your application wishes to access the Internet through any

means, from raw Java sockets through the WebView widget

 WRITE_EXTERNAL_STORAGE, for writing data to the SD card (or whatever

the device has designated as external storage)

 ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining

where the device is

 CALL_PHONE, to allow the application to place phone calls directly,

without user intervention

Permissions are confirmed at the time the application is installed. The user will be

prompted to confirm that it is acceptable for your application to do what the permission

calls for. Hence, it is important that you ask for as few permissions as possible and

justify those you ask for, so users do not elect to skip installing your application because

you ask for too many unnecessary permissions. This prompt will not appear when

loading an application via USB, such as during development.

If you do not have the desired permission and try to do something that needs it, you

should get a SecurityException informing you of the missing permission. Note that you

will fail on a permission check only if you forgot to ask for the permission—it is

impossible for your application to be running and not have been granted your requested

permissions.

Halt! Who Goes There?
The other side of the coin is to secure your own application. If your application is mostly

activities, security may be just an “outbound” thing, where you request the right to use

resources of other applications. If, on the other hand, you put content providers or

services in your application, you will want to implement “inbound” security to control

which applications can do what with the data.

Note that the issue here is less about whether other applications might mess up your

data, but rather about privacy of the user’s information or use of services that might

incur expense. That is where the stock permissions for built-in Android applications are

focused: whether you can read or modify contacts, send SMS messages, and so forth. If

your application does not store information that might be considered private, security is

less of an issue. If, on the other hand, your application stores private data, such as

medical information, security is much more important.

The first step to securing your own application using permissions is to declare said

permissions, once again in the AndroidManifest.xml file. In this case, instead of uses-
permission, you add permission elements. Once again, you can have zero or more

permission elements, all as direct children of the root manifest element.

CHAPTER 38: Requesting and Requiring Permissions 439

Declaring a permission is slightly more complicated than using a permission. You need

to supply three pieces of information:

The symbolic name of the permission: To keep your permissions from

colliding with those from other applications, you should use your

application’s Java namespace as a prefix.

A label for the permission: Choose something short that would be

understandable by users.

A description for the permission: Choose something a wee bit longer

that is understandable by your users.

Following is an example:

<permission
 android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
 android:label="@string/see_sekrits_label"
 android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a possible permission;

your application must still flag security violations as they occur.

There are two ways for your application to enforce permissions, dictating where and

under what circumstances they are required. The easier option is to indicate in the

manifest where permissions are required. The more difficult option is to enforce

permissions in your code. Both options are discussed next.

Enforcing Permissions via the Manifest
Activities, services, and receivers can all declare an attribute named

android:permission, whose value is the name of the permission that is required to

access those items:

<activity
 android:name=".SekritApp"
 android:label="Top Sekrit"
 android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Only applications that have requested your indicated permission will be able to access

the secured component. In this case, “access” means the following:

Activities cannot be started without the permission.

Services cannot be started, stopped, or bound to an activity without

the permission.

CHAPTER 38: Requesting and Requiring Permissions 440

 Intent receivers ignore messages sent via sendBroadcast() unless the

sender has the permission.

Enforcing Permissions Elsewhere
In your code, you have two additional ways to enforce permissions:

First, your services can check permissions on a per-call basis via

checkCallingPermission(). This returns PERMISSION_GRANTED or PERMISSION_DENIED

depending on whether the caller has the permission you specified. For example, if your

service implements separate read and write methods, you could require separate read

and write permissions in code by checking those methods for the permissions you need

from Java.

Second, you can include a permission when you call sendBroadcast(). This means that

eligible broadcast receivers must hold that permission; those without the permission are

ineligible to receive it. We will examine sendBroadcast() in greater detail elsewhere in

this book.

May I See Your Documents?
There is no automatic discovery of permissions at compile time; all permission failures

occur at runtime. Hence, it is important that you document the permissions required for

your public APIs, including content providers, services, and activities intended for

launching from other activities. Otherwise, programmers who are attempting to interface

with your application will have to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be prompted to

confirm any permissions your application says it needs. Hence, you need to document

for your users what they should expect, lest they get confused by the question posed by

the device and elect to not install or use your application. You may wish to use string

resources for this, so you can internationalize your permission details the way you

internationalize all the other messages and prompts in your application.

New Permissions in Old Applications
Sometimes, Android introduces new permissions that govern behavior that formerly did

not require permissions. WRITE_EXTERNAL_STORAGE is one example. Originally,

applications could write to external storage without any permission at all. Android 1.6

introduced WRITE_EXTERNAL_STORAGE, which is required before you can write to external

storage. However, applications that were written before Android 1.6 could not possibly

request that permission, since it did not exist at the time. Breaking those applications

would seem to be a harsh price for progress.

What Android does is grandfather in certain permissions for applications supporting

earlier SDK versions. In particular, if you have <uses-sdk android:minSdkVersion="3"> in

CHAPTER 38: Requesting and Requiring Permissions 441

your manifest, saying that you support Android 1.5, your application will automatically

request WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE, even if you do not explicitly

request those permissions. People installing your application on an Android 1.5 device

will see these requests.

Eventually, when you drop support for the older version (e.g., switch to <uses-sdk
android:minSdkVersion="4">), Android will no longer automatically request those

permissions. Hence, if your code really does need those permissions, you will need to

ask for them yourself.

Permissions: Up Front or Not at All
The permission system in Android is not especially flexible. Notably, you have to ask for

all permissions you might ever need up front, and the user has to agree to all of them or

abandon the installation of your app.

This means you cannot do the following:

 Create optional permissions, ones the user could say “no, thanks” to,

that your application could react to dynamically

 Request new permissions after installation, which means that even if a

permission is needed only for some lightly used feature, you have to

ask for it anyway

Hence, as you determine the feature list for your app, it is important that you keep

permissions in mind. Every additional permission that you request is a filter that will cost

you some portion of your prospective audience. Certain combinations—such as

INTERNET and READ_CONTACTS—will have a stronger effect, as users may fear what the

combination can do. You will need to decide for yourself whether attracting additional

users by offering the feature is worth the cost of requiring the permissions the feature

needs to operate.

443

 Chapter

Accessing Location-Based
Services
A popular feature on current mobile devices is GPS capability, so the device can tell you

where you are at any point in time. While the most popular uses of GPS service are for

mapping and getting directions, there are other things you can do if you know your

location. For example, you might set up a dynamic chat application based on physical

location, so users can chat with those people who are nearest to them. Or, you could

automatically geo-tag posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location. Alternatives include

the following:

 The European equivalent to GPS, called Galileo, which is still under

development at the time of this writing

 Cell tower triangulation, where your position is determined based on

signal strength to nearby cell towers

 Proximity to public Wi-Fi hotspots that have known geographic

locations

Android devices may have one or more of these services available to them. You, as a

developer, can ask the device for your location, plus details on which providers are

available. There are even ways for you to simulate your location in the emulator, for use

in testing your location-enabled applications.

Location Providers: They Know Where You're Hiding
Android devices can have access to several different means of determining your

location. Some will have better accuracy than others. Some may be free, while others

may have a cost associated with them. Some may be able to tell you more than just

your current position, such as your elevation over sea level or your current speed.

39

CHAPTER 39: Accessing Location-Based Services 444

Android has abstracted all this out into a set of LocationProvider objects. Your Android

environment will have zero or more LocationProvider instances, one for each distinct

locating service that is available on the device. Providers know not only your location,

but their own characteristics, in terms of accuracy, cost, and so on.

You, as a developer, will use a LocationManager, which holds the LocationProvider set,

to figure out which LocationProvider is right for your particular circumstance. You will

also need a permission in your application, or the various location APIs will fail due to a

security violation. Depending on which location providers you wish to use, you may

need ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both (see Chapter 38).

Finding Yourself
The obvious thing to do with a location service is to figure out where you are right now.

To do that, you first need to get a LocationManager, so call

getSystemService(LOCATION_SERVICE) from your activity or service and cast it to be a

LocationManager. The next step is to get the name of the LocationProvider you want to

use. Here, you have two main options:

 Ask the user to pick a provider

 Find the best-match provider based on a set of criteria

If you want the user to pick a provider, calling getProviders() on the LocationManager

will give you a List of providers, which you can then present to the user for selection.

If you want to find the best-match provider based on a set of criteria, create and

populate a Criteria object, stating the particulars of what you want out of a

LocationProvider. Following are some of the methods that you can use to specify

criteria:

 setAltitudeRequired(): Indicates whether or not you need the current

altitude

 setAccuracy(): Sets a minimum level of accuracy, in meters, for the

position

 setCostAllowed(): Controls whether the provider must be free or can

incur a cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your LocationManager, and

Android will sift through the criteria and give you the best answer. Note that not all of

your criteria may be met; all but the monetary cost criterion might be relaxed if nothing

matches.

You are also welcome to hard-wire in a LocationProvider name (e.g., GPS_PROVIDER),

perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call

getLastKnownPosition() to find out where you were recently. However, unless

something else is causing the desired provider to collect fixes (e.g., unless the GPS

CHAPTER 39: Accessing Location-Based Services 445

radio is on), getLastKnownPosition() will return null, indicating that there is no known

position. On the other hand, getLastKnownPosition() incurs no monetary or power cost,

since the provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude and longitude

of the device in degrees as a Java double. If the particular location provider offers other

data, you can get that as well:

 For altitude, hasAltitude() will tell you if there is an altitude value, and

getAltitude() will return the altitude in meters.

 For bearing (i.e., compass-style direction), hasBearing() will tell you if

there is a bearing available, and getBearing() will return it as degrees

east of true north.

 For speed, hasSpeed() will tell you if the speed is known, and

getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider, though, is to

register for updates, as described in the next section.

On the Move
Not all location providers are necessarily immediately responsive. GPS, for example,

requires activating a radio and getting a fix from the satellites before you get a location.

That is why Android does not offer a getMeMyCurrentLocationNow() method. Combine

that with the fact that your users may want their movements to be reflected in your

application, and you are probably best off registering for location updates and using that

as your means of getting the current location.

The Internet/Weather and Service/WeatherAPI sample applications show how to

register for updates—call requestLocationUpdates() on your LocationManager instance.

This method takes four parameters:

 The name of the location provider you wish to use

 How long, in milliseconds, should have elapsed before we might get a

location update

 How far, in meters, the device must have moved before we might get a

location update

 A LocationListener that will be notified of key location-related events,

as shown in the following example:

LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 if (state.weather!=null) {
 state.weather.getForecast(location, state);
 }
 else {
 Log.w(getClass().getName(), "Unable to fetch forecast – no WeatherBinder");

CHAPTER 39: Accessing Location-Based Services 446

 }
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
}

Here, all we do is trigger a FetchForecastTask with the Location supplied to the

onLocationChanged() callback method.

Bear in mind that the time parameter is only a guide to help steer Android from a power

consumption standpoint. You may get many more location updates than this. To get the

maximum number of location updates, supply 0 for both the time and distance constraints.

When you no longer need the updates, call removeUpdates() with the LocationListener

you registered. If you fail to do this, your application will continue receiving location

updates even after all activities and such are closed up, which will also prevent Android

from reclaiming your application’s memory.

There is another version of requestLocationUpdates() that takes a PendingIntent rather

than a LocationListener. This is useful if you want to be notified of changes in your

position even when your code is not running. For example, if you are logging

movements, you could use a PendingIntent that triggers a BroadcastReceiver

(getBroadcast()) and have the BroadcastReceiver add the entry to the log. This way,

your code is in memory only when the position changes, so you do not tie up system

resources while the device is not moving.

Are We There Yet? Are We There Yet?
Sometimes, you are not interested in where you are now, or even when you move, but

want to know when you get to where you are going. This could be an end destination, or

it could be getting to the next step on a set of directions, so you can give the user the

next instruction.

To accomplish this, LocationManager offers addProximityAlert(). This registers an

PendingIntent, which will be fired off when the device gets within a certain distance of a

certain location. The addProximityAlert() method takes the following as parameters:

 The latitude and longitude of the position of interest.

 A radius, specifying how close you should be to that position for the

Intent to be raised.

CHAPTER 39: Accessing Location-Based Services 447

 A duration for the registration, in milliseconds. After this period, the

registration automatically lapses. A value of -1 means the registration

lasts until you manually remove it via removeProximityAlert().

 The PendingIntent to be raised when the device is within the target

zone expressed by the position and radius.

Note that it is not guaranteed that you will actually receive an Intent. There may be an

interruption in location services, or the device may not be in the target zone during the

period of time the proximity alert is active. For example, if the position is off by a bit, and

the radius is a little too tight, the device might only skirt the edge of the target zone, or it

might go by the target zone so quickly that the device’s location isn’t sampled during

that time.

It is up to you to arrange for an activity or receiver to respond to the Intent you register

with the proximity alert. What you do when the Intent arrives is up to you. For example,

you might set up a notification (e.g., vibrate the device), log the information to a content

provider, or post a message to a web site. Note that you will receive the Intent

whenever the position is sampled and you are within the target zone, not just upon

entering the zone. Hence, you may get the Intent several times, perhaps quite a few

times, depending on the size of the target zone and the speed of the device’s

movement.

Testing...Testing...
The Android emulator does not have the ability to get a fix from GPS, triangulate your

position from cell towers, or identify your location by some nearby Wi-Fi signal. So, if

you want to simulate a moving device, you will need to have some means of providing

mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes as Android

itself has evolved. It used to be that you could provide mock location data within your

application, which was very handy for demonstration purposes. Alas, those options have

all been removed as of Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug Monitor Service

(DDMS). This is an external program, separate from the emulator, which can feed the

emulator single location points or full routes to traverse, in a few different formats.

DDMS is described in greater detail in Chapter 43.

449

 Chapter

Mapping with MapView
and MapActivity
One of Google’s most popular services—after Search, of course—is Google Maps,

which enables you to map everything from the location of the nearest pizza parlor to

directions from New York City to San Francisco (only 2,905 miles!), and includes street

views and satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those that do, there

is a mapping activity available to users straight from the main Android launcher. More

relevant to you, as a developer, are MapView and MapActivity, which allow you to

integrate maps into your own applications. Not only can you display maps, control the

zoom level, and allow people to pan around, but you can tie in Android’s location-based

services to show where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project is fairly easy.

And with a bit more effort, you can integrate more sophisticated mapping features.

Terms, Not of Endearment
Integrating Google Maps into third-party applications requires agreeing to a fairly

lengthy set of legal terms. These terms include clauses that you may find unpalatable.

If you are considering Google Maps, please review these terms closely to determine if

your intended use will run afoul of any clauses. You are strongly recommended to seek

professional legal counsel if there are any potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based on other sources of map

data, such as OpenStreetMap.

40

CHAPTER 40: Mapping with MapView and MapActivity 450

Piling On
As of Android 1.5, Google Maps is not strictly part of the Android SDK. Instead, it is part

of the Google APIs Add-On, an extension of the stock SDK. The Android add-on system

provides hooks for other subsystems that may be part of some devices but not others.

NOTE: Because Google Maps is not part of the Android open source project, some devices lack

Google Maps due to licensing issues. For example, at the time of this writing, the Archos 5

Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your day-to-day

development. However, bear in mind the following:

 You will need to create your project with an appropriate target to

ensure the Google Maps APIs will be available.

 To test your Google Maps integration, you will also need an AVD that

uses an appropriate target.

The Key to It All
If you download the source code for this book, compile the Maps/NooYawk project, install

it in your emulator, and run it, you will probably see a screen with a grid and a couple of

pushpins, but no actual maps. That’s because the API key in the source code is invalid

for your development machine. Instead, you will need to generate your own API key(s)

for use with your application. This also holds true for any map-enabled projects you

create on your own from scratch.

Full instructions for generating API keys, for development and production use, can be

found on the Android web site. In the interest of brevity, let’s focus on the narrow case

of getting NooYawk running in your emulator. Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Reread those terms of service and make really sure you want to agree to

them.

3. Find the MD5 digest of the certificate used for signing your debug-mode

applications (described in detail following this list).

4. On the API key signup page, paste in that MD5 signature and submit the

form.

5. On the resulting page, copy the API key and paste it as the value of

apiKey in your MapView-using layout.

CHAPTER 40: Mapping with MapView and MapActivity 451

The trickiest part is finding the MD5 signature of the certificate used for signing your

debug-mode applications. Much of the complexity is merely in making sense of the

concept.

All Android applications are signed using a digital signature generated from a certificate.

You are automatically given a debug certificate when you set up the SDK, and there is a

separate process for creating a self-signed certificate for use in your production

applications. This signature process involves the use of the Java keytool and jarsigner
utilities. For the purposes of getting your API key, you only need to worry about keytool.

To get your MD5 digest of your debug certificate, if you are on Mac OS X or Linux, use

the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore
 -storepass android -keypass android

On other development platforms, such as Windows, you will need to replace the value of

the -keystore switch with the location for your platform and user account (where <user>
is your account name):

On Windows XP, use C:\Documents and
Settings\<user>\.android\debug.keystore.

On Windows Vista, use C:\Users\<user>\.android\debug.keystore.

The second line of the output contains your MD5 digest, as a series of pairs of hex digits

separated by colons.

The Bare Bones
To put a map into your application, you need to create your own subclass of

MapActivity. Like ListActivity, which wraps up some of the smarts behind having an

activity dominated by a ListView, MapActivity handles some of the nuances of setting

up an activity dominated by a MapView. A MapView can be used only by a MapActivity,

not by any other type of Activity.

In your layout for the MapActivity subclass, you need to add an element named

com.google.android.maps.MapView. This is the “longhand” way to spell out the names of

widget classes, by including the full package name along with the class name. This is

necessary because MapView is not in the android.widget namespace. You can give the

MapView widget whatever android:id attribute value you want, plus handle all the layout

details to have it render properly alongside your other widgets.

However, you do need to have the following items:

android:apiKey, your Google Maps API key

android:clickable = "true", if you want users to be able to click and

pan through your map

For example, from the Maps/NooYawk sample application, here is the main layout:

CHAPTER 40: Mapping with MapView and MapActivity 452

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.google.android.maps.MapView android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="00yHj0k7_7vxbuQ9zwyXI4bNMJrAjYrJ9KKHgbQ"
 android:clickable="true" />
</RelativeLayout>

In addition, you will need a couple of extra things in your AndroidManifest.xml file:

 The INTERNET and ACCESS_FINE_LOCATION permissions (the latter for

use with the MyLocationOverlay class, described later in this chapter)

 Inside your <application>, a <uses-library> element with

android:name = "com.google.android.maps", to indicate you are using

one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.maps">
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <uses-library android:name="com.google.android.maps"/>
 <activity android:name=".NooYawk" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
 android:smallScreens="true" android:anyDensity="true"/>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity from

MapActivity. If you were to do nothing else, and built that project and tossed it in the

emulator, you’d get a nice map of the world. Note, however, that MapActivity is

abstract—you need to implement isRouteDisplayed() to indicate whether you are

supplying some sort of driving directions. Since displaying driving directions is not

supported by the current edition of the terms of service, you should have

isRouteDisplayed() return false.

Optional Maps
While most mainstream Android devices have Google Maps, a small percentage do not,

because their manufacturers did not elect to license it from Google. Therefore, you need

to decide whether Google Maps is essential to your application’s operation.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 40: Mapping with MapView and MapActivity 453

If Google Maps is essential, then include the <uses-library> element in your

application, as shown previously, as that will require any device running your app to

have Google Maps.

If Google Maps isn’t essential, you can make it optional, via an undocumented

android:required attribute available on <uses-library>. Set that to false, and Google

Maps will be loaded into your application if it is available, but your application will run

fine regardless. You will then need to use something like

Class.forName("com.google.android.maps.MapView") to see if Google Maps is available

to your application. If it is not, you can disable the menu items for it, or whatever would

lead the user to your MapActivity.

NOTE: Although the android:required attribute currently is undocumented, Google has
indicated that it is an available option. Hopefully, that means it will be officially documented in a

future Android release.

Exercising Your Control
You can find your MapView widget by findViewById(), just as with any other widget. The

widget itself then offers a getController() method. Between the MapView and

MapController, you have a fair bit of capability to determine what the map shows and

how it behaves. Zoom and center are two features you will likely want to use, so they are

covered next.

Zoom
The map of the world you start with is rather broad. Usually, people looking at a map on

a phone will be expecting something a bit narrower in scope, such as a few city blocks.

You can control the zoom level directly via the setZoom() method on the MapController.

This takes an integer representing the level of zoom, where 1 is the world view and 21 is

the tightest zoom you can get. Each level is a doubling of the effective resolution: 1 has

the equator measuring 256 pixels wide, while 21 has the equator measuring 268,435,456

pixels wide. Since the phone’s display probably does not have 268,435,456 pixels in

either dimension, the user sees a small map focused on one tiny corner of the globe. A

level of 17 will show several city blocks in each dimension, which is probably a

reasonable starting point for you to experiment with.

If you wish to allow users to change the zoom level, call

setBuiltInZoomControls(true);, and the user will be able to zoom in and out of the

map via zoom controls found at the bottom center of the map.

CHAPTER 40: Mapping with MapView and MapActivity 454

Center
Typically, you will need to control what the map is showing, beyond the zoom level,

such as the user’s current location or a location saved with some data in your activity.

To change the map’s position, call setCenter() on the MapController.

The setCenter() method takes a GeoPoint as a parameter. A GeoPoint represents a

location, via latitude and longitude. The catch is that the GeoPoint stores latitude and

longitude as integers representing the actual latitude and longitude in microdegrees

(degrees multiplied by 1E6). This saves a bit of memory versus storing a float or double,

and it greatly speeds up some internal calculations Android needs to do to convert the

GeoPoint into a map position. However, it does mean you have to remember to multiply

the real-world latitude and longitude by 1E6.

Layers Upon Layers
If you have ever used the full-size edition of Google Maps, you are probably used to

seeing things overlaid atop the map itself, such as pushpins indicating businesses near

the location being searched. In map parlance (and, for that matter, in many serious

graphic editors), the pushpins are on a separate layer from the map itself, and what you

are seeing is the composition of the pushpin layer atop the map layer.

Android’s mapping allows you to create layers as well, so you can mark up the maps as

you need to based on user input and your application’s purpose. For example, NooYawk

uses a layer to show where select buildings are located on the island of Manhattan.

Overlay Classes
Any overlay you want to add to your map needs to be implemented as a subclass of

Overlay. There is an ItemizedOverlay subclass available if you are looking to add

pushpins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your MapView and

add() your Overlay instance to it, as we do here with a custom SitesOverlay:

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will look at that marker in the next section.

Drawing the ItemizedOverlay
As the name suggests, ItemizedOverlay allows you to supply a list of points of interest

to be displayed on the map—specifically, instances of OverlayItem. The overlay, then,

CHAPTER 40: Mapping with MapView and MapActivity 455

handles much of the drawing logic for you. Here are the minimum steps to make this

work:

1. Override ItemizedOverlay<OverlayItem> as your own subclass (in this

example, SitesOverlay).

2. In the constructor, build your roster of OverlayItem instances, and call

populate() when they are ready for use by the overlay.

3. Implement size() to return the number of items to be handled by the

overlay.

4. Override createItem() to return OverlayItem instances given an index.

5. When you instantiate your ItemizedOverlay subclass, provide it with a

Drawable that represents the default icon (e.g., a pushpin) to display for

each item, on which you call boundCenterBottom() to enable the drop-

shadow effect.

The marker from the NooYawk constructor is the Drawable used for step 5, which shows a

pushpin.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> items=new ArrayList<OverlayItem>();
 private Drawable marker=null;

 public SitesOverlay(Drawable marker) {
 super(marker);
 this.marker=marker;

 boundCenterBottom(marker);

 items.add(new OverlayItem(getPoint(40.748963847316034,
 -73.96807193756104),
 "UN", "United Nations"));
 items.add(new OverlayItem(getPoint(40.76866299974387,
 -73.98268461227417),
 "Lincoln Center",
 "Home of Jazz at Lincoln Center"));
 items.add(new OverlayItem(getPoint(40.765136435316755,
 -73.97989511489868),
 "Carnegie Hall",
 "Where you go with practice, practice, practice"));
 items.add(new OverlayItem(getPoint(40.70686417491799,
 -74.01572942733765),
 "The Downtown Club",
 "Original home of the Heisman Trophy"));

 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {

CHAPTER 40: Mapping with MapView and MapActivity 456

 return(items.get(i));
 }

 @Override
 protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
 }

 @Override
 public int size() {
 return(items.size());
 }
}

Handling Screen Taps
An Overlay subclass can also implement onTap(), to be notified when the user taps the

map, so the overlay can adjust what it draws. For example, in full-size Google Maps,

clicking a pushpin pops up a bubble with information about the business at that pin’s

location. With onTap(), you can do much the same in Android.

The onTap() method for ItemizedOverlay receives the index of the OverlayItem that was

tapped. It is up to you to do something worthwhile with this event.

In the case of SitesOverlay, as shown in the preceding section, onTap() looks like this:

@Override
protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
}

Here, we just toss up a short Toast with the snippet from the OverlayItem, returning

true to indicate we handled the tap.

My, Myself, and MyLocationOverlay
Android has a built-in overlay to handle two common scenarios:

 Showing where you are on the map, based on GPS or other location-

providing logic

 Showing where you are pointed, based on the built-in compass

sensor, where available

CHAPTER 40: Mapping with MapView and MapActivity 457

All you need to do is create a MyLocationOverlay instance, add it to your MapView’s list of

overlays, and enable and disable the desired features at appropriate times.

The “at appropriate times” notion is for maximizing battery life. There is no sense in

updating locations or directions when the activity is paused, so it is recommended that

you enable these features in onResume() and disable them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay. To do this,

we first need to create the overlay and add it to the list of overlays (where me is the

MyLocationOverlay instance as a private data member):

me=new MyLocationOverlay(this, map);
map.getOverlays().add(me);

Then, we enable and disable the compass rose as appropriate:

@Override
public void onResume() {
 super.onResume();

 me.enableCompass();
}

@Override
public void onPause() {
 super.onPause();

 me.disableCompass();
}

This gives us a compass rose while the activity is onscreen, as shown in Figure 40–1.

Figure 40–1. The NooYawk map, showing a compass rose and two OverlayItems

CHAPTER 40: Mapping with MapView and MapActivity 458

Rugged Terrain
Just as the Google Maps you use on your full-size computer can display satellite

imagery, so too can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on and off the

satellite perspective on the area being viewed. You can allow the user to trigger this via

an options menu or, in the case of NooYawk, via key taps:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

Figure 40–2 shows a satellite view in NooYawk, courtesy of tapping the S key.

Figure 40–2. The NooYawk map, showing a compass rose and two OverlayItems, overlaid on the satellite view

CHAPTER 40: Mapping with MapView and MapActivity 459

Maps and Fragments
You might think that maps would be an ideal place to use fragments. After all, on a large

tablet screen, you could allocate most of the space to the map but still have other stuff

alongside it. Alas, as of the time of this writing, maps and fragments are two great tastes

that do not taste so great together.

First, MapView requires you to inherit from MapActivity. This has a few ramifications:

 You cannot use the Android Compatibility Library (ACL), because that

requires you to inherit from FragmentActivity, and Java does not

support multiple inheritance. Hence, you can use maps in fragments

only on Android 3.0 and higher, requiring that you fall back to some

alternative implementation on older versions of Android.

 Any activity that might host a map in a fragment has to inherit from

MapActivity, even if in some cases it might not host a map in a

fragment.

Also, MapView makes some assumptions about the timing of various events, in a fashion

that makes setting up a map-based fragment a bit more complex than it might otherwise

have to be.

It is entirely possible that someday these problems will be resolved, through a

combination of an updated Google APIs Add-On for Android with fragment support, and

possibly an updated ACL. In the meantime, here is the recipe for getting maps to work,

as well as they can, in fragments.

Limit Yourself to Android 3.0
In the manifest, make sure that you set both your android:minSdkVersion and your

android:targetSdkVersion to 11, so your application runs only on Android 3.0 and

newer. For example, here is the manifest from the Maps/NooYawkFragments sample

project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.maps">
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application android:label="@string/app_name"
 android:icon="@drawable/cw"
 android:hardwareAccelerated="true">
 <uses-library android:name="com.google.android.maps"/>
 <activity android:name=".NooYawk" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

http://schemas.android.com/apk/res/android

CHAPTER 40: Mapping with MapView and MapActivity 460

 </application>
 <uses-sdk android:minSdkVersion="11" android:targetSdkVersion="11" />
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Use onCreateView() and onActivityCreated()
A map-based fragment is simply a Fragment that shows a MapView. By and large, this

code can look and work much like a MapActivity would, configuring the MapView, setting

up an ItemizedOverlay, and so on.

However, there is a timing problem: you cannot reliably return a MapView widget, or an

inflated layout containing such a widget, from onCreateView(). For whatever reason, it

works fine the first time, but on a configuration change (e.g., screen rotation) it fails.

The solution is to return a container from onCreateView(), such as a FrameLayout, as

shown here in the MapFragment class from NooYawkFragments:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return(new FrameLayout(getActivity()));
}

Then, in onActivityCreated()—once onCreate() has been completed in the hosting

MapActivity—you can add a MapView to that container and continue with the rest of your

normal setup:

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 map=new MapView(getActivity(), "00yHj0k7_7vxbuQ9zwyXI4bNMJrAjYrJ9KKHgbQ");
 map.setClickable(true);

 map.getController().setCenter(getPoint(40.76793169992044,
 -73.98180484771729));
 map.getController().setZoom(17);
 map.setBuiltInZoomControls(true);

 Drawable marker=getResources().getDrawable(R.drawable.marker);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

 map.getOverlays().add(new SitesOverlay(marker));

 me=new MyLocationOverlay(getActivity(), map);
 map.getOverlays().add(me);

 ((ViewGroup)getView()).addView(map);
}

CHAPTER 40: Mapping with MapView and MapActivity 461

Note that we are creating a MapView in Java code, which means our Maps API key

resides in the Java code (or something reachable from the Java code, such as a string

resource). You could inflate a layout containing a MapView here if you wished—the

change for MapFragment was simply to illustrate creating a MapView from Java code.

Host the Fragment in a MapActivity
You must make sure that whatever activity hosts the map-enabled fragment is a

MapActivity. So, even though the NooYawk activity no longer has much to do with

mapping, it must still be a MapActivity:

package com.commonsware.android.maps;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class NooYawk extends MapActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 protected boolean isRouteDisplayed() {
 return(false);
 }
}

The layout now points to a <fragment> instead of a MapView:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="com.commonsware.android.maps.MapFragment"
 android:id="@+id/map_fragment"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

The resulting application, shown in Figure 40–3, looks like the original NooYawk activity

would on a large screen, because we are not doing anything much else with the

fragment system (e.g., having other fragments alongside in a landscape layout).

http://schemas.android.com/apk/res/android

CHAPTER 40: Mapping with MapView and MapActivity 462

Figure 40–3. The NooYawkFragments map, rendered on a Motorola XOOM

463

 Chapter

Handling Telephone Calls
Many, if not most, Android devices will be phones. As such, not only will users be

expecting to place and receive calls using Android, but you will have the opportunity to

help them place calls, if you wish.

Why might you want to?

 Maybe you are writing an Android interface to a sales management

application (a la Salesforce.com) and you want to offer users the ability

to call prospects with a single button tap, and without them having to

keep those contacts both in your application and in the phone’s

contacts application.

 Maybe you are writing a social networking application, and the roster

of phone numbers that you can access shifts constantly, so rather

than try to sync the social network contacts with the phone’s contact

database, you want to let people place calls directly from your

application.

 Maybe you are creating an alternative interface to the existing contacts

system, perhaps for users with reduced motor control (e.g., the

elderly), sporting big buttons and the like to make it easier for them to

place calls.

Whatever the reason, Android has the means to let you manipulate the phone just like

any other piece of the Android system.

Report to the Manager
To get at much of the phone API, you use the TelephonyManager. That class lets you do

things like the following:

 Determine if the phone is in use via getCallState(), with return values of

CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call requested

but still being connected), and CALL_STATE_OFFHOOK (call in progress)

41

CHAPTER 41: Handling Telephone Calls 464

 Find out the SIM ID (IMSI) via getSubscriberId()

 Find out the phone type (e.g., GSM) via getPhoneType() or find out the data

connection type (e.g., GPRS or EDGE) via getNetworkType()

You Make the Call!
You can also initiate a call from your application, such as from a phone number you

obtained through your own web service. To do this, simply craft an ACTION_DIAL Intent

with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial) and use that

Intent with startActivity(). This will not actually dial the phone; rather, it activates the

dialer activity, from which the user can then press a button to place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude but

effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Number to dial:"
 />
 <EditText android:id="@+id/number"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 />
 </LinearLayout>
 <Button android:id="@+id/dial"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Dial It!"
 android:onClick="dial"
 />
</LinearLayout>

We have a labeled field for typing in a phone number, plus a button for dialing that

number.

The Java code simply launches the dialer using the phone number from the field:

http://schemas.android.com/apk/res/android

CHAPTER 41: Handling Telephone Calls 465

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class DialerDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }

 public void dial(View v) {
 EditText number=(EditText)findViewById(R.id.number);
 String toDial="tel:"+number.getText().toString();

 startActivity(new Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
 }
}

The activity’s own UI is not that impressive, as shown in Figure 41–1.

Figure 41–1. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing you the

number you are about to dial, as shown in Figure 41–2.

CHAPTER 41: Handling Telephone Calls 466

Figure 41–2. The Android Dialer activity, as launched from DialerDemo

No, Really, You Make the Call!
The good news is that ACTION_DIAL works without any special permissions. The bad

news is that it takes the user only to the dialer. The user still has to take action (press the

green call button) to actually place the phone call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling

startActivity() on an ACTION_CALL Intent will immediately place the phone call,

without any other UI steps required. However, you need the CALL_PHONE permission to

use ACTION_CALL (see Chapter 38).

467

 Chapter

Fonts
The question you’ll inevitably get when developing any type of application is, “Hey, can

we change this font?” The answer depends on which fonts come with the platform,

whether you can add other fonts, and how to apply them to the widget or whatever

needs the font change. Android is no different. It comes with some fonts, plus a means

for adding new fonts. However, as with any new environment, there are a few

idiosyncrasies to deal with, as described in this chapter.

Love the One You’re With
Android natively knows three fonts, by the shorthand names sans, serif, and

monospace. These fonts are actually the Droid series of fonts, created for the Open

Handset Alliance by Ascender (www.ascendercorp.com/). To use these three fonts, you

can just reference them in your layout XML, such as the following layout from the

Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>
 <TextView
 android:text="sans:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/sans"
 android:text="Hello, world!"
 android:typeface="sans"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView

42

http://www.ascendercorp.com/
http://schemas.android.com/apk/res/android

CHAPTER 42: Fonts 468

 android:text="serif:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/serif"
 android:text="Hello, world!"
 android:typeface="serif"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="monospace:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/monospace"
 android:text="Hello, world!"
 android:typeface="monospace"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Custom:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/custom"
 android:text="Hello, world!"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow android:id="@+id/filerow">
 <TextView
 android:text="Custom from File:"
 android:layout_marginRight="4dip"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/file"
 android:text="Hello, world!"
 android:textSize="20sp"
 />
 </TableRow>
</TableLayout>

This layout builds a table showing short samples of five fonts. Notice that the first three

have the android:typeface attribute, whose value is one of the three built-in font faces

(e.g., "sans").

CHAPTER 42: Fonts 469

Additional Fonts
The three built-in fonts are very nice. However, a designer, a manager, or a customer

may want a different font. Or perhaps you want to use a font for specialized purposes,

such as a dingbats font instead of a series of PNG graphics. The easiest way to

accomplish this is to package the desired font(s) with your application. To do this,

simply create an assets/ folder in the project root, and put your TrueType (TTF) fonts in

that folder. You might, for example, create assets/fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can no longer

use layout XML for this, since the XML does not know about any fonts you may have

tucked away as an application asset. Instead, you need to make the change in Java

code:

import android.widget.TextView;
import java.io.File;

public class FontSampler extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TextView tv=(TextView)findViewById(R.id.custom);
 Typeface face=Typeface.createFromAsset(getAssets(),
 "fonts/HandmadeTypewriter.ttf");

 tv.setTypeface(face);

 File font=new File(Environment.getExternalStorageDirectory(),
 "MgOpenCosmeticaBold.ttf");

 if (font.exists()) {
 tv=(TextView)findViewById(R.id.file);
 face=Typeface.createFromFile(font);

 tv.setTypeface(face);
 }
 else {
 findViewById(R.id.filerow).setVisibility(View.GONE);
 }
 }
}

Here, we grab the TextView for our custom sample, and then create a Typeface object

via the static createFromAsset() builder method. This takes the application’s

AssetManager (from getAssets()) and a path within your assets/ directory to the font

you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing the Typeface

we just created. In this case, we are using the Handmade Typewriter font. You can also

load a font out of a local file and use it. The benefit is that you can customize your fonts

CHAPTER 42: Fonts 470

after your application has been distributed. On the other hand, you have to somehow

arrange to get the font onto the device. But, just as you can get a Typeface via

createFromAsset(), you can get a Typeface via createFromFile(). In our FontSampler,

we look in the root of “external storage” (typically the SD card) for the

MgOpenCosmeticaBold TrueType font file, and if it is found, we use it for the fifth row of

the table. Otherwise, we hide that row.

Figure 42–1 shows the results.

Figure 42–1. The FontSampler application

We will go into more details regarding assets and local files in an upcoming chapter.

Note that Android does not seem to like all TrueType fonts. When Android dislikes a

custom font, rather than raise an Exception, it seems to substitute Droid Sans ("sans")

quietly. So, if you try to use a different font and it does not appear to be working, it

might be incompatible with Android, for whatever reason.

Here a Glyph, There a Glyph
TrueType fonts can be rather pudgy, particularly if they support an extensive subset of

the available Unicode characters. The Handmade Typewriter font used in the previous

section runs over 70KB; the DejaVu free fonts can run upwards of 500KB apiece. Even

compressed, these add bulk to your application, so be careful not to go overboard with

custom fonts, lest your application take up too much room on your users’ phones.

CHAPTER 42: Fonts 471

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As an

example, let’s talk about the ellipsis.

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and

adding an ellipsis if the text is longer than the available space. You can use this via the

android:ellipsize attribute, for example. This works fairly well, at least for single-line

text.

The ellipsis that Android uses is not three periods. Rather, it uses an actual ellipsis

character, where the three dots are contained in a single glyph. Hence, any font that you

use that you also use the “ellipsizing” feature will need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on the screen, such

that the length (in characters) is the same before and after ellipsizing. To make this work,

Android replaces one character with the ellipsis, and replaces all other removed

characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’ (U+FEFF). As a

result, the extra characters after the ellipsis do not take up any visible space onscreen,

yet they can be part of the string. However, this means any custom fonts you use for

TextView widgets that you use with android:ellipsize must also support this special

Unicode character. Not all fonts do, and you will get artifacts in the onscreen

representation of your shortened strings if your font lacks this character (e.g., rogue Xs

appear at the end of the line).

And, of course, Android’s international deployment means your font must handle any

language your users might be looking to enter, perhaps through a language-specific

input method editor.

Hence, while using custom fonts in Android is very possible, there are many potential

problems, and so you must weigh carefully the benefits of the custom fonts versus their

potential costs.

473

 Chapter

More Development Tools
The Android SDK is more than a library of Java classes and API calls. It also includes a

number of tools to assist in application development. Eclipse, of course, tends to

dominate the discussion. However, that is not the only tool at your disposal, so, let’s

take a quick tour of what else is available to you.

Hierarchy Viewer: How Deep Is Your Code?
Android comes with a Hierarchy Viewer tool, designed to help you visualize your layouts

as they are seen in a running activity in a running emulator. So, for example, you can

determine how much space a certain widget is taking up, or try to find where a widget

that does not appear on the screen is hiding.

To use Hierarchy Viewer, you first need to fire up your emulator, install your application,

launch your activity, and navigate to the spot you wish to examine. Note that you cannot

use Hierarchy Viewer with a production Android device.

You can launch Hierarchy Viewer via the hierarchyviewer program, found in the tools/

directory in your Android SDK installation, or from inside of Eclipse. The main window is

shown in Figure 43–1.

43

CHAPTER 43: More Development Tools 474

Figure 43–1. Hierarchy Viewer main window

The roots of the table show the emulator instances presently running on your

development machine. The leaves represent applications running on that particular

emulator. Your activity will be identified by application package and class (e.g.,

com.commonsware.android.files/...).

Things get interesting when you choose a window and click Load View Hierarchy. After

a few seconds, the details spring into view, as shown in Figure 43–2.

CHAPTER 43: More Development Tools 475

Figure 43–2. Hierarchy Viewer Layout View

The main area of the Layout View shows a tree of the various widgets and stuff that

make up your activity, starting from the overall system window and driving down into the

individual UI widgets that users will interact with. This includes both the widgets and

containers defined by your application and others that are supplied by the system,

including the title bar.

Clicking one of the views adds more information to this perspective, as shown in

Figure 43–3.

CHAPTER 43: More Development Tools 476

Figure 43–3. Hierarchy Viewer View properties

Now, in the middle-right region of Hierarchy Viewer, you see properties of the selected

widget or container, plus timing details for how long it took to render that container and

its children.

Also, the widget is highlighted in red in the wireframe of the activity, shown beneath the

properties (by default, views are shown as white outlines on a black background). This

can help you ensure you have selected the right widget, if, say, you have several buttons

and cannot readily tell from the tree which button is which.

You can also do the following in the main Hierarchy Viewer window:

 Save the tree diagram as a PNG file

 Save the UI as a Photoshop PSD file, with different layers for the

different widgets and containers

 Force the UI to repaint in the emulator or reload the hierarchy, in case

you have made changes to a database or to the app’s contents and

need a fresh diagram

Instead of clicking Load View Hierarchy in the main window, you can click Inspect

Screenshot. This puts Hierarchy Viewer in a whole new perspective, called the Pixel

Perfect View, as shown in Figure 43–4.

CHAPTER 43: More Development Tools 477

Figure 43–4. Hierarchy Viewer Pixel Perfect View

On the left, you see a tree representing the widgets and other Views in your activity. In

the middle, you see a zoomed view of your activity, which is shown at normal size on the

right.

The crosshairs overlaying the activity show the position being zoomed. Just click a new

area to change what you are seeing. There is a slider to control the level of zoom.

Clicking a pixel also indicates the position and color of that pixel.

If you check the Auto Refresh check box in the toolbar, Hierarchy Viewer will poll and

reload the UI from your activity periodically, with the frequency controlled by another

slider.

DDMS: Under Android’s Hood
Another tool in the Android developer’s arsenal is the Dalvik Debug Monitor Service

(DDMS). This is like a Swiss army knife, allowing you to do everything from browse log

files, update the GPS location provided by emulator, simulate incoming calls and

messages, and browse the on-emulator storage to push and pull files.

To launch DDMS, run the ddms program inside the tools/ directory in your Android SDK

distribution or open the DDMS perspective in Eclipse. It will initially display just a tree of

emulators and running programs on the left, as shown in Figure 43–5.

CHAPTER 43: More Development Tools 478

Figure 43–5. DDMS initial view

Clicking an emulator allows you to browse the event log on the bottom and manipulate

the emulator via the tabs on the right, as shown in Figure 43–6.

CHAPTER 43: More Development Tools 479

Figure 43–6. DDMS, with emulator selected

Logging
Rather than use adb logcat, DDMS lets you view your logging information in a scrollable

table. Just highlight the emulator or device you want to monitor, and the bottom half of

the screen shows the logs.

In addition, you can do the following:

 Filter the Log tab by any of the five logging levels, shown as the V

through E toolbar buttons.

 Create a custom filter, so you can view only those entries tagged with

your application’s tag, by clicking the + toolbar button and completing

the form (shown in Figure 43–7). The name you enter in the form will

be used as the name of another logging output tab in the bottom

portion of the DDMS main window.

 Save the log information to a text file for later perusal, or for searching.

CHAPTER 43: More Development Tools 480

Figure 43–7. DDMS logging filter

File Push and Pull
While you can use adb pull and adb push to get files to and from an emulator or device,

DDMS lets you do that visually. Just highlight the emulator or device you wish to work

with, and then choose Device ➤ File Explorer from the main menu. That will bring up

your typical directory browser, as shown in Figure 43–8.

Figure 43–8. DDMS File Explorer

Just browse to the file you want and click either the pull (leftmost) or push (middle)

toolbar button to transfer the file to or from your development machine. To delete a file,

click the delete (rightmost) toolbar button.

CHAPTER 43: More Development Tools 481

Using File Explorer has a few caveats:

 You cannot create directories through this tool. You will need to either

use adb shell or create them from within your application.

 While you can putter through most of the files on an emulator, you can

access very little outside of /sdcard on an actual device, due to

Android security restrictions.

Screenshots
To take a screenshot of the Android emulator or device, simply press Ctrl+S or choose

Device ➤ Screen capture from the main menu. This will bring up a dialog box containing

an image of the current screen, as shown in Figure 43–9.

Figure 43–9. DDMS screen capture

From here, you can click Save to save the image as a PNG file somewhere on your

development machine, click Refresh to update the image based on the current state of

the emulator or device, or click Done to close the dialog box.

Location Updates
To use DDMS to supply location updates to your application, the first thing you must do

is have your application use the gps LocationProvider, as that is the one that DDMS is

set to update. Then, click the Emulator Control tab and scroll down to the Location

Controls section. Here, you will find a smaller tabbed pane with three options for

specifying locations: Manual, GPX, and KML, as shown in Figure 43–10.

CHAPTER 43: More Development Tools 482

Figure 43–10. DDMS location controls

To use the Manual tab, provide a latitude and longitude and click the Send button to

submit that location to the emulator. The emulator, in turn, will notify any location

listeners of the new position.

Placing Calls and Messages
If you want to simulate incoming calls or SMS messages to the Android emulator, DDMS

can handle that as well. On the Emulator Control tab, above the Location Controls

group, is the Telephony Actions group, as shown in Figure 43–11.

CHAPTER 43: More Development Tools 483

Figure 43–11. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice radio button,

and click Call. At that point, the emulator will show the incoming call, allowing you to

accept it (via the green phone button) or reject it (via the red phone button), as shown

in Figure 43–12.

CHAPTER 43: More Development Tools 484

Figure 43–12. Simulated incoming call

To simulate in an incoming text message, fill in a phone number, choose the SMS radio

button, enter a message in the provided text area, and click Send. The text message will

then appear as a notification, as shown in Figure 43–13.

Figure 43–13. Simulated text message

And, of course, you can click on the notification to view the message in the full-fledged

Messaging application, as shown in Figure 43–14.

CHAPTER 43: More Development Tools 485

Figure 43–14. Simulated text message, in Messaging application

Memory Management
DDMS also helps you diagnose issues related to how your application uses memory,

particularly heap space.

On the Sysinfo tab, you can see a pie chart of the overall memory allocation for the

emulator, as shown in Figure 43–15.

CHAPTER 43: More Development Tools 486

Figure 43–15. DDMS memory usage chart

On the Allocation Tracker tab, you can record every time your code (or code you call

inside of Android) allocates memory. Simply highlight your application’s process in the

tree table, and then click the Start Tracking button. When you want to see what you

have allocated since you clicked Start Tracking, click the Get Allocations button, which

will fill in a table showing each allocation, how much memory was allocated, and where

in the code the memory was allocated, as shown in Figure 43–16.

CHAPTER 43: More Development Tools 487

Figure 43–16. DDMS allocation tracker

And, you can even dump the entire heap for your application via the Dump HPROF

option, which is the toolbar button that looks like a half-empty can with a red

downward-pointing arrow to its right. The resulting HPROF file can be used with MAT,

an add-in for Eclipse, to see what objects are still on the heap and who is causing them

to stick around.

Before dumping the HPROF file, you may wish to force a garbage collection run on your

process. You do so by clicking the toolbar button that looks like a classic metal garbage

can.

adb: Like DDMS, with More Typing
The Android Debug Bridge, or adb utility, serves two roles:

 Behind the scenes, it serves as a bridge between your emulators/devices

and the rest of the tools. For example, ADT, Hierarchy Viewer, and

DDMS all communicate with your emulator via the adb bridge. This

bridge comes in the form of a daemon process, spawned the first time

you try using any of those tools since your last reboot.

CHAPTER 43: More Development Tools 488

 It offers command-line equivalents for many features of the other

tools, notably DDMS.

Some of the things you can do with adb include the following:

 Start (adb start-server) or stop (adb kill-server) the aforementioned

daemon process

 List all of the recognized Android devices and emulators presently

visible (adb devices)

 Get access to a Linux shell inside your device or emulator (adb shell)

 Install or uninstall Android applications on your device or emulator (adb
install)

 Copy files to (adb push) or from (adb pull) the emulator, much like

DDMS’s File Explorer

 Examine LogCat (adb logcat)

 Part

Alternative Application
Environments

VII

 491

 Chapter

The Role of Alternative
Environments
You might think that Android is all about Java. The official Android Software

Development Kit (SDK) is for Java development, the build tools are for Java

development, the Android discussion groups and blog posts are all about Java, and,

yes, most Android books are for Java development. Heck, most of this book is about

Java.

However (and with apologies to William Goldman), it just so happens that Android is only

mostly Java. There’s a big difference between mostly Java and all Java. Mostly Java is

slightly not Java.

So, while Android’s “sweet spot” will remain Java-based applications for the near term,

you can still create applications using other technologies. This chapter and the three

that follow introduce some of those alternative technologies.

This chapter starts with an examination of the pros and cons of Android’s Java-centric

strategy. It then enumerates some reasons why you might want to use something else

for your Android applications. The downsides of alternative Android application

environments—lack of support and technical challenges—are also discussed.

In the Beginning, There Was Java...
The core Android team made a fairly reasonable choice of language when they chose

Java. It is a very popular language, and in the mobile community it had a clear

predecessor in Java 2 Platform, Micro Edition (J2ME). Lacking direct access to memory

addresses (so-called pointers), a Java-based application will be less prone to developer

errors that might lead to buffer overruns and expose the application to possible hacks.

And there is a fairly robust ecosystem around Java, in terms of educational materials,

existing code bases, integrated development environments (IDEs), and so on.

However, while you can program Android in the Java language, an Android device does

not run a Java application. Instead, your Java code is converted into something that

44

CHAPTER 44: The Role of Alternative Environments 492

runs on the Dalvik virtual machine. This is akin to the technology used for regular Java

applications, but Dalvik is specifically tuned for Android’s environment. Moreover, it

limits the dependency of Android on Java itself to a handful of programming tools, which

is important as Java’s stewardship moves from Sun to Oracle to wherever.

The Dalvik virtual machine is also capable of running code from other programming

languages, a feature that makes possible much of what this book covers.

...And It Was OK
No mobile development environment is perfect, and the combination of Java and

Android is no exception.

In the beginning, Java, as implemented for the Dalvik virtual machine, was interpreted,

without any of the just-in-time (JIT) compiler tricks regular Java uses to boost

performance. This is a bigger problem in mobile, since the devices Android runs on tend

to be less powerful than your average desktop, notebook, or web server. Android 2.3

added a JIT compiler, which helps a lot, but it is still slow compared to native compiled

code. Hence, there will be some things you just can’t do on Android with Java because

it is too slow.

Java uses garbage collection to save people from having to keep track of all their

memory allocations. That works for the most part, and is generally a boon to developer

productivity. However, it is not a cure-all for every memory and resource allocation

problem. You can still have what amounts to “memory leaks” in Java, even if the precise

mechanics of those leaks differ from the classic leaks you get in C, C++, and other

languages.

Most importantly, though, not everybody likes Java. It could be because they lack

experience with it, or perhaps they have had experience with it and did not enjoy that

experience. Certainly, Java is often seen as a language for big enterprise systems and,

therefore, not necessarily “cool.” Advocates of other languages will have their own pet

peeves with Java as well (e.g., to a Ruby developer, Java is really verbose).

So, while Java was not a bad choice for Android, it was not perfect, either.

Bucking the Trend
Just because Java is the dominant way to build apps for Android, that does not mean it

is the only way, and for you, it may not even be the best way.

Perhaps Java is not in your existing skill set. You might be a web developer, more

comfortable with HTML, CSS, and JavaScript. There are frameworks to help you with

that. Or, maybe you cut your teeth on server-side scripting languages like Perl or

Python—there are ways to sling that code on Android as well. Or perhaps you already

have a bunch of code in C/C++, such as game physics algorithms, that would be painful

to rewrite in Java. You should be able to reuse that code, too.

CHAPTER 44: The Role of Alternative Environments 493

Even if you would be willing to learn Java, it may be that your inexperience with Java

and the Android APIs will just slow you down. You might be able to get something built

much more quickly with another framework, even if you wind up replacing it with a Java-

based implementation in the future. Rapid development and prototyping is frequently

important, to get early feedback with minimal investment in time.

And, of course, you might just find Java programming to be irritating. You would not be

the first, nor the last, to have that sentiment. If you are getting into Android as a hobby,

rather than as part of your “day job,” having fun will be particularly important to you, and

you might not find Java to be much fun.

Fortunately, Android is friendly toward alternative ways of building applications, unlike

some mobile platforms.

Support, Structure
However, “friendly” and “fully supported” are two different things. Some alternatives to

Java-based development are officially supported by the core Android team, such as

C/C++ development via the Native Development Kit (NDK) and web-style development

via HTML5. Some alternatives to Java-based development are supported by companies.

Adobe supports the Adobe Integrated Runtime (AIR), Nitobi supports PhoneGap

(described in detail in Chapter 46), Rhomobile supports Rhodes, and so on. Other

alternatives are supported by standards bodies. For example, the World Wide Web

Consortium (W3C) supports HTML5. Still others are just tiny projects with the backing of

only a couple of developers.

You will need to make the decision for yourself which of these levels of support will meet

your requirements. For many development activities, support is not much of an issue,

but in some cases, support might be paramount (e.g., enterprise application

development).

Caveat Developer
Of course, going outside the traditional Java environment for Android development has

its issues, beyond just how much support might be available.

Some environments may be less efficient, in terms of processor time, memory, or

battery life, than Java. C/C++, on the whole, is probably better than Java, but HTML5

may be worse, for example. Depending on what you are writing and how heavily it will

be used will determine how critical that inefficiency will be.

Some environments may not be available on all devices. Right now, Flash is the best

example of this; some devices offer some amount of Flash support, while other devices

have no Flash support at all. Similarly, HTML5 support was added to Android only as of

Android 2.0, so devices running older versions of Android do not have HTML5 as a built-

in option.

CHAPTER 44: The Role of Alternative Environments 494

Every layer between you and officially supported environments makes it that much more

difficult for you to ensure compatibility with new versions of Android, when they arise.

For example, if you create an application using PhoneGap, and a new Android version

becomes available, there may be incompatibilities that only the PhoneGap team can

address. While they will probably address those quickly—and they may provide to you

some measure of insulation from those incompatibilities—the response time is outside

of your control. In some cases, that is not a problem, but in other cases, that might be

bad for your project.

Hence, just because you are developing outside of Java does not mean everything is

perfect. You simply have to trade off between these problems and the ones Java-based

development might cause you. Where the balance lies is up to each individual developer

or firm.

495

 Chapter

HTML5
Prior to the current wave of interest in mobile applications, the technology du jour was

web applications. A lot of attention was paid to AJAX, Ruby on Rails, and other

techniques and technologies that made the experience of using web applications close

to, and sometimes even superior to, the experience of using a desktop application.

The explosion of web applications eventually drove the next round of enhancements to

web standards, collectively called HTML5. Android 2.0 was the first version to add

support for these HTML5 enhancements. Notably, Android supports offline applications

and Web storage, meaning that HTML5 becomes a relevant technique for creating

Android applications, without dealing with Java.

Offline Applications
The linchpin for using HTML5 for offline applications—on Android or elsewhere—is that

those applications can be used when there is no Internet connectivity, either on the

client side (e.g., on an airplane sans Wi-Fi) or on the server side (e.g., due to web server

maintenance).

What Does It Mean?
Historically, web applications have had this annoying tendency to require web servers.

This led to all sorts of workarounds for offline use, up to and including shipping a web

server and deploying it to the desktop.

HTML5 solves this problem by allowing web pages to specify their own caching rules. A

web app can publish a cache manifest, describing which resources

 Can be safely cached, such that if the web server is unavailable, the

browser can use the cached copy.

 Cannot be safely cached, such that if the web server is unavailable,

the browser should fail as it normally would.

45

CHAPTER 45: HTML5 496

 Have a “fallback” resource, such that if the web server is unavailable,

the cached fallback resource should be used instead.

For mobile devices, this means that a fully HTML5-capable browser should be able to

load all its assets up front and keep them cached. If the user loses connectivity, the

application will still run. In this respect, the web app behaves almost identically to a

regular app.

How Do You Use It?
For this chapter, we will use the Checklist “mini app” created by Alex Gibson. While the

most up-to-date version of this app can be found at the MiniApps web site

(http://miniapps.co.uk/), this chapter will review the HTML5/Checklist copy found in

the Source Code/Download area of the Apress web site (www.apress.com). This copy is

also hosted online on the CommonsWare site, and you can easily locate it directly via

the shortened URL http://bit.ly/cw-html5.

About the Sample App
Checklist is, as the name suggests, a simple checklist application. When you first

launch it, the list will be empty, as shown in Figure 45–1.

Figure 45–1. The Checklist app, as initially launched

You can enter some text in the top field and click the Add button to add it to the list, as

shown in Figure 45–2.

http://miniapps.co.uk/
http://www.apress.com
http://bit.ly/cw-html5

CHAPTER 45: HTML5 497

Figure 45–2. The Checklist, with one item added

You can “check off” individual items, which are then displayed in strikethrough, as

shown in Figure 45–3.

Figure 45–3. The Checklist, with one item marked as completed

CHAPTER 45: HTML5 498

You can also delete the checked entries (via the Delete Checked button) or all entries

(via the Delete All button), which will pop up a confirmation dialog box before

proceeding, as shown in Figure 45–4.

Figure 45–4. The Checklist’s delete confirmation dialog box

“Installing” Checklist on Your Android Device
To access Checklist on your Android device, visit the hosted edition at

http://bit.ly/cw-html5. You can then add a bookmark for it (choose More ➤ Add

bookmark in the browser’s options menu) to come back to it later.

You can even set up a shortcut for the bookmark on your home screen, if you so

choose—just long-tap the background, choose Bookmark, and then choose the

Checklist bookmark you set up before.

Examining the HTML
All the functionality in the Checklist app is accomplished using just a handful of lines of

HTML:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Checklist</title>
<meta name="viewport"
 content="width=device-width; initial-scale=1.0; maximum-scale=1.0;

http://bit.ly/cw-html5

CHAPTER 45: HTML5 499

 user-scalable=0;" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" />
<link rel="apple-touch-startup-image" href="splashscreen.png" />
<link rel="stylesheet" href="styles.css" />
<link rel="apple-touch-icon-precomposed"
 href="apple-touch-icon-precomposed.png" />
</head>
<body>
<section>
 <header>
 <button type="button" id="sendmail">Mail</button>
 <h1>Checklist</h1>
 </header>
 <article>
 <form id="inputarea" onsubmit="addNewItem()">
 <input type="text" name="name" id="name" maxlength="75"
 autocorrect placeholder="Tap to enter a new item…" />
 <button type="button" id="add">Add</button>
 </form>
 <ul id="maillist">
 <li class="empty">Mail remaining items

 <p id="totals">Total: 0
 Remaining: 0</p>
 <ul id="checklist">
 <li class="empty">Loading…

 </article>
 <fieldset>
 <button type="button" id="deletechecked">Delete Checked</button>
 <button type="button" id="deleteall">Delete All</button>
 </fieldset>
</section>
<script src="main.js"></script>
</body>
</html>

For the purposes of offline applications, though, the key is the manifest attribute of our

html element:

<html lang="en" manifest="checklist.manifest">

Here, we specify the relative path to a manifest file, indicating what the rules are for

caching various portions of this application offline.

Examining the Manifest
Because the manifest is where all the fun is, let’s look at Checklist’s manifest:

CACHE MANIFEST
#version 54
styles.css
main.js
splashscreen.png

CHAPTER 45: HTML5 500

The HTML5 manifest format is extremely simple. It starts with a CACHE MANIFEST line,

followed by a list of files (technically, relative URLs) that should be cached. It also

supports comments, which are lines beginning with #.

The manifest can also have a NETWORK: line, followed by relative URLs that should never

be cached. Similarly, the manifest can have a FALLBACK: line, followed by pairs of relative

URLs: the URL to try to fetch off the network, followed by the URL of a cached resource

to use if the network is not available.

In principle, the manifest should request caching for everything that the application

needs to run, though the page that requested the caching (index.html in this case) is

also cached.

Web Storage
Caching the HTML5 application’s assets for offline use is all well and good, but that will

be rather limiting on its own. In an offline situation, the application would not be able to

use AJAX techniques to interact with a web service. So, if the application is going to be

able to store information, it will need to do so on the browser itself.

Google Gears and related tools pioneered this concept and blazed the trail for what is

now variously called Web Storage or DOM Storage for HTML5 applications. An HTML5

app can store data persistently on the client, within client-imposed limits. That, in

conjunction with offline asset caching, means an HTML5 application can deliver far more

value when it lacks an Internet connection, or for data that just does not make sense to

store “in the cloud.”

NOTE: Technically, Web Storage is not part of HTML5, but rather is a related specification.

However, it tends to get lumped in with HTML5 in common conversation.

What Does It Mean?
On a Web Storage–enabled browser, your JavaScript code will have access to a

localStorage object, representing your application’s data. More accurately, each origin

(i.e., domain) will have a distinct localStorage object on the browser.

The localStorage object is an associative array, meaning you can work with it via either

numerical indexes or string-based keys. Values typically are strings. You can do the

following with localStorage:

 Find out how many entries are in the array via length()

 Get and set items by key via getItem() and setItem()

 Get the key for a numerical index via key()

 Remove individual entries via removeItem() or remove all items via
clear()

CHAPTER 45: HTML5 501

This means you do not have the full richness of a SQL database, like you might have

with SQLite in a native Android application. But, for many applications, this should

suffice.

How Do You Use It?
Checklist stores the list items as keys in the associative array, with a value of 0 for a

regular item and 1 for a deleted item. Here, we see the code for putting a new item into

the checklist:

try {
 localStorage.setItem(strippedString, data);
}
catch (e) {
 if (e == QUOTA_EXCEEDED_ERR) {
 alert('Quota exceeded!');
 }
}

Here is the code where those items are pulled back out of storage and put into an array

for sorting and, later, display as DOM elements on the web page itself:

/*get all items from localStorage and push them one by one into an array.*/
for (i = 0; i <= listlength; i++) {

 var item = localStorage.key(i);
 myArray.push(item);
}

/*sort the array into alphabetical order.*/
myArray.sort();

When the user checks the check box next to an item, the storage is updated to toggle

the checked setting persistently:

/*toggle the check flag.*/
if (target.previousSibling.checked) {
 data = 0;
}
else {
 data = 1;
}
/*save item in localStorage.*/
try {
 localStorage.setItem(name, data);
} catch (e) {

 if (e == QUOTA_EXCEEDED_ERR) {
 alert('Quota exceeded!');
 }
}

Checklist also has code to delete items from storage, either all items marked as

checked or all items. Following is the code to delete all checked items:

CHAPTER 45: HTML5 502

/*remove every item from localStorage that has the data flag checked.*/
while (i <= localStorage.length-1) {

 var key = localStorage.key(i);
 if (localStorage.getItem(key) === '1') {
 localStorage.removeItem(key);
 }
 else { i++; }
}

And here is the code to delete all items:

/*deletes all items in the list.*/
deleteAll: function() {

 /*ask for user confirmation.*/
 var answer = confirm("Delete all items?");

 /*if yes.*/
 if (answer) {

 /*remove all items from localStorage.*/
 localStorage.clear();
 /*update view.*/
 checklistApp.getAllItems();
 }
 /*clear up.*/
 delete checklistApp.deleteAll;
},

Web SQL Database
Android’s built-in browser also supports a Web SQL Database option, which enables

you to use SQLite-style databases from JavaScript. This adds a lot more power than

basic Web Storage, albeit at a complexity cost. It is also not part of an active standard—

the Web Hypertext Application Technology Working Group (WHATWG) team working on

this standard has set it aside for the time being.

You might consider evaluating Lawnchair, which is a JavaScript API that allows you to

store arbitrary JavaScript Object Notation (JSON)-encoded objects. It will use whatever

storage options are available, and therefore will help you deal with cross-platform

variety. In particular, it supports the Google Gears facility found in some older versions

of Android.

Going to Production
Creating a little test application requires nothing magical. Presumably, though, you are

interested in having other people use your application—perhaps many others. Classic

Java-based Android applications have to deal with testing, having the application

digitally signed for production, distribution through various channels (such as the

Android Market), and providing updates to the application by one means or another.

CHAPTER 45: HTML5 503

Those issues do not all magically vanish because HTML5 is used as the application

environment. However, HTML5 does change things significantly from what Java

developers have to do.

Testing
Since HTML5 works in other browsers, testing your business logic could easily take

advantage of any number of HTML and JavaScript testing tools, from Selenium to QUnit

to Jasmine.

For testing on Android proper—to ensure there are no issues related to Android’s

browser implementation—you can use Selenium’s Android Driver or Remote Control

modes.

Signing and Distribution
Unlike native Android applications, you do not need to worry about signing your HTML5

applications. The downside of this is that there is no support for distribution of HTML5

applications through the Android Market, which today supports only native Android

apps. Users will have to find your application by one means or another, visit it in the

browser, bookmark the page, and possibly create a home screen shortcut to that

bookmark.

Updates
Unlike native Android applications, which by default must be updated manually, HTML5

applications will be transparently updated the next time the user runs the app while

connected to the Internet. The offline caching protocol will check the web server for new

editions of files before falling back to the cached copies. Hence, there is nothing more

for you to do other than publish the latest web app assets.

Issues You May Encounter
Unfortunately, nothing is perfect. While HTML5 may make many things easier, it is not a

panacea for all Android development problems.

This section covers some potential areas of concern you will want to consider as you

move forward with HTML5 applications for Android.

Android Device Versions
Not all Android devices support HTML5—only those running Android 2.x or higher.

Ideally, therefore, you should do a bit of user-agent sniffing on your web server and

redirect older Android users to some other page explaining the limitations in their device.

CHAPTER 45: HTML5 504

Here is the user-agent string for a Google/HTC Nexus One device running Android 2.1:

Mozilla/5.0 (Linux; U; Android 2.1-update1; en-us; Nexus One Build/ERE27)
 AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17

As you can see, it is formatted like a typical modern user-agent string, meaning it is

quite a mess. It does indicate it is running Android 2.1-update1.

Eventually, somebody will create a database of user-agent strings for different device

models, and from there we can derive appropriate regular expressions or similar

algorithms to determine whether a given device can support HTML5 applications.

Screen Sizes and Densities
HTML5 applications can be run on a wide range of screen sizes, from QVGA Android

devices to 1080p LCDs and beyond. Similarly, screen densities may vary quite a bit, so

while a 48 48-pixel image on a smartphone may be an appropriate size, it may be too

big for a 1080p television, let alone a 24-inch LCD desktop monitor.

Other than increasing the possible options on the low end of screen sizes, none of this is

unique to Android. You will need to determine how best to design your HTML and CSS

to work on a range of sizes and densities, even if Android were not part of the picture.

Limited Platform Integration
HTML5, while offering more platform integration than ever before, does not come close

to covering everything an Android application might want to be able to do. For example,

an ordinary HTML5 application cannot do the following:

 Launch another application

 Work with the contacts database

 Raise a notification

 Do work truly in the background (though web workers may alleviate

this somewhat someday)

 Interact with Bluetooth devices

 Record audio or video

 Use the standard Android preference system

 Use speech recognition or text-to-speech

Many applications will not need these capabilities, of course. And other application

environments, like PhoneGap, will likely evolve into “HTML5 Plus” for Android. That way,

you could create a stock application that works across all devices and a separate

enhanced Android application that leverages greater platform integration, at the cost of

some additional amount of programming.

CHAPTER 45: HTML5 505

Performance and Battery
There has been a nagging concern for some time that HTML-based user interfaces are

inefficient compared to native Android UIs, in terms of processor time, memory, and

battery. For example, one of the stated reasons for avoiding BONDI-style web widgets

for the Android home screen is the performance impact.

Certainly, it is possible to design HTML5 applications that will suck down the battery.

For example, if you have a hunk of JavaScript code running every second indefinitely,

that is going to consume a fair amount of processor time. However, outside of that, it

seems unlikely that an ordinary application would be used so heavily as to materially

impact battery life. Certainly, more testing will need to be done in this area.

Also, an HTML5 application may start up a be a bit slower than other applications,

particularly if the browser has not been used in a while or if the network connection is

there but has minimal bandwidth to your server.

Look and Feel
HTML5 applications can certainly look very slick and professional—after all, they are

built with web technologies, and web apps can look very slick and professional.

However, HTML5 applications will not necessarily look like standard Android

applications, at least not initially. Some enterprising developers will, no doubt, create

some reusable CSS, JavaScript, and images that will, for example, mirror an Android

native Spinner widget (a type of drop-down control). Similarly, HTML5 applications will

tend to lack options menus, notifications, or other UI features that a native Android

application may well use.

This is not necessarily bad. Considering the difficulty in creating a very slick-looking

Android application, HTML5 applications may tend to look better than their Android

counterparts. After all, there are many more people skilled in creating slick web apps

than there are people skilled in creating slick Android apps.

However, some users may complain about the look-and-feel disparity, just because it is

different.

Distribution
HTML5 applications can be trivially added to a user’s device—browse, bookmark, and

add a shortcut to the home screen. However, HTML5 applications will not show up in

the Android Market, so users trained to look at the Market for available applications will

not find HTML5 applications, even ones that may be better than their native

counterparts.

It is conceivable that, someday, the Android Market will support HTML5 applications. It

is also conceivable that, someday, Android users will tend to find their apps by means

CHAPTER 45: HTML5 506

other than searching the Android Market, and will be able to get their HTML5 apps that

way. However, until one of those becomes true, HTML5 applications may be less

“discoverable” than their native equivalents.

HTML5 and Alternative Android Browsers
While the built-in Android browser will be the choice of many Android users, there are

other browsers available. Here is how some of the better-known alternatives stand in

terms of HTML5 support:

 Firefox Mobile: Presently in beta form, supports offline caching and

local storage. However, it is unable to run the Checklist sample

correctly at this time, for reasons presently unknown.

 Opera Mobile: Also in beta, does not support local storage, rendering

Checklist moot. It also does not support offline caching at this time.

 Dolphin Browser HD 4.0: Supports offline caching and local storage.

While there are slight rendering problems—perhaps CSS-related—in

Checklist, the application otherwise runs fine, even without an

Internet connection.

HTML5: The Baseline
HTML5 is likely to become rather popular for conventional application development. It

gives web developers a route to the desktop. It may be the only option for Google’s

Chrome OS. And, with ever-improving support on popular mobile devices—Android

among them—developers will certainly be enticed by another round of “write once, run

anywhere” promises.

It is fairly likely that, over time, HTML5 will be the number two option for Android

application development, after the conventional Java application written to the Android

SDK. That will make HTML5 the baseline for comparing alternative Android development

options—not only will those options be compared to using the SDK, they will be

compared to using HTML5.

507

 Chapter

PhoneGap
PhoneGap is perhaps the original alternative application framework for Android, arriving

on the scene in early 2009. PhoneGap (www.phonegap.com/) is open source, backed by

Nitobi, which offers a mix of open source and commercial products, along with

consulting and training services.

What Is PhoneGap?
As the PhoneGap web site puts it:

The PhoneGap mission is to web-enable native device functionality with open standards

like HTML, CSS and JavaScript so that developers can focus on the app they’re

building, not on authoring complex platform compatibility layers.1PhoneGap focuses on

bridging the gap between web technologies and native mobile development, with

access to more features than HTML5 applications have.

What Do You Write In?
A PhoneGap application is made up of HTML, CSS, and JavaScript, no different from a

mobile web site or HTML5 application, except that in PhoneGap the web assets are

packaged with the application rather than downloaded on-the-fly.

A preinstalled PhoneGap application, therefore, can contain comparatively large assets,

such as complex JavaScript libraries, that might be too slow to download over slower

EDGE connections. However, PhoneGap is still limited by the speed of mobile devices

and how quickly the WebKit browser can load and process those assets.

Also, development for WebKit for mobile differs from development for WebKit for

desktops, particularly with respect to touch versus mouse events. You may want to

develop using mobile layers of JavaScript frameworks (e.g., jQTouch versus plain

jQuery) where practical.

1 http://www.phonegap.com/case_study/it's-a-goodday-for-a-phonegap-app/

46

http://www.phonegap.com/
http://www.phonegap.com/case_study/it's-a-goodday-for-a-phonegap-app/

CHAPTER 46: PhoneGap 508

What Features Do You Get?
As with an HTML5 application, PhoneGap gives you the basic capabilities of a web

browser, including AJAX support. Beyond that, PhoneGap adds a number of JavaScript

APIs to allow you to get at the underlying features of the Android platform. At the time of

this writing, that includes the following:

 Accelerometer access, for detecting movement of the device

 Audio recording

 Camera access, for taking still pictures

 Database access, both to databases that you create (SQLite) and to

others built into Android (e.g., contacts)

 File system access, such as to the SD card or other external storage

 Geolocation, for determining where the device is

 Vibration, for shaking the phone (e.g., force-feedback)

Since some of these are part of the HTML5 specification (e.g., geolocation), you have

your choice of APIs. Also, this list will change over time, so by the time you are reading

this, you may have access to more than what is described here.

What Do Apps Look Like?
PhoneGap apps look like web pages, more so than native Android apps, as shown in

Figure 46–1, a screenshot of the example application that ships with PhoneGap. You

can use CSS and images to mimic the Android look and feel to some extent, but only for

those sorts of widgets that can be created in both Android and HTML. For example, the

Android Spinner widget, which resembles a drop-down list, may be difficult to mimic in

HTML.

CHAPTER 46: PhoneGap 509

Figure 46–1. The example application that comes with PhoneGap

How Does Distribution Work?
Distributing a PhoneGap application is pretty much identical to distributing any other

standard Android application. After testing, you create a standard APK file with the

Android build tools, from an Android project generated for you by PhoneGap. This

project will contain the Java, XML, and other necessary bits to wrap around your HTML,

CSS, and JavaScript to make up your application. Then, you digitally sign the

application and upload it to the Android Market or any other distribution mechanism you

wish to use.

What About Other Platforms?
PhoneGap is not just for Android. You can create PhoneGap applications for iPhone,

Blackberry, some flavors of Symbian, and Palm’s WebOS. In theory, at least, you can

create one application using HTML, CSS, JavaScript, and the PhoneGap JavaScript

APIs, and have it run across many devices.

CHAPTER 46: PhoneGap 510

There are a couple of limitations that will hamper your progress to that goal:

 The web browsing component used by PhoneGap across all those

platforms is not identical. Even multiple platforms using WebKit will

have different WebKit releases, based on what was available when

WebKit was integrated into a given device’s firmware. Hence, you will

want to test to ensure that your CSS, in particular, works as you

expect on as many devices as possible.

 Not all PhoneGap JavaScript APIs are available on all devices yet, due

to a variety of factors (e.g., not exposed in the platform’s native APIs,

lack of engineering time to hoist the capability into the PhoneGap

APIs, etc.). The PhoneGap wiki can keep you apprised of what works

and what does not across the devices. You will want to restrict your

feature use to match your desired platforms, or restrict your platforms

to match your desired features.

Using PhoneGap
Now, let’s look at more of the mechanics for using PhoneGap. PhoneGap’s installation

and usage, as of the time of this writing, normally requires an expert in Java-based

Android development. You need to install a whole bunch of tools, edit configuration files

by hand, and so forth. If you want to do all of that, documentation is available on the

PhoneGap web site and I'll cover it briefly below. If you are reading this chapter, there’s

a decent chance that you would rather skip all of that. Hence, for many, the best answer

is the PhoneGap Build service (http://build.phonegap.com/), still in private beta at the

time of this writing (which means you have to register to obtain the download).

Installation
You can download the latest PhoneGap tools as a ZIP archive from the PhoneGap web

site. Unpack those tools wherever it makes sense for your development machine and

platform. For Android development, that is all the PhoneGap-specific installation you will

need. However, you will need the Android SDK and related tools (e.g., Eclipse, if you

wish to use Eclipse) for setting up the project.

Creating and Installing Your Project
A PhoneGap Android project is, at its core, a regular Android project, which you can

create following the instructions outlined earlier in this book. To convert the standard

generated “Hello, World” application into a PhoneGap project, you need to do the

following:

http://build.phonegap.com/

CHAPTER 46: PhoneGap 511

1. From the Android/ directory of wherever you unzipped the PhoneGap

ZIP file, copy the PhoneGap JAR file to the libs/ directory of your

project. If you are using Eclipse, you also need to add it to your build

path.

2. Create an assets/www/ directory in your project. Then, copy over the

PhoneGap JS file from the Android/ directory of wherever you unzipped

the PhoneGap ZIP file.

3. Adjust the standard “Hello, World” activity to inherit from DroidGap

instead of Activity. This requires you to import com.phonegap.DroidGap.

4. In your activity’s onCreate() method, replace setContentView() with

super.loadUrl("file:///android_asset/www/index.html");.

5. In your manifest, add all the permissions that PhoneGap requests, listed

later in this chapter.

6. Also in your manifest, add a suitable <supports-screens> element based

on what screen sizes you want to test and support.

7. Also in your manifest, add android:configChanges=
"orientation|keyboardHidden" to your <activity> element, as DroidGap

handles orientation-related configuration changes.

At this point, you can create an assets/www/index.html file in your project and start

creating your PhoneGap application using HTML, CSS, and JavaScript. You need to

include a reference to the PhoneGap JavaScript file (e.g., <script
type="text/javascript" charset="utf-8" src="phonegap.0.9.4.js" />). When you

want to test the application, you can build and install it like any other Android application

(e.g., ant clean install if you are using the command-line build process).

For somebody experienced in Android SDK development, setting this up is not a big

challenge.

PhoneGap Build
PhoneGap Build is a tools-as-a-service (TaaS) hosted approach to creating PhoneGap

projects. All of the Android build process is handled for you by PhoneGap-supplied

servers. You just focus on creating your HTML, CSS, and JavaScript as you see fit.

As noted earlier, PhoneGap Build is still in private beta at the time of this writing, though

hopefully it will be open to the public in the near future.

When you log into PhoneGap Build, you are first prompted to create your initial project,

by supplying a name and the web assets to go into the app, as shown in Figure 46–2.

CHAPTER 46: PhoneGap 512

Figure 46–2. Creating your first project in PhoneGap Build

You will be able to add new projects later via a New App button, which gives you the

same set of options.

Your choices for supplying the assets are to upload a ZIP file containing all of them or to

specify the URL to a public GitHub repository that PhoneGap Build can pull from. The

latter method tends to be more convenient, if you are used to using Git for version

control and your project is open source (and therefore has a public repository).

Once you click the Upload button, the PhoneGap Build server immediately starts

building your application for Android, plus Blackberry, Symbian, and webOS, as shown

in Figure 46–3.

Figure 46–3. Building your first project in PhoneGap Build

CHAPTER 46: PhoneGap 513

Each of the targets has its own file extension (e.g., apk for Android). Clicking that link will

let you download that file. Or, click the name of the project, and you get Quick

Response (QR) codes to enable downloads straight to your test device, as shown in

Figure 46–4.

Figure 46–4. Your project’s QR codes in PhoneGap Build

This page also gives you a link to update the app from its GitHub repository (if you

chose that option). Or, you can click Edit to specify more options, such as the version of

your application or its launcher icon, as shown in Figure 46–5.

CHAPTER 46: PhoneGap 514

Figure 46–5. Your project’s settings in PhoneGap Build

All in all, if you do not otherwise need the Android SDK and related tools on your

development machine, PhoneGap Build certainly simplifies the PhoneGap building

process.

Note, though, that at the time of writing, Nitobi (the firm behind PhoneGap and

PhoneGap Build) is planning on making PhoneGap Build a commercial service for non-

open-source applications, though it has not announced rates yet.

PhoneGap and the Checklist Sample
The beauty of PhoneGap is that it wraps around HTML, CSS, and JavaScript. In other

words, you do not have to do much of anything PhoneGap-specific to be able to take

advantage of PhoneGap delivering to you an APK suitable for installation on an Android

device. That being said, PhoneGap does expose more stuff to you than you can get

from the standards, if you need them and are willing to use proprietary PhoneGap APIs

for them.

CHAPTER 46: PhoneGap 515

Sticking to the Standards
Given an existing HTML5 application, all you need to do to make it an installable APK is

wrap it in PhoneGap. For example, to convert the HTML5 version of Checklist (from

Chapter 45) into an APK file, you need to do the following:

1. Follow the steps to create an empty PhoneGap project, as outlined

earlier in this chapter.

2. Copy the HTML, CSS, JavaScript, and images from the HTML5 project

into the assets/www/ directory of the PhoneGap project (note that you

do not need anything unique to HTML5, such as the cache manifest).

3. Make sure that your HTML entry point file name matches the path you

used with the loadUrl() call in your activity (e.g., index.html).

4. Add a reference to the PhoneGap JavaScript file from your HTML.

5. Build and install the project.

Here is the DroidGap activity for our app, from the PhoneGap/Checklist project:

package com.commonsware.pg.checklist;

import android.app.Activity;
import android.os.Bundle;
import com.phonegap.DroidGap;

public class Checklist extends DroidGap {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 super.loadUrl("file:///android_asset/www/index.html");
 }
}

Here is the manifest, with all of the PhoneGap-requested settings added:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.pg.checklist"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="Checklist"
 android:configChanges="orientation|keyboardHidden"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <supports-screens
 android:largeScreens="true"

http://schemas.android.com/apk/res/android

CHAPTER 46: PhoneGap 516

 android:normalScreens="true"
 android:smallScreens="true"
 android:resizeable="true"
 android:anyDensity="true"
 />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.VIBRATE" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <uses-permission android:name="android.permission.RECORD_AUDIO" />
 <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
</manifest>

And here is the HTML, which is almost identical to the HTML5 original, but with some

HTML5 offline stuff removed (e.g., iPhone icons) and the reference to PhoneGap’s

JavaScript file added:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Checklist</title>
 <meta name="viewport"
 content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
 user-scalable=0;" />
 <link rel="stylesheet" href="styles.css" />
 <script type="text/javascript" charset="utf-8" src="phonegap.0.9.4.js"></script>
</head>
<body>
 <section>
 <header>
 <button type="button" id="sendmail">Mail</button>
 <h1>Checklist</h1>
 </header>
 <article>
 <form id="inputarea" onsubmit="addNewItem()">
 <input type="text" name="name" id="name" maxlength="75"
 autocorrect placeholder="Tap to enter a new item…" />
 <button type="button" id="add">Add</button>
 </form>
 <ul id="maillist">
 <li class="empty">Mail remaining items

 <p id="totals">Total: 0
 Remaining: 0</p>
 <ul id="checklist">
 <li class="empty">Loading…

 </article>

CHAPTER 46: PhoneGap 517

 <fieldset>
 <button type="button" id="deletechecked">Delete Checked</button>
 <button type="button" id="deleteall">Delete All</button>
 </fieldset>
 </section>
 <script src="main.js"></script>
</body>
</html>

For many applications, this is all you will need. You are simply looking at PhoneGap to

give you something you can distribute on the Android Market, on the iOS App Store, and

so on.

Adding PhoneGap APIs
If you want to take advantage of more device capabilities, you can augment your HTML5

application to use PhoneGap-specific APIs. These run the gamut from telling you the

device’s model to letting you get compass readings. Hence, their complexity will vary.

For the purposes of this chapter, we will look at some of the simpler ones.

Set Up Device-Ready Event Handler
For various reasons, PhoneGap will not be ready to respond to all of its APIs right away

when your page is loaded. Instead, you need to look for a deviceready event to confirm

that it is safe to use PhoneGap-specific JavaScript globals. The following is the typical

recipe:

1. Add an onload attribute to your <body> tag, referencing a global

JavaScript function (e.g., onLoad()).

2. In onLoad(), use addEventListener() to register another global

JavaScript function (e.g., onDeviceReady()) for the deviceready event.

3. In onDeviceReady(), start using the PhoneGap APIs.

Use What PhoneGap Gives You
PhoneGap makes a number of methods available to you through a series of virtual

JavaScript objects. Here, “virtual” means that you cannot check to see if the objects

exist, but you can call methods and read properties on them. So, for example, there is a

device object that has a handful of useful properties, such as phonegap to return the

PhoneGap version and version to return the OS version. These virtual objects are ready

for use in or after the deviceready event.

For example, here is a JavaScript file (props.js from the PhoneGap/ChecklistEx project)

that implements an onLoad() function (to register for deviceready) and an

onDeviceReady() function (to use the device object’s properties):

// PhoneGap's APIs are not immediately ready, so set up an
// event handler to find out when they are ready

CHAPTER 46: PhoneGap 518

function onLoad() {
 document.addEventListener("deviceready", onDeviceReady, false);
}

// Now PhoneGap's APIs are ready

function onDeviceReady() {
 var element=document.getElementById('props');

 element.innerHTML='Model: '+device.name+'' +
 'OS and Version: '+device.platform +' '+device.version+'' +
 'PhoneGap Version: '+device.phonegap+'';
}

The onDeviceReady() function needs a list element with an id of props. That, plus

loading this JavaScript in the first place, will require some minor modifications to our

HTML:

<!DOCTYPE html>
<html lang="en" manifest="checklist.manifest">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Checklist</title>
 <meta name="viewport"
 content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
 user-scalable=0;" />
 <link rel="stylesheet" href="styles.css" />
 <script type="text/javascript" charset="utf-8" src="phonegap.0.9.4.js"></script>
 <script type="text/javascript" charset="utf-8" src="props.js"></script>
</head>
 <body onload="onLoad()">
 <section>
 <header>
 <button type="button" id="sendmail">Mail</button>
 <h1>Checklist</h1>
 </header>
 <article>
 <form id="inputarea" onsubmit="addNewItem()">
 <input type="text" name="name" id="name" maxlength="75"
 autocorrect placeholder="Tap to enter a new item…" />
 <button type="button" id="add">Add</button>
 </form>
 <ul id="maillist">
 <li class="empty">Mail remaining items

 <p id="totals">Total: 0
 Remaining: 0</p>
 <ul id="checklist">
 <li class="empty">Loading…

 </article>
 <fieldset>
 <button type="button" id="deletechecked">Delete Checked</button>
 <button type="button" id="deleteall">Delete All</button>
 </fieldset>
 <footer>

CHAPTER 46: PhoneGap 519

 <h2>Device Properties</h2>
 <ul id="props">
 </footer>
 </section>
 <script src="main.js"></script>
 </body>
</html>

Figure 46–6 shows what the resulting app looks like.

Figure 46–6. The PhoneGap Checklist application with device properties

Obviously, reading a handful of properties is far simpler than, say, taking a picture with

the device’s camera. However, the difference in complexity is mostly in what

PhoneGap’s virtual JavaScript objects give you and how you can use them, more so

than anything peculiar to Android.

Issues You May Encounter
PhoneGap is a fine choice for creating cross-platform applications. However, it is not

without its issues. Some of these issues may be resolved in time; some may be endemic

to the nature of PhoneGap.

Security
Android applications use a permission system to request access to certain system

features, such as making Internet requests or reading the user’s contacts. Applications

CHAPTER 46: PhoneGap 520

must request these permissions at install time, so the user can elect to abandon the

installation if the requested permissions seem suspect.

A general rule of thumb is that you should request as few permissions as possible, and

make sure that you can justify why you are requesting them.

PhoneGap, for a new project, requests quite a few permissions:

 CAMERA

 VIBRATE

 ACCESS_COARSE_LOCATION

 ACCESS_FINE_LOCATION

 ACCESS_LOCATION_EXTRA_COMMANDS

 READ_PHONE_STATE

 INTERNET

 RECEIVE_SMS

 RECORD_AUDIO

 MODIFY_AUDIO_SETTINGS

 READ_CONTACTS

 WRITE_CONTACTS

 WRITE_EXTERNAL_STORAGE

 ACCESS_NETWORK_STATE

Leaving this roster intact will give you an application that can use every API that

PhoneGap makes available to your JavaScript...and an application that will scare away

many users. After all, it is unlikely that your application will be able to use, let alone

justify, all of these permissions.

It is certainly possible for you to trim down this list, by modifying the

AndroidManifest.xml file in the root of your PhoneGap project. However, you will then

need to thoroughly test your application to make sure you did not get rid of a permission

that you actually need. Also, it may be unclear to you which permissions you can safely

remove.

Eventually, the PhoneGap project may have tools to help guide you in the choice of

permissions, perhaps by statically analyzing your JavaScript code to see which

PhoneGap APIs you are using. In the meantime, though, getting the proper set of

permissions will involve a lot of trial and error.

CHAPTER 46: PhoneGap 521

Screen Sizes and Densities
Normal web applications primarily focus on screen resolution and window sizes as their

primary variables. Mobile web applications do not have to worry about window sizes, as

browsers and apps typically run full-screen. Mobile web applications need to deal with

physical size and density, though—issues that are off the radar for traditional web

development.

Netbooks can have screens that are 10 inches or smaller, whereas desktops can have

screens that are 24 inches or larger. So physical screen size would seem to be something

web developers need to address. However, screen resolution (in pixels) generally tracks

well with physical size in the netbook/notebook/desktop realm. That is because screen

density is fairly consistent across their LCDs, and that density is fairly low.

Smartphones, on the other hand, have several different densities, causing the

connection between resolution and size to be broken. Some low-end phones,

particularly with small (e.g., 3 inch) LCDs, have densities on par with nice monitors.

Midrange phones have twice the density (240 dpi versus 120 dpi). Apple’s iPhone 4 has

even higher density, and there likely will soon be some Android devices with so-called

retina displays as well. Hence, an 800 480 resolution could be on a screen ranging

anywhere from 4 inches to 7 inches, for example. Tablets add even more possible sizes

to the mix.

This is compounded by the problems caused by touchscreens. A mouse can get pixel-

level precision in its clicks. Fingers are much less precise. Hence, you may need to

make your buttons and such bigger on a touchscreen, so that it is finger-friendly. This

causes some problems with scaling of assets, particularly images. What might be finger-

friendly on a low-density 3-inch device might be entirely too small for a high-density 4-

inch device.

Native Android applications have built-in logic for dealing with this issue, in the form of

multiple sets of resources (e.g., images) that can be swapped in based on device

characteristics. Eventually, PhoneGap and similar tools will need to provide relevant

advice to their users for how to create applications that can similarly adapt to

circumstances.

Look and Feel
A web app never quite looks like a native one. This is not necessarily a bad thing.

However, some users may find it disconcerting, particularly since they will not

understand why their newly installed app (made with PhoneGap, for example) looks so

different from any other similar app they may already have.

As HTML5 applications become more prominent on Android, this issue should decline in

importance. However, it is something to keep in mind for the next year or two.

CHAPTER 46: PhoneGap 522

For More Information
At the time of this writing, there are no books available dedicated to PhoneGap

development. Also, it is still a fast-moving target, particularly as it heads to version 1.0.

Hence, at the moment, the best information on PhoneGap can be found on the

PhoneGap site, including its API documentation.

523

 Chapter

Other Alternative
Environments
The alternative application environments described in the preceding chapters represent

but a few of the growing flood of such technologies. Here, we will take a brief look at a

few other alternative application environments.

NOTE: This area is changing rapidly, so by the time you read this chapter, the material may be
somewhat out of date relative to the progress each of these technologies has made. Check the

web site of each of the application environments for the latest updates.

Rhodes
Rhodes (http://rhomobile.com/) is similar to PhoneGap insofar as you develop an

Android application whose user interface is defined via HTML, CSS, and JavaScript. The

difference is that Rhodes bakes in a full Ruby environment, with a Rails-esque

framework. Your Ruby code generates HTML and such to be “served” to an activity via

a WebView widget, much like a server-side Ruby web app would generate HTML to be

served to a stand-alone web browser.

Similar to PhoneGap, you can either build the project on your development machine or

use their hosted build process. The latter method is recommended, partly because the

requirements for local builds are higher than those for PhoneGap—notably, Rhodes

requires the Native Development Kit (NDK) for building and linking the Ruby interpreter

to your application.

Rhodes winds up creating larger applications than does PhoneGap, due to the overhead

of the Ruby interpreter (~1.5MB). However, if you are used to server-side web

development, picking up Rhodes may be easier for you than picking up PhoneGap.

47

http://rhomobile.com/

CHAPTER 47: Other Alternative Environments 524

Flash, Flex, and AIR
Adobe has been hard at work extending its Flash, Flex, and AIR technologies to the

mobile space. You can use Flex (the “Hero” edition) and Flash Builder (the “Burrito”

edition) to create Android APK files that can be distributed on the Android Market and

deployed to Android devices. Those devices will need to have the AIR runtime installed,

which is free, but is a large download and works only on Android 2.2 devices. The same

projects can be repackaged for iOS and the Blackberry Playbook tablet, and possibly for

future devices down the road.

AIR (Adobe Integrated Runtime) is not as tightly integrated with the platform as

PhoneGap is (e.g., AIR provides no access to the device’s contacts), though this is an

area to which Adobe likely will devote more resources over time. Besides, Adobe is a big

firm with a large ecosystem behind it and many existing Flash, Flex, and AIR developer

resources to tap into.

JRuby and Ruboto
JRuby (www.jruby.org/) is one of the most popular languages designed to run on the

JVM—besides Java itself. JRuby was quickly ported to run on Android, but with some

optimizations disabled, since JRuby is actually running on the Dalvik virtual machine that

underlies the Android environment, not on a classic JVM.

However, JRuby alone cannot create Android applications. As a scripting language,

there is no way for it to define an activity or other component—those need to be

registered in the application’s manifest as regular Java class files.

This is where Ruboto (http://ruboto.org/) comes in. Ruboto is a framework for a

generic JRuby/Android application. It provides skeletal activities via a code generator

and allows JRuby scripts to define handlers for all of the lifecycle methods (e.g.,

onCreate()), define user interfaces using JRuby code, and so forth. The result can be

packaged as an APK file using supplied Rake script. The results can be uploaded to the

Android Market or distributed however else you desire.

Mono for Android
Mono is an open source reimplementation of C# and .NET for non-Windows

environments. Mono has had its fair share of controversies, mostly stemming from

Microsoft, such as whether Microsoft will someday squash Mono over patent

considerations.

Mono for Android has been in the works for some time. This would allow Mono

developers to target Android for their apps. In principle, one could develop C#

applications for Android this way.

http://www.jruby.org/
http://ruboto.org/

CHAPTER 47: Other Alternative Environments 525

While Mono itself is an open source project, Mono for Android “is a commercial

product...licensed on a per-developer basis,” according to the Mono project. This may

come as a bit of a shock to developers who are expecting Mono on Android to remain

open source.

App Inventor
App Inventor (http://appinventor.googlelabs.com/) is an Android application

development tool made available by Google, but outside of the normal Android

developer site. App Inventor was originally developed for use in education, but they have

been inviting others into their closed beta.

App Inventor is theoretically a web-based development tool. Here, “theoretically” means

that, in practice, users have to do a fair amount of work outside of the browser to get

everything set up:

 Have Java installed and functioning in the browser, capable of running

Java Web Start (.jnlp) applications

 Download and install a large (~55MB) client-side set of tools

 Have a phone and have it configured to work with App Inventor and

the Android SDK

Once you set it up, App Inventor gives you a drag-and-drop GUI editor, as shown in

Figure 47–1.

Figure 47–1. The App Inventor “Designer” view

App Inventor also gives you a Blocks Editor (see Figure 47–2), where you attach

behaviors to events (e.g., button clicks) by snapping together various “blocks”

representing events, methods, and properties.

http://appinventor.googlelabs.com/

CHAPTER 47: Other Alternative Environments 526

Figure 47–2. The App Inventor Blocks Editor

While working in the GUI editor, you see what you are building live on an attached

phone and can test it in real time. Later, when you are ready, you can package the

application into a standard APK file.

However, App Inventor is not really set up for production application use today:

 You cannot distribute App Inventor apps on the Android Market.

 It has more components aimed at “sizzle” (e.g., Twitter integration) and

fewer components delivering capabilities that a typical modern app

might need (e.g., relational databases and lists).

 Only one developer at a time can work on a project.

In the future, it is possible that App Inventor will become a solid option, or that App

Inventor will trigger other firms to create similar sorts of programming-free development

options for Android.

Titanium Mobile
Titanium Mobile’s claim to fame is that it uses JavaScript only to define the user

interface, and eschews HTML entirely. Its JavaScript library, in addition to providing

access to databases and platform capabilities, lets you declare user interface widgets.

But its layout capabilities, for positioning said widgets, leave something to be desired.

As of the time of this writing, Appcelerator (www.appcelerator.com/), the creator of

Titanium Mobile, does not offer a cloud-based set of tools. Its Titanium tool has a very

slick-looking UI, but it still requires the Java SDK and Android SDK in order to be able to

build Android applications, making the setup a bit daunting for some.

As of the time of this writing, Titanium Mobile supports development for Android and

iOS, with Blackberry support in a private beta.

http://www.appcelerator.com/

CHAPTER 47: Other Alternative Environments 527

Other JVM Compiled Languages
If you are happy with regular Android development, but you just do not like Java, any

language that can generate compatible JVM bytecode should work with Android. You

would have to modify the build chain for that other language to do the rest of the

Android build process (e.g., generate R.java from the resources and create the APK file

in the end).

Scala (www.scala-lang.org/) and Clojure (http://clojure.org/) are two such

languages, whose communities have put together instructions for using their languages

for Android development.

http://www.scala-lang.org/
http://clojure.org/

 Part

The Ever-Evolving Android

VII

 531

 Chapter

Dealing with Devices
Android is “free as in beer” for device manufacturers, as it is an open source project.

Hence, device manufacturers have carte blanche to do what they want with Android as

they put it on their devices. This means a breadth of choices for device users, who can

choose among Android devices in a variety of shapes, sizes, and colors. This also

means developers have some device differences and idiosyncrasies to take into

account.

This chapter will give you some tips and advice for dealing with these device-specific

issues, to go along with the screen size material in Chapter 25.

This App Contains Explicit Instructions
Originally, the only Android device was the T-Mobile G1. Hence, if you were writing an

Android application, you could assume the existence of a hardware QWERTY keyboard,

a trackball for navigation, and so on. Now, though, over 100 other devices exist, many

with different hardware capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various types of

hardware. Some applications, though, will be unusable without certain hardware

characteristics. For example, a full-screen game may rely on a hardware keyboard or

trackball to indicate player actions—soft keyboards and touchscreens may be

insufficient.

Fortunately, starting with Android 1.5, you can add explicit instructions that tell Android

what you need, so that your application is not installed on devices lacking such

hardware. We'll look at that now, then move onto implied feature requests.

Explicit Feature Requests
In addition to using the target ID system to indicate the level of device your project is

targeting, you can use a new AndroidManifest.xml element to specify hardware that is

required for your application to run properly. You can add one or more <uses-
configuration> elements inside the <manifest> element. Each <uses-configuration>

48

CHAPTER 48: Dealing with Devices 532

element specifies one valid configuration of hardware that your application will work

with. At the present time, there are five possible hardware requirements you can specify

this way:

 android:reqFiveWayNav: Indicates you need a five-way navigation

pointing device of some form (e.g., android:reqFiveWayNav = "true")

 android:reqNavigation: Restricts the five-way navigation pointing

device to a specific type (e.g., android:reqNavigation = "trackball")

 android:reqHardKeyboard: Specifies whether a hardware (physical)

keyboard is required (e.g., android:reqHardKeyboard = "true")

 android:reqKeyboardType: Used in conjunction with

android:reqHardKeyboard, indicates a specific type of hardware

keyboard is required (e.g., android:reqKeyboardType = "qwerty")

 android:reqTouchScreen: Indicates what type of touchscreen is

required, if any (e.g., android:reqTouchScreen = "finger")

Starting in Android 1.6, there is a similar manifest element, <uses-feature>, that is

designed to document requirements an application has for other optional features on

Android devices. For example, the following attributes can be placed in a <uses-
feature> element:

 android:glEsVersion: Indicates that your application requires

OpenGL, where the value of the attribute indicates the level of OpenGL

support (e.g., 0x00010002 for OpenGL 1.2 or higher)

 android:name = "android.hardware.camera": Indicates that your

application needs a camera

 android:name = "android.hardware.camera.autofocus": Indicates that

your application specifically needs an autofocus camera

Each Android release adds more features that you can require. These requests will

cause the Android Market—and other, third-party markets, one hopes—to filter your

application out from devices for which it is unsuitable.

The <uses-feature> element has an android:required attribute that you can specify. By

default, it is set to true, meaning your application absolutely needs this feature. If you

set it to false, you are advertising that your application can take advantage of the

feature if it exists, but does not absolutely need it. To find out at runtime whether the

feature exists on the device, you can use the hasSystemFeature() method on

PackageManager to interrogate the device.

Implied Feature Requests
If you have requested permissions like CALL_PHONE or SEND_SMS, unless you take the

proper steps, your application will not be available for the Motorola XOOM, nor

presumably for other Android 3.0-based tablets.

CHAPTER 48: Dealing with Devices 533

Some permissions imply that you need certain hardware features. Scroll down to the

“Permissions that Imply Feature Requirements” section on the <uses-feature> page to

find the list.1

The Android Market treats as though requesting a permission like CALL_PHONE also

requests:

<uses-feature android:name="android.hardware.telephony" />

The XOOM does not have telephony; it is the first Android Market–compliant device with

that limitation. While it can have a data plan, it has no voice or SMS capability, so it is

treated as not having android.hardware.telephony. But, if you request permissions like

CALL_PHONE, the Android Market by default will assume you need

android.hardware.telephony. As a result, you will be filtered out of the Android Market

for the XOOM.

The solution is simple: for any hardware features that might be implied by permissions

but that your application does not absolutely need, manually add the appropriate <uses-
feature> element to your manifest with android:required="false":

<uses-feature
 android:name="android.hardware.telephony"
 android:required="false"
/>

Then, before you try placing a phone call or sending an SMS or something, use

PackageManager and getSystemAvailableFeatures() to find out if

android.hardware.telephony is available on the device. For example, you might check

for telephony early on and disable various menu choices, such as buttons that might

lead the user to place a call or send an SMS.

If your application absolutely needs telephony, then the implied <uses-feature> will

work, though you may wish to consider putting one in explicitly. However, just bear in

mind that this means your app will not work on the XOOM or other tablets that lack

telephony.

A Guaranteed Market
As mentioned in the introduction to the chapter, Android is open source. Specifically, it

is mostly available under the Apache Software License 2.0. This license places few

restrictions on device manufacturers. Therefore, it is very possible for a device

manufacturer to create a device that, frankly, does not run Android very well. It might

work fine for standard applications shipped on the device but do a poor job of handling

third-party applications, like the ones you might write.

To help address this, Google has some applications, such as the Android Market, that it

has not released as open source. While these applications are available to device

1 http://developer.android.com/guide/topics/manifext/uses-feature-element.html

http://developer.android.com/guide/topics/manifext/uses-feature-element.html

CHAPTER 48: Dealing with Devices 534

manufacturers, the devices that run the Android Market are tested first, to help ensure

that a user’s experience with the device will be reasonable.

A Google engineer cited one case where a device manufacturer was readying a phone

that had a QVGA screen, before the release of Android 1.6, in which QVGA support was

officially added to the platform. While that manufacturer had arranged for the built-in

applications to work acceptably on the smaller-resolution screen, third-party

applications were a mess. Google apparently declined to provide the Android Market to

the manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing a distribution

means for your applications, also serves as a bit of a seal of approval that the device

should support well-written third-party applications. Specifically, any device that has the

Android Market

 Meets the criteria outlined in the Compatibility Definition Document

(CDD)

 Has passed the Compatibility Test Suite (CTS)

Other Stuff That Varies
Other things that vary from device to device include the following:

 Which location technologies are available (e.g., GPS, cell tower

proximity, Galileo)

 Which camera features are available (e.g., flash, autofocus, sepia tone)

 What sensors are available (e.g., accelerometer, gyroscope,

barometer)

The strategy for these is to interrogate the system to find out what the possibilities are,

then decide which to use, where the decision could be made solely by you or with user

input. For example, you can use Criteria to determine which is the best location

provider to use with LocationManager.

Bugs, Bugs, Bugs
Unfortunately, devices inevitably have bugs. Some bugs are truly accidental. Some are

side effects from changes the device manufacturer made to achieve some business

aims. Some are actually intentional, though the engineers who implemented them may

not have fully understood their ramifications.

There is not much you can do tactically about these bugs, beyond try to work around

them. The Build class, in the android.os package, can tell you the make and model of

the device that is running your app. That, plus your own hard-won experience with

certain problems, will help you identify where you need to route around firmware

damage.

CHAPTER 48: Dealing with Devices 535

Strategically, if you find something that is clearly a device bug, you should file an issue

to have this bug detected via the CTS. The CTS is supposed to filter out devices that

cannot faithfully run Android applications. However, the CTS has many holes, and

device bugs slip through. By collectively improving the CTS, we can help prevent

problems from cropping up in the future. You can file an issue at the Public Issue

Tracker for Android Bugs, http://code.google.com/p/androidbugs/issues/list.

Device Testing
Ideally, you should try to test your apps on a variety of hardware. However, this can get

expensive. Here are some options for doing it more cheaply:

Sign up for DeviceAnywhere’s independent developer plan, which is a

lower-cost way of being able to access their device farm for remote

testing.

Some device manufacturers hold device labs at various events, such

as Motorola held at AnDevCon 2011.

Some carriers have perpetual device labs, such as Orange’s developer

centres.

You may be able to arrange short-term (e.g., 15-minute) device swaps

as part of a Meetup or Google Technology User Group with fellow

Android developers.

http://code.google.com/p/androidbugs/issues/list

537

 Chapter

Where Do We Go from
Here?
Obviously, this book does not cover everything. And while your primary resource

(besides the book) is the Android SDK documentation, you are likely to need information

from additional sources.

Searching online for “android” and a class name is a good way to locate tutorials that

reference a given Android class. However, bear in mind that tutorials written before late

August 2008 are probably written for the M5 SDK and, as such, will require considerable

adjustment to work properly in current SDKs.

Instead of randomly hunting around for tutorials, you can use some of the resources

outlined in this chapter to narrow your search.

Questions, Sometimes with Answers
The official places to get assistance with Android are the Android Google Groups. With

respect to the SDK, there are three to consider:

 StackOverflow’s android tag

(http://stackoverflow.com/questions/tagged/android)

 Android Developers (http://groups.google.com/group/android-
developers), for SDK questions and answers

 Android Discuss (http://groups.google.com/group/android-discuss),

designed for free-form discussion of anything Android-related, not

necessarily for programming questions and answers

You might also consider the following resources:

 The Android tutorials and programming forums at www.anddev.org

 The Open Mob for Android wiki (http://andmob.wikidot.com/)

49

http://stackoverflow.com/questions/tagged/android
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-discuss
http://www.anddev.org
http://andmob.wikidot.com/

CHAPTER 49: Where Do We Go from Here? 538

 The #android-dev IRC channel on freenode (http://irc.freenode.net)

 The Android forum on JavaRanch

It is important, particularly for StackOverflow and the Google Groups, to write

informative questions. Following are some tips for writing effective questions:

 Include relevant portions of the source code (e.g., the method in which

you are getting an exception).

 Include the stack trace from LogCat, if the problem is an unhandled

exception.

 On StackOverflow, make sure your source code and stack trace are

formatted as source code; on Google Groups, consider posting long

listings on http://gist.github.com or a similar code-paste site.

 Explain thoroughly what you are trying to do, how you are trying to do

it, and why you are doing it this way (especially if you think your goal

or approach may be a little offbeat).

 On StackOverflow, respond to answers and comments with your own

comments, addressing the person using the @ syntax (e.g.,

@CommonsWare), to maximize the odds you will get a reply.

 On the Google Groups, do not “ping” or reply to your own message to

try to elicit a response until a reasonable amount of time has gone by

(e.g., 24 hours).

Heading to the Source
The source code to Android is now available. Mostly, this is for people who are looking

to enhance, improve, or otherwise fuss with the insides of the Android operating system.

But it is possible that you will find the answers you seek in that code, particularly if you

want to see how some built-in Android component does its thing.

The source code and related resources can be found at http://source.android.com,

where you can do the following:

 Download or browse the source code

 File bug reports against the operating system itself

 Submit patches and learn about the process for how such patches are

evaluated and approved

 Join a separate set of Google Groups for Android platform

development

Rather than download the multigigabyte Android source code snapshot, you may wish

to use Google Code Search (www.google.com/codesearch) instead. Just add the

http://irc.freenode.net
http://gist.github.com
http://source.android.com
http://www.google.com/codesearch

CHAPTER 49: Where Do We Go from Here? 539

package:android constraint to your search query, and it will search only in Android and

related projects.

Getting Your News Fix
Ed Burnette, a nice guy who happened to write his own Android book, is also the

manager of Planet Android (www.planetandroid.com), a feed aggregator for a number of

Android-related blogs. Subscribing to Planet Android’s feed enables you to monitor

quite a few Android-related blog posts, though not exclusively related to programming.

To try to focus more on programming-related, Android-referencing blog posts, you can

search DZone (www.dzone.com) for “android” and subscribe to a feed based on that

search.

http://www.planetandroid.com
http://www.dzone.com

 541

Index

■ Symbols and
Numerics

@ symbol

soft keyboard for e-mail address

input, 97

XML-based layouts, 57

@+id convention, 57, 58

*.properties file, 32

+ (plus) sign

first occurrence of id value, 83

■ A
aapt tool

XML-based layouts, 55

AbsoluteLayout container, 156

handling multiple screen sizes, 259

accelerometer

changing screen orientation, 187,

200, 201

ACCESS_ALL_DOWNLOADS

permission, 383

ACCESS_COARSE_LOCATION

permission, 438, 444

ACCESS_FINE_LOCATION permission,

438, 444, 452

accessory button, 98, 99, 100, 101

ACL (Android Compatibility Library), 299

Fragment implementation from, 300

inheritance from FragmentActivity,

306

maps and fragments, 459

preferences via fragments, 351

action bar, Android 3.0 apps, 283

Find contacts search field, 285

action bar, Honeycomb UI, 289–295

adding custom views to, 291–295

defining layout, 292–293

getting control of user input,

294–295

putting layout in menu, 293–294

backward compatibility, 289, 295,

319

enabling, 289–290

fragments adding options to, 299

fragments adding tabs to, 299

handling multiple Android versions,

319–320

checking API level, 319

promoting menu items to, 290–291

responding to activity icon, 291

ACTION_CALL intent, 466

ACTION_DIAL intent, 464, 466

ACTION_PICK intent, 189, 190

saving state, 192

startActivityForResult method, 229

ACTION_VIEW intent, 190

actionDone value, accessory button, 99

actionLayout attribute

adding custom views to action bar,

293

getting control of user input, 294

actions, intents, 221, 222

actionSend value, accessory button, 99

activated style

persistent row highlighting, 305

active state, activities, 183

activities, 5

active state, 183

adding fragments to, 306

Android UI architecture, 227

Index 542

background threads, 203

bigger keyboard obscuring activity,

100

blocking rotation of activity, 198–200

building, 53

consolidating, 266

cost of using background threads,

219

creating skeleton project in Eclipse,

25

creating/attaching widgets to

activity, 55

CWBrowser activity, 233

dead state, 184

dealing with multiple screen sizes,

306

declaring intent filters, 223

DetailsActivity class, EU4You_6, 311

device configuration changes

affecting, 187

eligibility for intents, 223

embedding images in, 63

enforcing permissions via manifest,

439

EU4You_6 project, 309–311

fragment-to-activity communication,

307

FragmentActivity class, 306

fragments, 297

hosting fragments, 306

imported classes, 52

inheritance from Activity class, 52

intents, 228

Java code for, 51–53

launching, 228–231

calling startActivity(), 228, 230

calling startActivityForResult(),

229

creating intent, 228

launching peer activity, 229–231

layout with IME, 100

life cycle, 183

ListActivity widget, 104–106

manifest file, 33

Now demonstration activity, 54

Now.java file, 51

onCreate method, 53

onRestoreInstanceState method,

188

onSaveInstanceState method, 188

package declaration, 52

panning activity, layout, 100

paused state, 183

peer (not subordinate) activities, 227

launching peer activity, 229–231

startActivity method, 228, 230

PreferenceActivity, 340–341

premature closing of, 183, 184

recreating instance state, 186

resizing activity, layout, 100

running, 53

saving application-instance state,

186

screen rotation, 188

sending button clicks to activity

instance, 53

setting content view, 53

startActivity method, 228, 230

startActivityForResult method, 189,

190, 229

states, 183–184

stopped state, 184

styling with themes, 256

subordinate activities, 227

startActivityForResult method,

229

TabActivity widget, 144

tabbed browsing, 232

taking advantage of bigger screen,

266

target component, intents, 222

threads and screen rotation,

214–218

Activity class, 32

finish method, 184

getLastNonConfigurationInstance

method, 218

inheritance from, 52

OnClickListener, 52

onCreate method, 184, 218

onDestroy method, 184

onPause method, 185

Index 543

onRestart method, 185

onResume method, 185

onRetainNonConfigurationInstance

method, 217, 218

onSaveInstanceState method, 186,

225

onStart method, 185

onStop method, 185

runOnUiThread method, 208

threads and screen rotation, 215,

217, 218

activity command-line switch

android create project command, 27

activity element, 35

intent-filter child element, 35

label attribute, 35

name attribute, 35

theme attribute, 256

windowSoftInputMode attribute, 100

activity icon, responding to

action bar, Honeycomb UI, 291

adapters, 103–104

ArrayAdapter, 104

delegating loading to initAdapter(),

172

getView method, 121–123, 125

IconicAdapter class, 121–123

Java, 103

selection widgets, 103

setAdapter method, 104, 108, 112,

115

setListAdapter method, 105

adb (Android Debug Bridge) utility, 487

adb pull command, 367

adb push command, 368

addEventListener function, JavaScript

PhoneGap Checklist application,

517

addPreferencesFromResource method,

352, 353

backward compatibility, 354

users setting up preferences, 341

addProximityAlert method, 446

AddStringTask class, 211, 213

addSubMenu method, 169

addTab method, 145, 148

addWord method, 295

Adobe Integrated Runtime see AIR

ADT (Android Developer Tools)

installing ADT for Eclipse, 12–14

installing Android SDK, 8

ADT add-in, Eclipse, 37

afterTextChanged callback,

TextWatcher, 116

AIR (Adobe Integrated Runtime), 524

alternatives to Java-based

development, 493

AlertDialog, 180, 181

adding custom views to action bar,

292

alerting users, 179

toasts, 179–180

alerts, 180, 181

notifications, 423–433

Allocation Tracker tab, DDMS, 486

alphabeticShortcut attribute, 177

altitude

hasAltitude method, 445

always value

showAsAction attribute, 290

AnalogClock widget, 140

Android

adding soft keyboards to, 64

alternatives to Java-based

development, 492–494

API levels, 315

application device hardware

requirements, 531–533

buttons, 62–63

check boxes, 66–68

content providers, 5

creating skeleton project, 23–27

detecting build version, 316

downloading files, 383–391

fields, 64–65

fonts, 467–468

handling API changes, 314–318

handling changes to, 313

resources, 314

view hierarchy, 313

handling increasing variety of

platforms, 313

Index 544

handling multiple screen sizes,

258–260

handling multiple versions, 314

highest supported version, 316

Honeycomb UI, 318–320

lowest supported version, 315

targeted development version,

316

intents, 5

Java code with, 370

Java-centric strategy, 491

labels, 61–62

notifications, 423–433

Open Mob for Android wiki, 537

parsers, 379

Planet Android, 539

preferences, 339–355

radio buttons, 68–70

smartphone programming, 4

source code, 538

SQLite, 357–368

tutorials, 537

using BeanShell on, 371–373, 374

using scripting languages on, 371,

374

versions, 48

Android 2.x options icon

application UI, Android 3.0 screen,

283

Android 3.0 see Honeycomb

Android 3.0 screen see Honeycomb UI

Android applications see applications

Android attributes (android:)

see also attributes

actionLayout, 293, 294

alphabeticShortcut, 177

anyDensity, 261

apiKey, 451

background, 71

choiceMode, 106, 107

clickable, 451

collapseColumns, 89

columnWidth, 111

completionThreshold, 115

configChanges, 195, 198

contentDescription, 71

debuggable, 35

drawSelectorOnTop, 118

ellipsize, 471

enabled, 176

glEsVersion, 532

hardwareAccelerated, 286

horizontalSpacing, 111

icon, 176

id, 56, 57, 83

imeActionId, 293

imeOptions, 98, 293

inputType, 64, 94, 293

label, 35

largeScreens, 261

layout_above, 83

layout_alignXyz, 82, 83

layout_below, 83

layout_centerXyz, 82

layout_column, 88

layout_gravity, 75

layout_height, 57, 74, 81

layout_margin, 76

layout_span, 88

layout_toLeftOf, 83

layout_toRightOf, 83, 84

layout_weight, 75, 81

layout_width, 57

LinearLayout container, 74, 75,

77, 293

RelativeLayout container, 85

menuCategory, 176

minSdkVersion, 48

name, 35

nextFocusXyz, 71

normalScreens, 261

numColumns, 111

numericShortcut, 177

orderInCategory, 176

orientation, 74

padding, 70

password, 94

reqFiveWayNav, 532

reqHardKeyboard, 532

reqKeyboardType, 532

reqNavigation, 532

reqTouchScreen, 532

Index 545

required, 532

screenOrientation, 198, 200

shortcut, 177

showAsAction, 290

shrinkColumns, 89

smallScreens, 261

spacing, 118

spacingWidth, 111

spinnerSelector, 118

src, 63

stretchColumns, 89

stretchMode, 111

targetSdkVersion, 48

text, 57

textAppearance, 293

theme, 256

title, 176

typeface, 468

versionCode, 34

versionName, 34

verticalSpacing, 111

visibility, 71

visible, 177

windowSoftInputMode, 100

xlargeScreens, 261

Android AVD Manager

see also Android SDK and AVD

Manager

creating AVDs, 15

emulator screen densities, 264

android batch file

installing Android SDK, 9

Android Compatibility Library see ACL

android create project command, 26,

27, 31

Android Debug Bridge (adb) utility, 487

Android Developer Tools see ADT

Android Developers web site, 7, 537

Android developer tools, 8

Android devices

building/running applications, 27–30

changing screen orientation, 200

GPS (Global Positioning System), 6

Honeycomb UI, 286–288

Internet access, 6, 377

keyboards, 93–94

multimedia capabilities, 6

networks, 6

phone services, 6

setting up, 21

setting up development machine to

talk to, 21

Mac OD X and Linux, 22

Windows, 21–22

storage, 5

Android devices see devices

Android Discuss web site, 537

Android emulators see emulators

Android Google Groups, 537

Android JAR

importing non-Eclipse project into

Eclipse, 42

android list targets command, 27

Android Market

creating skeleton project at

command line, 27

filtering applications, 533

handling multiple Android versions,

314

android package

Java code for activities, 52

Android packaging tool

building activity, 53

Android phones see phones

Android programs

Java SE classes availability to, 52

Android Project option

creating skeleton project in Eclipse,

23

Android projects see projects, Android

Android properties see Android

attributes (android:)

Android Repository

Android SDK and AVD Manager, 10

Android SDK and AVD Manager

Android Repository, 10

Android Virtual Devices list, 15

Available packages option, 9

creating Android emulator, 43

Google add-ons, 11

installing Android SDK, 9–12

license confirmation dialog, 11

Index 546

running, 15

Third party Add-ons, 10

Android toolkit

Button widget, 62–63

CheckBox widget, 66–68

EditText widget, 64–65

ImageButton widget, 63

ImageView widget, 63

RadioButton widget, 68–70

TextView widget, 61–62

widgets, 61–70

Android Virtual Device see AVD

android.R.id.home

responding to activity icon, 291

AndroidHttpClient class, 382

cookies, 382

threads, 382, 392

AndroidManifest.xml file, 31, 33–35

see also manifest file

activity element, 35

adding service to, 397

application element, 35

explicit hardware feature

requirements, 531

importing non-Eclipse project into

Eclipse, 39

intent-filter element, 35, 223

launching activities, 228

manifest element, 34

namespace declaration, 34

putting maps into applications, 452

receiver element, 224

requesting permission to access

Internet, 160

supports-screens element, 47

writing tablet-only apps, 321

users setting up preferences, 342

uses-permission element, 437, 438

uses-sdk element, 48

maximum SDK version, 316

minimum SDK version, 315

target SDK version, 316

version information, 48

versionCode attribute, 34

versionName attribute, 34

Android-style smartphones

benefits/drawbacks of smartphone

programming, 3–4

ANR (application not responding) error,

209

Ant

adding JARs to project, 369

installing Apache Ant, 14

ant clean install command, 28

building activity, 53

ant jarcore command

using BeanShell on Android, 371

ANT_HOME environment variable

installing Apache Ant, 14

anyDensity attribute

screen densities, 261

Apache Ant see Ant

Apache HttpClient library see HttpClient

interface

API keys

generating, Google Maps, 450

apiKey attribute

putting maps into applications, 451

APIs

API levels, 315

action bar, Honeycomb UI, 319

examining API level of device,

318

HoneycombHelper class, 320

conditional class loading, 318

detecting classes, 317

documenting required permissions,

440

Java code with Android, 370

reflection, 317–318

wrapping, 317

.apk file, 33

converting HTML5 Checklist app

into, 515

handling multiple Android versions,

314

App Inventor, 525–526

application element, 35

debuggable attribute, 35

theme attribute, 256

Index 547

application launcher

activity element, manifest, 35

Android 3.0, 282

Android emulator, 30

application name

creating skeleton project in Eclipse,

25

application not responding (ANR) error

UI (main) thread, 203

application resource (.ap) file

bin directory, 33

application UI

Android 3.0 screen, 282

applications

accessing files prepackaged with,

323–326

alternative environments, 523–527

Android 3.0-optimized apps, 283

Android Market filtering, 533

.apk file, bin directory, 33

avoiding unresponsive code,

331–334

building/running, 27–30

command line, 28–30

Eclipse, 27–28

device hardware requirements,

531–533

HTML5 for offline apps, 495–500

initiating phone call from, 464–466

manifest file, 33

menus, 167–178

onSaveInstanceState method, 186

premature closing of activities, 184

putting maps into, 451–452

reading/writing data files, 326–330

recreating instance state, 186

requesting permissions pre

installation, 441

running project in emulator, 45

saving application-instance state,

186

securing, 438–440

setting up to build, 7–22

threads, 203–219

writing tablet-only apps, 321

apply method, SharedPreferences, 340

applyFormat method

styled text and strings, 239

apps see applications

ArrayAdapter class, 104

changing list icon based on row

data, 121

enhancing lists, 120

getView method, 121, 366

ListActivity widget, 105, 106

ListView widget, 107

RatingBar widget, 129, 131

res/layout/cell.xml file, 113

TextView widget, 104

using convertView parameter,

getView(), 127

using holder pattern, 128

arrays, 245–246

getStringArray method, 246

res/values directory, 243

assets directory, 32

assets folder

packaging fonts, 469

AsyncDemo class

implementing ListActivity using

AsyncTask, 210–213

AsyncTask class, 208–213

database write operations, 367

doInBackground method, 209, 210

implementing ListActivity, 212

threads and screen rotation, 217,

218

generics, 209

implementing ListActivity using,

210–213

AddStringTask class, 211

onPostExecute method, 210

implementing ListActivity, 213

threads and screen rotation, 218

onPreExecute method, 210

onProgressUpdate method, 210

implementing ListActivity, 212

overridable methods, 209

threads and screen rotation,

214–218

varargs, 209

Index 548

attach method, RotationAwareTask,

217, 218

attributes

see also android attributes (android:)

android: prefix, 252

getAttributeCount method, 243

getAttributeName method, 243

inheriting style attributes, 254

AutoCompleteTextView widget, 65,

115–118

completionThreshold property, 115

MultiAutoCompleteTextView widget,

157

setAdapter method, 115

TextWatcher, 115, 116

autoText property, EditText widget, 64

Available packages option

Android SDK and AVD Manager, 9

AVD (Android Virtual Device)

adding, 15–17

Android SDK and AVD Manager, 15

creating Android emulator, 44

setting up Android emulator, 15

starting emulator, 17

targets, 315

AVD Manager see Android AVD

Manager

■ B
Back button

Android 3.0 screen, 282

managing dynamic fragments, 299

background attribute, widgets, 71

background threads, 203

AsyncTask class, 208–213

cost of using, 218–219

current execution on UI or, 208

Downloader service, 403

Handler class, 204–208

communicating via messages,

205–208

communicating via runnables,

208

Internet access, 391

modifying UI, 204

ProgressBar widget, 204

threads and screen rotation,

214–218

backward compatibility

Android Compatibility Library (ACL),

299

action bar, Honeycomb UI, 319

persistent row highlighting, 305

PreferenceActivity class, 354

preferences via fragments, 351

reflection, 318

battery life

cost of using background threads,

219

HTML5 application concerns, 505

battery strength indicator

Android 3.0 screen, 282

BeanShell

using scripting languages, 371–373,

374

bearings

hasBearing method, 445

beforeTextChanged callback, 116

bin directory, 31, 33

BIND_AUTO_CREATE flag, 399

Binder class, 399

WeatherBinder class, 413

bindService method, 398–399

bindView method, CursorAdapter, 366

bin/classes directory, 33

box model

LinearLayout container, 73, 80–81

boxes

CheckBox widget, 66–68

broadcast intents, 400

BroadcastReceiver interface, 224

implementing on longer-lived

component, 225

onReceive method, 224

browser navigation

WebView widget, 162

browsing

HTML5 and alternative Android

browsers, 506

tabbed browsing, 232–234

Index 549

bugs

see also debugging

devices, 534–535

Build class

bugs on devices, 534

Build Path menu option

importing non-Eclipse project into

Eclipse, 41

build system, Android

directory tree structure, 31

build target

creating skeleton project at

command line, 27

creating skeleton project in Eclipse,

25

build tools, Android, 31

PhoneGap Build service, 511–514

build version, Android

detecting, 316

Build.VERSION.SDK

detecting build version, 316

examining API level of device, 318

build.xml file, 32

Builder class

constructing AlertDialog, 180

methods, 180

buildfile

ant clean install command, 28

buildForecasts method, 379

building activities, 53

building/running applications, 27–30

command line, 28–30

Eclipse, 27–28

setting up to build application, 7–22

Bundle

fragments, 312

intents, 222

recreating instance state, 186

saving state in, 186, 190–193

screen rotation, 188, 190–193

startActivityForResult method, 229

Bundle icicle

Java code for activities, 53

Button class/widget, 62–63

padding property, 70

XML-based layouts, 56, 57

buttons

ImageButton widget, 63

RadioButton widget, 68–70

sending button clicks to activity

instance, 53

setNegativeButton method, Builder,

180

setPositiveButton method, Builder,

180

setting activity’s content view to, 53

taking advantage of bigger screen,

265

ToggleButton widget, 157

■ C
CACHE MANIFEST line

manifest file, Checklist app, 500

caching

HTML5 rules for, 495, 499

calculations

background threads, 204

Calendar object

time/date widgets/dialogs, 138

CALL_PHONE permission, 438

implicit hardware feature

requirements, 532

initiating call from application, 466

CALL_STATE_XYZ values

getCallState() returning, 463

callbacks

communicating from services, 400

threads and screen rotation, 218

UI (main) thread, 203

calls

simulating with DDMS, 482–484

camera

explicit hardware feature

requirements, 532

variations between devices, 534

cancel/cancelAll methods, notifications,

423

canGoBack/canGoForward methods,

WebView, 163

capitalize property, EditText, 64

category, intents, 222

Index 550

category, preferences

PreferenceCategory element, 345

cell.xml file, res/layout directory, 113

check method, RadioGroup, 69, 70

CheckBox widget, 66–68

checkCallingPermission method, 440

CheckedTextView widget, 156

Checklist app, HTML5, 496–500

checking off individual items, 497

deleting checked entries, 498

deleting items from storage, 501

examining HTML, 498–499

examining manifest, 499

installing Checklist on Android

device, 498

setting up shortcut for, 498

Web Storage, 501–502

Checklist app, PhoneGap, 514–519

CHOICE_MODE_SINGLE/MULTIPLE

values

ListView widget, 106

choiceMode attribute

layout XML, 106, 107

Chronometer widget, 141, 156

class attribute, fragment

EU4You_6 layout, 307

classes

see also widgets

AsyncTask class, 208–213

conditional class loading, 318

creating fragment classes, 300–306

detecting, 317

imported classes, activities, 52

LinearLayout container, 73–81

ListFragment class, 301–306

reflection, 317–318

RelativeLayout container, 81–87

ScrollView container, 90–92

TableLayout container, 87–90

classes directory, bin, 33

classes.dex file, bin, 33

clean install command, ant, 28

clear method, SharedPreferences, 340

clearCache method, WebView, 163

clearCheck method, RadioGroup, 69

clearHistory method, WebView, 163

clickable attribute

putting maps into applications, 451

clocks

AnalogClock widget, 140

Android 3.0 screen, 282

DigitalClock widget, 140

Clojure, 527

close method

Cursor class, 365

SQLiteOpenHelper class, 361

closing activity

onDestroy method, 184

collapseColumns property,

TableLayout, 89

color attributes, widgets, 71–72

colors, 244–245

res/values directory, 243

ColorStateList object

color attributes, widgets, 71

valueOf method, 72

column properties, TableLayout, 89

columnWidth property, GridView, 111,

112

command line

building/running applications, 28–30

creating skeleton Android project,

26–27

command-line switches

android create project command, 27

commands

android create project command, 26

android list targets command, 27

ant clean install command, 28

commit method, SharedPreferences,

340

compatibility mode

screen sizes, 258, 261

completionThreshold property,

AutoCompleteTextView, 115

complex views

XML-based layouts, 57

components, intents, 222

configChanges attribute

blocking rotation of activity, 200

handling rotations without Android’s

help, 195

Index 551

Google non-recommendation of,

198

configuration changes

devices, 187

fragments, 312

onConfigurationChanged method,

195, 198

Google non-recommendation of,

198

Configuration object

determining screen size, 263

configuration options, resources

order of precedence, 247

console interface

Java code with Android, 370

contact filter spinner, Android 3.0, 285

contacts

available contacts, 284

Find contacts search field, 285

picking/viewing, 189–190

saving state, 190–193

QuickContactBadge widget, 157

containers, 73–92

AbsoluteLayout container, 156

applying styles to, 253

available style attributes, 254

complex views, 57

ExpandableListView container, 156

fill_parent value, 74

FrameLayout container, 143

HorizontalScrollView container, 92

Java code, 57

LinearLayout container, 73–81

match_parent value, 74

overlapping widgets, 86

RelativeLayout container, 81–87

ScrollView container, 90–92

SlidingDrawer container, 154–156

TabHost container, 142, 143

TableLayout container, 87–90

view hierarchies, 313–314

ViewFlipper container, 149–153

wrap_content value, 74

XML-based layouts, 55

content overlays

styling activity with themes, 256

content providers, Android, 5

content Uri templates

intents, 222

content view

setting activity’s content view, 53

contentDescription property, widgets,

71

ContentValues class, 363

context menus, 167, 169–170

calling getMenuInfo(), 170, 175

ListView widget, 265

registering ListView having, 172

taking advantage of bigger screen,

265

context, intents, 221

ContextMenu class

onContextItemSelected method,

169, 175

onCreateContextMenu method, 169,

174

registerForContextMenu method,

169

convertView parameter, getView(), 125–

127

cookies

AndroidHttpClient class, 382

CountriesFragment class

EU4You_6 project, 301, 307, 308,

310

CountryAdapter class

EU4You_6 project, 302

persistent row highlighting, 304

CountryListener interface

EU4You_6 project, 308, 310

CountryWrapper class

EU4You_6 project, 302

CPU speed

smartphone programming, 4

CPU time

cost of using background threads,

219

createFromAsset method

packaging fonts, 469

Typeface class, 470

createTabContent method, 146

Index 552

creating activity

onCreate method, 184

CTS (Compatibility Test Suite)

bugs, 535

current working directory

storing project files, 27

Cursor class, 364, 365

CursorAdapter class, 365, 366

cursors

creating custom cursors, 366

custom cursor adapters, 366

using, 365

wrapping in CursorAdapter, 365

custom views

adding to action bar, 291–295

getting control of user input, 294–

295

defining layout, 292–293

putting layout in menu, 293–294

CWBrowser activity

tabbed browsing, 233

■ D
Dalvik Debug Monitor Server see DDMS

Dalvik virtual machine (VM), 369

Java-centric strategy, Android, 491

string formats, 236

using scripting languages on

Android, 371, 374

data

retrieving data, SQLite, 364

data adapters see adapters

data typing, SQLite, 359

data Uri, intents, 222

DatabaseHelper class, 360

databases

creating, 359

inspecting/manipulating contents,

367

write operations, 367

date input

setting date, 135

soft keyboard for, 96, 97, 98

DatePicker widget, 135

DatePickerDialog, 135, 138

DDMS (Dalvik Debug Monitor Server),

477–487

Allocation Tracker tab, 486

browsing event log, 478

Dump HPROF option, 487

Emulator Control tab, 482

File Explorer, 480

file push and pull, 480–481

getting, 42–43

launching, 477

location updates, 481–482

LogCat tab, 42

logging, 479

memory management, 485–487

screen capture, 481

setting location, 381

simulating incoming calls or SMS

messages, 482–484

simulating moving device, 447

Sysinfo tab, 485

Telephony Actions group, 482

dead state, activities, 184

debuggable attribute, 35

debugging

adb (Android Debug Bridge) utility,

487

bugs, 534–535

getting DDMS, 42–43

MOTODEV Studio for Android, 46

StrictMode, 332

USB debugging, 21

DefaultHttpClient class, 382

Downloader service, 405

WeatherAPI project, 415

delete method, SQLiteDatabase, 363

densities, screens see screen densities

dependencies

Java code with Android, 370

design approach

fragments, 312

destroying activity

onDestroy method, 184

detach method, RotationAwareTask,

217

DetailsActivity class

EU4You_6 project, 307, 311

Index 553

DetailsFragment class

EU4You_6 project, 300, 308, 310,

311

loadUrl method, 301

developer tools

installing ADT for Eclipse, 13

development environment

Java-centric strategy, Android, 492

using StrictMode, 333

Development options

alternatives to Java, 492–494

baseline for comparing, 506

setting up Android devices, 21

DeviceAnywhere

testing devices, 535

deviceready event

PhoneGap Checklist application,

517

devices

see also phones

Android Market filtering applications,

533

application hardware requirements,

531–533

explicit feature requests, 531–532

implicit feature requests, 532–533

bugs, 534

configuration changes, 187

CTS (Compatibility Test Suite), 535

dealing with device-specific issues,

531–535

resource sets, 263

testing, 535

variations between, 534

.dex file, 33

DialogFragment class, 306

dialogs

AlertDialog, 180

DatePickerDialog, 135, 138

New Project dialog, Eclipse, 23, 24

pop-up dialogs, preferences, 347–

350

ProgressDialog, 204

Run As dialog, Eclipse, 27, 44

TimePickerDialog, 135, 138

digital signatures

generating API key, Google Maps,

451

DigitalClock widget, 140

digits property, EditText, 64

dimen element

name attribute, 244

dimensions, 244

handling multiple screen sizes, 260

pixels, 260

res/values directory, 243

scaled pixels, 260

dip dimension, 244

directory names

suffixes, 33

directory tree structure

build system, Android, 31

discovery

permissions, 440

disk size

Java code with Android, 370

DisplayMetrics class

determining screen density, 263

distribution

HTML5 application concerns, 505

docking devices

device configuration changes, 187

documentation for Android SDK

installing Android SDK, 10

doInBackground method, 209, 210

implementing ListActivity, 212

threads and screen rotation, 217,

218

Dolphin Browser HD 4.0

HTML5 and alternative Android

browsers, 506

DOM Storage, HTML5 apps see Web

Storage

domain names

uniquely identifying project, 27

Done action

accessory button, 98, 99, 100

actionDone value, 99

Downloader service, 403–407

background threads, 403

IntentService class, 404

Index 554

Messenger object, 406

downloading files, 383–391

DownloadManager class, 383

permissions, 383

requesting download, 384–386

tracking download status, 386–387

DownloadManager class, 383

enqueue method, 385, 386

HTTPS limitation, 391

permissions, 383

query method, 386, 387

Request object, 385

requesting download, 384–386

tracking download status, 386–387

DownloadManager.Request class

methods, 386

setVisibleInDownloadsUi method,

391

drag-and-drop GUI editing

ADT add-in, Eclipse, 37

drawable directory see res/drawable

directory

drawables

handling multiple screen sizes, 260

notification icons, 424

scalable drawables, 260

version-based resource sets, 263

drawSelectorOnTop property

Spinner widget, 109

XML-based layouts, 118

drivers

setting up development machine to

talk to devices, 21

Droid series of fonts, 467

DROID, Motorola, 264

DroidGap class, 511, 515

drop-down selector

Spinner widget, 108–111

Dump HPROF option, DDMS, 487

■ E
Eclipse, 37–46

ADT add-in, 37

building/running applications, 27–28

creating Android emulator, 43

creating skeleton Android project,

23–26

extensibility of, 37

getting DDMS, 42–43

importing non-Eclipse project into,

38–42

installing ADT for Eclipse, 12–14

New Project dialog, 24

New Project wizard, 39

opening perspectives, 42

Perspective menu, 42

Project Properties window, 41

running activity, 53

running project in emulator, 44–45

edit method, SharedPreferences, 340

EditPreferences activity

users setting up preferences, 341

EditPreferencesHC class, 355

EditText widget, 64–65

flavors of soft keyboard, 95–98

getting control of user input,

Honeycomb UI, 294

hiding IME, 101

IME (input method editor), 93

imeActionId attribute, 293

imeOptions attribute, 98, 293

inputType attribute, 94

adding custom views to action

bar, 293

multiline input, 98

opening IME, 101

password attribute, 94

properties, 64

right-to-left (RTL) languages, 250

setOnEditorActionListener method,

100

getting control of user input,

Honeycomb UI, 294

TextWatcher, 115

EditTextPreference element

preferences via pop-up dialogs, 348

elements, AndroidManifest.xml file

activity element, 35

application element, 35

intent-filter element, 35

manifest element, 34

Index 555

supports-screens element, 47

uses-sdk element, 48

ellipsis character, 471

ellipsize attribute, 471

e-mail addresses

soft keyboard for, 96, 97

Emulator Control tab, DDMS, 482

emulators, Android

adding AVD, 16

Android emulator application

launcher, 30

building/running applications, 27–30

creating, 43

database read/write operations, 367

emulating DROID screen, 264

resource sets, 263

running project in, 44–45

screen densities, 263–265

screen sizes, 263

setting location, 381

setting up, 15–20

simulating moving device, 447

sqlite3 console program, 367

starting, 17

startup phases, 17–20

home screen, 19

keyguard, 20

touchscreen input, 263

enabled attribute, menu items/groups

describing menus via XML files, 176

enableDefaults method, StrictMode,

332

enqueue method, DownloadManager,

385, 386

entity escaping

styled string formats, 237

errors

AlertDialog, 180

application not responding (ANR)

error, 203

cost of using background threads,

219

VerifyError, 317

escape characters, strings, 236

escaping entities

styled string formats, 237

EU4You project, 266–277

activity, 268

activity in HVGA/WVGA/QVGA, 271,

273

density-independent size, 272

font size, 268, 272–274

fragments handling multiple screen

sizes, 298

icons, 274

landscape mode, WVGA, 274, 276

ListView widget, 266, 267

main.xml file, 275

screen sizes, 266

supports-screens element, 267, 274

WebView widget, 275

WVGA emulator, 274, 276

EU4You_6 project, 307–311

activities, 307, 309–311

CountriesFragment class, 301

CountryAdapter class, 302

CountryWrapper class, 302

creating fragment classes, 300

DetailsActivity class, 307, 311

DetailsFragment class, 300

EU4You activity, 307

layout XML file, 307–308

listener interface, 308–309

persistent row highlighting, 304

events

XML pull parser, 242

execSQL method, 362

execute method, AddStringTask, 213

ExpandableListView container, 156

ext4 file system, Linux, 335

external storage, 330–331

getExternalFilesDir method, 330

getExternalStorageXyz methods,

330, 331

security, 330

writing to, 330–331

extras, intents, 222

■ F
FakePlayer activity, 407, 409

notifications, 430

Index 556

FALLBACK line

manifest file, Checklist app, 500

fields

EditText widget, 64–65

File Explorer

DDMS (Dalvik Debug Monitor

Server), 480

file operations

background threads, 204

file push and pull

DDMS (Dalvik Debug Monitor

Server), 480–481

files

accessing, 323–330

files prepackaged with

application, 323–326

Linux ext4 file system, 335

SharedPreferences, 335

SQLite, 335

StrictMode, 331–334

YAFFS (Yet Another Flash File

System), 335

downloading, 383–391

external storage, 330–331

getExternalFilesDir method, 330

reading/writing, 326–330

getFilesDir method, 330

openFileInput method, 326, 328,

330

openFileOutput method, 326,

328, 330

writing to external storage, 330–331

fill model

LinearLayout container, 74

fill_parent value, containers, 74

handling multiple screen sizes, 259

Find contacts search field

action bar, Android 3.0 apps, 285

findFragmentById method, 310

findViewById method

accessing identified widgets, 57

finding MapView widget, 453

getting control of user input,

Honeycomb UI, 294

getting TabHost, 144, 145

navigating widgets, 71

NowRedux demo, 58

using convertView parameter,

getView(), 125

using holder pattern, 127–129

finish method, Activity class, 184

Firefox

SQLite Manager extension, 368

Firefox Mobile, 506

FLAG_AUTO_CANCEL value,

notifications, 427, 429

Flash, 524

alternatives to Java-based

development, 493

flash memory, 367

Flex, 524

XML data-binding framework, 103

flipping between views

ViewFlipper container, 149–153

fly-out submenus, creating, 169

focus, widgets

requestFocus method, 71

font size

EU4You project, 268, 272–274

setDefaultFontSize method, 165

fonts, 467–471

additional fonts, 469–470

built-in, Android, 467–468

Droid series of, 467

glyphs, 470

packaging, 469

substituting, 470

Forecast class, WeatherAPI project, 412

foreground

declaring services as part of,

429–430

format method, strings, 236

styled text, 237

forums, 537, 538

Fragment class

creating fragment classes, 300

implementation from ACL, 300

lifecycle methods, 301

map-based fragment, 460

onPause method, 301

onStop method, 301

Index 557

fragment classes

creating, 300–306

DetailsFragment class, 300

DialogFragment class, 306

Fragment class, 300

FragmentActivity class, 306

FragmentManager class, 306

FragmentTransaction class, 306

ListFragment class, 301–306

PreferenceFragment class, 306

WebViewFragment class, 306

fragment elements

adding fragments to activities, 306

layout, DetailsActivity, 311

FragmentActivity class, 306

maps and fragments, 459

FragmentManager class

adding fragments to activities, 306

EU4You_6, 308, 310

fragments, 285, 297–312

ACL (Android Compatibility Library),

299

activities, 297

activities hosting, 306

adding options to options

menu/action bar, 299

adding tabs to action bar, 299

adding to activities, 306

Bundle, 312

class attribute, EU4You_6, 307

configuration changes, 312

creating fragment classes, 300–306

dealing with multiple screen sizes,

306

design approach, 312

dynamic fragments

adding based on user interaction,

298

animating as move on/off screen,

299

automatic Back button

management for, 299

fragment-to-activity communication,

307

handling multiple screen sizes,

297–299

inheriting from FragmentActivity, 306

lack of

onRetainNonConfigurationInsta

nce(), 312

maps and, 459–461

onSaveInstanceState method, 312

overriding onCreateView(), 300

persistent row highlighting, 304–306

PreferenceFragment class, 351, 352,

353

preferences via, 350–355

StockPreferenceFragment class,

352, 353

supporting on pre-Android 3.0

devices, 299

when to use, 298

FragmentTransaction class

adding fragments to activities, 306

automatic Back button management

for dynamic fragments, 299

EU4You_6 layout, 308

FrameLayout container, 143

SlidingDrawer container, 154

TabHost container, 143

fromHtml method, 237, 239

fsync function, Linux, 335

fullSensor value

screenOrientation attribute, 201

■ G
Galileo, 443

Gallery widget, 118, 157

garbage collection

Java-centric strategy, Android, 492

gen directory, 32

generatePage method, 380

generics

AsyncTask class, 209

geo: intent

launching activities, 232

GeoPoint, 454

get methods, ContentValues class, 363

getActionView method

API levels for action bar, 319

Index 558

MenuItem, 294

older versions of Android, 296

getActivity method, notifications, 424

getAddActionView method,

HoneycombHelper, 320

getApplicationContext method

Web service interface, 411

getArguments method,

PreferenceFragment, 353

getAttributeCount method, 243

getAttributeName method, 243

getBestProvider method, 444

getBroadcast method, notifications, 424

getCallState method, 463

getCheckedItemPositions method,

ListView, 108

getCheckedRadioButtonId method, 69

getColumnIndex method, Cursor, 365

getColumnNames method, Cursor, 365

getController method, widgets, 453

getCount method, Cursor, 365

getDefaultSharedPreferences method,

339, 340

getExternalFilesDir method, 330

getExternalStorageDirectory method,

331

getExternalStoragePublicDirectory

method, 330, 385

getExternalStorageState method, 331

getFilesDir method, 330

getForecast method, 413

getFragmentManager method, 310

getIdentifier method, 353

getInt method, Cursor, 365

getItemId method, MenuItem, 169, 173

getLastKnownPosition method, 444

getLastNonConfigurationInstance

method

Activity class, 218

screen rotation, 193, 195, 218

Web service interface, 420

getLayoutInflater method, 124

getListView method, 106

getMeMyCurrentLocationNow method,

445

getMenuInfo method, 170, 175

getOverlays method, MapView, 454

getPackageName method, 353

getParent method, widgets, 71

getPhoneType method, 464

getPreferences method, Activity, 339

getProgress method

ProgressBar widget, 204

SeekBar widget, 142

getProviders method, 444

getReadableDatabase method, 361

getResources method, 323

getRootView method, 71

getSettings method, WebView, 161, 165

getSharedPreferences method, Activity,

339

getString method, 236

Cursor class, 365

strings, 236, 237, 239

getStringArray method, 246

getSubscriberId method, 464

getSupportFragmentManager method,

310

getSystemAvailableFeatures method,

533

getSystemService method

identifying location, 444

requesting download, 384

retrieving NotificationManager via,

423

getTag method, View objects

using holder pattern, 127, 128, 129

getText method, 237

getView method, adapters, 121–123,

125

ArrayAdapter, 121, 366

convertView parameter, 125–127

CursorAdapter, 366

IconicAdapter, 121, 122

RatingBar widget, 131

using holder pattern, 128

getWriteableDatabase method, 361

getXml method, 241

GIF format, images, 240

glEsVersion attribute, 532

glyphs, fonts, 470

Index 559

goBack/goForward methods, WebView,

163

Google add-ons

Android SDK and AVD Manager, 11

Google Groups, 537, 538

Google Maps, 449, 450

see also maps

creating MyLocationOverlay, 457

displaying satellite imagery, 458

generating API keys, 450

integrating into third-party

applications, 449

legal terms when integrating, 449,

450

licensing issues, 450

maps and fragments, 459–461

optional or essential to application,

452

overlays, 454–456

showing your direction on map, 456

showing your position on map, 456

testing integration of, 450

google-usb_driver directory, 22

GPS (Global Positioning System), 443

Android devices, 6

LocationProvider, 481

simulating moving device, 447

gravity

LinearLayout container, 75

grid model

TableLayout container, 87–90

GridView widget, 111–114

columnWidth property, 111, 112

horizontalSpacing property, 111, 112

numColumns property, 111, 112

properties, 111

res/layout/cell.xml file, 113

setAdapter method, 112

setOnItemSelectedListener method,

112

spacingWidth property, 111

stretchMode property, 111, 112

verticalSpacing property, 111, 113

group element, menus

describing menus via XML files, 176

GUI builders

reasons for using XML layouts, 56

GUI editing

ADT add-in, Eclipse, 37

■ H
handleMessage method, 205, 207

Handler class

background threads, 204–208

communicating with Handler, 205

Message objects, 208

messages, 205

Runnable objects, 208

cost of using background threads,

218

handleMessage method, 205, 207

obtainMessage method, 205

post methods, 208

registering Handler objects, 204

sendEmptyMessage method, 205

sendMessageXyz methods, 205

UI (main) thread, 205

hardware requirements, application,

531–533

explicit feature requests, 531–532

implicit feature requests, 532–533

hardwareAccelerated attribute

running phone-centric app on tablet,

286

hasAltitude method, 445

hasBearing method, 445

hasSpeed method, 445

hasSystemFeature method,

PackageManager, 532

hdpi suffix

res/drawable-hdpi directory, 33

header element

intents for headers or preferences,

354

preferences via Honeycomb

fragments, 351

help

Android Google Groups, 537

HIDE_IMPLICIT_ONLY flag,

InputMethodManager, 102

Index 560

hideSoftInputFromWindow method, 102

Hierarchy Viewer tool, 473–477

Layout View, 474, 475

main window, 473, 474

Pixel Perfect View, 476, 477

View properties, 476

hierarchyviewer program, 313

holder pattern, using, 127–129

Holographic themes, Honeycomb,

285–286

Theme.Holo, 286

Theme.Holo.Light, 286

Home button, Android 3.0 screen, 282

home screen

emulator startup phases, 19

Honeycomb (Android 3.0), 281–288

Android 3.0-optimized applications,

283

Android devices, 286–288

avoiding nested PreferenceScreen

elements, 353

fragments, 285

Holographic themes, 285–286

intents for headers or preferences,

353

maps and fragments, 459

notifications, 431–433

options menus, 178

preference headers, 351–352

PreferenceFragment class, 352

preferences via fragments, 351–354

reasons for, 281

running phone-centric app on tablet,

286

StockPreferenceFragment class, 352

tablets, 281

user’s view, 282, 285

v11 resource set suffix, 288

Honeycomb UI, 282–285

action bar, 283, 289–295

adding custom views to, 290–295

enabling, 289–290

Find contacts search field, 285

options menu, 283

responding to activity icon, 291

app launcher, 282

application UI, 282

Android 2.x options icon, 283

Back button, 282

battery strength indicator, 282

clock, 282

contact filter spinner, 285

fragments, 297–312

Home button, 282

notification icons, 282

recent tasks, 282

signal strength indicator, 282

status bar, 282

supporting multiple Android

versions, 318–320

system bar, 282

HoneycombHelper class

handling multiple versions, 320

horizontal orientation

LinearLayout container, 74

RelativeLayout container, 82

HorizontalScrollView container, 92

horizontalSpacing property, GridView,

111, 112

HPROF file

Dump HPROF option, DDMS, 487

Html class

fromHtml method, 237, 239

HTML5, 495–506

alternative Android browsers, 506

alternatives to Java-based

development, 493

caching rules, 495, 499

Checklist app, 496–500

comparing alternative development

options, 506

offline applications, 495–500

Web Storage, 500–502

HTML5 applications for Android

adding PhoneGap APIs, 517–519

PhoneGap Checklist application

converting into APK file, 515

JavaScript file, 516

setting up device-ready event

handler, 517

potential areas of concern, 503–506

Android device versions, 503

Index 561

battery, 505

distribution, 505

look-and-feel of apps, 505

performance, 505

platform integration, 504

screen sizes and densities, 504

production applications, 502

signing and distribution, 503

testing tools, 503

updates, 503

htmlEncode method, TextUtils, 239

HttpClient interface, 377

AndroidHttpClient class, 382

creating HttpClient objects, 378

DefaultHttpClient class, 378, 382

HTTP operations via, 378–379

parsing responses, 379–381

single/multiple threading, 382

SSL support, 381

HttpGet/HttpPost/HttpRequest

HTTP operations via HttpClient, 378

HVGA emulator

EU4You project, 271, 273

■ I
icon attribute, menus, 176

icon.png file

res/drawable directory, 33

IconicAdapter class, 121–123

constructor, 122

getView method, 121, 122

icons

changing based on row data,

121–123

enhancing lists, 120

EU4You project, 274

notifications, 423, 424–425

resource sets for, 425

setIcon method, Builder, 180

size of, 425

id attribute, XML layouts, 56, 57, 83

IDEA, IntelliJ, 46

IDEs (integrated development

environments)

Eclipse, 37–46

IDEA, 46

MOTODEV Studio for Android, 45

ifRoom value, showAsAction attribute,

290

ImageButton widget, 63

taking advantage of bigger screen,

265

images, 240–241

formats, 240

Gallery widget, 118

layout files, 240

res/drawable directory, 235, 240

ImageSwitcher widget, 157

ImageView widget, 63

IME (input method editor), 93

accessory button, 98

Done action, 100

hiding, 101, 102

layout of activities, 100

opening, 101

soft keyboard input flavors, 94–98

imeActionId attribute, EditText

adding custom views to action bar,

293

imeOptions attribute, EditText, 98

adding custom views to action bar,

293

IMF (input method framework), 93–102

controlling input method editor, 93

keyboards, 93

soft keyboard input flavors, 94–98

imported classes

Java code for activities, 52

importing non-Eclipse project into

Eclipse, 38–42

in dimension, 244

incoming calls

simulating with DDMS, 482–484

incrementProgressBy method, 204

indexes, SQLite, 362

inflation, XML layouts

getLayoutInflater method, 124

inflating XML files into menus, 175,

177–178

inflating XML files into View objects,

123–124

Index 562

LayoutInflater class, 123, 125

using convertView parameter,

getView(), 127

inheritance

multiple inheritance, 459

inheriting style attributes, 254

inheriting styles, 255

initAdapter method, MenuDemo, 172,

174

input method editor see IME

input method framework see IMF

InputMethodManager

getting control of user input, 295

HIDE_IMPLICIT_ONLY flag, 102

hiding IME, 101

inputs, resources, 246

InputStream class, Java

accessing files, 323

inputType attribute, 64

EditText widget, 94

adding custom views to action

bar, 293

soft keyboards, 94, 98

insert method, SQLiteDatabase, 363

install command, ant, 28

installations

ADT for Eclipse, 12–14

Android SDK, 8–12

Apache Ant, 14

JDK, 7

PhoneGap, 510

intent element

intents for headers or preferences,

354

Intent object

notification icons, 424

tabbed browsing, 232

using Activity as content of tab, 232

intent-filter elements

activity element, manifest, 35

AndroidManifest.xml file, 223

intents, 5, 221–225, 228

actions, 221, 222

activity eligibility for, 223

broadcast intents, 400

Bundle, 222

category, 222

components, 222

content Uri templates, 222

context, 221

creating to launch activity, 228

data Uri, 222

declaring intent filters, 223–224

enforcing permissions via manifest,

440

extras, 222

MIME type, 222, 224

pause caveat, 225

PendingIntent object, 400

routing, 222

implicit routing, 223

target component, 222

IntentService class, 396

Downloader service, 403, 404, 405

music player service, 407

onHandleIntent method, 405, 406

threads, 403

interactive widgets

RatingBar widget, 129–133

interfaces

fragment-to-activity communication,

307

internationalization

string resources, 246

Internet access

Android components, 382

Android devices, 6, 377

background threads, 203, 391

downloading files, 383–391

main application thread, 391

MapView widget, 382

StrictMode, 392

WebView widget, 382

INTERNET permission, 383, 438

putting maps into applications, 452

requesting permissions pre

installation, 441

Internet-enabled phones

smartphone programming, 3

Interpreter class, BeanShell, 371

isAfterLast method, Cursor, 365

Index 563

isChecked method

CheckBox widget, 66

RadioButton widget, 69

isEnabled method, widgets, 71

isFinishing method

unbinding from service, 421

isRouteDisplayed method, 452

item element, menus

actionLayout attribute, 293

describing menus via XML files, 176

detecting when item chosen, 176

showAsAction attribute, 290

submenus, 176

item element, style, 252

ItemizedOverlay class, 454

drawing ItemizedOverlay, 454

onTap method, 456

■ J
JAR files (JARs)

adding third-party code to project,

369

importing non-Eclipse project into

Eclipse, 42

using BeanShell on Android, 371

using scripting languages on

Android, 374

jarcore command, ant, 371

jarsigner utility, Java

generating API key, Google Maps,

451

Java

adapters, 103

alternative compilers, 7

creating client-side API for Web

service, 410

installing JDK, 7

Java-centric strategy, Android, 491

learning, 8

Now.java file, 51

setting up, 7–8

third-party libraries, 369

Thread class, 204

using BeanShell on Android,

371–373, 374

using scripting languages on

Android, 371, 374

Java 2 Platform, Micro Edition (J2ME)

Java-centric strategy, Android, 491

Java Build Path

importing non-Eclipse project into

Eclipse, 41

Java class name

first activity for project, 27

Java code

activities, 51–53

android:id attribute, 57

attaching widgets to, 57

creating/attaching widgets to

activity, 55

working with Android, 370

Java package name

creating skeleton project

at command line, 27

in Eclipse, 25

Java SE classes

availability to Android programs, 52

JAVA_HOME environment variable

installing Apache Ant, 14

Java/Swing

setCellRenderer method, 103

JavaScript

enabling, WebView widget, 161, 165

PhoneGap Checklist application,

516

setJavaScriptEnabled method, 165

Titanium Mobile, 526

Jbutton click, Swing, 53

JDK (Java Development Kit), 7

JIT (just-in-time) compilation

Java-centric strategy, Android, 492

using scripting languages on

Android, 374

JPEG format, images, 240

JRuby, 524

JSON parser, 379

just-in-time see JIT compilation

JVM (Java Virtual Machine)

Java code with Android, 370

JVM compiled languages, 527

Index 564

■ K
keyboards, 93–94

see also soft keyboards

device configuration changes, 187

explicit hardware feature

requirements, 532

handling keyboardHidden

configuration changes, 196

IMF (input method framework), 93

reqHardKeyboard attribute, 532

reqKeyboardType attribute, 532

resources, 246

smartphone programming, 3

keyguard

emulator startup phases, 20

keys

generating API key, Google Maps,

450

keytool utility, Java

generating API key, Google Maps,

451

■ L
label attribute, activity element, 35

labels

TextView widget, 61–62

landscape orientation

EU4You project, 274, 276

screenOrientation attribute values,

201

landscape value, screenOrientation, 198

languages

default language, 246

right-to-left (RTL) languages, 250

strings, 246

strings in multiple languages, 246

largeScreens attribute, 261

launcher see application launcher

Lawnchair, 502

layers, maps see overlays, Google

Maps

layout containers

FrameLayout container, 143

IME and activities, 100

LinearLayout container, 73–81

RelativeLayout container, 81–87

TabHost container, 142, 143

TableLayout container, 87–90

layout directory see res/layout directory

layout files

images, 240

referencing layouts, 120

referencing string from, 236

Layout View

Hierarchy Viewer tool, 474, 475

layout XML see XML layouts

layout_above property, 83

layout_alignParentXyz properties, 82

layout_alignXyz properties, 83

layout_below property, 83

layout_centerXyz properties, 82

layout_column property, 88

layout_gravity property, 75

layout_height property, 57, 74, 81

layout_margin property, 76

layout_span property, 88

layout_toLeftOf property, 83

layout_toRightOf property, 83, 84

layout_weight property, 75, 81

layout_width property

adding custom views to action bar,

293

LinearLayout container, 74, 75, 77

RelativeLayout container, 85

XML-based layouts, 57

LayoutInflater class, 123, 125

ldpi suffix

res/drawable-ldpi directory, 33

libraries

third-party libraries, Java, 369

libs directory, 31

using BeanShell on Android, 371

license confirmation dialog

Android SDK and AVD Manager, 11

lights, notifications, 424

LinearLayout container, 73–81

enhancing lists, 120

EU4You_6 layout, 308

fill model, 74

fill_parent value, 74

7

Index 565

gravity, 75

layout_gravity property, 75

layout_height property, 74, 81

layout_margin property, 76

layout_weight property, 75, 81

layout_width property, 74, 75, 77

margins, 75

match_parent value, 74

non-row children of TableLayout, 88

orientation, 74

setGravity method, 75

setOrientation method, 74

weight, 75

wrap_content value, 74

wrapping two RadioGroups, 77

links

handling, WebView, 163

Linux

setting up development machine to

talk to devices, 22

Linux ext4 file system, 335

list box

ListActivity widget, 104–106

ListView widget, 104, 106–108

ListActivity widget, 104–106

consolidating multiple activities, 266

implementing using AsyncTask,

210–213

AddStringTask class, 211

doInBackground method, 212

onPostExecute method, 213

onProgressUpdate method, 212

onListItemClick method, 105, 365

setListAdapter method, 105

listener interface

EU4You_6 project, 308–309

listeners

CheckBox widget, 66

communicating from services, 400

OnClickListener, 52, 53

setOnItemSelectedListener, 104,

108, 112

setOnSeekBarChangeListener, 142

SlidingDrawer container, 156

TextWatcher, 115

ListFragment class, 301–306

adding fragments dynamically, 298

animating dynamic fragments, 299

onActivityCreated method, 301

onListItemClick method, 301

persistent row highlighting, 304–306

setListAdapter method, 301

ListPreference element, 348

lists

enhancing, 119–133

changing icon based on row

data, 121–123

ListView widget, 119–120

ExpandableListView container, 156

rows, 119

ListView class/widget, 104, 106–108

ArrayAdapter, 107

context menus, 265

enhancing lists, 119–120

EU4You project, 266, 267

getCheckedItemPositions method,

108

getListView method, 106

getView method, 121

convertView parameter, 125–127

interactive widgets, 129–133

registering as having context menu,

172

row highlighting, 304

setChoiceMode method, 106

setItemChecked method, 108

taking advantage of bigger screen,

265

using holder pattern, 127–129

loadData method, WebView, 161

loadHeadersFromResource method,

351, 352

loadUrl method

DetailsFragment class, 301

WebView widget, 160, 161

localization

device configuration changes, 187

right-to-left (RTL) languages, 250

string resources, 246

Index 566

localStorage object, Web Storage, 500

location

addProximityAlert method, 446

arrival in proximity of, 446

getBestProvider method, 444

getLastKnownPosition method, 444

getMeMyCurrentLocationNow

method, 445

getProviders method, 444

GPS service, 443

identifying, 443–445

onLocationChanged method, 446

registering for updates, 445

removeProximityAlert method, 447

requestLocationUpdates method,

445, 446

setting, 381

simulating moving device, 447

technology variations between

devices, 534

updates, DDMS, 481–482

LocationListener class

identifying location, 445

removeUpdates method, 446

LocationManager class

addProximityAlert method, 446

identifying location, 444

removeProximityAlert method, 447

LocationProvider class

hard-wiring, 444

identifying location, 444, 445

location updates, 481

LogCat

downloading files, 390

StrictMode, 332

LogCat tab, DDMS, 42

logging, DDMS, 479

■ M
Mac OS X

setting up development machine to

talk to devices, 22

main application thread see UI (main)

thread

main.xml file

EU4You project, 275

res/layout directory, 33, 252

attaching widgets to Java code,

57

screen rotation, 188

makeText method, toasts, 180

manifest attribute, html element

Checklist app, HTML5, 499

manifest element, 34

child elements in initial project

manifest, 35

package attribute, 34

uses-sdk child element, 48

manifest file

see also AndroidManifest.xml file

Checklist app, HTML5, 499

creating and installing PhoneGap

projects, 511

elements in initial project manifest,

35

enforcing permissions, 439–440

PhoneGap settings, 515

root of, 34

manifest typing, 359

MapActivity class/widget, 449

maps and fragments, 459, 461

putting maps into applications, 451,

452

MapController class

setCenter method, 454

setZoom method, 453

MapFragment class, 460

maps

see also Google Maps

fragments and, 459–461

Google Maps, 449

mapping options, 449

putting into applications, 451–452

MapView widget, 449

finding, 453

getOverlays method, 454

Internet access, 382

maps and fragments, 459, 460, 461

putting maps into applications, 451

setBuiltInZoomControls method, 453

toggleSatellite method, 458

Index 567

margins

LinearLayout container, 75

match_parent value, containers, 74

maxSdkVersion attribute, uses-sdk

element, 316

MD5 signature

generating API key, Google Maps,

451

mdpi suffix

res/drawable-mdpi directory, 33

measurements see dimensions

memory

flash memory, 367

managing with DDMS, 485–487

saving state due to low memory, 193

smartphone programming, 4

Menu button

opening IME, 101

menu directory, res, 32

menu element, 176

menu items

promoting to action bar, Honeycomb

UI, 290–291

Menu object

addSubMenu method, 169

onCreateOptionsMenu method, 168,

169

onCreatePanelMenu method, 169

onOptionsItemSelected method,

168, 169, 173

onPrepareOptionsMenu method,

168

setAlphabeticShortcut method, 168

setGroupCheckable method, 168,

169

setGroupEnabled method, 177

setGroupVisible method, 177

setNumericShortcut method, 168

setQwertyMode method, 168

menuCategory attribute, groups

describing menus via XML files, 176

MenuDemo class

initAdapter method, 172, 174

overriding onContextItemSelected(),

175

overriding onCreateContextMenu(),

174

overriding onCreateOptionsMenu(),

172

overriding onOptionsItemSelected(),

173

MenuItem class

getActionView method, 294

getItemId method, 169, 173

getMenuInfo method, 170, 175

setCheckable method, 168

setEnabled method, 177

setVisible method, 177

menus, 167–178

context menus, 167, 169–170

creating fly-out submenus, 169

describing menus via XML files,

175–177

detecting when item chosen, 176

inflating XML files into, 175, 177–178

More option, 167

options menus, 167, 168–169

Honeycomb (Android 3.0), 178

taking advantage of bigger screen,

265

messages

advisory messages, 179

communicating with Handler,

205–208

handleMessage method, 205, 207

obtainMessage method, 205

pop-up messages, 179–180

sendMessage method, 205

setMessage method, 180

validation messages, 180

Messenger object

communicating from services, 401

Downloader service, 406, 407

MIME type, intents, 222, 224

minSdkVersion attribute, uses-sdk

element, 48, 315

maps and fragments, 459

new permissions in old applications,

440

mm dimension, 244

Index 568

mobile phones

resources, 246

smartphone programming, 4

Mono for Android, 524

More option, menus, 167

MOTODEV Studio for Android, 45

Motorola Charm

resources for, 247

Motorola DROID, 264

moveToFirst method, Cursor, 365

moveToNext method, Cursor, 365

MultiAutoCompleteTextView widget,

157

multiline input

EditText widget, 98

soft keyboard for, 96

multimedia capabilities

Android devices, 6

multiple inheritance, 459

music player service, 407–410

keeping services in foreground, 429

MyLocationOverlay class, creating, 457

■ N
name attribute

activity element, 35

dimen element, 244

string element, 236

string-array element, 245

namespace declaration

AndroidManifest.xml file, 34

namespace directory tree

Android projects, 32

Native Development Kit (NDK), 493

navigation

explicit hardware feature

requirements, 532

reqFiveWayNav attribute, 532

reqNavigation attribute, 532

tree of widgets, 71

WebView widget, 162

NETWORK line

manifest file, Checklist app, 500

networks, Android devices, 6

New Android Project wizard

creating skeleton project in Eclipse,

24–26

importing non-Eclipse project into

Eclipse, 39–40

New Project dialog, Eclipse

selecting wizard, 23, 24, 39

newTabSpec method, TabHost, 144,

145

newView method, CursorAdapter, 366

Next action, accessory button, 98, 100

nextFocusXyz properties, widgets, 71

normalScreens attribute, 261

NotAllThatStrict class

conditional use of StrictMode, 334

notification icons

Android 3.0 screen, 282

Notification object, 427

NotificationManager class, 423, 427

keeping services in foreground, 430

notifications, 423–433

canceling, 423

communicating from services, 401

configuration of, 423–425

creating, 427

declaring services as part of

foreground, 429–430

defaults field, 424

hardware options, 424

Honeycomb (Android 3.0), 431–433

icons, 423, 424–425

lights, 424

raising, 423

setForeground method, 430

sounds, 424

startForeground method, 430

stopForeground method, 430, 431

vibrations, 424

notify method, NotificationManager, 424

keeping services in foreground, 430

NotifyDemo class, 425

notifyMe method, 427

Now demonstration activity, 54, 58

Now.java file, 51

NowRedux demo, 58

null column hack, 363

Index 569

numColumns property, GridView, 111,

112

numeric input

soft keyboard for, 96, 97, 98

numericShortcut attribute, 177

■ O
obtainMessage method, Handler, 205

offline applications, HTML5, 495–500

onActivityCreated method

ListFragment class, 301

maps and fragments, 460

onActivityResult callback

picking/viewing contact, 190

startActivityForResult method, 229

onBind method, Service class, 396, 399

music player service, 409

onCheckedChanged callback

CheckBox widget, 67

LinearLayout wrapping

RadioGroups, 78

OnCheckedChangeListener interface

CheckBox widget, 67

LinearLayout wrapping

RadioGroups, 78

onClick method, invoking, 53

OnClickListener

implementing, 52

invoking onClick method, 53

onConfigurationChanged method

handling rotations without Android’s

help, 195, 198

onContextItemSelected method, 169

inflating XML files into menus, 177

MenuDemo overriding, 175

onCountrySelected method

EU4You_6 activity, 310

onCreate method

Activity class, 184

EU4You_6 activity, 310

threads and screen rotation, 218

getting control of user input,

Honeycomb UI, 294

LinearLayout wrapping

RadioGroups, 78

NowRedux demo, 58

recreating instance state, 186

Service class, 396

Downloader service, 405

Web service interface, 413, 416,

420

SQLiteOpenHelper class, 359, 361

starting activities, 53

WebView widget, 160

onCreateContextMenu method, 169

inflating XML files into menus, 177

MenuDemo overriding, 174

onCreateOptionsMenu method, 168,

169

API levels for action bar, 319

getting control of user input,

Honeycomb UI, 294

inflating XML files into menus, 177

MenuDemo overriding, 172

promoting menu items to action bar,

291

onCreatePanelMenu method, 169

onCreateView method

fragments overriding, 300

inflating layout, 301

maps and fragments, 460

OnDateChangedListener callback

DatePickerDialog, 135

OnDateSetListener callback

DatePickerDialog, 135, 138

onDestroy method

Activity class, 184

Service class, 396

Downloader service, 405

music player service, 409

Web service interface, 413, 416

onDeviceReady function, JavaScript

PhoneGap Checklist application,

517, 518

onDowngrade method,

SQLiteOpenHelper, 362

OnEditorActionListener interface

getting control of user input, 295

onHandleIntent method, IntentService

Downloader service, 405, 406

Index 570

onListItemClick method

fragment design, 312

ListActivity widget, 105, 365

ListFragment class, 301

persistent row highlighting, 305

RatingBar widget, 131

onload function, JavaScript

PhoneGap Checklist application,

517

onLocationChanged method, 446

onOpen method, SQLiteOpenHelper,

362

onOptionsItemSelected method, Menu,

168, 169

inflating XML files into menus, 177

MenuDemo overriding, 173

promoting menu items to action bar,

291

responding to activity icon, 291

onPause method

Activity class, 185

reading/writing data files, 328

unregistering receivers, 225

Fragment class, 301

onPostExecute method, AsyncTask,

210

implementing ListActivity, 213

threads and screen rotation, 218

WeatherAPI project, 415

onPreExecute method, AsyncTask, 210

onPrepareOptionsMenu method, 168

onProgressUpdate method, AsyncTask,

210

implementing ListActivity, 212

onRatingChanged listener, RatingBar,

131

onReceive method, 224

onRestart method, Activity, 185

onRestoreInstanceState method, 186

screen rotation, 188

onResume method, Activity, 185

location updates, 378

reading/writing data files, 328

registering receivers, 225

onRetainNonConfigurationInstance

method

blocking rotation of activity, 200

fragments lack of, 312

screen rotation, 193–195

threads and screen rotation, 217,

218

Web service interface, 411, 420, 421

onSaveInstanceState method, activities,

186

blocking rotation of activity, 200

screen rotation, 188, 190–192, 193

unregistering receivers, 225

onSaveInstanceState method,

fragments, 312

onServiceConnected method

binding services, 399

onStart method, Activity class, 185

communicating with Handler via

messages, 207

onStartCommand method, Service

class, 396

music player service, 409

sending commands with

startService(), 398

values returned by, 398

onStop method

Activity class, 185

communicating with Handler via

messages, 207

Fragment class, 301

onTap method, Overlay class, 456

onTextChanged callback, 116

OnTimeChangedListener callback, 136

OnTimeSetListener callback, 136, 138

onUpgrade method, SQLiteOpenHelper,

359, 362

Open Mob for Android wiki, 537

openFileInput/openFileOutput methods

reading/writing data files, 326, 328,

330

OpenGL

glEsVersion attribute, 532

OpenJDK, 7

openRawResource method, 323

Index 571

Opera Mobile

HTML5 and alternative Android

browsers, 506

options menus, 167, 168–169

adding menu choices, 168

addSubMenu method, 169

Android 3.0 action bar, 283

choice identifier, 168

creating fly-out submenus, 169

displaying action bar, 290

fragments adding options to, 299

getItemId method, 169

group identifier, 168, 169

onCreateOptionsMenu method, 168,

169

onCreatePanelMenu method, 169

onOptionsItemSelected method,

168, 169

onPrepareOptionsMenu method,

168

order identifier, 168

promoting menu items to action bar,

290

setAlphabeticShortcut method, 168

setCheckable method, 168

setGroupCheckable method, 168,

169

setNumericShortcut method, 168

setQwertyMode method, 168

taking advantage of bigger screen,

265

orderInCategory attribute, menu items

describing menus via XML files, 176

orientation

see also screen rotation

blocking rotation of activity, 198–200

handling configuration changes, 196

LinearLayout container, 74

screen orientation, 246

threads and screen rotation,

214–218

Web service interface, 411

.out file

running project in emulator, 45

overlapping widgets, 86

Overlay class, 454

onTap method, 456

OverlayItem class

drawing ItemizedOverlay, 454

overlays, Google Maps, 454–456

classes, 454

drawing ItemizedOverlay, 454–455

handling screen taps, 456

ItemizedOverlay class, 454

MyLocationOverlay class, 457

■ P
package attribute, manifest element, 34

package command-line switch

android create project command, 27

package declaration

Java code for activities, 52

package name

creating skeleton project in Eclipse,

25

PackageManager class

getSystemAvailableFeatures

method, 533

hasSystemFeature method, 532

packages

Available packages option, Android

SDK and AVD Manager, 9

packaging tool, Android

building activity, 53

padding

setPadding method, Java, 70

padding property, widgets, 70

panning activity, layout, 100

parent attribute, style element

inheriting style attributes, 254

parsing

Android parsers, 379

parsing responses, 379–381

XmlPullParser class, 241, 243

password attribute, EditText widget, 94

path command-line switch

android create project command, 27

pause caveat, intents, 225

paused state, activities, 183

Index 572

pausing activity

onPause method, 185

PDAs

smartphone programming, 3

peer (not subordinate) activities, 227

launching peer activity, 229–231

startActivity method, 228, 230

PendingIntent object, 400

creating notifications, 427

notification icons, 424

performance

HTML5 application concerns, 505

Java code with Android, 370

permissions, 437–441

ACCESS_ALL_DOWNLOADS, 383

ACCESS_COARSE_LOCATION, 438

ACCESS_FINE_LOCATION, 438

CALL_PHONE, 438

declaring, 439

discovery of, 440

documenting for public APIs, 440

DownloadManager class, 383

enforcing, 439–440

identifying location, 444

implicit hardware feature

requirements, 532, 533

INTERNET, 383, 438

new permissions in old applications,

440

PhoneGap application concerns,

519–520

READ_PHONE_STATE, 441

requesting before installation, 441

requesting to access Internet, 160

securing applications, 438–440

SecurityException, 438

services, 397

uses-permission element, 437

using data/services of apps, 437

WRITE_EXTERNAL_STORAGE, 383,

438, 440

persistent row highlighting

backward compatibility, 305

fragments, 304–306

perspectives, Eclipse, 42

phone API, accessing, 463

phone calls

simulating with DDMS, 482–484

phone services

Android devices, 6

phone-centric app

running on tablet, 286

PhoneGap, 507–522

alternatives to Java-based

development, 493, 494

creating and installing projects,

510–511

features, 508

installation, 510

mission, 507

more information on, 522

PhoneGap application concerns,

519–521

look-and-feel of apps, 521

permissions, 519–520

screen sizes and densities, 521

security, 519–520

PhoneGap applications, 507, 508

Checklist app, 514–519

distributing, 509

other platforms (non-Android), 509

PhoneGap Build service, 510, 511–514

PhoneGap Checklist application,

514–519

adding PhoneGap APIs, 517–519

converting HTML5 app into apk file,

515

JavaScript file, 516

manifest file, 515

setting up device-ready event

handler, 517

using available methods, 517–519

phones

see also devices

backward compatibility, action bar,

295

determining if phone is in use, 463

finding phone type, 464

Honeycomb UI, 286–288

initiating call from application,

464–466

immediately placing call, 466

Index 573

smartphone programming, 3, 4

ways to help users place calls, 463

physical dimensions see dimensions

Pick button

picking/viewing contact, 189

Pixel Perfect View

Hierarchy Viewer tool, 476, 477

pixels, scaled

handling multiple screen sizes, 260

placeholders, strings, 237

Planet Android, 539

platform APIs

Java code with Android, 370

platform integration

HTML5 application concerns, 504

PlayerService, 408–410

notifications, 430

plus(+) sign

first occurrence of id value, 83

PNG format, images, 240

pointing devices

smartphone programming, 4

pop-up dialogs, preferences, 347–350

pop-up messages, 179–180

portrait orientation, screenOrientation

attribute

portrait value, 198

reversePortrait value, 201

sensorPortrait value, 201

post methods, Handler class

communicating via runnables, 208

preference headers

preferences via Honeycomb

fragments, 351–352

PreferenceActivity class, 340–341

backward compatibility, 354

loadHeadersFromResource method,

351, 352

preferences via fragments, 350

preferences via Honeycomb

fragments, 351

SharedPreferences object, 340

structuring preferences, 346

users setting up preferences, 343

PreferenceCategory element, 345

PreferenceFragment class, 306

addPreferencesFromResource

method, 341, 352, 353

backward compatibility, 354

getArguments method, 353

preferences via Honeycomb

fragments, 351, 352, 353

preferences, 339–355

accessing, 339

avoiding nested PreferenceScreen

elements, 353

getDefaultSharedPreferences

method, 339

getPreferences method, 339

getSharedPreferences method, 339

intents for headers or preferences,

353

pop-up dialogs, 347–350

structuring preferences, 345–346

users setting up preferences,

341–344

via fragments, 350–355

PreferenceScreen element

avoiding nesting of, 353

preferences via fragments, 350, 351

structuring preferences, 345

XML files, 341

production environment

using StrictMode, 333

ProgressBar widget, 204

communicating with Handler via

messages, 205–208

downloading files, 388

getProgress method, 204

incrementProgressBy method, 204

setIndeterminate method, 204

setMax method, 204, 207

setProgress method, 204

style attribute, 206, 251

ProgressDialog, 204

proguard.cfg file, 32

project name

creating skeleton project in Eclipse,

25

Project Properties window, Eclipse, 41

Index 574

project wizards

ADT add-in, Eclipse, 37

projects, Android

*.properties file, 32

Activity subclass, 32

ADT add-in, Eclipse, 37

AndroidManifest.xml file, 31

assets directory, 32

bin directory, 31, 33

build.xml file, 32

building activity, 53

building/running applications, 27–30

creating and installing PhoneGap

projects, 510–511

creating Android emulator, 43

creating skeleton project, 23–27

command line, 26–27

Eclipse, 23–26

enhancing, 47–48

EU4You project, 266–277

gen directory, 32

importing non-Eclipse project into

Eclipse, 38–42

Java code for activities, 51–53

libs directory, 31

manifest file, 33

namespace directory tree, 32

proguard.cfg file, 32

R.java file, 32

res directory, 31, 32

res/xyz directories, 32

root directory, 31

running activity, 53

running in emulator, 44–45

screen sizes, supporting multiple, 47

src directory, 31, 32, 51

structure of, 31–33

uniquely identifying, 27

proximity

addProximityAlert method, 446

removeProximityAlert method, 447

pt dimension, 244

publishProgress method

UI (main) thread, 210

pull command, adb, 367

pulling files, DDMS, 480–481

push command, adb, 368

pushing files, DDMS, 480–481

■ Q
query method

DownloadManager class, 386, 387

SQLiteDatabase class, 364

queryWithFactory method

SQLiteDatabase class, 366

QuickContactBadge widget, 157

QVGA screen

compatibility mode, 258

EU4You project, 271, 273

qwerty mode

setQwertyMode method, Menu, 168

■ R
R.array file, 246

R.color file, 245

R.dimen file, 244

R.drawable file, 240

R.id.home file, 291

R.java file, 32

aapt tool generating, 55

NowRedux demo, 58

R.layout file, 120, 124

R.layout.main file, 57

R.menu file, 177

R.string file, 236

R.xml file, 241

RadioButton widget, 68–70

isChecked method, 69

RadioGroup wrapping, 69

setChecked method, 70

toggle method, 69

RadioGroup class

check method, 69, 70

clearCheck method, 69

getCheckedRadioButtonId method,

69

LinearLayout container wrapping, 77

RadioButton widgets, 69

RAM

Java code with Android, 370

Index 575

RatingBar widget, 129–133

raw directory see res/raw directory

rawQuery method, SQLiteDatabase,

364

rawQueryWithFactory method, 366

READ_CONTACTS permission, 374,

441

READ_PHONE_STATE permission, 441

receiver element

AndroidManifest.xml file, 224

receivers, 224–225

BroadcastReceiver interface, 224

declaring, 224

onReceive method, 224

registerReceiver method, 225

unregisterReceiver method, 225

recent tasks

Android 3.0 screen, 282

reflection, 317–318

registerForContextMenu method, 169

registerReceiver method, 225, 400

RelativeLayout container, 81–87

handling multiple screen sizes, 259

layout_above property, 83

layout_alignParentXyz properties, 82

layout_alignXyz properties, 83

layout_below property, 83

layout_centerXyz properties, 82

layout_toLeftOf property, 83

layout_toRightOf property, 83, 84

layout_width property, 85

order of evaluation, 84

overlapping widgets, 86

positions relative to container, 82

positions relative to other widgets,

83

relative notation in properties, 82

SlidingDrawer container, 154

reload method, WebView, 162

remove method, SharedPreferences,

340

removeProximityAlert method, 447

removeUpdates method,

LocationListener, 446

reqFiveWayNav attribute

explicit hardware feature

requirements, 532

reqHardKeyboard attribute, 532

reqKeyboardType attribute, 532

reqNavigation attribute, 532

reqTouchScreen attribute, 532

requery method, Cursor, 365

Request object, DownloadManager,

385

requestFocus method, widgets, 71

requestLocationUpdates method, 445,

446

requests, HttpClient interface, 378

required attribute

explicit hardware feature

requirements, 532

implicit hardware feature

requirements, 533

res directory, 31, 32

resource files, 235

res/drawable directory, 32, 235

icon.png file, 33

images, 240

res/drawable-hdpi directory, 33

res/drawable-ldpi directory, 33

res/drawable-mdpi directory, 33

res/layout directory, 32, 55, 235

cell.xml file, 113

main.xml file, 33, 252

EU4You_6, 307

screen rotation, 188

res/menu directory, 32

res/raw directory, 32, 235

files prepackaged with applications,

323

res/values directory, 32, 235

arrays, 243, 245–246

colors, 243, 244–245

dimensions, 243, 244

strings in multiple languages, 246

strings.xml file, 33, 236

styles, 252

res/xml directory, 32, 235, 241

resizing activity, layout, 100

resolution

adding AVD, 17

Index 576

resolution see screen resolution

resource sets, 262–263

resources, 235–249

application resource (.ap) file, bin

directory, 33

configuration options order of

precedence, 247

cutting number of directories, 248

device configuration changes

affecting, 187

handling change to, 314

images, 235, 240–241

inputs, 246

keyboards, 246

mobile devices, 246

res directory, 32, 235

right-to-left (RTL) languages, 250

screen orientation, 246

screen size, 246

strings, 235–239

switching resources based on

environment, 261

touchscreen, 246

values, 235

XML files, 235, 241–243

XML layouts, 235

Resources class

accessing files, 323

getIdentifier method, 353

responses, parsing, 379–381

restarting activity

onRestart method, 185

restoreMe method

saving state, 192, 195

REST-style web services

Apache HttpClient library, 377

RESULT_OK/RESULT_CANCELED

statuses, 190

startActivityForResult method, 229

resuming activity

onResume method, 185

retrieving data, SQLite, 364

reverseLandscape/reversePortrait

values

screenOrientation attribute, 201

Rhino JavaScript, 375

Rhodes, 523

alternatives to Java-based

development, 493

right-to-left (RTL) languages, 250

RingtonePreference element

XML files, 341

root directory, Android projects, 31

root element, menus, 176

rotation see screen rotation

RotationAsync class, 215–218

RotationAwareTask class, 215–218

attach method, 217, 218

detach method, 217

routing, intents, 222

implicit routing, 223

RowModel objects

RatingBar widget, 131

rows

persistent row highlighting, 304–306

putting cells in rows, TableLayout,

88

rows, lists, 119

changing icon based on row data,

121–123

inflating rows, 123–125

interactive widgets, 129–133

LinearLayout container, 120

R.layout file, 120

RSS/Atom parser, 379

Ruboto, 524

Ruby environment

Rhodes, 523

rule-based model

handling multiple screen sizes, 259

RelativeLayout container, 81–87

Run As dialog, Eclipse

building/running applications, 27

running project in emulator, 44

Runnable objects

communicating with Handler, 208

runOnUiThread method, Activity, 208

■ S
samples for SDK

installing Android SDK, 10

Index 577

Samsung Galaxy Tab

resources for, 247

satellite imagery

displaying, Google Maps, 458

SAX parser, 379

Scala, 527

scalable drawables

default scaling, 262

handling multiple screen sizes, 260

scaled pixels, 260

screen capture

DDMS (Dalvik Debug Monitor

Server), 481

screen densities

creating resource sets, 262–263

density-based resource sets, 262

determining, 263

emulators, 263–265

EU4You project, 272

HTML5 application concerns, 504

PhoneGap application concerns,

521

supporting, 261

switching resources based on

environment, 261

screen orientation

resources, 246

screen resolution

adding AVD, 17

Android devices, 257

default, 257

screen rotation, 187–201

see also orientation

affect on activities, 188

blocking rotation of activity, 198–200

device configuration changes, 187

getLastNonConfigurationInstance

method, 193, 195

handling configuration changes,

195–198

handling rotations without Android’s

help, 195–198

onRestoreInstanceState method,

188

onRetainNonConfigurationInstance

method, 193–195

onSaveInstanceState method, 188,

190–192, 193

picking/viewing contact, 190

restoreMe method, 192, 195

saving state, 190–193

shortcut in emulator, 189

state, 189

threads and, 214–218

widgets, 189

screen size

Android devices, 257

compatibility mode, 258, 261

consolidating multiple activities, 266

creating resource sets, 262–263

dealing with multiple sizes, 306

default, 257

default scaling, 262

determining, 263

emulators, 263

EU4You project, 266

EU4You_6 layouts, 307–308

fragments handling multiple sizes,

297–299

handling multiple sizes, 258–260

physical dimensions, 260

pixels, 260

rules (not positions), 259

scalable drawables, 260

HTML5 application concerns, 504

PhoneGap application concerns,

521

resources, 246

size-based resource sets, 262

supporting different sizes, 261

supporting multiple sizes, 47

supports-screens element, 47

switching resources based on

environment, 261

taking advantage of bigger screen,

265–266

version-based resource sets, 262

writing tablet-only apps, 321

screenLayout field, Configuration object

determining screen size, 263

screenOrientation attribute

blocking rotation of activity, 198–200

e

Index 578

fullSensor value, 201

landscape value, 198

portrait value, 198

reverseLandscape value, 201

reversePortrait value, 201

sensor value, 200

sensorLandscape value, 201

sensorPortrait value, 201

screens

emulating DROID screen, 264

smartphone programming, 3

scripting languages

using on Android, 371, 374

Scripting Layer for Android (SL4A), 374

scrolling

bidirectional scrolling, 92

HorizontalScrollView container, 92

ScrollView container, 90–92

ScrollView container, 90–92

wrapping TableLayout, 100

SD card

adding AVD, 16

SDK and AVD Manager see Android

SDK and AVD Manager

SDKs (software development kits)

installing Android SDK, 8–12

installing JDK, 7

maximum SDK version, 316

minimum SDK version, 315

target SDK version, 316

Search button

hiding IME, 101

security

enforcing permissions, 439–440

external storage, 330

permissions, 437–441

PhoneGap application concerns,

519–520

securing applications, 438–440

SecurityException

missing permissions, 438

SeekBar widget, 141–142

getProgress method, 142

setMax method, 142

setOnSeekBarChangeListener, 142

SELECT statement, SQLite, 364

selection widgets

adapters, 103–104

ArrayAdapter adapter, 104

AutoCompleteTextView widget,

115–118

drawSelectorOnTop property, 118

Gallery widget, 118

GridView widget, 111–114

ListActivity widget, 104–106

ListView widget, 104, 106–108

enhancing lists, 119–120

setAdapter method, 104, 108

setOnItemSelectedListener method,

104, 108

spacing property, 118

Spinner widget, 108–111

spinnerSelector property, 118

Send action

actionSend value, accessory button,

99

sendBroadcast method

broadcast intents, 400

enforcing permissions, 440

sendEmptyMessage method, Handler,

205

sendMessage method, Handler, 205

sendMessageAtFrontOfQueue method,

205

sendMessageAtTime method, 205

sendMessageDelayed method, 205

sensor value, screenOrientation

attribute, 200

sensorLandscape value,

screenOrientation, 201

sensorPortrait value, screenOrientation,

201

sensors

variations between devices, 534

Service class

creating services, 396

Downloader service, 405

lifecycle methods, 396

music player service, 407

onBind method, 396, 399

onCreate method, 396, 405

onDestroy method, 396, 405

Index 579

onStartCommand method, 396, 398

stopSelf method, 398

ServiceConnection interface, 419

services, 5, 395–401

broadcast intents, 400

callback/listener objects, 400

communicating from, 399–401

pending results, 400

communicating to, 397–399

binding with bindService(),

398–399

sending commands with

startService(), 397–398

creating, 395, 396–397

creating client-side Java API for Web

service, 410–421

declaring as part of foreground,

429–430

Downloader service, 403–407

enforcing permissions via manifest,

439

Messenger object, 401

notifications, 401

PlayerService, 407–410

reasons for, 395

stopping, 398

stopService method, 399

unbindService method, 399

setAccuracy method

identifying location, 444

setAdapter method, 104

AutoCompleteTextView widget, 115

GridView widget, 112

Spinner widget, 108

setAllowedNetworkTypes method, 386

setAllowedOverRoaming method, 386

setAlphabeticShortcut method, 168

setAltitudeRequired method, 444

setBuiltInZoomControls method, 453

setCellRenderer method, Java/Swing,

103

setCenter method, MapController, 454

setCheckable method, MenuItem, 168

setChecked method

CheckBox widget, 66

RadioButton widget, 70

setChoiceMode method, ListView, 106

setColumnXyz methods

TableLayout container, 89

setContent method, TabSpec, 144, 145

setContentView method

EU4You_6 activity, 310

NowRedux demo, 58

setting activity’s content view, 53

setCostAllowed method, 444

setCurrentTab method, 145

setDefaultFontSize method, 165

setDescription method

DownloadManager.Request class,

386

setDestinationInExternalPublicDir

method, 386

setDropDownViewResource method,

Spinner, 108, 110

setDuration method, toasts, 180

setEnabled method

MenuItem, 177

widgets, 71

setFlipInterval method, 153

setForeground method, notifications,

430

setGravity method, LinearLayout, 75

setGroupCheckable method, Menu,

168, 169

setGroupEnabled method, Menu, 177

setGroupVisible method, Menu, 177

setIcon method, Builder, 180

setIndeterminate method, ProgressBar,

204

setIndicator method, TabSpec, 144,

145

setItemChecked method, ListView, 108

setJavaScriptEnabled method,

WebSettings, 165

setLatestEventInfo method,

notifications, 425, 427

setListAdapter method

ListActivity widget, 105

ListFragment class, 301

setMax method

ProgressBar widget, 204, 207

SeekBar widget, 142

Index 580

setMessage method, Builder, 180

setNegativeButton method, Builder, 180

setNumericShortcut method, Menu, 168

setOnClickListener method, 53

setOnEditorActionListener method,

EditText, 100, 294

setOnItemSelectedListener method,

104

GridView widget, 112

Spinner widget, 108, 110

setOnSeekBarChangeListener, 142

setOrientation method, LinearLayout, 74

setPadding method, Java, 70

setPositiveButton method, Builder, 180

setProgress method, ProgressBar, 204

setQwertyMode method, Menu, 168

setTag method, View objects

RatingBar widget, 132

using holder pattern, 127, 128, 129

setText method

updating button label, 53

setTitle method

Builder class, 180

DownloadManager.Request class,

386

setTypeface method, TextView, 469

setup method, TabHost, 144

setUserAgent method, WebSettings,

165

setView method, toasts, 180

setVisible method, MenuItem, 177

setVisibleInDownloadsUi method, 391

setWebViewClient method, 163

setZoom method, MapController, 453

shared preferences

getDefaultSharedPreferences

method, 339

getSharedPreferences method, 339

SharedPreferences object

accessing files, 335

apply method, 340

clear method, 340

commit method, 340

edit method, 340

getDefaultSharedPreferences()

returning, 340

preferences via pop-up dialogs, 348

remove method, 340

shortcut attribute, menu items

describing menus via XML files, 177

shortcuts

screen rotation in emulator, 189

setAlphabeticShortcut method,

Menu, 168

setNumericShortcut method, Menu,

168

shouldOverrideUrlLoading method,

WebView, 163, 164

show method, toasts, 180

showAsAction attribute, 290

showMe callback method

launching peer activity, 230

showNext method, ViewFlipper, 151

shrinkColumns property, TableLayout,

89

signal strength indicator

Android 3.0 screen, 282

SIM ID (IMSI)

finding, 464

singleLine property, EditText, 64, 65

SitesOverlay class

drawing ItemizedOverlay, 455

onTap method, 456

size, screens see screen size

sizzle

App Inventor, 526

skin options

adding AVD, 17

sliding keyboard

changing screen orientation, 200

device configuration changes, 187

handling keyboardHidden

configuration, 196

SlidingDrawer container, 154–156

callbacks, 156

listeners, 156

locking/unlocking drawer, 156

opening/closing/toggling drawer,

156

smallScreens attribute, 261

Index 581

smartphones

benefits/drawbacks of smartphone

programming, 3–4

SMS messages

simulating with DDMS, 482–484

SOAP/XML-RPC layer

Apache HttpClient library, 377

sockets, storing, 193

soft keyboards

accessory button, 98

adding to Android, 64

date input, 96, 97, 98

e-mail addresses, 96, 97

inputType attribute, 98

inputType attribute classes, 94

multiline input, 96

numeric input, 96, 97, 98

plain text-entry field, 96

sounds

notifications, 424

source code, Android, 538

sp dimension, 244

spacing property

XML-based layouts, 118

spacingWidth property, GridView, 111

Spanned objects, 237

speed

hasSpeed method, 445

Spinner widget, 108–111

drawSelectorOnTop property, 109

getView method, 121

Holographic themes, Honeycomb,

285

populating/using, 109

setAdapter method, 108

setDropDownViewResource method,

108, 110

setOnItemSelectedListener method,

108, 110

spinnerSelector property

XML-based layouts, 118

SQLite, 357–368

accessing files, 335

creating databases, 359

creating tables and indexes, 362

data typing, 359

flash memory, 367

inspecting/manipulating database

contents, 367

populating tables, 362

retrieving data, 364

SELECT statement, 364

using cursors, 365–366

Web SQL Database option, 502

wrapping cursor in CursorAdapter,

365

SQLite browsing

MOTODEV Studio for Android, 45

SQLite Manager

Firefox extension, 368

sqlite3 console program, 367

SQLiteDatabase class

creating object, 359, 361

delete method, 363

execSQL method, 362

insert method, 363

query method, 364

queryWithFactory method, 366

rawQuery method, 364

rawQueryWithFactory method, 366

update method, 363

SQLiteOpenHelper class

close method, 361

creating databases, 359

getReadableDatabase method, 361

getWriteableDatabase method, 361

onCreate method, 359, 361

onDowngrade method, 362

onOpen method, 362

onUpgrade method, 359, 362

using, 361

SQLiteQueryBuilder class, 364

src attribute, widgets, 63

src directory, 31, 32, 51

adding third-party code to project,

369

SSL support

HttpClient interface, 381

StackOverflow, 537, 538

StackOverflowException

view hierarchy depth, 313, 314

Index 582

START_NOT_STICKY value

communicating to services, 398, 409

START_REDELIVER_INTENT value, 398

START_STICKY value, 398

startActivity method

ACTION_CALL intent, 466

ACTION_DIAL intent, 464

launching peer activity, 228,

229–231

startActivityForResult method, 229

picking/viewing contact, 189, 190

startForeground method, notifications,

430

starting activity

onStart method, 185

startPlayer method, FakePlayer activity,

410

startService method

communicating to services, 397–398

Downloader service, 403, 405

FakePlayer activity, 410

music player service, 407

state

getExternalStorageState method,

331

getLastNonConfigurationInstance

method, 193, 195

onCreate method, 186

onRestoreInstanceState method,

186

onRetainNonConfigurationInstance

method, 193–195

onSaveInstanceState method, 186,

190–192, 193

recreating instance state, 186

restoreMe method, 192, 195

saving application-instance state,

186

saving state in Bundle, 186, 190–193

screen rotation, 189

Web service interface, 419

states, activities, 183–184

active state, 183

dead state, 184

paused state, 183

stopped state, 184

status bar, Android 3.0 screen, 282

Stay awake option

setting up Android devices, 21

StockPreferenceFragment class, 352,

353

stopForeground method, notifications,

430, 431

stopped state, activities, 184

stopping activity

onStop method, 185

stopSelf method, Service class, 398

stopService method, 399

stopping services, 398

FakePlayer activity, 410

stopwatch

Chronometer widget, 156

storage

accessing files in

files prepackaged with

application, 323–326

Android devices, 5

external storage, 330–331

Lawnchair, 502

project files, 27

Web Storage, 500–502

stretchColumns property, TableLayout,

89

stretchMode property, GridView, 111,

112

StrictForRealz class

conditional use of StrictMode, 334

StrictMode class, 331–334

avoiding unresponsive code, 331

conditional use of, 333–334

debugging, 332

development/production

environments, 333

enableDefaults method, 332

Internet access, 392

setting up, 332

thread policies, 332

using StrictWrapper, 333–334

VM policies, 332

StrictWrapper class

conditional use of StrictMode,

333–334

Index 583

string element

name attribute, 236

string formats, 236

styled text and, 237–239

String objects

styled text and strings, 237

string-array element

name attribute, 245

strings, 235–239

escape characters, 236

format method, 236

getString method, 236

handling multiple languages, 246

internationalization, 246

languages, 246

localization, 246

placeholders, 237

referencing from layout file, 236

res/values directory, 236

styled text, 237–239

strings.xml file

res/values directory, 33, 236

style attribute

applying styles, 253

inheriting, 254

LinearLayout container, 305

ProgressBar widget, 206, 251

res/layout/main.xml file, 252

values, 255

style element, 252

inheriting style attributes, 254

item child elements of, 252

style resources

res/values directory, 252

styled text

strings, 237–239

styled string formats, 237–239

styles, 251–256

available attributes, 254

inheriting, 255

inheriting style attributes, 254

invalid styles, 254

res/values directory, 252

themes, 256

using single definition, 251

v11 resource set suffix, 288

values, 255

stylus

smartphone programming, 4

submenus

menu element, menus, 176

subordinate activities, 227

startActivityForResult method, 229

suffixes, directory names, 33

supports-screens element, 47

creating/installing PhoneGap

projects, 511

EU4You project, 267, 274

supporting different screen sizes,

261

writing tablet-only apps, 321

Swing

Jbutton click, 53

switcher widgets, 157

Sysinfo tab, DDMS, 485

system bar, Android 3.0 screen, 282,

283

■ T
TabActivity widget, 144

tabbed browsing, 232

tabbed browsing, 232–234

TabHost container, 142, 143

adding tabs dynamically at runtime,

146, 148

addTab method, 145

FrameLayout container, 143

getting via findViewById(), 144, 145

newTabSpec method, 144, 145

registering tab, 145

setCurrentTab method, 145

setup method, 144

TabWidget widget, 143

taking advantage of bigger screen,

266

views representing tab contents, 144

TableLayout container, 87–90

collapseColumns property, 89

fragments handling multiple screen

sizes, 298

layout_column property, 88

Index 584

layout_span property, 88

non-row children of, 88

putting cells in rows, 88

ScrollView container wrapping, 100

setColumnXyz methods, 89

shrinkColumns property, 89

stretchColumns property, 89

users setting up preferences, 344

TableRow class

putting cells in rows, 88

tables, SQLite, 362

tablets

fragments handling multiple screen

sizes, 297

Honeycomb, 281

running phone-centric app, 286

writing tablet-only apps, 321

tabs, 232

adding dynamically at runtime,

146–149

fragments adding tabs to action bar,

299

tabbed browsing, 232–234

using Activity as content of, 232

TabSpec objects, 144, 145

TabWidget widget, 143, 146

Holographic themes, Honeycomb,

286

target command-line switch

android create project command, 27

target component, intents, 222

targets

AVD (Android Virtual Device), 315

finding available targets, 27

targetSdkVersion attribute, uses-sdk

element, 48, 316

displaying action bar, 289

maps and fragments, 459

running phone-centric app on tablet,

286

tasks

AsyncTask class, 208–213

telephony

implicit hardware feature

requirements, 533

Telephony Actions group, DDMS, 482

TelephonyManager class, 463, 464

testing devices, 535

text

styled text, 237–239

text attribute

XML-based layouts, 57

textAppearance attribute, TextView, 293

text-entry field, soft keyboards, 96

TextSwitcher widget, 157

TextUtils class

htmlEncode method, 239

TextView class/widget, 61–62

ArrayAdapter creating, 104

CheckedTextView widget, 156

ellipsis character, 471

enhancing lists, 120

packaging fonts, 469

right-to-left (RTL) languages, 250

setTypeface method, 469

textAppearance attribute, 293

TextWatcher interface, 115, 116

theme attribute, 256

Theme.Holo theme, Honeycomb, 286

Theme.Holo.Light theme, Honeycomb,

286

themes, 256

Third party Add-ons

Android SDK and AVD Manager, 10

third-party libraries, Java, 369

Thread class, Java, 204

thread policies

StrictMode, 332

threads, 203–219

AndroidHttpClient class, 382, 392

background threads, 203

Handler class, 204–208

communicating via messages,

205–208

communicating via runnables,

208

HttpClient interface, 382

IntentService class, 403

modifying UI, 204

ProgressBar widget, 204

registering Handler objects, 204

runOnUiThread method, 208

Index 585

screen rotation and, 214–218

UI (main) thread, 203–204, 205

time

AnalogClock widget, 140

DigitalClock widget, 140

displaying, 140

setting time, 135

TimePicker widget, 135

TimePickerDialog, 135, 138

Titanium Mobile, 526

title attribute, menu items, 176

titles

setTitle method, Builder, 180

T-Mobile G1

resources for, 247

toasts, 179–180

downloading files, 389

example, 181

methods, 180

using BeanShell on Android, 373

toggle method

CheckBox widget, 66

RadioButton widget, 69

ToggleButton widget, 157

toggleSatellite method, MapView, 458

tools

Android Debug Bridge (adb), 487

Dalvik Debug Monitor Service

(DDMS), 477–487

Eclipse, 37–46

Hierarchy Viewer tool, 473–477

tools directory

installing Android SDK, 9

tooltip support

ADT add-in, Eclipse, 37

touchscreen

emulators, 263

explicit hardware feature

requirements, 532

reqTouchScreen attribute, 532

resources, 246

Traceview, 331

tutorials, 537

Twitter

App Inventor, 526

typeface attribute, 468

Typeface class

createFromAsset method, 470

creating Typeface object, 469

■ U
Ubuntu

setting up development machine to

talk to devices, 22

UI (main) thread, 203–204

application not responding error, 203

AsyncTask class, 208–213

callbacks, 203

causes of slow response, 331

current execution on, 208

Handler objects, 205

Internet access, 391

modifying UI, 204

publishProgress method, 210

runOnUiThread method, 208

screen rotation, 218

unbindService method, 399

units of measurement see dimensions

unregisterReceiver method, 225

update method, SQLiteDatabase, 363

updateForecast method, 378, 379

updateTime method, 53

USB debugging option

setting up Android devices, 21

user agent

setUserAgent method, 165

user input

cost of using background threads,

219

getting control of, 294–295

user interface

Android 3.0 screen, 282

avoiding unresponsive code,

331–334

fragments handling multiple screen

sizes, 298

users

notifications, 423–433

setting up preferences, 341–344

uses-configuration element, 531

Index 586

uses-feature element

explicit hardware requirements, 532

implicit hardware requirements, 533

uses-permission element

AndroidManifest.xml file, 437

declaring permissions, 439

securing applications, 438

uses-sdk element, 48

maxSdkVersion attribute, 316

minSdkVersion attribute, 48, 315

targetSdkVersion attribute, 48, 316

displaying action bar, 289

running phone-centric app on

tablet, 286

■ V
v11 resource set suffix, styles, 288

persistent row highlighting, 305

validation messages

AlertDialog, 180

valueOf method, ColorStateList, 72

values

res/values directory, 235

style attributes, 255

values directory see res/values directory

varargs, AsyncTask, 209

VerifyError, 317

version-based resource sets, 262

versionCode/versionName attributes,

manifest element, 34

versions, 48

API levels, 315

conditional use of StrictMode,

333–334

detecting build version, 316

handling multiple Android versions,

314

highest supported version, 316

Honeycomb UI, 318–320

lowest supported version, 315

targeted development version,

316

HTML5 applications concerns, 503

Java code with Android, 370

maxSdkVersion attribute, 316

minSdkVersion attribute, 48

targetSdkVersion attribute, 48

uses-sdk element, 48

vertical orientation

LinearLayout container, 74

RelativeLayout container, 82

vertical scrolling see ScrollView

container

verticalSpacing property, GridView,

111, 113

vibrations

notifications, 424, 427

View button

picking/viewing contact, 189

View class

inflating XML files into View objects,

123–124

methods, 71

properties, 70–71

widgets extending, 70

view hierarchies, 313–314

View properties

Hierarchy Viewer tool, 476

ViewAnimator class

showNext method, 151

ViewFlipper container, 149–153

setFlipInterval method, 153

showNext method, 151

ViewHolder class

RatingBar widget, 131, 132

using holder pattern, 127–129

views

adding to action bar, Honeycomb UI,

291–295

convertView parameter, getView(),

125–127

ExpandableListView container, 156

getView method, 121–123

ImageView widget, 63

inflating XML files into View objects,

123–124

ListView widget, 104, 106–108

enhancing lists, 119–120

ScrollView container, 90–92

setting activity’s content view, 53

TextView widget, 61–62

Index 587

using holder pattern, 127–129

WebView widget, 159–166

ViewSwitcher widget, 157

visibility property, widgets, 71

visible attribute, menu items/groups,

177

VM see Dalvik virtual machine

VM policies

StrictMode, 332

■ W
W3C DOM parser, 379

watchers

TextWatcher, 115

WeatherAPI project, 410

WeatherBinder class, 413–415

WeatherDemo activity, 416–419

WeatherListener object, 412

WeatherService class, 415–416

web browsing

tabbed browsing, 232–234

Web service interface

creating client-side Java API,

410–421

Forecast class, 412

orientation changes, 411

state, 419

unbinding from service, 421

WeatherBinder class, 413–415

WeatherDemo activity, 416–419

WeatherListener object, 412

WeatherService class, 415–416

Web SQL Database option, 502

Web Storage, 500–502

Checklist app, HTML5, 501–502

deleting items from storage, 501

localStorage object, 500

WebKit browser component

HTTP operations via HttpClient, 378

Internet access, Android, 377

PhoneGap development for, 507

PhoneGap limitations, 510

WebSettings object, WebView, 165

WebView widget, 159–166

adjusting settings via WebSettings,

165

browser navigation, 162

canGoBack/canGoForward

methods, 163

clearCache/clearHistory methods,

163

enabling JavaScript, 161, 165

EU4You project, 275

getSettings method, 161, 165

getting content into, 161

goBack/goForward methods, 163

handling links, 163

Internet access, 382

loadData method, 161

loadUrl method, 160, 161

onCreate method, 160

reload method, 162

requesting permission to access

Internet, 160

settings/preferences/options, 165

setWebViewClient method, 163

shouldOverrideUrlLoading method,

163, 164

using as local UI, 163–165

WebViewFragment class, 306

weight

LinearLayout container, 75

widgets

see also classes

accessing identified widgets, 57

adapters, 103–104

AnalogClock widget, 140

Android toolkit, 61–70

applying styles to, 253

ArrayAdapter class, 104

attaching to Java code, 57

AutoCompleteTextView widget, 65,

115–118

available style attributes, 254

Button widget, 62–63

CheckBox widget, 66–68

CheckedTextView widget, 156

Chronometer widget, 141, 156

color attributes, 71–72

Index 588

complex views, 57

containers, 73–92

contentDescription property, 71

creating/attaching to activity, 55

DatePicker widget, 135

DigitalClock widget, 140

drawSelectorOnTop property, 118

EditText widget, 64–65

findViewById method, 71

Gallery widget, 118, 157

getParent method, 71

getRootView method, 71

GridView widget, 111–114

Holographic themes, Honeycomb,

285

ImageButton widget, 63

ImageSwitcher widget, 157

ImageView widget, 63

interactive widgets, 129–133

isEnabled method, 71

Java code, 57

LinearLayout container, 73–81

ListActivity widget, 104–106

ListFragment class, 301–306

ListView widget, 104, 106–108

enhancing lists, 119–120

MultiAutoCompleteTextView widget,

157

navigating tree of, 71

nextFocusXyz properties, 71

onSaveInstanceState method, 186

overlapping, 86

padding property, 70

ProgressBar widget, 204

properties/methods from View class,

70

QuickContactBadge widget, 157

RadioButton widget, 68–70

RatingBar widget, 129–133

RelativeLayout container, 81–87

requestFocus method, 71

screen rotation, 189

ScrollView container, 90–92

SeekBar widget, 141–142

setEnabled method, 71

spacing property, 118

specifying relationships between, 55

Spinner widget, 108–111

spinnerSelector property, 118

src attribute, 63

TabActivity widget, 144, 232

TableLayout container, 87–90

TabWidget widget, 143, 146

TextSwitcher widget, 157

TextView widget, 61–62, 104

TimePicker widget, 135

ToggleButton widget, 157

ViewSwitcher widget, 157

visibility property, 71

WebView widget, 159–166

wikis, 537

Windows

setting up development machine to

talk to devices, 21–22

windowSoftInputMode attribute, 100

withText value, showAsAction attribute,

290

wrap_content value, containers, 74

handling multiple screen sizes, 259

write operations, database, 367

WRITE_EXTERNAL_STORAGE

permission, 383, 438, 440

WVGA emulator

EU4You project, 271, 273, 274, 276

■ X
xlargeScreens attribute, 261

XML data-binding framework, Flex, 103

xml directory see res/xml directory

XML files, 241–243

accessing, 324

describing menus via, 175–177

getXml method, 241

inflating into menus, 175, 177–178

inflating into View objects, 123–124

Java code reading, 324

PreferenceScreen element, 341

res/xml directory, 235

RingtonePreference element, 341

running project in emulator, 45

Index 589

XML layouts, 55, 56

@ signs, 57

@+id convention, 57

adding custom views to action bar,

Honeycomb UI

defining layout, 292–293

putting layout in menu, 293–294

attaching widgets to Java code, 57

Button class, 56, 57

choiceMode attribute, 106, 107

complex views, 57

containers, 73–92

creating/attaching widgets to

activity, 55

DetailsActivity class, EU4You_6, 311

drawSelectorOnTop property, 118

EU4You_6 project, 307–308

id attribute, 56, 57

layout_height attribute, 57

layout_width attribute, 57

LinearLayout container, 73–81

NowRedux demo, 58

properties, 118

reasons for using, 55

RelativeLayout container, 81–87

res/layout directory, 235

root element, 56

screen rotation, 188

ScrollView container, 90–92

spacing property, 118

specification of widget relationships,

55

spinnerSelector property, 118

TableLayout container, 87–90

text attribute, 57

WebView widget, 159

XML pull parser, 242

XmlPullParser class, 241, 243

XML-RPC layer, SOAP

Apache HttpClient library, 377

■ Y
YAFFS (Yet Another Flash File System),

335

■ Z
zooming

setZoom method, MapController,

453

 i

Beginning Android 3

■ ■ ■

Mark Murphy

Intel’s Recommended Readin
g

Li
st

Selected For

Beginning Android 3

Copyright © 2011 by Mark Murphy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3297-1

ISBN-13 (electronic): 978-1-4302-3298-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewer: Dylan Philips
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, James Markham,
Jeff Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger
Copy Editor: William McManus
Compositor: MacPS, LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

v

Contents

Contents at a Glance .. iii
About the Author ... xvi
About the Technical Reviewer ... xvii
Acknowledgments .. xviii
Preface ... xix

Part I: Core Concept .. 1
■Chapter 1: The Big Picture ... 3

Benefits and Drawbacks of Smartphone Programming .. 3
What Androids Are Made Of .. 4
Stuff at Your Disposal ... 5
The Big Picture...of This Book ... 6

■Chapter 2: How to Get Started ... 7
Step 1: Set Up Java ... 7

Install the JDK .. 7
Learn Java ... 8

Step 2: Install the Android SDK ... 8
Install the Base Tools ... 8
Install the SDKs and Add-ons .. 9

Step 3: Install the ADT for Eclipse ... 12
Step 4: Install Apache Ant ... 14
Step 5: Set Up the Emulator .. 15
Step 6: Set Up the Device ... 21

Windows .. 21
Mac OS X and Linux ... 22

■Chapter 3: Your First Android Project ... 23
Step 1: Create the New Project ... 23

Eclipse ... 23
Command Line ... 26

Step 2: Build, Install, and Run the Application in Your Emulator or Device .. 27
Eclipse ... 27
Command Line ... 28

■ CONTENTS

vi

■Chapter 4: Examining Your First Project ... 31
Project Structure ... 31

Root Contents .. 31
The Sweat Off Your Brow ... 32
And Now, the Rest of the Story .. 32
What You Get Out of It .. 33

Inside Your Manifest ... 33
In the Beginning, There Was the Root, and It Was Good .. 34
An Application for Your Application ... 35

■Chapter 5: A Bit About Eclipse ... 37
What the ADT Gives You .. 37
Coping with Eclipse .. 38

How to Import a Non-Eclipse Project ... 38
How to Get to DDMS .. 42
How to Create an Emulator .. 43
How to Run a Project ... 44
How Not to Run Your Project ... 45

Alternative IDEs ... 45
IDEs and This Book ... 46

■Chapter 6: Enhancing Your First Project ... 47
Supporting Multiple Screen Sizes ... 47
Specifying Versions .. 48

Part II: Activities ... 49
■Chapter 7: Rewriting Your First Project .. 51

The Activity ... 51
Dissecting the Activity .. 52
Building and Running the Activity ... 53

■Chapter 8: Using XML-Based Layouts ... 55
What Is an XML-Based Layout? .. 55
Why Use XML-Based Layouts? ... 55
OK, So What Does It Look Like? .. 56
What’s with the @ Signs? ... 57
And How Do We Attach These to the Java? .. 57
The Rest of the Story .. 58

■Chapter 9: Employing Basic Widgets ... 61
Assigning Labels ... 61
Button, Button, Who’s Got the Button? ... 62
Fleeting Images .. 63
Fields of Green…or Other Colors .. 64
Just Another Box to Check .. 66
Turn the Radio Up ... 68
It’s Quite a View .. 70

Padding .. 70
Other Useful Properties .. 71
Useful Methods .. 71
Colors ... 71

■ CONTENTS

vii

■Chapter 10: Working with Containers ... 73
Thinking Linearly .. 73

LinearLayout Concepts and Properties .. 74
LinearLayout Example .. 76
The Box Model ... 80

All Things Are Relative .. 81
RelativeLayout Concepts and Properties ... 82
RelativeLayout Example ... 84
Overlap ... 86

Tabula Rasa .. 87
TableLayout Concepts and Properties ... 87
TableLayout Example ... 89

Scrollwork ... 90

■Chapter 11: The Input Method Framework .. 93
Keyboards, Hard and Soft ... 93
Tailored to Your Needs .. 94
Tell Android Where It Can Go .. 98
Fitting In .. 100
Jane, Stop This Crazy Thing! .. 101

■Chapter 12: Using Selection Widgets .. 103
Adapting to the Circumstances ... 103

Using ArrayAdapter .. 104
Lists of Naughty and Nice ... 104

Selection Modes .. 106
Spin Control .. 108
Grid Your Lions (or Something Like That...) .. 111
Fields: Now with 35% Less Typing! .. 115
Galleries, Give or Take the Art .. 118

■Chapter 13: Getting Fancy with Lists .. 119
Getting to First Base ... 119
A Dynamic Presentation .. 121
Inflating Rows Ourselves .. 123

A Sidebar About Inflation ... 123
And Now, Back to Our Story .. 125

Better. Stronger. Faster. ... 125
Using convertView ... 125
Using the Holder Pattern .. 127

Interactive Rows ... 129

■Chapter 14: Still More Widgets and Containers ... 135
Pick and Choose ... 135
Time Keeps Flowing Like a River .. 140
Seeking Resolution ... 141
Putting It on My Tab .. 142

The Pieces ... 143
Wiring It Together .. 144
Adding Them Up ... 146

■ CONTENTS

viii

Flipping Them Off .. 149
Getting in Somebody’s Drawer ... 154
Other Good Stuff ... 156

■Chapter 15: Embedding the WebKit Browser .. 159
A Browser, Writ Small ... 159
Loading It Up ... 161
Navigating the Waters ... 162
Entertaining the Client .. 163
Settings, Preferences, and Options (Oh, My!) ... 165

■Chapter 16: Applying Menus ... 167
Flavors of Menu .. 167
Menus of Options .. 168
Menus in Context .. 169
Taking a Peek ... 170
Yet More Inflation .. 175

Menu XML Structure .. 175
Menu Options and XML .. 176
Inflating the Menu .. 177

In the Land of Menus and Honey .. 178

■Chapter 17: Showing Pop-Up Messages .. 179
Raising Toasts ... 179
Alert! Alert! .. 180
Checking Them Out ... 181

■Chapter 18: Handling Activity Lifecycle Events ... 183
Schroedinger’s Activity ... 183
Life, Death, and Your Activity .. 184

onCreate() and onDestroy() .. 184
onStart(), onRestart(), and onStop() ... 185
onPause() and onResume() .. 185

The Grace of State .. 185

■Chapter 19: Handling Rotation .. 187
A Philosophy of Destruction .. 187
It’s All the Same, Just Different .. 188

Picking and Viewing a Contact .. 189
Saving Your State .. 190

Now with More Savings! ... 193
DIY Rotation .. 195

...But Google Does Not Recommend This .. 198
Forcing the Issue .. 198
Making Sense of It All ... 200

■Chapter 20: Dealing with Threads ... 203
The Main Application Thread .. 203
Making Progress with ProgressBars ... 204
Getting Through the Handlers ... 204

Messages ... 205
Runnables .. 208

■ CONTENTS

ix

Where Oh Where Has My UI Thread Gone? ... 208
Asyncing Feeling ... 208

The Theory ... 208
AsyncTask, Generics, and Varargs ... 209
The Stages of AsyncTask ... 209
A Sample Task ... 210

Threads and Rotation .. 214
Manual Activity Association ... 215
Flow of Events ... 217
Why This Works ... 218

And Now, the Caveats ... 218

■Chapter 21: Creating Intent Filters .. 221
What’s Your Intent? ... 221

Pieces of Intents .. 222
Intent Routing .. 222

Stating Your Intent(ions) ... 223
Narrow Receivers ... 224
The Pause Caveat ... 225

■Chapter 22: Launching Activities and Subactivities 227
Peers and Subs ... 227
Start ’Em Up .. 228

Make an Intent ... 228
Make the Call ... 228

Tabbed Browsing, Sort Of ... 232

■Chapter 23: Working with Resources .. 235
The Resource Lineup .. 235
String Theory .. 235

Plain Strings ... 236
String Formats ... 236
Styled Text ... 237
Styled Text and Formats .. 237

Got the Picture? .. 240
XML: The Resource Way ... 241
Miscellaneous Values ... 243

Dimensions .. 244
Colors ... 244
Arrays ... 245

Different Strokes for Different Folks ... 246
RTL Languages: Going Both Ways .. 250

■Chapter 24: Defining and Using Styles .. 251
Styles: DIY DRY ... 251
Elements of Style .. 253

Where to Apply a Style ... 253
The Available Attributes ... 254
Inheriting a Style .. 254
The Possible Values ... 255

Themes: A Style by Any Other Name... ... 256

■ CONTENTS

x

■Chapter 25: Handling Multiple Screen Sizes ... 257
Taking the Default ... 257
Whole in One ... 258

Think About Rules, Not Positions 259
Consider Physical Dimensions 260
Avoid “Real” Pixels . .. 260
Choose Scalable Drawables . .. 260

Tailor-Made, Just for You (and You, and You, and...) . .. 261
Adding the <supports-screens> Element . .. 261
Resources and Resource Sets 262
Finding Your Size 263

Ain’t Nothing Like the Real Thing . .. 263
Density Differs ... 264
Adjusting the Density 264

Ruthlessly Exploiting the Situation 265
Replace Menus with Buttons 265
Replace Tabs with a Simple Activity . .. 266
Consolidate Multiple Activities 266

Example: EU4You .. 266
The First Cut ... 267
Fixing the Fonts ... 272
Fixing the Icons .. 274
Using the Space ... 274
What If It Is Not a Browser? 276

Part III: Honeycomb and Tablets 279
■Chapter 26: Introducing the Honeycomb UI 281

Why Honeycomb? ... 281
What the User Sees ... 282
The Holographic Theme . .. 285
Dealing with the Rest of the Devices . .. 286

■Chapter 27: Using the Action Bar .. 289
Enabling the Action Bar . .. 289
Promoting Menu Items to the Action Bar . .. 290
Responding to the Logo . .. 291
Adding Custom Views to the Action Bar 291

Defining the Layout . .. 292
Putting the Layout in the Menu . .. 293
Getting Control of User Input . .. 294

Don’t Forget the Phones! . .. 295

■Chapter 28: Fragments .. 297
Introducing Fragments . .. 297

The Problem Addressed by Fragments . .. 297
The Fragments Solution 298
The Android Compatibility Library . .. 299

Creating Fragment Classes 300
General Fragments . .. 300
ListFragment .. 301

■ CONTENTS

xi

Other Fragment Base Classes .. 306
Fragments, Layouts, Activities, and Multiple Screen Sizes .. 306

EU4You ... 307
DetailsActivity .. 311

Fragments and Configuration Changes ... 312
Designing for Fragments .. 312

■Chapter 29: Handling Platform Changes ... 313
Things That Make You Go Boom ... 313

View Hierarchy ... 313
Changing Resources .. 314

Handling API Changes ... 314
Minimum, Maximum, Target, and Build Versions .. 315
Detecting the Version ... 316
Wrapping the API ... 317

Patterns for Honeycomb ... 318
The Action Bar ... 319
Writing Tablet-Only Apps ... 321

■Chapter 30: Accessing Files .. 323
You and the Horse You Rode in On ... 323
Readin’ ’n Writin’ .. 326
External Storage: Giant Economy-Size Space .. 330

Where to Write ... 330
When to Write .. 331

StrictMode: Avoiding Janky Code ... 331
Setting Up StrictMode .. 332
Seeing StrictMode in Action .. 332
Development Only, Please! .. 333
Conditionally Being Strict ... 333

Linux File Systems: You Sync, You Win .. 335

Part IV: Data Stores, Network Services, and APIs .. 337
■Chapter 31: Using Preferences .. 339

Getting What You Want ... 339
Stating Your Preference .. 340
Introducing PreferenceActivity .. 340
Letting Users Have Their Say .. 341
Adding a Wee Bit o’ Structure ... 345
The Kind of Pop-Ups You Like ... 347
Preferences via Fragments ... 350

The Honeycomb Way ... 351
Adding Backward Compatibility ... 354

■Chapter 32: Managing and Accessing Local Databases 357
A Quick SQLite Primer ... 359
Start at the Beginning ... 359
Setting the Table ... 362
Makin’ Data ... 362
What Goes Around, Comes Around ... 364

■ CONTENTS

xii

Raw Queries ... 364
Regular Queries ... 364
Using Cursors ... 365
Custom CursorAdapters ... 366
Making Your Own Cursors ... 366

Flash: Sounds Faster Than It Is ... 367
Data, Data, Everywhere .. 367

■Chapter 33: Leveraging Java Libraries ... 369
Ants and JARs ... 369
The Outer Limits .. 370
Following the Script .. 371
Reviewing the Script ... 374

■Chapter 34: Communicating via the Internet .. 377
REST and Relaxation ... 377

HTTP Operations via Apache HttpClient ... 378
Parsing Responses .. 379
Stuff to Consider .. 381
AndroidHttpClient ... 382

Leveraging Internet-Aware Android Components ... 382
Downloading Files .. 383

Continuing Our Escape from Janky Code .. 391

Part V: Services .. 393
■Chapter 35: Services: The Theory .. 395

Why Services? .. 395
Setting Up a Service ... 396

Service Class ... 396
Lifecycle Methods .. 396
Manifest Entry .. 397

Communicating to Services .. 397
Sending Commands with startService() ... 397
Binding with bindService() ... 398

Communicating from Services .. 399
Callback/Listener Objects .. 400
Broadcast Intents ... 400
Pending Results ... 400
Messenger ... 401
Notifications ... 401

■Chapter 36: Basic Service Patterns ... 403
The Downloader .. 403

The Design ... 403
The Service Implementation .. 404
Using the Service ... 406

The Music Player .. 407
The Design ... 407
The Service Implementation .. 408
Using the Service ... 409

The Web Service Interface .. 410

■ CONTENTS

xiii

The Design ... 411
The Rotation Challenge .. 411
The Service Implementation .. 411
Using the Service ... 416

■Chapter 37: Alerting Users via Notifications ... 423
Notification Configuration ... 423

Hardware Notifications .. 424
Icons .. 424

Notifications in Action ... 425
Staying in the Foreground .. 429

FakePlayer, Redux ... 430
Notifications and Honeycomb ... 431

Part VI: Other Android Capabilities ... 435
■Chapter 38: Requesting and Requiring Permissions 437

Mother, May I? .. 437
Halt! Who Goes There? ... 438

Enforcing Permissions via the Manifest ... 439
Enforcing Permissions Elsewhere ... 440

May I See Your Documents? ... 440
New Permissions in Old Applications ... 440
Permissions: Up Front or Not at All ... 441

■Chapter 39: Accessing Location-Based Services .. 443
Location Providers: They Know Where You're Hiding ... 443
Finding Yourself .. 444
On the Move .. 445
Are We There Yet? Are We There Yet? .. 446
Testing...Testing... .. 447

■Chapter 40: Mapping with MapView and MapActivity 449
Terms, Not of Endearment .. 449
Piling On .. 450
The Key to It All ... 450
The Bare Bones ... 451

Optional Maps .. 452
Exercising Your Control ... 453

Zoom .. 453
Center .. 454

Layers Upon Layers ... 454
Overlay Classes .. 454
Drawing the ItemizedOverlay ... 454
Handling Screen Taps .. 456

My, Myself, and MyLocationOverlay ... 456
Rugged Terrain ... 458
Maps and Fragments .. 459

Limit Yourself to Android 3.0 ... 459
Use onCreateView() and onActivityCreated() ... 460
Host the Fragment in a MapActivity ... 461

■ CONTENTS

xiv

■Chapter 41: Handling Telephone Calls ... 463
Report to the Manager .. 463
You Make the Call! .. 464
No, Really, You Make the Call! .. 466

■Chapter 42: Fonts .. 467
Love the One You’re With .. 467
Additional Fonts .. 469
Here a Glyph, There a Glyph ... 470

■Chapter 43: More Development Tools ... 473
Hierarchy Viewer: How Deep Is Your Code? ... 473
DDMS: Under Android’s Hood ... 477

Logging .. 479
File Push and Pull .. 480
Screenshots ... 481
Location Updates ... 481
Placing Calls and Messages .. 482
Memory Management .. 485

adb: Like DDMS, with More Typing ... 487

Part VII: Alternative Application Environments .. 489
■Chapter 44: The Role of Alternative Environments 491

In the Beginning, There Was Java... ... 491
...And It Was OK .. 492
Bucking the Trend ... 492
Support, Structure .. 493
Caveat Developer .. 493

■Chapter 45: HTML5 .. 495
Offline Applications ... 495

What Does It Mean? ... 495
How Do You Use It? .. 496

Web Storage ... 500
What Does It Mean? ... 500
How Do You Use It? .. 501
Web SQL Database ... 502

Going to Production .. 502
Testing ... 503
Signing and Distribution .. 503
Updates .. 503

Issues You May Encounter .. 503
Android Device Versions .. 503
Screen Sizes and Densities ... 504
Limited Platform Integration .. 504
Performance and Battery ... 505
Look and Feel ... 505
Distribution .. 505

HTML5 and Alternative Android Browsers .. 506
HTML5: The Baseline .. 506

■ CONTENTS

xv

■Chapter 46: PhoneGap ... 507
What Is PhoneGap? ... 507

What Do You Write In? ... 507
What Features Do You Get? ... 508
What Do Apps Look Like? .. 508
How Does Distribution Work? .. 509
What About Other Platforms? .. 509

Using PhoneGap .. 510
Installation ... 510
Creating and Installing Your Project .. 510
PhoneGap Build .. 511

PhoneGap and the Checklist Sample .. 514
Sticking to the Standards .. 515
Adding PhoneGap APIs ... 517

Issues You May Encounter .. 519
Security .. 519
Screen Sizes and Densities ... 521
Look and Feel ... 521

For More Information .. 522

■Chapter 47: Other Alternative Environments ... 523
Rhodes .. 523
Flash, Flex, and AIR .. 524
JRuby and Ruboto ... 524
Mono for Android .. 524
App Inventor .. 525
Titanium Mobile .. 526
Other JVM Compiled Languages ... 527

Part VIII: The Ever-Evolving Android ... 529
■Chapter 48: Dealing with Devices .. 531

This App Contains Explicit Instructions ... 531
Explicit Feature Requests .. 531
Implied Feature Requests .. 532

A Guaranteed Market .. 533
Other Stuff That Varies .. 534
Bugs, Bugs, Bugs .. 534
Device Testing .. 535

■Chapter 49: Where Do We Go from Here? .. 537
Questions, Sometimes with Answers ... 537
Heading to the Source .. 538
Getting Your News Fix ... 539

Index ... 541

xvi

About the Author

Mark Murphy is the founder of CommonsWare (http://commonsware.com) and
the author of the Busy Coder’s Guide to Android Development. A three-time
entrepreneur, his experience ranges from consulting on open source and
collaborative development for the Fortune 500 to application development on
just about anything smaller than a mainframe. He has been a software
developer for more than 25 years, from the TRS-80 to the latest crop of mobile
devices. A polished speaker, Mark has delivered conference presentations and
training sessions on a wide array of topics internationally.

Mark writes the Building ‘Droids column for AndroidGuys and the Android
Angle column for NetworkWorld.

Outside of CommonsWare, Mark has an avid interest in how the Internet
will play a role in citizen involvement with politics and government. He is also a
contributor to the Rebooting America essay collection.

http://commonsware.com

xvii

About the Technical Reviewer

Dylan Phillips is a software engineer and architect who has been working in
the mobile space for the last 10 years. With a broad range of experience, from
J2ME to .NET Compact Framework to Android, he is incredibly excited about
the opportunity presented by the broad consumer adoption of an array of
Android devices. He can be reached at mykoan@hotmail.com, at @mykoan on
Twitter, or at lunch, in various Pho Houses around the country.

mailto:mykoan@hotmail.com

xviii

Acknowledgments

I would like to thank the Android team, not only for putting out a good product, but for
invaluable assistance on the Android Google Groups.

Some of the icons used in the sample code were provided by the Nuvola icon set.

xix

Preface

Welcome to the Book!
Thanks for your interest in developing applications for Android! Increasingly, people will access
Internet-based services using so-called “nontraditional” means, such as mobile devices. The
more we do in that space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is new—Android-
powered devices first appeared on the scene in late 2008—but it has already grown tremendously,
matching or exceeding the market share of any competing mobile OS.

And, most of all, thanks for your interest in this book! I sincerely hope you find it useful and
at least occasionally entertaining.

Prerequisites
If you are interested in programming for Android, you will need at least a basic understanding of
how to program in Java. Android programming is done using Java syntax, plus a class library that
resembles a subset of the Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works before attempting to dive
into programming for Android. The blog post http://commonsware.com/blog/2010/08/02/java-
good-parts-version.html enumerates the various Java programming topics an Android developer
needs to know. This subject is also dealt with by another Apress book, Learn Java for Android
Development, by Jeff Friesen (Apress, 2010).

Editions of This Book
This book is being produced via a partnership between Apress and CommonsWare. You are
reading the Apress edition, which is available in print and in digital form from various digital
book services, such as Safari.

CommonsWare continually updates the original material and makes it available to members
of its Warescription program, under the title The Busy Coder’s Guide to Android Development.

CommonsWare maintains a FAQ about this partnership at http://commonsware.com/apress.

Source Code and Its License
The source code for this book is available at www.apress.com. All of the Android projects are
licensed under the Apache 2.0 License, www.apache.org/licenses/LICENSE-2.0.html, in case you
have the desire to reuse any of it.

http://commonsware.com/blog/2010/08/02/java-good-parts-version.html
http://commonsware.com/blog/2010/08/02/java-good-parts-version.html
http://commonsware.com/blog/2010/08/02/java-good-parts-version.html
http://commonsware.com/apress
http://www.apress.com
http://www.apache.org/licenses/LICENSE-2.0.html

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Welcome to the Book!
	Prerequisites
	Editions of This Book
	Source Code and Its License

	The Big Picture
	Benefits and Drawbacks of Smartphone Programming
	What Androids Are Made Of
	Stuff at Your Disposal
	The Big Picture...of This Book

	How to Get Started
	Step 1: Set Up Java
	Install the JDK
	Learn Java

	Step 2: Install the Android SDK
	Install the Base Tools
	Install the SDKs and Add-ons

	Step 3: Install the ADT for Eclipse
	Step 4: Install Apache Ant
	Step 5: Set Up the Emulator
	Step 6: Set Up the Device
	Windows
	Mac OS X and Linux

	Your First Android Project
	Step 1: Create the New Project
	Eclipse
	Command Line

	Step 2: Build, Install, and Run the Application in Your Emulator or Device
	Eclipse
	Command Line

	Examining Your First Project
	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, the Rest of the Story
	What You Get Out of It

	Inside Your Manifest
	In the Beginning, There Was the Root, and It Was Good
	An Application for Your Application

	A Bit About Eclipse
	What the ADT Gives You
	Coping with Eclipse
	How to Import a Non-Eclipse Project
	How to Get to DDMS
	How to Create an Emulator
	How to Run a Project
	How Not to Run Your Project

	Alternative IDEs
	IDEs and This Book

	Enhancing Your First Project
	Supporting Multiple Screen Sizes
	Specifying Versions

	Activities
	Rewriting Your First Project
	The Activity
	Dissecting the Activity
	Building and Running the Activity

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What’s with the @ Signs?
	And How Do We Attach These to the Java?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who’s Got the Button?
	Fleeting Images
	Fields of Green…or Other Colors
	Just Another Box to Check
	Turn the Radio Up
	It’s Quite a View
	Padding
	Other Useful Properties
	Useful Methods
	Colors

	Working with Containers
	Thinking Linearly
	LinearLayout Concepts and Properties
	LinearLayout Example
	The Box Model

	All Things Are Relative
	RelativeLayout Concepts and Properties
	RelativeLayout Example
	Overlap

	Tabula Rasa
	TableLayout Concepts and Properties
	TableLayout Example

	Scrollwork

	The Input Method Framework
	Keyboards, Hard and Soft
	Tailored to Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Using Selection Widgets
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Selection Modes

	Spin Control
	Grid Your Lions (or Something Like That...)
	Fields: Now with 35% Less Typing!
	Galleries, Give or Take the Art

	Getting Fancy with Lists
	Getting to First Base
	A Dynamic Presentation
	Inflating Rows Ourselves
	A Sidebar About Inflation
	And Now, Back to Our Story

	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern

	Interactive Rows

	Still More Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Seeking Resolution
	Putting It on My Tab
	The Pieces
	Wiring It Together
	Adding Them Up

	Flipping Them Off
	Getting in Somebody’s Drawer
	Other Good Stuff

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh, My!)

	Applying Menus
	Flavors of Menu
	Menus of Options
	Menus in Context
	Taking a Peek
	Yet More Inflation
	Menu XML Structure
	Menu Options and XML
	Inflating the Menu

	In the Land of Menus and Honey

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Handling Activity Lifecycle Events
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Handling Rotation
	A Philosophy of Destruction
	It’s All the Same, Just Different
	Picking and Viewing a Contact
	Saving Your State

	Now with More Savings!
	DIY Rotation
	...But Google Does Not Recommend This

	Forcing the Issue
	Making Sense of It All

	Dealing with Threads
	The Main Application Thread
	Making Progress with ProgressBars
	Getting Through the Handlers
	Messages
	Runnables

	Where Oh Where Has My UI Thread Gone?
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task

	Threads and Rotation
	Manual Activity Association
	Flow of Events
	Why This Works

	And Now, the Caveats

	Creating Intent Filters
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Subactivities
	Peers and Subs
	Start ’Em Up
	Make an Intent
	Make the Call

	Tabbed Browsing, Sort Of

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled Text and Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks
	RTL Languages: Going Both Ways

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	Where to Apply a Style
	The Available Attributes
	Inheriting a Style
	The Possible Values

	Themes: A Style by Any Other Name...

	Handling Multiple Screen Sizes
	Taking the Default
	Whole in One
	Think About Rules, Not Positions
	Consider Physical Dimensions
	Avoid “Real” Pixels
	Choose Scalable Drawables

	Tailor-Made, Just for You (and You, and You, and...)
	Adding the <supports-screens> Element
	Resources and Resource Sets
	Finding Your Size

	Ain’t Nothing Like the Real Thing
	Density Differs
	Adjusting the Density

	Ruthlessly Exploiting the Situation
	Replace Menus with Buttons
	Replace Tabs with a Simple Activity
	Consolidate Multiple Activities

	Example: EU4You
	The First Cut
	Fixing the Fonts
	Fixing the Icons
	Using the Space
	What If It Is Not a Browser?

	Honeycomb and Tablets
	Introducing the Honeycomb UI
	Why Honeycomb?
	What the User Sees
	The Holographic Theme
	Dealing with the Rest of the Devices

	Using the Action Bar
	Enabling the Action Bar
	Promoting Menu Items to the Action Bar
	Responding to the Logo
	Adding Custom Views to the Action Bar
	Defining the Layout
	Putting the Layout in the Menu
	Getting Control of User Input

	Don’t Forget the Phones!

	Fragments
	Introducing Fragments
	The Problem Addressed by Fragments
	The Fragments Solution
	The Android Compatibility Library

	Creating Fragment Classes
	General Fragments
	ListFragment
	Other Fragment Base Classes

	Fragments, Layouts, Activities, and Multiple Screen Sizes
	EU4You
	DetailsActivity

	Fragments and Configuration Changes
	Designing for Fragments

	Handling Platform Changes
	Things That Make You Go Boom
	View Hierarchy
	Changing Resources

	Handling API Changes
	Minimum, Maximum, Target, and Build Versions
	Detecting the Version
	Wrapping the API

	Patterns for Honeycomb
	The Action Bar
	Writing Tablet-Only Apps

	Accessing Files
	You and the Horse You Rode in On
	Readin’ ’n Writin’
	External Storage: Giant Economy-Size Space
	Where to Write
	When to Write

	StrictMode: Avoiding Janky Code
	Setting Up StrictMode
	Seeing StrictMode in Action
	Development Only, Please!
	Conditionally Being Strict

	Linux File Systems: You Sync, You Win

	Data Stores, Network Services, and APIs
	Using Preferences
	Getting What You Want
	Stating Your Preference
	Introducing PreferenceActivity
	Letting Users Have Their Say
	Adding a Wee Bit o’ Structure
	The Kind of Pop-Ups You Like
	Preferences via Fragments
	The Honeycomb Way
	Adding Backward Compatibility

	Managing and Accessing Local Databases
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin’ Data
	What Goes Around, Comes Around
	Raw Queries
	Regular Queries
	Using Cursors
	Custom CursorAdapters
	Making Your Own Cursors

	Flash: Sounds Faster Than It Is
	Data, Data, Everywhere

	Leveraging Java Libraries
	Ants and JARs
	The Outer Limits
	Following the Script
	Reviewing the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpClient
	Parsing Responses
	Stuff to Consider
	AndroidHttpClient

	Leveraging Internet-Aware Android Components
	Downloading Files

	Continuing Our Escape from Janky Code

	Services
	Services: The Theory
	Why Services?
	Setting Up a Service
	Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating to Services
	Sending Commands with startService()
	Binding with bindService()

	Communicating from Services
	Callback/Listener Objects
	Broadcast Intents
	Pending Results
	Messenger
	Notifications

	Basic Service Patterns
	The Downloader
	The Design
	The Service Implementation
	Using the Service

	The Music Player
	The Design
	The Service Implementation
	Using the Service

	The Web Service Interface
	The Design
	The Rotation Challenge
	The Service Implementation
	Using the Service

	Alerting Users via Notifications
	Notification Configuration
	Hardware Notifications
	Icons

	Notifications in Action
	Staying in the Foreground
	FakePlayer, Redux

	Notifications and Honeycomb

	Other Android Capabilities
	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?
	New Permissions in Old Applications
	Permissions: Up Front or Not at All

	Accessing Location-Based Services
	Location Providers: They Know Where You're Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	Terms, Not of Endearment
	Piling On
	The Key to It All
	The Bare Bones
	Optional Maps

	Exercising Your Control
	Zoom
	Center

	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	Rugged Terrain
	Maps and Fragments
	Limit Yourself to Android 3.0
	Use onCreateView() and onActivityCreated()
	Host the Fragment in a MapActivity

	Handling Telephone Calls
	Report to the Manager
	You Make the Call!
	No, Really, You Make the Call!

	Fonts
	Love the One You’re With
	Additional Fonts
	Here a Glyph, There a Glyph

	More Development Tools
	Hierarchy Viewer: How Deep Is Your Code?
	DDMS: Under Android’s Hood
	Logging
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages
	Memory Management

	adb: Like DDMS, with More Typing

	Alternative Application Environments
	The Role of Alternative Environments
	In the Beginning, There Was Java...
	...And It Was OK
	Bucking the Trend
	Support, Structure
	Caveat Developer

	HTML5
	Offline Applications
	What Does It Mean?
	How Do You Use It?

	Web Storage
	What Does It Mean?
	How Do You Use It?
	Web SQL Database

	Going to Production
	Testing
	Signing and Distribution
	Updates

	Issues You May Encounter
	Android Device Versions
	Screen Sizes and Densities
	Limited Platform Integration
	Performance and Battery
	Look and Feel
	Distribution

	HTML5 and Alternative Android Browsers
	HTML5: The Baseline

	PhoneGap
	What Is PhoneGap?
	What Do You Write In?
	What Features Do You Get?
	What Do Apps Look Like?
	How Does Distribution Work?
	What About Other Platforms?

	Using PhoneGap
	Installation
	Creating and Installing Your Project
	PhoneGap Build

	PhoneGap and the Checklist Sample
	Sticking to the Standards
	Adding PhoneGap APIs

	Issues You May Encounter
	Security
	Screen Sizes and Densities
	Look and Feel

	For More Information

	Other Alternative Environments
	Rhodes
	Flash, Flex, and AIR
	JRuby and Ruboto
	Mono for Android
	App Inventor
	Titanium Mobile
	Other JVM Compiled Languages

	The Ever-Evolving Android
	Dealing with Devices
	This App Contains Explicit Instructions
	Explicit Feature Requests
	Implied Feature Requests

	A Guaranteed Market
	Other Stuff That Varies
	Bugs, Bugs, Bugs
	Device Testing

	Where Do We Go from Here?
	Questions, Sometimes with Answers
	Heading to the Source
	Getting Your News Fix

	Index
	Symbols and Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

