

El gran libro de
programación avanzada con Android

José Enrique Amaro Soriano

El gran libro de
programación avanzada con Android

José Enrique Amaro Soriano

A Alfaomega e d i c i o n e s t é c n i c a s

Amaro, José Enrique
El gran libro de programación avanzada con
Android
Primera Edición

Alfaomega Grupo Editor, S.A. de C.V., México
ISBN: 978-607-707-551-6

Formato: 17 x 23 cm Páginas: 400

El gran libro de programación avanzada con Android
José Enrique Amaro Soriano
ISBN: 978-84-267-1885-3, edición en español publicada por MARCOMBO, S.A., Barcelona, España
Derechos reservados © MARCOMBO, S.A.

Primera edición: Alfaomega Grupo Editor, México, octubre 2012
Primera reimpresión: Alfaomega Grupo Editor, México, diciembre 2012

© 2013 Alfaomega Grupo Editor, S.A. de C.V.
Pitágoras 1139, Col. Del Valle, 03100, México D.F.

Miembro de la Cámara Nacional de la Industria Editorial Mexicana
Registro No. 2317

Pág. Web: http://www.alfaomega.com.mx
E-mail: atencionalcliente@alfaomega.com.mx

ISBN: 978-607-707-551-6

Derechos reservados:
Esta obra es propiedad intelectual de su autor y los derechos de publicación en lengua
española han sido legalmente transferidos al editor. Prohibida su reproducción parcial o total
por cualquier medio sin permiso por escrito del propietario de los derechos del copyright.

Nota importante:
La información contenida en esta obra tiene un fin exclusivamente didáctico y, por lo tanto,
no está previsto su aprovechamiento a nivel profesional o industrial. Las indicaciones
técnicas y programas incluidos, han sido elaborados con gran cuidado por el autor y
reproducidos bajo estrictas normas de control. ALFAOMEGA GRUPO EDITOR, S.A. de
C.V. no será jurídicamente responsable por: errores u omisiones; daños y perjuicios que se
pudieran atribuir al uso de la información comprendida en este libro, ni por la utilización
indebida que pudiera dársele.

Edición autorizada para venta en México y todo el continente americano.
Impreso en México. Printed in México.

Empresas del grupo:
México: Alfaomega Grupo Editor, S.A. de C.V. - Pitágoras 1139, Col. Del Valle, México. D.F. - C.P. 03100.
Tel.: (52-55) 5575-5022 - Fax: (52-55) 5575-2420 / 2490. Sin costo: 01-800-020-4396
E-mail: atencionalcliente@alfaomega.com.mx
Colombia: Alfaomega Colombiana S.A. - Carrera 15 No. 64 A 29, Bogotá, Colombia.
Tel.: (57-1) 2100122 - Fax: (57-1) 6068648 - E-mail: cliente@alfaomega.com.co
Chile: Alfaomega Grupo Editor, S.A. - Dr. La Sierra 1437, Providencia, Santiago, Chile
Tel.: (56-2) 235-4248 - Fax: (56-2) 235-5786 - E-mail: agechile@alfaomega.cl
Argentina: Alfaomega Grupo Editor Argentino, S.A. - Paraguay 1307 PB. Of. 11, C.P. 1057, Buenos Aires.
Argentina, -Tel./Fax: (54-11)4811-0887 y 4811 7183 - E-mail: ventas@alfaomegaeditor.com.ar

Datos catalográficos

http://www.alfaomega.com.mx
mailto:atencionalcliente@alfaomega.com.mx
mailto:atencionalcliente@alfaomega.com.mx
mailto:cliente@alfaomega.com.co
mailto:agechile@alfaomega.cl
mailto:ventas@alfaomegaeditor.com.ar

«En un futuro cercano, no habrá ningún accesorio, salvo
una escoba acaso, que no tenga un procesador dentro.» (Arthur C. Clarke)

ÍNDICE GENERAL

1. INTRODUCCIÓN... 11

2. ANIMACIONES INTERPOLADAS..14

2.1. Traslaciones... 14
2.2. Repetición de animaciones... 18
2.3. Rotaciones... 21
2.4. Dilataciones y contracciones..23
2.5. Apariciones y desapariciones...24
2.6. Series de animaciones..26
2.7. Animaciones con Java ..29
2.8. AnimationListener.. 32
2.9. Animación de un layout... 34
2.10. Animación de un layout en Java...37
2.11. LayoutAnimationListener...38

3. ANIMACIÓN DE FOTOGRAMAS.. 41

3.1. Animación usando recursos..41
3.2. Animación de fotogramas en Java: AnimationDrawable............................. 45
3.3. Ajuste de la relación de aspecto...46

4. PROCESOS EN BACKGROUND... 52

4.1. Uso de Timer y RunOnUiThread..52
4.2. Modificación de la Ul con post..55
4.3. Modificación de la Ul con Handler.post..57
4.4. Métodos combinados para modificar la U l..59
4.5. Modificación de la Ul con AsyncTask..64
4.6. Máquina tragaperras...67

5. SENSORES... 76

5.1. Sensor de aceleración...76
5.2. Lista de sensores de un teléfono..85
5.3. Sensor de campo magnético..87
5.4. Sensor de orientación.. 95
5.5. Sensor de proximidad y sensor de luminosidad..103

6. DIÁLOGOS...110

6.1. Crear un diálogo.. 110
6.2. Diálogos con botones.. 113
6.3. Diálogos con ítems.. 116
6.4. Diálogos de elección única...118
6.5. Diálogos de elección múltiple...121
6.6. Diálogos de progreso.. 124
6.7. Diálogos personalizados... 127

7. MENÚS

7.1. Menú de opciones...132
7.2. Submenús.. 134
7.3. Submenú con casillas.. 138
7.4. Menús de contexto.. 140

8. VISUALIZACIÓN DE LISTA S.. 144

8.1. La clase ListView... 144
8.2. Listas interactivas..146
8.3. ListView personalizado..150
8.4. Construcción de un BaseAdapter...153
8.5. La clase ListActivity... 160
8.6. Listas desplegadles con SpinnerView..162

9. BASES DE D A T O S ..166

9.1. Elementos de SQLitey SQL...166
9.1.1. Iniciar sqlite3 con ADB...166
9.1.2. Crear una tabla...168
9.1.3. Algunas expresiones SQ L...169
9.2. Crear una base de datos con Android...171
9.3. Borrar filas de una tabla..175
9.4. Automatizar las columnas del Cursor..176
9.5. Abrir una base de datos con SQLiteOpenHelper..178
9.6. Borrar filas con delete..181
9.7. Realizar búsquedas con query...182
9.8. Adaptar un Cursor a un ListView..189

10. PROVEEDORES DE C O N TEN ID O S...195

10.1. El proveedor de contactos..195
10.2. La tabla de datos de los contactos.. 202
10.3. La tabla raw contacts..207
10.4. Añadir contactos..210
10.5. Otros proveedores de contenidos..219
10.6. Implementación de un ContentProvider...226
10.7. Acceso externo a nuestro ContentProvider...234
10.8. La clase UriMatcher...239

11. COM UNICACIÓN ENTRE A C T IV ID A D E S..243

11.1. Secuencia de estados de una actividad... 243
11.2. Resultado de una actividad... 249
11.3. Resultado de cancelar una subactividad.. 255
11.4. Grupo de actividades..256
11.5. Abrir aplicaciones externas explícitamente... 262
11.6. Abrir aplicaciones externas implícitamente... 265
11.7. Uso del PackageManager...267

8

11.8. Filtro de datos en un intent...272
11.9. Agregar funcionalidad de otras apps...278

12. INTERNET Y RSS FEEDS... 285

12.1. Advertencia importante antes de conectar a Internet.............................. 285
12.2. Mostrar páginas web con WebView.. 285
12.3. Mostrar imágenes con WebView... 290
12.4. Mostrar HTML con WebView..291
12.5. Conexión HTTP...295
12.6. Introducción a XML y RSS..299
12.7. Análisis de documentos XML con DOM..301
12.8. Extraer los valores de los elementos XM L..305
12.9. Conectar a un RSS feed...310
12.10. Inspeccionar una página WEB con Jsoup...318
12.11. Descargar y comprimir una imagen de Internet......................................328

13. CORREO ELECTRÓNICO... 333

13.1. Enviar un email con un intent...333
13.2. Enviar un fichero adjunto por email... 337
13.3. Enviar ficheros comprimidos con zip..342

14. LOCALIZACIÓN Y MAPAS..347

14.1. Coordenadas en Google Maps...347
14.2. El API de Google Maps...350
14.3. MapView...352
14.4. Control de mapas..355
14.5. Geocodificación...360
14.6. Localización...367
14.7. Dibujar sobre un mapa y geocodificación inversa.....................................375

APÉNDICE A ... 381

La interfaz de usuario...381
A.1. Orientación de una actividad..381
A.2. Dimensiones de la pantalla..382

APÉNDICE B..385

Complementos de Java..385
B.1. Métodos con número variable de parámetros...385
B.2. ArrayList...387
B.3. Genéricos... 390
B.4. Definición de una clase con tipos genéricos...393

APÉNDICE C..396

Versiones de Android..396

BIBLIOGRAFÍA... 397

9

(

1. INTRODUCCION

En mi primer libro sobre programación en Android, titulado Android:
programación de dispositivos móviles a través de ejemplos (que denominaré
abreviadamente Android a partir de ahora) y publicado por la editorial Alfaomega,
presentaba las técnicas esenciales para iniciarse rápidamente en la programación
del sistema, enfatizando en aplicaciones de cálculo numérico y gráficos. En este
segundo libro introduzco técnicas más avanzadas (aunque no necesariamente
más complicadas) para realizar programas que se ejecutarán en un smartphone,
tablet o cualquier otro dispositivo con el sistema operativo Android. La obra está
dirigida a no especialistas y supone un acercamiento genuinamente práctico al
sistema Android. No se requieren conocimientos profundos de Java. El apéndice A
de mi primer primer libro contiene una introducción al lenguaje Java específico
para Android, suficiente para seguir este segundo. Sin embargo, no es necesario
haberlo leído para seguir y entender este, siempre que se posean las nociones
básicas para crear una actividad con Android.

El material contenido en esta obra se plantea como una colección de ejemplos
escritos expresamente para ilustrar alguna técnica particular de Android. Los
ejemplos son programas completos, pero breves, que permitirán al lector
minimizar las dificultades que puedan surgir para comprender la materia. La idea
es que, después de trabajar los programas simples de este libro, el lector sea
capaz de escribir sus propios programas y de explorar por sí mismo el sistema.
Todos los ejemplos han sido probados en un dispositivo o en el emulador, y
funcionan correctamente en las versiones de Android 2.1 (Eclair) y posteriores
(ver Apéndice A para una lista de las versiones de Android). El código fuente de
todos los programas se puede descargar de la página web del autor:
h t tp : / / www.u g r .e s / lo c a l/a m a ro /a n d ro id y de la página de la editorial:
h t t p : / / l ib r o w e b . a lfa o m e g a . com.mx

La selección del material no es ni mucho menos exhaustiva. Las librerías de
Android contienen numerosas clases y métodos para realizar casi cualquier tarea
que el lector pueda imaginar, y otras que ni se le ocurriría que pudieran realizarse
con un artefacto tan pequeño como un teléfono. La principal fuente de
documentación y recursos de Android es la página web oficial de Android
developers y los foros especializados que se encuentran en Internet, donde el
lector iniciado puede profundizar y ampliar sus conocimientos sobre el sistema
Android. Sin embargo, la vasta extensión de sus librerías hace que, al contrario
que con otros lenguajes, introducirse en Android no sea tarea fácil para los no

11

http://www.ugr.es/local/amaro/android
http://libroweb.alfaomega.com.mx

El gran libro de programación avanzada con Android

iniciados. Con este libro se pretende contribuir a soslayar las dificultades y acercar
este novedoso sistema al público en general. Profesores, estudiantes, científicos,
ingenieros, técnicos y público en general encontrarán ideas útiles que podrán
aplicar en sus trabajos, en sus tareas cotidianas o simplemente como
entretenimiento, usando su smartphone o su tablet Android como herramienta.

Acerca de los ejemplos

El material didáctico de este libro consiste en más de ochenta ejemplos. Cada
ejemplo se compone de una aplicación de Android completa con sus
correspondientes capturas de pantalla. Los códigos fuente están disponibles en la
página web de la editorial Alfaomega y en la del autor. Cada ejemplo se descarga
en forma de una carpeta comprimida con ZIP, que contiene un proyecto de Eclipse
con todos los archivos de la aplicación. Dicha carpeta se puede importar o
descomprimir directamente desde el programa Eclipse.

Para importar un proyecto de Android desde Eclipse, se pueden seguir las
siguientes instrucciones:

1. Seleccionar Importen el menú File. Aparecerá una lista de opciones.
2. Seleccionar Existing projects into Workspace y pulsar next.
3. Marcar la opción Select archive file y pulsar Browse.
4. Seleccionar el archivo comprimido con el proyecto y pulsar aceptar.

Si, tras importar un proyecto en Eclipse, se produjera un error de compilación
del tipo Compiler c o m p l i a n c e l e v e l , debemos cambiar la versión de compilación de
Java en las propiedades del proyecto. Para ello, pulsaremos con el boton derecho
sobre el proyecto en Eclipse y seleccionaremos properties. Se abrirá una ventana
con las propiedades. Iremos a la sección del compilador de Java y marcaremos
Enable Project-specific settings. De este modo ya podremos modificar el valor
aignado al Compiler compliance level.

Cómo localizar el fichero correspondiente a un ejemplo específico

Cada uno de los más de ochenta ejemplos de este libro contiene una
actividad principal de la que se infiere el nombre del proyecto, y de ahí el nombre
del fichero ZIP. Por ejemplo, si una actividad se llama Acelerometro o
AcelerometroActivity, el archivo con el proyecto se llamará seguramente
Aceleromero.zip, o un nombre parecido. Alternativamente, podemos leer el
nombre del proyecto en las capturas de pantalla de los ejemplos, puesto que la
barra superior de la ventana contiene el título de la actividad.

12

Acerca de los acentos

Los nombres de las variables y clases de Java, actividades y ficheros de
recursos no pueden contener acentos ni otros caracteres como la letra ñ. Aunque
hemos procurado escribir correctamente las tildes en las palabras en castellano en
el texto, esto no es posible cuando se refieren a nombres de variables o ficheros.
Tampoco se recomienda usar acentos en los nombres que designan a las
columnas o tablas de una base de datos. El lector queda advertido de que, cuando
encuentre una palabra castellana escrita incorrectamente sin tilde, ésta se refiere
seguramente a uno de estos casos. De la misma manera, seguimos la norma de
no utilizar acentos en los nombres de los proyectos.

Agradecimientos

Quisiera expresar mi agradecimiento, en primer lugar, a Jeroni Boixareu, de la
editorial Marcombo, por sus sugerencias y apoyo para realizar este proyecto. En
segundo lugar, a los lectores de mi primer libro de Android que me han escrito con
ideas y peticiones. Algunas las he procurado incluir en esta obra. Gracias también
a los miembros del grupo de Física Nuclear y Hadrónica de la Universidad de
Granada, principalmente a Enrique Ruiz Arrióla, Rodrigo Navarro Pérez y Nacho
Ruiz Simó, que pacientemente atendieron a mis demostraciones con el teléfono de
muchos de los ejemplos de este libro. Sus comentarios, durante los cafés,
supusieron un valioso feedback. También es pertinente agradecer aquí el proyecto
de investigación del Ministerio FIS2011-2414. Sin lugar a dudas, Android se
integrará como herramienta en nuestra vida cotidiana y también en nuestro trabajo
científico. Parte del material de este libro se desarrolló con la idea de aplicarlo en
nuestras labores investigadoras. No olvido al Departamento de Física Atómica,
Molecular y Nuclear de la Universidad de Granada, que ha facilitado la utilización
de sus infraestructuras. Finalmente, le agradezco a mi familia su entusiasmo y
paciencia, y especialmente a Miguel Ángel Amaro, la maquetación de este
libro en Word.

13

El gran libro de programación avanzada con Android

2. ANIMACIONES INTEiRPOLADAS

En Android podemos aplicar animaciones simples a un objeto view . Se
denominan animaciones interpoladas, o tweened animations, y consisten en
traslaciones, rotaciones, cambios de tamaño o modificaciones de la transparencia.
Cada animación puede almacenarse en un fichero xml en el directorio re s /a n im
de nuestro proyecto. Este directorio habrá que crearlo, ya que Eclipse no lo genera
al iniciar un nuevo proyecto.

2.1. Traslaciones

En este primer ejemplo A n im ación , ja v a aplicaremos una traslación a un
texto definido como un objeto de tipo Textview. La traslación se efectúa
especificando un cambio en la coordenada X inicial y final, en este caso en
términos de porcentaje respecto al ancho total de la pantalla. También se debe
especificar la duración de la animación en milisegundos. El sistema se encarga de
interpolar entre la posición inicial y la final a intervalos regulares de tiempo para
mostrarnos la animación. El siguiente fichero contiene la información de la
animación:

re s /a n im /tra s la c io n _ d e re c h a . xml

< se t
xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="0android:anim/accelerate_interpolator">
<translate

a n d ro id :fro m X D e lta = "-5 0 % p "
a n d ro id :to X D e lta = "5 0 % p "
a n d ro id : d u ra t io n = " 4 0 0 0 " />

< /s e t>

El layout de este ejemplo es el siguiente:

m a in . xml

<?xml v e rs io n = " 1 . 0 " e n c o d in g = "u t f -8 "?>

14

http://schemas.android.com/apk/res/android

< L in e a rL a yo u t
xmlns:android="http://schemas.android.com/apk/res/android"

andró id: orientation="verticalff
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffffff"
>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textSize="20sp"
android:text="Animación interpolada con traslación a la

derecha"
android:textColor="#000000"
/>

<TextV iew
a n d ro id : la y o u t_ w id th = " f i l l _ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= " f i l l_ p a r e n t "
a n d r o id :g ra v i ty = " c e n te r "
a n d ro id : te x tS ty le = " b o ld "
a n d ro id : te x tS iz e = "3 0 s p "
a n d ro id : text="TRASLACIÓN"
a n d ro id : te x tC o lo r = " #000000"
a n d r o id : id = " 0+ id / te x to "
/>

< /L in e a rL a y o u t>

En el programa A n im ación , ja v a definimos un objeto de tipo A n im a tio n
mediante una referencia al fichero de animación traslacion_derecha.xml.
Para iniciar la animación, basta con llamar al método s ta r tA n im a t io n () del
objeto TextView, pasando la animación como argumento.

Animación.j ava

package es.ugr.amaro;

import android.app.Activity;
import android.os.Bundle;
import android.view.animation.Animation;
import android.view.animation.AnimationUtils;
import android.widget.TextView;

public class Animación extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

15

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

s u p e r. o n C re a te (s a v e d ln s ta n c e S ta te) ;
s e tC o n te n tV ie w (R .la y o u t. m a in) ;

TextV iew tv = (TextV iew) f in d V ie w B y ld (R . id . te x to) ;

A n im a tio n td =
A n im a t io n ü t i ls . lo a d A n im a t io n (th is ,

R. a n im .tra s la c io n _ d e re c h a) /
t d . s e t F i l l A f t e r (t r u e) ;
t v . s ta r tA n im a t io n (t d) ;

t v . append (" \n Texto a ñ a d id o '1) /
}

}

El método s e t F i l lA f t e r (tru e) debe llamarse para que la transformación
se mantenga tras la animación. En caso contrario, al finalizar esta, se mostrará el
objeto TextView en su posición especificada en el layout. La animación se aplica al
objeto TextView como un todo. Si añadimos texto con append más adelante, este
también será animado. El resultado se muestra en la figura 2.1. El texto animado
aparece inicialmente desplazado hacia la izquierda. Esto se establece en el fichero
de animación en la línea

a n d ro id :fro m X D e lta = "-5 0 % p "

que indica que la coordenada X se desplace una distancia negativa igual al 50%
del ancho de la pantalla. La posición final se define en la línea

a n d ro id :to X D e lta = "5 0 % p "

es decir, desplazar el texto una distancia positiva igual al 50% del ancho de la
pantalla. Para que el texto desaparezca completamente de la pantalla, basta con
desplazarlo una distancia del 100%. Por ejemplo, la traslación

c t ra n s la te
an d ro id :fro m X D e lta = "-1 0 0 % p "
a n d ro id : to X D e lta = "100%p"
a n d ro id : d u ra t io n = " 4 0 0 0 " />

hará que el texto, inicialmente fuera de la pantalla a la izquierda, aparezca
moviéndose hasta desaparecer por la derecha de la pantalla.

Esta otra animación

< tra n s la te
a n d ro id :fro m X D e lta = "-1 0 0 % p "
a n d ro id : to X D e lta = "0"
a n d ro id : d u ra t io n = " 4 0 0 0 " />

16

hace que el texto aparezca por la izquierda hasta llegar a la posición indicada en
el layout, con un desplazamiento final igual a cero.

android: toXDelta=" 0,f

f i l i © 20:031

Animación interpolada con
traslación a la derecha

Animación interpolada con
traslación a la derecha

TRASLACIÓN TRASL
T exto ahaamo Texto a

Figura 2.1. Animación interpolada con traslación a la derecha.
Durante la animación (izquierda) y tras la animación (derecha).

Análogamente, especificando un desplazamiento inicial igual a cero y final
igual a 100%, haremos ver que el texto se mueve desde su posición inicial hasta
desaparecer de la pantalla por la derecha.

ctranslate
android:fromXDelta="0"
android:toXDelta="100%p"
android: duration=M4 000ff />

El interpolador controla el modo en que la velocidad de la animación varía con
el tiempo, indicado en el fichero xml de la animación mediante la etiqueta
interpolator.
android:interpolator="Oandroid:anim/accelerate interpolator">

17

El gran libro de programación avanzada con Android

Estos son algunos de los interpoladores disponibles:

linear_interpolator
accelerate_interpolator
decelerate_interpolator
accelerate_decelerate_interpolator
anticipate_interpolator
bounce_interpolator
overshoot_interpolator

En el ejemplo anterior hemos utilizado el modo acelérate, con el que se
consigue que el movimiento vaya haciéndose más rápido. En caso de que
quisiéramos que la velocidad fuera constante, usaríamos linear. El interpolador
overshoot produce el efecto de «dar martillazos».

2.2. Repetición de animaciones

Para repetir una animación, debemos usar el método setRepeatMode () e
indicar el número de repeticiones con setRepeatCount (). Por ejemplo, para
repetir una animación 20 veces:

animación.setRepeatMode(Animation.RESTART);
animación.setRepeatCount(20);

En este punto hay que advertir que en las actuales versiones de Android, la
repetición de animaciones no funciona con la etiqueta set que hemos utilizado en
el ejemplo anterior (bug documentado en la página web de Android). La etiqueta
set se aplica a un objeto AnimationSet, que permite superponer varias
animaciones. Para repetir una animación, esta debe ser simple, es decir, no debe
contener la etiqueta set.

En el siguiente ejemplo se anima un texto central a lo largo de la diagonal. El
movimiento es oscilatorio alrededor de su posición original con una amplitud de 50
píxeles de abajo arriba y de izquierda a derecha. El movimiento es rápido, con una
duración de 200 milisegundos, y la aceleración es como un martilleo. El fichero de
la animación es el siguiente:

res/anim/animación.xml

<?xml version="l.0" encoding="utf-8"?>
<translate

xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="0android:anim/overshoot_interpolator"
android:fromYDelta="50"
android:toYDelta="-50"
android:fromXDelta="-50"

18

http://schemas.android.com/apk/res/android

andróid:toXDelta="50"
android: duration="200" />

Usaremos el siguiente layout:

main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android: orientation=11 vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffffff"
>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android: textStyle=f,bold"
android:textSize="20sp"

android:text="Animación repetida con overshoot_interpolator"
android:textColor="#000000"
android:id="@+id/textol"

/>
<TextView

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center"
android:textStyle="bold"
android:textSize="30sp"
android:text="OVERSHOOT"
android:textColor="#000000"
android:id="@+id/texto"
/>

</LinearLayout>

A continuación se detalla el programa Java. Nótese que no se usa
setFillAfter (true) para que el texto al final quede en su posición original.
También se ilustra cómo pueden recuperarse algunos parámetros de la animación
con getRepeatMode () y getRepeatCount (). En la figura 2.2. se muestra el
resultado.

19

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

Animación repetida con Animación repetida con
overshoot_i nterpo lator overshootjnterpolator

OVERSHOOT
OVERSHOOT RepeatMode: 1

RepeatMode: 1 RepeatCount:;2d
RepeatCount:20 ■ %W |«ViMb WMIIhttkV

Figura 2.2. Animación repetida con movimiento diagonal.
Durante la animación (izquierda) y tras la animación (derecha).

AnimacionRepetida.j ava

package es.ugr.amaro;

import android.app.Activity;
import android.os.Bundle;
import android.view.animation.Animation;
import android.view.animation.Animationütils;
import android.widget.TextView;

public class AnimacionRepetida extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

TextView tv= (TextView) findViewByld(R.id.texto);

Animation td = Animationütils.loadAnimation(this,
R.anim.traslación);

20

td.setRepeatMode(Animation.RESTART);
td.setRepeatCount(20);

// td.setFillAfter(true);
tv.startAnimation(td);

tv.append("\nRepeatMode: "+td.getRepeatMode())/
tv.append("\nRepeatCount:"+td.getRepeatCount())/

}
}

2.3. Rotaciones

Para generar una rotación debemos especificar el ángulo inicial y final. Esto se
puede indicar en un fichero xml, al igual que en el caso de las traslaciones. En el
siguiente ejemplo hacemos girar el texto central repetidas veces. Usando el mismo
layout del ejemplo anterior, el fichero de la animación es el siguiente:

rotación.xml

<?xml version="1.0" encoding="utf-8"?>
crotate
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:interpolator="Oandroid:anim/linear_interpolator"
android:fromDegrees="0"
android:toDegrees="360"
android:pivotX="50%"
android : pivotY=" 50%11
android:duration="2000"/>

Las variables pivotx y pivotY indican la posición del centro de giro. En este
caso, ambas valen 50%, correspondiendo al centro del objeto que se está rotando.
El programa Rotación, java es prácticamente el mismo que el del ejemplo
anterior, cambiando el nombre del fichero de animación y el texto. En la figura 2.3.
se muestra el resultado.

Rotación.j ava

public class Rotación extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

21

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

TextView tvl= (TextView) findViewByld(R.id.textol)
tvl.setText("Animaciones: rotación");

TextView tv= (TextView) findViewByld(R.id.texto);
tv.setText("TEXTO GIRANDO");

Animation td =
AnimationUtils.loadAnimation(this,R.anim.rotación)

td.setRepeatMode(Animation.RESTART);
td.setRepeatCount(20);
tv.startAnimation(td);

Animaciones: rotación

V-

Figura 2.3. Animación rotando un texto.

2.4. Dilataciones y contracciones

Una dilatación o contracción es una animación de la escala en las dimensiones
de un objeto de tipo view. Esto se hace en xml utilizando la propiedad scale.
Para este ejemplo, usaremos el siguiente fichero de animación:

res/anim/dilatación.xml

<?xml version="1.0" encoding="utf-8"?>
<scale
xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/decelerate_interpolator"

android:fromXScale="1.0"
android:toXScale="2.0"
android: fromYScale="l. 0"
android:toYScale="10.0"
android:pivotX="50%"
android:pivotY="50%"
android:duration="2000"/>

Se debe indicar la escala inicial y final en cada dimensión X e Y. El centro de
dilatación se especifica igual que el centro de rotación, con pivotx y pivotY.

El programa Java para dilatar un texto sería una variante de los ejemplos
anteriores, usando el mismo layout. En la figura 2.4. se muestra el resultado.

Dilatación.j ava

public class Dilatación extends Activity {

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

TextView tvl= (TextView) findViewByld(R .id.textol);
tvl.setText(

"Animaciones: dilataciones y contracciones")/

TextView tv= (TextView) findViewByld(R.id.texto)/
tv.setText("DILATANDO");

Animation td =
AnimationUtils.loadAnimation(this,R.anim.dilatación);

td.setRepeatMode(Animation.RESTART);

23

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

td.setRepeatCount(20);
tv.startAnimation(td);

10:28

Animaciones: dilataciones y
contracciones

Animaciones: dilataciones y
contracciones

Figura 2.4. Animación dilatando un texto.

2.5. Apariciones y desapariciones

Para conseguir que un texto apare2ca haciéndose más visible o nítido,
animaremos la propiedad alpha, que controla la transparencia o, más
correctamente, la ausencia de transparencia. Es decir, la opacidad. Un valor igual
a cero indica transparencia total, o invisibilidad. Un valor igual a uno es opacidad
total. En la siguiente actividad hacemos aparecer y desaparecer un texto
animando la transparencia. En primer lugar, creamos un fichero xml para la
animación.

aparición.xml

<?xml version="1.0" encoding="utf-8"?>
<alpha
xmlns:android="http://schemas.android.com/apk/res/android n

24

http://schemas.android.com/apk/res/android

android:interpolator="@android:anim/linear_interpolator"
android:fromAlpha="0.0"
android:toAlpha="1.0"
android:duration="3000"/>

Usamos el mismo layout de los ejemplos anteriores y modificamos ligeramente
el programa para obtener la actividad que se detalla a continuación. En la figura
2.5. se muestra el resultado de la animación.

Aparición.j ava

public class Aparición extends Activity {

QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

TextView tvl= (TextView) findViewByld(R .id.textol);
tvl.setText("Animaciones: aparición y desaparición");

TextView tv= (TextView) findViewByld(R.id.texto);
tv.setText("APARECIENDO");

Animation td =
AnimationUtils.loadAnimation(this,R .anim.aparición);

td.setRepeatMode(Animation.RESTART);
td.setRepeatCount(20);
tv.startAnimation(td);

}
}

25

El gran libro de programación avanzada con Android

Animaciones: aparición y
desaparición

Animaciones: aparición y
desaparición

APARECIENDO

Figura 2.5. Animación haciendo aparecer un texto.

2.6. Series de animaciones

Es posible encadenar varias animaciones en un AnimationSet. Para ello,
utilizamos la etiqueta set en un fichero xml. En el siguiente ejemplo encadenamos
una aparición, una dilatación, una rotación y una traslación. Por defecto, todas las
animaciones comienzan simultáneamente, pero se puede indicar el momento en
que debe comenzar cada una mediante la etiqueta startoffset. En este caso,
cada animación comienza tres segundos después de la que la precede.

res/anim/serie.xml

<?xml version="1.0" encoding="utf-8"?>
<set
xmlns:android="http://schemas.android.com/apk/res/android"

android:shareInterpolator="true">
<alpha

android:interpolator="@android:anim/linear_interpolator"
android:fromAlpha="0.0"
android:toAlpha="l.0"
android:duration="3000"/>

escale
android:fromXScale="1.0"
android:toXScale="2.0"

26

http://schemas.android.com/apk/res/android

android:fromYScale="1.0"
android:toYScale="5.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="3000"
android:duration="3000"
/>

crotate
android:fromDegrees="0"
android:toDegrees="45"
android:pivotX="50%"
android:pivotY="50%"
android:start0ffset="6000"
android:duration="3000"
/>

ctranslate
android:fromYDelta="0%"
android:toYDelta=”25%"
android:startOffset="9000"
android:duration="3000"

/>
</set>

De nuevo, el fichero de la actividad es similar a los anteriores, igual que el
layout. En la figura 2.6. se muestra el resultado.

SerieDeAnimaciones.java

public class SerieDeAnimaciones extends Activity {

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

TextView tvl= (TextView) findViewByld(R.id.textol);
tvl.setText("Serie de animaciones");
TextView tv= (TextView) findViewByld(R .id.texto);
tv.setText("ANIMÁNDOME");
Animation td =
AnimationUtils.loadAnimation(this,R .anim.serie);
td.setFillAfter(true);
tv.startAnimation(td);

}
}

27

El gran libro de programación avanzada con Android

Figura 2.6. Serie de animaciones.

28

2.7. Animaciones con Java

Las animaciones interpoladas se pueden programar enteramente en Java sin
utilizar ficheros de animación xml. Una animación es un objeto de una de las
clases AlphaAnimat ion, ScaleAnimat ion, RotateAnimation O
TrasíateAnimation. En el constructor se indican todas las propiedades que
hemos visto en xml. Una serie de animaciones es un objeto de la clase
AnimationSet. Cada animación individual se añade a la serie mediante
serie. addAnimation (animación). Hay que recordar que la repetición de
animaciones con setRepeatMode () no funciona con series.

En el siguiente ejemplo se realiza en Java la misma serie de animaciones de la
sección anterior, usando el mismo layout. En la figura 2.7. se muestra el resultado.

AnimacionJava.j ava

package es.ugr.amaro;

import android.app.Activity;
import android.os.Bundle;
import android.view.animation.*;
import android.widget.TextView;

public class AnimacionJava extends Activity {

QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;
setContentView(R.layout.main);

TextView tvl= (TextView) findViewByld(R .id.textol);
tvl.setText("Una serie de animaciones en Java");

TextView tv= (TextView) findViewByld(R.id.texto);
tv.setText("ME ANIMA JAVA");

AnimationSet animación = new AnimationSet(true);

// animación aparición
AlphaAnimation aparición = new AlphaAnimation(0,1);
aparición.setDuration(3000);

// animación escalado
// rs indica que las coordenadas son relativas
int rs=ScaleAnimation.RELATIVE_TO_SELF;
ScaleAnimation escala=

new ScaleAnimation(l,2,l,5,rs,0.5f,rs,0.5f) ;

29

El gran libro de programación avanzada con Android

escala.setDuration(3000);
escala.setStartOffset(3000);

// animación rotación
// rs indica que las coordenadas son relativas
rs=RotateAnimation.RELATIVE_TO_SELF;
RotateAnimation rotación

= new RotateAnimation(0,45,rs,0.5f,rs,0.5f);
rotación.setDuration(3000);
rotación.setStartOffset(6000);

// animación traslación
// rp indica que las coordenadas son relativas
int rp=TranslateAnimation.RELATIVE_TO_PARENT;
TranslateAnimation traslación
=new TranslateAnimation(rp,Of,rp,Of,rp,Of,rp,0.25f)/

traslación.setDuration(3000)/
traslación.setStartOffset(9000);

// enlaza las animaciones
animación.addAnimation(aparición);
animación.addAnimation(escala);
animación.addAnimation(rotación);
animación.addAnimation(traslación);

animación.setFillAfter(true);
// animación.setRepeatMode(Animation.RESTART);
// animación.setRepeatCount(20);

tv.startAnimation(animación)/

Nótese que la posición del centro de escalado, indicada en xml con
pivotx="50%", se especifica en Java mediante estos dos parámetros:

ScaleAnimation.RELATIVE_TO_SELF,0.5f

El primero es una constante que indica que la coordenada es relativa al objeto
que se está animando. Dicha coordenada se especifica mediante el siguiente
parámetro, que toma un valor entre 0 y 1.

30

Una serie de animaciones en Java

15:56

Una serie de animaciones en Java

ti ANIMA JAVA

Una serie de animaciones en Java Una serie de animaciones en Java

Figura 2.7. Serie de animaciones programadas con Java.

El gran libro de programación avanzada con Android

2.8. AnimationListener

La interfaz AnimationListener permite implementar acciones que se
«disparan» cada vez que una animación se repite, o cuando finaliza o se inicia.
Esto permite modificar el contenido del objeto View durante la animación o enlazar
varias animaciones. Para ello, hay que definir la animación como un «oyente»
mediante

animación.setAnimationListener(animationListener);

La clase que implementa AnimationListener debe definir los métodos
onAnimationRepeat, onAnimationEnd, onAnimationStart.

En el siguiente ejemplo, una primera animación hace aparecer un contador 10
veces. Nuestra actividad implementa AnimationListener incrementando el
contador cada vez que la animación se repite y, al finalizar esta, ejecuta una
segunda animación de escala escribiendo un mensaje final. Usamos el mismo
layout de los ejemplos anteriores. En la figura 2.8. se muestra el resultado.

1%04

Usando la interfaz
AnimationListener

CONTADOR = 9

Usando la interfaz
AnimationListener

AnimacionListener.j ava

Figura 2.8. Animación usando la interfaz AnimationListener.

32

package es.ugr.amaro;

import android.app.Activity;
import android.os.Bundle;
import android.view.animation.*;
import android.view.animation.Animation.AnimationListener;
import android.widget.TextView;

public class AnimacionListener extends Activity
implements AnimationListener{

int i=l;
TextView tv;
Animation escala;
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

TextView tvl= (TextView) findViewByld(R .id.textol);
tvl.setText("Usando la interfaz AnimationListener")

tv= (TextView) findViewByld(R.id.texto);
tv.setText("CONTADOR = "+i);

// animación aparición
Animation aparición = new AlphaAnimation(0,1);
aparición.setDuration(1000);
aparición.setFillAfter(true);
aparición.setRepeatMode(Animation.RESTART);
aparición.setRepeatCount(10);
aparición.setAnimationListener(this);

// animación escalado
// rs indica que las coordenadas son relativas
int rs=ScaleAnimation.RELATIVE_TO_SELF;
escala= new ScaleAnimation(1,2,1,5,rs,0.5f,rs, 0.5f)
escala.setDuration(3000);
escala.setFillAfter(true);
tv.startAnimation(aparición);

}

QOverride
public void onAnimationEnd(Animation animation) {

tv.setText("THE END");
tv.startAnimation(escala);

}

El gran libro de programación avanzada con Android

@Override
public void onAnimationRepeat(Animation animation) {

i+ + ;
tv.setText("CONTADOR = " + i);

}

@Override
public void onAnimationStart(Animation animation) {
}

}

2.9. Animación de un layout

Una misma animación puede aplicarse a todo un layout. En este caso, se
animarán todos los objetos View del layout en secuencia, cada uno con un retraso.
Partiremos de la siguiente animación, una traslación que hace aparecer un
elemento por la derecha.

res/anim/animación.xml

<?xml version="1.0" encoding="utf-8"?>
<translate
xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/linear_interpolator"
android:fromXDelta="100%p"
android:toXDelta="0%p"
android:duration="2 000"/>

A continuación, definimos la animación del layout mediante
layoutAnimation en el siguiente fichero xml. En este caso, especificamos el
retraso o delay en la animación de cada elemento, expresado como una fracción
de la duración de la animación, y el orden o animationOrder en el que se
aplicarán las sucesivas animaciones, que puede ser normal, reverse o
random. Finalmente, el fichero de la animación se especifica como el recurso
anim/animación.

res/anim/layout_anim.xml

<?xml version="1.0" encoding=Mutf-8"?>
<layoutAnimation
xmlns:android="http://schemas.android.com/apk/res/android"

android:delay="1"
android:animationOrder="normal"
android:animation="@anim/animacion"/>

34

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

mTTT¿rcntfiT afc u n ic ryou r Animación de un layout
wOc/ieA/iorwM*

Animación de un layout
fn ííh■¿'v. V j'. «̂d

Animación de un layout
Orden normal Orden normal

El texto va apareciendo por 1 El texto va apareciendo por la
derecha derecha

Cada textView tiene la misma
animación

ESO ES TODO

Figura 2.9. Animación de un layout mediante LayoutAnimation.

El gran libro de programación avanzada con Android

Finalmente, aplicamos la animación al layout en el fichero main.xml
mediante la etiqueta android: layoutA nim ation . El fichero Java de nuestra
aplicación la y o u tA n im a t io n A c t iv i ty no necesita modificarse con respecto al
creado por defecto. En la figura 2.9. se muestra el resultado de la animación.

m ain . xml

<?xml v e r s io n = " 1.0" e n c o d in g = " u t f -8 "?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:baokground="#ffffff"
android:layoutAnimation="@anim/layout_anim"
>

CTextView
a n d r o id : la y o u t _ w id t h = " f i l l _ p a r e n t "
a n d r o id : layou t_h e ig h t= " w ra p _ co n ten t"
a n d r o id : t e x tS ty le = " b o ld "
a n d ro id : te x tS ize = " 2 0 sp "
a n d ro id : text="Animación de un layout"
a n d r o id : te x tC o lo r = " # 000000"
/>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textSize="20sp"
android:text="Orden normal"
android:textColor="#000000"
/>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textSize="20sp"
a n d r o id : tex t= " E l t e x t o va apareciendo por la derecha"
a n d r o id : te x tC o lo r = " #000000"
/>

CTextView
a n d r o id : la y o u t _ w id t h = " f i l l _ p a r e n t "
a n d r o id : layou t_h e ig h t= " w ra p _ co n ten t"
a n d r o id : te x tS ty le = " b o ld "
a n d ro id : te x tS ize = " 2 0 sp "
a n d r o id : text="Cada tex tV iew t i e n e la misma animación"

36

http://schemas.android.com/apk/res/android

android:textColor=M #000000"
/>

CTextView
android: layout_width="fill_parent"
android:layout_height=" fill_parentM
android:gravity="center"
android: textStyle="bold"
android:textSize="30sp"
android:text="ESO ES TODO"
android:textColor="#000000"
android:id="@+id/texto"
/>

</LinearLayout>

2.10. Animación de un layout en Java

La animación del layout anterior se ha realizado en su totalidad mediante
recursos de animaciones almacenados en ficheros xml. La misma animación se
puede hacer usando solo código Java. Para ello, hay que seguir los siguientes
pasos:

1. Definir la animación que debe aplicarse a cada view, como hicimos
anteriormente.

2. Construir un controlador de animaciones, que es un objeto de la clase
LayoutAnimationController, pasándole la animación como
parámetro.

3. Ejecutar el método setLayoutAnimation del layout que queremos
animar, pasándole el controlador anterior como parámetro.

Todo ello se ¡lustra en la siguiente actividad, que da el mismo resultado que el
ejemplo anterior (figura 2.9.).

import android.app.Activity;
import android.os.Bundle;
import android.view.animation.LayoutAnimationController;
import android.view.animation.TranslateAnimation;
import android.widget.LinearLayout;

public class LayoutAnimationJava extends Activity {
/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

37

El gran libro de programación avanzada con Android

// animación traslación
// rp indica que las coordenadas son relativas
int rp=TranslateAnimation.RELATIVE_TO_PARENT;
TranslateAnimation traslación

=new TranslateAnimation(rp,lf,rp, Of, rp, Of, rp, Of);
traslación.setDuration(3000);

LayoutAnimationController la
=new LayoutAnimationController(traslación);

la.setDelay(1);
la.setOrder(LayoutAnimationController.ORDER_NORMAL);

LinearLayout 11
= (LinearLayout)findViewByld(R.id.layout)/

11.setLayoutAnimation(la);
}

}

El layout que se ha utilizado en este ejemplo es el mismo que el del anterior,
eliminando la etiqueta android: layoutAnimation y definiendo la ID del
layout.

android: id=ff@ + id/layout"

2.11. LayoutAnimationListener

Las animaciones de un layout también admiten la interfaz
AnimationListener. Para ello, se invoca el método
setLayoutAnimationListener. En el siguiente ejemplo se modifica la
actividad anterior para cambiar el TextView final y que experimente una rotación
después de la animación del layout. El fichero main.xml no se modifica. En la
figura 2 .11. se muestra el resultado.

package es.ugr.amaro;

import android.app.Activity;
import android.os.Bundle;
import android.view.animation.*;
import android.view.animation.Animation.AnimationListener;
import android.widget.LinearLayout;
import android.widget.TextView;

public class LayAnimListenerActivity extends Activity
implements AnimationListener{

@Override
public void onCreate(Bundle savedlnstanceState) {

38

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

// animación traslación
// rp indica que las coordenadas son relativas
int rp=TranslateAnimation.RELATIVE_TO_PARENT;
TranslateAnimation traslación

=new TranslateAnimation(rp,lf,rp,Of,rp,Of,rp,Of);
traslación.setDuration(3000);

LayoutAnimationController la
= new LayoutAnimationController(traslación);

la.setDelay(l)/
la.setOrder(LayoutAnimationController.ORDER_NORMAL);

LinearLayout 11
= (LinearLayout) findViewByld(R .id.layout);

11.setLayoutAnimation(la);
11.setLayoutAnimationListener(this);

}

OOverride
public void onAnimationEnd(Animation animation) {

int rs=RotateAnimation.RELATIVE_TO_SELF;
RotateAnimation rotación

= new RotateAnimation(0, 360,rs , 0.5f, rs , 0.5f) ;
rotación.setDuration(3000);

TextView tv=(TextView) findViewByld(R.id.texto);
tv.setText("ESO NO ES TODO")/
tv.startAnimation(rotación);

}

OOverride
public void onAnimationRepeat(Animation animation) {
}

OOverride
public void onAnimationStart(Animation animation) {
}

39

El gran libro de programación avanzada con Android

S i i É Ü ¡ Ü É 4[9:37
mmm-: mmmu

Animación de un layout
Orden normal
El texto va apareciendo por la
derecha
Cada textView tiene la misma
animación

, c : i o N O S90 0 0 1 S3

Figura 2.11. Animación de un layout mediante LayoutAnimationListener.

40

3. ANIMACIÓN DE FOTOGRAMAS

3.1. Animación usando recursos

Una animación de fotogramas consiste en una secuencia de imágenes, cada
una de las cuales se muestra en pantalla durante un tiempo determinado. La
información de los fotogramas y su duración se puede incluir en un fichero xml,
que colocaremos en uno de los directorios res/drawable. En el siguiente
ejemplo animaremos una secuencia de seis imágenes jpg, que irán cambiando en
intervalos de tres segundos. Las imágenes las copiaremos en el directorio
res/ drawable-mdpi. En el mismo directorio crearemos el siguiente recurso, un
fichero xml con la lista de fotogramas de la animación.

res/drawable-mdpi/fotogramas_animados.xml

<?xml version="1.0" encoding="utf-8"?>
<animation-list

xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false" >
<item android:drawable="@drawable/horacia"

android:duration="3000"/>
<item android:drawable="@drawable/pitugordal"

android:duration="3000"/>
<item android:drawable="Odrawable/minipitu"

android:duration="3000"/>
<item android:drawable="@drawable/pituflaca"

android:duration="3000"/>
<item android:drawable="Odrawable/linda"

android:duration="3000"/>
citem android:drawable="@drawable/pitugorda2"

android:duration="3000"/>
</animation-list>

41

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

Usaremos el siguiente layout, que consiste en dos botones para activar y
detener la animación y un ImageView para contener las imágenes.

main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android: layout_height = Mf ill_parent11
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Animación de fotogramas"
android:textSize="30sp"
android:id="@+id/texto"
/>

<Button android: text=nComenzar1'
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"></Button>

<Button android:text="Detener"
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"></Button>

cimageView android:layout_height="fill_parent"
android:layout_width="fill_parent"
android:id="@+id/imagen">

</ImageView>

</LinearLayout>

Finalmente, en la actividad AnimacionDeFotogramas . java declaramos la
animación como un objeto de tipo AnimationDrawable. La animación comienza
y se detiene ejecutando sus métodos start y stop. Para definir la animación,
primero asignamos el recurso fotogramas_animados.xml al ImageView
mediante setBackgroundResource y luego extraemos la animación ejecutando
el método getBackground. En la figura 3.1. se muestra el resultado.

42

http://schemas.android.com/apk/res/android

Hi4t pm¿§«3 11:41 PMH:4aPM WWWwfmmSSSK* :¥xg;

:QWR«í«j»; ;íw««ía3r

3í?W?íííí8«rr:KÍ

Figura 3.1. Animación de fotogramas.

AnimacionDeFotogramas.java

package es.ugr.amaro;

import android.app.Activity;
import android.graphics.drawable.AnimationDrawable;
import android.os.Bundle;
import android.view.View;

43

El gran libro de programación avanzada con Android

import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;

public class AnimacionDeFotogramas extends Activity
implements OnClickListener{

AnimationDrawable animation;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

ImageView image
= (ImageView) findViewByld(R.id.imagen);

image.setVisibility(ImageView.VISIBLE);
image.setBackgroundResource(

R .drawable.fotogramas_animados);
animation

= (AnimationDrawable) image.getBackground();

Button boton=(Button) findViewByld(R .id.buttonl);
boton.setOnClickListener(this);
Button boton2=(Button) findViewByld(R.id.button2);
boton2.setOnClickListener(this);

}

@Override
public void onClick(View v) {

if(v .getld()==R.id.buttonl) animation.start();
else animation.stop();

}

}

Hay que advertir que el método start de AnimationDrawable no se
puede ejecutar directamente en onstart para comenzar la animación
automáticamente, porque la aplicación no funcionaría. También hay que controlar
el tamaño de las imágenes que se usan como fotogramas. Si son muy grandes o
abundantes, se puede producir un error de memoria. Por lo tanto, se debe reducir
el tamaño y el número de los fotogramas tanto como sea posible.

44

3.2. Animación de fotogramas en Java: AnimationDrawable

En el ejemplo anterior hemos animado una serie de fotogramas. La animación
se definió como un recurso, en el fichero fotogramas_animados. xml, que se
asignó al background de un ImageView mediante setBackgroundResource.

La misma animación la realizaremos ahora en Java sin utilizar el recurso
anterior. En Java, una animación de fotogramas es un objeto de la clase
AnimationDrawable. Los fotogramas se añaden a esta animación con el
método addFrame, que admite dos argumentos: la imagen a dibujar (como un
objeto Drawable) y la duración del fotograma en milisegundos. El método
setOneShot (boolean) controla si la animación se va a mostrar solo una vez
(true) o se va a repetir (false). Para asociar la animación al background,
usamos el método setBackgroundDrawable de ImageView. Este sería el
programa Java de la animación, usando el layout del ejemplo anterior. El resultado
es el mismo que se muestra en la figura 3.1.

package es.ugr.amaro;

import android.app.Activity;
import android.content.res.Resources;
import android.graphics.drawable.AnimationDrawable;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;

public class AnimacionFotoJava extends Activity
implements OnClickListener{

AnimationDrawable animation;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

animation=new AnimationDrawable();
Resources resources = getResources();
Drawable imagenl

= resources.getDrawable(R.drawable.horacia);
Drawable imagen2

= resources.getDrawable(R.drawable.pitugordal) ;
Drawable imagen3

= resources.getDrawable(R.drawable.minipitu);

45

El gran libro de programación avanzada con Android

Drawable imagen4
= resources.getDrawable(R.drawable.pituflaca);

Drawable imagen5
= resources.getDrawable(R.drawable.linda);

Drawable imagen6
= resources.getDrawable(R.drawable.pitugorda2);

animation.addFrame(imagenl,3000);
animation.addFrame(imagen2,3000);
animation.addFrame(imagen3,3000);
animation.addFrame(imagen4,3000);
animation.addFrame(imagen5,3000);
animation.addFrame(imagen6,3000);
animation.setOneShot(false);

ImageView image
= (ImageView) findViewByld(R.id.imagen);

image.setVisibility(ImageView.VISIBLE);
image.setBackgroundDrawable(animation);

Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);
Button boton2=(Button) findViewByld(R.id.button2);
boton2.setOnClickListener(this);

}

@Override
public void onClick(View v) {

if(v.getId()==R.id.buttonl) animation.start();
else animation.stop();

}

}

3.3. Ajuste de la relación de aspecto

En los ejemplos anteriores hemos asignado una animación de fotogramas al
background de un ImageView. El problema que surge en estas animaciones es
que los parámetros del ImageView en el layout eran fill_parent. Esto provoca
que el tamaño de las imágenes se reduzca para llenar completamente el espacio
disponible, sin que se mantenga la relación altura/anchura. Si intentamos modificar
el tamaño cambiando los parámetros a wrap_content en el layout, el resultado
es que no se muestra nada; es decir, no se ven las imágenes. Esto se debe a que
la animación es un objeto de tipo Drawable cuyas dimensiones intrínsecas son
cero. No obstante, esta limitación de la clase AnimationDrawable puede

46

solventarse parcialmente, simulando aproximadamente el efecto de
wrap_content.

En primer lugar, creamos una actividad AnimacionFotoAspecto. java
con el siguiente layout:

main.xml

<?xml version=" 1. 0ff encoding="utf-8"?>
<LinearLayout
xmlns : andróid=" http : / / schemas . android. com/apk/res / android"

android:orientation="vertical"
android:background="#ffffff"
android:layout_width="f ill_parent"
android:layout_height="fill_parent"
android:id="@+id/layout"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Animación de fotogramas"
android:textColor="#000000"
android:textSize="16sp"
android:id="@+id/texto"
/>

<Button android:text="Comenzar"
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"></Button>

<Button android:text="Detener"
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"></Button>

<ImageView android:layout_height="fill_parent"
android:layout_width="fill_parent"
android:src="@drawable/horacia"
android:id="@+id/imagen">

</ImageView>

</LinearLayout>

La actividad comienza creando la misma animación de fotogramas del ejemplo
anterior, pero en lugar de asignarla al background, la asignaremos directamente al
ImageView mediante

image.setImageDrawable(animation);

47

El gran libro de programación avanzada con Android

Esto todavía no resuelve el problema. Si intentamos iniciar la animación,
veremos que la imagen no mantiene su relación de aspecto, como se observa en
la figura 3.3.1. La razón es que los parámetros del ImageView son fill parent
(recordemos que no podemos usar wrap_content porque no se muestra nada).
Un modo de forzar a modificar el tamaño de la imagen sería añadir márgenes
mediante setPadding. Para ello tenemos que calcular el tamaño vertical que
ocupa la imagen y, a partir de ahí, calcular la anchura que debería tener
manteniendo su relación de aspecto.

§ Ü fi®

¡magenl wid?h=675 height=1007
ratio=1.4918297506703604
image width^O.height^O

Figura 3.3.1. Animación de fotogramas que no mantiene la relación de aspecto.

En la siguiente actividad se calcula la relación de aspecto real del primer
fotograma. Seguidamente, calculamos la altura que tiene el ImageView en la
pantalla mediante getMeasuredHeight. En este punto nos encontramos otro
problema, ya que si escribimos estos valores en la pantalla, veremos que el
ImageView tiene dimensiones nulas, como se muestra en la figura 3.3.2. La razón
es que estas dimensiones se están calculando dentro del método onCreate de
la actividad cuando el layout de la actividad no se ha desplegado completamente.
Los contenidos solo están definidos cuando la actividad está lista para
interaccionar con el usuario; por ejemplo, al pulsar uno de los botones. Por lo
tanto, la solución es realizar nuestras manipulaciones dentro del método
onClick. El programa Java es el siguiente

48

package es.ugr.amaro;

import android.app.Activity;
import android.content.res.Resources;
import android.graphics.drawable.AnimationDrawable;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;

public class AnimacionFotoAspecto extends Activity
implements OnClickListener{

AnimationDrawable animation;
ImageView image;
TextView tv;
double ratio;

OOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

image= (ImageView) findViewByld(R.id.imagen);
image.setVisibility(ImageView.VISIBLE);

animation=new AnimationDrawable();
Resources resources = getResources();
Drawable imagenl

= resources.getDrawable(R.drawable.horacia);
Drawable imagen2

= resources.getDrawable(R.drawable.pitugordal)
Drawable imagen3

= resources.getDrawable(R.drawable.minipitu);
Drawable imagen4

= resources.getDrawable(R.drawable.pituflaca);
Drawable imagen5

= resources.getDrawable(R.drawable.linda);
Drawable imagen6

= resources.getDrawable(R.drawable.pitugorda2)

animation.addFrame(imagenl,3000)
animation.addFrame(imagen2,3000)
animation.addFrame(imagen3,3000)

El gran libro de programación avanzada con Android

animation.addFrame(imagen4,3000);
animation.addFrame(imagen5,3000);
animation.addFrame(imagen6,3000);
animation.setOneShot(false);
image.setImageDrawable(animation);

int width=imagenl.getIntrinsicWidth();
int height=imagenl.getIntrinsicHeight();
ratio=height/ (width+0.01);
tv= (TextView) findViewByld(R .id.texto);
tv.setText("imagenl width="+width+" height="

+height+" ratio="+ratio);

width=image.getMeasuredWidth()/
height=image.getMeasuredHeight();
tv. append ("\nimage width="+width+", height=?f +height) ;

Button boton=(Button) findViewByld(R.id.buttonl)/
boton.setOnClickListener(this);
Button boton2=(Button) findViewByld(R .id.button2);
boton2.setOnClickListener(this);

}

OOverride
public void onClick(View v) {

if(v.getId()==R.id.buttonl){

int width=image.getMeasuredWidth();
int height=image.getMeasuredHeight();
tv.append("\nonClick width="+width

+" height="+height);

int newwidth= (int) (height/ratio);
int padding=(width-newwidth)/2/
tv.append("\nnewwidth=”tnewwidth

+” padding="tpadding)/
image.setPadding(padding, 0, padding, 0);
animation.start();

}
else animation.stop();

}
}

Al calcular dentro de onClick las dimensiones del ImageView, vemos que ya
no son cero, por lo que podemos calcular el margen necesario en la imagen para
mantener la relación de aspecto (padding). El resultado se muestra en la figura
3.3.2. (izquierda). Hemos escrito las dimensiones del ImageView antes y después
de onClick, cuando ya se ha desplegado el layout, así como la nueva anchura

50

de la imagen y el valor necesario del padding. Es ilustrativo pulsar los botones
Detener y Comenzar de nuevo, porque entonces se vuelve a calcular las
dimensiones del ImageView, que se han modificado respecto al paso anterior al
escribir dos líneas de texto. Esto hace recalcular la anchura de la imagen y
reajustar el padding, como se observa en la figura 3.3.2. (derecha). Dicha
operación puede repetirse varias veces y se verá que la relación de aspecto se
mantiene en todos los pasos, hasta que la imagen desaparezca de la pantalla por
abajo.

S i l €¡22:06 I
IIB 1 IM I— í i i

imagenl width=675 height-1007
ratio=1.4918297506703604
image width=0,height=0
onClick width=480 height=491
newwidth=329 padding=75
onClick width=480 height=435
newwidth=291 padding=94

ComenzarI

oí aAspecto
imagenl
ratio=1.4918297506703604
image width=0,height=0
onClick width=480 height=491
newwidth=329 paddíng=75

Detener ivM&mmmm

Figura 3.3.2. Animación de fotogramas que mantiene
la relación de aspecto usando padding.

51

El gran libro de programación avanzada con Android

4. PROCESOS EN BAOKGROUND

En Android podemos ejecutar simultáneamente partes de un programa como
procesos paralelos. Cada uno de estos procesos se denomina thread, o hilo, y se
ejecuta en background con una prioridad determinada bajo el control de un objeto
de la clase Thread de Java. Una forma de crear un hilo es definir una clase que
extienda a la clase Thread. La nueva clase debe sobrescribir el método run (),
que se ejecutará cuando se inicie el hilo. Otra forma de crear un hilo es
implementando la interfaz Runnable. En este capítulo veremos algunos ejemplos
del uso de hilos (en el libro Android se pueden ver ejemplos alternativos).

Inicialmente, solo hay un hilo asociado a una actividad, el hilo principal, que
consiste en una serie de instrucciones o sentencias que se ejecutan
secuencialmente. Además, este hilo es el que controla los elementos de la interfaz
de usuario (Ul) que se muestran en pantalla. En este capítulo veremos también
cómo se puede modificar la Ul desde otro hilo.

4.1. Uso de Timer y RunOnUiThread

La clase Timer del paquete java.útil permite programar tareas que se
ejecutan transcurrido un tiempo, de forma única o secuencialmente. Un
temporizador es un objeto de tipo Timer. Para programarlo se utilizan los
métodos schedule, para realizar una única tarea, o scheduleAtFixedRate,
para una serie repetitiva de tareas. Para detener el temporizador, se usa el
método cancel. Por ejemplo, para programar una tarea repetitiva, escribiríamos
lo siguiente:

timer= new Timer ("Temporizador"') ;
timer.scheduleAtFixedRate(timerTask,retraso,periodo);

Aquí, retraso es el tiempo de espera hasta que se ejecute la acción; periodo,
el tiempo de repetición y timerTask es un objeto de una subclase de
TimerTask, que contiene las instrucciones a ejecutar a través de su método
run.

52

class Tarea extends TimerTask{
@Override
public void run() {

// instrucciones a ejecutar
}

}

El método run de TimerTask se ejecuta en background en su propio hilo. Por
lo tanto, no podremos modificar la Ul (la pantalla), pues los objetos de esta, por
ejemplo un TextView, solo se pueden cambiar desde el hilo principal. Para
sincronizar con la Ul y modificar sus objetos, podemos usar el método
runOnüiThread (Runnable), de la clase Activity. Su argumento es un objeto
de tipo Runnable cuyo método run se ejecutará en sincronía con el hilo principal
y permitirá modificar los objetos View que en él residan.

La siguiente actividad ilustra el uso de Timer combinado con
RunOnüiThread para mostrar un cronómetro que avanza cada 100 milisegundos.
Usaremos el siguiente layout:

main.xml

<?xml version=" 1. 0" encoding="utf-811 ?>
<LinearLayout
xmlns : android=ffhttp: / /schemas . android. com/apk/res / android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffffff"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/helio"
android:id="@+id/textview"
android:textColor="#000000"
/>

</LinearLayout>

La actividad Temporizador. java se detalla a continuación. Contiene dos
clases internas: Tarea, subclase de TimerTask, y CambiaTexto, que
implementa a la interfaz Runnable, para modificar el TextView. No es necesario
usar invalídate para redibujar la pantalla. En la figura 4.1. se muestra el
resultado.

53

El gran libro de programación avanzada con Android

TEMPORIZAD OR
rate= 100
t= 19600

Figura 4.1. Cronómetro con Timer y RunOnUiThread.

package es.ugr.amaro;

import java.útil.Timer;
import java.útil.TimerTask;
import android.app.Activity;
import android.graphics.Typeface;
import android.os.Bundle;
import android.widget.TextView;

public class Temporizador extends Activity {

TextView tv;
int time=0;
int rate=100;
Timer timer;

/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);

54

setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textview);

timer= new Timer("Temporizador");
Tarea tarea=new Tarea();
timer.scheduleAtFixedRate(tarea, 0, rate);

}

QOverride
public void onPause(){
super.onPause();
timer.cancel();

}

class Tarea extends TimerTask{
@Override
public void run() {

Runnable cambiaTexto=new CambiaTexto();
runOnüiThread(cambiaTexto);

}
}

class CambiaTexto implements Runnable{
0Override
public void run() {

time=time+rate;
String texto="TEMPORIZADOR\n rate= ” + rate

+ "\n t= "+time;
tv.setText(texto);
tv.setTypeface(nuil, Typeface.BOLD);
tv.setTextSize(30);

}
}

}

4.2. Modificación de la Ul con post

Alternativamente al método runOnüiThread de la clase Activity,
podemos usar el método post (Runnable) de la clase view. El argumento de
post debe definir un método run que se ejecutará en el mismo hilo que la Ul.
Veamos un ejemplo en el que modificamos ligeramente el programa anterior,
sustituyendo runOnüiThread por tv.post. También se ha modificado el texto
a escribir. No es necesario usar invalídate para actualizar el TextView. En la
figura 4.2. se muestra el resultado.

55

El gran libro de programación avanzada con Android

TEMPORIZADOR
CAMBIANDO TEXTO
CON POST
rate= 100
t= 34000

Figura 4.2. Modificación oe la Ul con View.post.

public class TemporizadorPost extends Activity {

TextView tv;
int time=0;
int rate=100;
Timer timer;

/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textview);

timer= new Timer("Temporizador") ;
Tarea tarea=new Tarea();
timer.scheduleAtFixedRate(tarea,Obrate);

}

@0verride
public void onPause(){
super.onPause();
timer.cancel() ;

56

}

class Tarea extends TimerTask{
@Override
public void run() {

Runnable cambiaTexto=new CambiaTexto();
tv.post(cambiaTexto);

}
}

class CambiaTexto implements Runnable{
@Override
public void run() {

time=time+rate;
String texto

="TEMPORIZADOR CAMBIANDO TEXTO CON POST\n rate= M
+rate+"\n t= "ttime;

tv.setText(texto);
tv.setTypeface(nuil, Typeface.BOLD);
tv.setTextSize (30);

}
}

}

4.3. Modificación de la Ul con Handler.post

Una tercera forma de modificar la interfaz de usuario consiste en usar un
controlador, u objeto de la clase Handler. A este objeto le pasaremos un objeto
Runnable mediante el método Handler. post (), que lo añade al hilo principal.
En el siguiente ejemplo, que es una variación de los dos anteriores, se explica el
modo de hacerlo. El resultado se muestra en la figura 4.3. (ver Android para otros
ejemplos del uso de la clase Handler pasándole un mensaje).

Tempori zadorHandler.j ava

package es.ugr.amaro;

import java.útil.Timer;
import java.útil.TimerTask;
import android.app.Activity;
import android.graphics.Typeface;
import android.os.Bundle;
import android.os.Handler;
import android.widget.TextView;

57

El gran libro de programación avanzada con Android

public class TemporizadorHandler extends Activity {

Handler handler=new HandlerO;
TextView tv;
int time=0;
int rate=100;
Timer timer;

/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textview);

timer= new Timer("Temporizador");
Tarea tarea=new Tarea();
timer.scheduleAtFixedRate(tarea,Obrate);

}

@Override
public void onPause(){
super.onPause ();
timer.cancel ();

}

class Tarea extends TimerTask{
@Override
public void run() {

Runnable cambiaTexto=new CambiaTexto();
handler.post(cambiaTexto) ;

}
}

class CambiaTexto implements Runnable{
@Override
public void run() {

time=time+rate;
String texto=
"TEMPORIZADOR CAMBIANDO TEXTO CON Handler\n rate= "
+rate+"\n t= "+time;

tv.setText(texto) ;
tv.setTypeface(nuil, Typeface.BOLD) ;
tv.setTextSize(40) ;

}
}

}

58

l& S i l i i 18:00
TemporizadorHandlsr

TEMPORIZADOR
CAMBIANDO
TEXTO CON
Handler
rate= 100
t= 11300

Figura 4.3. Modificación de la Ul con Handler.

4.4. Métodos combinados para modificar la Ul

Los tres métodos anteriores, usando RunOnUiThread(), View.post() y
Handler.post(), pueden combinarse como en el siguiente ejemplo, donde abrimos
tres hilos, cada uno de los cuales varía el color de un texto de forma aleatoria.
Para ello modificamos la clase CambiaTexto de los ejemplos anteriores
añadiéndole dos parámetros: el texto a modificar y un número que se utiliza para
cambiar las componentes RGB del color mediante un algoritmo. En la figura 4.4.
se muestra el resultado.

El layout, definido en el siguiente fichero m a in . xm l, contiene tres TextView.

<?xml v e rs io n = " 1. 0" encod ing= lfu t f - 8 " ?>
< L in e a rL a yo u t
xmlns : android="http : / /schemas . android. com/apk/res/ android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="f ill_parent"
android:background="# f f f f f f "
>

59

El gran libro de programación avanzada con Android

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="By J.E. Amaro 2012"
android:textColor="#803518"
/>

<TextView
android:layout_width="fill_parent"
android:layout_height=Mwrap_content"
android:text="@string/helio"
android:id="@+id/textview"
android: textColor="#8 03518"
/>

<TextView
android: layout_width="fill_parent"
android: layout_height="wrap_content"
android: text = ,T0string/hello"
android:id=M@+id/textview2M
android:textColor="#803518”
/>

<TextView
android: layout_width=ff f ill_parentM
android: layout_height=f,wrap_content11
android:text="@string/hello"
android: id=ff@ + id/textview3"
android:textColor="#803518"
/>

</LinearLayout>

A continuación se detalla el fichero Java de la actividad CambiaColor.

package es.ugr.amaro;

import java.útil.Timer;
import java.útil.TimerTask;
import android.app.Activity/
import android.graphics.Color;
import android.graphics.Typeface;
import android.os.Bundle;
import android.os.Handler;
import android.widget.Textview/

public class CambiaColor extends Activity {

Handler handler = new Handler();
Textview tv,tv2,tv3;
int time=0;

60

int rate=100;
Timer timer,timer2,timer3;

/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R .layout.main);
tv=(Textview) findViewByld(R.id.textview);
tv2=(Textview) findViewByld(R.id.textview2);
tv3=(Textview) findViewByld(R .id.textview3);

int factorl=l;
int factor2=2;
int factor3=3;

timer=new Timer("Temporizador”);
Tarea tarea=new Tarea(tv,factorl);
timer.scheduleAtFixedRate(tarea, 0, rate);

timer2=new Timer("Temporizador2");
Tarea2 tarea2=new Tarea2(tv2,factor2);
timer2.scheduleAtFixedRate(tarea2, 0, rate) ;

timer3=new Timer("Temporizador3");
Tarea3 tarea3=new Tarea3(tv3,factor3);
timer3.scheduleAtFixedRate(tarea3, 0, rate);

}

0Override
public void onPause(){

super.onPause();
timer.cancel();
timer2.cancel();
timer3.cancel();

}

class Tarea extends TimerTask{

int factor;
Textview textTarea;
public Tarea(Textview textview,int fact){

textTarea=textView;
factor=fact;

}
0Override
public void run() {

61

El gran libro de programación avanzada con Android

// TODO Auto-generated method stub

Runnable cambiaTexto
=new CambiaTexto(textTarea,factor);

runOnUiThread(cambiaTexto) ;
}

}

class Tarea2 extends TimerTask{

int factor;
TextView textTarea;
public Tarea2(TextView textView,int fact){

textTarea=textView;
factor=fact;

}
@Override
public void run() {

// TODO Auto-generated method stub

Runnable cambiaTexto
=new CambiaTexto(textTarea, factor);

textTarea.post(cambiaTexto);
}

}

class Tarea3 extends TimerTask{

int factor;
TextView textTarea;
public Tarea3(TextView textView,int fact){

textTarea=textView;
factor=fact;

}
@Override
public void run() {

Runnable cambiaTexto
=new CambiaTexto(textTarea, factor) ;

handler.post(cambiaTexto);
}

}
class CambiaTexto implements Runnable{

int red,green,blue,factor;
TextView textCambia;
public CambiaTexto(TextView textView,int fact) {

62

textCambia=textView;
factor=fact;

}

0Override
public void run() {

// TODO Auto-generated method stub
time=time+rate;

red=(time/factor)%255;
green=(int) ((0.75* time/factor)%255);
blue=(int) ((0.60* time/factor)%255);

String texto
= "TEMP0RIZADOR\n rate= ff + rate + "\n t=

textCambia.setText(texto);
textCambia.setTypeface(nuil, Typeface.BOLD);
textCambia.setTextSize(3 0);
textCambia.setTextColor(Color.rgb(red, green,

}

Byj.E. Amaro 2012

"+time

blue))

Figura 4.4. Tres hilos simultáneos cambiando el color de un texto.

El gran libro de programación avanzada con Android

4.5. Modificación de la Ul con AsyncTask

La clase AsyncTask permite realizar tareas en background y publicar los
resultados en la interfaz de usuario sin necesidad de crear hilos y sincronizarlos
con la Ul. Para utilizarla hay que definir una subclase, que toma tres parámetros
genéricos (ver Apéndice B, secciones B.3 y B.4 sobre el uso de genéricos en
Java).

class MiAsyncTask extends AsyncTask <X, Y, Z>{

}

Aquí, x, Y, z son tres nombres de clases utilizados para los datos del input,
progreso y resultado, respectivamente. La clase anterior debe sobrescribir
necesariamente el método doinBackground, que admite un número variable de
parámetros de tipo X y devuelve un dato de tipo Z (ver Apéndice B, en el que se
discuten los métodos de Java con un número variable de parámetros).

@Override
protected Z dolnBackground(X... input) {
}

El método dolnBackground se ejecuta en un nuevo hilo. Desde este hilo se
pueden publicar actualizaciones en el hilo principal llamando al método
publishProgress (Y.. . progreso). Entonces, el hilo principal se encarga de
invocar el método onProgressüpdate (Y. . . progreso). Al finalizar la
ejecución del proceso en background, el hilo principal invoca el método
onPostExecute(Z resultado).

En el siguiente ejemplo se ilustra el uso de AsyncTask, donde un contador se
incrementa desde 0 hasta 99 y en cada paso mostramos su valor en un objeto
TextView en la pantalla, aumentando proporcionalmente su tamaño. Al final de la
ejecución se añade el texto «Fin», como se muestra en la figura 4.5.

package es.ugr.amaro;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.widget.TextView;

public class AsyncTaskEjemplo extends Activity {

TextView tv;
/** Called when the activity is first created. */

64

QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);

new MiAsyncTask() .execute (100) ;

}

class MiAsyncTask
extends AsyncTask clnteger, Integer, String>{

@0verride
protected String dolnBackground(Integer... parameter) {

int maximo=parameter[0];
for(int i=l;i<maximo;i++){

try {
Thread.sleep(lOO);

} catch (InterruptedException e) {
e.printStackTrace();

}
publishProgress (i);

}
return "Fin";

}

0Override
protected void onProgressUpdate(Integer... progress){

int contador=progress[0];
String texto="Contador="+contador/
tv.setText(texto);
tv.setTextSize(contador);

}

@0verride
protected void onPostExecute(String result){

tv.append("\n"+result);
}

}

65

El gran libro de programación avanzada con Android

4:46 PM

Contador~2ü

Contador
mmmm y**

ÍÍMHÉ m » —«« § r \ ■ '
§ \ J

Figura 4.5. Uso de AsyncTask para ejecutar un proceso en
background y publicar su progreso en el hilo principal.

66

4.6. Máquina tragaperras

El siguiente ejemplo es una aplicación práctica de AsyncTask para ejecutar
varios hilos simultáneamente. Se trata de un juego que simula una máquina
tragaperras. La actividad siotMachine consiste en tres columnas de imágenes
que van permutando simulando la rotación de imágenes en cada uno de los tres
rodillos de una máquina tragaperras. Cada columna se pone en marcha o se para
independientemente por medio un botón que, al ser pulsado, cambia el valor de la
variable de control continuar [columna]. Si esta es true, ejecuta un nuevo
proceso AsyncTask para mostrar las imágenes en movimiento. Si es false, el
proceso AsyncTask se detiene automáticamente. La clase AsyncTask definida
más abajo requiere como parámetro de entrada el número de columna. Cada vez
que se ejecuta onPostExecute, se determina si los tres procesos se han
detenido, en cuyo caso comprueba si las imágenes de la segunda fila coinciden.
En caso afirmativo, se escribe el mensaje «¡¡¡PREMIO!!!» en la pantalla.

Además, se han añadido tres botones que permiten controlar la velocidad del
movimiento de las imágenes, incrementando o disminuyendo el valor de la
variable dificultad, que no es más que el tiempo, en microsegundos, que
cada imagen se muestra en pantalla.

El layout de esta aplicación consiste en una tabla con tres columnas.
Previamente se han copiado las nueve imágenes jpg (de tragaperras1.jpg a
tragaperras9.jpg) en el directorio de recursos res/drawable-hdpi de nuestra
aplicación. Las imágenes son cuadradas con 250 píxeles de lado.

El fichero main. xml es el siguiente:

<?xml version="l. 0" encoding="utf-8"?>
<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_gravity="center"
android:orientation="vertical"
android:background="#ff9988" >

<TextView
android:id="@+id/dificultad"
android: layout_width="wrap_content11
android:layout_height="wrap_content"
android:text="Slot Machine by J.E. Amaro"
android:textSize="18sp"
android:textColor="#000000" />

CTextView
android:id="@+id/texto"

67

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:layout_width="fill_parent"
android: layout_height = ,fwrap_content"
android:text=";Pruebe suerte!"
android:textSize="3 0 sp"
android:textColor="#0 0 5 5 4 4 " />

<TableRow>
<ImageView

android:id="@+id/imageViewl1"
android:layout_width=Hwrap_content"
android:layout_height="wrap_content"
android:src="0drawable/tragaperrasl" />

<ImageView
android:id="0 + id/imageView!2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/tragaperras2" />

<ImageView
android:id="0+id/imageViewl3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="0drawable/tragaperras3" />

</TableRow>

<TableRow>
<ImageView

android:id="0+id/imageView21"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="0drawable/tragaperras4 " />

<ImageView
android:id=n0+id/imageView22"
android: layout_width="wrap_content11
android:layout_height="wrap_content"
android:src="0drawable/tragaperras5" />

<ImageView
android:id="0+id/imageView23"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="0drawable/tragaperras6" />

</TableRow>

<TableRow>

68

cimageView
android:id="@+id/imageView31"
android:layout_width=Mwrap_content"
android:layout_height="wrap_content"
android:paddingLeft="2sp"
android:paddingRight="2sp"
android:src="@drawable/tragaperras 7" />

<ImageView
android:id="0+id/imageView32M
android: layout_width=ffwrap_contentff
android: layout_height = Mwrap_content"
android:paddingLeft="2sp"
android:paddingRight="2sp"
android:src="@drawable/tragaperras8" />

<ImageView
android:id="@+id/imageView33"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingLeft="2sp"
android: paddingRight=ff 2sp"
android:src="Qdrawable/tragaperras9" />

</TableRow>
<TableRow>

<Button android: text=ff Jugar"
android:id=n@+id/buttonl"
android: layout_width="wrap_content,f
android: layout_height=f,wrap_content ">

</Button>
<Button android:text="Jugar"

android: id="@ + id/button2 11

android: layout_width=lfwrap_content"
android:layout_height="wrap_content”>

</Button>
<Button android:text="Jugar"

android:id="@+id/button3”
android: layout_width=,,wrap_content"
android: layout_height = flwrap_contentff>

</Button>
</TableRow>
<TableRow>

<Button android: text=,f FácilM
android:id=M @ + id/button4"
android:layout_width="wrap_content"
android:layout_height=nwrap_content">

</Button>
<Button android: text = ffNormal,f

El gran libro de programación avanzada con Android

android:id=M@+id/button5M
android:layout_width="wrap_content”
android: layout_height=fIwrap_content ">

</Button>
<Button android:text=”Dificil"

android:id="@+id/button6"
android:layout_width="wrap_content"
android: layout_height="wrap_content,f >

</Button>
</TableRow>

</TableLayout>

A continuación se detalla el fichero Tragaperras . j ava. La secuencia de las
nueve imágenes, que se ha almacenado en la matriz secuencia [3] [9], es
diferente en cada columna. En la figura 4.6. se muestran las capturas de pantalla
de la máquina tragaperras en funcionamiento.

package es.ugr.amaro;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageView;
import android.widget.TextView;

public class TragaPerras extends Activity
implements OnClickListener {

int dificultad=100;
int columna;
boolean[] continuar^{false,false,false};
TextView tv,textDificultad;
int[] fotoId=

{R.drawable.tragaperras1,
R.drawable.tragaperras2 ,
R.drawable.tragaperras3 ,
R.drawable.tragaperras4,
R.drawable.tragaperras5,
R.drawable.tragaperras 6,
R .drawable.tragaperras7,
R.drawable.tragaperras8,
R.drawable.tragaperras 9
} ;

// Secuencia de imágenes en cada columna.

70

// Ojo: aquí las filas están intercambiadas
// por las columnas

int[][] secuencia ={
{0,1,2,3,4,5,6,7, 8},
{8,7,6,5,4,3,2,1,01,
{4,5,3,2,6,7,1,0,8}};

ImageView [][] imagev=new ImageView[3][3];

/** Called when the activity is first created. */
QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tv=(TextView) findViewByld(R.id.texto);
textDificultad

=(TextView) findViewByld(R .id.dificultad);

imagev[0] 0]
— ImageView)

imagev[1] 0]
— ImageView)

imagev[2] 0]
= ImageView)

imagev[0] 1]
= ImageView)

imagev[1] 1]
= ImageView)

imagev[2] 1]
= ImageView)

imagev[0] 2]
= ImageView)

imagev[1] 2]
— ImageView)

imagev[2] 2]
— ImageView)

findViewByld(R.id.imageViewll);

findViewByld(R.id.imageView21)/

findViewByld(R.id.imageView31);

findViewByld(R.id.imageViewl2);

findViewByld(R.id.imageView22);

findViewByld(R.id.imageView32);

findViewByld(R.id.imageViewl3);

findViewByld(R .id.imageView23);

findViewByld(R .id.imageView33);

View botonl=findViewByld(R.id.buttonl);
botonl.setOnClickListener(this);
View boton2=findViewByld(R.id.button2);
boton2.setOnClickListener(this);
View boton3=findViewByld(R.id.button3);
boton3.setOnClickListener(this)/

View boton4=findViewByld(R.id.button4);
boton4.setOnClickListener(this);
View boton5=findViewByld(R.id.button5);

71

El gran libro de programación avanzada con Android

boton5.setOnClickListener(this);
View boton6=findViewByld(R.id.button6);
boton6.setOnClickListener(this);

}

class MiAsyncTask
extends AsyncTask cinteger, Integer, String>{

0Override
protected String dolnBackground(Integer... parameter) {

int columna=parameter[0];

while(continuar[columna]){

int elementol=secuencia[columna][0];
for(int i=0;i<8;i++){

secuencia[columna] [i]=secuencia[columna] [i+1];
}
secuencia[columna][8]=elementol/

try {
Thread.sleep(Math.abs(dificultad));

} catch (InterruptedException e) {
e .printStackTrace();

}
publishProgress(columna);

}
return "Stop columna "+(columna+1);

}

@Override
protected void onProgressUpdate(Integer... progress){

int columna=progress[0];
for(int i = 0;i<3/i + +) {

imagev[i][columna].setlmageResource(
fotoíd[secuencia[columna] [i]]);

}
}

0Override
protected void onPostExecute(String result){

if(continuar[0]==false & continuar[1]==false
& continuar[2]==false){

72

if(secuencia[0] [1]==secuencia[1] [1]
& secuencia[0][1]==secuencia[2][1]){

tv.setText("j¡¡PREMIO!!!");
}
else { tv.setText("Suerte la próxima vez"); }

)
else
tv.setText(""+result);

}
}// end AsyncTask

@Override
public void onClick(View boton) {

if(boton.getld()==R.id.button4 |
boton.getId()==R.id.buttonó |
boton.getId()==R.id.button6) {

if(boton.getId()==R.id.button4)
dificultad=dificultad+10;

if (boton.getId()==R.id.button5)
dificultad=200;

if (boton.getId()==R.id.button6)
dificultad=dificuitad-10;

textDificultad.setText("Dificultad "+dificuitad);

}
else {

if(boton.getId()==R.id.buttonl)columna=0;
if(boton.getld()==R.id.button2)columna=l;
if(boton.getId()==R.id.button3)columna=2;

continuar[columna]=!continuar[columna];
if(continuar[columna]){

new MiAsyncTask().execute(columna);
((TextView)boton).setText("Parar");

}
else {

((TextView)boton).setText("Continué");
}

}
} // end onClick

}

73

El gran libro de programación avanzada con Android

Amaro

19:48

19:48

¿•̂v.v.w.sv.%%y>.̂ v.,AN%v<\w>.*.%v.*¡ssssssss*NsN,«s%w.v.;.v.*.,.y.;.;̂ .*.;.v.v.;.v.*.*»sX̂ ŵ wXŵ Xy
Amaro

Continué ContinuéContinué

Normal

19:49

i »wW-í:

Continué Continué
y»yy»y»y»w»y<y»y>̂y»̂iÑŷyIvW«i>vy»yv*»>yyw«i>>vy

Figura 4.6. Juego de la máquina tragaperras usando AsyncTask.

74

El gran libro de programación avanzada con Android

5. SENSORES

Los smartphones más modernos incorporan diversos tipos de sensores. Un
sensor es un dispositivo que convierte estímulos físicos (luz, calor, sonido, etc.) en
señales medibles (como una señal eléctrica). Existen muchos tipos de sensores
para medir distintos estímulos físicos, como la aceleración, el campo magnético, la
presión o la temperatura. Los sensores disponibles en los teléfonos pueden incluir,
además, un giróscopo, un detector de orientación o un detector de proximidad. Los
sensores permiten diseñar aplicaciones que respondan a estímulos externos,
como inclinar o agitar el teléfono. En este capítulo, veremos ejemplos de utilización
de algunos de estos sensores. Dichos ejemplos se deben ejecutar en un
dispositivo físico, pues el emulador de Android no tiene sensores.

5.1. Sensor de aceleración

Para utilizar un sensor en un programa de Android hay que seguir cuatro
pasos:

1. Definir un objeto de la clase SensorManager que proporciona los métodos
para obtener y controlar los sensores.

SensorManager sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

2. Obtener un sensor del tipo que nos interese, mediante getDefaultSensor () .
En el caso de un acelerómetro:

Sensor acelerometro=sensorManager.getDefaultSensor(
Sensor.TYPE_ACCELEROMETER);

3. Registrar el sensor para que comience a medir. En el caso del sensor anterior:

sensorManager.registerListener(
sensorEventListener,
acelerometro,
SensorManager.SENSOR DELAY FASTEST);

76

El método registerListener () requiere tres argumentos. El primero es un
objeto que implementa la interfaz sensorEventListener, donde se registran las
lecturas del sensor El segundo argumento es el sensor propiamente dicho y el
tercero, una constante que indica el delay o intervalo temporal entre dos medidas
consecutivas (velocidad a la que se toman los datos). En este caso, hemos
elegido el delay más rápido.

4. Implementar la interfaz sensorEventListener. Para ello, se deben definir los
dos métodos siguientes:

@Override
public void onAccuracyChanged(Sensor argO, int argl) {
}

@Override
public void onSensorChanged(SensorEvent event) {

// componentes de la aceleración
float x= event.valúes[0];
float y= event.valúes[1];
float z= event.valúes[2];

}

El método más importante es onSensorChanged (). Cada vez que el sensor
realiza una medida, le envía los datos a este método en un objeto
SensorEvent, que contiene los valores numéricos que necesitamos.

En la siguiente aplicación llevamos a la práctica los cuatro pasos anteriores.
Se trata de mostrar en pantalla las tres componentes de la aceleración (x,y,z), su
módulo, la aceleración máxima y la aceleración de la gravedad. Iniciamos una
aplicación Acelerometro con el siguiente layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns : android=lfhttp : / /schemas . android. com/apk/res / android"

android: orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffeecc"
>

<TextView
android:layout_width="fill_parent"
android: layout_height=f,wrap_content"
android:layout_margin="lOpx"
android: textS i ze=fl 20 sp”
android: textStyle=Mnormal,f
android:text="Aceleración"
android: textColor=,f #000000”

77

El gran libro de programación avanzada con Android

/>

<View
android:background=M#000000"
android:layout_width=" fill_parent"
android:layout_height="lspM>

</View>

<TextView
android: layout_width="fill_parent"
android: layout_height = flwrap_contentfl
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="a_x"
android:textColor="#000000"
/>

<TextView
android:id="@+id/textViewAX"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"
android:textStyle="bold"
android:text="Aceleracion_X"
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"
android:textStyle="italic"
android:text="a_y"
android:textColor="#000000"
/>

<TextView
android:id="@+id/textViewAY"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout marginLeft="1Opx"

78

android: textSize=ff 2 0sp"
android: textStyle="bold"
android: text="Aceleracion_Yf'
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="a_z"
android:textColor="#000000"
/>

CTextView
android:id="@+id/textViewAZ"
android:layout_width="fill_parent"
android:layout_height="wrap_content
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="bold"
android: text="Aceleracion_Z11
android:textColor="#000000"
/>

cview
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">
c/View>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="a módulo"
android:textColor="#000000"
/>

El gran libro de programación avanzada con Android

CTextView
android:id="@+id/textViewA"
android: layout_width="fill_parent,f
android: layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android: textSize="20sp"
android:textStyle="bold"
android: text="Aceleracion"
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width=M fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height=Mwrap_content"
android:layout_marginLeft=n10px"
android:textSize=M20sp”
android:textStyle="italic”
android: text=f,a_máxima"
android:textColor="#000000"
/>

<TextView
android:id="@+id/textViewAmax"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="bold"
android:text="Aceleracion_max"
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout marginLeft="10px"

80

android:textSize="20sp"
android :textStyle="italic"
android:text="Gravedad standard"
android:textColor="#000000"
/>

<TextView
android:id="@+id/textViewG"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="10px"
android:textSize="20sp"
android:textStyle="bold"
android:text="Gravedad_estándar"
android:textColor="#000000”
/>

</LinearLayout>

A continuación se detalla la actividad Acelerometro. Nótese que en este
ejemplo, la clase Acelerometro implementa también la interfaz
SensorEventListener. En el método onCreate registramos el sensor e
iniciamos un hilo en background mediante un AsyncTask (ver capítulo anterior),
que se encarga de mostrar los resultados de la medida en pantalla cada 100
milisegundos.

package es.ugr.acelerometro/

import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.widget.Textview;

public class Acelerometro extends Activity
implements SensorEventListener{

int contador=0;
double x=0,y=0,z=0,a=0,amax=0;
double gravedad=SensorManager.STANDARD_GRAVITY;
TextView tvax,tvay,tvaz,tvaftvaMax,tvG;

/** Called when the activity is first created. */
0Override

81

El gran libro de programación avanzada con Android

public void onCreate(Bundle savedlnstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tvax=(TextView) findViewByld(R.id.textViewAX);
tvay=(Textview) findViewByld(R.id.textViewAY);
tvaz=(Textview) findViewByld(R.id.textViewAZ);
tva=(Textview) findViewByld(R.id.textViewA);
tvaMax=(Textview) findViewByld(R.id.textViewAmax);
tvG=(Textview) findViewByld(R.id.textViewG);

// inicia un SensorManager
SensorManager sensorManager=(SensorManager)

getSystemService(Context.SENSOR_SERVICE);
// define un sensor acelerómetro
Sensor acelerometro=sensorManager.getDefaultSensor(

Sensor.TYPE_ACCELEROMETER);
// registra el sensor para que comience a escuchar
SensorManager.registerListener(

this,
acelerometro,
SensorManager.SENSOR_DELAY_FASTEST);

new MiAsyncTask().execute();

}

@Override
public void onAccuracyChanged(Sensor argO, int argl) {
}

@Override
public void onSensorChanged(SensorEvent event) {

// componentes de la aceleración
x= event.valúes[0]/
y= event.valúes[1];
z= event.valúes [2]/
// modulo de la aceleración
a=Math.sqrt(x*x+y*y+z*z);
// aceleración máxima
if(a>amax)amax=a;

}

class MiAsyncTao1: .CLends AsyncTask<Void, Void, Void> {

@Override
protected Void dolnBackground(Void... argO) {

82

while(true){
try {

Thread.sleep(lOO);
} catch (InterruptedException e) {

e .printStackTrace();
}
contador++;
publishProgress () ;

}
}

@Override
protected void onProgressüpdate(Void... progress){

tvax.setText(”"+ x) ;
tvay.setText(" "+ y);
tvaz . setText (",f+ z) ;
tva.setText(”"+a);
tvaMax.setText(""+amax);
tvG .setText (" f, + gravedad) ;
tvG.append("\n"+contador);

}
}

}

El resultado se muestra en la figura 5.1. La primera medida (arriba izquierda)
se realizó con el teléfono en posición horizontal. Por eso, la mayor aceleración, de
9.8 m/s2, corresponde a la componente z, que apunta hacia abajo en el sistema de
coordenadas que utiliza el sensor. La segunda captura (arriba derecha) se hizo
sujetando el teléfono en posición vertical. La mayor componente de la aceleración,
10.3 m/s2, es ahora la componente y, cuya dirección es la del eje longitudinal del
teléfono y su sentido va desde la parte superior a la inferior del teléfono. La tercera
imagen (abajo izquierda) se obtuvo sujetando el teléfono vertical en posición
apaisada con el borde izquierdo hacia abajo, con lo que ahora es mayor la
componente x, 9.9 m/s2, que apunta de derecha a izquierda a lo ancho del
teléfono. La última imagen se capturó después de agitar el teléfono repetidas
veces, quedando registrada una aceleración máxima de 33.5 m/s2.

83

El gran libro de programación avanzada con Android

A & -> W »?tll 07:49 jlk 9 11 Sill'tt 7:50
Aceleromeíro ' ' ■ -

Aceleración Aceleración

aje aje
0.1149216815829277 0.5363011956214905
¡® ¡ a y
0.26815059781074524 10.266336441040039
a_z az
9.883264541625977 1.5322890281677246
a módulo a módulo
9.88756945542055 10.502189687991207
a_máxima a_máxima
11.311858582163484 11.418766974074495
Gravedad estándar Gravedad estándar
9.806650161743164 9.806650161743164
825 1502

lili O 7:51 I 1.1 Í9 IP • ftll«37:52
Acelerometro 1 Acelerometro■______ ____________________________________

Aceleración Aceleración

ajx a j
9.921571731567383 1.1492167711257935II II
0.26815059781074524 2.2601263523101807
a_z a_z
1.072602391242981 9.53849983215332
a módulo a módulo
9.976513972323316 9.773148385959344
a_máxima a_máxima
12.464927034729081 33.53311416220929
Gravedad estándar Gravedad estándar
9.806650161743164 9.806650161743164
2087 2633

Figura 5.1. Medidas del sensor de aceleración con un teléfono
Samsung Galaxy S.

84

5.2. Lista de sensores de un teléfono

Para determinar los sensores presentes en un dispositivo físico, se puede
invocar el método getSensorList (tipo) del SensorManager, cuyo argumento
es el tipo de sensor y devuelve una lista de sensores en un objeto List. Si
queremos la lista de todos los sensores, lo invocamos con la constante
Sensor.type_a l l. Por ejemplo, en la siguiente actividad SensorList,
obtenemos la lista de sensores y, para cada uno de ellos, mostramos en pantalla
sus propiedades (tipo, fabricante, etc.), tal y como se observa en la figura 5.2.

Numero de sensores: 5
Tipo: 1
SMB380
Vendedor; Bosch Sensortec
Power (mA): 0.0
Resolución: 0.0 - Rango: 0.0
Tipo: 2
MS-3C Magnetic Sensor
Vendedon Yamaha Corporation
Power (mA): 4.0
Resolución: 1.0« Rango: 300.0
Tipo: 3
MS-3C Orientación Sensor
Vendedor: Yamaha Corporation
Power (mA); 0.0
Resoiucion: 0.0 - Rango: 0.0
Tipo: 8
gp2a Proximity Sensor
Vendedor: gp2a
Power (mA): 1.0
Resoiucion: 0.0 - Rango; 1.0
Tipo: 5
gp2a Light Sensor
Vendedor: sharp
Power (mA): 3.0
Resoiucion: 1.0 - Rango: 120000.0

Figura 5.2. Lista de sensores en un teléfono Samsung Galaxy S.

Usaremos el siguiente fichero para el layout:

<?xml version="l.0M encoding="utf-8"?>
<LinearLayout
xmlns : android=ffhttp : / /schemas . android. com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android: layout_height=lf f ill_parent"
android:background="#ffeecc"
>

<TextView

85

El gran libro de programación avanzada con Android

android:id="@+id/textView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Osp"
android:textStyle="bold"
android:text="Lista de sensores"
android:textColor="#000000"
/>

</LinearLayout>

En la figura 5.2. se observa que hay cinco sensores: SMB380 (sensor de
aceleración fabricado por Bosch), magnético, orientación, proximidad y luz. A
continuación se detalla el fichero SensorList. java.

package es.ugr.sensorlist;

import java.útil.List;

import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class SensorListActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
TextView tv= (TextView) findViewByld(R .id.textView);

// inicia un SensorManager
SensorManager sensorManager=(SensorManager)

getSystemService(Context.SENSOR_SERVICE);
List<Sensor> allSensors =

SensorManager.getSensorList(Sensor.TYPE_ALL);

int size=allSensors.size ();
tv.setText("\nNumero de sensores: "+size);
for(int i=0;i<size;i++){

Sensor sensor=allSensors.get(i);
int tipo=sensor.getType();
tv.append("\nTipo: "ttipo);
String nombre=sensor.getName();
tv.append("\n"+nombre);

86

String vendedor=sensor.getVendor();
tv.append("\nVendedor: "+vendedor);
float power=sensor.getPower();
tv.append("\nPower (mA): "tpower);
float resolucion=sensor.getResolution();
tv.append("XnResolucion: "tresolucion);
float rango=sensor.getMaximumRange();
tv.append(" - Rango: "+rango);

}

}
}

5.3. Sensor de campo magnético

A partir de la aplicación anterior, vemos que nuestro dispositivo dispone de un
sensor de campo magnético. Es sencillo modificar la aplicación Acelerometro
para obtener un medidor del campo magnético. Basta con cambiar el tipo de
sensor por Sensor. type_m a g n e t i c_f i e l d. Utilizamos el siguiente layout:

<?xml version=" 1. 0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffeecc"
>

<TextView
android: layout_width=" f ill_parent11

android: layout_height="wrap_content11
android:layout_margin="lOpx"
android:textSize="20sp"
android:textStyle="normal"
android:text="Sensor de Campo Magnético"
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout height="wrap content"

87

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:layout_marginLeft="1Opx"
android:textSize="2Osp"
android:textStyle="italic"
android:text="B_x"
android:textColor="#000000"
/>

<TextView
android:id="@+id/textViewBX"
android:layout_width=M fill_parentM
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android: textStyle="bold"
android: text="Campo_X"
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="B_y"
android:textColor="#000000"
/>

CTextView
android:id="@+id/textViewBY"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="2Osp"
android:textStyle="bold"
android:text="Campo_Y"
android:textColor="#000000"
/>

<View
android:baokground="#000000"
android:layout_width="fill_parent"
android:layout height="lsp">

88

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"
android:textStyle="italic"
android:text="B_z"
android: textColor="#000000"
/>

<TextView
android:id="@+id/textViewBZ"
android:layout_width="fill_parent"
android: layout_height="wrap_content11
android: layout_marginLeft=" lOpx"
android:textSi ze="2 Osp"
android:textStyle=MboldM
android: text=f’Campo_Z"
android: textColor=ff#000000"
/>

<View
android:background=n #000000 M
android: layout_width=,f f ill_parent"
android:layout_height=Mlsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="10pxM
android:textSize="2Osp"
android:textStyle="italic"
android: text=ffB módulo"
android:textColor="#000000"
/>

<TextView
android:id="0+id/textViewB"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="bold"
android:text="Campo total"
android:textColor="#000000"
/>

El gran libro de programación avanzada con Android

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

CTextView
android: layout_width=" f ill_parent"
android: layout_height="wrap_content"
android:layout_marginLeft=M1Opx"
android:textSize="20sp"
android:textStyle="italic"
android:text=MCampo máximo"
android:textColor="#000000"
/>

<TextView
android:id="@+id/textViewBmax"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"
android:textStyle="bold"
android:text="Campo Terrestre"
android:textColor="#000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="Campo tierra mínimo y máximo"
android:textColor="#000000"
/>

<TextView
o■*"" _oid: id="@ + id/textViewBTierra"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"

90

android:textStyle="bold"
android:text="Campo_tierra"
android:textColor="#000000"
/>

</LinearLayout>

La siguiente aplicación CampoMagnetico presenta algunas variaciones con
respecto a Acelerometro. En primer lugar, modificamos el delay del sensor a
sensor_delay_n o r m a l, ya que no necesitamos la velocidad de medida máxima,
que además consume más batería. En segundo lugar, añadimos una variable
booleana continuar que controle el ciclo while en el hilo AsyncTask.
Añadiremos, además, el método onPause (), donde cambiaremos su valor a
false para que el hilo en background se detenga cuando abandonemos la
actividad (en caso contrario, seguiríamos midiendo el campo magnético en
background). También añadiremos el método onResume para reiniciar el
AsyncTask si volvemos a la actividad. Finalmente, mostramos en pantalla un
mensaje de texto con Toast cuando abandonemos la actividad. El programa
CampoMagnetico. j ava sería el siguiente:

package es.ugr.campomagnetico;

import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.widget.Textview;
import android.widget.Toast;

public class CampoMagnetico extends Activity
implements SensorEventListener{

// SensorManager sensorManager;
int contador=0;
boolean continuar=true;
double x=0,y=0,z=0,a=0,amax=0;
double campoTierraMax

=SensorManager.MAGNETIC_FIELD_EARTH_MAX;
double campoTierraMin

=SensorManager.MAGNETIC_FIELD_EARTH_MIN;

TextView tvax,tvay,tvaz,tva,tvaMax,tvG;

/** Called when the activity is first created. */

91

El gran libro de programación avanzada con Android

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tvax=(Textview) findViewByld(R.id.textViewBX);
tvay=(Textview) findViewByld(R.id.textViewBY);
tvaz=(Textview) findViewByld(R.id.textViewBZ);
tva=(Textview) findViewByld(R.id.textViewB);
tvaMax=(Textview) findViewByld(R.id.textViewBmax);
tvG=(Textview) findViewByld(R.id.textViewBTierra)/

// inicia un SensorManager
SensorManager sensorManager=(SensorManager)

getSystemService(Context.SENSOR_SERVICE);
// define un sensor campo magnético
Sensor campo=sensorManager.getDefaultSensor(

Sensor.TYPE_MAGNETIC_FIELD);
// registra el sensor para que comience a escuchar
SensorManager.registerListener(

this, campo, SensorManager.SENSOR_DELAY_NORMAL);

new MiAsyncTask().execute();
}

@Override
public void onResume(){

super.onResume();
continuar=true;
new MiAsyncTask().execute();

}

@Override
public void onPause(){

super.onPause ();
continuar=false;

}

@Override
public void onAccuracyChanged(Sensor argO, int argl) {
}

@Override
public void onSensorChanged(SensorEvent event) {

// componentes del campo
x= event.valúes[0] ;
y= event.valúes[1] ;
z= event.valúes[2];

92

// modulo
a=Math.sqrt(x*x+y*y+z*z) ;
// máximo
if(a>amax)amax=a;

}

class MiAsyncTask extends AsyncTask<Void,Void,Void>{

0Override
protected Void dolnBackground(Void... argO) {

while(continuar){
try {

Thread.sleep(200);
} catch (InterruptedException e) {

e .printStackTrace () ;
}
contador++;
publishProgress () ;

}
return nuil;

}

@Override
protected void onProgressüpdate(Void... progress){

tvax . setText (11 "+x) ;
tvay. setText ("ff + y) ;
tvaz.setText("" + z);
tva . setText (11"+a) ;
tvaMax.setText(""+amax);
tvG. setText (11 l? + campoTierraMin+M - "tcampoTierraMax) ;
tvG.append("\n"tcontador);

}

QOverride
protected void onPostExecute(Void result){

super.onPostExecute(result);

Context context=getApplicationContext();
Toast.makeText(context,

"Campo Magnético AsyncTask Terminado", l).show();
}

}
}

93

El gran libro de programación avanzada con Android

Sensor de Campo Magnético

Bjx
-18.799999237060547________
¡ ¡ I
35.20000076293945__________
H
-15.199999809265137________
B módulo
42.702693348617665_________
Campo máximo
50.350768849204826_________
Campo tierra mínimo y máximo
30.0 - 60.0
534

m £> Ü- S f i l ld 8:00
. .. . ^ '

Sensor de Campo Magnético

~Bjc
-0.800000011920929__________
B j
29.200000762939453
B_z
-16.799999237060547________
B módulo
33.69747793144129__________
Campo máximo
50.350768849204826_________
Campo tierra mínimo y máximo
30.0 - 60.0
1462

CampoMagnetlco

Sensor de Campo Magnético

B_x
-550.7999877929688
B j
151.1999969482422
B_z
-910.0
B módulo
1074.4031206348402
Campo máximo
1328.5571514202338
Campo tierra mínimo y máximo
30.0 - 60.0
3078

Figura 5 .3 . Medidas del campo magnético con la aplicación CampoMagnetico
para distintas orientaciones de un teléfono Samsung Galaxy S.

Campo Magnético AsyncTask Tenr

Teléfono Contactos Mensajes

94

4 •

En la figura 5.3. se muestran varias capturas de pantalla obtenidas al ejecutar
este programa en un teléfono Samsung Galaxy S. Los valores de campo
magnético que mide el sensor están expresados en microteslas (pT). Recordemos
que el tesla (T) es la unidad de inducción magnética en el Sistema Internacional y
equivale a

1 T = J [N _
Cm/s

Es decir, un campo magnético de 1 T es aquel que ejerce una fuerza de un newton
sobre una partícula con carga 1 culombio moviéndose a una velocidad de 1m/s
perpendicularmente a la dirección del campo. El campo magnético terrestre
depende de la posición y generalmente vale entre 30 y 60 microteslas. Estos son
los valores de campo magnético tierra mínimo y máximo que están definidos como
constantes en el sensor manager. En la primera captura de la figura 5.3. (arriba
izquierda), vemos valores típicos de las tres componentes del campo y de su
módulo o intensidad, medidos con el teléfono colocado sobre una mesa. La
intensidad (módulo) es de 42 pT, efectivamente típica del campo terrestre. En la
segunda, hemos girado el teléfono respecto al eje perpendicular (eje z) hasta que
la componente x del campo sea aproximadamente cero. En esas condiciones, la
componente y (el eje longitudinal del teléfono) apunta hacia el Norte. En la tercera
captura (abajo izquierda) hemos colocado el teléfono sobre un ordenador portátil
cerca del botón de encendido, donde el campo magnético producido por la fuente
de tensión es muy intenso, más de 1000 pT. Finalmente, en la última captura de
pantalla (abajo derecha), observamos el mensaje del Toast al finalizar la actividad
pulsando el botón Back del teléfono. Si lo acercamos a un imán potente,
notaremos que el teléfono queda magnetizado durante unos segundos y después
vuelve a la normalidad.

5.4. Sensor de orientación

El sensor de orientación permite registrar y determinar la orientación del
teléfono con tres ángulos medidos en grados. El primero es el azimut o ángulo con
respecto a la dirección Norte medido en el plano horizontal. El segundo es el
ángulo de verticalidad del teléfono, que es cero si está apoyado en un plano
horizontal. El ángulo de giro se hace negativo al incorporar el teléfono y levantarlo,
alcanzando el valor -90 al colocarlo de pie sobre su base. Si el teléfono está boca
abajo, este ángulo es positivo. El tercer ángulo mide la inclinación lateral al apoyar
el teléfono sobre uno de sus lados. Este ángulo es positivo con el lado izquierdo
del teléfono hacia abajo y negativo si es el lado derecho el que está abajo.

La siguiente aplicación monitoriza los tres ángulos de orientación. Modificamos
en primer lugar el layout de los ejemplos anteriores, incluyendo varios colores de

95

El gran libro de programación avanzada con Android

fondo, con un mensaje en rojo que indica la orientación predominante del teléfono
(Norte, Noroeste, vertical arriba, lateral derecha, etc.).

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android”

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffeecc"
>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_margin="lOpx"
android:textSize="20sp"
android:textStyle="normal"
android:text="Sensor de Orientación"
android:textColor="#000000"
android:background="#ddccaa"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">
</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text ="Azimut"
android:textColor="#000000"
android:background="#ffddaa"
/>

CTextView
android:id="@+id/textViewAzimut"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="bold"
android:text="azimut"
android:textColor="#000000"

96

http://schemas.android.com/apk/res/android%e2%80%9d

/>

<View
android: background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</view>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="Verticalidad"
android:textColor="#000000"
android:background^"# f fddaa"
/>

<TextView
android:id="@+id/textViewVertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="bold"
android:text="verticalidad"
android:textColor="#000000"
/>

<View
android:background^"#000000"
android: layout_width=" f ill_parent11
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italic"
android:text="Inclinación lateral"
android:textColor="#000000"
android:background^"#ffddaa"
/>

<TextView
android:id="@+id/textViewLateral"
android:layout width="fill parent"

97

El gran libro de programación avanzada con Android

android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"
android:textStyle="bold"
android:text="lateralidad"
android:textColor=M #000000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android: layout_marginLeft=" lOpx"
android:textSize="2 Osp"
android:textStyle="italie"
android: text=,fOrientación"
android:textColor="#000000"
android:background="#ffddaa"
/>

<TextView
android:id="0+id/textViewOrientación"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="30sp"
android:textStyle="bold"
android:text="orientación"
android:textColor="#dd0000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="2 Osp"
android:textStyle="italic"
android:text="Número de lecturas"

98

android: textColor=”#00000011
android: background="# f fddaa"
/>

CTextView
android: id=”0+id/textViewContador,f
android: layout_width="fill_parent"
android;layout height="wrap_content"
android: layout_marginLeft=”lOpx"
android: textSize="20sp”
android: textStyle="bold"
android:text="cero"
android:textColor="#000000”
/>

</LinearLayout>

La siguiente actividad OrientacionSensor. java es una variación de los
ejemplos de sensores anteriores con una serie de mejoras. En primer lugar,
iniciamos el sensor en el método onResume y lo detenemos completamente en
onPause, usando el método unregisterListener. En los ejemplos anteriores,
el sensor podría continuar activo en background al terminar la aplicación. En
segundo lugar, en vez de AsyncTask para modificar la interfaz de usuario,
utilizamos un objeto que implementa la interfaz Runnable y lo ejecutamos usando
el método runOnüiThread dentro de onSensorChanged (ver capítulo anterior).
El programa sería el siguiente:

package es.ugr.orientaciónsensor;

import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.Textview;

public class Orientacionsensor extends Activity
implements SensorEventListener!

SensorManager SensorManager;
Sensor sensor;
int contador=0;
double azimut=0,vertica1=0,latera1=0;
TextView tvAzimut,tvVertical,tvLateral,

tvOrientacion,tvContador;
String orientacion=”orientacion";

99

El gran libro de programación avanzada con Android

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tvAzimut=(TextView)
findViewByld(R.id.textViewAzimut);

tvVertical=(TextView)
findViewByld(R.id.textViewVertical);

tvLateral=(TextView)
findViewByld(R.id.textViewLateral);

tvOrientacion=(TextView)
findViewByld(R.id.textViewOrientación);

tvContador=(TextView)
findViewByld(R.id.textViewContador);

// inicia un SensorManager
sensorManager=(SensorManager)

getSystemService(Context.SENSOR_SERVICE);
// define un sensor de orientación
sensor=SensorManager.getDefaultSensor(

Sensor.TYPE_ORIENTATION);
}

QOverride
public void onResume(){

super.onResume();
// inicia el sensor
SensorManager.registerListener(

this, sensor, SensorManager.SENSOR_DELAY_NORMAL)
}

@Override
public void onPause()(

super.onPause();
// detiene el sensor
SensorManager.unregisterListener(this) ;

}

@Override
public void onAccuracyChanged(Sensor argO, int argl) {
}

@Override
public void onSensorChanged(SensorEvent event) {

// ángulos de orientación
azimut= event.valúes [0];

100

vertical= event.valúes[1];
lateral= event.valúes [2];
contador++;
if (azimut < 22) orientacion="NORTE n .f
else if
else if
else if
else if
else if
else if
else if

azimut < 67) orientacion=
azimut < 112) orientación
azimut < 157) orientación
azimut < 202) orientacion=
azimut < 247) orientacion=
azimut < 292) orientacion=
azimut < 337) orientacion=

"NORESTE"
= " E S T E " ;
="SURESTE
"SUR";
"SUROESTE
"OESTE";
"NOROESTE

»* . t
»* .>

i» .
r

else orientacion="NORTE";

if (vertical < -50) orientacion="VERTICAL ARRIBA";
if (vertical > 50) orientacion="VERTICAL ABAJO";
if (lateral > 50) orientacion="LATERAL IZQUIERDA";
if (lateral < -50) orientacion="LATERAL DERECHA";
runOnüiThread(new CambiaTexto());

class CambiaTexto implements Runnable{

@Override
public void run() {

// TODO Auto-generated method stub

tvAzimut.setText(""+azimut);
tvVertical.setText(""fvertical);
tvLateral.setText(""tlateral);
tvOrientación.setText(""forientacion);
tvContador.setText(""+contador);

} // end CambiaTexto

El resultado se muestra en la figura 5.4. En la primera captura (arriba
izquierda), el teléfono está orientado al Norte en posición horizontal. En la
segunda está vertical boca arriba; en la tercera, boca abajo y en la última está de
lado con el lado izquierdo hacia abajo.

101

El gran libro de programación avanzada con Android

m f i l i a 8:18 +$* m m* r w*m »ili

Sensor de Orientación

Azimut
12.0
Verticalidad
-4.0
Inclinación lateral
- 0.0
Orientación

Número de lecturas
458

: iensor de Orientación

Azimut
116.0
Verticalidad
81.0

Inclinación lateral
3.0
Orientación

Número de lecturas
470

jgg

Sensor de Orientación

Azimut
301.0
Verticalidad
87.0
Inclinación lateral
- 0.0
Orientación

Número de lecturas
536

S ensor de Orientación

Azimut
314.0
Verticalidad
0.0
Inclinación lateral
86.0
Orientación

.ATERAL IZQUIERDA
Número de lecturas
595

Figura 5.4. Medidas del sensor de orientación
con un teléfono Samsung Galaxy S.

102

5.5. Sensor de proximidad y sensor de luminosidad

Para finalizar este capítulo, veremos cómo funcionan los sensores de
aproximación y de luminosidad, que son los dos que restan del teléfono Samsung
Galaxy S utilizado como modelo. El siguiente ejemplo tiene la particularidad de
que utiliza simultáneamente dos sensores. La estructura es similar al ejemplo
anterior, aunque hay que modificar el método onSensorChanged añadiendo
bucles if-else para determinar el tipo de sensor del que proviene cada evento.
Esto se consigue con el método event. sensor. getType ().

El layout de este ejemplo es el siguiente:

<?xml version=" 1. 0" encoding=,,utf-811 ?>
<LinearLayout
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffeecc"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_margin="lOpx"
android:textSize="20sp"
android: textStyle="normal"
android:text="Sensor de Proximidad”
android:textColor="#000000"
android:background="#ddccaa"
/>

<View
android:background^"#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="italie"
android:text="Proximidad (cm)"
android: textColor=M #00000011
android:background="# ffddaa"
/>

<TextView

103

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:id="@+id/textViewDistancia”
android: layout_width=" f ill_parentf?
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android: textStyle="bold"
android:text="proximidad"
android:textColor=" #000000"
/>

<TextView
android:id="@+id/textViewProximidad"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android: layout_marginLef t=" 1 Opx11
android: textSize="30sp"
android: textStyle=,fbold,f
android:text="lej os"
android:textColor=M#ff0000"
/>

<View
android:background=n#000000"
android:layout_width="fill_parent"
android:layout_height=nlspM>

</View>

<TextView
android:layout_width="fill_parent"
android: layout_height=flwrap_content"
android:layout_margin=MlOpx"
android:textSize="20sp"
android: textStyle=,fnormal"
android:text="Sensor de Luz”
android:textColor="#000000"
android:background="#ddccaa"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"

104

android:textStyle="italic"
android:text="Luz ambiente en unidades Lux (SI)"
android:textColor="#000000"
android:background="#ffddaa"
/>

<TextView
android:id="@+id/textViewLuz"
android: layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"
android:textStyle="bold"
android:text="luz"
android:textColor="#000000"
/>

CTextView
android:id="@+id/textViewLuminosidad"
android:layout_width="fill_parent"
android:layout_height = "wrap__content"
android:layout_marginLeft="lOpx"
android: textSize="30sp,f
android: textStyle="bold"
android: text="OSCURO"
android:textColor="#ff0000"
/>

<View
android:background="#000000"
android:layout_width="fill_parent"
android:layout_height="lsp">

</View>

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="1Opx"
android:textSize="20sp"
android:textStyle="italic"
android:text="Número de lecturas"
android: textColor="#000000lf
android:background="#ffddaa"
/>

CTextView
android:id="@+id/textViewContador"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="lOpx"
android:textSize="20sp"

105

El gran libro de programación avanzada con Android

a n d ro id : te x tS ty le = " b o ld "
a n d ro id : te x t= " c e r o ”
a n d ro id : te x tC o lo r = " #000000"
/>

</L in e a rL a y o u t>

La actividad P ro x im ity S e n s o r . j ava es la siguiente:

package e s . u g r . am aro. p ro x im ity s e n s o r ;

im p o rt a n d ro id . app . A c t i v i t y ;
im p o rt a n d ro id . c o n te n t . C o n te x t;
im p o rt a n d ro id . h a rd w a re . S ensor;
im p o rt a n d ro id . h a rd w a re . S ensorE vent;
im p o rt a n d ro id . h a rd w a re . S e n so rE v e n tL is te n e r;
im p o rt a n d ro id . h a rd w a re . SensorManager;
im p o rt a n d ro id . o s . B u n d le ;
im p o rt a n d ro id . w id g e t . T e x tv ie w ;

p u b l ic c la s s P ro x im ity S e n s o r extends A c t i v i t y
im plem ents S e n s o rE v e n tL is te n e r{

SensorManager SensorManager;
Sensor senso rLuz , sensorP rox im o;
i n t con ta do r= 0 ;
double lu z = 0 , d is ta n c ia d o ;
T e x tv ie w tv L u z ,tv L u m in o s id a d ,tv P ro x im id a d ,

tv D is ta n c ia , tv C o n ta d o r ;
S t r in g lum inosidad="NORMAL", proxim idad="LEJO S" ;

/ * * C a lle d when th e a c t i v i t y is f i r s t c re a te d . * /
@Override
p u b lic v o id onC rea te (B und le sa ve d ln s ta n ce S ta te) {

s u p e r . o n C re a te (s a v e d ln s ta n c e S ta te) ;
s e tC o n te n tV ie w (R .la y o u t.m a in) ;

tv P ro x im id a d = (T e x tv ie w)
f in d V ie w B y ld (R . id . te x tV ie w P ro x im id a d) ;

tv D is ta n c ia = (T e x tv ie w)
f in d V ie w B y ld (R . id . te x tV ie w D is ta n c ia) ;

tv L u z = (T e x tv ie w) f in d V ie w B y ld (R . id . te x tV ie w L u z) ;
tvL u m in o s id a d = (T e x tv ie w)

f in d V ie w B y ld (R . i d . te x tV ie w L u m in o s id a d);
tvC o n ta d o r= (T e x tv ie w)

f in d V ie w B y ld (R .id .te x tV ie w C o n ta d o r) ;

/ / i n i c i a un SensorManager

106

sensorManager=(SensorManager)
getSystemService(Context.SENSOR_SERVICE);

// define sensores de proximidad y de luminosidad
sensorProximo=sensorManager.getDefaultSensor(

Sensor.TYPE_PROXIMITY);
sensorLuz=sensorManager.getDefaultSensor(

Sensor.TYPE_LIGHT);
}

@Override
public void onResume(){

super.onResume();
// inicia el sensor
sensorManager.registerListener(this, sensorLuz,

SensorManager.SENSOR_DELAY_FASTEST)
sensorManager.registerListener(this, sensorPróximo

SensorManager.SENSOR_DELAY_FASTEST)
}

@Override
public void onPause()(

super.onPause();
// detiene el sensor
sensorManager.unregisterListener(this);

}

0Override
public void onAccuracyChanged(Sensor argO, int argl) {
}

0Override
public void onSensorChanged(SensorEvent event) {

if(event.sensor.getType()==Sensor.TYPE_PROXIMITY)
distancia=event.valúes[0];

if(event.sensor.getType()==Sensor.TYPE_LIGHT)
luz=event.valúes[0];

contador++;
if (distancia < 1) proximidad="CERCA";
else proximidad=nLEJOS";

if (luz<100) luminosidad^ "OSCURO";
else if (luz<2000) luminosidad= "LUZ NORMAL";
else if (luz<6000) luminosidad^ "BRILLANTE";
else luminosidad= "MUCHA LUZ";

runOnüiThread(new CambiaTexto());
}

El gran libro de programación avanzada con Android

class CambiaTexto implements Runnable{

@Override
public void run() {

// TODO Auto-generated method stub

tvDistancia.setText(""+distancia);
tvProximidad.setText(""+proximidad)/
tvLuz.setText("" + luz) ;
tvLuminosidad. setText (" fl + luminosidad) /
tvContador.setText(""+contador);

}
} // end cambiaTexto

}

En la figura 5.5. se muestran dos capturas de pantalla del teléfono. En nuestro
teléfono, los valores de la proximidad pueden ser cero o uno. Los valores de la
luminosidad pueden ser 0, 6, 1000, 5000, 9000 y 15000. En la captura de la
izquierda se miden los valores normales, proximidad uno y luminosidad 1000. En
la segunda (derecha), hemos acercado la mano a un centímetro del teléfono,
midiendo proximidad cero y luminosidad 6 (oscuro). Si acercamos el teléfono a
una bombilla o a la luz del sol, la luminosidad es de 5000. Bajo condiciones muy
brillantes, próximo a una bombilla muy potente o apuntando directamente al sol,
puede subir a 9000 o 15000.

108

S í m i l 21:21
ProxíroitySensor '

Sensor de Proximidad Sensor de Proximidad

Proximidad (cm)
1.0

Proximidad (cm)
0.0

LEJOS CERCA
Sensor de luz Sensor de Luz

L uz ambiente en unidades Lux (SI)
1000.0

lu í ambiente en unidades Lux (SI)
6.0

Número de lecturas Número de íecturas
45 57

Figura 5.5. Medidas del sensor de proximidad y de luminosidad
con un teléfono Samsung Galaxy S.

109

El gran libro de programación avanzada con Android

6. DIÁLOGOS

Si una actividad requiere información adicional del usuario, se puede obtener
abriendo una nueva actividad que recoja los datos y se los transfiera a la actividad
original. Sin embargo, puede ser tedioso de programar y complicar excesivamente
nuestra aplicación. Los diálogos simplifican estas tareas.

6.1. Crear un diálogo

Un diálogo es una ventana que se abre sobre nuestra actividad mostrando un
mensaje y nos permite interactuar con el usuario mediante botones y otros
elementos.

Para mostrar un diálogo invocamos el método showDialogO de la clase
Activity. Esto hace que se ejecute el método onCreateDialog de la clase
Activity que deberemos sobrescribir para construir nuestro diálogo, que será un
objeto de tipo Dialog.

Dialog dialogo;

Para construir un diálogo debemos definir un objeto de la clase Builder o
constructor de diálogos, mediante

Builder builder = new AlertDialog.Builder(this);

Ejecutando distintos métodos de este objeto Builder, podemos ir definiendo los
contenidos de nuestro diálogo. Finalmente, el diálogo se crea mediante

Dialogo = builder.create();

En el siguiente ejemplo creamos un diálogo muy simple que solo incluye un
icono y un mensaje de texto. En primer lugar, creamos una actividad Dialogo
con el siguiente layout, que incluye un botón para lanzar el diálogo:

<?xml version="l.0" encoding="utf-8"?>

110

<LinearLayout
xm ln s : a n d ro id = "h t t p : //sch e m a s . a n d ro id . c o m /a p k /re s /a n d ro id "

a n d ro id : la y o u t_ w id th = " f i l l _ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= " f i l l_ p a r e n t "
a n d ro id : o r ie n t a t io n = " v e r t ic a l "
a n d r o id :b a c k g r o u n d = " # f f f f f f "

>

<TextView
a n d ro id : te x tC o lo r= " # 000000"
a n d ro id :te x tS iz e = "2 0 s p "
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : te x t= "E je m p lo de un d iá lo g o s im p le " />

<Button
a n d ro id : id = "@ + id /b u t to n l"
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : te x tS iz e = "2 0 s p "
a n d ro id : te x t= "M o s tra r e l d iá lo g o " />

</LinearLayout>

A continuación, escribimos el siguiente programa D ia lo g o , java , que incluye
el método o n C re a te D ia lo g (in t i d) , dependiente de un parámetro entero que
permite definir varios diálogos distintos dependiendo de las necesidades del
programa. Dentro de este método definimos un icono y un texto para el diálogo.
En la figura 6.1. se muestra el resultado.

package e s . u g r . am aro. d ia lo g o ;

im p o rt a n d r o id .a p p .A c t iv i t y ;
im p o rt a n d ro id . app . A le r tD ia lo g ;
im p o rt a n d ro id .a p p .A le r tD ia lo g . B u i ld e r ;
im p o rt a n d ro id . app . D ia lo g ;
im p o rt a n d ro id . o s . B u n d le ;
im p o rt a n d ro id . v ie w . V iew ;
im p o rt a n d ro id . v ie w . V ie w .O n C lic k L is te n e r ;
im p o rt a n d ro id . w id g e t . B u tto n ;

p u b l ic c la s s D ia lo g o extends A c t i v i t y im plem ents
O n C lic k L is te n e r {

/ * * C a lle d when th e a c t i v i t y is f i r s t c re a te d . * /
0 O ve rride
p u b l ic v o id onC rea te (B und le s a v e d ln s ta n c e S ta te) {

s u p e r. o n C re a te (s a v e d ln s ta n c e S ta te) ;

111

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

setContentView(R.layout.main);
Button boton= (Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);

}

@Override
public void onClick(View argO) {

showDialog(0) /
}

@Override
protected Dialog onCreateDialog(int id){

Dialog dialogo=null;
if(id==0){

Builder builder=new AlertDialog.Builder(this) ;
builder=builder.setIcón(R.drawable.ic_launcher);
builder=builder.setTitle(

"Este es el aspecto de un diálogo");
dialogo=builder.create ();

}
return dialogo;

Ejemplo de un dialogo simple

Mostrar el diálogo

Este es el aspecto de lio
diálogo

?!
¡

Figura 6.1. Actividad con un diálogo simple creado mediante onCreateDialog.

112

6.2. Diálogos con botones

Mediante onC rea teD ia log , podemos incluir hasta tres botones en el diálogo,
denominados botón positivo, botón negativo y botón neutro. El botón positivo
(primer botón) se crea con el método s e tP o s it iv e B u tto n , que toma como
argumentos el texto del botón y un objeto que implementa la interfaz
D ia lo g ln te r f a ce . O n C lic k L is te n e r, con las instrucciones a ejecutar al
pulsar el botón (similar a la interfaz O n C lic k L is te n e r de la clase View). Los
botones neutro y negativo se definen de forma similar. Para saber qué botón se ha
pulsado, usamos las constantes de la clase D ia lo g ln te r f ace

BUTTON_POSITIVE, BUTTON_NEGATIVE, BUTTON_NEUTRAL,

que se pueden comparar con una variable entera que recibe el método o n C lic k y
que toma el valor correspondiente al botón pulsado.

En el siguiente ejemplo se ilustra todo lo explicado. Creamos un diálogo con
tres botones y con un mensaje de texto. Para mostrar un mensaje en un diálogo,
usamos el método setMessage. Al pulsar los botones, se modifica un texto en la
ventana principal informando del botón que hemos pulsado. Además, al pulsar un
botón, la ventana de diálogo se cierra automáticamente.

Para el ejemplo utilizaremos el siguiente layout:

<?xml v e rs io n = "1 . 0" e n c o d in g = "u tf -8 " ?>
< L in e a rL a yo u t
xmlns : android=ff http : / /schemas . android. com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff"

>
<TextV iew

a n d ro id : id = "@ + id /te x tV ie w "
a n d ro id : te x tC o lo r = " #000000"
a n d ro id : te x tS iz e = "2 0 s p "
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : te x t= "U n d iá lo g o con b o to n e s" />

<B u tton
a n d r o id : id = " 0 + id /b u t to n l"
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t h e ig h t= "w ra p c o n te n t"
a n d ro id : te x tS iz e = "2 0 s p "
a n d ro id : te x t= "M o s tra r e l d iá lo g o " />

113

El gran libro de programación avanzada con Android

</LinearLayout>

A continuación se detalla el programa DialogoConBotones. java. La
interfaz para los botones se implementa en la clase DListener. En la figura 6.2.
se muestran las capturas de pantalla.

Botón positivo pulsado

Mostrar el diálogo

Figura 6.2. Un diálogo con tres botones creado mediante onCreateDialog.

package es.ugr.amaro.dialogoconbotones;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.app.AlertDialog.Builder;
import android.content.Dialoglnterface;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Textview;

public class DialogoConBotonesActivity extends Activity
implements OnClickListener{

Textview tv;

Este es el mensaje.
Pulse uno de los tres botones
para continuar j

Botón
positivo

Botón
neutro

Botón
negativo

114

/** Called when the activity is first created. */
QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tv=(Textview) findViewByld(R .id.textview);
Button boton= (Button) findViewByld(R .id.buttonl)
boton.setOnClickListener(this);

}

0Override
public void onClick(View v) {

showDialog(0) ;
}

@Override
protected Dialog onCreateDialog(int id){

DListener listener= new DListener();
Dialog dialogo=null;
if(id==0){

Builder builder=new AlertDialog.Builder(this);
builder=builder.setIcón(R.drawable.ic_launcher);
builder=builder.setTitle(

"Esto es un diálogo con botones")
builder=builder.setMessage("Este es el mensaje.
"\n Pulse uno de los tres botones para continuar

builder=builder.setPositiveButton(
"Botón positivo", listener);

builder=builder.setNegativeButton(
"Botón negativo", listener);

builder=builder.setNeutralButton(
"Botón neutro", listener);

dialogo=builder.create();
}
return dialogo;

}

class DListener
implements Dialoglnterface.OnClickListener{

@Override
public void onClick(Dialoglnterface dialog, int which)

if(which == Dialoglnterface.BUTTON POSITIVE)
tv.setText("Botón positivo pulsado");

if(which == Dialoglnterface.BUTTON_NEGATIVE)
tv.setText("Botón negativo pulsado");

El gran libro de programación avanzada con Android

if(which == Dialoglnterface.BUTTON_NEUTRAL)
tv.setText("Botón neutro pulsado");

}
} // end Dialoglnterface.OnClickListener

}

6.3. Diálogos con ítems

El método onCreateDialog solo permite diálogos con uno, dos o tres
botones. Para incluir más opciones, podemos utilizar una lista de ítems, que se
comportan de la misma manera que los botones al pulsarlos. El texto de los ítems
debe introducirse en un array de tipo CharSequence (similar a String) y se le
pasa como argumento al método setitems. La siguiente actividad muestra un
ejemplo de un diálogo con una lista de ítems. Al pulsar cada uno de ellos, se
ejecuta el método onClick de la interfaz Dialoglnterf ace. OnClickListener
y se le pasa como argumento el índice del ítem pulsado. En esta actividad
modificamos un TextView para indicar el ítem que se ha pulsado. Usamos el
mismo layout que en el ejemplo anterior. A continuación se detalla el programa
Java y en la figura 6.3. se muestra el resultado.

package es.ugr.amaro.dialogoconitems;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.app.AlertDialog.Builder;
import android.content.Dialoglnterface;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class DialogoConltemsActivity extends Activity
implements OnClickListener{

TextView tv;
CharSequence[] items=

{"item 0","ítem l","ítem 2",
"item 3", "ítem 4", "ítem 5"K*

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

116

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tv=(Textview) findViewByld(R.id.textview);
Button boton= (Button) findViewByld(R.id.buttonl)/
boton.setOnClickListener(this);

@Override
public void onClick(View v) {

showDialog(0) ;
}

@Override
protected Dialog onCreateDialog(int id){

DListener listener= new DListenerO;
Dialog dialogo=null;
i f (i d = = 0) {

Builder builder=new AlertDialog.Builder(this);
builder.setIcón(R.drawable.ic_launcher);
builder.setTitle("Esto es un diálogo con items");
builder.setItems(items, listener);
dialogo=builder.create();

}
return dialogo;

class DListener
implements Dialoglnterface.OnClickListener{

QOverride
public void onClick(Dialoglnterface dialog, int which){

tv.setText("Ha pulsado el item "+ which);
}

} // end Dialoglnterface.OnClickListener
}

117

El gran libro de programación avanzada con Android

Ha pulsado el ítem 4

Mostrar el diálogo

Figura 6.3. Un diálogo con ítems creado mediante onCreateDialog.

6.4. Diálogos de elección única

Una variación del método setitems es setSingleChoiceitems, que sirve
para añadir al diálogo una lista de ítems con casillas para marcar. Al pulsar un
ítem, se marca su casilla, pero el diálogo no se cierra, lo que permite corregir
nuestra opción. Para cerrar el diálogo, debemos pulsar el botón Back del
dispositivo o añadir un botón al diálogo.

En la siguiente actividad se muestra un ejemplo, que es una variación del
anterior. Nótese que en los ejemplos anteriores hemos usado dos formas
alternativas para añadir elementos al diálogo mediante un Builder: asignando el
resultado al objeto builder

builder = builder.setlcon(icono);

o simplemente ejecutando el método

builder.setlcon(icono);

118

Estas asignaciones se hacen de forma secuencial una tras otra, pero existe
otro modo. Puesto que builder. set icón (icono) es a su vez un objeto
Builder, es posible ejecutar sobre él otro método

builder.setIcón(icono) .setTitle (titulo)

que es de nuevo un objeto Builder. Por lo tanto, podemos encadenar todas las
asignaciones y englobarlas en una única sentencia. Por ejemplo, para crear un
dialogo simple:

dialogo = builder.setlcon(icono) .setTitle(titulo) .create ();

Esta técnica de los métodos encadenados se ha utilizado también en el
Siguiente ejemplo DialogSingleChoiceltems . j ava :

package es.ugr.amaro.dialogsinglechoiceitems;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.app.AlertDialog.Builder;
import android.content.Dialoglnterface;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Textview;

public class DialogSingleChoiceltems extends Activity
implements OnClickListener{

Textview tv;
CharSequence[] items=

{"item 0","ítem l","ítem 2",
"ítem 3","ítem 4","ítem 5"};

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;
setContentView(R .layout.main);

tv=(Textview) findViewByld(R.id.textview);
Button boton= (Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this) ;

}

0Override
public void onClick(View v) {

119

El gran libro de programación avanzada con Android

show D ia log (0) ;
}

@Override
p r o t e c t e d D ia log o n C r e a t e D ia lo g (i n t i d) {

DListener l i s t e n e r = new D L is t e n e r O ;
Dia log d i a l o g o = n u l l /
i f (i d = = 0) {

B u i lder bui lder=new A l e r t D i a l o g . B u i l d e r (t h i s) ;
d ia logo= b u i l d e r

. s e t I c ó n (R. draw able . i c _ l a u n c h e r)

. s e t T i t l e (" S e le c c io n e una de l a s opc iones")

. s e t S i n g l e C h o i c e I t e m s (i t e m s ,0 , l i s t e n e r)

. s e t P o s i t i v e B u t t o n ("OK", l i s t e n e r)

. s e t N e g a t i v e B u t t o n ("Cancelar", l i s t e n e r)

. c r e a t e () ;
}

return d i a lo g o ;
}

c l a s s DListener
implements D i a l o g l n t e r f a c e . O n C l ic k L is t e n e r {

@Override
p u b l i c v o id o n C l i c k (D i a l o g l n t e r f a c e d i a l o g , i n t w h i c h) {

i f (w h i c h >= 0)
t v . s e t T e x t ("Ha pulsado e l i tem "+ which);
i f (w h i c h == D i a l o g l n t e r f a c e . BUTTON_NEGATIVE)

t v . s e t T e x t ("Ha cance lado la opc ión");
}

} / / end D i a l o g l n t e r f a c e . OnClickListener

}

En la figura 6.4. se muestran las capturas de pantalla. Nótese que al pulsar un
botón en estos diálogos, siempre se le pasa al método onClick una constante
negativa, lo que permite discernir si se ha pulsado un botón o un ítem.

120

Figura 6.4. Un diálogo con ítems con casillas de elección única
creado mediante onCreateDialog.

6.5. Diálogos de elección múltiple

En este ejemplo construiremos un diálogo de elección múltiple, donde pueden
marcarse varias casillas, a partir del ejemplo anterior. Para almacenar los valores
true o false de cada casilla, se introduce un array booleano llamado marcas. El
diálogo de elección múltiple se construye ejecutando el método

Builder.setMultiChoiceltems(items,marcas,mlistener)

Aquí, items es el array de ítems, marcas es el array booleano y mlistener es
un objeto de una clase que implementa la interfaz

Dialoglnterface.OnMultiChoiceClickListener

Esta interfaz debe definir el método onClick que toma tres argumentos, entre
ellos el índice del ítem marcado y su valor true o false. En la siguiente actividad se
muestra una lista de los ítems marcados al pulsar el botón OK. En la figura 6.5. se
muestra el resultado.

El gran libro de programación avanzada con Android

ítem O
ítem 2
ítem 3

Figura 6.5. Un diálogo de elección múltiple creado mediante onCreateDialog.

package es.ugr.amaro.dialogmultiplechoiceitems ;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.app.AlertDialog.Builder;
import android.content.Dialoglnterface;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class DialogMultipleChoiceltems extends Activity
implements OnClickListener!

TextView tv;
Charsequence[] items=

{"item 0","item l","item 2",
"item 3","item 4","item 5"};

booleanf] marcas= new boolean[items.length];

@Override

122

public void onCreate(Bundle savedlnstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tv=(TextView) findViewByld(R.id.textView);
Button boton= (Button) findViewByld(R .id.buttonl);
boton.setOnClickListener(this);

@Override
public void onClick(View v) {

showDialog(0) ;
}

0Override
protected Dialog onCreateDialog(int id){

DListener listener= new DListener();
MListener mlistener= new MListener();
Dialog dialogo=null/
i f (i d = = 0) {

Builder builder=new AlertDialog.Builder(this);
dialogo= builder

.setIcón(R.drawable.ic_launcher)

.setTitle("Seleccione una de las opciones")

.setMultiChoiceltems(items,marcas, mlistener)

.setPositiveButton("OK",listener)

.setNegativeButton("Cancelar",listener)

.create () ;
}
return dialogo;

class DListener
implements Dialoglnterface.OnClickListener{

@Override
public void onClick(Dialoglnterface dialog, int which){

if(which == Dialoglnterface.BUTTON_POSITIVE){
tv.setText("Ha marcado los items");
for(int i=0;i<marcas.length;i + +){

if(marcas[i])tv.append("\n "+ items[i]);
}

}
if(which == Dialoglnterface.BUTTON_NEGATIVE)

tv.setText("Ha cancelado la opción");
}

123

} // end Dialoglnterface.OnClickListener

class MListener implements
Dialoglnterface.OnMultiChoiceClickListener{

@Override
public void onClick(Dialoglnterface dialog,

int which, boolean marca){
}

} // end Dialoglnterface.OnMultiChoiceClickListener
}

El gran libro de programación avanzada con Android

6.6. Diálogos de progreso

En el siguiente ejemplo se ilustra una actividad con dos botones. Al pulsarlos
aparece un diálogo de progreso, que es un objeto de la clase ProgressDialog,
mostrando un elemento visual animado mientras se ejecuta un proceso AsyncTask
en background. Hay dos estilos de diálogo de progreso: horizontal y giratorio
(spinner). Cada diálogo se inicia con showDialog (id). Entonces se ejecuta el
método onCreate Dialog (id), donde creamos el diálogo mediante

progressDialog = new ProgressDialog(this);

y definimos varias de sus propiedades: estilo, ¡cono y título. Al finalizar el proceso
en background, eliminamos el diálogo mediante removeDialog (id) o,
alternativamente, con progressDialog.hide (). En la figura 6.6. se muestran
las capturas de pantalla.

Para esta actividad utilizamos el siguiente layout:

<?xml version=" 1. 0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff"

>

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="20sp"

124

http://schemas.android.com/apk/res/android

android: layout_width=" f ill_parent11
android: layout_height="wrap_content,f
android:text="Un diálogo de progreso" />

<Button
android:id="@+id/buttonl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textSize="20sp"
android:text="Barra de progreso" />

<Button
android:id="@+id/button2"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textSize="20sp"
android:text="Diálogo giratorio" />

</LinearLayout>

Figura 6.6. Una actividad con dos diálogos de progreso
(de barra horizontal y giratorio) animados mientras se ejecuta

un proceso en background con AsyncTask.

125

El programa DialogoDeProgresoActivity. java es el siguiente:

package es.ugr.amaro.dialogodeprogreso;

import android.app.Activity/
import android.app.Dialog;
import android.app.ProgressDialog;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class DialogoDeProgresoActivity extends Activity
implements OnClickListener{

TextView tv;
ProgressDialog progressDialog;
int progreso,id;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

tv=(TextView) findViewByld(R .id.textView);
Button botonl= (Button) findViewByld(R .id.buttonl);
botonl.setOnClickListener(this);
Button boton2= (Button) findViewByld(R.id.button2);
boton2.setOnClickListener(this);

}

@Override
public void onClick(View v) {

id=0;
if(v .getId()==R.id.buttonl)

id=l;

showDialog(id);
new MyAsyncTask().execute();

}

@Override
protected Dialog onCreateDialog(int id) {

El gran libro de programación avanzada con Android

126

progressDialog = new ProgressDialog(this);
if(id==l)

progressDialog.setProgressStyle(
ProgressDialog.STYLE_HORIZONTAL);

else
progressDialog.setProgressStyle(

ProgressDialog.STYLE SPINNER);

progressDialog.setIcón(R.drawable.ic_launcher);
progressDialog.setTitle("Progreso...");
return progressDialog;

}

class MyAsyncTask extends AsyncTask<Void,Void,Void>{

0Override
protected Void dolnBackground(Void...argO){

for(int i=0;i<100;i + +){
try {

Thread.sleep(100);
} catch (InterruptedException e) {
}
progreso=i+l;
publishProgress ();

}
return nuil;

}

@Override
protected void onProgressüpdate(Void...progress){

progressDialog.setProgress(progreso);
if(progreso==100)removeDialog(id);

se puede usar lo siguiente para ocultar el diálogo
como alternativa:

if (progreso==100)progressDialog.hide() ;
}

} // end AsyncTask

6.7. Diálogos personalizados

Aunque el uso de AlertDialog.Builder simplifica la rutina de crear un
diálogo, sus posibilidades son limitadas. Por ejemplo, no admite incluir un objeto
EditText. Si queremos un diálogo personalizado con un layout concreto,

//
//
//

}

127

El gran libro de programación avanzada con Android

debemos construir explícitamente un objeto D ia log , que se visualizará en una
ventana flotante. En la siguiente actividad construiremos un diálogo básico
personalizado. Dentro del método onC rea teD ia log , definimos un diálogo
mediante

D ia lo g d ia lo g o = new D ia lo g (th is) ;

A continuación, se definen sus propiedades. Su contenido se «infla» a partir de un
layout especificado en un fichero d ia lo g o . x m l.

d ia lo g o . s e tC o n te n tV ie w (R .la y o u t. d ia lo g o) ;

Sus elementos pueden manipularse de forma similar a los de la ventana principal,
pero hay que tener la precaución de definir los objetos View mediante
D ia lo g . f in d V ie w B y ld () y no con A c t i v i t y . f in d V ie w B y ld () .

En este ejemplo, usamos el siguiente fichero de layout d ia lo g o .x m l para
nuestro diálogo:

<?xml v e rs io n = " 1 .0 " e n c o d in g = "u tf -8 "?>
< L in e a rL a yo u t
xmlns : a n d ro id = lfh t tp : / /schemas . a n d ro id . co m /a p k /r e s /a n d ro id "

a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : o r ie n t a t io n = " v e r t ic a l "
a n d ro id : b a c k g ro u n d = "# ff f f8 8 "
a n d ro id : padd ing="10dp">

<TextV iew
a n d ro id : id = "@ + id /te x tV ie w D ia lo g o "
a n d ro id : te x tC o lo r= "# 0 0 0 0 f f "
a n d ro id :te x tS iz e = "2 0 s p "
a n d ro id : la y o u t_ w id th = "w ra p _ c o n te n t"
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : te x t= " Id e n t i f iq ú e s e para comenzar" />

CTextView
a n d ro id : id = "@ + id /te x tV ie w D ia lo g o "
a n d ro id : te x tC o lo r= "# 0 0 0 0 0 0 "
a n d r o id : te x tS iz e = " l8sp"
a n d ro id : la y o u t_ w id th = "w ra p _ c o n te n t"
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : te x t= "U s u a r io : " />

< E d itT e x t
a n d ro id : id = "@ + id /e d itT e x t1"
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : in p u tT y p e = " te x t" >

128

</EditText>

<TextView
android:id="@+id/textViewDialogo"
android:textColor=M#000000"
android:textSize="18sp"
android:layout width="wrap content"
android:layout_height="wrap_content"
android: text="Contraseña : " />

<EditText
android:id="@+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="textPassword" >

</EditText>

<Button
android:id="@+id/buttonDialogo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Aceptar" />

</LinearLayout>

La siguiente actividad DialogoBasico. java abre un diálogo que solicita un
usuario y una contraseña. Nótese que también ilustramos cómo modificar el fondo
de la ventana principal con window. setFlags. En este caso, aparece en pantalla
la imagen del escritorio. En la figura 6.7. se muestra el resultado.

package es.ugr.amaro.dialogobasico;

import android.app.Activity;
import android.app.Dialog;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.Window;
import android.view.WindowManager;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class DialogoBasico extends Activity
implements OnClickListener {

TextView tvftvd;
EditText editText1,editText2;
int id=0;
/** Called when the activity is first created. */

129

El gran libro de programación avanzada con Android

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);
Button botonl= (Button) findViewByld(R .id.buttonl)
botonl.setOnClickListener(this);

}

@Override
public void onClick(View v) {

showDialog(id) ;
}

0Override
protected Dialog onCreateDialog(int id){

Dialog dialogo = new Dialog(this);

// Modificar una propiedad de Window
// Esto solo es necesario si queremos personalizar
// la ventana

Window w = dialogo.getWindow();
// flag para desenfocar el fondo
// int flag = WindowManager.LayoutParams.FLAG_BLUR_BEHIND;
// flag para oscurecer el fondo
// int flag = WindowManager.LayoutParams.FLAG_DIM_BEHIND;
// flag para mostrar el fondo del escritorio

int flag =
WindowManager.LayoutParams.FLAG_SHOW_WALLPAPER;

w.setFlags(flag,flag);

// creación de un diálogo personalizado
dialogo.setTitle("Dialogo básico");
dialogo.setContentView(R.layout.dialogo);
tvd = (TextView)

dialogo.findViewByld(R.id.textViewDialogo);
editTextl=(EditText)

dialogo.findViewByld(R.id.editTextl);
editText2=(EditText)

dialogo.findViewByld(R.id.editText2);
Button botonDialogo=(Button)

dialogo.findViewByld(R.id.buttonDialogo);
botonDialogo.setOnClickListener(

new AceptarListener());
return dialogo/

}

130

class AceptarListener implements OnClickListener{
0Override
public void onClick(View v) {

String username= editText1.getText().toString().trim();
String password= editText2.getText().toString().trim();
if(username.matches("albert")&&

password.matches("einstein")){
dismissDialog(id);
tv.setText("Bienvenido, "tuserñame);

}
else

tvd.setText("Incorrecto "fuserñame
+" "fpassword
+ "\n Identifiqúese de nuevo");

}
} // end AceptarListener

}

Figura 6.7. Un diálogo básico personalizado.

131

El gran libro de programación avanzada con Android

7. MENUS

7.1. Menú de opciones

El menú de opciones se abre cuando pulsamos la tecla MENU del dispositivo
(nótese que a partir de Android 3.0 no se requiere que los teléfonos tengan una
tecla MENU, y los ítems del menú de opciones se presentan en la barra de
acción). El menú se crea en el método onCreateOptionsMenu (Menú menú) de
la clase Activity, que debemos sobrescribir, y consiste en una serie de opciones
seleccionables con botones, que son objetos de la clase Menultem. Para añadir
un Menultem al menú, se usa el método

menu.add(int itemGroup, int itemld, int orden,
Charsequence titulo)

Los argumentos de este método son: el grupo al que pertenece cada ítem, un
número identificativo, su posición y un título. Al pulsar uno de los botones del
menú, se ejecuta el método onOptionsItemSelected (Menultem item),
donde debemos definir la acción a realizar.

La siguiente actividad muestra un menú con tres opciones. Al pulsar una
opción, se escribe un mensaje en la pantalla, como se observa en las capturas de
la figura 7.1. Usamos el siguiente fichero como layout:

<?xml version=Ml.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffbb">

CTextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="24sp"
android:layout width="fill parent"

132

http://schemas.android.com/apk/res/android

android: layout_height="wrap_content"
android:text="Una aplicación con menú.
\n Pulse la tecla MENU y seleccione las opciones

/>
</LinearLayout>

Ü 1 I © 11:47

Una aplicación con menú. Una aplicación con menú.

Pulse la tecla MENU y
seleccione las opciones

Pulse la tecla MENU y
seleccione las opciones

Ha pulsado la opción 1

; .v í ¿ y & v ? £ ; : v S v & y & f t

Opción 1 Opción 2 Opción 3

Figura 7.1. Un menú de opciones básico.

La actividad MenusActivity. java es la siguiente:

package es.ugr.amaro.menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menú;
import android.view.Menultem;
import android.widget.Textview;

public class MenusActivity extends Activity {

Textview tv;
/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

El gran libro de programación avanzada con Android

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(Textview) findViewById(R .id.textview);

}

QOverride
public boolean onCreateOptionsMenu(Menú menú){

super.onCreateOptionsMenu(menú)/
Menultem iteml= menú.add(0,1,1,"Opción 1")/
Menultem item2= menú.add(0,2,2,"Opción 2");
Menultem item3= menú.add(0,3,3,"Opción 3");

itemí.seticon(R.drawable.ic_launcher);
item2.setIcón(R.drawable.ic_launcher);
item3.setIcón(R.drawable.ic_launcher);
return true;

}

@Override
public boolean onOptionsItemSelected(Menultem item){

int id= item.getItemld();
tv.append("\n Ha pulsado la opción ”+id);
return true;

}
}

7.2. Submenús

Si el menú de una actividad tiene más de seis opciones, a partir de la sexta se
muestran en un submenú desplegable, como se observa en la figura 7.2.1.

Podemos añadir al menú otros submenús desplegables mediante
Menú. addSubMenu, que produce un objeto de tipo SubMenu. Por ejemplo:

SubMenu subl= menú.addSubMenu(0,1,1,"submenú 1");

Los ítems se añaden a un submenú de la misma forma que a un menú. Hay
que procurar que las id de los ítems de los distintos submenús sean únicas. Por
ejemplo, en la siguiente actividad creamos dos submenús, cada uno con cuatro
ítems. Al pulsar un ítem, el id de este se escribe en un TextView. Usamos el
mismo layout que en el ejemplo anterior. A continuación se detalla el fichero
SubmenusActivity. java y en la figura 7.2.2. se muestran las capturas de
pantalla del resultado.

134

.i.l l S ü 17:47

Una aplicación con menú.

Pulse la tecla MENU y
seleccione las opciones

Una aplicación con menú.

Pulse la tecla MENU y
seleccione las opciones

| Opción 6 |

J Opción 7
Opción 1 Opción 2 Opción 3

Opción 4 Opción 5
Más

| Opción 8

Figura 7.2.1. Un menú con más de seis opciones.

package es.ugr.amaro.submenus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menú;
import android.view.Menultem;
import android.view.SubMenu;
import android.widget.TextView;

public class SubmenusActivity extends Activity {

TextView tv;
/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textView);

}

@Override
public boolean onCreateOptionsMenu(Menú menú){

El gran libro de programación avanzada con Android

super.onCreateOptionsMenu(menú);

SubMenu subl= menú.addSubMenu(0,1,1,"submenú 1")
subí.setHeaderlcon(R.drawable.ic_launcher);
SubMenu sub2= menú.addSubMenu(0,2,2, "submenú 2")
sub2.setHeaderlcon(R.drawable.ic launcher);

Menultem
Menultem
Menultem
Menultem
Menultem
Menultem
Menultem
Menultem

item3=
item4=
item5=
item6=
item7=
item8=
item9=
itemlO:

subí.add(0,3, 3, "
subí.add(0,4,4,"
subí.add(0,5, 5, "
subí. add (0,6,6,"
sub2.add(0,7,7,"
sub2.add(0,8,8,"
sub2.add(0,9,9,"
: sub2.add(0,10,10,"Opción 10");

"Opción 3")
"Opción 4")
"Opción 5")
"Opción 6")
"Opción 7")
"Opción 8")
"Opción 9")

}
return true;

OOverride
public boolean onOptionsItemSelected(Menultem item){

int id= item.getItemld();
if(id>2)
tv.append("\n Ha pulsado la opción "+id);
return true;

136

¡SU eEL iip
IqS qB m 11:43

i i l i i l i i ¡ ¡ ¡ ¡ ¡

Una aplicación con
submenús.
Pulse la tecla MENU y

seleccione las opciones

submenú 1 submenú 2

Una aplicación con
submenús.
Pulse la tecla MENU y

seleccione las opciones

Ha pulsado la opción 5
Ha pulsado la opción 9

Figura 7.2.2. Una actividad con dos submenús con cuatro opciones cada uno.

137

El gran libro de programación avanzada con Android

7.3. Submenú con casillas

En un submenú, las opciones pueden mostrarse con casillas para marcar o
checkboxes. Para mostrar una casilla marcada en un ítem se usa la instrucción

item.setCheckable(true).setChecked(true);

En el siguiente ejemplo, el primer submenú tiene checkboxes. Las marcas son
exclusivas: al marcar una, se desmarcan las demás. Cada vez que abrimos el
menú, se marcan las casillas correspondientes dinámicamente en el método
onPrepareOptionsMenu (), utilizando el array booleano check[4]. En el
método onOptionsitemSelected, nos encargamos de actualizar los valores de
dicho array de acuerdo con la última opción elegida en el menú. En las capturas
de pantalla de la figura 7.3. se muestra el resultado.

Figura 7.3. Un submenú con casillas o checkboxes.

Utilizamos el mismo layout que en el ejemplo anterior. La actividad
MenuCheckActivity es la siguiente:

package es.ugr.amaro.menucheck;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menú;
import android.view.Menultem;

138

import android.view.SubMenu;
import android.widget.Textview;

public class MenuCheckActivity extends Activity {
Textview tv;
SubMenu subl,sub2;
Menultem item3,item4,item5,itemO;
boolean[] check={true,false,false,false};

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(Textview) findViewByld(R.id.textview);

}

@Override
public boolean onCreateOptionsMenu(Menú menú){

super.onCreateOptionsMenu(menú);

subl = menú.addSubMenu(0,1,1,"submenú 1");
subí.setHeaderIcón(R .drawable.i c_launcher);
sub2= menú . addSubMenu (0 , 2 , 2 , 11 submenú 2");
sub2.setHeaderlcon(R.drawable.ic_launcher);

item3= subí.add(1,3,3,"Opción 3");
item4= subí.add(1,4,4,"Opción 4");
item5= subí.add(1,5,5,"Opción 5");
item6= subí.add(1,6,6,"Opción 6");

Menultem item7= sub2.add(2, 7,7,"Opción 7");
Menultem item8= sub2.add(2,8,8,"Opción 8");
Menultem item9= sub2.add(2,9,9,"Opción 9");
Menultem itemlO= sub2.add(2,10,10,"Opción 10");

return true;
}

@Override public boolean onPrepareOptionsMenu(Menú menú){
super.onPrepareOptionsMenu(menú);

item3.setCheckable(true).setChecked(check[0]);
item4.setCheckable(true).setChecked(check[1]);
item5.setCheckable(true).setChecked(check[2]);
item6.setCheckable(true).setChecked(check[3]);

139

El gran libro de programación avanzada con Android

return true;
}

@Override
public boolean onOptionsItemSelected(Menultem item){

int id= item.getltemld();
if(id>2){

tv.append("\n Ha pulsado la opción "+id);
if(id<7){

for(int i=0;i<4;i++) check[i]=false/
check[id— 3]=true;

}
}
return true;

}

}

7.4. Menús de contexto

El menú de contexto se muestra en una ventana flotante cuando se realiza una
pulsación larga (de unos segundos) sobre un objeto View. Cada objeto View
puede tener su propio menú con distintas opciones. Para declarar que un objeto
View contiene un menú de contexto se usa el método

setOnCreateContextMenuListener()

Al realizar una pulsación larga sobre el objeto View, se ejecuta el método
onCreateContextMenu () , donde se definen los contenidos del menú,
añadiendo ítems, como hemos hecho anteriormente. Al pulsar un ítem, se ejecuta
el método onContextltemSelected (Menultem item), que contendrá las
instrucciones a ejecutar.

En la siguiente actividad definimos dos menús de contexto para un TextView y
un botón. Cada menú contiene tres ítems. Al pulsar un ítem, se escribe la
información en la pantalla, como se observa en las capturas de la figura 7.4. A
continuación se detalla el layout.

140

Pulsación larga para
menú de contexto

ítem 1

ítem 2

ítem 3

Pulsación larga para
menú de contexto

Ha marcado el ítem numero 2

Figura 7.4. Un TextView y un botón con menús de contexto.

El gran libro de programación avanzada con Android

<?xml version="1.O" encoding=Mutf-8M?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android: layout_width="fill parent"
android:layout_height="fill_parent"
android: orientation="vertical"
android:background="#ffffdd" >

<TextView
android: id="@+id/textViewl"
android:textColor="#000000"
android:textSize="30sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Pulsación larga para menú de contexto"

/>

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Pulsación larga para menú de contexto"

/>

CTextView
android:id="0+id/textView2"
android:textColor="#000000"
android:textSize="2 Osp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="" />

</LinearLayout>

La actividad ContextMenuActivity. j ava es la siguiente:

package es.ugr.amaro.contextmenu;

import android.app.Activity;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.Menultem;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

142

http://schemas.android.com/apk/res/android

public class ContextMenuActivity extends Activity {
TextView tvl,tv2;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R .layout.main);

tvl=(TextView) findViewByld(R .id.textViewl);
tv2=(TextView) findViewByld(R.id.textView2);
tvl.setOnCreateContextMenuListener(this);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnCreateContextMenuListener(this);

}

@Override
public void onCreateContextMenu(ContextMenu menú, View v,

ContextMenuInfo info){
super.onCreateContextMenu(menú,v,info);

if(v .getId()==R.id.textViewl){
menú.setHeaderTitle("Menú del texto");
menú.setHeaderIcón(R.drawable.ic_launcher);
menú.add(0,1,1,"item 1");
menú.add(0,2,2,"ítem 2");
menú.add(0,3,3,"ítem 3");

}
if(v.getld()==R.id.buttonl){

menú.setHeaderTitle("Menú del botón");
menú.setHeaderlcon(R.drawable.ic_launcher);
menú.add(0,4,4,"ítem 4");
menú.add(0,5,5,"item 5");
menú.add(0,6,6,"ítem 6");
}

}

OOverride
public boolean onContextItemSelected(Menultem item){

int id=item.getItemld();
tv2.append("\nHa marcado el ítem número "+id);
return true;

}

}

143

El gran libro de programación avanzada con Android

8. VISUALIZACION DE LISTAS

8.1. La clase ListView

La clase ListView del paquete android.widget permite mostrar en
pantalla y manipular listas con cualquier número de elementos. Cada elemento se
mostrará en un TextView genérico prefijado. La lista de elementos a mostrar se
almacena en un array y se asocia al objeto ListView mediante un adaptador, que
es un objeto de la clase ArrayAdapter. El constructor básico de un ArrayAdapter
requiere una referencia a un fichero xml que contiene un TextView. Este fichero
puede ser uno de los recursos predefinidos en Android. En el siguiente ejemplo,
dicha referencia es

android.R .layout.simple_list_iteml

Utilizamos el siguiente layout, donde hemos incluido un ListView.

<?xml version=" 1. 0" encoding="utf-811 ?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android”

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation=Mvertical” >

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="ListView básico de bandas de Rock" />

CListView
android:id="@+id/listViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>

</LinearLayout>

144

http://schemas.android.com/apk/res/android%e2%80%9d

La actividad ListviewBasicoActivity recoge la forma más sencilla de
mostrar un ListView. Primero se extrae una referencia al ListView en la variable
lista, se define el adaptador y se asocia a la lista. En la figura 8.1. se muestra el
resultado.

Figura 8.1. Un ListView básico mostrando una lista.

package es.ugr.amaro.listviewbasico;

import android.app.Activity/
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ListviewBasicoActivity extends Activity {
/** Called when the activity is first created. */

String[] bandasRock= {
"Fleetwood Mac",
"Derek and the Dóminos",
"The Bluesbreakers",
"Queen",
"AC-DC",
"Black Sabbath",

145

El gran libro de programación avanzada con Android

"Dire Straits",
"Boston",
"Train",
"Motorhead",
"Mott the Hoople",
"Deep Purple",
"ZZ Top"

}/

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main)/

ListView lista=(ListView)
findViewByld(R.id.listViewl);

ArrayAdapter<String> adapter
= new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_l,bandasRock);

lista.setAdapter(adapter);
}

}

8.2. Listas interactivas

Cada elemento de un ListView es un objeto TextView cuyas propiedades
pueden personalizarse. Además, cada elemento puede ser pulsado y responder
con una acción concreta. El array que contiene el texto de cada fila también puede
almacenarse en un fichero xml de recursos. A continuación, se detalla cómo hacer
todo esto modificando el ejemplo anterior.

En primer lugar, introducimos los elementos del array en el fichero
res/valúes/strings.xml como una lista de ítems dentro de una etiqueta
string-array.

<?xml version="l.0" encoding="utf-8"?>
<resources>

<string name="hello">Hello World, ListViewClickable!</string>
<string name="app_name">ListViewClickable</string>

<string-array name="grupos">
<item>Fleetwood Mac</item>
<item>Derek and the Dominos</item>
<item>The Bluesbreakers</item>
<item>Queen</item>

146

< i t em>AC-DC </i tem>
<item>Black Sabbath</item>
<item>Dire Straits</item>
<item>Boston</item>
<item>Train</item>
<item>Motorhead</item>
<item>Mott the Hoople</item>
<item>Deep Purple</item>
<item>ZZ Top</item>

</string-array>

</resources>

Para asociar el array a la lista de ítems de este fichero, usamos la instrucción

String[] grupos=
getResources().getStringArray(R .array.grupos);

m m r n i v m S U ü 17:15

ListView clickable de bandas de
Rock
Fleetwood Mac

Ha marcado el ítem 7 Boston
Fleetwood Mac
Derek and the Dóminos

Derek and the Dóminos The Bluesbreakers
The Bluesbreakers Queen
Queen AC-DC
AC-DC Black Sabbath
Black Sabbath Dire Straits
Dire Straits Boston
Boston Train
Train Motorhead
Motorhead Mottthe Hoople
Mottthe Hoople Deep Purple
Deep Purple ZZ Top
ZZ Top

Figura 8.2. Un ListView mostrando una lista personalizada interactiva.

En segundo lugar, creamos un fichero xml que contiene un TextView genérico
para cada fila. El fichero se llamará res/layout/fila.xml y contendrá lo
siguiente:

<?xml version="l.0" encoding="utf-8"?>

147

El gran libro de programación avanzada con Android

CTextView
xmlns:android="http://schemas.android.com/apk/res/android"

android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

</TextView>

Para asociar el ArrayAdapter a este TextView, usamos la instrucción

arrayAdapter = new ArrayAdapter<String>(this,
R.layout.fila,grupos);

Finalmente, hacemos que nuestra actividad implemente la interfaz
OnitemClickListener. La acción a realizar al pulsar un ítem de la lista se
define en el método onitemClick. En este caso, indicaremos que se escriba el
contenido del ítem pulsado. Utilizamos el siguiente layout:

<?xml version="1.0" encoding=Mutf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff" >

CTextView
android:id="@+id/textView"
android:textColor="#444400"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="ListView clickable de bandas de Rock" />

<ListView
android:id="@+id/listViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>

</LinearLayout>

A continuación se detalla la actividad ListViewClickable. java. En la
figura 8.2. se muestran varias capturas de pantalla.

package es.ugr.amaro.listviewclckable;

import android.app.Activity;

148

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.AdapterView.OnltemClickListener;

public class ListViewClickable extends Activity
implements OnltemClickListener{

TextView tv;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

String[] grupos=
getResources().getStringArray(R .array.grupos);

tv=(TextView) findViewByld(R .id.textView);
ListView list=(ListView)

f indViewByld (R. id. ÜstViewl) ;

ArrayAdapter<String> arrayAdapter;
arrayAdapter = new ArrayAdapter<String>(this,

R.layout.fila,grupos);
list.setAdapter(arrayAdapter);
list.setOnltemClickListener(this);

}

@Override
public void onltemClick(AdapterView<?> list, View v,

int position, long id) {

String marcado = (String)
list.getItemAtPosition(position);

tv.setText(
"Ha marcado el item "+position+" "tmarcado);

}
}

149

El gran libro de programación avanzada con Android

8.3. ListView personalizado

Cada elemento de un ListView puede asociarse a un layout que se repite para
toda la lista. En este layout debe haber un TextView que contenga el texto de cada
ítem. Además, es posible añadir elementos al ListView, aunque para ello es más
conveniente definir los ítems mediante un ArrayList en lugar de un array, ya que
así no es necesario preocuparse por aumentar las dimensiones de este último.

Todo esto se ilustra en el siguiente ejemplo, donde asociamos un layout a un
ListView. El layout para cada ítem está definido en el siguiente fichero:

res/layout/items.xml

<?xml version="1.0" encoding="utf-8"?>
CLinearLayout
xmlns:android=nhttp://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffbb" >

CTextView
android:id="@+id/textlteml"
android: layout_width=f,wrap_content"
android:layout_height="wrap_content"
android:text="Nombre del grupo"
android:textColor="#005555"
android:textSize="12sp" />

<TextView
android:id="@+id/textItem2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Large Text"
android:textColor="#000000"
android:textSize="2Osp" />

</LinearLayout>

El adaptador contiene las referencias al layout y a un TextView dentro del
layout, de la siguiente forma:

adapter =new ArrayAdapter<String>
(this,R .layout.items,R.id.textltem2,arrayList);

150

http://schemas.android.com/apk/res/android

El objeto ArrayList lo construimos a partir del array definido en el ejemplo anterior
en el fichero r e s / v a l u e s / s t r i n g s . x m l . Para la actividad utilizamos el
siguiente layout, que contiene un EditText y un botón para introducir nuevos ítems
en la lista.

main . xml

<?xml v e r s io n = " 1.0" e n c o d in g = " u t f - 8 "?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#dddddd" >

CTextView
android:id="@+id/textView"
a n d r o id : t e x t C o lo r = " #444400"
a n d r o id : t e x t S i z e = " 2 Osp"
a n d r o id : l a y o u t _ w i d t h = " f i l l _ p a r e n t "
a n d r o id : layou t_h e ig h t= " w r a p _ c o n ten t"
a n d r o id : text="Añada un grupo a la l i s t a " />

<EditText
a n d r o id : id = " @ + id /e d i tT e x t1"
a n d r o id : l a y o u t _ w i d t h = " f i l l _ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= " w r a p _ c o n te n t" >

CrequestFocus />
< /EditText>

<Button
android:id="@+id/buttonl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Añadir" />

<ListView
android: id="@ + id/üstViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>
</LinearLayout>

Por último, para insertar un ítem en la primera posición del ListView y
actualizar la lista, se usan las instrucciones

adapter.insert(grupo, 0);

151

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

adapter.notifyDataSetChanged();

A continuación se detalla la actividad ListviewLayoutActivity. java y en
la figura 8.3. se muestra el resultado.

package es.ugr.amaro.listviewlayout;

import java.útil.ArrayList/
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;

public class ListviewLayoutActivity extends Activity
Lmplements OnClickListener{

TextView tv;
EditText editText;
ArrayAdapter<String> adapter;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
String[] grupos =

getResources().getStringArray(R .array.grupos);
ArrayList<String> arrayList=new ArrayList<String>();
for(int i=0;i< grupos.length;i++)

arrayList.add(grupos[i]);

tv=(TextView) findViewByld(R.id.textView);
editText=(EditText) findViewByld(R.id.editTextl);
Button boton=(Button) findViewByld(R .id.buttonl);
boton.setOnClickListener(this);
ListView lista= (ListView)

findViewByld(R.id.listViewl);
adapter =new ArrayAdapter<String>(this,

R .layout.items,R .id.textItem2,arrayList);
lista.setAdapter(adapter);

}

@Override
public void onClick(View v) {

152

String grupo= editText.getText().toString();
tv. setText ("Añadiendo el grupo "+grupo);
if(grupo.trim().length()==0)

tv.setText("Grupo inválido")/
else {

adapter.insert(grupo, 0);
adapter.notifyDataSetChanged();
tv.setText("Se ha añadido el grupo "tgrupo);
editText.setText ("") ;

}
}

}

a1 ® 20:39 S U S 20:54 I

: x v . : •. • :

Añada un grupo a la lista Se ha añadido el grupo 38 Special
c

si

• ' ' ’::: ' : ’’ ' ' •' : ' •' • • '

Añadir

Nombre del grupo Nombre de¡ grupo i
Fleetwood Mac 38 Special
Nombre cíe! grupo Nombre del grupo
Derek and the Dóminos Fleetwood Mac j
Nombre Oei grupo ¡i Nombre del grupo
The Bluesbreakers Derek and the Dóminos
Nombre de! grupo Nombre deí grupo
Queen The Bluesbreakers
Nombre clei grupo 1 Nombre deí grupo
AC-DC Queen
Nombre del grupo Nombre del grupo
Black Sabbath AC-DC
Nombre be! grupo Nombre del guipo
Dire Straits Black Sabbath
Nombre del grupo Nombre del grupo
Boston Dire Straits

Figura 8.3. Un ListView con un layout personalizado y actualiza ble.

8.4. Construcción de un BaseAdapter

La clase ListView requiere un adaptador para asociar un array o un ArrayList a
un objeto View en cada fila de la lista. Un adaptador es un objeto que extiende a la
clase BaseAdapter. Un ArrayAdapter es un tipo de adaptador que hemos
utilizado en los ejemplos anteriores. Su limitación es que solo permite listas
simples, donde un TextView en cada fila va cambiando según el índice del array.

153

El gran libro de programación avanzada con Android

Es posible diseñar listas más complejas, asociando a cada fila un layout donde
distintos elementos View van variando para mostrar los contenidos de varios
arrays. Una forma de hacerlo es definiendo una clase que extienda a BaseAdapter
con la siguiente estructura:

class MiAdaptador extends BaseAdapter{

@Override
public int getCount() {
}

@Override
public Object getltem(int index) {
}

@Override
public long getItemld(int id) {
}

@Override
public View getView(int item, View view,

ViewGroup parent) {
return view;

}
}

El más importante es el último método ge tv iew , donde se define el objeto
View asociado a cada ítem. En nuestro caso, vamos a «inflar» ese View a partir de
un layout almacenado en el fichero xml r e s / la y o u t / f i la . x m l . Para ello,
primero invocamos un objeto L a y o u t ln f la te r .

LayoutInflater llnflater=LayoutInflater.from(context);
view=llnflater.Ínflate(R.layout.fila, nuil)/

Una vez «inflado» el layout, ya podemos invocar sus distintos elementos para
modificarlos usando view. findViewByld. Por ejemplo, si fila.xml contiene
dos TextView, escribiríamos:

TextView tvNombre=(TextView)
view.findViewByld(R.id.textViewl);

TextView tvMiembros=(TextView)
view.findViewByld(R.id.textView2);

La implementación completa se expone en el siguiente ejemplo, que es una
variación de los anteriores. Mostraremos una lista de grupos de rock con tres
campos: nombre del grupo, miembros y fecha de formación, asociados a tres
TextView con distintos formatos.

154

Usamos el siguiente layout con un TextView y un ListView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout height=Mfill_parent"
android:orientation="vertical" >

<TextView
android:id="@tid/textView"
android:textSize="18sp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Grupos de Rock" />

<ListView
android: id="@ + id/listViewl11
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>

</LinearLayout>

Además del string-array grupos definido en el ejemplo anterior, añadimos los
dos arrays siguientes al fichero res/values/strings . xml.

<string-array name="miembros">
<item>Peter Green</item>
<item>Eric Clapton, Duane Allman</item>
<item>John Mayall, Eric Clapton</item>
<item>Freddie Mercury, Brian May</item>
<item>Angus Young, Bon Scott<item>
<item>Ozzy Osbourne, Tony Iommy</item>
<item>Mark Knopfler</item>
<item>Tom Scholz, Brad Delp, Barry Goudreau</item>
<item>Patrick Monahan, Jimmy Stafford</item>
<item>Lemmy Kilmister</item>
<item>Ian Hunter</item>
<item>Ian Gillan, Ritchie BlackMore</item>
<item>Billy Gibbons</item>

</string-array>

<string-array name="years">
<item>l967</item>
<item>l97 0-1971</item>
<item>l963-1969</item>
<item>l97l</item>

155

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

<item>l97 3</item>
<item>l96 9</item>
<item>l977-1995</item>
<item>l97 6</item>
<item>1994</item>
<item>l975</item>
<item>l969-197 4</item>
< i t em>1968</it em>
<item>l969</item>

</string-array>

El fichero res/layout/fila.xml contiene el layout para cada fila
conteniendo tres TextView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns : android="http : //schemas . android. com/apk/res / android’1

android: background=" #ffffff"
android:layout_width=M fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical" >

<TextView
android: id="@+id/textViewl"
android:textColor=M#662200"
android:textSize="20sp"
android:textStyle="bold"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView" />

<TextView
android:id="@+id/textView2"
android:textColor="#000000"
android:textSize="18sp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView" />

<TextView
android:id="@+id/textView3"
android:textColor="#000055"
android:textSize="18sp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView" />

</LinearLayout>

156

A continuación se detalla la actividad ListviewMultiActivity. java.
Contiene una clase auxiliar Grupo, que almacena los datos de cada grupo. En la
figura 8.4. se muestran las capturas de pantalla.

i f l e 12:20 l i l i « 1 2 : 2 1

Seleccionado Queen . r n i m a —

Fleetwood Mac
Peter Green
1967

Boston
Tom Scholz, Brad Delp, Barry
Goudreau
1976Derek and the Dóm inos

Eric Clapton, Duane Alíman
1970-1971

M M *

Train
Patrick Monahan, jimmy Stafford
1994The Bluesbreakers

John Mayall, Eric Clapton
1963-1969

M otorhead
Lemmy Kilmíster
1975 jQueen

Freddie Mercury, Brian May
1971

M ott the Hoople
Ian Hunter
1969-1974A G D C

Angus Young, Bon Scott
1973

Deep Purple
Ian Gillan, Ritchie BíackMore
1968Black Sabbath

Ozzy Osbourne, Tony Iommy ZZTop l
BBMttjliiÍMÍÉÍÍ8Í8ÍMÍMtf̂ MMtfMaMÍBMMMMBB8ÍíittBÍBÍiiSBÍMMMÍÍÍÍÍÍÍÍ

Figura 8.4. Un ListView con un layout personalizado creado con un BaseAdapter.

package es.ugr.amaro.listviewmulti;

import
import
import
import
import
import
import
import
import
import
import
import

j ava.útil.ArrayList;
android.app.Activity;
android.content.Context;
android.os.Bundle;
android.view.LayoutInflater ;
android.view.View;
android.view.ViewGroup;
android.widget.AdapterView;
android.widget.AdapterView.OnltemClickListener;
android.widget.BaseAdapter;
android.widget.ListView;
android.widget.Textview;

public class ListviewMultiActivity extends Activity
implements OnltemClickListener{

ListView lv;

157

El gran libro de programación avanzada con Android

Textview tv;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

String[] grupos =
getResources().getStringArray(R.array.grupos);

String[] miembros =
getResources().getStringArray(R .array.miembros);

String[] years =
getResources().getStringArray(R.array.years);

ArrayList<Grupo> gruposArrayList =
new ArrayList<Grupo>();

for(int i = 0; i<grupos.length;i++){
Grupo gl = new Grupo();
gl.nombre=grupos[i];
gl.miembros=miembros[i];
gl.years=years[i];
gruposArrayList.add(gl);

}

tv= (Textview) findViewByld(R.id.textview);
lv=(ListView) findViewByld(R.id.listViewl);
MiAdaptador adapter =

new MiAdaptador(this,gruposArrayList);
lv.setAdapter(adapter);
lv.setOnltemClickListener(this);

class MiAdaptador extends BaseAdapter{

ArrayList<Grupo> grupoArrayList;
LayoutInflater llnflater;

MiAdaptador(Context context,ArrayList<Grupo> grupos){
grupoArrayList=grupos;
llnflater=LayoutInflater.from(context);

}

@Override
public int getCount () {

return grupoArrayList.size ();
}

158

@Override
public Object getltem(int index) {

return grupoArrayList.get(index);
}

@Override
public long getItemld(int id) {

return id;
}

@Override
public View getView(int item, View view,

ViewGroup parent) {

// infla el layout de cada ítem
view=llnflater.Ínflate(R.layout.fila, nuil);

// referencia a los TextView
TextView tvNombre=(TextView)

view.findViewByld(R.id.textViewl);
TextView tvMiembros=(TextView)

view.f indViewByld(R .id.textView2) ;
TextView tvYears=(TextView)

view.findViewByld(R.id.textView3);

tvNombre.setText(grupoArrayList.get(item).nombre)
tvMiembros.setText(

grupoArrayList.get(item).miembros);
tvYears.setText(grupoArrayList.get(item).years);

return view;
}

}

class Grupo{
String nombre;
String miembros;
String years;

}

@Override
public void onltemClick(AdapterView<?> av, View v,

int position, long id)

Grupo grupo= (Grupo) lv.getItemAtPosition(position)
tv.setText("Seleccionado "tgrupo.nombre);

}

El gran libro de programación avanzada con Android

8.5. La clase ListActivity

Si nuestra actividad solo contiene un ListView, podemos utilizar la clase
ListActivity en lugar de Activity. La clase ListActivity crea una actividad que
ya está preparada para incluir un ListView, lo que simplifica su implementación.
Solo se requiere definir el adaptador del ListView:

setListAdapter(new ArrayAdapter<String>(this,
android.R .layout.simple_list_item_checked,array));

Lo mejor es ilustrarlo con un ejemplo. La siguiente actividad extiende a
ListActivity y muestra una lista de grupos de rock, almacenada en el mismo string-
array de los ejemplos anteriores. Mostramos la lista con el estilo de marcas de
elección simple y en cada ítem, el número de veces que ha sido marcado.
Además, añadimos un TextView al encabezamiento y modificamos algunas de las
características del ListView, como el color del fondo y la anchura de las líneas
separadoras. No se requiere ningún layout, pues se usa uno de los ListView
predefinidos en Android. En la figura 8.5. se muestra el resultado.

Fleetwood Mac 1

Derek and the Dóminos

Queen 4

lili

eleccionado 4: Queen

Figura 8.5. Un ListActivity con marcas de elección simple.

160

import android.app.ListActivity;
import android.graphics.Color;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class ListActivityActivity extends ListActivity {

String[] grupos,gruposPulsados;
int[] pulsaciones; // pulsaciones de cada item
TextView tv;

QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;

// inicializa varios arrays
grupos = getResources().getStringArray(R .array.grupos);
int ngrupos=grupos.length;
pulsaciones=new int[ngrupos];
for(int i=0;iengrupos; i + +)pulsaciones[i]=0;
gruposPulsados=grupos.clone();

// define propiedades del ListView
ListView ÜstView= getListView();
ÜstView.setBackgroundColor(Color.BLUE);
listView.setDividerHeight(5) ;
listView.setChoiceMode(1); // modo de elección simple

// define un TextView para el encabezamiento
tv= new TextView(this);
tv.setTextColor(Color.BLACK);
tv.setTextSize(24) ;
tv.setBackgroundColor(Color.rgb(250,230,160)) ;
tv.setText("Lista de Grupos");
listView.addHeaderView(tv);

// asocia un adaptador con un layout prefijado
setListAdapter(new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_checked,
gruposPulsados));

}

public void onListItemClick(ListView parent, View v,

package es.ugr.amaro.listactivity;

161

El gran libro de programación avanzada con Android

int position, long id){

// Índice del array pulsado
// empieza en cero, por tanto restamos 1
int index=position-l;
pulsaciones[index]=pulsaciones[index]+1;
gruposPulsados[index] = grupos[index]+" "

+ pulsaciones[index];
tv.setText("Seleccionado " + position+": "

+ grupos[index]);
}

}

8.6. Listas desplegables con SpinnerView

La clase Spinner permite visualizar una lista de ítems. Es similar a ListView,
salvo que la lista se muestra en un menú desplegable. En la vista normal no
desplegada solo se ve el ítem seleccionado. El spinner se muestra como un botón
y al pulsarlo, se despliega la lista. Pulsando un ítem se ejecuta el método
onitemSelected. Previamente, hay que definir el spinner como un oyente de
clics mediante

spinner.setOnltemSelectedListener(OnItemSelectedListener);

e implementar la interfaz OnitemSelectedListener. En la siguiente actividad
se muestra un ejemplo, usando el mismo array de grupos de rock definido
anteriormente en el fichero res/values/strings. xml. Utilizamos el siguiente
layout que incluye un spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height=”fill_parent"
android:orientation="vertical"
android:background="#ffffff" >

<TextView
android:id="@+id/textViewl"
android:textColor="#000000"
android:textSize="24sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Una lista desplegable" />

162

http://schemas.android.com/apk/res/android

<Spinner
android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android: drawSelectorOnTop="true,f />

<TextView
android:id="@+id/textView2"
android:textColor="#000000"
android:textSize="24sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Una lista desplegable" />

</LinearLayout>

Fleetwood Mac
Derek and the Dóminos
The Bluesbreakers
Queen
AC-DC
Black Sabbath
Di re Straits
Boston
Train
Motorhead
Mott the Hoople
Deep Purple
ZZ Top

na lista desplegable

Ha seleccionadoFleetwood
Mac

Figura 8.6. Una lista desplegable con un spinner.

A continuación se detalla la actividad SpinnerViewActivity. java. Al
seleccionar uno de los ítems en el spinner, se muestra un mensaje en un
TextView, como se observa en la figura 8.6.

163

El gran libro de programación avanzada con Android

package es.ugr.amaro.spinnerview;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.TextView;

public class SpinnerViewActivity extends Activity
implements OnItemSelectedListener{

String[] grupos;
TextView tv;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

grupos=getResources().getStringArray(R.array.grupos)
Spinner spinner=

(Spinner) findViewByld(R.id.spinner)
spinner.setPrompt("Elija un grupo");
tv=(TextView) findViewByld(R.id.textView2);

int resourcel
=android.R .layout.simple_spinner_dropdown_item;

int resource2
=android.R .layout.simple_spinner_item;

ArrayAdapter<String> adapter
= new ArrayAdapter<String>(this, resource2,grupos);

spinner.setAdapter(adapter);
spinner.setOnItemSelectedListener(this);

}

@Override
public void onltemSelected(AdapterView<?> argO,

View argl, int arg2,long arg3) {
tv.setText("Ha seleccionado"+grupos[arg2]);

}
@Override
public void onNothingSelected(AdapterView<?> argO) {
}

164

>
•

>
•

Nótese que al ejecutar por primera vez el spinner, queda seleccionado
automáticamente el primer ítem en el array. Una forma sencilla de cambiar esto
sería definir el primer ítem en la lista con el texto «Ninguno».

165

El gran libro de programación avanzada con Android

9. BASES DE DATOS

Android usa el sistema SQLite para gestionar bases de datos. SQLite es un
sistema de gestión de bases de datos que utiliza el lenguaje SQL (Structured
Query Language); un lenguaje de consulta y acceso a bases de datos
ampliamente utilizado en muchos sistemas. En este capítulo se introducen las
bases de SQL y SQLite necesarias para crear, manipular y consultar bases de
datos, así como su implementación en aplicaciones Android.

9.1. Elementos de SQLite y SQL

Android soporta sqlite3. En esta sección veremos cómo se crea una base de
datos SQLite, así como la creación de tablas e introducción y consulta de datos
usando el lenguaje SQL. Únicamente veremos las sentencias SQLite y
expresiones SQL básicas para que el lector que no conoce este lenguaje pueda
seguir los ejemplos que posteriormente desarrollaremos para Android.

En esta sección utilizaremos la línea de comandos para interactuar con
SQLite. No es necesario haberlo instalado previamente en nuestro ordenador.
Puesto que tenemos el SDK de Android, aprovecharemos el intérprete de
comandos que el ADB (Android Debug Bridge) nos brinda para conectar con un
dispositivo virtual de Android e interactuar con él mediante una shell de Linux.

9.1.1. Iniciar sqlite3 con ADB

Usando el AVD manager o desde Eclipse, comenzaremos iniciando un
dispositivo virtual de Android. Después, abriremos un terminal o una ventana
msdos. En Windows, esto se hace ejecutando cmd. A continuación, cambiaremos
al directorio piatform-tools localizado donde tengamos instalado el android-
sdk. Por ejemplo, en Windows XP escribimos

>cd c:\archivos de programa\android\android-sdk\platform-tools

y pulsamos Enter.

166

Seguidamente, ejecutamos el comando adb-shell para conectar con nuestro
terminal.

> adb shell
#

El símbolo # es el prompt, e indica que hemos conectado con nuestro emulador y
hemos iniciado una sesión de Linux.

Si hay un teléfono o dispositivo conectado, hay que especificar dónde
queremos conectarnos, si al emulador o al teléfono, mediante adb -e shell
(emulador) o adb -d shell (dispositivo).

Ya podemos comenzar a introducir comandos Linux. Por ejemplo, podemos
ver un listado de ficheros y directorios ejecutando el comando Is.

ls
sqlite_stmt_j ournals
config
cache
sdcard
d
etc
system
sys
sbin
proc
init.re
init.goldfish.rc
init
default.prop
data
root
dev
#

A continuación, nos situaremos en el directorio data y allí crearemos un
directorio pruebas para trabajar.

#cd data
#mkdir pruebas
#cd pruebas

Una vez en pruebas, iniciamos SQLite creando una base de datos. Esta base
de datos se almacena en un fichero que llamaremos base. db.

sqlite3 base.db
SQLite versión 3.5.9
Enter ".help" for instructions
sqlite>

167

El gran libro de programación avanzada con Android

SQLite permite ejecutar una serie de comandos que comienzan por un punto.
Podemos ver una lista de los comandos introduciendo el comando .help. Para salir
de SQLite, ejecutamos .exit.

9.1.2. Crear una tabla

A continuación crearemos una tabla de teléfonos en nuestra base de datos
mediante la sentencia create de SQL.

sqlite>create table telefonos (nombre text, apellidos text,
tel integer);
sqlite>

Hay que tener en cuenta que la expresión anterior debe escribirse en una línea
completa, ya que todas las expresiones SQL deben terminar con un punto y coma.
En caso contrario, al pulsar Enter se abre una continuación de línea, que se indica
con tres puntos.

sqlite>create table telefonos (nombre text, apellidos text,
tel integer)

. . . > ;
sqlite>

Para ver la lista de tablas, usamos el comando .tables.

sqlite> .tables
telefonos
sqlite>

La tabla telefonos tiene tres columnas llamadas nombre, apellidos y
tel. Al definir la tabla hemos especificado el tipo de datos que incluye cada
columna. Los tipos de datos más comunes son: text, integer y float. Para ver la
definición de la tabla, usamos el comando .schema.

sqlite> .schema telefonos
CREATE TABLE telefonos (nombre text, apellidos text, tel
integer);
sqlite>

Cada tabla se compone de filas con los distintos datos dispuestos en su
respectiva columna. Para introducir una fila usamos la sentencia SQL insert.

sqlite> insert into telefonos (nombre, apellidos,tel)
...> valúes (1 Juan', 1 Martínez', 234567);

168

Para comprobar el contenido de la tabla, usamos la declaración SQL select.

sqlite> select * from telefonos/
Juan|Martínez 1234567

El resultado se muestra en pantalla como una fila con las tres columnas
separadas por una barra vertical. Podemos cambiar el modo de visualización de la
tabla para que muestre las columnas separadas por espacios ejecutando el
comando .mode column.

sqlite> .mode column
sqlite> select * from telefonos;
Juan Martínez 234567

Usando .headers on se muestra un encabezamiento con los nombres de las
columnas.

sqlite> .headers on
sqlite> select * from telefonos;
nombre apellidos tel

Juan Martínez 234567

9.1.3. Algunas expresiones SQL

Para mostrar únicamente algunas columnas determinadas, las especificamos
separadas por comas tras la declaración select. A continuación, mostramos
primero el número de teléfono y luego el apellido de nuestra tabla.

sqlite> select tel,apellidos from telefonos;
tel apellidos

234567 Martínez

Añadimos ahora varias filas más a la tabla de teléfonos. Al añadir todos los
valores, no es necesario especificar los nombres de las columnas.

sqlite> insert into telefonos valúes ('Juan1, 'Caballero1, 340034);
sqlite> insert into telefonos valúes ('Maria', 'Bárbaro', 232323);sqlite> insert into telefonos valúes
sqlite> insert into telefonos valúes
sqlite> insert into telefonos valúes

('Maria', 'Bárbaro', 232323)
('Enrique', 'Ruiz', 666001);
('Chiara', ’Maieron', 240012)

sqlite> select * from telefonos;
nombre apellidos tel

Juan Martínez 234567
Juan Caballero 340034
Maria Bárbaro 232323

169

El gran libro de programación avanzada con Android

Enrique Ruiz 666001
Chiara Maieron 240012

Podemos insertar solo algunas columnas determinadas, en cuyo caso el resto
quedan vacías. Por ejemplo, podemos añadir solo el apellido.

sqlite> insert into telefonos (apellidos, tel)
...> valúes ('Donnelly', 556677);

La cláusula where selecciona únicamente aquellas filas que cumplen cierta
condición.

sqlite> select * from telefonos where apellidos =ldonnellyf;
nombre apellidos tel

Donnelly 556677

Para especificar un patrón a buscar, se usa el operador like. Por ejemplo,
para buscar todos los apellidos que comienzan por «ma»:

sqlite> select * from telefonos where apellidos like 'ma%' ;
nombre apellidos tel

Juan Martínez 234567
Chiara Maieron 240012

El símbolo de porcentaje indica «cualquier cadena de caracteres». Hay que tener
en cuenta que like no distingue entre mayúsculas y minúsculas.

Para seleccionar valores de una lista, se usa el operador in, que sí distingue
entre mayúsculas y minúsculas.

sqlite> select * from telefonos where nombre in ('juan',1maria’);
sqlite> select * from telefonos where nombre in (1 J u a n M a r i a ');
nombre apellidos tel

Juan Martínez 234567
Juan Caballero 340034
Maria Bárbaro 232323

Para borrar una o varias filas de una tabla, usamos delete from. Por
ejemplo, para borrar a Juan Martínez:

sqlite> delete from telefonos where apellidos=fMartínez’;
sqlite> select * from telefonos/
nombre apellidos tel

Juan Caballero 340034
Maria Bárbaro 232323

170

Enrique Ruiz 666001
Chiara Maieron 240012

Donnelly 556677

Podemos ordenar los resultados con order by. Por ejemplo, para ordenar los
apellidos por orden alfabético:

sqlite> select * from telefonos order by apellidos;
nombre apellidos tel

Maria Bárbaro 232323
Juan Caballero 340034

Donnelly 556677
Chiara Maieron 240012
Enrique Ruiz 666001

En las siguientes secciones veremos algunos ejemplos más de expresiones
SQL manipulando una base datos con Android.

9.2. Crear una base de datos con Android

Para crear una base de datos SQLite, o abrir una ya existente, creamos un
objeto de la clase SQLiteDatabase. Para ello se usa el método
openOrCreateDatabase de la clase ContextWrapper, que es una superclase
de Activity. En la siguiente aplicación creamos una base de datos de música
mediante la instrucción

db=this.openOrCreateDatabase("música. db",MODE_PRIVATE,nuil);

Esto crea el fichero música. db, que es una base de datos SQLite localizada en el
directorio de datos de nuestro dispositivo. Este fichero puede examinarse
mediante la perspectiva DDMS de Eclipse o bien abriendo una shell con avd shell.
En este ejemplo, la base de datos se almacena en el directorio

data/data/es.ugr.basededatos/databases

Dicha base de datos es completamente compatible con sqlite3. Sus contenidos
pueden consultarse desde la línea de comandos o, como haremos a continuación,
desde nuestra aplicación de Android. Con este fin utilizaremos los métodos
disponibles de la clase SQLiteDatabase para ejecutar directamente
instrucciones en lenguaje SQL.

El método execSQL admite como argumento una cadena con una instrucción
SQL que no devuelve ningún resultado. Así, para crear la tabla operas con cuatro
columnas, empleamos create table if not exists.

171

El gran libro de programación avanzada con Android

db.execSQL("create table if not exists "+
" operas (id integer primary key, titulo text,"+
"compositor text, year integer);");

Nótese que para definir la primera columna con SQL, hemos usado el tipo
integer primary key, es decir, un número entero como clave primaria. En
lenguaje SQL, este número indica el número de orden de cada fila, que debe ser
único, y se autoincrementará automáticamente, si no lo hacemos nosotros, al crear
una nueva fila.

Para insertar una nueva fila procedemos normalmente, usando la cláusula
SQL insert into.

db.execSQL("insert into operas (titulo,compositor, year) " +
" valúes(fDon Govanni1,1W .A . Mozart',1787);M);

Realizar una búsqueda en lenguaje SQL es igual de sencillo. Para ello se usa
el método rawQuery, que devuelve un objeto de tipo Cursor. Para buscar todos
los elementos de la tabla escribiríamos

Cursor cursor= db.rawQuery("select * from operas ", nuil);

El objeto Cursor contiene el resultado de la búsqueda, además de información
sobre las filas y columnas de la tabla. Como su propio nombre indica, podemos
imaginarlo como una flecha que señala una fila de la búsqueda. Para extraer la
primera fila, primero hay que colocarlo señalando el primer lugar mediante
moveToFirst (). Para extraer las columnas almacenadas en el Cursor, usamos
los métodos getint(i) o getstring (i), dependiendo de si la columna
número i contiene un número entero o una cadena. Extraídos estos elementos,
hay que moverlo al segundo lugar mediante moveToNext (), y procederíamos del
mismo modo. El método moveToNext () devuelve f alse si el Cursor está situado
en la última fila y true en caso contrario. El número de filas contenidas en el
Cursor se obtiene con getcount () y el número de columnas, con
getColumnCount().

Para la aplicación BaseDeDatosActivity usamos el siguiente layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff"
>

<TextView
android:id="0+id/textView"

172

http://schemas.android.com/apk/res/android

android:textColor="#000000"
android:textSize="18sp"
android: layout_width=" f ill_parent"
android:layout_height="wrap_content"
android:text="Base de Datos SQLite" />

</LinearLayout>

A continuación se detalla la aplicación BaseDeDatosActivity. Nótese que
hemos definido dos métodos: e jecutaSQL () , para incluir todas las
manipulaciones de la tabla y búsquedas, y muestraTabla () , para mostrar los
contenidos del Cursor. Esto permitirá que, posteriormente, podamos realizar
modificaciones del programa de un modo más cómodo. Cada vez que ejecutemos
este programa, se abrirá la base de datos y se insertará el mismo registro, la ópera
Don Giovanni, en una fila de la tabla. En la figura 9.2. se muestra el resultado de
ejecutar este programa siete veces.

Base de Datos SQLite
Tamaño: 1024
Columnas: 4
Filas: 7
1, Don Govanni, W.A. Mozart, 1787
2, Don Govanni, W.A. Mozart, 1787
3, Don Govanni, W.A. Mozart, 1787
4, Don Govanni, W.A. Mozart, 1787
5, Don Govanni, W.A. Mozart, 1787
6, Don Govanni, W.A. Mozart, 1787
7, Don Govanni, W.A. Mozart, 1787

Figura 9.2. Una base de datos con cuatro columnas y siete filas.

package es.ugr.amaro.basededatos;

import android.app.Activity;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;

173

El gran libro de programación avanzada con Android

import android.widget.Textview;

public class BaseDeDatosActivity extends Activity {

Textview tv;
String texto="" ;
SQLiteDatabase db=null;
Cursor cursor=null;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv= (Textview) findViewByld(R .id.textview);

// abre o crea base de datos--
db=this.openOrCreateDatabase(

"música.db",MODE_PRIVATE,nuil);

// crea una tabla si no existe
db.execSQL("create table if not exists "+

" operas (id integer primary key, titulo text,"+
" compositor text, year integer);");

ej ecutaSQL();
muestraTabla ();
db.cióse () ;
tv.append(texto);

void ejecutaSQL () {

// inserta datos en 1a. tabla--
db.execSQL(
"insert into operas (titulo,compositor,year) "

+" valúes('Don Govanni',’W .A . Mozart',1787);");

// selecciona todos los datos en un Cursor--
cursor= db.rawQuery("select * from operas ", nuil);

} // end ejecutaSQL

void muestraTabla(){

tv. append (11 \nTamaño : "+db . getPageSize ()) ;
int numeroDeColumnas=cursor.getColumnCount();
tv.append("\nColumnas: "+numeroDeColumnas);
int numeroDeFilas=cursor.getCount();

174

cursor.moveToFirst();
for (int i=l;i<=numeroDeFilas;i++){
// loop sobre las filas--

int id=cursor.getInt(0);
String titulo=cursor.getString (1) ;
String compositor=cursor.getString(2);
int year=cursor.getInt(3);
texto=texto+"\n "+id+", "+titulo+
”, "+compositor+", "tyear;
cursor.moveToNext () ;

}
// end muestraTabla

tv.append("\nFilas: "+numeroDeFilas);

9.3. Borrar filas de una tabla

En el ejemplo anterior hemos creado una tabla con siete filas repetidas.
Podemos borrar las filas repetidas e insertar dos nuevas cambiando el método
e j ecutaSQL () por el que se detalla a continuación. En la figura 9.3. se muestra
el resultado.

void ejecutaSQL(){

// inserta datos en la tabla--
// db.execSQL(
// "insert into operas (titulo,compositor,year) "
// +" valúes(’Don Govanni1,1W .A . Mozart1,1787);");

for (int i=2; i<8; i++)
db.execSQL("delete from operas where id="+i+";");

db.execSQL(
"insert into operas (titulo,compositor,year) "

+ " valúes (' Giulio Cesare 1 , ' G . F. Haendel ’ , 1724) ; 11) ;
db.execSQL(

"insert into operas (titulo,compositor,year) "
+" valúes('Orlando Furioso1,'A. Vivaldi',1727);");

// selecciona todos los datos en un Cursor--
cursor= db.rawQuery("select * from operas",nuil);

} // end ejecutaSQL

175

El gran libro de programación avanzada con Android

Base de Datos SQLite
Tamaño: 1024
Columnas: 4
Filas: 3
1, Don Govanní, W A Mozart, 1787
2, Giulio Cesare, G.F. Haendei, 1724
3, Orlando Furioso, A. Vivaldi, 1727

Figura 9.3. La tabla de óperas tras borrar las filas
repetidas e insertar dos nuevas.

9.4. Automatizar las columnas del Cursor

En el método muestraTabla hemos supuesto que el Cursor contiene
siempre las cuatro columnas especificadas en la tabla. A continuación
modificamos dicho método para que sea posible realizar consultas SQL que den
como resultado un número menor de columnas. Para tener en cuenta todos los
casos, extraeremos las columnas contenidas en el Cursor usando un loop. En
todos los casos extraeremos los campos con getstring (). Aunque la columna
sea de tipo numérico, no supone ningún problema, puesto que será convertida en
String al extraerla. También mostraremos un encabezamiento para la tabla. Los
nombres de las columnas los extraemos mediante el método getColumnName ().

El método ejecutaSQLO se ha modificado para añadir dos filas más y a
continuación mostramos solo las columnas year, titulo, compositor con las
filas ordenadas por año de estreno usando la expresión SQL

select year, titulo, compositor from operas order by year

En la figura 9.4. se muestra el resultado

176

Base de Datos SQLite
Tamaño: 1024
Columnas: 3
Filas: 5

year titulo compositor

1656 Statira F. Cavalli
1724 Giulio Cesare G.F. Haendei
1727 Orlando Furioso A. Vivaldi
1755 Montezuma C.H. Graun
1787 Don Govanni W.A. Mozart

Figura 9.4. Tres columnas de la tabla de óperas tras insertar dos filas más.
El año aparece en primer lugar y las filas están ordenadas por año de estreno.

void ejecutaSQL () {

db.execSQL(
"insert into operas (titulo,compositor,year) "

+" valúes(fMontezuma1 C .H . Graun',1755);");
db.execSQL(

"insert into operas (titulo,compositor,year) "
+" valúes('Statira1 ,’F. Cavalli1,1656)/");

// selecciona todos los datos en un Cursor--
cursor= db.rawQuery(

"select year, titulo, compositor"
+"from operas order by year",nuil);

} // end ejecutaSQL

void muestraTabla () {
tv.append("\nTamaño: "+db.getPageSize ());
int numeroDeColumnas=cursor.getColumnCount();
tv.append("\nColumnas: "tnumeroDeColumnas);
int numeroDeFilas=cursor.getCount() ;
tv.append("\nFilas: "+numeroDeFilas);

texto=texto+" \ n---------------------------- \n";

177

El gran libro de programación avanzada con Android

String[] columna= new String[numeroDeColumnas];
for (int i=0 / i<numeroDeColumnas / i++){

columna[i]= cursor.getColumnName(i);
texto=texto+columna[i]+ ”

}
texto=texto+" \n---------------------------- " ;

cursor.moveToFirst();
String campo;
for (int i = l;i<=numeroDeFilas; i + +) {
// loop sobre las filas--

texto=texto+" \n";
for (int j=0; jCnumeroDeColumnas;j++){

// loop sobre las columnas--
campo=cursor.getString(j);
texto=texto + campot "

}
cursor.moveToNext () ;

}
tv.append(texto);

} // end muestraTabla

9.5. Abrir una base de datos con SQLiteOpenHelper

Alternativamente al método openOrCreateDatabase, utilizado en los
ejemplos anteriores para abrir o crear una base de datos, puede usarse la clase
abstracta SQLiteOpenHelper del paquete android. database. sqlite. En
este caso, hay que crear una clase auxiliar que implemente los métodos
onCreate y onUpgrade, que se ejecutarán al crear la base de datos o al
actualizarla a una nueva versión.

En el siguiente ejemplo definimos una clase llamada SQLiteHelper, que
implementa a SQLiteOpenHelper. Al crear un objeto de esta clase, se crea la base
de datos música.db y la tabla operas, si no existen. Seguidamente se define la
base de datos con el método getwritableüatabase. En lugar de emplear
directamente comandos SQL para insertar filas y buscar en la tabla, usamos los
métodos insert y query.

El método insert requiere tres parámetros:

db.insert(String table, String nullColumn,
ContentValues valúes);

178

El primer parámetro es el nombre de la tabla. El segundo es opcional,
generalmente nuil, y se refiere al nombre de la columna donde se insertará nuil
en el caso de insertar una fila vacía. El tercero es el conjunto de valores que hay
que insertar en cada columna. Estos valores se introducen en un objeto
ContentValues, que contiene las parejas: nombre de columna y valor a insertar.

El método query requiere siete parámetros necesarios para realizar una
consulta completa SQL.

public Cursor query (String table, String[] columns,
String selection, String[] selectionArgs,

String groupBy, String having, String orderBy)

Para buscar todas las columnas y filas de una tabla, basta con proporcionar
únicamente el primer parámetro, que es el nombre de la tabla. Todos los demás
parámetros serán nuil.

A continuación se detalla la aplicación SQLiteHelperActivity. Usamos el
mismo layout de los ejemplos anteriores. En la figura 9.5. se muestra el resultado
de ejecutar esta aplicación cinco veces.

SQLiteOpenHelper
Tabla operas

Don Giovanní W.A. Mozart 1787
Don Giovanni W.A. Mozart 1787
Don Giovanni W.A. Mozart 1787
Don Giovanni W.A. Mozart 1787
Don Giovanni W.A. Mozart 1787

Figura 9.5. Base de datos creada con SQLiteOpenHelper.
La aplicación ha sido ejecutada cinco veces.

179

El gran libro de programación avanzada con Android

package es.ugr.amaro.sqlitehelper;

import android.app.Activity;
import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteDatabase.CursorFactory;
import android.database.sqlite.SQLiteOpenHelper;
import android.os.Bundle;
import android.widget.Textview;

public class SQLiteHelperActivity extends Activity {

Textview tv;
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(Textview) findViewByld(R.id.textview);

SQLiteHelper sqliteHelper
= new SQLiteHelper(this,"música.db",nuil,1);

SQLiteDatabase db
= sqliteHelper.getWritableDatabase();

ContentValues values= new ContentValues();
valúes.put("titulo", "Don Giovanni");
valúes.put("compositor", "W.A. Mozart");
valúes.put("year", 1787);
db.insert("operas",nuil, valúes);

Cursor cursor=db.query("operas", nuil, nuil, nuil,
nuil, nuil, nuil);

String titulo,compositor, year;
tv. append ("\n Tabla operas \n--------- ");
cursor.moveToFirst();
int filas= cursor.getCount();
for (int i=0;i<filas;i++){

titulo = cursor.getString (1) ;
compositor=cursor.getString(2);
year=cursor.getString(3);
tv. append ("\n"+titulo+" " + compositor-i-" "+year) ;
cursor.moveToNext() ;

}

db.cióse ();

180

} // end onCreate

}

class SQLiteHelper extends SQLiteOpenHelper{

public SQLiteHelper(Context context, String ñame,
CursorFactory factory, int versión) {

super(context, ñame, factory, versión)/
}

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL("create table if not exists "+
"operas (id integer primary key, titulo text, "+
" compositor text, year integer);");

}

QOverride
public void onUpgrade(SQLiteDatabase db,

int oldVersion,int newVersion){
}

} //---end SQLiteHelper

El tercer parámetro de SQLiteOpenHelper, que en nuestro ejemplo es nuil y
no se usa, es un objeto de tipo CursorFactory. Se utilizaría para pasarle una
subclase de Cursor que hayamos implementado nosotros.

9.6. Borrar filas con delete

La clase SQLiteDatabase permite usar el método delete para borrar filas
de una tabla. En el anterior ejemplo podemos borrar las filas repetidas
sustituyendo la línea

db.insert("operas",nuil, valúes);

por la línea

db.delete("operas"," i d > l " ,n u i l) ;

que borra todas las filas excepto la primera.

181

El gran libro de programación avanzada con Android

El resultado de hacer esta sustitución y ejecutar el programa anterior se
muestra en la figura 9.6. El segundo argumento del método delete es una string
correspondiente a una cláusula where de SQL, pero excluyendo la palabra
«where». Es decir, la línea anterior es equivalente a ejecutar el comando SQL

delete from operas where id > 1 ;

SQLiteOpenHelper
Tabla operas

Don Giovanní W. A. Mozart 1787

Figura 9.6. La base de datos creada con SQLiteOpenHelper tras
borrar todas las filas excepto la primera con delete.

9.7. Realizar búsquedas con query

Hemos visto que el método query requiere siete parámetros necesarios para
realizar una consulta completa SQL.

public Cursor query (String table, String[] columns,
String selection, String[] selectionArgs,
String groupBy, String having, String orderBy)

Si solo proporcionamos el primer parámetro y los demás son nuil, es equivalente a
la búsqueda SQL

select * from tabla

182

En la práctica, se realizarán consultas especificando patrones de búsqueda,
para lo cual se usarán los distintos parámetros de query. A continuación veremos
algunos casos concretos de búsquedas.

Primero ejecutamos la siguiente actividad, modificada a partir del ejemplo
anterior, para insertar trece filas en la base de datos música.db. Hemos definido
un método para facilitar la inserción de filas y otro método para escribir los
contenidos del Cursor. En la figura 9.7.1. se muestra la tabla resultante.

SQLiteOpenHelper
Tabla operas

1 Don Giovanni W. A. Mozart 1787
2 Le Nozze di Fígaro W. A. Mozart 1786
3 Gíulio Cesare G. F. Haendel 1724
4 Orlando Furioso A. Vivaldi 1727
5 Montezuma C. H. Graun 1755
6 Starira F. Cavalli 1656
7 Griselda A. Scarlatti 1721
8 Piramo e Tisbe J. A. Hasse 1768
9 Atenaide A. Vivaldi 1728
10 Tolomeo G. F. Haendel 1728
11 Armida J. Haydn 1784
12 Armíde C. W. Gluck1777
13 II Tutore Buriato V. Martín y Soler
1775
14 Berenice G. F. Haendel 1737

Figura 9.7.1. La base de datos creada con SQLiteOpenHelper
tras insertar nuevas filas.

package es.ugr.amaro.sqlitehelper;

import
import
import
import
import
import
import
import
import

android.app.Activity;
android.content.ContentValues;
android.content.Context;
android.database.Cursor ;
android.database.sqlite.SQLiteDatabase;
android.database.sqlite.SQLiteDatabase.CursorFactory;
android.database.sqlite.SQLiteOpenHelper;
android.os.Bundle;
android.widget.TextView;

183

El gran libro de programación avanzada con Android

public class SQLiteHelperActivity extends Activity {

TextView tv;
SQLiteDatabase db;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textView);

SQLiteHelper sqliteHelper
= new SQLiteHelper(this,"música.db",nuil,1);

db= sqliteHelper.getWritableDatabase();

// inserta trece nuevas filas
inserta("Le Nozze di Figaro","W. A. Mozart",1786);
inserta("Giulio Cesare","G. F. Haendel",1724);
inserta("Orlando Furioso","A. Vivaldi",1727);
inserta("Montezuma","C. H. Graun",1755);
inserta("Starira","F. Cavalli",1656);
inserta("Griselda","A. Sc a rlatti",1721);
inserta("Piramo e Tisbe","J. A. Hasse",1768);
inserta("Atenaide"," A. Vivaldi", 1728);
inserta("Tolomeo","G. F. Haendel", 1728);
inserta("Armida",”J. Haydn",1784);
inserta("Armide","C. W. Gluck",1777);
inserta("II Tutore Buriato","V. Martin y Soler",

1775);
inserta("Berenice","G. F. Haendel",1737);

Cursor cursor=db.query("operas", nuil, nuil, nuil,
nuil, nuil, nuil);

escribeCursor(cursor);
db.cióse();

} // end onCreate

// función para facilitar la inserción de filas
void inserta(String titulo,String compositor, int year){

ContentValues values= new ContentValues();
valúes.put("titulo", titulo);
valúes.put("compositor", compositor);
valúes.put("year", year);
db.insert("operas",nuil, valúes);

}

184

// función para mostrar el contenido del Cursor
void escribeCursor(Cursor cursor){

String titulo,compositor, year;
String fila="\n";
tv. append ("\n Tabla operas \n--------- ");
cursor.moveToFirst();
int nfilas= cursor.getCount()/
int ncolumnas=cursor.getColumnCount();
for (int i=0;i<nfilas;i + +){

fila="\n";
for(int j=0;j<ncolumnas;j+ +)

fila=fila+ cursor.getString(j)+ " ";
tv.append(fila);
cursor.moveToNext()/

}

class SQLiteHelper extends SQLiteOpenHelper{

public SQLiteHelper(Context context, String ñame,
CursorFactory factory, int versión) {

super(context, ñame, factory, versión);
}

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL("create table if not exists "+
"operas (id integer primary key, titulo text, "+
" compositor text, year integer);");

}

0Override
public void onüpgrade(SQLiteDatabase db,

int oldVersion, int newVersion){
}

} //---end SQLiteHelper
}

A continuación, realizamos una búsqueda del título y año de todas las óperas
posteriores a 1750, ordenadas por fecha. Basta con sustituir la llamada a query del
ejemplo anterior por la siguiente:

String[] columns={"titulo","year"};
String selection="year>1750";

185

El gran libro de programación avanzada con Android

String[] selectionArgs=null;
String groupBy=null;
String having=null;
String orderBy="year";
cursor=db.query("operas", columns, selection,

selectionArgs, groupBy, having, orderBy);

El resultado se muestra en la figura 9.7.2.

SQLiteOpenHelper
Tabla operas

Montezuma 1755
Piramo eTisbe 1768
II Tutore Buriato 1775
Armide 1777
Armida 1784
Le Nozze di Fígaro 1786
Don Giovanní 1787

Figura 9.7.2. Resultado de una búsqueda de óperas
posteriores a 1750 ordenadas cronológicamente.

Esto sería equivalente a la siguiente búsqueda en SQL:

cursor=db.rawQuery("select titulo,year from operas "
+" where year>1750 order by year;",nuil);

Se pueden especificar argumentos mediante símbolos de interrogación ? en la
cadena selection. Estos argumentos serán sustituidos por los valores
contenidos en el array selectionArgs, como en el siguiente ejemplo:

String[] columns={"titulo","year"};
String selection="year in (?,?)";
String[] selectionArgs={"1727","1728"};
String groupBy=null/

186

String having=null;
String orderBy=fTyearM;
cursor=db.query("operas" , columns, selection,

selectionArgs, groupBy, having, orderBy);

Esta búsqueda es equivalente al comando SQL

cursor=db.rawQuery("select titulo,year from operas "
+" where year in (1727,1728) order by year;",nuil);

En la figura 9.7.3. se muestra el resultado de esta búsqueda.

SQLiteOpenHelper
Tabla operas

Orlando Furioso 1727
Atenaíde 1728
Tolomeo 1728

Figura 9.7.3. Resultado de una búsqueda de óperas de los años 1727 y 1728
ordenadas cronológicamente.

El argumento groupBy permite agrupar las filas con algún elemento común.
En el siguiente ejemplo agrupamos las filas por compositor. Usamos la función de
SQL count (1), que suma un uno en cada una de las filas comunes, para contar
el número de óperas de cada compositor, y también la utilizamos para ordenar los
resultados de mayor a menor.

String[] columns={"compositor","count(1)"};
String selection=null;
String[] selectionArgs=null;
String groupBy="compositor";

187

El gran libro de programación avanzada con Android

String having=null;
String orderBy="count(1) desc";
cursor=db.query("operas", columns, selection,

selectionArgs, groupBy, having, orderBy);

El resultado se muestra en la figura 9.7.4. Esta búsqueda es equivalente a la
siguiente sentencia SQL:

cursor=db.rawQuery("select compositor,count(1) from operas'’+
"group by compositor order by count(1) desc;", nuil);

SQLiteOpenHelper
Tabla operas

G. F. Haendel 3
W. A* Mozart 2
A. Vivaldi t
A. Scarlatti 1
A. Vivaidi 1
C. H. Graun 1
C. W. Gluck 1
F. Cavalíi 1
|. A. Hasse t
j. Haydn t
V. Martín y Soler 1

Figura 9.7.4. Resultado de una búsqueda de número de óperas por compositor.

El argumento having permite imponer condiciones adicionales sobre los
resultados. Por ejemplo, para mostrar solo los compositores con más de una ópera
usaríamos:

String[] columns={"compositor","count(1)"};
String selection=null;
String[] selectionArgs=null;
String groupBy="compositor";
String having="count(1)>1";
String orderBy="count(1) desc";
cursor=db.query("operas", columns, selection,

selectionArgs, groupBy, having, orderBy);

188

En la figura 9.7.5. se muestra el resultado de esta búsqueda, que sería
equivalente al comando SQL

cursor=db.rawQuery("select compositor,count(1) from operas" +
"group by compositor having count(1)>1''+
" order by count(1) desc;", nuil);

Figura 9.7.5. Resultado de una búsqueda de los compositores
con más de una ópera en la base de datos.

En esta sección hemos ¡lustrado solo algunas de las posibilidades que ofrece
Android para realizar búsquedas y manipular bases de datos SQLite usando el
lenguaje SQL. El lector interesado puede profundizar en el uso de bases de datos
y en el lenguaje SQL leyendo algún manual especializado.

9.8. Adaptar un Cursor a un ListView

La clase CursorAdapter permite adaptar un Cursor a un ListView y así
mostrar en una lista de ítems los resultados de búsqueda en una base de datos.
Aquí utilizaremos la subclase simpleCursorAdapter. Esta clase permite
especificar las columnas que queremos mostrar, asociando cada una de ellas a un
TextView. El ListView se asocia a su vez al layout de un fichero xml, que contiene
los distintos TextView. Para construir un SimpleCursorAdapter se precisan cinco

189

El gran libro de programación avanzada con Android

argumentos. Por ejemplo, en la actividad C u rso rA dap te r que mostramos a
continuación, lo construimos del siguiente modo:

S tr in g [] f rom= { " t i t u l o " , "c o m p o s ito r11} ;
i n t [] to = {R . id . te x tV ie w 3 ,R . id . te x tV ie w 4 } ;
S im p leC urso rA dap te r adapter=new S im p leC urso rA dap te r

(t h i s , R . la y o u t . l i s t , c u rs o r , f r o m , to) ;

El primer parámetro es el contexto, es decir, la actividad actual t h is . El segundo
es el id del layout correspondiente al fichero í is t . x m l , dado más abajo, que
representa el layout de cada fila de la lista. El tercero es el Cursor, que
necesariamente debe tener una columna llamada _ id (en caso contrario, se
produce un error). El cuarto parámetro es un array de cadenas que contienen las
columnas del Cursor que queremos escribir. Esto se hará usando varios TextView
del layout, especificados en el quinto parámetro, que es un array de enteros que
contienen la id de los TextView. A partir de Android 3.0 (API 11), se recomienda no
utilizar este constructor para adaptar un Cursor en el hilo principal, pues podría
producir que la aplicación no responda, dependiendo del contenido del Cursor. Sin
embargo, si el Cursor no contiene muchas filas, no debería presentarse ningún
problema.

En el siguiente ejemplo llenamos una tabla de óperas en una base de datos y
mostramos su contenido con un ListView usando este SimpleCursorAdapter.
También implementamos el método O n ite m C lick para mostrar todos los
contenidos de la fila que se ha pulsado. El resultado se muestra en la figura 9.8.
Para esta actividad usamos el siguiente fichero m a in .xm l que contiene un
ListView.

<?xml v e rs io n = "1 .0 " e n c o d in g = "u t f -8 "?>
< L in e a rL a yo u t
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background^"#ffffcc" >

CTextView
a n d ro id : id = "@ + id / te x tV ie w l"
a n d ro id :te x tC o lo r= "# 9 9 3 3 0 0 "
a n d ro id :te x tS iz e = "2 O s p "
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d ro id : t e x t= " T i t u lo " />

CTextView
a n d ro id : id = "@ + id /te x tV ie w 2 "
a n d ro id : te x tC o lo r= " #000000"
a n d ro id :te x tS iz e = "1 8 s p "
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t h e ig h t= "w ra p c o n te n t"

190

http://schemas.android.com/apk/res/android

android:text="CompositorM />
<View

android:layout_width="fill_parent"
android:layout_height="5sp"
android:background=M#999900" />

<Li stview
android:id="@+id/listViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>
</LinearLayout>

Segreto
. Cimarosa, Estreno: 1792

F. Cavaíli
La Griseícla
A. Scarlatti
II re Teodoro in Venezia
G. Paisiello
La Locandiera
A. Salieri_______________
La Clementína
L. Boccherini____________
II Matrimonio Segreto
D, Cimarosa____________
II barbiere di Siviglia
G. Páisíelio_____________
Semiramíde
G. Rossini

Figura 9.8. Contenidos de una base de datos visualizados en un
ListView usando un SimpleCursorAdapter.

El siguiente fichero list.xml corresponde al layout que vamos a adaptar al
ListView.

<?xml version="1.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="f ill_parent"
android:orientation="vertical"

191

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:background="#ffffee" >

<TextView
android: id="0+id/textView3"
android: textColor="#993300"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Titulo" />

<TextView
android:id="0+id/textView4"
android:textColor="#000000"
android:textSize="18sp"
android:layout_width="fill_parent"
android:layqut_height="wrap_content"
android:text="Compositor" />

</LinearLayout>

Por último, la actividad CursorAdapter. java es la siguiente:

package es.ugr.amaro.cursoradapter;

import android.app.Activity;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnltemClickListener;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.TextView;

public class CursorAdapterActivity extends Activity
implements OnltemClickListener{

SQLiteDatabase db;
TextView tvl,tv2;

©Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tvl=(TextView) findViewByld(R.id.textViewl);
tv2=(TextView) findViewByld(R.id.textView2);

db=openOrCreateDatabase(

192

I»"música.db",MODE_PRIVATE,nuil);
db.execSQL("create table if not exists operasl

" (_id integer primary key, titulo text, "
"compositor text, year integer);");

// llena la tabla de óperas
llenaTabla();

-
+

// Realiza una búsqueda
String[] columns={"_id","titulo","compositor",

"year"};
Cursor cursor=db.query("operas1", columns,nuil,nuil,

nuil,nuil,nuil);
// adapta el Cursor a nuestro ListView
ListView lv=(ListView) findViewByld(R.id.listViewl);
String[] from={"titulo","compositor"};
int[] to={R .id.textView3,R .id.textView4);
SimpleCursorAdapter adapter=new SimpleCursorAdapter

(this,R .layout.list, cursor, from,to);
lv.setAdapter(adapter);
lv.setOnltemClickListener(this);
db.cióse () ;

void llenaTabla () {

insertaFila
insertaFila
insertaFila
insertaFila
insertaFila
insertaFila
insertaFila

insertaFila
insertaFila
insertaFila

insertaFila

insertaFila

"Don Giovanni", "W. A. Mozart", 1787);
"Giulio Cesare","G.F. Haendel",1724);
"Orlando Furioso","A. Vivaldi",1727);
"Montezuma","C.H . Graun",1755);
"Statira","F. Cavalli",1656);
"La Griselda","A. Scarlatti",1721);
"II re Teodoro in Venezia",

"G. Paisiello",1784);
"La Locandiera","A. Salieri" , 1773) ;
"La Clementina","L. Boccherini",1783);
"II Matrimonio Segreto",

"D. Cimarosa",1792);
"II barbiere di Siviglia",

"G. Paisiello",1782);
"Semiramide","G. Rossini",1823);

void insertaFila(String titulo,
String compositor, int year){

ContentValues values=new ContentValues();
valúes.put("titulo",titulo);

193

El gran libro de programación avanzada con Android

valúes.put("compositor" , compositor) ;
valúes.put("year", year);
db.insert("operasl",nuil, valúes);

@Override
public void onltemClick(AdapterView<?> listView,

View v, int position, long id) {
// TODO Auto-generated method stub
Cursor cursor

=(Cursor) listView.getItemAtPosition(position);
int _id=cursor.getInt(0);
String titulo=cursor.getString(1) ;
String compositor=cursor.getString(2) ;
int year=cursor.getInt(3);
tvl.setText(_idt", "+titulo);
tv2.setText(compositor+", Estreno: "tyear);

}
}

194

10. PROVEEDORES DE CONTENIDOS

Las bases de datos SQLite discutidas en el capítulo anterior son internas a
cada aplicación, es decir, no se puede acceder a ellas desde otra aplicación. Para
que nuestra base de datos u otros contenidos sean accesibles, debemos crear un
proveedor de contenidos, extendiendo a la clase ContentProvider. Android
utiliza proveedores de contenidos nativos para almacenar los contactos, las
imágenes, los archivos multimedia, las preferencias, las llamadas telefónicas, etc.
En este capítulo comenzaremos viendo cómo se accede a algunos de estos
proveedores nativos para, posteriormente, proceder a crear nuestro propio
proveedor de contenidos.

10.1. El proveedor de contactos

Cada Content Provider posee un identificador único, especificado mediante
una cadena de texto en formato URI (Uniform Resource Identifier). Este
identificador uniforme de recurso tiene una estructura similar al URL (Uniform
Resource Location) de una página web. Por ejemplo, el URI de la tabla de
contactos de Android es

content://com.android.contacts/contacts

Este URI consta de varias partes:

• El prefijo content: es obligatorio e indica que se trata del URI de un
ContentProvider.

• La autoridad (authority) //com. android. contacts identifica al
proveedor de contactos. Este nombre corresponde a una aplicación
Android que nos dará acceso a la base de datos que contiene.

• El path /contacts o ruta del contenido, que generalmente será el
nombre de una tabla en la base de datos. En este ejemplo especifica la
tabla denominada contacts de la base de datos del proveedor de
contactos.

195

El gran libro de programación avanzada con Android

El URI de la tabla de contactos está almacenado como una constante estática
de la clase ContactsContract. Esta clase contiene toda la información y facilita
el uso del proveedor de contactos. Este URI se almacena en un objeto de tipo Uri
mediante

Uri uriContactos=ContactsContract.Contacts.CONTENT_URI;

Alternativamente, si conocemos el URI completo, podemos utilizar el método
Uri.parse.

uriContactos=Uri.parse(
"content://com.android.contacts/contacts");

El URI puede especificar una fila concreta de la tabla de contactos añadiendo
a la ruta un fragmento con el número de la fila. Por ejemplo, así se definiría el URI
de la fila número 17 de la tabla contacts:

uriContactos=Uri.parse(
"content://com.android.contacts/contacts/17");

Una vez definido el URI de una tabla o una fila de la base de datos, podemos
examinar sus contenidos usando un objeto de tipo ContentResolver. Por
ejemplo, se puede extraer el tipo MIME asociado al URI.

ContentResolver resolver= getContentResolver();
String mime= resolver.getType(uriContactos);

Esta operación aplicada a la tabla de contactos nos devuelve el siguiente tipo
MIME:

vnd.android.cursor.dir/contact

El ContentResolver se encarga de «resolver» la dirección del URI y enlazarla
con el ContentProvider. Para realizar unéi búsqueda en la tabla, utilizamos el
método query de ContentResolver. Este método es similar al que usamos para
inspeccionar una base de datos, con la excepción de que el primer argumento es
un URI en lugar del nombre de una tabla.

Cursor cursor=resolver.query(uriContactos, nuil,nuil,nuil);

El ContentResolver nos permite realizar la búsqueda en la tabla que
corresponda al URI especificado. El resto de los argumentos delimitan la
búsqueda, que en general será del tipo

query (Uri uri,
String[] projection,
String selection,
Stringf] selectionArgs,

196

String sortOrder);

Aquí, p r o je c t io n contiene los nombres de las columnas, s e le c t io n es una
cadena que contiene una cláusula where de SQL, que puede contener varios
argumentos indicados con un signo de interrogación ?, y que serán sustituidos por
los contenidos de s e le c t io n A rg s . Finalmente, s o r tO rd e r indica la ordenación
especificada como una cláusula o rd e r by de SQL.

El resultado de la búsqueda se almacena en un objeto Cursor. Para extraer los
datos del Cursor, utilizamos las técnicas empleadas en el capítulo anterior.

En el siguiente ejemplo exploramos el contenido de la tabla de contactos de un
teléfono. Usamos un ScrollView para mostrar en pantalla el URI y el MIME de la
tabla de contactos. A continuación, realizamos una búsqueda y mostramos los
nombres de todas las columnas de dicha tabla, que quedan almacenadas en un
Cursor. La búsqueda se realiza solo para los contactos con número de teléfono y
se ordenan por orden alfabético según la columna d isp lay_nam e. Nótese que la
columna has_phone_number contiene una variable booleana que es true si el
contacto tiene número de teléfono.

Para que nuestra actividad pueda acceder a la tabla de contactos debe ser
autorizada por el usuario. Para solicitar dicha autorización, hay que incluir en el
fichero A n d ro id M a n if e s t . xml la siguiente etiqueta u s e s -p e rm is s io n :

c u s e s -p e rm is s io n
a n d ro id : nam e="and ro id . p e rm is s io n . READ_CONTACTS" >

< /u s e s -p e rm is s io n >

El fichero A n d ro id M a n if e s t . xml de nuestra aplicación quedará como
sigue:

<?xml v e rs io n = " 1 . 0" e n c o d in g = "u tf -8 " ?>
c m a n ife s t
xm ln s : a n d ro id = "h t t p : //s ch e m a s . a n d ro id .c o m /a p k /re s /a n d ro id "

package= "es . u g r . am aro. c o n ta c to s "
a n d ro id : ve rs io n C o d e = "1"
a n d ro id : vers ionN am e="1 .0 " >

<uses-sdk a n d ro id :m in S d k V e rs io n = "7 " />

c u s e s -p e rm is s io n
a n d ro id : nam e="and ro id . p e rm is s io n . READ_CONTACTS">

c /u s e s -p e rm is s io n >

c a p p lic a t io n
a n d ro id : ic o n = "@ d ra w a b le /ic _ la u n c h e r"
a n d ro id : la b e l= "@ s tr in g /a p p ñame" >

197

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

<activity
android:name=".ContactosActivity”
android:label="@string/app_name" >
<intent-filter>

<action
android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>
Utilizamos la siguiente interfaz de usuario con un ScrollView, pues el número

de datos puede desbordar las dimensiones de la pantalla.
<?xml version=',1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent">

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:background="#ffffcc" >
<TextView

android:id="0+id/textView"
android:textColor="#000000"
android:textSize="16sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

</LinearLayout>
</ScrollView>

El programa ContactosActivity. j ava es el siguiente:
package es.ugr.amaro.contactos/
import android.app.Activity;
import android.content.ContentResolver;

198

http://schemas.android.com/apk/res/android

import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract;
import android.widget.TextView;

public class ContactosActivity extends Activity {
/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
TextView tv=(TextView) findViewByld(R.id.textView);

// URL de la tabla de contatos
Uri uriContactos

^ContactsContract.Contacts.CONTENT_URI;
// definición alternativa--
uriContactos=Uri.parse(

"content://com.android.contacts/contacts");
String uriString=uriContactos.toString();
tv.setText("uri de la tabla contactos:\n"turiString);

// Definimos un ContentResolver
ContentResolver resolver= getContentResolver();
String mime= resolver.getType(uriContactos);
tv.append("\nMIME de la tabla contactos:\n"+mime);

// descomentar esto para obtener un único contacto
// uriContactos=Uri.parse(uriStringt"/I4");
// mime= resolver.getType(uriContactos);
// tv.append("\nMIME de un único contacto:\n"+mime);

// Búsqueda de contactos--
Cursor cursor=resolver.query(uriContactos, nuil,

"has_phone_number", nuil, "display_name");

// escribe los nombres de las columnas--
int ncolumnas=cursor.getColumnCount();
String[] nombreColumna=new String[ncolumnas];
for(int i=0;i<ncolumnas;i++){

nombreColumna[i]=cursor.getColumnName(i);
tv.append("\n"+i+","tnombreColumna[i]);

}

// forma alternativa de obtener las columnas--
int displayNameIndex= cursor.getColumnlndex(

ContactsContract.Contacts.DISPLAY ÑAME);

199

El gran libro de programación avanzada con Android

tv.append("\n\nDISPLAY_NAME index="
+displayNameIndex);

int idlndex= cursor.getColumnlndex
(ContactsContract.Contacts._ID);

tv.append("\n_ID index="+idlndex)/

// escribe los contactos--
tv.append("\n\nTABLA DE CONTACTOS: _ID ,

DIS PLAY_NAME") ;

cursor.moveToFirst();
int nfilas=cursor.getCount()/
for(int i=0;i<nfilas;i++){

String _id=cursor.getString(idlndex);
String display_name

=cursor.getString(displayNamelndex)/
tv . append (11 \n"+_id+" , "+display_name) ;
cursor.moveToNext();

}

uri de la tabla contactos:
co n te n t://co m .android.conta cts/co n ta cts
MIME de la tabla contactos:
vnd.android.cursor.dir/contact
0,times_contacted
1,contact_status
2,custom_ringtone
3,has_phone_number
4,contact_statusJabel
5,lookup
6,contact_status_icon
7,last_tíme_contacted
8,display_name
9,in_vísible_group
10, Jd
11,starred
12,contact_presence
13,contact_status_res_package
14,contact_status Js
15,photoJd
16,send Jo_voícemaíl

DISPLAY_NAME ¡ndex=8
10 index=10

13:33
ontacios

uri de la tabla contactos:
content://com.android.contacts/contacts
MIME de la tabla contactos:
vnd.android.cursor.dir/contact
O,times_contacted
I ,contact_status
2,phonetic_name
3,phonetic_name style
4,link
5,sort_locale
6,raw_contactJinkprioríty4
7,raw_contact_linkprioríty5
8,lookup
9fcontact_status_icon
1O,lastj:ime_contacted
I I J d
12,display_name_source
13,sort_priority
14, photo Jd
15,send jo j/o icem a il
16,display„name_reverse
17,custom_ringtone
18,has_phone_number
19,link_type5
20,línkjype4

mmmm

Figura 10.1.1..Izquierda: contenidos de la tabla de contactos en un emulador
con Android 2.1 (Eclair). Derecha: en un teléfono

Samsung Galaxy S con Android 2.2.1 (Froyo).

200

El número de columnas de la tabla de contactos depende de la versión de
Android y del dispositivo que utilicemos. Así, esta aplicación ejecutada en un
emulador con Android 2.1 muestra 16 columnas, donde el nombre del contacto
ocupa la posición 8 y su id la posición 10, como se observa en la figura 10.1.1. La
misma tabla tiene 41 columnas en un teléfono Samsung Galaxy S con Android
2.2.1; el nombre ocupa la posición 27 y su índice, la posición 11 (ver figuras
10.1.1. y 10.1.2.). Por esta razón es conveniente utilizar en la aplicación el nombre
de la columna en lugar del valor numérico de su posición en la tabla. Esta
información está almacenada en las constantes de la clase ContactsContract.
El nombre de la columna display_name está almacenado en la constante

ContactsContract.Contacts.DISPLAY ÑAME

y el de la columna _id en la constante

ContactsContract.Contacts. ID

21,link_type3
22,contact_status_label
23,linkjype2
24,linkjype1
25,raw_contactJinkpriority3
26,raw_contactJinkpriority2
27,display_name
28,sort_priority_alt
29,raw_contactJínkpriority1
30,has_email
31,sort_key_alt
32,dirty_contact
33,¡n_vísible_group
34, star red
35,link_count
36,sort_key
37,display_name_alt
38,contact_presence
39,sortJocale„alt
40,contact_status_res_package
41,contact_status_ts

DISPLAY_NAME index=27
_ID index=11

TABLA DE CONTACTOS: _ID , DISPLAY_NAME
3,Alberto Y Patricia
87,Bmw Encuesta
2,Caser
56,Emergencia
91,Félix Montes
92,Francisco Molina Cobos
208,Gasolambra Gasoil
213,jazztel
217,Jesús Diaz Verdejo
89,Julio Peugeot
100,Luis Alvarez
107,Luís Romero Solis
85,Marco Jardinero
103,Mari Sobri
99,Maria Bárbaro
55, Maria Jesús
207,Maria Jesús
90,Mí Móvil Simyo
86,Mí Móvil Simyo2
97,Paco Galvez
216,Paco Pepe
209,Rodrigo Navarro Pérez
105,Virgilio Gallego

Figura 10.1.2. Contenidos de la tabla de contactos en un teléfono Samsung
Galaxy S (continuación). Izquierda: nombres de las columnas de la
tabla de la 21 a la 41. Derecha: primeros contactos con número de

teléfono, ordenados alfabéticamente.

201

El gran libro de programación avanzada con Android

10.2. La tabla de datos de los conlactos

En la sección anterior hemos explorado la tabla de contactos con el URI

content://com.android.contacts/contacts

Al inspeccionar sus columnas, habremos notado que dicha tabla no contiene
números de teléfono, sino la columna has_phone_number, que indica si el
contacto tiene un número de teléfono. En caso afirmativo, dicho número se
almacena en otra tabla denominada data. Esta tabla de datos pertenece también
al proveedor de contactos y tiene el URI

content://com.android.contacts/data

En la siguiente aplicación inspeccionamos dicha tabla, escribiendo en primer
lugar los nombres de todas sus columnas. Nos interesa examinar las cuatro
columnas siguientes de todos nuestros contactos:

display_name
datal
mimetype
raw_contact_id

Los nombres de estas cuatro columnas están almacenados en las siguientes
constantes de la clase ContactsContract:

ContactsContract.CommonDataKinds.Phone.DISPLAY_NAME;
ContactsContract.CommonDataKinds.Phone.NUMBER;
ContactsContract.Data.MIMETYPE;
ContactsContract.Data.RAW_CONTACT_ID;

Esto nos indica, concretamente, que la columna datal es la que se utiliza
para almacenar el número de teléfono, pero este es solo uno de los usos de dicha
columna. Como veremos al ejecutar el siguiente programa, la columna datal se
utiliza también para almacenar otros tipos de datos, como correos electrónicos,
nombres de contactos, direcciones de páginas web personales, etc. En realidad,
cualquier dato puede almacenarse en la columna datal y otras columnas
disponibles al efecto denominadas data2, data3, etc. Entonces, ¿cómo podemos
saber el tipo de dato almacenado en la columna datal? Ahí es donde entra en
juego la columna mimetype, que contiene el tipo MIME del dato almacenado en
cada fila, y que generalmente está en la columna datal o en alguna de las
restantes (data2, data3, etc.).

Todos los tipos MIME correspondientes al URI de un proveedor de Android
comienzan por vnd. android. cursor. El prefijo vnd significa vendor. Este tipo

202

MIME indica, por lo tanto, que el URI es un Cursor de Android. Si el Cursor
corresponde a una tabla completa, se le añade un sufijo . dir. Por ejemplo, en la
sección anterior hemos visto que el tipo MIME de la tabla de contactos es

vnd.android.cursor.dir/contact
Lo que vemos al ejecutar el ejemplo siguiente es que un número de teléfono
posee el tipo MIME

vnd.android.cursor.item/phone_v2
El sufijo . item indica que el dato corresponde a una fila de una tabla. Otros tipos
MIME que también podemos encontrar almacenados en datal son:

• El nombre de un contacto

vnd.android.cursor.item/ñame
• El correo electrónico

vnd.android.cursor.item/email_v2
• La página web del contacto

vnd.android.cursor.item/website
• La dirección del contacto en la red de la aplicación WhatsApp

vnd.android.cursor.item/vnd.com.whatsapp.prof ile

Para la siguiente aplicación utilizaremos la misma interfaz de usuario de la
sección anterior. El programa TelefonosActivity. java es el siguiente:

package es.ugr.amaro.telefonos ;
import android.app.Activity;
import android.content.ContentResolver;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract;
import

android.provider.ContactsContract.CommonDataKinds.Phone;
import android.widget.Textview;
public class TelefonosActivity extends Activity {

/** Called when the activity is first created. */

203

El gran libro de programación avanzada con Android

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
TextView tv=(Textview) findViewByld(R.id.textview);

Uri uriData;
uriData=ContactsContract.Data.CONTENT_URI;
tv.setText(

"URI de la tabla Data:\n"+uriData.toString());

// realiza una búsqueda--
ContentResolver resolver=getContentResolver();
Cursor cursor=resolver.query(

uriData, nuil, nuil, nuil, nuil);
startManagingCursor(cursor);

// muestra los nombres de todas las columnas--
int ncolumnas=0;
tv.append("\nColumnas:"+ncolumnas);
String[] columna=cursor.getColumnNames();
ncolumnas=columna.length;
tv.append("\ncolumnas="+ncolumnas);

for(int i=l;i<ncolumnas;i++){
tv. append ("\n" + i + ff , " + columna [i]) ;

}

// extrae el Índice de las cuatro columnas interesantes
String colPhone=Phone.NUMBER;
String colName=Phone.DISPLAY_NAME;
String colMime=ContactsContract.Data.MIMETYPE;
String colRaw=ContactsContract.Data.RAW_CONTACT_ID;
int iPhone=cursor.getColumnlndex(colPhone);
int iName=cursor.getColumnlndex(colName);
int iMime=cursor.getColumnlndex(colMime);
int iRaw=cursor.getColumnlndex(colRaw);

tv. append ("\nRAW_CONTACT _ID\nf, + colRaw+" : " + iRaw) ;
tv.append(

"\nPhone . DISPLAY_NAME\n"+ colName + " : ff + iName) ;
tv.append("\nPhone.NUMBER\n"+colPhone+":"+iPhone);
tv.append("\nMIMETYPE\n"+colMime+" : "+iMime+"\n");

// Muestra datos de todos los contactos--
int nfilas=cursor.getCount();
String phone,ñame,mime,raw;
cursor.moveToFirst();

204

for(int i=l;i<nfilas;i++){
phone=cursor.getString(iPhone);
name=cursor.getString(iName);
mime=cursor.getString(iMime);
raw=cursor.getString(iRaw);
tv.append(
"\n* ', + raw+"\n"+name + "\ n"+phone + ,,\n,,+mime + "\ n") ;

cursor.moveToNext();
}
stopManagingCursor(cursor);

}
}

URIde la tabla Data:
content://com.android.contacts/data
Columnas:0
coíumnas=54
1, contactjd
2, lookup
3, datal 2
4, datal 1
5, datalO
6, mimetype
7, data15
8, data14
9, data13
10, data_sync1
11, data„sync3
12, data„sync2
13, data_sync4
14, accounLtype
15, custom_ríngtone
16, status
17, datal
18, data4
19, data5
20, data2
21, data3
22, data8
23, data9
24, group_sourceid
25, data6

27, data7
28, dispiay_name
29, ¡n„vislbíe^roup
30, contacta status_res_package
31, is_primary
32, contact_status_ts
33, rawjrontactJd
34 ,times_contacted
35, contact_status
36, status„res„package
37, status.icon
38, contact_statusJcon
39, mode
40, versión
41, last_time_contacted
4 2 , res package
43, Jd
44, sta tus Js
45, dirty
46, is_super„prímary
47, photo„íd
48, sendjo.voicemail
49, contact_status_label
50, status„labei
51 , star red
52, contact_presence
53, sourceid
RAW_CONTACT_ÍD
mtsjzmMUázM,

Figura 10.2.1. Columnas de la tabla de datos en un emulador con Android 2.1

En la figura 10.2.1. se muestra el resultado de ejecutar esta aplicación en un
emulador con Android 2.1. En este caso, la tabla de datos tiene 53 columnas. Las
cuatro que nos interesan ocupan las siguientes posiciones:

display_name: 28
datal: 17
mimetype: 6
raw contact id: 33

205

El gran libro de programación avanzada con Android

% X B # X •vwvftvt v̂ vlv. Ití.l

URI de la tabla Data:
content://com.android.contacts/data 26, data3
Columnas:0 27, sns_id
columnas=72 28, dataS
1, phonetic_name 29, data9
2, phonetic_name_style 30, group_sourceid
3, contact Jd 31 , data6
4, iookup 32, account_name
5, datal 2 33, data7
6, datal 1 34, display_name
7, datal 0 35, sort_priority,aít
8, mimetype 36, in_visibíe_group
9, datal 5 37, dísplay,name_alt
10, datal 4 38, contact, status, res_package
11, datal 3 39, ís_prlmary
12, display_name_source 40, contact_status_ts
13, data_sync1 41, raw_contactJd
14, sort_priority 42, times_contacted
15, data,sync3 43, contact.status
16, data,sync2 44, status, res_package
17, data_sync4 45, status, icón
18, account_type 46, sortjocale
19, custom_ringtone
20, sp

47, contact,status,icon
48, mode

21, status 49, versión
22, datal 50, last_time_contacted
23, data4 51 , res.package
24, data5 52, Jd
25, data2 53, name_verified

• 3 E * Í * ü * > '* S fili'CS 2053 ^ m fil €3 20:59

54, status_ts
55, dirty
56, is_super_primary
57, photo Jd
58, sendjo.voicernail
59, display_name_reverse
60, name_raw_contactJd
61 , is_sim
62, contad, statusjabeí
63, statusjabeí
64, Iink_type1
65, raw_contact_!inkprioríty1
66, sort,key_alt
67, starred
68, sort„key
69, contact_presence
70, sourceid
71 , sort lócale alt
RAW_CONTACf_ID
raw contact id : 41
Phone.DISPLAY.NAME
display_name: 34
Phone.NUMBER
data1:22
MIMETYPE
mimetype: 8

*2

637526731''
vnd.android.cursor.item/phone_v2

*85
Marco Jardinero
Marco Jardinero
vnd.android.cursor.item/name

*86
Mi Móvil Simyo2
614424350
vnd.android.cursor.item/phone_v2

*86
MI Móvil Simyo2
Mi Móvil Simyo2
vnd.android.cursor.item/name

*87
Bmw Encuesta
63030014651331
vnd.android.cursor.item/phone_v2

*87
Bmw Encuesta
Bmw Encuesta
vnd.android.cursor.item/name

89

Figura 10.2.2. Contenidos de la tabla de datos en un teléfono
Samsung Galaxy S con Android 2.2.1.

206

En la figura 10.2.2. vemos el resultado de ejecutar la aplicación en un teléfono
Samsung Galaxy S con Android 2.2.1. En este caso, la tabla de datos tiene 71
columnas. Las cuatro que nos interesan ocupan ahora las posiciones

display_name: 34
datal: 22
mimetype: 8
raw_contact_id: 41

Los nombres de todas estas columnas se pueden ver en las tres primeras
imágenes de la figura. El número de filas es de varios cientos. En la última imagen
(abajo derecha), se muestran algunas de ellas. Podemos observar que solo
algunos de los datos contienen un número de teléfono, con el tipo MIME

vnd.android.cursor.item/phone_v2.

La otra columna que hemos mostrado es raw_contact_id. Este número es
el id que el contacto tiene en la tabla raw_contacs, que será el objeto de la
sección siguiente. En nuestro ejemplo vemos que distintas filas correspondientes
al mismo contacto tienen el mismo valor de este registro, que identifica
unívocamente el contacto. Este valor habrá que conocerlo a la hora de introducir
algún dato en la tabla data.

10.3. La tabla raw contacts

La tabla raw contacts es la tabla principal del proveedor de contactos. El
URI de esta tabla es

content: //com. android. contacts/raw__contacts

Este URI está almacenado en la clase ContactsContract y lo podemos obtener
mediante

Uri uriRaw=ContactsContract.RawContacts.CONTENT_URI;

En la tabla raw contacts se registra cada nuevo contacto y se le asocia un
único número de identificación, en la columna id, antes de introducir sus datos
en la tabla data. En raw contacts no se almacena ningún dato personal, solo el
nombre y tipo de cuenta a la que está asociado el contacto. Dicha información
está almacenada en las columnas

account_type
account ñame

207

El gran libro de programación avanzada con Android

Cada contacto está identificado en raw contacts por su id, que es el que
aparece en la columna raw_contact_id de la tabla data, y debe conocerse
para introducir los datos de los contactos, como veremos en la próxima sección.

En la siguiente aplicación exploramos la tabla raw contacts y mostramos las
dos columnas anteriores, junto con la id. Los nombres de estas tres columnas
están almacenados en la clase ContactsContract y pueden obtenerse mediante

String contactId=ContactsContract.RawContacts.CONTACT_ID;
String accountName

=ContactsContract.RawContacts.ACCOUNT_NAME;
String accountType

=ContactsContract.RawContacts.ACCOUNT_TYPE;

También mostramos los nombres del resto de las columnas de la tabla. Como
se muestra en las capturas de pantalla de la figura 10.3., esta tabla tiene 34
columnas en un teléfono Samsung Galaxy S con Android 2.2.1.

19:24 | # ü ü f
RawContacts

19:20

Tabla RawContacts URI:
content://com.android.contacts/raw_contacts
0: times.contacted
I : phonetic_name
2 : phonetic_name_style
3 : contact Jd
4 : sortjocaie
5 : versión
6 : íast_time_contacted
7: aggregation_mode
8: Jd
9 : name_venfíed
10: display_name_source
I I : dirty
12: sort_priority
13: sendjo_voicemaií
14: account.type
15: dispiay„name_reverse
16: custom_ringtone
17: is_sím
18: sp
19: sync4
20: sync3
21 : sync2
22: syncl
23 : snsjd
24: deíeted
25: accountjiame
26: disptay„natTie

zeTdlspay Jria me
27: sort_pnority_ait
28: sort_key_alt
29: starred
30: sort_key
31 : displayjiame^alt
32: sourceíd
33 : sort fócale alt
2
vnd.sec.contact.phone
vnd.sec.contact.phone
3
vnd.sec.contactphone
t/nd.sec. contact. phone
4
/̂nd.sec. contact. phone

vnd.sec.contact.phone
5
vnd.sec.contact.phone
vnd.sec.contact.phone
6
vnd.sec.contact.phone
vnd.sec.contact.phone
7
vnd.sec.contact.phone
vnd.sec.contact.phone
8
vnd.sec.contact.phone
vnd.sec.contact.phone

Figura 10.3. Visualización de la tabla RawContacts en un teléfono
Samsung Galaxy S con Android 2.2.1.

En esta figura vemos que los contactos asociados a números i. teléfono
pertenecen a la cuenta con nombre y tipo denominados

vnd.sec.contact.phone

208

Podemos encontrar otros tipos de cuentas. Para contactos de la tarjeta SIM:

vnd.sec.contact.sim

Para contactos de Gmail:

com.google

Para contactos de WhatsApp:

com.whatsapp

En este ejemplo utilizaremos la misma interfaz de usuario de las secciones
anteriores. El programa RawContactsActivity. java es el siguiente:

package es.ugr.amaro.rawcontacts;

import android.app.Activity;
import android.content.ContentResolver;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract;
import android.widget.TextView;

public class RawContactsActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

TextView tv=(TextView) findViewByld(R.id.textView);

Uri uriRaw;
uriRaw=ContactsContract.RawContacts.CONTENT_URI;
tv.setText("Tabla RawData URI:\n"turiRaw.toString());

ContentResolver resolver=getContentResolver();
Cursor cursor=resolver.query(uriRaw,

nuil, nuil, nuil, nuil);

// muestra los nombres de las columnas en pantalla
String[] columna=cursor.getColumnNames();
int ncolumnas=columna.length;
for(int i=0;i<ncolumnas;i++){

tv.append("\n"+i+" : "+columna[i]);
}

209

El gran libro de programación avanzada con Android

// muestra los contenidos de las columnas
String contacted

= ContactsContract.RawContacts.CONTACT_ID;
String accountName

= ContactsContract.RawContacts.ACCOUNT_NAME;
String accountType

= ContactsContract.RawContacts.ACCOUNT_TYPE;
int ild = cursor.getColumnlndex(contactId);
int iName = cursor.getColumnlndex(accountName);
int iType = cursor.getColumnlndex(accountType);
cursor.moveToFirst();
String id,ñame,type/
int nfilas=cursor.getCount();
for(int i=0;i<nfilas;i++){

id=cursor.getString(ild);
name=cursor.getString(iName);
type=cursor.getString(iType) ;
tv. append (" \n"+id+" \n"+name + " \n"+type) ;
cursor.moveToNext();

}
}

}

10.4. Añadir contactos

En esta sección presentamos una sencilla aplicación para añadir un nuevo
contacto, incluyendo nombre, teléfonos móvil y del domicilio y correo electrónico.
Estos datos se almacenan en la tabla data. Nuestra aplicación divide la pantalla
en dos secciones, como se observa en la figura 10.4. En la parte superior hay un
botón y cuatro campos de texto para introducir los datos anteriores. En la parte
inferior de la pantalla vamos a escribir el contenido de las nuevas filas creadas en
las tablas raw contaos y data. Mostraremos todas las columnas de dichas
tablas que no estén vacías (es decir, cuyo contenido no sea nuil). Veremos así
que el proveedor de contactos procede internamente al llenado de muchas de las
columnas al añadir un nuevo contacto, no solo las que nosotros hemos
introducido.

Los permisos requeridos para leer y escribir contactos, que deben introducirse
en el fichero AndroidManif est. xmim, son los siguientes:

Cuses-permission
android:name="android.permission.READ_CONTACTS"/>

Cuses-permission
android:name="android.permission.WRITE CONTACTS"/>

210

mmrntm
£. Amaro 2012

antonio vivaldi

üii

Añadir contacto ByJ.E. Amaro 2012

Insertando contacto antoniovivaídi, 680680680
958203040, vivaíd}#grnali.com

*Raso 1
Insertado nuevo RAW CG&TACT

Mostrando registros no nulos del URI:
content://com. android .contacts/raw_contacts/240
D:times_contacted=02:phonidc„namewsíyíe«0

Añadir contacto ByJ.E. Amaro 2012

95820304d|

vivaldi@gmaii.com

Añadir contacto By J.E. Amaro 2012

***Paso3...
Insertado telefono móvil

Mostrando registros no nulos del URI: IW -
content://com.android.eontacts/data/504 l¡ i¡ ¡ |¡
0;data„version»0 •
2;phonedcjiaroe„siyie»0
3;contacUd~25? 'j£;i£v:iT..
-a, ookup-0r¿55-2C4652484&3C48 56 3C56X ¿ 2 22 or

V.V.V.V. .V.V.W.V*4í lili»>» ?»*: Mt H# ®É¡ 4HI ss 'f>q w e §§¡ t y u I o p

¡Ja s d lÜ g fj j j |
X V yO X|X y^i . v a v X v a / .W iW í* . .•¿•¡•WWW* 'X 'X W J J •>K,C*X*¡*¡v . . w . v . w (i w . v . v . v . .

♦ 1 9¡f fct : v i: b i'n' m «3

?13 |. ::rsp;«̂ :'S?f J a p

Figura 10.4. Aplicación para añadir contactos ejecutada en
un teléfono Samsung Galaxy S.

mailto:vivaldi@gmaii.com

El gran libro de programación avanzada con Android

Para esta aplicación usaremos la interfaz de usuario definida en el siguiente
fichero main. xml.

<?xml version="l.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/linearLayout1"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<LinearLayout
android:background="#ffddee"
android:orientation="horizontal"
android: layout_width="fill_parent,f
android:layout_height="wrap_content" >

<Button
android: id= " @ + id/buttonl,i?
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Añadir contacto" />

<TextView
android:textColor="#000000"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="By J.E. Amaro 2012" />

</LinearLayout>

<ScrollView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:background="#440044" >

<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

<TextView
android:id="@+id/textViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Nombre:" />

212

http://schemas.android.com/apk/res/android

<EditText
android:id="@+id/editText1"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

</EditText>

<TextView
android:id="@+id/textView2"
android: layout_width=" f ill_parent"
android: layout_height="wrap_content"
android: text=,f Teléfono Móvil:" />

<EditText
android:id="0+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

</EditText>

<TextView
android:id="0+id/textView3"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Teléfono casa:" />

<EditText
android:id="@+id/editText3"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

</EditText>

CTextView
android:id="0+id/textView4"
android:layout_width="f ill_parent"
android:layout_height="wrap_content"
android:text="email:" />

CEditText
android:id="@+id/editText4"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

</EditText>

</LinearLayout>
</ScrollView>

cScrollView
android:layout_width="fill_parent"
android:layout height="fill parent"

El gran libro de programación avanzada con Android

android:background^"#ffaaee" >

CLinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

<TextView
android:id="@+id/textView"
android:layout_width=”fill_parent”
android:layout_height="wrap_content"
android:textColor=”#000000"
android:text=”Información" />

</LinearLayout>
</ScrollView>

</LinearLayout>

Esta aplicación se ha estructurado definiendo dos métodos: inserta y
muestraRegistro. Al pulsar el botón, se llama al primer método para insertar el
contacto.

inserta(nombre,móvil,casa,email);

El segundo método toma como argumento el URI del dato introducido, busca
el registro en la tabla correspondiente y escribe en pantalla las columnas no
vacías.

El método inserta tiene cinco secciones. En la primera se inserta un nuevo
contacto en la tabla raw data.

valúes.put(RawContacts.ACCOUNT_TYPE, nuil);
valúes.put(RawContacts.ACCOUNT_NAME, nuil);
Uri uriRawltem = getContentResolver().insert(

uriRaw, valúes);
rawContactld = ContentUris.parseld(uriRawltem);

Nótese que solo insertamos datos en las columnas account type y
account ñame, y ambos son nuil. Posteriormente, el proveedor de contenidos se
encargará de modificar estos valores al tipo y nombre correctos. El resultado de la
inserción se almacena en el URI uriRawltem, que contiene el id del nuevo
contacto en el último segmento /id. Este número será necesario para introducir
los datos, así que lo extraemos mediante el método ContentUris .parseld, que
sirve para este fin.

A continuación, se introduce el nombre del contacto en la columna display
ñame de la tabla data.

214

valúes.clear();
valúes.put(ContactsContract.Data.RAW_CONTACT_ID,

rawContactId);
valúes.put(Data.MIMETYPE,

StructuredName.CONTENT_ITEM_TYPE);
valúes.put(StructuredName.DISPLAY_NAME,nombre);
Uri uriNombre= getContentResolver().insert(

uriData, valúes);

La información sobre esta columna está almacenada en la clase

ContactsContract.CommonDataKinds.StructuredName;

Nótese que el tipo MIME de este dato se indica mediante la constante

StructuredName.CONTENT_ITEM_TYPE

Para introducir los demás datos, se procede de forma similar. Cada vez que se
introduce un dato, se llama al método muestraRegistro, que se encarga de
escribir los contenidos no nulos del nuevo URI. Al ejecutar el programa, veremos
que el proveedor de contactos se ha encargado de llenar columnas adicionales
automáticamente.

El programa AddContact. j ava es el siguiente:

package es.ugr.amaro.addcontact;

import android.app.Activity;
import android.content.ContentUris;
import android.content.ContentValues;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract;
import

android.provider.ContactsContract.CommonDataKinds.Email;
import

android.provider.ContactsContract.CommonDataKinds.Phone;
import

android.provider.ContactsContract.CommonDataKinds.StructuredName;
import android.provider.ContactsContract.Data;
import android.provider.ContactsContract.RawContacts;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.inputmethod.InputMethodManager;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

215

El gran libro de programación avanzada con Android

public class AddContactActivity extends Activity
implements OnClickListener{

TextView tv;
EditText edit1,edit2,edit3,edit4;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);
editl=(EditText) findViewByld(R.id.editText1);
edit2=(EditText) findViewByld(R .id.editText2);
edit3=(EditText) findViewByld(R .id.editText3);
edit4=(EditText) findViewByld(R .id.editText4);
Button botonl=(Button) findViewByld(R.id.buttonl);
botonl.setOnClickListener(this);

@Override
public void onClick(View v) {

String nombre=edit1.getText().toString().trim();
String móvil =edit2.getText().toString().trim();
String casa =edit3.getText().toString().trim();
String email =edit4.getText().toString().trim();

// esconde el teclado o Softlnput
// que se puede quedar desplegado
InputMethodManager manager

=(InputMethodManager)this.getSystemService(
INPUT_METHOD_SERVICE);

manager.hideSoftInputFromWindow(v.getWindowToken(), 0)

tv. setText (" Insertando contacto " +nombre + ,f, "
+movil + ", " + casa + ", ,f + email);

inserta(nombre,móvil,casa,email);
edit1.setText ("");
edit2.setText ("");
edit3.setText ("");
edit4.setText ("");

} // end onClick

public void inserta(String nombre,String móvil,
String casa, String email){

216

ContentValues values=new ContentValues () ;
long rawContactld=0;
Uri uriRaw=ContactsContract.RawContacts.CONTENT_URI
Uri uriData=ContactsContract.Data.CONTENT_URI;

// inserta raw_contact
i f (nombre.length()>0) {

valúes.clear();
valúes.put(RawContacts.ACCOUNT_TYPE, nuil)/
valúes.put(RawContacts.ACCOUNT_NAME, nuil);
Uri uriRawltem = getContentResolver().insert(

uriRaw, valúes)
rawContactld = ContentUris.parseld(uriRawltem);
tv.append(

"\n\n*Paso 1...\nInsertado nuevo RAW_CONTACT")
muestraRegistro(uriRawltem);

}

// inserta nombre
if(nombre.length()>0 && rawContactld !=0){

valúes.clear();
valúes.put(ContactsContract.Data.RAW_CONTACT_ID,

rawContactld)/
valúes.put(Data.MIMETYPE,

StructuredName.CONTENT_ITEM_TYPE);
valúes.put(StructuredName.DISPLAY_NAME,nombre);
Uri uriNombre= getContentResolver().insert (

uriData, valúes);
tv.append(

"\n\n**Paso 2...\nInsertado nombre del contacto"
muestraRegistro(uriNombre);

}

// inserta teléfono móvil
if(móvil.length()>0 && rawContactld !=0){

valúes.clear();
valúes.put(ContactsContract.Data.RAW_CONTACT_ID,

rawContactld);
valúes.put(ContactsContract.Data.MIMETYPE,

Phone.CONTENT_ITEM_TYPE);
valúes.put(Phone.NUMBER, móvil);
valúes.put(Phone.TYPE, Phone.TYPE_MOBILE);
Uri uriMovil= getContentResolver().insert(

uriData, valúes);
tv.append(

"\n\n***Paso 3...\nInsertado teléfono móvil")

El gran libro de programación avanzada con Android

muestraRegistro(uriMovil);
}

// inserta teléfono de domicilio
if(casa.length()>0 && rawContactld !=0){

valúes.clear () ;
valúes.put(ContactsContract.Data.RAW_CONTACT_ID,

rawContactld);
valúes.put(ContactsContract.Data.MIMETYPE,

Phone.CONTENT_ITEM_TYPE);
valúes.put(Phone.NUMBER, casa);
valúes.put(Phone.TYPE, Phone.TYPE_HOME);
Uri uriCasa= getContentResolver().insert(

uriData, valúes);
tv.append(
"\n\n****Paso 4...\nInsertado teléfono del domicilio");
muestraRegistro(uriCasa);

}

// inserta email
if(email.length()>0 && rawContactld !=0){

valúes.clear();
valúes.put(ContactsContract.Data.RAW_CONTACT_ID,

rawContactld);
valúes.put(ContactsContract.Data.MIMETYPE,

Email.CONTENT_ITEM_TYPE);
valúes.put(Data.DATA1, email);
Uri uriEmail= getContentResolver().insert(

uriData, valúes);
tv.append("\n\n****Paso 5...\nInsertado email");
muestraRegistro(uriEmail);

}

} // end inserta

void muestraRegistro(Uri uri) {

tv.append(
"\n\n Mostrando registros no nulos del URI:\n"+uri);
Cursor cursor=getContentResolver().query(

uri,nuil,nuil,nuil,nuil);
String[] columnasl=cursor.getColumnNames();
int ncolumnas=columnasl.length;
cursor.moveToFirst();
for(int i=0;icncolumnas;i++){

String columna=cursor.getString(i);
if(columna != nuil)

tv.append("\n"+i+":"+columnasi[i]

218

+"="+cursor.getString(i));
}

}//-- end muestraRegistro
}

Para terminar, nótese que en el método onClick hemos utilizado el método
hideSoftlnputFromWindow de la clase InputMethodManager, para ocultar el
teclado «virtual» desplegado por el sistema.

InputMethodManager manager=(InputMethodManager)
this.getSystemService(INPUT_METHOD_SERVICE) ;

manager.hideSoftlnputFromWindow(v .getWindowToken(), 0) ;

Esto resulta conveniente para estar seguros de que el teclado se oculta tras pulsar
el botón. En caso contrario, tendríamos que pulsar la tecla Back para cerrarlo y
poder ver así la parte inferior de la pantalla.

10.5. Otros proveedores de contenidos

Los proveedores nativos de Android incluyen: registro de llamadas, ajustes del
sistema, bookmarks y búsquedas del navegador, archivos de audio, videos,
fotografías, etc. A continuación construimos una aplicación con once botones para
consultar los contenidos de algunas de las tablas de estos proveedores. Para
simplificar la escritura, almacenamos la lista de los URI en un array.

Uri[] uri={
CallLog.Calis.CONTENT_URI,
Settings.System.CONTENT_URI,
Settings.Secure.CONTENT_URI,
Browser.BOOKMARKSJJRI,
Browser.SEARCHES_URI,
MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,
MediaStore.Audio.Media.INTERNAL_CONTENT_URI,
MediaStore.Images.Media.EXTERNAL_CONTENT_URI,
MediaStore.Images.Media.INTERNAL_CONTENT_URI,
MediaStore . Video. Media . EXTERNAL_CONTENT_tJRI,
MediaStore.Video.Media.INTERNAL_CONTENT_URI,

} ;

De esta forma, en el siguiente programa ExploraActivity.java solo
tenemos que llamar al método

muestraTabla(uri[i])

219

El gran libro de programación avanzada con Android

para mostrar la tabla correspondiente. Utilizaremos la siguiente interfaz de usuario,
que incluye un HorizontalScrollview para poder mostrar en pantalla una fila
de once botones que se desliza horizontalmente.

<?xml version=" 1. 0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:background="#ffffcc"
android:layout width="fill parent"
android:layout_height="fill_parent"
android:orientation="vertical" >

<HorizontalScrollView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal" >

<LinearLayout
android:background="#dddd99"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal" >

<Button
android:id=" @ + id/buttonCkf
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="CallLog \n calis" />

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Settings\n System" />

<Button
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Settings \n secure" />

<Button
android:id="@+id/button3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Browser \n bookmarks" />

<Button
android:id="@+id/button4"
android:layout width="wrap content"

220

http://schemas.android.com/apk/res/android

android: layout_height="wrap_contentfl
android:text=MBrowser \n searches" />

<Button
android: id=,f@+id/button5"
android:layout_width="wrap_content”
android:layout height="wrap content"
android:text="Audio media \n external

<Button
android:id="@+id/button6"
android:layout_width="wrap_content"
android: layout_height="wrap_content11
android:text="Audio media \ninternal"

<Button
android:id="@+id/button7"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Images media \nexternal

<Button
android:id="@+id/button8”
android:layout_width=Mwrap_content"
android:layout_height="wrap_content"
android:text="Images media \ninternal

<Button
android:id="@+id/button9"
android: layout_width=,fwrap_content ”
android:layout_height=Mwrap_content"
android:text="Video media \nexternal"

<Button
android:id="@+id/buttonl0"
android:layout_width="wrap_content"
android:layout_height=nwrap_content”
android:text="Video media \ninternal"

</LinearLayout>
</HorizontalScrollView>

<TextView
android:id="@+id/textViewl"
android: background=f? #dddd99,f
android:textColor="#000000"
android:textSize="18sp"
android:textStyle="bold"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Explora las tablas" />

El gran libro de programación avanzada con Android

<ScrollView
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

CTextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="l8sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Proveedores de contenidos" />

</ScrollView>
</LinearLayout>

A continuación se detalla la actividad ExploraActivity. java. En el método
muestraTabla se escriben en pantalla el URI de la tabla, los nombres de todas
las columnas y, después, los contenidos de todas las filas del Cursor. De nuevo, el
número de columnas puede depender de la versión de Android y del dispositivo. El
lector queda avisado de que el listado generado por este programa para algunas
tablas puede ser algo extenso. En la figura 10.5. se pueden ver algunas capturas
de pantalla con los contenidos de la tabla de ajustes del sistema.

package es.ugr.amaro.explora;

import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.Browser;
import android.provider.CallLog;
import android.provider.MediaStore;
import android.provider.Settings;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Textview;

public class ExploraActivity extends Activity
implements OnClickListener {

Textview tv,tvl;
int nbotones;
Uri[] uri={

CallLog.Calis.CONTENT_URI,
Settings.System.CONTENT_URI,
Settings.Secure.CONTENT_URI,
Browser.BOOKMARKS_URI,
Browser.SEARCHES URI,

222

MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,
MediaStore.Audio.Media.INTERNAL_CONTENT_URI,
MediaStore.Images.Media.EXTERNAL_CONTENT_URI,
MediaStore.Images.Media.INTERNAL_CONTENT_URI,
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
MediaStore.Video.Media.INTERNAL_CONTENT_URI,

} ;

String[] tabla={"CallLog Calis",
"Settings System",
"Settings secure",
"Browser bookmarks",
"Browser searches",
"Audio media external",
"Audio media internal",
"Images media external",
"Images media internal",
"Video media external",
"Video media internal"

};

int[] idBoton= {R .id.buttonO,R .id.buttonl,R .id.button2
R .id.button3,R .id.button4,R .id.button5
R .id.button6,R . id.button7,R .id.button8
R.id.button9,R.id.button10};

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(Textview) findViewByld(R.id.textview);
tvl=(Textview) findViewByld(R.id.textViewl);

nbotones=idBoton.length;
Button[] boton=new Button[nbotones];

for (int i=0;i<nbotones;i + +){
boton[i]=(Button) findViewByld(idBoton[i]);
boton[i].setOnClickListener(this);

}
}

@Override
public void onClick(View v) {

int id=v.getId();
for (int i=0;i<nbotones;i++){

El gran libro de programación avanzada con Android

if(id==idBoton[i]){
muestraTabla(uri [i]) ;
tvi.setText("Tabla "+tabla[i]);

}
}

}

void muestraTabla(Uri uri){

tv.setText("URI tabla:\n"+uri);
Cursor cursor=getContentResolver().query(uri,

nuil,nuil,nuil,nuil);
String[] columnas^ cursor.getColumnNames();
int ncolumnas=columnas.length;
for (int i=0;i<ncolumnas;i++){

tv.append("\n"+i+" : "+columnas[i]);
}

String columna;
int nfilas=cursor.getCount()/
tv.append("\nNumero de filas:"+nfilas)/
cursor.moveToFirst();
for (int i=0;i<nfilas;i++){

tv.append("\n");
for(int j=0;j<ncolumnas;j++){

try{ columna=cursor.getString(j) / }
catch (Exception e) { columna="unreadable";}
tv.append(" : "-(-columna);

}
cursor.moveToNext () ;
}

}
}

Para leer la tabla de bookmarks se requiere el siguiente permiso en el fichero
AndroidManifest:

<uses-permission android:name=
"com.android.browser.permission.READ HISTORY BOOKMARKS"/>

224

« r . iK D i s n s «MIS 18:16

Ca ¡i Log Settings Settings Browser
calis System secure bookmar

j . CallLog Settings Settings Browser
calis System secute bookmarr

Tabla Settings System
URI tabía:
content://settings/system
0: Jd
1 : ñame
2: valué
Numero de filas:98
: 7 : volume_bluetooth_sco : 7
: 10 : mode rínger streams affected :
166
: 11 : mute_streams_affected : 46
: 12 : dim_screen : 1
: 13 : stay_on_while_pluggedjn : 0
: 15 : emergencyjone : 0
: 16 : calí_auto_retry : 0
: 18 : dtmf_tone_type: 0
: 20 : hearing_aid : 0
: 21 : tty_mode : 0
: 23 : airplane_mode_radios : cell,
bluetooth,wifi
, ->/?<

Tabla Settings System
: 24:
airplane_mode_toggleable_radíos : wifi
: 25 : auto_time : 1
: 26 : screen_brightness : 118
: 28 : window_animation_scale : 0.0
: 29 : transition_animation_scale : 0.0
: 31 : uartapcpmode : 0
: 32 : usbapcpmode : 1
: 33 : VI8 FEEDBACK MAGNITUDE :
6000
: 36 : doublejapping : 1
: 37 : shaking : 1
: 38 : overturning : 1
: 39 : putting_down : 1
: 42 : notifications_use_ring_volume : 0
: 45 : tv_system : 2
: 46 : notificationJight_pu!se : 1
: 47 : setjnsta lljocation : 0
: 48: defaultjnstalijocation : 0
. .* .. . s.« ? .. .< .*

I 2 » l » M B i
Explora

•. CallLog Settings Settings Browser
calis System secute bootoaf í

L CallLog M Settings i. Settings Browser
calis System ; secute beatana*

Tabla Settings System•• :• '•••• •< *. • *.. % %.*. s • :• i. \ *. ; s %-• i : > w vi w* • % * •»/
: 49 : power_sounds_enabled : 1
: 50 : low_battery_sound : /system/
media/audio/ui/TW_Low_Battery.ogg
: 51 : dock_sounds_enabled : 0
: 52 : desk_dock_sound : /system/
medla/audio/ui/Dock.ogg
: 53 : desk_undock_sound : /system/
media/audio/ui/Undock.ogg
: 54 : car_dock_sound : /system/media/
audio/ui/Dock.ogg
: 55 : car_undock_sound : /system/
media/audio/ui/ündock.ogg
: 56 : lockscreen_sounds_enab!ed : 0
: 57 : lock_sound : /system/medía/
audio/ui/Lock.ogg
: 58 : uníock_sound : /system/media/
audio/ui/Unlock.ogg
: 59 : vibratejn_si!ent: 1
: 60 : driving_mode_on : 0

Tabla Settings System
: 62 : show_password : 0
: 63 : o rdero f: 0
: 66 : bt svcst bluetooth bpp service :
1
: 67 : bt_svcst_biuetooth_dg_service : 1
: 68 : bt_svcst_bluetooth_dun : 1
: 69 : bt_svcst_bluetooth_ftp : 1
: 70 : bt svcst bluetooth opp service :
1
: 71 : bt_svcst_bluetooth_pbs; 1
: 72 : bt svcst bluetooth sap : 1
: 73:
bt svcst bluetooth fm receiver service
: 0
: 74 : bt_svcst_bluetooth_test: 1
: 75 : bt_svcst_init: 1
: 87 : da te jo rm at: dd-MM-yyyy
: 89 : ca lLendjone : 1
: 90 : aíertoncall_mode : 0
> 0*3 s > í r'í }A ** +% 5 * /*■.. >•*, /\ > o* /%. y. ̂ . / f

Figura 10.5. Aplicación para explorar las tablas de algunos proveedores de
contenidos en un teléfono Samsung Galaxy S.

ili 18:17
Explora | ' ¡¡¡l

225

El gran libro de programación avanzada con Android

10.6. Implementación de un ContentProvider

En esta sección crearemos nuestro propio proveedor de contenidos que
contenga una base de datos SQLite que será accesible desde otras aplicaciones.
Para ello debemos incluir en nuestra aplicación una clase que implemente la clase
abstracta ContentProvider.

En el siguiente ejemplo creamos una aplicación que contiene dos programas
Java: una actividad OperasProviderActivity. java y un proveedor de
contenidos OperasProvider. java. Este se declara como provider en el
AndroidManifest

<provider
android:name=MOperasProvider"
android:authorities="es.ugr.amaro.provider.operas">

</provider>

Aquí también declaramos la autoridad que aparecerá en su dirección URI, que
debe ser única. En este caso la autoridad es

es.ugr.amaro.provider.operas

El fichero AndroidManif est. xml de nuestra aplicación queda como sigue:

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android=”http://schemas.android.com/apk/res/android"

package="es.ugr.amaro.operasprovider"
android: versionCode=M 111
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="7" />

<application
android:icon="@drawable/ic_launcher"
android: label = ,f@string/app_name" >

<activity
android:name=".OperasProviderActivity"
android:label="@string/app_name" >
<intent-filter>
<action

android:name="android.intent.action.MAIN"/>
<category
android:name="android.intent.category.LAUNCHER"/>

226

http://schemas.android.com/apk/res/android

</intent-filter>
</activity>

<provider android:name="OperasProvider"
android:authorities="es.ugr.amaro.provider.operas">

</provider>
</application>

</manifest>

A continuación definimos la clase Operas Provider, que extiende a
ContentProvider, en el fichero OperasProvider. java. Esta clase debe
implementar los métodos onCreate, insert, query, delete, getType y
update. En este sencillo ejemplo solo implementamos lo indispensable para que
podamos consultar la tabla operas de la base de datos SQLite operas.db,
insertar y borrar filas. En el método onCreate abrimos la base de datos y
creamos la tabla, si no existe. En los otros métodos simplemente usamos los
métodos insert, query y delete para realizar estas acciones sobre la base
de datos, cuando se requiera. El resto de los métodos los dejamos vacíos.
Adicionalmente, en el método insert, devolvemos el URI de la nueva fila cada
vez que se crea una. Con este proveedor, el URI de la tabla operas será

content://es.ugr.amaro.provider.operas/operas

El URI de la fila 1 debería ser

content://es.ugr.amaro.provider.operas/operas/I

Sin embargo, en este ejemplo no hemos implementado la posibilidad de
consultar una fila individual por su URI.

package es.ugr.amaro.operasprovider;

import android.content.ContentProvider;
import android.content.ContentValúes;
import android.content.Context;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.net.Uri;

public class OperasProvider extends ContentProvider{

SQLiteDatabase db;
QOverride
public boolean onCreate() {

Context context=getContext();
db=context.openOrCreateDatabase("operas.db",0, nuil);

227

El gran libro de programación avanzada con Android

if(db==null) return false;
db. execSQL ("create table if not exists 11

+ "operas (id integer primary key autoincrement,
+" titulo text, "
+ " compositor text, year integer);");

return true;

@Override
public Uri insert(Uri uri, ContentValues valúes) {

long fila=db.insert(" o p e r a s , valúes);
Uri uril=Uri.withAppendedPath(uri, ""tfila);
return uril;

0Override
public Cursor query(Uri uri, String[] projection,

String selection,
String[] selectionArgs,
String sortOrder) {

Cursor cursor=db.query("operas", projection,
selection, selectionArgs, nuil, nuil, sortOrder)

return cursor;
}

@Override
public int delete(Uri uri, String whereClause,

String[] whereArgs) {

return db.delete("operas", whereClause, whereArgs);
}

@Override
public String getType(Uri uri) {

return "MIME no definidos en amaro.provider.operas"
}

@Override
public int update(Uri uri, ContentValues valúes,

String selection, String[] selectionArgs)

return 0;
}

}

228

En este ejemplo hemos abierto la base de datos directamente en onCreate
usando Context. openOrCreateDatabase. Alternativamente, podría haberse
utilizado un objeto SQLiteOpenHelper para gestionar la base de datos. Para ello
habría que sustituir el método onCreate anterior por lo siguiente:

prívate static class DatabaseHelper
extends SQLiteOpenHelper{

public DatabaseHelper(Context context) {
super(context, "operas.db", null,l);

}

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL("create table if not exists "
+"operas (id integer primary key autoincrement, "
+"titulo text, "
+" compositor text, year integer);");

}

QOverride
public void onüpgrade(SQLiteDatabase db,

int oldVersion, int newVersion) {
}

}

@Override
public boolean onCreate() {

Context context=getContext();
DatabaseHelper dbHelper=new DatabaseHelper(context);
db=dbHelper.getWritableDatabase();
return (db==null)? false : true;

}

Eligiendo cualquiera de las dos opciones anteriores, ya se puede utilizar
nuestro proveedor, tanto desde nuestra aplicación como desde una aplicación
externa. A continuación, para insertar filas y consultar la base de datos,
modificamos la actividad OperasProviderActivity. java. Utilizamos la
siguiente interfaz de usuario en el fichero main.xml, con tres campos de texto
editables, un botón y un ScrollView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ddffdd" >

229

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

<TextView
android:textSize="18sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Compositor" />

<EditText
android:id="@+id/editText1"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</EditText>

<TextView
android:textSize="18sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Titulo" />

<EditText
android:id="0+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</EditText>

<TextView
android:textSize="18sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Año de estreno" />

<EditText
android:id="@+id/editText3"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</EditText>

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Insertar la ópera" />

<ScrollView
android:background="#bbff99"

230

a n d ro id : la y o u t_ w id th = " f i l l _ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t" >

<TextV iew
android: id="@+id/textView"
android:textSize=M14spM
android:textColor="#000000"
android: layout_width="f ill_parentff
android:layout_height="wrap_content"
android:text="Proveedor de óperas vacio" />

< /S c ro llV ie w >

</L in e a rL a y o u t>

A continuación se detalla el programa O p e ra s P ro v id e rA c t iv ity . ja v a .
Se utiliza un C o n te n tR e so lve r y el método

ge t C onten t Re s o lv e r () , para acceder a la base de datos con el URI

content://es.ugr.amaro.provider.operas/operas
En el método onClick se inserta una fila al pulsar el botón. Hemos introducido un
método showTable, donde se consulta la base de datos y se escribe el resultado
en pantalla. En la figura 10.6. se muestra el resultado de ejecutar esta aplicación
en un teléfono Samsung Galaxy S.

package es.ugr.amaro.operasprovider;

import
import
import
import
import
import
import
import
import
import
import
import
import

android
android
android
android
android
android
android
android
android
android
android
android
android

app.Activity;
content.ContentResolver;
content.ContentValues;
database.Cursor;
net.Uri;
os.Bundle;
view.View;
view.View.OnClickListener;
view.inputmethod.InputMethodManager;
widget.Button;
widget.EditText;
widget.TextView;
widget.Toast;

public class OperasProviderActivity extends Activity
implements OnClickListener{

EditText etl,et2,et3;
String compositor,titulo, year;
Uri uri=Uri.parse(

231

El gran libro de programación avanzada con Android

"content://es.ugr.amaro.provider.operas/operas
TextView tv;

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);
tv.setText("");
showTable();

@Override
public void onClick(View v) {

etl=(EditText) findViewByld(R.id.editTextl);
et2=(EditText) findViewByld(R.id.editText2);
et3=(EditText) findViewByld(R.id.editText3);
compositor =etl.getText().toString();
titulo=et2.getText().toString();
year=et3.getText () .toString ();

int lonl=compositor.length();
int lon2=titulo.length();

if(lonl*lon2 >0){

ContentValues values=new ContentValues();
valúes .put ("compositor’1, compositor) ;
valúes.put("titulo", titulo);
valúes.put("year", year);
Uri urinew

=getContentResolver().insert(uri, valúes);
tv.setText("Insertado uri="+urinew);
tv.append("\n"+compositor+" "+titulo+" ”+year);
showTable();

et1.setText("");
et2.setText ("");
et3.setText ("");

'! - -esconde el teclado o Softlnput
InputMethodManager manager=(InputMethodManager)

this.getSystemService(INPUT_METHOD_SERVICE)
manager.hideSoftlnputFromWindow(

v .getWindowToken(), 0)

232

} else
Toast.makeText(this,

"Debe insertar compositor y titulo", 0).show();
}

void showTable(){

String mime = getContentResolver().getType(uri);
tv.append("\nTipo="+mime);

Cursor cursor = getContentResolver().query(uri,
nuil,nuil,nuil,nuil);

String[] columnas=cursor.getColumnNames();
int ncolumnas=columnas.length;
tv.append("\nTabla de operas, columnas="+ncolumnas);
int nfilas=cursor.getCount();
tv.append(", filas="+nfilas);

if (nfilas>0) {

cursor.moveToFirst();
String id,compositor,titulo,year;

for (int i=0;i<nfilas;i++){

id=cursor.getString(0);
compositor=cursor.getString(1);
titulo=cursor.getString(2);
year=cursor.getString(3);
tv.append("\n"+id+" : "+compositor+" : "

ttitulot" : "tyear);
cursor.moveToNext();

}
}

}
}

233

El gran libro de programación avanzada con Android

v Üf 6 j£ jfWH ■ /. WWWW

Compositor

Título

Año de estreno

MV.WAV1,MWAWANW/rtS\mmS%Ŵ AWMVWAVViW.V

I nsertado uri=coment://es.ugr .a ma ro. provider.
opera s/operas/9
í. Traetta Antígona 1772
Tipo=MIME no definidos en amaro,províder.operas
Tabla de operas, coiumnas-4, Hlas=9
1 : Tito Manlio: A. Vivaldi: 1719
2 : Persée : J.B. Lully: 1682
3 : !Í barbiere di Sivigíia: G. Pastello: 1782
4:11 ritorno di Ulise in patria: C Monteverdí: 1640
S: Didon: N, Piccínní: 1783
6: Li zíte ’n galera: L. Vinel: 1722
7: Orfeo ed Eurídice: j. Haydn : 1791 8: Cleofíde: j A Hasse: 1731

Figura 10.6. Un proveedor de contenidos con una base de datos,
que además permite introducir datos consultar la tabla.
Captura de pantalla de un teléfono Samsung Galaxy S.

10.7. Acceso externo a nuestro ContentProvider

El paso final para comprobar que nuestro proveedor de contenidos
OperasProvider funciona correctamente, es acceder a su base de datos desde
una aplicación externa, usando el URI

content://es.ugr.amaro.provider.operas/operas

En esta sección realizamos una aplicación, denominada Operas, para
consultar la base de datos operas. db del proveedor y mostrar los contenidos de
la tabla operas en pantalla. También comprobaremos que la tabla se puede
manipular desde el exterior, añadiendo la funcionalidad de borrar una fila de la
lista al pulsar un ítem.

234

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffaa" >

<TextView
android:id="0+id/textView"
android:textColor="#000000"
android:textSize="16sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Tabla de óperas. Sólo borrar. \n
Para insertar ejecute OperasProvider" />

<ListView
android:id="0+id/listViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>

</LinearLayout>

El fichero f ila. xml con el layout de nuestro ListView es el siguiente. Se usa un
SimpleCur sor Adapter para ligar un Cursor a este layout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff" >

<TextView
android:id="0+id/textViewl"
android:textSize="20sp"
android:textColor="#000000"
android:textStyle="bold"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="0string/hello" />

<TextView
android:id="0+id/textView2"

Usamos la siguiente interfaz de usuario en el fichero main. xml :

235

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android: textSize="20sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

<TextView
android: id="@ + id/textView311
android: textSize="18sp"
android: textColor=,f #00000 0"
android:layout_width=n fill_parent"
android:layout_height="wrap_content"
android: text="0string/hello" />

</LinearLayout>

A continuación se detalla el programa OperasActivity. java. El método
mostrarTabla consulta la tabla operas de nuestro proveedor OperasProvider,
usando el URI que hemos proporcionado en la sección anterior.

Uri uri=Uri.parse(
"content://es.ugr.amaro.provider.operas/operas");

Esta consulta devuelve un objeto de tipo Cursor. Las tres columnas que nos
interesan del Cursor son: titulo, compositor y year. Estas columnas se
muestran en pantalla usando un ListView. Para ello se define un
SimpleCursorAdapter, que liga los contenidos de las columnas del Cursor a
los tres TextView que están en el fichero de layout fila.xml.

También hemos implementado el método OnltemLongClickListener para
que, al pulsar un ítem, se abra un diálogo con dos botones. El contenido del
diálogo se define en onCreateDialog (ver capítulo 6). Este incluye dos botones.
Al pulsar el primero, se borra el contenido del ítem de la base de datos. El borrado
está implementado en el métcdo onClick de la interfaz
Dialoglnterf ace . OnClickListener, al final del programa.

Este programa solo permite borrar. Para introducir los datos hemos usado el
programa OperasProvider realizado en la sección anterior. En la figura 10.7. se
muestran las capturas de pantalla con el resultado.

package es.ugr.amaro.operas;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.AlertDialog.Builder;
import android.app.Dialog;
import android.content.DialogInterface;
import android.database.Cursor;

236

import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnltemLongClickListener;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.TextView;

public class OperasActivity extends Activity
implements OnltemLongClickListener{

Uri uri=Uri.parse(
"content://es.ugr.amaro.provider.operas/operas");

TextView tv;
ListView lv;
long id_borrar=-l;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R .layout.main);
tv=(TextView) findViewByld(R .id.textView);
lv=(ListView) findViewByld(R.id.ÜstViewl);
mostrarTabla();

}

void mostrarTabla(){

Cursor cursor=getContentResolver().query(
uri,nuil, nuil, nuil, nuil);

String[] from={"Titulo","Compositor","year"};
int[] to={R .id.textViewl,R .id.textView2 ,

R .id.textView3};
SimpleCursorAdapter adapter

=new SimpleCursorAdapter(this,
R.layout.fila, cursor, from, to);

lv.setAdapter(adapter);
lv.setOnltemLongClickListener(this) ;

}

@Override
public boolean onltemLongClick(AdapterView<?> argO,

View argl, int arg2, long arg3) {

tv.setText("Seleccionado elemento "+arg2);
id_borrar=arg3;
showDialog(0);

237

El gran libro de programación avanzada con Android

return false;
}

@Override
protected Dialog onCreateDialog(int id){

DListener listener=new DListener ();
Dialog dialogo=null;
Builder builder=new AlertDialog.Builder(this)/
builder.setTitle("Borrar elemento");
builder.setMessage("Está seguro? ");
builder.setPositiveButton("Borrar", listener);
builder.setNegativeButton("Cancelar", listener)/
dialogo=builder.create();
return dialogo;

}

class DListener implements
Dialoglnterface.OnClickListener{

@Override
public void onClick(Dialoglnterface dialog,

int which) {

if(which==DialogInterface.BUTTON_POSITIVE){
getContentResolver().delete(uri,

"_id="+id_borrar,nuil)
mostrarTabla () ;

}
}

}
}

238

Tabla de óperas. Sólo borrar.
Para insertar ejecute OperasProvider i/iy

Persée
j.B. Luíly
1682_______________________
II barbiere d! Sivlglia
G. Paisielío
1782
II rltorno di Ullse In patria
C. Monteverdi
1640____ _________ _______
Didon
N. Piccinni
178 3______________________
Li zite ’n galera
L. Vinel
1722
Qrfeo ed Euridice________

Figura 10.7. Una aplicación que accede a nuestro proveedor de contenidos,
consultando la tabla y pudiendo borrar registros al presionar sobre un ítem.

Ejecutado en un teléfono Samsung Galaxy S.

10.8. La clase UriMatcher

El proveedor de contenidos que hemos implementado es muy sencillo, pues su
base de datos solo contiene una tabla con cuatro columnas. Es posible programar
proveedores más complejos que permitan el acceso a diversos contenidos,
repartidos en varias tablas, subtablas o ítems individuales, cada uno con su propio
URI. Un URI general queda especificado por su estructura de segmentos. Al
programar nuestro proveedor de contenidos, tenemos libertad para estructurarlo
como mejor nos convenga. Por ejemplo, una tabla podría especificarse con un
segmento

/tabla

una subtabla con dos segmentos

/tabla/subtabla

y un ítem de una tabla con un segmento final que contenga el índice de la fila

/tabla/item
/tabla/subtabla/item

239

El gran libro de programación avanzada con Android

Al implementar un método del ContentProvider que recibe como
argumento un URI, se procede en dos pasos. Primero examinamos la estructura
de segmentos del URI para, después, determinar qué tabla o elemento se está
requiriendo.

Esto podría hacerse directamente comparando los segmentos del URI
proporcionado, con los segmentos que nosotros hemos establecido. Para facilitar
esta labor, la clase URI proporciona el método getPathSegments, que extrae los
segmentos en una lista de cadenas.

List<String> segmentos = uri.getPathSegments();

Alternativamente, se puede utilizar la clase UriMatcher del paquete
android.content, que permite sistematizar la comparación del URI, sin
necesidad de examinarlo. Un objeto UriMatcher contiene una lista de los
distintos URI que acepta nuestro proveedor. A cada tipo de URI se le asigna un
código numérico mediante el método addURl. Por ejemplo, si quisiéramos
proporcionar subtablas con óperas barrocas y clásicas, podríamos asignar códigos
del 1 al 6 para los distintos tipos de URI.

String autoridad="es.ugr.amaro.content.operas";
UriMatcher UriMatcher

= new UriMatcher(UriMatcher.NO_MATCH) ;
uriMatcher.addURl(autoridad,"operas",1);
UriMatcher.addURl(autoridad,"operas/#", 2);
uriMatcher.addURl(autoridad,"operas/barrocas",3);
uriMatcher.addURl(autoridad,"operas/barrocas/#",4);
uriMatcher.addURl(autoridad,"operas/clasicas",5);
uriMatcher.addURl(autoridad,"operas/clasicas/#",6);

Cuando nuestro proveedor recibe un URI, usamos el método match para
obtener su código. Por ejemplo, para el quinto elemento de la tabla de óperas
barrocas:

Uri uril = Uri.parse(
"content://es.ugr.amaro.content.operas/operas/barrocas/5");

int codigo = uriMatcher.match(uril)

el código obtenido será 4, que corresponde a un ítem de óperas barrocas.

En la siguiente actividad mostramos un ejemplo del uso de UriMatcher y
getPathSegments. No hay ningún proveedor de contenidos, simplemente
usamos UriMatcher para extraer el código de varios URI y getPathSegments
para mostrar los segmentos de un URI.

Utilizamos el siguiente layout:

240

<?xml version=" 1. O" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="# f f f fdd">

<TextView
android:id="0+id/textView"
android:textColor="#000000"
android:textSize="14sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="0string/helio" />

</LinearLayout>

A continuación se detalla la actividad UriMatcherActivity. java. En la
figura 10.8. se muestra el resultado.

package es.ugr.amaro.urimatcher;

import java.útil.List;
import android.app.Activity;
import android.content.UriMatcher;
import android.net.Uri;
import android.os.Bundle;
import android.widget.Textview;

public class UriMatcherActivity extends Activity {
/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;
setContentView(R.layout.main);
TextView tv=(Textview) findViewByld(R.id.textview);

String autoridad="es.ugr.amaro.content.operas";
UriMatcher uriMatcher= new UriMatcher(

UriMatcher.NO_MATCH);
uriMatcher.addURI(autoridad,"operas", 1) ;
uriMatcher.addURI(autoridad,"operas/#" , 2);

Uri uril=Uri.parse(
"content://es.ugr.amaro.content.operas/operas");

Uri uri2=Uri.parse(
"content://es.ugr.amaro.content.operas/operas/l");

241

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

Uri uri3=Uri.parse(
"content://es.ugr.amaro.content.operas/operas/2")

int matchl=uriMatcher.match(uril);
int match2=uriMatcher.match(uri2);
int match3=uriMatcher.match(uri3);

tv.append("\n\n"+uril+"XnuriMatcher codigo="+matchl)
tv. append (" \ n\nff+uri2+" \nuriMatcher codigo="+match2)
tv.append("\n\n"+uri3+"\nuriMatcher codigo="+match3)

// descompone un uri en segmentos--
List<String> segmentos = uri3.getPathSegments();
int size=segmentos.size();
tv.append(M\nNumero de segmentos=n+size);

String segmento;
for(int i=0;i<size;i++){

segmento= segmentos.get(i);
tv. append (11 \nsegmento " + Í + " = " + segmento) ;

}
}

}

Helio World, UriMatcherActivity!

content://es.ugr.amaro.content.operas/operas
uriMatcher codigo=l

content://es.ugr.amaro.content.operas/operas/1
uriMatcher codígo=2

content://es.ugr,amaro.content.operas/operas/2
uriMatcher codigo=2
Numero de segmentos=2
segmento 0 = operas
segmento 1 = 2

Figura 10.8. Uso de UriMatcher para extraer los códigos de varios URI y de
getPathSegments para obtener los segmentos de un URI.

11. COMUNICACIÓN ENTRE ACTIVIDADES

11.1. Secuencia de estados de una actividad

El estado de una actividad está determinado por su posición en el Activity
stack o pila de actividades. El sistema Android se encarga de colocar nuevas
actividades o eliminarlas de la pila. Los estados en los que se puede encontrar
una actividad son:

1. Activa

2. Pausada

3. Detenida

4. Inactiva

Al iniciar una nueva actividad, se coloca en lo alto de la pila y se encuentra activa,
visible y enfocada; es decir, recibiendo el input del usuario. La actividad entra en
pausa cuando otra actividad pasa a estar activa, tras lo cual queda detenida. Una
actividad detenida sigue en memoria, pero podría pasar a un estado inactivo en
cualquier momento, al ser eliminada de la pila por el sistema para liberar recursos.

Cuando una actividad cambia de estado, se ejecutan una serie de métodos
que debemos sobrescribir si deseamos realizar alguna acción concreta en ese
momento de la vida de la actividad. Los métodos más importantes que pueden
ejecutarse a lo largo de la vida de una actividad son:

onCreate, onStart, onResume, onRestart,
onPause, onStop, onDestroy,
onSavelnstanceState, onRestorelnstanceState

En el siguiente ejemplo implementamos todos estos métodos en una actividad.
Usamos una cadena de texto donde se añade un mensaje cada vez que se
ejecuta uno de los métodos. El mensaje se escribe en pantalla en el método
onRestart e incluye el valor de una variable entera que se va incrementando en
cada método. En el método onSavelnstanceState almacenamos el valor de

243

El gran libro de programación avanzada con Android

estas dos variables en el objeto saveinstanceState. Este objeto es de tipo
Bundle, una clase que permite almacenar distintos tipos de datos asociados a
etiquetas de tipo string, en la forma (etiqueta, dato). El método onCreate recibe
dicho objeto, lo cual nos permite, en ocasiones, recuperar los datos de la actividad
después de haber pasado a inactiva. Por ejemplo, al girar el teléfono, la aplicación
activa se reinicia, destruyéndose su estado, a no ser que lo guardemos en
onSavelnstanceState.

Para la aplicación ActivityLife usaremos el siguiente layout:

<?xml version="1.0" encoding="utf-8,f ?>
<ScrollView
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffcc">

CTextView
android:id="@+id/textView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Secuencia de vida de la actividad"
android:textColor="#000000"
android:textSize="18sp" />

</ScrollView>

El fichero de la actividad es el siguiente:

package es.ugr.amaro.activityLife;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
import android.widget.Toast;

public class ActivityLifeActivity extends Activity{

int state=0;
TextView tv;
String texto="Secuencia de Vida de la actividad";

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textView);

244

http://schemas.android.com/apk/res/android

t ry {
state=savedInstanceState.getInt("estado",0);
texto=savedInstanceState.getString("texto");
texto=texto+"\nRestablecido estado";

} catch(Exception e){
}
state++;
texto=texto+"\n"+state+" onCreate";

@Override
public void onRestorelnstanceState (

Bundle savedlnstanceState){
super.onRestorelnstanceState(savedlnstanceState);
state++;
texto=texto+"\n"+state+" onRestorelnstanceState";

@Override
public void onRestart(){

super.onRestart();
state++;
texto=texto+"\n"+state+" onRestart";

0Override
public void onStart(){

super.onStart();
state++;
texto=texto+"\n"+state+" onStart";

@Override
public void onResume(){

super.onResume();
state++;
texto=texto+"\n"+state+" onResume";
tv.setText(texto);

@Override
public void onSavelnstanceState(

Bundle savedlnstanceState){
super.onSavelnstanceState(savedlnstanceState);
state++;
texto=texto+"\n"+state+" onSavelnstanceState";
Toast.makeText(this,"onSavelnstanceState",0).show()
savedlnstanceState.putInt("estado", state);

El gran libro de programación avanzada con Android

savedlnstanceState.putString("texto", texto);
}

@Override
public void onPause(){

super.onPause();
state++;
texto=texto+"\n"+state+" onPause";
Toast.makeText(this,"onPause",0).show();

}

@Override
public void onStop(){

super.onStop ();
state++;
texto=texto+"\n"+state+" onStop";
Toast.makeText(this, "onStop", 0).show();

}

QOverride
public void onDestroy(){

super.onDestroy() ;
state++/
texto=texto+"\n"+state+" onDestroy"/
Toast.makeText(this, "onDestroy", 0).show();

}
}

Tal y como se observa en la primera imagen de la figura 11.1. (arriba
izquierda), ejecutando este programa comprobamos que al iniciar una actividad
que estaba inactiva, se ejecuta la siguiente secuencia de métodos:

onCreate
onStart
onResume

246

Secuencia de Vida de la actividad
1 onCreate
2 onStart
3 onResume

1 onCreate
2 onStart
3 onResume
4 onSavelnstanceState
5 o n P a u s e
6 onStop
7 onRestart
8 onStart
9 onResume

m m m w s l l f i l l i l 12:26

Secuencia de Vida de la actividad Secuencia de Vida de la actividad
t onCreate 1 onCreate
2 onStart 2 onStart
3 onResume 3 onResume
4 onSavelnstanceState 4 onSavelnstanceState
5 onPause Restablecido estado
6 onStop 5 onCreate
7 onRestart 6 onStart
8 onStart 7 onRestorelnstanceState
9 onResume 8 onResume
10 onSavelnstanceState 9 onSavelnstanceState
11 onPause Restablecido estado
12 onResume 10 onCreate
13 onSavelnstanceState 11 onStart
14 onPause 12 onRestorelnstanceState
15 onResume 13 onResume

Figura 11.1. Secuencia de métodos ejecutados en la vida de una actividad.

i

247

El gran libro de programación avanzada con Android

Al finalizar una actividad, por ejemplo pulsando la tecla Back del teléfono, se
ejecutan en orden los métodos:

onPause
onStop
onDestroy

Por lo tanto, la aplicación queda inactiva. Esto se puede comprobar con nuestra
aplicación porque hemos añadido un Toast que se escribe en pantalla cuando se
ejecuta uno de estos métodos.

Si una aplicación está activa y colocamos encima de la pila otra actividad (por
ejemplo, pulsando la tecla Home o la tecla de llamada telefónica), se ejecutan los
siguientes métodos y la actividad queda detenida:

onSavelnstanceState
onPause
onStop

Si una actividad está detenida y volvemos a activarla y ponerla en la pila (por
ejemplo, pulsando el icono de la aplicación o eliminando la que está activa), se
ejecutan, en orden, los métodos siguientes:

onCreate
onStart
onResume

La secuencia de métodos después de abrir una actividad, detenerla y volver a
activarla, se observa en la segunda captura de la figura 11.1. (arriba derecha).

Al activarse automáticamente el protector de pantalla del teléfono, la actividad
queda en pausa. Al reactivarla (tercera captura de la figura 11.1.), vemos que se
han ejecutado los métodos

onSavelnstanceState
onPause
onResume

Finalmente, si la aplicación está activa y giramos el teléfono, se ejecutará la
siguiente secuencia de métodos:

onSavelnstanceState
onCreate
onStart
onRestorelnstanceState
onResume

Estos métodos se volverán a ejecutar al girar de nuevo el teléfono en posición
vertical (cuarta captura de la figura 11.1.).

248

Si se realiza este experimento en un emulador, pulsando <Control+F12>,
notaremos que esta secuencia se ejecuta dos veces. Esto se debe a que, en el
emulador, el cambio de estado correspondiente al giro se realiza de forma distinta
al del teléfono, que utiliza sus sensores de orientación. El emulador no posee
estos sensores y la simulación se realiza en dos pasos, con operaciones que
involucran un cambio del teclado.

11.2. Resultado de una actividad

En esta sección veremos cómo se abre una subactividad con
startActivityForResult, lo que permite devolver un resultado a la actividad
principal. Las subactividades son también actividades, por lo que deben declararse
en el AndroidManifest. Cuando finaliza una subactividad, se envía un evento a
su actividad madre, que ejecuta su método onActivityResult. Este método
recibe también los datos que le ha enviado la subactividad, y que llegan en un
objeto de tipo intent, donde están almacenados, por ejemplo, como datos extra.
En el siguiente ejemplo lo ilustramos. La actividad principal abre una subactividad
usando un intent, y esta le envía unos datos usando un segundo intent.

Utilizaremos el siguiente fichero de layoutmain.xml para la actividad
principal:

<?xml version=" 1. 0lf encoding="utf-8"?>
<LinearLayout
xmlns:android=nhttp://schemas.android.com/apk/res/android"

android: layout_width="f ill_parent11
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffcc">

<TextView
android:id="0+id/textView"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Comenzar" />

</LinearLayout>

249

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

El siguiente fichero layout2 .xml se usará en la segunda actividad. Contiene
dos EditText para que introduzcamos un nombre de usuario y contraseña.

<?xml version="1.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffcc">

<TextView
android:id="0+id/textView2"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Identifiqúese para comenzar" />

<TextView
android:id="@+id/textViewl"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Usuario:" />

<EditText
android:id="@+id/editText1"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >
crequestFocus />

</EditText>

<TextView
android:id="@+id/textView2"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Contraseña:" />

<EditText
android:id="0+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="textPassword" >

</EditText>

250

http://schemas.android.com/apk/res/android

<Button
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Aceptar" />

</LinearLayout>

El siguiente fichero corresponde a la actividad principal de nuestra aplicación.
Al pulsar el botón, creamos un intent que enviamos para iniciar la segunda
actividad, ejecutando el método

startActivityForResult(intent,inputCode);

Aquí, inputCode es un código, un número entero que elegimos para identificar
una actividad cuando nos devuelve un resultado. Su utilidad se manifiesta cuando
hemos iniciado varias subactividades para un resultado y debemos distinguir entre
ellas. En este caso, el código de entrada toma el valor 17. Cuando la segunda
actividad finaliza, se envía un segundo intent de vuelta a la actividad principal.
Entonces se ejecuta el método

onActivityResult(int inputCode, int resultCode,
Intent intent2)

Este método recibe también de vuelta el código de entrada, además de un
código de resultado, que típicamente toma los valores

RESULT_OK

si el envío del resultado se ha realizado con éxito, o

RESULT_CANCELED

si el envío del resultado ha fallado (por ejemplo, porque el usuario ha cancelado la
operación pulsando la tecla Back). El resultado propiamente dicho consistirá en
datos que vendrán dentro de un intent, por ejemplo como datos extra. En este
caso, los datos son el username y password.

package es.ugr.amaro.activiyforresult;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListeñer;
import android.widget.Button;
import android.widget.Textview;

251

El gran libro de programación avanzada con Android

public class ActivityForResultActivity extends Activity
implements OnClickListener{

TextView tv;

@Override
public void onCreate(Bundle savedlnstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textView);
Button boton=(Button) findViewByld(R.id.button);
boton.setOnClickListener(this);

}

@Override
public void onClick(View v) {

Intent intent=new Intent(this,Actividad2.class);
int inputCode=17;
startActivityForResult(intent,inputCode);

}

@Override
public void onActivityResult(int inputCode,

int resultCode, Intent intent2){

tv.setText("onActivityResult\ninputCode= "+inputCode);
tv.append("\nresultCode= M+resultCode);
if(resultCode==RESULT_OK){

String username= intent2.getStringExtra("username");
String password=intent2.getStringExtra("password");
tv. append (" \nBienvenido 11 tuserñame

+ f,\nSu password es ff+password) ;
}

}

}

A continuación se detalla la segunda actividad. Contiene dos campos de texto
editables donde el usuario escribe el input. Al pulsar el botón, se crea el intent
intent2, donde se introducen los datos extra username y password. Para que
este intent se envíe a la actividad principal, debe ejecutarse el método

setResult(RESULT_OK,intent2);

La actividad finaliza al llamar al método finish () . En la figura 11.2. se muestra
el resultado de ejecutar esta aplicación.

252

m m m
Helio World,
Activity For Resu ItActivity!

Identifiqúese para comenzar
Usuario:

amaro

Contraseña:

M23

ActivrtyForResult

onActivityResuit
inputCode= 17
resuitCode= -1
Bienvenido amaro
Su password es android

ComenzarV1

onActivityResuit
inputCode= 17
resultCode= 0

Figura 11.2. Llamada a una actividad para un resultado. Cuando la segunda
actividad envía el username y password a la primera, el código del resultado es -1

(abajo izquierda). Si se cancela la segunda actividad, no se envía nada
y el código del resultado es cero (abajo derecha).

253

El gran libro de programación avanzada con Android

package es.ugr.amaro.activiyforresult;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

public class Actividad2 extends Activity
implements OnClickListener{

EditText editText1,editText2;
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.layout2);
Button botonl=(Button) findViewByld(R.id.button2);
botonl.setOnClickListener(this);
editText1=(EditText) findViewByld(R.id.editTextl);
editText2=(EditText) findViewByld(R .id.editText2);

}

@Override
public void onClick(View v) {

// TODO Auto-generated method stub
String username=editText1.getText().toString();
String password=editText2.getText().toString();

Intent intent2=new Intent();
intent2.putExtra("username",username);
intent2.putExtra("password",password);
setResult(RESULT_OK,intent2);
finish();

}
}

No olvidemos declarar la segunda actividad en el fichero
AndroidManifest. xml, añadiendo las líneas:

<activity
android:name=".Actividad2"
android:label="Actividad2”>

</activity>

254

11.3. Resultado de cancelar una subactividad

En el ejemplo anterior hemos visto que al cancelar una subactividad se envía
el código actividad cancelada, que vale cero. También podemos comprobar
que en ese caso no se envía ningún intent. Esto lo hacemos sustituyendo el
método onActivityResult de la anterior aplicación por el que se detalla a
continuación, que analiza el contenido del intent que se ha enviado. Si el intent no
es nuil, contiene un objeto de tipo Bundle, que podemos extraer. Si su longitud
no es cero, este Bundle contiene datos en parejas (etiqueta, dato). Las etiquetas
son cadenas que almacenaremos en un array y mostraremos en pantalla.

@Override
public void onActivityResult(int inputCode,

int resultCode, Intent intent2){

tv.setText("onActivityResult\ninputCode= "+inputCode);
tv.append("\nresultCode= "+resultCode);

boolean analizarlntent=true;
if(analizarlntent){
if (intent2!=null) {

Bundle bundle=intent2.getExtras();
int n=bundle.size();
tv.append("\nbundle="+n);
if (n>0) {
Set<String> set = intent2.getExtras().keySet();
Object[] elementos= set.toArray();
for(int i=0;i<n;i++)

tv.append("\n"+elementos[i].toString());
}

}
else {

tv.append("\nintent is nuil");
} }

if(resultCode==RESULT_OK){
String username= intent2.getStringExtra("username");
String password=intent2.getStringExtra("password");
tv.append("XnBienvenido "+username

+"\nSu password es "+password);
}

}

En la figura 11.3. se muestra el resultado de ejecutar la nueva aplicación. A la
izquierda vemos el resultado después de cancelar la subactividad. El intent es nuil.

255

El gran libro de programación avanzada con Android

A la derecha, el resultado después de cerrar la subactividad con éxito, con la
información tras analizar el intent.

füfi jt'fls
liiilllliiMIiill

onActivityResult
inputCode= 17
resuítCode= 0

onActivityResult
inputCode= 17
resultCode= -1

intent is nuil bundle=2
:: : . W password

usernamejiÉilillli!!
Bienvenido amaro
Su password es android

J¡§|r|sppj:

Figura 11.3. Análisis del objeto intent recibido tras llamara una actividad para un
resultado. En caso de que se cancele la operación (izquierda), el intent recibido es
nuil. Cuando ¡a operación se ha realizado con éxito (derecha), el intent contiene un

Bundle que es analizado.

11.4. Grupo de actividades

Un grupo de actividades es una ventana que contiene y ejecuta al mismo
tiempo varias actividades incrustadas o embebidas. La actividad principal del
grupo debe extender la clase ActivityGroup, que es una subclase de Activity.
Al implementar esta clase, se crea automáticamente un manager, un objeto de la
clase auxiliar LocalActivityManager, que permite manejar las actividades
incrustadas que se están ejecutando dentro de la misma actividad madre. El
manager de un grupo de actividades se invoca mediante

LocalActivityManager manager;
manager=getLocalActivityManager();

El manager posee un método startActivity para iniciar una actividad
incrustada en una ventana, que es un objeto de tipo window. Esta ventana puede

256

transformarse en un objeto View que se puede añadir a un layout. Se haría del
siguiente modo:

Window window = manager.startActivity(idString, intent);
View view=window.getDecorView();

Aquí, idString es un identificador que usamos para la actividad que se va a
abrir, y el intent contiene toda la información y datos necesarios para abrir la
actividad.

En el siguiente ejemplo utilizamos un ActivityGroup con un botón para
añadir al layout una copia de una actividad incrustada. Podemos añadir tantas
como queramos. La actividad incrustada posee a su vez un botón para finalizar
con finish. Al llamar al método finish de una actividad incrustada, en la
actividad principal se ejecuta el método

public void finishFromChild(Activity child)

En este método incluimos las instrucciones a ejecutar cuando una actividad hija
solicita ser eliminada. En este caso, lo que hacemos es eliminarla del layout.

En la figura 11.4. se observa el resultado de ejecutar esta aplicación. Se
muestran varias capturas de pantalla después de jugar un poco con ella,
añadiendo algunas actividades, borrando otras y pulsando algunos botones.

El fichero main. xml de la actividad principal es el siguiente:

<?xml version=" 1. 0" encoding="utf-8ff ?>

<ScrollView
xmlns : android=ffhttp : / /schemas . android. com/apk/res/android”

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical" >

<LinearLayout
android:id="@+id/layout"
android:background="#ffffff"
android: layout_width="f ill_parent11
android:layout_height=”fill_parent"
android:orientation="vertical" >

<TextView
android:id="@+id/textView"
android:textColor="#000000”
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout height="wrap content"

257

El gran libro de programación avanzada con Android

android:text="@string/hello" />

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Iniciar nueva actividad" />

</LinearLayout>
</ScrollView>

Utilizaremos el siguiente fichero u i l .xml para la actividad hija:

<?xml v e r s i o n = " 1 .0" e n c o d i n g = " u t f - 8 "?>
<L inearL ayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/layout"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ddffee"
android:orientation="vertical" >

<TextView
android:id="@+id/textViewl"
android:textSize="24sp"
android:textColor="#000033"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Esta es la actividad 1" />

<Button
android:id="@+id/buttonl"
style="?android:attr/buttonStyleSmall"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Buttonl" />

<Button
android:id="@+id/buttonl1"
style="?andróid:attr/buttonStyleSmall"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Eliminar" />

</LinearLayout>

258

http://schemas.android.com/apk/res/android

Iniciada actividadl
Buttontj

Bmtimí

Iniciada actividad3

Iniciada actividad4

eliminada actividad 1

Iniciada actividad2
M Ü

Iniciada actividad3

11:00

eliminada actividad 3

pulsado 7 veces

pulsado 2 veces

Iniciar nueva aaivi^É;• v':" : ••••••
pulsado 5 veces
Buttonl

pulsado 7 veces

pulsado 2 veces

Iniciada actividad6

pulsado 11 veces

Iniciada actividad6

Figura 11.4. Un grupo de actividades idénticas embebidas dentro de la
ventana de la actividad madre, una debajo de la otra en un ScrollView.

Al pulsar el botón de la actividad madre, se inicia una nueva actividad hija.
Cada actividad hija funciona independientemente del resto, con un botón
que permite mostrar en pantalla el número de pulsaciones un segundo

botón que la elimina permanentemente del layout.

259

El gran libro de programación avanzada con Android

La actividad principa! GrupoDeActividadesActivity. java es la
siguiente:

package es.ugr.amaro.grupodeactividades;

import
import
import
import
import
import
import
import
import
import
import

android
android
android
android
android
android
android
android
android
android
android

app.Activity;
app.ActivityGroup;
app.LocalActivityManager;
content.Intent;
os.Bundle;
view.View;
view.View.OnClickListener;
view.Window;
widget.Button;
widget.LinearLayout;
widget.Textview;

public class GrupoDeActividadesActivity extends ActivityGroup
implements OnClickListener{

Window window;
LocalActivityManager manager;
Intent intent;
int id=0;
TextView tv;
LinearLayout 11;
/** Called when the activity is first created. */

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
11=(LinearLayout) findViewByld(R.id.layout);

tv=(Textview) findViewByld(R.id.textview);
Button boton=(Button) findViewByld(R.id.button);
boton.setOnClickListener(this);
manager=getLocalActivityManager();

}

@Override
public void onClick(View v) {

id+t;
String idString=""+id;
tv.setText("Iniciada actividad "+id);
intent=new Intent(this,Actividadl.class) ;
intent.putExtra("idString", idString);
window = manager.startActivity(idString, intent);

260

View view=window.getDecorView();
11.addView(view);

}

@Override
public void finishFromChild(Activity child){

String idString
=child.getIntent().getStringExtra("idString");

tv.setText("eliminada actividad "tidString)/
Window ventana=child.getWindow();
View vista=ventana.getDecorView();
11.removeView(vista);

}
}

Por último, el fichero de la actividad hija Actividadl. java es:

package es.ugr.amaro.grupodeactividades;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Textview;

public class Actividadl extends Activity implements
OnClickListener{

Textview tv;
int n=0;
String id;

0Override
public void onCreate(Bundle b){

super.onCreate(b);
setContentView(R.layout.uil);
tv=(Textview) findViewByld(R.id.textViewl);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);
Button botonll=(Button) findViewByld(R.id.buttonll);
boton11.setOnClickListener(this);

Intent intent=this.getIntent();
id=intent.getStringExtra("idString");

261

El gran libro de programación avanzada con Android

tv.setText("Iniciada actividad"+id);
}

@Override
public void onClick(View v) {

int id=v.getld();
if(id==R.id.buttonl){

n++;
tv.setText("pulsado "+n+" veces")/

}
else if(id==R.id.buttonll) {

this.finish () ;
}

}
}

11.5. Abrir aplicaciones externas explícitamente

Hasta ahora hemos visto cómo abrir una actividad perteneciente a la misma
aplicación, para lo que bastaba con especificar el nombre del fichero .class de
la actividad que queremos ejecutar. Android permite abrir actividades
pertenecientes a otras aplicaciones usando intents. Esto se puede hacer
explícitamente o implícitamente. Para abrir una aplicación externa explícitamente,
debemos especificar el nombre completo del paquete. Para abrirla implícitamente,
se especifica una acción que debe realizarse, mediante un intent implícito. Los
intents implícitos se verán más adelante.

Para abrir una aplicación usando un intent explícito debemos conocer el
nombre del paquete que aparece en el manifiesto de la aplicación que queremos
abrir. Para definir el intent usamos la clase auxiliar PackageManager, que posee
el método getLaunchintentForPackage, que devuelve un intent válido para
abrir una aplicación externa.

PackageManager manager=getPackageManager();
Intent intent=manager.getLaunchlntentForPackage(paquete);
startActivity(intent);

Ilustramos esto con un ejemplo. Crearemos dos aplicaciones distintas,
ActividadExternal y ActividadExterna2. La primera aplicación tiene un botón para
abrir y ejecutar la segunda aplicación.

La primera aplicación, ActividadExternal, tiene el siguiente fichero main. xml :

<?xml version="l.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

262

http://schemas.android.com/apk/res/android

android: layout_width=" f ill_parent11
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffbb" >

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="24sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout__height="wrap_content"
android:text="Abrir actividad externa" />

</LinearLayout>

La actividad ActividadExternal. java de la primera aplicación es la
siguiente:

package es.ugr.amaro.actividadexternal;

import android.app.Activity;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class ActividadExternal extends Activity
implements OnClickListener{

TextView tv;

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;
setContentView(R .layout.main);
tv=(TextView) findViewByld(R.id.textView);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this) ;

263

El gran libro de programación avanzada con Android

}

@Override
p u b l i c v o id onClick(View v) {

PackageManager manager=getPackageManager() ;
S t r in g name="es. u g r . amaro. a c t i v i d a d e x t e r n a 2 ";
I n te n t in ten t=m an ager . ge tL aunch ln ten tF orP ack age(ñame) ;
s t a r t A c t i v i t y (i n t e n t) ;

}
}

A continuación, creamos la segunda aplicación ActividadExterna2 con el
siguiente nombre de paquete:

e s . u g r . amaro. a c t i v i d a d e x t e r n a 2

La actividad Act iv idadExterna2 . j ava es la creada por defecto. Modificamos
su layout al siguiente fichero main . xm l:

<?xml v e r s io n = " 1.0" encoding="utf - 8 "?>
CLinearLayout
xm lns:android="h t t p : / / s c h e m a s . a n d r o i d . c o m /a p k /r e s / a n d r o i d "

a n d r o id : la y o u t_ w id th = " f i l l _ p a r e n t "
a n d r o id : l a y o u t _ h e i g h t = " f i l l _ p a r e n t "
a n d r o id : o r i e n t a t i o n = " v e r t i c a l "
android:background="#ddffdd" >

<TextView
a n d r o id : t e x t C o lo r = " #000000"
an d r o id : te x tS iz e = " 2 4 s p "
a n d r o id : l a y o u t _ w i d t h = " f i l l _ p a r e n t "
a n d r o id : layou t_h e ig h t= " w r a p _ c o n ten t"
a n d r o id :t e x t = " A c t iv id a d externa 2 a b i e r t a desde o tra

a p l i c a c ió n " />

< / LinearLayout>

En la figura 11.5. se muestra el resultado.

264

http://schemas.android.com/apk/res/android

12:31 PM

Helio World,
ActividadExternaH

19:48

Actividad externa 2 abierta
desde otra aplicación

Figura 11.5. Una aplicación con un botón para abrir una
actividad externa perteneciente a otra aplicación distinta.

11.6. Abrir aplicaciones externas implícitamente

La segunda forma de abrir una actividad externa es mediante un intent
implícito. En el intent implícito se especifica una acción a realizar por la actividad
que se quiere abrir. Para que una actividad pueda ser abierta con un intent
implícito, debe declararse previamente la acción que esta realiza. Esto se hace en
el AndroidManifest de la aplicación usando un intent-filter o filtro de
intenciones. El intent-filter contiene al menos una acción y una categoría. Por
ejemplo, el filtro por defecto de las aplicaciones que hemos utilizado hasta ahora
contiene la acción main y la categoría launcher.

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

Para ilustrar el uso del intent-filter, modificaremos las dos aplicaciones del
ejemplo anterior. En el manifiesto de la aplicación ApiicacionExterna2,
sustituimos el intent-filter por el siguiente:

265

El gran libro de programación avanzada con Android

<intent-filter>
<action android:name="ACTIVIDAD2" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

En este caso, la acción se llama actividad2 y la categoría default es
necesaria para poder abrir la actividad externamente con startActivity
(compruébese que si esta categoría se omite, la aplicación no se puede abrir
desde fuera). El fichero AndroidManifest de la aplicación quedaría como sigue:

<?xml version=,f 1. 0" encoding="utf-8"?>
<manifest
xmlns : android="http : //schemas . android. com/apk/res/android"

package=ffes . ugr . amaro . act ividadexterna211
android:versionCode="1"
android:versionName="1.0” >

<uses-sdk android:minSdkVersion="7" />

<application
android: icon=" @drawable /ic__launcher "
android:labe1="@string/app_name" >
<activity

android: name=" . ActividadExterna2f?
android: label="@string/app_name" >
<intent-filter>

<action android:name="ACTIVIDAD2" />
<category

android:name="android.intent.category.DEFAULT"
/>

</intent-filter>
</activity>

</application>
</manifest>

A continuación modificamos la aplicación ActividadExternal de la sección
anterior, sustituyendo el método onClick por el siguiente:

@Override
public void onClick(View v) {

String action="ACTIVIDAD2";
Intent intent2=new Intent(action)/
startActivity(intent2) ;

}

266

Después de instalar estas dos aplicaciones en el emulador, veremos que la
primera aplicación funciona igual que la de la sección anterior. Al pulsar el botón,
se abre la segunda aplicación, ya que recibe el intent implícito.

11.7. Uso del PackageManager

La clase PackageManager permite acceder a la información de todas las
aplicaciones instaladas en el dispositivo. Esta información se almacena en un
objeto de tipo Applicationinfo. Para obtener la lista de todas las aplicaciones,
usamos el método getlnstalledApplications, que toma un parámetro
entero f lag para imponer alguna condición sobre las aplicaciones. En el siguiente
ejemplo llamamos a este método con f iag=0.

manager=getPackageManager() ;
L is t< A p p l ic a t io n ln fo > l i s t a

=manager. g e t In s ta l le d A p p l ic a t io n s (0) ;

A continuación ilustramos el uso de PackageManager para construir una
aplicación que muestra en pantalla todas las aplicaciones instaladas. Usamos un
ListView e implementamos un BaseAdapter para que, en cada ítem de la lista, se
muestre el icono de la aplicación, su nombre, el nombre del paquete y el directorio
en que se encuentra. Al pulsar sobre un ítem, enviamos un intent para abrir la
aplicación correspondiente, si esto es posible.

Usamos el siguiente layout en el fichero m a in . x m l:

<?xml v e rs io n = " 1 .0 " e n c o d in g = "u tf -8 "?>
<L in e a rL a y o u t
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ddffdd" >

<TextView
a n d ro id : te x tC o lo r= " #000000"
a n d ro id : te x tS iz e = "2 0 s p "
a n d ro id : id = "@ + id /te x tV ie w "
a n d ro id : la y o u t_ w id th = " f i l l_ p a r e n t "
a n d ro id : la y o u t_ h e ig h t= "w ra p _ c o n te n t"
a n d r o id : te x t= " L is ta de a p lic a c io n e s in s ta la d a s " />

<ListView
a n d r o id : id = " 0 + id / l is tV ie w l"

267

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</ListView>

</LinearLayout>

Creamos también el siguiente fichero fila.xml para el BaseAdapter:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff" >

<ImageView
android:id="@+id/imageViewl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_launcher" />

<TextView
android:textColor="#000000"
android:textSize="20sp"
android:id="@+id/textViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Lista de aplicaciones instaladas" />

<TextView
android:textColor="#000000"
android:textSize="18sp"
android:id="@+id/textView2"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Lista de aplicaciones instaladas" />

<TextView
android:textColor="#000000"
android:textSize="16sp"
android:id="0+id/textView3"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Lista de aplicaciones instaladas" />

</LinearLayout>

268

http://schemas.android.com/apk/res/android

Finalmente, la actividad Aplicacioneslnstaladas. java es la que se
detalla a continuación. En la figura 11.7. se muestran algunas capturas de pantalla
del emulador.

Lista de aplicaciones instaladas
total: 113

diaiogsinglechoiceitems.apk

6 Llamar
com.android.phone
/system/app/Phone.apk

7 Calculadora
com.android.calcu!ator2
/system/app/Calculator.apk

i í$l!

8 Visor de HTML
com.android.htmiviewer
/system/app/HTMLViewer.apk

m

9

Lista de aplicaciones instaladas
total: 113

/da ta/app/SoftKeyboard.apk

102 Terminal Emulator
com.android.term
/system/app/T erm .apk______

103 ColorAleatorio
es.ugr.amaro
/data/app/es.ügr.amaro.apk

104 Cámara
com.android.camera
/system/app/Camera.apk

Figura 11.7. Una aplicación con un ListView que muestra todas
las aplicaciones instaladas, usando el PackageManager.

Las aplicaciones pueden abrirse al pulsar cada ítem.

package es.ugr.amaro.aplicacionesinstaladas ;

import java.útil.ArrayList;
import java.útil.List;
import android.app.Activity/
import android.content.Intent;
import android.content.pm.Applicationlnfo;
import android.content.pm.PackageManager;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnltemClickListener;
import android.widget.BaseAdapter;
import android.widget.ImageView;

269

El gran libro de programación avanzada con Android

import android.widget.ListView;
import android.widget.Textview;

public class Aplicacioneslnstaladas extends Activity
implements OnltemClickListener{

Textview tv;
ArrayList<Aplicacion> arrayList

=new ArrayList<Aplicacion>();
PackageManager manager;

class Aplicacion{
String label,packageName, sourceDir;
Drawable icón;

}

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(Textview) findViewByld(R .id.textview);

manager=getPackageManager();
List<ApplicationInfo> lista

=manager.getlnstalledApplications(0);
int size=lista.size ();
Applicationlnfo info;
Aplicación aplicación;

for(int i=0;i<size;i++){
info=lista.get(i);
aplicacion=new Aplicación();
aplicación.packageName=info.packageName;
aplicación.sourceDir=info.sourceDir;
aplicación.label

= (String) info.loadLabel(manager);
aplicación.icón

= info .loadlcon(manager);
arrayList.add(aplicación);

}

tv.append(” total: " + size) ;
ListView ÜstView

=(ListView) findViewByld(R.id.listViewl);
Adaptador adapter=new Adaptador();
ÜstView.setAdapter(adapter);
ÜstView.setOnltemClickListener(this);

270

} //---end onCreate

class Adaptador extends BaseAdapter{

LayoutInflater inflater;
View view;
Textview tvl,tv2,tv3;
ImageView icón;

Adaptador(){
inflater= getLayoutInflater();

}

@Override
public int getCount() {

return arrayList.size();
}

@Override
public Object getltem(int position) {

return arrayList.get(position);
}

@Override
public long getItemld(int position) {

return position;
}

@Override
public View getView(int item, View oldView,

ViewGroup parent) {

view=inflater.Ínflate(R.layout.fila, nuil);
tvl=(Textview) view.findViewByld(R .id.textViewl);
tv2=(Textview) view.findViewByld(R.id.textView2);
tv3=(Textview) view.findViewByld(R.id.textView3);
icon=(ImageView) view.findViewByld(R.id.imageViewl);
tvl.setText(item + " n +arrayList.get(item).label);
tv2.setText(arrayList.get(item).packageName);
tv3.setText(arrayList.get(item).sourceDir);
icón.setImageDrawable(arrayList.get(item).icón);

return view;
}

}

QOverride
public void onltemClick(AdapterView<?> av, View v,

271

El gran libro de programación avanzada con Android

int position, long id) {

try {
String paquete=arrayList.get(position).packageName;
Intent intent

=manager.getLaunchlntentForPackage(paquete);
startActivity(intent);

} catch (Exception e){;}
}

}

11.8. Filtro de datos en un intent

Llegados a este punto del capítulo, debe quedar claro que los intents son los
objetos que utilizan las actividades para comunicarse entre sí, y son parte esencial
del sistema Android. Un intent es muy similar a un email que una actividad envía a
un destinatario (otra actividad). En el caso de intent implícito, el sistema debe
determinar qué actividad, de las instaladas en el dispositivo, debe ejecutarse. Este
proceso se denomina resolución del intent. Para resolver un intent, en primer lugar
se examina la acción a realizar, especificada en el intent-filter del manifiesto. En
segundo lugar, se comparan los datos que contiene el intent con los especificados
en la sección data del intent-filter. Estos datos se introducen en formato URI, que
bien puede referirse a datos de un proveedor de contenidos, o bien a una página
web, una dirección de correo electrónico, etc.

Por ejemplo, el siguiente código abre un navegador y muestra una página web:

Uri uri=Uri.parse(''http://www.google.com1');
Intent intent=new Intent(Intent.ACTION_VIEW, uri);
startActivity(intent);

En este caso, invocamos el constructor del intent con dos parámetros. El primero
es la acción a c t io n _v ie w . El segundo es el URI que indica el dato sobre el que
se realiza la acción; aquí, la dirección de una página web.

En el siguiente ejemplo construimos una actividad que abre una página web,
tras introducir la dirección URL en un EditText. Usamos el siguiente layout:

<?xml version="l.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://scheraas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#aaffdd" >

<TextView
android:textColor="#000000"

272

http://www.google.com1'
http://scheraas.android.com/apk/res/android

android:textSize="20sp"
android: layout_width=,f f ill_parent"
android: layout_height=f,wrap_content"
android:text="Introduzca una dirección de internet

válida" />

<EditText
android:id=M@+id/editTextl"
android:layout_width="fill_parent"
android: layout_height="wrap_content11
android:text="http://" >

<requestFocus />
</EditText>

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Ir a la página web" />

<Button
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Borrar" />

</LinearLayout>

La actividad NavegadorActivity. java es la siguiente:

package es.ugr.amaro.navegador;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri/
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

public class NavegadorActivity extends Activity
implements OnClickListener{

EditText editText;

@Override
public void onCreate(Bundle savedlnstanceState) {

273

El gran libro de programación avanzada con Android

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
editText=(EditText) findViewByld(R.id.editText1);
Button botonl=(Button) findViewByld(R.id.buttonl);
botonl.setOnClickListener(this);
Button boton2=(Button) findViewByld(R .id.button2);
boton2.setOnClickListener(this);

}

@Override
public void onClick(View view) {

int id=view.getId();
if(id==R.id.buttonl){

String uriString=editText.getText().toString();
Uri uri=Uri.parse(uriString);
Intent intent=new Intent(Intent.ACTION_VIEW, uri);
startActivity(intent);

} else if(id==R.id.button2){
editText.setText("http://");

}
}

}

En la figura 11.8.1. se muestra el resultado de ejecutar esta aplicación en un
teléfono donde hay instalados tres navegadores y, por lo tanto, el intent no puede
resolverse completamente. En este caso, el sistema nos muestra una ventana con
las tres opciones posibles. Al elegir una, se abre el navegador correspondiente y
podemos proceder con normalidad.

Cualquier aplicación puede responder al intent que hemos utilizado para abrir
el navegador. Para ello, basta con que incluyamos en el manifiesto los filtros de
acción, categoría y datos siguientes:

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" />

</intent-f ilter>

La categoría default es necesaria para que la aplicación pueda abrirse desde
otra aplicación con startActivity. El filtro de datos especifica que la aplicación
puede recibir datos con^h, .ntes en un URI con el esquema http. Estos datos se
extraen del intent del siguiente modo:

Intent intent=getIntent ();
Uri uri=intent.getData () ;

274

X W & Ü
Navegador

> Uso de acciones completes

:W Usar de forma
l l f p predeterminada

acción.

Introduzca una dirección de
internet válida

http://www.google.com
■»»»»

ir a la página web

Firefox

Internet

Opera Mobile

web uiágfiQfis *M m más»

Buscar I

Aí£Sd£í.
■CAfcfjgûx-ón ■ Ayuda

Ver Gcogíe en:

Móvil ¡ ClásÉS

£2012 - P£!V2£ísM

&tS.Qgi&

% w•> *
| J android programación de d... ¡ (J

/w?wiwi???>?w!iw,ywww|]|}|?wi)www,?jwww¡iwiwiwwwi3|< •««
programación (Buscar

movías a través, de ejemplgs.n.
Android es el sistema operativo de Googie para
smartphones, tablets, y otros dispositivos
móviles. En este libro se ...
vwAv.rnaFcort'.bo.cctn/Aftdroid.-prograíTiac...

Android: Programación de dispositivos

Android: Programación de dispositivos móvties
a través de ejemplos: Amazon.es : José Enrique
Amaro Soriano: Libros.
wvvw.a ma zon.es/. ./84267‘i7675

Androídiprômóvltes 9 través <te ejemplos
Para conectar con Android: programación de
dispositivos móviles a través de ejemplos, crea
una cuenta en Facebook.
5ses.facebook.corn/andioid.progrema...

Android Book by iose Enrique Amaro
Android: Programación de dispositivos móviles

Figura 11.8.1. Una aplicación que abre el navegador usando un
intent implícito con el dato de una dirección de Internet.

275

http://www.google.com

El gran libro de programación avanzada con Android

Este URI podemos examinarlo con uri.toString o procesarlo. Si el
esquema del URI es content, corresponderá a un elemento o tabla de un
proveedor de contenidos al que podemos acceder con las técnicas del capítulo
anterior.

Ilustraremos esto construyendo una aplicación FalsoNavegador que se abra
al invocar un navegador y que escriba en pantalla el URI enviado.

El fichero AndroidManif est .xml de nuestra aplicación sería:

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

package="es.ugr.amaro.falsonavegador"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="7" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity

android:name=".FalsoNavegadorActivity"
android:label="@string/app_name" >
<intent-filter>
<action

android:name="android.intent.action.MAIN" />
<action

android:name="android.intent.action.VIEW" />
ccategory
android:name="android.intent.category.DEFAULT" />
<category

android:name="android.intent.category.LAUNCHER" />
<data android:scheme="http" />

</intent-filter>
</activity>

</application>
</manifest>

El fichero de layout main. xml es el siguiente:

<?xml versión^"1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"

276

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

android:background=n#ffffbb" >

<TextView
android:textSize="20spM
android:textColor="#000000"
android:id="@+id/textView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

</LinearLayout>

La actividad FalsoNavegador. java se detalla a continuación. Una vez
instalada, comprobamos que funciona; es decir, que responde el mismo intent que
un navegador, ejecutando la aplicación Navegador del ejemplo anterior. Los
filtros de intención quedan registrados en el sistema al instalar la aplicación. Así, al
invocar un navegador con un intent implícito, Android la pone en la lista de
aplicaciones que pueden responder. Esto se observa en las capturas de pantalla
del emulador en la figura 11.8.2.

© Completar acción utilizando

Utí I 'm r de form a L . ; :
predeterminada para esta
acción

FalsoNavegador

Navegador

&1* i i & SS 8? >; $< % M § ?.

. " > í -- yC x W - , V i . ; S X ' •;

M ñ i?

Falso Navegador que se abre
un intent implícito.
://www.googíe.com

sentimos, no se puede acceder
a la página

Figura 11.8.2. Una aplicación que responde al mismo intent que
el nevegedorse muestra en la lista de opciones, al ejecutar

la aplicación del ejemplo anterior en el emulador.

277

El gran libro de programación avanzada con Android

package es.ugr.amaro.falsonavegador;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri/
import android.os.Bundle;
import android.widget.Textview;

public class FalsoNavegadorActivity extends Activity {
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
Textview tv=(Textview) findViewByld(R .id.textview);
tv.setText(MUn Falso Navegador que se abre con un
intent implicito.");

t ry {
Intent intent=getIntent();
Uri uri=intent.getData();
tv. append (11 \n11 tur i . toString ()) ;

}catch(Exception e){;}

tv.append(
"\nLo sentimos, no se puede acceder a la página");

}
}

11.9. Agregar funcionalidad de otras apps

Android permite, con el uso de intents, agregar la funcionalidad de otras apps
en nuestra aplicación. De esta forma se facilita el desarrollo, ya que podemos
reutilizar otras aplicaciones para realizar una tarea que, de otro modo, tendríamos
que programar nosotros desde cero. Por ejemplo, si en una aplicación
necesitamos que el usuario seleccione un fichero en su teléfono, podemos utilizar
un intent que ejecute una aplicación que realice tal acción. Hay muchas acciones
que se pueden llevar a cabo por apps del sistema, como enviar un SMS o un
email, marcar un número de teléfono, realizar una llamada telefónica, sacar una
fotografía, etc. Otras acciones pueden ser realizadas por aplicaciones de terceros
que también estén instaladas, como un editor de imágenes, un lector de códigos
de barras, etc. Si hay varias aplicaciones que pueden realizar la misma acción, se
presentará al usuario una ventana de diálogo para que elija la más conveniente.
Además, esto permite que podamos escribir aplicaciones para que realicen una
acción concreta y que puedan, a su vez, ser integradas en otras apps. Android se

278

convierte así en una verdadera plataforma de aplicaciones colaborativas, que
permite una programación flexible y eficaz.

En el siguiente ejemplo mostramos cómo podemos reutilizar las distintas apps
del sistema para programar una aplicación que muestre en pantalla una imagen de
la galería y que reproduzca un fichero musical que el usuario ha seleccionado.
Para seleccionar un fichero, nuestra aplicación envía un intent implícito con la
acción action_get_content, con un tipo de datos genérico y con la categoría
category_openable. Este intent abrirá una ventana de diálogo que muestre las
aplicaciones que pueden abrir aplicaciones multimedia.
La ventana de diálogo se puede personalizar introduciendo este intent dentro de
otro intent intent2 que contiene la acción action_chooser. Este segundo
intent se construye con el método auxiliar intent. createChooser, que admite
un segundo parámetro con el título de la ventana. Todo esto se implementa con el
código

Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
intent.setType("*/*");
intent.addCategory(Intent.CATEG0RY_0PENABLE);

// intent para personalizar el diálogo usando ACTION_CHOOSER
Intent intent2=Intent.createChooser(

intent, "Usando ACTION_CHOOSER") ;
startActivityForResult(intent2, 1) ;

El tipo MIME se especifica con una cadena, donde el asterisco es el comodín.
El tipo MIME para un fichero de imagen se especificaría mediante image/ * y con
audio/* para un fichero de audio.

Para nuestra aplicación utilizaremos el siguiente layout main.xmi, con un botón y
un ImageView para mostrar posteriormente la fotografía seleccionada.

<?xml version="1.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="# fff fdd">

<TextView
android:id="0+id/textView"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Muestra imágenes y reproduce música" />

279

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

<Button
android:id="@+id/buttonl"
android:layout_width=Mwrap_content"
android: layout_height="wrap_content"
android:text="Abrir fichero" />

clmageView
android:id="@+id/imageViewl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="0drawable/ic_launcher" />

</LinearLayout>

La actividad ActionGetContent. java se especifica a continuación. En las
figuras 11.9.1. y 11.9.2. se muestra el resultado de ejecutar esta aplicación en un
Samsung Galaxy S.

package es.ugr.amaro.actiongetcontent;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.media.MediaPlayer;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore/
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.Textview;

public class ActionGetContent extends Activity
implements OnClickListener {

MediaPlayer mediaPlayer;
Textview tv;
ImageView imageView;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(Textview) findViewByld(R.id.textview);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);
imageView=(ImageView) findViewByld(R.id.imageViewl);

280

SRffWW
AetlonGetContent

> Usando ACTION_CHOOSER

Muestra imágenes y reproduce
música

Abrir fichero ;

Galería

Grabadora de voz

Reprod

URI=content://media/external/
audio/media/605
MIME=audio/mpeg
reproduciendo fichero de audio
01 - Francene.mp3

< Rearad,:

23*>ll' ® f i í l f l 2 3 3 7

?Op

Esther Be The One
11 Top

Flash Flash
David Kator

y i
Flowers Of Evil
(Barón Rojo)

Francene
ZZ Top

P 1
Gimme AH Your Lovin'
ZZ Top

¡ É Girls Got Rhythm
(Barón Rojo)

* • Give Me The Chance
(Barón Rojo)

Figura 11.9.1. Una aplicación que reutiliza el
selector de música para reproducir una canción.

El gran libro de programación avanzada con Android

@Override
public void onClick(View v) {

Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
intent.setType("*/*");
intent.addCategory(Intent.CATEGORY_OPENABLE);
// intent para personalizar el diálogo
//usando ACTION_CHOOSER
Intent intent2=Intent.createChooser(

intent,"Usando ACTION_CHOOSER");
startActivityForResult(intent2,1)/

}

@Override
public void onActivityResult(int requestCode,

int resultCode, Intent intent){

try {
Uri uri=intent.getData();
tv.setText("\nURI="+uri.toString());
String mime=getContentResolver().getType(uri);
tv.append("\nMIME="+mime);

if(mime.matches("image.*")){
tv.append("\nmostrando imagen");
imageView.setImageURI(uri);

}
else if(mime.matches("audio.*")) {

if(mediaPlayer!=null)mediaPlayer.release();
mediaPlayer=MediaPlayer.ereate(this, uri);
mediaPlayer.start();

String[] columnas
={MediaStore.Audio.Media.DISPLAY_NAME};

Cursor cursor=getContentResolver().query(
uri, columnas, nuil,nuil,nuil);

cursor.moveToFirst();
String name=cursor.getString(0);
tv.append("\nreproduciendo fichero de audio");
tv.append("\n"+name);

}

}catch(Exception e){
tv.setText("XnNingún fichero seleccionado");

}

282

}

§Override
public void onPause(){

super.onPause();
if(mediaPlayer!=null)mediaPlayer.release();

}
}

En la figura 11.9.1. vemos que, tras pulsar el botón, se abre la ventana diálogo
mostrando las acciones a realizar, junto con el mensaje que hemos introducido en
el segundo intent. Al pulsar el reproductor de música, se muestra una lista de los
ficheros de audio. Tras elegir uno de ellos, se vuelve a nuestra actividad y se
ejecuta el método onActivityResult, donde se reproduce el fichero de audio,
mostrándose en pantalla también el URI del fichero, el tipo MIME audio/mpeg
(que corresponde a un fichero mp3) y el nombre del fichero. Este último lo
conseguimos realizando una búsqueda en el proveedor de contenidos de ficheros
de audio, en la columna display name. Nótese que hemos iniciado el
mediaPlayer proporcionando simplemente el URI del fichero.

En la figura 11.9.2. vemos las capturas de pantalla tras pulsar sobre la galería
en la ventana de diálogo. Al seleccionar una imagen, se vuelve de nuevo a nuestra
actividad y se muestra la imagen en pantalla y la información sobre el fichero: URI
y MIME. La imagen se visualiza ejecutando el método setlmageUri de
ImageView.

Finalmente, tenemos la precaución de liberar el mediaPlayer al pausar la
aplicación.

283

El gran libro de programación avanzada con Android

URI=content://media/external/
mages/media/2066
MIME=image/jpeg
mostrando imagen

Figura 11.9.2. Una aplicación que reutiliza el selector de imágenes
para mostrar una fotografía.

284

12. INTERNET Y RSS FEEDS

12.1. Advertencia importante antes de conectar a Internet

Muy importante: para conectar a Internet, debe utilizarse el permiso

<uses-permission android:name="android.permission.INTERNET"/>

Olvidar esta advertencia puede dar lugar a posteriores frustraciones y pérdidas
de tiempo inútiles. Por lo tanto, no está de más que se recuerde repetidas veces a
lo largo del capítulo.

12.2. Mostrar páginas web con WebView

Puesto que Android integra las interfaces de usuario con XML, no es de
extrañar que sea posible crear un objeto View a partir del código HTML de una
página web. Esto es lo que hace la clase WebView, perteneciente al paquete web
de Android, llamado android. webkit o, simplemente, webKit. Usando la clase
WebView es posible crear nuestro propio navegador web o, sencillamente, incluir
en nuestra actividad algún contenido HTML que esté disponible online o localizado
en nuestro sistema o en nuestra aplicación. Los objetos WebView pueden incluirse
en un layout como cualquier otro objeto View. Por lo tanto, es posible incrustar una
página web en la interfaz de usuario. WebView también incluye desplazamiento
horizontal y vertical (scrolling), métodos para navegar adelante y atrás,
herramientas de zoom, buscador de texto, etcétera.

En el siguiente ejemplo hacemos una demostración del uso de WebView y
algunos de sus métodos y clases asociadas del webKit de Android.

Para tener acceso a Internet, se debe declarar el correspondiente permiso en
el manifiesto de la aplicación AndroidManif est. xml.

<uses-permission android:name="andróid.permission.INTERNET"/>

285

El gran libro de programación avanzada con Android

Nuestra aplicación consiste en un sencillo navegador con dos botones para
navegar atrás y adelante y otro botón para ir a Home, que es la página de Google.
También contiene un TextView para mostrar el URL de la página actual, y por
último, un WebView con el contenido de la página web. Es posible navegar
pulsando los links de la página y los botones del layout, que es el siguiente fichero
main. xml:

<?xml version="1.0" encoding=Mutf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android”

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffbbaa" >

<LinearLayout
android:layout_width="fill_parent”
android:layout_height="wrap_content"
android: or i ent a tion=" horizontal11
>

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Atrás" />

<Button
android: id="@ + id/button2,f
android: layout_width="wrap_content"
android: layout_height = f,wrap_content"
android: text="Home11 />

<Button
android:id="@+id/button3"
android:layout_width=Mwrap_contentM
android:layout_height="wrap_content"
android: text=ffAdelante" />

<TextView
android:textColor="#000000"
android:textSize="18sp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Navegador WebView" />

</LinearLayout>

286

http://schemas.android.com/apk/res/android%e2%80%9d

CTextView
android:id="@+id/textViewl"
android: textColor="#000000"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="url" />

cWebView
android:id="@+id/webView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:focusable="true"

/>
</LinearLayout>

A continuación se detalla la actividad WebVistaActivity. java que
implementa un navegador. En la figura 12.2. se muestra el resultado de ejecutar la
aplicación en un tablet Samsung Galaxy Tab.

%̂íiít€220:22
| Atrás 11 Home j Adiará© Navegador WebVtew

http:#www,ge»gte.esV

w«b ¡mápeees Piases No tictac «rás

riest&utmiaa Cafes Cares Cumia

& Ubicación no disponible - ¡jetuíte

Qoogte.es también en: poíogo euskmt

iniciar sesión

¡Qecgte Ccntiguracicrfi Ayudo

Figura 12.2. Un sencillo navegador que usa WebView para incrustar una página
web en un layout. Las capturas de pantalla son de un tablet Samsung Galaxy Tab,
de Id página principal de Google y después de realizar una búsqueda. Obsérvense

los controles de zoom que aparecen en la parte inferior de la pantalla.

i&t-Ásy beventt̂ stt.

Atrás T Home j Adelante Navegador WebView

http/Vwvvw.nwconráo.cofTvAnrJroítí^programacíon-de-dtspó«íivDe»movifñ&<-a»tfaves*do*ejempos 17672 htrt»

As xif<s¡<1 •«; <s; <x(«»at:r<í da Íiíxxy*. >w»a ssrsKtenu
cxr<-.<. i*s{x<->¿r:y.>s mavik-*. gR «Ate !#«• *s exeseís*. .*>
eaácsica, ycfftsseas&te y cí.tw:aa. :«* o<;«¿>x>;os *s «<«.«}•
rs»snt?&isr sí» pfoot-sA apíó>se>:-í>es *>> Arwraé*, seegr»»
lír»aU3ÍA JAVÜ. É &K&K üiimxítífís A ¡f!Í>»ft»C«S
e«y.jcla y s&fóa <ie e m s . =»st::rs y asediara de tehetcA i >y»í:cis: yráiSsos ¡ufa» actives. »>> roas»'.**,
d» s*eióc. ««-•••as, te t t>rs<>v *s<****>: «a**»*» «"‘«i K5| > * <j
WWjl* ::n *fAkí-Aee S>>frS^SrW e«*íiW á'^:isSk«f -Sví

ANDRO ID: PROGRAMACION D£ DÍSPOSITTv't
A TRAVÉS &6 EJEMPLOS

Aac*': Aísbía Jase íádeus5s:<3f«K; MAUCOytéS. 5J.A.
ss»t:
Sájfíaai: á¡>S i'
SASfc

287

El gran libro de programación avanzada con Android

package es.ugr.amaro.webvista;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.webkit.WebViewClient;
import android.widget.Button;
import android.widget.TextView;

public class WebVistaActivity extends Activity
implements OnClickListener{

WebView webView;
String home="http://www.google.com";
TextView tv;
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);

setContentView(R.layout.main);
Button botonl=(Button) findViewByld(R.id.buttonl)
botonl.setOnClickListener(this);
Button boton2=(Button) findViewByld(R.id.button2)
boton2.setOnClickListener(this);
Button boton3=(Button) findViewByld(R.id.button3)
boton3.setOnClickListener(this);
tv=(TextView) findViewByld(R.id.textViewl);

webView = (WebView) findViewByld(R.id.webView);
webView.setWebViewClient(new Client());
WebSettings webSettings=webView.getSettings();
webSettings.setBuiltlnZoomControls(true);
webSettings.setJavaScriptEnabled(true);
webSettings.setPluginsEnabled(true);
webView.loadürl(home);

class Client extends WebViewClient{

@Override
public boolean shouldOverrideürlLoading(

WebView view, String url){
return(false) ;

}

288

http://www.google.com

@Override
public void onPageFinished(WebView view, String url){

tv.setText(uri);
}

}

@Override
public void onClick(View v) {

int id=v.getld();
if(id==R.id.buttonl)

webView.goBack();
else if (id==R.id.button2)

webView.loadürl(home);
else if (id==R.id.button3)

webView.goForward();
}

}

En esta aplicación utilizamos dos clases auxiliares del webKit:

- WebViewClient

- WebSettings

El objeto WebView se asocia a un WebViewClient mediante el método
setWebViewClient. En cierto modo, el WebViewClient es a un WebView lo que
la interfaz OnClickListener es a un botón. Es una clase abstracta con métodos que
implementaremos para que se realice alguna acción en nuestra actividad, cuando
el cliente nos informe de algún evento o cambio en el objeto WebView. Por
ejemplo, al finalizar la descarga de una página web, se ejecuta el método
onPageFinished de WebViewClient. Sobrescribiendo este método, podríamos
realizar la acción de avisar al usuario de que se ha descargado con un Toast o, en
el caso de nuestro navegador, actualizar un TextView con la dirección actual.

Otro método importante en WebViewClient es
shouldOverrideürlLoading, que se ejecuta si el WebView intenta abrir un
link. Aquí indicaremos si debería anularse la carga de un URL dentro de nuestro
WebView. Si este método devuelve f alse, la carga se hará en el WebView. Si es
true, el WebView no cargará el link y este será devuelto a la aplicación, que
intentará abrir otra actividad con el navegador por defecto. En nuestra
implementación devolvemos siempre false.

Ciertas características del WebView suelen estar desactivadas por defecto,
como los controles de zoom, soporte de JavaScript y de Plugins. Para activarlas,
se usan los métodos de la clase WebSettings. Para crear un objeto
webSettings asociado a nuestro WebView, ejecutamos su método
getSettings.

289

El gran libro de programación avanzada con Android

12.3. Mostrar imágenes con WebView

Podemos usar WebView para mostrar directamente una imagen en pantalla, lo
que nos permite utilizar los controles de zoom. Lo más sencillo es copiar el fichero
de imagen, por ejemplo g a t o l . j p g , en el directorio a s s e ts de la aplicación y
luego cargar la imagen en el WebView mediante

w ebV iew . l o a d ü r l (" f i l e : / / / a n d r o i d _ a s s e t / g a t o l . j p g ") ;

Android no ajusta el tamaño de la imagen automáticamente para adaptarla a la
pantalla. Si el número de píxeles de la imagen es mayor que el de la pantalla,
veremos solo una fracción de la imagen. No obstante, podremos alejarla o
acercarla usando los controles de zoom Si la imagen es muy grande, será
necesario llamar al siguiente método para que se pueda alejar al máximo con el fin
de ajustarla a la pantalla:

w e b S e t t in g s . s e tU s e W id e V ie w P o r t (t r u e) ;

El zoom de la vista inicial se puede definir con una escala en porcentaje.

w e b V ie w . s e t l n i t i a lS c a le (e s c a la) ;

Por defecto, la escala inicial de WebView es 100%.

Por ejemplo, en la siguiente aplicación mostramos una imagen grande,
1275x1753 píxeles, en un WebView, escalada inicialmente al 25%. En las
capturas de pantalla de la figura 12.3. vemos la imagen escalada inicialmente y
después de ampliarla con los controles de zoom. En este ejemplo no usamos
ningún fichero de layout, pues definimos el WebView desde Java.

package e s . u g r . am aro . w ebv iew im age ;

im p o r t a n d r o id . a p p . A c t i v i t y ;
im p o r t a n d r o id . o s . B u n d le ;
im p o r t a n d r o id . w e b k i t .W e b S e t t in g s ;
im p o r t a n d r o id . w e b k i t . WebView;

p u b l i c c la s s W e b V ie w Im a g e A c t iv ity e x te n d s A c t i v i t y {

@ Override
p u b l i c v o id o n C re a te (B u n d le s a v e d ln s ta n c e S ta te) {

s u p e r . o n C r e a te (s a v e d ln s ta n c e S ta te) ;
s e tC o n te n tV ie w (R . la y o u t .m a in) ;
WebView webView=new W e b V ie w (th is) ;
W e b S e tt in g s w e b S e tt in g s = w e b V ie w . g e t S e t t i n g s () ;
w e b S e t t in g s . s e t B u i l t l n Z o o m C o n t r o ls (t r u e) ;

290

file:///android_asset/gatol.jpg

// -true para ajustar imágenes grandes a la pantalla
webSettings.setUseWideViewPort(true);
webView.loadürl("file:///android_asset/gatol.jpg");
// escala inicial en porcentaje
int scaleInPercent=25;
webView.setlnitialScale(scalelnPercent);

setContentView(webView);
}

}

Figura 12.3. Una imagen cargada en un WebView, reducida al 25%
y después de ampliarla con los controles de zoom.

12.4. Mostrar HTML con WebView

WebView permite incluir directamente código HTML en Java. Para ello, se usa
el siguiente método, donde html es una cadena con código HTML:

webView.loadData(html, "text/html", "utf-8");

También se puede usar código HTML para cargar imágenes locales. Por
ejemplo, en la siguiente aplicación, al pulsar un botón, cargamos una imagen de la
galería y usamos HTML para mostrarla en un WebView, habilitando los controles
de zoom. En un segundo WebView mostramos el URI y tipo MIME de la imagen.

291

file:///android_asset/gatol.jpg

El gran libro de programación avanzada con Android

En la figura 12.4. se muestran las capturas de pantalla de un tablet Samsung
Galaxy Tab.

Pulsar el botón para cargar una Imagen de
la galena

H jIEj ÍI ^ j
,.,'i -J vsv.J ^
::*. ** i S

’m "

vvvv̂vvvv\vv

■ ww' bÉL:■ '*'

: .■¿¿voo'X:

mim y ^ ,« g « J r l
pH dSI sararí ¡nii:&$*■ '||g

Mostrando imágenes
locales
Ejemplo de uso de HTML en Android

Figura 12.4. Aplicación para cargar una imagen local de la galería en un
WebView usando HTML. Captura de pantalla de un Samsung Galaxy Tab.

Mostrando imágenes
locales
Ejemplo de uso de HTML en Android

Pulsar el botón para cargar una imagen de
la galería

Se ha cargado la imagen
uri:
content://media/external/ímages/media/463
mime:
ímage/jpeg

292

<?xml version=M1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android”

android:layout width="fill parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ddffdd" >

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android: layout_height="wrap_content11
android:text=”Cargar imagen" />

<WebView
android:id="@+id/webViewl"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight=”1" >

</WebView>

<WebView
android:id="@+id/webView2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1" >

</WebView>

</LinearLayout>

El código Java de la actividad se detalla a continuación. Nótese que la ruta de
la imagen a cargar se especifica mediante su código URI, devuelto por el
proveedor de contenidos de imágenes.

package es.ugr.amaro.htmlview;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.webkit.WebSettings;
import android.webkit.WebView;

Usaremos el siguiente layout:

293

http://schemas.android.com/apk/res/android%e2%80%9d

El gran libro de programación avanzada con Android

import android.widget.Button;

public class HtmlViewActivity extends Activity
implements OnClickListener{

WebView webViewl,webView2;
String htmll,html2;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);

webViewl=(WebView) findViewByld(R .id.webViewl);
webView2=(WebView) findViewByld(R.id.webView2);

WebSettings webSettings1= webViewl.getSettings();
webSettingsl.setBuiltInZoomControls(true);
WebSettings webSettings2= webView2.getSettings();
webSettings2.setBuiltInZoomControls(true);
webSettings2.setUseWideViewPort(true);
// necesario para escribir acentos y otros caracteres
webSettingsl.setDefaultTextEncodingName("utf-8");

html1="<hl>Mostrando imágenes locales</hl>"
+"Ejemplo de uso de HTML en Android"
+ "</bxbr><hr>"
+"<center>"
+""
+"Pulsar el botón "
+"para cargar una imagen de la galería"
+ "</fontx/center>" /

webViewl.loadData(htmll, "text/html", "utf-8");
}

@Override
public void onClick(View v) {

Intent intent=new Intent(Intent.ACTION_GET_CONTENT);
intent.setType("image/*");
startActivityForResult(intent,1);

}

@Override
public void onActivityResult(int request,

int result,Intent intent){

294

try {
Uri uri=intent.getData();
String mime=getContentResolver().getType(uri);
// cargar la imagen en html2--
String html2="" ;
webView2.setlnitialScale(25);
webView2.loadData(html2,"text/html",Mutf-8");

htmll=htmll
+ "Se ha cargado la imagen
 uri: "
+"
"+uri.toString()
+ "<brxb>mime : </bxbr>"+mime;

}
catch(Exception e){

htmll=htmll+"" +
"No se ha podido cargar la imagen</bx/f ont>" ;

}

webViewl.loadData(htmll, "text/html", "utf-8");

}
}

12.5. Conexión HTTP

El paquete j ava. net incluye las clases y métodos necesarios para conectar a
una dirección URL usando el protocolo HTTP, utilizado normalmente para recibir y
enviar datos por Internet. Para establecer la conexión a un URL ejecutamos el
método openConnection de la clase URL y, a continuación, transformamos esta
conexión en un objeto de tipo HttpURLConnection.

// establece la conexión http
URL url= new URL(''http://www.google.com'1);
URLConnection urlConexion=url.openConnection();
HttpURLConnection httpConexion

= (HttpURLConnection) urlConexion;

Una vez establecida la conexión, podemos asociarle un inputstream para
comenzar a leer datos.

Inputstream in= httpConexion.getInputstream();

A partir de aquí, ya se puede leer el contenido de una página web en forma de
código HTML.

295

http://www.google.com'1

El gran libro de programación avanzada con Android

Muy importante: para poder establecer la conexión, debe declararse el
correspondiente permiso en el manifiesto de la aplicación.

Cuses-permission android:name="android.permission.INTERNET"/>

En el siguiente ejemplo ilustramos la técnica para conectar a una página web y
leer el código HTML devuelto, que se mostrará en pantalla. Usaremos el siguiente
layout, con un EditText para introducir la dirección URL. Un ScrollView nos
permitirá examinar el código HTML completo, que puede superar fácilmente varios
cientos de líneas.

<?xml version=" 1. 0" encoding=f,utf-8"?>

CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ddffcc" >

CEditText
android:id="@+id/editText1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="http://" />

cButton
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Cargar página web" />

cScrollView
android:id="@+id/scrollViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

CTextView
android:id="0+id/textView"
android:textColor="#000000"
android:textSize="16sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Introducir una dirección web válida" />

</ScrollView>
</LinearLayout>

296

http://schemas.android.com/apk/res/android

El fichero de la actividad se detalla a continuación. Al pulsar el botón se
ejecuta el método Conectar, donde se establece la conexión y se lee la página
web línea por línea. Al final mostramos el número de líneas que se han leído. En la
figura 12.5. aparecen dos capturas de pantalla de un Samsung Galaxy Tab.

* 'jgf W + m f i 0 1 1 :1 0

httpy/www.ugr-e&'-amaro

Conectando a http://www.ugr.es/-arriaro

dDOCTYPE htmí PUBLIC 'V/W3C//DTD XHTML 1.0
TransítíonalZ/EH6

‘’http;//www,w3.org/TR/xhtml1 /DTD/xhtmi1 -
lransítíona!.dtd">
<htmí xmlns=‘'bttp://www. w3.org/1999/xhtm!">
<head profííe=Khttp://gmpg.org/xtnZ11 ”>
<meta http-equiv^Content-Type" con ten í-’text/btml;
charset=UTF-8" />
<meta name="distríbutíanp content-'global* />
<meta name^'nobots0 content~,<toliow, al i” />
<meta ñam e-’language" content~Ken>> f>
<tltie>Jose Enrique Amaro Sonano</tít1e>
<meta name^'viewport* eontení*"w idthit250; initial-
scaíe^l .0; maximum-scale^l .0; user-scaiabíe^;" />
<4fnk re i^ ’styiesheet0 href^android/mobífe.css"
typ e -‘text/css" t>
</bead>

<foody>
« jiv fd -'w ra p p e r^
<hl>José Enrique Amaro S oiiano</ax/
h1>
<h2>
<a href-https://www.ugr.es/~famn>Departamento de
Física Atómica. Molecular y Nuclear«/a>

<!>.. h > m r .es>tMly»fsfdad de <?mnade</

m ü w w * 11:10
C e n « : ta r W e í>

¡ httpz/Avww.ugf.es/~smar<^

<lí>
<a href=old/Weic©me<html>
<h3>Old web pages</h3>
<p>Vieja página web (archives) 1995</p> </&>
<ñ\>

<Aif>

<a class«"backtop” hreht "#">back to top
↑ </spar»
</dlv>

<ul id*'*navlgatíon'> class=''bottom‘,>
< lix a href*"#K>hom e</ax/li>
<il><ahreí-‘<https://wclb.ugr.es/-amaro/
darkphyslde'^forum c/ax/}^
<a href~,,android(,>andro!d</lf>
</uf>

</bcxJy>
</html>
Leídas lineas: 69

Figura 12.5. Aplicación para conectar a una página web y leer su código HTML.
Capturas de pantalla de un Samsung Galaxy Tab.

package es.ugr.amaro.conectarweb;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

j ava.io.BufferedReader ;
j ava.io.InputStream;
j ava.io.InputStreamReader;
j ava.net.HttpURLConnection;
j ava.net.URL;
j ava.net.URLConnection;
android.app.Activity;
android.os.Bundle;
android.view.View;
android.view.View.OnClickListener;
android.view.inputmethod.InputMethodManager;
android.widget.Button;
android.widget.EditText;
android.widget.TextView;

297

http://www.ugr.es/-arriaro
http://gmpg.org/xtnZ11
https://www.ugr.es/~famn%3eDepartamento
https://wclb.ugr.es/-amaro/

El gran libro de programación avanzada con Android

public class ConectarWebActivity extends Activity
implements OnClickListener{

TextView tv;
EditText editText;

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R .layout.main);
tv=(TextView) findViewByld(R .id.textView);
editText=(EditText) findViewByld(R.id.editTextl);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);

@Override
public void onClick(View v) {

// TODO Auto-generated method stub
String direccion=editText.getText().toString();
tv.setText("Conectando a "+direccion);
conectar(dirección);

// esconde el teclado
InputMethodManager manager

=(InputMethodManager) this.getSystemService(
INPUT_METHOD_SERVICE);

manager.hideSoftInputFromWindow(v .getWindowToken(),0);
}

void conectar(String dirección){

try {

// establece la conexión http
URL url= new URL(dirección);
URLConnection urlConexion=url.openConnection();
HttpURLConnection httpConexion= (HttpURLConnection)
urlConexion;

// obtener un buffer para el input
InputStream in= httpConexion.getInputStream();
InputStreamReader reader=new InputStreamReader(in);
BufferedReader buffer=new BufferedReader(reader);

// lee todas las lineas del buffer
String linea="";

298

int nLineas=-l;
while(linea!=null){

nLineas++;
tv.append("\n"+linea) /
linea= buffer.readLine();

}

tv.append("\nLeidas lineas: "tnLineast"\n");

}catch(Exception e){
tv.append("\nNo se ha podido conectar");

}
}

}

12.6. Introducción a XML y RSS

Los RSS feeds permiten acceder a contenidos de una página web
programáticamente. RSS está basado en XML. En las siguientes secciones
veremos algunas técnicas básicas para analizar documentos RSS online y extraer
sus contenidos con Android. No es posible aquí describir en profundidad el
lenguaje XML, por lo tanto, solo introduciremos brevemente ciertos aspectos
esenciales de su estructura, que son necesarios para establecer algunas
definiciones que usaremos más adelante.

El XML (Extensible Markup Language) o lenguaje de marcas extensible se
basa en un conjunto de reglas para representar información estructurada en
formato de texto. Un documento XML suele almacenarse en ficheros con
extensión xml. Los componentes básicos de un documento XML se denominan
elementos. Un elemento se define como un fragmento de documento del tipo

<item>...</item>

El elemento está formado por todo el texto comprendido entre la marca inicial

<item>

y la final

</item>

Estas dos marcas inicial y final forman parte del elemento. Entre las dos puede
haber texto u otros elementos (elementos anidados). Por ejemplo, en el siguiente
fragmento XML hay un texto dentro de un elemento, que está dentro de otro
elemento.

299

El gran libro de programación avanzada con Android

<item>
<subitem>

texto
</subitem>

</item>

Diremos que el texto texto es un nodo hijo del elemento subitem, que a su
vez es un nodo hijo del elemento item. Un documento XML se compone
básicamente de texto, elementos (anidados o no) y otros tipos de marcas, que
deben seguir unas reglas estrictas para que el documento sea válido. No
entraremos aquí a discutir la estructura general de un documento XML, que puede
ser bastante compleja. Baste con citar una regla fundamental: cada elemento debe
poseer marca de inicio y marca de cierre y todos los elementos hijos deben estar
anidados, es decir, no pueden cerrarse fuera del padre. Si un elemento no tiene
hijos, puede representarse mediante una sola marca. Por ejemplo:

<item/>

Los nombres de los elementos son libres, razón por la que el lenguaje se llama
extensible. Sin embargo, no es posible incluir los caracteres que delimitan las
marcas < ó >. Un marcador CDATA permite saltarse esta restricción,

<![CDATA[Dentro de un marcador CDATA podemos escribir
cualquier carácter <> excepto los que forman la marca CDATA
CDATA!]]>

En XML, un comentario se escribe de la siguiente forma:

<!-- Esto es un comentario en XML -->

Un documento XML puede comenzar por una declaración XML como la
siguiente, aunque no es obligatorio:

<?xml version='1.0' encoding='UTF-8'>

RSS feed es un método de distribución de resúmenes de contenidos de una
página web para ser utilizados por terceros. RSS (Rich Site Summary o Really
Simple Syndication) es un formato XML prefijado, que permite a las aplicaciones
web acceder a la información fácilmente. La estructura básica de un documento
RSS es la siguiente:

<?xml version="l.0" encoding="UTF-8"?>
<rss version="2.0">
<channel>
<title>RSS (Rich Site Summary)</title>
<link>http://www.ugr.es/~amaro</link>
<description>Un ejemplo de fichero XML en el formato de
RSS Feed.

300

http://www.ugr.es/~amaro%3c/link

</description>
<item>

<title>Este es el título del item 0</title>
<link> http://www.ugr.es/~amaro/linkO.html</link>
<description>Descripción 0. Se trata de una corta

descripción
</description>

</item>
<item>

<title>Este es el título del item l</title>
<link> http://www.ugr.es/~amaro/linkl.html</link>
<description>Descripción 1. Se puede incluir cualquier

número de elementos item con su correspondiente descripción
</deseription>

</item>
</channel>
</rss>

12.7. Análisis de documentos XML con DOM

DOM (Document Object Model) es un conjunto de interfaces para acceder al
contenido de los documentos XML y HTML. Nosotros usaremos la ¡mplementación
para Java del paquete org.w3c.dom, disponible en Android. Este paquete
proporciona la clase Document, que representa un documento XML, una vez
validado y convertido en un objeto Java, así como otras clases, que representan
los distintos tipos de nodos y diversos métodos para extraer y manipular los
contenidos.

Para convertir (parse) un fichero xml en un documento DOM, debemos seguir
tres pasos. Primero, necesitamos un objeto DocumentBuilderFactory para, a
continuación, fabricar un objeto Document Builder. Estas dos clases pertenecen
al paquete javax.xmi.parsers. Por último, usamos el método parse de este
objeto para convertir el xml.

DocumentBuilderFactory factory
=DocumentBuilderFactory.newlnstance() ;

DocumentBuilder builder=factory.newDocumentBuilder();
Document doc=builder.parse(input);

Aquí, input es un inputstream que representa al fichero xml.

La siguiente aplicación ParseXML convierte un fichero xml en un documento
DOM y muestra en pantalla todos los elementos que contiene.

Usaremos el siguiente fichero rss2.xml. Se trata de un RSS con un ítem. Lo
copiaremos en el directorio res/raw de nuestra aplicación.

301

http://www.ugr.es/~amaro/linkO.html%3c/link
http://www.ugr.es/~amaro/linkl.html%3c/link

El gran libro de programación avanzada con Android

<?xml version=" 1. O" encoding="UTF-8"?>
<rss version="2.O">
<channel>
<title>RSS (Rich Site Summary)</title>
<link>http://www.ugr.es/~amaro</link>
<description>Un ejemplo de fichero XML en el formato de
RSS Feed.
</description>
<item>

<title>Este es el titulo del item 0</title>
<link> http://www.ugr.es/~amaro/linkO.html</link>
<description>Descripción 0. Se trata de una corta

descripción
</description>

</item>
</channel>
</rss>

Un fichero xml contiene un único elemento raíz, o nodo principal, que en
nuestro ejemplo RSS es channel. Este elemento lo extraemos del documento
DOM mediante

Node nodoPrincipal=doc.getDocumentElement();
String nombreNodo=nodoPrincipal.getNodeName();

La lista de todos los elementos con cierto nombre se extrae en un objeto
NodeList, mediante el método getElementsByTagName ("nombre") . Puesto
que queremos obtener todos los elementos usaremos un asterisco.

NodeList nodeList=doc.getElementsByTagName("*");

Finalmente, el método item nos permite extraer los nodos contenidos en un
NodeList.

El layout de nuestra aplicación será el siguiente fichero main. xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ddffee">

CTextView
android:id="@+id/textView"
android:textColor="#000000"

302

http://www.ugr.es/~amaro%3c/link
http://www.ugr.es/~amaro/linkO.html%3c/link
http://schemas.android.com/apk/res/android

android :textSize="18sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Convierte (parse) un fichero XML" />

</LinearLayout>

La actividad ParseXMLActivity. java se detalla a continuación. En la figura
12.7. se muestra la captura de pantalla, donde se observa que hay nueve
elementos y una lista con sus nombres.

Convierte (parse) un fichero XML
Nodo principal: rss
Número de e!ementos= 9

Lista de todos los elementos

rss
channel
title
link
description
Item
title
link
description

Figura 12.7. Aplicación para convertir un fichero xml en un documento
que se analiza con la interfaz DOM.

package es.ugr.amaro.parsexml;

import java.io.InputStream;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class ParseXMLActivity extends Activity {

303

El gran libro de programación avanzada con Android

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
Textview tv=(Textview) findViewByld(R.id.textview);

// lee fichero xml
InputStream input

= getResources().openRawResource(R.raw.rssl);
// nueva factoría de constructores de documentos
DocumentBuilderFactory factory

=DocumentBuilderFactory.newlnstance();
try {

// nuevo constructor de documentos
DocumentBuilder builder

=factory.newDocumentBuilder();
// convierte el XML en un documento
Document doc=builder.parse(input);
doc.normalize();

// Nodo principal del documento
Node nodoPrincipal=doc.getDocumentElement();
String nombreNodo=nodoPrincipal.getNodeName();
tv. append ("\nNodo principal: f,+nombreNodo) ;

// lista de todos los nodos
NodeList nodeList=doc.getElementsByTagName("*");
int nNodes=nodeList.getLength();
tv. append ("\nNumero de elementos^ f,+nNodes);
Node nodo;
tv. append (" \n------------------------- "

+ ff\nLista de todos los elementos"
+ "\n------------------------- ") ;

for(int i=0;i<nNodes;i++){
// toma el nodo i
nodo=nodeList.item(i);
nombreNodo=nodo.getNodeName();
tv.append("\n"+nombreNodo);

}

} catch (Exception e){
tv.append("\nError de XML");

}
}

}

304

12.8. Extraer los valores de los elementos XML

La estructura de un documento DOM puede representarse como un árbol
compuesto por ramas que llamaremos nodos. Cabe resaltar algunas
características de los nodos:

• Cada nodo puede contener otros nodos hijos, o no tenerlos.

• El tronco del árbol es el nodo principal, de donde parten las ramas o
primer nivel de nodos hijos.

• Cada nodo tiene un tipo, que puede ser Element, Text, etc.

• Hay que tener muy presente que tanto los espacios en blanco como los
caracteres de nueva línea se consideran nodos de texto.

• Cada nodo tiene un nombre. Los nodos de tipo texto poseen el nombre
genérico #text.

• Cada nodo tiene un valor. El valor de un nodo de texto es el texto que
contiene. El valor de un elemento es nuil.

Como ejemplo, consideremos el siguiente fichero rssl .xml:

<?xml version="l.0" encoding="UTF-8"?>
<rss version="2.0">
<channel>
<title>RSS (Rich Site Summary)</title>
<link>http://www.ugr.es/~amaro</link>
<description>Un ejemplo de fichero XML en el formato de
RSS Feed.
</description>
<item> Texto después de item.

<title>Este es el titulo del item 0</title> Texto tras
title.

<link> http://www.ugr.es/~amaro/linkO.html</link>Texto
tras link.

<description>Descripcion 0. Se trata de una corta
descripción

</description> Texto tras description.
</item>
</channel>
</rss>

305

http://www.ugr.es/~amaro%3c/link
http://www.ugr.es/~amaro/linkO.html%3c/link%3eTexto

El gran libro de programación avanzada con Android

En representación DOM, el nodo principal de este documento, rss, tiene tres
nodos hijos. La representación en árbol del primer nivel de nodos, o nodos
adyacentes, sería la siguiente:

#document
-rss

-#text
-channel
-#text

Es decir, rss contiene el nodo channel y dos nodos de texto, representando los
espacios en blanco. Todos los demás nodos del documento son hijos del nodo
channel. Consideremos el nodo item. Eíste tiene siete nodos hijos. Para que
quede más clara la situación de los nodos de texto, nótese que en el fichero xml
hemos escrito texto donde normalmente habría espacios en blanco. El documento
XML sigue siendo válido. La estructura en árbol del nodo item es la siguiente:

-item
-#text
-title

-#text
-#text
-link

-#text
-#text
-description

-#text
-#text

El nodo item tiene siete nodos hijos: tres elementos y cuatro textos. Estos cuatro
nodos de texto son adyacentes, es decir, son hijos del mismo padre y se
encuentran al mismo nivel de profundidad en el árbol del documento. Cada uno de
los tres elementos tiene un único nodo hijo, de tipo texto.

En la siguiente aplicación analizamos la estructura de este documento,
mostrando en pantalla los nodos hijos del nodo item y los valores de los nodos de
texto que contiene. Para este análisis usaremos algunos de los métodos de la
clase Node. En DOM, la lista de nodos hijos de un nodo se obtiene mediante

NodeList nodeList= node.getChildNodes();

El valor de un nodo se extrae con

String valué = node.getNodeValue();

y el primer nodo hijo de un nodo con

306

Node nodoHijo = node.getFirstChild();

Partiremos del siguiente layout:

<?xml version="1.0" encoding="utf-8"?>

<ScrolIView
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background^"#aaffaa" >

CTextView
android:id="@+id/textView"
android:textSize="18sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Valores XML" />

</LinearLayout>
</ScrollView>

A continuación se detalla el fichero Java. El fichero rssl .xml se copiará en el
directorio res /raw de nuestro proyecto. Las capturas de pantalla se muestran en
la figura 12.8.1. Los nodos hijos de item se han numerado del 0 al 6. Vemos que
los valores de los nodos de texto adyacentes contienen los caracteres de nueva
línea.

307

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

Valores XML
Número de ítems=t

Node name=item
node Value=null
ChfldNodes-7

Node 0 name=#text
Value= Texto después de item

Node 1 name=tit!e
Value=null

Este nodo es un elemento.

Este es el título del item 0
— Node 2 name=#text

Value= Texto tras title

— Node 3 name=línk
Value=null

Este nodo es un elemento.
Valor del nodo=
htíp : . '7 \ w / (:.u£: ' e s / - < m a r o / ¡nkO

v.v.

Este es el título de! Item 0
--Node 2 name=#text

Value= Texto tras title

Node 3 name=iink
Value=nu!l

Este nodo es un elemento

http://www.ugr.es/-amaro/linkO.html
—Node 4 name=#text

Value=Texto tras link.

— Node 5 name=descríptíon
Vaiue=null

Este nodo es un elemento.
Valor del nodo=
Descripción 0. Se trata de una corta
descripción

— Node 6 name=#text
Value= Texto tras descriptíon.

Figura 12.8.1. Aplicación para extraer los valores almacenados
en un fichero xml con la interfaz DOM.

package es.ugr.amaro.xmlvalues;

import java.io.InputStream;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import android.app.Activity;
import android.os.Bundle;
import android.widget.Textview;

public class XMLValuesActivity extends Activity {
/** Called when the activity is first created. */
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
TextView tv = (Textview) findViewByld(R.id.textview)

InputStream input
=getResources().openRawResource(R.raw.rssl);

DocumentBuilderFactory factory
=DocumentBuilderFactory.newlnstance();

308

http://www.ugr.es/-amaro/linkO.html

try {
DocumentBuilder builder=factory.newDocumentBuilder();
Document doc=builder.parse(input);

// doc.normalize();
NodeList nodeList=doc.getElementsByTagName(Mitem”);
int nItems=nodeList.getLength() ;
tv. append ("XnNúmero de items = "+nItems + T,\n---") ;
for(int i=0;i<nltems/i + +){

Node node = nodeList.item(i);
tv. append ("\nNode name="+node . getNodeName ()) ;
tv . append (11 \nnode Value=" +node . ge t Node Va lúe ()) /

NodeList nodeList2= node.getChildNodes();
int nNodes=nodeList2.getLength();
tv. append (" \nChildNodes=M+nNodes+" \n---") ;

for(int j=0;j<nNodes;j++){

Node node2= nodeList2.item(j);
tv. append ("\n Node " + j + " name="

+node2.getNodeName());
tv.append("\n Value="

+node2.getNodeValue());

if(node2.getNodeType()==Node.ELEMENT_NODE){
String valor

=node2.getFirstChild().getNodeValue();
tv. append (11 \n Este nodo es un elemento. "

+ M\nValor del nodo=\nff +valor) ;
}

}
}
} catch(Exception e){

tv.append("Parsing error");
}

}
}

Los nodos de texto adyacentes se pueden agrupar normalizando el
documento. Esto se hace descomentando la línea

doc.normalize () ;

El resultado de normalizar el anterior documento se muestra en la figura
12.8.2. El nodo item tiene ahora cuatro nodos hijos, en lugar de siete. Todas las
ramas de texto hijas del nodo item se han agrupado en el subnodo número cero.

309

El gran libro de programación avanzada con Android

20:06

Valores XML
Número de ítems=1

Node name^item
node Value=null
ChildNodes=4

“-Node 0 name=#text
Value= Texto después de item

Texto tras title.
Texto tras link.
Texto tras description.

“-Node 1 name=title
Value=nuíl

Este nodo es un elemento.
Valor del nodo=
Este es e! título del item 0
— Node 2 name=lii

Vaíue=nuil
Este nodo es un elemento.

Valor del nodo=

Figura 12.8.2. Nodos hijos del nodo item después de
normalizar el documento XML

Por último, nótese que todos los nodos de tipo Element tienen el valor nuil. Si
queremos extraer el texto contenido dentro de un elemento, debemos proceder en
dos pasos: primero debemos extraer el primer nodo hijo, con getFirstChild, y
luego SU valor, con getNodeValue .

String valor=node2.getFirstChild().getNodeValue();

12.9. Conectar a un RSS feed

Muy importante: en esta sección debe utilizarse el permiso

<uses-permission android:name="android.permission.INTERNET"/>

Ya podemos utilizar lo aprendido en las secciones anteriores para construir un
lector de canales RSS. Particularizaremos el caso del canal RSS del diario El País,
cuya dirección es

String elPais="http://epOl.epimg.net/rss/elpais/portada.xml";

310

http://epOl.epimg.net/rss/elpais/portada.xml

El código puede modificarse fácilmente para leer otros canales RSS. A la hora
de leer un canal RSS, primero debemos analizar el código XML y seleccionar los
elementos que queremos mostrar en la pantalla. En el caso del diario El País, esta
es la estructura simplificada del fichero xml (se han vaciado los contenidos que no
nos interesa mostrar en nuestra aplicación):

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
<channel>

<title><![CDATA[Portada de EL PAÍS]]></title>

clinkx![CDATA[http://economía.elpais.com/rss/elpais/portada.
xml]] x/link>

<descriptionx/description>
<lastBuildDate>Sat, 12 May 2012 11:42:21

+0200</lastBuildDate>
<pubDatex/pubDate>
<languagex/language>
<copyr i ghtx/ copyright >
<ttlx/ttl>

<item>

<title><![CDATA[Título de la Noticia]]></title>
<linkx/link>
<guid isPermaLink="true"></guid>
<dc: creatorx/dc: creator>
<description><![CDATA[descripción de la

noticia]] x/description>
<pubDate><![CDATA[Sat, 12 May 2012 00:02:34

+0200]]></pubDate>
<category></category>
<content:encodedx![CDATA[contenido de la noticia en html

]]></content:encoded>
<enclosure />
<enclosure />
<enclosure />
<commentsx/comments>

</item>
</channel>
</rss>

Los elementos que vamos a extraer de este fichero, representados en un
diagrama de árbol, son:

-title
-link
-lastBuilDate

311

http://econom%c3%ada.elpais.com/rss/elpais/portada

El gran libro de programación avanzada con Android

-item
-title
-description
-pubDate
-content:encoded

Nótese que el contenido de estos elementos es un nodo de tipo CDATA, que a
su vez contiene el texto que nos interesa. Por lo tanto, este texto se extrae como
el valor del nodo hijo. Por ejemplo, para extraer el título usaremos

NodeList nodeList=doc . getElementsByTagName ("title11) ;
Node nodo=nodeList.item(0);
String title= nodo.getFirstChild().getNodeValue();

Procederemos del mismo modo para el resto de los elementos, cuyo contenido
iremos añadiendo a un LinearLayout, insertándolo en un TextView mediante

layout.addView(tv);

A continuación se detalla la interfaz de usuario que utilizaremos. Contiene un
botón para convertir el RSS con DOM y otro botón para mostrar en pantalla el
código XML sin convertir. Ambos contenidos los mostraremos dentro de un
ScrollView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffaa"
android:id="0+id/layout1">

CLinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:background="#ccffcc">

<Button
android:id="0+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Leer RSS" />

<Button
android:id="0+id/button2"
android:layout_width="wrap_content"
android:layout height="wrap content"

312

http://schemas.android.com/apk/res/android

android:text="Código XML" />
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#000000"
android:text="Lector de RSS Feeds EL PAIS by J.E.

Amaro" />

</LinearLayout>

<ScrollView
android:layout_width="fill_parent"
android:layout_height="wrap_content">

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:id="@+id/layout">

</LinearLayout>
</ScrollView>

</LinearLayout>

La actividad RSSFeedsActivity. java se lista más adelante. Al pulsar el
primer botón, se ejecuta el método rss, donde se analiza el fichero RSS con
DOM. Al pulsar el segundo botón, se ejecuta el método codigoXML, que muestra
el código XML sin transformar. Utilizamos un método print, que permite añadir al
layout un texto con un tamaño y color distintos para cada elemento, para facilitar la
lectura. Por último, hemos definido un método printweb para mostrar el
contenido del elemento content: encoded, que corresponde al cuerpo de la
noticia escrito en HTML. Este texto se introduce dentro de un WebView, que se
añade al layout. Nótese que existe un bug (documentado en la página de Android
developers), consistente en que cuando en un WebView cargamos datos en
HTML, se producirá un error si la cadena html contiene el carácter de porcentaje
(%). Evitamos este problema transformando dicho carácter por la cadena por
ciento.

String html=cadena.replace("%", "por ciento");
webView.loadData(html, "text/html", "utf-8");

En la figura 12.9. se muestran algunas capturas de pantalla de esta aplicación.

313

El gran libro de programación avanzada con Android

leer RSS j Código XML Lector de RSS Feeds EL
 - 1 PAIS byj.E. Amaro

Conectado a http://ep01.epim g.
net/rss/elpais/portada.xmí
Portada de EL PAÍS
http://economia.elpais.com/rss/elpais/
portada.xml
Sat, 12 May 2012 20:58:39 +0200
Numero de notidas:23

Directo j Los indignados desbordan Sol en
el aniversario del 15-M
Más de 80 ciudades españolas secundan la
protesta, con 22,000 asistentes en Barcelona
según los Mossos. EL PAÍS está presente en las
principales manifestaciones y concentraciones
Sat, 12 May 2012 16:50:31 +0200

Más de 80 ciudades españolas y 50
países se han sumado a una
convocatoria que da inicio a varias
jornadas de debates y charlas hasta eí

m /*; >•>'•> r; Y & Ct' ÍT ? ̂ t í?:

•> XML i Lector de RSS Feeds EL
i_________ IPAIS byJ.E. Amaro

Maeso, Pilar Áivarez y Maria Hervás

Hacienda estudia intervenir Asturias ante
su parálisis política
Montero encarga a la Abogacía y a ía
Intervención General del Estado que analicen
la posible tutela de las cuentas deí Principado
porque su "preocupante situación”
institucional no garantiza el cumplimiento
objetivo de estabilidad
Sat. 12 May 2012 17:49:44 +0200
gomes
| i . Ministerio de Hacienda yj
Administraciones Púhlicasffía encargado
ala Abogacía del Estado y a la
Intervención General que estudie la
posible tutela de las cuentas de Asturias,
ante la "preocupación especial" a que el
Gobierno regional en funciones no
pueda alcanzar el objetivo de déficit
público del 1,5por ciento del PIB este

if Lector de RSS Feeds EL
i_____ i _̂_ 1___J PAIS byj.E. Amaro
financiar asíias operaciones pendientes
en estos momentos", explicó ayer Luis
de Guindos.

El Gobierno abre la puerta a ayudas para
inmobiliarias 'malas'
El Gobierno ha optado por encargar a dos
firmas externas una tasación de! conjunto de
ía cartera de la banca
Sat, 12 May 2012.00:00:53 +0200

El ladrillo es origen de la mayor etapa de
crecimiento económico y también de la
mayor crisis económica de España en la
democracia. Es también la gran
enfermedad de la banca y por eso
protagoniza la que es ya la segunda
reforma financiera del PP en tres meses.
El Gobierno ha optado por la creación de
los llamados bancos malos, o más bien
inmobiliarias malas: una sociedad a la

Le r RSS

Código XML| Lector de RSS Feeds EL
 2 PAIS byj.E. Amaro

El izquierdista Mélenchon desafía a Le Pen
en su propio feudo electoral
Eí jefe del Frente de izquierdas y la líder dei
Frente Nacional, rivales declarados, se
medirán en fas legislativas francesas
Sat, 12 May 2012 18:06:01 *0200

Jean-Luc Mélenchon, jefe de filas del
Frente de Izquierda, ha anunciado que
será candidato en las legislativas de
junio por Hénin-Beaumont, la undécima
circunscripción de Pas-de-Calais, y ha
dado así carácter oficial a su duelo con
Marine Le Pen, la presidenta del Frente
Nacional, que tiene su feudo electoral en
esta ciudad norteña azotada por la crisis
y el paro.

Mélenchon y Le Pen se odian sin la
menor cordialidad, y durante ía

Figura 12.9. Lector del canal RSS del diario El País.

314

http://ep01.epimg
http://economia.elpais.com/rss/elpais/

package es.ugr.amaro.rssfeeds;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

j ava.1 0 .*;
j ava.net.*;
j avax.xml.parsers.* ;
org.w3c.dom.*;
android.app.Activity;
android.graphics.Color;
android.os.Bundle;
android.view.View;
android.view.View.OnClickListener;
android.webkit.WebSettings;
android.webkit.WebView;
android.widget.Button;
android.widget.LinearLayout;
android.widget.Textview;

public class RSSFeedsActivity extends Activity
implements OnClickListener{

LinearLayout layout;

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
layout=(LinearLayout) findViewByld(R.id.layout);
Button botonl=(Button) findViewByld(R .id.buttonl);
boton1.setOnClickListener(this);
Button boton2=(Button) findViewByld(R .id.button2);
boton2.setOnClickListener(this);

}

@Override
public void onClick(View v) {

layout.removeAllViews();
String elPais

="http://epOl.epimg.net/rss/elpais/portada.xml";
int id=v.getld();
if(id==R.id.buttonl){

rss (elPais) ;
}
else {

codigoXML(elPais);
}

315

http://epOl.epimg.net/rss/elpais/portada.xml

El gran libro de programación avanzada con Android

void rss(String dirección){

try {
// establece la conexión http
URL uri— new URL(dirección);
URLConnection urlConexion=url.openConnection();
HttpURLConnection httpConexion

= (HttpURLConnection) urlConexion;

print("Conectado a "+direccion,20,0,100,0);

// obtener un buffer para el input
InputStream input= httpConexion.getInputStream();
DocumentBuilderFactory factory

=DocumentBuilderFactory.newlnstance();
DocumentBuilder builder=factory.newDocumentBuilder();
Document doc=builder.parse(input);

// Title
NodeList nodeList=doc.getElementsByTagName("title");
Node nodo=nodeList.item(0);
String title= nodo.getFirstChild().getNodeValue();
print (title,20,0,0,0);

// Link
nodeList=doc.getElementsByTagName("link");
nodo=nodeList.item(0);
String link= nodo.getFirstChild().getNodeValue()/
print (link,16,0,0,100);

// lastBuildDate
nodeList=doc.getElementsByTagName("lastBuildDate");
nodo=nodeList.item(0)/
String date= nodo.getFirstChild().getNodeValue();
print (date,16,100,0,0);

// items

// lastBuildDate
nodeList=doc.getElementsByTagName("item");
int nItems=nodeList.getLength();
print("Número de noticias:"+nltems,16,100,100,0);

Element item;
NodeList itemList;
for(int i=0;i<nltems;i++){
item = (Element) nodeList.item(i);

316

print (i + " 11, 3 0 , 100,100,100);

// title
itemList=item.getElementsByTagName("title");
nodo=itemList.item(0);
String itemTitle= nodo.getFirstChild().getNodeValue();
print (itemTitle,16,0,0,0);

// description
itemList=item.getElementsByTagName("description");
nodo=itemList.item(0);
String description= nodo.getFirstChild().getNodeValue();
print (description,15,100,0,0);

// pubDate
itemList=item.getElementsByTagName("pubDate");
nodo=itemList.item(0);
String pubDate= nodo.getFirstChild().getNodeValue();
print (pubDate,15,100,100,50);

// content: encoded HTML
itemList=item.getElementsByTagName("content:encoded");
nodo=itemList.item(0);
String content= nodo.getFirstChild().getNodeValue();
printWeb (content);

}

print(" \nNo hay más noticias",18,200,0,50);
print("Copyright J.E. Amaro, Granada Mayo 2012"

,18,150,75,20);

} catch(Exception e){
}

}

void codigoXML(String dirección){

try {
// establece la conexión http
URL url= new URL(dirección);
URLConnection urlConexion=url.openConnection();
HttpURLConnection httpConexion

= (HttpURLConnection) urlConexion;

print("Conectado a "+direccion,20,0,100,0);

// obtener un buffer para el input

317

El gran libro de programación avanzada con Android

Inputstream input= httpConexion.getInputstream();
InputStreamReader reader=new InputStreamReader(input);
BufferedReader buffer=new BufferedReader(reader);

String linea=,f,f/
int nlineas=-l;
while(linea!=null) {

nlineastt;
int r=(nlineas*50)%255;
print(linea,16,r,0,0);
linea=buf fer.readLine();

}

} catch (Exception e) {
print(M\nNo se ha podido conectar", 20, 255, 0, 0);

}
}

void print(String cadena,float size,int r,int g,int b){
Textview tv=new Textview(this) ;
tv.setBackgroundColor(Color.rgb(255, 255, 255))/
tv.setTextColor(Color.rgb (r, g, b)) ;
tv.setTextSize(size);
tv.setText(cadena);
layout.addView(tv);

}

void printWeb(String cadena){
// Bug en webView si hay un carácter %
String html=cadena.replace("%", "por ciento");
WebView webView=new WebView(this);
WebSettings webSettings= webView.getSettings();
webSettings.setDefaultTextEncodingName("utf-8");
webView.loadData(html, "text/html", "utf-8");
layout.addView(webView);

}
}

12.10. Inspeccionar una página WEB con Jsoup

Muy importante: en esta sección debe utilizarse el permiso

cuses-permission android:name="android.permission.INTERNET"/>

La interfaz DOM descrita en las secciones anteriores podría utilizarse también
para analizar un código HTML. Sin embargo, la transformación de una página web

318

en un documento DOM puede fallar si dicha página no está bien formada, es decir,
contiene errores de sintaxis XML. Por ejemplo, elementos de párrafo <p> que no
se cierran, elementos mal anidados, etc. Los navegadores usuales pueden pasar
por alto estos errores, pero DOM es muy estricto y produce excepciones ante el
mínimo error.

En esta sección presentamos una introducción al paquete Jsoup. Jsoup
permite inspeccionar páginas web y, en general, código HTML y XML,
transformándolos en objetos Document, similares a los documentos DOM. Es muy
flexible porque trata de corregir (y corrige) los errores de HTML, permitiéndonos
analizar el documento con métodos similares a los de DOM, además de otros
propios bastante eficientes. Jsoup no forma parte de los paquetes de Android,
pero se puede descargar gratuitamente de la página web http://jsoup.org.
Este paquete se descarga en un fichero de tipo jar, un fichero comprimido que
contiene las clases de Java. Nosotros vamos a utilizar la versión jsoup-
1.6.2. jar. El paquete Jsoup se incluye en nuestro proyecto de Eclipse. Los
pasos para importarlo son:

1. Crear una carpeta llamada libs en nuestro proyecto de Eclipse y copiar
ahí el fichero jar.

2. Clicar en nuestro proyecto de Eclipse con el botón derecho del ratón y
seleccionar Properties (última opción de la lista desplegable).

3. Ir a la sección Java build path, pestaña Libraries y pulsar el botón Add
JARs.

4. Navegar hasta el directorio de nuestro proyecto, seleccionar el fichero jar y
pulsar OK.

Una vez importado, procedemos normalmente importando las clases de Jsoup
en nuestra actividad, como si se tratara de otro paquete de Android.

Advertencia: al importar automáticamente en Eclipse las clases Document,
Element, etcétera, verifique que se importan las de Jsoup y no las de DOM.
Ambos paquetes tienen clases con nombres idénticos, pero incompatibles entre sí.

El primer paso para inspeccionar una página web con Jsoup es realizar la
conexión y transformarla en un objeto de la clase Document.

Document doc=Jsoup.connect(uri).g e t () ;

Esta clase es la versión Jsoup de la clase Document de DOM, y posee
métodos similares. Referimos al lector a la página web de Jsoup para una
documentación completa. En esta sección solo ilustraremos un pequeño conjunto
de sus potentes métodos, extrayendo algunos datos de la página web de la
Agencia Estatal de Meteorología (AEMET).

319

http://jsoup.org

El gran libro de programación avanzada con Android

La página web de la AEMET proporciona, entre otras, la previsión del tiempo
por provincias. En la figura 12.10.1. (izquierda) se muestra la página principal de
las provincias:

h ttp :/ /w w w .a e m e t. e s /e s /e l t ie m p o /p re d ic c io n /p ro v in c ia s

Al pulsar sobre una provincia en el mapa, veremos la predicción de
temperatura para las principales ciudades para hoy y mañana. Por ejemplo, la
predicción para Barcelona se muestra en la segunda captura de la figura 12.10.1.,
en la página

www.aemet. e s /e s /e lt ie m p o /p re d ic c io n /p ro v in c ia s ? p = 0 8&w=l

Vemos que cada provincia tiene un código numérico, que en el caso de
Barcelona es p=08. El link anterior proporciona la predicción para cada provincia
cambiando el valor numérico de este código, que desconocemos. Sin embargo,
los códigos de todas las provincias, incluidos los links a la página de predicciones,
están escritos en el código HTML de la página principal. Estos links, junto con los
nombres de las provincias, son lo primero que vamos a extraer con nuestra
aplicación Android.

Para extraer esta información de la página, usaremos los siguientes métodos
de Jsoup.

Para extraer el título del documento:

S t r in g t i t l e = d o c . t i t l e () ;

Para seleccionar todos los elementos del tipo

< u l c la s s = ' ' o c u lta _ e n la c e s ' '>

usaremos el método select

Elem ents e le m e n ts = d o c .s e le c t(" u l . o c u lta _ e n la c e s ") ;

La clase E lem ents contiene una lista de elementos. Por lo tanto, el objeto
e lem ents contiene todos los elementos del tipo anterior. En nuestro caso, solo
hay un elemento. Al inspeccionar la página web, comprobamos que este
elemento, a su vez, contiene en sus nodos hijos los links a las predicciones
provinciales. A continuación se muestran los tres primeros links incluidos en dicho
elemento.

< u l c la s s = "o c u lta _ e n la c e s " >

c l i x a h re f= " /e s /e lt ie m p o /p re d ic c io n /p ro v in c ia s ? p = 1 5 & a m p ;w = ">
A Coruña

320

http://www.aemet.es/es/eltiempo/prediccion/provincias
http://www.aemet.es/es/eltiempo/prediccion/provincias?p=08&w=l

< /1 i >

Alacant/Alicante

Albacete

< / u 1 >

x*íx:í:'a> o: y

■ • jî jXíííwXvIvX;

A ‘*2 x. :
<*-\ }A :rsíV̂MiQ:

-rxciiV-x.v •

A.• iS:í

c;t;>v4/v..,w
"V"'

X'A'.V/A •.% .* I ¡VÍV. AANWAV.T.

'*> •'*» -.-.OúX-LOO- ú <*»•<•>. n» .<wMí < «X*>X-‘ >'<«<•> <-»MC »•< N>; ■ ■»!»«•:A'.v.w.;.. %̂/áVa<v v >wK\%v > .vi »» ■X Xjvwvaív v

W:¥:¥:¥:¥:¥:¥:¥>>: / i .1&&*****> /íí-riMv»> ■:•:■»:-x w»nc$(

?rís>áícción per Provincias. Barcelona
iiififtS í A iü i

iNTittVAUJS ku&císcíí; co« m oeABitajA íi us chubascos en üenkraí.
0E8K.ES V 0CASÍ0SAÍ.MSN7E CON TORMENTA Z íi fAS COMARCAS SE:. NORTEY
S £ t ESTE r ECSIS1UUCAS DE SORMA MAS DISPERSA EN Et RESTO.

TEMPE RAYOSAS EN U-3ERO A MODESACO DESCENSO Vi6NTü vARíAERE ftfUO
TENDIENDO A COMPONENTE SLR *1.050 POR IA TARDE

X® wíSííírív?
IjARCfi-ONA ¿1 Xíí
MANRSSA •i? ui
SA8ASSU \ i

; VSi/WOVA i t.A 6 ta tf t l! Vi

Se(««.:<í'* Ptcvíacía u Ciudad AiAórexna; ; 5»:: >5:

Av>s<;5. ¥¥>•<»;<:!«•

: nam tie svoxt :: -A— > :

::m vw |x<.véxxv :«» i: cxM txw
S r» -« fX írSA w A *.-;, v íS A rt ío *r»t.Ns » p r e íS íx íS f iy v a * : s í> » ¡j« •.«a s w v íx w s ¡ > r * v : « « ¡ .

Figura 12.10.1. Página web de la Agencia Estatal de Meteorología (AEMET),
con la previsión del tiempo por provincias que queremos extraer.

Para extraer estos links, lo mejor es seleccionar todos los elementos hijos
del tipo link.

<a href>

Para ello ejecutamos de nuevo el método select

321

El gran libro de programación avanzada con Android

Element element=elements.get(O)/
elements=element.select("a[href]");
int links=elements.size();

Ahora tenemos en elementos una lista con todos los elementos del tipo <a
href> y, por lo tanto, todos los links. Podemos extraer todos estos links en un
loop. El valor de cada link se extrae con el método attr. El texto dentro del
elemento se extrae con el método text.

for(int i=0;i<links;i++){
Element eleProvincia=elements.get(i)/
String dirProvincia=eleProvincia.attr("hrefM);
String provincia=eleProvincia.text();

}

Todo esto se ilustra con el ejemplo de la siguiente aplicación. El fichero
main.xml que usaremos es:

<?xml version=" 1. 0" encoding="ut:f-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#aaffaa">

<TextView
android:id="@+id/textView"
android:textSize="18sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="0string/hello" />

</ScrollView>

La actividad del proyecto ParseHTML aparece listada a continuación y en la
figura 12.10.2. se muestran dos capturas de pantalla. Nótese que hemos
preparado un método llamado extraeDatos, que por ahora está vacío. Más tarde
lo implementaremos para extraer la predicción de cada provincia, usando los links
que hemos determinado. Todas las operaciones de conexión e inspección se
realizan en background implementando un AsynkTask. Esto resulta conveniente
cuando en nuestra aplicación se realizan muchas conexiones, que pueden tardar
en total varios minutos o más, dependiendo de la velocidad de nuestra conexión.

322

http://schemas.android.com/apk/res/android

W W $ $ f ;P ^ | % nfl € 3 otos

Heiío World, ParseHTMLActlvity?
Conectando a http://www.aemet.es/es/
eltiem po/ pred iccion/provincias
CONECTADO
Title:EI Tiempo. Predicción por provincias -
A g e n c ia Estatai d e M eteo ro log ía - A E M E T .
Gobierno de España
Encontrados efementos: 1
Links totaies=59

A Coruña:
http://www.aemet.es/es/eitiempo/predtccion/
provincias?p=;15&w-

Aíacant/Alicante:
http://www.aemet.es/es/eltiempo/prediccion/
provinciasTp^OS&w»

Albacete:
http ://www. aem et. es/es/eitiem po/pred iccion/
provincias?pss02&w=!

Almena:
http://www.aemet.es/es/eitiempo/prediccion/
provincias?p=04&wss

Araba/Áíava:
http://www.aemet.es/es/eitiem po/pred iccion/
provincias?p=Q1 &w=

W S 9 W . u i J C S 0:09

Ov̂ vW-v' % /*w» W55KW wv>/ v,vv:,v v v > v > V w * '
provincias?p=42&w=

Tarragona:
http://www.aemet.es/es/eitiempo/prediccion/
pro vi ncias?p=43&w=

Teruel:
http://www.aemet.es/es/eltiempo/prediccion/
provincias?p=44&w=

Toledo:
http://www.aemet.es/es/eitiempo/prediccion/
províncias?p=45&w=

Valencia/Valencia:
http://www.aemet.es/es/eltiempo/prediccion/
provincías?p=46&w=

Vailadolid:
http://www.aemet.es/es/eitiempo/prediccion/
provínc¡as?p*47&w»

Zamora:
http://www.aemet.es/es/eitiempo/prediccion/
provincias?pa49&w**

Zaragoza:
http: //www. aemet. es/ es/eitiem po/predi ccíon/
provincíasTp^SO&w-
Task terminado

Figura 12.10.2. Una aplicación que usa Jsoup para inspeccionar
la página web de la AEMET.

package es.ugr.amaro.parsehtml;

import java.io.IOException;

import org.jsoup.Jsoup;
import org.j soup.nodes.Document;
import org.jsoup.nodes.Element;
import org.j soup.select.Elements;
import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.widget.Textview;

public class ParseHTMLActivity extends Activity {

TextView tv;
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);

323

http://www.aemet.es/es/
http://www.aemet.es/es/eitiempo/predtccion/
http://www.aemet.es/es/eltiempo/prediccion/
http://www.aemet.es/es/eitiempo/prediccion/
http://www.aemet.es/es/eitiem
http://www.aemet.es/es/eitiempo/prediccion/
http://www.aemet.es/es/eltiempo/prediccion/
http://www.aemet.es/es/eitiempo/prediccion/
http://www.aemet.es/es/eltiempo/prediccion/
http://www.aemet.es/es/eitiempo/prediccion/
http://www.aemet.es/es/eitiempo/prediccion/

Ei gran libro de programación avanzada con Android

setContentView(R.layout.main);
tv= (TextView) findViewByld(R .id.textView);
new MiAsyncTask().execute()/

}

class MiAsyncTask extends AsyncTaskcVoid,String, Void>{

0Override
protected Void dolnBackground(Void...argO){

String baseUrl="http: //www. aemet .es";
String url=baseUrl

+ " / es /el tiempo/predi ccion/prov i nci as11 ;
String dirProvincia="",provineia="",urlData="";
try {

publishProgress ("Conectando a "+url);
Document doc=Jsoup.connect(url) .get () ;
publishProgress("CONECTADO");
String title=doc.title();
publishProgress("Title:"+title);

Elements elements;
elements=doc.select("ul.oculta_enlaces");
int n=elements.size();
publishProgress("Encontrados elementos: "+n);

Element element=elements.get(0);
elements=element.select("a[href]")/
int links=elements.size();
publishProgress("Links totales="+links);
for(int i=0;i<links/i++){

Element eleProvincia=elements.get(i);
dirProvincia=eleProvincia.attr("href");
provincia=eleProvincia.text () ;
ur1Data=baseürl+dirProvincia;
publishProgress("\n"+provincia+":\n"+urlData);

// extraeDatos(urlData);
}

} catch (IOException e) {
publishProgress("Error "+e);

}
return nuil;

} // end d' ̂ nljackground

void extraeDatos(String urlDato){

}

324

QOverride
protected void onProgressüpdate(String... progress){

String texto=progress[0];
tv.append("\n"+texto);

}

QOverride
protected void onPostExecute(Void result){

tv.append("\nTask terminado");

}
} //---end AsyncTask

}

A continuación implementamos el método extraeDatos para extraer los
datos de cada provincia. En primer lugar, debemos conectar con la dirección que
le proporcionamos al método. Seguidamente, comenzamos a seleccionar
elementos usando el método select. Previamente, inspeccionamos el código
fuente de una de las provincias para determinar la posición de los datos que
buscamos. Vemos que estos datos están contenidos en el elemento div
siguiente:

<div cíass="contenedor_central">
<div class="notas_tabla">

Validez: martes, 15 mayo 2012 de O a
24 horas (oficial)

</div>
<h3 class="texto_entradilla">
Predicción</h3>
<div class="texto_normal">
<p>
EN EL NORTE Y EL ESTE INTERVALOS NUBOSOS CON NUBES DE
EVOLUCION

DIURNA Y CHUBASCOS DISPERSOS Y OCASIONALES, DEBILES O
MODERADOS,

SOBRE TODO POR LA TARDE. EN EL RESTO CIELO POCO NUBOSO 0

DESPEJADO. TEMPERATURAS MINIMAS EN LIGERO DESCENSO Y LAS
MAXIMAS

SIN CAMBIOS. VIENTO VARIABLE FLOJO CON BRISAS EN LA COSTA.
</p>
<P>

325

El gran libro de programación avanzada con Android

</p>
</div>
<div class="disclaimer_separador_inf"x/div>
<table class="tabla_datos width500px_tabla_prov"
cellspacing="2">
<thead>
<tr class=ncabecera_nivl">
<th abbr="Ciu." xdiv
class="cabecera_celda">Ciudad</divX/th>
<th abbr="Max.">Temperatura Máxima (&# 17 6; C) </th>
<th abbr="Min . ">Temperatura Mínima (6; C) </th>
</tr>
</thead>
<tbody>
<tr>
<th abbr="BAR." class="borde_rlb_th">BARCELONA</th>
<td class = "borde_rb"xspan class = "texto_rojo">22</spanx/td>
<td class = "borde_rb"xspan cíass="texto_azul,f>16</spanX/td>
</tr>
<t r>
<th abbr="MAN." class = ,fborde_rIb_th">MANRESA</th>
<td class = "borde_rb"xspan class = Mtexto_rojoM>2 4</spanx/td>
<td cíass = Mborde_rb"xspan class = "texto_azul11 >1 l</spanx/td>
</tr>
<tr>
<th abbr=MSAB.M class="borde_rIb_thn>SABADELL</th>
<td class = "borde_rblfxspan class = "texto_rojo">24</spanx/td>
<td class = ffborde_rbnxspan class = "texto_azul">13</spanx/td>
</tr>
<tr>
<th abbr=ffVIL. " class = T,borde_rlb _th">VILANOVA I LA
GELTRIK/th>
<td cíass = "borde_rbMxspan class = "texto_rojoM>22</spanx/td>
<td class="borde_rb"xspan class="texto_azul">13</td>
</tr>
</tbody>
</table>
</div>

Para extraer los datos que buscamos procedemos a extraer los siguientes
elementos con select.

Para extraer las notas de la tabla:

Elements elements= doc.select("div.contenedor_central");
Element contenedor=elements.get(0)/
elements=contenedor.select("div.notas tabla");

326

V

La búsqueda anterior se puede realizar en un solo paso, pues las cadenas de
búsqueda se pueden combinar. Por ejemplo, la expresión

elemento.select("padre hijo")

busca todos los elementos hijo que descienden del elemento padre. Así, para
extraer el texto de la predicción pondríamos

select("div.contenedor_central div.texto_normal");

Finalmente, para extraer las filas de la tabla de temperaturas usamos
select ("table") para seleccionar la tabla y, a continuación, select ("tr")
para seleccionar las filas. No obstante, podría haberse usado únicamente la última
instrucción, ya que al haber solo una tabla en el elemento que nos ocupa, no es
necesario seleccionarla previamente. El método extraeDatos ya implementado
se lista a continuación. En la figura 12.10.3. se muestra el resultado de ejecutar la
aplicación completa.

14:21 « í l l l 1314:21
FarseHTML
Temperatura Mínima f C)
BADAJOZ 3217
MERIDA 33 17

Barcelona:
http://www.aemet.es/es/eitiempo/prediccion/
provincias?p«08&wss
CONECTADO
Validez: martes, 15 mayo 2012 de O a 24 horas
(oficial)
EN EL NORTE Y EL ESTE INTERVALOS
NUBOSOS CON NUBES DE EVOLUCION
DIURNA Y CHUBASCOS DISPERSOS Y
OCASIONALES, DEBILES O MODERADOS,
SOBRE TODO POR LA TARDE. EN EL RESTO
CIELO POCO NUBOSO O DESPEJADO.
TEMPERATURAS MINIMAS EN LIGERO
DESCENSO Y LAS MAXIMAS SIN CAMBIOS.
VIENTO VARIABLE FLOJO CON BRISAS EN
LA COSTA
Tablas encontradas:1
Numero de cíudades:5
Ciudad - Temperatura Maxima - Mínima
Ciudad Temperatura Máxima fC)
Temperatura Mínima (CC)
BARCELONA 22 16
MANRESA 24 11
SABADELL 24 13
VILANOVA l LA GELTRU 22 13
Task terminado

ParséHTMtEaiaíaí ue MeteoroiAEMET/
¡obierno de España

Encontrados elementos: 1
Ltnks totales=59

A Coruña:
http://www.aemet.es/es/eltiem po/pred Iccion/
províncias?ps=15&w=
CONECTADO
Validez: martes, 15 mayo 2012 de O a 24 horas
(ofíclai)
NUBOSO CON CAPAS DE NUBES BAJAS O
NIEBLAS, QUE TENDERAN A DISIPARSE A
LO LARGO DE LA MANANA QUEDANDO
POCO NUBOSO O DESPEJADO POR LA
TARDE. TEMPERATURAS MINIMAS EN
LIGERO O LOCALMENTE MODERADO
DESCENSO Y MAXIMAS SIN CAMBIOS O EN
LIGERO DESCENSO EN EL INTERIOR.
VIENTO DEL NORDESTE, EN EL LITORAL
MODERADO CON ALGUN INTERVALO DE
FUERTE EN EL AREA DE FISTERRA Y FLOJO
EN GENERAL EN EL INTERIOR.
Tablas encontradas:1
Numero de ciudades:3
Ciudad * Temperatura Maxima - Mínima
Ciudad Temperatura Máxima (0C)
Temperatura Mínima (°C)
ACORUNA 1810
SANTIAGO 20 8

Figura 12.10.3. Resultado de extraer los datos de la previsión del tiempo para
todas las provincias de la página web de la AEMET. Capturas de pantalla de un

teléfono Samsung Galaxy Tab.

327

http://www.aemet.es/es/eitiempo/prediccion/
http://www.aemet.es/es/eltiem

El gran libro de programación avanzada con Android

void extraeDatos(String urlDato){

Document doc;
try {

doc = Jsoup.connect(urlDato) .get ();
publishProgress("CONECTADO");
// extrae texto <div class=nnotas_tabla>
Elements elements= doc.select(

"div.contenedor_central");
Element contenedor=elements.get(0);

// selecciona <div class="notas_tabla> y extrae texto
elements=contenedor.select("div.notas_tabla");
Element notas=elements.get(0);
publishProgress(notas.text ());

// extrae texto <div class="contenedor_central">
elements= doc.select(

"div.contenedor_central div.texto_normal");
Element texto =elements.get(0);
publishProgress(texto.text());

// selecciona tabla
elements=contenedor.select("table");
publishProgress("Tablas encontradas:"+elements.size());
Element tabla=elements.get (0);

// selecciona filas de la tabla de ciudades
Elements filas=tabla.select("tr");
int nfilas=filas.size();
publishProgress("Numero de ciudades:"+nfilas);
for(int i=0;i<nfilas;i++){

Element fila=filas.get (i);
publishProgress(fila.text ());

}
} catch (Exception e) {}

12.11. Descargar y comprimir una imagen de Internet

En la siguiente aplicación descargamos una imagen de Internet, la mostramos
en pantalla en un ImageView y la salvamos en un fichero jpg comprimida con
calidad media.

328

<?xml version="l.0" encoding="utf-8M?>

<LinearLayout
xmlns : android=,,http : //schemas . android. com/apk/res/andró

android:layout_width=" fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ddffcc" >

<TextView
android:textColor="#000000"
android:textSize="16sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Descargar una imagen de Internet"

<Button
android:id="0+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Comenzar" />

cimageView
android:id="@+id/imageViewl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_launcher" />

<ScrollView
android:id="@+id/scrollViewl"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="16sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Información fichero" />

</ScrollView>

Usamos la siguiente interfaz de usuario:

</LinearLayout>

El gran libro de programación avanzada con Android

A continuación se detalla la actividad de la aplicación Descargarlmagen. En
el método onClick descargamos una imagen jpg en un InputStream y la
transformamos en un Bitmap mediante

Bitmap bitmap = BitmapFactory.decodeStream(input);

Seguidamente, este Bitmap se muestra en pantalla. Por último, llamamos al
método guardar imagen, que la guarda en un fichero en el directorio descargas
de la tarjeta SD externa, a la vez que la comprime en jpg con calida media
mediante

FileOutputStream stream= new FileOutputStream(fileFile);
bitmap.compress(Bitmap.CompressFormat.JPEG, 50, stream);

Usamos aquí el método compress de la clase Bitmap, que toma tres
parámetros: el formato de compresión, la calidad de compresión (de 0 a 100) y el
OutputStream donde se guardará el resultado. El nombre del fichero final es el
mismo que el inicial y lo extraemos a partir del último segmento del URI de la
dirección URL. En la figura 12.11. se muestran las capturas de pantalla de esta
aplicación.

BSM
5:26

Descargarlmagen
[Descargar una imagen de Internet

¿Comenzar

Información fichero

Descargar una imagen de Internet

Información fichero
/sdcard
Directorio /sdcard/descargas ya existe
Escribiendo fileborroQ1.jpg
Fichero grabado

Figura 12.11. Aplicación que descarga una imagen de Internet, la muestra en
pantalla y la guarda en un fichero jpg comprimiéndola con calidad media.

330

package es.ugr.amaro.descargarimagen;

import java.io.File;
import j ava.io.FileOutputStream;
import java.io.Inputstream;
import java.net.HttpURLConnection;
import java.net.URL;
import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.Textview;

public class DescargarImagenActivity extends Activity
implements OnClickListener{

Textview tv;
String direccion=

"http://www.ugr.es/~amaro/gatos/bigcats/borro01.jpg";

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R .layout.main);
tv=(Textview) findViewByld(R.id.textview);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);

}

@Override
public void onClick(View v) {

Bitmap bitmap=null;
Inputstream input=null;
try {

URL url=new URL(dirección);
HttpURLConnection conexión

= (HttpURLConnection) uri.openConnection();
input= conexión.getInputstream();
bitmap = BitmapFactory.decodeStream(input);
input.cióse();
ImageView imageView

= (ImageView) findViewByld(R .id.imageViewl);
if(bitmap !=null) imageView.setImageBitmap(bitmap);

331

http://www.ugr.es/~amaro/gatos/bigcats/borro01.jpg

El gran libro de programación avanzada con Android

guardar(bitmap);

} catch (Exception e) {
tv.setText("uses_permission INTERNET");

}
}

void guardar(Bitmap bitmap) {

File rootFile
= Environment.getExternalStorageDirectory();

String root=rootFile.getAbsolutePath();
tv.append("\n"+root);
String dir=root+"/descargas";
File dirFile= new File(dir);
boolean existe=dirFile.mkdir();

if(existe) tv.append("XnDirectorio "+dir+" creado");
else tv.append("XnDirectorio "+dir+" ya existe");
String file=Uri.parse(dirección).getLastPathSegment()
tv.append("XnEscribiendo file"+file);
File fileFile=new File(dirFile,file);

if(fileFile.exists()){
tv.append("XnFichero "+file+" ya existe");

} else{
try {
FileOutputStream stream

= new FileOutputStream(fileFile);
bitmap.compress(

Bitmap.CompressFormat.JPEG, 50, stream);
stream.flush () ;
stream.cióse () ;
tv.append("XnFichero grabado");

} catch (Exception e) {
e .printStackTrace ();
tv.append("XnError "+e);

}
}

}
}

332

13. CORREO ELECTRÓNICO

13.1. Enviar un email con un intent

Para enviar un email desde nuestra aplicación, lo más fácil es pasarle los
datos del mensaje a alguna de las aplicaciones de email instaladas en el teléfono.
Basta con crear un intent especificando la acción y tipo siguientes:

Intent intent=new Intent(Intent.ACTION_SEND);
intent.setType("message/rfc822") ;

El tipo MIME especificado es message/rfc822. El formato RFC (Request For
Comments) es una especificación estándar para mensajes de correo electrónico.
Consiste en una serie de encabezamientos seguidos del cuerpo (body) del
mensaje. Un ejemplo de mensaje en este formato sería el siguiente:

From: pepe0micasa.es
To: maria@sucasa.com
Subject: Una pregunta

Este es el cuerpo del mensaje (opcional).
¿Me puedes contestar?
Saludos
Pepe

Los campos del encabezamiento y cuerpo del mensaje pueden especificarse
como datos extra al intent. Hecho esto, usamos el intent para iniciar una nueva
actividad implícitamente.

intent.putExtra(Intent.EXTRA_EMAIL,to);
intent.putExtra(Intent.EXTRA_SUBJECT, subj ect);
intent.putExtra(Intent.EXTRA_TEXT, body);
startActivity(intent);

Esta fórmula abrirá la aplicación de correo electrónico que tengamos instalada en
el dispositivo, conteniendo ya los datos del mensaje. Basta con pulsar Enviar para
finalizar el proceso.

333

mailto:maria@sucasa.com

El gran libro de programación avanzada con Android

En la siguiente ejemplo creamos una aplicación casera para enviar un correo
electrónico. La interfaz de usuario listada a continuación acepta como campos de
texto editables el destinatario, el asunto y el cuerpo del mensaje.

<?xml version="l.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android: layout_height="fill_parent11
android:orientation="vertical"
android:background="#ffffcc" >

CTextView
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enviar email" />

CEditText
android:id="@+id/editText1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="textEmailAddress"
android:text="to:" />

CEditText
android:id="@+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Subject" />

CEditText
android:id="@+id/editText3"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Esto es un mensaje de prueba" />

cButton
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Send" />

c/LinearLayout>

334

http://schemas.android.com/apk/res/android

A continuación se detalla la actividad EmailActivity. java. El campo de
destinatarios pasado al intent debe ser un array de cadenas que contenga todos
los destinatarios. En la figura 13.1.1. se muestran algunas capturas de pantalla del
programa usado para enviar un email a dos direcciones.

|
Guardar

¡y., como ¡ Descartar
borrador

Probando email con intent
xyx-x-r-xvx-x-x-xvx-

Esto es un mensaje de prueba
enviado desde mi aplicación de
Android|

Enviar em ail.̂■.V.'.V.V.V.-.V.-.V.V.V.V.V.WA-.V.V.VW.-.V.-.'.SV.VV.-AWWW.V.'.V.V.'.'.-.V.VA-W.V.-.-.'.S-.-.-.W.-.V.'.V̂ .-.-.-.S-.SVSNV.-AV.

¡maro@ugr.es, amarougr@gmail.com amarougr@gmail.com,

Esto es un mensaje de prueba
enviado desde mi aplicación de
Androíc^

Probando email con intent

Figura 13.1.1. Aplicación para enviar un email usando un intent.

package es.ugr.amaro.email;

import j ava.util.StringTokenizer;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

public class EmailActivity extends Activity
implements OnClickListener {

EditText etl,et2,et3;

0Override
public void onCreate(Bundle savedlnstanceState) {

335

mailto:maro@ugr.es
mailto:amarougr@gmail.com
mailto:amarougr@gmail.com

El gran libro de programación avanzada con Android

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
Button boton= (Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);
etl=(EditText) findViewByld(R.id.editTextl)/
et2=(EditText) findViewByld(R .id.editText2);
et3=(EditText) findViewByld(R.id.editText3);

}

@Override
public void onClick(View argO) {

// extrae direcciones en un array
String direcciones=et1.getText() .toString ();
StringTokenizer token=new StringTokenizer(direcciones);
int n= token.countTokens ();
String[] to= new String[n]/
for(int i=0;i<n;i++) to[i]=token.nextToken();

String subject=et2.getText() .toString();
String body=et3.getText () .toString();

Intent intent=new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_EMAIL,to)/
intent.putExtra(Intent.EXTRA_SUBJECT, subj ect);
intent.putExtra(Intent.EXTRA_TEXT, body)/
intent. setType (ffmessage/rf c822 ") ;
startActivity(intent);

}
}

El tipo MIME message/rfc822 es necesario para que el intent implícito sea
recogido por la aplicación de correo electrónico por defecto. Si utilizamos en su
lugar el tipo MIME text/plain, se abre una ventana de diálogo mostrando la
lista de aplicaciones que pueden recogerlo, no solo de correo electrónico. En la
figura 13.1.2. se puede observar un ejemplo. En la imagen de la izquierda hemos
ejecutado la aplicación anterior usando

intent.setType("text/plain");

Vemos que, en este caso, hay una ingente lista de apps preparadas para recoger
el intent, desde Facebook hasta WhatsApp. En la imagen de la derecha hemos
usado el tipo MIME plain/text.

intent.setType("plain/text");

En este caso, el diálogo solo muestra las aplicaciones de Email y Gmail.

336

♦ * - > § P * J l l lO 7 *9

> Uso cíe acciones

GolorNote

Email

■I Gmail

; wXvXgj
' w f i Mensajería

■mm»
OnePunch Notes

IS P ’ Twitter

WhatsApp

!Í?illCH7:21

Figura 13.1.2. Cuadro de diálogo al abrir una actividad implícitamente con el tipo
MIME text/plain (izquierda) y plain/text (derecha).

13.2. Enviar un fichero adjunto por email

Para enviar un fichero adjunto por correo electrónico procedemos como en la
sección anterior, añadiendo al intent el siguiente dato extra, que incluye el URI del
archivo que vamos a enviar, localizado en la tarjeta SD.

intent.putExtra(Intent.EXTRA_STREAM,uri);

La siguiente aplicación es un ejemplo práctico para enviar un archivo adjunto.
Primero creamos un fichero de texto en la carpeta tmp de la tarjeta SD (si esta
carpeta no existe, la creamos). A continuación, enviamos un email con este fichero
adjunto. Para escribir el fichero en la tarjeta SD debemos añadir el siguiente
permiso al manifiesto de nuestra aplicación:

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Usamos un layout que es una extensión del ejemplo anterior, añadiendo un
TextView para escribir en la parte inferior.

337

El gran libro de programación avanzada con Android

<?xml version="1.O" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation=Mvertical"
android:background="#ffffcc" >

<TextView
android:textColor="#000000"
android:textSi ze="2 Osp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enviar email" />

<EditText
android:id="@+id/editTextl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="textEmailAddress"
android:text="to:" />

<EditText
android:id="0+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Subject" />

<EditText
android:id="@+id/editText3"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Esto es un mensaje de prueba" />

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Send" />

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Fichero adjunto:" />

338

http://schemas.android.com/apk/res/android

</LinearLayout>

A continuación se detalla el fichero Java de nuestra actividad. Hemos creado
un método writefile para escribir un archivo, llamado fichero.txt, en la
tarjeta SD. Al pulsar el botón, se envía un intent implícito, que contiene la dirección
URI del fichero adjunto. En este caso es:

file:///sdcard/tmp/fichero. txt

El intent es recogido por una aplicación de correo electrónico, que se encarga de
enviarlo a la dirección indicada. En la figura 13.2. se muestran las capturas de
pantalla.

Enviar email

amaro@ugr.es

Enviando fichero adjunto

j Este fichero se ha enviado con
| setlype("message/rfc822,,]j j

Fichero adjunto:
Fichero ya existe/sdcard/tmp/
fichero.txt
enviado attachment fiie:///sdcard/
tmp/fichero.txt

Figura 13.2. Aplicación para enviar un fichero adjunto por email.

package es.ugr.amaro.emailattachment;

import java.io.File;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.útil.StringTokenizer;
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;

Qumüm
como

borrador
Enviar Descartar

•VV.'.V.V.V.V. ftdifcro adjunto
19:11

is
amaro@ugr.es,

setType{"message/rfc822”)

: Enviando fichero adjunto

339

file:///sdcard/tmp/fichero
mailto:amaro@ugr.es
mailto:amaro@ugr.es

El gran libro de programación avanzada con Android

import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class EmailAttachmentActivity extends Activity
implements OnClickListener{

EditText etl,et2,et3;
TextView tv;
String filePath="";

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

Button boton= (Button) findViewByld(R .id.buttonl);
boton.setOnClickListener(this);
etl=(EditText) findViewByld(R.id.editTextl);
et2=(EditText) findViewByld(R.id.editText2);
et3=(EditText) findViewByld(R.id.editText3);
tv=(TextView) findViewByld(R.id.textView);

writefile () ;

}

@Override
public void onClick(View argO) {

// extrae direcciones en un array
String direcciones=et1.getText().toString();
StringTokenizer token

= new StringTokenizer(direcciones);
int n= token.countTokens();
String[] to= new String [n];
for(int i=0;i<n;i++) to[i]=token.nextToken();
String subj ect=et2.getText() .toString ();
String body=et3.getText () .toString() ;

Intent intent=new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_EMAIL,to);
intent.putExtra(Intent.EXTRA_SUBJECT, subj ect) ;
intent.putExtra(Intent.EXTRA TEXT, body);

340

Uri uri=Uri.parse("file://"+filePath);
tv.append("\nenviado attachment "+uri.toString ());
intent.putExtra(Intent.EXTRA_STREAM,uri);
intent.setType("message/rfc822");

// intent.setType("text/plain") ;
// intent.setType("text/txt");

startActivity(Intent.createChooser(intent, "Email"));
// startActivity(intent);
}

void writefile(){

try {
File root=Environment.getExternalStorageDirectory();
String rootString= root.getAbsolutePath();
String tmpString=rootString+"/tmp";
File tmp=new File(tmpString);
tmp.mkdir();

String fileString="fichero.txt";
filePath=tmpString+"/" + fileString;
File file=new File(tmp,fileString)/

if (file.exists()) {
tv.append("\nFichero ya existe"+filePath);

}else{
FileOutputStream out=new FileOutputStream(file);
PrintWriter writer= new PrintWriter(out)/
writer.println("Este es el fichero adjunto");
writer.println("que se va a enviar por email.");
writer.flush();
writer.cióse();
tv.append("\nFchero grabado"+filePath);

}

} catch (Exception e) {
e.printStackTrace();
tv.append("\nError:"te);

}
}

}

Nótese que hemos establecido en el Intent el tipo MIME message/rfc822.
Igualmente, se podría enviar el mensaje con cualquiera de los tipos MIME
siguientes:

intent.setType("text/plain") ;
intent.setType("text/txt") ;

341

file://"+filePath

El gran libro de programación avanzada con Android

13.3. Enviar ficheros comprimidos con zip

En el caso de que queramos enviar varios ficheros adjuntos, puede resultar
conveniente empaquetarlos antes en un fichero zip comprimido, que se envía por
email usando el método anterior. El tipo MIME del intent debe ser sustituido por

intent.setType("application/zip");

La siguiente aplicación es un ejemplo basado en el de la sección anterior.
Hemos modificado la clase writeFile para escribir tres ficheros en la tarjeta SD
en lugar de uno. Cada uno de estos ficheros tiene un tamaño considerable: 4000
líneas y 112 KB. Seguidamente, en el método writezip, se comprimen los tres
en un único fichero zip usando el paquete java.util.zip. Para ello, debemos
crear un objeto de la clase ZipOutputstream.

ZipOutputStream zip=new ZipOutputstream(buffer);

Para añadir un fichero al objeto zip hay que seguir dos pasos:

Primero se añade una entrada ZipEntry con el nombre del fichero.

ZipEntry ze=new ZipEntry(files[i]);
zip.putNextEntry(ze);

Después, se escriben los datos del fichero mediante un array de bytes.

int nbytes;
// lee nbytes de datos del input y los adjunta al zip
while((nbytes=bufferInput.read(datos,0,size)) !=-l){

zip.write(datos,0,nbytes);
}

También se puede elegir el método de compresión, que por defecto es
deflated, y el nivel de compresión, que es un valor entero entre 0 y 9. Por
ejemplo, para comprimir DEFLATED con nivel 9:

zip.setMethod(Deflater.DEFLATED);
zip.setLevel(Deflater.BEST_COMPRESSION);

El fichero zip comprimido con estos parámetros y enviado por correo electrónico
ocupa 1.6 KB.

A continuación se detalla el fichero Java de la actividad. En la figura 13.3. se
muestran las capturas de pantalla. Usamos el mismo layout de la sección anterior.

342

I H 9:17

Zip attachment
ŴWW-!*f*WW«í*T*W,WW-!*T*W*?‘WW

amaro@ugr.es

Adjuntos comprimidos con zip

cada adjunto ocupa 112KB|

sena
Fichero adjunto:
Fichero ya existe/sdcard/tmp/
fichero1.txt
Fchero grabado/sdcard/tmp/
ficherol .txt
Fichero ya existe/sdcard/tmp/
fichero2.txt
Fchero grabado/sdcard/tmp/
fichero2.txt
Fichero ya existe/sdcard/tmp/
fichero3.txt

amaro@ugr.es,

Adjuntos comprimidos con zip

deflated.zip

cada adjunto ocupa 112KB

Figura 13.3. Aplicación para comprimir varios ficheros en un fichero zip
y enviarlo por correo electrónico.

package es.ugr.amaro.zipattach;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

j ava.io.BufferedlnputStream;
j ava.io.BufferedOutputStream;
j ava.io.File;
j ava.io.FileInputStream;
j ava.io.FileOutputStream;
j ava.io.PrintWriter;
j ava.útil.StringTokenizer;
j ava.útil.zip.Deflater;
j ava.útil.zip.ZipEntry;
j ava.útil.zip.ZipOutputStream;
android.app.Activity;
android.content.Intent;
android.net.Uri;
android.os.Bundle;
android.os.Environment;
android.view.View;
android.view.View.OnClickListener;
android.widget.Button;
android.widget.EditText ;

343

mailto:amaro@ugr.es
mailto:amaro@ugr.es

El gran libro de programación avanzada con Android

import android.widget.TextView;

public class ZipAttachActivity extends Activity
implements OnClickListener{

EditText etl,et2,et3;
TextView tv;
String filePath="";
String tmpString;
String zipString="";

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

Button boton= (Button) findViewByld(R.id.buttonl)
boton.setOnClickListener(this);
etl=(EditText) findViewByld(R .id.editText1);
et2=(EditText) findViewByld(R.id.editText2);
et3=(EditText) findViewByld(R.id.editText3);
tv=(TextView) findViewByld(R .id.textView);

String[] ficheros={"ficherol.txt",
Hfichero2.txt","fichero3.txt"}

for(int i=0;i<ficheros.length;i++){
writefile(ficheros[i]);

}

// nombre del fichero zip, conteniendo ruta
zipString=tmpString+"/deflated.zip";
writeZip(ficheros,zipString);

}

@Override
public void onClick(View argO) {

// extrae direcciones en un array
String direcciones=et1.getText().toString();
StringTokenizer token

=new StringTokenizer(direcciones);
int n= token.countTokens();
String[] to= new String[n];
for(int i=0;i<n;i++) to[i]=token.nextToken();

String subject=et2.getText().toStringO;
String body=et3.getText () .toString () ;

344

Intent intent=new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_e m a i l,to);
intent.putExtra(Intent.EXTRA_SUBJECT, subject);
intent.putExtra(Intent.EXTRA_TEXT, body);

Uri uri=Uri.parse("file://"+zipString);
tv.append("\nenviado attachment "+uri.toString ()) ;
intent.putExtra(Intent.EXTRA_STREAM,uri);
intent.setType("application/zip");
startActivity(Intent.createChooser(intent, "Email"))

void writefile(String fileString){

try {
File root=Environment.getExternalStorageDirectory()
String rootString= root.getAbsolutePath();
tmpString=rootStringt"/tmp";
File tmp=new File(tmpString);
tmp.mkdir();

filePath=tmpString+"/"+fileString;
File file=new File(tmp,fileString);
if(file.exists()){

tv.append("\nFichero ya existe"+filePath);
FileOutputStream out=new FileOutputStream(file);
PrintWriter writer= new PrintWriter(out);
for(int i=0;i<2000;i++){
writer.println("Este es el fichero adjunto");
writer.println("que se va a enviar por email."

}
writer.flush();
writer.cióse();
tv.append("\nFchero grabado"+filePath);

}

} catch (Exception e) {
e .printStackTrace() ;
tv.append("\nError:"+e);

}
}

void writeZip(String[] files, String zipFile){

try {
FileOutputStream out=new FileOutputStream(zipFile);

file://"+zipString

El gran libro de programación avanzada con Android

BufferedOutputStream buffer
=new BufferedOutputStream(out);

ZipOutputStream zip=new ZipOutputStream(buffer);

zip.setMethod(Deflater.DEFLATED);
zip.setLevel(Deflater.BEST_COMPRESSION)/

// zip.setLevel(4);
// zip.setLevel(Deflater.BEST _SPEED);

// tamaño del buffer para leer Kbytes
int size=1024;
byte datos[]= new byte[size];
int nfiles=files.length;
for(int i=0;i<nfiles;i++){

tv. append ("\nZip ff + f iles [i]) ;
FilelnputStream input =new FilelnputStream(

tmpString+"/?l + files [i]) ;
BufferedlnputStream bufferlnput

=new BufferedlnputStream(input);
ZipEntry ze=new ZipEntry(files[i]);
zip.putNextEntry(ze);
int nbytes;
// lee nbytes del input y los adjunta al zip
while((nbytes=bufferInput.read(datos,0,size)) !=—1){

zip.write(datos,0,nbytes) ;
}
bufferlnput.cióse() ;

zip.cióse();
}catch(Exception e){

tv.append("\nError en zip "+e);
}

}
}

346

14. LOCALIZACIÓN Y MAPAS

14.1. Coordenadas en Google Maps

Para poder utilizar las aplicaciones de mapas de Google en el emulador,
necesitamos un dispositivo virtual con los Google APIs, ya que Google Maps no
forma parte del Android SDK. Los paquetes Google APIs se descargan con el
Android SDK manager.

La forma más simple de mostrar un lugar en un mapa es invocando la
aplicación Google Maps mediante un intent implícito.

String coordenadas="geo:"+latitud+","+longitud;
Intent intent

= new Intent(android.content.Intent.ACTION_VIEW);
intent.setData(Uri.parse(coordenadas)) ;

El intent contiene un URI geográfico, que especifica una localización con un
par de coordenadas, correspondientes a la latitud y la longitud en grados. La
latitud indica el ángulo medido desde el Ecuador hacia el Norte y la longitud, el
ángulo medido desde el meridiano cero hacia el Este. Por ejemplo:

geo:39.453421,5.169800

Estos ángulos admiten hasta seis decimales, lo que permite especificar
localizaciones en el mapa con una precisión de unos metros.

El siguiente ejemplo es una sencilla aplicación que admite dos coordenadas y
luego abre Google Maps para mostrar el punto en el mapa. Usaremos el siguiente
layout:

<?xml version="l.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout height="fill parent"

347

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:orientation="vertical"
android:background="#ffffff" >

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="f ill_parent"
android:layout_height="wrap_content"
android:text="Introduzca latitud y longitud" />

<EditText
android:id="@+id/editText1"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

CrequestFocus />
</EditText>
<EditText

android:id="@+id/editText2"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

</EditText>

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Ver mapa" />

</LinearLayout>

A continuación se detalla la actividad MapasActivity. java. En la figura
14.1. se muestran las capturas de pantalla. Nótese que la escala con que se
muestra el mapa depende del número de decimales que especifiquemos en las
coordenadas.

package es.ugr.amaro.mapa;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

348

Introduzca latitud y long itud

37.650000
^ * •* A M a|

J
var mapa.j de la iglesia

100 ft
20 m r

2

CasÓMo de
MuelnVa. íi*

y
....

IÉI

Figura 14.1. Aplicación para mostrar unas coordenadas en el mapa de Google.

public class MapaActivity extends Activity
implements OnClickListener{

EditText etl,et2;
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
etl=(EditText) findViewByld(R.id.editTextl);
et2=(EditText) findViewByld(R .id.editText2);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);

}

@Override
public void onClick(View v) {

String latitud=etl.getText().toString();
String longitud=et2.getText().toString();
String coordenadas = f,geo : "+latitud+M , "+longitud;
Intent intent

= new Intent(android.content.Intent.ACTION VIEW);

349

El gran libro de programación avanzada con Android

intent.setData(Uri.parse(coordenadas));
startActivity(intent);
Toast.makeText(this, coordenadas, l).show();

}
}

14.2. El API de Google Maps

El paquete de Google Maps com.google.android.maps permite incluir
mapas dentro de nuestra aplicación. Para utilizar este paquete, es necesario
suscribirse a una clave del API de Google Maps. Dicha clave debe incluirse dentro
de cada objeto MapView, como veremos en la próxima sección. Para solicitarla,
debemos registrarnos y proporcionar la huella dactilar del certificado con el que
firmamos nuestra aplicación.

La huella dactilar (MD5 fingerprint) se obtiene con el programa keytool.exe
(keytool en Linux), que se encuentra en el directorio bin del Java JDK. En
Windows es

C :\Program Files\Java\<JDK_version_number>\bin

Este directorio conviene añadirlo a la variable de entorno path, ya que, en caso
contrario, habrá que escribir la dirección completa al ejecutar keytool.

El certificado con el que firmamos nuestra aplicación en la fase de depurado
es el fichero debug. keystore. Este fichero se encuentra en el directorio
android de nuestro usuario, que puede variar dependiendo del sistema operativo
utilizado.

Generalmente, en Windows XP dicho directorio es

C:\Documens and Settings\<user>\Local Settings\Application Data\Android

En Windows 7

C:\Users\<user>\.android

En Linux

/home/user/.android

Para obtener la huella dactilar, abrimos un terminal (en Windows, ejecutando
cmd) y cambiamos al directorio donde se encuentre el fichero debug. keystore.
Por ejemplo, en Windows 7 escribiríamos lo siguiente:

cd C:\Documens and Settings\<user>\Local Settings\Application Data\Android

350

Una vez allí, ejecutamos el siguiente comando (se debe escribir todo seguido en la
misma línea, antes de pulsar Enter).

keytool.exe -v -list -alias androiddebugkey
-keystore debug.keystore
-storepass android
-keypass android

En Linux sustituiríamos keytool.exe por keytool. Al pulsar Enter, aparece un
mensaje como el siguiente:

Nombre de alias: androiddebugkey
Fecha de creación: 10-jun-2011
Tipo de entrada: PrivateKeyEntry
Longitud de la cadena de certificado: 1
Certificado[1]:
Propietario: CN=Android Debug, 0=Android, C=US
Emisor: CN=Android Debug, 0=Android, C=US
Número de serie: 4df29000
Válido desde: Fri Jun 10 23:43:28 CEST 2011

hasta: Sun Jun 02 23:43:28 CEST 2041
Huellas digitales del certificado:

M D 5 : D7:FD:E9:4E:F3:C7:5E:11:72:A4:7B:01:10:EE:D3:5D
SHA1: 08:66:7B:31:7B:0D:Al:20:85:ED:9F:9F:73:50:58:61:06:27:D2:60
Nombre del algoritmo de firma: SHAlwithRSA
Versión: 3

Por lo tanto, la huella dactilar MD5 es

D7:FD:E9:4E:F3:C7:5E:11:72:A4:7B:01:10:EE:D3:5D

Una vez copiada la clave, iremos a la página web de Google

http://code.google.com/android/maps-api-signup.html

y solicitaremos nuestra clave, que será una cadena parecida a esta:

OORQ3xM7ZsANVh237FriU72CuwWqHU58ScNLNzR

Si exportamos con Eclipse nuestro proyecto como una aplicación de Android
para ser distribuida, se nos pedirá el nombre de un fichero keystore para
firmarla. Este fichero no puede ser el anterior debug. keystore utilizado para
depurar. Eclipse nos permite generar un fichero keystore nuevo o utilizar uno ya
existente. Cuando lo tengamos, tendremos que repetir los pasos anteriores para
extraer su huella dactilar y, con ella, una nueva clave del API de Google Maps.

351

http://code.google.com/android/maps-api-signup.html

El gran libro de programación avanzada con Android

14.3. MapView

La clase MapView permite mostrar un mapa como un objeto View en un
layout. Un MapView solo puede usarse en una actividad del tipo MapActivity.
Ambas clases pertenecen al paquete de Google Maps
com.google.android.maps. Para utilizar este paquete en nuestra aplicación,
debemos solicitar previamente una clave del API de Google Maps, como se ha
descrito en la sección anterior. Una vez la tengamos, debemos incluirla en nuestro
objeto MapView asignando la propiedad apiKey. Por ejemplo, en el fichero
main.xml mostrado más abajo, esto se hace en la línea

android:apiKey="OORQ3xM7ZsANVh237FriU72CuwWqHU58ScNLNzR"/>

La siguiente aplicación es un ejemplo básico que muestra un mapa en un
MapView. Para usar el paquete de Google Maps, debemos declararlo en el
manifiesto de nuestra aplicación incluyendo el siguiente elemento XML:

<uses-library android:name="com.google.android.maps"/>

Además, debemos añadir el permiso internet .

Cuses-permission android:name="android.permission.INTERNET"/>

El fichero AndroidManif est. xml sería el siguiente:

<?xml version="1.0" encoding="utf-8"?>
<manifest xml n s :android=Mh t t p ://schemas.android.com/apk/res/android”

package="es.u g r .amaro.mapview”
android:versionCode="l”
android:versionName="1.0” >

<uses-sdk android:minSdkVersion=”7" />
cuses-permission android:name="android.permission.INTERNET"/>

<application
android:icon="6drawable/ic_launcher"
android:label="0string/app_name" >

cuses-library android:name="com.google.android.maps”/>
cactivity

android:name=".MapViewActivity"
android:label="@string/app_name" >
<intent-filter>

caction android:name="android.intent.action.MAIN" />
ccategory android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

352

http://schemas.android.com/apk/res/android%e2%80%9d

Usaremos el siguiente fichero main.xml, que contiene un LinearLayout
con un TextView y un MapView. Obsérvese que el elemento MapView incluye la
propiedad apiKey, con la clave a la que nos hemos suscrito en Google Maps. Es
importante añadir la propiedad

android:clickable="true"

para que el mapa responda a los clics; por ejemplo, para usar el zoom.

<?xml version=" 1. 0" encoding="utf-811 ?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff" >

<TextView
android:textSize="20sp"
android:textColor="#000000"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Ejemplo de MapView" />

<com.google.android.maps.MapView
android:id="0+id/mapView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:clickable="true"

android:apiKey="OORQ3xM7 ZsANVh2 37 FriU7 2CuwWqHU58ScNLNzR"/>

</LinearLayout>

A continuación se detalla el fichero Java de nuestra actividad. Extendemos la
clase MapActivity, que a su vez extiende a Activity. El mapa permite el uso
de los controles de zoom. Para activarlos, invocamos el método de MapView

setBuiltInZoomControls(true);

También es obligatorio incluir el método isRouteDisplayed, pues el
servidor de Google Maps necesita conocer si estamos mostrando alguna
información de ruta en el mapa. En este caso, simplemente devolvemos false.
En la figura 14.3. se muestran algunas capturas de pantalla de esta aplicación.

353

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

Ejemplo de MapView

' | ’ g g $ » * l l i l l l f -

lilis

>ítxí:vWxi:
vivXwXvX

.. . .. •
D&ui<3

' xx-x -. ;;r
SSÉSI

SSSSSSV'''V

>xtxkbvK%

::xhcfyx<y¿V.V-.
Francé

xSjS «a»pSSSS:
JUxfe'wi

■' ' • «****
' •> . | f

• • • • . „ , << SSS*

#>»rt«3í*(Espar a **A *" !

, >».

fAijeriít;

Ejemplo de M apView
: 8 $ i

xtfx*v>íc'. / /■?V '

Sí! •,'•
•Vsv*: -fc- x y . ^ f -

• •

' .. . v.- • •:

 ̂t'' •••.<•:»:.
> .•’•> .v.-:;'-v

s ^ . : : ::.<x
V „ -

W - . , i '

.*«í

AoK*. TouIÍH.Sí O.-X-X'Xr• O.

v< |x .

f»m ísS••X. • ... •'
•< vy.y.j. ,• «í̂ r.

2 0 !^ » >•.«!»
 «BíS . • •

.y

• V ^ j x . x x * .v x v > :Z':*É§-
*>«: . • " * * * ’ •••*Sí ■' SSlISS
S¿:~................. """'

■Í*X<!

y.y.v.-.\^.s

^ • X v y ;^ . ;.vS;:;X:
’ • • . . >y; x : ::

>.
® SS*

O*';** ¿$j:£

s- siil
,s

C iK b ' <
X vX

a
- O , ■ '

" í - í - í í í í í í í í í í í i¥ : %
SáKÍÍ • ^

. :::<w>XwX<yX'!v
¿too»*

y: • ' :

:' : Aiv/AvXy ' ‘ '•' . vXv!í .̂rcof o ̂ -
ÍlllÍI:,.:.S^|l|

AÍiSÍÔ ÍavX;-:'•■ ■ , XvX:■ ■ ̂ áp Mvt̂ Av , SSSS:

..̂MÍSxSSÍ
:*> :> x r< ^ x :x-::x ::::;:;x ::::

¿ííííf 1

>XvX;X<vXvX;X;

!yX;XvXvXvXysisSiSí é • •::x:::::x:x:x::ix>*̂ Ŷ̂ 'í:::
•::x':xx>>-x̂:x

Figura 14.3. Aplicación que muestra un mapa de Google en un MapView.

package es.ugr.amaro.mapview;

import com.google.android.maps.MapActivity;
import com.google.android.maps.Mapview;
import android.os.Bundle;

public class MapViewActivity extends MapActivity {

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
MapView mapview

= (MapView) findViewByld(R.id.mapView)/
mapView.setBuiltInZoomControls(true);

}

0Override
protected boolean isRouteDisplayed() {

// TODO Auto-generated method stub
return false;

}

354

14.4. Control de mapas

La clase MapController permite controlar ciertas características de un
MapView. Por ejemplo, permite usar el control de zoom.

Para acercar una región:

MapController controller=mapView.getController();
controller.zoomln();

Para alejar una región:

controller.zoomOut();

Para ajustar el zoom a un valor concreto:

controller.setZoom(13) ;

Además, podemos animar el mapa para que se traslade a un punto
determinado por un par de coordenadas.

GeoPoint geoPoint=new GeoPoint(latitud,longitud);
controller.animateTo(geoPoint);

Las coordenadas se especifican mediante un GeoPoint, que contiene la latitud y
longitud expresadas en unidades de una millonésima de grado.

Por otra parte, un MapView puede visualizarse como una foto de satélite, en
vez de un mapa, mediante

mapView.setSatellite(true);

El nivel de zoom varía de cero a 19 en vista de mapa, o a 22 en vista de
satélite. El actual puede obtenerse mediante

mapView.getZoomLevel();

A continuación, se muestra el uso del control de mapas en una aplicación que
permite trasladarnos a un GeoPoint, con botones para controlar el zoom y la vista
del mapa. El nivel de zoom actual también se indica en la pantalla. Usamos el
siguiente layout:

<?xml version="l.0" encoding="utf-8"?>
<LinearLayout
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:layout width="fill parent"

355

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffaa" >

<TableLayout
android:stretchColumns^"*"
android: layout_width=" f ill_parent"
android:layout_height="wrap_content"
android: or i ent a t ion=" horizontal" >

<TableRow >

<TextView
android:textColor="#000000"
android:layout_span="2"
android:layout_width=M fill_parentM
android: layout_height="wrap_content"
android:text="Latitud" />

CTextView
android:textColor="#000000”
android: layout_span="211
android:layout_width=”fill_parent"
android:layout_height="wrap_content”
android: text=,fLongitud" />

</TableRow>

<TableRow>
CEditText

android:id="@+id/editTextl"
android: layout_span=lf2"
android:layout_width="fill_parent”
android: layout_height = ffwrap_content" >

</EditText>

CEditText
android:id="0+id/editText2"
android: layout_span="2,f
android: layout_width=ff f ill_parent ”
android:layout_height=”wrap_content" >

</EditText>
</TableRow>

<TableRow>
CButton

android: id=l?@ + id/buttonIr"
android:layout_width=Mwrap_content"
android:layout height="wrap content”

356

android:text="Ir al sitio" />

<Button
android:id="0+id/buttonIn"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Zoom in" />

<Button
android:id="@+id/buttonOut"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Zoom out" />

<Button
android:id="@+id/buttonSatelite"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Satélite" />

</TableRow>

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="18sp"
android:layout_width="fill_parent"
android: layout_height = "wrap__content"
android:text="Zoom:" />

</TableLayout>

<com.google.andróid.maps.MapView
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="0+id/mapView"
android:layout_width="f ill_parent"
android:layout_height="fill_parent"
android:clickable="true"
android:apiKey=

"OORQ3xM7 ZsANVh2 37 FriU7 2CuwWqHU5 8ScNLNzQ"/>

</LinearLayout>

Seguidamente se detalla la actividad MapControlActivity.java. No
olvidemos incluir el paquete de Google Maps y el permiso internet en el
manifiesto de la aplicación. En la figura 14.4. se muestran las capturas de pantalla.

357

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

Longitud.atitud jatítud

Jr al síUo
Zoom: 15

1% g> e »
ftepControf . . Y j

Irsá sitio Zoomit) Zoomout

mu

•y- A

Google

Figura 14.4. Controles para manipular los mapas de Google en un MapView.

package es.ugr.amaro.mapcontrol;

import
import
import
import
import
import
import
import
import
import
import

com.google.android.maps.GeoPoint;
com.google.android.maps.MapActivity;
com.google.andróid.maps.MapController;
com.google.android.maps.MapView;
android.os.Bundle;
android.view.View;
android.view.View.OnClickListener;
android.widget.Button;
android.widget.EditText;
android.widget.Textview;
android.widget.Toast;

public class MapControlActivity extends MapActivity
implements OnClickListener{

MapView mapView;
MapController controller;
boolean satellite=false;
boolean streetView=false;
boolean traffic=false;
EditText editText1,editText2;
Textview tv;

358

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
mapView=(MapView) findViewByld(R .id.mapView);
controller=mapView.getController();

Button botonl=(Button) findViewByld(R .id.buttonln);
Button boton2=(Button) findViewByld(R .id.buttonOut);
Button boton3=(Button) findViewByld(R.id.buttonlr);
Button boton4

= (Button) findViewByld(R .id.buttonSatelite);
botonl.setOnClickListener(this);
boton2.setOnClickListener(this);
boton3.setOnClickListener(this);
boton4.setOnClickListener(this);
editText1=(EditText) findViewByld(R.id.editTextl);
editText2=(EditText) findViewByld(R.id.editText2);
tv=(TextView) findViewByld(R.id.textView);

}

@Override
protected boolean isRouteDisplayed() {

return false;
}

0Override
public void onClick(View v) {

int id=v.getId()/
if(id==R.id.buttonln){

controller.zoomln();
}
else if(id==R.id.buttonOut){

controller.zoomOut();
}
else if(id==R.id.buttonSatelite){

satellite=!satellite;
mapView.setSatellite(satellite)/

}
else if(id==R.id.buttonlr){

String latitud=editText1.getText().toString();
String longitud=editText2.getText().toString();
t ry {

int lat=(int)(Double.parseDouble(latitud)*1E6);
int lon=(int)(Double.parseDouble(longitud)*1E6);

359

El gran libro de programación avanzada con Android

GeoPoint geoPoint=new GeoPoint(lat,Ion);
controller.animateTo(geoPoint);
controller.setZoom(13);
mapView.invalidate();

}catch(Exception e){
Toast.makeText(this,

"Coordenadas inválidas",1).show();
}

}
int zoom=mapView.getZoomLevel();
tv.setText("Zoom: "+zoom);

}
}

14.5. Geocodificación

La geocodificación es la transformación de una dirección en un par de
coordenadas (latitud y longitud). La clase Geocoder del paquete
android.location se encarga de conectarse a un servidor para buscar las
posibles direcciones que se ajustan a una cadena de búsqueda. Para utilizar esta
clase se requiere el permiso internet. Una vez creado un objeto Geocoder,
podemos ejecutar el método getFromLocationName para realizar la búsqueda
de una dirección hasta un número máximo de resultados. El formato de búsqueda
es bastante libre. Puede introducirse desde el nombre de una ciudad o un país,
hasta una dirección completa, calle, número o código postal. El conjunto de
direcciones que encajan se devuelve como una lista de resultados de la clase
Address. Para iniciar un Geocoder y buscar una lista de direcciones, bastan estas
dos líneas:

Geocoder geocoder=new Geocoder(this);
List<Address> list

= geocoder.getFromLocationName(búsqueda,nmax);

La clase Address representa una dirección, es decir, un conjunto de cadenas que
describen una localización. Entre otros, la clase Address presenta los siguientes
métodos para extraer: la latitud, la longitud, el nombre del país y las dos primeras
líneas de texto de la dirección, respectivamente.

getLatitude()
getLongitude()
getCountryName()
getAddressLine(0)
getAddressLine(1)

360

En la siguiente aplicación se ilustra con un ejemplo el uso del geolocalizador y
de la clase de direcciones, en conjunción con los mapas de Google. El layout
contiene un campo de texto para introducir la dirección a buscar. Un botón dispara
la búsqueda de direcciones, que se muestran en un spinner. Al pulsar una de las
direcciones, se mostrará su localización en un MapView. El fichero main.xml es
el siguiente:

<?xml version="1.0" encoding="utf-8"?>
CLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffaa" >

CTextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="20sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Dirección" />

CLinearLayout
android:id="@+id/linearLayout1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

cEditText
android:id="@tid/editText1"
android:hint="(dirección)"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1" />

cButton
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Buscar" />

c/LinearLayout>

cSpinner
android:id="@+id/spinnerl"
android:layout_width="fill_parent"
android:layout height="wrap content" />

361

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

<com.google.android.maps.MapView
android:id="@+id/mapViewM
android:layout_width="fill_parent"
android: layout_height="fill_parent11
android: clickable="true"
android:apiKey=

"OORQ3xM7 ZsANVh2 37 FriU7 2CuwWqHU58ScNLNzQ”/>
</LinearLayout>

A continuación se detalla la actividad GeocoderActivity. java. La
geocodificación se realiza en el método onClick. El mapa de la dirección
seleccionada en el spinner se define en el método onitemSelected. Este mapa
lo inicializamos con unas coordenadas correspondientes a la isla de Elephanta, en
Bombay.

package es.ugr.amaro.geocoder;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

j ava.util.Iterator;
j ava.útil.List/
com.google.android.maps.GeoPoint;
com.google.android.maps.MapActivity;
com.google.android.maps.MapController;
com.google.andróid.maps.MapView;
android.locatión.Address;
android.locatión.Geocoder;
android.os.Bundle;
android.view.View;
android.view.View.OnClickListener;
android.widget.AdapterView;
android.widget.AdapterView.OnltemSelectedListener;
android.widget.ArrayAdapter;
android.widget.Button;
android.widget.EditText;
android.widget.Spinner;
android.widget.Textview;
android.widget.Toast;

public class GeocoderActivity extends MapActivity
implements OnClickListener,

OnltemSelectedListener{

EditText editText;
Spinner spinner;
int nmax=20;
int resource=android.R.layout.simple_spinner_item;
ArrayAdapter<String> adapter;

362

String[] spinnerArray;
String[] result=new String[nmax];
double[] latitud=new double[nmax];
double[] longitud=new double[nmax];
MapView mapView;
MapController mapController;
TextView tv;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);
editText=(EditText) findViewByld(R.id.editTextl);
Button boton=(Button) findViewByld(R.id.buttonl);
boton.setOnClickListener(this);

// inicializa el spinner
spinner=(Spinner) findViewByld(R.id.spinner1);
spinner.setPrompt("Mostrar mapa");
spinnerArray=new String[1];
spinnerArray[0]="Isla Elephanta Bombay, India";
adapter=new
ArrayAdapter<String>(this,resource,spinnerArray)
spinner.setAdapter(adapter) ;
spinner.setOnltemSelectedListener(this);

// inicializa el mapa
latitud[0]=18.963223;
longitud[0]=72.9314073;
mapView =(MapView) findViewByld(R.id.mapView);
mapView.setBuiltInZoomControls(true) ;
mapController=mapView.getController() ;
mapController.setZoom(3) ;

}

@Override
public void onClick(View v) {

try {
String busqueda=editText.getText().toString();
Geocoder geocoder=new Geocoder(this);
List<Address>
list=geocoder.getFromLocationName(búsqueda,nmax);
Iterator <Address> iterator= list.iterator();
int n=0;
String country;

El gran libro de programación avanzada con Android

Address address;
while(iterator.hasNext ()) {

address=iterator.next();
latitud[n]=address.getLatitude() ;
longitud[n]=address.getLongitude();
country=address.getCountryName();
result[n]=address.getAddressLine(0)

+ " *" + address . getAddressLine (1)
+ " "+country;

n+ +;
}
spinnerArray=new String[n] ;
for(int i=0/i<n;i++){

spinnerArray[i]=result[i];
}
Adapter=new ArrayAdapter<String>(this,

resource,spinnerArray)
spinner.setAdapter(adapter);

}catch(Exception e){
Toast.makeText(this,

"Error en la búsqueda", l).show();
}

}

@Override
protected boolean isRouteDisplayed() {

return false;
}

@Override
public void onltemSelected(AdapterView<?> argO,

View argl, int arg2,long arg3) {

int lat=(int) (latitud[arg2]*le6);
int lon=(int) (longitud[arg2]*le6);
mapController.setZoom(16);
mapController.animateTo(new GeoPoint(lat,Ion));
mapView.setSatellite(true);
mapView.invalidate ();
tv.setText(spinnerArray[arg2]);
tv.append("\n"+latitud[arg2]+","+longitud[arg2]);

}

@Override
public void onNothingSelected(AdapterView<?> argO) {
}

364

En la figura 14.5. se muestran las capturas de pantalla. En las dos primeras
imágenes (arriba) aparece la búsqueda de la calle Gran Vía 100, lo que nos
proporciona diez resultados correspondientes a distintas ciudades (nota: la lista de
resultados depende de nuestra localización actual). En las dos imágenes inferiores
se observa el resultado de introducir la cadena de búsqueda alhambra granada,
obteniendo como resultado tres direcciones.

365

El gran libro de programación avanzada con Android

3alle Gran Vía, 100 18001 Granada España

É̂ÉIÉ
[Calle Gran Vía,
[Calle Gran Via.
jCaiie Gran Vía,
[Calle Gran Vía,
¡Calle Gran Via,
[Calle Gran Vía.
[Calle Gran Via,
[Calle Gran Via,
[Calle Gran Via,
[Calle Gran Vía,

100 28013 Madrid España
100 08202 Sabadell España
100 03005 Alicante España
100 20001 Donostia-San Sebastiás
100 18001 Granada España
100 30400 Caravaca de la Cruz Es>
100 30170 Muía España
100 30710 Los Alcázares España
100 08207 Sabadell España
10010120

I’ /X 'X v X v Iv X'Iv '.v X 'X v a ^ / . v .v . '." I
v .v .;.; • v..-v-; X *X vX *X *X *'X \vX v

i

W
m

I
I

m:-<y
y.y

• S ' : v ^ S i 'X v . \ v X v X 'í ' S í v Í - ' v a v : •:
•xX vM v tv x -> > x -x -. •!vx% v!v‘v.’

* f c '§m¡ ■ •
• : : :. ' • , j v o t f m w m miW: ' - : -mm .

V • ■> .:

> x < v x -x -x v . v v x v x - x - x v x v x - v x -

: ; ■ : : :í ' V . ••I'--'.- ' v i-í.: i
■' I

1
■ i 1 : 1 Í

; • . : ■ V ■
a p p p i i•••■ v . '.v •>y.X\<*X?«4,>Hfr>>X*X»XvX*>>X

■ i i 3
' •< . . • - v - - ±>: : s ' ¡ ' - f ■' ' •: ■:í ? ; : í í :-í :: S í í -s í :í

• N*>X;X*>X;X;X;>X>;.*X;X;X-:«X

, • . ; ' 5
y n i

. • . \w .w .'.- .v.v.v•••.v.ív.v.v.v.*.*. . x x x v X r l l f e : - j

37.1809315,-3.6003473

calle gran via l OCj Busca?
W W W iV tfA W /W W W M W iW ^ A V ^ W iV iW iW W W W r'.

Cálle Gran Via, 10018001
*XsiO|X*XvC«X«X<CCC*X*X«C»X«XC«X»X

, i |ICB 10:48

La Alhambra Alhambra, 1 España
37.172868,-3.581276

alhambra graháctej

La Alhambra Alhambra, 1 España

Figura 14.5. Aplicación que ’r ¡a clase Geocoder combinada con los
mapas de Google. Arriba: búsqueda de calle gran via 100.

Abajo: búsqueda de alhambra granada.

366

14.6. Localización

La clase LocationManager del paquete android. location proporciona
acceso a los servicios de localización del sistema y nos permite obtener nuestra
posición geográfica. Para crear un manager de localización usamos

LocationManager locationManager = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

El LocationManager nos permite obtener la última localización conocida con

Location location
=1ocationManager.getLastKnownLocation(provider);

donde hay que especificar el nombre del proveedor, que puede ser uno de los
siguientes:

String provider=LocationManager.GPS_PROVIDER;
String provider=LocationManager.NETWORK_PROVIDER;

El primero es el proveedor del GPS y el segundo, el proveedor de la red. El GPS
determina la localización usando satélites y requiere el siguiente permiso, que
debe declararse en el manifiesto de nuestra aplicación.

android.permission.ACCESS_FINE_LOCATION.

El proveedor de red determina la localización basándose en la disponibilidad
de las antenas móviles y de los puntos de acceso WiFi. Requiere alguno de los
siguientes permisos:

android.permission.ACCESS_COARSE_LOCATION
android.permission.ACCESS_FINE_LOCATION

Para un óptimo funcionamiento del proveedor de red, estos dos permisos deben
registrarse en el manifiesto de nuestra aplicación y nuestro dispositivo debe tener
activada la red WiFi.

Es posible seleccionar automáticamente el mejor de estos dos proveedores,
basándonos en ciertos criterios. Para obtener el mejor con los criterios por defecto
usaríamos

Criteria criteria=new CriteriaO;
provider=locationManager.getBestProvider(criteria, true);

367

El gran libro de programación avanzada con Android

Nuestra actividad puede reaccionar automáticamente a los cambios de
localización ejecutando el método

locationManager.requestLocationUpdates(provider,
minTime, minDistance,locationListener);

Aquí se especifica el nombre del proveedor y el mínimo tiempo y la mínima
distancia entre actualizaciones. El objeto locationListener implementa la
interfaz LocationListener, lo cual conlleva implementar los cuatro métodos
siguientes, cuyos nombres describen su función:

@Override
public void onLocationChanged(Location location) {
// se ejecuta al cambiar la localización
}

@Override
public void onProviderDisabled(String provider) {
// se ejecuta cuando el proveedor se desactiva
}

@Override
public void onProviderEnabled(String provider) {
// se ejecuta cuando el proveedor se activa
}

@Override
public void onStatusChanged(String provider,

int status, Bundle extras) {
// se ejecuta al cambiar el estado del proveedor
}

El último método se ejecuta cuando el proveedor cambia de estado, en cuyo
caso el parámetro entero status toma alguno de los siguientes valores,
almacenados en constantes:

LocationProvider.AVAILABLE
LocationProvider.OUT_OF_SERVICE
LOcationProvider.TEMPORARILYJJNAVAILABLE

Cuando un proveedor se desactiva o cuando abandonamos la aplicación,
conviene deshabilitar la localización automática, que podría quedar funcionando
en background con el consiguiente gasto de batería y recursos. Esto se consigue
ejecutando

locationManager.removeüpdates(locationListener);

368

La siguiente aplicación es un ejemplo del uso de las anteriores funciones de
localización. Mostraremos en un mapa nuestra posición, que se actualizará
automáticamente. También escribiremos en la pantalla nuestras coordenadas y el
nombre y estado del proveedor. Tres botones permitirán elegir entre el proveedor
de GPS, el de network o el mejor de ambos. El manifiesto de la aplicación requiere
los siguientes permisos:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name

= "android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name

="android.permission.ACCESS_FINE_LOCATION"/>

El manifiesto debe incluir también el uso de la librería de Google Maps.

<uses-library android:name="com.google.android.maps" />

Utilizamos el siguiente layot. Salvo el pequeño espacio horizontal requerido
por los botones, la pantalla se divide en dos: la parte superior para el mapa y la
inferior para un ScrollView con el texto de la localización.

<?xml version="1.0" encoding="utf-8"?>
CLinearLayout
xmlns:andróid="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffdd" >

<LinearLayout
android:id="@+id/linearLayout1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal" >

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="GPS" />

<Button
android:id="@+id/button2"
android: layout_width="wrap_content11
android:layout_height="wrap_content"
android:text="Network" />

<Button

369

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

android: id="0+id/button3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="Best Provider” />

<TextView
android:id="0+id/textViewl"
android:textColor="#000000"
android:textSize="2Osp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Network" />

</LinearLayout>

<com.google.android.maps.MapView
android:id="@+id/mapView"
android:layout_width="fill_parent"
android:layout_height="Odp"
android:layout_weight="1"
android:clickable="true"
android:apiKey

= "OORQ3xM7 ZsANVh237FriU72CuwWqHU58ScNLNzQ"/>

<ScrollView
android:id="0+id/scrollViewl"
android:layout_width="fill_parent"
android:layout_height="Odp"
android:layout_weight="1">

<TextView
android:id="0+id/textView"
android:textColor="#000000"
android:textSize="2Osp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="" />

</ScrollView>
</LinearLayout>

A continuación se lista la actividad LocationActivity. java. El proveedor
se inicializa a NETWORK. En onResume se registra la localización automática y se
muestra nuestra posición en el mapa, llamando al método localiza, que también
es ejecutado en onLocationChanged, cada vez que se registra un cambio de
posición. El proveedor puede modificarse en onClick al pulsar los botones. En
este caso, se vuelve a registrar la localización automática, con el nuevo proveedor,
y se muestra de nuevo la posición. Se repite lo mismo en el método

370

onProviderEnabled. Finalmente, en onPause y en onProviderDisabled
desactivamos la localización automática. En la figura 14.6. se muestran las
capturas de pantalla.

PmvKfer network NetWork Best Provsder g p s

UNAVAILABLE
Provider Accuracy= 2
Provider: network
Latitud: 37.18027588571429
Longitud: -3.6082182571428567
Provider Accuracy= 1
Provider: gps
Latitud: 37.17968040687498
Longitud: -3.6083105176752572
Provider Accuracy= 2
Provider: network
Latitud: 37.18027588571429
Longitud: -3.6082182571428567

Longitud: -3.6067220999500473
Location changed
Provider: gps
Latitud: 37.175805159338424
Longitud: -3.6067220999500473
Location changed
Provider: gps
Latitud: 37.182665530955774
Longitud: -3.5975424279035035
Location changed
Provider: gps
Latitud: 37.182665530955774
Longitud: -3.5975424279035035

Figura 14.6. Aplicación que usa el LocationManager para mostrar nuestra posición
actual en un MapView. Puede utilizar opcionalmente el proveedor GPS o network.

package es.ugr.amaro.location;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

com.google.android.maps.GeoPoint;
com.google.android.maps.MapActivity;
com.google.android.maps.MapController;
com.google.android.maps.MapView;
android.content.Context;
android.location.Criteria;
android.location.Location;
android.location.LocationListener;
android.location.LocationManager;
android.location.LocationProvider;
android.os.Bundle;
android.view.View;
android.view.View.OnClickListener;
android.view.Window;
android.widget.Button;
android.widget.TextView;

371

El gran libro de programación avanzada con Android

public class LocationActivity extends MapActivity
implements LocationListener, OnClickListener{

LocationManager locationManager;
int minTime=60000;
int minDistance=l;
String providerl=LocationManager.GPS_PROVIDER;
String provider2=LocationManager.NETWORK_PROVIDER;
String provider;
MapView mapView;
MapController mapControl;
TextView tv,tvl;

0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
requestWindowFeature(Window.FEATURE_NO_TITLE);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textView);
tvl=(TextView) findViewByld(R.id.textViewl);

Button botonl=(Button) findViewByld(R .id.buttonl);
Button boton2=(Button) findViewByld(R.id.button2);
Button boton3=(Button) findViewByld(R.id.button3);
botonl.setOnClickListener(this);
boton2.setOnClickListener(this);
boton3.setOnClickListener(this);

// Invoca el servicio de localización
locationManager^(LocationManager)getSystemService(

Context.LOCATION_SERVICE)
provider=provider2;

// el mapa
mapView = (MapView) findViewByld(R.id.mapView);
mapView.setSatellite(true);
mapView.setBuiltInZoomControls(true);
int maxzoom= mapView.getMaxZoomLevel();
int initZoom=(int) (0.95*maxzoom);
mapControl=mapView.getController();
mapControl.setZoom(initZoom);

}

void localiza () {
Location location

=locationManager.getLastKnownLocation(provider);
if(location!=null){

372

tv. append (11 \nProvider : "+provider) ;
double latitud=location.getLatitude();
double longitud=location.getLongitude();
tv.append("\nLatitud: "tlatitud);
tv.append("\nLongitud: "tlongitud);
int latE6=(int)(latitud*le6);
int lonE6=(int)(longitud*le6);
GeoPoint geoPoint=new GeoPoint(latE6,lonE6);
mapControl.animateTo(geoPoint);
mapView.invalídate();

}
}

0Override
public void onResume()(
super.onResume();
locationManager.requestLocationüpdates(provider,

minTime, minDistance, this);
localiza();

}

@Override
public void onPause(){
super.onPause();
locationManager.removeüpdates(this);

}

0Override
protected boolean isRouteDisplayed() {

return false;
}

0Override
public void onLocationChanged(Location location) {
tv. append ("\nLocation changed1’) ;
localiza();

}

0Override
public void onProviderDisabled(String provider) {

locationManager.removeUpdates(this);
}

0Override
public void onProviderEnabled(String provider) {
locationManager.requestLocationüpdates(provider,

minTime, minDistance, this);
localiza();

373

El gran libro de programación avanzada con Android

}

@Override
public void onStatusChanged(String provider,

int status, Bundle extras) {

if(status==LocationProvider.AVAILABLE)
tv.append("\nStatus changed: AVAILABLE");

if(status==LocationProvider.OUT_OF_SERVICE)
tv.append("\nStatus changed: OUT OF SERVICE");

i f (status==LocationProvider.TEMPORARILY_UNAVAILABLE)
tv.append(

"\nStatus changed: TEMPORARILY UNAVAILABLE");
}

QOverride
public void onClick(View v) {

int id=v.getId();
if(id==R.id.buttonl)

provider=provider1;
else if(id==R.id.button2)

provider=provider2;
else {

Criteria criteria=new Criteria();
provider=locationManager.getBestProvider(

criteria, true);
}
LocationProvider locationProvider

= locationManager.getProvider(provider);
tv.append("\nProvider Accuracy= "

tlocationProvider.getAccuracy());
tvl.setText(provider);
locationManager.requestLocationüpdates(provider,

minTime, minDistance, this);
localiza ();

}
}

Al ejecutar esta aplicación en un teléfono o tablet, podremos comprobar las
diferencias de posicionamiento entre los proveedores GPS y network, que pueden
ser de varios metros. Esto depende de cada dispositivo y de las condiciones de la
red. En la figi,"~ ' t .ó . hemos ejecutado la aplicación en un tablet Samsung Galaxy
Tab. El resultado más preciso lo hemos obtenido con el proveedor de red.

374

14.7. Dibujar sobre un mapa y geocodificación inversa

La clase Overlay representa una capa que recubre un mapa sobre la que se
puede dibujar. Para confeccionar una capa, se crea una subclase de Overlay
sobrescribiendo el método draw. Por ejemplo:

class MapOverlay extends Overlay{
public boolean draw(Canvas canvas, MapView mapView,

boolean shadow, long when){
super.draw(canvas, mapView, shadow);
// dibujar aquí debajo
return true;

}
}

El método draw, con cuatro parámetros, se utiliza para capas animadas,
devolviendo true si se requiere dibujar de nuevo. Los métodos para dibujar en un
overlay son similares a los que se utilizan para dibujar en un canvas de la clase
View.

Para añadir una capa al mapa, primero se obtiene la lista de capas que cubren
el mapa, se eliminan las que no se necesitan y se añade la nueva capa.

MapOverlay mapOverlay = new MapOverlay();
List<Overlay> overlays = mapView.getOverlays();
overlays.clear();
overlays.add(mapOverlay);

Una capa puede responder a los eventos en la pantalla táctil, implementando
el siguiente método dentro del Overlay:

public boolean onTouchEvent(
MotionEvent event, MapView mapView){

}

Esto nos permite realizar acciones dependiendo del evento enviado, que será
alguno de los tipos registrados como constantes de acción de la clase
MotionEvent. Algunos de los más comunes son:

MotionEvent.ACTION_DOWN
MotionEvent.ACTION_UP
MotionEvent.ACTION_MOVE

Al dibujar en una capa, o al responder a la pantalla táctil, posiblemente será
necesario transformar una coordenada (latitud, longitud) en una pareja de píxeles
(x, y) o viceversa. Para estas transformaciones se utiliza un proyector, que es un
objeto de la clase Projection. Para obtener el proyector de un mapa ejecutamos
getProj ection.

375

El gran libro de programación avanzada con Android

Projection projection = mapView.getProjection();

Para transformar un GeoPoint en píxeles sobre la pantalla se procede del
siguiente modo:

Point point=new Point();
projection.toPixels(geoPoint, point);
x=point.x;
y=point.y;

A la inversa, para transformar un par de píxeles (x, y) en un GeoPoint:

Projection projection=mapView.getProjection();
geoPoint=proj ection.fromPixels(x, y);

La geocodificación inversa consiste en obtener una dirección a partir de unas
coordenadas. Para ello se-utiliza la clase Geocoder, que permite acceder a una
lista de objetos de tipo Address, que se procesan como vimos en la sección 14.5.

Geocoder geocoder=new Geocoder(this);
List<Address> lista= geocoder.getFromLocation(

latitud, longitud, 1);

En la siguiente aplicación se muestra un ejemplo de uso de capas para dibujar
sobre un mapa, así como de la geocodificación inversa. Al pulsar sobre un punto
del mapa, dibujamos un círculo rojo semitransparente y escribimos en pantalla las
coordenadas de dicho punto. Al pulsar un botón, se escribe la dirección en un
TextView. Usaremos el siguiente layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#bbffbb" >

CLinearLayout
android:id="@+id/linearLayout1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

CTextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="20sp"

376

http://schemas.android.com/apk/res/android

android:layout_width="Odp"
a n d r o id : layou t_h e ig h t= " w ra p _ co n ten t11
a n d r o id : layout_weight="0 . 8 lf
a n d r o id : t e x t = MToque e l mapa para coordenadas" />

<Button
a n d ro id : id = " @ + id /b u tto n l"
android: la y o u t_ w id th = ,fOdp"
a n d r o id : layou t_h e ig h t= " w ra p _ co n ten t"
a n d r o id : lay o u t_ w e ig h t = "0 . 2"
a n d r o id : te x t= " D irecc ió n " />

</LinearLayout>

<com.google.android.maps.MapView
android:id="@+id/mapView"
android:layout_width="fill_parent"
android:layout_height="Odp"
android:layout_weight="1"
android:clickable="true"
android:apiKey

= "OORQ3xM7 ZsANVh2 37 FriU7 2CuwWqHU58ScNLNzQ"/>

</L in earL ayou t>

A continuación se detalla la actividad M ap O ver layA ct iv i ty . java. En la
figura 14.7. se muestran las capturas de pantalla.

package es.ugr.amaro.mapoverlay;

import java.útil.List;
import com.google.android.maps.GeoPoint;
import com.google.andróid.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Paint.Align;
import android.graphics.Point;
import android.location.Address;
import android.location.Geocoder;

377

El gran libro de programación avanzada con Android

Toque el mapa para coordenadas : Dirección

?«*«
Y***'

v.v**m m •ii
..vy :•

<• Frai

■■VI
_

X v . Ü » ? y.

íxvi-x 'Portugal España
<Sp8Stt) *,.***

;
. -V,

m

o <*&&&
0riróó*

x-0W40t&:::ÜNs o ^ j < .íííífí ■•;•• S t>:o >*«» ° v ,

mL
■ f á s s .1*, ,»rei . . .

m m r W
y m I

Rambla del Celler, 117
08172 Sant Cugat del Valles

Wm>Mm

f ?!,g

VS'V>:

•: a?:« <v:

-j :y>y.6

gil

41.47205,21091674

yI
I
i

i:« •: *
<:Ii

su**

,ÍS!*t í!??**** v?:# •i
:> ¿A*

mMÉ
w

Figura 14.7. Aplicación para marcar un punto sobre un mapa y sus coordenadas
usando un Overlay. Al pulsar el botón, se obtiene la dirección del punto marcado

mediante geocodificación inversa.

import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class MapOverlayActivity extends MapActivity
implements OnClickListener{

MapView mapView;
MapController mapController;
GeoPoint geoPoint;
TextView tv;
float latitud=42,longitud=-4;

@0verride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);

378

tv=(Textview) findViewByld(R .id.textview);
Button boton= (Button) findViewByld(R .id.buttonl
boton.setOnClickListener(this);

mapView=(MapView) findViewByld(R.id.mapView);
mapView.setBuiltInZoomControls(true);
mapController=mapView.getController() ;
int latE6=(int)(latitud*le6);
int lonE6=(int) (longitud*le6) ;
geoPoint = new GeoPoint(latE6,lonE6);
mapController.animateTo(geoPoint) ;
mapController.setZoom(7);

MapOverlay mapOverlay = new MapOverlay();
List<Overlay> overlays = mapView.getOverlays()/
overlays.clear();
overlays.add(mapOverlay) ;
mapView.invalídate();

lass MapOverlay extends Overlay{

String coordenadas;
int x, y;

OOverride
public boolean draw(Canvas canvas, MapView mapview

boolean shadow, long when){

super.draw(canvas, mapView, shadow);

// transforma geoPoint en pixeles
Point point=new Point();
Projection projection = mapView.getProjection()
projection.toPixels (geoPoint, point) ;
x=point.x;
y=point.y;
latitud=(float) (geoPoint.getLatitudeE6()*le-6)
longitud=(float) (geoPoint.getLongitudeE6()*le-
coordenadas = "ff+ latitud+" , "ilongitud;

// dibuja círculo centrado en coordenadas
Paint paint=new Paint();
paint.setAntiAlias(true);
paint.setColor(Color.argb(100,255,0,0));
canvas.drawCircle(x, y, 25, paint);
// escribe coordenadas
paint.setColor(Color.BLACK);

El gran libro de programación avanzada con Android

paint.setTextSize(30) ;
paint.setTextAlign(Align.CENTER);
canvas.drawText(coordenadas, x, y-25, paint);
return true;

}

@Override
public boolean onTouchEvent(

MotionEvent event, MapView mapView){

// Pasa pixeles a coordenadas del nuevo punto
if(event.getAction()==MotionEvent.ACTION_UP){

Projection projection=mapView.getProjection();
x= (int) event.getX();
y= (int) event.getY();
geoPoint=projection.fromPixels(x, y);
//mapController.animateTo(geoPoint);

}
return false;

}
}

public void onClick(View v){

Geocoder geocoder=new Geocoder(this);
String result="";
try {

List<Address> lista= geocoder.getFromLocation(
latitud, longitud, 1

if (lista.size()>0) {
Address address= lista.get(0);
int n=address.getMaxAddressLinelndex();
for(int i=0;i<n;i++){

result=result+address.getAddressLine(i)+"\nM
}
tv.setText(result);

}
} catch (Exception e){

tv.setText("Error en la dirección");
}

}

@Override
protected boolean isRouteDisplayed() {

// TODO Auto-generated method stub
return false;

}

380

APÉNDICE A

La interfaz de usuario

A.1. Orientación de una actividad

La orientación de una actividad puede ser vertical (portrait) o apaisada
(landscape) y puede cambiar dependiendo de la orientación del teléfono. Este
cambio se puede controlar en nuestra aplicación.

En primer lugar, la orientación de una actividad se puede fijar en el manifiesto
de una aplicación añadiendo a la etiqueta activity alguno de los siguientes
atributos:

android:screenOrientation='’landscape'1
android:screenOrientation=''portrait''
android:screenOrientation=''reverseLandscape''
android:screenOrientation=''reversePortrait''

Alternativamente, es posible modificar la orientación de una actividad desde
Java ejecutando el método setRequestedOrientation de la clase Activity.
Por ejemplo:

setRequestedOrientation(
Activitylnfo.SCREEN_ORIENTATION_PORTRAIT);

Aquí, Act ivitylnf o es la clase del paquete android. content .pm que
contiene información general acerca de una actividad. Otros valores posibles de
las constantes de orientación son:

Activitylnfo.SCREEN_ORIENTATION_LANDSCAPE
Activitylnfo.SCREEN_ORIENTATION_SENSOR
Activitylnfo.SCREEN_ORIENTATION_REVERSE_LANDSCAPE
Activitylnfo.SCREEN ORIENTATION_REVERSE_PORTRAIT

381

El gran libro de programación avanzada con Android

Las dos últimas orientaciones invertidas se introdujeron a partir de Android 2.3
(API 9 o Gingerbread). Por lo tanto, no funcionarán con las versiones anteriores de
Android.

A.2. Dimensiones de la pantalla

Las dimensiones de la pantalla pueden obtenerse en un objeto de la clase
DisplayMetrics. Para ello, primero se crea un objeto Resources ejecutando el
método getResources de Activity y, seguidamente, el método
getDisplayMetrics de Resources.

Resources resources=getResources();
DisplayMetrics metrics=resources.getDisplayMetrics();

En la siguiente actividad mostramos en pantalla la densidad en puntos por
pulgada, la altura y la anchura de la pantalla en píxeles, así como la densidad
lógica, que es el factor de escala con respecto a una densidad estándar de 160
puntos por pulgada. Usamos el siguiente layout:

<?xml version="1.0M encoding="utf-8"?>
cLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertica1"
android:background="#ddffdd" >

<TextView
android:id="@+id/textView"
android:textColor="#000000"
android:textSize="22sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Dimensiones de la pantalla" />

</LinearLayout>

A continuación se detalla el programa Java. La captura de pantalla se muestra
en la figura A.2. Vemos que en nuestro emulador, la densidad es de 240 píxeles
por pulgada, la anchura es 480 píxeles y la altura, 800 píxeles. La densidad lógica
es 1.5.^

382

http://schemas.android.com/apk/res/android

Dimensiones de la pantalla
density=1.5
densítyDpi/160=1.5
densityDpi=240
DENSITY_LOW=120
DENSITY_HIGH=240
DENSITY_MEDIUM=160
height=800
width=480
xdpi=240.0
ydpi=240.0

Figura A.2. Aplicación para mostrarlas dimensiones y la densidad de la pantalla.

package es.ugr.amaro.metrics;

import android.app.Activity;
import android.os.Bundle;
import android.útil.DisplayMetrics;
import android.widget.Textview;

public class MetricsActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState) ;
setContentView(R.layout.main);
Textview tv=(TextView) findViewByld(R .id.textview);

// Dimensiones de la pantalla
DisplayMetrics metrics

=getResources().getDisplayMetrics();

// densidad lógica=densityDpi/160
float density=metrics.density;
//
int densityDpi=metrics.densityDpi;

383

El gran libro de programación avanzada con Android

int densityLow=metrics.DENSITY_LOW;
int densityHigh=metrics.DENSITY_HIGH;
int densityMedium=metrics.DENSITY_MEDIUM;
int height=metries.heightPixels;
int width=metrics.widthPixels;
float xdpi=metrics.xdpi/
float ydpi=metrics.ydpi;

tv. append (" \ndensity=,,+density
+ " \ndensityDpi/l 60 = ?,+ (densityDpi/160 . 0)
+"\ndensityDpi="+densityDpi
+"\nDENSITY_LOW="+densityLow
+M\nDENSITY_HIGH="tdensityHigh
+ f,\nDENSITY_MEDIUM=f,+densityMedium
+ " \nheight = ,?+height
+"\nwidth=M+width
+M\nxdpi="+xdpi
+ "\nydpi = ,f + ydpi) ;

}
}

384

APÉNDICE B

Complementos de Java

En este apéndice se presentan algunos aspectos del lenguaje Java que
podrían suponer cierta dificultad para el lector.

Todos los ejemplos de este apéndice consisten en actividades de Android,
usando como interfaz de usuario un fichero m a in .xm l estándar con un TextView
como el siguiente:

<?xml v e rs io n = ff 1. 0" e n c o d in g = "u tf -8 "?>
< L in e a rL a yo u t
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:background="#ffffff">

CTextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/helio"
android:textColor="#000000"
android:textSize="18sp"
android:id="@+id/textView">

< /T extV iew >
< /L in e a rL a y o u t>

B.1. Métodos con número variable de parámetros

A partir de la versión 5 de Java, una función puede tener un número
indeterminado de parámetros (argumentos variables, también denominados
varargs). Los argumentos variables deben ser los últimos argumentos del método.
Para especificar en la definición de un método que un argumento es variable, su

385

http://schemas.android.com/apk/res/android

El gran libro de programación avanzada con Android

tipo se escribe seguido de tres puntos suspensivos. Por ejemplo, el siguiente
método toma dos argumentos, el segundo variable.

void escribe(String cadena, int... números){
// definición

}

En realidad, el compilador transforma la lista de parámetros variables en un
array. Este es un ejemplo de una actividad Android que usa dicha técnica. Hay un
método que escribe una cadena y una lista variable de números enteros. La lista
puede sustituirse por un array. En la figura B.1. se muestra la captura de pantalla.

package es.ugr.amaro;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class ParametrosVariables extends Activity {
/** Called when the activity is first created. */

TextView tv;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);

escribe("Método llamado con cero argumentos");
escribe("Método llamado con un argumento",1);
escribe("Método llamado con dos argumentos ", 1,2) ;
escribe("Método llamado con tres argumentos ", 1,2,3);

int[] arraya {1,2,3,4};
escribe("Método llamado con un array",array);

}

void escribe(String cadena, int... números){

tv.append("\n"+cadena);
for(int i: números) tv.append(" "+i);
int longitud=numeros.length;
tv.append(

"\n El argumento se trata como un array de "
tlongitud);

386

Helio World, ParametrosVaríabíes!
Método llamado con cero argumentos
El argumento se trata como un array

de 0
Método llamado con un argumento 1
El argumento se trata como un array

de 1
Método llamado con dos argumentos
1 2
El argumento se trata como un array
de 2
Método llamado con tres argumentos
1 23
El argumento se trata como un array
de 3
Método llamado con un array 12 3 4
El argumento se trata como un array

de 4

Figura B.1. Un método con parámetros variables.

B.2. ArrayList

Un ArrayList es un conjunto de objetos a los que se accede mediante un
índice entero, comenzando por cero. La dimensión de un ArrayList es variable y se
reajusta al añadir elementos. Los elementos de un ArrayList son objetos de la
clase Object, es decir, que pueden ser de distintas clases, ya que todas las
clases son subclases de object. Al añadir un nuevo elemento, se coloca en la
última posición del ArrayList. A continuación se describen algunos de los métodos
disponibles en esta clase.

Crear un ArrayList:

ArrayList arrayList=new ArrayList();

Añadir un objeto al final del ArrayList:

arrayList.add(objeto);

387

El gran libro de programación avanzada con Android

Extraer el elemento en la posición i :

arrayList.get(i);

Los elementos de un ArrayList son de la clase Object. Por lo tanto, si
queremos recuperar un elemento de una clase concreta, debemos transformarlo.
Por ejemplo, si el elemento en posición i es un entero:

int elemento = (int) arrayList.get(i);

Para insertar un objeto en una posición concreta, en cuyo caso todos los
elementos que le siguen se desplazan una posición hacia arriba:

arrayList.add(i,objeto)/

Para eliminar el elemento en la posición i (todos los elementos que le siguen
se desplazan una posición hacia abajo):

arrayList.remove(i);

La siguiente instrucción elimina el objeto en posición i y lo sustituye por un
segundo objeto:

arrayList.set(i,obj eto2);

Y esta crea un array que contiene todos los elementos de ArrayList:

Object[] array= arrayList.toArray();

En el siguiente ejemplo se ¡lustra el uso de los anteriores métodos. Se crea un
ArrayList que contiene distintos tipos y luego lo manipulamos, insertando,
eliminando y sustituyendo elementos. En cada paso escribimos en pantalla el
contenido del ArrayList (figura B.2.).

package es.ugr.amaro.arraylistejemplo;

import java.útil.ArrayList;
import android.app.Activity;
import android.os.Bundle;
import android.widget.Textview;

public class ArrayListEjemploActivity extends Activity {

Textview tv;
0Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);

388

setContentView(R.layout.main);
tv=(TextView) findViewByld(R.id.textView);
tv.setText(" ArrayList ejemplo")/

ArrayList arrayList = new ArrayList();

// introduce tres tipos distintos en el array
Integer il=new Integer(1);
arrayList.add(il);
Double xl=new Double(2.34);
arrayList.add(xl);
Float fl=new Float(12.3);
arrayList.add(fl)/

printArray(arrayList);

//inserta un nuevo elemento en la primera posición
String sl = ,TPepe";
arrayList.add(0,s1);
printArray(arrayList) ;

// elimina el segundo elemento
arrayList.remove(1);
printArray(arrayList) ;

// sustituye un elemento
String s2="Juan";
arrayList.set (1, s2);
printArray(arrayList);

// convierte en array
Object[] oArray= arrayList.toArray()/
int dim=oArray.length;
tv. append ("\nObj ect [] dim= ,f+dim) ;
for(int i=0;i<dim;i++){
tv. append ("\n " + i + " : fl +oArray [i]) ;
}

void printArray(ArrayList arrayList){

int size=arrayList.size () ;
tv. append ("\n Size= ff + size)/
for(int i=0;i<size;i++){

tv. append (n\n " + i + " : f, + arrayList. get (i)) ;
}

}
}

389

El gran libro de programación avanzada con Android

ArrayList ejemplo
— Size= 3
0:1
1:2.34
2:12.3

—Size= 4
0: Pepe
1:1
2: 2.34
3:12.3

—Size= 3
0: Pepe
1:2.34
2:12.3

—Size= 3
0: Pepe
1: Juan
2:12.3

ObjectQ dim= 3
0: Pepe
1: Juan
2:12.3

Figura B.2. Un ejemplo del uso de la clase ArrayList.

B.3. Genéricos

Los tipos genéricos o parametrizados fueron introducidos a partir de la versión
5 de Java para evitar errores de tipo al trabajar con colecciones de objetos. Un
ArrayList admite cualquier tipo de objetos. Si introducimos, por ejemplo, un
entero, para recuperarlo debemos añadir un cast para transformarlo de Object en
Integer.

ArrayList array= new ArrayList();
array.add(55);
int i= (Integer) array.get(0);

Se podría llegar entonces a la siguiente situación: si a continuación se introduce
una cadena en lugar de un número y se intenta recuperarla,

array.add("66");
i = (Integer) array.get(1);

la última línea genera un error de ejecución, ya que este elemento es una cadena
y no un entero. Los tipos genéricos permiten detectar y evitar este problema al

390

compilar el programa, para evitar el error. En efecto, si el array de nuestro ejemplo
solo va a contener enteros, podemos declararlo como un ArrayList de enteros
usando integer como su tipo genérico. Esto se hace añadiendo Integer como
un parámetro adicional de tipo. Los parámetros de tipo (o genéricos) se encierran
entre paréntesis angulares.

ArrayList<Integer> array= new ArrayList<Integer>();

Una ventaja de usar genéricos es que ahora no necesitamos añadir un cast al
extraer un elemento, ya que el compilador reconoce su tipo.

array.add(77);
int j= array.get(0);

Al definir el tipo genérico, ya no es posible insertar objetos de otro tipo. Por
ejemplo, la siguiente línea no compila:

array.add("8 8");

En el siguiente programa se ilustra el uso de un ArrayList con genéricos y sin
genéricos. En la figura B.3. se muestra la captura de pantalla.

package es.ugr.amaro.arraylistgenerico;

import java.útil.ArrayList;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class ArrayListGenericoActivity extends Activity {
/** Called when the activity is first created. */
QOverride
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
Textview tv=(Textview) findViewByld(R.id.textview);

// ArrayList no genérico
ArrayList arrayl= new ArrayListO;
// introducimos un entero
arrayl.add (55);
int i= (Integer) arrayl.get(0);
tv.append("\nContenido de ArrayList no
genérico:\n"+i) ;

// introducimos una String
arrayl.add("66");
// la siguiente linea da error

391

El gran libro de programación avanzada con Android

// i = (Integer) arrayl.get(1);

// la siguiente linea es correcta
String s=(String) arrayl.get(1);
tv. append ("\nSegundo elemento^ ff + s);

// ArrayList genérico (parametrizado)
ArrayList<Integer> array2= new ArrayList<Integer>()
// introducimos un entero
array2.add(77);
// no es necesario un cast
int j= array2.get(0);
tv.append("\n\nArrayList genérico:\n" + j);

// la siguiente linea no compila
//array2.add("88")/

// solo se pueden añadir enteros
array2.add(88);
j =array2.get(1);
tv.append("\nSegundo elemento: M + j);

}
}

Helio World, ArrayListGenericoActivity!
Contenido de ArrayList no genérico:
55
Segundo elemento= 56

ArrayList genérico:
77
Segundo elemento: 88

Figura B.3. Uso de un ArrayList con tipo genérico.

B.4. Definición de una clase con tipos genéricos

El uso de tipos genéricos va más allá del ejemplo anterior. Con genéricos es
posible definir clases que contienen objetos y métodos cuyo tipo se deja como un
parámetro. Los tipos variables se especifican mediante caracteres en mayúsculas
T, U, V, etc. Por ejemplo, la siguiente clase contiene un objeto de tipo T:

class DatoGenerico <T>{

// dato de tipo T
private T dato;

// método con argumento genérico
public void set (T t){

dato=t;
}
// método de tipo genérico
public T get(){

return dato;
}

}

Para crear un objeto de la clase anterior, debemos especificar un tipo como
parámetro. Por ejemplo, si va a contener una cadena, haremos T = String:

DatoGenerico<String> datol = new DatoGenerico<String>();

Si va a contener un entero, haremos T = Integer:

DatoGenerico<Integer> dato2 = new DatoGenerico<Integer>();

En el siguiente programa se muestra el uso de la clase anterior dependiente
de un tipo genérico. En la figura B.4. se muestra la captura de pantalla.

393

El gran libro de programación avanzada con Android

Helio World, GenericosActivity!
Dato genérico <String>=
Esto es ei dato 1
Dato genérico <Integer>=1234

Figura B.4. Uso de una clase definida con un tipo genérico.

package es.ugr.amaro.genéricos;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class GenericosActivity extends Activity {
TextView tv;

@Override
public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
tv=(TextView) findViewByld(R .id.textView);

// definimos un dato de <String>
DatoGenerico<String> datol

= new DatoGenerico<String>();
datol.set("Esto es el dato 1");
String cl= datol.get();
tv.append("\nDato genérico <String>= \n"+cl);

394

// definimos un dato de <Integer>
DatoGenerico<Integer> dato2

= new DatoGenerico<Integer>();
dato2.set(1234);
int c2= dato2.get();
tv.append("\nDato genérico <Integer>="+c2);

// la siguiente linea no compila (tipo incorrecto)
// dato2.set("String en lugar de Integer");

}

// una clase genérica donde el tipo T es variable
class DatoGenerico <T>{

// dato de tipo T
private T dato;

// método con argumento genérico
public void set (T t) {

dato=t;
}

// método de tipo genérico
public T get () {

return dato;
}

}
}

395

El gran libro de programación avanzada con Android

APÉNDICE C

Versiones de Android

Esta es la lista de las versiones de Android hasta la fecha. A todas se las
conoce también con nombres de dulces, como se puede comprobar en las
traducciones. Las iniciales siguen el orden alfabético, comenzando por la letra C,
que casualmente corresponde a la primera nota musical (Do) en inglés.

Cupcake: Android 1.5 (magdalena glaseada)

Donut: Android 1.6 (buñuelo o rosquilla)

Eclair: Android 2.1 (pastel éclair o pepito)

Froyo (Frozen Yogourt): Android 2.2 (yogur helado)

Gingerbread: Android 2.3 (pan de gengibre)

Honeycomb: Android 3 (panal de miel)

Ice Cream Sandwich: Android 4.0 (sándwich de helado)

Jelly Bean: Android 4.1 (gominola)

396

BIBLIOGRAFIA

Ableson, Frank; Sen, Robi; King, Chris. Android in Action. 2nd edition. Manning
Publications Co., Stamford, CT, 2011

Amaro Soriano, José Enrique. Android: programación de dispositivos móviles a
través de ejemplos, Marcombo, Barcelona, 2012

Burnette, Ed. Helio, Android. Introducing Google's Mobile Development Platform.
The Pragmatic Bookshelf, Raileigh, North Carolina, 2008

Darcey, Lauren; Conder, Shane. Sams Teach
Development in 24 Hours. Sams Publishing, Indianapolis, Indiana, 2010

DiMarzio, J.F. Android. A Programmer's Guide. The McGraw-Hill Companies, New
York, 2008

Felker, Donn; Dobbs, Joshua. Android Application Development For Dummies.
Wiley Publishing, Inc., Indianapolis, Indiana, 2011

Gargenta, Marko. Learning Android.O’Reilly Media Inc., Sebastopol, CA, 2011

Hashimi, Sayed Y.; Komatineni, Satya; MacLean, Dave. Pro Android 2. Apress,
New York, 2010

Hashimi, Sayed Y.; Komatineni, Satya; MacLean, Dave. Pro Android 3. Apress,
New York, 2011

Jordán, Lucas; Greyling, Pieter. Practica! Android Projects. Apress, New York,
2011

Meier, Reto. Professional Android 2 Application Development. Wiley Publishing
Inc., Indianapolis, Indiana, 2010

Morris, Jason. Android User Interface Development. Beginner's Guide. Packt
Publishing, Olton, Birmingham, 2011

Murphy, Mark L. Beginning Android 2. Apress, New York, 2010

397

El gran libro de programación avanzada con Android

Smith, Dave; Friesen, Jeff. Android Recipes. A Problem-Solution Approach.
Apress, New York, 2011

Steele, James; To, Nelson. The Android Developer's Cookbook, Building
Applications with the Android SDK. Pearson Education, Inc., Boston, 2011

Tomás Gironés, Jesús. El gran libro de Android. Marcombo, Barcelona, 2011

Van Every, Shawn. Pro Android Media. Developing Graphics, Music, Video, and
Rich Media Apps for Smartphones and Tablets. Apress, New York, 2009

Wei-Meng, Lee. Beginning Android Application Development. Wiley Publishing,
Inc., Indianapolis, Indiana, 2011

Zechner, Mario. Beginning Android Games. Apress, New York, 2011

398

Esta edición se terminó de imprimir en diciembre de 2012. Publicada por
ALFAOMEGA GRUPO EDITOR, S.A. de C.V. Pitagoras No. 1139

Col. Del Valle, Benito Juárez, C.P. 03311, México, D.F.
La impresión y encuadernación se realizó en

CARGRAPHICS, S.A. de C.V. Calle Aztecas No.27
Col. Santa Cruz Acatlán, Naucalpan, Estado de México, C.P. 53150. México

El gran libro de programación avanzada con Android
Si en el libro Android, Programación de dispositivos móviles a través de ejemplos
(Marcombo, 2012), se presentaba el material didáctico esencial para iniciarse rápi­
damente en la programación del sistema, en este segundo libro, el autor introduce
al lector en té c n ic a s m á s a v a n z a d a s (a u n q u e no n e c e s a r ia m e n te m á s c o m p l i c a d a s)

para realizar sus propios programas, para smartphone, tablet o cualquier otro dis­
positivo con el sistema operativo Android.

El lector aprenderá a programar: animaciones interpoladas, animaciones de foto­
gramas, procesos en background, sensores, diálogos, menús, visualización de lis­
tas, bases de datos, proveedores de contenidos, comunicación entre actividades,
Internet y RSS feeds, correo electrónico, localización y mapas de Google.

El material contenido en esta obra se plantea como una colección de más de 80
ejemplos escritos expresamente para ¡lustrar alguna técnica particular de Android.
Los ejemplos son aplicaciones completas de Android acompañados de capturas
de pantalla.

La obra está dirigida a no especialistas, estudiantes, profesores y público en gene­
ral. No se requieren conocimientos profundos de Java.

José Enrique Amaro Soriano es autor del libro Android: Programación de Dis­
positivos Móviles a Través de Ejemplos. Es Físico Nuclear y Profesor de la Univer­
sidad de Granada, en el Departamento de Física Atómica, Molecular y Nuclear.
Es investigador responsable del Grupo de Física Nuclear a Energías Intermedias
y miembro del Instituto Carlos I de Física Teórica y Computacional. Fía enseñado,
entre otras materias, Física Cuántica, Física Atómica, Física Nuclear, Radiactivi­
dad, Reacciones Nucleares y Tecnología Nuclear. Ha impartido cursos de Progra­
mación de Android para Científicos, en la Escuela de Posgrado de la Universidad
de Granada, y de Programación de Android con Java, en la Fundación Universidad-
Empresa.

