

C++
Soluciones de programación

Acerca del autor
Herbert Schildt es una de las principales autoridades
en C++, C, Java y C# y es maestro programador en
Windows. Se han vendido más de 3.5 millones de
copias de los libros sobre programación de Herb en
todo el mundo y se han traducido a todos los idiomas
importantes. Es autor de gran cantidad de bestsellers
de C++, incluidos C++: The Complete Reference, C++:
A Beginner’s Guide, C++ from the Ground Up y STL
Programming form the Ground Up. Sus otros best sellers
incluyen C: Manual de referencia; Java: Manual de refer-
encia; Fundamentos de Java; Java, soluciones de program-
ación y Java 2: Manual de referencia. Schildt tiene títulos
de grado y posgrado de la Universidad de Illinois. Su
sitio Web es www.HerbSchildt.com.

Acerca del editor técnico
Jim Keogh introdujo la programación en PC en
Estados Unidos en su columna Popular Electronics
Magazine en 1982, cuatro años después de que Apple
Computer empezó en una cochera.

Fue integrante del equipo que construyó una de las
primeras aplicaciones de Windows para una fi rma de
Wall Street, presentada por Bill Gates en 1986. Keogh
ha dedicado casi dos décadas a desarrollar sistemas de
cómputo para fi rmas de Wall Street, como Salomon,
Inc., y Bear Stearns, Inc.

Keogh formó parte del cuerpo docente de la Uni-
versidad de Columbia, donde impartió cursos de tec-
nología, incluido el laboratorio de desarrollo de Java.
Desarrolló y dirigió la carrera de comercio electrónico
en la Universidad de Columbia. Actualmente es parte
del cuerpo docente de la Universidad de Nueva York.
Es autor de J2EE: The Complete Reference, J2ME: The
Complete Reference, ambos publicados por McGraw-
Hill, y más de 55 títulos adicionales. Entre sus otros li-
bros se incluyen Linux Programming for Dummies, Unix
Programming for Dummies, Java Database Programming
for Dummies, Essential Guide to Networking, Essential
Guide to Computer Hardware, The C++ Programmer’s
Notebook y E-Mergers.

C++
Soluciones de programación

Herb Schildt

Traducción

Eloy Pineda Rojas

Traductor profesional

MÉXICO • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA • MADRID • NUEVA YORK

SAN JUAN • SANTIAGO • SÃO PAULO • AUCKLAND • LONDRES • MILÁN • MONTREAL

NUEVA DELHI • SAN FRANCISCO • SINGAPUR • ST. LOUIS • SIDNEY • TORONTO

DERECHOS RESERVADOS © 2009, respecto a la primera edición en español por
McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.
 Corporativo Punta Santa Fe
 Prolongación Paseo de la Reforma 1015, Torre A,
 Piso 17, Colonia Desarrollo Santa Fe,
 Delegación Álvaro Obregón,
 C.P. 01376, México, D.F.
 Miembro de la Cámara Nacional de la Industria Editorial Mexicana, Reg. Núm. 736

ISBN: 978-970-10-7266-0

1234567890 0876543219

Impreso en México Printed in Mexico

Director editorial: Fernando Castellanos Rodríguez

Editor de desarrollo: Miguel Ángel Luna Ponce

Supervisor de producción: Marco Antonio Gómez Ortiz

C++ SOLUCIONES DE PROGRAMACIÓN

 Prohibida la reproducción total o parcial de esta obra,

 por cualquier medio, sin la autorización escrita del editor.

Traducido de la primera edición de

Herb Schildt's C++ Programming Cookbook
By: Herb Schildt

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved

ISBN: 978-0-07-148860-0

 v

Introducción . xvii

 1. Revisión general . 1
Qué contiene . 1
Cómo están organizadas las soluciones . 2
Una breve advertencia . 3
Es necesaria experiencia en C++ . 3
¿Qué versión de C++? . 4
Dos convenciones de codifi cación . 4

Regreso de un valor de main() . 4
¿Uso del espacio de nombres std? . 5

 2. Manejo de cadenas . 7
Revisión general de las cadenas terminadas en un carácter nulo 8
Revisión general de la clase string . 11

Excepciones de cadenas . 16
Realice operaciones básicas en cadenas terminadas en un carácter nulo 16

Paso a paso . 17
Análisis . 17
Ejemplo . 18
Opciones . 19

Busque una cadena terminada en un carácter nulo . 20
Paso a paso . 21
Análisis . 21
Ejemplo . 21
Opciones . 22

Invierta una cadena terminada en un carácter nulo . 23
Paso a paso . 23
Análisis . 24
Ejemplo . 24
Opciones . 25

Ignore diferencias entre mayúsculas y minúsculas cuando compare
cadenas terminadas en un carácter nulo . 27

Paso a paso . 27
Análisis . 28
Ejemplo . 29
Opciones . 31

Cree una función de búsqueda y reemplazo para cadenas terminadas
en un carácter nulo . 31

Contenido

vi C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Paso a paso . 32
Análisis . 32
Ejemplo . 33
Opciones . 36

Ordene en categorías caracteres dentro de una cadena terminada
en un carácter nulo . 39

Paso a paso . 39
Análisis . 40
Ejemplo . 40
Ejemplo adicional: conteo de palabras . 41
Opciones . 43

Convierta en fi chas una cadena terminada en un carácter nulo 44
Paso a paso . 45
Análisis . 45
Ejemplo . 46
Opciones . 47

Realice operaciones básicas en objetos de string . 51
Paso a paso . 52
Análisis . 52
Ejemplo . 55
Opciones . 58

Busque un objeto string . 59
Paso a paso . 60
Análisis . 60
Ejemplo . 61
Ejemplo adicional: una clase de conversión en fi chas para objetos string . . . 63
Opciones . 65

Cree una función de búsqueda y reemplazo para objetos string 66
Paso a paso . 66
Análisis . 67
Ejemplo . 67
Opciones . 69

Opere en objetos string mediante iteradores . 70
Paso a paso . 71
Análisis . 71
Ejemplo . 73
Opciones . 75

Cree una búsqueda no sensible a mayúsculas y minúsculas y funciones
de búsqueda y reemplazo para objetos string . 76

Paso a paso . 77
Análisis . 77
Ejemplo . 78
Opciones . 81

Convierta un objeto string en una cadena terminada en un carácter nulo 83
Paso a paso . 83

 C o n t e n i d o vii

Análisis . 83
Ejemplo . 83
Opciones . 85

Implemente la resta para objetos string . 85
Paso a paso . 86
Análisis . 87
Ejemplo . 88
Opciones . 90

 3. Trabajo con contenedores STL . 93
Revisión general de STL . 94

Contenedores . 94
Algoritmos . 94
Iteradores . 94
Asignadores . 95
Objetos de función . 95
Adaptadores . 96
Predicados . 96
Adhesivos y negadores . 96

La clase de contenedor . 96
Funcionalidad común . 98

Problemas de rendimiento . 101
Técnicas básicas de contenedor de secuencias . 102

Paso a paso . 103
Análisis . 103
Ejemplo . 105
Opciones . 109

Use vector . 111
Paso a paso . 111
Análisis . 112
Ejemplo . 115
Opciones . 118

Use deque . 118
Paso a paso . 119
Análisis . 119
Ejemplo . 120
Opciones . 124

Use list . 124
Paso a paso . 125
Análisis . 125
Ejemplo . 127
Opciones . 130

Use los adaptadores de contenedor de secuencias: snack, queue
y priority_queue . 132

Paso a paso . 132

viii C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis . 133
Ejemplo . 135
Ejemplo adicional: use stack para crear una calculadora

de cuatro funciones . 137
Opciones . 140

Almacene en un contenedor objetos defi nidos por el usuario. 140
Paso a paso . 140
Análisis . 141
Ejemplo . 141
Opciones . 144

Técnicas básicas de contenedor asociativo . 145
Paso a paso . 146
Análisis . 147
Ejemplo . 150
Opciones . 155

Use map . 156
Paso a paso . 157
Análisis . 157
Ejemplo . 159
Opciones . 162

Use multimap . 163
Paso a paso . 163
Análisis . 163
Ejemplo . 165
Opciones . 167

Use set y multiset . 169
Paso a paso . 170
Análisis . 170
Ejemplo . 172
Ejemplo adicional: use multiset para almacenar objetos

con claves duplicadas . 174
Opciones . 178

 4. Algoritmos, objetos de función y otros componentes de STL 181
Revisión general de los algoritmos . 182

¿Por qué se necesitan los algoritmos? . 182
Los algoritmos son funciones de plantilla . 182
Las categorías de algoritmos . 183

Revisión general de objetos de función . 184
Revisión general de adhesivos y negadores . 188
Ordene un contenedor . 189

Paso a paso . 189
Análisis . 189
Ejemplo . 190
Opciones . 191

 C o n t e n i d o ix

Encuentre un elemento en un contenedor . 192
Paso a paso . 193
Análisis . 193
Ejemplo . 194
Ejemplo adicional: extraiga frases de un vector de caracteres 195
Opciones . 197

Use search() para encontrar una secuencia coincidente . 199
Paso a paso . 200
Análisis . 200
Ejemplo . 200
Opciones . 202

Invierta, gire y modifi que el orden de una secuencia . 203
Paso a paso . 204
Análisis . 204
Ejemplo . 204
Ejemplo adicional: use iteradores inversos para realizar

una rotación a la derecha . 206
Opciones . 207

Recorra en ciclo un contenedor con for_each() . 208
Paso a paso . 208
Análisis . 208
Ejemplo . 209
Opciones . 210

Use transform() para cambiar una secuencia . 211
Paso a paso . 211
Análisis . 212
Ejemplo . 212
Opciones . 214

Realice operaciones con conjuntos . 217
Paso a paso . 217
Análisis . 218
Ejemplo . 219
Opciones . 221

Permute una secuencia . 222
Paso a paso . 222
Análisis . 222
Ejemplo . 223
Opciones . 224

Copie una secuencia de un contenedor a otro . 225
Paso a paso . 225
Análisis . 225
Ejemplo . 226
Opciones . 227

Reemplace y elimine elementos en un contenedor . 227
Paso a paso . 228

x C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis . 228
Ejemplo . 228
Opciones . 230

Combine dos secuencias ordenadas . 231
Paso a paso . 231
Análisis . 231
Ejemplo . 232
Opciones . 234

Cree y administre un heap . 235
Paso a paso . 235
Análisis . 235
Ejemplo . 236
Opciones . 238

Cree un algoritmo . 238
Paso a paso . 238
Análisis . 239
Ejemplo . 240
Ejemplo adicional: use un predicado con un algoritmo personalizado 242
Opciones . 244

Use un objeto de función integrado . 245
Paso a paso . 245
Análisis . 246
Ejemplo . 246
Opciones . 248

Cree un objeto de función personalizado . 248
Paso a paso . 249
Análisis . 249
Ejemplo . 250
Ejemplo adicional: use un objeto de función para mantener

información de estado . 253
Opciones . 255

Use un adhesivo . 255
Paso a paso . 256
Análisis . 256
Ejemplo . 257
Opciones . 258

Use un negador . 259
Paso a paso . 259
Análisis . 260
Ejemplo . 260
Opciones . 261

Use el adaptador de apuntador a función . 262
Paso a paso . 262
Análisis . 262
Ejemplo . 263

 C o n t e n i d o xi

Opciones . 265
Use los iteradores de fl ujo . 265

Paso a paso . 266
Análisis . 266
Ejemplo . 269
Ejemplo adicional: cree un fi ltro de archivo de STL . 272
Opciones . 273

Use los adaptadores de iterador de inserción . 274
Paso a paso . 274
Análisis . 275
Ejemplo . 275
Opciones . 277

 5. Trabajo con E/S . 279
Revisión general de E/S . 280

Flujos de C++ . 280
Las clases de fl ujo de C++ . 281
Las especializaciones de clases relacionadas con los fl ujos 285
Flujos predefi nidos de C++ . 287
Las marcas de formato . 287
Los manipuladores de E/S . 287

Revisión de errores . 288
Apertura y cierre de un archivo . 289
Escriba datos formados en un archivo de texto . 293

Paso a paso . 293
Análisis . 294
Ejemplo . 295
Opciones . 296

Lea datos formados de un archivo de texto . 296
Paso a paso . 297
Análisis . 297
Ejemplo . 298
Opciones . 300

Escriba datos binarios sin formar en un archivo . 300
Paso a paso . 301
Análisis . 301
Ejemplo . 302
Opciones . 304

Lea datos binarios sin formar de un archivo . 305
Paso a paso . 305
Análisis . 306
Ejemplo . 307
Opciones . 309

Use get() y getline() para leer un archivo . 310
Paso a paso . 310

xii C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis . 310
Ejemplo . 311
Opciones . 313

Lea un archivo y escriba en él . 314
Paso a paso . 314
Análisis . 315
Ejemplo . 316
Opciones . 317

Detección de EOF . 317
Paso a paso . 318
Análisis . 318
Ejemplo . 318
Ejemplo adicional: una utilería simple de comparación de archivos 320
Opciones . 322

Use excepciones para detectar y manejar errores de E/S . 322
Paso a paso . 323
Análisis . 323
Ejemplo . 324
Opciones . 326

Use E/S de archivo de acceso aleatorio . 326
Paso a paso . 327
Análisis . 327
Ejemplo . 328
Ejemplo adicional: use E/S de acceso aleatorio para acceder

a registros de tamaño fi jo . 329
Opciones . 332

Revise un archivo . 332
Paso a paso . 333
Análisis . 333
Ejemplo . 334
Opciones . 336

Use los fl ujos de cadena . 337
Paso a paso . 337
Análisis . 338
Ejemplo . 338
Opciones . 340

Cree insertadores y extractores personalizados . 341
Paso a paso . 341
Análisis . 342
Ejemplo . 343
Opciones . 344

Cree un manipulador sin parámetros . 344
Paso a paso . 345
Análisis . 345
Ejemplo . 346

 C o n t e n i d o xiii

Opciones . 347
Cree un manipulador con parámetros . 348

Paso a paso . 348
Análisis . 349
Ejemplo . 350
Opciones . 352

Obtenga o establezca una confi guración regional y de idioma de fl ujo 352
Paso a paso . 353
Análisis . 353
Ejemplo . 353
Opciones . 355

Use el sistema de archivos de C . 355
Paso a paso . 356
Análisis . 356
Ejemplo . 359
Opciones . 361

Cambie el nombre de un archivo y elimínelo . 363
Paso a paso . 363
Análisis . 363
Ejemplo . 364
Opciones . 365

 6. Formación de datos . 367
Revisión general del formato . 368

Las marcas de formato . 368
Los atributos de ancho de campo, precisión y carácter de relleno 370
Funciones miembro de fl ujo relacionadas con formato 370
Los manipuladores de E/S . 370
Forme datos utilizando la biblioteca de localización . 371
La familia de funciones printf() . 371
La función strftime() . 372

Revisión general de las facetas . 372
Acceda a las marcas de formato mediante las funciones de miembro de fl ujo 374

Paso a paso . 374
Análisis . 374
Ejemplo . 375
Ejemplo adicional: despliegue la confi guración

de la marca de formato . 376
Opciones . 378

Despliegue valores numéricos en diversos formatos . 379
Paso a paso . 379
Análisis . 380
Ejemplo . 380
Opciones . 382

Establezca la precisión . 383

xiv C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Paso a paso . 383
Análisis . 383
Ejemplo . 384
Opciones . 384

Establezca el ancho de campo y el carácter de relleno . 385
Paso a paso . 385
Análisis . 385
Ejemplo . 386
Ejemplo adicional: alinee columnas de números . 387
Opciones . 388

Justifi que la salida . 388
Paso a paso . 388
Análisis . 389
Ejemplo . 389
Opciones . 391

Use los manipuladores de E/S para formar datos . 391
Paso a paso . 392
Análisis . 392
Ejemplo . 394
Opciones . 395

Forme valores numéricos para una confi guración regional y de idioma. 395
Paso a paso . 396
Análisis . 396
Ejemplo . 396
Opciones . 397

Forme valores monetarios empleando la faceta money_put . 398
Paso a paso . 399
Análisis . 399
Ejemplo . 400
Opciones . 401

Use las facetas moneypunct y numpunct . 402
Paso a paso . 402
Análisis . 403
Ejemplo . 404
Opciones . 405

Forme la fecha y hora con la faceta time_put . 407
Paso a paso . 408
Análisis . 408
Ejemplo . 410
Opciones . 411

Forme datos en una cadena . 412
Paso a paso . 412
Análisis . 412
Ejemplo . 412
Opciones . 414

 C o n t e n i d o xv

Forme la fecha y hora con strftime() . 414
Paso a paso . 414
Análisis . 415
Ejemplo . 415
Opciones . 417

Use printf() para formar datos . 418
Paso a paso . 419
Análisis . 419
Ejemplo . 422
Opciones . 424

 7. Popurrí . 425
Técnicas básicas de sobrecarga de operadores . 426

Paso a paso . 426
Análisis . 427
Ejemplo . 432
Opciones . 435

Sobrecargue el operador de llamada a función () . 437
Paso a paso . 437
Análisis . 437
Ejemplo . 439
Opciones . 440

Sobrecargue el operador de subíndice [] . 441
Paso a paso . 441
Análisis . 441
Ejemplo . 442
Opciones . 445

Sobrecargue el operador –> . 445
Paso a paso . 446
Análisis . 446
Ejemplo . 446
Ejemplo adicional: una clase simple de apuntador seguro 447
Opciones . 451

Sobrecargue new y delete . 451
Paso a paso . 451
Análisis . 452
Ejemplo . 453
Opciones . 456

Sobrecargue los operadores de aumento y disminución . 457
Paso a paso . 457
Análisis . 457
Ejemplo . 459
Opciones . 462

Cree una función de conversión . 463
Paso a paso . 463

xvi C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis . 463
Ejemplo . 464
Opciones . 466

Cree un constructor de copia . 466
Paso a paso . 467
Análisis . 467
Ejemplo . 468
Ejemplo adicional: una matriz segura que usa asignación dinámica 471
Opciones . 477

Determine un tipo de objeto en tiempo de ejecución . 478
Paso a paso . 479
Análisis . 479
Ejemplo . 480
Opciones . 484

Use números complejos . 484
Paso a paso . 485
Análisis . 485
Ejemplo . 486
Opciones . 487

Use auto_ptr . 487
Paso a paso . 488
Análisis . 488
Ejemplo . 489
Opciones . 490

Cree un constructor explícito . 491
Paso a paso . 491
Análisis . 491
Ejemplo . 492
Opciones . 494

Índice . 495

 xvii

C
on los años, amigos y lectores pidieron un libro de soluciones para Java, donde compar-
tiera algunas de las técnicas y los métodos que uso cuando programo. Desde el principio
me gustó la idea, pero no lograba darme tiempo para ella en un calendario de escritura

muy ocupado. Como muchos lectores saben, escribo demasiado acerca de varias facetas de la
programación, con énfasis especial en C++, Java y C#. Debido a los rápidos ciclos de revisión de
estos lenguajes, dedico casi todo mi tiempo disponible a actualizar mis libros para que cubran las
versiones más recientes de esos lenguajes. Por fortuna, a principios de 2007 se abrió una ventana
de oportunidad y fi nalmente pude dedicar tiempo al proyecto. Empecé con Java, lo que llevó a
mi primer Soluciones de programación de Java. En cuanto terminé el libro de Java, pasé a C++. El
resultado es, por supuesto, este libro. Debo admitir que ambos proyectos están entre los que más
he disfrutado.

Con base en el formato de soluciones, este libro destila la esencia de muchas técnicas de
propósito general en un conjunto de técnicas paso a paso. En cada una se describe un conjunto de
componentes clave, como clases, funciones y encabezados. Luego se muestran los pasos necesarios
para ensamblar esos componentes en una secuencia de código que logre los resultados deseados.
Esta organización facilita la búsqueda de técnicas en que está interesado para ponerla en acción.

En realidad, “en acción” es una parte importante de este libro. Creo que los buenos libros de
programación contienen dos elementos: teoría sólida y aplicación práctica. En las soluciones, las
instrucciones paso a paso y los análisis proporcionan la teoría. Para llevar esa teoría a la práctica,
siempre se incluye un ejemplo completo de código. En los ejemplos se demuestra en forma con-
creta, sin ambigüedades, la manera en que pueden aplicarse. En otras palabras, en los ejemplos se
eliminan las “adivinanzas” y se ahorra tiempo.

Aunque ningún libro puede incluir todas las soluciones que pudieran desearse (hay un núme-
ro casi ilimitado de ellas), traté de abarcar un amplio rango de temas. Mis criterios para incluir una
solución se analizan de manera detallada en el capítulo 1, pero, en resumen, incluí las que serían
útiles para muchos programadores y que responderían preguntas frecuentes. Aun con estos crite-
rios, fue difícil decidir qué incluir y qué dejar fuera. Ésta fue la parte más desafi ante de la escritura
del libro. Al fi nal, se impusieron la experiencia, el juicio y la intuición. Por fortuna, ¡he incluido
algo para satisfacer a cada programador!

HS

Introducción

xviii C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Código de ejemplo en Web

El código fuente para todos los ejemplos de este libro está disponible de manera gratuita en Web
en www.mcgraw-hill-educacion.com

Más de Herbert Schildt

C++ Soluciones de programación es sólo uno de los muchos libros de programación de Herb. He aquí
algunos otros que le resultarán de interés:

Para aprender más acerca de C++, estos libros le resultarán especialmente útiles.

C++: The Complete Reference

C++: A Begginer’s Guide

C++ from the Ground Up

STL Programming from the Ground Up

The Art of C++

Para aprender más acerca de Java recomendamos:

Java Soluciones de programación

Java: Manual de referencia, séptima edición

Java 2: Manual de referencia

Fundamentos de Java

Swing: A Begginer’s Guide

Para aprender acerca de C#, sugerimos los siguientes libros de Schildt:

C#: The Complete Reference

C#: A Begginer’s Guide

Si quiere aprender acerca del lenguaje C, entonces le interesará el siguiente título.

C: Manual de referencia

Cuando necesite respuestas sólidas, rápidas, busque algo de Herbert Schildt,
la autoridad reconocida en programación.

 1

C A P Í T U L O

Revisión general

E
n este libro se presenta una colección de técnicas que muestran la manera de realizar varias
tareas de programación en C++. En él, se usa el formato de “soluciones”. Con cada una se
ilustra la manera de realizar una operación específi ca. Por ejemplo, hay soluciones que leen

bytes de un archivo, invierten una cadena, ordenan el contenido de un contenedor, forman datos
numéricos, etc. De la misma manera que una receta en un libro de cocina describe un conjunto de
ingredientes y una secuencia de instrucciones necesarias para preparar un platillo, cada técnica
de este libro describe un conjunto de elementos clave de un programa y la secuencia de pasos
necesarios que debe usarse para completar una tarea de programación.

Al fi nal de cuentas, el objetivo de este libro es ahorrar tiempo y esfuerzo durante el desarrollo
de un programa. Muchas tareas de programación constan de un conjunto estándar de funcio-
nes y clases, que debe aplicarse en una secuencia específi ca. El problema es que en ocasiones no
sabe cuáles funciones usar o qué clases son apropiadas. En lugar de tener que abrirse paso entre
grandes cantidades de documentación y tutoriales en línea para determinar la manera de encarar
alguna tarea, puede buscar su solución. En cada solución se muestra una manera de llegar a una
secuencia, describiendo los elementos necesarios y el orden en que deben usarse. Con esta infor-
mación, puede diseñar una solución que se amolde a su necesidad específi ca.

Qué contiene

Este libro no es exhaustivo. El autor decidió qué incluir y dejar fuera. Al elegir las soluciones
para este libro, el autor se concentró en cuatro áreas principales: manejo de cadenas, biblioteca
estándar de plantillas (STL, Standard Template Library), E/S y formato de datos. Se trata de
temas esenciales que interesan a una amplia variedad de programadores. Son temas muy exten-
sos, que requieren muchas páginas para explorarse a fondo. Como resultado, cada uno de estos
temas se volvió la base para uno o más capítulos. Sin embargo, es importante establecer que el
contenido de esos capítulos no está limitado sólo a esos temas. Como la mayoría de los lectores
sabe, casi todo en C++ está interrelacionado. En el proceso de crear soluciones para un aspecto
de C++, suelen incluirse varios otros, como localización, asignación dinámica, o sobrecarga de
operadores. Por tanto, también suelen ilustrar otras técnicas de C++.

1

2 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Además de las soluciones relacionadas con los temas principales, se añadieron otras que el
autor deseaba incluir pero que no abarcarían un capítulo completo. Éstas se agruparon en
el capítulo fi nal. Varias de esas soluciones se concentran en la sobrecarga de operadores más espe-
cializados de C++, como [], –>, new y delete. Otras ilustran el uso de las clases auto_ptr y com-
plex o muestran cómo crear una función de conversión, un constructor de copia o uno explícito.
También hay una solución que demuestra el ID de tipo en tiempo de ejecución.

Por supuesto, la elección de los temas sólo fue el principio del proceso de selección. Dentro de
cada categoría, se tuvo que decidir qué incluir y qué dejar fuera. En general, se incluyó una solu-
ción si cumple los dos criterios siguientes:

1. La técnica es útil para un amplio rango de programadores.

2. Proporciona una respuesta a una pregunta frecuente de programación.

El primer criterio se explica por sí solo. Se incluyeron soluciones que describen la manera de
completar un conjunto de tareas que, por lo general, se encontrarían cuando se crean aplicaciones
de C++. Algunas de ellas ilustran un concepto general que puede adaptarse para resolver varios
tipos diferentes de problemas. Por ejemplo, en el capítulo 2 se muestra una solución que busca
una sustitución dentro de una cadena. Este procedimiento general es útil en varios contextos,
como encontrar una dirección de correo electrónico o un número telefónico dentro de una frase,
o extraer una palabra clave de una consulta de base de datos. Otras soluciones describen técnicas
más específi cas pero usadas ampliamente. Por ejemplo, en el capítulo 6 se muestra cómo formar la
fecha y la hora.

El segundo criterio se basa en la experiencia del autor en libros de programación. Durante los
años en que ha estado escribiendo, le han planteado cientos y cientos de preguntas tipo “¿Cómo
hacer?” por parte de los lectores. Estas preguntas vienen de todas las áreas de programación de
C++ y van de muy fáciles a muy difíciles. Sin embargo, ha encontrado que un núcleo central
de preguntas se presenta una y otra vez. He aquí un ejemplo: “¿Cómo formo un número para
que tenga dos lugares decimales?” He aquí otra: “¿Cómo creo un objeto de función?” Hay muchas
otras. Estos mismos tipos de preguntas también se presentan con frecuencia en varios foros de
programadores en Web. El autor utiliza estas preguntas frecuentes para guiar su selección.

Las soluciones de este libro abarcan varios niveles de habilidad. Algunas ilustran técnicas bá-
sicas, como leer bytes de un archivo o sobrecargar el operador << para dar salida a objetos de una
clase personalizada. Otras son más avanzadas, como usar la biblioteca de localización para formar
valores monetarios, convertir una cadena en fi chas o sobrecargar el operador []. Por tanto, el nivel
de difi cultad de una solución individual puede ir de relativamente fácil a muy avanzado. Por
supuesto, casi todo en programación es fácil una vez que sabe cómo hacerlo, pero difícil cuando
no. Por tanto, no se sorprenda si algunas parecen obvias. Sólo signifi ca que sabe cómo realizar esa
tarea.

Cómo están organizadas

Cada solución de este libro usa el mismo formato, que tiene las siguientes partes:

• Una tabla de elementos clave usados por la solución.

• Una descripción del problema que resuelve.

• Los pasos necesarios para completarla.

• Un análisis a profundidad de los pasos.

 C a p í t u l o 1 : R e v i s i ó n g e n e r a l 3

• Un ejemplo de código que aplica la solución.

• Opciones que sugieren otras maneras de llegar a una solución.

Una solución empieza por describir la tarea que se realizará. Los elementos clave empleados
se muestran en una tabla. Entre éstas se incluyen funciones, clases y encabezados necesarios.
Por supuesto, llevar una solución a la práctica puede implicar el uso de elementos adicionales,
pero los elementos clave son fundamentales para la tarea que se tiene a mano.

Cada solución presenta entonces instrucciones paso a paso que resumen el procedimiento.
A éstas les sigue un análisis a fondo de los pasos. En muchos casos, el resumen bastará, pero los
detalles estarán allí si los necesita.

A continuación, se presenta un ejemplo de código que muestra la solución ejecutándose. Todos
los ejemplos de código se presentan completos. Esto evita ambigüedades y le permite ver con cla-
ridad precisamente lo que está sucediendo sin tener que llenar detalles adicionales. En ocasiones,
se incluye un ejemplo extra que ilustra aún más la manera en que puede aplicarse la solución.

Se concluye con un análisis de varias opciones. Esta sección es especialmente importante porque
sugiere diferentes modos de implementar una solución u otra manera de pensar en el problema.

Una breve advertencia

Cuando utilice este libro debe tener en cuenta algunos elementos importantes. En primer lugar,
una solución muestra una manera de resolver una situación. Es posible que existan (y a menudo
existen) otras maneras. Tal vez su aplicación específi ca requiera un método diferente del mos-
trado. Las soluciones de este libro pueden servir como puntos de partida, ayudar a elegir un
método general para llegar a una respuesta y despertar su imaginación. Sin embargo, en todos
los casos, debe determinar lo que es apropiado para su aplicación, y lo que no lo es.

En segundo lugar, es importante entender que los ejemplos de código no están optimizados
para su desempeño. Están optimizados para clarifi car y mejorar la comprensión. Su propósito es ilustrar
con claridad los pasos de la solución. En muchos casos, tendrá pocos problemas al escribir un
código más efi ciente o corto. Además, los ejemplos son exactamente eso: ejemplos. Son usos sim-
ples que no necesariamente refl ejan el modo en que escribirá el código para su propia aplicación.
En todas las circunstancias, debe crear su propio método que se adapte a las necesidades de su
aplicación.

En tercer lugar, cada ejemplo de código contiene el manejo de errores apropiado para ese
ejemplo específi co, pero tal vez no sea idóneo en otras situaciones. En todos los casos, debe
manejar apropiadamente los diversos errores y excepciones que pueden resultar cuando adapte
un procedimiento para usarlo en su propio código. Es necesario repetir esto de otra manera.
Cuando se implementa una solución, debe proporcionar el manejo de errores apropiado para
su aplicación. No basta simplemente con suponer que la manera en que se manejan (o se dejan
de manejar) los errores o excepciones en un ejemplo es sufi ciente o adecuada para su uso. Por lo
general, se requerirá manejo adicional de errores en las aplicaciones reales.

Es necesaria experiencia en C++

Este libro es para todos los programadores en C++, sean principiantes o experimentados. Sin em-
bargo, en él se supone que el lector cuenta con los fundamentos de la programación en C++,

4 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

incluidas las palabras clave y la sintaxis, y que está familiarizado con las funciones y las clases cen-
trales de las bibliotecas. También debe tener la capacidad de crear, compilar y ejecutar programas
de C++. Nada de esto se enseña aquí. (En este libro sólo se trata la aplicación de C++ a diversos
problemas de programación. No intenta enseñar fundamentos del lenguaje C++.) Si necesita me-
jorar sus habilidades en C++, se recomiendan los libros C++: The Complete Reference, C++ From
the Ground Up y C++: A Beginner’s Guide, de Herb Schildt. Publicados por McGraw-Hill, Inc.

¿Qué versión de C++?

El código y los análisis de este libro se basan en el estándar internacional ANSI/ISO para C++. A
menos que se determine explícitamente, no se usan extensiones que no son estándar. Como resul-
tado, casi todas las técnicas presentadas aquí son transportables y pueden usarse con cualquier
compilador de C++ que se adhiera al estándar internacional para C++. El código de este libro se
desarrolló con Visual C++ de Microsoft. Se usaron tanto Visual Studio como Visual C++ Express
(que está disponible sin costo alguno en Microsoft).

NOTA Al momento de escribir este libro, el estándar internacional para C++ está en proceso de actuali-
zación. Se están contemplando muchas características nuevas. Sin embargo, ninguna de ellas aún es
parte de C++, ni se usa en este libro. Por supuesto, en futuras ediciones de este libro se utilizarán estas
nuevas características.

Dos convenciones de codifi cación

Antes de pasar a las soluciones, hay dos temas que deben atenderse y que se relacionan con la ma-
nera en que está escrito el código de este libro. El primero se relaciona con el regreso de un valor
desde main(). El segundo se relaciona con el uso de namespace std. A continuación se explican
las decisiones tomadas en relación con estas dos características.

Regreso de un valor de main()
Los ejemplos de código de este libro siempre devuelven explícitamente un valor entero de main().
Por convención, un valor devuelto de cero indica una terminación exitosa. Un valor diferente de
cero indica alguna forma de error.

Sin embargo, no es necesaria la devolución explícita de un valor de main(), porque, en pala-
bras del estándar internacional para C++:

“Si el control alcanza el fi nal de main sin encontrar una instrucción return, el efecto es ejecutar return 0;”

Por esto, en ocasiones encontrará código que no devuelve explícitamente un valor de main(),
dependiendo en cambio del valor de devolución implícito de cero. Pero éste no es el método usado
en este libro.

En cambio, todas las funciones de main() en este libro devuelven explícitamente un valor, por
dos razones. En primer lugar, algunos compiladores lanzan una advertencia cuando un método
diferente de void no regresa un valor de manera explícita. Para evitar esta advertencia, main()
debe incluir una instrucción return. En segundo lugar, ¡parece una buena práctica devolver explí-
citamente un valor, puesto que main() está declarado con un tipo de devolución int!

 C a p í t u l o 1 : R e v i s i ó n g e n e r a l 5

¿Uso del espacio de nombres std?
Uno de los problemas que encara el autor de un libro de C++ es si se usa o no la línea:

using namespace std;

casi en la parte superior de cada programa. Esta instrucción trae a la vista el contenido del espacio
de nombres std. Éste contiene la biblioteca estándar de C++. Por tanto, al usar el espacio de nom-
bres std, se trae la biblioteca estándar al espacio de nombres global, y es posible hacer referencia
directa a nombres como cout, en lugar de std::cout.

El uso de

using namespace std;

es muy común y, en ocasiones, polémico. A algunos programadores les desagrada, lo que sugiere
que abona en contra del empaquetamiento de la biblioteca estándar en el espacio de nombres std
y atrae confl ictos con código de terceros, sobre todo en proyectos grandes. Aunque esto es cierto,
otros señalan que en programas cortos (como los ejemplos mostrados en este libro) y en proyectos
pequeños, la conveniencia que ofrece supera fácilmente la posibilidad remota de confl ictos, lo que
rara vez ocurre (si llega a suceder) en estos casos. Francamente, en programas para los que el ries-
go de confl ictos es, en esencia, nulo, tener que escribir siempre std::cout, std::cin, std::ofstream,
std::string, etc., es tedioso. También hace el código más extenso.

Mientras el debate continúa, en este libro se usa

using namespace std;

en los programas de ejemplo, por dos razones. En primer lugar, acorta el código, lo que signifi ca
que puede caber más código en una línea. En un libro, la longitud de una línea está limitada. Al no
tener que usar constantemente std:: se acortan las líneas, lo que signifi ca que cabrá más código en
una línea sin que ésta se tenga que dividir. Cuanto menor sea la cantidad de líneas divididas, más
fácil será leer el código. En segundo lugar, hace que los ejemplos de código sean menos extensos,
lo que mejora su claridad en la página impresa. De acuerdo con la experiencia del autor, using
namespace std es muy útil cuando se muestran en un libro los programas de ejemplo. Sin embar-
go, su uso en los ejemplos no signifi ca el respaldo de la técnica, en general. El lector debe decidir lo
apropiado para sus propios programas.

 7

C A P Í T U L O

Manejo de cadenas

C
asi siempre hay más de una manera de hacer algo en C++. Ésta es una razón por la que C++ es
un lenguaje tan rico y poderoso. Le permite al programador elegir el mejor método para la tarea
a mano. En ningún lado es más evidente este aspecto de varias facetas de C++ que en las cade-

nas. En C++, las cadenas se basan en dos subsistemas separados pero interrelacionados. Un tipo
de cadena se hereda de C. El otro está defi nido en C++. Juntos, proporcionan al programador dos mane-
ras diferentes de pensar y manejar secuencias de caracteres.

El primer tipo de cadena al que da soporte C++ es la cadena terminada en un carácter nulo. Se trata
de la matriz char que contiene los caracteres que componen una cadena, seguida por null. La cadena
terminada en un carácter nulo se hereda de C y le da un control de bajo nivel sobre operaciones de
cadena. Como resultado, la cadena terminada en un carácter nulo ofrece una manera muy efi ciente
de manejar las secuencias de caracteres. C++ también da soporte a cadenas de caracteres amplias,
terminadas en un carácter nulo, que son matrices de tipo wchar_t.

El segundo tipo de cadena es un objeto de tipo basic_string, que es una clase de plantilla
defi nida por C++. Por tanto, basic_string defi ne un tipo único cuyo propósito es representar
secuencias de caracteres. Debido a que defi ne un tipo de clase, ofrece un método de alto nivel para
trabajar con cadenas. Por ejemplo, defi ne muchas funciones de miembros que realizan varias ma-
nipulaciones de cadenas, y varios operadores de sobrecarga para operaciones de cadena. Hay dos
especializaciones de basic_string que están defi nidas por C++: string y wstring. La clase string
opera en caracteres de tipo char, y wstring opera en caracteres de tipo wchar_t. Por tanto, wstring
encapsula una cadena de caracteres ampliados.

Como se acaba de explicar, las cadenas terminadas en un carácter nulo y basic_string sopor-
tan cadenas de tipo char y wchar_t. La principal diferencia entre cadenas basadas en char y en
wchar_t es el tamaño del carácter. De otro modo, los dos tipos de cadenas se manejan, en esencia,
de la misma manera. Por conveniencia y debido a que las cadenas basadas en char son, por mu-
cho, las más comunes, constituyen el tipo de cadenas utilizadas en las soluciones de este capítulo.
Sin embargo, con poco esfuerzo pueden adoptarse las mismas técnicas básicas para cadenas de
carácter ampliado.

El tema de las cadenas en C++ es muy extenso. Francamente, sería fácil llenar un libro comple-
to con código relacionado con ellas. Por tanto, limitar las soluciones de cadenas a un solo capítulo
representa todo un desafío. Al fi nal, se seleccionaron las que responden preguntas comunes, ilustran
aspectos clave de cada tipo de cadena o demuestran principios generales que pueden adaptarse a una
amplia variedad de usos.

2

8 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

He aquí las soluciones contenidas en este capítulo:

Realice operaciones básicas en cadenas terminadas en un carácter nulo

Busque una cadena terminada en un carácter nulo

Invierta una cadena terminada en un carácter nulo

Ignore diferencias entre mayúsculas y minúsculas cuando compare cadenas terminadas en

un carácter nulo

Cree una función de búsqueda y reemplazo para cadenas terminadas en un carácter nulo

Ordene en categorías caracteres dentro de una cadena terminada en un carácter nulo

Convierta en fi chas una cadena terminada en un carácter nulo

Realice operaciones básicas en objetos de string

Busque un objeto string

Cree una función de búsqueda y reemplazo para objetos string

Opere en objetos string mediante iteradores

Cree una búsqueda no sensible a mayúsculas y minúsculas y funciones de búsqueda y reem-

plazo para objetos string

Convierta un objeto string en una cadena terminada en un carácter nulo

Implemente la resta para objetos string

NOTA Una cobertura a fondo de las cadena terminada en un carácter nulo y la clase string se encuen-
tra en el libro C++: The Complete Reference, de Herb Schildt.

Revisión general de las cadenas terminadas en un carácter nulo

El tipo de cadena más común empleado en un programa C++ es la cadena terminada en un carácter
nulo. Como se mencionó, se trata de una matriz de char que termina con un carácter nulo. Por tanto,
una cadena terminada en un carácter nulo no es, en sí, un tipo único. En cambio, es una convención
reconocida por todos los programadores en C++. La cadena terminada en un carácter nulo está defi ni-
da en el lenguaje C y la mayoría de los programadores en C++ aún la usan ampliamente. También se
hace referencia a ella como una cadena char * o, en ocasiones, como una cadena C. Aunque las cadenas
terminadas en un carácter nulo son un territorio familiar para la mayoría de los programadores en
C++, aún es útil revisar sus atributos y capacidades clave.

Hay dos razones por las que las cadenas terminadas en un carácter nulo se usan ampliamente
en C++. En primer lugar, todas las literales de cadena están representadas como cadenas termi-
nadas en un carácter nulo. Por tanto, cada vez que crea una literal de cadena, está creando una
cadena terminada en un carácter nulo. Por ejemplo, en la instrucción

const char *ptr = "Hola";

la literal "Hola" es una cadena terminada en un carácter nulo. Esto signifi ca que es una matriz char
que contiene los caracteres Hola y termina en un valor nulo. En esta instrucción, un apuntador a
la matriz se asigna a ptr. Resulta interesante observar que ptr se especifi ca como const. El estándar
de C++ especifi ca que las literales de cadena son matrices de tipo const char. Por tanto, es me-
jor usar un apuntador const char * para apuntar a una. Sin embargo, el estándar actual también
defi ne una conversión automática (pero ya desautorizada) a char *, y es muy común ver código en
que se omite const.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 9

La segunda razón por la que las cadenas terminadas en un carácter nulo se usan ampliamente
es la efi ciencia. El empleo de una matriz terminada en un carácter nulo para contener una cadena
permite la implementación de operaciones con muchas cadenas de una manera muy fi na. (En
esencia, las operaciones con este tipo de cadenas son simplemente operaciones especializadas con
matrices.) Por ejemplo, he aquí una manera de escribir la función de la biblioteca estándar str-
cpy(), que copia el contenido de una cadena en otra.

// Una manera de implementar la función strcpy() estándar.
char *strcpy(char *destino, const char *origen) {
 char *d = destino;
 // Copia el contenido del origen en el destino.
 while(*origen) *destino++ = *origen++;
 // El destino termina en un carácter nulo.
 *destino = '\0';
 // Devuelve el apuntador al principio del destino.
 return d;
}

Preste especial atención a la línea:

while(*origen) *destino++ = *origen++;

Debido a que la cadena de origen termina con un carácter nulo, puede crearse un bucle muy
efi ciente que simplemente copia caracteres hasta que el carácter al que señala destino es nulo. Re-
cuerde que en C++ cualquier valor diferente de cero es verdadero, pero cero es falso. Debido a que
el carácter nulo es cero, el bucle while se detiene cuando se encuentra el terminador nulo. Bucles
como el que se acaba de mostrar son comunes cuando se trabaja con cadenas terminadas
en un carácter nulo.

La biblioteca C++ estándar defi ne varias funciones que operan en cadenas terminadas en un
carácter nulo. Esto requiere el encabezado <cstring>. Estas funciones serán familiares, sin duda,
para muchos lectores. Más aún, las soluciones en este capítulo explican por completo las funciones
de cadena que emplean. Sin embargo, aún es útil presentar una breve lista de las funciones más
comunes de cadenas terminadas en un carácter nulo.

Función Descripción

char *strcat(char *cad1, const
char *cad2)

Une la cadena señalada por cad2 al fi nal de la cadena señalada por cad1. Devuelve
cad1. Si la cadena se superpone, el comportamiento de strcat() queda indefi nido.

char *strchr(const char *cad,
int car)

Devuelve un apuntador a la primera aparición del byte de orden bajo de car en la
cadena a la que señala cad. Si no se encuentran coincidencias, se devuelve un
apuntador nulo.

int strcmp(const char *cad1, const
char cad2)

Compara lexicográfi camente la cadena señalada por cad1 con la señalada por cad2.
Devuelve menos de cero si cad1 es menor que cad2, más de cero si cad1 es mayor
que cad2 y cero si las cadenas son iguales.

10 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Función Descripción

char *strcpy(char *destino,
 const char *origen)

Copia la cadena señalada por origen en la cadena señalada por destino. Regresa
destino. Si la cadena se superpone, el comportamiento de strcpy() queda indefi nido.

size_t strcspn(const char *cad1,
 const char *cad2)

Devuelve el índice del primer carácter en la cadena señalada por cad1 que coincide
con cualquier carácter en la cadena apuntada por cad2. Si no se encuentra una coin-
cidencia, se devuelve la longitud de cad1.

size_t strlen(const char *cad) Devuelve el número de caracteres en la cadena señalada por cad. No se cuenta el
terminador nulo.

char *strncat(char *cad1,
 const char *cad2,
 size_t cuenta)

Une no más de cuenta caracteres de la cadena señalada por cad2 al fi nal de cad1.
Devuelve cad1. Si las cadenas se superponen, el comportamiento de strncat()
queda indefi nido.

char *strncmp(const char *cad1,
 const char *cad2,
 size_t cuenta)

Compara lexicográfi camente no más de los primeros cuenta caracteres en la cadena
señalada por cad1 con la señalada por cad2. Devuelve menos de cero si cad1 es menor
que cad2, más de cero si cad1 es mayor que cad2 y cero si las cadenas son iguales.

char *strncpy(char *destino,
 const char *origen,
 size_t cuenta)

Copia no más de cuenta caracteres de la cadena señalada por origen en la cadena
señalada por destino. Si origen contiene menos de cuenta caracteres, los caracteres
nulos se añadirán al fi nal de destino hasta que cuenta caracteres se hayan copiado.
Sin embargo, si origen es mayor que cuenta caracteres, la cadena resultante ya no
terminará en un carácter nulo. Devuelve destino. Si la cadena se superpone, el com-
portamiento de strcpy() queda indefi nido.

char *strpbrk(const char *cad1,
 const char *cad2)

Devuelve un apuntador al primer carácter de la cadena señalada por cad1 que coin-
cide con cualquier carácter de la cadena señalada por cad2. Si no se encuentra una
coincidencia, se devuelve un apuntador nulo.

char *strrchr(const char *cad, int
car)

Devuelve un apuntador a la última aparición del byte de orden bajo de car en la cadena
señalada por cad. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

size_t strspn(const char *cad1,
 const char *cad2)

Devuelve el índice del primer carácter en la cadena señalada por cad1 que no coinci-
de con cualquier carácter en la cadena apuntada por cad2.

char *strstr(const char *cad1,
 const char *cad2)

Devuelve un apuntador a la primera aparición de la cadena señalada por cad2 en
la cadena señalada por cad1. Si no se encuentra una coincidencia, se devuelve un
apuntador nulo.

char *strtok(char *cad, const char
*delims)

Devuelve un apuntador a la siguiente fi cha en la cadena señalada por cad. Los carac-
teres de la cadena señalada por delims especifi can los delimitadores que determinan
los límites de una fi cha. Se devuelve un apuntador nulo cuando no hay una fi cha
que devolver. Para convertir una cadena en fi cha, la primera llamada a strtok() debe
hacer que cad señale a la cadena que se convertirá en fi cha. Llamadas posteriores
deben pasar un apuntador nulo a cad.

Observe que varias de las funciones, como strlen() y strspn(), usan el tipo size_t. Se trata de
una forma de entero no asignado y está defi nido por <cstring>.

El encabezado <cstring> también defi ne varias funciones que empiezan con el prefi jo "mem".
Estas funciones operan sobre caracteres, pero no usan la convención de terminación en carácter
nulo. En ocasiones son útiles cuando se manipulan cadenas y también pueden utilizarse para otros
fi nes. Las funciones son memchr(), memcmp(), memcpy(), memmove() y memset(). Las primeras
tres operan de manera similar a strchr(), strcmp(), strcpy(), respectivamente, excepto porque toman
un parámetro adicional que especifi ca el número de caracteres en que operan. La función memset()
asigna un valor específi co a un bloque de memoria. La función memmove() mueve un bloque de

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 11

caracteres. A diferencia de memcpy(), memmove() puede utilizarse para mover caracteres en matri-
ces que se superponen. Es la única función "mem" empleada en este capítulo y se muestra aquí:

void *memmove(void *destino, const void *origen, size_t, cuenta)

Copia cuenta caracteres de la matriz señalada por origen en la señalada por destino. Devuelve
destino. Como se mencionó, la copia se realiza correctamente, aunque se superpongan las matrices.
Sin embargo, en este caso, la matriz señalada por origen puede modifi carse (aunque origen esté
especifi cado como const).

NOTA Visual C++ de Microsoft "descontinúa" (ya no recomienda el uso de) varias funciones de
cadena estándar, como strcpy(), por razones de seguridad. Por ejemplo, Microsoft recomienda, en
cambio, el uso de strcpy_s(). Sin embargo, estas opciones no están defi nidas por el estándar de C++
y no son estándares. Por tanto, en este libro se utilizarán las funciones especifi cadas por el estándar
internacional para C++.

Revisión general de la clase string

Aunque las cadenas terminadas en un carácter nulo son muy efi cientes, experimentan dos pro-
blemas. En primer lugar, no defi nen un tipo. Es decir, la representación de una cadena como una
matriz de caracteres terminados por un carácter nulo es una convención. Aunque ésta es bien com-
prendida y tiene un amplio reconocimiento, no es un tipo de datos, en el sentido normal. (En otras
palabras, la cadena terminada en un carácter nulo no es parte del sistema de tipo de C++.) Como
resultado, este tipo de carpetas no puede manipularse con operadores. Por ejemplo, no puede unir
dos cadenas terminadas en un carácter nulo al usar el operador + o = para asignar una cadena
terminada en un carácter nulo a otra. Por tanto, la siguiente secuencia no funcionará:

// Esta secuencia es un error.
char cadA[] = "alfa";
char cadB[] = "beta";
char cadC[9] = cadA + cadB; // ¡Perdón! ¡No funciona!

En cambio, debe usar llamadas a funciones de biblioteca para realizar estas operaciones, como se
muestra a continuación:

// Esta secuencia sí funciona.
char cadA[] = "alfa";
char cadB[] = "beta";
char cadC[9];
strcpy(cadC, cadA);
strcat(cadB, cadA);

Esta secuencia correcta usa strcpy() y strcat() para asignar a cadC una cadena que contiene la
unión de cadA y cadB. Aunque logra el resultado deseado, la manipulación de cadenas mediante
el uso de funciones en lugar de operadores hace que aun las operaciones más rudimentarias sean
un poco confusas.

12 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

El segundo problema con las cadenas terminadas en un carácter nulo es la facilidad con que pue-
den crearse errores. En las manos de un programador inexperto o descuidado, es muy fácil sobrepa-
sar el fi nal de la matriz que contiene una cadena. Debido a que C++ no proporciona comprobación de
límites en las operaciones con matrices (o apuntadores), no hay nada que evite que se rebase el fi nal
de una matriz. Por tanto, si la cadena de origen contiene más caracteres de los que puede contener
la matriz de destino, ésta se desbordará. En el mejor de los casos, un desbordamiento de una matriz
simplemente hará que deje de funcionar el programa. Sin embargo, en el peor de los casos, da como
resultado una brecha de seguridad basada en el ahora notorio ataque "desbordamiento de búfer".

Debido al deseo de integrar cadenas en el sistema general de tipos de C++ y para evitar el
desbordamiento de matrices, se añadió a C++ un tipo de datos de cadena. Está basado en la clase
de plantilla basic_string, que está declarado en el encabezado <string>. Como se mencionó, hay
dos especializaciones de esta clase: string y wstring, que también se declaran en <string>. La
clase string es para cadenas char. La clase wstring es para cadena de caracteres ampliados basada
en wchar_t. Aparte del tipo de caracteres, las dos especializaciones funcionan, en esencia, de la
misma manera. Debido a que las cadenas char son, por mucho, las que se usan con más frecuen-
cia, el siguiente análisis y soluciones utilizan string, pero casi toda la información puede adaptarse
fácilmente a wstring.

La clase string crea un tipo de datos dinámico. Esto signifi ca que una instancia de string
puede crecer lo necesario durante el tiempo de ejecución para adaptarse a un aumento en la
longitud de la cadena. Esto no sólo elimina el problema de desbordamiento del búfer, sino que
lo libera de tener que preocuparse por especifi car la longitud correcta de una cadena. La clase
string maneja esto automáticamente.

La clase string defi ne varios constructores y muchas funciones. He aquí tres constructores de
uso común:

string(const Allocator %asig = Allocator())
string(const char *cad, const Allocator %asig = Allocator())
string(const string &cad, size_type ind_inicio = 0, size_tipe num = npos,
 const Allocator %asig = Allocator())

La primera forma crea un objeto string vacío. La segunda crea un objeto string a partir de la cadena
terminada en un carácter nulo señalada por cad. Esta forma le permite crear una string a partir de
una cadena terminada en un carácter nulo. La tercera forma crea una string a partir de otra string.
La cadena creada contiene num caracteres de cad, empezando en el índice especifi cado por ind_inicio.
Con frecuencia, en el tercer constructor se permiten los parámetros ind_inicio y num, como opción
predeterminada. En este caso, ind_inicio contiene cero (lo que indica el inicio de la cadena) y num con-
tiene el valor npos, que indica (en este caso) la longitud de la cadena más larga posible. En todos los
casos, observe que los constructores permiten que se especifi que el asignador. Se trata de un objeto
de tipo Allocator que proporciona asignación de memoria a la cadena. Con mayor frecuencia, este
argumento se permite como opción predeterminada, lo que da como resultado el uso del asignador
predeterminado.

He aquí el aspecto del constructor cuando se usan los valores predeterminados del argumento,
lo que sucede con frecuencia:

string()
string(const char *cad)
string(const string &cad)

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 13

Todos ellos usan el asignador predeterminado. El primero crea una cadena vacía. El segundo y
tercero crean una que contiene cad.

La clase string defi ne muchas funciones, y casi todas tienen varias formas de sobrecarga. Por
tanto, no resulta práctica una descripción completa de cada función de string. En cambio, las
soluciones individuales describen con detalle las funciones que emplean. Sin embargo, para darle
una idea del poder que tiene a su disposición con string, he aquí una lista de funciones esenciales,
agrupadas en categorías.

En las siguientes funciones se busca el contenido de una cadena:

fi nd Devuelve el índice en que se encuentra la primera aparición de una subcadena o un carác-
ter dentro de la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

rfi nd Devuelve el índice en que se encuentra la última aparición de una subcadena o un carác-
ter dentro de la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

fi nd_fi rst_of Busca en la cadena que invoca la primera aparición de cualquier carácter contenido dentro
de una segunda cadena y devuelve el índice en que se encuentra la coincidencia dentro de
la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

fi nd_last_of Busca en la cadena que invoca la última aparición de cualquier carácter contenido dentro
de una segunda cadena y devuelve el índice en que se encuentra la coincidencia dentro de
la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

fi nd_fi rst_not_of Busca en la cadena que invoca la primera aparición de cualquier carácter que no está
contenido dentro de una segunda cadena y devuelve el índice en que se encuentra la coinci-
dencia dentro de la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

fi nd_last_not_of Busca en la cadena que invoca la última aparición de cualquier carácter que no está con-
tenido dentro de una segunda cadena y devuelve el índice en que se encuentra
la coincidencia dentro de la cadena que invoca. Devuelve npos si no se encuentra una
coincidencia.

El siguiente conjunto de funciones de cadena modifi ca el contenido de una cadena:

append Añade una cadena al fi nal de la cadena que invoca.

assign Asigna una nueva cadena a la cadena que invoca.

clear Elimina todos los caracteres de la cadena que invoca.

copy Copia un rango de caracteres de la cadena que invoca en una matriz.

erase Elimina uno o más caracteres de la cadena que invoca.

insert Inserta una cadena, subcadena o uno o más caracteres en la cadena que invoca.

push_back Agrega un carácter al fi nal de la cadena que invoca.

replace Reemplaza una parte de la cadena que invoca.

resize Disminuye o alarga la cadena que invoca. Cuando se acorta, es posible que se pierdan
caracteres.

swap Intercambia dos cadenas.

14 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Las siguientes funciones devuelven información acerca de un objeto string:

capacity Devuelve el número de caracteres que la cadena que invoca puede contener sin que se
asigne más memoria.

c_str Devuelve un apuntador a una cadena terminada en un carácter nulo que contiene los
mismos caracteres que los contenidos en la cadena que invoca.

data Devuelve un apuntador a una matriz que contiene los caracteres en la cadena que invoca.
Esta matriz no termina en un carácter nulo.

empty Devuelve true si la cadena que invoca está vacía.

length Devuelve el número de caracteres contenido en la cadena que invoca.

max_size Devuelve el tamaño máximo de una cadena.

size Igual que length.

El siguiente conjunto de funciones da soporte a iteradores:

begin Devuelve un iterador al principio de la cadena.

end Devuelve un iterador a la ubicación en que pasa el fi nal de la cadena.

rbegin Devuelve un iterador inverso al fi nal de una cadena.

rend Devuelve un iterador inverso al lugar que se encuentra uno antes del inicio de la cadena.

Las siguientes dos funciones obtienen una subcadena o un carácter de una cadena:

at Devuelve una referencia al carácter en un índice especifi cado dentro de la cadena que
invoca.

substr Devuelve una cadena que es una subcadena de la que invoca. Se especifi can el índice
inicial y el número de caracteres en la subcadena.

Además de las funciones que se acaban de mostrar, hay dos más. Puede comparar dos cadenas
al llamar a compare(). Puede hacer que una cadena asigne memoria sufi ciente para contener un
número de caracteres específi co al llamar a reverse(). Debido a que string es una estructura de
datos dinámica, la asignación previa de memoria evita la necesidad de costosas reasignaciones a
medida que aumenta el tamaño de la cadena. Por supuesto, esto sólo resulta útil si sabe de ante-
mano el tamaño de la cadena más larga.

La clase string también defi ne varios tipos, incluido size_type, que es una forma de entero no
asignado que puede contener un valor igual a la longitud de la cadena más larga a la que da so-
porte la implementación. El tipo de carácter contenido por la cadena está defi nido por value_type.
La clase string también declara varios tipos de iterador, incluido iterator y reverse_iterator.

La clase string declara una variable static const, llamada npos, de tipo size_type. Este valor
está inicializado en –1. Esto da como resultado un npos que contiene el valor no asignado más
grande que size_type puede representar. Por tanto, en todos los casos, npos representa un valor
que es por lo menos uno más largo que el tamaño de la cadena más larga. La variable npos suele
usarse para indicar la condición "fi nal de la cadena". Por ejemplo, si una búsqueda falla, se devuel-
ve npos. También se utiliza para solicitar que alguna operación tenga lugar hasta el fi nal de una
cadena.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 15

Se han sobrecargado varias operaciones para aplicar a objetos de cadena. Se muestran a conti-
nuación:

Operador Signifi cado

= Asignación

+ Unión

+= Asignación de unión

== Igualdad

!= Desigualdad

< Menor que

<= Menor que o igual a

> Mayor que

>= Mayor que o igual a

[] Subíndices

<< Salida

>> Entrada

Estos operadores le permiten usar objetos string en expresiones y eliminar la necesidad de llamadas
a funciones como strcpy(), strcat() o strcmp(), que se requieren para cadenas terminadas en un carác-
ter nulo. Por ejemplo, puede usar un operador de relación como < para comparar dos objetos string,
asignar un objeto string a otro al usar el operador = y unir dos objetos de cadena con el operador +.

En general, puede combinar objetos string con cadenas terminadas en un carácter nulo dentro
de una expresión, siempre y cuando el resultado deseado sea un objeto string. Por ejemplo, el ope-
rador + puede usarse para unir un objeto string con otro o un objeto string con una cadena estilo
C. Es decir, tienen soporte las siguientes variaciones:

cadena + cadena
cadena + cadena C
cadena C + cadena

Además, puede usar = para asignar una cadena terminada en un carácter nulo a un objeto string o
comparar ambos mediante operadores relacionales.

Hay otro aspecto importante en la clase string: también es un contenedor compatible con STL.
La clase string da soporte a iteradores y funciones como begin(), end() y size(), que deben imple-
mentar todos los contenedores. Debido a que string es un contenedor, es compatible con los otros
contenedores estándar, como vector. También puede operarse mediante los algoritmos STL. Esto le
da una capacidad y fl exibilidad extraordinarias cuando se manejan cadenas.

Tomada como un todo, la clase string hace que el manejo de cadena sea excesivamente con-
veniente y libre de problemas. Puede realizar operaciones con cadenas más comunes mediante
operadores, y una serie rica en funciones miembro de string como búsqueda, reemplazo y compa-
ración de cadena fácil y relativamente libre de errores. No es necesario que se preocupe por des-
bordar una matriz, por ejemplo, cuando asigna una cadena a otra. En general, el tipo string ofrece
seguridad y conveniencia que excede en mucho la de cadenas terminadas en un carácter nulo.

16 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

A pesar de las ventajas de la clase string, las cadenas terminadas en un carácter nulo se usan
ampliamente en C++. Una razón de esto es que (como se explicó antes) las literales de cadena son
cadenas terminadas en carácter nulo. Otra razón es que todo el poder de string tiene un precio.
En algunos casos, las operaciones con objetos string son más lentas que las operaciones termina-
das en un carácter nulo. Por tanto, para aplicaciones en que el alto desempeño es una aplicación
importante y no se requieren los benefi cios de una string, las cadenas terminadas en un carácter
nulo son todavía una buena elección. Es importante aclarar, sin embargo, que para muchas otras
aplicaciones, la clase string es todavía la mejor elección.

Excepciones de cadenas
Aunque el manejo de cadenas mediante string evita muchos de los accidentes comunes con ca-
denas terminadas en un carácter nulo, aún es posible que se generen errores. Por fortuna, cuando
ocurre un error al manipular un objeto string, se obtiene una excepción, en lugar de que un pro-
grama deje de funcionar o se produzca una brecha de seguridad. Esto le da una oportunidad de
rectifi car el error, o por lo menos de realizar un apagado ordenado.

Hay dos excepciones que pueden generarse cuando se trabaja con objetos string. La primera es
lenght_error. Ésta se lanza cuando se hace un intento de crear una cadena más larga que la cadena
más larga posible. Esto podría suceder en varios casos diferentes, como cuando se unen cadenas
o se inserta una subcadena en otra. La longitud de la cadena más larga posible se encuentra al
llamar a la función max_size(). La segunda excepción es out_of_range. Se lanza cuando un argu-
mento está fuera de rango. Ambas excepciones se declaran en <stdexcept>. Debido a que ninguno
de los ejemplos de este capítulo genera estas excepciones, los ejemplos no los manejan de manera
explícita. Sin embargo, en sus propias aplicaciones, tal vez necesite hacerlo.

Realice operaciones básicas en cadenas terminadas en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> char *strcat(char *cad1, const char *cad2)

int strcmp(const char *cad1, const char *cad2)

char *strcpy(char *destino, const char *origen)

size_t strlen(const char *cad)

En esta solución se muestra cómo realizar las siguientes operaciones básicas con cadenas termina-
das en un carácter nulo:

Obtener la longitud de una cadena

Copiar una cadena

Unir una cadena al fi nal de otra

Comparar dos cadenas

•

•

•

•

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 17

Hay dos operaciones que suelen ser necesarias cada vez que se usan cadenas terminadas en un
carácter nulo en un programa de C++. Serán familiares para muchos lectores (sobre todo quie-
nes tienen antecedentes en programación en C). Se empieza con ellas porque ilustran conceptos
fundamentales relacionados con el trabajo con este tipo de cadenas. También ilustran por qué
debe tener cuidado con evitar desbordamientos de búfer cuando use cadenas terminadas en un
carácter nulo.

Paso a paso
Para realizar las operaciones básicas con cadenas terminadas en un carácter nulo se requieren
estos pasos:

1. Incluir el encabezado <cstring>.

2. Para obtener la longitud de la cadena, llame a strlen().

3. Para copiar una cadena en otra, llame a strcpy().

4. Para unir una cadena al fi nal de otra, llame a strcat().

5. Para comparar dos cadenas, llame a strcmp().

Análisis
Las funciones que dan soporte a cadenas terminadas en un carácter nulo se declaran en el encabe-
zado <cstring>. Por tanto, un programa que utiliza éstas u otras funciones que operan en cadenas
terminadas en un carácter nulo, debe incluir este encabezado.

Para obtener la longitud de una cadena terminada en un carácter nulo, llame a strlen(), que se
muestra aquí:

size_t strlen(const char *cad)

Devuelve el número de caracteres en la cadena señalada por cad. Como se explicó en la revisión
general, una cadena terminada en un carácter nulo es simplemente una matriz de caracteres que
cumple esta condición. El valor devuelto por strlen() no incluye el terminador de carácter nulo.
Por tanto, la cadena "prueba" tiene una longitud de 6. Sin embargo, comprenda que la matriz
que contendrá "prueba" debe tener por lo menos 7 caracteres de largo para que haya espacio
para el terminador de carácter nulo. El tipo size_t es alguna forma de entero no asignado que
puede representar el resultado de las operaciones de sizeof. Por tanto, es un tipo que puede
representar la longitud de la cadena más larga.

Para copiar una cadena terminada en un carácter nulo en otra, se usa strcpy(), que se muestra
a continuación:

char *strcpy(char *destino, const char *origen)

Esta función copia los caracteres en la cadena señalada por origen en la matriz señalada por
destino. El resultado termina en un carácter nulo. En todos los casos, debe asegurarse de que la
matriz señalada por destino es lo sufi cientemente larga para contener los caracteres señalados
por origen. Si no, la copia sobrescribirá el fi nal de la matriz de destino. Esto corromperá su
programa y es una manera en que puede generarse el famoso "ataque de desbordamiento de
búfer". Esta función devuelve destino.

18 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Para unir una cadena terminada en un carácter nulo con el fi nal de otra, se llama a strcat():

char *strcat(char *cad1, const char *cad2)

Esta función copia los caracteres en la cadena a la que señala cad2 al fi nal de la cadena a la que
señala cad1. La cadena resultante termina en un carácter nulo. Es fundamental que la matriz
a la que señala cad1 sea lo sufi cientemente larga para contener la cadena resultante. De lo
contrario, se presentará un desbordamiento de matriz. Esto corromperá su programa y es otra
manera de que pueda presentarse un ataque de desbordamiento de búfer. La función devuel-
ve cad1.

Puede comparar lexicográfi camente (mediante el orden del diccionario) dos cadenas emplean-
do strcmp(), que se muestra a continuación:

int strcmp(const char *cad1, const char *cad2)

Devuelve cero si las dos cadenas son iguales. De otra manera, devuelve menos de cero si la cadena a
la que apunta cad1 es menor que la señalada por cad2 y mayor que cero si la cadena a la que apunta
cad1 es mayor que la señalada por cad2. La comparación es sensible a mayúsculas y minúsculas.

Ejemplo
En el siguiente ejemplo se muestran strcpy(), strcat() y strlen() en acción:

// Demuestra las funciones básicas de cadena terminada en un carácter nulo.
#include <iostream>
#include <cstring>

 using namespace std;

 int main() {
 char cadA[10] = "Gato";
 char cadB[6] = "Cebra";
 char cadC[6] = "Cabra";
 char cadD[7] = "Jirafa";

 cout << "Las cadenas son: " << endl;
 cout << "cadA: " << cadA << endl;
 cout << "cadB: " << cadB << endl;
 cout << "cadC: " << cadC << endl;
 cout << "cadD: " << cadD << "\n\n";

 // Despliega la longitud de cadA.
 cout << "La longitud de cadA es " << strlen(cadA) << endl;

 // Une cadB con cadA.
 strcat(cadA, cadB);
 cout << "cadA una vez unida: " << cadA << endl;
 cout << "La longitud de cadA es ahora " << strlen(cadA) << endl;

 // Copia cadC en cadB.
 strcpy(cadB, cadC);
 cout << "cadB contiene ahora: " << cadB << endl;

 // Compara cadenas.
 if(!strcmp(cadB, cadC))

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 19

 cout << "cadB es igual a cadC\n";
int resultado = strcmp(cadC, cadD);

 if(!resultado)
 cout << "cadC es igual a cadD\n";
 else if(resultado < 0)
 cout << "cadC es menor que cadD\n";
 else if(resultado > 0)
 cout << "cadC es mayor que cadD\n";

 return 0;
}

Aquí se muestra la salida:

Las cadenas son:
cadA: Gato
cadB: Cebra
cadC: Cabra
cadD: Jirafa

La longitud de cadA es 4
cadA una vez unida: GatoCebra
La longitud de cadA es ahora 9
cadB contiene ahora: Cabra
cadB es igual a cadC
cadC es menor que cadD

Observe cómo se declaró que la matriz que contiene cadA es mayor de lo necesario para con-
tener su cadena inicial. Este espacio adicional le permite acomodar la unión de cadB. Además,
observe cómo cadB y cadC tienen el mismo tamaño. Esto permite copiar el contenido de cadC
en cadB. Recuerde, en todos los casos, que la matriz que recibe el resultado de una copia o
unión de una cadena debe ser lo sufi cientemente larga. Por ejemplo, en el programa anterior,
tratar de copiar cadD en cadC causaría un error, porque cadC sólo tiene seis elementos de lar-
go, pero cadD requiere siete (seis para los caracteres de Jirafa y uno para el terminado
de carácter nulo).

Opciones
En casos en que no sabe en tiempo de compilación si la longitud de la matriz de destino es sufi -
ciente para contener el resultado de una copia o unión de cadena, necesitará confi rmar ese hecho
en tiempo de ejecución antes de tratar la operación. Una manera de hacer esto es usar sizeof para
determinar el tamaño de la matriz de destino. Por ejemplo, suponiendo el programa de ejemplo
anterior, he aquí la manera de agregar una "revisión de seguridad" que asegura que cadA es lo
bastante larga para contener la unión de cadA y cadB:

if(sizeof(cadA) > strlen(cadA) + strlen(cadB)) strcat(cadA, cadB);

Aquí, el tamaño de la matriz de destino se obtiene al llamar a sizeof en la matriz. Esto devuelve
la longitud de la matriz en bytes, lo que en matrices de tipo char es igual al número de caracteres
en la matriz. Este valor debe ser mayor que la suma de las dos cadenas que se unirán. (Recuerde
que se necesita un carácter adicional para contener el terminador de carácter nulo.) Al usar este
método, asegura que la matriz de destino no se desbordará.

20 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

NOTA La técnica anterior para evitar un desbordamiento de matriz funciona para cadenas char,
no para cadenas wchar_t. En el caso de estas últimas, no necesita usar una expresión como
if(sizeof(cadA) > wcslen(cadA) *sizeof(wchar_t) +
 wcslen(cadB) *sizeof(wchar_t)) // . . .
Esto toma en consideración el tamaño de un carácter ampliado.

En ocasiones tal vez quiera operar sólo en una parte de una cadena, en lugar de toda ella. Por
ejemplo, tal vez quiera copiar sólo una parte de la cadena a otra o comparar sólo una parte de dos
cadenas. C++ incluye funciones que manejan estos tipos de situaciones. Son strncpy(), strncat() y
strncmp(). Cada una se describe a continuación.

Para copiar sólo una porción de una cadena en otra, use strncpy, mostrado aquí:

char *strncpy (char *destino, const char *origen, size_t cuenta)

La función no copia más de cuenta caracteres de origen a destino. Si origen contiene menos de cuenta
caracteres, los caracteres nulos se adjuntarán al fi nal de destino hasta que se hayan copiado cuenta
caracteres. Sin embargo, si la cadena señalada por origen es más larga que cuenta caracteres, la
cadena resultante señalada por destino no terminará en un carácter nulo. Devuelve destino.

Puede unir sólo una parte de una cadena a otra al llamar a strncat(), que se muestra a conti-
nuación:

char *strncat(char *cad1, const char *cad2, size_t cuenta)

Une no más de cuenta caracteres de la cadena señalada por cad2 al fi nal de cad1. Devuelve cad1.
Para comparar una parte de una cadena a otra, use strncmp(), que se muestra a continuación:

int strncmp(const char *cad1, const char *cad2, size_t cuenta)

La función strncmp() compara no más de los primeros cuenta caracteres en la cadena a la que
señala cad1 con los de la cadena a la que señala cad2. Devuelve menos de cero si cad1 es menor que
cad2, mayor que cero si cad1 es mayor que cad2, y cero si las dos cadenas son iguales.

Busque una cadena terminada en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> char *strchr(const char *cad, int car)

char *strpbrk(const char *cad1, const char *cad2)

char *strstr(const char *cad1, const char *cad2)

Otra parte común del manejo de cadenas incluye la búsqueda. He aquí tres ejemplos. Tal vez
quiera saber si una cadena contiene la subcadena ".com" o ".net" cuando se procesa una dirección

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 21

de Internet. Quizá desee encontrar el primer punto en un nombre de archivo, de modo que puede
dar soporte al nombre de archivo a partir de su extensión. Tal vez quiera explorar un registro de
facturas para encontrar la cadena "Vencido" para que pueda contar el número de cuentas vencidas.
Para manejar estos tipos de tareas, C++ proporciona funciones que buscan una cadena terminada
en un carácter nulo. En esta solución se muestran varias de ellas. De manera específi ca, muestra
cómo buscar un carácter determinado, cualquier conjunto de caracteres o una subcadena en una
cadena.

Paso a paso
Para buscar una cadena se requieren los siguientes pasos:

1. Para buscar un carácter específi co, llame a strchr().

2. Para buscar cualquier carácter en un conjunto de éstos, llame a strpbrk().

3. Para buscar una subcadena, llame a strstr().

Análisis
Para encontrar la primera aparición de un carácter determinado dentro de una cadena, llame a
strchr() que se muestra aquí:

char *strchr(const char *cad, int car)

Devuelve un apuntador a la primera aparición del byte de orden bajo de car en la cadena señalada
por cad. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

Para encontrar la primera aparición de cualquier carácter dentro de un conjunto de caracteres,
llame a strpbrk(), que se muestra a continuación:

char *strpbrk(const char *cad1, const char *cad2)

Esta función devuelve un apuntador al primer carácter en la cadena a la que señala cad1 y que
coincide con cualquier carácter en la cadena señalada por cad2. Si no se encuentran coincidencias, se
devuelve un apuntador nulo.

Para encontrar la primera aparición de una subcadena determinada dentro de una cadena,
llame a strstr() que se muestra aquí:

char *strstr(const char *cad1, const char *cad2)

Devuelve un apuntador a la primera aparición de la cadena que señala cad2 dentro de la cadena
señalada por cad1. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

Ejemplo
En el siguiente ejemplo se demuestran strchr(), strpbrk() y strstr():

// Busca una cadena terminada en un carácter nulo.
#include <iostream>
#include <cstring>

using namespace std;

int main() {

22 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 const char *url = "HerbSchildt.com";
 const char *url2 = "Apache.org";
 const char *diremail = "Herb@HerbSchildt.com";

 const char *tld[] = { ".com", ".net", ".org" };

 const char *p;

 // Primero, determina si url y url2 contienen .com, .net u .org.
 for(int i=0; i < 3; i++) {
 p = strstr(url, tld[i]);
 if(p) cout << url << " tiene el dominio de nivel superior " << tld[i] << endl;

 p = strstr(url2, tld[i]);
 if(p) cout << url2 << " tiene el dominio de nivel superior " << tld[i] << endl;
 }

 // Busca un carácter específico.
 p = strchr(diremail, '@');
 if(p) cout << "El nombre del sitio de la direcci\u00a2n de correo electr\
u00a2nico es: " << p+1 << endl;

 // Busca un carácter entre un conjunto de ellos.
 // En este caso, encuentra el primer @ o punto.
 p = strpbrk(diremail, "@.");

 if(p) cout << "Se encontr\u00a2 " << *p << endl;

 return 0;
}

En el código anterior, observará el uso de la secuencia de escape "\u00a2" para la "o". Es indispen-
sable el uso de estas secuencias para el despliegue de caracteres especiales como á o ñ en la salida
del programa. Aquí se muestra la salida:

HerbSchildt.com tiene el dominio de nivel superior .com
Apache.org tiene el dominio de nivel superior .org
El nombre del sitio de la dirección de correo electrónico es: HerbSchildt.com
Se encontró @

Opciones
Además de la búsqueda de funciones usada en esta solución, hay varias otras a las que da sopor-
te C++. Dos que resultan especialmente útiles en algunos casos son strspn() y strcspn(). Aquí se
muestran:

size_t strspn(const char *cad1, const char *cad2)
size_t strcspn(const char *cad1, const char *cad2)

La función strspn() devuelve el índice del primer carácter en la cadena señalada por cad1 que no
coincide con cualquiera de los caracteres en la cadena a la que apunta cad2. La función strcspn()
devuelve el índice del primer carácter en la cadena señalada por cad1 que coincide con cualquier
carácter en la cadena señalada por cad2.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 23

Puede encontrar la última aparición de un carácter dentro de una cadena terminada en un
carácter nulo al llamar a strrchr():

char *strrchar(const char *cad, int car)

Devuelve un apuntador a la última aparición del byte de orden bajo de car en la cadena señalada
por cad. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

La función strtok() también se utiliza para buscar una cadena. Se describe en su propia solu-
ción. Consulte Convierta en fi chas una cadena terminada en un carácter nulo.

Invierta una cadena terminada en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> size_t strlen(char *cad)

En esta solución se muestra cómo realizar una tarea simple, pero útil: revertir una cadena terminada
en un carácter nulo. Aunque la inversión de una cadena es una operación fácil para el programador
experimentado, es una fuente común de preguntas para el principiante. Por esta sola razón merece
su inclusión en este libro. Sin embargo, hay otras varias razones para incluirla. En primer lugar, hay
muchas maneras de invertir una cadena, y cada variación ilustra una técnica diferente para manejar
una cadena terminada en un carácter nulo. En segundo lugar, el mecanismo básico usado para inver-
tir una cadena puede adaptarse a otros tipos de manipulaciones de cadena. Por último, demuestra
en términos muy prácticos cómo manejar cadenas terminadas en un carácter nulo suele depender
de código práctico de muy bajo nivel. A menudo, este código puede ser muy efi ciente, pero requiere
más trabajo que el uso de la clase string.

En la solución mostrada aquí se invierte la cadena. Esto signifi ca que se modifi ca la cadena
original. Por lo general, esto es lo que se necesita. Sin embargo, en la sección Opciones se muestra
una variación que crea una copia inversa de la cadena.

Paso a paso
Hay muchas maneras de afrontar la tarea de invertir una cadena. En esta solución se usa un méto-
do simple pero efectivo que está basado en el intercambio de extremo a extremo de los caracteres
correspondientes de la cadena. Se pone este código dentro de una función llamada invcad().

1. Cree una función llamada invcad() que tenga este prototipo:

void invcad(char *cad)

La cadena que habrá de invertirse se pasa a cad.

2. Dentro de invcad(), cree un bucle for que controle las dos variables que se usarán para

indizar la matriz que contiene la cadena. Inicialice la primera variable en cero y auméntela

24 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

cada vez que se recorra el bucle. Inicialice la segunda variable en el índice del último carác-

ter de la cadena y disminúyalo con cada iteración. Este valor se obtiene al llamar a strlen().

3. Con cada paso que se recorra el bucle, intercambie los caracteres en los dos índices.

4. Detenga el bucle cuando el primer índice sea igual o mayor que el segundo índice. En este

punto, se invertirá la cadena.

Análisis
Como la mayoría de los lectores sabe, cuando se usa un nombre de matriz por sí solo, sin un
índice, representa un apuntador a la matriz. Por tanto, cuando pasa una matriz a una función, en
realidad sólo está pasando un apuntador a esa matriz. Esto signifi ca que una función que recibirá
una cadena terminada en un carácter nulo como argumento debe declarar que su parámetro es de
tipo char *. Por eso, el parámetro cad de invcad() se declara como char *cad.

Aunque cad es un apuntador, puede indizarse como una matriz, empleando la sintaxis normal
de indización de matriz. Para invertir el contenido de una cadena, cree un bucle for que controla
dos variables, que sirven como índices en la cadena. Un índice empieza en cero e indiza a partir
del principio de la cadena. El otro índice empieza en el último carácter de la cadena. Cada vez que
recorra el bucle, se intercambian los caracteres que se encuentran en los índices especifi cados. Lue-
go, el primer índice se aumenta y se reduce el segundo. Cuando los índices convergen (es decir,
cuando el primer índice es igual o mayor que el segundo), la cadena se invierte. He aquí la manera
de escribir este bucle:

int i, j;
char t;

for(i = 0, j = strlen(cad)-1; i < j; ++i, --j) {
 t = cad[i];
 cad[i] = cad[j];
 cad[j] = t;
}

Observe que el índice del último carácter de la cadena se obtiene al restar uno del valor de-
vuelto por strlen(). Aquí se muestra su prototipo:

size_t strlen(const char *cad)

La función strlen() devuelve la longitud de una cadena terminada en un carácter nulo, que es
el número de caracteres en la cadena. Sin embargo, no se cuenta el terminador de carácter nulo.
Debido a que el indizado de la matriz en C++ empieza en cero, debe restarse 1 a este valor para
obtener el índice del último carácter en la cadena.

Ejemplo
Uniendo las piezas, he aquí una manera de escribir la función invcad():

// Invierte una cadena en el lugar.
void invcad(char *cad) {
 int i, j;
 char t;

 for(i = 0, j = strlen(cad)-1; i < j; ++i, --j) {

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 25

 t = cad[i];
 cad[i] = cad[j];
 cad[j] = t;
 }
}

En el siguiente programa se muestra invcad() en acción:

// Invierte una cadena en el lugar.
#include <iostream>
#include <cstring>

using namespace std;

void invcad(char *cad);

int main() {
 char cad[] = "abcdefghijklmnopqrstuvwxyz";

 cout << "Cadena original: " << cad << endl;

 invcad(cad);

 cout << "Cadena invertida: " << cad << endl;

 return 0;
}
 // Invierte una cadena en el lugar.
void invcad(char *cad) {
 int i, j;
 char t;

 for(i = 0, j = strlen(cad)-1; i < j; ++i, --j) {
 t = cad[i];
 cad[i] = cad[j];
 cad[j] = t;
 }
}

Aquí se muestra la salida:

Cadena original: abcdefghijklmnopqrstuvwxyz
Cadena invertida: zyxwvutsrqponmlkjihgfedcba

Opciones
Aunque invertir una cadena terminada en un carácter nulo es una tarea simple, permite algunas
variaciones interesantes. Por ejemplo, el método usado en la solución depende de la indización de
la matriz, que tal vez es la manera más clara de implementar esta función. Sin embargo, quizás no
sea la más efi ciente. Una opción consiste en usar apuntadores en lugar de indización de matriz.
Dependiendo del compilador que está usando (y las optimizaciones activadas), las operaciones de
apuntador pueden ser más rápidas que la indización de matriz. Además, muchos programadores
simplemente prefi eren el uso de apuntadores en lugar de indización de matriz cuando se recorre
en ciclo una matriz de manera estrictamente secuencial. Cualquiera que sea la razón, la versión

26 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

de apuntador es fácil de implementar. He aquí una manera de retrabajar invcad(), de modo que
sustituye las operaciones de apuntador para indización de matriz:

// Invierte una cadena en el lugar. Use apuntadores en lugar de indización de
matriz.
void invcad(char *cad) {
 char t;

 char *inc_p = cad;
 char *dec_p = &cad[strlen(cad)-1];

 while(inc_p <= dec_p) {
 t = *inc_p;
 *inc_p++ = *dec_p;
 *dec_p-- = t;
 }
}

Una de las maneras más interesantes de revertir una cadena emplea la recursión. He aquí una
implementación:

// Invierte una cadena en el lugar al usar recursión.
void invcad_r(char *cad) {
 invcad_recursiva(cad, 0, strlen(cad)-1);
}

// A esta función se le llama con un apuntador a la cadena que se
// invertirá y los índices de principio y final de los caracteres
// que se invertirán. Por tanto, su primera llamada pasa cero
// para inicio y strlen(cad)-1 para final. La posición del
// terminador del carácter nulo no cambia.
void invcad_recursiva(char *cad, int inicio, int final) {
 if(inicio < final)
 invcad_recursiva(cad, inicio+1, final-1);
 else
 return;

 char t = cad[inicio];
 cad[inicio] = cad[final];
 cad[final] = t;
}

Observe que invcad_r() llama a invcad_recursiva() para revertir la cadena. Esto permite que se lla-
me a invcad_r() únicamente con un apuntador a la cadena. Observe cómo las llamadas recursivas
invierten la cadena. Cuando inicio es menor que fi nal, se hace una llamada recursiva a invcad_re-
cursiva(); y el índice inicial aumenta en uno y el índice fi nal disminuye en uno. Cuando estos dos
índices se unen, se ejecuta la instrucción return. Esto causa que las llamadas recursivas empiecen
a devolverse, mientras se intercambian los correspondientes caracteres. Como algo interesante,
puede usarse la misma técnica general para invertir el contenido de cualquier tipo de matriz. Su
uso en una cadena terminada en un carácter nulo es simplemente un caso especial.

La última opción presentada aquí funciona de manera diferente de los métodos anteriores,
porque crea una copia de la cadena original que contiene el inverso de la cadena original. Por tan-
to, deja ésta sin cambio. Esta técnica es útil cuando no debe modifi carse la cadena original.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 27

// Hace una copia inversa de una cadena.
void invcadcopia(char *cadr, const char *cadorg) {

 cadr += strlen(cadorg);
 *cadr-- = '\0';

 while(*cadorg) *cadr-- = *cadorg++;
}

A esta función se le pasa un apuntador a la cad original en cadorg y uno a la matriz char que
recibirá la cadena invertida en cadr. Por supuesto, la matriz señalada por cadr debe ser lo sufi cien-
temente grande para contener la cadena invertida más el terminador nulo. He aquí un ejemplo de
cómo puede llamarse a revsrtcpy():

char cad[5] = "abcd";
char inv[r];
invcad_copia(rev, cad);

Después de la llamada, inv contendrá los caracteres dcba y cad quedará sin modifi cación.

Ignore diferencias entre mayúsculas y minúsculas cuando compare

cadenas terminadas en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<cctype> int tolower(int car)

La función strcmp() es sensible a mayúsculas y minúsculas. Por tanto, las cadenas "prueba" y
"Prueba" son diferentes a la comparación. Aunque una comparación sensible a mayúsculas
y minúsculas suele ser lo que se necesita, hay ocasiones en que se requiere un método que no
las diferencie. Por ejemplo, si está alfabetizando una lista de entradas para el índice de un libro,
algunas de estas entradas podrían ser nombres propios, como los de una persona. A pesar de las
diferencias entre mayúsculas y minúsculas, tal vez quiera que se preserve el orden alfabético. Por
ejemplo, querrá que "Stroustrup" aparezca después de "clase". El problema es que las minúsculas
están representadas por valores que son 32 más grandes que las mayúsculas. Por tanto, al realizar
una comparación sensible a mayúsculas y minúsculas entre "Stroustrup" y "clase", la segunda
aparece antes que la primera. Para resolver este problema, debe usar una función de comparación
que ignore las diferencias entre mayúsculas y minúsculas. En esta solución se muestra una manera
de hacerlo.

Paso a paso
Una manera de ignorar las diferencias entre mayúsculas y minúsculas cuando se comparan cade-
nas terminadas en un carácter nulo es crear su propia versión de la función strcmp(). Es muy fácil
de hacer, como se muestra. La clave está en convertir cada conjunto de caracteres a mayúsculas

28 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

o minúsculas iguales y luego compararlas. En esta solución se convierten todos los caracteres a
minúsculas utilizando la función tolower(), pero también funcionaría la conversión a mayúsculas.

1. Cree una función llamada strcmp_ign_mayus() que tenga este prototipo:

int strcmp_ign_mayus(const char *cad1, const char *cad1);

2. Dentro de strcmp_ign_mayus(), compare cada carácter correspondiente en las dos ca-

denas. Para ello, confi gure un bucle que itere, siempre y cuando no se haya alcanzado el

terminador de carácter nulo de una de las cadenas.

3. Dentro del bucle, convierta primero cada carácter a minúsculas, al llamar a tolower(). Luego

compare los dos caracteres. Siga comparando caracteres hasta que se alcance el fi nal de una

de las cadenas, o cuando los dos caracteres sean diferentes. Observe que tolower() requiere el

encabezado <cctype>.

4. Cuando el bucle se detiene, devuelve el resultado de restar el último carácter comparado

de la segunda cadena al último carácter comparado de la primera cadena. Esto causa que

la función devuelva menos de cero si cad1 es menor que cad2, cero si los dos son iguales

(en este caso, la terminación de carácter nulo de cad2 se resta de la de cad1) o mayor que

cero si cad1 es mayor que cad2.

Análisis
La función estándar tolower() se defi nió originalmente en C y tiene soporte en C++ de dos maneras
distintas. La versión usada aquí está declarada dentro del encabezado <cctype>. Convierte mayúscu-
las en minúsculas con base en un conjunto de caracteres defi nido por la confi guración regional.
Se muestra aquí:

int tolower(int car)

Devuelve el equivalente en minúsculas de car, que debe ser un valor de 8 bites. Los caracteres no
alfabéticos se devuelven sin cambio.

Para comparar dos cadenas terminadas en un carácter nulo, independientemente de las
diferencias entre mayúsculas y minúsculas, debe comparar los caracteres correspondientes en la
cadena después de normalizarlos a mayúsculas o minúsculas. En la solución, los caracteres están
convertidos en minúsculas. He aquí un ejemplo de un bucle que compara caracteres en dos cade-
nas pero ignora las diferencias entre mayúsculas y minúsculas:

while(*cad1 && *cad2) {
 if(tolower(*cad1) != tolower(*cad2))
 break;

 ++cad1;
 ++cad2;
}

Observe que el bucle se detendrá cuando se alcance el fi nal de cualquier cadena o cuando se en-
cuentre una diferencia.

Cuando el bucle termine, debe devolver un valor que indique el resultado de la comparación.
Esto es fácil de hacer. Simplemente devuelve el resultado de restar el último carácter señalado por
cad2 al último carácter señalado por cad1, como se muestra aquí:

return tolower(*cad1) – tolower(*cad2);

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 29

Esto devuelve cero si se ha encontrado el terminador nulo de ambas cadenas, lo que indica
igualdad. De otra manera, si el carácter señalado por cad1 es menor que el señalado por cad2, se
devuelve un valor negativo, lo que indica que la primera cadena es menor que la segunda. Si el
carácter al que señala cad1 es mayor que el señalado por cad2, se devuelve un valor positivo, lo
que indica que la primera cadena es mayor que la segunda. Por tanto, produce el mismo resultado
que strcmp(), pero de una manera no sensible a mayúsculas y minúsculas.

Ejemplo
Para unir todo, he aquí una manera de implementar una función de comparación de cadena no
sensible a mayúsculas y minúsculas llamada strcmp_ign_mayus():

// Una función de comparación simple de cadenas que ignora diferencias entre
// mayúsculas y minúsculas.
int strcmp_ign_mayus(const char *cad1, const char *cad2) {

 while(*cad1 && *cad2) {
 if(tolower(*cad1) != tolower(*cad2))
 break;

 ++cad1;
 ++cad2;
 }

 return tolower(*cad1) - tolower(*cad2);
}

El siguiente programa pone en funcionamiento a strcmp_ign_mayus():

// Ignora la diferencia entre mayúsculas y minúsculas al comparar la cadena.
#include <iostream>
#include <cctype>

using namespace std;

int strcmp_ign_mayus(const char *str1, const char *cad2);
void mostrarresultado(const char *cad1, const char *cad2, int resultado);

int main() {
 char cadA[]= "pruebA";
 char cadB[] = "Prueba";
 char cadC[] = "pruebas";
 char cadD[] = "pre";

 int resultado;

 cout << "Las cadenas son: " << endl;
 cout << "cadA: " << cadA << endl;
 cout << "cadB: " << cadB << endl;
 cout << "cadC: " << cadC << endl;
 cout << "cadD: " << cadD << "\n\n";

30 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Compara las cadenas ignorando mayúsculas y minúsculas.
 resultado = strcmp_ign_mayus(cadA, cadB);
 mostrarresultado(cadA, cadB, resultado);

 resultado = strcmp_ign_mayus(cadA, cadC);
 mostrarresultado(cadA, cadC, resultado);

 resultado = strcmp_ign_mayus(cadA, cadD);
 mostrarresultado(cadA, cadD, resultado);

 resultado = strcmp_ign_mayus(cadD, cadA);
 mostrarresultado(cadD, cadA, resultado);

 return 0;
}

// Una función de comparación simple de cadenas que ignora diferencias entre
// mayúsculas y minúsculas.
int strcmp_ign_mayus(const char *cad1, const char *cad2) {

 while(*cad1 && *cad2) {
 if(tolower(*cad1) != tolower(*cad2))
 break;

 ++cad1;
 ++cad2;
 }

 return tolower(*cad1) - tolower(*cad2);
}

void mostrarresultado(const char *cad1, const char *cad2, int resultado) {
 cout << cad1 << " is ";

 if(!resultado)
 cout << "igual a ";
 else if(resultado < 0)
 cout << "menor que ";
 else
 cout << "mayor que ";

 cout << cad2 << endl;
}

Aquí se muestra la salida:

Las cadenas son:
cadA: pruebA
cadB: Prueba
cadC: pruebas
cadD: pre

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 31

pruebA es igual a Prueba
pruebA es menor que pruebas
pruebA es mayor que pre
pre es menor que pruebA

Opciones
Como se explicó, la versión de tolower() declarada en <cctype> convierte caracteres con base
en la confi guración regional de idioma. Esto es lo que querrá casi siempre, de modo que es una
buena (y conveniente) opción en casi todos los casos. Sin embargo, tolower() también se declara
dentro de <locale>, que declara los miembros de la biblioteca de ubicación de C++. (La ubicación
ayuda en la creación de código que puede internacionalizarse fácilmente.) He aquí esta versión de
tolower():

template <class charT> charT tolower(charT car, const locale &loc)

Esta versión de tolower() permite especifi car una confi guración diferente cuando se convierten las
mayúsculas y minúsculas de una letra. Por ejemplo:

char car;
// . . .
locale loc("French");
cout << tolower(car, loc);

Esta llamada a tolower() usa la información de confi guración regional y de idioma compatible con
el francés.

Aunque no hay una ventaja en usarlo, también es posible convertir cada carácter en la cadena
a mayúsculas (en lugar de minúsculas) para eliminar las diferencias entre mayúsculas y minúscu-
las. Esto se hace con la función toupper(), que se muestra aquí:

int toupper(int car)

Funciona de la misma manera que tolower(), excepto que convierte los caracteres en mayúsculas.

Cree una función de búsqueda y reemplazo para cadenas terminadas

en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<ccstring> char *strncpy(char *destino, const char *origen,
 int cuenta)

void *memmove(void *destino, const void *origen,
 size_t cuenta)

Cuando se trabaja con cadenas, no es poco común que se necesite sustituir una subcadena con
otra. Esta operación requiere dos pasos. En primer lugar, debe encontrar la subcadena que se

32 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

reemplazará y, en segundo lugar, debe reemplazarla con la nueva subcadena. A este proceso suele
llamársele "búsqueda y reemplazo"; en esta solución se muestra una manera de realizar esto en
cadenas terminadas en un carácter nulo.

Hay varias maneras de implementar una función de "búsqueda y reemplazo". Se usa un mé-
todo en que el reemplazo tiene lugar en la cadena original, con lo que la modifi ca. En la sección
Opciones se describen otros dos métodos para esta solución.

Paso a paso
Una manera de implementar una función de "búsqueda y reemplazo" para una cadena terminada
en un carácter nulo incluye los siguientes pasos. Crea una función llamada buscar_y_reemplazar()
que reemplaza la primera aparición de una subcadena con otra.

1. Cree una función llamada buscar_y_reemplazar(), que tenga este prototipo:

bool buscar_y_reemplazar(char *cadorg, int longmax,
 const char *subcadant, const char *subcadnue)

Se pasa un apuntador a la cadena original mediante cadorg. El número máximo de caracteres

que cadorg puede tener se pasa en longmax. Un apuntador a la subcadena que se buscará se

pasa mediante subcadant, y uno al reemplazo se pasa en subcadnue. La función devolverá un

valor true si se hace una sustitución. Es decir, devuelve true si la cadena contenía originalmente

por lo menos un caso de subcadant. Si no se realiza sustitución alguna, se devuelve false.

2. Busque una subcadena al llamar a strstr(). Devuelve un apuntador al principio de la pri-

mera subcadena de sustitución de un apuntador nulo, si no se encuentra una coincidencia.

3. Si se encuentra la subcadena, desplace los caracteres restantes en la cadena lo necesario

para crear un "agujero" que sea exactamente del tamaño de la subcadena de reemplazo.

Esto puede hacerse más fácil al llamar a memmove().

4. Mediante strncpy(), copie la subcadena de reemplazo en el "agujero" en la cadena original.

5. Se devuelve el valor true si se hizo una sustitución y false si la cadena original queda sin

cambio.

Análisis
Para encontrar una subcadena dentro de una cadena, use la función strstr() que se muestra aquí:

char *strstr(const char *cad1, const char *cad2)

Devuelve un apuntador al principio de la primera aparición de la cadena señalada por cad2 en la
cadena señalada por cad1. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

Desde el punto de vista conceptual, cuando se reemplaza una subcadena con otra, debe eli-
minarse la anterior e insertarse su reemplazo. En la práctica, no es necesario eliminar realmente
la subcadena antigua. En cambio, simplemente puede sobreescribir la antigua con la nueva. Sin
embargo, debe evitar que los caracteres restantes en la cadena se sobreescriban cuando la nueva
subcadena sea más larga que la antigua. También debe asegurar que no quede un hueco cuando la
nueva subcadena sea más corta que la antigua. Por tanto, a menos que la nueva subcadena sea del
mismo tamaño que la antigua, necesitará subir o bajar los caracteres restantes en la cadena original
para que cree un "hueco" en la cadena original que sea del mismo tamaño que la nueva. Una ma-
nera fácil de hacer esto consiste en usar memmove(), que se muestra a continuación:

void *memmove(void *destino, const void *destino, size_t cuenta)

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 33

Copia cuenta caracteres de la matriz señalada por origen en la matriz señalada por destino. Devuel-
ve destino. La copia se realiza correctamente aunque las matrices se superpongan. Esto signifi ca
que puede usarse para subir o bajar caracteres en la misma matriz.

Después de que ha creado el "agujero" del tamaño apropiado en la cadena, puede copiar la
nueva subcadena en él al llamar a strncpy(), como se muestra aquí:

char *strncpy(char *destino, const char *origen, size_t cuenta)

Esta función copia no más que cuenta caracteres de origen a destino. Si la cadena señalada por origen
contiene menos que cuenta caracteres, se adjuntarán caracteres nulos al fi nal de destino hasta que se
hayan copiado cuenta caracteres. Sin embargo, si la cadena señalada por origen es más larga
que cuenta caracteres, la cadena resultante no terminará en un carácter nulo. Devuelve destino.
Si las dos cadenas se superponen, el comportamiento de strncpy() queda sin defi nir.

Haga que buscar_y_reemplazar() devuelva el valor true cuando tiene lugar una sustitución y
false si no se encuentra la subcadena o si la cadena modifi cada excede la longitud máxima permi-
sible de la cadena resultante.

Ejemplo
He aquí una manera de implementar la función buscar_y_reemplazar (). Reemplaza la primera
aparición de subcadant con subcadnue.

// Reemplaza la primera aparición de subcadant con subcadnue
// en la cadena señalada por cad. Esto significa que la función
// modifica la cadena señalada por cad.
//
// El tamaño máximo de la cadena resultante se pasa en longmax.
// Este valor debe ser menor que el tamaño de la matriz que
// contiene cad para evitar un desbordamiento de la matriz.
//
// Devuelve true si se hizo un reemplazo y falso, si no.
bool buscar_y_reemplazar(char *cad, int longmax,
 const char *subcadant, const char *subcadnue) {

 // No permite que se sustituya el terminado de carácter nulo.
 if(!*subcadant) return false;

 // A continuación, revisa que la cadena resultante tenga una
 // longitud menor o igual al número máximo de caracteres permitido
 // en lo especificado por longmax. Si se excede el máximo, la
 // función termina al devolver false.
 int len = strlen(cad) - strlen(subcadant) + strlen(subcadnue);
 if(len > longmax) return false;

 // Ve si la subcadena especificada está en la cadena.
 char *p = strstr(cad, subcadant);

 // Si se encuentra la subcadena, se reemplaza con la nueva.
 if(p) {

34 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Primero, se usa memmove() para mover el resto de la cadena
 // para que la nueva subcadena pueda reemplazar a la antigua.
 // En otras palabras, este paso aumenta o disminuye el tamaño
 // del "agujero" que llenará la nueva subcadena.
 memmove(p+strlen(subcadnue), p+strlen(subcadant),
 strlen(p)-strlen(subcadant)+1);
 // Ahora, copie la subcadena en cad.
 strncpy(p, subcadnue, strlen(subcadnue));

 return true;
 }

 // Devuelve false si no se hizo un reemplazo.
 return false;
}

Observe que la función no pondrá más de longmax caracteres en cad. El parámetro longmax se
usa para evitar desbordamientos de matriz. Debe pasarle un valor que sea, como mínimo, uno me-
nos que el tamaño de la matriz señalada por cad. Debe ser uno menos que el tamaño de la matriz
porque debe abrir espacio para el terminador de carácter nulo.

En el siguiente programa se muestra la función buscar_y_reemplazar() en acción:

// Implementa "búsqueda y reemplazo" para cadena terminada en un carácter nulo.
#include <iostream>
#include <cstring>

 using namespace std;

bool buscar_y_reemplazar(char *cadorg, int longmax,
 const char *subcadant, const char *subcadnue);

int main() {

 char cad[80] = "alfa beta gamma alfa beta gamma";

 cout << "Cadena original: " << cad << "\n\n";

 cout << "Primero, reemplaza todos los casos de alfa con omega.\n";

 // Reemplaza todas las apariciones de alfa con omega.
 while(buscar_y_reemplazar(cad, 79, "alfa", "omega"))
 cout << "Luego de un reemplazo: " << cad << endl;

 cout << "\nEnseguida, reemplaza todos los casos de gamma con zeta.\n";

 // Reemplaza todos los casos de gamma con zeta.
 while(buscar_y_reemplazar(cad, 79, "gamma", "zeta"))
 cout << "Luego de un reemplazo: " << cad << endl;

 cout << "\nAl final, elimina todas las apariciones de beta.\n";

 // Reemplaza todas las apariciones de beta con una cadena nula.
 // Esto se aplica al eliminar beta de la cadena.
 while(buscar_y_reemplazar(cad, 79, "beta", ""))

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 35

 cout << "Luego de un reemplazo: " << cad << endl;

 return 0;
}

// Reemplaza la primera aparición de subcadant con subcadnue
// en la cadena señalada por cad. Esto significa que la función
// modifica la cadena señalada por cad.
//
// El tamaño máximo de la cadena resultante se pasa en longmax.
// Este valor debe ser menor que el tamaño de la matriz que
// contiene cad para evitar un desbordamiento de la matriz.
//
// Devuelve true si se hizo un reemplazo y falso, si no.
bool buscar_y_reemplazar(char *cad, int longmax,
 const char *subcadant, const char *subcadnue) {

 // No permite que se sustituya el terminado de carácter nulo.
 if(!*subcadant) return false;

 // A continuación, revisa que la cadena resultante tenga una
 // longitud menor o igual al número máximo de caracteres permitido
 // en lo especificado por longmax. Si se excede el máximo, la
 // función termina al devolver false.
 int len = strlen(cad) - strlen(subcadant) + strlen(subcadnue);
 if(len > longmax) return false;

 // Ve si la subcadena especificada está en la cadena.
 char *p = strstr(cad, subcadant);

 // Si se encuentra la subcadena, se reemplaza con la nueva.
 if(p) {

 // Primero, se usa memmove() para mover el resto de la cadena
 // para que la nueva subcadena pueda reemplazar a la antigua.
 // En otras palabras, este paso aumenta o disminuye el tamaño
 // del "agujero" que llenará la nueva subcadena.
 memmove(p+strlen(subcadnue), p+strlen(subcadant),
 strlen(p)-strlen(subcadant)+1);

 // Ahora, copie la subcadena en cad.
 strncpy(p, subcadnue, strlen(subcadnue));

 return true;
 }

 // Devuelve false si no se hizo un reemplazo.
 return false;
}

Aquí se muestra la salida:

Cadena original: alfa beta gamma alfa beta gamma

Primero, reemplaza todos los casos de alfa con omega.

36 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Luego de un reemplazo: omega beta gamma alfa beta gamma
Luego de un reemplazo: omega beta gamma omega beta gamma

Enseguida, reemplaza todos los casos de gamma con zeta.
Luego de un reemplazo: omega beta zeta omega beta gamma
Luego de un reemplazo: omega beta zeta omega beta zeta

Al final, elimina todas las apariciones de beta.
Luego de un reemplazo: omega zeta omega beta zeta
Luego de un reemplazo: omega zeta omega zeta

Opciones
Como está escrita, la función buscar_y_reemplazar() sustituye una subcadena dentro de la cadena
original. Esto signifi ca que ésta se modifi ca. Sin embargo, es posible emplear un método diferente
en que la cadena original queda sin cambiar y la cadena sustituida se devuelve en otra matriz.
Una manera de hacer esto consiste en pasar un apuntador a una cadena en que se copie el resulta-
do. Esta técnica deja la cadena original sin cambio. Aquí se muestra esta opción:

// Esto reemplaza la primera aparición de subcadant con subcadnue.
// La cadena resultante se copia en la cadena pasada en
// cadresult. Esto significa que la cadena original queda sin
// cambio. La cadena resultante debe ser del largo suficiente para
// contener la cadena obtenida después de reemplazar subcadant con
// subcadnue. El número máximo de caracteres a copiar en cadresult
// se pasa en longmax. Devuelve true si se hizo un reemplazo,
// y false, de lo contrario.
bool buscar_y_reemplazar_copia(const char *cadorg, char *cadresult, int longmax,
 const char *subcadant, const char *subcadnue) {

 // No permite que se sustituya el terminador de carácter nulo.
 if(!*subcadant) return false;

 // A continuación, revisa que la cadena resultante tenga una
 // longitud menor al número máximo de caracteres permitido
 // en lo especificado por longmax. Si se excede el máximo, la
 // función termina al devolver false.
 int len = strlen(cadorg) - strlen(subcadant) + strlen(subcadnue);
 if(len > longmax) return false;

 // Ve si la subcadena especificada está en la cadena.
 const char *p = strstr(cadorg, subcadant);

 // Si se encuentra la subcadena, se reemplaza con la nueva.
 if(p) {

 // Copia la primera parte de la cadena original.
 strncpy(cadresult, cadorg, p-cadorg);

 // Termina con un carácter nulo la primera parte de cadresult

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 37

 // para que operen en él las otras funciones de cadena.
 *(cadresult + (p-cadorg)) = '\0';

 // Sustituye la nueva subcadena.
 strcat(cadresult, subcadnue);

 // Agrega el resto de la cadena original,
 // sobre la subcadena que se reemplazó.
 strcat(cadresult, p+strlen(subcadant));

 return true;
 }

 // Devuelve false si no se hizo un reemplazo.
 return false;
}

Los comentarios dan una descripción "paso a paso" de la manera en que funciona buscar_y_re-
emplazar_copia(). He aquí un resumen. La función empieza por encontrar la primera aparición
de cadorg de la subcadena pasada en subcadant. Luego copia la cadena original (cadorg) en la
cadena resultante (cadresult) hasta el punto en que se encontró la subcadena. A continuación,
copia la cadena de reemplazo en cadresult. Por último, copia el resto de cadorg en cadresult. Por
tanto, al regresar, cadresult contiene una copia de cadprg, con la única diferencia de la sustitución
de subcadnue por subcadant. Para evitar el desbordamiento de la matriz, buscar_y_reempla-
zar_copia() sólo copiará hasta longmax caracteres en cadresult. Por tanto, la matriz señalada por
cadresult debe tener por lo menos longmax+1 caracteres de largo. El carácter extra deja espacio
para el terminador de carácter nulo.

Otra opción útil en algunos casos consiste en hacer que la función buscar_y_reemplazar()
asigne dinámicamente una nueva cadena que contenga la cadena resultante y devuelva un apun-
tador a ella. Este método ofrece una gran ventaja: no necesita preocuparse por el hecho de que se
desborden los límites de la matriz porque puede asignar una matriz de tamaño apropiado. Esto
signifi ca que no es necesario que conozca el tamaño de la cadena resultante de antemano. La prin-
cipal desventaja es que debe acordarse de eliminar la cadena asignada dinámicamente cuando ya
no se necesite. He aquí una manera de implementar este método:

// Reemplaza la primera aparición de subcadant con subcadnue
// en cad. Devuelve un apuntador a una nueva cadena que contiene
// el resultado. La cadena señalada por cad queda sin cambio.
// Se asigna dinámicamente memoria para la nueva cadena y debe
// liberarse cuando ya no se necesite. Si no se hace una sustitución,
// se devuelve un apuntador nulo. Esta función lanza mala_asign si
// ocurre una falla en la asignación de memoria.
char *buscar_y_reemplazar_asign(const char *cad, const char *subcadant,
 const char *subcadnue) throw(mala_asign) {

 // No permite que se sustituya el terminador de carácter nulo.
 if(!*subcadant) return 0;

38 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Asigna una matriz con el largo suficiente para contener la cadena
 //resultante.
 int tam = strlen(cad) + strlen(subcadnue) - strlen(subcadant) + 1;
 char *resultado = new char[tam];

 const char *p = strstr(cad, subcadant);

 if(p) {

 // Copia primero la parte de la cadena original.
 strncpy(resultado, cad, p-cad);

 // Termina con un carácter nulo la primera parte del resultado
 // para que las otras funciones de la cadena operan en él.
 *(resultado+(p-cad)) = '\0';

 // Sustituye la nueva cadena.
 strcat(resultado, subcadnue);

 // Agrega el resto de la cadena original.
 strcat(resultado, p+strlen(subcadant));
 } else {
 delete [] resultado; // libera la memoria no utilizada.
 return 0;
 }

 return resultado;
}

Observe que buscar_y_reemplazar_asign() lanza mala_asign() si falla la asignación de la ma-
triz temporal. Recuerde que la memoria es fi nita y que puede quedarse sin ella. Esto es especial-
mente cierto para los sistemas incrustados. Por tanto, el llamador de esta versión tal vez necesite
manejar esta excepción. Por ejemplo, he aquí el marco conceptual básico que puede utilizar para
llamar a buscar_y_reemplazar_asign():

char *apt;
try {
 apt = buscar_y_reemplazar_asign(cad, ant, nue)
} catch(mala_asign excepción) {
 // Aquí se toma la acción apropiada.
}

if(apt) {
 // Usa la cadena...

 // Elimina la memoria cuando ya no se necesite.
 delete [] apt;
}

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 39

Ordene en categorías caracteres dentro de una cadena terminada

en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<cctype> int isalnum(int car)

int isalpha(int car)

int iscntrl(int car)

int isdigit(int car)

int isgraph(int car)

int islower(int car)

int isprint(int car)

int ispunct(int car)

int isspace(int car)

int isupper(int car)

int isxdigit(int car)

En ocasiones, querrá saber qué tipos de caracteres contiene una cadena. Por ejemplo, tal vez quiera
eliminar todos los espacios en blanco (espacios, tabuladores y saltos de línea) de un archivo o el
despliegue de caracteres que no se imprimen usando algún tipo de representación visual. Realizar
estas tareas signifi ca que puede ordenar los caracteres en tipos diferentes, como alfabético, control,
dígitos, puntuación, etc. Por fortuna, C++ facilita mucho la realización de esto empleando una o
más funciones estándar que determinan una categoría de caracteres.

Paso a paso
Las funciones de carácter facilitan el ordenamiento en categorías de un carácter. Incluye estos
pasos:

1. Todas las funciones de ordenamiento de caracteres en categorías se declaran en <cctype>.

Por tanto, deben incluirse en su programa.

2. Para determinar si un carácter es una letra o un dígito, llame a int isalnum(int car).

3. Para determinar si un carácter es una letra, llame a int isalpha(int car).

4. Para determinar si un carácter es un carácter de control, llame a int iscntrl(int car).

5. Para determinar si un carácter es un dígito, llame a int isdigit(int car).

6. Para determinar si un carácter es visible, llame a int isgraph(int car).

7. Para determinar si un carácter es una letra minúscula, llame a int islower(int car).

8. Para determinar si un carácter es imprimible, llame a int isprint(int car).

9. Para determinar si un carácter es un signo de puntuación, llame a int ispunct(int car).

10. Para determinar si un carácter es un espacio en blanco, llame a int isspace(int car).

11. Para determinar si un carácter es una letra mayúscula, llame a int isupper(int car).

12. Para determinar si un carácter es un dígito hexadecimal, llame a int isxdigit(int car).

40 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis
Las funciones de ordenamiento de caracteres en categorías se defi nieron originalmente en C y
tienen soporte en C++ en un par de maneras diferentes. Las versiones empleadas aquí se declaran
dentro del encabezado <cctype>. Todos ordenan en categorías los caracteres con base en la confi -
guración local y de idioma.

Todas las funciones is. . . se desempeñan exactamente de la misma manera. Cada una se descri-
be brevemente aquí:

int isalnum(int car) Devuelve un valor diferente de cero si car es una letra o un dígito, y cero de otra manera.

int isalpha(int car) Devuelve un valor diferente de cero si car es una letra, y cero de otra manera.

int iscntrl(int car) Devuelve un valor diferente de cero si car es un carácter de control, y cero de otra manera.

int isdigit(int car) Devuelve un valor diferente de cero si car es un dígito, y cero de otra manera.

int isgraph(int car) Devuelve un valor diferente de cero si car es un carácter imprimible diferente un espacio, y
cero de otra manera.

int islower(int car) Devuelve un valor diferente de cero si car es una letra minúscula, y cero de otra manera.

int isprint(int car) Devuelve un valor diferente de cero si car es imprimible (incluido un espacio), y cero de otra
manera.

int ispunct(int car) Devuelve un valor diferente de cero si car es un signo de puntuación, y cero de otra manera.

int isspace(int car) Devuelve un valor diferente de cero si car es un espacio en blanco, y cero de otra manera.

int isupper(int car) Devuelve un valor diferente de cero si car es una letra mayúscula, y cero de otra manera.

int isxdigit(int car) Devuelve un valor diferente de cero si car es un dígito hexadecimal (0-9, A-F o a-f), y cero de
otra manera.

Casi todas las funciones se explican por sí solas. Sin embargo, observe que la función ispunct() de-
vuelve un valor true para cualquier carácter que sea un signo de puntuación. Esto se defi ne como
cualquier carácter que no sea una letra, un dígito o un espacio. Por tanto, operadores como + y /
se ordenan en categorías como signos de puntuación.

Ejemplo
En el siguiente ejemplo se muestran en acción las funciones isalpha(), isdigit(), isspace() e is-
punct(). Se usan para contar el número de letras, espacios y signos de puntuación contenidos
dentro de una cadena.

// Cuenta espacios, signos de puntuación, dígitos y letras.
#include <iostream>
#include <cctype>

using namespace std;

int main() {

 const char *cad = "Tengo 30 manzanas y 12 peras. \u00a8Tienes algo?";
 int letras = 0, espacios = 0, punt = 0, dígitos = 0;

 cout << cad << endl;

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 41

 while(*cad) {
 if(isalpha(*cad)) ++letras;
 else if(isspace(*cad)) ++espacios;
 else if(ispunct(*cad)) ++punt;
 else if(isdigit(*cad)) ++dígitos;

 ++cad;
 }

 cout << "Letras: " << letras << endl;
 cout << "D\u00a1gitos: " << digitos << endl;
 cout << "Espacios: " << espacios << endl;
 cout << "Signos de puntuaci\u00a2n: " << punt << endl;

 return 0;
}

Aquí se muestra la salida:

Tengo 30 manzanas y 12 peras. ¿Tienes algo?
Letras: 29
Dígitos: 4
Espacios: 7
Signos de puntuación: 2

Ejemplo adicional: conteo de palabras
Hay una aplicación bien conocida en que se usan las funciones de ordenamiento de caracteres en
categorías: una utilería de conteo de palabras. Como resultado, un programa para este fi n es el
ejemplo quintaesencial para funciones como isalpha() e ispunct(). En el siguiente ejemplo se crea
una versión muy simple de la utilería de conteo de palabras. El conteo real lo maneja la función
contarpalabras(). Se pasa un apuntador a una cadena. Luego cuenta las palabras, líneas, espacios
y signos de puntuación en la cadena y devuelve el resultado.

Esta versión de contarpalabras() usa una estrategia muy simple: sólo cuenta palabras com-
pletas que están integradas exclusivamente por letras. Esto signifi ca que una palabra con guiones
cuenta como dos palabras separadas. Como resultado, la sección "terminada en un carácter
nulo" cuenta como dos palabras. Más aún, una palabra no debe contener cualquier dígito. Por
ejemplo, la secuencia "probando123probando" contará como dos palabras. La función contar-
palabras(), no obstante, permite que un carácter diferente de una letra esté en una palabra: el
apóstrofo. Esto permite el uso de posesivos en inglés (como Tom's) y contracciones (como it's). Sin

embargo, la función contarpalabras().

// Cuenta palabras, líneas, espacios y signos de puntuación.
#include <iostream>
#include <cctype>

using namespace std;

// Una estructura que contiene las estadísticas de conteo de palabras.
struct cp {
 int palabras;
 int espacios;
 int punt;
 int lineas;

42 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cp() {
 palabras = punt = espacios = líneas = 0;
 }
};

cp contarpalabras(const char *cad);

int main() {

 const char *prueba = "Al proporcionar una clase de cadena y dar "
 "soporte a cadenas terminadas-en-nulo,\nC++ "
 "ofrece un entorno rico para tareas intensas en "
 "cadenas,\incluido el uso de signos como el de Mario's House.";

 cout << "Dada la frase: " << "\n\n";
 cout << prueba << endl;
 cp cpal = contarpalabras(prueba);

 cout << "\nPalabras: " << cpal.palabras << endl;
 cout << "Espacios: " << cpal.espacios << endl;
 cout << "L\u00a1neas: " << cpal.lineas << endl;
 cout << "Signos de puntuaci\u00a2n: " << cpal.punt << endl;

 return 0;
}

// Una función muy simple de "conteo de palabras".
// Cuenta las palabras, espacios y signos de puntuación en
// una cadena y devuelve el resultado en una estructura cp.
cp contarpalabras(const char *cad) {
 cp datos;

 // Si la cadena no es nula, entonces contiene por lo menos una línea.
 if(*cad) ++datos.líneas;

 while(*cad) {

 // Revisa una palabra.
 if(isalpha(*cad)) {
 // Inicia la búsqueda de palabras. Ahora busca el final.
 // de las palabras. Permite apóstrofes en las palabras.".
 while(isalpha(*cad) || *cad == '\'') {
 if(*cad == '\'') ++datos.punt;
 ++cad;
 }
 datos.palabras++;
 }
 else {
 // Cuenta signos de puntuación, espacios (incluidos saltos de página) y
líneas.
 if(ispunct(*cad)) ++datos.punt;

 else if(isspace(*cad)) {

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 43

 ++datos.espacios;
 // Si hay algún carácter después del salto de línea, aumenta
 // el contador de líneas.
 if(*cad == '\n' && *(cad+1)) ++datos.lineas;
 }
 ++cad;
 }
 }

 return datos;
}

Aquí se muestra la salida:

Dada la frase:

Al proporcionar una clase de cadena y dar soporte a cadenas terminadas-en-nulo,
C++ ofrece un entorno rico para tareas intensas en cadenas,
incluido el uso de signos como el de Mario's House.

Palabras: 34
Espacios: 31
Líneas: 3
Signos de puntuación: 8

Hay un par de temas de interés en este programa. En primer lugar, observe que la función con-
tarpalabras() devuelve los resultados en un objeto de tipo cp, que es una struct. Se usó una struct
en lugar de una class porque cp es, en esencia, un objeto de sólo datos. Aunque cp no contiene un
constructor predeterminado (que realiza una inicialización simple), no defi ne funciones miembro
o constructores parametrizados. Por tanto, struct cumple mejor su propósito (que es contener da-
tos) que class. En general, es preferible usar class cuando hay funciones de miembros. Se prefi ere
usar struct con objetos que simplemente hospedan datos. Por supuesto, en C++, ambos crean un
tipo de clase y no hay una regla inmutable al respecto.

En segundo lugar, el conteo de líneas aumenta cuando se encuentra un carácter de nueva línea
sólo si no va seguido inmediatamente después por un carácter de terminación nulo. Esta compro-
bación se maneja con esta línea:

if(*cad == '\n' && *(cad+1)) ++datos.lineas;

En esencia, esto asegura que el número de líneas de texto que se vería es igual a la cuenta de líneas
devuelta por la función. Esto evita que una línea fi nal completamente vacía se cuente como una
línea. Por supuesto, la línea aún puede aparecer en blanco si todo lo que contiene son espacios.

Opciones
Como se mencionó, las funciones de ordenamiento en categorías defi nidas en <cctype> se rela-
cionan con la confi guración regional y de idioma. Además, versiones de estas funciones también
están soportadas por <locale> y permiten especifi car una confi guración.

44 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Convierta en fi chas una cadena terminada en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> char *strtok(char *cad,
 const char *delimitadores);

La conversión en fi chas de una cadena es una tarea de programación que casi todo programador
enfrentará en un momento u otro. Convertir en fi chas es el proceso de reducir una cadena a sus
partes individuales, a las que se les denomina fi chas (o token). Por tanto, una fi cha representa el
elemento indivisible más pequeño que puede extraerse de una cadena y que signifi que algo.

Por supuesto, lo que constituye una fi cha depende de cada tipo de entrada que se está proce-
sando y su propósito. Por ejemplo, si quiere obtener las palabras en una frase, entonces una fi cha
es un conjunto de caracteres rodeados por espacios en blanco o signos de puntuación. Por ejemplo,
dada la frase:

Yo prefi ero manzanas, peras y uvas.

Las fi chas individuales son:

Yo prefi ero manzanas

peras y uvas

Cada fi cha está delimitada por el espacio en blanco o el signo de puntuación que separa a una de
otra. Cuando se convierte una cadena en fi chas que contiene una lista de pares clave/valor organi-
zados de esta manera:

Clave=valor, clave=valor, clave=valor, ...

Las fi chas son la clave y el valor. El signo = y la coma son separadores que delimitan las fi chas. Por
ejemplo, dado

precio=10.15, cantidad=4

Las fi chas son

precio 10.15 cantidad 4

Lo importante es que lo que constituye una fi cha cambiará, dependiendo de la circunstancia. Sin
embargo, el proceso general de convertir una cadena en fi chas es el mismo en todos los casos.

Debido a que convertir una cadena en fi chas es una tarea importante y común, C++ proporcio-
na soporte integrado mediante la función strtok(). En la solución se muestra cómo usarla.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 45

Paso a paso
Para usar strtok() para convertir una cadena en fi chas se requieren estos pasos:

1. Cree una cadena que contenga los caracteres que separan una fi cha de otra. Hay delimita-

dores de fi chas.

2. Para obtener la primera fi cha en la cadena, llame a strtok() con un apuntador a la cadena

que se convertirá en fi cha y uno a la cadena que contiene los delimitadores.

3. Para obtener las fi chas restantes en la cadena, siga llamando a strtok(). Sin embargo, pase

un apuntador nulo para el primer argumento. Puede cambiar los delimitadores, de acuer-

do con lo necesario.

4. Cuando strtok() devuelve null, la cadena se ha convertido por completo en fi chas.

Análisis
La función strtok() tiene el siguiente prototipo:

char *strtok(char *cad, const char *delimitadores)

Un apuntador a la cadena desde la que se obtendrán una o más fi chas se pasa en cad. Un apunta-
dor a la cadena que contiene los caracteres que delimitan una fi cha se pasan en delimitadores. Por
tanto, delimitadores contiene los caracteres que dividen una fi cha de otra. Un apuntador nulo se
devuelve si ya no hay más fi chas en cad. De otra manera, se devuelve un apuntador a una cadena
que contiene la siguiente fi cha.

La conversión de cadenas en fi chas es un proceso de dos pasos. La primera llamada a strtok()
pasa un apuntador a la cadena que se habrá de convertir en fi cha. Cada llamada posterior a str-
tok() pasa un apuntador nulo a cad. Esto causa que strtok() siga convirtiendo en fi chas la cadena
desde el punto en que se encontró la fi cha anterior. Cuando ya no se encuentran más fi chas,
se devuelve un apuntador nulo.

Un aspecto útil de strtok() es que puede cambiar los delimitadores necesarios durante el
proceso de conversión en fi chas. Por ejemplo, tome en consideración la cadena que contiene pares
clave/valor organizados de la manera siguiente:

cuenta = 10, max = 99, menú Inicio = 12, nombre = "Tom Jones, jr.", ...

Para leer casi todas las claves y los valores de esta cadena, puede utilizarse el siguiente conjunto
delimitador:

"=,"

Sin embargo, para leer una cadena entre comillas que incluye cualquier carácter, incluidas comas,
se necesita este delimitador:

"\""

Debido a que strtok() le permite cambiar conjuntos de delimitadores "al vuelo", puede especifi car
los delimitadores que son necesarios en cualquier momento. Esta técnica se ilustra en el siguiente
ejemplo.

46 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
Se muestra cómo usar strtok() para convertir en fi chas una cadena terminada en un carácter nulo:

// Demuestra strtok().
#include <iostream>
#include <cstring>

using namespace std;

int main() {

 // Primero, usa strtok() para convertir una frase en fichas.

 // Crea una cadena de delimitadores para frases simple.
 char delims[] = ".,\u00a8 ?;!";

 char cad[] = "Yo prefiero manzanas, peras y uvas. \u00a8Y t\u00a3?";

 char *ficha;

 cout << "Obtiene las palabras de una frase.\n";

 // Pasa la cadena que se convertirá en fichas y obtiene la primera ficha.
 ficha = strtok(cad, delims);

 // Obtiene todas las fichas restantes.
 while(ficha) {
 cout << ficha << endl;

 // Cada llamada posterior a strtok() pasa NULL
 // para el primer argumento.
 ficha = strtok(NULL, delims);
 }

 // Ahora, usa strtok() para extraer claves y valores almacenados
 // en pares clave/valor dentro de una cadena.
 char parescv[] = "cuenta=10, nombre=\"Tom Jones, jr.\", max=100, min=0.01";

 // Crea una lista de delimitadores para pares clave/valor.
 char delimscv[] = " =,";

 cout << "\nConvierte en fichas valores clave/valor.\n";

 // Obtiene la primera clave.
 ficha = strtok(parescv, delimscv);

 // Obtiene las fichas restantes.
 while(ficha) {
 cout << "Clave: " << ficha << " ";

 // Obtiene un valor.

 // Primero, si la clave es nombre, el valor será
 // una cadena entre comillas.
 if(!strcmp("nombre", ficha)) {
 // Observe que esta llamada usa sólo comillas como delimitador. Esto le
 // permite leer una cadena entre comillas que incluye cualquier carácter.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 47

 ficha = strtok(NULL, "\"");
 }
 else {
 // De otra manera, lee un valor simple.
 ficha = strtok(NULL, delimscv);
 }
 cout << "Valor: " << ficha << endl;

 // Obtiene la siguiente clave.
 ficha = strtok(NULL, delimscv);
 }

 return 0;
}

Aquí se muestra la salida:

Obtiene las palabras de una frase.
Yo
prefiero
manzanas
peras
y
uvas
Y
tú

Convierte en fichas valores clave/valor.
Clave: cuenta Valor: 10
Clave: nombre Valor: Tom Jones, jr.
Clave: max Valor: 100
Clave: min Valor: 0.01

Preste especial atención a la manera en que se leen los pares clave/valor. Los delimitadores usados
para leer un valor simple difi eren de los usados para leer una cadena entre comillas. Más aún, los
delimitadores se cambian durante el proceso de conversión en fi chas. Como ya se explicó, cuando
se convierte una cadena en fi chas, puede cambiar el conjunto de delimitadores a medida que lo
necesite.

Opciones
Aunque el uso de strtok() es simple y muy efectivo cuando se aplica en situaciones para las que re-
sulta adecuado, su uso está inherentemente limitado. El principal problema es que strtok() convierte
en fi chas una cadena basada en un conjunto de delimitadores, y una vez que se ha encontrado uno,
se pierde. Esto difi culta el uso de strtok() para convertir en fi chas una cadena en que los delimitado-
res podrían también ser fi chas. Por ejemplo, considere la siguiente instrucción simple de C++:

x = cuenta+12;

Para analizar esta instrucción, el signo + debe manejarse como un delimitador que termina cuenta y
como una fi cha que indica la suma. El problema es que no hay una manera fácil de hacer esto emplean-
do strtok(). Para obtener cuenta, el + debe estar en el conjunto de delimitadores. Sin embargo, una vez
que el + se ha encontrado, se consume. Por tanto, tampoco puede leerse como una fi cha. Un segundo

48 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

problema con strtok() es que resulta difícil detectar los errores en el formato de la cadena que se está
convirtiendo en fi chas (por lo menos hasta que se alcanza prematuramente el fi nal de la cadena).

Debido al problema de aplicar strtok() a un amplio rango de casos, suelen usarse otros mé-
todos para convertir en fi chas. Uno de éstos consiste en escribir su propia función "para obtener
fi chas". Esto le da control completo sobre el proceso de conversión en fi chas y le permite regresar
fácilmente fi chas basadas en el contexto más que en delimitadores. Aquí se muestra un ejemplo
simple de este método. A la función personalizada para obtener fi chas se le denomina obtenerfi -
chas(). Se convierte en fi chas una cadena en los siguientes tipos de fi chas:

Cadenas alfanuméricas, como cuenta, índice27 o WordPad.

Números enteros sin signo, como 2, 99 o 0.

Signos de puntuación, entre ellos operadores, como + y /.

Por tanto, obtenerfi chas() puede usarse para convertir en fi chas expresiones muy simples, como

x = cuenta+12

o

while(x<9)x = x –w;

La función obtenerfi chas() se usa de manera parecida a strtok(). En la primera llamada, se pasa
un apuntador a la cadena que habrá de convertirse en fi chas. En llamadas posteriores, se pasa un
apuntador nulo. Devuelve un apuntador cuando no hay más fi chas. Para convertir en fi chas una
nueva cadena, simplemente empiece el proceso al pasar un apuntador a la nueva cadena. Aquí se
muestra la función obtenerfi chas() simple, junto con una función main() para demostrar su uso:

// Demuestra una función obtenerficha() personalizada que puede
// devolver las fichas incluidas en expresiones muy simples.
#include <iostream>
#include <cstring>
#include <cctype>

using namespace std;

const char *obtenerficha(const char *cad);

int main() {
 char ejemploA[] = "max=12+3/89; cuenta27 = 19*(min+piso);";
 char ejemploB[] = "while(i < max) i = contador * 2;";
 const char *fic;

 // Convierte en fichas la primera cadena.
 fic = obtenerficha(ejemploA);
 cout << "Fichas que se encuentran en: " << ejemploA << endl;
 while(fic) {
 cout << fic << endl;
 fic = obtenerficha(NULL);
 }
 cout << "\n\n";

•

•

•

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 49

 // Reinicia obtenerficha() al pasar la segunda cadena.
 fic = obtenerficha(ejemploB);
 cout << "Fichas que se encuentran en: " << ejemploB << endl;
 while(fic) {
 cout << fic << endl;
 fic = obtenerficha(NULL);
 }

 return 0;
}

// Una función obtenerficha() personalizada muy simple. Las fichas están
// formadas por cadenas alfanuméricas, números y signos de puntuación de
// un solo carácter. Aunque esta función es muy limitada, demuestra el
// marco conceptual básico que puede expandirse y mejorarse para obtener
// otros tipos de fichas.
//
// En la primera llamada, pasa un apuntador a la cadena que se convertirá.
// en fichas. En llamadas posteriores, pasa un apuntador nulo. Devuelve
// un apuntador a la ficha actual, o un apuntador nulo si es que no hay
// más fichas.
#define TAM_MAX_FICHA 128
const char *obtenerficha(const char *cad) {
 static char ficha[TAM_MAX_FICHA+1];
 static const char *apt;
 int cuenta; // contiene la cuenta actual de caracteres
 char *aptficha;

 if(cad) {
 apt = cad;
 }

 aptficha = ficha;
 cuenta = 0;

 while(isspace(*apt)) apt++;

 if(isalpha(*apt)) {
 while(isalpha(*apt) || isdigit(*apt)) {
 *aptficha++ = *apt++;
 ++cuenta;
 if(cuenta == TAM_MAX_FICHA) break;
 }
 } else if(isdigit(*apt)) {
 while(isdigit(*apt)) {
 *aptficha++ = *apt++;
 ++cuenta;
 if(cuenta == TAM_MAX_FICHA) break;
 }
 } else if(ispunct(*apt)) {
 *aptficha++ = *apt++;
 } else return NULL;

 // Null termina la ficha.
 *aptficha = '\0';

 return ficha;
}

50 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra la salida del programa:

Fichas que se encuentran en: max=12+3/89; cuenta27 = 19*(min+piso);
max
=
12
+
3
/
89
;
cuenta27
=
19
*
(
min
+
piso
)
;

Fichas que se encuentran en: while(i < max) i = contador * 2;
while
(
i
<
max
)
i
=
contador
*
2
;

La operación de obtenerfi chas() es muy sencilla. Simplemente examina el siguiente carácter de
la cadena de entrada y luego lee el tipo de fi cha con que inicia ese tipo de carácter. Por ejemplo,
si la fi cha es una letra, entonces obtenerfi chas() lee una fi cha alfanumérica. Si el siguiente carác-
ter es un dígito, entonces lee un entero. Si es un signo de puntuación, entonces la fi cha contiene
ese carácter. Observe que obtenerfi chas() no deja que la longitud de una fi cha exceda la longitud
máxima de la fi cha, especifi cada en TAM_MAX_FICHA. También observe que obtenerfi chas() no
modifi ca la cadena de entrada. Esto difi ere de strtok(), que sí la modifi ca. Por último, observe que
el apuntador devuelto por obtenerfi chas() es const. Esto signifi ca que puede usarse para modifi -
car la matriz estática fi cha. Por último, aunque obtenerfi chas() es muy simple, puede adaptarse y
mejorarse fácilmente para adecuarse a otras situaciones, más complejas.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 51

Realice operaciones básicas en objetos de string

Componentes clave

Encabezado Clases Funciones

<string> string size_type capacity() const
string &erase(size_type ind = 0,
 size_type long = npos)
string &insert(size_type ind,
 const string &cad
size_type max_size() const
char &operator[](size_type ind)
string &operator=(const string &cad)
void push_back(const char car)
void reserve(size_type num = 0)
size_type size() const;
string substr(size_type ind = 0,
 size_type long = npos) const

<string string operator+(const string %izqarr,
 const string %derarr)
string operator==(const string %izqarr,
 const string %derarr)
bool operator<=(const string %izqarr,
 const string %derarr)
bool operator>(const string %izqarr,
 const string %derarr)

Como se explicó al principio de este capítulo, C++ proporciona dos maneras de manejar cadenas.
La primera es la cadena terminada en un carácter nulo (también llamada cadena C). Ésta se heredó
de C y aún se usa ampliamente en programación con C++. También es el tipo de cadena usado en
las soluciones anteriores. El segundo tipo de cadena es un objeto de la clase de plantillas basic_
string. La cual está defi nida por C++ y es parte de la biblioteca de clases estándar de C++. En el
resto de las soluciones de este capítulo se utiliza basic_string.

Las cadenas de tipo basic_string tienen varias ventajas sobre las terminadas en un carácter
nulo. He aquí algunas de las más importantes:

basic_string defi ne un tipo de datos. (Recuerde que una cadena terminada en un carácter

nulo es simplemente una convención.)

basic_string encapsula la secuencia de caracteres que forma la cadena, con lo que evita

operaciones inapropiadas. Cuando se usa basic_string, no es posible generar un desborda-

miento de matriz, por ejemplo.

Los objetos de basic_string son dinámicos. Crecen a medida que se necesitan para acomo-

darse al tamaño de la cadena que se está incluyendo. Por tanto, no es necesario saber de

antemano el largo de la cadena.

basic_string defi ne operadores que manipulan cadenas. Esto simplifi ca muchos tipos de

manejo de cadenas.

•

•

•

•

52 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

basic_string defi ne un conjunto completo de funciones de miembro que simplemente fun-

cionan con cadenas. Pocas veces tiene que escribir su propia función para realizar alguna

manipulación de cadenas.

Hay dos especializaciones integradas de basic_string: string (que es para caracteres de tipo
char) y wstring (que es para caracteres ampliados). Por conveniencia, todas las soluciones de este
libro usan string, pero casi toda la información es aplicable a cualquier tipo de basic_string.

En esta solución se demuestran varias de las operaciones básicas que pueden aplicarse a
objetos de tipo string. Se muestra cómo construir una string. Luego se presentan varios de sus
operadores y funciones miembro. También se demuestra cómo ajustan su tamaño en tiempo de
ejecución los objetos string para acomodar un aumento en el tamaño de la secuencia de caracteres.

Paso a paso
Para realizar las operaciones básicas de string se requieren estos pasos:

1. La clase string está declarada dentro del encabezado <string>. Por tanto, debe incluirse

éste en cualquier programa que utilice string.

2. Un objeto string se crea al usar uno de sus constructores. En esta solución se demuestran

tres. El primero crea una string vacía, el segundo crea una inicializada por una literal

string, y el tercero crea una que se inicializa con otra.

3. Para obtener la longitud de la cadena más larga posible, llame a max_size().

4. Para asignar una cadena a otra, use el operador =.

5. Para unir dos objetos string, use el operador +.

6. Para comparar lexicográfi camente dos objetos string, use los operadores relacionales,

como > o ==.

7. Para obtener una referencia a un carácter en un índice especifi cado, use el operador de

indización [].

8. Para obtener el número de caracteres contenido actualmente por string, llame a size().

9. Para obtener la capacidad actual de string, llame a capacity().

10. Para especifi car una capacidad, llame a reserve().

11. Para eliminar todos los caracteres o parte de ellos en una string, llame a erase().

12. Para agregar un carácter al fi nal de una cadena, llame a push_back().

13. Para obtener una subcadena, llame a substr().

Análisis
La clase string defi ne varios constructores. Aquí se muestran los usados en esta solución:

explicit string(const Allocator &asign = Allocator())
string(const char *cad, const Allocator &asign = Allocator())
string(const string &cad, size_type ind = 0,
 size_type long = npos Allocator &asign = Allocator())

El primer constructor crea una cadena vacía. El segundo, una que es inicializada por una cadena
terminada en un carácter nulo señalada por cad. El tercero, una que es inicializada por una subca-
dena de cad que empieza en ind y se ejecuta por long caracteres. Aunque parecen un poco intimi-
dantes, son fáciles de usar. Por lo general, el asignador (que controla la manera en que se asigna

•

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 53

la memoria) está permitido como opción predeterminada. Esto signifi ca que, por lo general, no
querrá especifi car un asignador cuando crea una string. Por ejemplo, lo siguiente crea una cadena
vacía y una inicializada con una literal de cadena:

string micad; // cadena vacía
string micad2("Hola"); //cadena inicializada con la secuencia Hola

En el tercer constructor, suelen usarse las opciones predeterminadas para ind y long, lo que signifi -
ca que la cadena contiene una copia completa de cad.

Aunque los objetos string son dinámicos, y crecen de acuerdo con las necesidades en tiempo de
ejecución, una cadena aún puede tener una longitud máxima. Aunque este máximo suele ser de-
masiado, tal vez sea útil conocerlo en algunos casos. Para obtener la longitud de cadena máxima,
llame a max_size(), que se muestra aquí:

size_type max_size() const

Devuelve la longitud de la cadena más larga posible.
Puede asignar una string a otra al usar el operador =. Éste se ha implementado como una fun-

ción miembro. Tiene varias formas. He aquí una usada en esta solución:

string &operator=(const string &cad)

Asigna la secuencia de caracteres en cad a la string que invoca. Devuelve una referencia al objeto
que invoca. Otras versiones del operador de asignación le permiten asignar una cadena terminada
en un carácter nulo o un carácter a un objeto string.

Puede unir una string con otra al usar el operador +. Se defi ne como una función que no es
miembro. Tiene varias formas. He aquí la usada en esta solución:

string operator+(const string &izqarr, const string &derarr)

Une derarr con izqarr y devuelve un objeto string que contiene el resultado. Otras versiones del
operador de unión le permiten unir un objeto string con una cadena terminada en un carácter
nulo o con un carácter.

Puede insertar una cadena en otra al usar la función insert(). Tiene varias formas. La usada
aquí es:

string &insert(size_type ind, const string &cad)

Inserta cad en la cadena que invoca en el índice especifi cado por ind. Devuelve una referencia al
objeto que invoca.

Todos los operadores relacionales están defi nidos en la clase string por funciones de operador
que no son miembro. Realizan comparaciones lexicográfi cas de las secuencias de caracteres con-
tenidas dentro de dos cadenas. Cada operador tiene varias formas sobrecargadas. Los operadores
usados aquí son ==, <= y >, pero todos los operadores relacionales funcionan de la misma manera
básica. He aquí las versiones de estos operadores que se usan en esta solución:

bool operator==(const string &izqarr, const string &derarr)
bool operator<=(const string &izqarr, const string &derarr)
bool operator>(const string &izqarr, const string &derarr)

54 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En todos los casos, izqarr se refi ere al operando de la izquierda y derarr al de la derecha. Se devuel-
ve el resultado de la comparación. Otras versiones de estos operadores le permiten comparar un
objeto string con una cadena terminada en un carácter nulo.

Puede obtener una referencia a un elemento específi co en una string al usar el operador de
indización de la matriz []. Está implementado como una función miembro, como se muestra aquí:

char &operator[](size_type ind)

Devuelve una referencia al carácter en el índice basado en cero especifi cado por ind. Por ejemplo,
dado un objeto string llamado micad, la expresión micad[2] devuelve una referencia al tercer
carácter en micad. También está disponible una versión con const.

El número de caracteres contenido en la cadena puede obtenerse al llamar a size(), como se
muestra aquí:

size_type size() const

Devuelve el número de caracteres en la cadena. Como se explicó en la revisión general, al princi-
pio de este capítulo, size_type es un elemento de typedef que representa alguna forma de entero
sin signo.

El número de caracteres que un objeto string puede contener no está predeterminado. En cam-
bio, el objeto crecerá de acuerdo con las necesidades para adecuarse al tamaño de la cadena que
habrá de encapsular. Sin embargo, todos los objetos string empiezan con una capacidad inicial,
que es el número máximo de caracteres que puede contener antes de que deba asignarse más me-
moria. La capacidad de un objeto string puede determinarse al llamar a capacity(), que
se muestra aquí:

size_type capacity() const

Devuelve la capacidad actual de la string que invoca.
La capacidad de un objeto string puede ser importante porque las asignaciones de memoria

ocupan mucho tiempo. Si sabe por anticipado el número de caracteres que contendrá una string,
entonces puede establecer la capacidad en esa cantidad, eliminando así una reasignación de me-
moria. Para esto, llame a reserve(), que se muestra a continuación:

void reserve(size_type num = 0)

Establece la capacidad de la string que invoca para que sea por lo menos igual a num. Si num es
menor o igual al número de caracteres en la cadena, entonces la llamada a reserve() es una solici-
tud para reducir la capacidad a un tamaño igual. Sin embargo, esta solicitud puede ignorarse.

Puede eliminar uno o más caracteres de una cadena al llamar a erase(). Hay tres versiones de
erase(). Aquí se muestra la que se usa en esta solución:

string &erase(size_type ind = 0, size_type long = npos)

A partir de ind, elimina long caracteres del objeto que invoca. Devuelve una referencia al objeto
que invoca.

Una de las funciones miembro de string más interesantes es push_back(). Agrega un carácter
al fi nal de la cadena:

void push_back (const char car)

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 55

Agrega car al fi nal de la cadena que invoca. Es muy útil cuando quiere crear una cola de caracteres.
Puede obtener una parte de una cadena (es decir, una subcadena), al llamar a substr(), que se

muestra aquí:

string substr(size_type ind = 0, size_type long = npos) const

Devuelve una subcadena de long caracteres, empezando en ind dentro de la string que invoca.

Ejemplo
En el siguiente ejemplo se ilustran varias de las operaciones fundamentales con cadenas:

// Demuestra las operaciones básicas con cadenas.
#include <iostream>
#include <string>

using namespace std;

int main()
{
 // Crea algunos objetos de cadena. Tres se inicializan
 // usando la literal de cadena pasada como argumento.
 string cad1("Alfa");
 string cad2("Beta");
 string cad3("Gamma");
 string cad4;

 // Salida de una cadena vía cout.
 cout << "Las cadenas originales son:\n";
 cout << " cad1: " << cad1 << endl ;
 cout << " cad2: " << cad2 << endl ;
 cout << " cad3: " << cad3 << "\n\n";

 // Despliega la longitud máxima de la cadena.
 cout << "La longitud m\u00a0xima de la cadena es: " << cad1.max_size()
 << "\n\n";

 // Despliega el tamaño de cad1.
 cout << "cad1 contiene " << cad1.size() << " caracteres.\n";

 // Despliega la capacidad de cad1.
 cout << "Capacidad de cad1: " << cad1.capacity() << "\n\n";

 // Despliega los caracteres de una cadena, de uno en uno
 // empleando el operador de indización.
 for(unsigned i = 0; i < cad1.size(); ++i)
 cout << "cad1[i]: " << cad1[i] << endl;
 cout << endl;

 // Asigna una cadena a otra.
 cad4 = cad1;
 cout << "cad4 tras la asignaci\u00a2n de cad1: " << cad4 << "\n\n";

56 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Une dos cadenas.
 cad4 = cad1 + cad3;
 cout << "cad4 tras la asignaci\u00a2n de cad1+cad3: " << cad4 << "\n\n";

 // Inserta una cadena en otra.
 cad4.insert(4, cad2);
 cout << "cad4 tras insertar cad2: " << cad4 << "\n\n";

 // Obtiene una subcadena.
 cad4 = cad4.substr(4, 4);
 cout << "cad4 tras la asignaci\u00a2n de cad4.substr(4, 3): "
 << cad4 << "\n\n";

 // Compara dos cadenas.
 cout << "Compara cadenas.\n";
 if(cad3 > cad1) cout << "cad3 > cad1\n";
 if(cad3 == cad1+cad2)
 cout << "cad3 == cad1+cad2\n";
 if(cad1 <= cad2)
 cout << "cad1 <= cad2\n\n";

 // Crea un objeto de cadena usando otro.
 cout << "Inicializa cad5 con el contenido de cad1.\n";
 string cad5(cad1);
 cout << "cad5: " << cad5 << "\n\n";

 // Borra cad4.
 cout << "Borrando cad4.\n";
 cad4.erase();
 if(cad4.empty()) cout << "cad4 est\u00a0 ahora vac\u00a1a.\n";
 cout << "El tama\u00a4o y la capacidad de cad4 son " << cad4.size() << " "
 << cad4.capacity() << "\n\n";

 // Usa push_back() para agregar caracteres a cad4.
 for(char ch = 'A'; ch <= 'Z'; ++ch)
 cad4.push_back(ch);
 cout << "cad4 tras llamar a push_back(): " << cad4 << endl;
 cout << "El tama\u00a4o y la capacidad de cad4 son ahora " << cad4.size() << " "
 << cad4.capacity() << "\n\n";

 // Establece la capacidad de cad4 en 128.
 cout << "Estableciendo la capacidad de cad4 en 128\n";
 cad4.reserve(128);
 cout << "La capacidad de cad4 es ahora: " << cad4.capacity() << "\n\n";

 // Ingresa una cadena vía cin.
 cout << "Ingrese una cadena: ";
 cin >> cad1;
 cout << "Introdujo: " << cad1 << "\n\n";

 return 0;
}

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 57

Aquí se muestra la salida:

Las cadenas originales son:
 cad1: Alfa
 cad2: Beta
 cad3: Gamma

La longitud máxima de la cadena es: 4294967294

cad1 contiene 4 caracteres.
Capacidad de cad1: 15

cad1[i]: A
cad1[i]: l
cad1[i]: f
cad1[i]: a

cad4 tras la asignación de cad1: Alfa

cad4 tras la asignación de cad1+cad3: AlfaGamma

cad4 tras insertar cad2: AlfaBetaGamma

cad4 tras la asignación de cad4.substr(4, 3): Beta

Compara cadenas.
cad3 > cad1
cad1 <= cad2

Inicializa cad5 con el contenido de cad1.
cad5: Alfa

Borrando cad4.
cad4 está ahora vacía.
El tamaño y la capacidad de cad4 son 0 15

cad4 tras llamar a push_back(): ABCDEFGHIJKLMNOPQRSTUVWXYZ
El tamaño y la capacidad de cad4 son ahora 26 31

Estableciendo la capacidad de cad4 en 128
La capacidad de cad4 es ahora: 143

Ingrese una cadena: prueba
Introdujo: prueba

Tal vez lo más importante que hay que notar en el ejemplo es que el tamaño de las cadenas
no está especifi cado. Como se explicó, los objetos string reciben un tamaño automáticamente
para contener la cadena que se les da. Por tanto, cuando se asignan o unen cadenas, la cadena
de destino crecerá de acuerdo con lo necesario para acomodar el tamaño de la nueva cadena. No
es posible rebasar el fi nal de la cadena. Este aspecto dinámico de los objetos string es una de las
maneras en que son mejores que las cadenas terminadas en un carácter nulo estándar, que son el
tema de los rebases de límite. (Como se mencionó en la revisión general, un intento de crear string
que excede la cadena más larga posible da como resultado que se lance lenght_error. Por tanto, no
es posible rebasar string().)

58 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Hay otro elemento importante que debe tomarse en cuenta en la ejecución de ejemplo. Cuando
la capacidad de cad4 se aumenta, al llamar a reserve() con un argumento de 128, la capacidad real
se vuelve 143. Recuerde que una llamada a reserve() causa que la capacidad aumente por lo menos
al valor especifi cado. La implementación es libre de asignarle un valor más elevado. Esto podría
suceder porque las asignaciones podían ser más efi cientes en bloques de cierto tamaño, por ejem-
plo. (Por supuesto, debido a las diferencias entre compiladores, tal vez vea un valor de capacidad
diferente cuando ejecute su programa de ejemplo. Son de esperar esas diferencias.)

Opciones
Incluso para las operaciones básicas con cadenas, string ofrece muchas opciones. Aquí se mencio-
nan varias de ellas.

Como se explicó, para obtener el número de caracteres mantenido actualmente por una ca-
dena, puede llamar a size(). Sin embargo, también puede llamar a lenght(). Devuelven el mismo
valor y funcionan de la misma manera. En esencia, size() y lenght() son simplemente dos nombres
diferentes para la misma función. La razón para los dos nombres es histórica. Todos los contene-
dores STL deben implementar el método size(). Aunque no siempre se considera como parte de
STL, string cumple con todos los requisitos para un contenedor y es compatible con STL. Parte
de estos requisitos es que un contenedor debe proporcionar una función size(). Por tanto, size()
se vuelve parte de string.

La función insert() tiene varias formas adicionales. Por ejemplo, puede insertar una parte de
una string en otra, uno o más caracteres en una string, o una cadena terminada en un carácter
nulo en una string.

La función erase() tiene varias formas adicionales que le permiten eliminar caracteres a los que
hace referencia un iterador (consulte Opere en objetos string mediante iteradores).

Aunque el uso del operador de indización [] es más sencillo, también puede obtener una refe-
rencia a un carácter específi co al llamar al método at(). Aquí se muestra cómo se implementa para
string:

char &at(size_type ind)

Devuelve una referencia al carácter en el índice basado en cero especifi cado por ind. También está
disponible una versión de const.

Como se muestra en la solución, pueden realizarse asignaciones y uniones simples empleando
los operadores = y + defi nidos por string. En casos en que se necesitan asignaciones o uniones más
sofi sticadas, string proporciona las funciones assign() y append(). Estas funciones tienen muchas
formas que le permiten asignar o adjuntar partes de una cadena, toda una cadena terminada en
un carácter nulo (o parte de ella), o uno o más caracteres. También hay formas que dan soporte a
iteradores. Aunque éstos son demasiados para describirse en una solución, he aquí un ejemplo de
cada una:

string &assign(const string &cad, size_type ind, size_type long)
string &append(const string &cad, size_type ind, size_type long)

La versión de assign() asigna una subcadena de cad a la cadena que invoca. La subcadena empieza
en ind y se ejecuta por long caracteres. Esta versión de append() adjunta una subcadena de cad al
fi nal de la cadena que invoca. La subcadena empieza en ind y se ejecuta por long caracteres. Ambas
funciones devuelven una referencia al objeto que invoca.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 59

Los operadores relacionales son la manera más fácil de compartir una cadena con otra. Ade-
más de las formas usadas en la solución, otras versiones de estos operadores le permiten comparar
un objeto string con una cadena terminada en un carácter nulo. Para proporcionar fl exibilidad
agregada, string también brinda la función compare(), que le permite comparar partes de dos
cadenas. He aquí un ejemplo. Compara una cadena con una subcadena de la cadena que invoca.

int compare(size_type ind, size_type long, const string &cad) const

Esta función compara cad con la subcadena dentro de la cadena que invoca y que empieza en ind
y tiene long caracteres de largo. Devuelve menos de cero si la secuencia en la cadena que invoca es
menor que cad, cero si las dos secuencias son iguales, y mayor que cero si la secuencia en la cadena
que invoca es mayor que cad.

Puede eliminar todos los caracteres de una string de dos maneras. En primer lugar, como se
muestra en la solución, puede usar la función erase(), permitiendo los argumentos predetermina-
dos. Como opción, puede llamar a clear(), que se muestra aquí:

void clear()

Busque un objeto string

Componentes clave

Encabezado Clases Funciones

<string> string size_type fi nd(const char *cad,
 size_type ind = 0) const
size_type fi nd(const string *cad,
 size_type ind = 0) const
size_type fi nd_fi rst_of(const char *cad,
 size_type ind = 0) const
size_type fi nd_fi rst_of(const string *cad,
 size_type ind = 0) const
size_type fi nd_fi rst_not_of(const char *cad,
 size_type ind = 0) const
size_type fi nd_last_of(const char *cad,
 size_type ind = npos) const
size_type fi nd_last_not_of(const char *cad,
 size_type ind = npos) const
size_type rfi nd(const char *cad,
 size_type ind = npos) const

La clase string defi ne una serie poderosa de funciones que busca una cadena. Estas funciones le
permiten encontrar:

La primera aparición de una subcadena o un carácter.

La última aparición de una subcadena o un carácter.

La primera aparición de cualquier carácter en un conjunto de caracteres.

La última aparición de cualquier carácter en un conjunto de caracteres.

•

•

•

•

60 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

La primera aparición de cualquier carácter que no es parte de un conjunto de caracteres.

La última aparición de cualquier carácter que no es parte de un conjunto de caracteres.

En esta solución se demuestra su uso.

Paso a paso
La búsqueda de una string incluye estos pasos:

1. Para encontrar la primera aparición de una secuencia o carácter, llame a fi nd().

2. Para encontrar la última aparición de una secuencia o carácter, llame a rfi nd().

3. Para encontrar la primera aparición de cualquier carácter en un conjunto de caracteres,

llame a fi nd_fi rst_of().

4. Para encontrar la última aparición de cualquier carácter en un conjunto de caracteres,

llame a fi nd_last_of().

5. Para encontrar la primera aparición de cualquier carácter que no es parte de un conjunto

de caracteres, llame a fi nd_fi rst_not_of().

6. Para encontrar la última aparición de cualquier carácter que no es parte de un conjunto de

caracteres, llame a fi nd_last_not_of().

Análisis
Todas las funciones de búsqueda tienen cuatro formas, lo que les permite especifi car el objetivo
de la búsqueda como una string, una cadena terminada en un carácter nulo, una porción de una
cadena terminada en un carácter nulo, o un carácter. Aquí se describen las formas usadas por los
ejemplos de esta solución.

La función fi nd() encuentra la primera aparición de una subcadena o un carácter dentro de
otra cadena. Aquí están las formas usadas en esta solución o en el Ejemplo adicional:

size_type fi nd(const string &cad, size_type ind = 0) const
size_type fi nd(const char *cad, size_type ind = 0) const

Ambas devuelven el índice de la primera aparición de cad dentro de la cadena que invoca. El pará-
metro ind especifi ca el índice en que empezará la búsqueda dentro de la cadena que invoca. En la
primera forma, cad es una referencia a una string. En la segunda forma, cad es un apuntador a una
cadena terminada en un carácter nulo. Si no se encuentra una coincidencia, se devuelve npos.

La función rfi nd() encuentra la última aparición de una subcadena o un carácter dentro de otra
cadena. La forma que se usa aquí es:

size_type rfi nd(const char *cad, size_type ind = npos) const

Devuelve el índice de la última aparición de cad dentro de la cadena que invoca. El parámetro ind
especifi ca el índice en que empezará la búsqueda dentro de la cadena que invoca. Si no se encuen-
tra una coincidencia, se devuelve npos.

Para encontrar la primera aparición de cualquier carácter dentro de un conjunto de caracteres,
se llama a fi nd_fi rst_of(). He aquí las formas usadas en esta solución o en el Ejemplo adicional:

size_type fi nd_fi rst_of(const string &cad, size_type ind = 0) const
size_type fi nd_fi rst_of(const char *cad, size_type ind = 0) const

•

•

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 61

Ambos devuelven el índice del primer carácter dentro de la cadena que invoca y que coincide con
cualquier carácter en cad. La búsqueda empieza en el índice ind. Se devuelve npos si no se en-
cuentra una coincidencia. La diferencia entre las dos es simplemente el tipo de cad, que puede ser
string o una cadena terminada en un carácter nulo.

Para encontrar la primera aparición de cualquier carácter que no es parte de un conjunto de
caracteres, llame a fi nd_fi rst_not_of(). He aquí las formas usadas en esta solución o en el Ejemplo
adicional:

size_type fi nd_fi rst_not_of(const string &cad, size_type ind = 0) const
size_type fi nd_fi rst_not_of(const char *cad, size_type ind = 0) const

Ambas devuelven el índice del primer carácter dentro de la cadena que invoca y que no coincide
con cualquier carácter en cad. La búsqueda empieza en el índice ind. Se devuelve npops si no se
encuentra una coincidencia. La diferencia entre ambas es simplemente el tipo de cad, que puede
ser string o una cadena terminada en un carácter nulo.

Para encontrar la última aparición de cualquier carácter que no es parte de un conjunto de
caracteres, llame a fi nd_last_of(). Ésta es la forma usada en la solución:

size_type fi nd_last_of(const char *cad, size_type ind = npos) const

Devuelve el índice del último carácter dentro de la cadena que invoca y que coincide con cual-
quier carácter en cad. La búsqueda empieza en el índice ind. Se devuelve npos si no se encuentra
una coincidencia.

Para encontrar la última aparición de cualquier carácter que no es parte del conjunto de carac-
teres, llame a fi nd_last_not_of(). La forma usada en esta solución es:

size_type fi nd_last_not_of(const char *cad, size_type ind = npos) const

Devuelve el índice del último carácter dentro de la cadena que invoca y que no coincide con cual-
quier carácter en cad. La búsqueda empieza en el índice ind. Se devuelve npos si no se encuentra
una coincidencia.

NOTA Como se acaba de describir, se devuelve npos con las funciones fi nd… cuando no se encuentra
una coincidencia. La variable npos es de tipo string::size_type, que es alguna forma de entero sin sig-
no. Sin embargo, npos se inicializa en –1. Esto causa que npos contenga su valor sin signo más largo
posible. Microsoft recomienda que si estará comparando el valor de alguna variable con npos, entonces
esa variable debe declararse de tipo string::size_type, en lugar de int o unsigned para asegurar que
la comparación se maneja correctamente en todos los casos. Éste es el método empleado en estas solu-
ciones. Sin embargo, no es poco común ver código en que npos se declara como int o unsigned.

Ejemplo
En el siguiente ejemplo se muestran las funciones de búsqueda en acción:

// Busca en una cadena.
#include <iostream>
#include <string>

62 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

using namespace std;
void mostrarresultado(string s, string::size_type i);

int main()
{
 string::size_type ind;

 // Crea una cadena.
 string cad("uno dos tres, uno dos tres");
 string cad2;

 cout << "La cadena en que se busca: " << cad << "\n\n";

 cout << "Buscando el primer caso de 'dos'\n";
 ind = cad.find("dos");
 mostrarresultado(cad, ind);

 cout << "Buscando el \u00a3ltimo cso de 'dos'\n";
 ind = cad.rfind("dos");
 mostrarresultado(cad, ind);

 cout << "Buscado el primer caso de t o r\n";
 ind = cad.find_first_of("tr");
 mostrarresultado(cad, ind);

 cout << "Buscando el \u00a3ltimo csso de t o r\n";
 ind = cad.find_last_of("tr");
 mostrarresultado(cad, ind);

 cout << "Buscando el primer caso de cualquier car\u00a0cter diferente "
 << "de u, n, o, o espacio\n";
 ind = cad.find_first_not_of("uno ");
 mostrarresultado(cad, ind);

 cout << "Buscando el \u00a3ltimo caso de cualquier car\u00a0cter diferente "
 << "de u, n, o, o espacio\n";
 ind = cad.find_last_not_of("uno ");
 mostrarresultado(cad, ind);

 return 0;
}

// Despliega el resultado de la búsqueda.
void mostrarresultado(string s, string::size_type i) {

 if(i == string::npos) {
 cout << "No se ha encontrado alguna coincidencia.\n";
 return;
 }

 cout << "Se encontr\u00a2 una coincidencia en el \u00a1ndice " << i << endl;

 cout << "Cadena restante desde el punto de coincidencia: "
 << s.substr(i) << "\n\n";
}

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 63

Aquí se muestra la salida:

La cadena en que se busca: uno dos tres, uno dos tres

Buscando el primer caso de 'dos'
Se encontró una coincidencia en el índice 4
Cadena restante desde el punto de coincidencia: dos tres, uno dos tres

Buscando el último caso de 'dos'
Se encontró una coincidencia en el índice 18
Cadena restante desde el punto de coincidencia: dos tres

Buscado el primer caso de t or r
Se encontró una coincidencia en el índice 8
Cadena restante desde el punto de coincidencia: tres, uno dos tres

Buscando el último caso de t o r
Se encontró una coincidencia en el índice 23
Cadena restante desde el punto de coincidencia: tres

Buscando el primer caso de cualquier carácter diferente de u, n, o, o espacio
Se encontró una coincidencia en el índice 4
Cadena restante desde el punto de coincidencia: dos tres, uno dos tres

Buscando el último caso de cualquier carácter diferente de u, n, o, o espacio
Se encontró una coincidencia en el índice 25
Cadena restante desde el punto de coincidencia: s

Ejemplo adicional: una clase de conversión en fi chas para objetos string
La biblioteca estándar de C++ contiene la función strtok(), que puede usarse para convertir
en fi chas una cadena terminada en un carácter nulo (consulte Convierta en fi chas una cadena
terminada en un carácter nulo). Sin embargo, la clase string no defi ne un equivalente correspon-
diente. Por fortuna, es muy fácil crear uno. Antes de empezar, es importante establecer que
hay varias maneras diferentes de realizar esta tarea. En este ejemplo se muestra una de varias.

En el siguiente programa se crea una clase llamada convertirenfi chas que encapsula esta
función. Para convertir en fi chas una cadena, construya primero una convertirenfi chas, pa-
sando la cadena como un argumento. A continuación, llame a obtener_fi cha() para obtener
las fi chas individuales en la cadena. Los delimitadores que defi nen los límites de cada fi cha
se pasan a obtener_fi cha() como cadena. Los delimitadores pueden cambiarse con cada lla-
mada a obtener_fi cha(). Esta función devuelve una cadena vacía cuando no hay más fi chas
para devolver. Observe que se usan las funciones fi nd_fi rst_of() y fi nd_fi rst_not_of().

// Crea una clase llamada convertirenfichas que hace lo indicado.
#include <iostream>
#include <string>

using namespace std;

// La clase convertirenfichas se usa para la acción correspondiente.
// Pasa al constructor la cadena que habrá de convertirse en fichas.
// Para obtener la siguiente ficha, llame a obtener_ficha(),
// pasándolo en una cadena que llama al delimitador.

64 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

class convertirenfichas {
 string s;
 string::size_type indinicio;
 string::size_type indfinal;

public:
 convertirenfichas(const string &cad) {
 s = cad;
 indinicio = 0;
 }

 // Devuelve una ficha desde la cadena.
 string obtener_ficha(const string &delims);
};

// Devuelve una ficha desde la cadena. Devuelve
// una cadena vacía cuando ya no se encuentran más fichas.
// Pasa los delimitadores en delims.
string convertirenfichas::obtener_ficha(const string &delims) {

 // Devuelve una cadena vacía cuando no hay más
 // fichas por regresar.
 if(indinicio == string::npos) return string("");

 // Empezando en indinicio, encuentra el siguiente delimitador.
 indfinal = s.find_first_of(delims, indinicio);

 // Construye una cadena que contiene la ficha.
 string fic(s.substr(indinicio, indfinal-indinicio));

 // Encuentra el inicio de la siguiente ficha. Es un
 // carácter que no es un delimitador.
 indinicio = s.find_first_not_of(delims, indfinal);

 // Devuelve la siguiente ficha.
 return fic;
}

int main()
{
 // Cadenas que habrán de convertirse en fichas.
 string cadA("Yo tengo cuatro, cinco, seis fichas. ");
 string cadB("Tal vez tenga m\u00a0s fichas.\n\u00a8Y t\u00a3?");

 // Estas cadenas contienen los delimitadores.
 string delimitadores(" ,.\u00a8?\n");

 // Esta cadena contendrá la siguiente ficha.
 string ficha;

 // Crea dos convertirenfichas.
 convertirenfichas ficA(cadA);
 convertirenfichas ficB(cadB);
 // Despliega las fichas en cadA.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 65

 cout << "Las fichas en cadA:\n";
 ficha = ficA.obtener_ficha(delimitadores);
 while(ficha != "") {
 cout << ficha << endl;
 ficha = ficA.obtener_ficha(delimitadores);
 }
 cout << endl;

 // Despliega las fichas en cadB.
 cout << "Las fichas en cadB:\n";
 ficha = ficB.obtener_ficha(delimitadores);
 while(ficha != "") {
 cout << ficha << endl;
 ficha = ficB.obtener_ficha(delimitadores);
 }

 return 0;
}

He aquí la salida:

Las fichas en cadA:
Yo
tengo
cuatro
cinco
seis
fichas

Las fichas en cadB:
Tal
vez
tenga
más
fichas
Y
tú

Hay una fácil mejora que tal vez quiera hacer a convertirenfi chas: una función reset(). Esta
función podría llamarse para habilitar una cadena que vuelva a convertirse en fi chas desde el
inicio. Esto es fácil. Simplemente establezca indinicio en cero, como se muestra aquí:

void rest() { indinicio = 0; }

Opciones
Como se mencionó, cada una de las funciones de fi nd… tienen cuatro formas. Por ejemplo, he
aquí todas las formas de fi nd():

size_type find(const string &cad, size_type ind = 0) const
size_type find(const char *cad, size_type ind = 0) const
size_type find(const char *cad, size_type ind, size_type long) const
size_type find(char cad, size_type ind = 0) const

66 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Las primeras dos formas se describieron antes. La tercera busca la primera aparición de los pri-
meros long caracteres. La cuarta busca la primera de car. En todos los casos, la búsqueda empieza
en el índice especifi cado por ind dentro de la string que invoca, y se devuelve el índice en que se
encuentra la coincidencia. Si no se encuentra una, se devuelve npos. Las otras funciones de fi nd…
tienen formas similares.

Como se mencionó en la revisión general, al principio del capítulo, la clase string satisface los
requisitos generales para que sea un contenedor compatible con STL. Esto signifi ca que los algorit-
mos declarados en <algorithm> pueden operar en él. Por tanto, puede hacerse una búsqueda en un
objeto string al usar los algoritmos de búsqueda, como search(), fi nd(), fi nd_fi rst_of(), etc. La venta-
ja que ofrecen los algoritmos es la capacidad de proporcionar un predicado defi nido por el usuario
que le permite especifi car cuando un carácter en la cadena coincide con otro. Esta característica se
utiliza en la solución Cree una búsqueda intensiva de mayúsculas y minúsculas y funciones de búsqueda y
reemplazo para objetos string para implementar una función de búsqueda que ignora las diferencias
entre mayúsculas y minúsculas. (STL y los algoritmos se cubren a fondo en los capítulos 3 y 4.)

Cree una función de búsqueda y reemplazo para objetos string

Componentes clave

Encabezado Clases Funciones

<string> string size_type fi nd(const string &cad,
 size_type ind = 0) const
string &replace(size_type ind,
 size_type long,
 const string &cad)

La clase string proporciona soporte muy rico para el reemplazo de una subcadena con otra. Esta
operación es proporcionada por la función replace(), de la que hay diez formas. Éstas le dan una
gran fl exibilidad en la especifi cación de la manera en que el proceso de reemplazo tendrá lugar. Por
ejemplo, puede especifi car la cadena de reemplazo como un objeto string o una cadena terminada
en un carácter nulo. Puede especifi car cuál parte de la cadena que invoca se reemplazará al especi-
fi car índices o mediante el uso de iteradores. En ésta solución se usa replace() junto con la función
fi nd(), que se demostró en la anterior, para implementar una función de búsqueda y reemplazo para
objetos string. Como verá, debido al soporte que string proporciona mediante fi nd() y replace(), la
implementación de la búsqueda y reemplazo es simple. También representa una implementación
mucho más clara que la misma función implementada para cadenas terminadas en un carácter nulo.
(Consulte Cree una función de búsqueda y reemplazo para cadenas terminadas en un carácter nulo.)

Paso a paso
Crear una función de búsqueda y reemplazo para objetos string implica estos pasos:

1. Cree una función llamada buscar_y_reemplazar() que tenga este prototipo:

bool buscar_y_reemplazar(string &cad, const string &subcadant,
 const string $subcadnue);

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 67

 La cadena que habrá de cambiarse se pasa vía cad. La subcadena que se reemplazará se

pasa en subcadant. El reemplazo se pasa en subcadnue.

2. Use la función fi nd() para encontrar la primera aparición de subcadant.

3. Use la función replace() para sustituir subcadnue.

4. Devuelve el valor true si se realizó un reemplazo y false, si no.

Análisis
El método fi nd() se describió en la solución anterior y el análisis no se repetirá aquí.

Una vez que se ha encontrado la subcadena, puede reemplazarse al llamar a replace(). Hay
diez formas de replace(). Aquí se muestra la usada en esta solución:

string &replace(size_type ind, size_type long, const string &cad)

Empezando en ind, dentro de la cadena que invoca, esta versión reemplaza hasta long caracte-
res con la cadena en cad. La razón de que reemplace "hasta" long caracteres es que no es posible
reemplazar más allá del fi nal de la cadena. Por tanto, si long + ind excede la longitud total de la
cadena, sólo se reemplazarán los caracteres de ind al fi nal. La función devuelve una referencia a
la cadena que invoca.

Ejemplo
He aquí la manera de implementar la función buscar_y_reemplazar():

// En la cadena a la que hace referencia cad, reemplaza subcadant con subcadnue.
// Por tanto, esta función modifica la cadena a la que hace referencia cad.
// Devuelve true si ocurre un reemplazo, y false si no.
bool buscar_y_reemplazar(string &cad, const string &subcadant,
 const string &subcadnue) {
 string::size_type indinicio;

 indinicio = cad.find(subcadant);

 if(indinicio != string::npos) {
 cad.replace(indinicio, subcadant.size(), subcadnue);
 return true;
 }

 return false;
}

Si compara esta versión de buscar_y_reemplazar() con la creada para cadenas terminadas en un
carácter nulo, verá que ésta es mucho más pequeña y simple. Hay dos razones para esto. En pri-
mer lugar, porque los objetos de tipo string son dinámicos: pueden crecer o reducirse de acuerdo
con las necesidades.

Por tanto, es fácil reemplazar una subcadena con otra. No es necesario preocuparse de rebasar
el límite de la matriz cuando la longitud de la cadena aumenta, por ejemplo. En segundo lugar,
string proporciona una función replace() que maneja automáticamente la eliminación de la subca-
dena antigua y la inserción de la nueva. Esto no se necesita para manejarse manualmente, como en
el caso de la inserción de una cadena terminada en un carácter nulo.

68 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En el siguiente ejemplo se muestra la función buscar_y_reemplazar() en acción:

// Implementa la opción de búsqueda y reemplazo para objetos de cadena.
#include <iostream>
#include <string>

using namespace std;

bool buscar_y_reemplazar(string &cad, const string &subcadant,
 const string &subcadnue);

int main()
{

 string cad = "Si esto es una prueba, s\u00a2lo esto es.";

 cout << "Cadena original: " << cad << "\n\n";

 cout << "Reemplazando 'es'con 'fue':\n";

 // Lo siguiente reemplaza es con fue. Tome nota de que
 // pasa literales de cadena para las subcadenas.
 // Se convierten automáticamente en objetos de cadena.
 while(buscar_y_reemplazar(cad, "es", "fue"))
 cout << cad << endl;

 cout << endl;

 // Por supuesto, también puede pasar explícitamente objetos de cadena.
 string cadant("s\u00a2lo");
 string cadnue("entonces s\u00a2lo");
 cout << "Reemplaza 's\u00a2lo' con 'entonces s\u00a2lo'" << endl;
 buscar_y_reemplazar(cad, cadant, cadnue);
 cout << cad << endl;

 return 0;
}

// En la cadena a la que hace referencia cad, reemplaza subcadant con subcadnue.
// Por tanto, esta función modifica la cadena a la que hace referencia cad.
// Devuelve true si ocurre un reemplazo, y false si no.
bool buscar_y_reemplazar(string &cad, const string &subcadant,
 const string &subcadnue) {
 string::size_type indinicio;

 indinicio = cad.find(subcadant);

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 69

 if(indinicio != string::npos) {
 cad.replace(indinicio, subcadant.size(), subcadnue);
 return true;
 }

 return false;
}

Aquí se muestra la salida:

Cadena original: Si esto es una prueba, sólo esto es.

Reemplazando 'es' con 'fue':
Si fueto es una prueba, sólo esto es.
Si fueto fue una prueba, sólo esto es.
Si fueto fue una prueba, sólo fueto es.
Si fueto fue una prueba, sólo fueto fue.

Reemplaza 'sólo' con 'entonces sólo'
Si fueto fue una prueba, entonces sólo fueto fue.

Opciones
La función replace() tiene otras formas diversas. Las tres que se usan con más frecuencia se descri-
ben aquí. Todas devuelven una referencia a la cadena que invoca.

La siguiente forma de replace() toma una cadena terminada en un carácter nulo como cadena
de reemplazo:

string &replace(size_type ind, size_type long, const char *cad)

Empezando en ind dentro de la cadena que invoca, reemplaza hasta long caracteres con la cadena
en cad.

Para reemplazar una subcadena con una parte de otra cdm utilice esta forma:

string &replace(size_type ind1, size_type long1, const char *cad
 size_type ind2, size_type long2)

Reemplaza hasta long1 caracteres en la cadena que invoca, empezando en ind1, con los long2 carac-
teres a partir de la cadena en cad, empezando en ind2.

La siguiente forma de replace() opera en iteradores:

string &replace(iterator inicio, iterator fi nal, const string &cad)

El rango especifi cado por inicio y fi nal es reemplazado con los caracteres en cad.
La función buscar_y_reemplazar() opera de una manera sensible a mayúsculas y minúsculas.

Es posible realizar una búsqueda y reemplazo sensible a mayúsculas y minúsculas, pero se requie-
re un poco de trabajo. Una manera es implementar una función de este tipo que use el algoritmo
de STL search() estándar. Éste le permite especifi car un predicado binario que puede hacerse a la
medida para probar si dos caracteres son iguales con independencia de las diferencias entre ma-
yúsculas y minúsculas. Luego puede usar esta función para encontrar la ubicación de la subcade-
na que habrá de eliminarse. Para ver este método en acción, consulte Cree una búsqueda no sensible a
mayúsculas y minúsculas y funciones de búsqueda y reemplazo para objetos string.

70 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opere en objetos string mediante iteradores

Componentes clave

Encabezado Clases Funciones

<string> string iterator begin()
iterator end()
reverse_iterator rbegin()
reverse_iterator rend()
iterator erase(iterator inicio, iterator fi nal)
template <class InIter>
 void insert(iterator itr, InIter inicio,
 InIter fi nal)
string &replace(iterator inicio,
 iterator fi nal,
 const char *cad)

<algorithm> template <class InIter, class T>
 InIter fi nd(InIter inicio,
 InIter fi nal,
 const T &val)
template <class InIter, class OutIter,
 class Func>
 OutIter transform(InIter inicio,
 InIter fi nal,
 OutIter resultado,
 Func funUnaria)

En esta solución se muestra cómo usar los iteradores con objetos de tipo string. Como la mayoría
de los lectores sabe, los iteradores son objetos que actúan como apuntadores. Le dan la capacidad
de hacer referencia a los contenidos del contenedor al usar una sintaxis parecida a un apuntador.
También son el mecanismo que deja que diferentes tipos de contenedores sean manejados de la
misma manera y que permite diferentes tipos de contenedores para intercambiar datos. Son uno
de los conceptos más poderosos de C++.

Como se explicó en la revisión general de string, cerca del principio de este capítulo, basic_
string satisface los requisitos básicos de un contenedor. Por tanto, la especialización de string de
basic_string es, en esencia, un contenedor de caracteres. Uno de los requisitos de todos los conte-
nedores es que den soporte a iteradores. Al dar soporte a iteradores, string ofrece tres benefi cios
importantes:

1. Los iteradores pueden mejorar algunos tipos de operaciones de string.

2. Los iteradores permiten que los diveros algoritmos STL operen en objetos string.

3. Los iteradores permiten que string sea compatible con otros contenedores STL. Por ejem-

plo, mediante iteradores, puede copiar los caracteres de una string en un vector o construir

una string a partir de caracteres almacenados en deque.

La clase string da soporte a todas las operaciones básicas de iterador. También proporciona
versiones de varias de las funciones, como insert() y replace(), que están diseñadas para trabajar
con iteradores. En esta solución se demuestran las operaciones básicas y tres funciones habilitadas

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 71

por iteradores, y se muestra la manera en que los iteradores permiten que string se integre en el
marco conceptual general del STL.

NOTA Para conocer un análisis detallado de los iteradores, consulte el capítulo 3, que presenta solu-
ciones basadas en STL.

Paso a paso
Para operar en una cadena mediante iteradores se requieren estos pasos:

1. Declare una variable que contendrá un iterador. Para ello, debe usar uno de los tipos de

iterador defi nidos por string, como iterator o reverse_iterator.

2. Para obtener un iterador al principio de una cadena, llame a begin().

3. Para obtener un iterador al fi nal de una cadena, llame a end().

4. Para obtener un iterador inverso al principio de la cadena invertida, llame a rbegin().

5. Para obtener un iterador inverso al fi nal de la cadena invertida, llame a rend().

6. Puede recorrer en ciclo los caracteres de una cadena mediante un iterador de una manera

muy parecida a la que puede usar para que un apuntador recorra en ciclo los elementos

de una matriz.

7. Puede crear un objeto string que se inicializa con los caracteres señalados por un rango de

iteradores. Entre otros usos, esto le permite construir una string que contiene elementos

de otro tipo de contenedor, como vector.

8. Muchas de las funciones de string defi nen versiones que operan a través de iteradores.

Las demostradas en esta solución son erase(), insert() y replace(). Le permiten eliminar,

insertar y reemplazar caracteres dentro de los iteradores determinados de una cadena a los

extremos de los caracteres.

9. Debido a que los algoritmos STL funcionan mediante iteradores, puede usar cualquiera

de los algoritmos en objetos de tipo string. Aquí se demuestran dos: fi nd() y transform().

Requieren el encabezado <algorithm>.

Análisis
Una revisión general de los iteradores se presenta en el capítulo 3, y esa información no se repi-
te aquí. Sin embargo, es útil revisar unos cuantos puntos clave. En primer lugar, el objeto al que
señala un iterador se accede mediante el operador * de la misma manera en que éste se usa para
acceder al objeto señalado por un apuntador. Como se aplica a string, el objeto señalado por un
iterador es un valor char. En segundo lugar, cuando se incrementa un iterador, señala al siguiente
objeto del contenedor. Cuando se reduce, señala al objeto anterior. Para string, esto signifi ca que el
iterador señala al siguiente carácter o al anterior.

Hay dos estilos básicos de iteradores a los que da soporte string: directos o inversos. Cuando
se incrementa, un iterador directo se acerca al fi nal de la cadena y cuando se reduce, lo hace hacia
el principio. Un iterador inverso trabaja al revés. Cuando un iterador inverso se incrementa, se
mueve hacia el principio de la cadena y cuando se reduce se mueve hacia el fi nal. De estos dos
iteradores básicos, la clase string declara cuatro tipos básicos de iteradores que tienen los siguien-
tes nombres de tipo:

72 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

iterator Iterador que se mueve hacia adelante que puede leer y escribir a lo que señala.

const_iterator Iterador que se mueve hacia adelante y que es de sólo lectura.

reverse_iterator Iterador que se mueve hacia atrás que puede leer y escribir a lo que señala.

const_reverse_iterator Iterador que se mueve hacia atrás y que es de sólo lectura.

En la solución sólo se usan iterator y reverse_iterator, pero los otros dos funcionan de la mis-
ma manera, excepto que no se puede escribir el objeto al que señalan.

En los análisis siguientes, las mismas funciones usan los nombres de tipo genérico InIter y
OutIter. En este libro, InIter es un tipo de iterador que es, por lo menos, capaz de leer operacio-
nes. OutIter es un tipo de iterador que es, por lo menos, capaz de escribir operaciones. (Otros
tipos de iteradores se analizan en el capítulo 3.)

Para declarar un iterador para una string, use uno de los tipos antes mencionados. Por
ejemplo:

string::iterator itr;

declara un iterador directo que no es const y que puede usarse con un objeto string.
Para obtener un iterador al principio de una cadena (que es el primer carácter de la cadena),

llame a begin(). Para obtener un iterador que señale a uno después del fi nal de la cadena, llame a
end(). Por tanto, el último carácter de la cadena está en end()–1. Aquí se muestran estas funciones:

iterator begin()
iterator end()

La ventaja de que end() devuelva un iterador a uno después del último carácter es que pueden
escribirse bucles muy efi cientes que recorren en ciclo todos los caracteres de una cadena. He aquí
un ejemplo:

string::iterator itr;
for(itr = cad.begin(); itr != cad.end(); ++itr) {
 // . . .
}

Cuando itr sea igual a end(), todos los caracteres de cad se habrán examinado.
Cuando se usa un iterador inverso, puede obtener uno al último carácter en la cadena al llamar

a rbegin(). Para obtener un iterador inverso a uno antes del primer carácter en la cadena, llame a
rend(). Se muestran aquí:

reverse_iterator rbegin()
reverse_iterator rend()

Se usa un iterador inverso de la misma manera en que usa un iterador regular. La única diferencia
es que recorre la cadena en la dirección inversa.

La clase string proporciona un constructor que le permite crear una cadena que se inicializa
con caracteres señalados por iteradores. Aquí se muestra:

template <class InIter> string(InIter inicio, InIter fi nal,
 const Allocator &asig = Allocator())

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 73

El rango de caracteres está especifi cado por inicio y fi nal. El tipo de estos iteradores está especifi -
cado por el tipo genérico InIter, que indica que los iteradores deben dar soporte a operaciones de
lectura. Sin embargo, no tienen que ser de tipo string::iterator. Esto signifi ca que puede usar este
constructor para crear una cadena que contenga caracteres de otro contenedor, como vector.

Varias de las funciones de string tienen formas sobrecargadas que utilizan iteradores para
acceder al contenido de la cadena. En esta solución se usan tres que son representativas: insert(),
erase() y replace(). A continuación se muestran las versiones usadas en esta solución:

iterator erase(iterator inicio, iterator fi nal)
string &replace(iterator inicio, iterator fi nal, const char *cad)
template <class InIter>
 void insert(iterator itr, InIter inicio, InIter fi nal)

El método erase() elimina los caracteres en el rango señalado por inicio a fi nal. Devuelve un itera-
dor al carácter que sigue al último carácter eliminado. La función replace() reemplaza con cad los
caracteres en el rango especifi cado por inicio y fi nal. Devuelve una referencia al objeto que invo-
ca. (Otras versiones habilitadas por iterador de replace() le permiten pasar una string a cad.) El
método insert() inserta los caracteres en el rango señalado por inicio y fi nal inmediatamente antes
del elemento especifi cado por itr. En insert(), observe que inicio y fi nal son del tipo genérico InIter,
lo que signifi ca que los iteradores deben dar soporte a operaciones de lectura. Todos los tipos
de iterador de string satisfacen esta restricción. Así lo hacen muchos otros iteradores. Por tanto,
puede insertar caracteres de otro tipo de contenedor en una string. Ésta es una de las ventajas de
los iteradores.

Debido a que los algoritmos STL funcionan mediante iteradores, puede usarlos en string. Los
algoritmos STL están declarados en <algorithm> y realizan varias operaciones en contenedores. En
esta solución se demuestra el uso de dos algoritmos, fi nd() y transform(), que se muestran aquí:

template <class InIter, class T>
 InIter fi nd(InIter inicio, InIter fi nal, const T &val)

template <class InIter, class OutIter, class Func>
 OutIter transform(InIter inicio, InIter fi nal, OutIter resultado, Func funUnaria)

El algoritmo fi nd() busca el valor especifi cado por val en el rango señalado por inicio y fi nal. De-
vuelve un iterador a la primera aparición del elemento o a fi nal, si el valor no está en la secuencia.
El algoritmo transform() aplica una función a un rango de elementos especifi cado por inicio y fi nal,
poniendo el resultado en resultado. La función que habrá de aplicarse está especifi cada en funUna-
ria. Esta función recibe un valor de la secuencia y debe regresar su transformación. Por tanto, los
tipos de parámetro y de devolución deben ser compatibles con el tipo de objetos almacenados en
el contenedor, que en el caso de string es char. El algoritmo transform() devuelve un iterador al
fi nal de la secuencia resultante. Observe que el resultado es de tipo OutIter, lo que signifi ca que
debe dar soporte a operaciones de escritura.

Ejemplo
En el siguiente ejemplo se muestra cómo usar iteradores con objetos string. También se demues-
tran versiones de iterador de las funciones miembro de string insert(), replace() y fi nd(). Además
se usan los algoritmos STL fi nd() y transform().

74 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Demuestra iteradores con cadenas.
#include <iostream>
#include <string>
#include <cctype>
#include <algorithm>
#include <vector>

using namespace std;

int main()
{
 string cadA("La prueba es la siguiente.");

 // Crea un iterador a una cadena.
 string::iterator itr;

 // Usa un iterador para recorrer en ciclo los caracteres
 // de una cadena.
 cout << "Despliega una cadena mediante un iterador.\n";
 for(itr = cadA.begin(); itr != cadA.end(); ++itr)
 cout << *itr;
 cout << "\n\n";

 // Usa un iterador inverso para desplegar la cadena invertida.
 cout << "Despliega una cadena invertida usando un iterador inverso.\n";
 string::reverse_iterator ritr;
 for(ritr = cadA.rbegin(); ritr != cadA.rend(); ++ritr)
 cout << *ritr;
 cout << "\n\n";

 // Inserta una cadena mediante un iterador.

 // Primero, usa el algoritmo STL find() para obtener un
 // iterador al principio de la primera 'a'.
 itr = find(cadA.begin(), cadA.end(), 'a');

 // Luego, incrementa el iterador para que señale al
 // carácter después de 'a', que en este caso es un espacio.
 ++itr;

 // Inserta en cad usando la versión de iterador de insert().
 cout <<"Inserta en una cadena mediante un iterador.\n";
 string cadB(" mayor");
 cadA.insert(itr, cadB.begin(), cadB.end());
 cout << cadA << "\n\n";

 // Ahora, reemplaza 'mayor' con 'mejor'.
 cout << "Reemplaza mayor con mejor.\n";
 itr = find(cadA.begin(), cadA.end(), 'm');
 cadA.replace(itr, itr+5, "mejor");
 cout << cadA << "\n\n";

 // Ahora, elimina ' mejor'.
 cout << "Elimina ' mejor'.\n";

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 75

 itr = find(cadA.begin(), cadA.end(), 'm');
 cadA.erase(itr, itr+6);
 cout << cadA << "\n\n";

 // Usa un iterador con el algoritmo STL transform() para convertir
 // una cadena a mayúsculas.
 cout << "Use el algoritmo STL transform() para convertir una "
 << "cadena en may\u00a3sculas.\n";
 transform(cadA.begin(), cadA.end(), cadA.begin(), toupper);
 cout << cadA << "\n\n";

 // Crea una cadena desde un vector<char>.
 vector<char> vec;
 for(int i=0; i < 10; ++i)
 vec.push_back('A'+i);

 string cadC(vec.begin(), vec.end());
 cout << "Se muestra cadC, construida a partir de un vector:\n";
 cout << cadC << endl;

 return 0;
}

Aquí se muestra la salida:

Despliega una cadena mediante un iterador.
La prueba es la siguiente.

Despliega una cadena invertida usando un iterador inverso.
.etneiugis al se abeurp aL

Inserta en una cadena mediante un iterador.
La mayor prueba es la siguiente.

Reemplaza mayor con mejor.
La mejor prueba es la siguiente.

Elimina ' mejor'.
La prueba es la siguiente.

Use el algoritmo STL transform() para convertir una cadena en mayúsculas.
LA PRUEBA ES LA SIGUIENTE.

Se muestra cadC, construida a partir de un vector:
ABCDEFGHIJ

Opciones
Como se mencionó, varias de las funciones miembro defi nidas por string tienen formas que
operan en iteradores o que los devuelven. Además de insert(), erase() y replace() usadas en esta
solución, string proporciona versiones habilitadas por iteradores de las funciones append() y
assign(). Se muestran aquí:

76 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

template<class InIter> string &append(InIter inicio, InIter fi nal)
template<class InIter> string &assign(InIter inicio, InIter fi nal)

Esta versión de append() agrega la secuencia especifi cada por inicio y fi nal al fi nal de la cadena
que invoca. Esta versión de assign() asigna la secuencia especifi cada por inicio y fi nal a la cadena que
invoca. Ambas devuelven una red a la cadena que invoca.

Cree una búsqueda no sensible a mayúsculas y minúsculas y funciones

de búsqueda y reemplazo para objetos string

Componentes clave

Encabezado Clases Funciones

<cctype> int tolower(int car)

<string> string iterator begin()
iterator end()
string &replace(iterator inicio, iterator fi nal,
 const string &subcadnue)

<algorithm> template <class ForIter1, class ForIter2,
 class BinPred>
 ForIter3 search(ForIter1 inicio1,
 ForIter1 fi nal1,
 ForIter2 inicio2,
 ForIter2 fi nal2,
 BinPred pfn)

Aunque string es muy poderosa, no da soporte directo a dos funciones muy útiles. La primera
es una función de búsqueda que ignora diferencias entre mayúsculas y minúsculas. Como casi
todos los lectores saben, este tipo de búsqueda es una característica común y valiosa en muchos
contextos. Por ejemplo, cuando se buscan coincidencias de la palabra "esto" en un documento, por
lo general también querrá que se encuentre "Esto". La segunda es una función de búsqueda y re-
emplazo no sensible a mayúsculas y minúsculas, que reemplaza un subcadena con otra, indepen-
dientemente de las diferencias entre mayúsculas y minúsculas. Puede usar este tipo de función,
por ejemplo, para reemplazar instancias de "www" o "WWW" con las palabras "World Wide Web"
en un solo paso. Cualquiera que sea el propósito, es fácil crear funciones de búsqueda y reemplazo
que no sean sensibles a mayúsculas y minúsculas y que operan en objetos string. En esta solución
se muestra una manera.

Las funciones desarrolladas por ésta, dependen de iteradores para acceder a los caracteres de
una cadena. Debido a que string es un contenedor compatible con STL, proporciona soporte para
iteradores. Este soporte es muy importante porque permite que una string se opere con algoritmos
STL. Esta capacidad expande de manera signifi cativa las maneras en que pueden modifi carse las
cadenas. También le permite crear soluciones mejoradas a las que, de otra manera, serían tareas
más desafi antes. (Consulte la solución anterior para conocer información sobre el uso de iterado-
res con string.)

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 77

Paso a paso
Una manera de crear una función de búsqueda que ignora diferencias entre mayúsculas y
minúscu las incluye estos pasos:

1. Cree una función de comparación llamada comp_ign_mayus() que realice una compara-

ción no sensible a mayúsculas y minúsculas de dos valores char. He aquí un prototipo:

bool comp_ign_mayus(char x, char y);

 Haga que la función devuelva un valor true si dos caracteres son iguales y false, si no.

2. Cree una función llamada buscar_ign_mayus() que tenga este prototipo:

string::iterator buscar_ign_mayus(strinf &cad, const string &subcad);

 La cadena en que se buscará se pasa en cad. La subcadena que se buscará es subcad.

3. Dentro de buscar_ign_mayus(), use el algoritmo STL search() para buscar una subcadena

en una cadena. Este algoritmo busca una coincidencia u otra en una secuencia. Las secuen-

cias están especifi cadas por rangos de iteradores. Especifi que la función comp_ign_ma-

yus() creada en el paso 1 como el predicado binario que determina cuando un carácter es

igual a otro. Esto permite que search() ignore diferencias entre mayúsculas y minúsculas

cuando se busca. Observe que search() está declarada en el encabezado <algorithm>, que

debe incluirse.

4. Haga que buscar_ign_mayus() devuelva un iterador al inicio de la primera coincidencia o

cad.end(), si no se encuentra una coincidencia.

Para crear una función de búsqueda y reemplazo que ignore las diferencias entre mayúsculas y
minúsculas, siga estos pasos:

1. Necesitará la función buscar_ign_mayus() descrita por los pasos anteriores. Por tanto, si

aún no la ha creado, debe hacerlo en este momento.

2. Cree una función llamada buscar_y_reemplazar_ign_mayus() que tenga este prototipo:

bool buscar_y_reemplazar_ign_mayus(string &cad, const string &subcadant,
 const string &subcadnue);

 La cadena que habrá de modifi carse se pasa en cad. La cadena que habrá de reemplazarse

se pasa en subcadant. La cadena con que se sustituirá se pasa en subcadnue.

3. Use buscar_ign_mayus() para encontrar la primera aparición de subcadant dentro de cad.

4. Use la versión de iterador de la función replace() de string para reemplazar la primera

aparición de subcadant con subcadnue.

5. Haga que buscar_y_reemplazar_ign_mayus() devuelva el valor true si se hace el reempla-

zo y false si cad no contiene un caso de subcadant.

Análisis
Antes de que use el algoritmo search() para realizar una búsqueda no sensible a mayúsculas y
minúsculas, debe crear una función que compara dos valores char de una manera independiente
de mayúsculas y minúsculas. Debe regresar true si los caracteres son iguales y false si no lo son.
En el lenguaje de STL, a esta función se le denomina predicado binario. (Consulte el capítulo 3 para
conocer un análisis de los predicados binarios.)

78 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Esta función se utiliza con el algoritmo search() para comparar dos elementos. Al hacer que ignore
las diferencias entre mayúsculas y minúsculas, la búsqueda se realizará independientemente de
estas diferencias. He aquí una manera de codifi car esta función:

bool comp_ign_mayus(char x, char y) {
 return tolower(x) == tolower(y);
}

Observe que se utiliza la función tolower() para obtener el equivalente en minúsculas de cada
carácter. (Consulte Ignore diferencias entre mayúsculas y minúsculas cuando compare cadenas terminadas
en un carácter nulo para conocer detalles sobre tolower().) Al convertir cada argumento a minúscu-
las, se eliminan las diferencias entre mayúsculas y minúsculas.

Para encontrar una subcadena, llame al algoritmo search(). Aquí se muestra la versión utiliza-
da en esta solución:

template <class ForIter1, class ForIter2, class BinPred>
 ForIter3 search(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2,
 BinPred pfn)

Busca una aparición de la secuencia especifi cada por inicio2 y fi nal2 dentro del rango de la secuen-
cia especifi cada por inicio1 y fi nal1. En este libro, los nombres de tipo genérico ForIter1 y ForIter2
indican iteradores que tienen capacidades de lectura/escritura y que puedan moverse hacia
adelante. El predicado binario pfn determina cuando dos elementos son iguales. (En este libro, el
nombre de tipo genérico BinPred indica un predicado binario.) Para los objetivos de la solución,
pase comp_ign_mayus() a este parámetro. Si se encuentra una coincidencia, la función devuelve
un iterador al principio de la secuencia coincidente. De otra manera, se devuelve fi nal1.

La función buscar_y_reemplazar_ign_mayus() usa el iterador devuelto por buscar_ign_mayus()
para encontrar la ubicación en que se sustituye una subcadena con otra. Para manejar el reemplazo
real, puede usar esta versión de la función replace() de string, que opera mediante iteradores:

string &replace(iterator inicio, iterator fi nal, const string &subcadnue)

Reemplaza el rango especifi cado por inicio y fi nal con subcadnue. Por tanto, se modifi ca la cadena
que invoca. Devuelve una referencia a la cadena que invoca.

Ejemplo
He aquí una manera de crear la función buscar_ign_mayus(). Utiliza comp_ign_mayus() para
determinar cuándo dos caracteres son iguales.

// Ignora la diferencia entre mayúsculas y minúsculas cuando busca.
// una subcadena. La cadena en que se busca se pasa en cad. La
// subcadena que se buscará se pasa en subcad. Devuelve un iterador
// al principio de la coincidencia o cad.end() si no se encuentra una.
//
// Obsérvese que se usa el algoritmo search() y especifica el
// predicado binario comp_ign_mayus().
string::iterator buscar_ign_mayus(string &cad, const string &subcad) {
 return search(cad.begin(), cad.end(),
 subcad.begin(), subcad.end(),
 comp_ign_mayus);
}

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 79

Como lo indican los comentarios, buscar_ign_mayus() encuentra (independientemente de las dife-
rencias entre mayúsculas y minúsculas) la primera aparición de subcad y devuelve un iterador al
principio de la secuencia coincidente. Devuelve cad.end() si no se encuentra una coincidencia.

He aquí una manera de implementar buscar_y_reemplazar_ign_mayus(). Observe que utiliza
buscar_ign_mayus() para encontrar la subcadena que se reemplazará.

// Esta función reemplaza la primera aparición de subcadant con
// subcadnue en la cadena pasada en cad. Devuelve true si ocurre
// un reemplazo, y falso, si no.
//
// Observe que esta función modifica la cadena a la que cad hace
// referencia. Además, nótese que usa buscar_ign_mayus() para encontrar la
// subcadena que se reemplazará.
bool buscar_y_reemplazar_ign_mayus(string &cad, const string &subcadant,
 const string &subcadnue) {
 string::iterator itrinicio;

 itrinicio = buscar_ign_mayus(cad, subcadant);

 if(itrinicio != cad.end()) {
 cad.replace(itrinicio, itrinicio+subcadant.size(), subcadnue);
 return true;
 }

 return false;
}

Esta función reemplaza la primera aparición de subcadant con subcadnue. Devuelve el valor true
si ocurre un reemplazo (es decir, si cad contiene subcadant) y falso, si no. Como lo indican los
comentarios, esta función modifi ca cad en el proceso. Utiliza buscar_ign_mayus() para encontrar
la primera aparición de subcadant. Por tanto, la búsqueda se realiza independientemente de las
diferencias entre mayúsculas y minúsculas.

En el siguiente ejemplo se muestran buscar_ign_mayus() y buscar_y_reemplazar_ign_ma-
yus() en acción:

// Implementa búsquedas y búsquedas y reemplazo no sensibles
// a mayúsculas y minúsculas para objetos de cadena.
#include <iostream>
#include <string>
#include <cctype>
#include <algorithm>

using namespace std;

bool comp_ign_mayus(char x, char y);
string::iterator buscar_ign_mayus(string &cad, const string &subcad);
bool buscar_y_reemplazar_ign_mayus(string &cad, const string &subcadant,
 const string &subcadnue);

int main()
{
 string cadA("Es una prueba no sensible a may\u00a3sculas y min\u00a3sculas.");
 string cadB("prueba");

80 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 string cadC("PRUEBA");
 string cadD("pruebas");

 cout << "Primero, se demuestra buscar_ign_mayus().\n";
 cout << "Cadena en que se busca:\n" << cadA << "\n\n";

 cout << "Buscando " << cadB << ". ";
 if(buscar_ign_mayus(cadA, cadB) != cadA.end())
 cout << "Encontrada\n";

 cout << "Buscando " << cadC << ". ";
 if(buscar_ign_mayus(cadA, cadC) != cadA.end())
 cout << "Encontrada\n";

 cout << "Buscando " << cadD << ". ";
 if(buscar_ign_mayus(cadA, cadD) != cadA.end())
 cout << "Encontrada\n";
 else
 cout << "No encontrada\n";

 // Usa el iterador devuelto por buscar_ign_mayus() para
 // desplegar el resto de la cadena.
 cout << "\nEl resto de la cadena tras encontrar 'no':\n";
 string::iterator itr = buscar_ign_mayus(cadA, "no");
 while(itr != cadA.end())
 cout << *itr++;
 cout << "\n\n";

 // Ahora, demuestra la búsqueda y reemplazo.
 cadA = "Alfa Beta Gamma alfa beta gamma";
 cout << "Ahora se demuestra buscar_y_reemplazar_ign_mayus().\n";
 cout << "Cadena que recibe los reemplazos:\n" << cadA << "\n\n";
 cout << "Reemplazando todos los casos de alfa con zeta:\n";
 while(buscar_y_reemplazar_ign_mayus(cadA, "alfa", "zeta"))
 cout << cadA << endl;

 return 0;
}

// Ignora la diferencia entre mayúsculas y minúsculas cuando busca.
// una subcadena. La cadena en que se busca se pasa en cad. La
// subcadena que se buscará se pasa en subcad. Devuelve un iterador
// al principio de la coincidencia o cad.end() si no se encuentra una.
//
// Obsérvese que se usa el algoritmo search() y especifica el
// predicado binario comp_ign_mayus().
string::iterator buscar_ign_mayus(string &cad, const string &subcad) {
 return search(cad.begin(), cad.end(),
 subcad.begin(), subcad.end(),
 comp_ign_mayus);
}

// Ignora la diferencia entre mayúsculas y minúsculas cuando se compara
// la igualdad entre dos caracteres. Devuelve true si los caracteres

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 81

// son iguales, independientemente de las diferencias entre mayúsculas
// y minúsculas.
bool comp_ign_mayus(char x, char y) {
 return tolower(x) == tolower(y);
}

// Esta función reemplaza la primera aparición de subcadant con
// subcadnue en la cadena pasada en cad. Devuelve true si ocurre
// un reemplazo, y falso, si no.
//
// Observe que esta función modifica la cadena a la que cad hace
// referencia. Además, nótese que usa buscar_ign_mayus() para encontrar la
// subcadena que se reemplazará.
bool buscar_y_reemplazar_ign_mayus(string &cad, const string &subcadant,
 const string &subcadnue) {
 string::iterator itrinicio;

 itrinicio = buscar_ign_mayus(cad, subcadant);

 if(itrinicio != cad.end()) {
 cad.replace(itrinicio, itrinicio+subcadant.size(), subcadnue);
 return true;
 }

 return false;
}

Aquí se muestra la salida:

Primero, se demuestra buscar_ign_mayus().
Cadena en que se busca:
Es una prueba no sensible a mayúsculas y minúsculas.

Buscando prueba. Encontrada.
Buscando PRUEBA. Encontrada.
Buscando pruebas. No encontrada.

El resto de la cadena tras encontrar 'no':
no sensible a mayúsculas y minúsculas.

Ahora se demuestra buscar_y_reemplazar_ign_mayus().
Cadena que recibe los reemplazos:
Alfa Beta Gamma alfa beta gamma

Reemplazando todos los casos de alfa con zeta:
zeta Beta Gamma alfa beta gamma
zeta Beta Gamma zeta beta gamma

Opciones
Aunque el autor prefi ere implementar una búsqueda no sensible a mayúsculas y minúsculas
mediante el uso del algoritmo STL search() como en esta solución, hay otro método. Puede im-
plementar usted mismo esta función de búsqueda, trabajando carácter tras carácter y tratando de
encontrar manualmente una subcadena coincidente. He aquí una manera de hacer esto:

82 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Implementa manualmente buscar_ign_mayus().
// Como la versión original, la cadena de búsqueda se pasa en cad
// y la subcadena que se buscará se pasa en subcad. Devuelve
// un iterador al inicio de la coincidencia o cad.end()
// si no se encuentra una coincidencia.
string::iterator buscar_ign_mayus(string &cad, const string &subcad) {
 string::iterator inicio1, encontrada_en;
 string::const_iterator inicio2;

 // Si la cadena coincidente es nula, devuelve un iterador al
 // principio de cad.
 if(subcad.begin() == subcad.end()) return cad.begin();

 inicio1 = encontrada_en = cad.begin();
 while(inicio1 != cad.end()) {
 inicio2 = subcad.begin();
 while(tolower(*inicio1) == tolower(*inicio2)) {
 ++inicio1;
 ++inicio2;
 if(inicio2 == subcad.end()) return encontrada_en;
 if(inicio1 == cad.end()) return cad.end();
 }

 ++encontrada_en;
 inicio1 = encontrada_en;
 }
 return cad.end();
}

Como verá, el método manual incluye mucho más código. Es más, el desarrollo y la prueba de
esta función toma más tiempo que el uso del algoritmo STL search(). Por último, no se hizo un
intento de optimizar el código anterior. La optimización también toma una cantidad importante
de tiempo. Por esto, casi siempre son preferibles los algoritmos STL a los métodos "caseros".

La función tolower() convierte caracteres con base en la confi guración regional de idioma. Para
comparar caracteres para una confi guración diferente, puede usar la versión de tolower() que se
declara dentro de <locale>.

Aunque no hay ventaja en hacerlo, también es posible convertir cada carácter en la cadena a
mayúsculas (en lugar de minúsculas) para eliminar las diferencias entre mayúsculas y minúsculas.
Esto se hace mediante la función toupper(), que se muestra aquí:

int toupper(int car)

Funciona igual que tolower(), con la excepción de que convierte caracteres a mayúsculas.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 83

Convierta un objeto string en una cadena terminada en un carácter nulo

Componentes clave

Encabezado Clases Funciones

<string> string const char *c_str() const

La clase string proporciona mecanismos fáciles que toman una cadena terminada en un carácter
nulo y la convierten en un objeto string. Por ejemplo, puede construir una cadena que se inicializa
con una cadena terminada en un carácter nulo. También puede asignar una de estas cadenas a un
objeto string. Por desgracia, el procedimiento inverso no es muy fácil. La razón es que la cadena
terminada en un carácter nulo no es un tipo de datos, sino una convención. Esto signifi ca que no
puede inicializar este tipo de cadena con una string ni asignar una string a un apuntador char *,
por ejemplo. Sin embargo, string proporciona la función c_str() que convierte un objeto string en
una cadena terminada en un carácter nulo. En esta solución se muestra el proceso.

Paso a paso
Para obtener una cadena terminada en un carácter nulo que contenga la misma secuencia de ca-
racteres que si lo encapsulara un objeto string, siga estos pasos:

1. Cree una matriz de char que sea lo sufi cientemente grande como para contener los caracte-

res contenidos en el objeto string, además del terminador de carácter nulo. Puede tratarse

de una matriz declarada estáticamente o una que se asigne dinámicamente mediante new.

2. Para obtener un apuntador a una cadena terminada en un carácter nulo que corresponda a

la cadena contenida en un objeto string, llame a c_str().

3. Copie la cadena terminada en un carácter nulo obtenida en el paso 2 en la matriz creada en

el paso 1.

Análisis
Para obtener una representación de una cadena terminada en un carácter nulo de la secuencia de
carácter almacenada en el objeto string, llame a c_str(), que se muestra aquí:

const char *c_str() const

Aunque no es necesario que la secuencia de caracteres en una string termine en un carácter nulo,
el apuntador devuelto por una llamada a c_str() señalará siempre a una matriz de cadena termi-
nada en un carácter nulo que contiene la misma secuencia. Sin embargo, tome en cuenta que el
apuntador devuelto es const. Por tanto, no puede usarse para modifi car la cadena. Más aún, este
apuntador es válido sólo hasta que se llama a una función miembro que no es const en el mismo
objeto string. Como resultado, por lo general querrá copiar la cadena terminada en un carácter
nulo en otra matriz.

Ejemplo
En el siguiente ejemplo se muestra cómo convertir un objeto de cadena en una cadena terminada
en un carácter nulo:

84 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Convierte un objeto string en una cadena terminada en un carácter nulo.
#include <iostream>
#include <string>
#include <cstring>

using namespace std;

int main()
{
 string cad("Se trata de una prueba.");
 char ccad[80];

 cout << "La cadena original:\n";
 cout << cad << "\n\n";

 // Obtiene un apuntador a la cadena.
 const char *p = cad.c_str();

 cout << "La versi\u00a2n de la cadena terminada en un car\u00a0cter nulo:\n";
 cout << p << "\n\n";

 // Copia la cadena en una matriz asignada estáticamente.
 //
 // Primero, confirma que la matriz tenga la longitud necesaria
 // para contener la cadena.
 if(sizeof(ccad) < cad.size() + 1) {
 cout << "La matriz es demasiado peque\u00a8a para contener la cadena.\n";
 return 0;
 }
 strcpy(ccad, p);
 cout << "La cadena copiada en ccad:\n" << ccad << "\n\n";

 // Luego, copia la cadena en una matriz asignada dinámicamente.
 try {
 // Asigna dinámicamente la matriz.
 char *p2 = new char[cad.size()+1];

 // Copia la cadena en la matriz.
 strcpy(p2, cad.c_str());

 cout << "La cadena tras copiarse en una matriz asignada din\u00a0micamente:\n";
 cout << p2 << endl;

 delete [] p2;
 } catch(bad_alloc ba) {
 cout << "Fall\u00a2 la asignaci\u00a2n\n";
 return 1;
 }

 return 0;
}

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 85

Aquí se muestra la salida:

La cadena original:
Se trata de una prueba.

La versión de la cadena terminada en un carácter nulo:
Se trata de una prueba.

La cadena copiada en ccad:
Se trata de una prueba.

La cadena tras copiarse en una matriz asignada dinámicamente:
Se trata de una prueba.

Opciones
Como se explicó, la función c_str() devuelve un apuntador a una matriz terminada en un carácter
nulo de char. Si sólo necesita acceder a los caracteres que integran la secuencia encapsulada por
una cadena, sin el terminador de carácter nulo, entonces puede usar la función data(). Devuelve
un apuntador a una matriz de char que contiene los caracteres, pero esa matriz no termina en un
carácter nulo. Aquí se muestra:

const char *data() const

Debido a que se devuelve un apuntador const, no puede usarlo para modifi car los caracteres de la
matriz. Si quiere modifi car la secuencia de caracteres, cópiela en otra matriz.

Aunque el apuntador devuelto por c_str() es const, es posible sobreescribir esto al usar
const_cast, como se muestra aquí:

char *p = const_cast<char *> (cad.c_str());

Después de que se ejecuta esta instrucción, sería posible modifi car la secuencia de caracteres a la
que señala p. Sin embargo, ¡no se recomienda hacer esto! Al cambiar la secuencia de caracteres con-
trolada por un objeto string desde código exterior al objeto podría causar fácilmente que el objeto
se corrompa, lo que podría llevar a que el programa deje de funcionar o produzca una brecha de
seguridad. Por tanto, los cambios al objeto string siempre deben tomar lugar mediante funciones
miembro de string. Nunca debe tratar de cambiar la secuencia mediante un apuntador devuelto
por c_str() o data(). Si ve una construcción como ésta, debe considerarlo código no válido y dar
pasos para remediar la situación.

Implemente la resta para objetos string

Componentes clave

Encabezado Clases Funciones

<string> string string &erase(size_type ind = 0,
 size_type long = npos)
size_type fi nd(const string &cad,
 size_type ind = 0) const

86 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Como sabe, el operador + está sobrecargado por objetos de tipo string y une dos cadenas y de-
vuelve el resultado. Sin embargo, el operador – no está sobrecargado para string. Algunos pro-
gramadores encuentran esto un poco sorpresivo porque, intuitivamente, se esperaría que se use el
operador – para eliminar una subcadena de una cadena, como se ilustra con esta secuencia:

string cadA("uno dos tres");
string cadB;
string = cad-"dos";

En este punto, esperaría que cadB contenga la secuencia "uno tres", que es la secuencia original
con la palabra "dos" eliminada. Por supuesto, esto no es posible empleando sólo los operadores
defi nidos para string por la biblioteca estándar, porque la resta no es uno de ellos. Por fortuna, es
muy fácil remediar esta situación, como se muestra en esta solución.

Para dar soporte a resta de subcadenas, se implementan los operadores – y –= para objetos de
tipo string. Cada uno elimina la primera aparición de la cadena a la izquierda de la cadena de la
derecha. En el caso de –, se devuelve el resultado pero no se modifi ca ninguno de los dos ope-
randos. Para –=, la subcadena se elimina del operando de la izquierda. Por tanto, se modifi ca el
operando de la izquierda.

Paso a paso
Para sobrecargar operator–() para objetos de tipo string se requieren estos pasos:

1. Cree una versión de operator–() que tenga el siguiente prototipo:

string operator-(const string &izq, const string &der);

 Cuando una cadena se resta de otra, la cadena de la izquierda será izq y la de la derecha

será der.

2. Dentro de operator–(), cree una cadena que contendrá el resultado de la resta, e inicialice

esa cadena con la secuencia de caracteres de izq.

3. Use fi nd() para encontrar la primera aparición de der en la cadena resultante.

4. Si se encuentra una subcadena resultante, use erase() para eliminar la subcadena de la

cadena de resultado.

5. Devuelva la cadena resultante.

Para sobrecargar operator–=() para objetos de tipo string se requieren estos pasos:

1. Cree una versión de operator–=() que tenga el siguiente prototipo:

string operator–= (string &izq, const string &der);

 Aquí, la cadena de la izquierda será izq y la de la derecha será der. Más aún, izq recibirá el

resultado de la resta.

2. Dentro de operator–(), use fi nd() para encontrar la primera aparición de der en la cadena a

la que hace referencia con izq.

4. Si se encuentra una subcadena resultante, use erase() para eliminar la subcadena de izq.

Esto da como resultado que se modifi que la cadena en izq.

5. Devuelva izq.

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 87

Análisis
Cuando los operadores binarios están sobrecargados por funciones que no son miembros, el ope-
rando de la izquierda siempre se pasa en el primer parámetro y el de la derecha en el segundo.
Por tanto, dada una función operator–() con este prototipo:

string operator-(const string &izq, const string &der);

la expresión

cadA – cadB

causa que se pase a izq una referencia a cadA y a de una a cadB. Más aún, dada una función ope-
rator-=() con este prototipo:

string operator-=(string &izq, const string &der);

La instrucción

cadA –= cadB

causa que se pase a izq una referencia a cadA y a der una a cadB.
Aunque no hay un mecanismo que lo imponga, por lo general es mejor sobrecargar opera-

dores de una manera consistente con su signifi cado y sus efectos normales. Por tanto, cuando un
operador binario como – está sobrecargado, se devuelve el resultado pero no se modifi ca ninguno
de los dos operandos. Esto sigue el uso normal de la – en expresiones como 10-3. En este caso, el
resultado es 7, pero no se modifi ca ni 10 ni 3. Por supuesto, la situación es diferente para la ope-
ración –=. En este caso, el operando de la izquierda recibe la salida de la operación. Por tanto, un
operator–=() sobrecargado modifi ca el operando de la izquierda. En esta solución se siguen estas
convenciones.

El proceso real de eliminar la primera aparición de una subcadena es muy fácil, y sólo incluye
dos pasos principales. En primer lugar, se llama a la función fi nd() de string para localizar el inicio
de la primera coincidencia. La función fi nd() está detallada en Busque un objeto string, pero he aquí
un breve resumen. La función fi nd() tiene varias formas. La que se usa aquí es:

size_type fi nd(const string &cad, size_type ind = 0) const

Devuelve el índice de la primera aparición de cad dentro de la cadena que invoca. La búsqueda
empieza en el índice especifi cado por ind. Se devuelve npos si no se encuentra una coincidencia.

Suponiendo que se encuentre una coincidencia, se elimina la subcadena al llamar a erase().
Esta función se analiza en Realice operaciones básicas en cadenas terminadas en un carácter nulo. He
aquí una rápida recapitulación. La función erase() tiene tres formas. Aquí se muestra la usada en
esta solución:

string &erase(size_type ind = 0, size_type long = npos)

Empezando en ind, elimina long caracteres a partir de la cadena que invoca. Devuelve una referen-
cia a la cadena que invoca.

Cuando se implementa operator–(), ninguno de los operandos debe modifi carse. Por tanto,
debe usarse una cadena temporal que contendrá el resultado de la resta. Inicialice esta cadena con
la secuencia de caracteres en el operando de la izquierda. Luego, elimine la subcadena especifi ca-
da por el operando de la derecha. Por último, devuelva el resultado.

88 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cuando se implementa operator–=(), el operando de la izquierda debe contener el resultado
de la resta. Por tanto, se elimina la subcadena especifi cada por el operando de la derecha a partir de
la cadena a la que se hace referencia con el operando de la izquierda. Aunque este último contiene
el resultado, también debe devolver la cadena resultante. Esto permite que el operador –= se use
como parte de una expresión más larga.

Ejemplo
He aquí una manera de implementar operator–() y operator–=() para objetos de tipo string:

// Sobrecarga - (resta) para objetos string de modo que elimina
// la primera aparición de la subcadena de la izquierda a partir
// de la cadena de la derecha y devuelve el resultado. Ninguno
// de los operandos se modifica. Si no se encuentra la subcadena
// el resultado contiene la misma cadena que el operando izquierdo.
string operator-(const string &izq, const string &der) {
 string::size_type i;
 string resultado(izq);

 i = resultado.find(der);
 if(i != string::npos)
 resultado.erase(i, der.size());

 return resultado;
}

// Sobrecarga -= para objetos string. Elimina la primera aparición
// de la subcadena de la derecha de la cadena de la izquierda. Por
// tanto, se modifica la cadena a la que considera en la izquierda.
// También se devuelve la cadena resultante.
string operator-=(string &izq, const string &der) {
 string::size_type i;

 i = izq.find(der);
 if(i != string::npos)
 izq.erase(i, der.size());

 return izq;
}

En el siguiente ejemplo se muestran estos operadores en acción:

// Implementa operator-() y operator-=() para cadenas.
#include <iostream>
#include <string>

using namespace std;

string operator-(const string &izq, const string &der);
string operator-=(string &izq, const string &der);

int main()
{
 string cad("S\u00a1, esto es una prueba.");

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 89

 string res_cad;

 cout << "Contenido de cad: " << cad << "\n\n";

 // Resta "es" de cad y coloca el resultado en res_cad.
 res_cad = cad - "es";
 cout << "Resultado de cad - \"es\": " << res_cad << "\n\n";

 // Usa -= para restar "es" de res_cad. Esto regresa el
 // resultado a res_cad.
 res_cad -= "es";
 cout << "Resultado de res_cad -= \"es\": " << res_cad << "\n\n";
 cout << "Se muestra de nuevo cad: " << cad
 << "\nNote que cad ha quedado sin cambio por las "
 << "operaciones anteriores." << "\n\n";

 cout << "Algunos ejemplos adicionales:\n\n";

 // Trata de restar "xyz". Esto no provoca cambios.
 res_cad = cad - "xyz";
 cout << "Resultado de cad - \"xyz\": " << res_cad << "\n\n";

 // Elimina los últimos tres caracteres de cad.
 res_cad = cad - "ba.";
 cout << "Resultado de cad - \"ba.\": " << res_cad << "\n\n";

 // Elimina una cadena nula, lo que no produce cambios.
 res_cad = cad - "";
 cout << "Resultado de cad - \"\": " << res_cad << "\n\n";

 return 0;
}

// Sobrecarga - (resta) para objetos string de modo que elimina
// la primera aparición de la subcadena de la izquierda a partir
// de la cadena de la derecha y devuelve el resultado. Ninguno
// de los operandos se modifica. Si no se encuentra la subcadena
// el resultado contiene la misma cadena que el operando izquierdo.
string operator-(const string &izq, const string &der) {
 string::size_type i;
 string resultado(izq);

 i = resultado.find(der);
 if(i != string::npos)
 resultado.erase(i, der.size());

 return resultado;
}

// Sobrecarga -= para objetos string. Elimina la primera aparición
// de la subcadena de la derecha de la cadena de la izquierda. Por
// tanto, se modifica la cadena a la que considera en la izquierda.
// También se devuelve la cadena resultante.
string operator-=(string &izq, const string &der) {

90 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 string::size_type i;

 i = izq.find(der);
 if(i != string::npos)
 izq.erase(i, der.size());

 return izq;
}

Aquí se muestra la salida:

Contenido de cad: Sí, esto es una prueba.

Resultado de cad - "es": Sí, to es una prueba.

Resultado de res_cad -= "es": Sí, to una prueba.

Se muestra de nuevo cad: Sí, esto es una prueba.
Note que cad ha quedado sin cambio por las operaciones anteriores.

Algunos ejemplos adicionales:

Resultado de cad - "xyz": Sí, esto es una prueba.

Resultado de cad - "ba.": Sí, esto es una prue

Resultado de cad - "": Sí, esto es una prueba.

Opciones
Las versiones de operator–() y operator–=() descritas en la solución sólo eliminan la primera
aparición de la subcadena en la derecha de la cadena de la izquierda. Sin embargo, con un poco de
trabajo, puede cambiar su operación para que elimine todas las apariciones de la subcadena.
He aquí una manera de hacerlo:

// Sobrecarga - (resta) para objetos string de modo que elimina
// TODAS las apariciones de la subcadena en la izquierda a partir
// de la cadena de la derecha. Se devuelve el resultado. No se
// modifica ninguno de los operandos.
string operator-(const string &izq, const string &der) {
 string::size_type i;
 string resultado(izq);

 if(der != "") {
 do {
 i = resultado.find(der);
 if(i != string::npos)
 resultado.erase(i, der.size());
 } while(i != string::npos);
 }

 return resultado;
}

 C a p í t u l o 2 : M a n e j o d e c a d e n a s 91

// Sobrecarga -= para objetos string de modo que elimina
// TODAS las apariciones de la subcadena en la derecha a partir
// de la cadena de la izquierda. El resultado se incluye en la
// cadena señalada por el operando de la izquierda. Por tanto,
// se modifica el operando de la izquierda. También se devuelve.
// la cadena resultante.
string operator-=(string &izq, const string &der) {
 string::size_type i;

 if(der != "") {
 do {
 i = izq.find(der);
 if(i != string::npos)
 izq.erase(i, der.size());
 } while(i != string::npos);
 }

 return izq;
}

Otra opción que tal vez le resulte útil en algunos casos es implementar la resta de cadenas
para que opere de manera independiente de diferencias entre mayúsculas y minúsculas. Para ello,
utilice el método descrito en Cree una búsqueda no sensible a mayúsculas y minúsculas y funciones de
búsqueda y reemplazo para objetos string para realizar una búsqueda no sensible a mayúsculas y
minúsculas para encontrar la subcadena que se eliminará.

 93

É
ste es el primero de dos capítulos que presentan soluciones que usan la biblioteca de planti-
llas estándar (STL, Standard Template Library). Se necesitan dos capítulos porque la STL es
una parte extraordinariamente grande e importante de C++. No sólo proporciona soluciones

preelaboradas a algunos de los problemas de programación más desafi antes, también redefi ne la
manera en que se pueden enfrentar muchas tareas comunes. Por ejemplo, en lugar de tener que
proporcionar su propio código para una lista vinculada, puede usar la clase list de STL. Si su pro-
grama necesita asociar una clave con un valor y proveer un medio para encontrar ese valor dada
la clave, puede usar la clase map. Debido a que STL proporciona implementaciones sólidas, depu-
radas, de los "motores de datos" de uso más común, puede usar uno sin importar lo que necesite,
sin dedicar el tiempo necesario ni afrontar el problema de desarrollar los propios.

Este capítulo empieza con una revisión general de la STL, y luego presenta soluciones que
demuestran el núcleo de la STL: sus contenedores. En el proceso, muestra la manera en que los
iteradores se utilizan para acceder y recorrer en ciclo el contenido de un contenedor. En el siguien-
te capítulo se muestra cómo usar algoritmos y varios otros componentes de la STL.

He aquí las soluciones contenidas en este capítulo:

Técnicas básicas de contenedor de secuencias

Use vector

Use deque

Use list

Use los adaptadores de contenedor de secuencias: snack, queue y priority_queue

Almacene en un contenedor objetos defi nidos por el usuario

Técnicas básicas de contenedor asociativo

Use map

Use multimap

Use set y multiset

NOTA Para conocer una descripción a fondo de STL, consulte el libro Programming from the
Ground Up. Gran parte de la revisión general y las descripciones de este capítulo están adaptadas
de ese trabajo. La STL también recibe amplia cobertura en el libro C++: The Complete Reference.
Ambos libros son de Herb Schildt.

•

•

•

•

•

•

•

•

•

•

C A P Í T U L O

Trabajo con contenedores STL

3

94 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Revisión general de STL

En esencia, la biblioteca de plantillas estándar es un conjunto complejo de clases y funciones de
plantilla que implementa muchas estructuras de datos y algoritmos populares y de uso común.
Por ejemplo, incluye soporte para vectores, listas, colas y pilas. También proporciona muchos algo-
ritmos (como de ordenamiento, búsqueda y combinación) que operan en ellos. Debido a que STL
está construido a partir de clases y funciones de plantillas, las estructuras de datos y los algorit-
mos pueden aplicarse a casi cualquier tipo de datos. Esto es, por supuesto, parte de su poder.

STL está organizado alrededor de tres elementos básicos: contenedores, algoritmos e iteradores.
Para ponerlo en palabras simples, los algoritmos actúan como contenedores mediante iteradores.
Más que otra cosa, el diseño y la implementación de estas características determinan la naturaleza
de STL. Además de contenedores, algoritmos e iteradores, STL depende de otros diversos elemen-
tos estándar para soporte: asignadores, adaptadores, objetos de función, predicados, adhesivos y negadores.

Contenedores
Como su nombre lo indica, un contenedor es un objeto que puede contener otros objetos. Hay
varios tipos diferentes de contenedores. Por ejemplo, la clase vector defi ne una matriz dinámica,
deque crea una cola de doble extremo, y list proporciona una lista vinculada. A estos contenedo-
res se les denomina contenedores de secuencia porque, en terminología de STL, una secuencia es una
lista lineal. La STL también defi ne contenedores asociativos, que permiten recuperación efi ciente de
valores basados en claves. Por tanto, los contenedores asociativos almacenan pares clave/valor.
Un map es un ejemplo. Almacena pares clave/valor en que cada clave es única. Esto facilita la
recuperación de un valor específi co dada su clave.

Algoritmos
Los algoritmos actúan como contenedores. Entre sus capacidades se incluyen inicialización, orde-
namiento, búsqueda, combinación, reemplazo y transformación de contenido de un contenedor.
Muchos algoritmos operan en un rango de elementos dentro de un contenedor.

Iteradores
Los iteradores son objetos que actúan, más o menos, como apuntadores. Le dan la capacidad de
recorrer en ciclo el contenido de un contenedor de manera muy parecida a como se usaría uno
para recorrer de la misma forma una matriz. Hay cinco tipos de iteradores:

Iterador Acceso permitido

Acceso aleatorio Almacena y recupera valores. Los elementos pueden accederse de manera
aleatoria.

Bidireccional Almacena y recupera valores. Movimiento directo e inverso.

Directo Almacena y recupera valores. Sólo se mueve hacia adelante.

Entrada Recupera, pero no almacena valores. Sólo se mueve hacia adelante.

Salida Almacena, pero no recupera valores. Sólo se mueve hacia adelante.

En general, un iterador que tiene mayores capacidades de acceso puede usarse en lugar de uno
que tiene menores opciones. Por ejemplo, un iterador directo puede usarse en lugar de uno
de entrada.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 95

Los iteradores se manejan como apuntadores. Puede aumentarlos o disminuirlos. Puede apli-
car los operadores * y –>. Los iteradores se declaran usando el tipo iterator defi nido por diversos
contenedores.

La STL también da soporte a varios iteradores. Los iteradores inversos son bidireccionales o
de acceso aleatorio y recorren una secuencia en dirección inversa. Por tanto, si un iterador inver-
so señala al fi nal de una secuencia, el aumento de ese iterador causará que señale a un elemento
antes del fi nal.

Todos los iteradores deben dar soporte a los tipos de operadores de apuntador permitidos en
esa categoría. Por ejemplo, una clase de iterador de entrada debe dar soporte a –>, ++, *, == y !=.
Más aún, el operador * no puede usarse para asignar un valor. En contraste, un iterador de acceso
aleatorio debe dar soporte a –>, +, ++, –, – –, *, <, >, <=, >=, –=, +=, ==, != y []. Además, el * debe
permitir asignación. A continuación se muestran los operadores con soporte para cada tipo:

Iterador Operaciones soportadas

Acceso aleatorio *, –>, =, +, –, ++, – --, [],<, >, <=, >=, – =, +=, ==, !=

Bidireccional *, –>, =, ++, – --, ==, !=

Directo *, –>, =, ++, ==, !=

Entrada *,–>, =, ++, ==, !=

Salida *, =, ++

Cuando se hace referencia a varios tipos de iteradores en descripciones de plantillas, en este
libro se usarán los siguientes términos:

Término Representa

BiIter Iterador bidireccional

ForIter Iterador directo

InIter Iterador de entrada

OutIter Iterador de salida

RandIter Iterador de acceso aleatorio

Asignadores
Cada contenedor tiene defi nido un asignador. Los asignadores administran la asignación de me-
moria a un contenedor. El asignador predeterminado es un objeto de clase allocator, pero pueden
defi nirse los propios, si es necesario, para aplicaciones especializadas. Para casi todos los usos,
basta con el asignador predeterminado.

Objetos de función
Los objetos de función son instancias de clases que defi nen operator(). Hay varios objetos de funcio-
nes predefi nidos, como less(), greater(), plus(), minus(), multiplies() y divides(). Tal vez el objeto
de función de uso más extenso sea less(), que determina cuando un objeto es menos que otro. Los
objetos de función pueden usarse en lugar de apuntadores de función en los algoritmos STL.
Los objetos de función aumentan la efi ciencia de algunos tipos de operaciones y proporcionan
soporte para ciertas operaciones que, de otra manera, no sería posible usando sólo un apuntador a
función.

96 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Adaptadores
En el sentido más general, un adaptador transforma una cosa en otra. Hay adaptadores de conte-
nedor, de iterador y de función. Un ejemplo de adaptador de contenedor es queue, que adapta el
contenedor deque para usar como una cola estándar.

Predicados
Varios de los algoritmos y contenedores usan un tipo especial de función llamada predicado. Hay
dos variaciones de predicados: unarios y binarios. Un predicado unario toma un argumento. Un
predicado binario tiene dos argumentos. Estas funciones devuelven resultados true/false, pero
usted defi ne las condiciones precisas que hacen que devuelva uno de estos valores. En este libro,
cuando se requiere un predicado unario, se indicará usando el tipo UnPred. Cuando se necesita
un predicado binario, se usará el tipo BinPred. En un predicado binario, los argumentos siempre
están en el orden primero, segundo. Para los predicados unarios y binarios, los argumentos conten-
drán valores de tipo de objetos que están almacenados en el contenedor.

Algunos algoritmos usan un tipo especial de predicado binario que compara dos elementos.
Las funciones de comparación devuelven true si su primer argumento es menos que el segundo. En
este libro, las funciones de comparación se indicarán usando el tipo Comp.

Adhesivos y negadores
Otras dos entidades que pueblan las STL son los adhesivos y los negadores. Un adhesivo une un
argumento a un objeto de función. Un negador devuelve el complemento de un predicado. Ambos
aumentan la versatilidad de la STL.

La clase de contenedor

En el núcleo de la STL se encuentran sus contenedores. Se muestran en la tabla 3-1. También se
muestran los encabezados necesarios para usar cada contenedor. Como podría esperarse, cada
contenedor tiene diferentes capacidades y atributos.

Los contenedores se implementan usando clases de plantillas. Por ejemplo, aquí se muestra la
especifi cación de plantilla para el contenedor deque. Todos los contenedores usan especifi caciones
similares:

template <class T, class Allocator = allocator<T> > class deque

Aquí, el tipo genérico T especifi ca el tipo de objetos contenidos por deque. El asignador usado
por deque se especifi ca con Allocator, que tiene como opción predeterminada la clase asignado-
ra estándar. Para la mayor parte de las aplicaciones, simplemente usará el asignador predetermi-
nado, y eso es lo que se hace en todo el código de este capítulo. Sin embargo, es posible defi nir
su propia clase asignadora si se llega a necesitar un esquema de asignación especial. Si no está
familiarizado con los argumentos predeterminados en las plantillas, sólo recuerde que funcio-
nan de manera muy parecida a los argumentos predeterminados en funciones. Si el argumento
de tipo genérico no está especifi cado explícitamente cuando se crea un objeto, entonces se usa el
tipo predeterminado.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 97

Contenedor Descripción Encabezado requerido

deque Una cola de doble extremo. <deque>

list Una lista lineal. <list>

map Almacena pares clave/valor en que cada clave está asociada
con un solo valor.

<map>

multimap Almacena pares clave/valor en que una clave puede estar aso-
ciada con dos o más valores.

<multimap>

multiset Un conjunto en que cada elemento no es necesariamente único. <multiset>

priority_queue Una cola con prioridades. <queue>

queue Una cola. <queue>

set Un conjunto en que cada elemento es único. <set>

stack Una pila. <stack>

vector Una matriz dinámica. <vector>

TABLA 3-1 Contenedores defi nidos por la STL.

Cada clase de contenedor incluye varios typedef que crean un conjunto de nombres de tipo
estándar. Varios de estos nombres de typedef se muestran aquí:

size_type Algún tipo de entero sin signo.

reference Una referencia a un elemento.

const_reference Una referencia const a un elemento.

iterator Un iterador.

const_iterator Un iterador const.

reverse_iterator Un iterador inverso.

const_reverse_iterator Un iterador inverso const.

value_type El tipo de valor almacenado en un contenedor. Igual que T para los contenedores de
secuencia.

allocator_type El tipo del asignador.

key_type El tipo de una clave.

Como se mencionó, hay dos amplias categorías de contenedores: de secuencia y asociativas.
Los de secuencia son vector, list y deque. Los asociativos son map, multimap, set y multiset. Los
contenedores de secuencia, como su nombre lo indica, operan en secuencias, que son, en sí, listas
lineales de objetos. Los contenedores asociativos operan en listas de claves. De estos últimos, los
que implementan mapas operan en pares clave/valor y permiten la recuperación de un valor
dada su clave.

A las clases stack, queue y priority_queue se les denomina adaptadores de contenedor porque
usan (es decir, adaptan) uno de los contenedores de secuencia para que contengan sus elemen-
tos. Por tanto, uno de los contenedores de secuencia subraya la funcionalidad proporcionada por
stack, queue y priority_queue. Desde la perspectiva del programador, los adaptadores de conte-
nedor se parecen a los otros contenedores y actúan como ellos.

98 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Funcionalidad común
La STL especifi ca un conjunto de requisitos que todos los contenedores deben satisfacer. Al es-
pecifi car una funcionalidad común, STL asegura que los algoritmos pueden actuar sobre todos
los contenedores, y que todos los contenedores pueden usarse de una manera bien entendida y
consistente que es independiente de los detalles de cada implementación de contenedor. Esta es
otra de las fortalezas importantes de STL.

Todos los contenedores deben dar soporte al operador de asignación. También deben dar so-
porte a todos los operadores lógicos. En otras palabras, todos los contenedores deben dar soporte
a estos operadores:

=, ==, <, <=, !=, >, >=

Todos los contenedores deben proporcionar un constructor que cree un contenedor vacío y
una copia del constructor. Deben proveer un destructor que libere toda la memoria usada por el
contenedor y llamar al destructor para todos los elementos del contenedor.

Todos los contenedores también deben dar soporte a iteradores. Entre otras ventajas, esto ase-
gura que los algoritmos puedan operar en todos los adaptadores.

Todos los contenedores deben proveer las siguientes funciones:

iterator begin() Devuelve un iterador al primer elemento del contenedor.

const_iterator begin() const Devuelve un iterador const al primer elemento del contenedor.

bool empty() const Devuelve true si el contenedor está vacío.

iterator end() Devuelve un iterador a uno después del último elemento en el contenedor.

const_iterator end() const Devuelve un iterador const a uno después del último elemento en el
contenedor.

size_type max_size() const Devuelve el número máximo de elementos que puede incluir el contenedor.

size_type size() const Devuelve el número de elementos almacenados en el contenedor.

void swap(TipoContenedor c) Intercambia el contenido de dos contenedores.

A un contenedor que da soporte a acceso bidireccional a sus elementos se le denomina contene-
dor reversible. Además de los requisitos básicos, un contenedor reversible también debe proporcio-
nar iteradores inversos y las siguientes funciones:

reverse_iterator rbegin() Devuelve un iterador inverso al último elemento en el contenedor.

const_reverse_iterator rbegin() const Devuelve un iterador const inverso al último elemento en el contenedor.

reverse_iterator rend() Devuelve un iterador inverso a uno antes del primer elemento del
contenedor.

const_reverse_iterator rend() const Devuelve un iterador const inverso a uno antes del primer elemento del
contenedor.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 99

Requisitos de contenedor de secuencias
Además de la funcionalidad común a todos los contenedores, un contenedor de secuencias agrega
las siguientes funciones:

void clear() Elimina todos los elementos del contenedor.

iterator erase(iterator i) Elimina los elementos señalados por i. Devuelve un
iterador al elemento después del eliminado.

iterator erase(iterator inicio, iterator fi nal) Elimina elementos en el rango especifi cado por inicio
y fi nal. Devuelve un iterador al elemento que sigue el
último elemento eliminado.

iterator insert(iterator i, const T &val) Inserta val inmediatamente antes del elemento especi-
fi cado por i. Devuelve un iterador al elemento.

void iterator insert(iterator i, size_type num, const T
&val)

Inserta num copias de val inmediatamente antes del
elemento especifi cado por i.

template <class InIter>
 void insert(iterator i, InIter inicio, InIter fi nal)

Inserta la secuencia defi nida por inicio y fi nal inmediata-
mente antes del elemento especifi cado por i.

La STL defi ne un conjunto de funciones para contenedores de secuencia que son opcionales,
pero que se implementan con frecuencia. Aquí se muestran:

reference at(size_type ind) Devuelve una referencia a un elemento especifi cado por
ind.

const_reference at(size_type ind) const Devuelve una referencia const a un elemento especifi cado
por ind.

reference back() Devuelve una referencia al último elemento del contenedor.

const_reference back() const Devuelve una referencia const al último elemento del
contenedor.

reference front() Devuelve una referencia al primer elemento del contenedor.

const_reference front() const Devuelve una referencia const al primer elemento del
contenedor.

reference operator[](size_type ind) Devuelve una referencia al elemento especifi cado por ind.

const_reference operator[](size_type ind) const Devuelve una referencia const al elemento especifi cado por
ind.

void pop_back() Elimina el último elemento del contenedor.

void pop_front() Elimina el primer elemento del contenedor.

void push_back(const T &val) Agrega un elemento con el valor especifi cado por val al fi nal
del contenedor.

void push_front(const T &val) Agrega un elemento con el valor especifi cado por val al
inicio del contenedor.

100 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Los contenedores de secuencia también deben proporcionar constructores que permiten que
un contenedor se inicialice mediante elementos especifi cados por un par de iteradores o con un
número específi co de un elemento determinado. Por supuesto, un contenedor de secuencias tiene
la libertad de proporcionar funcionalidad adicional.

Requisitos de contenedores asociativos
Además de la funcionalidad requerida de todos los contenedores, los asociativos tienen varios
otros requisitos. En primer lugar, todos deben dar soporte a las siguientes funciones:

void clear() Elimina todos los elementos del contenedor.

size_type count(const key_type &c) const Devuelve el número de veces que c se presenta en el contenedor.

void erase(iterator i) Elimina los elementos señalados por i.

void erase(iterator inicio, iterator fi nal) Elimina los elementos en el rango inicio y fi nal.

size_type erase(const key_type &c) Elimina los elementos que tienen claves con el valor c. Devuelve el
número de elementos que se han eliminado.

pair<iterator, iterator>
 equal_range(const key_type &c)

Devuelve un par de iteradores que señalan a los límites superior e
inferior en el contenedor para la clave especifi cada.

pair<const_iterator, const_iterator>
 equal_range(const key_type &c) const

Devuelve un par de iteradores const que señalan a los límites
superior e inferior en el contenedor para la clave especifi cada.

iterator fi nd(const key_type &c) Devuelve un iterador a la clave especifi cada. Si no se encuentra,
entonces se devuelve un iterador al fi nal del contenedor.

const_iterator fi nd(const key_type &c) const Devuelve un iterador const a la clave especifi cada. Si no se en-
cuentra, entonces se devuelve un iterador al fi nal del contenedor.

pair<iterator, bool>
 insert(const value_type &val)

Inserta val en el contenedor. Si éste requiere claves únicas, enton-
ces val sólo se inserta si aún no existe. Si los elementos están
insertados, se devuelve pair<iterator, true>. De otra manera, se
devuelve pair<iterator, false>.

iterator insert(iterator inicio,
 const value_type &val)

Inserta val. La búsqueda del punto de inserción apropiado empie-
za en el elemento especifi cado por inicio. En el caso de contene-
dores que requieren claves únicas, los elementos se insertan sólo
si aún no existen. Se devuelve un iterador al elemento.

template <class InIter>
 void insert(InIter inicio, InIter fi nal)

Inserta un rango de elementos. En el caso de contenedores que
requieren claves únicas, los elementos se insertan sólo si aún no
existen.

key_compare key_comp() const Devuelve el objeto de función que compara dos claves.

iterator lower_bound(const key_type &c) Devuelve el iterador al primer elemento con una clave igual o
mayor que c.

const_iterator lower_bound(const key_type
&c) const

Devuelve el iterador const al primer elemento con una clave igual
o mayor que c.

iterator upper_bound(const key_type &c) Devuelve un iterador al primer elemento con una clave mayor
que c.

const_iterator upper_bound(const key_type
&c) const

Devuelve un iterador const al primer elemento con una clave
mayor que c.

value_compare value_comp() const Devuelve el objeto de función que compara los dos valores.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 101

Observe que algunas de las funciones devuelven un objeto pair. Se trata de una clase que
encapsula dos objetos. En el caso de contenedores asociativos que son mapas, value_type repre-
senta un pair que encapsula una clave y un valor. La clase pair se explica de manera detallada en
Técnicas básicas de contenedor asociativo.

Los contenedores asociativos deben proporcionar constructores que permitan que los elemen-
tos especifi cados por un par de iteradores inicialicen un contenedor. Deben también dar soporte
a constructores que le permitan especifi car las funciones de comparación usadas para comparar
dos claves. Por supuesto, un contenedor asociativo tiene la libertad de proporcionar funcionalidad
adicional.

Problemas de rendimiento

Hay otro aspecto importante relacionado con las STL que se añade a su capacidad y su aplicabili-
dad general: las garantías de rendimiento. Aunque un fabricante de compiladores tiene la libertad
de implementar los mecanismos usados por otro contenedor y algoritmo por su cuenta, todas las
implementaciones deben adecuarse a las garantías de rendimiento especifi cadas por el STL. Se
defi nen las siguientes categorías generales de rendimiento:

constante
lineal
logarítmica

Como diferentes contenedores almacenan su contenido de manera diferente, tendrán garantías
de rendimiento distintas. Por ejemplo, la inserción en la parte media de un vector ocupa tiempo
lineal. En contraste, la inserción en una list toma tiempo constante. Diferentes algoritmos podrían
comportarse de manera diferente. Por ejemplo, el algoritmo sort() se ejecuta de manera proporcio-
nal a N log N, pero fi nd() lo hace en tiempo lineal.

En algunos casos, se dirá que una operación toma tiempo constante amortizado. Este término
se emplea para describir una situación en que una operación suele tomar tiempo constante, pero
en ocasiones requiere más. (Por ejemplo, inserciones al fi nal del vector suelen ocurrir en tiempo
constante, pero si debe asignarse más memoria, entonces la inserción requiere tiempo lineal.) Si la
operación más larga es lo sufi cientemente rara, entonces puede considerarse como amortizada a
través de varias operaciones más cortas.

En general, la especifi cación STL requiere que los contenedores y algoritmos se implementen
usando técnicas que aseguran (hablando de manera general) un rendimiento óptimo del motor en
tiempo de ejecución. Esto es importante porque le garantiza al programador que los bloques de
construcción de STL cumplan con un cierto nivel de efi ciencia, sin importar qué implementación
de STL se esté usando. Sin esta garantía, el rendimiento del código basado en STL dependería por
completo de cada implementación individual y podría variar ampliamente.

102 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Técnicas básicas de contenedor de secuencias

Componentes clave

Encabezados Clases Funciones

<vector> vector iterator begin()
void clear()
bool empty() const
iterator end()
iterator erase(iterator i)
iterator insert(iterator i, const T &val)
reverse_iterator rbegin()
reverse_iterator rend()
size_type size() const
void swap(vector<T, Allocator> &ob)

<Vector> template <class T, class Allocator>
 bool operator==(const vector<T, Allocator>
 &izqsup
 const vector<T, Allocator>
 &dersup)
template <class T, class Allocator>
 bool operator<(const vector<T, Allocator>
 &izqsup
 const vector<T, Allocator>
 &dersup)
template <class T>, class Allocator>
 bool operator>(const vector<T, Allocator>
 &izqsup,
 const vector<T, Allocator>
 &dersup)

Todos los contenedores de secuencias comparten una funcionalidad común. Por ejemplo, todos le
permiten agregar elementos al contenedor, eliminar elementos de él o recorrerlo en ciclo mediante
un iterador. Todos dan soporte al operador de asignación y los operadores lógicos, y todos están
construidos de la misma manera. En esta solución se describe esta funcionalidad común, mostran-
do las técnicas básicas que aplican a todos los contenedores de secuencias.

En esta solución se muestra cómo:

Crear un contenedor de secuencias.

Agregar elementos al contenedor.

Determinar el tamaño del contenedor.

Usar un iterador para recorrer en ciclo el contenedor.

•

•

•

•

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 103

Asignar un contenedor a otro.

Determinar cuando un contenedor es equivalente a otro.

Eliminar elementos de un contenedor.

Intercambiar los elementos de un contenedor con otro.

Determinar si un contenedor está vacío.

En esta solución se usa la clase de contenedor vector, pero sólo se emplean los métodos comunes
a los contenedores de secuencias. Por tanto, pueden aplicarse los mismos principios generales a
cualquier tipo de contenedor de secuencias.

Paso a paso
Para crear y usar un contenedor de secuencias se requieren estos pasos:

1. Cree una instancia del contenedor deseado. En esta solución, se usa vector, pero puede

sustituirse con cualquier otro contenedor de secuencias.

2. Agregue elementos al contenedor al llamar a insert().

3. Obtenga varios elementos en el contenedor al llamar a size().

4. Determine si el contenedor está vacío (es decir, no contiene elementos) al llamar a empty().

5. Elimine elementos del contenedor al llamar a erase().

6. Elimine todos los elementos de un contenedor al llamar a clear().

7. Obtenga un iterador al principio de la secuencia al llamar a begin(). Obtenga un iterador a

uno después del fi nal de la secuencia al llamar a end().

8. En el caso de contenedores de secuencias reversibles, obtenga un iterador inverso al fi nal

de la secuencia, al llamar a rbegin(). Obtenga un iterador inverso a uno antes del inicio de

la secuencia al llamar a rend().

9. Recorra en ciclo los elementos del contenedor mediante un iterador.

10. Intercambie el contenido de un contenedor con otro mediante swap().

11. Determine cuando un contenedor es igual, menor que, o mayor que otro.

Análisis
Aunque la operación interna de STL es muy compleja, su empleo en realidad es muy fácil. En mu-
chos aspectos, la parte más difícil de su uso está en decidir cuál tipo de contenedor se debe usar.
Cada uno ofrece ciertos benefi cios y requiere ciertas compensaciones. Por ejemplo, vector es muy
bueno cuando se requiere un objeto de acceso aleatorio, tipo matriz, y no se harán demasiadas
inserciones o eliminaciones. Una list ofrece inserción y eliminación a bajo costo, pero a cambio de
búsquedas lentas. Una cola de doble extremo tiene soporte por parte de deque. En esta solución se
usa vector para demostrar las operaciones básicas de contenedores de secuencias, pero el progra-
ma funcionará con list o deque. Ésta es una de las ventajas más importantes de STL; todos los
contenedores de secuencias dan soporte a un nivel básico de funcionalidad común.

La especifi cación de plantilla para vector se muestra a continuación:

template <class T, class Allocator = allocator<T> > class vector

•

•

•

•

•

104 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí, T es el tipo de datos que se habrán de almacenar y Allocator especifi ca el asignador,
que es, como opción predeterminada, el estándar. Para usar vector, debe incluir el encabezado
<vector>.

La clase vector da soporte a varios constructores. Los dos usados en esta solución son los nece-
sarios para todos los contenedores de secuencias. Se muestran a continuación:

explicit vector(const Allocator %asign = Allocator())
vector(const vector<T, Allocator> &ob)

La primera forma construye un vector vacío. La segunda forma es un constructor de copia de
vector.

Después de que se ha creado un contenedor, pueden agregársele objetos. Una manera de
hacer esto y que funciona para todos los contenedores de secuencias es llamar a insert(). Todos los
contenedores de secuencias dan soporte, por lo menos, a tres versiones de insert(). Ésta es la usada
aquí:

iterator insert(iterator i, const T &val)

Inserta val en el contenedor que invoca en el punto especifi cado por i. Devuelve un iterador al ele-
mento insertado. Un contenedor de secuencias crecerá automáticamente a medida que se necesita
cuando se le agreguen elementos.

Puede eliminar uno o más elementos de un contenedor de secuencias al llamar a erase(). Tiene
por lo menos dos formas. La usada en esta solución se muestra a continuación:

iterator erase(iterator i)

Elimina el elemento al que señala i. Devuelve un iterador al elemento después del eliminado.
Para eliminar todos los elementos en un contenedor, llame a clear(). Aquí se muestra:

void clear()

Puede determinar el número de elementos en un contenedor al llamar a size(). Para determi-
nar si un contenedor está vacío, llame a empty(). Ambas funciones se muestran a continuación:

bool empty() const
size_type size() const

Puede obtener un iterador al principio de la secuencia al llamar a begin(). Un iterador a uno
después del último elemento en la secuencia se obtiene al llamar a end(). Aquí se muestran estas
funciones:

iterator begin()
iterator end()

También hay versiones const de estas funciones.
Para declarar una variable que se usará como iterador, debe especifi car el tipo de iterador del

contenedor. Por ejemplo, esto declara un iterador que puede apuntar a elementos dentro de un
vector<double>:

vector<double>::iterator itr;

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 105

Es útil destacar que end() no devuelve un iterador que señala al último elemento del contene-
dor. En cambio, devuelve un iterador que señala a uno después del último elemento. Por tanto, el
último elemento de un contenedor es señalado por end()–1. Esta característica le permite escribir
algoritmos muy efi cientes que recorren en ciclo todos los elementos de un contenedor, incluido
el último, usando un iterador. Cuando éste tiene el mismo valor que el devuelto por end(), sabrá
que se ha tenido acceso a todos los elementos. Por ejemplo, he aquí un bucle que recorre todos los
elementos de un contenedor de secuencias llamado cont:

for(itr = cont.begin(); itr != cont.end(); ++itr) // ...

El bucle se ejecuta hasta que itr es igual a cont.end(). Por tanto, todos los elementos de cont ten-
drán que procesarse.

Como ya se explicó, un contenedor reversible es uno en que los elementos pueden recorrerse
en orden inverso (de atrás hacia adelante). Todos los contenedores de secuencias integrados son
reversibles. Para un contenedor reversible, puede obtener un iterador inverso al fi nal de la secuen-
cia al llamar a rbegin(). Un iterador a uno antes del primer elemento en la secuencia se obtiene al
llamar a rend(). Aquí se muestran estas funciones:

reverse_iterator rbegin()
reverse_iterator rend()

También hay versiones const de estas funciones. Un iterador inverso se declara como un iterador
regular. Por ejemplo,

vector<double>::reverse_iterator ritr;

Puede usar un iterador inverso para recorrer en ciclo un vector en orden inverso. Por ejemplo,
dado un iterador inverso llamado ritr, he aquí un bucle que recorre todos los elementos en un
contenedor de secuencias reversible llamado cont de atrás hacia adelante:

for(ritr = cont.rbegin(); ritr != cont.rend(); ++ritr) // ...

El iterador inverso ritr empieza en el elemento señalado por rbegin(), que es el último elemento
de la secuencia. Se ejecuta hasta que es igual a rend(), que señala a un elemento que está uno antes
del inicio de la secuencia. (En ocasiones resulta útil considerar a rbegin() y rend() como iteradores
que regresan al inicio y el fi nal de una secuencia invertida.) Cada vez que se aumenta un iterador
inverso, señala al elemento anterior. Cada vez que se reduce, señala al siguiente elemento.

El contenido de dos contenedores de secuencia puede intercambiarse al llamar a swap(). He
aquí la manera en que se defi ne para vector:

void swap(vector<T, Allocator> &ob)

El contenido del contenedor que invoca se intercambia con el especifi cado por ob.

Ejemplo
En el siguiente ejemplo se demuestran las operaciones básicas de contenedor de secuencias:

// Demuestra las operaciones básicas de contenedor de secuencias.
//
// En este ejemplo se usa vector, pero puede aplicarse la misma
// técnica a cualquier contenedor de secuencias.

106 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

#include <iostream>
#include <vector>

using namespace std;

void mostrar(const char *msg, vector<char> vect);

int main() {
 // Declara un vector vacío que puede contener objetos char.
 vector<char> v;

 // Declara un iterador a un vector<char>.
 vector<char>::iterator itr;

 // Obtiene un iterador al principio de v.
 itr = v.begin();

 // Inserta caracteres en v. Se devuelve un iterador al
 // objeto insertado.
 itr = v.insert(itr, 'A');
 itr = v.insert(itr, 'B');
 v.insert(itr, 'C');

 // Despliega el contenido de v.
 mostrar("El contenido de v: ", v);

 // Declara un iterador inverso.
 vector<char>::reverse_iterator ritr;

 // Usa un iterador inverso para mostrar el contenido de v en reversa.
 cout << "Se muestra v en reversa: ";
 for(ritr = v.rbegin(); ritr != v.rend(); ++ritr)
 cout << *ritr << " ";
 cout << "\n\n";

 // Crea otro vector que es el mismo que el primero.
 vector<char> v2(v);
 mostrar("El contenido de v2: ",v2);
 cout << "\n";

 // Muestra el tamaño de v, que es el número de elementos
 // contenidos por v.
 cout << "El tama\u00a4o de v es " << v.size() << "\n\n";

 // Compara dos contenedores.
 if(v == v2) cout << "v y v2 son equivalentes.\n\n";

 // Inserta más caracteres en v y v2. Esta vez,
 // se insertan al final.
 cout << "Se insertan caracteres adicionales en v y v2.\n";
 v.insert(v.end(), 'D');
 v.insert(v.end(), 'E');

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 107

 v2.insert(v2.end(), 'X');
 mostrar("El contenido de v: ", v);
 mostrar("El contenido de v2: ", v2);
 cout << "\n";

 // Determina si v es menos que v2. Se trata de
 // una comparación lexicográfica. Por ello, el
 // primer elemento no coincidente del contenedor determina
 // cuál contenedor es menos que otro.
 if(v < v2) cout << "v es menos que v2.\n\n";

 // Ahora, inserta Z al inicio de v.
 cout << "Se inserta Z al inicio de v.\n";
 v.insert(v.begin(), 'Z');
 mostrar("El contenido de v: ", v);
 cout << "\n";

 // Ahora, compara v con v2 una vez más.
 if(v > v2) cout << "Ahora, v es mayor que v2.\n\n";

 // Elimina el primer elemento de v2.
 v2.erase(v2.begin());
 mostrar("v2 tras eliminar el primer elemento: ", v2);
 cout << "\n";

 // Crea otro vector.
 vector<char> v3;
 v3.insert(v3.end(), 'X');
 v3.insert(v3.end(), 'Y');
 v3.insert(v3.end(), 'Z');
 mostrar("El contenido de v3: ", v3);
 cout << "\n";

 // Intercambia el contenido de v y v3.
 cout << "Se intercambian v y v3.\n";
 v.swap(v3);
 mostrar("El contenido de v: ", v);
 mostrar("El contenido de v3: ", v3);
 cout << "\n";

 // Limpia v.
 v.clear();
 if(v.empty()) cout << "v ahora est\u00a0 vac\u00a1o.";

 return 0;
}

// Despliega el contenido de un vector<char> al usar
// un iterador.
void mostrar(const char *msg, vector<char> vect) {
 vector<char>::iterator itr;

 cout << msg;
 for(itr=vect.begin(); itr != vect.end(); ++itr)

108 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << *itr << " ";
 cout << "\n";
}

Aquí se muestra la salida:

El contenido de v: C B A
Se muestra v en reversa: A B C

El contenido de v2: C B A

El tamaño de v es 3

v y v2 son equivalentes.

Se insertan caracteres adicionales en v y v2.
El contenido de v: C B A D E
El contenido de v2: C B A X

v es menos que v2.

Se inserta Z al inicio de v.
El contenido de v: Z C B A D E

Ahora, v es mayor que v2.

v2 tras eliminar el primer elemento: B A X

El contenido de v3: X Y Z

Se intercambian v y v3.
El contenido de v: X Y Z
El contenido de v3: Z C B A D E

v ahora está vacío.

Aunque gran parte del programa se explica por sí solo, hay varios puntos de interés que mere-
cen una revisión de cerca. En primer lugar, observe que no se especifi ca algún asignador cuando
se declaran los contenedores del programa (v, v2 y v3). Como se explicó, en casi todos los usos de
STL, la opción correcta es el asignador predeterminado.

A continuación, observe cómo el iterador itr se declara en esta instrucción:

vector<char>::iterator itr;

Esto declara un iterador que puede usarse con objetos de tipo vector<char>. Cada clase de conte-
nedor crea un typedef para iterator. Los iteradores a otros tipos de vectores u otros contenedores
se declaran de la misma manera general. Por ejemplo:

vector<double>::iterator itrA;
deque<string>::iterator itrB;

Aquí, itrA es un iterador que puede usarse en contenedores vector<double> e itrB aplica a conte-
nedores de tipo deque<string>. En general, debe declarar un iterador de una manera que coincida

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 109

con los tipos de contenedor y de objetos contenidos en él. Lo mismo es válido para los iteradores
inversos.

A continuación, se obtiene un iterador al principio del contenedor al llamar a begin(), y luego
el siguiente conjunto de llamadas a insert() pone elementos en v:

itr = v.insert(itr, 'A');
itr = v.insert(itr, 'B');
v.insert(itr, 'C');

Cada llamada inserta el valor que se encuentra inmediatamente antes del elemento señalado por
el iterador y pasado en itr. Se devuelve un iterador al elemento insertado. Por tanto, estas tres
llamadas causan que v contenga la secuencia CBA.

Ahora, revise la función mostrar(). Se usa para desplegar el contenido de un vector<char>.
Preste especial atención al siguiente bucle:

for(itr=vect.begin(); itr != vect.end(); ++itr)
 cout << *itr << " ";

Recorre en ciclo el vector pasado a vect, empezando con el primer elemento y deteniéndose cuan-
do se ha encontrado el último. Recuerde que end() devuelve un iterador que señala a un elemento
después del fi nal del contenedor. Por tanto, cuando itr es igual a vect.end(), se ha alcanzado el
fi nal del contenedor. Estos tipos de bucles son muy comunes cuando se trabaja con STL. Además,
observe cómo se vuelve a hacer referencia a itr mediante el operador * casi de la misma manera en
que se haría con un apuntador. En general, los iteradores funcionan como apuntadores y se mane-
jan, en esencia, de la misma manera.

A continuación, en main(), observe cómo el iterador inverso ritr se usa para recorrer en ciclo el
contenido de v en orden inverso. Un iterador inverso funciona de manera parecida a uno normal,
excepto que accede a los elementos del contenedor en orden inverso.

Ahora, observe cómo se comparan dos contenedores mediante el uso de los operadores == y <.
En el caso de contenedores de secuencias, las comparaciones son lexicográfi cas y se aplican a los
elementos. Aunque el término "lexicográfi co" signifi ca "orden del diccionario", su signifi cado se
generaliza a la manera en que se relaciona con STL. En el caso de comparaciones entre contene-
dores, dos de éstos son iguales si contienen el mismo número de elementos, en el mismo orden, y
todos los elementos correspondientes son iguales. De otra manera, el resultado de la comparación
lexicográfi ca se basa en los primeros elementos que no coinciden. Por ejemplo, dadas estas dos
secuencias:

sec1: 7, 8, 9
sec2: 7, 8, 11

sec1 es menos que sec2 porque la primera diferencia es entre 9 y 11, y 9 es menor que 11. Debido a
que la comparación es lexicográfi ca, sec1 es todavía menos que sec2, aunque la longitud de sec1 se
aumente a 7, 8, 9, 10, 11, 12. Los primeros elementos no coincidentes (en este caso, 9 y 11) determi-
nan el resultado.

Opciones
Además de la versión de insert() usada en esta solución, todos los contenedores de secuencias dan
soporte a las dos formas mostradas aquí:

110 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

void insert(iterator i, size_type num, const T &val)
template <class InIter> void insert(iterator i, InIter inicio, InIter fi nal)

La primera forma inserta num copias de val inmediatamente antes del elemento especifi cado por
i. La segunda forma inserta la secuencia que se ejecuta desde inicio hasta fi nal-1 inmediatamente
antes del elemento especifi cado por i. Observe que inicio y fi nal no necesitan estar señalados dentro
del contenedor que invoca. Por tanto, esta forma puede usarse para insertar elementos de un
contenedor en otro. Más aún, no es necesario que los contenedores sean del mismo tipo. Siempre y
cuando los elementos sean compatibles, puede insertar elementos de deque en list, por ejemplo.

Hay una segunda forma de erase() que tiene soporte en todos los contenedores de secuencias.
Aquí se muestra:

iterator erase(iterator inicio, iterator fi nal)

Esta versión elimina elementos en el rango inicio a fi nal-1 y devuelve un iterador al elemento des-
pués del último elemento eliminado.

Además de los operadores ==, < y >, todos los contenedores de secuencias dan soporte a los
operadores lógicos <=, >= y !=.

Puede encontrar el número máximo de elementos que un contenedor puede incluir al llamar a
max_size(), que se muestra aquí:

size_type max_size() const

Debe comprender que el tamaño máximo variará, dependiendo del tipo de datos que incluye el
contenedor. Además, diferentes tipos de contenedores pueden tener (y probablemente tendrán)
diferentes capacidades máximas.

Como se mencionó, el ejemplo anterior funciona para todos los contenedores de secuencias.
Para probar esto, trate de sustituir vector con deque o list. Como verá, el programa produce el
mismo resultado. Por supuesto, la elección del contenedor apropiado es una parte importante
del uso correcto de la STL. Recuerde que diferentes contenedores tendrán diferentes garantías de
rendimiento. Por ejemplo, la inserción de un elemento en medio de una deque toma tiempo lineal.
La inserción en una list toma tiempo constante. La inserción en la parte media de un vector usa
tiempo lineal, pero la misma al fi nal puede ocurrir en tiempo constante (si no se requiere una rea-
signación). En general, si no hay una razón poderosa para elegir un contenedor sobre otro, vector
suele ser la mejor elección porque implementa lo que es, en esencia, una matriz dinámica (consulte
Use vector).

En algunos casos, querrá usar uno de los adaptadores de contenedores de secuencias, como
queue, stack o priority_queue, que proporciona una funcionalidad específi ca que desee. Por
ejemplo, si quiere que un contenedor implemente una pila clásica, entonces use stack. Para colas
de un solo extremo, use queue. Para una cola que está ordenada de acuerdo con una prioridad,
use priority_queue.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 111

Use vector

Componentes clave

Encabezados Clases Funciones

<vector> vector template <class InIter>
 void assign(InIter inicio, InIter fi nal)
reference at(size_type i)
reference back()
size_type capacity() const
reference front()
reference operator()(size_type i)
void pop_back
void push_back(const T $val)
void reserve(size_type num)
void resize(size_type num, T val = T())

En esta solución se demuestra vector, que es probablemente el contenedor de secuencias de uso
más extendido porque implementa una matriz dinámica. A diferencia de una estática, cuyas
dimensiones se fi jan en tiempo de compilación, una matriz dinámica puede crecer de acuerdo
con las necesidades durante la ejecución del programa. Esto hace que vector resulte una excelente
opción para situaciones en que necesita una matriz, pero no sabe por anticipado el tamaño que
debe tener. Aunque la matriz creada por vector es dinámica, aún puede accederse a sus elementos
empleando el operador de subíndice de matriz normal []. Esto facilita la colocación de vector en
situaciones en que, de otra manera, se requeriría una matriz.

NOTA El eje de esta solución está en los atributos y las características de vector que lo hacen único.
Consulte Técnicas básicas de contenedor de secuencias para conocer información que aplica a
todos los contenedores de secuencias.

Paso a paso
Para usar vector se requieren los siguientes pasos:

1. Cree una instancia de vector del tipo deseado y el tamaño inicial.

2. Asigne u obtenga valores para los elementos mediante el operador de subíndice.

3. Use la función at() como una opción al operador de subíndice.

4. Agregue elementos al vector usando insert() o push_back().

5. Elimine elementos del fi nal al llamar a pop_back().

6. Obtenga una referencia al primer elemento del vector al llamar a front().

112 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

7. Obtenga una referencia al último elemento del vector al llamar a back().

8. Asigne un rango de elementos a un vector al llamar a assign().

9. Para obtener la capacidad actual de un vector, llame a capacity(). Para especifi car una

capacidad, llame a reserve().

10. Para cambiar el tamaño de un vector, llame a resize().

Análisis
Aquí se muestra la especifi cación de la plantilla para vector:

template <class T, class Allocator=allocator<T> > class vector

Aquí, T es el tipo de datos que se están almacenando y Allocator especifi ca el asignador, que es,
como opción predeterminada, el asignador estándar. Para usar vector, debe incluir el encabezado
<vector>.

He aquí los constructores de vector:

explicit vector(const Allocator &asign = Allocator())
explicit vector(size_type num, const T &val = T (),
 const Allocator &asign = Allocator())
vector(const vector<T, Allocator> &ob)
template <class InIter> vector(InIter inicio, InIter fi nal,
 const Allocator &asign = Allocator())

La primera forma construye un vector vacío. La segunda, uno que tiene num elementos con el va-
lor val. La tercera es un constructor de copia de vector. La cuarta construye un vector que contiene
los elementos en el rango inicio a fi nal-1. El asignador usado por el vector se especifi ca con asign,
que suele permitirse como opción predeterminada.

La clase vector da soporte a iteradores de acceso aleatorio, y el [] está sobrecargado. Esto per-
mite que se indice un objeto vector como una matriz.

La clase vector implementa todas las funciones y operaciones de contenedor de secuencias
necesarias, como erase(), insert(), swap() y los operadores lógicos. También proporciona todas las
funciones necesarias para un contenedor reversible. Brinda casi todas las funciones opcionales de
contenedor de secuencias. Las únicas de estas funciones que no implementa son push_front() y
pop_front().

Los elementos dentro de un vector pueden accederse de dos maneras. En primer lugar, y lo
más conveniente, es mediante el uso del operador de subíndice []. Aquí se muestra:

reference operator[](size_type i)

Devuelve una referencia al elemento del índice especifi cado por i. El tipo reference es un typedef
para T &. (También se proporciona una versión const de la función que devuelve una const_refe-
rence.) Este operador puede utilizarse para establecer u obtener el valor en un índice especifi cado.
Por supuesto, el índice que especifi que debe estar dentro del rango actual del vector. Como en las
matrices, la indización empieza en cero.

Otra manera de acceder a los elementos en un vector consiste en usar el método at(). Aquí se
muestra:

reference at(size_type i)

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 113

Devuelve una referencia a un elemento en el índice especifi cado por i. (También se proporciona
una versión const de la función que devuelve una const_reference.) Esta referencia puede em-
plearse para obtener el valor en un índice especifi cado. Por supuesto, el índice que especifi que
debe estar dentro del rango actual del vector. Como el operador [], la indización usando at() tam-
bién empieza en cero.

Aunque el uso del operador [] es más conveniente, la función at() ofrece un benefi cio. Si se hace
un intento por acceder a un elemento que está fuera de los límites actuales de vector, at() lanzará
una excepción out_of_range. Por tanto, proporciona comprobación de límites. Lo que no hace [].

Aunque todos los vectores tienen un tamaño inicial (que puede ser cero), es posible aumen-
tarlo al agregar elementos al vector. Hay dos maneras fáciles de hacer esto: insertar elementos
empleando la función insert() y agregar elementos al fi nal al llamar a push_back(). La función
insert() se describe en Técnicas básicas de contenedor de secuencias y ya no se trata más aquí. A conti-
nuación se muestra la función push_back():

void push_back(const T &val)

Agrega un elemento con el valor especifi cado por val al fi nal del vector. El tamaño de éste se au-
menta automáticamente para acomodar la adición.

El complemento de push_back() es pop_back(). Elimina un elemento del fi nal del vector. Se
muestra a continuación:

void pop_back()

Después de que se ejecuta pop_back(), el tamaño del vector se reduce en uno.
Puede obtener una referencia al último elemento del vector al llamar a back(). Se devuelve una

referencia al primer elemento mediante front(). Aquí se muestran estas funciones:

reference back()
reference front()

La clase vector también proporciona versiones const de estas funciones.
El tipo de iterador proporcionado por vector es de acceso aleatorio. Esto signifi ca que puede

agregarse un valor entero al iterador, o restársele a éste, lo que permite que el iterador señale a
cualquier elemento arbitrario dentro del contenedor. También permite que un iterador recorra un
vector en dirección directa o inversa. La clase vector defi ne dos tipos de iterador: directo o inverso.
Los iteradores directos son objetos de tipo iterator o const_iterator, los inversos son de tipo rever-
se_iterator o const_reverse_iterator.

Se obtiene un iterador directo al inicio de un vector al llamar a begin(), y uno al fi nal se obtiene
al llamar a end(). Un iterador inverso al fi nal del vector se obtiene al llamar a rbegin(), y uno a
uno antes del inicio se obtiene con rend(). Estas funciones y el procedimiento básico requerido
para recorrer en ciclo un contenedor de secuencias se describen en Técnicas básicas de contenedor de
secuencias.

Puede asignar un nuevo conjunto de valores a un vector al usar la función assign(). Tiene dos
formas. La usada en esta solución se muestra a continuación:

template <class InIter> void assign(InIter inicio, InIter fi nal)

Reemplaza todo el contenido del vector que invoca con los valores especifi cados en el rango inicio
a fi nal-1. Observe que inicio y fi nal pueden ser cualquier tipo de iterador de entrada. Esto signifi ca

114 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

que puede usar assign() para asignar valores de otro vector o cualquier otro tipo de contenedor.
La única regla es que los valores deben ser compatibles con el objeto que invoca.

Todos los vectores se crean con una capacidad inicial. Éste es el número de elementos que puede
contener el vector antes de que se necesite asignar más memoria. Puede obtener la capacidad
actual al llamar a capacity(), que se muestra aquí:

size_type capacity() const

Es importante que no se confunda capacidad con tamaño. El tamaño de un vector, que está dispo-
nible al llamar a la función de contenedor estándar size(), es el número de elementos que contiene
actualmente. La capacidad es cuánto puede contener antes de que ocurra una reasignación.

Puede reservar memoria para un número específi co de elementos al llamar a reserve(), que se
muestra aquí:

void reserve(size_type num)

La función reserve() reserva memoria al menos por el número de elementos especifi cado en num.
En otras palabras, establece la capacidad del vector que invoca igual o mayor que num. (Por tanto,
un compilador tiene la libertad de ampliar la capacidad para obtener mayor efi ciencia.) Debido a
que el aumento de la capacidad puede causar una reasignación de la memoria, podría invalidar
cualquier apuntador o referencia a elementos dentro de un vector. Si sabe de antemano que un
vector contendrá un número específi co de elementos, entonces el uso de reserve() evitará reasig-
naciones innecesarias que cuestan mucho tiempo.

Tiene la opción de cambiar el tamaño de un vector al llamar a resize(), que se muestra aquí:

void resize(size_type num, T val = T())

Establece el tamaño del vector al especifi cado por num. Si el tamaño se aumenta, entonces los elemen-
tos con el valor especifi cado por val se agregan al fi nal. Observe que val corresponde al valor predeter-
minado de T. Si disminuye el tamaño del vector, entonces los elementos se eliminan del fi nal.

La clase vector tiene las siguientes características de rendimiento. La inserción o eliminación
de elementos al fi nal de un vector se presenta en tiempo constante amortizado. Cuando ocurren al
principio o en medio, las inserciones o eliminaciones tienen lugar en tiempo lineal. Como se acaba
de explicar, es posible reservar espacio adicional en un vector al usar la función reserve(). Al asignar
previamente memoria adicional, evitará que ocurran reasignaciones. Por tanto, si administra de ma-
nera correcta sus vectores, la mayor parte de las inserciones pueden ocurrir en tiempo constante.

El acceso a un elemento mediante el operador de subíndice toma lugar en tiempo constante. En
general, el acceso a elementos en un vector es más rápido de lo que sería con cualquier otro contene-
dor de secuencias defi nido por STL. Por esto es por lo que vector se usa para matrices dinámicas.

En todos los casos, cuando ocurre una inserción, ya no serán válidas las referencias y los itera-
dores a elementos después del punto de inserción. Sin embargo, en algunos casos, como cuando se
agrega el elemento al fi nal mediante una llamada a push_back(), es probable que no sean válidas
todas las referencias e iteradores a elementos. Esta situación se presenta sólo si es necesario que
el vector asigne más memoria. En este caso, ocurre una reasignación, y el contenido del vector
puede moverse a una nueva ubicación. Si el vector se mueve físicamente, ya no serán válidos los
iteradores y las referencias previos. Por tanto, para todos los fi nes prácticos, es mejor suponer que
las referencias y los iteradores no son válidos después de las inserciones. Cuando se elimina un
elemento de un vector, ya no son válidos los iteradores y las referencias a elementos que están
después del punto de borrado.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 115

Ejemplo
En el siguiente ejemplo se muestra vector en acción:

// Demuestra vector.

#include <iostream>
#include <vector>

using namespace std;

void mostrar(const char *msg, vector<int> vect);

int main() {

 // Declara un vector que tiene una capacidad inicial de 10.
 vector<int> v(10);

 // Asigna algunos valores a sus elementos. Obsérvese que se
 // hace mediante la sintaxis de subíndice de matriz estándar.
 // Tómese nota de que el número de elementos en el vector
 // se obtiene al llamar a size().
 for(unsigned i=0; i < v.size(); ++i) v[i] = i*i;

 mostrar("El contenido de v: ", v);

 // Calcula el promedio de los valores. Una vez más,
 // observe el uso del operador de subíndice.
 int sum = 0;
 for(unsigned i=0; i < v.size(); ++i) sum += v[i];
 double avg = sum / v.size();
 cout << "El promedio de los elementos es " << avg << "\n\n";

 // Agrega elementos al final de v.
 v.push_back(100);
 v.push_back(121);

 mostrar("v tras incluir elementos al final: ", v);
 cout << endl;

 // Ahora usa pop_back() para eliminar un elemento.
 v.pop_back();
 mostrar("v tras usar back-pop con un elemento: ", v);
 cout << endl;

 cout << "El primero y \u00a3ltimo elemento de v como"
 << " lo indican begin() y end()-1:\n"
 << *v.begin() << ", " << *(v.end()-1) << "\n\n";

 cout << "El primero y \u00a3ltimo elemento de v como"
 << " lo indican rbegin() y rend()-1:\n"
 << *v.rbegin() << ", " << *(v.rend()-1) << "\n\n";

 // Declara un iterador a un vector<int>.
 vector<int>::iterator itr;

116 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Ahora, declara un iterador inverso a un vector<int>
 vector<int>::reverse_iterator ritr;

 // Recorre en ciclo v en dirección directa usando un iterador.
 cout << "Se aplica un bucle al vector en direcci\u00a2n directa:\n";
 for(itr = v.begin(); itr != v.end(); ++itr)
 cout << *itr << " ";
 cout << "\n\n";
 cout << "Ahora, se usa un iterador inverso para aplicar un bucle"
 << " en direcci\u00a2n inversa:\n";

 // Recorre v en ciclo en dirección inversa utilizando un iterador inverso.
 for(ritr = v.rbegin(); ritr != v.rend(); ++ritr)
 cout << *ritr << " ";
 cout << "\n\n";

 // Crea otro vector que contiene un subrango de v.
 vector<int> v2(v.begin()+2, v.end()-4);

 // Despliega el contenido de v2 usando un iterador.
 mostrar("v2 contiene un subrango de v: ", v2);
 cout << endl;

 // Cambia los valores de algunos de los elementos de v2.
 v2[1] = 100;
 v2[2] = 88;
 v2[4] = 99;
 mostrar("Tras las asignaciones, v2 ahora contiene: ", v2);
 cout << endl;

 // Crea un vector vacío y luego le asigna una
 // secuencia que es la inversa de v.
 vector<int> v3;
 v3.assign(v.rbegin(), v.rend());
 mostrar("v3 contiene la inversa de v: ", v3);
 cout << endl;

 // Muestra el tamaño y la capacidad de v.
 cout << "El tama\u00a4o de v es " << v.size() << ". La capacidad es "
 << v.capacity() << ".\n";

 // Ahora, cambia el tamaño de v.
 v.resize(20);
 cout << "Tras llamar a resize(20), el tama\u00a4o de v es "
 << v.size() << " y la capacidad es "
 << v.capacity() << ".\n";

 // Ahora, reserva espacio para 50 elementos.
 v.reserve(50);
 cout << "Tras llamar a reserve(50), el tama\u00a4o de v es "
 << v.size() << " y la capacidad es "
 << v.capacity() << ".\n";

 return 0;
}

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 117

// Despliega el contenido de un vector<int>.
void mostrar(const char *msg, vector<int> vect) {
 cout << msg;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}

Aquí se muestra la salida:

El contenido de v: 0 1 4 9 16 25 36 49 64 81
El promedio de los elementos es 28

v tras incluir elementos al final: 0 1 4 9 16 25 36 49 64 81 100 121

v tras usar back-pop con un elemento: 0 1 4 9 16 25 36 49 64 81 100

El primero y último elemento de v como lo indican begin() y end()-1:
0, 100

El primero y último elemento de v como lo indican rbegin() y rend()-1:
100, 0

Se aplica un bucle al vector en dirección directa:
0 1 4 9 16 25 36 49 64 81 100

Ahora, se usa un iterador inverso para aplicar un bucle en dirección inversa:
100 81 64 49 36 25 16 9 4 1 0

v2 contiene un subrango de v: 4 9 16 25 36

Tras las asignaciones, v2 ahora contiene: 4 100 88 25 99

v3 contiene la inversa de v: 100 81 64 49 36 25 16 9 4 1 0

El tamaño de v es 11. La capacidad es 15.
Tras llamar a resize(20), el tamaño de v es 20 y la capacidad es 22.
Tras llamar a reserve(50), el tamaño de v es 20 y la capacidad es 50.

Casi todo el programa se explica por sí solo, pero vale la pena analizar más un par de puntos.
En primer lugar, tome nota de que el operador de subíndice se utiliza para asignar un valor a un
elemento de un vector o para obtener el valor actual de un elemento. Por tanto, funciona de la mis-
ma manera que cuando se aplica a una matriz. Un punto clave que se debe comprender es que sólo
puede usar subíndices para acceder a un elemento existente. Por ejemplo, en el programa, v tiene al
principio 10 elementos. Por tanto, no puede asignar, por ejemplo, un valor v[15]. Si necesita expan-
dir un vector después de crearlo, debe usar el método push_back(), que agrega un valor al fi nal,
o el método insert(), que puede usarse para insertar uno o más elementos en cualquier lugar de la
secuencia.

En segundo lugar, tome nota de que los iteradores inversos se usan en dos lugares: primero,
para recorrer en ciclo un vector en dirección inversa y, después, para llamar a assign(), con el fi n
de asignar a v3 una secuencia que es la inversa de la de v. Es este segundo uso el más interesante.
Al emplear un iterador inverso, es posible obtener una secuencia invertida en un paso, en lugar de

118 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

los dos que se necesitarían si la secuencia se copiara primero como está y luego se invirtiera. En oca-
siones, los operadores inversos pueden mejorar operaciones que, de otra manera, serían complejas.

Opciones
Hay otra forma de assign() que le permite asignar un valor a un vector. Se muestra aquí:

void assign(size_type num, const T& val)

Esta versión elimina todos los elementos anteriormente contenidos por el vector y luego asigna
num copias de val al vector. Esta versión de assign() es útil cuando quiere reinicializar un vector a
un valor conocido, por ejemplo.

El contenedor vector no almacena elementos en orden. Sin embargo, es posible ordenar un
vector al usar el algoritmo sort(). Consulte Ordene un contenedor, en el capítulo 4.

En algunos casos, el contenedor deque es una buena opción a vector. Tiene capacidades
similares, como permitir el acceso a sus elementos mediante el operador de subíndice, pero tiene
características de rendimiento diferentes. Consulte Use deque para conocer detalles.

La STL también contiene una especifi cación de vector para valores bool: vector<bool>. Incluye
toda la funcionalidad de vector y agrega estos dos miembros:

void fl ip() Invierte todos los bits en el vector.

static void swap(reference i, reference j) Intercambia los bits especifi cados por i y j.

Mediante la especifi cación para bool, vector puede empaquetar valores true/false en bits indivi-
duales. La especifi cación vector<bool> defi ne una clase llamada reference, que se usa para emular
una referencia a un bit.

Use deque

Componentes clave

Encabezados Clases Funciones

<deque> deque template <class InIter>
 void assign(InIter inicio, InIter fi nal)
reference at(size_type i)
reference back()
reference front()
reference operator[](size_type i)
void pop_back()
void pop_front()
void push_back(const T &val)
void push_front(const T &val)
void resize(size_type num, T val = T())

Tal vez el segundo contenedor de uso más común sea deque. Hay dos razones para esto. En
primer lugar, deque da soporte a todas las funciones opcionales defi nidas por los contenedores de

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 119

secuencias. Esto hace que la STL sea un contenedor con características más completas. En segundo
lugar deque es el contenedor predeterminado de los adaptadores de contenedor queue y stack.
(El contenedor predeterminado usado por priority_queue es vector.) Esta solución muestra la
manera de poner a deque en acción.

NOTA El eje de esta solución está en los atributos y las características de deque que lo hacen único.
Consulte Técnicas básicas de contenedor de secuencias para conocer información que aplica a
todos los contenedores de secuencias.

Paso a paso
Para usar un deque se requieren estos pasos:

1. Cree una instancia de deque del tipo deseado y el tamaño inicial.

2. Asigne u obtenga valores para los elementos mediante el operador de subíndice.

3. Use la función at() como una opción del operador de subíndice.

4. Agregue elementos a la cola de dos extremos empleando insert(), push_back() o push_

front().

5. Elimine elementos del fi nal al llamar a pop_back(). Elimine elementos del frente al llamar

a pop_front().

6. Obtenga una referencia al primer elemento en la cola de dos extremos al llamar a front().

7. Obtenga una referencia al último elemento en la cola de dos extremos al llamar a back().

8. Asigne un rango de elementos a una cola de dos extremos al llamar a assign().

9. Para cambiar el tamaño de la cola de dos extremos, llame a resize().

Análisis
La especifi cación de plantilla para deque es:

template <class T, class Allocator = allocator<T> class deque

Aquí, T es el tipo de datos almacenado en la cola de dos extremos y Allocator especifi ca el asigna-
dor, que tiene como opción predeterminada el asignador estándar. Para usar deque, debe incluir el
encabezado <deque>.

He aquí los constructores de deque:

explicit deque(const Allocator &asign = Allocator())
explicit deque(size_type num, const T &val = T (),
 const Allocator &asign = Allocator())
deque(const deque<T, Allocator> &ob)
template <class InIter> vector(InIter inicio, InIter fi nal,
 const Allocator &asign = Allocator())

La primera forma construye una cola de dos extremos vacía. La segunda, una deque que tiene
num elementos con el valor val. La tercera, una cola de dos extremos que contiene los mismos
elementos que ob. Éste es el constructor de copia de deque. La cuarta forma construye una cola de
dos extremos que contiene los elementos en el rango inicio a fi nal–1. El asignador usado por la cola
de dos extremos está especifi cado por asign y suele permitirse como opción predeterminada.

El contenedor deque da soporte a los iteradores de acceso aleatorio, y [] está sobrecargado.
Esto signifi ca que un objeto deque puede indizarse como una matriz. También signifi ca que una

120 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

cola de dos extremos puede recorrerse en direcciones directas e inversas mediante el uso de un
iterador.

El contenedor deque proporciona todas las funciones de contenedor de secuencias requeri-
das, incluidas las de un contenedor reversible, y todas las funciones de contenedor de secuencias
opcionales. Esto hace que deque sea el contenedor de propósito más general.

Aunque deque y vector tienen diferentes características de rendimiento, ofrecen funcionali-
dad casi idéntica. Por ejemplo, las funciones de secuencias estándares implementadas por deque,
como insert(), erase(), begin(), end(), rbegin(), rend(), operator[](), front(), back(), push_back(),
etc., funcionan en deque de la misma manera que en vector. La función resize() proporcionada
por deque también funciona como la proporcionada por vector. Debido a que se presenta un
análisis detallado de estos métodos estándar en Use vector, esos análisis no se duplican aquí. (Sin
embargo, tome nota de que deque no da soporte a los métodos capacity() y reserve() defi nidos
por vector. No son necesarios para deque.)

La clase deque da soporte a dos funciones no proporcionadas por vector: push_front() y
pop_front(). Se muestran aquí:

void push_front(const T &val)
void pop_front()

La función push_front() agrega un elemento con el valor especifi cado por val al inicio del contene-
dor. Éste automáticamente aumenta de tamaño para acomodar la adición. La función pop_front()
elimina un elemento del inicio del contenedor.

La clase deque tiene las siguientes características de rendimiento. Insertar o eliminar elemen-
tos del fi nal de un objeto deque toma lugar en tiempo constante. Cuando ocurre en el medio, las
inserciones o eliminaciones tienen lugar en tiempo lineal. El acceso de un elemento mediante el
operador de subíndice tiene lugar en tiempo constante. Debido a que la adición o eliminación de
elementos de los extremos de una cola de dos extremos son muy efi cientes, estas colas resultan
una excelente elección cuando esos tipos de operaciones ocurrirán con frecuencia. La capacidad de
hacer adiciones efi cientes al inicio de la cola de dos extremos es una de las principales diferencias
entre vector y deque.

Una inserción en el medio de un contenedor deque invalida todos los iteradores y las referen-
cias al contenido de ese contenedor. Debido a que deque suele implementarse como una matriz
dinámica de doble extremo, una inserción implica que los elementos existentes se "dispersarán"
para acomodarse a los nuevos elementos. Por tanto, si un iterador está señalando a un elemento
antes de una inserción, no hay garantía de que estará señalando al mismo elemento después de la
inserción. Lo mismo aplica a las referencias.

Una inserción a la cabeza o la cola de deque invalida los iteradores, pero no las referencias. Un
borrado en la parte media invalida iteradores y referencias. Un borrado limitado a cualquier extre-
mo sólo invalida a esos iteradores y referencias que señalan a elementos que habrán de borrarse.

Ejemplo
En el siguiente ejemplo se muestra deque en acción. Para fi nes de comparación, se vuelve a traba-
jar el ejemplo usado para vector, sustituyendo deque por vector en todo el listado. Debido a que
vector y deque proveen características muy similares, gran parte de los dos programas son igua-
les. Por supuesto, las llamadas a capacity() y reserve() que se encuentran en la versión de vector
se han eliminado, porque esas funciones no tienen soporte en deque. Además, se han agregado las

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 121

funciones push_front() y pop-front(). Como se explicó, deque proporciona estas funciones, pero
no lo hace vector:

// Demuestra deque.

#include <iostream>
#include <deque>

using namespace std;

void show(const char *msg, deque<int> q);

int main() {

 // Declara una deque que tiene una capacidad inicial de 10.
 deque<int> dq(10);

 // Asigna algunos valores a sus elementos. Obsérvese que se
 // hace mediante la sintaxis de subíndice de matriz estándar.
 // Tómese nota de que el número de elementos en deque
 // se obtiene al llamar a size().
 for(unsigned i=0; i < dq.size(); ++i) dq[i] = i*i;

 show("El contenido de dq: ", dq);

 // Calcula el promedio de los valores. Una vez más,
 // observe el uso del operador de subíndice.
 int sum = 0;
 for(unsigned i=0; i < dq.size(); ++i) sum += dq[i];
 double avg = sum / dq.size();
 cout << "El promedio de los elementos es " << avg << "\n\n";

 // Agrega elementos al final de dq.
 dq.push_back(100);
 dq.push_back(121);

 show("dq tras incluir elementos al final: ", dq);
 cout << endl;

 // Ahora usa pop_back() para eliminar un elemento.
 dq.pop_back();
 show("dq tras usar back-pop con un elemento: ", dq);
 cout << endl;

 cout << "El primero y \u00a3ltimo elemento de dq como"
 << " lo indican begin() y end()-1:\n"
 << *dq.begin() << ", " << *(dq.end()-1) << "\n\n";

 cout << "El primero y \u00a3ltimo elemento de dq como"
 << " lo indican rbegin() y rend()-1:\n"
 << *dq.rbegin() << ", " << *(dq.rend()-1) << "\n\n";

 // Declara un iterador a una deque<int>.
 deque<int>::iterator itr;

122 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Ahora, declara un iterador inverso a una deque<int>
 deque<int>::reverse_iterator ritr;

 // Recorre en ciclo dq en dirección directa usando un iterador.
 cout << "Se aplica un bucle al vector en direcci\u00a2n directa:\n";
 for(itr = dq.begin(); itr != dq.end(); ++itr)
 cout << *itr << " ";
 cout << "\n\n";
 cout << "Ahora, se usa un iterador inverso para aplicar un bucle"
 << " en direcci\u00a2n inversa:\n";

 // Recorre dq en ciclo en dirección inversa uilizando un iterador inverso.
 for(ritr = dq.rbegin(); ritr != dq.rend(); ++ritr)
 cout << *ritr << " ";
 cout << "\n\n";

 // Crea otra deque que contiene un subrango de dq.
 deque<int> dq2(dq.begin()+2, dq.end()-4);

 // Despliega el contenido de dq2 empleando un iterador.
 show("dq2 contiene un subrango de dq: ", dq2);
 cout << endl;

 // Cambia los valores de algunos de los elementos de dq2.
 dq2[1] = 100;
 dq2[2] = 88;
 dq2[4] = 99;
 show("Tras las asignaciones, dq2 ahora contiene: ", dq2);
 cout << endl;

 // Crea una deque vacía y luego le asigna una
 // secuencia que es la inversa de dq.
 deque<int> dq3;
 dq3.assign(dq.rbegin(), dq.rend());
 show("dq3 contiene la inversa de dq: ", dq3);
 cout << endl;

 // Incluye un elemento al frente de dq.
 dq.push_front(-31416);
 show("dq tras usar push_front(): ", dq);
 cout <<endl;

 // Ahora, limpia dq al eliminar elementos de uno en uno.
 cout << "Al eliminar elementos al frente de dq.\n";
 while(dq.size() > 0) {
 cout << "Eliminando: " << dq.front() << endl;
 dq.pop_front();
 }
 if(dq.empty()) cout << "Ahora dq est\u00a0 vac\u00a1a.\n";

 return 0;
}

// Despliega el contenido de una deque<int>.
void show(const char *msg, deque<int> q) {

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 123

 cout << msg;
 for(unsigned i=0; i < q.size(); ++i)
 cout << q[i] << " ";
 cout << "\n";
}

Aquí se muestra la salida:

El contenido de dq: 0 1 4 9 16 25 36 49 64 81
El promedio de los elementos es 28

dq tras incluir elementos al final: 0 1 4 9 16 25 36 49 64 81 100 121

dq tras usar back-pop con un elemento: 0 1 4 9 16 25 36 49 64 81 100

El primero y último elemento de dq como lo indican begin() y end()-1:
0, 100

El primero y último elemento de dq como lo indican rbegin() y rend()-1:
100, 0

Se aplica un bucle al vector en dirección directa:
0 1 4 9 16 25 36 49 64 81 100

Ahora, se usa un iterador inverso para aplicar un bucle en dirección inversa:
100 81 64 49 36 25 16 9 4 1 0

dq2 contiene un subrango de dq: 4 9 16 25 36

Tras las asignaciones, dq2 ahora contiene: 4 100 88 25 99

dq3 contiene la inversa de dq: 100 81 64 49 36 25 16 9 4 1 0

dq tras usar push_front(): -31416 0 1 4 9 16 25 36 49 64 81 100

Al eliminar elementos al frente de dq.
Eliminando: -31416
Eliminando: 0
Eliminando: 1
Eliminando: 4
Eliminando: 9
Eliminando: 16
Eliminando: 25
Eliminando: 36
Eliminando: 49
Eliminando: 64
Eliminando: 81
Eliminando: 100
dq está vacía.

124 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
Aunque las funciones push_front() y pop_front() le permiten usar deque como una pila tipo
primero en entrar último en salir, la STL ofrece un método mejor. El adaptador de contenedor
stack proporciona una implementación que aplica este tipo de pila y provee las funciones clásicas
push() y pop(). En el mismo sentido, aunque podría usar deque para crear una cola primero en
entrar primero en salir al emplear push_front() y pop_back(), el adaptador de contenedor queue
es una mejor posibilidad. Como opción predeterminada, tanto stack como queue usan un conte-
nedor deque para contener los elementos. (Consulte Use los adaptadores de contenedor de secuencias:
stack, queue y priority_queue.)

Como vector, deque también ofrece otra forma de assign() que le permite asignar un valor a
deque. Se muestra aquí:

void assign(size_type num, const T& val)

Esta versión elimina cualquier elemento previamente incluido en el contenedor y luego le asigna
num copias de val. Podría usar esta versión de assign() para reinicializar una cola de dos extremos
para un valor conocido, por ejemplo.

Como vector, deque no almacena elementos en orden. Sin embargo, es posible ordenar una
cola de dos extremos al usar el algoritmo sort(). Consulte ordene un contenedor, en el capítulo 4.

Como ya se explicó, vector y deque son muy similares. Para algunos usos, como cuando se
necesitan pocas inserciones (sobre todo en el medio), un vector será más efi ciente que una cola de
dos extremos y representa una mejor elección. (Consulte Use vector para conocer más detalles.)

Use list

Componentes clave

Encabezados Clases Funciones

<list> list void merge(list<T, Allocator> &ob)
void push_back(const T &val)
reverse_iterator rbegin()
void remove(const T &val)
void reverse()
void sort()
void splice(iterator i, list<T, Allocator> &ob)
void unique()

La clase list implementa un contenedor de secuencias bidireccional que se establece, con
frecuencia, como una lista doblemente vinculada. A diferencia de otros dos contenedores de
secuencias, vector y deque, que dan soporte a acceso aleatorio, list sólo puede accederse de ma-
nera secuencial. Sin embargo, como las listas son bidireccionales, pueden accederse de adelante
hacia atrás, o viceversa. La clase list ofrece los mismos benefi cios asociados con cualquier lista
doblemente vinculada: tiempos rápidos de inserción y eliminación.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 125

Por supuesto, el acceso a un elemento específi co en la lista es una operación más lenta. Una list
es particularmente útil cuando se agregarán con frecuencia elementos a la parte media del conte-
nedor, o se eliminarán elementos de ésta, y no es necesario el acceso directo. En esta solución se
demuestran los aspectos clave de list.

NOTA El eje de la solución está en los atributos y las características de list que la hacen única. Con-
sulte Técnicas básicas de contenedor de secuencias para conocer información que aplica a todos
los contenedores de secuencias.

Paso a paso
Para usar list se requieren los siguientes pasos:

1. Cree una instancia de list del tipo deseado.

2. Agregue elementos a la lista al llamar a insert(), push_front() o push_back().

3. Elimine un elemento al fi nal de la lista al llamar a pop_back(). Elimine un elemento del

principio de la lista al llamar a pop_front().

4. Ordene una lista al llamar a sort().

5. Combine dos listas ordenadas al llamar a merge().

6. Una una lista a otra al llamar a splice().

7. Elimine un elemento o varios elementos específi cos de la lista al llamar a remove().

8. Elimine elementos duplicados al llamar a unique().

9. Invierta la lista al llamar a reverse().

Análisis
La especifi cación de plantilla para list es:

template <class T, class Allocator = allocator<T> > class list

Aquí, T es el tipo de datos que se está almacenando y Allocator especifi ca el asignador, que es,
como opción predeterminada, el estándar. Para usar list, debe incluir el encabezado <list>.

La clase list tiene los siguientes constructores:

explicit list(const Allocator &asign = Allocator())
explicit list(size_type num, const T &val = T (),
 const Allocator &asign = Allocator())
list(const list<T, Allocator> &ob)
template <class InIter> list(InIter inicio, InIter fi nal,
 const Allocator &asign = Allocator())

La primera forma construye una lista vacía. La segunda, una lista que contiene num elementos con
el valor val. La tercera, un constructor de copia de list. La cuarta construye una lista que contiene
los elementos en el rango de inicio a fi nal-1. El asignador usado por list está especifi cado por asign,
que suele permitirse como opción predeterminada.

126 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

La clase list da soporte a iteradores bidireccionales. Por tanto, el contenedor puede accederse
mediante un iterador en direcciones directa e inversa. Sin embargo, no tienen soporte las ope-
raciones de acceso aleatorio. Por tanto, no se proporciona la función at() y el operador [] no está
sobrecargado.

Además de las funciones de secuencia y de contenedor de secuencias reversibles requeridas,
list implementa las siguientes opciones: front(), back(), push_front(), push_back(), pop_front() y
pop_back(). Estas funciones están descritas en la revisión general y en Técnicas básicas de contenedor
de secuencias. Análisis adicionales se encuentran en Use vector y Use deque. Las únicas funciones
adicionales que no se implementan son at() y operator[]().

La clase list agrega varias funciones propias, incluidas merge(), reverse(), unique(), remove(),
remove_if() y sort(). Estas funciones duplican la funcionalidad proporcionada por los algoritmos
estándar de los mismos nombres. Están defi nidas por list porque se encuentran especialmente
optimizadas para operaciones en objetos de tipo list y ofrecen una opción de alto rendimiento a
los algoritmos estándar.

Puede agregar elementos a una lista al usar las funciones de contenedor de secuencias estánda-
res insert(), push_front y push_back(). Para eliminar elementos de una lista se llama a las funcio-
nes de contenedor de secuencias estándares erase(), clear(), pop_back() y pop_front().

La clase list da soporte a iteradores directos e inversos. Como los otros contenedores de
secuencias, se trata de objetos de tipo iterator y reverse_iterator. Las funciones begin() y end()
devuelven iteradores al principio y al fi nal de la lista. Las funciones rbegin() y rend() devuel-
ven iteradores inversos al fi nal y uno antes del principio, respectivamente. Estas funciones y las
técnicas necesarias para usarlas se utilizan para recorrer en ciclo un contenedor y se describen en
Técnicas básicas de contenedor de secuencias.

El contenido de una lista no se ordena automáticamente. Sin embargo, algunas operaciones,
como la mezcla, requieren una lista ordenada. Para ordenar una lista, llame a la función sort().
Tiene dos versiones. Aquí se muestra la usada en esta solución:

void sort()

Después de una llamada a sort(), la lista se ordenará de manera ascendente, con base en el orden
natural de los elementos. (La segunda versión le permite especifi car una función de comparación
que se usará para determinar el orden de los elementos. Consulte la secuencia Opciones de esta
solución para conocer más detalles.)

Una función particularmente poderosa implementada por list es merge(). Combina dos listas
que deben ordenarse empleando el mismo criterio. Durante una mezcla, cada elemento de la lista
de origen se inserta en su ubicación apropiada en la lista de destino. Por tanto, el resultado es una
lista ordenada que contiene todos los elementos de las dos listas originales. La función merge()
tiene dos versiones. Aquí se muestra la usada por esta solución:

void merge(list<T, Allocator> &ob)

Combina la lista ordenada pasada en ob con la lista que invoca ordenada. El resultado está ordena-
do. Después de la mezcla, la lista contenida en ob queda vacía.

Una operación relacionada con la mezcla es el empalme, que se realiza mediante la función
splice(). Cuando ocurre un empalme, la lista de origen se inserta como una unidad en la lista de
destino. No tiene lugar la integración elemento por elemento de las dos listas, y no es necesario
que cualquiera de las listas esté ordenada. Un empalme es, en esencia, sólo una operación de cor-
tar y pegar. Hay tres versiones de splice(). Aquí se muestra la usada en esta solución:

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 127

void splice(iterator i, list<T, Allocator> &ob)

El contenido de ob se inserta en la lista que invoca en la ubicación señalada por i. Después de la
operación, ob está vacío. Un empalme tiene lugar en cualquier punto de la secuencia de destino:
al frente, en medio o a la mitad. Cuando un empalme está al frente de una lista, la secuencia em-
palmada está insertada antes de begin(). Cuando ocurre un empalme al fi nal, la secuencia
empalmada se inserta antes de end().

Puede eliminar un elemento específi co de una lista utilizando remove(), que se muestra aquí:

void remove(const T &val)

Elimina elementos con el valor val de la lista que invoca. Si ningún elemento coincide con val, en-
tonces la lista queda sin cambio. A primera vista, remove() puede parecer redundante, porque list
también defi ne la función erase(). Sin embargo, éste no es el caso. La diferencia recae en el hecho
de que erase() requiere iteradores a los elementos que habrán de eliminarse. La función remove()
busca automáticamente en la lista el elemento especifi cado.

Otra manera de eliminar elementos de una lista es mediante el uso de la función unique(),
que elimina elementos duplicados consecutivos. Tiene dos formas. La usada en esta solución se
muestra a continuación:

void unique()

Elimina elementos duplicados de la lista que invoca. Por tanto, la lista resultante no contiene
elementos duplicados consecutivos. Si la lista inicial está ordenada, entonces después de aplicar
unique(), cada elemento será único.

Para revertir una lista, utilice la función reverse(), que se muestra aquí:

void reverse()

Invierte todo el contenido de la lista que invoca.
La clase list tiene las siguientes características de rendimiento. La inserción o eliminación de

elementos en una lista ocurre en tiempo constante. No importa en qué lugar de la lista acontezca
la inserción o eliminación. Debido a que list suele implementarse como una lista vinculada, una
inserción o eliminación sólo incluye la reorganización de los vínculos y no un desplazamiento de
elementos o la reasignación de memoria.

A diferencia de vector y deque, la inserción en una lista no invalida iteradores o referencias a
elementos. Una eliminación sólo invalida los iteradores o las referencias a los elementos elimina-
dos. El hecho de que estas operaciones no afecten la validez de iteradores o referencias a elemen-
tos existentes hace que la clase list sea especialmente útil para las aplicaciones en que se desean
iteradores o referencias no volátiles.

Ejemplo
Se demuestra list:

// Demuestra list

#include <iostream>
#include <list>

128 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

using namespace std;

void mostrar(const char *msj, list<char> lista);

int main() {

 // Declara dos listas.
 list<char> listaA;
 list<char> listaB;

 // Usa push_back() para dar algunos elementos a la lista.
 listaA.push_back('A');
 listaA.push_back('F');
 listaA.push_back('B');
 listaA.push_back('R');

 listaB.push_back('X');
 listaB.push_back('A');
 listaB.push_back('F');

 mostrar("El contenido original de listaA: ", listaA);
 mostrar("El contenido original de listaB: ", listaB);
 cout << "El tama\u00a4o de listaA es " << listaA.size() << endl;
 cout << "El tama\u00a4o de listaB es "<< listaB.size() << endl;
 cout << endl;

 // Ordena listaA y listaB
 listaA.sort();
 listaB.sort();

 mostrar("El contenido ordenado de listaA: ", listaA);
 mostrar("El contenido ordenado de listaB: ", listaB);
 cout << endl;

 // Mezcla listaB en listaA.
 listaA.merge(listaB);
 mostrar("listaA tras la mezcla: " , listaA);
 if(listaB.empty()) cout << "listaB ahora est\u00a0 vac\u00a1a.\n";
 cout << endl;

 // Elimina duplicados de listaA.
 listaA.unique();
 mostrar("listaA tras llamar a unique(): ", listaA);
 cout << endl;

 // Da a listaB algunos elementos nuevos.
 listaB.push_back('G');
 listaB.push_back('H');
 listaB.push_back('P');

 mostrar("Nuevo contenido de listaB: ", listaB);
 cout << endl;

 // Ahora, empalma listaB en listaA.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 129

 list<char>::iterator itr = listaA.begin();
 ++itr;
 listaA.splice(itr, listaB);
 mostrar("listaA tras el empalme: ", listaA);
 cout << endl;

 // Elimina A y H.
 listaA.remove('A');
 listaA.remove('H');
 mostrar("listaA tras eliminar A y H: ", listaA);
 cout << endl;

 return 0;
}

// Despliega el contenido de una list<char>.
void mostrar(const char *msj, list<char> lista) {
 list<char>::iterator itr;

 cout << msj;

 for(itr = lista.begin(); itr != lista.end(); ++itr)
 cout << *itr << " ";

 cout << "\n";
}

Aquí se muestra la salida:

El contenido original de listaA: A F B R
El contenido original de listaB: X A F
El tamaño de listaA es 4
El tamaño de listaB es 3

El contenido ordenado de listaA: A B F R
El contenido ordenado de listaB: A F X

listaA tras la mezcla: A A B F F R X
listaB ahora está vacía ().

listaA tras llamar a unique(): A B F R X

Nuevo contenido de listaB: G H P

listaA tras el empalme: A G H P B F R X

listaA tras eliminar A y H: G P B F R X

130 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
El contenedor list le da control detallado sobre varias de sus operaciones porque diversas funcio-
nes le permiten especifi car funciones de comparación o predicados que determinan sus salidas.
A continuación se describen.

Cuando se ordena una instancia de list, hay una segunda forma de sort() que le permite espe-
cifi car una función de comparación que se utilizará para determinar cuándo un elemento es mayor
que otro. Esta versión se muestra a continuación:

template <class Comp> void sort(Comp fucomp)

Aquí, fucomp especifi ca un apuntador a una función que toma dos argumentos, que deben ser del
mismo tipo que los elementos del contenedor que invoca. Para ordenar de manera ascendente, la
función debe devolver true cuando el primer argumento es menos que el segundo. Sin embargo,
puede especifi car cualquier criterio de ordenamiento que desee. Por ejemplo, puede ordenar la
lista en orden inverso al revertir la comparación. He aquí una función de comparación inversa que
puede usarse para ordenar al revés las listas del programa anterior:

// Una función de comparación inversa.
bool compinv(char a, char b) {
 if (b < a) return true;
 else return false;
}

Observe que los operandos están invertidos en la operación <. Esto ocasiona que la función de-
vuelva true si b es menor que a, lo que causa que la lista se ordene de manera descendente. (Por lo
general, se usaría la comparación a < b, lo que provocaría que el resultado ordenado esté en orden
ascendente.) He aquí cómo se usa esta función para ordenar a la inversa listaA:

listaA.sort(compinv)

Otro lugar en que puede especifi car una función de comparación cuando trabaja con una list
es con esta versión de la función merge():

template <class Comp> void merge(list<T, Allocator> &ob, Comp fucomp)

En esta versión, la lista ordenada pasada en ob se mezcla con la lista que invoca ordenada con base
en el orden especifi cado por la función fucomp. Después de la mezcla, la lista contenida en ob está
vacía. Por lo general, la misma función de comparación usada para ordenar una lista también se
usa para mezclar listas. Por supuesto, son posibles usos especiales en que no sucede así.

Como se explicó, puede eliminar un elemento específi co al llamar a remove(). Sin embargo,
también puede eliminar elementos que satisfagan una cierta condición al usar remove_if(), que se
muestra aquí:

template <class UnPred> void remove_if(UnPred pr)

Esta función elimina elementos para los cuales el predicado unario pr es true. Si ningún elemento
satisface el predicado, entonces la lista queda sin cambio. Podría usar remove_if() para eliminar
todos los elementos de una lista que satisfagan alguna condición general. Por ejemplo, suponien-
do el programa anterior, podría usar este predicado para eliminar todos los elementos que se
encuentran entre A y G, inclusive:

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 131

bool mipred(char car) {
 if(car <= 'G' && car >= 'A') return true;
 return false;
}

Por tanto, para eliminar todas las letras de la A a la G de listaA, usaría esta llamada a remove_if():

listaA.remove_if(mipred);

La versión de unique() usada por la solución elimina elementos duplicados adyacentes. Hay
una segunda forma que le permite especifi car un predicado binario que defi ne lo que constituye
un elemento duplicado. (En otras palabras, el predicado determina cuando dos elementos son
iguales.) Aquí se muestra esta forma de unique():

template <class BinPred> void unique(BinPred pr)

Esta forma usa pr para determinar cuando un elemento es igual que otro. Esto signifi ca que usted
podría usar un criterio diferente de la igualdad consciente de bits. Por ejemplo, si una lista está
almacenando información de nombres y contactos, entonces podría especifi car que dos elementos
son iguales si sus direcciones de correo electrónico coinciden. Como opción, podría especifi car
un predicado que normaliza cada elemento antes de la comparación. Por ejemplo, suponiendo
el programa anterior, el siguiente predicado devolverá true si dos elementos son la misma letra,
independientemente de la diferencias entre mayúsculas y minúsculas. Por tanto, dada la secuencia
XxABcdEe, eliminará X y E, porque están duplicadas.

bool ign_mayus_pred(char a, char b) {
 if(tolower(a) == tolower(b) return true;
 else return false;
}

Para usar ign_mayus_pred() llame a unique(), como se muestra aquí:

listaA.unique(ign_mayus_pred);

Como ya se mencionó, list da soporte a iteradores bidireccionales. Esto signifi ca que una lista
puede recorrerse en dirección directa o inversa. Por tanto, suponiendo el ejemplo anterior, el
siguiente fragmento usa un reverse_iterator para desplegar el contenido de listaA de atrás hacia
adelante:

list<char>::reverse_iterator ritr;
for(ritr = listaA.rbegin(); ritr != listaA.rend(); ++ritr)
 cout << *ritr << " ";

132 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use los adaptadores de contenedor de secuencias: stack,

queue y priority_queue

Componentes clave

Encabezados Clases Funciones

<stack> stack bool empty() const
void pop()
void push(const value_type &val)
size_type size() const
value_type &top()

<queue> queue value_type &back()
bool empty() const
value_type &front()
void pop()
void push(const value_type &val)
size_type size() const

<queue> priority_queue bool empty() const
void pop()
void push(const value_type &val)
size_type size() const
const value_type &top() const

La STL proporciona tres adaptadores de contenedor, llamados stack, queue y priority_queue.
Utilizan uno de los contenedores de secuencias como contenedor básico, adaptándolo a sus fi nes
especiales. En esencia, un adaptador de contenedor es simplemente una interfaz muy controla-
da con otro contenedor. Aunque los adaptadores de contenedor están integrados en uno de los
contenedores de secuencias, también son, en sí mismos, contenedores y se usan de manera muy
parecida a los otros contenedores. Sólo que el acceso a sus elementos está restringido. En esta
solución se demuestra su uso.

Antes de empezar, necesita destacarse un punto importante. Los adaptadores de contenedor no
dan soporte a toda la funcionalidad de sus contenedores. Las manipulaciones permitidas por un
adaptador son un subconjunto muy restringido de lo permitido por el contenedor de base. Mien-
tras que las restricciones precisas difi eren de un adaptador a otro, hay una diferencia compartida
entre todos: no dan soporte a iteradores. Si los adaptadores se lo dieran, entonces sería una tarea
trivial evadir la estructura de datos defi nida por el adaptador (como una pila) y acceder a sus
elementos fuera de orden.

Paso a paso
Para usar los adaptadores de contenedor de secuencia se requieren estos pasos:

1. Cree una instancia del adaptador de contenedor, seleccionando el adecuado para

su aplicación.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 133

2. Utilice las funciones defi nidas por el adaptador para insertar, acceder y eliminar elementos

del contenedor. Cada adaptador defi ne su propio conjunto de estas funciones. Por ejemplo,

para incluir un elemento en una stack, llame a push(). Para obtener el siguiente elemento

de una queue, llame a front().

Análisis
La clase stack da soporte a una pila del tipo último en entrar primero en salir. A continuación se
muestra la especifi cación de su plantilla:

template <class T, class Container = deque<T> > class stack

Aquí, T es el tipo de datos que se almacenan y Container es el tipo de contenedor usado para
contener la pila, que es deque, como opción predeterminada.

El adaptador stack tiene el siguiente constructor:

explicit stack(const Container &cnt = Container())

El constructor stack() crea una pila vacía. Para usar una pila, incluya el encabezado <stack>. El
contenedor se mantiene en un objeto protegido llamado c de tipo Container.

En general, stack puede adaptar cualquier contenedor que dé soporte a las siguientes opera-
ciones:

back()
pop_back()
push_back()

Por tanto, también puede usar una list o un vector como contenedor de una pila.
La clase stack defi ne la función mostrada aquí. Observe que sólo puede accederse a los ele-

mentos de una pila en el orden último en entrar primero en salir. Esto impone su naturaleza de
tipo pila.

Miembro Descripción

bool empty() const Devuelve true si la pila que invoca está vacía y false, de
otra manera.

void pop() Elimina la parte superior de la pila.

void push(const value_type &val) Incluye un elemento en la pila.

size_type size() const Devuelve el número de elementos que se encuentra en
la pila.

value_type &top()
const value_type &top() const

Devuelve una referencia a la parte superior de la pila.

La clase queue da soporte a una cola normal tipo primero en entrar primero en salir. Los ele-
mentos se insertan en una cola en un extremo y se eliminan en el otro. No es posible acceder a los
elementos de ninguna otra manera. Aquí se muestran las especifi caciones de la plantilla de queue:

template <class T, class Container = deque<T> > class queue

134 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí, T es el tipo de datos que se está almacenando y Container es el tipo de contenedor usado
para contener la cola, que es deque, como opción predeterminada. El contenedor se mantiene en
un objeto protegido llamado c de tipo Container.

El adaptador queue tiene el siguiente constructor:

explicit queue(const Container &cnt = Container())

El constructor queue() crea una cola vacía. Para usar una cola, incluya el encabezado <queue>.
En general, queue puede adaptar cualquier contenedor que dé soporte a las siguientes opera-

ciones:

back()
front()
pop_back()
push_back()

Por tanto, también puede usar list como contenedor para una cola. Sin embargo, no puede usar
vector, porque no proporciona la función pop_front().

El adaptador queue defi ne la función mostrada aquí. Como puede ver, restringen queue al
proporcionar sólo acceso tipo primero en entrar primero en salir a sus elementos.

Miembro Descripción

value_type &back() const value_type &back() const Devuelve una referencia al último elemento de una
cola.

bool empty() const Devuelve true si la cola que invoca está vacía y false,
de otra manera.

value_type &front()
const value_type &front() const

Devuelve una referencia al primer elemento de la cola.

void pop() Elimina el primer elemento de la cola.

void push(const value_type &val) Agrega un elemento con el valor especifi cado por val al
fi nal de la cola.

size_type size() const Devuelve el número de elementos que se encuentran
en la cola.

La clase priority_queue da soporte a colas de prioridad de un solo extremo. Una cola con prio-
ridades organiza su contenido por prioridad. A continuación se muestra la especifi cación de
la plantilla de priority_queue:

template <class T, class Container = vector<T>,
 class Comp = less<nombretipo Container::value_type> >
 class priority_queue

Aquí T es el tipo de datos que se están almacenando. Container es el tipo de contenedor usado
para contener la cola con prioridades, que es vector, como opción predeterminada. El contenedor
se mantiene en un objeto protegido llamado c de tipo Container. Comp especifi ca el objeto de
función de comparación que determina cuando un miembro tiene menor prioridad que otro. Este
objeto se mantiene en un miembro protegido llamado comp de tipo Compare.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 135

El adaptador priority_queue tiene los siguientes constructores:

explicit priority_queue(const Comp &fucomp = Comp(),
 Container &cnt = Container())
template <class InIter> priority_queue(InIter inicio, InIter fi nal,
 const Comp &fucomp = Comp(),
 Container &cnt = Container())

El primer constructor priority_queue() crea una cola con prioridades vacía. El segundo crea una
que contiene los elementos especifi cados por el rango inicio a fi nal-1. Para usar priority_queue,
incluye el encabezado <queue>.

En general priority_queue puede adaptar cualquier contenedor que soporte las siguientes
operaciones:

front()
pop_back()
push_back()

El contenedor también ha de soportar iteradores de acceso aleatorio. Así, usted puede usar deque
como contenedor para una cola con prioridades. Sin embargo, no puede usar list porque no sopor-
ta los iteradores de acceso aleatorio.

La primera clase priority_queue defi ne las funciones mostradas aquí. Los elementos en una
priority_queue sólo pueden accederse en orden de prioridad.

Miembro Descripción

bool empty() const Devuelve true si la cola con prioridades que invoca está
vacía y false, de otra manera.

void pop() Elimina el primer elemento de la cola con prioridades.

void push(const value_type &val) Agrega un elemento a la cola con prioridades.

size_type size() const Devuelve el número de elementos que se encuentra en
la cola con prioridades.

const value_type &top() const Devuelve una referencia al elemento con la mayor
prioridad. No se elimina el elemento.

Ejemplo
En el siguiente ejemplo se muestran los tres contenedores en acción:

// Demuestra los adaptadores de contenedor de secuencias.

#include <iostream>
#include <string>
#include <queue>
#include <stack>

using namespace std;

136 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

int main()
{
 // Demuestra queue.
 queue<string> q;

 cout << "Demuestra una cola para cadenas.\n";

 cout << "Incluyendo uno dos tres cuatro\n";
 q.push("uno");
 q.push("dos");
 q.push("tres");
 q.push("cuatro");

 cout << "Ahora, recupera esos valores en orden primero en entrar primero en
 salir.\n";
 while(!q.empty()) {
 cout << "Recuperando ";
 cout << q.front() << "\n";
 q.pop();
 }
 cout << endl;

 // Demuestra priority_queue.
 priority_queue<int> pq;

 cout << "Demuestra priority_queue para enteros.\n";

 cout << "Recuperando 1, 3, 4, 2.\n";
 pq.push(1);
 pq.push(3);
 pq.push(4);
 pq.push(2);

 cout << "Ahora, recupera esos valores en orden de prioridad.\n";
 while(!pq.empty()) {
 cout << "Recuperando ";
 cout << pq.top() << "\n";
 pq.pop();
 }
 cout << endl;

 // Por último, demuestra stack.
 stack<char> pila;

 cout << "Demuestra stack para caracteres.\n";

 cout << "Recuperando A, B, C y D.\n";
 pila.push('A');
 pila.push('B');
 pila.push('C');
 pila.push('D');

 cout << "Ahora, recupera esos valores en orden \u00a3ltimo en entrar primero en
 salir.\n";

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 137

 while(!pila.empty()) {
 cout << "Recuperando: ";
 cout << pila.top() << "\n";
 pila.pop();
 }

 return 0;
}

Aquí se muestra la salida:

Demuestra una cola para cadenas.
Incluyendo uno dos tres cuatro
Ahora, recupera esos valores en orden primero en entrar primero en salir.
Recuperando uno
Recuperando dos
Recuperando tres
Recuperando cuatro

Demuestra priority_queue para enteros.
Recuperando 1, 3, 4, 2.
Ahora, recupera esos valores en orden de prioridad.
Recuperando 4
Recuperando 3
Recuperando 2
Recuperando 1

Demuestra stack para caracteres.
Recuperando A, B, C y D.
Ahora, recupera esos valores en orden último en entrar primero en salir.
Recuperando: D
Recuperando: C
Recuperando: B
Recuperando: A

Ejemplo adicional: use stack para crear una calculadora
de cuatro funciones
Las pilas son una de las estructuras de datos más útiles en la computación. En el nivel de máqui-
na, proporcionan el mecanismo mediante el cual puede llamarse a una subrutina. En el nivel del
programa, las pilas se usan para resolver varios problemas comunes. Por ejemplo, muchas rutinas
de búsqueda basadas en inteligencia artifi cial dependen de pilas. Además, muchos tipos de reco-
rridos de árbol emplean una pila. Un uso interesante de una pila es una calculadora estilo sufi jo.
Cuando se usa este tipo de calculadora, primero se ingresan los operandos y luego la operación
que desea aplicar. Por ejemplo, para sumar 10 y 12, primero ingresa el 10, después el 12 y al último
+. A medida que se ingresa cada operando, se incluye en la pila. Cuando se ingresa un operador,
se recuperan los dos elementos superiores, se realiza la operación y se incluye el resultado en la
pila. En el siguiente programa se usa la clase stack para implementar esa calculadora.

// Una calculadora de sufijo de cuatro funciones.
#include <iostream>
#include <stack>
#include <string>
#include <cmath>

138 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

using namespace std;

int main()
{
 stack<double> pila;
 double a, b;
 string c;

 do {
 cout << ": ";
 cin >> c;
 switch(c[0]) {
 case 's': // sale de la calculadora
 break;
 case '.': // muestra la parte superior de la pila
 cout << pila.top() << "\n";
 break;
 case '+': // suma
 if(pila.size() < 2) {
 cout << "Falta el operando\n";
 break;
 }

 a = pila.top();
 pila.pop();
 b = pila.top();
 pila.pop();
 cout << a+b << "\n";
 pila.push(a+b);
 break;
 case '-': // resta
 // Ve si el usuario ingresó un número negativo.
 if(c.size() != 1) {
 // Incluye el valor en la pila.
 pila.push(atof(c.c_str()));
 break;
 }

 // De otra manera, es una resta
 if(pila.size() < 2) {
 cout << "Falta el operando\n";
 break;
 }

 a = pila.top();
 pila.pop();
 b = pila.top();
 pila.pop();
 cout << b-a << "\n";
 pila.push(b-a);
 break;
 case '*': // Multiplica

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 139

 if(pila.size() < 2) {
 cout << "Falta el operando\n";
 break;
 }

 a = pila.top();
 pila.pop();
 b = pila.top();
 pila.pop();
 cout << a*b << "\n";
 pila.push(a*b);
 break;
 case '/': // divide
 if(pila.size() < 2) {
 cout << "Falta el operando\n";
 break;
 }

 a = pila.top();
 pila.pop();
 b = pila.top();
 pila.pop();
 cout << b/a << "\n";
 pila.push(b/a);
 break;
 default:
 // Incluye el valor en la pila
 pila.push(atof(c.c_str()));
 break;
 }
 } while(c != "s");

 return 0;
}

Aquí se muestra una ejecución de ejemplo:

: 10
: 2
: /
5
: -1
: *
-5
: 2.2
: +
-2.8
: 4
: 5
: 6
: +
11
: +
15
: s

140 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En su mayor parte, la operación de la calculadora es intuitiva, pero hay un par de temas que se
deben tener en cuenta. En primer lugar, para ver el valor que se encuentra en la parte superior de
la pila, ingrese un punto. Esto signifi ca que necesitará anteceder valores que sean menores de 1 con
un cero, como en 0.12, por ejemplo. En segundo lugar, observe que cuando una entrada empieza
con un signo de menos, si es mayor que 1, se supone que el usuario está ingresando un número
negativo y no está solicitando una resta.

Opciones
Siempre y cuando el contenedor cumpla con los requisitos especifi cados por el adaptador, cual-
quiera puede usarse como contenedor base. Para usar uno diferente, simplemente especifi que su
nombre de clase cuando se cree una instancia del adaptador. Por ejemplo, lo siguiente crea una
queue que adapta list en lugar de deque:

queue<char, list<char> > q;

Debido a que q utiliza list en su contenedor, estará sujeto a todos los benefi cios y las desventajas
de list. Por lo general, el contenedor predeterminado es su mejor opción, pero sí cuenta con otra
opción. Incluso podría usar su propio contenedor como base para una queue. El mismo principio
general se aplica también a los otros adaptadores de contenedor.

Otro punto: observe que hay un espacio entre los dos paréntesis angulares de cierre que termi-
nan la declaración anterior. Debido a una rareza en la sintaxis de C++, este espacio es necesario.
Sin él, el compilador tomará por error dos paréntesis angulares de cierre como un signo de des-
plazamiento a la derecha (>>) y no como terminadores de plantilla anidados. Un error común es
el olvido de este espacio, que puede ser difícil de encontrar porque su programa tiene un aspecto
correcto.

Almacene en un contenedor objetos defi nidos por el usuario

Componentes clave

Encabezados Clases Funciones

Defi nida por el usuario bool operator<(tipo-usuario a, tipo-usuario b)
bool operator==(tipo-usuario a, tipo-usuario b)

Puede usarse un contenedor STL para almacenar objetos de clases creados por usted. Sin embar-
go, estas clases deben cumplir un conjunto mínimo de requisitos. En esta solución se describen
éstos y se demuestra su implementación. Se crea una clase llamada part que encapsula el nom-
bre y el número asociado con alguna parte, como un clavo o un tornillo. Sin embargo, puede
usarse el mismo método básico para almacenar cualquier tipo de objeto dentro de cualquier tipo
de contenedor.

Paso a paso
Para habilitar objetos de una clase creada por usted y que se almacene en un contenedor de se-
cuencia se incluyen los siguientes pasos:

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 141

1. La clase debe tener un constructor de copia públicamente accesible.

2. La clase debe proporcionar un destructor públicamente accesible.

3. La clase debe proveer un operador de asignación públicamente accesible.

4. En algunos casos, la clase debe brindar un constructor predeterminado públicamente acce-

sible.

5. En algunos casos, la clase debe proporcionar una función operator==() públicamente acce-

sible.

6. En algunos casos, la clase debe dar una función operator<() públicamente accesible.

Para habilitar objetos de una clase creada por usted para que se almacene en un contenedor
asociativo se requieren los siguientes pasos:

1. Deben cumplirse todos los requisitos descritos por un contenedor de secuencias.

2. La clase debe proporcionar una función operator<() públicamente accesible porque todos

los contenedores asociativos están ordenados.

Análisis
En el caso de todos los contenedores, si un objeto habrá de almacenarse en un contenedor, enton-
ces su clase debe proporcionar funciones públicamente accesibles:

Constructor de copia

Destructor

operator==()

Dependiendo del uso específi co, suelen necesitarse un constructor predeterminado (sin paráme-
tros) públicamente accesible y operator==(). Sin embargo, un tema clave que debe comprenderse
es que el constructor de copia predeterminado, el constructor sin parámetros, el destructor y el
operador de asignación proporcionados automáticamente por una clase satisfacen este requisito.
Por tanto, no siempre necesita declarar explícitamente estos elementos.

Con el fi n de usar un contenedor de secuencias, como vector, con ciertos algoritmos, como
sort(), su clase debe proporcionar una función operator<() que compara dos objetos. Algunos otros
algoritmos, como fi nd(), requieren que se proporcione una función operator==() y que determina
cuando un objeto es igual a otro.

Para que se almacene un objeto en un contenedor asociativo, como set o multiset, debe
proporcionar un operator<(). Los conjuntos están ordenados al usar el operador <. También es
usado por las funciones fi nd(), upper_bound(), lower_bound() y equal_range().

Ejemplo
En el siguiente ejemplo se crea una clase llamada parte que encapsula el nombre y el número de
una parte. Observe que están defi nidos operator<() y operator==(). El operador < permite que un
contenedor que almacena objetos de parte habrá de operarse en algoritmos que requieren com-
paraciones. En el programa se demuestra esto al ordenar el vector usando el algoritmo sort(). El
operador == permite la igualdad de dos objetos de parte que se determinarán con algoritmos
como fi nd(), que también es usado por el programa. (Las soluciones que describen los algoritmos
STL se presentan en el capítulo 4.)

•

•

•

142 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Almacena objetos definidos por el usuario en un vector.
//
// Los objetos que se almacenan son instancias de la
// clase parte. El operator<() y operator==() están
// definidos por objetos de parte. Esto deja que se
// apliquen varios algoritmos de operador, como
// sort() y find().
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>

using namespace std;

// Esta clase almacena información sobre partes.
class parte {
 string nombre;
 unsigned numero;
public:
 // Constructor predeterminado.
 parte() { nombre = ""; numero = 0; }

 // Construye un objeto completo de parte.
 parte(string n, unsigned num) {
 nombre = n;
 numero = num;
 }

 // Funciones para acceso de datos de partes.
 string obtener_nombre() { return nombre; }
 unsigned obtener_numero() { return numero; }
};

void mostrar(const char *msj, vector<parte> vect);

// Compara objetos empleando números de parte.
bool operator<(parte a, parte b)
{
 return a.obtener_numero() < b.obtener_numero();
}

// Revisa la igualdad con base en el número de parte.
bool operator==(parte a, parte b)
{
 return a.obtener_numero() == b.obtener_numero();
}

int main()
{
 vector<parte> listaparte;

 // Inicializa la lista de partes.
 listaparte.push_back(parte("tornillo", 9324));

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 143

 listaparte.push_back(parte("desarmador", 8452));
 listaparte.push_back(parte("tuerca", 6912));
 listaparte.push_back(parte("clavo", 1274));

 // Despliega el contenido del vector.
 mostrar("Lista de partes sin ordenar:\n", listaparte);
 cout << endl;

 // Usa el algoritmo sort() para ordenar la lista de partes.
 // Esto requiere que se defina operator<() para parte.
 sort(listaparte.begin(), listaparte.end());

 mostrar("Lista de partes ordenada por n\u00a3mero:\n", listaparte);

 // Usa el algoritmo find() para encontrar una parte dado su número.
 // Esto requiere que se defina operator==() para parte.
 cout << "Buscando el n\u00a3nero de parte 6912.\n";

 vector<parte>::iterator itr;
 itr = find(listaparte.begin(), listaparte.end(), parte("", 6912));
 cout << "Parte encontrada. Su nombre es " << itr->obtener_nombre() << ".\n";

 return 0;
}

// Despliega el contenido de un vector<parte>.
void mostrar(const char *msj, vector<parte> vect) {
 vector<parte>::iterator itr;

 cout << msj;
 cout << " Parte# Nombre\n";
 for(itr=vect.begin(); itr != vect.end(); ++itr)
 cout << " " << itr->obtener_numero() << "\t "
 << itr->obtener_nombre() << endl;;
 cout << "\n";
}

Aquí se muestra la salida:

Lista de partes sin ordenar:
 Parte# Nombre
 9324 tornillo
 8452 desarmador
 6912 tuerca
 1274 clavo

Lista de partes ordenada por número:
 Parte# Nombre
 1274 clavo
 6912 tuerca
 8452 desarmador
 9324 tornillo

Buscando el núnero de parte 6912.
Parte encontrada. Su nombre es tuerca.

144 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
Un ejemplo que demuestra el almacenamiento de un objeto de clase defi nido por el usuario en un
set se presenta en Use set y multiset.

De acuerdo con la experiencia del autor, hay algunas variaciones entre compiladores en rela-
ción con la clase precisa que debe proporcionarse para objetos de esa clase que se almacenarán en
el contenedor y que se operarán con algoritmos. Las necesidades descritas en esta solución están
de acuerdo con las especifi cadas en el estándar ANSI/ISO para C++. Sin embargo, se han visto
algunos casos en que deben cumplirse requisitos adicionales. Las discrepancias entre implemen-
taciones fueron mayores en el pasado que hoy en día. No obstante, aunque en esta solución se
describen requisitos generales que debe cumplir una clase para almacenarse en un contenedor,
deben tratarse como directrices (en lugar de reglas inmutables) que tal vez necesite ajustar para
adecuarse a su situación específi ca.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 145

Técnicas básicas de contenedor asociativo

Componentes clave

Encabezados Clases Funciones

<map> map iterator begin()
void clear()
bool empty() const
iterator end()
size_type erase(const key_type &c)
iterator fi nd(const key_type &c)
pair<iterator, bool> insert(const value_type &val)
reverse_iterator rbegin()
reverse_iterator rend()
size_type size() const
void swap(map<Key, T, Comp,
 Allocator> &ob)

<map> template <class Key, class T,
 class Comp, class Allocator>
 bool operator==(
 const map<Key, T, Comp, Allocator>
 &supizq.
 const map<Key, T, Comp, Allocator>
 &supder)
template <class Key, class T,
 class Comp, class Allocator>
 bool operator<(
 const map<Key, T, Comp, Allocator>
 &supizq,
 const map<Key, T, Comp, Allocator>
 &supder)
template <class Key, class T,
 class Comp, class Allocator>
 bool operator>(
 const map<Key, T, Comp, Allocator>
 &supizq,
 const map<Key, T, Comp, Allocator>
 &supder)

<utility> pair

<utility> template <class TipoC, clase TipoV>
 pair<tipoC, TopiV> make_pair(
 const tipoC &c,
 const tipoV &v)

146 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Todos los contenedores asociativos comparten funcionalidad común, y todos se manejan, en esen-
cia, de la misma manera. En esta solución se utiliza esta funcionalidad común para demostrar las
técnicas básicas necesarias para crear y usar un contenedor asociativo.

En esta solución se muestra cómo:

Crear un contenedor asociativo.

Crear elementos que constan de pares clave/valor.

Agregar elementos a un contenedor asociativo.

Determinar el tamaño del contenedor.

Usar un iterador para recorrer en ciclo el contenedor.

Asignar un contenedor a otro.

Determinar cuándo un contenedor es equivalente a otro.

Eliminar elementos del contenedor.

Intercambiar el contenido de un contenedor con otro.

Determinar si un contenedor está vacío.

Encontrar un elemento dada su clave.

La solución usa la clase map. En general, las técnicas descritas aquí también se aplican a los otros
contenedores asociativos, como set, defi nido por la STL. Sin embargo, map almacena pares clave/
valor en que el tipo de clave y el tipo del valor pueden diferir. El contenedor set almacena objetos
en que la clave y el valor son parte del mismo objeto. Más aún, map crea un contenedor en que
cada clave debe ser única. Un contenedor multimap, en contraste, permite claves duplicadas. Por
tanto, mientras los principios generales mostrados aquí se aplican a cualquier contenedor asociati-
vo, se necesitará cierta adaptación, dependiendo de cuál contenedor asociativo se use.

Paso a paso
Para crear y usar un contenedor asociativo se requieren estos pasos:

1. Crear una instancia del contenedor asociativo deseado. En esta solución, se usa map.

2. Construir objetos pair, que son el tipo de objetos almacenados en un map.

3. Agregar elementos al contenedor al llamar a insert().

4. Obtener el número de elementos en el contenedor al llamar a size().

5. Determinar si el contenedor está vacío (es decir, no contiene elementos) al llamar a

empty().

6. Eliminar elementos del contenedor al llamar a erase().

7. Eliminar todos los elementos de un contenedor al llamar a clear().

8. Encontrar un elemento con una clave especifi cada al llamar a fi nd().

9. Obtener un iterador al principio del contenedor al llamar a begin(). Obtener un iterador

a uno después del fi nal del contenedor al llamar a end().

10. Obtener un iterador inverso al fi nal del contenedor al llamar a rbegin(). Obtener un itera-

dor a uno antes del inicio del contenedor al llamar a rend().

11. Recorrer en ciclo los elementos de un contenedor mediante un iterador.

•

•

•

•

•

•

•

•

•

•

•

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 147

12. Intercambiar el contenido de un contenedor con otro mediante swap().

13. Determinar cuando un contenedor es igual, menor que o mayor que otro.

Análisis
La STL da soporte a dos sabores básicos de contenedor asociativo: mapas y conjuntos. En un mapa
cada elemento consta de un par clave/valor y el tipo de clave puede diferir del tipo del valor.
En un conjunto, la clave y el valor se incrustan en el mismo objeto. Aunque mapas y conjuntos
operan, en esencia, de la misma manera, un map se usa en la solución porque demuestra mejor las
técnicas esenciales requeridas para usar cualquier contenedor asociativo.

La especifi cación de plantilla para map se muestra a continuación:

template <class Key, class T, class Comp = less<Key>
 class Allocator = allocator<T> > class map

Aquí, Key es el tipo de datos de las claves y T es el tipo de valores que se está almacenando (asig-
nando). La función que compara dos claves está especifi cada por Comp. Observe que las opciones
predeterminadas usan el objeto de función less. El asignador está especifi cado por Allocator, cuya
opción predeterminada es el asignador estándar.

Un aspecto central de un contenedor asociativo es que mantiene una colección ordenada de
elementos basados en el valor de las claves. El orden específi co es determinado por la función
de comparación, que es less como opción predeterminada. Esto signifi ca que, como opción prede-
terminada, los elementos de un contenedor asociativo están almacenados en orden ascendente. Sin
embargo, es posible especifi car un objeto de comparación que almacena de manera diferente los
elementos.

La clase map da soporte a tres constructores. Aquí se muestran los dos usados en esta solución:

explicit map(const Comp &fucomp = Comp(), const Allocator &asign = Allocator())
map(const map<Key, T, Componente, Allocator> &ob)

La primera forma construye un mapa vacío. La segunda forma construye un mapa que contiene
los mismos elementos que ob y es el constructor de copia de map. El parámetro fucomp especifi ca
la función de componente usada para ordenar el mapa. En casi todos los casos, puede permitir
esto como opción predeterminada. El parámetro asign especifi ca el asignador, que también suele
admitirse como opción predeterminada. Para usar un mapa, debe incluir el encabezado <map>.

El tipo de objeto contenido por un mapa es una instancia de pair, que es una struct que encap-
sula dos objetos. Se declara así:

template <class TipoC, class TipoC> struct pair {
 typedef TipoC first_type;
 typedef TipoV second_type;
 TipoC first; //para elementos de mapa, contiene la clave
 TipoV second; //para elementos de mapa, contiene el valor

 // Constructores
 pair();
 pair(const TipoC &c, const TipoV &v);
 template<class A, class B> pair(const pairA, B> &ob);

}

148 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

La clase pair puede usarse para contener cualquier par de objetos. Sin embargo, cuando se usa
para contener un par clave/valor, el valor en fi rst contiene la clave y el valor en second contiene
el valor asociado con esa clave. La clase pair necesita el encabezado <utility>, que se incluye auto-
máticamente en <map>.

Puede construir un pair al usar uno de los constructores de pair o empleando la función
make_pair(), que también se declara en <utility>; construye un objeto pair basado en los tipos de
datos usados como parámetros. La función make_pair es genérica y tiene este prototipo:

template <class TipoC, class TipoV)
 pair<TipoC, TipoV) make_pair(const TipoC &c, const TipoV &v)

Como puede ver, devuelve un objeto pair que consta de valores de los tipos especifi cados por TipoC
y TipoV. La ventaja de make_pair() es que los tipos del objeto que se está almacenando son determi-
nados automáticamente por el compilador en lugar de que usted los especifi que en forma explícita.

Para map, el tipo value_type es un tipedef para pair<const Key, T>. Por tanto, un mapa
contiene instancias de pair. Más aún, el tipo iterator defi nido por map señala a objetos de tipo
pair<Key, T>. Por tanto, cuando una función map devuelve un iterador, la clave está disponible
mediante el campo fi rst de pair y el valor se obtiene mediante el campo second del pair.

Después de que se ha creado un par, los objetos de pair pueden agregarse a él. Una manera
de hacer esto que funciona para todos los contenedores asociativos consiste en llamar a insert().
Todos los contenedores asociativos dan soporte por lo menos a tres versiones de insert(). Éste es el
usado aquí:

pair<iterator, bool> insert(const value_type &val)

Inserta val en el contenedor que invoca en un punto que mantiene el orden del contenedor asocia-
tivo. (Recuerde que value_type es un type_def para pair<const Key, T>.) La función devuelve un
objeto de pair que indica el resultado de la operación. Si val puede insertarse, el valor bool (que
es el campo second) será true, y false, de otra manera. El valor iterator (que está en el campo fi rst)
señalará al elemento insertado, si se tiene éxito, o al elemento ya existente que usa la misma clave. La
operación de inserción fallará si se hace un intento por insertar un elemento en un contenedor que
requiere claves únicas (como map o set) y el contenedor ya incluye la clave. Un contenedor asocia-
tivo crecerá automáticamente a medida que se necesite cuando se le agreguen elementos.

Puede eliminar uno o más elementos de un contenedor asociativo al llamar a erase(). Tiene por
lo menos tres formas. Aquí se muestra la usada en esta solución:

size_type erase(const key_type &tc)

Elimina del contenedor todos los elementos que tienen claves con el valor c. En el caso de conte-
nedores asociativos que requieren claves únicas, una llamada a erase() elimina sólo un elemento.
Devuelve el número de elementos eliminados, que podría ser cero o uno para un map.

Puede eliminar todos los elementos de un contenedor asociativo al llamar a clear(), que se
muestra aquí:

void clear()

Puede obtener un iterador a un elemento en un contenedor asociativo que tiene una clave
especifi cada al llamar a fi nd(), que se muestra aquí:

iterator fi nd(const key_type &c)

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 149

Aquí, c especifi ca la clave. Si el contenedor incluye un elemento que tiene una clave igual a c,
fi nd() devuelve un iterador al primer elemento coincidente. Si la clave no se encuentra, entonces
se devuelve end().

Puede determinar el número de elementos en un contenedor al llamar a size(). Para determi-
nar si un contenedor está vacío, llame a empty(), como se muestra aquí.

bool empty() const
size_type size() const

Puede obtener un iterador al primer elemento del contenedor al llamar a begin(). Debido a que
los contenedores asociativos están ordenados, éste siempre será el primer elemento especifi cado
por la función de comparación. Un iterador a una parte del último elemento en la secuencia se
obtiene al llamar a end(). Aquí se muestran estas funciones:

iterator begin()
iterator end()

Para declarar una variable que se usará como un iterador, debe especifi car el tipo de iterador
del contenedor. Por ejemplo, esto declara un iterador que puede señalar a elementos dentro de
map<string, int>:

map<string, int>::iterator itr;

Puede usar iteradores para recorrer en ciclo el contenido de un contenedor asociativo. El
proceso es similar al usado para recorrer en ciclo el contenido de un contenedor de secuencias. La
principal diferencia es que en contenedores asociativos que almacenan pares clave/valor, el objeto
señalado por el iterador es un pair. Por ejemplo, suponiendo un iterador declarado de manera
apropiada llamado itr, he aquí un bucle que despliega todas las claves y los valores en un map
llamado mimapa:

for(itr=mimapa.begin(); itr != mimapa.end() ++itr)
 cout << "Clave: " << itr->first << ", Valor:" << itr->second << endl;

El bucle se ejecuta hasta que itr es igual a mimapa.end(), lo que asegura, por tanto, que se desplie-
guen todos los elementos. Recuerde que end() no devuelve un apuntador al último elemento de
un contenedor. En cambio, devuelve un apuntador a uno después del último elemento. Por tanto, el
último elemento de un contenedor es señalado por end()-1.

Como se explicó en la revisión general, un contenedor reversible es aquel en que los elementos
pueden recorrerse en orden inverso (de atrás hacia adelante). Todos los contenedores asociativos
integrados son reversibles. Cuando se usa un contenedor reversible, puede obtener un iterador
inverso al fi nal del contenedor al llamar a rbegin(). Un iterador inverso a uno antes del primer
elemento en el contenedor se obtiene al llamar a rend(). Aquí se muestran estas funciones:

reverse_iterator rbegin()
reverse_iterator rend()

También hay versiones const de estas funciones. Un iterador inverso se declara como un iterador
regular. Por ejemplo:

map<string, int>::reverse_iterator ritr;

150 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Puede usar un iterador inverso para recorrer en ciclo un mapa en orden inverso. Por ejemplo,
dado un iterador inverso llamado ritr, he aquí un bucle que despliega las claves y los valores de
un mapa llamado mimapa, de atrás al frente:

for(ritr=mimapa.rbegin(); ritr != mimapa.rend() ++ritr)
 cout << "Clave: " << ritr->first << ", Valor:" << ritr->second << endl;

El iterador inverso ritr empieza en el elemento señalado por rbegin(), que es el último elemento
del contenedor. Se ejecuta hasta que es igual a rend(), que señala a un elemento que está uno an-
tes del inicio del contenedor. (En ocasiones es útil pensar que *rbegin() y rend() devuelven apunta-
dores al inicio y el fi nal de un contenedor inverso.) Cada vez que se aumenta un iterador inverso,
señala al elemento anterior. Cada vez que se disminuye, señala al siguiente elemento.

El contenido de dos contenedores asociativos puede intercambiarse al llamar a swap(). He aquí
la manera en que se declara con map.

void swap(map<Key, T, Comp, Allocator> &ob)

El contenido del contenedor que invoca se intercambia con el especifi cado por ob.

Ejemplo
En el siguiente ejemplo se usa map para demostrar las técnicas básicas de contenedor asociativo:

// Demuestra las operaciones básicas de contenedor asociativo.
//
// En este ejemplo se usa map, pero pueden aplicarse las mismas
// técnicas básicas a cualquier contenedor asociativo.

#include <iostream>
#include <string>
#include <map>

using namespace std;

void mostrar(const char *msj, map<string, int> mp);

int main() {
 // Declara un mapa vacío que contiene pares clave/valor
 // en que la clave es una cadena y el valor es un entero.
 map<string, int> m;

 // Inserta caracteres en v. Se devuelve un iterador
 // al objeto insertado.
 m.insert(pair<string, int>("Alfa", 100));
 m.insert(pair<string, int>("Gamma", 300));
 m.insert(pair<string, int>("Beta", 200));

 // Declara un iterador a un map<string, itr>.
 map<string, int>::iterator itr;

 // Despliega el primer elemento en m.
 itr = m.begin();
 cout << "El primer par clave/valor en m: "

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 151

 << itr->first << ", " << itr->second << endl;

 // Despliega el último elemento en m.
 itr = m.end();
 --itr;
 cout << "El \u00a3ltimo par clave/valor en m: "
 << itr->first << ", " << itr->second << "\n\n";

 // Despliega todo el contenido de m.
 mostrar("Todo el contenido de m: ", m);

 // Muestra el tamaño de m, que es el número de
 // elementos contenidos por m.
 cout << "El tama\u00a4o de m es " << m.size() << "\n\n";

 // Declara un iterador inverso a un map<string, itr>.
 map<string, int>::reverse_iterator ritr;

 // Ahora, muestra el contenido de m en orden inverso.
 cout << "El contenido de m invertido:\n";

 for(ritr=m.rbegin(); ritr != m.rend(); ++ritr)
 cout << " " << ritr->first << ", " << ritr->second << endl;
 cout << endl;

 // Encuentra un elemento dada su clave.
 itr = m.find("Beta");
 if(itr != m.end())
 cout << itr->first << " tiene el valor " << itr->second << "\n\n";
 else
 cout << "Clave no encontrada.\n\n";

 // Crea otro mapa que es igual al primero.
 map<string, int> m2(m);
 mostrar("El contenido de m2: ", m2);

 // Compara dos mapas.
 if(m == m2) cout << "m y m2 son equivalentes.\n\n";

 // Inserta más elementos en m y m2.
 cout << "Se insertan elementos adicionales en m y m2.\n";
 m.insert(make_pair("Epsilon", 99));
 m2.insert(make_pair("Zeta", 88));
 mostrar("El contenido de m es ahora: ", m);
 mostrar("El contenido de m2 es ahora: ", m2);

 // Determina la relación entre m y m2. Es una
 // comparación lexicográfica. Por ello, el primer
 // elemento en el contenedor determina cuál
 // contenedor es menor que el otro.
 if(m < m2) cout << "m es menor que m2.\n\n";

 // Elimina Beta de m.
 m.erase("Beta");

152 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 mostrar("m tras eliminar Beta: ", m);
 if(m > m2) cout << "Ahora, m es mayor que m2.\n\n";

 // Intercambia el contenido de m y m2.
 cout << "Se intercambian m y m2.\n";
 m.swap(m2);
 mostrar("El contenido de m: ", m);
 mostrar("El contenido de m2: ", m2);

 // Limpia m.
 m.clear();
 if(m.empty()) cout << "m est\u00a0 vac\u00a1o.";

 return 0;
}

// Despliega el contenido de un map<string, int> al usar
// un iterador.
void mostrar(const char *msj, map<string, int> mp) {
 map<string, int>::iterator itr;

 cout << msj << endl;
 for(itr=mp.begin(); itr != mp.end(); ++itr)
 cout << " " << itr->first << ", " << itr->second << endl;
 cout << endl;
}

Aquí se muestra la salida:

El primer par clave/valor en m: Alfa, 100
El último par clave/valor en m: Gamma, 300

Todo el contenido de m:
 Alfa, 100
 Beta, 200
 Gamma, 300

El tamaño de m es 3

El contenido de m invertido:
 Gamma, 300
 Beta, 200
 Alfa, 100

Beta tiene el valor 200

El contenido de m2:
 Alfa, 100
 Beta, 200
 Gamma, 300

m y m2 son equivalentes.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 153

Se insertan elementos adicionales en m y m2.
El contenido de m es ahora:
 Alfa, 100
 Beta, 200
 Épsilon, 99
 Gamma, 300

El contenido de m2 es ahora:
 Alfa, 100
 Beta, 200
 Gamma, 300
 Zeta, 88

m es menor que m2.

m tras eliminar Beta:
 Alfa, 100
 Épsilon, 99
 Gamma, 300

Ahora, m es mayor que m2.

Se intercambian m y m2.
El contenido de m:
 Alfa, 100
 Beta, 200
 Gamma, 300
 Zeta, 88

El contenido de m2:
 Alfa, 100
 Épsilon, 99
 Gamma, 300

m está vacío.

Gran parte del programa se explica por sí solo, pero hay unos cuantos aspectos que merecen
un examen de cerca. En primer lugar, observe cómo se declara un objeto de map mediante la línea
siguiente:

map<string, int> m;

Esto declara un mapa llamado m que contiene pares clave/valor en que la clave es de tipo string
y el valor es de tipo int. Esto signifi ca que los tipos de objetos contenidos por m son casos de
pair<string, int>. Observe que se usa la función de comparación predeterminada less. Esto signi-
fi ca que los objetos se almacenan en el mapa en orden ascendente. Además, observe que se usa el
asignador predeterminado.

A continuación, los pares clave/valor se insertan en m al llamar a insert(), como se muestra
aquí:

m.insert(pair<string, int>("Alfa", 100));
m.insert(pair<string, int>("Gamma", 300));
m.insert(pair<string, int>("Beta", 200));

154 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Debido a que m usa la función de comparación predeterminada, el contenido se ordena auto-
máticamente de manera ascendente con base en las claves. Por tanto, el orden de las claves en
el mapa después de las llamadas anteriores a insert() es Alfa, Beta, Gamma, como lo confi rma la
salida.

A continuación, se declara un iterador al mapa mediante la línea siguiente:

map<string, int>::iterator itr;

Debido a que el tipo de iterador debe coincidir exactamente con el tipo de contenedor, es necesario
especifi car los mismos tipos de clave y valor. Por ejemplo, un iterador que contiene pares clave/
valor de tipo string/int no funciona con un mapa que contiene pares clave/valor de tipo ofstream/
string.

Luego, el programa usa el iterador para desplegar el primero y el último par clave/valor en el
mapa al usar esta secuencia:

// Despliega el primer elemento en m.
itr = m.begin();
cout << "El primer par clave/valor en m: "
 << itr->first << ", " << itr->second << endl;

// Despliega el último elemento en m.
itr = m.end();
--itr;
cout << "El \u00a3ltimo par clave/valor en m: "
 << itr->first << ", " << itr->second << "\n\n";

Como se explicó, la función rbegin() devuelve un iterador al primer elemento en el contenedor y
end() devuelve un iterador a uno después del último elemento. Por esto itr disminuye después de
la llamada a end() para que pueda desplegarse el último elemento. Recuerde que el tipo de objeto
señalado por un iterador map es una instancia de pair. La clave está contenida en el campo fi rst
y el valor en el second. Además, observe cómo los campos de pair se especifi can al aplicar el ope-
rador –> a itr de la misma manera en que usaría –> con un apuntador. En general, los iteradores
funcionan como apuntadores y se manejan, en esencia, de la misma manera.

A continuación, todo el contenido de m se despliega al llamar a mostrar(), que despliega el
contenido de map<string, int> que se pasa. Preste especial atención a la manera en que se desplie-
gan los pares clave/valor mediante el siguiente bucle for:

for(itr=mp.begin(); itr != mp.end(); ++itr)
 cout << " " << itr->first << ", " << itr->second << endl;

Debido a que end() obtiene un iterador que señala a uno después del fi nal del contenedor, el bucle
se detiene automáticamente después de que se ha desplegado el último elemento.

Luego, el programa despliega el contenido de m invertido mediante el uso de un iterador in-
verso y un bucle que ejecuta de m.begin() a m.rend(). Como se explicó, un iterador inverso opera
en el contenedor de atrás hacia adelante. Por tanto, el incremento de un iterador inverso causa que
señale al elemento anterior en el contenedor.

Preste especial atención a la manera en que se comparan dos contenedores mediante el uso
de los operadores ==, < y >. En el caso de contenedores asociativos, la comparación se conduce
empleando una comparación lexicográfi ca de los elementos, que en el caso de map son pares cla-

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 155

ve/valor. Aunque el término "lexicográfi co" signifi ca "orden de diccionario", su signifi cado suele
generalizarse a lo que se relaciona con STL. En el caso de comparaciones entre contenedores, dos
de éstos son iguales si contienen el mismo número de elementos, en el mismo orden, y todos los
elementos correspondientes son iguales. En el caso de contenedores asociativos que contienen pa-
res clave/valor, esto signifi ca que cada clave y valor del elemento deben coincidir. Si se encuentra
una falta de coincidencia, el resultado de una comparación lexicográfi ca se basa en los primeros
elementos que no coinciden. Por ejemplo, suponga que un mapa contiene el par:

prueba, 10

y otro contiene:

prueba, 20

Aunque las claves sean las mismas, debido a que los valores difi eren, estos dos elementos no son
equivalentes. Por tanto, se juzgará que el primer mapa es menor que el segundo.

Otro tema interesante es la secuencia que encuentra un elemento dada su clave. Aquí se muestra:

// Encuentra un elemento dada su clave.
itr = m.find("Beta");
if(itr != m.end())
 cout << itr->first << " tiene el valor " << itr->second << "\n\n";
else
 cout << "Clave no encontrada.\n\n";

La capacidad de encontrar un elemento dada su clave es uno de los aspectos defi nitorios de los
contenedores asociativos. (¡Por esa razón se les denomina "contenedores asociativos"!) El método
fi nd() busca el contenedor que invoca una clave que coincida con una especifi cada como argumen-
to. Si se encuentra, se devuelve un iterador al elemento. De otra manera, se devuelve end().

Opciones
Puede contar el número de elementos en un contenedor asociativo que coincide con una clave
especifi cada al llamar a count(), que se muestra aquí:

size_type count(const key_type &c) const

Devuelve el número de veces que ocurre c en el contenedor. En el caso de contenedores que re-
quieren claves únicas, será cero o uno.

Todos los contenedores asociativos le permiten determinar un rango de elementos en que cae
un elemento. Esta capacidad tiene soporte con tres funciones: lower_bound(), upper_bound() y
equal_range(). Se muestran a continuación. (También hay versiones const de estas funciones.)

iterator lower_bound(const key_type &c)
iterator upper_bound(const key_type &c)
pair<iterator, iterator> equal_range(const key_type &c)

La función lower_bound() devuelve un iterador al primer elemento en el contenedor con una
clave igual o mayor que c. La función upper_bound() devuelve un iterador al primer elemento en
el contenedor con una clave mayor que c. La función equal_range() devuelve un par de iteradores
que señalan al límite superior y el límite inferior en el contenedor en el caso de una clave específi -
ca al llamar a equal_range().

156 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Todos los contenedores asociativos dan soporte a tres formas de insert(). Uno se describió
antes. Aquí se muestran las otras dos versiones de insert():

iterator insert(iterator i, const value_type &val)
template <class InIter> void insert(InIter inicio, InIter fi nal)

La primera forma inserta val en el contenedor. En el caso de contenedores asociativos que permi-
ten duplicados, esta forma de inserción siempre tendrá éxito. De otra manera, insertará val sólo si
su clave no está ya en el contenedor. En cualquier caso, se devuelve un iterador al elemento con
la misma clave. El iterador especifi cado por i indica un buen lugar para iniciar la búsqueda del
punto de inserción apropiado. Debido a que los contenedores asociativos se ordenan con base en
las claves, proporcionan un buen punto de partida que puede agilizar las inserciones. La segunda
forma de insert() inserta el rango de inicio a fi nal-1. Las claves duplicadas se insertarán dependien-
do del contenedor. En todos los casos, el contenedor asociativo resultante permanecerá ordenado
con base en claves.

Además de la forma de erase() usada en esta solución, todos los contenedores asociativos dan
soporte a otras dos formas. Aquí se muestran:

void erase(iterator i)
void erase(iterator inicio, iterator fi nal)

La primera forma elimina el elemento señalado por i. La segunda forma elimina los elementos en
el rango de inicio a fi nal-1.

Como ya se mencionó, la STL da soporte a dos categorías de contenedores asociativos: mapas
y conjuntos. Un mapa almacena pares clave/valor. Un conjunto almacena objetos en que la clave y
el valor son iguales. Dentro de estas dos categorías, hay dos divisiones: los contenedores asociati-
vos que requieren claves únicas y los que permiten claves duplicadas. Los contenedores mapa y
set requieren claves únicas. Los contenedores multimap y multiset permiten claves duplicadas.
Debido a que cada contenedor asociativo usa una estrategia diferente, suele bastar con elegir el
mejor para una aplicación. Por ejemplo, si necesita almacenar pares clave/valor y todas las claves
son únicas, use map. En el caso de mapas que requieren claves duplicadas, use multimap.

Use map

Componentes clave

Encabezados Clases Funciones

<map> map iterator fi nd(const key_type &c)
pair<iterator, bool>
 insert(const value_type &val)
T &operator[](const key_type &c)

<utility> pair

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 157

En esta solución se describe lo que es probablemente el contenedor de uso más amplio: map. Un
mapa almacena pares clave/valor, y todas las claves deben ser únicas. Por tanto, dada una clave,
puede encontrar fácilmente su valor. Esto hace que map sea especialmente útil para mantener
listas de propiedades, almacenar confi guraciones de atributos y opciones, o en cualquier otro
lugar en que debe encontrarse un valor mediante una clave. Por ejemplo, podría usar un map
para crear una lista de contactos que use el nombre de una persona como clave y un número de
teléfono como valor. Ese mapa le permitiría recuperar fácilmente un número de teléfono a partir
de un nombre. Un mapa es un contenedor ordenado, con el orden basado en las claves. Como
opción predeterminada, las claves están en orden ascendente, pero es posible especifi car un orden
diferente.

NOTA El mecanismo básico que se requiere para usar un contenedor asociativo, incluido map, se
describió en Técnicas básicas de contenedor asociativo. La solución dada aquí se centra en los
aspectos de map que van más allá de estas técnicas generales.

Paso a paso
Para usar map se requieren estos pasos:

1. Cree una instancia de map del tipo deseado.

2. Agregue elementos al mapa al llamar a insert() o usar el operador de subíndice.

3. Obtenga o establezca el valor de un elemento al usar el operador de subíndice.

4. Encuentre un elemento específi co en el mapa al llamar a fi nd().

Análisis
La clase map da soporte a un contenedor asociativo en que se asignan claves únicas con valo-
res. En esencia, una clave es simplemente un nombre que se le da a un valor. Una vez que se ha
almacenado un valor, puede recuperarlo al usar su clave. Por tanto, en su sentido más general, un
mapa es una lista de pares clave/valor.

La especifi cación de plantilla para map se muestra a continuación:

template <class Key, class T, class Comp = less<key>,
 class Allocator = allocator<pair<const Key, T> > > class map

Aquí, Key es el tipo de datos de las claves. T es el tipo de datos de los valores almacenados, y
Comp es una función que compara dos claves. Los siguientes constructores están defi nidos en
map:

explicit map(const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())
map(const map<Key, T, Comp, Allocator> &ob)
template <class InIter> map<InIter inicio, InIter fi nal,
 const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())

La primera forma construye un mapa vacío. La segunda, un mapa que contiene los mismos ele-
mentos que ob y es un constructor de copia de map. La tercera forma construye un mapa que con-

158 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

tiene los elementos en el rango inicio a fi nal-1. La función especifi cada por fucomp, si está presente,
determina el orden del mapa. Con más frecuencia, permitirá que fucomp y asign estén presentes,
como opción predeterminada. Para usar map, debe incluir <map>.

La clase map da soporte a iteradores bidireccionales. Por tanto, el contenedor puede accederse
mediante un iterador en direcciones directa e inversa, pero no se da soporte a las operaciones de
acceso aleatorio. Sin embargo, el operador [] sí tiene soporte, pero no en su uso tradicional.

Los pares clave/valor están almacenados en un mapa como objetos de tipo pair. (Consulte Téc-
nicas básicas de contenedor asociativo para conocer detalles sobre pair.) El tipo de iterador defi nido
por map señala a objetos de tipo pair<const Key, T>. Por tanto, cuando una función map devuel-
ve un iterador, la clave está disponible mediante el miembro fi rst de pair y el valor se obtiene
mediante el campo second de pair.

La clase map da soporte a todas las funciones estándar especifi cadas por contenedores asocia-
tivos, como fi nd(), count(), erase(), etc. Se describen en Técnicas básicas de contenedor asociativo.

Pueden agregarse elementos a un mapa de dos maneras. La primera es mediante la función
insert(). La operación general de insert() se describe en Técnicas básicas de contenedor asociativo. He
aquí un resumen. Todos los contenedores asociativos dan soporte por lo menos a tres versiones de
insert(). El usado en esta solución es:

pair<iterator, bool> insert(const value_type &val)

Inserta val en el contenedor que invoca en un punto que mantiene el orden del contenedor aso-
ciativo. En map, value_type es un type_def para pair<const Key, T>. Por tanto, esta versión de
insert() inserta un par clave/valor en el mapa que invoca. Devuelve un objeto pair que indica el
resultado de la operación. Como ya se explicó, map requiere que todas las claves sean únicas. Por
tanto, si val contiene una clave única, la inserción tendrá éxito. En este caso, el valor bool del obje-
to pair devuelto (que es el campo second) será true. Sin embargo, si la clave especifi cada ya existe,
entonces este valor será false. La porción iterator del objeto de pair devuelto (que es el campo
fi rst) señalará al objeto insertado si se tiene éxito, o a un elemento que ya existe que usa la misma
clave.

La segunda manera de agregar un par clave/valor a un mapa incluye el uso de operator[]().
Le sorprenderá la manera en que funciona. Aquí se muestra su prototipo:

T &operator[](const key_type &c)

Observe que c (que recibe el valor de índice) no es un entero. En cambio, es un objeto que repre-
senta una clave. Esta clave se utiliza después para encontrar el valor, y la función devuelve una
referencia al valor asociado con la clave. Por tanto, el operador de subíndice se implementa con
map, para que use una clave como índice y devuelva el valor asociado con esa clave.

Para comprender mejor los efectos de operator[](), resulta de ayuda trabajar con un ejemplo.
Considere un mapa llamado mapatels que contiene pares clave/valor que constan del nombre y
el número telefónico de una persona. Además, suponga que hay una entrada en el mapa que tiene
la clave "Juan", con el valor "555-0001". En este caso, la siguiente instrucción despliega el número
telefónico vinculado con "Juan":

cout << mapatels["Juan"];

Debido a que "555-0001" es el valor relacionado con "Juan", esta instrucción despliega 555-0001.
Hay un aspecto muy importante del operador [] que se aplica a map y que expande en gran

medida sus capacidades. Debido a la manera en que se implementa [], siempre se tendrá éxito. Si la

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 159

clave que está buscando no se encuentra en el mapa, se inserta automáticamente, y su valor es el
del constructor predeterminado del tipo (que es cero para los tipos integrados). Por tanto, ¡siempre
encontrará cualquier clave que busque!

Como se mencionó, el valor devuelto por el operador [] es una referencia al valor asociado
con la clave usada como índice. Por tanto, puede usar el operador [] en el lado izquierdo de una
asignación para dar a un elemento un nuevo valor. Por ejemplo:

mapatels["Juan"] = "555-1234";

Esta instrucción asigna el número 555-1234 a la clave "Juan". Si "Juan" no se encuentra en el mapa,
se agregará primero automáticamente (con un valor predeterminado para la clave) y luego se asig-
na el número 555-1234. Si ya existía, entonces su valor simplemente se cambia al nuevo número.

Un tema importante: si se agregan elementos al llamar a insert() o al usar operator[](), el mapa
se mantiene en orden basado en claves.

Debido a que la clase map da soporte a iteradores bidireccionales, puede recorrerse en direc-
ciones directa e inversa mediante un iterador. Más aún, la clase map da soporte a los tipos iterator
y reverse_iterator. (También se proporcionan los tipos const correspondientes.) Debido a que los
elementos de map constan de objetos pair, los iteradores de map señalan a estos objetos.

Puede obtener un iterador al primer elemento en un mapa al llamar a begin(). Un iterador a
uno después del último elemento se obtiene al llamar a end(). Puede obtener un iterador inverso al
fi nal del mapa al llamar a rbegin() y un iterador inverso al elemento que es uno antes del principio
del mapa al llamar a rend(). Estas funciones y la técnica usada para recorrer en ciclo un contenedor
asociativo mediante el uso de un iterador se describen en Técnicas básicas de contenedor asociativo.

Puede obtener un iterador a un elemento específi co al llamar a fi nd(), que se implementa como
ésta para map:

iterator fi nd(const key_type &c)

Esta función devuelve un iterador al elemento cuya clave coincide con c. Si no se encuentra la
clave, entonces se devuelve end(). Una versión const también está disponible. Es importante
comprender que, a diferencia de [], si no se encuentra la entrada que se busca, fi nd() no creará el
elemento.

La clase map tiene las siguientes características de rendimiento. Los mapas están diseñados
por el almacenamiento efi ciente de pares clave/valor. En general, la inserción o eliminación de
elementos en un mapa tiene lugar en tiempo logarítmico. Hay dos excepciones. En primer lugar,
un elemento que se inserta en una ubicación determinada tiene lugar en tiempo constante amorti-
zado. Este tiempo también se consume cuando un elemento específi co se elimina dado un iterador
al elemento. La inserción en un mapa no invalida iteradores o referencias a elementos. Una elimi-
nación sólo invalida iteradores o referencias a los elementos eliminados.

Ejemplo
En el siguiente ejemplo se muestra map en acción. Crea un contenedor que funciona como directo-
rio telefónico, en que el nombre es la clave y el número es el valor.

// Demuestra map.
//
// Este programa crea una lista telefónica simple en
// que el nombre de una persona es la clave y el

160 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// número telefónico es el valor. Por tanto, puede
// buscar un número telefónico dado un nombre.

#include <iostream>
#include <string>
#include <map>
#include <utility>

using namespace std;

void mostrar(const char *msj, map<string, string> mt);

int main() {
 map<string, string> mapatels;

 // Inserta elementos al usar operator[].
 mapatels["Juan"] = "555-1234";
 mapatels["Diana"] = "314 555-6576";
 mapatels["Carlos"] = "660 555-9843";

 mostrar("El mapa original es: ", mapatels);
 cout << endl;

 // Ahora, cambia el número telefónico de Carlos.
 mapatels["Carlos"] = "415 997-8893";
 cout << "Nuevo n\u00a3mero para Carlos: " << mapatels["Carlos"] << "\n\n";

 // Usa find() para encontrar un número.
 map<string, string>::iterator itr;
 itr = mapatels.find("Diana");
 if(itr != mapatels.end())
 cout << "El n\u00a3mero de Diana es " << itr->second << "\n\n";

 // Bucle para map en dirección inversa.
 map<string, string>::reverse_iterator ritr;
 cout << "Despliega mapatels en orden inverso:\n";
 for(ritr = mapatels.rbegin(); ritr != mapatels.rend(); ++ritr)
 cout << " " << ritr->first << ": " << ritr->second << endl;
 cout << endl;

 // Crea un objeto pair que contendrá el resultado
 // de una llamada a insert().
 pair<map<string, string>::iterator, bool> resultado;

 // Usa insert() para agregar una entrada.
 resultado = mapatels.insert(pair<string, string>("Joel", "555-9999"));
 if(resultado.second) cout << "Joel agregado.\n";
 mostrar("mapatels tras agregar Joel: ", mapatels);

 // No se permiten claves duplicadas, como se prueba ahora.
 resultado = mapatels.insert(pair<string, string>("Joel", "555-1010"));
 if(resultado.second) cout << "Se ha agregado un duplicado de Joel added.
 error.";
 else cout << "No se permite un duplicado de Joel.\n";

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 161

 mostrar("mapatels tras tratar de agregar un duplicado a la clave Joel: ", mapatels);

 return 0;
}

// Despliega el contenido de map<string, string> al emplear
// un iterador.
void mostrar(const char *msj, map<string, string> mt) {
 map<string, string>::iterator itr;

 cout << msj << endl;

 for(itr=mt.begin(); itr != mt.end(); ++itr)
 cout << " " << itr->first << ": " << itr->second << endl;

 cout << endl;
}

Aquí se muestra la salida:

El mapa original es:
 Carlos: 660 555-9843
 Diana: 314 555-6576
 Juan: 555-1234

Nuevo número para Carlos: 415 997-8893

El número de Diana es 314 555-6576

Despliega mapatels en orden inverso:
 Juan: 555-1234
 Diana: 314 555-6576
 Carlos: 415 997-8893

Joel agregado.
mapatels tras agregar Joel:
 Carlos: 415 997-8893
 Diana: 314 555-6576
 Joel: 555-9999
 Juan: 555-1234

No se permite un duplicado de Joel.
mapatels tras tratar de agregar un duplicado a la clave Joel:
 Carlos: 415 997-8893
 Diana: 314 555-6576
 Joel: 555-9999
 Juan: 555-1234

En el programa, observe cómo se usa el operador []. En primer lugar, agrega elementos a ma-
patels en las siguientes instrucciones:

mapatels["Juan"] = "555-1234";
mapatels["Diana"] = "314 555-6576";
mapatels["Carlos"] = "660 555-9843";

162 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cuando se crea mapatels, está vacía. Por tanto, cuando se ejecutan las instrucciones anteriores, no
habrá elementos en mapatels que tengan las claves especifi cadas. Esto causa que la clave y el valor
se agreguen. (En esencia, un objeto pair que contiene la clave y el valor se construye automática-
mente y se agrega al mapa.)

El siguiente uso de [] cambia el número telefónico asociado con Carlos:

mapatels["Carlos"] = "415 997-8893";

Debido a que la clave "Carlos" ya está en el mapa, se encuentra su entrada, y su valor se establece
es el nuevo número telefónico.

Opciones
Como se explicó, map contiene pares clave/valor en que cada clave es única. Si quiere usar un
mapa que permita claves duplicadas, use multimap. Se describe en la siguiente solución.

Como se describió en Técnicas básicas de contenedor asociativo, todos los contenedores asociati-
vos dan soporte a otras dos formas de insert() además de la usada por la solución. Una forma es
especialmente útil cuando se trabaja con mapas porque le da una manera de combinar dos mapas.
Se muestra aquí:

template <class InIter> void insert(InIter inicio, InIter fi nal)

Esta función inserta el elemento en el rango de inicio a fi nal-1 en el mapa que invoca. Los elemen-
tos se insertan de tal manera que el mapa que invoca permanece ordenado. Por supuesto, los tipos
de los elementos deben coincidir con los almacenados en el mapa que invoca y duplicar elementos
que no se permiten. He aquí un ejemplo de la manera en que puede usarse esta versión de insert().
Suponiendo el programa anterior, la siguiente secuencia crea una segunda lista telefónica llamada
amigos y luego se agregan estos números a mapatels:

map<string, string> amigos;

amigos["Luis"] = "555-4857";
amigos["Carmen"] = "555-1101";
amigos["Laura"] = "555-0100";

// Inserta los elementos de amigos en mapatels.
mapatels.insert(amigos.begin(), amigos.end());

Después de que se ejecuta esta secuencia, mapatels contendrá todas las entradas originales, ade-
más de las contenidas en amigos. El mapatels resultante permanece en orden. El mapa amigos
permanecerá sin cambio.

Como todos los contenedores asociativos, map proporciona tres formas de erase() que le per-
miten eliminar elementos de un map. Se describen en Técnicas básicas de contenedor asociativo, pero
uno merece mención especial. Se muestra aquí:

size_type erase(const key_type &c)

La versión de erase() elimina el elemento con la clave pasada en c y devuelve el número de
elementos eliminados. Sin embargo, en el caso de map, nunca se eliminará más de un elemento
porque se duplican elementos que no se permiten. Por tanto, si la clave especifi cada por c existe en
el mapa que invoca, se eliminará y se devolverá 1. De otra manera, se devolverá 0.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 163

Use multimap

Componentes clave

Encabezados Clases Funciones

<map> multimap size_type erase(const key_type &c)
iterator insert(const value_type &val)
iterator fi nd(const key_type &c)
iterator upper_bound(const key_type &c)

<utility> pair

Una variable de map es multimap. Como map, multimap almacena pares clave/valor. Sin embar-
go, en un mapa múltiple, no es necesario que las claves sean únicas. En otras palabras, una clave
podría asociarse con dos o más valores diferentes. Este tipo de contenedor es útil en dos tipos
generales de situaciones. En primer lugar, ayuda en casos en que no puedan evitarse claves dupli-
cadas. Por ejemplo, un directorio telefónico en línea podría tener dos números diferentes para la
misma persona. Al usar multimap, el nombre de una persona puede usarse como una clave que se
asigna a ambos números. En segundo lugar, es muy adecuado para situaciones en que una clave
describe una relación general que existe entre sus valores. Por ejemplo, los familiares podrían re-
presentarse en un mapa múltiple que usa el apellido de la familia como clave. Los valores son los
nombres. Con este método, para encontrar todos los miembros de la familia Prado, simplemente
usaría Prado como clave.

NOTA Aparte de permitir claves duplicadas, multimap funciona de manera parecida a map, que se
describe en la solución anterior. También da soporte a todas las operaciones descritas en Técnicas
básicas de contenedor asociativo. Esta solución se concentra en los aspectos únicos de multi-
map.

Paso a paso
Para usar multimap se requieren estos pasos:

1. Cree una instancia de multimap del tipo deseado.

2. Agregue elementos, que pueden incluir claves duplicadas, al mapa múltiple, al llamar a

insert().

3. Encuentre todos los elementos con una clave especifi cada al usar fi nd() y upper_bound().

4. Elimine todos los elementos dentro de un mapa múltiple que tenga la misma clave al usar

erase().

Análisis
Aquí se muestra la especifi cación de la plantilla multimap:

template <class Key, class T, class Comp = less<Key>,
 class Allocator = allocator<pair<const Key, T> > > class multimap

164 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí, Key es el tipo de datos de las claves, T es el tipo de datos de los valores que se están almace-
nando (incluyendo en el mapa) y Comp es una función que compara dos claves. Tiene los siguien-
tes constructores:

explicit multimap(const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())
multimap(const multimap<Key, T, Comp, Allocator> &ob)
template <class InIter> multimap<InIter inicio, InIter fi nal,
 const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())

La primera forma construye un mapa múltiple vacío. La segunda, un constructor de copia de mul-
timap. La tercera forma construye un mapa múltiple que contiene los elementos en el rango inicio
a fi nal-1. La función especifi cada por fucomp determina el orden del mapa múltiple. El asignador
usado por el mapa múltiple está especifi cado por asign. Por lo general, fucomp y asign se permiten
como opción predeterminada. Para usar multimap, debe incluir <map>.

La clase multimap da soporte a iteradores bidireccionales. Por tanto, el contenedor puede
accederse mediante un iterador en direcciones directa e inversa. A diferencia de map, multimap
no da soporte al operador []. (Como no hay una asignación uno a uno de claves a valores, no es
posible indizar un objeto multimap empleando una clave.)

En general, multimap se usa como map. La principal diferencia es que se permiten las claves
duplicadas. Esta diferencia tiene su mayor impacto en dos operaciones: insertar un elemento y
encontrar un elemento. Cada una se habrá de examinar, empezando con la inserción.

Puede agregar elementos a un mapa múltiple al usar la función insert(). Hay tres versiones de
insert(). Aquí se muestra la usada en esta solución:

iterator insert(const value_type &val)

Inserta val (que es un objeto pair) en el mapa múltiple que invoca. (Al igual que map, value_type
es un typedef para pair<const Key, T>.) Debido a que se permiten claves duplicadas, val siempre
se insertará (hasta que se agote la memoria, por supuesto). La función devuelve un iterador que
señala a un elemento insertado. Por tanto, insert() siempre tiene éxito. Esto difi ere de la versión
correspondiente de insert() usada por map, que falla si hay un intento de insertar un elemento
duplicado.

Debido a que la característica defi nitoria de multimap es su capacidad de almacenar más de
un valor para una clave determinada, esto plantea la pregunta obvia: ¿cómo encuentro todos los
valores asociados con una clave? La respuesta es un poco más complicada de lo que esperaría
porque la sola función fi nd() es insufi ciente para encontrar varias coincidencias. Recuerde que
fi nd() es una función que deben implementar todos los contenedores asociativos. Se defi ne así
para multimap:

iterator fi nd(const key_type &c)

Aquí, c especifi ca la clave. Si el mapa múltiple contiene un elemento con una clave igual a c, fi nd()
devuelve un iterador al primer elemento coincidente. Si no se encuentra la clave, entonces se de-
vuelve end(). (También se proporciona una versión const de fi nd().)

Debido a que fi nd() siempre devuelve un iterador a la primera clave coincidente, no hay manera
de hacer que pase a la siguiente. En cambio, para obtener ésta, debe incrementar el iterador de-
vuelto por fi nd(). El proceso se detiene cuando se ha encontrado la última clave coincidente.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 165

El punto fi nal se obtiene mediante el uso de la función upper_bound(). Aquí se muestra su ver-
sión que no es const:

iterator upper_bound(const key_type c)

La función upper_bound() devuelve un iterador al primer elemento en el contenedor con una
clave mayor que c. En otras palabras, devuelve un iterador al elemento que viene después de los
que tienen la clave que especifi có. Por tanto, suponiendo algún mapa múltiple llamado mm, para
encontrar todas las coincidencias de una clave dada, usará una secuencia como ésta:

itr = mm.find(clave);
if(itr != end()) {
 do
 // ...
 ++itr;
 } while(itr != mm.upperbound(clave));
}

En primer lugar, se hace un intento por encontrar un elemento que coincida con la clave especi-
fi cada. Si se encuentra una coincidencia, entonces se ingresa en el bucle do. (Recuerde que fi nd()
devuelve end() si no se encuentra la clave.) Dentro del bucle, el iterador se aumenta y su valor se
comprueba contra el límite superior para la clave. Este proceso continúa hasta que itr señala al
límite superior.

Puede eliminar todos los elementos que comparten una clave dada al emplear esta forma de
erase():

size_type erase(const key_type &c)

Elimina elementos del mapa múltiple que tienen claves con el valor c. Devuelve el número de
elementos eliminados. Se da soporte a otras dos versiones de erase(), que operan en iteradores.

La clase multimap tiene las mismas características de rendimiento que map. En general, la
inserción o eliminación de elementos en un mapa tiene lugar en tiempo logarítmico. Las dos ex-
cepciones son cuando un elemento se inserta en una ubicación determinada y cuando un elemento
específi co se elimina dado un iterador a ese elemento. En estos casos, se requiere tiempo constante
amortizado. La inserción en un mapa múltiple no invalida a iteradores o referencias a elementos.
Una eliminación sólo invalida los iteradores o referencias a los elementos eliminados.

Ejemplo
En el siguiente ejemplo se demuestra la manera en que puede usarse multimap para almacenar
pares clave/valor en que pueden ocurrir duplicados. Se vuelve a trabajar el programa de ejemplo
usado por la solución anterior para que use un mapa múltiple en lugar de un mapa para almace-
nar la lista de nombres y números telefónicos.

// Demostración de multimap.
//
// Este programa usa un mapa múltiple para almacenar nombres
// y números telefónicos. Permite que un nombre se asocie
// con más de un número telefónico.

#include <iostream>
#include <map>

166 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

#include <string>
using namespace std;

void mostrarnums(const char *n, multimap<string, string> mp);

int main()
{
 multimap<string, string> mapatels;

 // Inserta elementos al usar operator[].
 mapatels.insert(pair<string, string>("Juan", "Casa: 555-1111"));
 mapatels.insert(pair<string, string>("Juan", "Trabajo: 555-1234"));
 mapatels.insert(pair<string, string>("Juan", "Celular: 555-2224"));

 mapatels.insert(pair<string, string>("Diana", "Casa: 314 555-6576"));
 mapatels.insert(pair<string, string>("Diana", "Celular: 314 555-8822"));

 mapatels.insert(pair<string, string>("Carlos", "Casa: 660 555-9843"));
 mapatels.insert(pair<string, string>("Carlos", "Trabajo: 660 555-1010"));
 mapatels.insert(pair<string, string>("Carlos", "Celular: 217 555-9995"));

 // Muestra todos los números telefónicos de Juan, Diana y Carlos
 mostrarnums("Juan", mapatels);
 cout << endl;
 mostrarnums("Diana", mapatels);
 cout << endl;
 mostrarnums("Carlos", mapatels);
 cout << endl;

 // Ahora elimina todos los números telefónicos de Carlos:
 cout << "Eliminando todos los n\u00a3meros de Carlos.\n";
 int cuenta = mapatels.erase("Carlos");
 cout << "Se han eliminado " << cuenta << " elementos.\n\n";

 cout << "Tras eliminar a Carlos, fallan los intentos de encontrar el
 n\u00a3mero:\n";
 mostrarnums("Carlos", mapatels);

 return 0;
}

// Muestra todos los números para un nombre dado.
void mostrarnums(const char *n, multimap<string, string> mmp) {
 multimap<string, string>::iterator itr;

 // Encuentra la primera clave coincidente.
 itr = mmp.find(n);

 // Si se encontró la clave, se despliegan todos los números
 // telefónicos que tienen esa clave.
 if(itr != mmp.end()) {
 cout << "Los n\u00a3meros de " << n << ": " << endl;
 do {
 cout << " " << itr->second << endl;

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 167

 ++itr;
 } while (itr != mmp.upper_bound(n));
 }
 else
 cout << "No se han encontrado entradas para " << n << ".\n";
}

Aquí se muestra la salida:

Los números de Juan:
 Casa: 555-1111
 Trabajo: 555-1234
 Celular: 555-2224

Los números de Diana:
 Casa: 314 555-6576
 Celular: 314 555-8822

Los números de Carlos:
 Casa: 660 555-9843
 Trabajo: 660 555-1010
 Celular: 217 555-9995

Eliminando todos los números de Carlos.
Se han eliminado 3 elementos.

Tras eliminar a Carlos, fallan los intentos de encontrar el número:
No se han encontrado entradas para Carlos.

Hay tres características importantes en este programa. En primer lugar, observe cómo se usa
insert() para insertar elementos con claves duplicadas en mapatels, que en este programa es
multimap. Como se explicó, insert() siempre tendrá éxito (hasta que se agote la memoria, por
supuesto) debido a que multimap permite claves duplicadas. En segundo lugar, tome nota de que
se encuentran todos los elementos con una clave específi ca. Como se explicó en el análisis anterior,
para encontrar todas las entradas coincidentes con una clave dada, encuentre la primera clave al
llamar a fi nd(). Luego, encuentre las claves coincidentes subsecuentes al incrementar el iterador
devuelto por fi nd() hasta que sea igual al límite superior, como se obtiene de upper_bound(). Por
último, tome nota de que esta llamada a erase() elimina todos los elementos que contiene la clave
"Carlos":

int cuenta = mapatels.erase("Carlos");

Si quiere eliminar un elemento específi co que tenga la clave "Carlos", entonces necesitará encon-
trar primero la entrada que quiera borrar y eliminarla usando otra forma de erase(). Este procedi-
miento se describe en la secuencia Opciones de esta solución.

Opciones
Como se explicó, esta forma de erase() elimina todos los elementos que comparten la clave especi-
fi cada:

size_type erase(const key_type &c)

168 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Elimina elementos que tienen claves con el valor c. Si quiere eliminar uno o más elementos específi -
cos, entonces necesitará usar una de las otras formas de erase(). Recuerde que todos los contenedo-
res asociativos, incluido multimap, dan soporte a las siguientes formas adicionales de erase():

void erase(iterator i)
void erase(iterator inicio, iterator fi nal)

La primera forma elimina el elemento señalado por i. La segunda elimina los elementos en el rango de
inicio a fi nal-1. Puede usar estas formas para eliminar elementos específi cos de un multimap. Por ejem-
plo, suponiendo el programa anterior, la siguiente secuencia elimina el número telefónico de Carlos:

multimap<string, string::iterator itr;

// Encuentra la primera clave coincidente.
itr = mapatels.find("Carlos");

// Ahora, busca el número telefónico específico que se eliminará.
if(itr != mapatels.end()) {
 do {
 // Si la entrada contiene el teléfono del trabajo, lo elimina.
 if(itr->second.find("Trabajo") != string::npos) {
 mapatels.erase(itr);
 break;
 }

 ++itr
 } while (itr != mapatels.upper_bound("Carlos"));
}

Esta secuencia funciona al encontrar el primer elemento coincidente con la clave "Carlos". Luego
usa un bucle para revisar todos los elementos con la clave "Carlos" para ver si uno de ellos con-
tiene el número telefónico del trabajo. En la lista, los números del trabajo están antecedidos por la
subcadena "Trabajo", de modo que se revisa cada valor para ver si contiene la subcadena "Trabajo".
Si la incluye, la entrada se elimina y se termina el bucle.

En ocasiones, es útil conocer los puntos de inicio y fi nal de un conjunto de elementos que com-
parten una clave. Para realizar esto, utilice equal_range(), como se muestra aquí:

pair<iterator, iterator> equal_range(const key_type &c)

Devuelve un objeto pair que contiene iteradores que señalan al límite inferior (en el campo fi rst) y
el límite superior (en el campo second) en el mapa múltiple para la clave especifi cada. (También se
proporciona una versión const de la función.) Aunque todos los contenedores asociativos propor-
cionan equal_range(), es más útil con los que permiten duplicar claves. Recuerde que el límite
inferior es el primer elemento que tiene una clave que es igual o mayor que c, y el límite superior
es el primer elemento que tiene una clave mayor que c. Suponiendo el programa anterior, he aquí
un ejemplo que muestra cómo puede usarse equal_range() para desplegar todos los números
telefónicos de Carlos:

multimap<string, string::iterator itr;
pair< multimap<string, string::iterator,
 multimap<string, string::iterator> pr;
pr = mapatels.equal_range("Carlos");

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 169

itr = pr.first;

cout << "Los n\u00a3meros de carlos:\n";
while(itr != pr.second) {
 cout << itr->second << ende;
 ++itr;
}

Use set y multiset

Componentes clave

Encabezados Clases Funciones

<set> set size_type erase(const key_type &val)
iterator fi nd(const key_type &val)
pair<iterator, bool>
 insert(const value_type &val)

<set> multiset size_type erase(const key_type &val)
iterator fi nd(const key_type &val)
pair<iterator, bool>
 insert(const value_type &val)
iterator upper_bound(const key_type &val)
 const

En esta solución se demuestran set y multiset. Los contenedores de set son similares a los de ma-
pas, excepto que la clave y el valor no están separados entre sí. Es decir, los conjuntos almacenan
objetos en que la clave es parte del valor. En realidad, si utiliza un conjunto para almacenar uno de
los tipos integrados, como un entero, la clave y el valor son iguales. Los conjuntos proporcionan
contenedores muy efi cientes cuando no es necesario separar la clave de los datos. El contenedor
set requiere que todas las claves sean únicas. El contenedor multiset permite claves duplicadas.
Aparte de esta diferencia, set y multiset funcionan de maneras similares.

Debido a que set y multiset almacenan objetos en que la clave y el valor son inseparables,
podría pensar inicialmente que las aplicaciones para set y multiset están muy limitadas. En
realidad, cuando almacena tipos simples, como int o char, un set simplemente crea una lista
ordenada. Sin embargo, el poder de los conjuntos se vuelve evidente cuando se almacenan los
objetos. En este caso, la clave del objeto se determina con el operador < y/o == defi nido por la
clase. Por tanto, la clave del objeto podría constar de una sola parte de éste. Esto signifi ca que
set puede proporcionar un medio muy efi ciente para almacenar objetos que se recuperan con
base en el valor de un campo defi nido por el objeto. Por ejemplo, podría usar set para almacenar
objetos que contienen información de empleados, como nombre, dirección, número telefónico
y un número de ID. En este caso, el número de ID podría usarse como clave. Debido a que el
principal uso de set y multiset es para contener objetos en lugar de valores simples, éste es el eje
de la solución.

170 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

NOTA Las técnicas necesarias para set y multiset son similares a las usadas por map y multimap,
y no se repetirán aquí sus análisis. Para conocer información general sobre el uso de contenedores
asociativos, consulte Técnicas básicas de contenedor asociativo. Además, consulte Use map y
Use multimap para conocer información relacionada.

Paso a paso
Para usar set se requieren los pasos siguientes:

1. Cree una instancia de set del tipo deseado.

2. Agregue elementos al conjunto al llamar a insert(). Cada clave de elemento debe ser única.

3. Encuentre un elemento específi co en un conjunto al llamar a fi nd().

4. Elimine un elemento con una clave especifi cada al llamar a erase().

Para usar multiset, se requieren los pasos siguientes:

1. Cree una instancia de multiset del tipo deseado.

2. Agregue elementos al conjunto al llamar a insert(). Se permiten claves duplicadas.

3. Encuentre todos los elementos con una clave específi ca usando fi nd() y upper_bound().

4. Elimine todos los elementos que tengan la misma clave usando erase().

Análisis
La clase set da soporte a un conjunto en que se almacenan claves únicas en orden ascendente.
Aquí se muestra su especifi cación de plantilla:

template <class Key, class Comp, = less<Key>,
 class Allocator = allocator<Key> > class set

Aquí, Key es el tipo de datos de las claves (que también contienen los datos) y Comp es una fun-
ción que compara dos claves. La clase set tiene los siguientes constructores:

explicit set(const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())
set(const set<Key, Comp, Allocator> &ob)
template <class InIter> map<InIter inicio, InIter fi nal,
 const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())

La primera forma construye un conjunto vacío. La segunda es el constructor de copia de set. La
tercera construye un conjunto que contiene los elementos especifi cados por el rango de inicio a
fi nal-1. La función especifi cada por fucomp, si está presente, determina el orden del conjunto. Como
opción predeterminada, se utiliza less. Para usar set debe incluir <set>.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 171

La clase multiset da soporte a un conjunto en que se permiten claves duplicadas. Aquí se
muestra su especifi cación de plantilla:

template <class Key, class Comp, = less<Key>,
 class Allocator = allocator<Key> > class multiset

Aquí, Key es el tipo de datos de las claves y Comp es una función que compara dos claves.
La clase multiset tiene los siguientes constructores:

explicit multiset(const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())
multiset(const multiset<Key, Comp, Allocator> &ob)
template <class InIter> map<InIter inicio, InIter fi nal,
 const Comp &fucomp = Comp(),
 const Allocator &asign = Allocator())

La primera forma construye un conjunto múltiple vacío. La segunda construye un conjunto múl-
tiple que contiene los mismos elementos que ob. La tercera construye un conjunto múltiple que
contiene los elementos especifi cados por el rango de inicio a fi nal-1. La función especifi cada por
fucomp, si está presente, determina el orden del conjunto. Como opción predeterminada, less es la
función de comparación. El encabezado para multiset también es <set>.

Tanto set como multiset dan soporte a iteradores bidireccionales. Por tanto, es posible acceder
a los contenedores mediante un iterador en las direcciones directa e inversa, pero no se da soporte a
las operaciones de acceso aleatorio.

Las funciones insert(), erase() y fi nd() se describen en Técnicas básicas de contenedor asociativo.
He aquí una breve revisión de las formas usadas por esta solución. Cuando se usa con set, esta
versión de insert()

pair<iterator, bool> insert(const value_type &val)

fallará si val contiene una clave que ya se encuentra en el contenedor. (En este caso, se devuelve
false en el campo second del objeto pair, y un iterador al elemento existente en el campo fi rst.)
Cuando se usa con multiset, insert() siempre tendrá éxito. En ambos casos, cuando insert() tiene
éxito, el campo fi rst del objeto pair devuelto contendrá un iterador que señala al objeto insertado.

Cuando se usa con set, esta forma de erase()

size_type erase(const key_type &val)

elimina el elemento cuya clave coincide con val. Cuando se usa con multiset, elimina todos
los elementos cuyas claves coinciden con val. En ambos casos, se devuelve el número de elementos
eliminados.

A continuación se muestra la función fi nd():

iterator fi nd(const key_type &val)

Para set, devuelve un iterador al elemento cuya clave coincide con val. Para multiset, devuelve un
iterador al primer elemento cuya clave coincide con val. Para encontrar todos los elementos con
claves coincidentes, use upper_bound() para establecer el límite superior. Todos los elementos que
se encuentran entre los señalados por fi nd() y por upper_bound() contendrán claves coincidentes.

172 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Como se explicó en Almacene en un contenedor objetos defi nidos por el usuario, en general, para
que un objeto se almacene en un contenedor asociativo, su clase debe sobrecargar el operador <. Esto
se debe a que los contenedores asociativos se ordenan al usar el operador <. El operador < tam-
bién se usa con las funciones fi nd(), upper_bound(), lower_bound() y equal_range(). Por tanto,
el secreto del uso de set para almacenar objetos de clase es el operator < () correctamente sobrecar-
gado. Por lo general, el operador < está defi nido de manera tal que sólo un miembro de la clase se
compara. Este miembro, por tanto, forma la clave, aunque toda la clase forma el elemento.
En algunos casos, también necesita defi nir operator==().

NOTA De acuerdo con la experiencia del autor, hay alguna variación entre compiladores precisamente
en los operadores y funciones que debe defi nir una clase para que se almacenen instancias de esa
clase en un contenedor. Esto resulta especialmente cierto en compiladores antiguos. Como resultado,
tal vez encuentre que deben sobrecargarse operadores adicionales.

Ejemplo
En el siguiente ejemplo se muestra set en acción. Se usa para almacenar objetos que contienen
información de empleados. El ID de empleado se usa como una clave. Por tanto, operator<() se
implementa de modo que compara ID. Observe que operator==() también está implementado.
Este operador no es necesario para el siguiente programa, pero se necesita en algunos algoritmos,
como fi nd(). Por tanto, se incluye para que esté completo. (Recuerde que, dependiendo de la im-
plementación y el uso, tal vez deban defi nirse otras funciones.)

// Demuestra set.
//
// Este ejemplo almacena objetos que contienen
// información de empleados. El ID se usa como clave.

#include <iostream>
#include <set>
#include <string>

using namespace std;

// Esta clase almacena información del empleado.
class empleado {
 string nombre;
 string ID;
 string telefono;
 string departamento;
public:
 // Constructor predeterminado.
 empleado() { ID = nombre = telefono = departamento = ""; }

 // Construye un objeto temporal usando sólo el ID, que es la clave.
 empleado(string id) { ID = id;
 nombre = telefono = departamento = ""; }

 // Construye un objeto de empleado completo.
 empleado(string n, string id, string dept, string p)
 {

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 173

 nombre = n;
 ID = id;
 telefono = p;
 departamento = dept;
 }

 // Acceso a funciones para datos del empleado.
 string obtener_nombre() { return nombre; }
 string obtener_id() { return ID; }
 string obtener_depto() { return departamento; }
 string obtener_tel() { return telefono; }

};

// Compara objetos usando el ID.
bool operator<(empleado a, empleado b)
{
 return a.obtener_id() < b.obtener_id();
}

// Revisa la igualdad con base en ID.
bool operator==(empleado a, empleado b)
{
 return a.obtener_id() == b.obtener_id();
}

// Crea un objeto para insertar datos de empleados.
ostream &operator<<(ostream &s, empleado &o)
{
 s << o.obtener_nombre() << endl;
 s << "Emp#: " << o.obtener_id() << endl;
 s << "Dept: " << o.obtener_depto() << endl;
 s << "telefono: " << o.obtener_tel() << endl;

 return s;
}

int main()
{
 set<empleado> listaemps;

 // Inicializa la lista empleado.
 listaemps.insert(empleado("Sergio Prado", "9423",
 "Atenci\u00a2n a clientes", "555-1010"));

 listaemps.insert(empleado("Susana Torres", "8723",
 "Ventas", "555-8899"));

 listaemps.insert(empleado("Aldo Montes", "5719",
 "Reparaciones", "555-0174"));

 // Crea un iterador al conjunto.
 set<empleado>::iterator itr = listaemps.begin();

174 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Despliega el contenido del conjunto.
 cout << "El conjunto actual: \n\n";
 do {
 cout << *itr << endl;
 ++itr;
 } while(itr != listaemps.end());
 cout << endl;

 // Encuentra un empleado específico.
 cout << "Buscando al empleado 8723.\n";
 itr = listaemps.find(empleado("8723"));
 if(itr != listaemps.end()) {
 cout << "Encontrado. Su informaci\u00a2n es:\n";
 cout << *itr << endl;
 }

 return 0;
}

Aquí se muestra la salida:

El conjunto actual:

Aldo Montes
Emp#: 5719
Dept: Reparaciones
Tel: 555-0174

Susana Torres
Emp#: 8723
Dept: Ventas
Tel: 555-8899

Sergio Prado
Emp#: 9423
Dept: Atención a clientes
Tel: 555-1010

Buscando al empleado 8723.
Encontrado. Su información es:
Susana Torres
Emp#: 8723
Dept: Ventas
Tel: 555-8899

Ejemplo adicional: use multiset para almacenar objetos
con claves duplicadas
Como ya se explicó, la diferencia entre set y multiset es que un conjunto debe contener claves
únicas, pero un conjunto múltiple puede almacenar claves duplicadas. En general, multiset se ma-
neja de la misma manera que multimap. Por ejemplo, para encontrar todos los elementos con una
clave dada, llame a fi nd() para obtener un iterador a la primera clave coincidente. Luego aumente

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 175

ese iterador para obtener el siguiente elemento hasta que el iterador sea igual al límite superior.
(Consulte Use multimap para conocer una descripción detallada de esta técnica.) Un mecanismo
similar se utiliza para encontrar un elemento específi co. Encuentre la primera clave coincidente.
Luego busque el elemento específi co dentro del rango delimitado.

Con el siguiente programa se demuestra la manera en que un conjunto múltiple puede almace-
nar elementos con claves duplicadas. Se ha vuelto a trabajar el ejemplo anterior para que la clave sea
el departamento en lugar de ID. Esto signifi ca que operator<() ha cambiado para comparar nombres
de departamento en lugar de ID. Luego el programa despliega todos los empleados en el departa-
mento de Reparaciones. Termina al mostrar la información para Cecilia Lona en ese departamento.

// Demuestra multiset.
//
// Este ejemplo almacena objetos que contienen
// información de empleados. Se usa como clave
// el nombre del departamento.

#include <iostream>
#include <set>
#include <string>

using namespace std;

// Esta clase almacena información del empleado.
class empleado {
 string nombre;
 string ID;
 string telefono;
 string departamento;
public:
 // Constructor predeterminado.
 empleado() { ID = nombre = telefono = departamento = ""; }

 // Construye un objeto temporal usando sólo el departamento,
 // que es la clave.
 empleado(string d) { departamento = d;
 nombre = telefono = ID = ""; }

 // Construye un objeto de empleado completo.
 empleado(string n, string id, string dept, string p)
 {
 nombre = n;
 ID = id;
 telefono = p;
 departamento = dept;
 }

 // Acceso a funciones para datos del empleado.
 string obtener_nombre() { return nombre; }
 string obtener_id() { return ID; }
 string obtener_depto() { return departamento; }
 string obtener_tel() { return telefono; }

};

176 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Compara objetos usando el departamento.
bool operator<(empleado a, empleado b)
{
 return a.obtener_depto() < b.obtener_depto();
}

// Crea un objeto para insertar datos de empleados.
ostream &operator<<(ostream &s, empleado &o)
{
 s << o.obtener_nombre() << endl;
 s << "Emp#: " << o.obtener_id() << endl;
 s << "Dept: " << o.obtener_depto() << endl;
 s << "Tel: " << o.obtener_tel() << endl;

 return s;
}

int main()
{
 multiset<empleado> listaemps;

 // Initialize the empleado list.
 listaemps.insert(empleado("Sergio Prado", "9423",
 "Atenci\u00a2n a clientes", "555-1010"));

 listaemps.insert(empleado("Susana Torres", "8723",
 "Ventas", "555-8899"));

 listaemps.insert(empleado("Aldo Montes", "5719",
 "Reparaciones", "555-0174"));

 listaemps.insert(empleado("Cecilia Lona", "0719",
 "Reparaciones", "555-0175"));

 // Declara un iterador al conjunto múltiple.
 multiset<empleado>::iterator itr = listaemps.begin();

 // Despliega el contenido del conjunto múltiple.
 cout << "El conjunto actual: \n\n";
 do {
 cout << *itr << endl;
 ++itr;
 } while(itr != listaemps.end());
 cout << endl;

 // Encuentra a todos los empleados en el departamento Reparaciones.

 cout << "Todos los empleados del departamento de Reparaciones:\n\n";
 empleado e("Reparaciones"); // objeto temporal que contiene la clave Reparaciones.

 itr = listaemps.find(e);
 if(itr != listaemps.end()) {
 do {

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 177

 cout << *itr << endl;
 ++itr;
 } while(itr != listaemps.upper_bound(e));
 }

 // Ahora encuentra a Cecilia Lona en Reparaciones.
 cout << "Buscando a Cecilia Lona en Reparaciones:\n";
 itr = listaemps.find(e);
 if(itr != listaemps.end()) {
 do {
 if(itr->obtener_nombre() == "Cecilia Lona") {
 cout << "Encontrada:\n";
 cout << *itr << endl;
 break;
 }
 ++itr;
 } while(itr != listaemps.upper_bound(e));
 }

 return 0;
}

Aquí se muestra la salida:

El conjunto actual:

Sergio Prado
Emp#: 9423
Dept: Atención a clientes
Tel: 555-1010

Aldo Montes
Emp#: 5719
Dept: Reparaciones
Tel: 555-0174

Cecilia Lona
Emp#: 0719
Dept: Reparaciones
Tel: 555-0175

Susana Torres
Emp#: 8723
Dept: Ventas
Tel: 555-8899

Todos los empleados del departamento de Reparaciones:

Aldo Montes
Emp#: 5719
Dept: Reparaciones
Tel: 555-0174

178 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cecilia Lona
Emp#: 0719
Dept: Reparaciones
Tel: 555-0175

Buscando a Cecilia Lona en Reparaciones:
Encontrada:
Cecilia Lona
Emp#: 0719
Dept: Reparaciones
Tel: 555-0175

Opciones
Como todos los certifi cados asociativos, set y multiset defi nen tres versiones de erase(). Una es la
descrita en esta solución. Aquí se muestran las otras formas:

void erase(iterator i)
void erase(iterator inicio, iterator fi nal)

La primera forma elimina el elemento señalado por i. La segunda elimina los elementos en el ran-
go de inicio a fi nal-1. Estas formas son especialmente útiles cuando quiere eliminar un elemento es-
pecífi co del conjunto múltiple. Como se explicó, la forma de erase() usada por la solución elimina
todos los elementos cuyas claves coinciden con una clave especifi cada. Debido a que un conjunto
múltiple permite que más de un elemento tenga la misma clave, si quiere eliminar un elemento
específi co, entonces necesitará encontrar ese elemento y eliminarlo al usar erase(iterator). (Consul-
te Use multimap para conocer un ejemplo que use este método.)

Los contenedores set y multiset también dan soporte a las tres formas estándar de insert().
Entre éstas se incluye la usada por la solución y las dos formas mostradas aquí:

iterator insert(iterator i, const value_type &val)
template <class InIter> void insert(InIter inicio, InIter fi nal)

Para el caso de multiset, la primera forma inserta val en el contenedor. Para set, val se inserta si
no contiene una clave duplicada. En todos los casos, se devuelve un iterador al elemento con la
misma clave. El iterador especifi cado por i indica dónde iniciar la búsqueda del punto de inserción
apropiado. Debido a que los conjuntos se almacenan con base en claves, debe tratar de usar un
valor para i que sea cercano al punto de inserción. La segunda versión inserta los elementos en
el rango de inicio a fi nal-1. Por supuesto, cuando se usan con set, no se insertan los elementos con
claves duplicadas.

Cuando se usa un multiset, en ocasiones es útil saber los puntos inicial y fi nal de un rango de
elementos que comparten una clave. Para realizar esto, use equal_range(), que se muestra aquí:

pair<iterator, iterator> equal_range(const key_type &c)

Devuelve un objeto pair que contiene iteradores que señalan al límite inferior (en el campo fi rst)
y superior (en el campo second) en el conjunto múltiple correspondiente a la clave especifi cada.
(También se proporciona una versión const de la función.) Recuerde que el límite inferior es el
primer elemento que tiene una clave que es igual o mayor que c, y el límite superior es el primer
elemento que tiene una clave mayor que c. Por tanto, equal_range() devuelve iteradores al rango
de elementos que comparten una clave común.

 C a p í t u l o 3 : T r a b a j o c o n c o n t e n e d o r e s S T L 179

Si quiere almacenar un conjunto de bits, considere la clase bitset. Utiliza el encabezado <bit-
set> y crea un contenedor especializado para valores de bits. Sin embargo, la clase bitset no es un
contenedor plenamente formado y no es parte de la STL. Sin embargo, para algunas aplicaciones,
bitset podría ser una mejor opción que un contenedor STL completo.

Aunque set y multiset son muy útiles en algunas aplicaciones, son preferibles map y multi-
map por dos razones. En primer lugar, proporcionan las implementaciones prototípicas de con-
tenedores que contienen pares clave/valor, porque la clave está separada del valor. En segundo
lugar, la clave puede cambiar sin que necesite un cambio a la implementación de operator<() en
los objetos que se están almacenando. Por supuesto, en todos los casos, debe usar el contenedor
más adecuado para sus aplicaciones.

 181

E
n esencia, STL consta de contenedores, iteradores y algoritmos. De ellos, los dos primeros
fueron el eje del capítulo 3. El tema central de este capítulo son los algoritmos. Debido
al gran número de algoritmos, no es posible presentar una solución para cada uno. En

cambio, se muestra cómo usar algoritmos para manejar diversas situaciones de programación
STL. Estas soluciones también forman una muestra representativa de técnicas que pueden gene-
ralizarse a otros algoritmos. Por tanto, si no encuentra una solución que describa directamente
lo que desea hacer, tal vez pueda adaptar una. Este capítulo también incluye soluciones que
demuestran otras partes clave de la STL, incluidos objetos de función, adhesivos y negadores.
También hay soluciones que demuestran un adaptador de función, tres adaptadores de iterador
y los iteradores de fl ujo.

He aquí las soluciones contenidas en este capítulo:

Ordene un contenedor

Encuentre un elemento en un contenedor

Use search() para encontrar una secuencia coincidente

Invierta, gire y modifi que el orden de una secuencia

Recorra en ciclo un contenedor con for_each()

Use transform() para cambiar una secuencia

Realice operaciones con conjuntos

Permute una secuencia

Copie una secuencia de un contenedor a otro

Reemplace y elimine elementos en un contenedor

Combine dos secuencias ordenadas

Cree y administre un heap

Cree un algoritmo

Use un objeto de función integrado

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4
C A P Í T U L O

Algoritmos, objetos de función

y otros componentes de STL

182 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cree un objeto de función personalizado

Use un adhesivo

Use un negador

Use el adaptador de apuntador a función

Use los iteradores de fl ujo

Use los adaptadores de iterador de inserción

Revisión general de los algoritmos

Los algoritmos expanden el poder y el alcance de STL al proporcionar una base común de funcio-
nalidad que está disponible para todos los contenedores. También ofrecen soluciones listas para
usarse a varias tareas de programación difíciles. Por ejemplo, hay algoritmos que buscan en una
secuencia la ocurrencia de otra, que ordenan una secuencia o que aplican una transformación a
una secuencia. Junto con los contenedores e iteradores, defi nen la esencia de STL.

¿Por qué se necesitan los algoritmos?
Los algoritmos son uno de los tres principales componentes de STL, y ofrecen funcionalidad no
proporcionada por los propios contenedores. Como se ha mostrado en el capítulo anterior, la clase
contenedora incluye varias funciones que dan soporte a una amplia variedad de operaciones. Este
hecho plantea la siguiente pregunta: ¿Por qué se necesitan algoritmos separados? La respuesta
tiene tres partes.

En primer lugar, los algoritmos permiten que dos tipos diferentes de contenedores operen al
mismo tiempo. Debido a que casi todos los algoritmos operan mediante iteradores, el mismo algo-
ritmo puede usar iteradores a diferentes tipos de contenedores. Por ejemplo, el algoritmo merge()
puede usarse para combinar un vector con una lista.

En segundo lugar, los algoritmos contribuyen a la extensibilidad de STL. Debido a que un
algoritmo puede operar en cualquier tipo de contenedor que reúne los requisitos mínimos, es po-
sible crear nuevos contenedores que puedan manipularse mediante algoritmos estándar. Siempre
y cuando un contenedor dé soporte a iteradores (lo que todos los contenedores deben hacer), los
algoritmos de STL pueden usarlo. También es posible crear nuevos algoritmos. Siempre y cuando
el nuevo opere mediante iteradores, puede aplicarse a cualquier contenedor.

En tercer lugar, los algoritmos mejoran STL. Debido a que proporcionan operaciones que
pueden aplicarse a un amplio rango de contenedores, no es necesario que las funciones miembro
de cada contenedor dupliquen esta funcionalidad. También le dan al programador una manera
consistente de realizar una operación que puede aplicarse a cualquier tipo de contenedor.

Los algoritmos son funciones de plantilla
Los algoritmos de STL son funciones de plantilla. Esto signifi ca que pueden aplicarse a cualquier
tipo de contenedor. Con muy pocas excepciones, los algoritmos operan mediante iteradores. (Las
excepciones usan parámetros de referencia.) Todos los algoritmos de STL requieren el encabezado
<algorithm>.

En las descripciones de algoritmos encontradas en este capítulo, se usan los siguientes nom-
bres de tipo de iterador genérico.

•

•

•

•

•

•

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 183

Nombre genérico Representa

BiIter Iterador bidireccional

ForIter Iterador directo

InIter Iterador de entrada

OutIter Iterador de salida

RandIter Iterador de acceso aleatorio

No todos los algoritmos funcionarán con todos los tipos de iteradores. Por ejemplo, el algorit-
mo sort() requiere iteradores de acceso aleatorio. Esto signifi ca que sort() puede usarse en conte-
nedores de list, por ejemplo. (Por esto es por lo que list proporciona sus propias funciones para
ordenar listas.) Cuando se elige un algoritmo, debe asegurarse de que el contenedor en que se
operará proporciona los iteradores necesarios.

Además de los iteradores, los prototipos de algoritmos a menudo especifi can varios otros nom-
bres de tipo genéricos, que se usan para representar predicados, funciones de comparación, etc.
Aquí se muestran los usados en este capítulo:

T Algún tipo de datos

Size Algún tipo de entero

Func Algún tipo de función

Generator Una función que genera objetos

BinPred Predicado binario

UnPred Predicado unario

Comp Función de comparación

Las categorías de algoritmos
La STL defi ne un amplio número de algoritmos, y es común agruparlos por categoría. Hay mu-
chas maneras de hacerlo. Una está integrada por las categorías usadas por el estándar internacio-
nal para C++, que se muestran aquí:

Operaciones con secuencias que no se modifi can

Operaciones con secuencias que se modifi can

Operaciones de ordenamiento y relacionadas

De la tabla 4-1 a la 4-3 se muestran los algoritmos que comparan cada una de estas categorías.
Las operaciones con secuencias que no se modifi can no cambian los contenedores sobre los que
operan. Las operaciones que se modifi can sí. La categoría de ordenamiento incluye los diversos
algoritmos de orden, además de los algoritmos que necesitan una secuencia ordenada o que, de
una u otra manera, ordenan una secuencia.

Aunque las categorías defi nidas en el estándar C++ son útiles, cada una contiene una gran
cantidad de algoritmos. Otra manera de organizar los algoritmos consiste en ordenarlos en grupos
más pequeños, funcionales, como los mostrados en la tabla 4-4.

•

•

•

184 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Algoritmo Objetivo

adjacent_fi nd Busca elementos coincidentes adyacentes dentro de una secuencia y devuelve
un iterador a la primera coincidencia.

count Devuelve el número de elementos en la secuencia.

count_if Devuelve el número de elementos en la secuencia que satisfagan algún
predicado.

equal Determina si dos rangos son iguales.

fi nd Busca un valor en un rango y devuelve un iterador a la primera ocurrencia del
elemento.

fi nd_end Busca una subsecuencia en un rango. Devuelve un iterador a la última ocurren-
cia de la subsecuencia dentro del rango.

fi nd_fi rst_of Encuentra el primer elemento dentro de una secuencia que coincide con un
elemento dentro de un rango.

fi nd_if Busca, en un rango, un elemento para el que un predicado unario defi nido por el
usuario devuelve true.

for_each Aplica una función a un rango de elementos.

mismatch Encuentra la primera falta de coincidencia entre elementos de dos secuencias.
Se devuelven iteradores a los dos elementos.

search Busca una subsecuencia dentro de una secuencia.

search_n Busca una secuencia de un número especifi cado de elementos similares.

TABLA 4-1 Algoritmos de secuencias que no se modifi can.

Revisión general de objetos de función

Los objetos de función son clases que defi nen operator(). A menudo, puede emplearse un obje-
to en lugar de un apuntador a función, como cuando se pasa un predicado a un algoritmo. Los
objetos de función ofrecen más fl exibilidad que los apuntadores a funciones, y pueden ser más
efi cientes en algunas situaciones. La STL proporciona muchos objetos de función integrados, como
less y minus. También puede defi nir los propios.

Hay dos tipos de objetos de función: unarios y binarios. Un objeto de función unaria requiere
un argumento; uno binario requiere dos. Debe usar el tipo de función requerido. Por ejemplo, si un
algoritmo está esperando una función binaria, debe pasarle un objeto de función binaria.

Aquí se muestran los objetos de función binaria integrados:

plus minus multiplies divides modulus

equal_to not_equal_to greater greater_equal less

less_equal logical_and logical_or

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 185

Algoritmo Propósito

copy Copia una secuencia.

copy_backward Igual que copy(), excepto que mueve los elementos del fi nal de la primera secuencia.

fi ll Llena un rango con el valor especifi cado.

fi ll_n Asigna un número específi co de elementos con un valor especifi cado.

generate Asigna los elementos en uno de los valores devueltos por una función generadora.

generate_n Asigna a un número especifi cado de elementos los valores devueltos por una función
generadora.

iter_swap Intercambia los valores señalados por sus dos argumentos de iterador.

partition Organiza una secuencia de modo tal que todos los elementos para los que un predicado
devuelve true vengan antes de aquellos para los que el predicado devuelve false.

random_shuffl e Organiza aleatoriamente una secuencia.

replace Reemplaza elementos en una secuencia.

replace_copy Reemplaza elementos mientras se copia.

replace_copy_if Mientras se copia, reemplaza elementos para los que un predicado unario defi nido por el
usuario es true.

replace_if Reemplaza elementos para los que un predicado unario defi nido por el usuario es true.

remove Elimina elementos de un rango especifi cado.

remove_copy Elimina y copia elementos de un rango especifi cado.

remove_copy_if Mientras se copia, elimina elementos de un rango especifi cado para el que un predicado
unario defi nido por el usuario es true.

remove_if Elimina elementos de un rango especifi cado para el que un predicado unario defi nido por
el usuario es true.

reverse Invierte el orden de un rango.

reverse_copy Invierte el orden de un rango mientras se copia.

rotate Gira a la izquierda los elementos en un rango.

rotate_copy Gira a la izquierda los elementos en un rango mientras se copia.

stable_partition Organiza una secuencia de modo tal que todos los elementos para los que un predica-
do devuelve true vengan antes de aquellos para los que el predicado devuelve false. El
particionamiento es estable. Esto signifi ca que se preserva el ordenamiento relativo de la
secuencia.

swap Intercambia dos valores.

swap_ranges Intercambia elementos en un rango.

transform Aplica una función a un rango de elementos y almacena la salida en una nueva secuencia.

unique Elimina elementos duplicados de un rango.

unique_copy Elimina elementos duplicados de un rango mientras se copia.

TABLA 4-2 Operaciones de secuencias que se modifi can.

186 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Algoritmo Propósito

binary_search Realiza una búsqueda binaria en una secuencia ordenada.

equal_range Devuelve un rango en que puede insertarse un elemento en una secuencia sin
modifi car el orden de la misma.

includes Determina si una secuencia incluye todos los elementos en otra secuencia.

inplace_merge Mezcla un rango con otro. Ambos rangos deben ordenarse en orden creciente.
La secuencia resultante se ordena.

lexicographical_compare Compara lexicográfi camente una secuencia con otra.

lower_bound Encuentra el primer punto en la secuencia que no es menor que un valor espe-
cifi cado.

make_heap Construye un heap a partir de una secuencia.

max Devuelve el máximo de dos valores.

max_element Devuelve un iterador al elemento máximo dentro de un rango.

merge Mezcla dos secuencias ordenadas, colocando el resultado en una tercera
secuencia.

min Devuelve el mínimo de dos valores.

min_element Devuelve un iterador al elemento mínimo dentro de un rango.

next_permutation Construye la siguiente permutación de una secuencia.

nth_element Organiza una secuencia de modo tal que todos los elementos menores que un
elemento E especifi cado vengan antes de ese elemento y todos los elementos
mayores que E vengan después de él.

partial_sort Ordena un rango.

partial_sort_copy Ordena un rango y luego copia todos los elementos que quepan dentro de una
secuencia resultante.

pop_heap Intercambia el primero y el último-1 elementos y luego reconstruye el heap.

prev_permutation Construye la permutación previa de una secuencia.

push_heap Incluye un elemento al fi nal de una heap.

set_difference Produce una secuencia que contiene la diferencia entre dos conjuntos ordenados.

set_intersection Produce una secuencia que contiene la intersección entre dos conjuntos
ordenados.

set_symmetric_difference Produce una secuencia que contiene la diferencia simétrica entre dos conjuntos
ordenados.

set_union Produce una secuencia que contiene la unión de dos conjuntos ordenados.

sort Ordena un rango.

sort_heap Ordena un heap dentro de un rango especifi cado.

stable_sort Ordena un rango. El orden es estable. Esto signifi ca que elementos iguales no
se reorganizan.

upper_bound Encuentra el último punto en una secuencia que no es mayor que algún valor.

TABLA 4-3 Algoritmos de ordenamiento y relacionados.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 187

Copia

copy copy_backward iter_swap fi ll

fi ll_n swap swap_ranges

Secuencias no ordenadas de búsqueda

adjacent_fi nd equal fi nd fi nd_end

fi nd_if fi nd_fi rst_of mismatch search

search_n

Elementos de reemplazo y eliminación

remove remove_if remove_copy remove_copy_if

replace replace_if replace_copy replace_copy_if

unique unique_copy

Reordenamiento de una secuencia

rotate rotate_copy random_shuffl e partition

reverse reverse_copy stable_partition next_permutation

prev_permutation

Ordenamiento y búsqueda de una secuencia ordenada

nth_element sort stable_sort partial_sort

partial_sort_copy binary_search lower_bound upper_bound

equal_range

Mezcla de secuencias ordenadas

merge inplace_merge

Operaciones con conjuntos

includes set_difference set_intersection set_symmetric_difference

set_union

Operaciones con heap

make_heap push_heap pop_heap sort_heap

Mínimo y máximo

max max_element min min_element

Transformación y generación de una secuencia

generate generate_n transform

Varios

count count_if for_each lexicographical_compare

TABLA 4-4 Los algoritmos de STL organizados por agrupamientos funcionales.

188 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

He aquí los objetos de función unaria:

logical_not negate

Todos los objetos de función integrados son clases de plantilla que sobrecargan operator().
Debido a que son clases de plantilla, pueden trabajar en cualquier tipo de datos para los que
están defi nidas las operaciones asociadas. Los objetos de función integrados usan el encabezado
<functional>.

Aunque es permisible construir un objeto de función por anticipado, a menudo lo construirá
cuando se pasa a un algoritmo. Se hace esto al llamar explícitamente a su constructor con el uso de
la siguiente forma general:

func_ob<tipo>()

Por ejemplo,

sort(inicio, final, mayor<int>())

construye un objeto mayor para usarlo en operandos de tipo int y lo pasa al algoritmo sort().
Hay un tipo especial de objeto de función llamado predicado. La característica defi nida de un

predicado es que devuelve un valor bool. En otras palabras, un predicado devuelve un resultado
true/false. Hay predicados unarios y binarios. Uno unario toma un argumento. Uno binario toma
dos. Hay un tipo especial de predicado que realiza una comparación menor que, devolviendo true
sólo si el elemento es menor que otro. A este tipo de predicado se le denomina en ocasiones función
de comparación.

Revisión general de adhesivos y negadores

Como se explicó en la sección anterior, un objeto de función binaria toma dos parámetros. Por lo
general, éstos reciben valores de la secuencia o las secuencias bajo las que el objeto está operando.
Sin embargo, habrá ocasiones en que querrá que uno de los valores se una a un valor específi co.
Por ejemplo, tal vez quiera usar less para comparar elementos de una secuencia contra un valor
especifi cado. Para manejar este tipo de situación, usará un adhesivo. La STL proporciona dos ad-
hesivos: bind1st() y bind2nd(). El primero une un valor con el primer argumento de un objeto de
función binaria. El segundo une un valor al segundo argumento.

Relacionados con los adhesivos están los negadores. Éstos son not1() y not2(). Devuelven la
negación (es decir, el complemento) de cualquier predicado que modifi quen.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 189

Ordene un contenedor

Componentes clave

Encabezados Clases Funciones

<algorithm> template<class RandIter>
 void sort(RandIter inicio, RandIter fi n)
template<class RandIter, class Comp>
 void sort(RandIter inicio, RandIter fi n,
 Comp fucomp)

Una de las operaciones de contenedor más comunes es el ordenamiento. La razón para esto es
fácil de comprender. No se requieren contenedores de secuencia para mantener sus elementos en
orden. Por ejemplo, ni vector ni deque mantienen un contenedor ordenado. Por tanto, si quiere
que los elementos de uno de estos contenedores se ordenen, necesitará ordenarlo. Por fortuna, es
fácil ordenar uno de estos contenedores mediante el algoritmo sort(). El contenedor puede orde-
narse de manera natural o en un orden determinado mediante una función de comparación. Esta
solución describe el proceso y ofrece tres opciones interesantes.

Paso a paso
Para ordenar un contenedor de manera natural sólo se usa un paso:

1. Llame a la forma de dos parámetros sort(), pasando sus iteradores al principio y el fi nal del

rango que habrá de ordenarse.

Ordenar un contenedor en un orden determinado mediante una función de comparación que
proporciona incluye estos pasos:

1. Si habrá de ordenar con base en una función de comparación que se proporcionará, cree la

función comparación.

2. Llame a la forma de tres parámetros de sort(), pasando en iteradores al principio y al fi nal

de la secuencia y a la función de comparación.

Análisis
La STL proporciona varios algoritmos de ordenamiento. En el centro, se encuentra sort(), que se
muestra a continuación:

template <class RandIter>
 void sort(RandIter inicio, RandIter fi nal)

template <class RandIter, class Comp>
 void sort(RandIter inicio, RandIter fi nal, Comp fucomp)

El algoritmo sort() ordena el rango de inicio a fi nal–1. La segunda forma le permite pasar una fun-
ción de comparación a fucomp que determina cuando un elemento es menor que otro. Esta función
puede pasarse mediante un apuntador o un objeto de función, como greater(). (Consulte Use un
objeto de función integrado para conocer una solución en que se analizan los objetos de función.
Consulte Cree un objeto de función personalizado para conocer detalles sobre la creación de su propio
objeto de función.)

190 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Observe que sort() requiere iteradores de acceso aleatorio. Sólo unos cuantos contenedores, como
vector y deque, dan soporte a iteradores de acceso aleatorio. Estos contenedores, como list, que no
lo dan, deben proporcionar sus propias rutinas de ordenamiento.

Es importante comprender que sort() ordena el rango especifi cado por sus argumentos, que no
necesitan incluir todo el contenido del contenedor. Por tanto, sort() puede usarse para ordenar un
subconjunto de un contenedor. Para ordenar un contenedor completo, debe especifi car begin() y
end() como puntos de inicio y fi nal.

Ejemplo
En el siguiente ejemplo se muestran ambas versiones de sort() en acción. Se crea un vector y lue-
go lo ordena de manera natural. Luego usa el objeto de función estándar greater() para ordenar
el vector de manera descendente. Por último, reordena los seis elementos centrales de manera
natural.

// Demuestra el algoritmo sort()

#include <cstdlib>
#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>

using namespace std;

void mostrar(const char *msj, vector<int> vect);

int main()
{
 vector<int> v(10);

 // Inicializa v con valores aleatorios.
 for(unsigned i=0; i < v.size(); i++)
 v[i] = rand() % 100;

 mostrar("Orden original:\n", v);
 cout << endl;

 // Ordena todo el contenedor.
 sort(v.begin(), v.end());

 mostrar("Tras aplicar el orden natural:\n", v);
 cout << endl;

 // Ahora, ordena de manera descendente al usar greater().
 sort(v.begin(), v.end(), greater<int>());

 mostrar("Tras aplicar el orden descendente:\n", v);
 cout << endl;

 // Ordena un subconjunto del contenedor.
 sort(v.begin()+2, v.end()-2);

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 191

 mostrar("Tras ordenar los elementos de v[2] a v[7] de manera natural:\n", v);

 return 0;
}

// Despliega el contenedor de vector<int>.
void mostrar(const char *msj, vector<int> vect) {
 cout << msj;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}

Aquí se muestra la salida:

Orden original:
41 67 34 0 69 24 78 58 62 64

Tras aplicar el orden natural:
0 24 34 41 58 62 64 67 69 78

Tras aplicar el orden descendente:
78 69 67 64 62 58 41 34 24 0

Tras ordenar los elementos de v[2] a v[7] de manera natural:
78 69 34 41 58 62 64 67 24 0

Opciones
Una variación interesante del ordenamiento se encuentra en partial_sort(). Tiene las dos versiones
mostradas aquí:

template <class RandIter>
 void partial_sort(RandIter inicio, RandIter medio, RandIter fi nal)

template <class RandIter, class Comp>
 void partial_sort(RandIter inicio, RandIter medio, RandIter fi nal, Comp fucomp)

El algoritmo partial_sort() ordena elementos del rango inicio a fi nal-1. Sin embargo, después de la
ejecución, sólo se ordenarán los elementos en el rango inicio a medio-1. El resto está en orden arbi-
trario. Por tanto, partial_sort() examina todos los elementos de inicio a fi nal, pero sólo ordena los
elementos medio-inicio de todo el rango, y esos elementos son todos menos los elementos restantes,
no ordenados. Podría usar partial_sort() para obtener las 10 canciones más vendidas de la lista de
todas las canciones proporcionadas por un servicio de música en línea, por ejemplo. La segunda
forma le permite especifi car una función de comparación que determina cuándo un elemento es
menor que otro. Suponiendo el programa de ejemplo, el siguiente fragmento ordena los primeros
cinco elementos de v:

partial_sort (v.begin(), v.begin()+5, v.end));

192 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Después de que se ejecuta esta instrucción, los primeros cinco elementos de v estarán en orden.
Los elementos restantes estarán ordenados de manera no específi ca.

Una variación útil en el ordenamiento parcial es partial_sort_copy(), que pone los elementos
ordenados en otra secuencia. Tiene las siguientes dos versiones:

template <class InIter, class RandIter>
 RandIter partial_sort_copy(InIter inicio, InIter fi nal,
 RandIter inicio_resultado, RandIter fi nal_resultado)
template <class InIter, RandIter, class Comp>
 void partial_sort_copy(InIter inicio, InIter fi nal,
 RandIter inicio_resultado, RandIter fi nal_resultado,
 Comp fucomp)

Ambos ordenan el rango de inicio a fi nal-1 y luego copian todos los elementos que conforman la
secuencia resultante defi nida por inicio_resultado a fi nal_resultado. Se devuelve un iterador a uno
después del último elemento copiado en la secuencia resultante. La segunda forma le permite
especifi car una función de comparación que determina cuando un elemento es menor que otro.

Otra opción de ordenamiento es stable_sort(), que proporciona un orden que no reorganiza
elementos iguales. Tiene dos formas:

template <class RandIter>
 void stable_sort(RandIter inicio, RandIter fi nal)

template <class RandIter, class Comp>
 void stable_sort(RandIter inicio, RandIter fi nal, Comp fucomp)

Ordena el rango de inicio a fi nal-1, pero no se reordena los elementos iguales. La segunda forma le
permite especifi car una función de comparación que determina cuando un elemento es menor que
otro.

Encuentre un elemento en un contenedor

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class InIter, class T>
 InIter fi nd(InIter inicio, InIter fi nal,
 const T &val)
template <class InIter, class UnPred>
 InIter fi nd_if(InIter inicio, InIter fi nal,
 UnPred funp)

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 193

Con frecuencia, querrá encontrar un elemento específi co dentro de un contenedor. Por ejemplo, tal
vez quiera encontrar un elemento para que pueda eliminarse, verse o actualizarse con nueva in-
formación. Cada vez que sea necesario, la STL proporciona varios algoritmos que, de una manera
u otra, le permiten encontrar un elemento específi co dentro de un contenedor. En esta solución se
revisan dos: fi nd() y fi nd_if(), pero otros varios se describen en la sección Opciones de esta solu-
ción. La principal ventaja de fi nd() y fi nd_if() es que no requieren que se ordene el contenedor. Por
tanto, funcionan en todos los casos.

Paso a paso
Para usar fi nd() para encontrar un elemento dentro de un contenedor se requieren estos pasos:

1. Cree una instancia de un objeto que desee encontrar.

2. Llame a fi nd(), pasando en iteradores al rango de búsqueda y el objeto que se buscará.

Para usar fi nd_if() para buscar un elemento dentro de un contenedor se requieren estos pasos:

1. Cree un predicado unario que devuelve true cuando se encuentra el objeto deseado.

2. Llame a fi nd_if(), pasando en iteradores al rango que se ordenará y el predicado del paso 1.

Análisis
Tal vez los algoritmos de uso más extenso sean fi nd() y su pariente cercano, fi nd_if(). El algoritmo
fi nd() busca en un rango la primera aparición de un elemento especifi cado. Aquí se muestra:

template <class InIter, class T>
 InIter fi nd(InIter inicio, InIter fi nal, const T &val)

Busca, en el rango inicio a fi nal-1, el valor especifi cado por val. Devuelve un iterador a la primera
aparición del elemento o al fi nal si val no está en el rango.

El algoritmo fi nd_if() busca en un rango la primera aparición de un elemento que cumple las
condiciones especifi cadas por un predicado. Aquí se muestra:

template <class InIter, class UnPred>
 InIter fi nd_if(InIter inicio, InIter fi nal, UnPred funp)

Busca en el rango de inicio a fi nal-1 un elemento para el cual el predicado unario funp devuelve
true. Devuelve un iterador al primer elemento que satisfaga funp, o al fi nal, si val no está en el ran-
go. Este algoritmo es particularmente útil cuando quiera buscar un elemento que cumple ciertos
criterios. Por ejemplo, si un contenedor contiene una lista de correo, podría usar fi nd_if() para
encontrar direcciones que tienen un código postal específi co.

Tanto fi nd() como fi nd_if() pueden operar en un rango no ordenado. Esto signifi ca que pueden
usarse en cualquier tipo de contenedor y no hay necesidad de que se mantenga en orden. También
funcionarán con un contenedor ordenado, pero existen mejores algoritmos de búsqueda para este
tipo de contenedores. Consulte la sección Opciones en esta solución, para conocer un ejemplo.

194 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
Con el siguiente ejemplo se ilustran fi nd() y fi nd_if(). Se usa un vector para contener cadenas.
Luego se usa fi nd() para encontrar la primera cadena que coincida con "dos". Luego se usa
fi nd_if() para encontrar una cadena que tiene tres caracteres o menos.

// Demuestra los algoritmos find() y find_if().

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>

using namespace std;

bool es_cadena_corta(string cad);

int main()
{
 vector<string> v;
 vector<string>::iterator itr;

 v.push_back("uno");
 v.push_back("dos");
 v.push_back("tres");
 v.push_back("cuatro");
 v.push_back("cinco");
 v.push_back("seis");

 cout << "Contenido de v: ";
 for(unsigned i=0; i < v.size(); ++i)
 cout << v[i] << " ";
 cout << "\n\n";

 // Encuentra el elemento que contiene "dos".
 cout << "Buscando \"dos\"\n";
 itr = find(v.begin(), v.end(), "dos");
 if(itr != v.end()) {
 cout << "Se ha encontrado \"dos\", Reemplazando con \"DOS\"\n";
 *itr = "DOS";
 }
 cout << endl;

 // Encuentra todas las cadenas que tienen menos de cuatro caracteres de largo.
 cout << "Buscando todas las cadenas que tienen 3 o menos caracteres.\n";
 itr = v.begin();
 do {
 itr = find_if(itr, v.end(), es_cadena_corta);
 if(itr != v.end()) {
 cout << "Encontrado " << *itr << endl;
 ++itr;
 }
 } while(itr != v.end());

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 195

 return 0;
}

// Devuelve true si la cadena tiene tres caracteres o menos.
bool es_cadena_corta(string cad)
{
 if(cad.size() <= 3) return true;
 return false;
}

Aquí se muestra la salida:

Contenido de v: uno dos tres cuatro cinco seis

Buscando "dos"
Se ha encontrado "dos", Reemplazando con "DOS"

Buscando todas las cadenas que tienen tres o menos caracteres.
Encontrado uno
Encontrado DOS
Encontrado seis

En el programa, observe cómo se usa fi nd_if() en un bucle para permitir que se encuentren
todas las cadenas que tengan tres o menos caracteres. Cada búsqueda empieza donde se quedó
la anterior. Esto es posible porque fi nd_if() devuelve un iterador al elemento encontrado. Este
iterador puede entonces aumentarse y usarse para empezar la búsqueda siguiente. Recuerde que
fi nd() y fi nd_if() (y casi todos los demás algoritmos) operan en un rango específi co de elementos,
en lugar de hacerlo en todo lo que incluye el contenedor. Esto hace que estos algoritmos resulten
mucho más versátiles de lo que de otra manera serían.

Ejemplo adicional: extraiga frases de un vector de caracteres
Aunque en el ejemplo anterior se presenta la mecánica de fi nd_if(), no se muestra todo su poten-
cial. Al crear con todo cuidado un predicado, puede usarse fi nd_if() para realizar operaciones de
búsqueda muy complejas. Por ejemplo, su predicado puede mantener información de estado que
se usa para encontrar elementos con base en un contexto. En el siguiente programa se presenta un
estudio de caso simple. Se usa fi nd_if() para extraer frases de un vector de caracteres. Se utiliza
un predicado llamado es_inicio_frase() para encontrar el inicio de cada frase. Esta función mantie-
ne información de estado cuando se ha alcanzado el fi nal de una frase.

// Extrae frases de un vector de caracteres con ayuda de find_if().

#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cctype>

using namespace std;

bool es_inicio_frase(char car);

template<class InIter>
 void mostrar_rango(const char *msj, InIter start, InIter end);

196 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

int main()
{
 vector<char> v;
 vector<char>::iterator itr;
 const char *cad = "\u00a8Se trata de una prueba? \u00adS\u00a1, es una prueba!
 Como esta otra.";

 for(unsigned i=0; i < strlen(cad); i++)
 v.push_back(cad[i]);

 mostrar_rango("El contenido de v: ", v.begin(), v.end());
 cout << endl;

 // Encuentra el principio de todas las frases.
 cout << "Se usa find_if() para mostrar todas las frases de v:\n";

 // itr_inicio señalará al principio de la frase y
 // itr_final señalará al principio de la siguiente frase.
 vector<char>::iterator itr_inicio, itr_final;

 itr_inicio = v.begin();
 do {
 // Encuentra el inicio de una frase.
 itr_inicio = find_if(itr_inicio, v.end(), es_inicio_frase);

 // Encuentra el principio de la siguiente frase.
 itr_final = find_if(itr_inicio, v.end(), es_inicio_frase);

 // Muestra la secuencia intermedia.
 mostrar_rango("", itr_inicio, itr_final);
 } while(itr_final != v.end());

 return 0;
}

// Devuelve true si car es la primera letra de una frase.
bool es_inicio_frase(char car) {
 static bool findefrase = true;

 if((car) && findefrase) {
 findefrase = false;
 return true;
 }

 if(car=='.' || car=='?' || car=='!') findefrase = true;
 return false;
}

// Muestra un rango de elementos.
template<class InIter>
 void mostrar_rango(const char *msj, InIter start, InIter end) {

 InIter itr;

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 197

 cout << msj;

 for(itr = start; itr != end; ++itr)
 cout << *itr;
 cout << endl;
}

Aquí se muestra la salida:

El contenido de v: ¿Se trata de una prueba? ¡Sí, es una prueba! Como esta otra.

Se usa find_if() para mostrar todas las frases de v:
¿Se trata de una prueba?
¡Sí, es una prueba!
Como esta otra.

Preste especial atención a la manera en que funciona el predicado es_inicio_frase(). Busca el
primer carácter después del fi nal de una frase anterior. Utiliza una static bool llamada fi ndefrase
para indicar que se ha encontrado el fi nal de una frase. Se supone que se ha llegado a éste si se en-
cuentra un carácter de terminación de frase (un punto o un signo de interrogación o admiración).
En este caso, fi ndefrase se establece como true. Cuando es true, entonces se supone que el siguien-
te carácter es el inicio de la siguiente frase. Cuando esto ocurre, fi ndefrase se establece como false
y es_inicio_frase() devuelve true. En todos los demás casos, devuelve false. Observe que es true al
principio para que se encuentre la primera frase.

Opciones
Para buscar una secuencia de elementos, en lugar de un valor específi co, utilice el algoritmo sear-
ch(). Se describe en la siguiente solución.

Si está operando en una secuencia ordenada, entonces puede usar una búsqueda binaria para
encontrar un valor. En casi todos los casos, este tipo de búsqueda es mucho más rápida que una
secuencial. Por supuesto, requiere una secuencia ordenada. Aquí se muestran los prototipos de
binary_search():

template <class ForIter, class T>
 bool binary_search(ForIter inicio, ForIter end, const T &val)
template <class ForIter, class T, class Comp>
 bool binary_search(ForIter inicio, ForIter end, const T &val, Comp fucomp)

El algoritmo binary_search realiza una búsqueda binaria del valor especifi cado por val en un
rango ordenado de inicio a fi nal-1. Devuelve true si se encuentra val, y false, de otra manera. La
primera versión compara los elementos de la secuencia especifi cada. La segunda versión le per-
mite especifi car su propia función de comparación. Cuando se actúa sobre iteradores de acceso
aleatorio, binary_search() consume tiempo logarítmico. En el caso de otros tipos de iteradores, el
número de comparaciones es logarítmico, aunque el tiempo que se toma moverse entre elementos
no lo sea.

198 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Podría sorprenderle el hecho de que binary_search() devuelve un resultado true/false en lu-
gar de un iterador al elemento que encuentra. Una justifi cación para este método está basada en el
argumento de que una secuencia ordenada puede contener dos o más valores que coinciden con
el que se busca. Por tanto, hay poco valor en devolver el primero encontrado. La validez de este
argumento ha estado sujeta a debate; no obstante, es la manera en que funciona binary_search().

Para obtener en realidad un iterador a un elemento en una secuencia ordenada, utilizará uno
de estos algoritmos: lower_bound(), upper_bound() o equal_range(). Los prototipos para las
versiones que no son de predicado de estos algoritmos se muestran a continuación:

template <class ForIter, class T>
 pair<ForIter, ForIter> equal_range(ForIter inicio, ForIter fi nal,
 const T &val)

template <class ForIter, class T>
 ForIter lower_bound(ForIter inicio, ForIter fi nal, const T &val)

template <class ForIter, class T>
 ForIter upper_bound(ForIter inicio, ForIter fi nal, const T &val)

El algoritmo lower_bound() devuelve un iterador al primer elemento que es igual o mayor
que val, upper_bound() devuelve un iterador uno más allá del último elemento coincidente (en
otras palabras, el primer elemento mayor que val) y equal_range() devuelve un par de iteradores
que señalan a los límites inferior y superior. Todos estos algoritmos operan en tiempo logarítmico
cuando actúan en iteradores de acceso aleatorio debido a que, además, usan una búsqueda bina-
ria para encontrar sus valores respectivos. En el caso de otros tipos de iteradores, el número de
comparaciones es logarítmico, aunque el tiempo que toma moverse entre elementos no lo sea. En
general, si quiere obtener un iterador al primer elemento coincidente en una secuencia ordenada,
use equal_range(). Si los iteradores de límite inferior y superior difi eren, entonces sabrá que por
lo menos se ha encontrado un elemento coincidente y el iterador del límite inferior señalará a la
primera aparición del elemento.

Aunque encontrar un elemento específi co suele ser lo que se necesita, en algunos casos, querrá
encontrar la primera aparición de cualquier elemento de un conjunto. Una manera de hacer esto es
usar el algoritmo fi nd_fi rst_of(), que se muestra aquí:

template <class ForIter, class ForIter2>
 ForIter fi nd_fi rst_of(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2)

template <class ForIter1, class ForIter2, class BinPred>
 ForIter fi nd_fi rst_of(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2,
 BindPred funp)

Encuentra el primer elemento dentro de un rango inicio1 a fi nal1-1, que coincide con cualquier
elemento dentro del rango inicio2 a fi nal2-1. Devuelve un iterador al elemento coincidente o fi nal1
si no se encuentra coincidencia. La segunda forma le permite especifi car un predicado binario que
determina cuando dos elementos son iguales.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 199

Un algoritmo interesante que será útil en algunos casos es adjacent_fi nd(). Busca la primera
aparición de un par coincidente de elementos adyacentes. Aquí se muestran sus primeras dos
versiones:

template <class ForIter> ForIter adjacent_fi nd(ForIter inicio, ForIter fi nal)

template <class ForIter, class BinPred> ForIter adjacent_fi nd(ForIter inicio, ForIter fi nal,
 BinPred funp)

El algoritmo adjacent_fi nd() busca elementos coincidentes adyacentes dentro del rango inicio a
fi nal-1. Devuelve un iterador al primer elemento del primer par coincidente. Devuelve fi n si no se
encuentran elementos coincidentes adyacentes. La segunda forma le permite especifi car un predi-
cado binario que determina cuando dos elementos son iguales.

Otra variación interesante en la búsqueda es el algoritmo mismatch(), que le permite encontrar
la primera falta de coincidencia entre dos secuencias. Aquí se muestra su prototipo:

template <class InIter1, class InIter2>
 pair<InIter1, InIter2> mismatch(InIter1 inicio1, InIter1 fi nal1, InIter2 inicio2)

template <class InIter1, class InIter2, class BinPred>
 pair<InIter1, InIter2> mismatch(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, BinPred funp)

El algoritmo mismatch() encuentra la primera falta de coincidencia entre los elementos en el rango
inicio1 a fi nal-1, y el que empieza con inicio2. Se devuelven los iteradores a los dos elementos no
coincidentes. Si no se encuentra una falta de coincidencia, entonces se devuelven los iteradores
último1 y primero2 + (último1-primero1). Por tanto, es la longitud de la primera secuencia la que de-
termina el número de elementos probados. La segunda forma le permite especifi car un predicado
binario que determina cuando un elemento es igual a otro. (La clase de plantilla pair contiene dos
campos, llamados fi rst y second, que contienen el par de iteradores. Consulte el capítulo 3 para
conocer más detalles.)

Use search() para encontrar una secuencia coincidente

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class ForIter1, class ForIter2>
 ForIter1 search(ForIter1 inicio1,
 ForIter1 fi nal1,
 ForIter2 inicio2,
 ForIter2 fi nal2)

200 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En la solución anterior se mostró cómo buscar un elemento específi co. En esta solución se mues-
tra cómo buscar una secuencia de elementos. Este tipo de búsqueda, obviamente, es muy útil en
varias situaciones. Por ejemplo, suponga una deque que contiene cadenas que indican el éxito
o la falla en los intentos por iniciar sesión en una red. Tal vez quiera revisar el contenedor para
encontrar apariciones en que se ha ingresado una contraseña incorrecta tres veces en fi la, que
podría indicar un intento de irrupción. Para ello, necesita buscar una secuencia de tres fallos. La
búsqueda de una sola falla no es sufi ciente. El principal algoritmo que se usa para encontrar una
secuencia es search(), y se demuestra en esta solución.

Paso a paso
Para buscar una secuencia de elementos se requieren estos pasos:

1. Defi na la secuencia que desea encontrar.

2. Llame a search(), pasándolo en iteradores al inicio y el fi nal del rango y de la secuencia en

que se buscará.

Análisis
El algoritmo search() busca una secuencia de elementos. Tiene dos formas. Aquí se muestra la
usada en esta solución:

template <class ForIter1, class ForIter2>
 ForIter1 search(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2)

La secuencia que se está buscando está defi nida por el rango inicio1 a fi nal-1. La subsecuencia que
se está buscando está especifi cada por inicio2 a fi nal2-1. Si se encuentra, se devuelve un iterador a
su principio. De otra manera, se devuelve fi nal1.

No es obligatorio que las secuencias de búsqueda estén en el mismo tipo de contenedor. Por
ejemplo, puede buscar una secuencia en una lista que coincide con una secuencia de un vector.
Ésta es una de las ventajas de los algoritmos de STL. Debido a que funcionan mediante iteradores,
pueden aplicarse a cualquier contenedor que dé soporte al tipo de iterador requerido, que es un
iterador directo, en este caso.

Ejemplo
En el siguiente ejemplo se muestra search() en acción. Busca una deque que contiene una respues-
ta de inicio de sesión en red. Busca una serie de intentos de inicio de sesión en que se introdujo
la contraseña incorrecta tres veces en fi la, lo que podría indicar un posible ingreso indebido. Para
este ejemplo, suponga que el registro de red puede contener varios tipos de respuesta, como inicio
correcto, conexión fallida, etc. Sin embargo, cuando se introduce una contraseña incorrecta, las dos
siguientes respuestas se colocan en el registro:

contraseña no válida
 reingrese contraseña

Para buscar posibles intentos de ingreso indebido, el programa busca casos en que estas respues-
tas ocurren tres veces en fi la. Si encuentra esta respuesta, informa que ha ocurrido un posible
intento indebido de ingreso en la red.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 201

NOTA Otro ejemplo del algoritmo search() se encuentra en el capítulo 2, en la solución Cree una
búsqueda no sensible a mayúsculas y minúsculas y funciones de búsqueda y reemplazo
para objetos string.

// Demuestra search().

#include <iostream>
#include <deque>
#include <algorithm>
#include <string>

using namespace std;

int main()
{
 deque<string> registro;
 deque<string> ingreso_indebido;
 deque<string>::iterator itr;

 // Crea una secuencia de tres respuestas de contraseña no válida.
 ingreso_indebido.push_back("contrase\u00a4a no v\u00a0lida");
 ingreso_indebido.push_back("reingrese contrase\u00a4a ");
 ingreso_indebido.push_back("contrase\u00a4a no v\u00a0lida");
 ingreso_indebido.push_back("reingrese contrase\u00a4a ");
 ingreso_indebido.push_back("contrase\u00a4a no v\u00a0lida");

 // Crea algunas entradas de registro.
 registro.push_back("inicio correcto");
 registro.push_back("contrase\u00a4a no v\u00a0lida");
 registro.push_back("reingrese contrase\u00a4a ");
 registro.push_back("inicio correcto");
 registro.push_back("conexi\u00a2n fallida");
 registro.push_back("inicio correcto");
 registro.push_back("inicio correcto");
 registro.push_back("contrase\u00a4a no v\u00a0lida");
 registro.push_back("reingrese contrase\u00a4a ");
 registro.push_back("contrase\u00a4a no v\u00a0lida");
 registro.push_back("reingrese contrase\u00a4a ");
 registro.push_back("contrase\u00a4a no v\u00a0lida");
 registro.push_back("conflicto en puerto");
 registro.push_back("inicio correcto");

 cout << "El registro:\n";
 for(itr = registro.begin(); itr != registro.end(); ++itr)
 cout << *itr << endl;
 cout << endl;

 // Ve si se hizo un intento indebido.
 itr = search(registro.begin(), registro.end(), ingreso_indebido.begin(),
 ingreso_indebido.end());

 if(itr != registro.end())

202 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << "Se ha encontrado un posible intento de ingreso indebido.\n";
 else
 cout << "No se encontraron fallas repetidas de contrase\u00a4a.\n";

 return 0;
}

Aquí se muestra la salida:

El registro:
inicio correcto
contraseña no válida
reingrese contraseña
inicio correcto
conexión fallida
inicio correcto
inicio correcto
contraseña no válida
reingrese contraseña
contraseña no válida
reingrese contraseña
contraseña no válida
conflicto en puerto
inicio correcto

Se ha encontrado un posible intento de ingreso indebido.

Es importante comprender que la llamada a search() sólo tendrá éxito si ocurren tres respues-
tas de contraseña no válida en fi la. Para confi rmarlo, trate de convertir en comentarios una de las
llamadas a registro.push_back("reingrese contrase\u00a4a "). Cuando se ejecute el programa,
ya no encontrará una secuencia coincidente.

Opciones
Hay una segunda forma de search() que le permite especifi car un predicado binario que determi-
na cuando dos elementos son iguales. Aquí se muestra:

template <class ForIter1, class ForIter2, class BinPred>
 ForIter1 search(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2, BinPred funp)

Funciona de la misma manera que la primera versión, con la excepción de que el predicado bina-
rio se pasa en fun.

Puede encontrar la última aparición de una secuencia al llamar a fi nd_end(), que se muestra aquí:

template <class ForIter1, class ForIter2>
 ForIter1 fi nd_end(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2)

template <class ForIter1, class ForIter2, class BinPred>
 ForIter1 fi nd_end(ForIter1 inicio1, ForIter1 fi nal1,
 ForIter2 inicio2, ForIter2 fi nal2,
 BinPred funp)

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 203

Funciona de la misma manera que search(), con la excepción de que encuentra la última aparición,
en lugar de la primera, en el rango especifi cado por inicio2 y fi nal2, dentro del rango especifi cado
por inicio1 a fi nal1.

Para buscar una secuencia de una longitud especifi cada en que todos los valores son los mis-
mos, considere el uso de search_n(). Tiene dos formas, que se muestran aquí:

template <class ForIter1, class Size, class T>
 ForIter1 search_n(ForIter1 inicio, ForIter1 fi nal,
 Size num, const T &val)

template <class ForIter1, class Size, class T, class BinPred>
 ForIter1 search_n(ForIter1 inicio, ForIter1 fi nal,
 Size num, const T &val, BinPred funp)

Dentro del rango inicio a fi nal-1, search_n() busca una secuencia de num elementos que son iguales
a val. Si se encuentra la secuencia, se devuelve un iterador a su principio. De otra manera, se de-
vuelve fi nal. La segunda forma le permite especifi car un predicado binario que determina cuando
un elemento es igual a otro.

Otros algoritmos que se relacionan con la búsqueda de una secuencia son equal(), que compa-
ra la igualdad entre dos secuencias, y mismatch(), que encuentra la primera falta de coincidencia
entre dos secuencias.

Invierta, gire y modifi que el orden de una secuencia

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class RandIter>
 void random_shuffl e(RandIter inicio,
 RandIter fi nal)
template <class BiIter>
 void reverse(BiIter inicio, BiIter fi nal)
template <class ForIter>
 void rotate(ForIter inicio, ForIter mid,
 ForIter fi nal)

En esta solución se demuestra el uso de tres algoritmos relacionados: reverse(), rotate() y ran-
dom_shuffl e(). Se relacionan entre sí porque cada uno cambia el rango al que se aplica. El algorit-
mo reverse() invierte la secuencia, rotate() la gira (es decir, toma un elemento de un extremo y lo
coloca en el otro) y random_shuffl e() dispone en orden aleatorio los elementos.

204 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Paso a paso
Para invertir, girar o "barajar" una secuencia, se requieren estos pasos:

1. Invierta una secuencia al llamar a reverse(), especifi cando los extremos del rango que se

habrá de invertir.

2. Gire una secuencia al llamar a rotate(), especifi cando los extremos del rango que se habrá

de girar.

3. Disponga en orden aleatorio los elementos dentro de una secuencia al llamar a random_

shuffl e(), especifi cando los extremos del rango que se habrá de barajar.

Análisis
Puede invertir el contenido de una secuencia al llamar a reverse(). Tiene el prototipo:

template <class BiIter> void reverse(BiIter inicio, BiIter fi nal)

El algoritmo reverse () invierte el orden del rango inicio a fi nal-1.
El algoritmo reverse() realiza una rotación a la izquierda. Una rotación es un desplazamiento

en que el valor se transfi ere de un extremo al otro. El prototipo para rotate() se muestra aquí:

template <class ForIter>
 void rotate(ForIter inicio, ForIter medio, ForIter fi nal)

El algoritmo rotate() gira a la izquierda los elementos en el rango de inicio a fi nal-1, de modo que el
elemento especifi cado por medio se vuelve el primer elemento nuevo.

Un algoritmo particularmente útil para los programadores que crean simulaciones es random_
shuffl e(). Reordena los elementos en una secuencia de manera aleatoria. Tiene las dos versiones
mostradas aquí:

template <class RandIter>
 void random_shuffl e(RandIter inicio, RandIter fi nal)

template <class RandIter, class Generator>
 void random_shuffl e(RandIter inicio, RandIter fi nal, Generator gen_al)

El algoritmo random_shuffl e() distribuye en orden aleatorio el rango de inicio a fi nal-1. En la
segunda forma, gen_al especifi ca un generador de números aleatorios. Esta función debe tener la
siguiente forma general:

gen_al(num)

Debe devolver un número aleatorio entre cero y num. Observe que random_shuffl e() requiere ite-
radores de acceso aleatorio. Esto signifi ca que puede usarse en contenedores como vector y deque,
pero no list, por ejemplo.

Ejemplo
En el siguiente ejemplo se demuestran reverse(), rotate() y random_shuffl e():

// Invierte, gira y ordena de manera aleatoria una secuencia.

#include <iostream>
#include <vector>
#include <algorithm>

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 205

using namespace std;

void mostrar(const char *msj, vector<int> vect);

int main()
{
 vector<int> v;

 for(int i=0; i<10; i++) v.push_back(i);

 mostrar("Orden original: ", v);
 cout << endl;

 // Invierte v.
 reverse(v.begin(), v.end());
 mostrar("Tras invertir: ", v);
 cout << endl;

 // Invierte de nuevo para restaurar el orden original.
 reverse(v.begin(), v.end());
 mostrar("Tras la segunda llamada a reverse(): ", v);
 cout << endl;

 // Gira a la izquierda una posición.
 rotate(v.begin(), v.begin()+1, v.end());

 mostrar("Orden tras girar a la izquierda una posiciu\u00a2n: ", v);
 cout << endl;

 // Ahora gira a la izquierda dos posiciones.
 rotate(v.begin(), v.begin()+2, v.end());

 mostrar("Orden tras girar a la izquierda dos posiciones: ", v);
 cout << endl;

 // Dispone v en orden aleatorio.
 random_shuffle(v.begin(), v.end());
 mostrar("Tras aplicar el orden aleatorio: ", v);

 return 0;
}

// Despliega el contenido de vector<int>.
void mostrar(const char *msj, vector<int> vect) {
 cout << msj;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}

206 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra la salida:

Orden original: 0 1 2 3 4 5 6 7 8 9

Tras invertir: 9 8 7 6 5 4 3 2 1 0

Tras la segunda llamada a reverse(): 0 1 2 3 4 5 6 7 8 9

Orden tras girar a la izquierda una posición: 1 2 3 4 5 6 7 8 9 0

Orden tras girar a la izquierda dos posiciones: 3 4 5 6 7 8 9 0 1 2

Tras aplicar el orden aleatorio: 1 4 2 5 3 8 0 6 7 9

Ejemplo adicional: use iteradores inversos
para realizar una rotación a la derecha
Aunque la STL proporciona un algoritmo de giro a la izquierda, no provee uno para girar a la
derecha. Al principio, esto podría parecer un error serio en el diseño de STL, o por lo menos una
omisión que podría causar problemas. Pero no es el caso. Para realizar una rotación a la derecha,
use el algoritmo rotate(), pero llámelo usando iteradores inversos. Como éstos actúan en reversa,
el efecto neto de este tipo de llamada es que se realiza una rotación a la derecha en la secuencia.
Esta técnica se demuestra con el siguiente programa.

// Gira una secuencia a la derecha empleando iteradores inversos
// con el algoritmo rotate().

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

void mostrar(const char *msj, vector<int> vect);

int main()
{
 vector<int> v;

 for(int i=0; i<10; i++) v.push_back(i);

 mostrar("Orden original: ", v);
 cout << endl;

 // Gira a la derecha dos posiciones empleando iteradores inversos.
 rotate(v.rbegin(), v.rbegin()+2, v.rend());

 mostrar("Orden tras dos rotaciones a la derecha: ", v);

 return 0;
}

// Despliega el contenido de vector<int>.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 207

void mostrar(const char *msj, vector<int> vect) {
 cout << msj;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}
He aquí la salida del programa:
Orden original: 0 1 2 3 4 5 6 7 8 9

Orden tras dos rotaciones a la derecha: 8 9 0 1 2 3 4 5 6 7

Como puede ver, la secuencia original se ha girado dos posiciones.
Como se ilustra con esta aplicación de rotate(), parte de la capacidad y la elegancia de STL pro-

viene de las sutilezas de su diseño. Al defi nir iteradores inversos, los creadores de STL permitieron
que varios algoritmos operaran en orden inverso, reduciendo así la necesidad de defi nir explícita-
mente un complemento de ejecución hacia atrás para cada algoritmo. Aunque hubiera sido posible
crear una biblioteca de plantillas que no incluyeran cosas como iteradores inversos, es este tipo de
construcciones lo que da elegancia a su diseño.

Opciones
Hay una variación de reverse() llamada reverse_copy() que le podría resultar útil en algunos ca-
sos. En lugar de invertir el contenido de la secuencia especifi cada, copia la secuencia invertida en
otro rango. He aquí su prototipo:

template <class BiIter, class OutIter>
 void reverse_copy(BiIter inicio, BiIter fi nal, OutIter inicio_resultado)

Copia en orden inverso el rango inicio a fi nal-1 en la secuencia cuyo elemento inicial es señalado
por inicio_resultado. El rango al que señala inicio_resultado debe ser por lo menos del mismo tamaño
que el rango invertido.

De manera similar, hay una variación de rotate() llamada rotate_copy() que copia la secuencia
girada en otro rango. Aquí se muestra:

template <class ForIter, class OutIter>
 void rotate_copy(ForIter inicio, ForIter medio, ForIter fi nal, OutIter inicio_resultado)

Copia el rango inicio a fi nal-1 en el rango cuyo primer elemento es señalado por inicio _resultado. El
rango al que señala éste debe ser por lo menos del mismo tamaño que el rango girado. En el pro-
ceso, gira a la izquierda los elementos, de modo que el elemento especifi cado por medio se vuelve
el primer elemento nuevo. Devuelve un iterador a uno después del fi nal del rango resultante.

Puede crear permutaciones de un rango al llamar a next_permutation() o prev_permutation().
Se describen en Permute una secuencia.

208 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Recorra en ciclo un contenedor con for_each()

Componentes clave

Encabezados Clases Funciones

<algorithm> template<class InIter, class Func>
 Func for_each(InIter inicio, InIter fi nal,
 Func fn)

Como casi todos los programadores saben, recorrer en ciclo el contenido de un contenedor es una
actividad muy común. Por ejemplo, para desplegar el contenido de un contenedor, necesitará
recorrerlo en ciclo del principio al fi nal, desplegando cada elemento de uno en uno. Esta actividad
puede realizarse de diferentes maneras. Por ejemplo, puede recorrer en ciclo cualquier tipo de con-
tenedor mediante el uso de un iterador. Contenedores como vector y deque le permiten recorrer
en ciclo sus contenedores mediante el operador de subíndice de matriz. El algoritmo for_each
ofrece otro método de hacerlo. Recorre en ciclo un rango de elementos, aplicando una operación
específi ca a cada uno. En esta solución se demuestra su uso.

Paso a paso
Para recorrer en ciclo un rango de elementos, mediante el uso de for_each(), se requieren estos
pasos:

1. Cree una función (o un objeto de función) que será llamado por cada elemento en el rango.

2. Llame a for_each(), pasando iteradores al principio y al fi nal del rango que habrá de proce-

sarse y la función que habrá de aplicarse.

Análisis
Aquí se muestra el prototipo para el algoritmo for_each():

template<class InIter, class Func>
 Func for_each(InIter inicio, InIter fi nal, Func fn)

El algoritmo for_each() aplica la función fn al rango de elementos especifi cado por inicio a fi nal.
Por tanto, cada elemento del rango llama una vez a fn. for_each() devuelve fn. Puede pasar un
apuntador a función o un objeto de función a fn. En ambos casos, fn debe tomar un argumento
cuyo tipo sea compatible con el de los elementos en el rango especifi cado. Puede devolver un
valor. Sin embargo, si fn devuelve un valor, éste es ignorado por for_each(). Por tanto, con frecuen-
cia el tipo devuelto por fn es void. Sin embargo, un valor devuelto podría ser útil en situaciones en
que no se llama al algoritmo for_each(). Por ejemplo, fn podría mantener una cuenta del núme-
ro de elementos que se procesa y devolver esta cuenta después de la que devuelve el algoritmo
for_each().

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 209

Ejemplo
En el siguiente ejemplo se muestra for_each() en acción. Se utiliza para dos propósitos. En primer
lugar, una llamada a for_each() despliega el contenido de un contenedor, de elemento en elemen-
to. Utiliza la función mostrar() para desplegar cada elemento. En segundo lugar, calcula la suma
de los elementos del contenedor. En este caso, for_each() pasa un apuntador a la función sumato-
ria(). Observe que esta función devuelve la sumatoria. Este valor no es usado por for_each(). En
cambio, se obtiene después de lograr la suma de los elementos.

// Demuestra el algoritmo for_each().
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

// Despliega un valor int.
void mostrar(int i) {
 cout << i << " ";
}

// Mantiene una suma actualizada de los valores pasados a i.
int sumatoria(int i) {
 static int suma = 0;

 suma += i;
 return suma;
}

int main()
{
 vector<int> v;
 int i;

 for(i=1; i < 11; i++) v.push_back(i);

 cout << "Contenido de v: ";
 for_each(v.begin(), v.end(), mostrar);
 cout << "\n";

 for_each(v.begin(), v.end(), sumatoria);
 cout << "Sumatoria de v: " << sumatoria(0);

 return 0;
}

Aquí se muestra la salida:

Contenido de v: 1 2 3 4 5 6 7 8 9 10
Sumatoria de v: 55

Como se explicó en el análisis, la función pasada a for_each() debe tener un parámetro, y el
tipo de éste debe ser el mismo que el de elementos en el contenedor en que se usa for_each(). En
este ejemplo, como v es un vector de int, mostrar() y sumatoria() tienen un parámetro int. Cada
vez que se llama a una de estas funciones, se pasa un elemento del rango especifi cado. Debe

210 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

destacarse que la función sumatoria() es muy limitada. Una mejor manera de implementarlo es
como un objeto de función, como se muestra en Cree un objeto de función personalizado.

Opciones
El estándar internacional de C++ ordena en categorías for_each() como un algoritmo que no modi-
fi ca. Sin embargo, esta etiqueta puede llevar un poco a equívocos. Por ejemplo, no hay nada que
evite que la función pasada a for_each() use un parámetro de referencia y modifi que el elemento
mediante la referencia. En otras palabras, una función aplicada a cada elemento en un contenedor
debe declararse así:

void fn(tipo &arg)

En este caso, arg es un parámetro de referencia. Por tanto, el valor al que señala arg podría cam-
biarse mediante una asignación, como se muestra aquí:

arg = nuevovalor;

Por ejemplo, la siguiente función invertirá un carácter que se pasa, cambiando una mayúscula en
minúscula y viceversa. Observe que se pasa car como referencia.

// Invierte las mayúsculas y minúsculas de un carácter pasado en car.
void inv_mayus(char &car) {
 if(islower(car)) car = toupper(car);
 else car = tolower(car);
}

Por tanto, suponiendo un vector llamado v que contiene caracteres, la siguiente llamada a for_
each() modifi cará v de modo tal que cada carácter del contenedor vea invertidas sus mayúsculas y
minúsculas.

for_each(v.begin(), v.end(), inv_mayus);

Aunque el código anterior funciona, el autor no se siente muy cómodo con él por dos razones.
En primer lugar, como se explicó, el estándar internacional para C++ ordena for_each() como un
algoritmo que no modifi ca. Aunque técnicamente no se rompe esta regla (debido a que el algorit-
mo, en sí, no modifi ca la secuencia), el cambio del contenido del contenedor como un efecto colate-
ral de la función pasada a for_each() parece inconsistente y erróneo. En segundo lugar, STL ofrece
una mejor manera de modifi car una secuencia que utiliza el algoritmo transform(), que se describe
en Use transform() para cambiar una secuencia.

El programa de ejemplo pasó un apuntador a función a for_each(), pero también puede pasar
un objeto de función. Recuerde que un objeto de función es una instancia de una clase que imple-
menta operator(). Los objetos de función se describen de manera detallada en Use un objeto de fun-
ción integrado y Cree un objeto de función personalizado. Para conocer un ejemplo que use un objeto de
función con for_each(), consulte Cree un objeto de función personalizado.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 211

Use transform() para cambiar una secuencia

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class InIter, class OutIter,
 class Func>
 OutIter transform(InIter inicio, InIter fi nal,
 OutIter resultado,
 Func funcunaria)
template <class InIter1, class InIter2,
 class OutIter, class Func>
 OutIter transform(InIter1 inicio1,
 InIter1 fi nal1,
 InIter2 inicio2,
 OutIter resultado,
 Func funcbinaria)

En ocasiones, querrá aplicar una transformación a todos los elementos dentro de una secuencia y
almacenar el resultado. La mejor manera de lograr esto consiste en usar el algoritmo transform().
Tiene dos formas. La primera le permite aplicar una transformación a un rango de elementos de
una sola secuencia. La segunda, aplicar una transformación a elementos de dos secuencias. En am-
bos casos, se almacena la secuencia resultante. Un aspecto clave de transform() es que la secuen-
cia resultante puede ser la misma que la secuencia de entrada o puede ser diferente. Por tanto,
transform() puede usarse para cambiar los elementos de una secuencia o para crear una secuencia
separada que contiene el resultado. En esta solución se muestra el proceso.

Paso a paso
Para aplicar transform() a los elementos de un solo rango se requieren los siguientes pasos:

1. Cree una función (u objeto de función) que realice la transformación deseada. Debe tener

un solo parámetro que reciba un elemento de un rango de entrada.

2. Llame a transform(), especifi cando el rango de entrada, el de salida y la función de trans-

formación.

Para aplicar transform() a pares de elementos de dos rangos se requieren los siguientes pasos:

1. Cree una función (u objeto de función) que realice la transformación deseada. Debe tener

dos parámetros, y cada uno recibe un elemento de un rango de entrada.

2. Llame a transform(), especifi cando ambos rangos de entrada, y la función de transformación.

212 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis
El algoritmo transform() tiene estas dos formas:

template <class InIter, class OutIter, class Func>
 OutIter transform(InIter inicio, InIter fi nal, OutIter resultado, Func funcunaria)

template <class InIter1, class InIter2, class OutIter, class Func>
 OutIter transform(InIter1 inicio1, InIter1 fi nal1, InIter2 inicio2,
 OutIter resultado, Func funcbinaria)

El algoritmo transform() aplica una función a un rango de elementos y almacena la salida
en resultado. El rango al que señala resultado debe tener por lo menos el tamaño del rango que se
está transformando. En la primera forma, el rango está especifi cado por inicio a fi nal. La función
que se aplicará está especifi cada por funcunaria. Recibe el valor de un elemento en su parámetro y
debe devolver su transformación. En la segunda forma de transform(), la transformación se aplica
usando una función que recibe el valor de un elemento de la secuencia que habrá de transformar-
se (inicio1 a fi nal1) en su primer parámetro y un elemento de la segunda secuencia (empezando en
inicio2) como segundo parámetro. Ambas versiones de transform() devuelven un iterador al fi nal
de la secuencia resultante.

Un aspecto clave de transform() es que puede usarse para cambiar el contenido de una secuen-
cia en el lugar. Por tanto, para la primera forma de transform(), resultado e inicio pueden especifi car
el mismo elemento. Para la segunda forma, el resultado puede ser el mismo que inicio1 o inicio2.

Hay un tema importante relacionado con transform(): el estándar internacional de C++
establece que la función de transformación (funcunaria o funcbinaria) no debe producir efectos
colaterales.

Ejemplo
En el siguiente ejemplo se muestran ambas formas de transform() en acción. La primera se usa
para calcular los recíprocos de una secuencia de valores double que se conservan en un vector.
Esta transformación se aplica dos veces. En primer lugar, almacena los resultados en la secuencia
original. La segunda vez, los almacena en otra secuencia. En ambos casos, la función reciprocal()
se pasa a transform().

La segunda forma de transform() calcula los puntos medios entre dos valores enteros conteni-
dos en dos secuencias. Almacena el resultado en una tercera secuencia. La función puntomedio()
realiza el cálculo del punto medio, y es la función que se pasa a transform().

// Demuestra el algoritmo transform().
//
// Ambas versiones de transform() se usan dentro del
// programa. La primera altera la secuencia de doubles
// para que contenga valores recíprocos. La segunda
// crea una secuencia que contiene los puntos medios
// entre los valores en otras dos secuencias.

#include <iostream>
#include <vector>
#include <algorithm>

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 213

using namespace std;

double reciproco(double val);
int puntomedio(int a, int b);

template<class T> void mostrar(const char *msj, vector<T> vect);

int main()
{
 int i;

 // Primero, se demuestra la forma de una secuencia de transform().
 vector<double> v;

 // Coloque valores en v.
 for(i=1; i < 10; ++i) v.push_back((double)i);

 cout << "Demuestra la forma de una sola secuencia de transform().\n";
 mostrar("Contenido inicial de v:\n", v);
 cout << endl;

 // Transforma v al aplicar la función recíproco().
 // Coloca de nuevo el resultado en v.
 cout << "Calcula rec\u00a1procos para v y almacena los resultados en v.\n";
 transform(v.begin(), v.end(), v.begin(), reciproco);

 mostrar("Contenido transformado de v:\n", v);

 // Transforma v por segunda vez, colocando el resultado en una nueva secuencia.
 cout << "Transforma v de nuevo. Esta vez almacena los resultados en v2.\n";
 vector<double> v2(10);
 transform(v.begin(), v.end(), v2.begin(), reciproco);

 mostrar("Esto es v2:\n", v2);
 cout << endl;

 // Ahora, demuestra la forma de dos secuencias de transform()
 cout << "Demuestra la forma de dos secuencias de transform().\n";
 vector<int> v3, v4, v5(10);
 for(i = 0; i < 10; ++i) v3.push_back(i);
 for(i = 10; i < 20; ++i) if(i%2) v4.push_back(i); else v4.push_back(-i);

 mostrar("Contenido de v3:\n", v3);
 mostrar("Contenido de v4:\n", v4);
 cout << endl;

 cout << "Calcula puntos medios entre v3 y v4 y almacena los resultados en v5.\n";
 transform(v3.begin(), v3.end(), v4.begin(), v5.begin(), puntomedio);

 mostrar("Contenido de v5:\n", v5);

 return 0;
}

214 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Despliega el contenido de un vector<int>.
template<class T> void mostrar(const char *msj, vector<T> vect) {
 cout << msj;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}

// Devuelve el punto medio entero entre dos valores.
int puntomedio(int a, int b) {
 return((a-b) / 2) + b;
}

// Devuelve el recíproco de un double.
double reciproco(double val) {
 if(val == 0.0) return 0.0;
 return 1.0 / val; // devuelve reciproco
}

Aquí se muestra la salida:

Demuestra la forma de una sola secuencia de transform().
Contenido inicial de v:
1 2 3 4 5 6 7 8 9

Calcula recíprocos para v y almacena los resultados en v.
Contenido transformado de v:
1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111
Transforma v de nuevo. Esta vez almacena los resultados en v2.
Esto es v2:
1 2 3 4 5 6 7 8 9 0

Demuestra la forma de dos secuencias de transform().
Contenido de v3:
0 1 2 3 4 5 6 7 8 9
Contenido de v4:
-10 11 -12 13 -14 15 -16 17 -18 19

Calcula puntos medios entre v3 y v4 y almacena los resultados en v5.
Contenido de v5:
-5 6 -5 8 -5 10 -5 12 -5 14

Un punto clave ilustrado por el programa es que la función o el objeto de función usado por
transform() debe especifi car un parámetro o varios parámetros cuyos tipos son compatibles con
los de los elementos en las secuencias. Además, debe devolver un tipo compatible.

Opciones
No es necesario que el rango especifi cado en la versión de dos secuencias de transform() esté en
dos contenedores separados. Se trata de un error de comprensión. En cambio, debe especifi car am-
bos rangos desde el mismo contenedor. Por ejemplo, suponiendo el programa anterior, lo siguien-
te calcula los puntos medios entre los primeros y últimos cinco elementos de v3 y los almacena en
los primeros cinco elementos de v5:

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 215

transform(v3.begin(), v3.begin()+5, v3.begin()+5, v5.begin(), puntomedio();

Como ya se mencionó, es posible almacenar el resultado de nuevo en una de las secuencias
originales, lo que permite que una secuencia se modifi que en el lugar. Cuando se usa la forma de
dos secuencias de transform(), la secuencia de destino puede ser cualquiera de las de entrada.
Por ejemplo, esta instrucción calcula los puntos medios de las secuencias contenidas en v3 y v4 y
almacena el resultado en v4:

transform(v3.begin(), v3.end(), v4.begin(), v4.begin(), puntomedio();

Esto funciona debido a que los valores de cada par de elementos se obtienen primero de cada
secuencia y luego se pasan a puntomedio(). El resultado se almacena después en v4. Por tanto,
los valores originales en v4 se obtienen antes de que se sobrescriban.

En el ejemplo anterior se pasaron apuntadores de función a transform(), pero también puede
usar objetos de función. Éstos se describen de manera detallada en Use un objeto de función integra-
do y Cree un objeto de función personalizado. Para conocer un ejemplo que usa un objeto de función
con transform(), consulte Cree un objeto de función personalizado.

Si quiere realizar una operación sin modifi cación en una secuencia, considere el uso de
for_each(). Consulte Recorra en ciclo un contenedor con for_each().

En algunos casos, tal vez quiera generar una secuencia de elementos que no sean transforma-
ciones de otra secuencia. Para ello, puede usar los algoritmos generate() o generate_n(). Aquí se
muestran:

template <class ForIter, class Generator>
 void generate(ForIter inicio, ForIter fi nal, Generator fungen)

template <class ForIter, class Size, class Generator>
 void generate_n(OutIter inicio, Size num, Generator fungen)

Los algoritmos generate() y generate_n() asignan valores devueltos por una función generadora a
elementos dentro de un rango específi co. En generate(), el rango que se está asignando está especi-
fi cado por inicio a fi nal. En el caso de generate_n(), el rango empieza en inicio y se ejecuta por num
elementos. La función generadora se pasa en fungen. No tiene parámetros y debe devolver objetos
que son compatibles con el tipo de la secuencia deseada. He aquí un ejemplo muy simple que
demuestra generate(). Utiliza una función llamada pot_de_dos() para generar una secuencia
que contiene una potencia de 2.

// Genera una secuencia.
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

double pot_de_dos();

216 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

int main()
{
 vector<double> v(5);

 // Genera una secuencia.
 generate(v.begin(), v.end(), pot_de_dos);

 cout << "Potencias de 2: ";
 for(unsigned i=0; i < v.size(); ++i)
 cout << v[i] << " ";

 return 0;
}

// Una función generadora simple que genera las potencias de 2.
double pot_de_dos() {
 static double val = 1.0;
 double t;

 t = val;
 val += val;

 return t;
}

Se despliega la siguiente salida:

Potencias de 2: 1 2 4 8 16

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 217

Realice operaciones con conjuntos

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class InIter1, class InIter2,
 class OutIter>
 OutIter set_union(
 InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2,
 OutIter resultado)
template <class InIter1, class InIter2,
 class OutIter>
 OutIter set_difference(
 InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2,
 OutIter resultado)
template <class InIter1, class InIter2,
 class OutIter>
 OutIter set_symmetric_difference(
 InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2,
 OutIter resultado)
template <class InIter1, class InIter2,
 class OutIter>
 OutIter set_intersection(
 InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2,
 OutIter resultado)
template <class InIter1, class InIter2>
 bool includes(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2)

La STL proporciona cinco algoritmos que realizan operaciones con conjuntos. Debe comprenderse
que estos algoritmos operan sobre cualquier tipo de contenedor; no se usan sólo con las clases set
o multiset. El requisito es que el contenido del contenedor debe estar ordenado. Estos algoritmos
de conjuntos son set_union, set_difference(), set_symmetric_difference(), set_intersection() e
includes(). En esta solución se demuestra su uso.

Paso a paso
Para usar los algoritmos de conjuntos se requieren estos pasos:

1. Las dos secuencias que participarán en los algoritmos de conjunto deben ordenarse. Am-

bos deben contener elementos del mismo tipo o de tipos compatibles.

2. Obtenga la unión de los dos conjuntos al llamar a set_union().

218 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

3. Obtenga la diferencia entre dos conjuntos al llamar a set_difference().

4. Obtenga la diferencia simétrica entre dos conjuntos al llamar a set_symmetric_diffe-

rence().

5. Obtenga la intersección de dos conjuntos al llamar a set_intersection().

6. Determine si un conjunto incluye otro conjunto completo al llamar a includes(). Este algo-

ritmo puede usarse para determinar una relación de subconjunto.

Análisis
Para obtener la unión de dos conjuntos ordenados, se usa set_union(). Tiene dos formas. Aquí se
muestra la usada en esta solución:

template <class InIter1, class InIter2, class OutIter>
 OutIter set_union(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, OutIter resultado)

Produce una secuencia que contiene la unión de los dos conjuntos defi nidos por los rangos inicio1
a fi nal-1 e inicio2 a fi nal2-1. Por tanto, el conjunto resultante contiene los elementos que se encuen-
tran en ambos conjuntos. El resultado se ordena y se coloca en resultado. Los rangos de entrada no
deben superponerse al rango resultante. Se devuelve un iterador al fi nal del rango resultante.

Para obtener la diferencia entre dos conjuntos ordenados, se utiliza set_difference(). Tiene dos
formas. Aquí se muestra la usada en esta solución:

template <class InIter1, class InIter2, class OutIter>
 OutIter set_difference(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, OutIter resultado)

El algoritmo set_difference() produce una secuencia que contiene la diferencia entre los dos con-
juntos defi nidos por los rangos inicio1 a fi nal-1 e inicio2 a fi nal2-1. Es decir, el conjunto defi nido por
inicio2, fi nal2 se elimina del conjunto defi nido por inicio1, fi nal1. El resultado se ordena y se coloca
en resultado. Los rangos de entrada no deben superponerse al rango resultante. Se devuelve un
iterador al fi nal del rango resultante.

La diferencia simétrica de dos conjuntos ordenados puede encontrarse empleando el algoritmo
set_symmetric_difference. Tiene dos formas. Aquí se muestra la usada en esta solución:

template <class InIter1, class InIter2, class OutIter>
 OutIter set_symmetric_difference(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, OutIter resultado)

El algoritmo set_symmetric_difference() produce una secuencia que contiene la diferencia simé-
trica entre los dos conjuntos ordenados defi nidos por los rangos inicio1 a fi nal-1 e inicio2 a fi nal2-1.
La diferencia simétrica de dos conjuntos sólo contiene los elementos que no son comunes para
ambos conjuntos. El resultado se ordena y se coloca en resultado. Los rangos de entrada no deben
superponerse al rango resultante. Se devuelve un iterador al fi nal del rango resultante.

La intersección de dos conjuntos ordenados puede obtenerse al llamar a set_intersection().
Tiene dos formas. Aquí se muestra la usada en esta solución:

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 219

template <class InIter1, class InIter2, class OutIter>
 OutIter set_intersection(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, OutIter resultado)

El algoritmo set_intersection() produce una secuencia que contiene la intersección de los dos con-
juntos defi nidos por los rangos inicio a fi nal-1 e inicio2 a fi nal2-1. Son los elementos comunes para
ambos conjuntos. El resultado se ordena y se coloca en resultado. Los rangos de entrada no deben
superponerse al rango resultante. Se devuelve un iterador al fi nal del rango resultante.

En el caso de todos los algoritmos anteriores, el rango señalado por resultado debe tener el
largo sufi ciente para contener los elementos que se almacenarán en él. Los algoritmos de conjunto
sobrescriben los elementos existentes. No insertan nuevos elementos.

Para ver si todo el contenido de un conjunto ordenado está incluido en otro, use includes().
Tiene dos formas. Aquí se muestra la usada en esta solución:

template <class InIter1, class InIter2>
 bool includes(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2)

El algoritmo includes() determina si el rango inicio a fi nal-1 incluye todos los elementos en el
rango inicio2 a fi nal2-1. Devuelve true si se encuentran los elementos, y false, de otra manera. El
algoritmo includes() puede usarse para determinar si un conjunto es un subconjunto de otro.

Recuerde que los algoritmos de conjunto pueden usarse con cualquier secuencia ordenada,
no sólo instancias de set o multiset. Sin embargo, en todos los casos, la secuencia debe estar
ordenada.

Ejemplo
Con el siguiente programa se demuestran todos los algoritmos de conjunto:

// Demuestra los algoritmos de conjuntos.
//
// Este programa usa list, pero puede usarse
// cualquier otro contenedor de secuencias.

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter start, InIter end);

int main()
{
 list<char> lista1, lista2, resultado(15), lista3;
 list<char>::iterator res_end;

 for(int i=0; i < 5; i++) lista1.push_back('A'+i);
 for(int i=3; i < 10; i++) lista2.push_back('A'+i);

 mostrar_rango("Contenido de lista1: ", lista1.begin(), lista1.end());

220 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << endl;

 mostrar_rango("Contenido de lista2: ", lista2.begin(), lista2.end());
 cout << endl;

 // Create the union of lista1 and lista2.
 res_end = set_union(lista1.begin(), lista1.end(),
 lista2.begin(), lista2.end(),
 resultado.begin());

 mostrar_rango("Uni\u00a2n de lista1 y lista2: ", resultado.begin(), res_end);
 cout << endl;

 // Crea un conjunto que contiene lista1 - lista2.
 res_end = set_difference(lista1.begin(), lista1.end(),
 lista2.begin(), lista2.end(),
 resultado.begin());

 mostrar_rango("lista1 - lista2: ", resultado.begin(), res_end);
 cout << endl;

 // Crea la diferencia simétrica entre lista1 y lista2.
 res_end = set_symmetric_difference(lista1.begin(), lista1.end(),
 lista2.begin(), lista2.end(),
 resultado.begin());

 mostrar_rango("Diferencia simétrica entre lista1 y lista2: ",
 resultado.begin(), res_end);
 cout << endl;

 // Crea la intersección entre lista1 y lista2.
 res_end = set_intersection(lista1.begin(), lista1.end(),
 lista2.begin(), lista2.end(),
 resultado.begin());

 mostrar_rango("Intersecci\u00a2n entre lista1 y lista2: ", resultado.begin(),
 res_end);
 cout << endl;

 // Usa includes() para revisar el subconjunto.
 lista3.push_back('A');
 lista3.push_back('C');
 lista3.push_back('D');

 if(includes(lista1.begin(), lista1.end(),
 lista3.begin(), lista3.end()))
 cout << "lista3 es un subconjunto de lista1\n";
 else
 cout << "lista3 no es un subconjunto de lista1\n";

 return 0;
}

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 221

// Muestra un rango de elementos.
template<class InIter>
 void mostrar_rango(const char *msj, InIter start, InIter end) {

 InIter itr;

 cout << msj;

 for(itr = start; itr != end; ++itr)
 cout << *itr << " ";
 cout << endl;
}

Este programa genera la siguiente salida:

Contenido de lista1: A B C D E

Contenido de lista2: D E F G H I J

Unión de lista1 y lista2: A B C D E F G H I J

lista1 - lista2: A B C

Diferencia simétrica entre lista1 y lista2: A B C F G H I J

Intersección entre lista1 y lista2: D E

lista3 es un subconjunto de lista1

Opciones
Todos los algoritmos de conjunto proporcionan una segunda forma que le permite especifi car una
función de comparación, lo que determina cuando un elemento es menor que otro. Puede usar
esta función para especifi car el orden de la secuencia de entrada y del resultado. Estas formas se
muestran aquí:

template <class InIter1, class InIter2, class OutIter, class Comp>
 OutIter set_union(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, OutIter resultado, Comp fucomp)

template <class InIter1, class InIter2, class OutIter, class Comp>
 OutIter set_difference(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2,
 OutIter resultado, Comp fucomp)

template <class InIter1, class InIter2, class OutIter, class Comp>
 OutIter set_symmetric_difference(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, OutIter resultado, Comp fucomp)

template <class InIter1, class InIter2, class OutIter, class Comp>
 OutIter set_intersection(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2,
 OutIter resultado, Comp fucomp)

222 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

template <class InIter1, class InIter2, class Comp>
 bool includes(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2, Comp fucomp)

Para todos los casos, los rangos especifi cados por inicio1, fi nal1 e inicio2, fi nal2 deben ordenarse de
acuerdo con la función de comparación pasada en fucomp, que determina cuando un elemento es
menor que otro. El resultado se ordenará de acuerdo con fucomp. De otra manera, estas funciones
trabajan como sus versiones ya descritas.

Permute una secuencia

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class BiIter>
 bool next_permutation(BiIter inicio,
 BiIter fi nal)
template <class BiIter>
 bool prev_permutation(BiIter inicio,
 BiIter fi nal)

Dos de los algoritmos más intrigantes son next_permutation() y prev_permutation(). Se usan
para realizar permutaciones de una secuencia. Suelen usarse en simulaciones y en pruebas. Estos
algoritmos requieren iteradores bidireccionales y sólo pueden usarse en secuencias que pueden
ordenarse. En esta solución se demuestra su uso.

Paso a paso
Para permutar una secuencia se requieren estos pasos:

1. La secuencia que habrá de permutarse debe dar soporte a iteradores bidireccionales y per-

mitir el ordenamiento.

2. Para obtener la siguiente permutación, llame a next_permutation(), especifi cando iterado-

res al principio y al fi nal del rango que habrá de permutarse.

3. Para obtener la permutación anterior, llame a prev_permutation(), especifi cando iterado-

res al principio y al fi nal del rango que habrá de permutarse.

Análisis
Puede generar una permutación de cualquier secuencia ordenada al usar los algoritmos next_per-
mutation() y prev_permutation(). Cada una tiene dos formas. Aquí se muestran las usadas en esta
solución:

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 223

template <class BiIter>
 bool next_permutation(BiIter inicio, BiIter fi nal)
template <class BiIter>
 bool prev_permutation(BiIter inicio, BiIter fi nal)

El algoritmo next_permutation() construye la siguiente permutación del rango inicio a fi nal-1.
El algoritmo prev_permutation() construye la permutación anterior del rango inicio a fi nal-1. Las
permutaciones se generan suponiendo que una secuencia ordenada representa la primera permu-
tación. Si se han agotado todas las permutaciones, ambos algoritmos devuelven false. En este caso,
next_permutation() organiza los rangos en orden ascendente y prev_permutation en descendente.
De otra manera, ambas funciones devuelven true. Por tanto, un bucle que obtiene todas las per-
mutaciones posibles se ejecutará hasta que se devuelva false.

Ejemplo
En el siguiente ejemplo se usa next_permutation() para generar todas las permutacione posi-
bles de la secuencia ABC. Luego se usa prev_permutation() para generar las permutaciones a la
inversa.

// Demuestra next_permutation() y prev_permutation().

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main()
{
 vector<char> v;
 unsigned i;

 // Esto crea la secuencia ordenada ABC.
 for(i=0; i<3; i++) v.push_back('A'+i);

 // Demuestra next_permutation().
 cout << "Todas las permutaciones de ABC con el uso de next_permutation():\n";
 do {
 for(i=0; i < v.size(); i++)
 cout << v[i];
 cout << "\n";
 } while(next_permutation(v.begin(), v.end()));

 // En este punto, v se ha vuelto a recorrer para contener ABC.

 cout << endl;

 // Demuestra prev_permutation().

 // En primer lugar, se respalda la primera permutación.
 prev_permutation(v.begin(), v.end());

224 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << "Todas las permutaciones de ABC con el uso de prev_permutation():\n";
 do {
 for(i=0; i<v.size(); i++)
 cout << v[i];
 cout << "\n";
 } while(prev_permutation(v.begin(), v.end()));

 return 0;
}

Aquí se muestra la salida del programa:

Todas las permutaciones de ABC con el uso de next_permutation():
ABC
ACB
BAC
BCA
CAB
CBA

Todas las permutaciones de ABC con el uso de prev_permutation():
CBA
CAB
BCA
BAC
ACB
ABC

Opciones
Tanto next_permutation() como prev_permutation() proporcionan una segunda forma que le
permite especifi car una función de comparación, que determina cuando un elemento es menor
que otro. Puede usar esta función para especifi car el orden de la secuencia. (En otras palabras, esta
función determina el orden de la secuencia.) Aquí se muestran estas formas:

template <class BiIter, class Comp>
 bool next_permutation(BiIter inicio, BiIter fi nal, Comp fucomp)

template <class BiIter, class Comp>
 bool prev_permutation(BiIter inicio, BiIter fi nal, Comp fucomp)

El orden de permutación se basará en fucomp. De otra manera, estas funciones trabajarán como sus
versiones previamente descritas.

Los algoritmos next_permutation() y prev_permutation() generan permutaciones en un orden
bien defi nido. En algunas situaciones, tal vez quiera volver aleatoria la generación de permuta-
ciones. Una manera de hacer esto es con el algoritmo random_shuffl e(). Ordena una secuencia de
manera aleatoria. Aquí se muestra una de sus formas:

template <class RandIter> void random_shuffl e(RandIter inicio, RandIter fi nal)

Vuelve aleatorio el rango inicio a fi nal-1. De acuerdo con el programa anterior de ejemplo, lo si-
guiente produce una permutación aleatoria de v:

random_shuffle(v.begin(), v.end());

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 225

También hay una segunda forma de random_shuffl e() que le permite especifi car un generador de
números aleatorios personalizados. Consulte Invierta, gire y modifi que el orden de una secuencia.

Copie una secuencia de un contenedor a otro

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class InIter, class OutIter>
 OutIter copy(InIter inicio, InIter fi nal,
 OutIter resultado)

Aunque es conceptualmente simple, uno de los algoritmos STL más importantes es copy(), que
copia una secuencia. También es importante porque le da una manera de copiar elementos de un
contenedor a otro. Más aún, no es necesario que los tipos de contenedor sean iguales. Por ejemplo,
empleando copy(), puede copiar elementos de un vector a una list. Por supuesto, lo que hace esto
posible es el hecho de que copy() (como casi todos los algoritmos de STL) funciona mediante itera-
dores. Se ha dicho que los iteradores son el pegamento que une la STL. El algoritmo copy() ilustra
este punto, y en esta solución se muestra cómo ponerlo en acción.

Paso a paso
Para usar copy() con el fi n de copiar elementos de un tipo de contenedor a otro se requieren estos
pasos:

1. Confi rme que el contenedor de destino es lo sufi cientemente grande como para contener

los elementos que se copiarán en él.

2. Llame a copy() para copiar los elementos, especifi cando el rango que habrá de copiarse y

un iterador al inicio del destino.

Análisis
Aquí se muestra el algoritmo copy():

template <class InIter, class OutIter>
 OutIter copy(InIter inicio, InIter fi nal, OutIter resultado)

Este algoritmo copia el rango inicio a fi nal-1 en la secuencia de destino, empezando en resulta-
do. Devuelve un apuntador a uno después del fi nal de la secuencia resultante. He aquí un tema
importante: los elementos copiados no se agregan al contenedor de destino. En cambio, sobrescri-
ben elementos existentes. Por tanto, el contenedor de destino al que señala resultado debe ser lo
sufi cientemente grande como para contener los elementos que habrán de copiarse. El algoritmo
copy() no aumentará automáticamente el tamaño del contenedor de destino cuando se copian ele-
mentos en él. El algoritmo simplemente supone que el contenedor de destino es lo sufi cientemente
grande.

226 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

No es necesario que resultado señale al mismo contenedor que inicio a fi nal, ni que use el mismo
contenedor. Esto signifi ca que puede usar copy() para copiar el contenido de un tipo de conte-
nedor en otro. La única restricción es que el tipo de elemento del contenedor de destino debe ser
compatible con el de origen.

Otro aspecto útil de copy() es que puede usarse para desplazar elementos a la izquierda dentro
del mismo rango, siempre y cuando el último elemento del rango no se superponga con el rango de
destino.

Ejemplo
En el siguiente ejemplo se muestra la manera de usar copy() para copiar elementos de una list en
un vector.

// Usa copy() para copiar elementos de una lista a un vector.

#include <iostream>
#include <vector>
#include <list>
#include <algorithm>

using namespace std;

template<class T> void mostrar(const char *msj, T cont);

int main()
{
 list<char> lista;

 // Agrega elementos a lista.
 char cad[] = "Los algoritmos act\u00a3n sobre los contenedores";
 for(int i = 0; cad[i]; i++) lista.push_back(cad[i]);

 // Crea un vector que contiene 53 puntos al principio.
 vector<char> v(53, '.');

 mostrar("Contenido de lista:\n", lista);
 mostrar("Contenido de v:\n", v);

 // Copia lista en v.
 copy(lista.begin(), lista.end(), v.begin()+5);

 // Despliega resultado.
 mostrar("Contenido de v tras la copia:\n", v);
 return 0;
}

template<class T> void mostrar(const char *msj, T cont) {
 cout << msj;
 T::iterator itr;
 for(itr=cont.begin(); itr != cont.end(); ++itr)
 cout << *itr;

 cout << "\n\n";
}

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 227

Aquí se muestra la salida:

Contenido de lista:
Los algoritmos actúan sobre los contenedores

Contenido de v:
...

Contenido de v tras la copia:
.....Los algoritmos actúan sobre los contenedores.....

Opciones
La STL proporciona dos variaciones útiles de copy(). La primera es copy_backward(), que se
muestra aquí:

template <class BiIter1, class BiIter2>
 BiIter2 copy_backward(BiIter1 inicio, BiIter1 fi nal, BiIter2 resultado)

Este algoritmo funciona como copy(), excepto porque mueve primero elementos del fi nal del
rango especifi cado, y resultado debe señalar inicialmente a uno después del principio del rango de
destino. Por tanto, puede usarse para desplazar a la derecha elementos dentro del mismo rango,
siempre y cuando el primer elemento del rango no se superponga al rango de destino.

La segunda opción de copia es swap_ranges(). Intercambia el contenido de un rango con otro.
Por tanto, proporciona una copia bidireccional. Se muestra aquí:

template <class ForIter1, class ForIter2>
 ForIter2 swap_ranges(ForIter inicio1, ForIter inicio2, ForIter2 inicio2)

El algoritmo swap_ranges() intercambia elementos en el rango inicio1 a fi nal1-1 con elementos en
la secuencia que empieza en inicio2. Devuelve un apuntador al fi nal de la secuencia especifi cada
por inicio2. No deben superponerse los rangos que se intercambian.

Reemplace y elimine elementos en un contenedor

Componentes clave

Encabezados Clases Funciones

<algortihm> template <class ForIter, class T>
 ForIter remove(ForIter inicio, ForIter fi nal,
 const T &val)
template <class ForIter, class T>
 void replace(ForIter inicio, ForIter fi nal,
 const T &ant, const T &nue)

228 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

La STL proporciona funciones que le permiten reemplazar o eliminar elementos. En el núcleo de la
funcionalidad están replace() y remove(). Aunque ambas operaciones pueden realizarse mediante
el uso de funciones defi nidas por el contenedor, en muchos casos, estos algoritmos depuran la
tarea. En esta solución se demuestran.

Paso a paso
Para eliminar o reemplazar uno o más elementos en una secuencia se requieren estos pasos:

1. Para eliminar todos los elementos que coinciden con un valor específi co, llame a remove(),

especifi cando el rango que habrá de eliminarse y el valor que se eliminará.

2. Para reemplazar todas las apariciones de elementos que coinciden con un valor específi co,

llame a replace(), especifi cando el rango que habrá de modifi carse, y el valor que se reem-

plazará y el que se sustituirá.

Análisis
El algoritmo remove() elimina todas las apariciones de un elemento especifi cado de un rango
especifi cado. Aquí se muestra:

template <class ForIter, class T>
 ForIter remove(ForIter inicio, ForIter fi nal, const T &val)

Este algoritmo elimina todos los elementos del rango inicio a fi nal-1 que son iguales a val. Devuelve
un iterador al fi nal de los elementos restantes. El orden de los elementos restantes queda sin cambio.

Dentro de un rango especifi cado, el algoritmo replace() reemplaza todas las apariciones de un
elemento especifi cado con otro. Aquí se muestra:

template <class ForIter, class T>
 void replace(ForIter inicio, ForIter fi nal, const T &ant, const T &nue)

Dentro del rango especifi cado inicio a fi nal-1, replace() reemplaza elementos que coinciden con el
valor ant con elementos que tienen el valor nue.

NOTA La clase contenedora list proporciona su propia implementación de remove() que está optimi-
zada para listas. Por tanto, cuando se eliminan elementos de una list, debe usar la función en lugar
del algoritmo remove().

Ejemplo
En el siguiente ejemplo se muestran remove() y replace():

// Demuestra remove() y replace().

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 229

int main()
{
 vector<char> v;
 vector<char>::iterator itr, itr_final;

 // Crea un vector que contiene A B C D E A B C D E.
 for(int i=0; i<5; i++) {
 v.push_back('A'+i);
 }
 for(int i=0; i<5; i++) {
 v.push_back('A'+i);
 }

 mostrar_rango("Contenido original de v:\n", v.begin(), v.end());
 cout << endl;

 // Elimina todas las A.
 itr_final = remove(v.begin(), v.end(), 'A');

 mostrar_rango("v tras eliminar todas las A:\n", v.begin(), itr_final);
 cout << endl;

 // Reemplaza B con dígitos X.
 replace(v.begin(), v.end(), 'B', 'X');

 mostrar_rango("v tras reemplazar B con X:\n", v.begin(), itr_final);
 cout << endl;

 return 0;
}

// Muestra un rango de elementos de un vector<char>.
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {
 InIter itr;

 cout << msj;
 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;
}

Aquí se muestra la salida:

Contenido original de v:
A B C D E A B C D E

v tras eliminar todas las A:
B C D E B C D E

v tras reemplazar B con X:
X C D E X C D E

230 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
La STL proporciona varias opciones para eliminar y reemplazar elementos. Dos que le resultarán
particularmente útiles son remove_copy() y replace_copy(). Ambas generan una nueva secuencia
que contiene el resultado de la operación. Por tanto, la secuencia original queda sin alteración.

Aquí se muestra el prototipo para remove_copy():

template <class InIter, class OutIter, class T>
 OutIter remove_copy(InIter inicio, InIter fi nal, OutIter resultado, const T &val)

Copia elementos del rango especifi cado, eliminando los que sean iguales a val. Pone el resultado
en la secuencia a la que señala resultado y devuelve un iterador a uno después del fi nal del resulta-
do. El rango de destino debe ser lo sufi cientemente grande para contener el resultado.

El prototipo para replace_copy() se muestra a continuación:

template <class InIter, class OutIter, class T>
 OutIter replace_copy(InIter inicio, InIter fi nal,
 OutIter resultado, const T &ant, const T &nue)

Copia elementos del rango especifi cado, reemplazando elementos iguales a ant con nue. Coloca el
resultado en la secuencia señalada por resultado y devuelve un iterador a uno después del fi nal
del resultado. El rango de destino debe tener el tamaño sufi ciente para contener el resultado.

Hay variaciones de remove(), replace(), remove_copy() y replace_copy() que le permiten espe-
cifi car un predicado unario que determina cuándo debe eliminarse o reemplazarse un elemento.
Se les denomina remove_if(), replace_if(), remove_copy_if() y replace_copy_if().

Otro algoritmo que elimina elementos de una secuencia es unique(). Elimina elementos dupli-
cados consecutivos de un rango. Tiene las dos formas mostradas aquí:

template <class ForIter>
 ForIter unique(ForIter inicio, ForIter fi nal)

template <class ForIter, class BinPred>
 ForIter unique(ForIter inicio, ForIter fi nal, BinPred funp)

Se eliminan elementos duplicados consecutivos en el rango especifi cado. La segunda forma le per-
mite especifi car un predicado binario que determina cuando un elemento es igual a otro. unique()
devuelve un iterador al fi nal del rango resultante. Por ejemplo, suponiendo el programa anterior,
si v contiene la secuencia AABCCBDE, entonces después de la ejecución de esta instrucción

itr_final = unique(v.begin(), v.end());

el rango v.begin() a itr_fi nal contendrá ABCBDE. La STL también proporciona unique_copy(), que
funciona de la misma manera que unique(), excepto que el resultado se coloca en otra secuencia.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 231

Combine dos secuencias ordenadas

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class InIter1, class InIter2,
 class OutIter>
 OutIter merge(InIter1 inicio1, InIter1 fi nal1,
 InIter2 inicio2, InIter2 fi nal2
 OutIter resultado)
template <class BiIter>
 void inplace_merge(BiIter inicio, BiIter medio,
 BiIter fi nal)

Hay dos algoritmos de STL que combinan dos secuencias ordenadas: merge() e inplace_merge().
Para ambos, el resultado es una secuencia ordenada que incluye el contenido de las dos secuen-
cias originales. Como recordará, la mezcla está directamente apoyada por el contenedor list. Sin
embargo, no es proporcionada por otros contenedores integrados. Por tanto, si quiere combinar
secuencias de elementos de cualquier otra cosa diferente de un contenedor list, necesitará usar
uno de los algoritmos de mezcla.

Hay dos maneras en que puede realizarse una mezcla. En primer lugar, puede almacenarse el
resultado en una tercera secuencia. En segundo lugar, si la mezcla incluye dos secuencias del mis-
mo contenedor, entonces el resultado puede almacenarse en el lugar. El primer método es propor-
cionado por merge(), y el segundo por inplace_merge(). En esta solución se ilustran ambos.

Paso a paso
Para mezclar dos secuencias, almacenando el resultado en una tercera secuencia, se requieren
estos pasos:

1. Asegúrese de que las secuencias que se mezclarán están ordenadas.

2. Llame a merge(), pasándola en los rangos que habrán de mezclarse y un iterador al princi-

pio del rango de destino que contendrá el resultado.

Para mezclar dos secuencias en el lugar se requieren estos pasos:

1. Asegúrese de que las secuencias que habrán de mezclarse están ordenadas.

2. Llame a inplace_merge(), pasándola en los rangos que habrán de mezclarse. El resultado

se almacenará en el lugar.

Análisis
El algoritmo merge() mezcla dos secuencias ordenadas y almacena el resultado en una tercera
secuencia. Tiene dos formas. La usada en esta solución se muestra a continuación:

template <class InIter1, class InIter2, class OutIter>
 OutIter merge(InIter1 inicio1, InIter1 fi nal1
 InIter2 inicio2, InIter2 fi nal2
 OutIter resultado)

232 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

El algoritmo merge() mezcla dos secuencias ordenadas, colocando el resultado en una tercera
secuencia. Los rangos que habrán de mezclarse están defi nidos por inicio1, fi nal1 e inicio2, fi nal2.
El resultado se pone en el contenedor señalado por resultado. Este contenedor debe ser del tamaño
sufi ciente para contener los elementos que se almacenarán en él, porque los elementos mezcla-
dos sobrescriben los elementos existentes. El algoritmo merge() no inserta nuevos elementos. Se
devuelve un iterador a uno después del fi nal de la secuencia resultante.

Es importante comprender que merge() no requiere que la secuencia de entrada o la resultante
sean del mismo tipo de contenedor. Por ejemplo, puede usar merge() para mezclar una secuencia
de una instancia de vector con una secuencia de una instancia de deque, almacenando el resultado
en un objeto de list. Por tanto, merge() ofrece una manera de combinar elementos de contenedores
separados.

El algoritmo inplace_merge() realiza una mezcla en dos rangos ordenados consecutivos dentro
del mismo contenedor, y el resultado reemplaza a los dos rangos originales. Tiene dos formas.
Aquí se muestra la usada por esta solución:

template <class BiIter>
 void inplace_merge(BiIter inicio, BiIter medio, BiIter fi nal)

Dentro de una sola secuencia, el algoritmo inplace_merge() mezcla el rango de inicio a medio-1
con el rango de medio a fi nal-1; ambos rangos deben estar ordenados. Después de la ejecución, la
secuencia resultante se ordena y está contenida en el rango inicio a fi nal-1.

NOTA La clase del contenedor list proporciona su propia implementación de merge() que está opti-
mizado para listas. Por tanto, cuando se mezclan listas, debe usar esa función en lugar del algoritmo
merge().

Ejemplo
En el siguiente ejemplo se muestran merge() e inplace_merge() en acción. Se usa merge() para
mezclar un vector con una deque. El resultado se almacena en una list. Observe que tanto las
secuencias de entrada como el resultado están ordenados. Luego se usa inplace_merge() para
mezclar dos secuencias dentro del mismo vector.

// Demuestra merge() e inplace_merge().

#include <iostream>
#include <vector>
#include <deque>
#include <list>
#include <algorithm>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

int main()
{
 vector<char> v;
 deque<char> dq;
 list<char> resultado(26);

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 233

 list<char>::iterator res_final;

 // Primero, demuestra merge().

 for(int i=0; i < 26; i+=2) v.push_back('A'+i);
 for(int i=0; i < 26; i+=2) dq.push_back('B'+i);

 mostrar_rango("Contenido original de v:\n", v.begin(), v.end());
 cout << endl;

 mostrar_rango("Contenido original de dq:\n", dq.begin(), dq.end());
 cout << endl;

 // Mezcla v con dq.
 res_final = merge(v.begin(), v.end(),
 dq.begin(), dq.end(),
 resultado.begin());

 mostrar_rango("Resultado de mezclar v con dq:\n", resultado.begin(), res_final);
 cout << "\n\n";

 // Ahora, demuestra inplace_merge().

 vector<char> v2;
 for(int i=0; i < 26; i+=2) v2.push_back('B'+i);
 for(int i=0; i < 26; i+=2) v2.push_back('A'+i);

 mostrar_rango("Contenido original de v2:\n", v2.begin(), v2.end());
 cout << endl;

 // Mezcla dos rangos de v2.
 inplace_merge(v2.begin(), v2.begin()+13, v2.end());

 mostrar_rango("Contenido de v2 tras mezclar en el lugar:\n", v2.begin(),
 v2.end());

 return 0;
}

// Muestra un rango de elementos.
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {

 InIter itr;

 cout << msj;

 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;
}

234 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra la salida:

Contenido original de v:
A C E G I K M O Q S U W Y

Contenido original de dq:
B D F H J L N P R T V X Z

Resultado de mezclar v con dq:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Contenido original de v2:
B D F H J L N P R T V X Z A C E G I K M O Q S U W Y

Contenido de v2 tras mezclar en el lugar:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Opciones
Hay una segunda forma de merge() que le permite especifi car una función de comparación que
determina cuando un elemento es menor que otro. Aquí se muestra:

template <class InIter1, class InIter2, class OutIter, class Comp>
 OutIter merge(InIter1 inicio1, InIter1 fi nal1
 InIter2 inicio2, InIter2 fi nal2
 OutIter resultado, Comp fucomp)

Funciona igual que la primera forma, excepto que fucomp se usa para comparar dos elementos.
Cuando se usa esta manera, la secuencia que se está mezclando también debe ordenarse de acuer-
do con fucomp.

Hay también una segunda forma de inplace_merge() que le permite especifi car una función de
comparación. Se muestra aquí:

template <class BiIter, class Comp>
 void inplace_merge(BiIter inicio, BiIter medio, BiIter fi nal, Comp fucomp)

Funciona como la primera versión, excepto que usa fucomp para determinar cuando un elemento
es menor que otro. Como es de esperar, las secuencias también deben ordenarse de acuerdo con
fucomp.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 235

Cree y administre un heap

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class RandIter>
 void make_heap(RandIter inicio,
 RandIter fi nal)
template <class RandIter>
 void pop_heap(RandIter inicio, RandIter fi nal)
template <class RandIter>
 void push_heap(RandIter inicio,
 RandIter fi nal)
template <class RandIter>
 void sort_heap(RandIter inicio, RandIter fi nal)

Un heap, o montón, es una estructura de datos en que el elemento superior (también llamado el
primer elemento) es el elemento más grande de la secuencia. Los heaps permiten la inserción y eli-
minación rápida (en tiempo logarítmico) de un elemento. Son útiles para crear colas de prioridad
en que el elemento de mayor prioridad debe estar disponible inmediatamente, pero no se necesita
una lista completamente ordenada. La STL proporciona cuatro algoritmos que dan soporte a ope-
raciones con heaps, y en esta solución se demuestra su uso.

Paso a paso
Para crear y administrar un heap, se requieren estos pasos:

1. Para crear un heap, llame a make_heap(), especifi cando el rango de elementos que habrá

de crearse en un heap.

2. Para agregar un elemento a un heap, llame a push_heap().

3. Para eliminar un elemento del heap, llame a pop_heap().

4. Para ordenar el heap, llame a sort_heap().

Análisis
Un heap se construye usando el algoritmo make_heap(). Tiene dos formas. Aquí se muestra la
usada en esta solución:

template <class RandIter>
 void make_heap(RandIter inicio, RandIter fi nal)

Construye un heap a partir de la secuencia defi nida por inicio a fi nal. Cualquier contenedor que da
soporte a los iteradores de acceso aleatorio puede usarse para contener un heap. La construcción
de un heap ocupa tiempo lineal.

Puede incluir un nuevo elemento en el heap usando push_heap(). Tiene dos formas. La usada
en esta solución se muesta a continuación:

template <class RandIter>
 void pop_heap(RandIter inicio, RandIter fi nal)

236 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Coloca el elemento en fi nal-1 en el heap defi nido por inicio a fi nal-2. En otras palabras, el heap
actual termina en fi nal-2 y push_heap() agrega el elemento en fi nal-1. El resultado es un heap que
termina en fi nal -1. La inclusión de un elemento en un heap consume tiempo logarítmico.

Puede eliminar un elemento usando pop_heap(). Tiene dos formas. Aquí se muestra la usada
en esta solución:

template <class RandIter>
 void push_heap(RandIter inicio, RandIter fi nal)

El algoritmo pop_heap() intercambia los elementos de inicio y fi nal-1 y luego reconstruye el
heap. El heap resultante termina en fi nal-2. La eliminación de un elemento de un heap consume
tiempo logarítmico.

Puede ordenar un heap de manera ascendente usando sort_heap(). Aquí se muestra su proto-
tipo:

template <class RandIter>
 void sort_heap(RandIter inicio, RandIter fi nal)

El algoritmo sort_heap() ordena un heap dentro del rango especifi cado por inicio y fi nal. El ordena-
miento de un heap requiere tiempo proporcional a N log N.

Ejemplo
He aquí un programa que construye un heap, luego agrega y elimina elementos. Termina por
ordenar el heap.

// Demuestra los algoritmos de heap.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

void mostrar(const char *msj, vector<char> vect);

int main()
{
 vector<char> v;
 int i;

 for(i=0; i<20; i+=2) v.push_back('A'+i);

 mostrar("v antes de construir el heap:\n", v);
 cout << endl;

 // Construye un heap.
 make_heap(v.begin(), v.end());

 mostrar("v tras construir el heap:\n", v);
 cout << endl;

 // Incluye H en el heap.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 237

 v.push_back('H'); // primero coloca H en el vector
 push_heap(v.begin(), v.end()); // ahora, coloca H en el heap

 mostrar("v tras incluir H en el heap:\n", v);
 cout << endl;

 // Extrae un valor del heap.
 pop_heap(v.begin(), v.end());

 mostrar("v tras extraer un valor del heap:\n", v);
 cout << endl;

 // Ordena el heap
 sort_heap(v.begin(), v.end()-1);
 mostrar("v tras ordenar el heap:\n", v);

 return 0;
}

// Despliega el contenido de un vector<char>.
void mostrar(const char *msj, vector<char> vect) {
 cout << msj;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}

He aquí la salida del programa:

v antes de construir el heap:
A C E G I K M O Q S

v tras construir el heap:
S Q M O I K E A G C

v tras incluir H en el heap:
S Q M O I K E A G C H

v tras extraer un valor del heap:
Q O M H I K E A G C S

v tras ordenar el heap:
A C E G H I K M O Q S

Observe el contenido de v tras llamar a pop_heap(). La S aún está presente, pero ahora se en-
cuentra al fi nal. Como se describió, la eliminación de un elemento de un heap hace que el primer
elemento se mueva al fi nal y luego se construye un nuevo heap sobre los elementos restantes
(N-1). Por tanto, aunque el elemento eliminado (S, en este caso) permanece en el contenedor, no
es parte del heap. Además, observe que la llamada a sort_heap() especifi ca v.end()-1 como punto
fi nal del ordenamiento. Esto se debe a que la S ya no es parte del heap, porque se ha eliminado en
el paso anterior.

238 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
Todas las funciones del heap tienen una segunda forma que le permite especifi car una función
de comparación que determina cuando un elemento es menor que otro. Aquí se muestran estas
versiones:

template <class RandIter, class Comp>
 void make_heap(RandIter inicio, RandIter fi nal, Comp fucomp)

template <class RandIter, class Comp>
 void pop_heap(RandIter inicio, RandIter fi nal, Comp fucomp)

template <class RandIter, class Comp>
 void push_heap(RandIter inicio, RandIter fi nal, Comp fucomp)

template <class RandIter, class Comp>
 void sort_heap(RandIter inicio, RandIter fi nal, Comp fucomp)

En todos los casos, fucomp especifi ca la función de comparación usada para determinar el orden de
los elementos.

Aunque los algoritmos de heap son útiles, requieren que usted maneje manualmente el heap.
Por fortuna, hay un método más fácil que es aplicable a muchas situaciones: el adaptador de
contenedor priority_queue, el cual mantiene automáticamente los elementos en el contenedor en
orden de prioridad.

Cree un algoritmo

Componentes clave

Encabezados Clases Funciones

template<tipos-iter, otros-tipos>
 tipo-ret nombre(args-iter, otros-args)
template<tipos-iter, otros-tipos, tipo_pred>
 tipo-ret nombre(args-iter, otros-args, predicado)

Aunque la STL proporciona un rico conjunto de algoritmos integrados, también puede crear los
propios. Esto es posible porque la STL se diseñó para acomodar extensiones fácilmente. Siempre
y cuando siga unas cuantas reglas simples, sus algoritmos serán completamente compatibles
con los contenedores de STL y otros elementos. Por tanto, al crear sus propios algoritmos, se
expandirá su marco conceptual de STL para cubrir sus necesidades. En esta solución se muestra
el proceso.

Paso a paso
Para crear sus propios algoritmos, se requieren estos pasos:

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 239

1. Cree una función de plantilla que tome uno o más iteradores como argumentos.

2. Realice todas las operaciones mediante los iteradores pasados a la función.

3. Si se necesita un predicado, inclúyalo en la lista de parámetros para la función, y luego

defi na el predicado.

Análisis
En general, el proceso de crear un algoritmo es simple. Sólo cree una plantilla de función que
opere mediante iteradores que se pasan como argumentos. (Técnicamente, un algoritmo también
puede operar mediante referencias, pero casi todo el tiempo deben usarse iteradores.) El tipo de
iterador es especifi cado por un parámetro de plantilla. Por tanto, el prototipo de un algoritmo
personalizado tendrá el aspecto de los prototipos de los algoritmos integrados. Tenga en mente un
tema importante: el nombre de tipo genérico que le dé a un iterador no tiene efecto en los tipos de
iteradores que puede realmente usar cuando llame al algoritmo. Los nombres de tipo de iterador
genéricos son simples convenciones que documentan los tipos de iteradores requeridos por el
algoritmo. Por tanto, el uso del nombre BiIter en una plantilla no impone que sólo puedan usarse
iteradores con capacidades bidireccionales. En cambio, son los operadores aplicados al iterador
dentro del algoritmo los que determinan cuáles capacidades se requieren. Por ejemplo, si aplica
+ o – al iterador, entonces sólo pueden usarse iteradores de acceso aleatorio como argumentos.

En principio, un algoritmo personalizado puede devolver cualquier tipo de valor. Por ejemplo,
considere la amplia variedad de tipos de devolución encontrados en los algoritmos integrados.
fi nd() devuelve un iterador, count() devuelve un valor entero y equal() devuelve un resultado
booleano. No obstante lo anterior, he aquí una buena regla a seguir: cuando tenga sentido que
su algoritmo devuelva un iterador, debe hacerlo. Esto a menudo hace que su algoritmo sea más
versátil porque permite que el resultado de un algoritmo sea usado como entrada de otro. Por
supuesto, la naturaleza específi ca de su algoritmo determinará su tipo de devolución.

Si su algoritmo necesita usar un predicado, incluya un parámetro de plantilla para el predica-
do. Luego, proporcione el predicado cuando se llame al algoritmo.

Al unir todo, he aquí las principales formas generales de un algoritmo:

template<tipos-iter, otros-tipos>
 tipo-ret nombre(args-iter, otros-args)

template<tipos-iter, otros-tipos, tipo_pred>
 tipo-ret nombre(args-iter, otros-args, predicado)

Por supuesto, su aplicación específi ca determinará el tipo de devolución específi co, de argumentos
y de predicado.

Como un elemento interesante, en varios de los ejemplos de este capítulo se usa una función
llamada show_range(). Toma un apuntador a una cadena terminada en un carácter nulo y dos ite-
radores como argumentos. Luego despliega la cadena seguida por los elementos dentro del rango
especifi cado. Debido a que show_range() accede a los elementos mediante iteradores, funciona de
manera parecida a un algoritmo. Sin embargo, en opinión del autor no es un algoritmo, en sentido
estricto, porque produce salida que está codifi cada para que se despliegue mediante cout. No
obstante, muestra la manera en que los iteradores delinean la creación de funciones que pueden
aplicarse a contenedores. (Es posible dar salida a información a un fl ujo mediante un iterador.
Consulte Use los iteradores de fl ujo para conocer más detalles.)

240 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
En el siguiente ejemplo se muestra un algoritmo personalizado llamado disjuntos(), que compara
los elementos en dos rangos. Si no contienen elementos comunes, entonces disjuntos() devuelve
true. De otra manera, devuelve false.

// Esta función es un algoritmo que determina si el contenido
// de dos rangos es disjunto. Es decir, si no contienen
// elementos en común.
template<class InIter>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2) {

 InIter itr;

 for(; inicio != final; ++inicio)
 for(itr = inicio2; itr != final2; ++itr)
 if(*inicio == *itr) return false;

 return true;
}

Como puede ver, todas las operaciones ocurren mediante iteradores. Debido a que los iteradores
sólo se mueven en dirección directa y a que recuperan pero no almacenan valores, disjuntos()
puede llamarse con cualquier tipo de iterador que da soporte a operaciones de entrada.

El siguiente programa pone a disjuntos() en acción. Observe que el programa también usa la
función mostrar_rango(), que despliega los elementos dentro de un rango. Como se mencionó,
esta función se usa en varios de los ejemplos de este capítulo y funciona de manera similar a un
algoritmo porque opera mediante iteradores.

// Este programa demuestra el algoritmo disjuntos().

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

template<class InIter>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2);

int main()
{
 list<char> lista1, lista2, lista3;

 for(int i=0; i < 5; i++) lista1.push_back('A'+i);
 for(int i=6; i < 10; i++) lista2.push_back('A'+i);
 for(int i=8; i < 12; i++) lista3.push_back('A'+i);

 mostrar_rango("Contenido de lista1: ", lista1.begin(), lista1.end());

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 241

 mostrar_rango("Contenido de lista2: ", lista2.begin(), lista2.end());
 mostrar_rango("Contenido de lista3: ", lista3.begin(), lista3.end());

 cout << endl;

 // Prueba lista1 y lista2.
 if(disjuntos(lista1.begin(), lista1.end(), lista2.begin(), lista2.end()))
 cout << "lista1 y lista2 son disjuntos\n";
 else cout << "lista1 y lista2 no son disjuntos.\n";

 // Prueba lista2 y lista3.
 if(disjuntos(lista2.begin(), lista2.end(), lista3.begin(), lista3.end()))
 cout << "lista2 y lista3 son disjuntas\n";
 else cout << "lista2 y lista3 no son disjuntas.\n";

 return 0;
}

 // Muestra un rango de elementos.
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {

 InIter itr;

 cout << msj;

 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;
}

// Esta función es un algoritmo que determina si el contenido
// de dos rangos es disjunto. Es decir, si no contienen
// elementos en común.
template<class InIter>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2) {

 InIter itr;

 for(; inicio != final; ++inicio)
 for(itr = inicio2; itr != final2; ++itr)
 if(*inicio == *itr) return false;

 return true;
}

Aquí se muestra la salida:

Contenido de lista1: A B C D E
Contenido de lista2: G H I J
Contenido de lista3: I J K L

lista1 y lista2 son disjuntas
lista2 y lista3 no son disjuntas.

242 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo adicional: use un predicado con un algoritmo personalizado
Es fácil agregar un predicado, como una función de comparación, a un algoritmo. Simplemente
especifi que un tipo genérico para la función y luego incluya un parámetro de ese tipo en la lista de
argumentos. Dentro del algoritmo, llame a la función cuando sea necesario mediante su paráme-
tro. Por ejemplo, he aquí una sobrecarga de disjuntos() que le permite especifi car un predicado
que determina cuando un elemento es igual a otro:

// Esta sobrecarga de disjuntos() permite especificar una función
// de compración que determina cuando dos elementos son iguales.
template<class InIter, class Comp>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2, Comp fucomp) {

 InIter itr;

 for(; inicio != final; ++inicio)
 for(itr = inicio2; itr != final2; ++itr)
 if(fucomp(*inicio, *itr)) return false;

 return true;
}

Preste especial atención al parámetro fucomp. Puede recibir un apuntador a función o un objeto
de función. Luego se utiliza esta función para determinar cuando dos elementos son iguales. En
el siguiente programa se demuestra esta versión de disjuntos() para ignorar diferencias entre
mayúsculas y minúsculas cuando se determina si dos rangos de caracteres son disjuntos. Se utiliza
la función de predicado binario igual_ignoramayus() para determinar cuando dos caracteres son
iguales independientemente de las diferencias entre mayúsculas y minúsculas.

// Demuestra una versión de disjuntos() que toma una función de comparación.

#include <iostream>
#include <list>
#include <algorithm>
#include <cctype>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

template<class InIter>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2);

// Sobrecarga disjuntos() para tomar una función de comparación.
template<class InIter, class Comp>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2, Comp fucomp);

bool igual_ignoramayus(char car1, char car2);

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 243

int main()
{
 list<char> lista1, lista2;

 for(int i=0; i < 5; i++) lista1.push_back('A'+i);
 for(int i=2; i < 7; i++) lista2.push_back('a'+i);

 mostrar_rango("Contenido de lista1: ", lista1.begin(), lista1.end());
 mostrar_rango("Contenido de lista2: ", lista2.begin(), lista2.end());

 cout << endl;

 // Prueba lista1 y lista2.
 cout << "Probando lista1 y lista2 de manera sensible a \n";
 cout << "may\u00a3sculas y min\u00a3sculas.\n";
 if(disjuntos(lista1.begin(), lista1.end(), lista2.begin(), lista2.end()))
 cout << "lista1 y lista2 son disjuntas\n";
 else cout << "lista1 y lista2 no son disjuntas.\n";

 cout << endl;

 // Prueba lista1 y lista2, pero ignora las diferencias entre mayúsculas
 // y minúsculas.
 cout << "Probando lista1 y lista2 e ignorando diferencias entre\n";
 cout << "may\u00a3sculas y min\u00a3sculas.\n";
 if(disjuntos(lista1.begin(), lista1.end(), lista2.begin(), lista2.end(),
 igual_ignoramayus))
 cout << "lista1 y lista2 son disjuntas\n";
 else cout << "lista1 y lista2 no son disjuntas.\n";

 return 0;
}

// Muestra un rango de elementos
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {

 InIter itr;

 cout << msj;

 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;
}

// Esta función es un algoritmo que determina si el contenido
// de dos rangos es disjunto. Es decir, si no contienen
// elementos en común.
template<class InIter>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2) {

 InIter itr;

244 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 for(; inicio != final; ++inicio)
 for(itr = inicio2; itr != final2; ++itr)
 if(*inicio == *itr) return false;

 return true;
}

// Esta sobrecarga de disjuntos() permite especificar una función
// de comparación que determina cuando dos elementos son iguales.
template<class InIter, class Comp>
 bool disjuntos(InIter inicio, InIter final,
 InIter inicio2, InIter final2, Comp fucomp) {

 InIter itr;

 for(; inicio != final; ++inicio)
 for(itr = inicio2; itr != final2; ++itr)
 if(fucomp(*inicio, *itr)) return false;

 return true;
}

// Esta función devuelve true si car1 y car2 representan la misma
// letra, a pesar de diferencias entre mayúsculas y minúsculas.
bool igual_ignoramayus(char car1, char car2) {
 if(tolower(car1) == tolower(car2)) return true;
 return false;
}

Aquí se muestra la salida:

Contenido de lista1: A B C D E
Contenido de lista2: c d e f g

Probando lista1 y lista2 de manera sensible a
mayúsculas y minúsculas.
lista1 y lista2 son disjuntas.

Probando lista1 y lista2 e ignorando diferencias entre
mayúsculas y minúsculas.
lista1 y lista2 no son disjuntas.

Opciones
Aunque la creación de su algoritmo es muy fácil, como se muestra en los ejemplos anteriores, a
menudo no necesitará crearlos. En muchos casos, puede alcanzar el resultado deseado al usar for_
each() o transform() y especifi car una función que realiza la operación deseada. En otros casos,
tal vez pueda usar las formas predicadas de uno de los algoritmos estándar de STL. Por supuesto,
cuando ninguno de estos métodos funciona, es simple crear su propio algoritmo.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 245

Use un objeto de función integrado

Componentes clave

Encabezados Clases Funciones

<functional> divides
equal_to
greater
greater_equal
less
less_equal
logical_and
logical_not
logical_or
minus
modulus
multiplies
negate
not_equal_to
plus

ret-type operator(list-args)

En esta solución se muestra cómo usar los objetos de función integrada defi nidos por la STL. Una
revisión general de los objetos de función se presentó casi al principio de este capítulo, pero será
útil empezar por resumir los puntos clave:

Los objetos de función son instancias de clases que defi nen operator().

Un objeto de función puede usarse en lugar de un apuntador a función, como cuando se

pasa un predicado a un algoritmo.

Hay dos tipos de función de objetos: unarios y binarios. Un objeto de función unaria requie-

re un argumento; uno binario requiere dos.

Los objetos de función ofrecen más fl exibilidad y, en algunos casos, pueden ser más efi cien-

tes que los apuntadores de función.

La STL proporciona varios objetos de función integrados, que son el tema de esta solución.
También es posible crear sus propios objetos de función. Ésta se describe en la siguiente solución.

Paso a paso
Para crear un objeto de función integrada se requieren estos pasos:

1. Cree una instancia del objeto de función deseada. Especifi que el tipo de datos sobre los que

operará en su argumento de tipo.

2. Pase el objeto creado en el paso 1 como un argumento a cualquier algoritmo que requiera

un argumento de función.

•

•

•

•

246 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis
Todos los objetos de función integrados son clases de plantilla, lo que signifi ca que pueden funcio-
nar sobre cualquier tipo de datos para los cuales está defi nida su operación asociada. Los objetos
de función integrada usan el encabezado <functional>.

La STL defi ne varios objetos de función binaria y dos objetos de función unaria. Los segundos
son logical_not y negate. Los objetos de función binaria integrados se muestran a continuación:

plus minus multiplies divides modulus

equal_to not_equal_to greater greater_equal less

less_equal logical_and logical_or

Cada objeto de función realiza la acción implicada en su nombre. Por ejemplo, negate devuelve
la negación de un valor, less devuelve true si un valor es menor que otro, y divides devuelve el
resultado de dividir un valor entre otro.

Los dos objetos de función usados en el ejemplo son negate y multiplies. He aquí cómo se
declaran:

template <class T> estruct negate : funcion_unaria<T, T> {
 T operator()(const T & a) const;

};

template <class T> estruct multiplies : funcion_binaria<T, T> {
 T operator()(const T & a, const T & b) const;
};

Observe que se declaran usando la palabra clave struct. Recuerde que en C++, struct crea un tipo
de clase. Los otros objetos de función se declaran de una manera similar.

Para usar un objeto de función, primero debe construir uno. Por ejemplo:

negate<int>()

construye un objeto de negate para usar en operandos de tipo int, y

multiplies<double, double>()

construye un objeto de multiplies para usar en operandos double.
A menudo, una instancia de un objeto de función no se construye hasta que en realidad se pasa

a un algoritmo. Por ejemplo, esta instrucción:

transform(inicio1, final1, inicio2, negate<double>());

construye un objeto de función negate y lo pasa a transform() en un paso. Con frecuencia, no hay
necesidad de construir una instancia independiente.

Ejemplo
En el siguiente ejemplo se demuestra el objeto de función unaria negate y el binario multiplies. La
misma técnica se aplica a cualquier objeto de función integrado.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 247

NOTA Otro ejemplo que utiliza un objeto de función integrado se encuentra en Ordene un contene-
dor. Usa el objeto de función greater para ordenar un contenedor en orden inverso.

// Demuestra los objetos de función negate y multiplies.

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

using namespace std;

template<class T> void mostrar(const char *msj, T cont);

int main()
{
 vector<int> v, v2, resultado(10);

 for(unsigned i=0; i < 10; ++i) v.push_back(i);
 for(unsigned i=0; i < 10; ++i) v2.push_back(i);

 mostrar("Contenido de v:\n", v);
 mostrar("Contenido de v2:\n", v2);
 cout << endl;

 // Multiplica v y v2.
 transform(v.begin(), v.end(), v2.begin(), resultado.begin(),
 multiplies<int>());

 mostrar("Resultado de multiplicar los elementos de v con los de v2:\n", resultado);
 cout << endl;

 // Luego, niega el contenido de resultado.
 transform(v.begin(), v.end(), v.begin(), negate<int>());

 mostrar("Tras negar v:\n", v);

 return 0;
}

// Despliega el contenido de un contenedor.
template<class T> void mostrar(const char *msj, T cont) {
 cout << msj;

 T::iterator itr;
 for(itr=cont.begin(); itr != cont.end(); ++itr)
 cout << *itr << " ";

 cout << "\n";
}

248 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra la salida:

Contenido de v:
0 1 2 3 4 5 6 7 8 9
Contenido de v2:
0 1 2 3 4 5 6 7 8 9

Resultado de multiplicar los elementos de v con los de v2:
0 1 4 9 16 25 36 49 64 81

Tras negar v:
0 -1 -2 -3 -4 -5 -6 -7 -8 -9

Opciones
Como regla general, si un objeto de función integrada manejará la situación, debe usarla. En
los casos en que no, puede crear su propio objeto de función, como se describe en la siguiente
solución. Otra opción consiste en pasar un apuntador a una función estándar. Por ejemplo, dado
un contenedor que contiene una secuencia de caracteres, puede pasar la función islower() a
remove_if() para eliminar todas las minúsculas.

Un objeto de función puede tener un límite de valor mediante el uso de un adhesivo. Consulte
Use un adhesivo para conocer detalles.

Cree un objeto de función personalizado

Componentes clave

Encabezados Estructuras Funciones y Typedefs

<functional> binary_function argument_type
result_type

<functional> unary_function fi rst_argument_type
second_argument_type
result_type

result_type operator(argument_type arg)
result_type
 operator(fi rst_argument_type arg1,
 second_argument_type arg2)

Uno de los componentes clave de la STL es el objeto de función. Como se explicó en Revisión gene-
ral de objetos de función, un objeto de función es una instancia de una clase que implementa opera-
tor(). Por tanto, cuando se ejecuta en el objeto la función que llama al operador, que es (), se ejecuta
operator(). Un objeto de función puede pasarse a cualquier algoritmo que requiera un apuntador
a función. Por tanto, puede usarse un objeto de función como predicado. Hay varios objetos de
función integrados, como less, y su uso se describe en la solución anterior. También puede crear
sus propios objetos de función. En esta solución se muestra el proceso.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 249

Antes de empezar, vale la pena mencionar algunas palabras acerca de la razón por la que
podría crear sus propios objetos de función. A primera vista, parecería que los objetos de función
requieren un poco más de trabajo que simplemente usar apuntadores de función pero que no ofre-
cen ventajas. Éste no es el caso. Los objetos de función expanden el alcance y el poder de la STL de
tres maneras.

En primer lugar, un objeto de función puede proporcionar un mecanismo más efi ciente para
el paso de funciones a algoritmos. Por ejemplo, es posible para el compilador poner en línea un
objeto de función. En segundo lugar, con el uso de un objeto de función puede simplifi carse y
estructurarse mejor la implementación de operaciones complicadas, porque la clase que defi ne un
objeto de función puede contener valores y proporcionar capacidades adicionales. En tercer lugar,
un objeto de función defi ne un tipo de nombre. Una función no. Esto permite que objetos de fun-
ción se especifi quen como argumentos de tipo de plantilla. Por tanto, aunque no hay nada equivo-
cado con el uso de apuntadores a función donde sea aplicable, los objetos de función ofrecen una
opción poderosa.

Paso a paso
Para crear un objeto de función se requieren estos pasos:

1. Cree una clase que implemente operator().

2. Para la mayor fl exibilidad, haga que la clase del paso 1 herede la estructura unary_func-

tion o binary_function, dependiendo de si está creando un objeto de función binaria o

unaria. Éstos defi nen los nombres de tipo estándar para el archivo o los argumentos de la

función y el tipo que se devuelve.

3. Cuando se implemente la clase, evite crear efectos colaterales.

Análisis
Para crear un objeto de función, defi na una clase que sobrecargue la función operator() y luego
cree una instancia de esa clase. Esta instancia puede pasarse a un algoritmo, que luego puede
llamar a la función operator() mediante la instancia.

Hay dos tipos de objetos de función: unario y binario. Un objeto de función unaria implementa
operator() de modo que toma un argumento. Para un objeto de función binaria, operator() toma
dos argumentos. Tal como se usan con algoritmos de STL, cada argumento recibe un elemento del
rango o los rangos en que está operando el algoritmo. Por tanto, el tipo de argumento debe ser
compatible con el tipo de elemento que se le pasa.

Todos los objetos de función de STL integrados son clases de plantilla. Sus objetos de función
también pueden defi nirse como clases de plantilla, pero no es obligatorio. En ocasiones, un objeto
de función personalizado sirve a un propósito específi co y una versión de plantilla no es útil.

Con el fi n de obtener la mayor fl exibilidad para su objeto de función, su clase debe heredar
una de estas estructuras defi nidas por la STL:

template <class Argument, class Result, estruct unary_function {
 typedef Argument argument_type;
 typedef Result result_type;
};

250 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

template <class Argument1, class Argument2, class Result>
struct binary_function {
 typedef Argument1 first_argument_type;
 typedef Argument2 second_argument_type;
 typedef Result result_type;
};

Una clase que crea un objeto de función unaria hereda unary_function. Una clase que crea uno
binario hereda binary_function. Tanto unary_function como binary_function se declaran en el
encabezado <functional>. En general, deben heredarse como públicas, que es la opción predeter-
minada para estructuras.

Las estructuras unary_function y binary_function proporcionan defi niciones para el tipo o
los tipos de argumentos y el tipo de devolución del objeto de función. Estos nombres se usan con
algunos adaptadores y pueden ser útiles en otros casos. Por tanto, debe usar estos nombres en su
objeto de función. En otras palabras, debe usar result_type como tipo de devolución para opera-
tor(). Debe usar argument_type como tipo de argumento para operator() en un objeto de función
unaria y usar fi rst_argument_type y second_argument_type como tipos de los argumentos para
un objeto de función binaria. Por tanto, las formas generales de operator() tienen este aspecto:

result_type operator(argument_type arg)

result_type operator(fi rst_argument_type arg1, second_argument_type arg2)

Un objeto de función no debe crear efectos colaterales. En otras palabras, no debe realizar ac-
ciones no relacionadas con su objetivo. Por ejemplo, un objeto de función cuyo propósito es com-
parar dos elementos en busca de igualdad no debe modifi car uno de los elementos en el proceso.

Ejemplo
En el siguiente ejemplo se muestran casos de objetos de función unaria y binarios. Se vuelve a
trabajar el programa de ejemplo de la solución Use transform() para cambiar una secuencia. En esa
versión, los apuntadores de función se pasan al algoritmo transform(). Las funciones calculan el
recíproco de un valor y el punto medio entre dos valores. Esta versión del programa usa objetos de
función en lugar de apuntadores de función. Crea una clase de objeto de función unaria llamado
recíproco que calcula el recíproco de un valor. Crea una clase de objeto de función binaria llamado
puntomedio que calcula el punto medio entre dos valores.

// Demuestra los objetos de función unaria y binarios.
//
// En este programa se vuelve a trabajar el ejemplo de la
// solución "Use transform() para cambiar una secuencia". En ese
// programa se usaron apuntadores a función en llamadas a transform().
// En esta versión se usan objetos de función.

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 251

using namespace std;

// Un objeto de función que calcula un recíproco.
class reciproco : unary_function<double, double> {
public:
 result_type suma;

result_type operator()(argument_type val) {
 if(val == 0.0) return 0.0;
 return 1.0 / val; // devuelve el recíproco
 }
};

// Un objeto de función que encuentra el punto medio entre
// dos valores.
class puntomedio : binary_function<int, int, double> {
public:
 result_type operator()(first_argument_type a, second_argument_type b) {
 return((a-b) / 2) + b;
 }
};

template<class T> void mostrar(const char *msj, vector<T> vect);

int main()
{
 int i;

 vector<double> v;

 // Pone valores en v.
 for(i=1; i < 10; ++i) v.push_back((double)i);

 mostrar("Contenido inicial de v:\n", v);
 cout << endl;

 // Primero, demuestra un objeto de función unaria.

 // Transforma v al aplicar el objeto de función recíproco.
 // Pone de nuevo el resultado en v.
 cout << "Usa un objeto de funci\u00a2n unario en llamadas a transform() para\n";
 cout << "calcular rec\u00a1procos para v y almacenar de nuevo el resultado en
 v.\n";
 transform(v.begin(), v.end(), v.begin(), reciproco());

 mostrar("Contenido transformado de v:\n", v);
 cout << endl;

 // Transforma v por segunda vez, poniendo el resultado en una nueva secuencia.
 cout << "Usa un objeto de funci\u00a2n unario para transformar v de nuevo.\n";
 cout << "Esta vez se almacenan los resultados en v2.\n";
 vector<double> v2(10);
 transform(v.begin(), v.end(), v2.begin(), reciproco());

252 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 mostrar("He aqu\u00a1 v2:\n", v2);
 cout << endl;

 vector<int> v3, v4, v5(10);
 for(i = 0; i < 10; ++i) v3.push_back(i);
 for(i = 10; i < 20; ++i) if(i%2) v4.push_back(i); else v4.push_back(-i);

 mostrar("Contenido de v3:\n", v3);
 mostrar("Contenido de v4:\n", v4);
 cout << endl;

 // Ahora, demuestra un objeto de función binaria.
 cout << "Ahora, usa un objeto de funci\u00a2n binario para encontrar los puntos
 medios\n";
 cout << "entre elementos en v3 y v4 y almacena los resultados en v5.\n";
 transform(v3.begin(), v3.end(), v4.begin(), v5.begin(), puntomedio());

 mostrar("Contenido de v5:\n", v5);

 return 0;
}

// Despliega el contenido de un vector<int>.
template<class T> void mostrar(const char *msj, vector<T> vect) {
 cout << msj;
 for(unsigned i=0; i < vect.size(); ++i)
 cout << vect[i] << " ";
 cout << "\n";
}

Aquí se muestra la salida:

Contenido inicial de v:
1 2 3 4 5 6 7 8 9

Usa un objeto de función unaria en llamadas a transform() para
calcular recíprocos para v y almacenar de nuevo el resultado en v.
Contenido transformado de v:
1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111

Usa un objeto de función unaria para transformar v de nuevo.
Esta vez se almacenan los resultados en v2.
He aquí v2:
1 2 3 4 5 6 7 8 9 0

Contenido de v3:
0 1 2 3 4 5 6 7 8 9
Contenido de v4:
-10 11 -12 13 -14 15 -16 17 -18 19

Ahora, usa un objeto de función binaria para encontrar los puntos medios
entre elementos en v3 y v4 y almacenar los resultados en v5.
Contenido de v5:
-5 6 -5 8 -5 10 -5 12 -5 14

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 253

Ejemplo adicional: use un objeto de función para mantener
información de estado
Aunque en el ejemplo anterior se demuestra cómo crear dos objetos de función diferentes, no
muestra la capacidad real de los objetos de función. Por ejemplo, éstos pueden usarse con adhesi-
vos y negadores, y esto se describe en Use un adhesivo y Use un negador. Otra característica impor-
tante de los objetos de función es su capacidad de mantener información de estado. Es posible
para la clase que defi na un objeto de función para incluir variables de instancia que almacene
información acerca del uso del objeto de función, como el resultado de algún cálculo. Esto puede
ser útil en varios contextos. Por ejemplo, una variable podría mantener el éxito o la falla de una
operación. La capacidad de mantener información de estado expande en gran medida los tipos de
problemas a los que puede aplicarse un objeto de función.

En el siguiente ejemplo se demuestra la capacidad de un objeto de función para almacenar
información de estado al retrabajar una función de sumatoria usada en el ejemplo de for_each()
mostrado en Recorra en ciclo un contenedor con for_each(). En ese ejemplo, un apuntador a una
función llamada sumatoria() se pasaba a for_each(). Esta función construía un total constante de
los valores en el rango sobre el que operaba for_each(). La función sumatoria() usaba una variable
estática para contener la suma actual. Cada vez que se llamaba a la función, el valor pasado a la
función se agregaba al total constante y se devolvía éste (es decir, la sumatoria actual). Aunque
este método funcionaba, es poco elegante. Un método mucho mejor consiste en convertir sumato-
ria() en un objeto de función en que el total constante se mantiene en una variable de instancia. No
sólo permite que se obtenga la sumatoria sin una llamada a función, también permite que el total
se restablezca.

He aquí una manera de crear una clase de objeto de función de sumatoria:

// Un objeto de función que calcula una sumatoria entera.
class sumatoria : unary_function<int, void> {
public:
 argument_type suma;

 sumatoria() { suma = 0; }

 // Agregue al total constante y devuelve una
 // referencia al objeto que invoca.
 result_type operator()(argument_type i) {
 suma += i;
 }
};

Observe que el total constante se mantiene en un campo llamado suma dentro de la clase su-
matoria. Esto permite que la sumatoria se obtenga del objeto, en lugar de tener que invocar una
función. Para restablecer el objeto, simplemente asigna cero a suma.

En el siguiente programa se vuelve a trabajar el ejemplo de for_each() para que use el objeto
de función sumatoria:

// Usa un objeto de función con for_each().

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

254 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

using namespace std;

// Un objeto de función que calcula una sumatoria entera.
class sumatoria : unary_function<int, void> {
public:
 argument_type suma;

 sumatoria() { suma = 0; }

 // Agregue al total constante y devuelve una
 // referencia al objeto que invoca.
 result_type operator()(argument_type i) {
 suma += i;
 }
};

int main()
{
 vector<int> v;

 for(int i=1; i < 11; i++) v.push_back(i);

 cout << "Contenido de v: ";
 for(unsigned i=0; i < v.size(); ++i)
 cout << v[i] << " ";
 cout << "\n";

 // Declara un objeto de función que recibe el objeto
 // devuelto por for_each().
 sumatoria s;

 // Esto llama a for_each() con un objeto de función, en lugar de
 // un apuntador a función. El objeto de función devuelto por
 // for_each() puede usarse para obtener el total de la sumatoria.
 s = for_each(v.begin(), v.end(), sumatoria());
 cout << "Sumatoria de v: " << s.suma << endl;

 // Cambia el valor de v[4] y vuelve a calcular la sumatoria.
 // Debido a que se crea un nuevo objeto de función, la
 // sumatoria empieza una vez más en cero.
 cout << "Estableciendo v[4] en 99\n";
 v[4]= 99;
 s = for_each(v.begin(), v.end(), sumatoria());
 cout << "La sumatoria de v es ahora: " << s.suma;

 return 0;
}

Observe cómo se llama a for_each():

s = for_each(v.begin(), v.end(), sumatoria());

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 255

Se pasa una nueva instancia de sumatoria. Este objeto de función se usa mediante esta invocación
de for_each(). Recuerde que el algoritmo for_each() devuelve el objeto de función que se pasa. En
tal caso, este objeto se asigna a s, que es un objeto de sumatoria. Esto signifi ca que s contendrá la
sumatoria. Este valor se obtiene de s.suma.

Opciones
Cuando se usa un objeto de función, tiene la opción de unir un valor a él. Este procedimiento se
describe en Use un adhesivo y Use un negador.

En algunos casos, puede usar un objeto de función integrada, en lugar de uno personalizado.
Por ejemplo, si quiere determinar si un valor es mayor que otro, puede usar el objeto de función
greater. Consulte Use un objeto de función integrada para conocer más detalles.

Aunque los objetos de función son más poderosos que los apuntadores de función, no hay
nada equivocado en usar uno de estos últimos en situaciones para las que es apropiado. Por
ejemplo, si un vector contiene caracteres, entonces es adecuado pasar un apuntador a la función
estándar tolower() para que transform() convierta letras en minúsculas. En este caso, se obten-
drían pocos benefi cios, si acaso, en la creación de toda una clase para manejar esta operación.

Use un adhesivo

Componentes clave

Encabezados Clases Funciones

<functional> template <class Op, class T>
 binder1st<Op>
 bind1st(const Op &obj_fun_bina,
 const T &valor)
template <class Op, class T>
 binder2nd<Op>
 bind2nd(const Op &obj_fun_bina,
 const T &valor)

En la solución se muestra cómo unir un valor a un objeto de función. Recuerde que un objeto de
función binaria toma dos parámetros. Por lo general, estos parámetros reciben valores del rango
o los rangos en que está operando el objeto. Por ejemplo, cuando se ordena, la función de compa-
ración binaria recibe pares de elementos del rango que se está ordenando. Aunque el comporta-
miento predeterminado de un objeto de función binaria es muy útil, hay ocasiones en que querrá
modifi carlo. Para comprender por qué, tome en consideración lo siguiente.

Suponga que quiere eliminar todos los elementos de una secuencia que son mayores que
algún valor, como 10. Su primera idea es, muy naturalmente, usar el objeto de función greater. Sin
embargo, como opción predeterminada, greater recibe ambos valores del rango en que está ope-
rando. Por tanto, por sí mismo, no hay manera de hacer que compare elementos de una secuencia
con el valor 10. Para usar greater con este propósito, necesita alguna manera de unir el valor 10
a su operando del lado derecho. Es decir, necesita alguna manera de hacer que gretaer realice la
siguiente comparación:

256 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

val > 10

donde val es un elemento de una secuencia. Por fortuna, la STL proporciona un mecanismo,
llamado adhesivos, que realiza esto. Un adhesivo vincula un valor a uno de los argumentos de un
objeto de función binaria. La salida de un adhesivo es un objeto de función unaria, que puede
usarse en cualquier lugar en que puede utilizarse cualquier otro objeto de función unaria.

Hay dos adhesivos defi nidos por la STL: binds1st() y bind2nd(). En esta solución se muestra
su uso.

Paso a paso
Para usar un adhesivo para unir un valor a un objeto de función se requieren estos pasos:

1. Para unir un valor al primer argumento de un objeto de función binaria, llame a bind1st().

2. Para unir un valor al segundo argumento de un objeto de función binaria, llame a bind2nd().

3. Use el resultado del adhesivo en cualquier lugar en que se requiere un predicado unario.

Análisis
Aquí se muestran los prototipos para binds1st() y bind2nd():

template <class Op, class T>
 binder1st<Op> bind1st(const Op &obj_fun_bina, const T &valor)

template <class Op, class T>
 binder2nd<Op> bind2nd(const Op &obj_fun_bina, const T &valor)

Aquí, obj_fun_bina especifi ca el objeto de función binaria al que se unirá valor. bind1st() devuelve
un objeto de función unaria (encapsulado como un objeto de binder1st), que tiene el operando
obj_fun_bina del lado izquierdo del operando unido a value. bind2nd() devuelve un objeto de
función unaria (encapsulado en un objeto de binder2nd) que tiene al operando del lado derecho
unido a valor. Por ejemplo,

bind1st(less<double>, 0.01)

une el valor 0.01 al primer argumento (del lado izquierdo) del objeto de función less, y

bind2nd(less<double>, 0.01)

une el valor al segundo argumento (del lado derecho). De los dos, bind2nd() es el de uso más
común.

Las clases binder1st y binder2nd representan los objetos de función unaria devueltos por los
adhesivos. También se declaran en <functional>. Por lo general, no usará directamente la clase
binder1st o binder2nd. En cambio, por lo común pasará la salida de un adhesivo directamente a
un algoritmo. Por tanto, binder1st y binder2nd no se describirán más aquí.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 257

Debido a que un adhesivo convierte un objeto de función binaria en uno unario, el resultado
de un adhesivo puede pasarse a cualquier algoritmo que requiere un predicado unario. Por ejem-
plo, esto pasa un objeto de función unaria a fi nd_if():

fi nd_if(v.begin(), v.end(), bind2nd(less<int>, 19))

Esto causa que fi nd_if() devuelva un iterador al primer valor en v que es menor que 19.

Ejemplo
En el siguiente programa se demuestra bind2nd(). Utiliza el algoritmo remove_if() para eliminar
elementos de una secuencia basada en la salida de un predicado. Recuerde que tiene el prototipo:

template <class ForIter, class UnPred>
 ForIter remove_if(ForIter inicio, ForIter fi nal, Unpred funp)

El algoritmo elimina elementos de la secuencia defi nida por inicio y fi nal para el que el predicado
unario defi nido por funp es true. El algoritmo devuelve un apuntador al nuevo fi nal de la secuen-
cia, que refl eja la eliminación de los elementos.

En el siguiente programa se eliminan todos los valores de una secuencia que es mayor que el
valor de 10. Debido a que el predicado requerido por remove_if es unario, no podemos simple-
mente usar el objeto de función greater como tal, porque greater es un objeto de función bina-
ria. En cambio, debemos unir el valor 10 al segundo argumento de greater usando el adhesivo
bind2nd().

// Demuestra bind2nd().

#include <iostream>
#include <list>
#include <functional>
#include <algorithm>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

int main()
{
 list<int> lista;
 list<int>::iterator itr_inv;

 for(unsigned i=1; i < 20; ++i) lista.push_back(i);

 mostrar_rango("Secuencia original:\n", lista.begin(), lista.end());
 cout << endl;

 // Usa bind2nd() para crear un objeto de función unaria
 // que devolverá true cuando un valor es mayor que 10.
 // Esto lo usa remove_if() para eliminar todos los
 // elementos de lista que son mayores de 10.
 itr_inv = remove_if(lista.begin(), lista.end(),
 bind2nd(greater<int>(), 10));

258 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 mostrar_rango("Secuencia resultante:\n", lista.begin(), itr_inv);

 return 0;
}

// Muestra un rango de elementos.
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {

 InIter itr;

 cout << msj;

 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;
}

La salida producida por el programa se muestra aquí.

Secuencia original:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Secuencia resultante:
1 2 3 4 5 6 7 8 9 10

Como lo muestra la salida, la secuencia resultante contiene los elementos del 1 al 10. Los ele-
mentos mayores que 10 se han eliminado. He aquí cómo funciona. Cuando se ejecuta remove_if(),
el objeto de función binaria greater recibe un elemento de lista en su primer parámetro y el valor
10 en su segundo, porque el segundo parámetro está unido a 10 empleando bind2nd(). Por tanto,
para cada elemento de la secuencia, la comparación

elemento > 10

se evaluó. Cuando es true, se elimina el elemento.

Opciones
Aunque bind2nd() suele ser el adhesivo más usado de los dos, bind1st() está disponible como
opción. Como se explicó, el adhesivo bind1st() une un valor al primer parámetro. Para ver los
efectos, trate de sustituir esta línea en el programa anterior:

endp = remove_if(lista.begin(), lista.end(), bind1st(greater<int>(), 10));

Esto causa que los elementos de la secuencia se pasen al segundo parámetro de greater, con el
valor 10 unido al primer parámetro. Por tanto, para cada elemento de la secuencia, se realiza la
siguiente comparación:

10 > elemento

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 259

Esto causa que greater devuelva true para elementos que son menores de 10. Aquí se muestra la
salida producida después de que haya sustituido bind1st().

Secuencia original:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Secuencia resultante:
10 11 12 13 14 15 16 17 18 19

Como puede ver, se han eliminado los elementos que son menores de 10.
Aunque válido, al autor le disgusta el uso de bind1st() como se acaba de mostrar porque

parece ir en contra de la intuición. Si quiere eliminar elementos que son menores de 10, sería mejor
usar esta instrucción:

endp = remove_if(lista.begin(), lista.end(), bind2nd(less<int>(), 10));

Aquí, se usa el objeto de función less y los resultados refl ejan lo que se esperaría que ocurra nor-
malmente cuando se emplea less. Con el empleo de bind1st() y la inversión de la comparación se
logran los mismos resultados, pero agrega un poco de confusión sin razón alguna.

Use un negador

Componentes clave

Encabezados Clases Funciones

<functional> template <class Pred> unary_negate<Pred>
 not1(const Pred &pred_unario)
template <class Pred> unary_negate<Pred>
 not2(const Pred &pred_binario)

Hay un objeto relacionado con un adhesivo, llamado negador. Los negadores son not1() y not2().
Devuelven la negación (es decir, el complemento) de cualquier predicado que modifi can. Los
negadores delinean la STL porque le permiten adaptar efi cientemente un predicado para produ-
cir el resultado opuesto, con lo que se evita la necesidad de crear un segundo predicado. En esta
solución se demuestra su uso.

Paso a paso
Para usar un negador se requieren estos pasos:

1. Para negar un predicado unario, use not1().

2. Para negar un predicado binario, use not2().

260 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis
Los negadores son not1() y not2(). Tienen estos prototipos:

template <class Pred> unary_negate<Pred>
 not1(const Pred &pred_unario)

template <class Pred> unary_negate<Pred>
 not2(const Pred &pred_binario)

El negador not1() es para usarse con predicados unarios, y el predicado para negar se pasa en
pred_unario. Para negar predicados binarios, use not2(), pasando el predicado binario en pred_bi-
nario. El resultado de ambos negadores es un predicado que devuelve la negación del predicado
original representado como un objeto de unary_negate o binary_negate.

Por lo general, no interactuará de manera directa con la clase unary_negate o binary_negate
y no se describen más ampliamente aquí. En cambio, la salida de not1() o not2() suele pasarse de
modo directo a un algoritmo. Por ejemplo, esta instrucción elimina elementos de un contenedor si
no son iguales a 'A':

remove_if(v.begin(), v.end(), not1(bind2nd(equal_to<char>(), 'A'))):

Aunque equal_to es un objeto de función binaria, el adhesivo bind2nd() lo convierte en un objeto
unario. Por esto es por lo que se usa not1() en lugar de not2().

Ejemplo
En el siguiente ejemplo se demuestran not1() y not2(). En primer lugar, muestra un modo de ordenar
una secuencia de manera descendente empleando la negación del objeto de función less para deter-
minar el orden. Luego se usa not1() para eliminar todos los elementos que no son iguales a H.

// Demuestra not1() y not2().

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

int main()
{
 vector<char> v;

 for(int i=0; i < 26; i++) v.push_back('A'+i);

 mostrar_rango("Orden original de v:\n", v.begin(), v.end());
 cout << endl;

 // Usa not2() para invertir el orden de v.
 sort(v.begin(), v.end(), not2(less<char>()));

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 261

 mostrar_rango("Tras ordenar v empleando not2(less<char>()):\n",
 v.begin(), v.end());
 cout << endl;

 // Usa not1() para eliminar todos los elementos que no son iguales a H.
 vector<char>::iterator res_final;
 res_final = remove_if(v.begin(), v.end(),
 not1(bind2nd(equal_to<char>(), 'H')));

 mostrar_rango("v tras eliminar elementos no iguales a H:\n",
 v.begin(), res_final);

 return 0;
}

// Muestra un rango de elementos.
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {
 InIter itr;

 cout << msj;
 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;
}

Produce la siguiente salida:

Orden original de v:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Tras ordenar v empleando not2(less<char>()):
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

v tras eliminar elementos no iguales a H:
H

Opciones
Aunque puede ser muy útil negar la salida de un predicado y puede mejorar el manejo de muchas
situaciones, tal vez no siempre sea la mejor opción. En ocasiones, querrá crear un predicado sepa-
rado que realice la negación. Por ejemplo, considere un caso en que puede realizarse la negación
de alguna operación de manera más efi ciente al calcular directamente el resultado negativo, en
lugar de revertir la salida del resultado afi rmativo. En esta situación, la creación de un predica-
do aparte es más efi ciente que calcular primero el resultado y luego negarlo. En esencia, podría
encontrar un caso en que sea más rápido el cálculo de la negación que del resultado afi rmativo. En
esta situación, no tiene sentido calcular primero la opción afi rmativa y luego negarla.

262 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use el adaptador de apuntador a función

Componentes clave

Encabezados Clases Funciones

<functional> pointer_to_unary_function Result operator()(Arg arg) const;

<functional> pointer_to_binary_function Result operator()(Arg arg1, Arg2 arg2) const;

<functional> template <class Arg, class Result>
 pointer_to_unary_function<Arg, Result>
 ptr_fun(Result (*func)(Arg))
template <class Arg1, class Arg2, class Result>
 pointer_to_binary_function<Arg1, Arg2, Result>
 ptr_fun(Result (*func)(Arg1, Arg2))

El encabezado <functional> defi ne varias clases, llamadas adaptadores a función, que le permiten
adaptar un apuntador a función a una forma que puede usarse con diversos componentes de STL.
Varios de estos adaptadores están diseñados para situaciones más allá del alcance de este libro,
pero uno resulta especialmente interesante porque resuelve un problema muy común: permitir un
apuntador a función que habrá de usarse con un adhesivo o un negador.

Como se ha mostrado en las soluciones anteriores, es posible pasar un apuntador a una
función (en lugar de pasar un objeto de función) como un predicado a un algoritmo. Siempre y
cuando la función realice la operación deseada, no hay problema en hacer esto. Sin embargo, si
quiere unir un valor o usar un negador con esa función, entonces ocurrirán problemas porque
no es posible aplicar directamente estos modifi cadores a apuntadores a función. Para permitir
que se usen funciones con adhesivos y negadores, necesitará usar los adaptadores de apuntador
a función.

Paso a paso
Para adaptar un apuntador a función en un objeto de función se requieren estos pasos:

1. Para crear un objeto de función a partir de una función unaria, llame a ptr_fun(), pasándo-

lo en un apuntador a la función unaria. El resultado es un objeto de función unaria.

2. Para crear un objeto de función a partir de una función binaria, llame a ptr_fun(), pasándo-

lo en un apuntador a la función binaria. El resultado es un objeto de función binaria.

Análisis
El adaptador de apuntador a función es ptr_fun(). Aquí se muestran ambas formas:

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 263

template <class Arg, class Result>
 pointer_to_unary_function<Arg, Result>
 ptr_fun(Result (*func)(Arg))

template <class Arg1, class Arg2, class Result>
 pointer_to_binary_function<Arg1, Arg2, Result>
 ptr_fun(Result (*func)(Arg1, Arg2))

Devuelve un objeto de tipo pointer_to_unary o uno de tipo pointer_to_binary_function. Aquí se
muestran estas clases:

template <class Arg, class Result>
class pointer_to_unary_function:
 public unary_function<Arg, Result>
{
public:
 explicit pointer_to_unary_function(Result (*func)(Arg));
 Result operator() (Arg arg) const;
};

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function:
 public binary_function<Arg1, Arg2, Result>
{
public:
 explicit pointer_to_binary_function(
 Result (*func)(Arg1, Arg2));
 Result operator() (Arg1 arg1, Arg2 arg2) const;
};

Por lo general, no interactuará con estas clases de manera directa. Su principal propósito es
construir un objeto de función que encapsula func. Para pointer_to_unary_function, operator()
devuelve

func(arg)

Y para pointer_to_binary_function, operator() devuelve

func(arg1, arg2)

El tipo de resultado de operator() está especifi cado por el tipo genérico Result. Por tanto, un obje-
to de esas clases puede pasarse como argumento a un adhesivo o un negador.

Ejemplo
He aquí un ejemplo que utiliza ptr_fun(). Crea un vector de apuntadores a carácter que señala a
cadenas de caracteres. Luego utiliza la función de biblioteca estándar strcmp() para encontrar el
apuntador que señale a "Tres". Debido a que strcmp() no es un objeto de función, se usa el adapta-
dor ptr_fun() para permitir que el valor "Tres" se una al segundo parámetro de strcmp() emplean-
do bind2nd(). Debido a que strcmp() devuelve false cuando se tiene éxito, el negador not1() se
aplica para invertir esta condición.

264 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Sin el uso de ptr_fun(), no sería posible aplicar bind2nd() a strcmp(). Es decir, debido a que
strcmp() es una función, no es posible usarla directamente con bind2nd().

// Usa un adaptador de apuntador a función.

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>
#include <cstring>

using namespace std;

template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final);

int main()
{
 vector<char *> v;
 vector<char *>::iterator itr;

 v.push_back("Uno");
 v.push_back("Dos");
 v.push_back("Tres");
 v.push_back("Cuatro");
 v.push_back("Cinco");

 mostrar_rango("La secuencia contiene: ", v.begin(), v.end());
 cout << endl;

 cout << "Buscando Tres en la secuencia.\n\n";

 // Usa un adaptador de apuntador a función.
 itr = find_if(v.begin(), v.end(),
 not1(bind2nd(ptr_fun(strcmp), "Tres")));

 if(itr != v.end()) {
 cout << "\u00adEncontrado!\n";
 mostrar_rango("La secuencia a la que apunta es: ", itr, v.end());
 }

 return 0;
}

// Muestra un rango de elementos..
template<class InIter>
 void mostrar_rango(const char *msj, InIter inicio, InIter final) {

 InIter itr;
 cout << msj;
 for(itr = inicio; itr != final; ++itr)
 cout << *itr << " ";
 cout << endl;

}

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 265

Aquí se muestra a salida de este programa:

La secuencia contiene: Uno Dos Tres Cuatro Cinco

Buscando Tres en la secuencia.

¡Encontrado!
La secuencia a la que apunta es: Tres Cuatro Cinco

Opciones
Otro método para adaptar una función consiste en crear su propia clase de objeto de función.
Haga que su operator() llame a la función y devuelva el resultado. Aunque es mucho menos ele-
gante que usar un adaptador de apuntador a función, esta técnica puede ser útil en situaciones en
que el resultado de la función se procesa un poco antes del uso.

El adaptador ptr_fun() sólo trabaja con funciones que no son miembros. La STL defi ne adapta-
dores para funciones miembro, que se denominan mem_fun() y mem_fun_ref(). Se les denomina
colectivamente adaptadores de función de apuntador a miembro.

Use los iteradores de fl ujo

Componentes clave

Encabezados Clases Funciones

<iterator> istream_iterator *
++

<iterator> ostream_iterator *
++

<iterator> Istreambuf_iterator *
++
bool equal(istreambuf_iterator<CharType,
 Attr> &ob)

<iterator> ostreambuf_iterator *
++
bool failed const throw()

La STL defi ne cuatro clases que le permiten obtener iteradores a fl ujos de E/S. Se les suele de-
nominar iteradores de fl ujo, y se encuentran entre algunos de los objetos de STL más interesantes,
porque pormiten que un fl ujo de Entrada/Salida se opere de manera muy parecida a como lo hace
en contenedores. Los benefi cios de los iteradores de fl ujo son más evidentes cuando se usan con
algoritmos, donde un fl ujo puede proporcionar entrada a alguna acción, o recibir salida de ésta.
Aunque casi todas las operaciones de E/S aún utilizan operadores y funciones estándar de E/S, la

266 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

capacidad de aplicar algoritmos a fl ujo ofrece una nueva manera de pensar acerca de la programa-
ción de E/S. Los iteradores de fl ujo también pueden simplifi car ciertas situaciones difíciles o tedio-
sas de E/S. Aunque un análisis a profundidad de los iteradores de fl ujo es muy amplio y está más
allá del alcance de este libro, en esta solución se describe el método básico necesario para usarlos.

Paso a paso
Para usar los iteradores de fl ujo para ingresar datos se requieren estos pasos:

1. Para crear un iterador en un fl ujo de entrada formado, construya un objeto de tipo

istream_iterator, especifi cando el fl ujo de entrada.

2. Para crear un iterador a un fl ujo de entrada de caracteres, construya un objeto de tipo

istreambuf_iterator, especifi cando el fl ujo de entrada.

3. Para ingresar datos del fl ujo, deje de hacer referencia al iterador. Luego, aumente el itera-

dor. Esto hace que lea el siguiente elemento del fl ujo. Repita este proceso hasta que se lean

los datos o se alcance el fi nal del fl ujo.

4. El constructor predeterminado construye un iterador que indica el fi n del fl ujo.

Para usar los iteradores de fl ujo para dar salida a los datos, se requieren estos pasos:

1. Para crear un iterador en un fl ujo de salida formado, construya un objeto de tipo ostream_

iterator, especifi cando el fl ujo de salida.

2. Para crear un iterador a un fl ujo de salida de caracteres, construya un objeto de tipo os-

treambuf_iterator, especifi cando el fl ujo de salida.

3. Para dar salida a los datos del fl ujo, asigne el valor mediante el iterador para dejar de hacer

referencia. No es necesario aumentar el iterador. Cada asignación avanza automáticamente

la salida.

4. Si ocurre un error en la salida, se devolverá la función failed().

Análisis
La STL defi ne cuatro clases de iterador de fl ujo. Se declaran en <iterator> y se muestran aquí:

Clase Descripción

istream_iterator Un iterador de fl ujo de entrada.

istreambuf_iterator Un iterador de búfer de fl ujo de entrada.

ostream_iterator Un iterador de fl ujo de salida.

ostreambuf_iterator Un iterador de búfer de fl ujo de salida.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 267

Una diferencia importante entre los iteradores es que istream_iterator y ostream_iterator pue-
den operar directamente sobre varios tipos de datos, como int o double. Los iteradores istream-
buf_iterator y ostreambuf_iterator pueden operar sólo sobre caracteres. Sin embargo, la ventaja
que ofrecen estos dos últimos es que le permiten realizar E/S de archivo de bajo nivel. Aquí se
ofrece una revisión general de cada clase.

Los iteradores de fl ujo formados
Los iteradores istream_iterator y ostream_iterator pueden leer o escribir datos formados, lo que
signifi ca que pueden leer o escribir valores de carácter, de entero, de punto fl otante, booleanos y
de cadena. Esto los hace especialmente útiles cuando operan en fl ujos que contienen información
legible para los seres humanos. Por ejemplo, podría usar ostream_iterator para escribir un entero
a cout, o istream_iterator para leer una cadena de cin.

La clase istream_iterator da soporte a operaciones de iterador de entrada en un fl ujo. Aquí se
muestra su defi nición de plantilla:

template <class T, class CharType=char, class Attr = char_traits<CharType>,
 class Diff = ptrdiff_t> class istream_iterator:
 public iterator<input_iterator_tag, T, Diff, const T *, const T &>

Aquí, T es el tipo de datos que se está transfi riendo, CharType es el tipo de carácter (char o
wchar_t) sobre el que está operando el fl ujo, y Diff es un tipo capaz de contener la diferencia entre
dos direcciones. Note que T es el único parámetro de tipo genérico que no es por omisión. Por
tanto, debe especifi car cuando se crea un istream_operator. Éste tiene los siguientes constructores:

istream_iterator()

istream_iterator(istream_type &fl ujo)

istream_iterator(const istream_iterator<T, CharType, Attr, Diff> &ob)

El primer constructor crea un iterador que indica fi nal del fl ujo. Este objeto puede usarse para
revisar el fi nal de la entrada. (Es decir, se comparará igual que fi nal del fl ujo.) El segundo crea un
iterador al fl ujo especifi cado por fl ujo. Luego lee el primer objeto del fl ujo. El tipo istream_type es
un typedef que especifi ca el tipo de fl ujo de entrada. La tercera forma es el constructor de copia de
istream_iterator.

La clase istream_iterator defi ne los siguientes operadores: – >, *, ++. Los dos primeros actúan
como se esperaría. El operador ++ requiere un poco de explicación. Cuando se usa en su forma de
prefi jo, ++ causa que se lea el siguiente valor del fl ujo de entrada. Cuando se usa en su forma de
sufi jo, se almacena el valor actual del valor del fl ujo y luego se lee el siguiente valor. En cualquier
caso, para recuperar el valor, use el operador * en el iterador. Los operadores == y != también se
defi nen para objetos de tipo istream_iterator.

La clase ostream_iterator da soporte a las operaciones de iterador de salida en un fl ujo. Aquí
se muestra la defi nición de su plantilla:

template <class T, class CharType=char, class Attr = char_traits<CharType> >
class ostream_iterator:
 public iterator<output_iterator_tag, void, void, void, void>

268 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí, T es el tipo de datos que se está transfi riendo y CharType es el tipo de carácter (char o
wchar_t) sobre el que está operando el fl ujo. Observe que T es el único parámetro de tipo genérico
que no es la opción predeterminada. Por tanto, debe especifi car cuando se crea un ostream_opera-
tor. Éste tiene los siguientes constructores:

ostream_iterator(ostream_type &fl ujo)

ostream_iterator(ostream_type &fl ujo, const CharType *delim)

ostream_iterator(const ostream_iterator<T, CharType, Attr> &ob)

El primer constructor crea un iterador al fl ujo especifi cado por fl ujo. El tipo ostream_type es un
typedef que especifi ca el tipo de fl ujo de salida. La segunda forma crea un iterador al fl ujo especi-
fi cado por fl ujo y usa los delimitadores especifi cados por delim. Los delimitadores se escriben en el
fl ujo después de cada operación de salida. La tercera forma es el constructor de copia de ostream_
iterator.

La clase ostream_iterator defi ne los siguientes operadores: =, *, ++. Para ostream_iterator el
operador ++ no tiene efecto. Para escribir el fl ujo de salida, simplemente asigne un valor mediante
el operador *.

Los iteradores de fl ujo de bajo nivel
Los iteradores de fl ujo de bajo nivel son istreambuf_iterator y ostreambuf_iterator. Estos itera-
dores leen y escriben caracteres, no datos formados. La ventaja principal de los iteradores de fl ujo
de bajo nivel es que le dan a su programa acceso a un fl ujo simple de E/S byte por byte, evitando
traducciones de caracteres que son posibles con los iteradores de fl ujo formado. Cuando se usan
estos iteradores, hay una correspondencia uno a uno entre lo que está en el fl ujo y lo que se escribe
o lee mediante el iterador.

La clase da soporte a operaciones de iterador de entrada de caracteres de bajo nivel en un fl ujo.
Aquí se muestra su defi nición de plantilla:

template <class CharType, class Attr = char_traits<CharType> >
class istreambuf_iterator:
 public iterator<input_iterator_tag, CharType, nombretipo Attr::off_type,
 CharType *, CharType &>

Aquí, CharType es el tipo de carácter (char o wchar_t) sobre el que está operando el fl ujo. istream-
buf_iterator tiene los siguientes constructores:

istreambuf_iterator() throw()

istreambuf_iterator(istream_type &fl ujo) throw()

istreambuf_iterator(streambuf_type, *buferfl ujo) throw()

El primer constructor crea un iterador que indica el fi n del fl ujo. El segundo, uno al fl ujo especi-
fi cado por fl ujo. El tipo istream_type es un typedef que especifi ca el tipo del fl ujo de entrada. La
tercera forma crea un iterador al fl ujo especifi cado por buferfl ujo. El tipo streambuf_type es un
typedef que especifi ca el tipo de búfer de fl ujo.

La clase istreambuf_iterator defi ne los siguientes operadores: *, ++. El operador ++ trabaja
como se describió para istream_iterator. Para leer un carácter de la cadena, aplique * al iterador.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 269

Para pasar al siguiente carácter, aumente el iterador. Los operadores == y != también se
defi nen para objetos de tipo istreambuf_iterator.

istreambuf_iterator defi ne la función miembro equal(), que se muestra aquí:

bool equal(istreambuf_iterator<CharType, Attr> &ob)

Su operación va un poco en contra de la intuición. Devuelve true si el iterador que invoca y ob
señalan al fi nal del fl ujo. También devuelve true si ambos operadores no señalan al fi nal del fl ujo.
No es necesario que señalen a lo mismo. Devuelve false, de otra manera. Los operadores == y !=
funcionan igual.

La clase ostreambuf_iterator da soporte a operaciones de iterador de salida de caracteres de
bajo nivel en un fl ujo. Aquí se muestra su defi nición de plantilla:

template <class CharType, class Attr = char_traits<CharType> >
class ostreambuf_iterator:
 public iterator<output_iterator_tag, void, void, void, void>

Aquí, CharType es el tipo de carácter (char o wchar_t) sobre el que está operando el fl ujo. os-
treambuf_iterator tiene los siguientes constructores:

ostreambuf_iterator(ostream_type &fl ujo) throw()

ostreambuf_iterator(streambuf_type, *buferfl ujo) throw()

La primera crea un iterador al fl ujo especifi cado por fl ujo. El tipo ostream_type es un typedef
que especifi ca el tipo de fl ujo de entrada. La segunda forma crea un iterador que usa el búfer
de fl ujo especifi cado por buferfl ujo. El tipo streambuf_type es un typedef que especifi ca el tipo de
búfer de fl ujo.

La clase ostreambuf_iterator defi ne los siguientes operadores: =, *, ++. El operador ++ no tiene
efecto. Para escribir un carácter en el fl ujo, simplemente asigne un valor mediante el operador *.

La clase ostreambuf_iterator también defi ne la función failed(), como se muestra aquí:

bool failed() const throw()

Devuelve false si no ha ocurrido una falla, y true de otra manera.

Ejemplo
En el siguiente programa se demuestra la manera en que istream_iterator y ostream_iterator pue-
den usarse para leer de cin y escribir en cout. Aunque por lo general usará los iteradores de fl ujo
para este fi n, el programa ilustra claramente la manera en que funcionan. Por supuesto, el poder
real de los iteradores de fl ujo se encuentra cuando se usan con algoritmos, lo que se demuestra
con el ejemplo adicional que sigue.

// Usa istream_iterator y ostream_ierator para leer de cin y escribir en cout.

#include <iostream>
#include <iterator>
#include <string>
#include <vector>

270 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

using namespace std;

int main()
{
 unsigned i;
 double d;
 string cad;
 vector<int> vi;
 vector<double> vd;
 vector<string> vs;

 // Usa istream_iterator para leer de cin.

 // Crea un iterador de flujo de entrada para enteros.
 cout << "Ingrese algunos enteros, ingrese 0 para detener.\n";
 istream_iterator<int> itr_ent(cin);
 do {
 i = *itr_ent; // lee el siguiente entero
 if(i != 0) {
 vi.push_back(i); // lo almacena
 ++itr_ent; // ingresa el siguiente entero
 }
 } while (i != 0);

 // Crea un iterador de flujo de entrada para doubles
 cout << "Ingrese algunos doubles, ingrese 0 para detener.\n";
 istream_iterator<double> itr_double(cin);
 do {
 d = *itr_double; // lee el siguiente double
 if(d != 0.0) {
 vd.push_back(d); // lo almacena
 ++itr_double; // ingresa el siguiente double
 }
 } while (d != 0.0);

 // Crea un iterador de flujo de entrada para cadena.
 cout << "Ingrese algunas cadenas, ingrese 'salir' para detener.\n";
 istream_iterator<string> itr_cadena(cin);
 do {
 cad = *itr_cadena; // lee la siguiente cadena
 if(cad != "salir") {
 vs.push_back(cad); // la almacena
 ++itr_cadena;
 }
 } while (cad != "salir"); // ingresa la siguiente cadena

 cout << endl;

 cout << "Esto es lo que ingres\u00a2:\n";
 for(i=0; i < vi.size(); i++) cout << vi[i] << " ";
 cout << endl;

 for(i=0; i < vd.size(); i++) cout << vd[i] << " ";
 cout << endl;

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 271

 for(i=0; i < vs.size(); i++) cout << vs[i] << " ";

 // Ahora, usa ostream_iterator para escribir a cout.

 // Crea un iterador de salida para cadenas.
 ostream_iterator<string> salida_itr_cadena(cout);
 *salida_itr_cadena = "\n";
 *salida_itr_cadena = string("\nSe trata de una cadena\n");
 *salida_itr_cadena = "Aqu\u00a1 hay otra.\n";

 // Crea un iterador de salida para int.
 ostream_iterator<int> salida_itr_ent(cout);
 *salida_itr_ent = 10;
 *salida_itr_cadena = " ";
 *salida_itr_ent = 15;
 *salida_itr_cadena = " ";
 *salida_itr_ent = 20;

 *salida_itr_cadena = "\n";

 // Crea un interador de salida para bool.
 ostream_iterator<bool> salida_itr_bool(cout);
 *salida_itr_bool = true;
 *salida_itr_cadena = " ";
 *salida_itr_bool = false;

 return 0;
}

Aquí se muestra una ejecución de ejemplo:

Ingrese algunos enteros, ingrese 0 para detener.
1 2 3 0
Ingrese algunos doubles, ingrese 0 para detener.
1.1 2.2 3.3 0.0
Ingrese algunas cadenas, ingrese 'salir' para detener.
Se trata de una prueba
salir

Esto es lo que ingresó:
1 2 3
1.1 2.2 3.3
Se trata de una prueba

Se trata de una cadena
Aquí hay otra.
10 15 20
1 0

272 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo adicional: cree un fi ltro de archivo de STL
Aunque el uso de iteradores de fl ujo para escribir en la consola o leer de ésta, como se hace en el
ejemplo anterior, es un uso intrigante, no muestra su real capacidad. No es hasta que se combinan
los iteradores de fl ujo con algoritmos cuando emerge su verdadero potencial. En el siguiente pro-
grama se muestra un ejemplo de la manera en que se mejora un proyecto de programación que, de
otro modo, sería tedioso.

Como se explicó, los iteradores de fl ujo de bajo nivel operan sobre caracteres, pasando por
alto la inclusión en búfer y las posibles traducciones de caracteres que podrían ocurrir con los
iteradores de fl ujo de alto nivel. Esto los hace perfectos para manipular el contenido de un archivo
mediante un algoritmo. La operación sobre el contenido de un archivo mediante uno o más algo-
ritmos de STL es un concepto poderoso. A menudo resulta posible implementar una operación
de archivo sofi sticada que normalmente requeriría varias líneas de código en una simple llamada
a un algoritmo. En el ejemplo expuesto aquí se demuestra esto. Implementa un fi ltro de archivo
relativamente simple.

Un fi ltro de archivo es un programa de utilería que elimina o reemplaza información específi ca
cuando se copia un archivo. El siguiente programa es un ejemplo simple de este tipo de fi ltro. Co-
pia un archivo y en el proceso reemplaza un carácter con otro. El nombre del archivo, el carácter
que se reemplazará y el carácter de reemplazo se especifi can en la línea de comandos. Para mane-
jar el reemplazo, se usan los iteradores de fl ujo de carácter y el algoritmo replace_copy().

// Usa istreambuf_iterator, ostreambuf_iterator y replace_copy()
// para filtrar un archivo.

#include <iostream>
#include <fstream>
#include <iterator>
#include <algorithm>

using namespace std;

int main(int argc, char *argv[])
{
 if(argc != 5) {
 cout << "Uso: Reemplazar entrada salida antiguocar nuevocar\n";
 return 1;
 }

 ifstream entrada(argv[1]);
 ofstream salida(argv[2]);

 // Se asegura de que los archivos se abren con éxito.
 if(!entrada.is_open()) {
 cout << "No se puede abrir el archivo de entrada.\n";
 return 1;
 }
 if(!salida.is_open()) {
 cout << "No se puede abrir el archivo de salida.\n";
 return 1;
 }

 // Crea iteradores de flujo.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 273

 istreambuf_iterator<char> itr_entrada(entrada);
 ostreambuf_iterator<char> itr_salida(salida);

 // Copia el archivo, reemplazando caracteres en el proceso.
 replace_copy(itr_entrada, istreambuf_iterator<char>(),
 itr_salida, *argv[3], *argv[4]);

 // Los destructores de ofstream e ifstream llaman a close(),
 // así que las siguientes llamadas no son necesarias en este caso.
 // Sin embargo, para evitar confusión, en este libro se cierran
 // explícitamente todos los archivos.
 entrada.close();
 salida.close();

 return 0;
}

Para comprender los efectos del programa, suponga un archivo llamado Prueba.dat que con-
tiene lo siguiente:

Ésta es una prueba que utiliza el iterador de flujo con un algoritmo.

A continuación, suponiendo que el programa se llama Reemplazar, después de que se ejecuta esta
línea de comandos:

C:>Reemplazar Prueba.dat Prueba2.dat t X

Todos los casos de t se reemplazarán con X cuando se copie Prueba.dat en Prueba2.dat. Por tanto,
el contenido de éste será:

EsXa es una prueba que uXiliza el iXerador de flujo con un algoriXmo.

Observe que una vez que los archivos están abiertos, sólo se requiere una instrucción, la llama-
da a replace_copy(), para copiar el archivo, reemplazando en el proceso todos los casos de un ca-
rácter con otro. Para hacer esto sin el uso de replace_copy() se requerirían varias líneas de código.
Si lo piensa, queda claro que los algoritmos de STL ofrecen una solución elegante a muchos tipos
de tareas de manejo de archivos. Ésta es una de las capacidades más importantes, pero subutiliza-
das de la STL.

Opciones
Los iteradores de fl ujo son realmente una característica única. No son una opción directamente pa-
ralela. Si quiere operar en fl ujos mediante iteradores, lo hará mediante los iteradores de fl ujo que
se acaban de describir. Por supuesto, siempre podría crear sus propias implementaciones persona-
lizadas, pero apenas sería (si acaso) una razón para ello. Los iteradores de fl ujo ofrecen una opción
poderosa al método "normal" para E/S, como los operadores y los manipuladores de E/S.

Para el caso de soluciones que se concentran en el sistema de E/S de C++, consulte el capítulo 5.

274 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use los adaptadores de iterador de inserción

Componentes clave

Encabezados Clases Funciones

<iterator> template <class Cont>
 front_insert_iterator<Cont>
 front_inserter(Cont &cnt)
template <class Cont>
 back_insert_iterator<Cont>
 back_inserter(Cont &cnt)
template <class Continuación, class OutIter>
 insert_iterator<Cont>
 inserter(Cont &cnt, OutIter itr)

La STL defi ne tres adaptadores de iterador que se usan para obtener un iterador que inserta, en
lugar de sobreescribir, elementos en un contenedor. A estos adaptadores se les denomina back_in-
serter(), front_inserter() e inserter(). Se declaran en <iterator>. En esta solución se muestra cómo
usarlos.

Los adaptadores de iterador de inserción son herramientas muy útiles. Para comprender por
qué, considere los dos comportamientos asociados con iteradores. En primer lugar, cuando se usan
iteradores normales para copiar un elemento en un contenedor, el contenido actual del rango de
destino se sobreescribe. Es decir, el elemento que se está copiando no se inserta en el contenedor,
sino que reemplaza (es decir, sobreescribe) al elemento anterior. Por tanto, no se preserva el con-
tenido anterior del contenedor de destino. En segundo lugar, cuando se copian elementos en un
contenedor mediante un iterador normal, es posible sobreescribir el fi nal del contenedor. Recuerde
que un contenedor no aumentará automáticamente su tamaño cuando se usa como el destino de
un algoritmo; debe tener el tamaño sufi ciente para acomodar el número de elementos que recibirá
antes de que una operación de copia tenga lugar. Un iterador de inserción le permite modifi car
estos dos comportamientos.

Cuando se agrega un elemento a un contenedor mediante un iterador de inserción, el elemento
se inserta en la ubicación a la que señala el iterador, y cualquier elemento restante se mueve para
hacer espacio al nuevo elemento. Por tanto, se preserva el contenido original del contenedor. Si
es necesario, se aumenta el tamaño del contenedor para acomodar el elemento insertado. No es
posible sobreescribir el fi nal del contenedor de destino.

Paso a paso
Para adaptar un iterador para operaciones de inserción se requieren estos pasos:

1. Para obtener un iterador que puede insertar en cualquier punto de un contenedor, llame

a inserter(), especifi cando el contenedor y un iterador al punto en que quiere que ocurra

la inserción.

2. Para obtener un iterador que puede insertar al fi nal de un contenedor, llame a back_inser-

ter(), especifi cando el contenedor.

3. Para obtener un iterador que puede insertar al frente de un contenedor, llame a front_in-

serter(), especifi cando el contenedor.

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 275

Análisis
Para obtener un iterador que puede insertar elementos en cualquier punto de un contenedor, use
la función inserter(), que se muestra aquí:

template <class Continuación, class OutIter> insert_iterator<Cont>
 inserter(Cont &cnt, OutIter itr)

Aquí, cnt es el contenedor sobre el que se está operando e itr señala a la ubicación en que ocurrirán
las inserciones. Devuelve un iterador de tipo insert_iterator. La clase insert_iterator encapsula un
iterador de salida que inserta objetos en un contenedor.

Para obtener un iterador que pueda insertar elementos al fi nal de un contenedor, llame a
back_inserter(). Aquí se muestra:

template <class Cont> back_insert_iterator<Cont> back_inserter(Cont &cnt)

El contenedor que recibe las inserciones se pasa vía cnt. Devuelve un iterador de tipo back_insert_
iterator. La clase back_insert_iterator encapsula un iterador de salida que inserta objetos al fi nal
de un contenedor. El contenedor que recibe debe dar soporte a la función push_back().

Para obtener un iterador que puede insertar elementos al frente de un contenedor, llame a
front_inserter(). Aquí se muestra:

template <class Cont> front_insert_iterator<Cont> front_inserter(Cont &cnt)

El contenedor que recibe las inserciones se pasa vía cnt. Devuelve un iterador de tipo front_insert_
iterator. La clase front_insert_iterator encapsula un iterador de salida que inserta objetos al frente
del contenedor. El contenedor que recibe debe dar soporte a la función push_front(). Esto signifi ca
que un vector, por ejemplo, no puede ser el destino de front_insert_iterator.

Ejemplo
Cada uno de estos iteradores insertan en el contenido de un contenedor, en lugar de sobreescribir-
lo. En el siguiente ejemplo se demuestra cada tipo de iterador de inserción al copiar el contenido
de una deque en otra. Debido a que se usan los iteradores de inserción, la deque original no se
sobreescribe. En cambio, los nuevos elementos se insertan en él.

// Usa adaptadores de iterador de inserción para insertar
// una deque en otra mediante el algoritmo copy().

#include <iostream>
#include <iterator>
#include <deque>
#include <string>

using namespace std;

void mostrar(const char *msj, deque<string> dq);

int main()
{

276 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 deque<string> dq, dq2, dq3, dq4;

 dq.push_back("Los");
 dq.push_back("iteradores");
 dq.push_back("son");
 dq.push_back("une");
 dq.push_back("a");
 dq.push_back("STL.");

 dq2.push_back("el");
 dq2.push_back("pegamento");
 dq2.push_back("que");

 dq3.push_back("Hasta");
 dq3.push_back("el");
 dq3.push_back("final.");

 dq4.push_back("frente.");
 dq4.push_back("el");
 dq4.push_back("En");

 cout << "Tama\u00a4o original de dq: " << dq.size() << endl;
 mostrar("Contenido original de dq:\n", dq);
 cout << endl;

 // Usa un insert_iterator para insertar dq2 en dq.
 copy(dq2.begin(), dq2.end(), inserter(dq, dq.begin()+3));

 cout << "Tama\u00a4o de dq tras insertar dq2: ";
 cout << dq.size() << endl;
 mostrar("Contenido de dq tras insertar dq2:\n", dq);
 cout << endl;

 // Usa un back_insert_iterator para insertar dq3 en dq.
 copy(dq3.begin(), dq3.end(), back_inserter(dq));

 cout << "Tama\u00a4o de dq tras insertar dq3: ";
 cout << dq.size() << endl;
 mostrar("Contenido de dq tras insertar dq3:\n", dq);
 cout << endl;

 // Usa un front_insert_iterator para insertar dq4 en dq.
 copy(dq4.begin(), dq4.end(), front_inserter(dq));

 cout << "Tama\u00a4o de dq tras insertar dq4: ";
 cout << dq.size() << endl;
 mostrar("Contenido de dq tras insertar dq4:\n", dq);

 return 0;
}

// Despliega el contenido de una deque<string>.
void mostrar(const char *msj, deque<string> dq) {

 C a p í t u l o 4 : A l g o r i t m o s , o b j e t o s d e f u n c i ó n . . . 277

 cout << msj;
 for(unsigned i=0; i < dq.size(); ++i)
 cout << dq[i] << " ";
 cout << "\n";
}

He aquí la salida del programa.

Tamaño original de dq: 6
Contenido original de dq:
Los iteradores son los que se unen a STL.

Tamaño de dq tras insertar dq2: 9
Contenido de dq tras insertar dq2:
Los iteradores son el pegamento que une a STL.

Tamaño de dq tras insertar dq3: 12
Contenido de dq tras insertar dq3:
Los iteradores son el pegamento que une a STL. Hasta el final.

Tamaño de dq tras insertar dq4: 15
Contenido de dq tras insertar dq4:
En el frente. Los iteradores son el pegamento que une a STL. Hasta el final.

Como puede ver, dq2 se insertó en medio, dq3 se insertó al fi nal y dq4 se insertó al frente de dq.
En el proceso, se aumentó automáticamente el tamaño de dq para contener los elementos adicio-
nales. Si no se ha usado un iterador de inserción, se habría sobrescrito el contenido original de dq.

Opciones
Los adaptadores de iterador de inserción suelen usarse cuando un algoritmo copia el resultado de
una operación en otro contenedor. Esta situación ocurre con algoritmos como replace_copy(), re-
verse_copy(), remove_copy(), etc. También ocurre con casi todo el conjunto de algoritmos. Al usar
un adaptador de iterador de inserción, puede habilitar estos algoritmos para insertar el resultado
en el contenedor de destino, en lugar de sobreescribir los elementos existentes. Esta capacidad
expande en gran medida los tipos de problemas a los que pueden aplicarse estos algoritmos.

 279

5
E

n este capítulo se presentan soluciones que utilizan el sistema de E/S de C++. Como todos
los lectores saben, E/S es una parte integral de casi todos los proyectos de programación.
Como resultado, casi todos los lenguajes de computación tienen importantes subsistemas

dedicados a él, y C++ no es una excepción. La biblioteca de E/S de C++ tiene una enorme can-
tidad de opciones, pero resulta fl exible y fácil de usar. También es extensible. Con base en una
jerarquía compleja de clases, el sistema de E/S ofrece al programador un marco conceptual bien
organizado que puede aplicarse a casi cualquier situación.

Debido a la importancia de E/S, es un tema que genera muchas preguntas de tipo "¿Cómo ha-
cer?", tanto de novatos como de profesionales experimentados. Por supuesto, dado el tamaño y el
alcance de la biblioteca de E/S, no es posible presentar soluciones que cubran todos los aspectos y
detalles de este poderoso subsistema. Para ello, se requeriría un libro completo. En cambio, en este
capítulo se responden varias de las preguntas más comunes. Como era de esperarse, su principal
eje está en el manejo de archivos, incluidas soluciones que muestran cómo leer y escribir datos,
realizar acceso aleatorio y detectar errores. En otras soluciones se describe cómo crear manipula-
dores personalizados de E/S, sobrecargar los operadores de E/S y usar un fl ujo de cadena.

Como elemento adicional, se incluye una solución que describe el núcleo del sistema de E/S
heredado del lenguaje C. Debido a que C++ estaba integrado en C, C++ también incluye todo el
sistema de archivo de C. Aunque no se recomienda para programas de C++, el sistema de archivos
de C aún está muy difundido en código C heredado. La solución basada en C será interesante para
cualquier persona que necesite mantener código C o llevarlo a C++.

Otro tema importante es que, a pesar de que el sistema de E/S también maneja la formación de
datos para entrada y operaciones, este tema se explora de manera independiente en el capítulo 6.
El eje de este capítulo está en la base del E/S de C++.

He aquí las soluciones contenidas en este capítulo:

Escriba datos formados en un archivo de texto

Lea datos formados de un archivo de texto

Escriba datos binarios sin formar en un archivo

Lea datos binarios sin formar de un archivo

Use get() y getline() para leer un archivo

Lea un archivo y escriba en él

Detección de EOF

Use excepciones para detectar y manejar errores de E/S

•

•

•

•

•

•

•

•

C A P Í T U L O

Trabajo con E/S

280 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use E/S de archivo de acceso aleatorio

Revise un archivo

Use los fl ujos de cadena

Cree insertadores y extractores personalizados

Cree un manipulador sin parámetros

Cree un manipulador con parámetros

Obtenga o establezca una confi guración regional y de idioma de fl ujo

Use el sistema de archivos de C

Cambie el nombre de un archivo y elimínelo

NOTA Como se explicó en Use los iteradores de fl ujo en el capítulo 4, es posible usar algoritmos de
STL junto con iteradores de fl ujo para realizar una amplia variedad de tareas de E/S y manejo de ar-
chivos. En algunos casos, el uso de iteradores de fl ujo y de algoritmos simplifi ca algunas tareas que,
de otra manera, serían complicadas. Sin embargo, el eje de este capítulo está en el sistema de E/S de
C++. Por ello, en las soluciones no se usan los algoritmos de STL. Sólo recuerde que los iteradores
de fl ujo y los algoritmos de STL ofrecen una opción interesante que podría ser útil en algunos casos.

Revisión general de E/S

El sistema de E/S de C++ está basado en una colección coherente, interrelacionada de clases que
proporcionan la funcionalidad necesaria para realizar operaciones de entrada y salida efi cientes
en diversos dispositivos, incluidos la consola y los archivos de disco. Aunque ninguna parte del
sistema de E/S resulta difícil de dominar, es muy grande y depende de varias clases y muchas
funciones. Por tanto, aquí se presenta una breve revisión del sistema de E/S de C++. Este análisis
es sufi ciente para los objetivos de las soluciones de este capítulo, pero los lectores que deseen reali-
zar programación avanzada de E/S, como derivar clases para manejar dispositivos especializados,
necesitarán estudiar el sistema de E/S con un detalle mayor.

Flujos de C++
La base del sistema de E/S de C++ es el fl ujo. Un fl ujo es una abstracción que produce o consume
información. Todos los fl ujos se comportan de la misma manera, aunque los dispositivos físicos
reales a los que se vinculan sean diferentes. Esto signifi ca que la manera en que opera un tipo de
fl ujo es la misma para todos los fl ujos. Por ejemplo, la función pull() puede usarse para escribir en
la pantalla, en un archivo de disco o en la impresora.

En su forma más común, un fl ujo es una interfaz lógica con un archivo. De acuerdo con la
defi nición del término archivo en C++, puede aludir a un archivo de disco, la pantalla, el teclado,
un puerto, un archivo en cinta, etc. Aunque los archivos tienen diferentes formas y capacidades,
todos los fl ujos son iguales. La ventaja de este método es que para el programador, un dispositivo
de hardware será muy parecido a otro. El fl ujo proporciona una interfaz consistente.

Un fl ujo está vinculado a un archivo mediante una operación abierta. Un fl ujo se disocia de un
archivo mediante una operación de cierre.

Hay dos tipos de fl ujos: de texto y binario. Un fl ujo de texto se usa con información legible para
el ser humano. En un fl ujo de texto, es posible que se realice alguna traducción de caracteres. Por
ejemplo, cuando se da salida al carácter de nueva línea, puede convertirse en una secuencia retor-
no de carro/avance de línea. Por esto, tal vez no haya correspondencia uno a uno entre lo que se

•

•

•

•

•

•

•

•

•

 C a p í t u l o 5 : T r a b a j o c o n E / S 281

envía al fl ujo y lo que se escribe en el archivo. Un fl ujo binario puede usarse con cualquier tipo de
datos. No ocurrirá traducción de caracteres, y hay correspondencia uno a uno entre lo que se envía
al fl ujo y lo que en realidad contiene el archivo.

Un concepto adicional que se debe comprender es el de ubicación actual. Ésta (a la que también
se denomina posición actual) es la ubicación, en un fl ujo, donde ocurrirá la operación de E/S. Por
ejemplo, considere una situación en que un fl ujo está vinculado a un archivo. Si éste tiene 100
bytes de largo y se ha leído la mitad del archivo, la siguiente operación de lectura ocurrirá en
el byte 50, que es la ubicación actual.

Para resumir: en C++, la E/S se realiza mediante una interfaz lógica llamada fl ujo. Todos los
fl ujos tienen propiedades similares, y cada fl ujo se opera con las mismas funciones de E/S, sin im-
portar qué tipo de archivo está relacionado con él. Un archivo es la entidad física real que contiene
los datos. Aunque los archivos sean diferentes, los fl ujos no. (Por supuesto, es posible que algunos
dispositivos no den soporte a todas las operaciones, como las de acceso aleatorio, de modo que sus
fl ujos asociados no darán tampoco soporte a esas operaciones.)

Las clases de fl ujo de C++
El sistema de E/S de C++ está construido a partir de un sistema más bien complejo de clases de
plantillas. Aquí se muestran estas clases.

Clase Propósito

basic_ios Proporciona operaciones de E/S de propósito general.

basic_streambuf Soporte de nivel inferior para E/S.

basic_istream Soporte para operaciones de entrada. Hereda basic_ios.

basic_ostream Soporte para operaciones de salida. Hereda basic_ios.

basic_iostream Soporte para operaciones de entrada/salida. Hereda basic_istream y basic_ostream.

basic_fi lebuf Soporte de bajo nivel para E/S de archivo. Hereda basic_streambuf.

basic_ifstream Soporte para entrada de archivo. Hereda basic_istream.

basic_ofstream Soporte para salida. Hereda basic_ostream.

basic_fstream Soporte para entrada/salida de archivos. Hereda basic_iostream.

basic_stringbuf Soporte de bajo nivel para E/S de cadena. Hereda basic_streambuf.

basic_istringstream Soporte para entrada cadena. Hereda basic_istream.

basic_ostringstream Soporta para salida de cadena. Hereda basic_ostream.

basic_stringstream Soporte para entrada/salida de cadena. Hereda basic_iostream.

La clase ios_base, que no es de plantilla, también forma parte de la jerarquía de clases de E/S.
Proporciona defi niciones para varios elementos del sistema de E/S que no dependen de paráme-
tro de plantilla.

282 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

El sistema de E/S de C++ utiliza dos jerarquías de clase de plantilla relacionadas pero diferentes.
La primera se deriva de la clase de E/S de bajo nivel llamada basic_streambuf, que requiere el enca-
bezado <streambuf>. Esta clase proporciona las operaciones básicas de entrada y salida de bajo nivel
de un búfer de fl ujo, que proporciona el soporte básico para todo el sistema de E/S de C++. Cada fl u-
jo contiene un objeto de basic_streambuf, aunque por lo general no necesitará tener acceso directo a
él. Las clases basic_fi lebuf y basic_stringbuf derivan de basic_streambuf. A menos que esté hacien-
do programación avanzada de E/S, no necesitará usar directamente basic_streambuf ni su subclase.
En cambio, utilizará sus características mediante funciones defi nidas por las clases de fl ujo.

La jerarquía de clase con la que estará trabajando de manera más común se deriva de basic_ios.
Está declarada en el encabezado <ios>. Se trata de una clase de E/S de alto nivel que defi ne carac-
terísticas comunes para todos los fl ujos, como revisión de errores e información de estado. Una
clase base para basic_ios es ios_base. Como se explicó, defi ne varias funciones sin plantilla usadas
por basic_ios, como formación. La clase basic_ios se usa como base para varias clases derivadas, in-
cluidas basic_istream, basic_ostream y basic_iostream. Estas clases proporcionan la funcionalidad
esencial necesaria para fl ujos con capacidad de entrada, salida y entrada/salida, respectivamente.

Las clases de E/S reciben parámetros para los tipos de caracteres sobre los que actúan y para los
rastros asociados con esos caracteres. Por ejemplo, he aquí la especifi cación de plantilla para basic_ios:

template <class CharType, class CharTraits = char_traits<CharType> >
 class basic_ios: public ios_base

Aquí CharType especifi ca el tipo de carácter (como char o wchar_t) y CharTraits especifi ca un tipo
que describe el atributo de CharType. Observe que la opción predeterminada de CharTraits es
char_traits<CharType>. El tipo genérico char_traits es una clase de utilería que defi ne los atribu-
tos asociados con un carácter.

Para realizar E/S de archivo, debe incluir el encabezado <fstream> en su programa. Defi ne
varias clases, incluidas basic_ifstream, basic_ofstream y basic_fstream. Estas clases son derivadas
de basic_istream, basic_ostream y basic_iostream, respectivamente. Recuerde que estas tres últi-
mas clases derivan de basic_ios, de modo que los fl ujos de archivos también tienen acceso a todas
las operaciones defi nidas por basic_ios.

El sistema de E/S también da soporte al uso de una string como origen o destino de operacio-
nes de E/S. Para ello, usará las clases de fl ujo de cadena. El soporte de bajo nivel es proporcionado
por basic_stringbuf, que deriva de basic_streambuf. Las clases de fl ujo de cadena son basic_is-
tringstream, basic_ostringstream y basic_stringstream. Estas clases derivan de basic_istream, ba-
sic_ostream y basic_iostream, respectivamente. Crean fl ujos de cadena con opciones de entrada,
salida y entrada/salida.

Como se mencionó, cada fl ujo tiene asociado un objeto derivado de basic_streambuf, pero
casi nunca necesitará interactuar directamente con el objeto de basic_strambuf. En cambio, en casi
todos los casos (incluidas todas las soluciones de este capítulo), utilizará las características propor-
cionadas por las clases de fl ujo, que se derivan de basic_ios. En las siguientes secuencias se ofrece
una breve revisión general de cada una. En las soluciones individuales se describen a profundidad
las características que utilizan. Empezaremos con ios_base.

ios_base
La clase ios_base encapsula los aspectos de E/S que son comunes a todos los fl ujos y que no de-
penden de parámetros de plantilla. Requiere el encabezado <ios>. La clase ios_base defi ne varios
tipos y funciones. He aquí los tipos usados en este libro:

 C a p í t u l o 5 : T r a b a j o c o n E / S 283

fmtfl ags Máscara de bits que determina el formato de la información a la que se da salida.

iostate Máscara de bits que indica el estado de un fl ujo.

openmode La máscara de bits que indica cómo se abre un archivo.

seekdir Una enumeración que controla la manera en que se maneja la E/S de acceso aleatorio.

He aquí una muestra de sus métodos:

fl ags() Obtiene o establece todas las marcas de formato.

setf() Obtiene o establece marcas específi cas de formato.

unsetf() Limpia una o más marcas de formato.

precision() Obtiene o establece la precisión.

width() Obtiene o establece el ancho del campo.

imbue() Establece la confi guración regional y de idioma.

getloc() Obtiene la confi guración regional y de idioma.

basic_ios
La clase basic_ios hereda ios_base y luego defi ne las características relacionadas con plantillas
que son comunes a todos los fl ujos. Utiliza el encabezado <ios>. Defi ne los siguientes typedefs que
indican tipo (y, por tanto, el tamaño) de varios tipos usados por el sistema de E/S. Aquí se
muestran:

char_type El tipo de carácter.

int_type El tipo de entero.

pos_type Un tipo que puede representar una posición dentro de un archivo.

off_type Un tipo que puede representar un desplazamiento dentro de un archivo.

traits_type Un tipo que describe los atributos de un carácter.

La clase basic_ios también defi ne varias funciones. Aquí se muestran las usadas en este capítulo:

clear() Limpia las marcas de error de E/S.

exceptions() Establece u obtiene los errores que pueden causar el lanzamiento de una excepción.

eof() Devuelve true si se alcanza el fi nal del archivo.

bad() Devuelve true si ha ocurrido un error no recuperable.

fail() Devuelve true si ha ocurrido un error.

fi ll() Obtiene o establece el carácter de relleno usado para llenar un fl ujo.

good() Devuelve true si no ha ocurrido un error.

rdstate() Obtiene una máscara de bits que contiene las marcas de estado de E/S.

setstate() Establece una o más marcas de E/S.

284 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Observe que muchos de éstos se relacionan con las marcas que representan el estado de un fl ujo
de E/S. Se usan para detectar y manejar errores en condición de fi nal de archivo. (Las técnicas de
manejo de errores se describen más adelante, en esta misma revisión general.)

La clase basic_ios también defi ne los operadores * y ! que pueden aplicarse a un fl ujo. El
operador * devuelve un apuntador nulo si un fl ujo es erróneo y, de lo contrario, uno no nulo.
El ! devuelve el resultado de fail(). Por tanto, si no han ocurrido errores, ! devuelve false.
De otra manera, devuelve true.

basic_istream
La clase basic_istream hereda basic_ios y defi ne la funcionalidad común a todos los fl ujos de
entrada. Por tanto, basic_istream es el eje de todos los fl ujos de entrada. Requiere el encabezado
<istream>.

La clase basic_istream defi ne el extractor >>, que lee datos formados del fl ujo de entrada. Este
operador está sobrecargado para todos los tipos integrados. Varias funciones están defi nidas por
basic_istream. Aquí se muestran las usadas en este capítulo:

gcount() Devuelve el número de caracteres leído por la última operación de entrada.

get() Lee y elimina uno o más caracteres del fl ujo de entrada.

getline() Lee y elimina una línea de texto del fl ujo de entrada.

ignore() Lee y descarta caracteres del fl ujo de entrada.

peek() Lee, pero no elimina, un carácter del fl ujo de entrada.

putback() Devuelve un carácter al fl ujo de entrada.

read() Lee y elimina caracteres del fl ujo de entrada.

seekg() Establece la posición del archivo para entrada.

tellg() Devuelve la posición actual en el fl ujo de entrada.

unget() Devuelve al fl ujo de entrada el último carácter leído del fl ujo.

basic_ostream
La clase basic_ostream hereda basic_ios y defi ne la funcionalidad común a todos los fl ujos de
salida. Por tanto, basic_ostream es una clase de base para basic_ofstream, por ejemplo. Requiere
el encabezado <ostream>.

La clase basic_ostream defi ne el insertador <<, que escribe datos formados en el fl ujo de
salida. Este operador está sobrecargado para todos los tipos de entrada. Varias funciones están
defi nidas por basic_ostream. Aquí se muestran las usadas en este capítulo:

fl ush() Escribe datos incluidos en el búfer al fl ujo de salida.

put() Escribe un carácter en el fl ujo de salida.

seekp() Establece la posición actual del archivo para salida.

tellp() Devuelve la posición actual del fl ujo de salida.

write() Escribe caracteres al fl ujo de salida.

 C a p í t u l o 5 : T r a b a j o c o n E / S 285

basic_iostream
La clase basic_iostream hereda basic_istream y basic_ostream. Por tanto, encapsula las caracterís-
ticas de un fl ujo que tienen opciones de entrada y salida.

basic_ifstream
La clase basic_ifstream hereda basic_istream y agrega la funcionalidad necesaria para la entrada
de archivo. Requiere el encabezado <fstream>. Defi ne cuatro funciones; de ellas, en este capítulo
se usan las siguientes tres:

close() Cierra un archivo, liberando cualquier recurso del sistema usado por ese archivo.

is_open() Devuelve true si un archivo está abierto.

open() Abre un archivo para entrada. También es posible usar un constructor basic_ifstream para
abrir un archivo.

basic_ofstream
La clase basic_ofstream hereda basic_ostream y agrega la funcionalidad requerida para salida de
archivos. Necesita el encabezado <fstream>. Defi ne cuatro funciones; de ellas, en este capítulo se
utilizan las tres siguientes:

close() Cierra un archivo, liberando cualquier recurso del sistema usado por ese archivo.

is_open() Devuelve true si un archivo está abierto.

open() Abre un archivo para entrada. También es posible usar un constructor basic_ofstream para
abrir un archivo.

basic_fstream
La clase basic_fstream hereda basic_iostream. Por tanto, contiene la funcionalidad requerida
para entrada y salida de archivos. Necesita el encabezado <fstream>. Defi ne cuatro funciones;
de ellas, en este capítulo se utilizan las tres siguientes:

close() Cierra un archivo, liberando cualquier recurso del sistema usado por ese archivo.

is_open() Devuelve true si un archivo está abierto.

open() Abre un archivo para entrada. También es posible usar un constructor basic_fstream para
abrir un archivo.

Las especializaciones de clases relacionadas
con los fl ujos
Como ya se explicó, las clases relacionadas con fl ujo en C++ son plantillas que toman el tipo de ca-
rácter y sus atributos como parámetros de tipo. Esto signifi ca que el sistema de E/S puede operar
sobre fl ujos basados en caracteres de ocho bits y en caracteres extendidos. Como conveniencia, la
biblioteca de E/S crea dos especializaciones de jerarquías de clases de plantilla: una para char y
otra para wchar_t. Al usar estas especializaciones, no tendrá que proporcionar de manera continua
los parámetros de tipo cuando se declaran y usan objetos de fl ujo.

286 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

He aquí una lista de los nombres de clases de plantilla a sus versiones char y wchar_t.

Clase de plantilla Especialización para char Especialización para wchar_t

basic_ios ios wios

basic_istream istream wistream

basic_ostream ostream wostream

basic_iostream iostream wiostream

basic_fstream fstream wfstream

basic_ifstream ifstream wifstream

basic_ofstream ofstream wofstream

basic_istringstream istringstream wistringstream

basic_ostringstream ostringstream wostringstream

basic_stringstream stringstream wstringstream

basic_streambuf streambuf wstreambuf

basic_fi lebuf fi lebuf wfi lebuf

basic_stringbuf stringbuf wstringbuf

Observe que los nombres empleados para los fl ujos de char son simplemente el nombre de la clase
de plantilla sin la parte basic_. Por ejemplo, la versión para char de basic_ifstream es ifstream. La
versión de basic_ios es ios. Los fl ujos de carácter extendido usan el mismo método, pero con la w
agregada.

Las especializaciones son los nombres que suelen usarse cuando se programa, porque crean
automáticamente el tipo de fl ujo deseado, en lugar de tener que especifi car un argumento de tipo.
Por ejemplo, por lo general usará ifstream para abrir un archivo, no basic_ifstream<char>, y
normalmente especifi cará ios, no basic_ios<char>. Así, no sólo está utilizando la especialización,
también asegura que se creen en todos los casos los objetos de fl ujo apropiados, con lo que se
evitan errores.

De los dos tipos de fl ujo, los de char se usan con más frecuencia. Una razón para esto es que en
C++, un char corresponde a un byte, y en el nivel más bajo, toda la E/S está basada en bytes. Por
tanto, a menos que explícitamente esté operando con caracteres extendidos, los fl ujos de char son
los apropiados.

Debido a que la mayor parte de los fl ujos están basados en char, los nombres correspondientes
a éstos se usarán en los ejemplos y los análisis en el resto de este capítulo y en todo el libro.

 C a p í t u l o 5 : T r a b a j o c o n E / S 287

RECUERDE En este capítulo y todo el libro, los nombres de fl ujo de char, como ios y ofstream, se
usan en los ejemplos y los análisis.

Flujos predefi nidos de C++
Cuando un programa de C++ empieza a ejecutarse, se abren automáticamente cuatro fl ujos inte-
grados. Son los siguientes:

Flujo Signifi cado Dispositivo predeterminado

cin Entrada estándar Teclado

cout Salida estándar Pantalla

cerr Salida de error estándar Pantalla

clog Versión para búfer de cerr Pantalla

Los fl ujos cout, clog y cerr son instancias de ostream; el fl ujo cin es una instancia de istream. Por
tanto, todos los fl ujos relacionados con char usan el encabezado <iostream>.

Como opción predeterminada, los fl ujos estándar se usan para comunicarse con la consola. Sin
embargo, en entornos que dan soporte a redireccionamiento de E/S, los fl ujos estándar pueden re-
dirigirse a otros dispositivos o archivos. Para mayor simplicidad, en los ejemplos de este capítulo
se supone que no ha ocurrido ningún redireccionamiento de E/S.

El C++ estándar también defi ne cuatro fl ujos adicionales: win, wout, werr y wlog. Son versio-
nes de caracteres extendidos de los fl ujos estándar, y están basados en caracteres de tipo wchar_t.
Los caracteres extendidos se usan para contener los conjuntos de caracteres largos asociados con
algunos idiomas.

Las marcas de formato
Cada fl ujo está asociado con un conjunto de marcas de formato que controlan la manera en que
la información se presenta. Estas marcas están contenidas en una enumeración de máscaras de
bits llamada fmtfl ags que está defi nida por ios_base. Debido a que la formación es un tema muy
amplio, se cubre de manera independiente en el capítulo 6. Por tanto, el análisis de las marcas de
formato y las soluciones que las usan se pospondrá hasta entonces.

Los manipuladores de E/S
El sistema de E/S de C++ proporciona varios manipuladores que son funciones que pueden incluir-
se en una expresión de E/S formada. Se usan para establecer o limpiar las marcas de formato men-
cionadas en la sección anterior. También pueden usarse para otros fi nes, como salida a un carácter
nulo o para omitir espacios en blanco en la entrada. Algunos manipuladores, como endl (que
inserta una nueva línea en un fl ujo de salida), resultan familiares para todos los programadores de
C++. Otros son menos conocidos. También es posible crear manipuladores propios.

Los manipuladores integrados se describen de manera detallada en el capítulo 6, donde se pre-
sentan soluciones relacionadas con la formación de datos. Sin embargo, en este capítulo se mues-
tra cómo crear manipuladores propios. Los manipuladores personalizados pueden usarse para el
fi n que desee. Un uso común consiste en proporcionar un medio conveniente para controlar un
dispositivo que no es estándar, como un grafi cador, que requiere códigos de formato o posiciona-
miento especiales.

288 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Revisión de errores

La E/S de archivo plantea un desafío especial cuando se trata de manejo de errores, porque las
fallas de E/S son una posibilidad real cuando se leen y escriben archivos. A pesar de que el hard-
ware de computación (e Internet) es mucho más confi able que en el pasado, aún falla mucho, y
cualquier falla debe manejarse de una manera consistente con las necesidades de su aplicación. En
general, su código debe monitorear todas las operaciones de archivo en busca de errores y tomar
la acción apropiada, si ocurre alguna.

El sistema de E/S de C++ proporciona amplias opciones para detección de errores. Como ya
se mencionó, ios_base defi ne un tipo llamado iostate que representa las diversas clases de errores
que ocurren, codifi cados en una máscara de bits. Estas marcas de errores están defi nidas por los
siguientes valores:

badbit Establece si ha ocurrido un error catastrófi co.

failbit Establece si ha ocurrido un error del que es posible recuperarse.

eofbit Establece si se ha alcanzado el fi nal del archivo. (Ésta no es necesariamente una condición de
error.)

goodbit Un valor que indica que ninguno de los otros bits se ha establecido.

Observe que eofbit se incluye en la lista de marcas. Una condición de fi nal de archivo no siempre
representa un error. Esa determinación está basada en el contexto. (Por ejemplo, si está buscando a
propósito el fi nal del archivo, ¡no será un "error" que lo encuentre!) Recuerde que ios_base se he-
reda de basic_ios, de modo que esas marcas de formato son miembros de todas las clases de fl ujo.
En el caso de fl ujos de char, por lo general se aludirá a esos valores mediante la especialización ios
(por ejemplo, ios::failbit).

En la clase basic_ios están defi nidas varias funciones que pueden obtener el estado de las mar-
cas de iostate. Aquí se muestran:

bool bad() const Devuelve true si se establece badbit.

bool eof() const Devuelve true si se establece eofbit.

bool fail() const Devuelve true si se establece failbit.

bool good() const Devuelve true si no se establecen bits.

iostate rdstate() const Devuelve el valor de máscara de bits actual asociado con el fl ujo.

Puede usar estas funciones para buscar errores. Por ejemplo, una manera de confi rmar que no han
ocurrido errores consiste en llamar a good() en el fl ujo, como se muestra aquí:

if (miflujo good()) cout << "No hay errores. \n";

Otra manera de revisar errores consiste en usar la función rdstate(), que se muestra aquí:

iostate rdstate() const

Devuelve un valor en que están codifi cados los bits de estado. Por ejemplo, esta secuencia informa
el éxito o la falla de una operación de E/S:

 C a p í t u l o 5 : T r a b a j o c o n E / S 289

if(!(miflujo.rdstate() & (ios::badbit | ios::failbit))) {
 cout << "Archivo escrito correctamente. \n";
} else {
 cout << "Ha ocurrido un error de archivo.";
}

Por supuesto, por lo general es más fácil llamar simplemente a good().
Una vez que se ha establecido un bit de error, permanece hasta que se limpia. Para limpiar un

error, llame a clear(). Está defi nido por ios y se muestra aquí:

void clear(iostate marca = ios::goodbit)

Limpia (es decir, restablece) todas las marcas. Luego establece las marcas en marca. Puede estable-
cer más de una marca al unirlas con el operador lógico OR. Como opción predeterminada, no se
establecen marcas; por tanto, simplemente se limpian todas las condiciones de error.

También puede probar el estado de un fl ujo mediante el uso del operador !. Como ya se expli-
có, ! devuelve la salida de fail(). Por tanto, si un fl ujo ha experimentado un error, entonces devol-
verá true. Por ejemplo,

if(!miflujo()) {
 // . . . ocurrió un error
}

Otra manera de manejar errores consiste en usar manejo de excepciones. Esta técnica se descri-
be de manera detallada en la solución Use excepciones para detectar y manejar errores de E/S.

En los ejemplos de este capítulo, cualquier error de E/S que ocurra se manejará con el simple
despliegue de un mensaje. Aunque es aceptable para los programas de ejemplo, por lo general en las
aplicaciones reales será necesario proporcionar una respuesta más sofi sticada a un error de E/S. Por
ejemplo, tal vez quiera dar al usuario la capacidad de volver a probar la operación, especifi car una
operación alterna o manejar de otra manera el problema. La prevención de la pérdida o la corrupción
de datos es uno de los principales objetivos. Para ser un estupendo programador es necesario saber
cómo manejar de manera efectiva las cosas que podrían salir mal cuando falla una operación de E/S.

Un tema fi nal: un error común cuando se manejan archivos consiste en olvidarse de cerrar un
archivo cuando se ha dejado de usar. Los archivos abiertos usan recursos del sistema. Por tanto,
hay límites para el número de archivos que pueden abrirse a la vez. El cierre de un archivo tam-
bién asegura que cualquier dato escrito en el archivo realmente se escribe en el dispositivo físico.
Por tanto, la regla es muy simple: Si abre un archivo, ciérrelo. Aunque los archivos se cierran
automáticamente cuando se ejecuta el destructor de un fl ujo de archivo (como al fi nal de una
aplicación), es mejor no depender de esto porque puede llevar a hábitos descuidados e incorrectos.
Es mejor cerrar explícitamente cada archivo cuando ya no se necesita, manejando cualquier error
que podría ocurrir. Por esto, todos los archivos se cierran explícitamente en los ejemplos de este
capítulo, aunque el programa se haya terminado.

Apertura y cierre de un archivo

Antes de que tenga lugar cualquier operación de E/S en un archivo, éste debe abrirse. Aunque los
puntos específi cos difi eren de acuerdo con el tipo de archivo que se está abriendo, el procedimien-
to general es el mismo para todos los tipos. Por esto, tiene sentido describir las técnicas básicas de
apertura de archivos en un solo lugar, en vez de hacerlo en cada solución. Para mayor convenien-
cia, en el siguiente análisis se usan los nombres defi nidos por las especializaciones de char, pero
algunas técnicas básicas también se aplicarían a archivos de caracteres extendidos.

290 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En C++, un archivo se abre al vincularlo con un fl ujo. Por tanto, antes de que pueda abrir un
archivo, primero debe obtener una instancia de fl ujo. Hay tres tipos de fl ujo: entrada, salida y en-
trada/salida. Para crear un fl ujo de entrada de archivo, se usa ifstream. Para crear uno de salida,
se usa ofstream. Los fl ujos que realizarán operaciones tanto de entrada como de salida se declaran
como objetos de la clase fstream. Por ejemplo, este fragmento crea un fl ujo de entrada, uno de
salida y uno capaz de entrada y salida:

ifstream entrada; // entrada
ofstream salida; // salida
fstream es; // entrada y salida

Una vez que ha creado un fl ujo, puede asociarlo con un archivo al usar open(). Esta función
es un miembro de cada una de las tres clases de fl ujo. A continuación se muestra el prototipo para
cada uno:

void ifstream::open(const char *nombrear, ios::openmode modo = ios::in)

void ofstream::open(const char *nombrear, ios::openmode modo = ios::out)

void fstream::open(const char *nombrear, ios::openmode modo = ios::in | ios::out)

Aquí, nombrear es el nombre del archivo; puede incluir un especifi cador de ruta. El valor de modo
determina la manera en que se abre un archivo. Debe ser uno o más de los valores defi nidos por
openmode, que es una enumeración defi nida por ios (mediante su clase de base ios_base). He
aquí los valores defi nidos por openmode:

app La salida se adjunta al fi nal del archivo.

ate Se hace una búsqueda inicial al fi nal del archivo.

binary El archivo se abre en modo binario en lugar de texto. (El modo de texto es la opción predetermi-
nada.)

in El archivo se abre para entrada. (No puede usarse con ofstream.)

out El archivo se abre para salida. (No puede usarse con ifstream.)

trunc El archivo se trunca.

Puede incluirse más de un valor de modo al usar el operador OR junto construcción |. A continua-
ción se realiza una descripción detallada de su efecto.

El valor in especifi ca que el archivo puede contener entrada. El valor out, que puede conte-
ner salida. En todos los casos, por lo menos debe usarse uno de estos valores cuando se abre un
archivo.

La inclusión de app causa que toda la salida al archivo se adjunte al fi nal. Estos valores sólo
pueden usarse con archivos con capacidad de salida. La inclusión de ate causa una búsqueda al
fi nal del archivo cuando se abre éste. A pesar de este comportamiento de ate, las operaciones de
E/S aun pueden ocurrir en cualquier lugar dentro del archivo.

El valor binary causa que un archivo se abra en modo binario. Como opción predeterminada,
todos los archivos se abren en modo de texto. En este modo, pueden darse varias traducciones de
carácter; por ejemplo, es posible que la secuencia retorno de carro/avance de línea se convierta
en nueva línea. Sin embargo, cuando un archivo se abre en modo binario, no ocurrirá esta traduc-
ción de caracteres. Es necesario comprender que cualquier archivo, sin importar si contiene texto

 C a p í t u l o 5 : T r a b a j o c o n E / S 291

formado o datos sin trabajar, puede abrirse en modo binario o de texto. La única diferencia es si
tienen lugar las traducciones de caracteres.

El valor trunc causa que se destruya el contenido de un archivo preexistente del mismo nom-
bre, y el archivo se trunca a una longitud cero.

Debido a que ios hereda ios_base, a menudo verá estos valores de modo califi cados con ios::
en lugar de ios_base::. Por ejemplo, a menudo verá ios::out en lugar de ios_base::out. En este libro
se utiliza la forma ios:: porque es más corta. (En realidad, también podría usar constructores como
ofstream::out o ifstream::in, pero lo tradicional es que se use ios::.)

Para unir los diversos elementos, el siguiente fragmento crea un fl ujo de salida llamado ar-
chsalida y usa open() para vincularlo con un archivo llamado prueba.dat. Aunque usa ofstream
(que crea un fl ujo de archivo de salida), el método general se aplica a todos los fl ujos de archivo.

// Crea un objeto de ofstream.
ofstream archsalida;

// Abre un archivo en archsalida
archsalida.open("prueba.dat");

Esta secuencia crea primero un objeto de ofstream llamado archsalida, que no está vinculado con
un archivo. Por tanto, aunque archsalida sea una instancia de ofstream, no puede usarse para
escribir salida porque no está asociada aún con un archivo específi co. La llamada a open() vincu-
la archsalida con el archivo llamado prueba.dat y abre el archivo para operaciones de salida.
Después de que regresa open(), es posible escribir en un archivo mediante archsalida. Debido a
que el parámetro de modo de open() tiene como opción predeterminada automática ios_out, no es
necesario especifi carlo explícitamente en este caso.

Aunque no hay nada incorrecto con el método anterior de "dos pasos", todas las clases de fl ujo
de archivo (fstream, ofstream e ifstream) le permiten abrir un archivo al mismo tiempo que el
objeto de fl ujo se crea al pasar el nombre del archivo al constructor. He aquí los constructores de
fl ujo que le permiten especifi car un archivo:

ofstream(const char *nombrear, ios::openmode modo = ios::out)

ifstream(const char *nombrear, ios::openmode modo = ios::in)

fstream(const char *nombrear, ios::openmode modo = ios::in | ios::out)

Como puede ver, el parámetro modo tiene como opción predeterminada un valor apropiado para
el fl ujo. Por ejemplo, he aquí una manera mucho más compleja de crear archsalida y vincularla
con prueba.dat:

ofstream archsalida("prueba.dat");

Cuando se ejecuta esta instrucción, se construye un objeto de ofstream que se vincula con un
archivo llamado prueba.dat, y luego se abre ese archivo para salida. Como antes, aunque ofstream
se usa en este ejemplo, el mismo método general se aplica a todos los fl ujos de archivo.

Es importante comprender que open() y los constructores de fl ujo de archivo tratan de abrir un
archivo. Sin embargo, este intento puede fallar por varias razones, como cuando el llamador no
tiene los permisos apropiados de seguridad para abrir el archivo, o cuando se alcanza el límite de
archivos abiertos al que da soporte el entorno. Por tanto, antes de usar un archivo, debe confi r-
mar que se ha abierto correctamente. Hay varias maneras de hacer esto. Una consiste en llamar a
is_open() en la instancia de fl ujo de archivo. Aquí se muestra:

292 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

bool is_open()

Devuelve true si el archivo está abierto y false, si no. Por ejemplo, la siguiente secuencia verifi ca
que archsalida en realidad está abierto:

ofstream archsalida("prueba.dat");
// Verifica que el archivo se ha abierto correctamente.
if(!archsalida.is_open()) {
 cout << "no pudo abrirse archsalida. \n";
 // maneja el error
}

Esto funciona porque si falla el intento de abrir el archivo, entonces is_open() devuelve false, por-
que archsalida no está abierto. Es importante comprender que puede usar is_open() en cualquier
momento en que necesite saber si un archivo está abierto. Su uso no está limitado a verifi car que la
operación de apertura fue correcta.

Aunque el uso de is_open() es válido, y se aplica de manera ocasional en los ejemplos de este
libro, hay otros modos de verifi car que el archivo se ha abierto de forma correcta. Estas otras ma-
neras se basan en el hecho de que la falla al abrir crea una condición de error en el fl ujo. En forma
específi ca, si no es posible abrir un archivo (mediante una llamada explícita a open() o mediante
el constructor de fl ujo de archivo), entonces la marca de falla failbit se establecerá en el fl ujo para
indicar una falla de E/S. Por tanto, si no puede abrirse, una llamada a fail() en el fl ujo devolverá
true. Esto signifi ca que puede detectar una falla al llamar a fail() en el fl ujo. Por tanto, he aquí otro
modo de detectar una falla en la apertura:

ofstream archsalida("prueba.dat");
if(archsalida.fail()) {
 cout << "no pudo abrirse archsalida. \n";
 // maneja el error
}

En este caso, si falla el intento de abrir el archivo, fail() devolverá true. Sin embargo, he aquí una
manera más simple.

Como se explicó antes, cuando el operador ! se aplica a un fl ujo de archivo, devuelve el resulta-
do de fail() llamado en el mismo fl ujo. Por tanto, para probar una falla en la apertura, puede usar
esta secuencia:

ofstream archsalida("prueba.dat");
if(!archsalida) {
 cout << "no pudo abrirse archsalida. \n";
 // maneja el error
}

Ésta es la forma que verá con frecuencia en código escrito de manera profesional.
Cuando haya terminado con un archivo, debe asegurarse de que está cerrado. En general, un

archivo se cierra automáticamente con el destructor del fl ujo de archivo cuando las instancias de
éste salen del ámbito, como cuando termina un programa. También puede cerrar explícitamente
un archivo al llamar a close(), que tiene soporte en todas las clases de fl ujo de archivo. Aquí se
muestra:

void close()

 C a p í t u l o 5 : T r a b a j o c o n E / S 293

El cierre de un archivo causa que el contenido de cualquier búfer se limpie y se liberen los recursos
del sistema vinculados con el archivo.

Aunque los archivos se cierran automáticamente cuando se destruye el fl ujo de archivo,
muchos programadores creen que es una mejor práctica cerrarlos explícitamente cuando ya no
se necesiten. Una razón para esto es que la apertura de archivos consume recursos del sistema. El
cierre de archivos libera estos recursos. Por tanto, en todos los ejemplos de este capítulo se cierran
explícitamente todos los archivos, aun al fi nal de un programa, simplemente para ejemplifi car de
manera explícita el uso de close() y para destacar que los archivos deben cerrarse.

Escriba datos formados en un archivo de texto

Componentes clave

Encabezados Clases Funciones

<fstream> ofstream void close()
bool good() const
void open(const char *nombrear,
 ios::openmode modo = ios::out)

<ostream> <<

C++ le ofrece dos maneras de escribir datos en un archivo. En primer lugar, puede escribir datos
sin formato en su forma simple, binaria. En segundo lugar, puede escribir datos formados. Éstos
son datos en su forma de texto, legible para los seres humanos. En este método, el formato de
los datos escritos en el archivo será el mismo que vería en la pantalla. A un archivo que contiene
datos formados suele denominársele archivo de texto. La escritura de datos formados en un archi-
vo de texto es el tema de esta solución.

Paso a paso
Para escribir datos formados en un archivo se requieren estos pasos:

1. Cree una instancia de ofstream.

2. Abra el archivo al llamar a open() en la instancia de ofstream creada en el paso 1. Como

opción, puede abrir el archivo al mismo tiempo que crea el objeto de ofstream. (Consulte

la sección Análisis de esta solución.)

3. Confi rme que el archivo se ha abierto correctamente.

4. Escriba datos en el archivo al usar el operador de inserción <<.

5. Cierre el archivo al llamar a close().

6. Confi rme que las operaciones de escritura han sido correctas. Esto puede hacerse al llamar

a good() en el fl ujo de salida.

294 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis
Una revisión general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capítulo. Aquí se presentan los detalles específi cos relacionados
con ofstream.

Para crear un fl ujo de salida vinculado con un archivo, cree un objeto de tipo ofstream. Tiene
estos dos constructores:

ofstream()

explicit ofstream(const char *nombrear, ios::openmode modo = ios:out)

El primero crea una instancia de ofstream que no está vinculada con un archivo. El segundo crea
una instancia de ofstream y luego abre el archivo especifi cado por nombrear con el modo especi-
fi cado por modo. Observe que modo tiene como opción predeterminada ios::out. Esto causa que se
cree el archivo, y que se destruya cualquier archivo anterior con el mismo nombre. Además,
el archivo se abre automáticamente para salida de texto. (Como opción predeterminada, todos los
archivos se abren en modo de texto. Para el caso de la salida binaria, debe solicitar explícitamente
el modo binario.) La clase ofstream requiere el encabezado <fstream>.

Si utiliza el constructor predeterminado, entonces necesitará vincular un archivo con la ins-
tancia de ofstream después de construirla. Para esto, llame a open(). Aquí se muestra la versión
defi nida por ofstream:

void open(const char *nombrear, ios::openmode modo = ios::out)

Abre el archivo especifi cado por nombrear con el modo especifi cado por modo. Observe que, al
igual que el constructor ofstream, la opción predeterminada de modo es ios::out.

Antes de escribir en el archivo, debe confi rmar que se ha abierto. Puede hacer esto de diversas
maneras. El método usado en esta solución consiste en aplicar el operador ! a la instancia de ofs-
tream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el fl ujo. Por tanto,
si devuelve true, la operación de apertura ha fallado.

Una vez que se ha abierto correctamente un archivo de salida, puede escribir salida formada
en él mediante el operador de inserción <<. Está defi nido por todos los objetos de tipo ostream,
entre ellos ofstream, porque hereda ostream. Utiliza el encabezado <ostream>, que suele incluirse
con <fstream>, de modo que no necesitará incluirlo explícitamente. El operador << se usa para
escribir salida formada a un archivo, de la misma manera que se usa para escribir salida en la
consola mediante cout. Por ejemplo, suponiendo que archsalida representa un archivo de salida
abierto, la siguiente instrucción escribe un entero, una cadena y un punto fl otante en él:

archsalida << 10 << " Esto es una prueba " << 1.109;

Debido a que el archivo se ha abierto para salida de texto, esta información se escribe en su forma
legible para los seres humanos. Por tanto, el archivo contendrá lo siguiente:

10 Esto es una prueba 1.109

Cuando haya terminado de escribir en un archivo, debe cerrarlo. Esto se hace al llamar a clo-
se(), que se muestra aquí:

void close()

El archivo se cierra automáticamente cuando se llama al destructor de ofstream. Sin embargo, por
las razones establecidas en Apertura y cierre de un archivo, en este libro se llamará explícitamente a
close() en todos los casos.

 C a p í t u l o 5 : T r a b a j o c o n E / S 295

En esta solución se comprueba que no han ocurrido errores de E/S al llamar a good() en el
fl ujo. Aquí se muestra:

bool good() const

Devuelve true si no están establecidas marcas de error.

Ejemplo
En el siguiente ejemplo se escriben datos formados en un archivo de texto llamado prueba.dat.
Observe que no está especifi cado el parámetro modo del constructor de ofstream. Esto signifi ca
que la opción predeterminada es ios::out. Para este ejemplo, en el programa se utiliza la función
good() para informar del éxito o la falla de las operaciones de archivo. Como se explicó, también
son posibles otros métodos.

// Escribe salida formada en un archivo de texto.

#include <iostream>
#include <fstream>

using namespace std;

int main()
{
 // Crea un objeto de ofstream y trata de abrir
 // el archivo prueba.dat.
 ofstream archsalida("prueba.dat");

 // Verifica que el archivo se abrió correctamente.
 if(!archsalida) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 // Escribe salida en el archivo.
 archsalida << 10 << " " << -20 << " " << 30.2 << "\n";
 archsalida << "Esto es una prueba.";

 // Cierra explícitamente el archivo.
 archsalida.close();

 if(!archsalida.good()) {
 cout << "Ha ocurrido un error con el archivo.";
 return 1;
 }
}

Aquí se muestra el contenido de prueba.dat:

10 -20 30.2
Esto es una prueba.

Como se observa, los datos están almacenados en formato de texto, legible para el ser humano.

296 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
Cuando se usa ofstream, el parámetro modo de open() o el constructor de ofstream debe incluir
ios::out (que es la opción predeterminada), pero también puede incluir otros valores. Uno de
los más útiles es ios::app, porque causa que toda la salida se presente al fi nal del archivo. Esto
signifi ca que no se perderá el contenido de un archivo preexistente del mismo nombre. En cambio,
la salida se agrega al fi nal del contenido anterior. Por ejemplo, si utiliza esta llamada a ofstream()
para abrir prueba.dat en el programa anterior:

ofstream archsalida("prueba.dat", ios::out | ios::app);

entonces la salida se escribirá al fi nal del archivo. Por tanto, cada vez que ejecute el programa, el
archivo se hará más largo.

Para provocar una búsqueda inicial al fi nal del archivo, incluya ios::ate. Después de la búsque-
da inicial al fi nal, la salida puede darse en cualquier lugar.

Aunque el uso de good() es una manera conveniente de confi rmar el éxito de una operación
de salida con formato, no es la única manera. Por ejemplo, puede usar las funciones bad() o fail().
También puede usar rdstate(). Consulte Revisión de errores en la revisión general, para conocer más
detalles.

Otra manera de revisar posibles errores de E/S es mediante el uso de excepciones. Para ello,
debe especifi car los errores que lanzarán excepciones al llamar a exceptions() en el objeto ofs-
tream. Luego debe capturar excepciones de tipo ios_base::failure. (Consulte Use excepciones para
detectar y manejar errores de E/S para conocer más detalles.)

Si quiere escribir datos binarios, abra el fl ujo de salida en modo binario. (Consulte Escriba datos
binarios sin formato en un archivo para conocer más detalles.) Para leer datos formados de un archi-
vo, utilice ifstream. (Consulte Lea datos formados de un archivo de texto.) Para abrir un archivo para
entrada y salida, cree un objeto de fstream. (Consulte Lea un archivo y escriba en él.)

Lea datos formados de un archivo de texto

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream void close()
bool good() const
void open(const char *nombrear,
 ios::openmode modo = ios::in)

<istream> >>

Puede leer datos formados de un archivo de texto al usar las opciones de entrada formadas del sis-
tema de E/S de C++. Aquí, datos formados signifi ca la forma de texto, legible para los seres huma-
nos de los datos, en lugar de su representación binaria sin trabajar. Por ejemplo, dado un archivo
que contiene lo siguiente:

10 Hola 123.23

 C a p í t u l o 5 : T r a b a j o c o n E / S 297

puede usar las características de entrada formada de C++ para leer el entero 10, la cadena Hola y el
valor de punto fl otante 123.23, almacenando el resultado en un valor int, string y double, respecti-
vamente. En general, puede leer valores de cadena, enteros, booleanos y de punto fl otante que están
almacenados en su forma legible para los seres humanos. En esta solución se muestra este proceso.

Paso a paso
Para leer datos formados de un archivo se requieren estos pasos:

1. Cree una instancia de ifstream.

2. Abra el archivo al llamar a open() en la instancia de ifstream creada en el paso 1. Como

opción, puede abrir el archivo al mismo tiempo que crea el objeto de ifstream. (Consulte la

sección Análisis de esta solución.)

3. Confi rme que el archivo se ha abierto correctamente.

4. Lea datos del archivo al usar el operador de extracción >>.

5. Cierre el archivo al llamar a close().

6. Confi rme que las operaciones de lectura han sido correctas. Esto puede hacerse al llamar a

good() en el fl ujo de entrada.

Análisis
Una revisión general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capítulo. Aquí se presentan los detalles específi cos relacionados
con ifstream.

Para crear un fl ujo de entrada vinculado con un archivo, cree un objeto de tipo ifstream. Tiene
estos dos constructores:

ifstream()

explicit ifstream(const char *nombrear, ios::openmode modo = ios:in)

El primero crea una instancia de ifstream que no está vinculada con un archivo. El segundo crea
una instancia de ifstream y luego abre el archivo especifi cado por nombrear con el modo especifi -
cado por modo. Observe que modo tiene como opción predeterminada ios::in. Esto causa que
el archivo se abra automáticamente para entrada de texto. (Como opción predeterminada, todos
los archivos se abren en modo de texto. Para el caso de la entrada binaria, debe solicitar explíci-
tamente el modo binario.) Es obligatorio que exista el archivo especifi cado por nombrear. De lo
contrario, se producirá un error. La clase ifstream requiere el encabezado <fstream>.

Si utiliza el constructor predeterminado, entonces necesitará vincular un archivo con la ins-
tancia de ifstream después de construirla. Para esto, llame a open(). Aquí se muestra la versión
defi nida por ifstream:

void open(const char *nombrear, ios::openmode modo = ios::in)

Abre el archivo especifi cado por nombrear con el modo especifi cado por modo. Observe que, al
igual que el constructor ifstream, la opción predeterminada de modo es ios::in.

Antes de tratar de leer del archivo, debe confi rmar que se ha abierto. Puede hacer esto de
diversas maneras. El método usado en esta solución consiste en aplicar el operador ! a la instancia
de ifstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el fl ujo. Por
tanto, si devuelve true, la operación de apertura ha fallado.

298 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Una vez que se ha abierto correctamente un archivo de entrada, puede leer datos formados de
él mediante el operador de extracción >>. Está defi nido por todos los objetos de tipo istream, entre
ellos ifstream, porque hereda istream. Utiliza el encabezado <istream>, que suele incluirse con
<fstream>, de modo que no necesitará incluirlo explícitamente. El operador >> se usa para leer
entrada formada de un archivo, de la misma manera que se utiliza para leer entrada de la consola
mediante cin. Por ejemplo, suponiendo que archentrada representa un archivo de entrada abierto,
la siguiente instrucción lee un valor int, string y double de él:

int x;
string cad;
double val;

archentrada >> x;
archentrada >> cad;
archentrada >> val;

Suponiendo que el archivo al que se hace referencia con archentrada contiene lo siguiente:

10 Hola 123.23

entonces, después de leer los datos, x contendrá el valor 10, cad contendrá la cadena Hola y val
contendrá el valor 123.23.

Cuando haya terminado de leer un archivo, debe cerrarlo. Esto se hace al llamar a close(), que
se muestra aquí:

void close()

El archivo se cierra automáticamente cuando se llama al destructor de ifstream. Sin embargo, por
las razones establecidas en Apertura y cierre de un archivo, en este libro se llamará explícitamente a
close() en todos los casos.

En esta solución se comprueba que no han ocurrido errores de E/S al llamar a good() en el
fl ujo. Aquí se muestra:

bool good() const

Devuelve true si no están establecidas marcas.

Ejemplo
En el siguiente ejemplo se muestra cómo leer entrada formada de un archivo de texto. Se lee el
archivo producido por el programa de ejemplo de Escriba datos formados en un archivo de texto.

// Lee datos formados de un archivo.
//
// Nota: este programa lee el archivo prueba.dat
// producido por el programa de ejemplo de
//
// Escriba datos formados en un archivo de texto
//
// El archivo prueba.dat creado por ese programa
// contiene los siguientes datos:
//
// 10 -20 30.2

 C a p í t u l o 5 : T r a b a j o c o n E / S 299

// Esto es una prueba.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main()
{
 int i, n;
 double d;
 string cad;

 // Crea un objeto de ifstream y trata de abrir el archivo prueba.dat.
 ifstream archentrada("prueba.dat");

 // Verifica que el archivo se ha abierto correctamente.
 if(!archentrada) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 // Lee los datos formados.
 archentrada >> i;
 archentrada >> n;
 archentrada >> d;
 archentrada >> cad;

 // Cierra el archivo de entrada.
 archentrada.close();

 // Confirma que no ocurrieron errores en la entrada.
 if(!archentrada.good()) {
 cout << "Ha ocurrido un error con el archivo.";
 return 1;
 }

 // Despliega los datos.
 cout << i << " " << n << " " <<
 d << " " << cad << "\n";

 return 0;
}

Aquí se muestra la salida:

10 -20 30.2 Esto

Observe que sólo se despliega la palabra "Esto" en lugar de toda la frase "Esto es una prueba". Se debe
a que el operador >> utiliza el espacio en blanco como un separador de campo. Por tanto, la línea

archentrada >> cad;

deja de leer caracteres cuando se encuentra el primer espacio, que es el que sigue a "Esto" en la
frase. Se requieren operaciones de entrada adicionales para leer el resto de la frase.

300 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
Como ya se señaló, cuando se lee una cadena, el operador >> lee caracteres hasta que se encuentra
un espacio en blanco. Si quiere leer una línea de texto completo, entonces querrá usar una de las
funciones de entrada no formada, como getline(). Consulte Use get() y getline() para leer un archivo.

En algunas situaciones de entrada, querrá leer datos hasta que alcance el fi nal del archivo. Pue-
de determinar cuando se ha encontrado el fi nal de un archivo al llamar a eof() en el fl ujo. Consulte
Detección de EOF.

Aunque el uso de good() es una manera conveniente de confi rmar el éxito de una operación de
entrada con formato, no es la única manera. Por ejemplo, puede usar las funciones bad() o fail().
También puede usar rdstate() o el operador ! en el fl ujo. Consulte Revisión de errores en la revisión
general, para conocer más detalles. También puede revisar posibles errores de E/S mediante el uso
de excepciones. Para ello, debe especifi car los errores que lanzarán excepciones al llamar a excep-
tions() en el objeto ifstream. Luego debe capturar excepciones de tipo ios_base::failure. (Consulte
Use excepciones para detectar y manejar errores de E/S para conocer más detalles.)

Cuando se lee una cadena mediante el operador de extracción >>, debe evitarse el uso de una
matriz de caracteres para recibir la entrada. Use, en cambio, una string. Si utiliza una matriz de
caracteres, entonces es posible que el fi nal de la matriz pueda desbordarse con una secuencia de
entrada inesperadamente larga. Ésta es una fuente de la famosa falla de seguridad "desborda-
miento de búfer". Debido a que string es una estructura de datos dinámica, puede tratar mejor con
una entrada inesperadamente larga. En algunos casos, podría ser aún mejor evitar por completo
el uso de >> para leer cadenas, dependiendo, en cambio, de las funciones de entrada sin formato.
Consulte Lea datos binarios sin formato de un archivo.

Si quiere leer datos binarios, abra el fl ujo de entrada en modo binario. (Consulte Lea datos
binarios sin formato de un archivo para conocer más detalles.) Para escribir datos formados en un ar-
chivo, utilice ofstream. (Consulte Escriba datos formados en un archivo de texto.) Para abrir un archivo
para entrada y salida, cree un objeto de fstream. (Consulte Lea un archivo y escriba en él.)

Escriba datos binarios sin formar en un archivo

Componentes clave

Encabezados Clases Funciones

<fstream> ofstream void close()
bool good() const
void open(const char *nombrear,
 ios::openmode modo = ios::out)
ostream &write(const char *cad,
 streamsize num)

En la solución Escriba datos formados en un archivo se describió cómo escribir datos formados (es
decir, basados en texto) en un archivo de texto. Aunque este tipo de salida es útil en muchas situa-
ciones, a menudo querrá escribir datos sin formato. Aquí "sin formato" signifi ca que están escritos
byte por byte en su forma binaria sin trabajar, sin traducción o sin formato con una representación
legible para los seres humanos. La salida no formada suele usarse para crear archivos de datos,

 C a p í t u l o 5 : T r a b a j o c o n E / S 301

en que éstos están almacenados en su forma binaria. Por supuesto, también puede utilizar salida
no formada para crear un archivo de texto al escribir valores tipo char. Sin importar cuál sea el
propósito, en esta solución se muestra el procedimiento básico empleado para escribir salida sin
formato en un archivo.

Paso a paso
Una manera de escribir datos no formados en un archivo requiere estos pasos:

1. Cree una instancia de ofstream.

2. Abra el archivo al llamar a open() en la instancia de ofstream creada en el paso 1. Como

opción, puede abrir el archivo al mismo tiempo que crea el objeto de ofstream. (Consulte

la sección Análisis de esta solución.)

3. Confi rme que el archivo se ha abierto correctamente.

4. Una manera de escribir datos no formados en el archivo consiste en llamar a write().

5. Cierre el archivo al llamar a close().

6. Confi rme que las operaciones de escritura han sido correctas. Esto puede hacerse al llamar

a good() en el fl ujo de entrada.

Análisis
Una revisión general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capítulo. Aquí se presentan los detalles específi cos relacionados
con el uso de ofstream para escribir datos binarios, sin formato.

Para realizar salida binaria sin formato, debe tener un objeto de tipo ofstream que dé soporte
a operaciones binarias. La clase ofstream usa el encabezado <fstream> y defi ne estos dos cons-
tructores:

ofstream()

explicit ofstream(const char *nombrear, ios::openmode modo = ios:out)

El primero crea una instancia de ofstream que no está vinculada aún con un archivo. El segundo
crea una instancia de ofstream y luego abre el archivo especifi cado por nombrear con el modo espe-
cifi cado por modo. Observe que modo tiene como opción predeterminada ios::out, pero no incluye
la marca ios::binary. Como opción predeterminada, un archivo se abre en modo de texto. Para
abrirlo para salida sin formato, el argumento de modo debe especifi car ios::out y ios::binary.
Por ejemplo, lo siguiente abre un archivo llamado prueba.dat para salida binaria:

ofstream archsalida("prueba.dat", ios::out | ios::binary);

Esto causa que se destruya cualquier archivo anterior con el nombre prueba.dat y que se cree un
nuevo archivo.

Cuando se especifi ca la marca de modo binary, los datos se escriben en su forma binaria, sin
trabajar, con lo que se evitan posibles traducciones de caracteres (como la conversión de nueva
línea en la secuencia retorno de carro/avance de línea) que podría ocurrir cuando el archivo se
abre en modo de texto. (Recuerde que si no se especifi ca ios::binary, el archivo se abre de manera
automática en modo de texto.) Si no se usa el modo binario, puede ocurrir que el patrón de bits
contenido en el archivo sea diferente del que se encuentra en el bloque original de la memoria.
Por tanto, siempre debe especifi car ios::binary cuando abra un archivo para salida binaria.

302 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Si utiliza el constructor predeterminado, entonces necesitará vincular un archivo con la ins-
tancia de ofstream después de construirla. Para esto, llame a open(). Aquí se muestra la versión
defi nida por ofstream:

void open(const char *nombrear, ios::openmode modo = ios::out)

Abre el archivo especifi cado por nombrear con el modo especifi cado por modo. Observe que, al
igual que el constructor ofstream, la opción predeterminada de modo es ios::out. Por tanto, debe
especifi car explícitamente ios::out y ios::binary para escribir datos binarios sin formato.

Antes de tratar de escribir en el archivo, debe confi rmar que se ha abierto. Puede hacer esto de
diversas maneras. El método usado en esta solución consiste en aplicar el operador ! a la instancia
de ofstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el fl ujo. Por
tanto, si devuelve true, la operación de apertura ha fallado.

Una manera de escribir salida sin formato a un archivo consiste en usar la función write().
Escribe un bloque de datos en un fl ujo. Aquí se muestra:

ostream &write(const char *buf, streamsize num)

Aquí buf es un apuntador al bloque de memoria que se escribirá y num especifi ca el número de
bytes que se habrá de escribir. El tipo streamsize está defi nido como alguna forma de entero que
puede contener el número más grande de bytes que es posible transferir en cualquier operación de
E/S. La función devuelve una referencia al fl ujo. Aunque buf está especifi cado como char *, puede
usar write() para escribir cualquier tipo de datos binarios. Simplemente convierta un apuntador
a los datos a char * y especifi que la longitud del bloque en bytes. (Recuerde que, en C++, un char
es siempre exactamente de un byte de largo.) Por ejemplo, esta secuencia escribe en archsalida el
valor double en val:

double val = 10.34;
archsalida.write((char *) &val, sizeof(double);

Debe comprender que los datos se escriben en su formato interno, de punto fl otante. Por tanto, el
archivo contiene la imagen de patrón de bits de val, no su forma legible para los seres humanos.

Cuando haya terminado de escribir en un archivo, debe cerrarlo. Esto se hace al llamar a clo-
se(), que se muestra aquí:

void close()

El archivo se cierra automáticamente cuando se llama al destructor de ofstream. Sin embargo, por
las razones establecidas en Apertura y cierre de un archivo, en este libro se llamará explícitamente a
close() en todos los casos.

En esta solución se comprueba que no han ocurrido errores de E/S al llamar a good() en el
fl ujo. Aquí se muestra:

bool good() const

Devuelve true si no están establecidas marcas de error.

Ejemplo
En el siguiente ejemplo se demuestra la escritura de datos binarios en un archivo. Se crea una
estructura llamada inventario que almacena el nombre, la cantidad y el costo de un artículo del

 C a p í t u l o 5 : T r a b a j o c o n E / S 303

inventario. Luego, se crea una matriz de tres elementos de estructuras de inventario llamada inv
y se almacena información de inventario en esa matriz. Luego escribe esa matriz en un archivo
llamado InvDat.dat. Después de que termina el programa, el archivo contendrá una copia byte
por byte de la información de inv.

// Usa write() para dar salida a un bloque de datos binarios.

#include <iostream>
#include <fstream>
#include <cstring>

using namespace std;

// Una estructura simple de inventario.
struct inventario {
 char producto[20];
 int cantidad;
 double costo;
};

int main()
{
 // Crea y abre un archivo para salida binaria.
 ofstream archsalida("InvDat.dat", ios::out | ios::binary);

 // Confirma que el archivo se abrió sin error.
 if(!archsalida) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 // Crea algunos datos de inventario.
 inventario inv[3];

 strcpy(inv[0].producto,"Martillos");
 inv[0].cantidad = 3;
 inv[0].costo = 9.99;

 strcpy(inv[1].producto, "Pinzas");
 inv[1].cantidad = 12;
 inv[1].costo = 7.85;

 strcpy(inv[2].producto, "Llaves");
 inv[2].cantidad = 19;
 inv[2].costo = 2.75;

 // Escribe datos de inventario en el archivo.
 for(int i=0; i<3; i++)
 archsalida.write((const char *) &inv[i], sizeof(inventario));

 // Cierra el archivo.
 archsalida.close();

304 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Confirma que no hubo errores de archivo.
 if(!archsalida.good()) {
 cout << "Ha ocurrido un error con el archivo.";
 return 1;
 }

 return 0;
}

Opciones
Otra manera de escribir datos sin formato en un fl ujo es llamando a put(). Aquí se muestra:

ostream &put(char car)

Esta función escribe el valor de bytes pasado en car al fl ujo asociado. (Recuerde que en C++, un
char tiene un byte de largo. Por tanto, cada llamada a put() escribe un byte de datos.) La función
devuelve una referencia al fl ujo. He aquí un ejemplo de la manera en que puede usarse. Supo-
niendo que archsalida es un fl ujo de salida abierto, lo siguiente escribe los caracteres en la cadena
señalada por cad:

const char *cad = "Hola";
while(*cad) archsalida.put(*cad++);

Después de que se ejecuta la secuencia, el archivo contendrá los caracteres "Hola".
Tanto put() como write() pueden usarse en un fl ujo de salida de texto (es decir, un fl ujo no espe-

cifi cado como binario). Sin embargo, si lo hace, entonces pueden ocurrir algunas traducciones de ca-
rácter. Por ejemplo, una nueva línea se convertirá en una secuencia retorno de carro/avance de línea.
En general, si está usando put() o write(), normalmente abrirá el archivo en operaciones binarias.

Como opción predeterminada, cuando se abre un archivo para salida, se destruye el contenido
de cualquier archivo preexistente del mismo nombre. Puede evitar esto al incluir la marca ios::app
en el parámetro de modo de open() o el constructor ofstream. Hace que toda la salida ocurra al fi nal
del archivo, preservando así su contenido. Para provocar una búsqueda inicial al fi nal del archivo,
incluya ios::ate. Después de la búsqueda inicial al fi nal, la salida puede darse en cualquier lugar.

Aunque el uso de good() es una manera conveniente de confi rmar el éxito de una operación
de salida sin formato, no es la única manera. Por ejemplo, puede usar las funciones bad() o fail().
También puede usar rdstate(). Consulte Revisión de errores en la revisión general, para conocer más
detalles. También puede revisar posibles errores de E/S mediante el uso de excepciones. Para ello,
debe especifi car los errores que lanzarán excepciones al llamar a exceptions() en el objeto ofs-
tream. Luego debe capturar excepciones de tipo ios_base::failure. (Consulte Use excepciones para
detectar y manejar errores de E/S para conocer más detalles.)

Otra manera de revisar errores cuando usa write() o put() consiste en revisar el estado del
fl ujo. Debido a que write() o put() devuelve una referencia al fl ujo en que operan, puede aplicarse
el operador ! al objeto devuelto. Recuerde que cuando ! se aplica a un fl ujo, devuelve el resultado
de fail() aplicado al mismo fl ujo. Por tanto, puede probar si se hizo una llamada correcta a write()
como ésta:

if(!write(...)) { // ... maneja el error de escritura

 C a p í t u l o 5 : T r a b a j o c o n E / S 305

Por ejemplo, en el programa anterior, puede usar la siguiente secuencia para escribir los registros
de inventario, confi rmando el éxito de cada operación de salida en el proceso:

if(!write((const char *) &inv[i]), sizeof(inventario))) {
 cout << "Error al escribir el archivo.";
 // maneja el error ...
}

El hecho de tomar este método para revisar errores afi na su código fuente. Sin embargo, debido
a que cada llamada a write() también da como resultado que se evalúe una instrucción if (lo que
toma tiempo), no afi na el rendimiento de su programa. Como regla general, las excepciones ofre-
cen una mejor opción en este tipo de situación.

Para leer información binaria, sin formato de un archivo, consulte Lea datos binarios sin formar
de un archivo. Para leer datos formados de un archivo, use ifstream. (Consulte Lea datos formados de
un archivo de texto.)

Lea datos binarios sin formar de un archivo

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream void close()
bool good() const
void open(const char *nombrear,
 ios::openmode modo = ios::in)
ostream &read(char *cad, streamsize num)

En la solución Lea datos formados de un archivo se describió cómo leer datos formados (es decir, ba-
sados en texto) de un archivo de texto. Aunque este tipo de entrada es útil en muchas situaciones,
a menudo querrá leer datos sin formato, en su forma binaria sin trabajar, sin ninguna traducción
de caracteres (lo que es posible con la entrada formada). Por ejemplo, si fuera a crear una utilería
de comparación de archivos, querría operar sobre los datos binarios dentro de los archivos, byte
por byte. Sin importar cuál sea la necesidad, en esta solución se muestra el procedimiento básico
empleado para leer entrada sin formato de un archivo.

Paso a paso
Una manera de leer datos no formados de un archivo requiere estos pasos:

1. Cree una instancia de ifstream.

2. Abra el archivo al llamar a open() en la instancia de ifstream creada en el paso 1. Como

opción, puede abrir el archivo al mismo tiempo que crea el objeto de ifstream. (Consulte la

sección Análisis de esta solución.)

306 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

3. Confi rme que el archivo se ha abierto correctamente.

4. Una manera de leer datos no formados en el archivo consiste en llamar a read().

5. Cierre el archivo al llamar a close().

6. Confi rme que las operaciones de escritura han sido correctas. Esto puede hacerse al llamar

a good() en el fl ujo de entrada.

Análisis
Una revisión general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capítulo. Aquí se presentan los detalles específi cos relacionados
con el uso de ifstream para leer datos binarios, sin formato.

Para realizar entrada de datos binarios sin formato, debe tener un objeto de tipo ifstream que
dé soporte a operaciones binarias. La clase ifstream usa el encabezado <fstream> y defi ne estos
dos constructores:

ifstream()

explicit ifstream(const char *nombrear, ios::openmode modo = ios:in)

El primero crea una instancia de ifstream que no está vinculada aún con un archivo. El segundo
crea una instancia de ifstream y luego abre el archivo especifi cado por nombrear con el modo es-
pecifi cado por modo. Observe que modo tiene como opción predeterminada ios::in, pero no incluye
la marca ios::binary. Como opción predeterminada, los archivos se abren en modo de texto. Para
abrirlo para entrada binaria, el argumento modo debe especifi car ios::in y ios::binary. Por ejemplo,
lo siguiente abre un archivo llamado prueba.dat para entrada binaria:

ifstream archentrada("prueba.dat", ios::in | ios::binary);

Cuando se especifi ca la marca de modo binary, los datos se leen byte por byte en su forma
binaria, sin trabajar. Esto evita posibles traducciones de caracteres (como la conversión de nueva
línea en la secuencia retorno de carro/avance de línea) que podría ocurrir cuando el archivo se
abre en modo de texto. (Si no se especifi ca ios::binary, el archivo se abre de manera automática en
modo de texto.) Si no se usa el modo binario, puede llevar a que la información leída sea diferente
de la que se encuentra en el archivo. Por tanto, siempre debe especifi car ios::binary cuando abra
un archivo para entrada binaria.

Si utiliza el constructor predeterminado, entonces necesitará vincular un archivo con la ins-
tancia de ifstream después de construirla. Para esto, llame a open(). Aquí se muestra la versión
defi nida por ifstream:

void open(const char *nombrear, ios::openmode modo = ios::in)

Abre el archivo especifi cado por nombrear con el modo especifi cado por modo. Observe que, al
igual que el constructor ifstream, la opción predeterminada de modo es ios::in. Por tanto, debe
especifi car explícitamente ios::in y ios::binary para leer datos binarios sin formato.

Antes de tratar de leer el archivo, debe confi rmar que se ha abierto. Puede hacer esto de di-
versas maneras. El método usado en esta solución consiste en aplicar el operador ! a la instancia
de ifstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el fl ujo. Por
tanto, si devuelve true, la operación de apertura ha fallado.

 C a p í t u l o 5 : T r a b a j o c o n E / S 307

Una manera de leer salida sin formato de un archivo consiste en usar la función read(). Lee un
bloque de datos en un fl ujo. Aquí se muestra:

istream &read(const char *buf, streamsize num)

Aquí, buf es un apuntador al bloque de memoria (como una matriz) en que se almacenará la
entrada. El número de bytes que se leerá se especifi ca con num. El tipo streamsize está defi nido
como alguna forma de entero que puede contener el número más grande de bytes que es posible
transferir en cualquier operación de E/S. La función devuelve una referencia al fl ujo. Si es menor
que el número especifi cado de bytes disponible (lo que sucederá si trata de leer al fi nal del archi-
vo), read() leerá menos de num bytes y failbyte se enviará en el fl ujo que invoca (lo que indica un
error). Aunque buf está especifi cado como char *, puede usar read() para leer cualquier tipo de
datos binarios. Simplemente convierta un apuntador a los datos a char * y especifi que la longitud
del bloque en bytes. (Recuerde que, en C++, un char es siempre exactamente de un byte de largo.)
En el programa de ejemplo se muestra este proceso.

Cuando haya terminado de leer en un archivo, debe cerrarlo. Esto se hace al llamar a close(),
que se muestra aquí:

void close()

El archivo se cierra automáticamente cuando se llama al destructor de ifstream. Sin embargo,
a manera de ejemplo, en este libro se llamará explícitamente a close() en todos los casos.

En esta solución se comprueba que no han ocurrido errores de E/S al llamar a good() en el
fl ujo. Aquí se muestra:

bool good() const

Devuelve true si no están establecidas marcas de error.

Ejemplo
En el siguiente ejemplo se demuestra cómo leer datos binarios sin formato. Se hace al leer el archi-
vo InvDat.dat creado por el programa de ejemplo en Escriba datos binarios sin formato en un archivo.
Este archivo contiene tres estructuras de inventario. Después de la llamada a read(), la matriz inv
contendrá el mismo patrón de bytes que el almacenado en el archivo.

// Usa read() para dar entrada a bloques de datos binarios.
//
// Este programa lee el archivo InvDat.dat
// que se creó en el programa de ejemplo de
//
// Escriba datos binarios sin formato en un archivo

#include <iostream>
#include <fstream>

using namespace std;

// Una estructura simple de inventario.
struct inventario {
 char producto[20];

308 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 int cantidad;
 double costo;
};

int main()
{
 // Abre el archivo para entrada binaria.
 ifstream archentrada("InvDat.dat", ios::in | ios::binary);

 // Confirma que el archivo se abrió sin error.
 if(!archentrada) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 inventario inv[3];

 // Lee bloques de datos binarios.
 for(int i=0; i<3; i++)
 archentrada.read((char *) &inv[i], sizeof(inventario));

 // Cierra el archivo.
 archentrada.close();

 // Confirma que no hubo errores de archivo.
 if(!archentrada.good()) {
 cout << "Ha ocurrido un error con el archivo.\n";
 return 1;
 }

 // Despliega los datos de inventario leídos del archivo.
 for(int i=0; i < 3; i++) {
 cout << inv[i].producto << "\n";
 cout << " cantidad en existencia: " << inv[i].cantidad;
 cout << "\n costo: " << inv[i].costo << "\n\n";
 }

 return 0;
}

Aquí se muestra la salida:

Martillos
 cantidad en existencia: 3
 costo: 99.95

Pinzas
 cantidad en existencia: 12
 costo: 78.55

Llaves
 cantidad en existencia: 19
 costo: 27.55

 C a p í t u l o 5 : T r a b a j o c o n E / S 309

Opciones
Como ya se explicó, read() lee un número especifi cado de bytes de un archivo. Sin embargo, si
solicita más bytes de los disponibles en el archivo (como cuando lee cerca del fi nal o en el fi nal
del archivo), read() obtendrá menos bytes del número solicitado. Puede determinar cuántos bytes
realmente se leyeron al llamar a gcount(). Se muestra a continuación:

streamsize gcount() const

Devuelve el número de caracteres leído por una llamada anterior a read(), o a cualquier otra fun-
ción de entrada sin formato. Puede ver la función gcount() en acción en el Ejemplo adicional de la
solución Detección de EOF.

En el ejemplo anterior se usó good() para revisar errores, pero hay varias opciones. Consulte
Revisión de errores en la revisión general y la solución Use excepciones para detectar y manejar errores
de E/S para conocer más detalles. También puede revisar errores de entrada para monitorear el
estado del fl ujo. Debido a que read() devuelve una referencia al fl ujo sobre el que está operando,
puede aplicar el operador ! al objeto devuelto. Recuerde que cuando se aplica ! a un fl ujo, devuel-
ve el resultado de fail() aplicado al mismo fl ujo. Por tanto, puede probar el éxito de una llamada a
read() de la manera siguiente:

if(!read(...)) { // ... maneja el error de lectura

Por ejemplo, en el programa anterior, puede usar la siguiente secuencia para leer los registros del
inventario, confi rmando el éxito de cada operación de lectura en el proceso:

// Lee bloques de datos binarios.
for(int i=0; i<3; i++)
 if(!archentrada.read((char *) &inv(i), sizeof(inventario))) {
 cout <<< "Error al leer el archivo.";
 // maneja el error ...
 }

El hecho de tomar este método para revisar errores afi na su código fuente. Sin embargo, debido
a que cada llamada a read() también da como resultado que se evalúe una instrucción if (lo que
toma tiempo), no afi na el rendimiento de su programa. Como regla general, las excepciones ofre-
cen una mejor opción en este tipo de situación.

Otra manera de leer entrada sin formato, basada en caracteres, consiste en usar la función get()
o getline(). Se describen en Use get() y getline() para leer de un archivo.

En algunas situaciones de entrada, querrá leer datos hasta que llegue al fi nal del archivo. Pue-
de determinar cuando se ha encontrado el fi nal de un archivo al llamar a eof() en el fl ujo. Consulte
Detección de EOF.

Para leer datos formados, abra el fl ujo de entrada en modo de texto. Consulte Lea datos forma-
dos de un archivo de texto para conocer más detalles. Para escribir datos formados en un archivo, use
ofstream. Consulte Escriba datos formados en un archivo de texto. Para abrir un archivo para entrada
y salida, cree un objeto de fstream. Consulte Lea un archivo y escriba en él.

310 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use get() y getline() para leer un archivo

Componentes clave

Encabezados Clases Funciones

<ifstream> ifstream istream &get(char &car)
istream &get(char *buf, streamsize num)
istream &getline(char *buf, streamsize num)

En la solución anterior se describió la manera de leer datos binarios sin formato mediante el uso
de la función read(). Esta función es especialmente útil cuando se leen bloques de datos, como
en el programa de ejemplo de la solución anterior. Sin embargo, cuando se leen datos char, como
caracteres individuales o líneas de texto, las funciones get() y getline() pueden resultar más conve-
nientes. En esta solución se muestra cómo usarlas.

Paso a paso
Para leer caracteres de un archivo usando get() se requieren estos pasos:

1. Abra el archivo para entrada. Puede abrirse en modo de texto o binario. Sin embargo, esté

consciente de que si el archivo se abre en modo de texto, puede presentarse cierta traduc-

ción de caracteres, como la conversión de caracteres de nueva línea en secuencias retorno

de carro/avance de línea.

2. Una manera de leer un solo carácter consiste en usar get(char &car).

3. Una manera de leer una secuencia de caracteres consiste en usar get(char *buf, streamsize

num).

4. Confi rme que las operaciones de lectura han tenido éxito.

Para leer una línea completa de texto con el uso de getline() se requieren estos pasos:

1. Abra el archivo para entrada. Puede abrirse en modo de texto o binario. Sin embargo, esté

consciente de que si el archivo se abre en modo de texto, puede presentarse cierta traduc-

ción de caracteres, como la conversión de caracteres de nueva línea en secuencias retorno

de carro/avance de línea.

2. Una manera de leer una línea que termina en un carácter de nueva línea consiste en llamar

a getline(char *buf, streamsize num).

3. Confi rme que las operaciones de lectura han tenido éxito.

Análisis
En las soluciones anteriores se describieron los pasos necesarios para abrir un archivo para en-
trada o salida en modo de texto o binario. Consulte esas soluciones para conocer detalles sobre la
apertura de un archivo.

Hay varias versiones de get(). Aquí se muestran las dos usadas en esta solución:

istream &get(char &car)

istream &get(char *buf, streamsize num)

 C a p í t u l o 5 : T r a b a j o c o n E / S 311

La primera forma lee un sólo carácter del fl ujo que invoca, y coloca ese valor en car. La segunda
forma lee caracteres de una matriz señalada por buf hasta que se han leído num-1 caracteres, se ha
encontrado un carácter de nueva línea o se ha llegado al fi nal del archivo. La matriz a la que seña-
la buf estará terminada por un carácter nulo por get(). Si se encuentra el carácter de nueva línea en
el fl ujo de entrada, no se extrae. En cambio, permanece en el fl ujo hasta la siguiente operación de
entrada. Ambas devuelven una referencia al fl ujo.

La función getline() tiene las dos formas. La usada en esta solución se muestra aquí:

istream &getline(char *buf, streamsize num)

Lee caracteres en la matriz señalada por buf hasta que se han leído los caracteres num-1, se ha encon-
trado una nueva línea de caracteres, o se ha llegado al fi nal del archivo. La matriz a la que señala buf
estará terminada por un carácter nulo por getline(). Si se encuentra el carácter de nueva línea en el
fl ujo de entrada, se extrae pero no se coloca en buf. La función devuelve una referencia al fl ujo.

Como se observa, getline() es casi idéntica a la versión get(buf, num) de get(). Ambas leen
caracteres de la entrada y los colocan en la matriz a la que señala buf hasta que se han leído
num-1 caracteres o se ha encontrado un carácter de nueva línea. La diferencia es que getline()
lee y elimina el carácter de nueva línea del fl ujo de entrada; get() no lo hace.

Es importante comprender que get() y getline() pueden usarse en archivos abiertos en modo
de texto o binario. La única diferencia es que si el archivo está abierto en modo de texto, puede
ocurrir cierta traducción de caracteres, como la conversión de nuevas líneas en secuencias retorno
de carro/avance de línea.

Cuando se usa get() o getline(), debe asegurarse de que la matriz que estará recibiendo entra-
da sea lo sufi cientemente grande como para contener la entrada que recibirá. Por tanto, debe ser
por lo menos del mismo largo que la cuenta de caracteres pasada en num. Si se pasa por alto esta
regla, puede producirse un desbordamiento de búfer, que probablemente hará que el programa
deje de funcionar. También representa una posible amenaza a la seguridad porque deja su aplica-
ción abierta al famoso "ataque de desbordamiento de búfer". En general, debe ejercerse cuidado
extremo cuando se incluyen datos en una matriz.

Tiene la opción de confi rmar el éxito de get() o getline() de la misma manera que lo haría
al llamar a read(). Consulte la solución anterior y Revisión de errores, en la revisión general casi al
principio de este capítulo, para conocer más detalles.

Ejemplo
En el siguiente ejemplo se muestran get() y getline() en acción.

// Usa get() y getline() para leer caracteres.

#include <iostream>
#include <fstream>

using namespace std;

int main()
{
 char car;
 char cad[256];

 // Primero, escribe algunos datos en un archivo.

312 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 ofstream archsalida("prueba.dat");
 if(!archsalida) {
 cout << "No se puede abrir el archivo para salida.\n";
 return 1;
 }

 // Escribe en el archivo.
 archsalida << "Veamos una l\u00a1nea de texto.\n";
 archsalida << "Y ahora otra l\u00a1nea de texto.\n";
 archsalida << "Y al final la \u00a3ltima l\u00a1nea de texto.\n";

 archsalida.close();
 if(!archsalida.good()) {
 cout << "Ha ocurrido un error mientras se escrib\u00a1a en el archivo .\n";
 return 1;
 }

 // Ahora, abre el archivo para entrada.
 ifstream archentrada("prueba.dat", ios::in);
 if(!archentrada) {
 cout << "No se puede abrir el archivo para entrada.\n";
 return 1;
 }

 cout << "Usa get():\n";

 // Obtiene los tres primeros caracteres del archivo.
 cout << "S\u00a2lo son los tres primeros caracteres: ";
 for(int i=0; i < 3; ++i) {
 archentrada.get(car);
 cout << car;
 }
 cout << endl;

 // Ahora, usa get() para leer el final de la línea.
 archentrada.get(cad, 255);
 cout << "Esto es el resto de la primera l\u00a1nea: ";
 cout << cad << endl;

 // Debido a que la llamada anterior a get() no eliminó
 // el carácter de nueva línea del flujo de entrada, debe
 // eliminarse con otra llamada a get(car):
 archentrada.get(car);

 cout << "\nAhora se usa getline():\n";

 // Por último, usa getline() para leer las dos líneas siguientes de texto.
 archentrada.getline(cad, 255);
 cout << cad << endl;
 archentrada.getline(cad, 255);
 cout << cad;

 archentrada.close();
 if(!archentrada.good()) {
 cout << "Ha ocurrido un error mientras se lee o se cierra el archivo.\n";

 C a p í t u l o 5 : T r a b a j o c o n E / S 313

 return 1;
 }

 return 0;
}

Aquí se muestra la salida:

Usa get():
Sólo son los tres primeros caracteres: Vea
Esto es el resto de la primera línea: mos una línea de texto.

Ahora se usa getline():
Y ahora otra línea de texto.
Y al final la última línea de texto.

En el programa, observe esta secuencia:

// Ahora, usa get() para leer el final de la línea.
archentrada.get(cad, 255);
cout << "Esto es el resto de la primera l\u00a1nea: ";
cout << cad << endl;

// Debido a que la llamada anterior a get() no eliminó
// el carácter de nueva línea del flujo de entrada, debe
// eliminarse con otra llamada a get(car):
archentrada.get(car);

Como se explicó, la versión get(buf, num) de get() no elimina un carácter de nueva línea del
fl ujo de entrada. Por tanto, la nueva línea se leerá en la siguiente operación de entrada. A menu-
do, como pasa con el programa de ejemplo, es necesario eliminar y descartar el carácter de nueva
línea. Esto se maneja con la llamada a la versión de get(car)*.

Opciones
Hay otra forma de get() que proporciona una opción cuando sólo se lee un carácter. Se muestra a
continuación:

int get()

Esta forma de get() devuelve el siguiente carácter del fl ujo. Devuelve un valor que representa el
fi nal del archivo si se ha alcanzado éste. Para fl ujos basados en char, como ifstream, el valor EOF
es char_traits<char>::eof().

Cuando se lee una secuencia de caracteres mediante get(), puede especifi car el delimitador al
emplear esta forma:

istream &get(char *buf, streamsize num, char delim)

Funciona igual que get(buf, num) descrito en esta solución, excepto que detiene la lectura cuando
se encuentra el carácter pasado en delim (o cuando se han leído num-1 caracteres o se ha alcanzado
el fi nal del archivo).

*Nota del revisor técnico: Observe que al escribir las secuencias de escape, se escriben de manera diferente en el archivo y su
presentación en pantalla. Por razones de consistencia, se prefi ere que la salida a la pantalla sea la correcta. Se sugiere explorar las
opciones de confi guración regional y de idioma de C++ para tratar adecuadamente este tema.

314 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cuando se lee una línea de texto mediante getline(), puede especifi car el delimitador mediante
el uso de esta forma:

istream &getline(char *buf, streamsize num, char delim).

Funciona igual que getline(buf, num) descrito en esta solución, excepto que detiene la lectura
cuando se encuentra el carácter pasado en delim (o cuando se han leído num-1 caracteres o se ha
alcanzado el fi nal del archivo).

Lea un archivo y escriba en él

Componentes clave

Encabezados Clases Funciones

<fstream> fstream void close()
ostream &fl ush()
istream &get(char &car)
bool good() const
void open(const char *nombrear,
 ios::openmode modo = ios::in | ios::out)
ostream &put(char car)

Es posible abrir un archivo para que pueda usarse con entrada y salida. Esto suele hacerse cuan-
do un archivo de datos necesita actualizarse. En lugar de volver a escribir todo el archivo, puede
escribir sólo una pequeña parte de él. Esto resulta especialmente valioso en archivos que usan
registros de longitud fi ja, porque ofrece una manera conveniente de actualizar un registro sin
reescribir todo el archivo. Por supuesto, abrir un archivo para entrada y salida resulta útil en otras
situaciones, como cuando quiere leer el contenido de un archivo, modifi carlo y luego volver a
escribir el contenido modifi cado en el mismo archivo. Al usar un archivo abierto para entrada y
salida, sólo necesita abrir y cerrar el archivo una vez, con lo que se afi na su código. Cualquiera
que sea su propósito, en esta solución se muestra el procedimiento básico necesario para leer un
archivo y escribir en él.

Paso a paso
Para realizar operaciones de entrada y salida en un archivo se requieren los siguientes pasos:

1. Abra el archivo para lectura y escritura al crear un objeto de tipo fstream. La clase fstream

hereda ifstream y ofstream. Esto signifi ca que permite operaciones de entrada y salida.

2. Use las funciones de salida defi nidas por ofstream para escribir en el archivo. La que se usa

en esta solución es put().

3. Use las funciones de entrada defi nidas por ifstream para leer el archivo. La que se usa en

esta solución es get().

 C a p í t u l o 5 : T r a b a j o c o n E / S 315

4. Para muchas implementaciones de compilador, cuando cambia entre entrada y salida,

necesitará llamar a seekg(), seekp() o fl ush(). En esta solución se usa fl ush().

5. Cierre el archivo.

6. Confi rme que las operaciones de entrada y salida fueron correctas. Esto puede hacerse al

llamar a good() en el fl ujo de entrada o de varias otras maneras.

Análisis
Una revisión general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capítulo. Aquí se presenta la información relacionada específi ca-
mente con fstream.

La clase fstream hereda la clase iostream, que hereda istream y ostream. Esto permite el
soporte de operaciones de entrada y salida. Más aún, todas las técnicas descritas en las soluciones
anteriores, como leer y escribir de un ifstream u ofstream, se aplican a fstream. La única diferen-
cia es que fstream da soporte a lectura y escritura.

Para realizar operaciones de entrada/salida, debe tener un objeto de tipo fstream que dé
soporte a operaciones de entrada y salida. La clase fstream usa el encabezado <fstream> y defi ne
estos dos constructores:

fstream()

explicit fstream(const char *nombrear, ios::openmode modo = ios:in | ios::out)

El primero crea una instancia de fstream que no está vinculada aún con un archivo. El segun-
do crea una instancia de fstream y luego abre el archivo especifi cado por nombrear con el modo
especifi cado por modo. Observe que modo tiene como opción predeterminada ios::in y ios::out.
Además, observe que no incluye la marca ios::binary. Por tanto, como opción predeterminada,
el archivo se abre en modo de texto. Para abrirlo para E/S binaria, incluya la marca ios::binary.
Cuando un archivo se abre en modo de texto, pueden ocurrir traducciones de caracteres, como el
reemplazo de nueva línea por la secuencia retorno de carro/avance de línea. La apertura del texto
en modo binario evita estas traducciones.

Si utiliza el constructor predeterminado, entonces necesitará vincular un archivo con la instan-
cia de fstream después de que se construya al llamar a open(). Aquí se muestra la versión defi nida
por fstream:

void open(const char *nombrear, ios::openmode modo = ios:in | ios::out)

Abre el archivo especifi cado por nombrear con el modo especifi cado por modo. Observe que, como
el constructor fstream, la opción predeterminada de modo es ios::in | ios::out. Por tanto, el archivo
se abre automáticamente para operaciones predeterminadas de entrada y salida cuando modo está
en su opción predeterminada.

Antes de tratar de escribir en el archivo, debe confi rmar que el archivo está abierto. Puede
hacer esto de diversas maneras. El método usado en esta solución consiste en aplicar el operador !
a la instancia de fstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en
el fl ujo. Por tanto, si devuelve true, la operación de apertura ha fallado.

Una vez abierto, puede leer el archivo y escribir en él usando cualquiera de los métodos
proporcionados por istream y ostream, como get(), put(), read() y write(). Estos métodos se han
descrito en las soluciones anteriores.

En el caso de algunos compiladores, necesita limpiar la salida al llamar a fl ush() o realizar
una operación de búsqueda al llamar a seekg() o seekp() cuando se cambia entre operaciones de

316 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

lectura y escritura. En esta solución se utiliza fl ush(). (Para conocer más detalles sobre seekg()
y seekp(), consulte Utilice E/S de archivo de acceso aleatorio.) El método fl ush() está defi nido por
ostream y se muestra a continuación:

ostream &fl ush()

Limpia el búfer de salida. Esto asegura que el contenido del búfer se escriba en el archivo. El siste-
ma de E/S de C++ utiliza búferes para mejorar la efi ciencia de las operaciones con archivos. Para
la entrada, los datos se leen del archivo, de búfer en búfer. Cuando se alcanza el fi nal del búfer de
entrada, se lee la información del siguiente búfer. En el caso de la salida, cuando escribe sus datos,
en realidad se escriben en un búfer de salida. Sólo cuando el búfer está lleno los datos se escriben
físicamente en un archivo. La función fl ush() modifi ca este comportamiento y hace que el conteni-
do actual del búfer se escriba en el archivo, esté lleno el búfer o no. Esto asegura que el contenido
del archivo refl eje inmediatamente cualquier operación de escritura que haya tenido lugar. En lo
que se relaciona con los archivos de lectura/escritura, la llamada a fl ush() después de que ha escri-
to el archivo asegura que las operaciones de lectura refl ejen el estado real del archivo:

Ejemplo
En los siguientes ejemplos se muestra cómo abrir un archivo de texto llamado prueba.dat para
lectura y escritura. Es necesario que el archivo prueba.dat exista. Después de que abre el archivo,
escribe tres "X" al principio del archivo. A continuación limpia el búfer de salida y luego lee los
siguientes diez caracteres del archivo.

// Usa fstream para leer un archivo y escribir en él.

#include <iostream>
#include <fstream>

using namespace std;

int main()
{
 char car;

 // Abre un archivo para operaciones de entrada y salida.
 fstream archentradasalida("prueba.dat");

 if(!archentradasalida) {
 cout << "No se puede abrir el archivo para salida.\n";
 return 1;
 }

 // Escribe tres X.
 for(int i=0; i < 3; ++i) archentradasalida.put('X');

 if(!archentradasalida.good()) {
 cout << "Ha ocurrido un error mientras se escrib\u00a1a en el archivo.\n";
 return 1;
 }

 // Limpia el búfer de salida.

 C a p í t u l o 5 : T r a b a j o c o n E / S 317

 archentradasalida.flush();

 // Obtiene los siguientes 10 caracteres del archivo.
 cout << "Aqu\u00a1 se muestran los diez caracteres siguientes: ";
 for(int i=0; i < 10; ++i) {
 archentradasalida.get(car);
 cout << car;
 }
 cout << endl;

 if(!archentradasalida.good()) {
 cout << "Ha ocurrido un error mientras se le\u00a1a el archivo.\n";
 return 1;
 }

 archentradasalida.close();

 if(!archentradasalida.good()) {
 cout << "Ha ocurrido un error mientras se cerraba el archivo.\n";
 return 1;
 }

 return 0;
}

Suponiendo que prueba.dat contiene lo siguiente:

abcdefghijklmnop

el programa producirá esta salida:

Aquí se muestran los diez caracteres siguientes: defghijklm

y el contenido de prueba.dat cambiará a:

XXXdefghijklmnop

Opciones
Para realizar operaciones de entrada/salida en un archivo, no hay en realidad ninguna opción
adicional al uso de fstream.

Detección de EOF

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream bool eof() const

318 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En algunos casos, querrá saber cuándo se ha alcanzado el fi nal del archivo. Por ejemplo, si está
leyendo una lista de valores de un archivo, entonces tal vez quiera seguir leyendo hasta que ya no
haya más valores. Para esto debe contar con alguna manera de saber cuándo se ha alcanzado el
fi nal del archivo. Por fortuna, el sistema de E/S de C++ proporciona una función para hacer esto:
eof(). En esta solución se muestra cómo usarla.

Paso a paso
Para detectar EOF se requieren estos pasos:

1. Abra el archivo que se leerá para entrada.

2. Empiece a leer datos del archivo.

3. Después de cada operación de entrada, determine si se ha alcanzado el fi nal del archivo al

llamar a eof().

Análisis
La función eof() determina si se ha alcanzado el fi nal del archivo. Está declarada por istream, que
se hereda de ifstream. Se muestra a continuación:

bool eof() const

Devuelve true si se ha encontrado el fi nal del fl ujo; de lo contrario, devuelve false.
Hay un aspecto importante del sistema de E/S de C++ que se relaciona con el fi nal del archivo.

Cuando se hace un intento por leer al fi nal del archivo, se establecen ios::eofbit e ios::failbit. Por
tanto, el encuentro del fi nal del archivo también se considera una condición de error, aunque eso
sea lo que se pretende. Más aún, si quiere detectar una falla de entrada causada por algo diferente
del encuentro del fi nal del archivo, entonces necesitará probar explícitamente esto al excluir que se
revise la condición de fi nal de archivo. Por ejemplo, esta instrucción if se presenta si está estableci-
da badbit o failbit, pero no eofbit:

if(!archentrada.eof() && (archentrada.fail() || archentrada.bad())) { // ...

Recuerde que una operación de entrada puede fallar por muchas razones. El encuentro del fi nal
del archivo es sólo una de ellas.

Debido a que las marcas de estado de E/S permanecen hasta que se limpian, el encuentro del
fi nal del archivo causará que good() devuelva false, aunque usted haya causado a propósito esa
condición. Necesita tomar esto en cuenta cuando busque y maneje errores. Por ejemplo, después
de que se ha encontrado el fi nal del archivo, puede usar la función clear() para restablecer las mar-
cas de E/S. Consulte Revisión de errores en la revisión general, para conocer más detalles, incluidas
las funciones clear(), good(), bad() y fail().

Ejemplo
En el siguiente ejemplo se demuestra eof(). Crea un programa que lee y despliega el contenido de
un archivo de texto. Utiliza eof() para saber cuando se ha leído todo el archivo. Observe que utili-
za la función get() defi nida por istream. Se describe en Use get() y getline() para leer un archivo.

// Usa eof() para leer y desplegar un archivo de texto.
//
// El nombre del archivo se especifica en la línea de

 C a p í t u l o 5 : T r a b a j o c o n E / S 319

// comandos. Por ejemplo, suponiendo que este programa
// se llama Mostrar, la siguiente línea de comandos
// desplegará el archivo llamado prueba.txt:
//
// Mostrar prueba.txt
//

#include <iostream>
#include <fstream>

using namespace std;

int main(int argc, char *argv[])
{
 char car;

 if(argc != 2) {
 cout << "Uso: Mostrar <nombrearchivo>\n";
 return 1;
 }

 // Crea un objeto de ifstream y trata de abrir el archivo.
 ifstream archentrada(argv[1]);

 // Verifica que el archivo se abrió correctamente.
 if(!archentrada) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 do {
 // Lee el siguiente carácter, si lo hay.
 archentrada.get(car);

 // Revisa si hay errores NO causados por alcanzar EOF.
 if(!archentrada.eof() && (archentrada.fail() || archentrada.bad())) {
 cout << "Error en la entrada\n";
 archentrada.close();
 return 1;
 }

 // Si aún no se encuentra EOF, despliega el siguiente carácter.
 if(!archentrada.eof()) cout << car;
 } while(!archentrada.eof());

 // Limpia los bits eof y fail.
 archentrada.clear();

 // Cierra el archivo de entrada.
 archentrada.close();

 // Confirma que el archivo se cerró sin error.
 if(!archentrada.good()) {
 cout << "Error al cerrar el archivo.";

320 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 return 1;
 }

 return 0;
}

Observe que el programa revisa errores de entrada que no están relacionados con una condición
de fi nal de archivo. Esto permite que el programa informe si sucedió algo inesperado cuando leyó
el archivo. Después de que se encuentra el fi nal del archivo, los bits de estado de E/S se limpian
y se cierra el archivo. Esto nos permite confi rmar que la operación de cierre se dio sin error. Por
supuesto, sus propias aplicaciones determinarán cómo revisar los errores. En el programa siguien-
te se muestra sólo un ejemplo.

Ejemplo adicional: una utilería simple de comparación de archivos
En el siguiente programa se le da un buen uso a eof(). Crea una utilería simple que compara
dos archivos. Abre ambos para entrada binaria. Esto signifi ca que el programa puede usarse en
archivos de texto y binarios, como ejecutables. Compara los dos archivos al leer un búfer de datos
de cada uno mediante el uso de read() y luego compara el contenido de los búferes. Utiliza eof()
para determinar cuando ambos archivos se han leído por completo. Si los archivos tienen diferen-
tes longitudes, o si su contenido no coincide, los archivos difi eren. De otra manera, son iguales.
Observe que el programa usa la función gcount() para determinar cuántos bytes de datos se han
obtenido con read(). Cundo se realiza entrada al fi nal del archivo, el número de bytes leídos puede
ser menos del solicitado en la llamada a read().

// Una utilería simple de comparación de archivos.

#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argv[])
{
 bool igual = true;
 bool errarch = false;

 unsigned char buf1[1024], buf2[1024];

 if(argc!=3) {
 cout << "Uso: comparchivos <archivo1> <archivo2>\n";
 return 1;
 }

 // Abre ambos archivos para operaciones binarias.
 ifstream arch1(argv[1], ios::in | ios::binary);
 if(!arch1) {
 cout << "No se puede abrir " << argv[1] << endl;
 return 1;
 }

 ifstream arch2(argv[2], ios::in | ios::binary);
 if(!arch2) {

 C a p í t u l o 5 : T r a b a j o c o n E / S 321

 cout << "No se puede abrir " << argv[2] << endl;
 arch1.close();
 if(!arch1.good())
 cout << "Error al cerrar " << argv[1] << endl;
 return 1;
 }

 cout << "Comparando archivos...\n";

 do {

 // Lee un búfer completo de datos de cada archivo.
 arch1.read((char *) buf1, sizeof buf1);
 arch2.read((char *) buf2, sizeof buf2);

 // Revisa errores de lectura.
 if(!arch1.eof() && !arch1.good()) {
 cout << "Error al leer " << argv[1] << endl;
 errarch = true;
 break;
 }
 if(!arch2.eof() && !arch2.good()) {
 cout << "Error al leer " << argv[2] << endl;
 errarch = true;
 break;
 }

 // Si la longitud de los dos archivos es diferente, entonces
 // al final del archivo, las gcount serán diferentes.
 if(arch1.gcount() != arch2.gcount()) {
 cout << "Los archivos tienen diferente longitud.\n";
 igual = false;
 break;
 }

 // Compara el contenido de los búferes.
 for(int i=0; i < arch1.gcount(); ++i)
 if(buf1[i] != buf2[i]) {
 cout << "Los archivos son diferentes.\n";
 igual = false;
 break;
 }

 } while(!arch1.eof() && !arch2.eof() && igual);

 if(!errarch && igual) cout << "Los archivos son iguales.\n";

 // Limpia eofbit, y tal vez bits de error.
 arch1.clear();
 arch2.clear();

 arch1.close();
 arch2.close();

322 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 if(!arch1.good() || !arch2.good()) {
 cout << "Error al cerrar los archivos.\n";
 return 1;
 }

 return 0;
}

Opciones
Puede detectar el fi nal de archivo de varias maneras. En primer lugar, puede usar la función rds-
tate(), que devuelve todas las marcas de estado en la forma de una máscara de bits. Luego puede
probar el fi nal de archivo al vincular con operaciones lógicas OR mediante ios::eofbit con el valor
devuelto por rdstate(). (Esta función se describe en Revisión de errores.)

Si utiliza esta forma de get()

int get()

entonces el valor obtenido de ifstream::traits_type::eof() se devuelve cuando se encuentra el fi nal
del archivo. El typedef traits_type especifi ca valores asociados con el tipo de carácter usado por el
fl ujo, que son char en el caso de ifstream. Por tanto, cuando se usa esta forma de get(), la siguiente
secuencia detecta el fi nal del archivo:

car = archentrada.get();
if(car == ifstream::traits_type::eof()) cout << "EOF encontrado";

¡Por supuesto, es mucho más fácil usar la función eof() defi nida por ifstream!

Use excepciones para detectar y manejar errores de E/S

Componentes clave

Encabezados Clases Funciones

<ios> ios void exceptions(iostate exc)

<ios> ios_base::failure const char *what() const

El sistema de E/S de C++ le da dos maneras de revisar errores. En primer lugar, puede usar las
funciones good(), bad(), fail() y rdstate() para interrogar explícitamente las marcas de estado. Este
método se describe en Revisión de errores, en la revisión general que se hizo al principio del capítu-
lo. También es el método usado en casi todas las soluciones de este capítulo, porque es la manera
en que se detectan los errores, como opción predeterminada. La segunda manera incluye el uso
de excepciones. En este método, un error de E/S causa que se lance una excepción. Su código
puede capturar esta excepción y tomar la acción apropiada para manejar el error. En esta solución
se muestra cómo usar las excepciones para detectar y manejar los errores de E/S.

 C a p í t u l o 5 : T r a b a j o c o n E / S 323

Paso a paso
Para detectar y manejar errores de E/S mediante el uso de excepciones se requieren los siguientes
pasos:

1. En el fl ujo que desee monitorear, en busca de errores, llame a la función exceptions(), pa-

sándola en una máscara de bits iostate que contiene la marca o las marcas de la excepción

o las excepciones que desee para generar errores.

2. Realice operaciones de E/S desde el interior de un bloque try.

3. La instrucción catch del bloque try debe capturar excepciones de tipo failure. Es el tipo de

excepción generada por el sistema de E/S.

4. Para determinar qué tipo de falla ocurrió, llame a what() en el objeto de excepción.

Análisis
Como opción predeterminada, el sistema de E/S no lanza una excepción cuando ocurre un error.
Por tanto, para usar excepciones, debe solicitar explícitamente su uso. Más aún, debe especifi car
cuáles tipos de errores lanzarán una excepción. Para ello, utilizará la función exceptions(). Está
defi nida por ios_base y es heredada por todas las clases de fl ujo. Aquí se muestra:

void exceptions(iostate exc)

Aquí, exc es una máscara de bits que contiene valores iostate que representan la condición que
lanzará una excepción. Estos valores son ios_base::failbit, ios_base::badbit, ios_base::goodbit
y ios_base::eofbit. Como se relacionan con fl ujos char, suele hacerse referencia a estos valores
como ios::failbit, ios::badbit, ios::goodbit y ios::eofbit. Por tanto, para causar que un fl ujo de char
llamado mifl ujo genere excepciones cada vez que un error cause que se establezca failbit, puede
usar lo siguiente:

miflujo.exceptions(ios::failbit);

Después de esta llamada, cada vez que un error de E/S cause que se establezca failbit, se genera
una excepción. Un tema adicional: como se explicó en Revisión de errores en la revisión general
presentada casi al principio de este capítulo, el fi nal de archivo no siempre se considera un error,
en sentido estricto, pero puede usar excepciones para vigilarlo.

Una vez que haya habilitado las excepciones, debe realizar operaciones de E/S dentro de un
bloque try que capture excepciones que tienen un tipo de base ios_base::failure. Observe que esta
clase es una clase miembro de ios_base. Se declara de la manera en que se muestra a continuación:

class ios_base::failure : public exception |
public:
 explicit failure(const string &cad);
 virtual ~failure();
 virtual const char *what() const throw();
);

324 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Observe que hereda exception(), que es una clase de base para todas las excepciones. La función
what() devuelve una cadena que describe la excepción. En teoría, podría usar la cadena devuelta
por what() para determinar lo que ocurrió. En la práctica, suele ser mejor depender de la lógica
de su propio programa para realizar esta función, porque la cadena devuelta por what() tal vez
no sea específi ca de la causa real del error. Por ejemplo, sólo podría establecer cuál bit de error se
estableció. Más aún, esta cadena podría variar entre compiladores (y tal vez así será), o incluso
entre versiones diferentes del mismo compilador. Por esto es por lo que a veces no resulta particu-
larmente útil.

Ejemplo
En el siguiente ejemplo se muestra cómo usar excepciones para manejar errores cuando se realiza
E/S. Se vuelve a trabajar el programa de ejemplo de Escriba datos binarios sin formato en un archivo
de modo que utilice excepciones para detectar y manejar errores de E/S. Observe que cada opera-
ción de E/S (abrir el archivo, leer datos y cerrar el archivo) se realiza dentro de su propio bloque
try. Esto facilita el responder a cada excepción en forma individualizada. Por supuesto, el méto-
do que use debe ser adecuado para su aplicación y sus necesidades específi cas. Observe que el
programa usa la cadena devuelta por what() para desplegar el error. Esto se incluye simplemente
para la demostración. Excepto por la depuración, normalmente no desplegaría esta cadena.

// Usa excepciones para vigilar y manejar errores de E/S.
//
// En este programa se vuelve a trabajar el programa de:
//
// Escriba datos binarios sin formato en un archivo
//
// De modo que utilice excepciones para detectar y manejar errores de E/S.

#include <iostream>
#include <fstream>
#include <cstring>

using namespace std;

// Una estructura simple de inventario.
struct inventario {
 char producto[20];
 int cantidad;
 double costo;
};

int main()
{
 int completion_status = 0;

 // Crea un flujo de salida.
 ofstream archsalida;

 // Habilita la excepción para errores de E/S.
 archsalida.exceptions(ios::failbit | ios::badbit);

 // Trata de abrir el archivo para salida binaria.

 C a p í t u l o 5 : T r a b a j o c o n E / S 325

 try {
 archsalida.open("InvDat.dat", ios::out | ios::binary);
 } catch(ios_base::failure exc) {
 cout << "No se puede abrir el archivo.\n";
 cout << "La cadena devuelta por what(): " << exc.what() << endl;
 return 1;
 }

 // Crea algunos datos de inventario.
 inventario inv[3];

 strcpy(inv[0].producto,"Martillos");
 inv[0].cantidad = 3;
 inv[0].costo = 99.95;

 strcpy(inv[1].producto, "Pinzas");
 inv[1].cantidad = 12;
 inv[1].costo = 78.55;

 strcpy(inv[2].producto, "Llaves");
 inv[2].cantidad = 19;
 inv[2].costo = 27.55;

 // Escribe datos de inventario en el archivo. Si ocurre un error,
 // la excepción se manejará con la instrucción catch.
 try {
 for(int i=0; i<3; i++)
 archsalida.write((const char *) &inv[i], sizeof(inventario));
 } catch(ios_base::failure exc) {
 cout << "Ha ocurrido un error cuando se trataba de escribir en el archivo.\n";
 cout << "La cadena devuelta por what(): " << exc.what() << endl;
 completion_status = 1;
 }

 // También maneja un error que podría ocurrir cuando cierra el archivo.
 try {
 // Cierra el archivo.
 archsalida.close();
 } catch(ios_base::failure exc) {
 cout << "Ha ocurrido un error cuando se trataba de cerrar el archivo.\n";
 cout << "La cadena devuelta por what(): " << exc.what() << endl;
 completion_status = 1;
 }

 return completion_status;
}

He aquí algunos temas que deben quedar claros en relación con el ejemplo anterior. En primer
lugar, observe que si el archivo no puede abrirse, entonces el programa se cierra. Esto es apropia-
do, porque si el archivo no puede abrirse, entonces no puede escribirse en él y no hay razón para
seguir adelante. Más aún, debido a que el archivo no está abierto, no es necesario que se cierre.
Por tanto, es apropiado salir del programa en este momento.

326 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

A continuación, observe que el manejador de excepciones para write() no cierra el programa.
En cambio, establece la variable completion_status en 1 y deja que siga la ejecución del progra-
ma. En este momento, aunque haya ocurrido un error, el archivo aún está abierto y debe cerrar-
se. Por tanto, la ejecución sigue hasta la llamada a close().

Es importante comprender que, en este ejemplo, el archivo se cerrará automáticamente cuando
el programa termine, porque el destructor de ofstream cierra el archivo (como se explicó en la
revisión general presentada en páginas anteriores de este capítulo). Sin embargo, en casi todos los
programas reales, la situación no es tan fácil. Por ejemplo, si se permite al usuario volver a probar
la operación de un archivo, entonces es imperativo que asegure que el intento anterior cerró el
archivo. De otra manera, habrá problemas. Por ejemplo, puede volverse imposible abrir de nuevo
el archivo, porque nunca se cerró. Además, el programa consume recursos del sistema, como ma-
nejadores de archivo, de los que existe un número fi nito. Lo importante es que, debido a que una
excepción causa un cambio abrupto en el fl ujo normal de la ejecución, es necesario asegurar en
esos casos que se cierre cualquier archivo que se haya abierto.

Opciones
Como se explicó en Revisión de errores, puede vigilar errores al usar las funciones good(), fail(),
rdstate() y, en algunos casos, eof(). Aunque el uso de excepciones puede simplifi car el manejo
de errores en algunos casos, para muchos programas cortos, como los de este libro, el uso de las
funciones para reporte de errores es más fácil. Esto resulta especialmente cierto cuando lo que le
preocupa es que la operación general de E/S (apertura, lectura o escritura y cierre) tenga éxito.
Por esto, casi todos los programas de este libro que realizan E/S de archivo usarán las funciones
de reporte de errores y sin excepciones. Por supuesto, el método que use estará dictado por los
aspectos y las necesidades específi cas de su aplicación.

Use E/S de archivo de acceso aleatorio

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream istream &seekg(off_type despl, ios::seekdir, origen)

<fstream> ofstream ostream &seekp(off_type despl, ios::seekdir, origen)

En general, hay dos maneras en que puede accederse a un archivo, de manera secuencial o alea-
toria. Con el acceso secuencial, el apuntador a archivo recorre el archivo de manera estrictamente
lineal, de principio a fi n. Con el acceso aleatorio, es posible colocar el apuntador a archivo en
cualquier ubicación del archivo. Por tanto, el acceso aleatorio le permite leer de una parte especí-
fi ca de un archivo o escribir en ella, según se requiera o bajo pedido. Es importante comprender
que cualquier archivo puede tener acceso de cualquier manera. Por tanto, el acceso aleatorio no
es dependiente del archivo, sino de las funciones usadas para acceder a éste. Dicho eso, por lo
general el acceso aleatorio se utilizará en un archivo que está compuesto por registros de longitud
fi ja. Mediante el acceso aleatorio, es posible leer o escribir un registro específi co. En esta solución
se muestran las técnicas necesarias para usar acceso aleatorio en C++.

 C a p í t u l o 5 : T r a b a j o c o n E / S 327

Paso a paso
Para usar acceso aleatorio se requieren estos pasos:

1. Abra el archivo deseado para E/S binaria.

2. Para archivos de entrada, mueva el apuntador para obtener al llamar a seekg().

3. Para archivos de salida, mueva el apuntador para colocar al llamar a seekp().

4. En el caso de archivo capaces de entrada y salida, use seekg() para mover el apuntador

para obtener. Use seekp() para mover el apuntador para colocar.

5. Una vez que se ha establecido la ubicación, realice la operación deseada.

Análisis
El sistema de E/S de C++ administra dos apuntadores asociados con un archivo. Uno es el apunta-
dor para obtener, que especifi ca en qué lugar del archivo ocurrirá la siguiente operación de entrada.
El otro es el apuntador para colocar, que especifi ca en qué lugar del archivo ocurrirá la siguiente
operación de salida. Cada vez que tiene lugar una operación de entrada o salida, el apuntador
apropiado se avanza de manera secuencial y automática. Al usar las funciones de acceso aleato-
rio, puede colocar el apuntador para obtener o colocar a voluntad, permitiendo que el archivo se
acceda de manera no secuencial.

Las funciones seekg() y seekp() cambian la ubicación de los apuntadores para colocar y
obtener, respectivamente. Cada una tiene dos formas. Aquí se muestran las usadas en esta solu-
ción:

istream &seekg(off_type despl, ios::seekdir origen)

ostream &seekp(off_type despl, ios::seekdir origen)

Aquí, off_type es un tipo entero defi nido por ios que puede contener el valor válido más largo
que despl puede tener. seekdir es una enumeración defi nida por ios_base (que es heredado por
ios) que determina la manera en que se realizará la búsqueda.

La función seekg() mueve el apuntador para obtener del archivo asociado un número despl de
caracteres a partir del origen especifi cado, que debe ser uno de tres valores:

beg Principio del archivo

cur Ubicación actual

end Final del archivo

La función seekp() mueve el apuntador para colocar del archivo asociado un número despl de
caracteres a partir del origen especifi cado, que debe ser uno de los valores mostrados.

La función seekp() se declara con ostream y es heredada por ofstream. La función seekg()
se declara con istream y es heredada por ifstream. Tanto istream como ostream se heredan de
fstream, que permite operaciones de entrada y salida.

Por lo general, la E/S de acceso aleatorio sólo debe realizarse en los archivos abiertos para ope-
raciones binarias. Las traducciones de caracteres que pueden ocurrir en archivos de texto podrían
causar que una solicitud de posición esté fuera de sincronía con el contenido real del archivo.

328 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cuando un archivo está abierto para operaciones de lectura y escritura, como cuando se usa
un objeto de fstream, entonces por lo general debe realizar una operación de búsqueda cuando se
cambia entre lectura y escritura. (Consulte Lea un archivo y escriba en él.)

Ejemplo
En el siguiente programa se usa seekp() y seekg() para invertir caracteres en un archivo. El nom-
bre del archivo y el número de caracteres que se invertirá, empezando en el principio, se especifi ca
en la línea de comandos. Debido a que son necesarias las operaciones de lectura y escritura, el
archivo se abre usando fstream, que permite entrada y salida.

// Demuestra E/S de acceso aleatorio.
//
// Este programa invierte los primeros N caracteres dentro de
// un archivo. El nombre del archivo y el número de caracteres
// que se invertirá se especifica en la línea de comandos.

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
{
 long n, i, j;
 char car1, car2;

 if(argc!=3) {
 cout << "Uso: Invertir <nombrearchivo> <num>\n";
 return 1;
 }

 // Abre el archivo para operaciones binarias de entrada y salida.
 fstream archentradasalida(argv[1], ios::in | ios::out | ios::binary);

 if(!archentradasalida) {
 cout << "No se puede abrir el archivo de entrada.\n";
 return 1;
 }

 // Convierte la representación de cadena del número de
 // caracteres que se invierten en un valor largo.
 n = atol(argv[2]) - 1;

 // Usa acceso aleatorio para invertir los caracteres.
 for(i=0, j=n; i < j; ++i, --j) {

 // Primero, obtiene los dos caracteres.
 archentradasalida.seekg(i, ios::beg);
 archentradasalida.get(car1);
 archentradasalida.seekg(j, ios::beg);
 archentradasalida.get(car2);

 C a p í t u l o 5 : T r a b a j o c o n E / S 329

 // Now, write them to the opposite locations.
 archentradasalida.seekp(i, ios::beg);
 archentradasalida.put(car2);
 archentradasalida.seekp(j, ios::beg);
 archentradasalida.put(car1);

 // Confirma el éxito de cada ciclo de lectura y escritura.
 if(!archentradasalida.good()) {
 cout << "Error al leer o escribir caracteres.";
 archentradasalida.clear();
 break;
 }
 }

 // Cierra el archivo.
 archentradasalida.close();

 // Confirma que no ocurrieron errores cuando se cerró el archivo.
 if(!archentradasalida.good()) {
 cout << "Ha ocurrido un error con el archivo.";
 return 1;
 }

 return 0;
}

Para usar el programa, especifi que el nombre del archivo que desee invertir, seguido por el
número de caracteres que se invertirá. Por ejemplo, para invertir los primeros diez caracteres de
un archivo llamado PRUEBA, utilice esta línea de comandos:

invertir prueba 10

Si el archivo hubiera contenido:

abcdefghijklmnopqrstuvwxyz

entonces el archivo contendrá lo siguiente después de que se ejecuta el programa:

jihgfedcbaklmnopqrstuvwxyz

Ejemplo adicional: use E/S de acceso aleatorio para acceder
a registros de tamaño fi jo
Como se mencionó, uno de los principales usos de la E/S de acceso aleatorio está en bases de
datos que contienen registros de tamaño fi jo. Por ejemplo, considere una base de datos que con-
tiene información de inventario. Para encontrar una entrada específi ca en ese archivo, necesitará
rastrearlo registro por registro. Tal vez quiera actualizar o eliminar un registro específi co. Estos
tipos de operaciones se facilitan mediante el uso del E/S de acceso aleatorio. El siguiente ejemplo
le da una idea del proceso. Utiliza el InvDat.dat creado por el programa de ejemplo en Escriba
datos binarios sin formato en un archivo. Despliega la entrada que especifi que por número en la línea
de comandos.

330 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Usa E/S de acceso aleatorio para leer registros específicos de
// inventario de un archivo de datos. Este programa lee el archivo
// InvDat.dat, creado por el programa de ejemplo en la solución:
//
// Escriba datos binarios sin formato en un archivo

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

// Una estructura simple de inventario.
struct inventario {
 char producto[20];
 int cantidad;
 double costo;
};

int main(int argc, char *argv[])
{
 inventario entrada;
 long num_registro;

 if(argc != 2) {
 cout << "Uso: MostrarRegistro <num-registro>\n";
 return 1;
 }

 // Convierte la representación de cadena del número de
 // entrada en un valor largo.
 num_registro = atol(argv[1]);

 // Confirma que el número de registro es mayor o
 // igual a cero.
 if(num_registro < 0) {
 cout << "Los n\u00a3meros de registro deben ser mayores o iguales a 0.\n";
 return 1;
 }

 // Abra el archivo para entrada binaria.
 ifstream archBDInv("InvDat.dat", ios::in | ios::binary);

 // Confirma que el archivo se abrió sin error.
 if(!archBDInv) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 // Lee y despliega la entrada especificada en la línea de comandos.
 // Primero, busca el registro deseado.
 archBDInv.seekg(sizeof(inventario) * num_registro, ios::beg);

 // Luego, lee el registro.

 C a p í t u l o 5 : T r a b a j o c o n E / S 331

 archBDInv.read((char *) &entrada, sizeof(inventario));

 // Cierra el archivo.
 archBDInv.close();

 // Confirma que no hubo errores de archivo.
 if(!archBDInv.good()) {
 cout << "Ha ocurrido un error con el archivo.\n";
 return 1;
 }

 // Despliega el inventario para la entrada especificada.
 cout << entrada.producto << endl;
 cout << "Cantidad en existencia: " << entrada.cantidad;
 cout << "\nCosto: " << entrada.costo << endl;

 return 0;
}

He aquí una ejecución de ejemplo:

C:>MostrarRegistro 1
Pinzas
Cantidad en existencia: 12
Costo: 78.55

La característica clave del programa es el uso de seekg() para mover al registro especifi cado
mediante el uso de esta instrucción:

archBDInv.seekg(sizeof(inventario) * num_registro, ios::beg);

Para encontrar un registro específi co, primero multiplica el tamaño de la estructura inventario
(que es la longitud de cada registro en la base de datos) mediante el número de registros que habrá
de obtenerse. Luego busca esta ubicación en el archivo. El mismo método básico puede aplicarse a
cualquier archivo que contenga registros de longitud fi ja.

Empleando el acceso aleatorio, también es posible actualizar un registro en el lugar. Por
ejemplo, en el programa anterior, si abre el archivo para entrada y salida usando el objeto fstream,
como se muestra aquí:

fstream archBDInv("InvDat.dat",
 ios_base::in | ios_base::binary | ios::out);

luego la siguiente secuencia cambia el registro especifi cado y después lee la información actualizada:

// Crea un nuevo artículo de inventario.
strcpy(entrada.producto, "Taladro");
entrada.cantidad = 3;
entrada.costo = 99.95;

// Establece el apuntador para colocar al inicio del registro al llamar a seekp().
archBDInv.seekp(sizeof(inventario) * num_registro, ios::beg);

// Cambia el registro.

332 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

archBDInv.write((char *) &entrada, sizeof(inventario));

// Establece el apuntador para obtener al inicio del registro al llamar a seekg().
archBDInv.seekg(sizeof(inventario) * num_registro, ios::beg);

// Luego, lee el registro actualizado.
archBDInv.read((char *) &entrada, sizeof(inventario));

Opciones
Puede determinar la posición actual de cada apuntador a archivo al usar estas funciones:

pos_type tellg()

pos_type tellp()

Aquí, pos_type es un tipo defi nido por basic_ios que puede contener el valor más grande que
cualquier función puede devolver. Puede usar los valores devueltos por tellg() y tellp() como
argumentos para las siguientes formas de seekg() y seekp(), respectivamente:

istream &seekg(pos_type pos)

ostream &seekp(pos_type pos)

Estas funciones le permiten guardar la posición actual del archivo, realizar otras operaciones de
archivo y luego restablecer la ubicación del archivo a su posición previamente guardada.

Revise un archivo

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream istream &ignore(streamsize num=1,
 int_type delim =
 traits_type::eof())
int_type peek()
istream &unget()

Hay algunas situaciones de entrada que se facilitan al poder revisar un archivo. Por ejemplo, si
un archivo contiene información contextual, entonces tal vez necesite procesar una parte de él
de manera diferente a otra. C++ proporciona tres funciones que ayudan en esta tarea: peek(),
unget() e ignore(). Le permiten obtener, pero no eliminar el siguiente carácter del archivo, de-
volver un carácter al fl ujo y omitir uno o más caracteres. En esta solución se muestra la manera
en que se usan.

 C a p í t u l o 5 : T r a b a j o c o n E / S 333

Paso a paso
La revisión de un archivo requiere los pasos siguientes:

1. Para obtener pero no eliminar el siguiente carácter del fl ujo de entrada, llame a peek().

2. Para regresar un carácter al fl ujo de entrada, llame a unget().

3. Para ignorar caracteres hasta que se encuentra uno específi co o hasta que se ha ignorado

un número específi co de caracteres, llame a ignore().

Análisis
Puede obtener el siguiente carácter en el fl ujo de entrada sin eliminarlo de ese fl ujo al usar peek().
Tiene este prototipo:

int_type peek()

Devuelve el siguiente carácter en el fl ujo o el indicador de fi nal de archivo si se encuentra éste, que
es traits_type::eof(). El tipo int_type es un typedef para alguna forma de entero.

Puede devolver el último carácter leído de un fl ujo empleando unget(). Esto permite que el
carácter se lea por la siguiente operación de entrada. Aquí se muestra la función unget():

istream &unget()

Si aún no se han leído caracteres del fl ujo, ocurre un error y se establece badbit. La función de-
vuelve una referencia al fl ujo.

La función ignore() lee y descarta caracteres del fl ujo de entrada. Tiene este prototipo:

istream &ignore(streamsize num=1, int_type delim = traits_type::eof())

Lee y descarta caracteres hasta que se han ignorado num caracteres (1, como opción predeter-
minada) o hasta que se encuentra el carácter especifi cado por delim. Como opción predetermi-
nada, delim es traits_type::eof(). Si se encuentra el carácter delimitador, se elimina del fl ujo de
entrada. Si se encuentra el fi nal del archivo, entonces se establece la marca de estado eofbit
asociada con el fl ujo. El tipo streamsize es un typedef para alguna forma de entero que puede
contener el número más grande de bytes que pueden transferirse en cualquier operación de E/S.
El tipo int_type es un typedef para alguna forma de entero. La función devuelve una referencia
al fl ujo.

De las tres funciones, la más interesante es ignore() porque le da una manera fácil y efi ciente
de buscar en un fl ujo la aparición de un carácter. Una vez que se ha encontrado este archivo,
puede empezar a leer (o escribir) el fl ujo en ese punto. Esto puede ser muy útil en diversas
situaciones. Por ejemplo, si tiene un fl ujo que contiene números de ID de empleado en la forma
#dddd (como #2244), entonces puede buscar fácilmente un número de ID al ignorar caracteres
hasta que se encuentre un #.

334 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
En el siguiente ejemplo se muestran peek(), unget() e ignore() en acción. El programa crea prime-
ro un archivo de datos llamado prueba.dat que contiene varios ID de empleado. Sin embargo,
hay dos tipos de ID. El primero es un número de cuatro dígitos en la forma #dddd, como #0101.
El segundo ID es un marcador de posición que usa una palabra para describir por qué falta el
número de ID. Luego el programa busca, lee y despliega todos los ID en el archivo. Para realizar
esto, utiliza la revisión de un archivo.

// Demuestra peek(), unget() e ignore().
//
// Este programa lee un archivo que contiene dos tipos
// de ID. El primero es un número de cuatro dígitos en esta
// forma: #dddd. El segundo es una palabra que describe
// por qué falta el número de ID. El programa crea un
// archivo de datos llamado prueba.dat que contiene varios
// números de ID. Luego, el programa busca, lee y despliega
// todos los ID del archivo.

#include <iostream>
#include <fstream>
#include <cctype>

using namespace std;

int main()
{
 char car;
 char numid[5];

 // numid termina en un carácter nulo de modo que puede contener una cadena char *.
 numid[4] = 0;

 // Crea un objeto de ofstream y trata de abrir el archivo prueba.dat.
 ofstream archsalida("prueba.dat");

 // Verifica que el archivo se ha abierto correctamente.
 if(!archsalida) {
 cout << "No puede abrir prueba.dat para salida.\n";
 return 1;
 }

 // Escribe alguna información en el archivo.
 archsalida << "Luis Soto #5345\nRafael Romo #negado\nTere Torres #6922\n";
 archsalida << "Hugo Herrera #pendiente\n, Sara Jara, #8875\n";

 // Cierra el archivo de salida.
 archsalida.close();

 if(!archsalida.good()) {
 cout << "Error al crear el archivo de datos.";
 return 1;
 }

 C a p í t u l o 5 : T r a b a j o c o n E / S 335

 // Trata de abrir el archivo prueba.dat.
 ifstream archentrada("prueba.dat");

 if(!archentrada) {
 cout << "No se puede abrir prueba.dat para entrada.\n";
 return 1;
 }

 // Usa excepciones para revisar errores.
 archentrada.exceptions(ios::badbit | ios::failbit);

 try {

 // Encuentra y despliega todos los números de ID:
 do {
 // Encuentra el inicio de un número de ID.
 archentrada.ignore(40, '#');

 // Si se encuentra el final del archivo, deja de leer.
 if(archentrada.eof()) {
 archentrada.clear(); // limpia eofbit
 break;
 }

 // Obtiene pero no extrae el siguiente carácter después de #.
 car = archentrada.peek();

 // Ve si el siguiente carácter es un dígito.
 if(isdigit(car)) {

 // Si el carácter es un dígito, lee el número de ID. Como
 // numid tiene un nulo en el quinto carácter, la lectura de
 // cuatro caracteres en los primeros cuatro elementos crea
 // una cadena terminada en un carácter nulo.
 archentrada.read((char *)numid, 4);

 cout << "ID #: " << numid << endl;

 } else {

 // Debido a que el siguiente char no es un dígito, lee la descripción.
 cout << "ID no disponible: ";

 car = archentrada.get();
 while(isalpha(car)) {
 cout << car;
 car = archentrada.get();
 };

 // Regresa el char que no es una letra para que pueda encontrarse
 // y otras instrucciones get() lo procesen.
 archentrada.unget();

 cout << endl;

336 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 }
 } while(archentrada.good());
 } catch(ios_base::failure exc) {
 cout << "Error al leer el archivo de datos.\n";
 }

 try {
 // Cierra prueba.dat para entrada.
 archentrada.close();
 } catch (ios_base::failure exc) {
 cout << "Error al cerrar el archivo de datos.";
 return 1;
 }

 return 0;

}

Aquí se muestra la salida:

ID #: 5345
ID no disponible: negado
ID #: 6922
ID no disponible: pendiente
ID #: 8875

En este programa se utiliza la revisión de archivo para leer los ID. En primer lugar, se usa
ignore() para encontrar un carácter #; éste marca el inicio de un ID. Luego se utiliza peek() para
determinar si lo que sigue es un número de ID real o una descripción verbal. Si el carácter obte-
nido de peek() es un dígito, se lee un número de cuatro dígitos. De otra manera, se lee la descrip-
ción. Ésta termina en cuanto se lee un carácter no alfabético. En este caso, el último carácter leído
se coloca de nuevo en el fl ujo de entrada.

Un tema adicional de interés: observe que el programa usa una combinación de excepciones y
funciones de detección de errores para buscar éstos. Ésta es una parte de la capacidad del sistema
de E/S de C++: puede usar cualquier método que funcione mejor para la situación que se tiene
entre manos.

Opciones
Como se explicó, unget() devuelve el carácter más recientemente leído al fl ujo que invoca. Puede
"devolver" un carácter diferente de éste al llamar a putback(). Aquí se muestra:

istream &putback(char car)

Coloca car en el fl ujo para que sea el primer carácter leído por la siguiente operación de entrada. Si
ocurre un error, badbit se establece en el fl ujo que invoca.

Otra función que a veces es útil en situaciones de revisión es readsome(). En esencia, lee carac-
teres del búfer de entrada. Si no hay sufi cientes caracteres en el búfer para satisfacer la solicitud,
entonces se establece eofbit en el fl ujo que invoca. Aquí se muestra la función:

streamsize readsome(char *buf, streamsize num)

 C a p í t u l o 5 : T r a b a j o c o n E / S 337

Trata de leer num caracteres del búfer de entrada, almacenándolos en buf. Devuelve el número de
caracteres que se leyó en realidad.

Otra función que puede ser útil cuando se revisa un archivo (y para muchos otros propósitos)
es gcount(). Se muestra a continuación:

streamsize gcount() const

Devuelve el número de caracteres leído por una llamada anterior a una función de entrada sin
formato.

Use los fl ujos de cadena

Componentes clave

Encabezados Clases Funciones

<sstream> istringstream
ostringstream
stringstream

string str() const

Como se explicó en Revisión general de E/S, C++ da soporte al uso de una cadena como origen o
destino de operaciones de E/S. Para permitir esto, defi ne tres clases de plantilla de fl ujo de cadena
llamadas basic_istringstream, basic_ostringstream y basic_stringstream. Aquí se muestran sus
formas de char:

istringstream Usa una string para entrada.

ostringstream Usa una string para salida.

stringstream Usa una string para entrada y salida.

En general, las clases de fl ujo de cadena funcionan como las otras clases de fl ujo. La única diferen-
cia es que el origen o destino de los datos es una string en lugar de algún dispositivo externo. En
esta solución se demuestra su uso.

Paso a paso
Para el uso de un fl ujo de cadena se requieren estos pasos:

1. Cree un fl ujo de cadena al usar uno de los constructores correspondientes.

2. Realice E/S del fl ujo de la misma manera en que lo haría empleando cualquier otro tipo de

fl ujo, como uno de archivo.

3. Para obtener el contenido de un búfer de cadena, llame a str().

338 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Análisis
Para crear un fl ujo de cadena, usará uno de los constructores de fl ujo de cadena. Cada fl ujo de ca-
dena defi ne dos constructores, uno que lo inicializa con una cadena y otro que no lo hace. Cuando
se realiza entrada, por lo general inicializará la cadena. Para salida, a menudo no necesitará inicia-
lizarla. En situaciones de entrada/salida, inicializará la cadena dependiendo de su aplicación.

Aquí se muestra el constructor istringstream usado en esta solución:

explicit istringstream(const string &buf, ios::openmode modo = ios::in).

Crea un fl ujo de entrada de char basado en una cadena. Inicializa esta cadena con el contenido de
buf. Por tanto, las operaciones de lectura obtendrán los caracteres pasados mediante buf.

Aquí se muestra el constructor ostringstream usado en esta solución:

explicit ostringstream(ios::openmode modo = ios::out)

Crea un fl ujo de salida de char basado en una cadena. Todas las operaciones de escritura pondrán
caracteres en una cadena mantenida por ostringstream.

Aquí se muestra el constructor stringstream usado en esta solución:

explicit stringstream(ios::openmode modo = ios::in | ios::out)

Crea un fl ujo de cadena de char que permite entrada y salida. El búfer no está inicializado. Cuan-
do se cambia entre lectura y escritura, por lo general debe realizar una operación de búsqueda o
limpieza. (Consulte Lea un archivo y escriba en él.)

Puede obtener el contenido actual de la cadena al llamar a esta versión de str():

string str() const

Devuelve una copia del contenido del búfer de cadena actual.
Un tema adicional: no es necesario cerrar un fl ujo de cadena. En realidad, las clases de fl ujo de

cadena no defi nen una función open() ni close(). Esto se debe a que las clases de fl ujo de cadena
no operan sobre un dispositivo externo. Simplemente tratan una cadena como el origen de la en-
trada o el destino de la salida del fl ujo. Por esto no es necesario confi rmar que un fl ujo de cadena
se creó correctamente antes de usarlo.

Ejemplo
En el siguiente ejemplo se muestran las clases de fl ujo de cadena en acción.

// Usa un flujo de cadena.

#include <iostream>
#include <sstream>

using namespace std;

int main()
{
 char car;

 // Crea un flujo de salida.
 ostringstream cadsalida;

 C a p í t u l o 5 : T r a b a j o c o n E / S 339

 cout << "Usa un flujo de cadena de salida llamado cadsalida.\n";

 // Escribe una salida en el flujo de cadena.
 cadsalida << 10 << " " << -20 << " " << 30.2 << "\n";
 cadsalida << "Esto es una prueba.";

 // Ahora, obtiene una copia del contenido del búfer del flujo
 // y lo usa para desplegar el contenido del búfer.
 cout << "El contenido actual de cadsalida se obtiene de str():\n"
 << cadsalida.str() << endl;

 // Escribe algo más a cadsalida.
 cadsalida << "\nSe trata de salida adicional.\n";

 cout << endl;

 cout << "Se usa un flujo de cadena de entrada llamado cadentrada.\n";

 // Ahora, usa el contenido de cadsalida para crear cadentrada:
 istringstream cadentrada(cadsalida.str());

 // Despliega el contenido de cadentrada mediante llamadas a get().
 cout << "El contenido actual de cadentrada mediante get():\n";
 do {
 car = cadentrada.get();
 if(!cadentrada.eof()) cout << car;
 } while(!cadentrada.eof());

 cout << endl;

 // Ahora crea el flujo de cadena para entrada/salida.
 cout << "Ahora, se usa un flujo de cadena llamado cadentrsal.\n";

 stringstream cadentrsal;

 // Escribe alguna salida en cadentrsal.
 cadentrsal << 10 << " + " << 12 << " is " << 10+12 << endl;

 // Ahora, despliega el contenido de cadentrsal mediante get().

 cout << "El contenido actual de cadentrsal mediante get():\n";
 do {
 car = cadentrsal.get();
 if(!cadentrsal.eof()) cout << car;
 } while(!cadentrsal.eof());
 cout << endl;

 // Limpia eofbit en cadentrsal.
 cadentrsal.clear();

 cadentrsal << "Salida adicional para cadentrsal.\n";

 // Lo siguiente seguirá leyendo desde el punto en que se detuvieron

340 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // las lecturas adicionales.
 cout << "Ahora se presentan los caracteres que se acaban de agregar a cadentr-
sal:\n";
 do {
 car = cadentrsal.get();
 if(!cadentrsal.eof()) cout << car;
 } while(!cadentrsal.eof());
}

Aquí se muestra la salida:

Usa un flujo de cadena de salida llamado cadsalida.
El contenido actual de cadsalida se obtiene de str():
10 -20 30.2
Esto es una prueba.

Usa un flujo de cadena de entrada llamado cadentrada.
El contenido actual de cadentrada mediante get():
10 -20 30.2
Esto es una prueba.
Se trata de salida adicional.

Ahora, usa un flujo de cadena llamado cadentrsal.
El contenido actual de cadentrsal mediante get():
10 + 12 es 22

Ahora se presentan los caracteres que se acaban de agregar a cadentrsal:
Salida adicional para cadentrsal.

Opciones
Cuando se crea una instancia de ostringstream, es posible inicializar el búfer con una secuencia de
caracteres empleando esta versión de su constructor:

explicit ostringstream(const string &buf, ios::openmode modo = ios::out)

Aquí, el contenido de buf se copiará en el búfer de salida.
Cuando se crea una instancia de istringstream, no es necesario inicializar el búfer de entra-

da con una secuencia de caracteres. (Puede establecer el contenido del búfer de fl ujo de cadena
después del hecho al llamar a una segunda forma de str(), que se mostrará en breve.) He aquí la
versión de istringstream que no inicializa el búfer de entrada:

explicit istringstream(ios::openmode modo = ios::in)

Observe que sólo se especifi ca el modo, y su opción predeterminada es de entrada.
Para stringstream, puede inicializar el búfer con una secuencia conocida de caracteres al usar

la forma de su constructor:

explicit stringstream(const string &buf, ios::openmode modo = ios::in | ios::out)

El contenido de buf se copia en el búfer asociado con el objeto stringstream.

 C a p í t u l o 5 : T r a b a j o c o n E / S 341

Para las tres clases de fl ujo de cadena, puede establecer el contenido del búfer al llamar a esta
forma de str():

void str(const string &buf)

Reinicializa el búfer con el contenido de buf.

Cree insertadores y extractores personalizados

Componentes clave

Encabezados Clases Funciones

<ostream> ostream ostream &operator<<(ostream &fl ujo,
 const class_type &obj)

<istream> istream istream &operator<<(istream &fl ujo,
 class_type &obj)

En el lenguaje de C++, el operador de salida << es conocido como el operador de inserción porque
inserta caracteres en un fl ujo. De igual manera, el operador de entrada >> es denominado operador
de extracción porque extrae caracteres de un fl ujo. Las funciones que sobrecargan a los operadores
de inserción y extracción suelen denominarse insertadores y extractores, respectivamente. Las
clases de E/S de C++ sobrecargan a los operadores de inserción y extracción para todos los tipos
integrados. Sin embargo, también es posible crear sus propias versiones sobrecargadas de estos
operadores para los tipos de clase que cree. En esta solución se muestra el procedimiento.

Paso a paso
Para sobrecargar un insertador para objetos de clase se necesitan estos pasos:

1. Sobrecargue el operador << para que tome una referencia a un ostream en su primer pará-

metro y una a const al objeto para salida en el segundo parámetro.

2. Implemente el insertador para que dé salida al objeto en la manera en que lo desee.

3. Haga que el insertador devuelva la referencia al fl ujo.

4. Por lo general, hará que el insertador sea un amigo de la clase en que está operando, de

modo que tenga acceso a los miembros privados de la clase.

Para sobrecargar un extractor para objetos de clase, se necesitan estos pasos:

1. Sobrecargue el operador >> para que tome una referencia a un istream en su primer pará-

metro y una referencia al objeto que recibe entrada en el segundo parámetro.

2. Implemente el extractor para que lea el fl ujo de entrada y almacene los datos en un objeto

de la clase.

342 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

3. Haga que el extractor devuelva la referencia al fl ujo.

4. Por lo general, hará que el extractor sea un amigo de la clase en que está operando, de

modo que tenga acceso a los miembros privados de la clase.

Análisis
Es muy simple crear un insertador para una clase que cree. He aquí una forma general típica para
un insertador:

ostream &operator<<(ostream &fl ujo, const tipo_clase &obj)
{
 // cuerpo del insertador
 devuelve stream;
}

Observe que la función devuelve una referencia a un fl ujo de tipo ostream. Más aún, el primer
parámetro a la función es una referencia al fl ujo de salida. El segundo parámetro es una referencia a
const al objeto que habrá de insertarse. Técnicamente, el segundo parámetro puede recibir una copia
del objeto (es decir, puede ser un parámetro de valor), y no es necesario que sea const. Sin embargo,
lo más común es que no se altere cuando un objeto es salida, y suele ser más rápido pasarlo por
referencia que por valor. Así, por lo general el segundo parámetro es una referencia a const para el
objeto. Por supuesto, esto está determinado por la situación específi ca. En todos los casos, el inserta-
dor debe devolver fl ujo. Esto permite que el insertador se use en una expresión de E/S más grande.

Dentro de una función de insertador, puede poner cualquier tipo de procedimiento u opera-
ción que desee. Es decir, depende por completo de usted la manera en que el insertador dará sa-
lida al objeto. Sin embargo, en todos los casos, para que el insertador se mantenga con las buenas
prácticas de programación, no debe producir efectos colaterales. Por tanto, no debe modifi carse el
objeto. Tampoco debe realizar operaciones que no estén relacionadas con la inserción. Por ejemplo,
¡tal vez no sea buena idea hacer que un insertador recicle la memoria no utilizada como efecto
colateral a una operación de inserción!

Los extractores son el complemento de los insertadores. Almacenan entrada en un objeto. La
forma general de una función extractora es:

istream &operator>>(istream &fl ujo, const tipo_clase &obj)
{
 // cuerpo del extractor
 devuelve stream;
}

Los extractores devuelven una referencia a un fl ujo de tipo istream, que es un fl ujo de entrada. El
primer parámetro también debe ser una referencia a un fl ujo de tipo istream. Observe que el segun-
do parámetro debe ser una referencia a un objeto de la clase para la que el extractor está sobrecar-
gado. Esto es así para que el objeto pueda modifi carse mediante la operación de entrada (extracción).

Como los insertadores, un extractor debe confi nar sus operaciones para leer datos del fl ujo de
entrada y almacenarlo en el objeto especifi cado. No debe generar efectos colaterales. No debe leer
más entrada que necesaria para el objeto. Por ejemplo, un extractor por lo general no debe leer un
espacio fi nal.

En muchos casos, querrá hacer que el insertador o el extractor sea un amigo de la clase
para la que está sobrecargado. Al hacerlo así, otorga acceso a los miembros privados de la

 C a p í t u l o 5 : T r a b a j o c o n E / S 343

clase. Esto podría requerirse para obtener datos para salida o para almacenar datos de entrada.
Por supuesto, esto no sería posible si estuviera creando un insertador o extractor para una clase a
la que no tiene el código fuente, como una clase de terceros.

Ejemplo
A continuación se muestran ejemplos de un insertador y un extractor personalizados. Crea una clase
llamada TresD, que almacena coordenadas tridimensionales. Utiliza un insertador personalizado
para dar salida a las coordenadas. Utiliza un extractor personalizado para leer las coordenadas.

// Demuestra un insertador y extractor de objetos
// de tipo TresD.

#include <iostream>

using namespace std;

class TresD {
 int x, y, z; // Coordenadas 3-D
public:
 TresD(int a, int b, int c) { x = a; y = b; z = c; }

 // Hace que el insertador y el extractor sean amigos de TresD.
 friend ostream &operator<<(ostream &flujo, const TresD &obj);
 friend istream &operator>>(istream &flujo, TresD &obj);

 // ...
};

// Insertador TresD. Despliega las coordenadas X, Y, Z.
ostream &operator<<(ostream &flujo, const TresD &obj)
{
 flujo << obj.x << ", ";
 flujo << obj.y << ", ";
 flujo << obj.z << "\n";
 return flujo; // devuelve el flujo
}

// Extractor TresD. Obtiene valores tridimensionales.
istream &operator>>(istream &flujo, TresD &obj)
{
 flujo >> obj.x >> obj.y >> obj.z;
 return flujo;
}

int main()
{
 TresD td(1, 2, 3);

 cout << "Las coordenadas en td: " << td << endl;

 cout << "Ingrese las nuevas coordenadas 3D: ";
 cin >> td;

344 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << "Las coordenadas en td son ahora: " << td << endl;

 return 0;
}

Aquí se muestra una ejecución de ejemplo:

Las coordenadas en td: 1, 2, 3

Ingrese las nuevas coordenadas 3D: 9 8 7
Las coordenadas en td son ahora: 9, 8, 7

Opciones
Como se mencionó, cuando se crea un insertador, no es técnicamente necesario pasar por referen-
cia el objeto al que se está dando salida. En algunos casos, tal vez quiera usar, en cambio, un pará-
metro de valor. Esto podría tener sentido cuando se opera sobre objetos muy pequeños en que la
cantidad de tiempo que se requiere para sacar el objeto de una pila (que es lo que sucede cuando
se pasa un argumento por valor) es menor que la que toma extraer la dirección del objeto (que es
lo que sucede cuando un objeto se pasa por referencia).

Cree un manipulador sin parámetros

Componentes clave

Encabezados Clases Funciones

<istream> istream istream &nombre-manip(istream &fl ujo)

<ostream> ostream ostream &nombre-manip(ostream &fl ujo)

Los manipuladores de E/S son funciones que están insertadas dentro de una expresión de E/S.
Afectan el fl ujo, como cuando cambian sus marcas de formato, o insertan caracteres en un fl ujo o
los extraen de él. Debido a que operan dentro de una expresión de E/S, los manipuladores afi nan
la codifi cación de muchas tareas. C++ proporciona muchos manipuladores integrados, y se descri-
ben en el capítulo 6, donde se presentan las soluciones relacionadas con la formación de datos. Sin
embargo, también es posible crear sus propios manipuladores personalizados.

Por lo general, se usa un manipulador personalizado para consolidar una secuencia o separar
operaciones de E/S en un solo paso. Por ejemplo, no es poco común que tengan situaciones en que
la misma secuencia de operaciones de E/S ocurre con frecuencia dentro de un programa. En esos
casos, puede usar un manipulador personalizado para realizar estas acciones, con lo que simpli-
fi ca su código fuente y se evitan errores. He aquí otro ejemplo: tal vez necesite realizar operacio-
nes de E/S en un dispositivo que no es estándar. Por ejemplo, podría usar un manipulador para
enviar códigos de control a un tipo especial de impresora o a un sistema de reconocimiento óptico.
Un manipulador personalizado puede simplifi car este proceso al permitirle que envíe los códigos
por nombre. Cualesquiera que sean los propósitos, los manipuladores personalizados son exten-
siones populares del sistema de E/S de C++.

 C a p í t u l o 5 : T r a b a j o c o n E / S 345

Hay dos tipos básicos de manipuladores: los que operan en los fl ujos de entrada y los que lo
hacen en los de salida. Además de estas dos amplias categorías, hay una división secundaria: los
manipuladores que toman un argumento y los que no. Las técnicas usadas para crear manipulado-
res sin parámetros difi eren de las usadas para crear otros con parámetros. En esta solución
se muestra cómo crear manipuladores personalizados sin parámetros. En la siguiente solución se
muestra una manera de crear manipuladores con parámetros.

Paso a paso
Para crear su propio manipulador de salida sin parámetros se requieren estos pasos:

1. Cree una función que tome una referencia a un objeto de ostream como un parámetro

y devuelva una referencia a un ostream.

2. Dentro de esa función, realice acciones en el ostream pasado como argumento.

3. Devuelva una referencia al argumento de ostream.

Para crear su propio manipulador de entrada sin parámetros se requieren estos pasos:

1. Cree una función que tome una referencia a un objeto de istream como un parámetro

y devuelva una referencia a un istream.

2. Dentro de esa función, realice acciones en el istream pasado como argumento.

3. Devuelva una referencia al argumento de istream.

Análisis
Todas las funciones de manipulador de salida sin parámetros tienen este esqueleto:

ostream &nombre-manip(ostream &fl ujo)
{
 // aquí va su código
 return fl ujo;
}

Aquí, nombre-manip es el nombre del manipulador y fl ujo es una referencia al fl ujo de salida
en que operará el manipulador. Observe que también se devuelve fl ujo. Esto es necesario para
permitir que el manipulador se use como parte una expresión de E/S más larga. Es importante
tomar nota de que aunque el manipulador tenga como único argumento una referencia al fl ujo
en que está operando, no se usa un argumento cuando el manipulador se inserta en una opera-
ción de salida.

Todas las funciones de manipulador de entrada sin parámetros tienen este esqueleto:

istream &nombre-manip(istream &fl ujo)
{
 // aquí va su código
 return fl ujo;
}

346 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Un manipulador de entrada recibe una referencia al fl ujo para el que se invocó. El manipulador
debe devolver este fl ujo. Aunque éste toma un argumento de istream, no se pasan argumentos
cuando se invoca el manipulador.

Una vez que haya defi nido un manipulador, puede usarlo con sólo especifi car su nombre en
una expresión de inserción o extracción. La razón por la que esto funciona es que los operado-
res >> y << se sobrecargan para aceptar un apuntador a función que tiene una referencia a fl ujo
como único parámetro. Los operadores << y >> se implementan de modo que pueden llamar a la
función mediante el apuntador, pasando en una referencia al fl ujo. Este proceso le permite que su
manipulador personalizado reciba una referencia al fl ujo que se afectará.

Es importante comprender que (excepto en casos muy inusuales) su manipulador debe operar
en el fl ujo que se le pasa. Un error común que cometen los principiantes consiste en incluir en el
código una referencia al fl ujo, como cout, en lugar de usar el fl ujo pasado al parámetro. El proble-
ma es que su manipulador funcionará correctamente en algunos casos y fallará en otros. Aunque
este error suele ser fácil de encontrar y corregir, en ocasiones es intimidante, dependiendo del fl ujo
en que lo haya codifi cado. La regla es fácil: un manipulador debe operar en el fl ujo que se pasa.

Ejemplo
En el siguiente ejemplo se muestra un manipulador personalizado de entrada y salida. Al mani-
pulador de salida se le llama relleno_ast(). Especifi ca el asterisco (*) como carácter de relleno y
asigna 10 al ancho de campo. Por tanto, después de una llamada a relleno_ast(), se despliega el
número 1234 como ******1234. (Para conocer más acerca de la formación de datos, consulte el capí-
tulo 6.) El manipulador de entrada se denomina omitir_digitos(). Omite los dígitos iniciales en el
fl ujo de entrada. Por tanto, si el fl ujo de entrada contiene 9786ABC0101, entonces lee y descarta
el 9786 inicial y deja ABC0101 en el fl ujo de entrada.

// Demuestra un manipulador de salida personalizado llamado relleno_ast()
// y un manipulador de entrada personalizado de nombre omitir_digitos().

#include <iostream>
#include <iomanip>
#include <string>
#include <cctype>

using namespace std;

// Un manipulador de salida simple que establece el carácter de relleno
// como * y establece el ancho de campo en 10.
ostream &relleno_ast(ostream &flujo) {

 flujo << setfill('*') << setw(10);

 return flujo;
}

// Un manipulador de entrada simple que omite los dígitos iniciales.
istream &omitir_digitos(istream &flujo) {
 char car;

 do {
 car = flujo.get();

 C a p í t u l o 5 : T r a b a j o c o n E / S 347

 } while(!flujo.eof() && isdigit(car));
 if(!flujo.eof()) flujo.unget();

 return flujo;
}

int main()
{
 string cad;

 // Demuestra el manipulador de salida personalizado.
 cout << 512 << endl;
 cout << relleno_ast << 512 << endl;

 // Demuestra el manipulador de entrada personalizado.
 cout << "Ingrese algunos caracteres: ";
 cin >> omitir_digitos >> cad;
 cout << "Contenido de cad: " << cad;

 return 0;
}

He aquí una ejecución de ejemplo:

512
*******512
Ingrese algunos caracteres: 123ABC
Contenido de cad: ABC

Opciones
Si ha codifi cado correctamente su manipulador personalizado para que opere en el fl ujo que se ha
pasado, entonces puede usarse en cualquier tipo de fl ujo. Por ejemplo, en el programa anterior,
puede usar relleno_ast() en un fl ujo de archivo o uno de cadena. Para confi rmar esto, agregue la
siguiente secuencia al programa. Utiliza relleno_ast() en un ostringstream y un ofstream.

// Usa relleno_ast () en un stringstream.
ostringstream flujosalida;
flujosalida << relleno_ast << 29;
cout << flujosalida.str();

// Usa relleno_ast en un ofstream.
ofstream archsalida("prueba.dat");
if(!archsalida) {
 cout << "Error al abrir el archivo.\n";
 return 1;
}
archsalida << relleno_ast << 19;

Después de volver a compilar, verá que relleno_ast() funciona correctamente en fl ujosalida y
archsalida.

También puede crear manipuladores personalizados. El proceso es el tema de la siguiente
solución.

348 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cree un manipulador con parámetros

Componentes clave

Encabezados Clases Funciones y campos

<istream> istream istream &operator>>(istream &fl ujo,
 clase-manip cm)

<ostream> ostream ostream &operator<<(ostream &fl ujo,
 clase-manip cm)

clase-manip defi nido por el usuario

Como se mostró en la solución anterior, es muy fácil crear un manipulador sin parámetros. La
razón es que << o >> están sobrecargados para (entre muchas otras cosas) un apuntador a función.
Como se explicó en la solución anterior, cuando se usa un manipulador sin parámetros, se pasa un
apuntador al insertador o extractor sobrecargado y se llama a la función, y el fl ujo se pasa como
argumento. Por desgracia, este mecanismo simple no funcionará con manipuladores que requie-
ren un argumento porque no hay manera de pasar un argumento mediante el apuntador a fun-
ción. Como resultado, la creación de un manipulador con parámetros depende de un mecanismo
fundamentalmente diferente, que es un poco más complicado. Más aún, hay varias maneras de
implementar un manipulador con parámetros. En esta solución se muestra una manera relativa-
mente simple y sencilla.

Paso a paso
Para crear un manipulador de salida con parámetros se necesitan estos pasos:

1. Cree una clase cuyo nombre sea el del manipulador. Por ejemplo, si éste se llama mimanip,

entonces el nombre de la clase debe ser mimanip.

2. Cree un campo privado en la clase que contendrá el argumento pasado al manipulador.

El tipo del campo debe ser el mismo que el tipo de datos que se pasará al manipulador.

3. Cree un constructor para la clase que tenga un parámetro, que sea del mismo tipo que el

de los datos que se pasarán al manipulador. Haga que el constructor inicialice el valor del

campo del paso 2 con el pasado al constructor.

4. Cree un insertador sobrecargado que tome una referencia a ostream como primer argu-

mento y un objeto de la clase del paso 1 como su segundo argumento. Dentro de esta

función, realice las acciones del manipulador. Devuelva una referencia al fl ujo.

5. Haga que el insertador sobrecargado sea un amigo de la clase del paso 1.

6. Para usar el manipulador, use el constructor de la clase en la expresión de salida, pa-

sándolo en el argumento deseado. Esto causará que se construya un argumento, y luego

se llamará al insertador sobrecargado, empleando ese objeto como operando del lado

derecho.

 C a p í t u l o 5 : T r a b a j o c o n E / S 349

Para crear un manipulador de entrada con parámetros, se necesitan estos pasos:

1. Cree una clase cuyo nombre sea el del manipulador. Por ejemplo, si éste se llama mimanip,

entonces el nombre de la clase debe ser mimanip.

2. Cree un campo privado en la clase que contendrá el argumento pasado al manipulador.

El tipo del campo debe ser el mismo que el tipo de datos que se pasará al manipulador.

3. Cree un constructor para la clase que tenga un parámetro, que sea del mismo tipo que el

de los datos que se pasarán al manipulador. Haga que el constructor inicialice el valor del

campo del paso 2 con el pasado al constructor.

4. Cree un extractor sobrecargado que tome una referencia a istream como primer argumento

y un objeto de la clase del paso 1 como su segundo argumento. Dentro de esta función,

realice las acciones del manipulador. Devuelva una referencia al fl ujo.

5. Haga que el extractor sobrecargado sea un amigo de la clase del paso 1.

6. Para usar el manipulador, use el constructor de la clase en la expresión de entrada, pasán-

dolo en el argumento deseado. Esto causará que se construya un argumento, y luego se

llamará al extractor sobrecargado, empleando ese objeto como operando del lado derecho.

Análisis
En general, la creación de un manipulador con parámetros requiere dos elementos. El primero es
una clase que almacene el argumento pasado al manipulador. El segundo es un insertador o ex-
tractor que esté sobrecargado para tomar un objeto de esa clase como operando del lado derecho.
Cuando el manipulador se incluye en una expresión de E/S, se construye un objeto de la clase,
y el argumento se guarda. Luego el insertador o extractor opera en ese objeto y puede acceder al
argumento.

Trabajemos esto paso a paso, creando un insertador con parámetros simple llamado sangrado,
que da sangría a la salida con un número específi co de espacios. Por ejemplo, la expresión

cout << sangrado(10) << "Hola";

causará que se dé salida a 10 espacios, seguidos por la cadena "Hola". Como se explicó, todos los
manipuladores con parámetros requieren dos elementos. El primero es una clase que almacena el
argumento pasado al manipulador. Por tanto, para crear el manipulador sangrado, empiece por
crear una clase llamada sangrado que almacene el argumento pasado a su constructor y especifi -
que un insertador sobrecargado como amigo, como se muestra aquí:

// Una clase que da soporte al manipulador de salida sangrado.
class sangrado {
 int len;
public:
 sangrado(int i) { len = i; }
 friend ostream &operator<<(ostream &flujo, sangrado ndt);
};

Como puede ver, el constructor toma un argumento, que se almacena en el campo privado len.
Ésta es la única funcionalidad que proporciona indent. Simplemente almacena el argumento.
Sin embargo, declara que operator<<() es un amigo. Esto le da a la función de operador acceso
al campo privado len.

350 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

El segundo elemento que necesita crear es un insertador sobrecargado que toma una ins-
tancia de sangrado como operando del lado derecho. (Consulte Cree insertadores y extractores
personalizados para conocer detalles sobre la creación de un insertador o un extractor.) Haga
que este operador dé salida al número de espacios especifi cado por el campo len del objeto
en que está operando. He aquí una manera de implementar esta función:

// Crea un insertador para objetos de tipo sangrado.
ostream &operator<<(ostream &flujo, sangrado ndt) {

 for(int i=0; i < ndt.len; ++i) flujo << " ";

 return flujo;
}

Como puede ver, este operador toma una referencia a ostream como operando del lado izquierdo
y un objeto de sangrado como operando del lado derecho. Da salida el número de espacios especi-
fi cado por el objeto de sangrado y luego devuelve el fl ujo. Debido a que operator<<() es un amigo
de sangrado, puede acceder al campo len, aunque sea privado.

Cuando se usa sangrado dentro de una expresión de salida, causa que un objeto de tipo san-
grado se cree con el argumento especifi cado. Luego, se invoca la función operator<<() sobrecarga-
da, pasándola en el fl ujo y en el objeto de sangrado recién creado.

Ejemplo
En el siguiente ejemplo se muestran un manipulador de entrada y uno de salida con parámetros.
Al manipulador de entrada se le denomina omitircar y, en la entrada, omite los caracteres iniciales
que coinciden con el pasado a omitircar. Por ejemplo, omitircar('X') omite las X al principio. El
manipulador de salida es sangrado, que se describió en la secuencia Análisis de esta solución.

// Crea manipuladores simples de entrada y salida con parámetros.
//
// El manipulador sangrado da salida un número específico de espacios.
// El manipulador omitircar omite un carácter específico en la entrada.

#include <iostream>
#include <string>
#include <sstream>

using namespace std;

// Juntos, la clase y el operador sobrecargado siguientes crean
// el manipulador sangrado.

// Una clase que da soporte al manipulador de salida sangrado.
class sangrado {
 int len;
public:
 sangrado(int i) { len = i; }
 friend ostream &operator<<(ostream &flujo, sangrado ndt);
};

// Crea un insertador para objetos de tipo sangrado.

 C a p í t u l o 5 : T r a b a j o c o n E / S 351

ostream &operator<<(ostream &flujo, sangrado ndt) {

 for(int i=0; i < ndt.len; ++i) flujo << " ";

 return flujo;
}

// Juntos, la clase y el operador sobrecargado siguientes crean
// el manipulador omitircar.

// Una clase que da soporte al manipulador de entrada omitircar.
class omitircar {
 char car;
public:
 omitircar(char c) { car = c; }
 friend istream &operator>>(istream &flujo, omitircar sc);
};

// Crea un extractor para objetos de tipo omitircar.
istream &operator>>(istream &flujo, omitircar sc) {
 char car;

 do {
 car = flujo.get();
 } while(!flujo.eof() && car == sc.car);
 if(!flujo.eof()) flujo.unget();

 return flujo;
}

// Demuestra sangrado y omitircar.
int main() {
 string cad;

 // Usa sangrado para añadir sangrías a la salida.
 cout << sangrado(9) << "Esto se ha sangrado 9 lugares.\n"
 << sangrado(9) << "Igual que esto.\n" << sangrado(18)
 << "Pero esto se ha sangrado 18 lugares.\n\n";

 // Usa omitircar para ignorar los ceros iniciales.
 cout << "Ingresa algunos caracteres: ";
 cin >> omitircar('0') >> cad;
 cout << "Se omiten los ceros iniciales. Contenido de cad: "
 << cad << "\n\n";

 // Usa sangría en un ostringstream.
 cout << "Usa sangrado con un flujo de cadena.\n";
 ostringstream flujocadsal;
 flujocadsal << sangrado(5) << 128;
 cout << "El contenido de flujocadsal:\n" << flujocadsal.str() << endl;

 return 0;
}

352 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra una ejecución de ejemplo:

Esto se ha sangrado 9 lugares.
Igual que esto.
 Pero esto se ha sangrado 18 lugares.

Ingresa algunos caracteres: 000abc
Se omiten los ceros iniciales. Contenido de cad: abc

Usa sangrado con un flujo de cadena.
El contenido de flujocadsal:
 128

Opciones
En esta solución se muestra una manera fácil de crear manipuladores con parámetros, pero no es
la única manera. En el encabezado <iomanip> están defi nidos los manipuladores con parámetros
especifi cados por el estándar C++. Si examina este encabezado, probablemente verá un método
más sofi sticado, que utiliza plantillas y tal vez macros complejas. Podrá usar el método mostrado
en ese encabezado para crear sus propios manipuladores con parámetros que se integren con los
tipos de clase defi nidos por ese encabezado. Sin embargo, debido a que las clases en <iomanip>
son específi cas de la implementación, pueden ser diferentes (y probablemente lo serán) entre
compiladores. El método utilizado en esta solución es transportable. Además, por lo general el
mecanismo empleado por <iomanip> es muy complicado y puede resultar difícil de comprender
sin un estudio considerable. A menudo, simplemente es más fácil usar la técnica mostrada en esta
solución. Con toda franqueza, es el método preferido por el autor.

Obtenga o establezca una confi guración regional y de idioma de fl ujo

Componentes clave

Encabezados Clases Funciones

<ios> ios_base locale getloc() const

<ios> ios locale imbue(const locale &nuevaubi)

<locale> locale string name() const

Tiene la opción de obtener o establecer el objeto de locale asociado con un fl ujo. En C++, la infor-
mación específi ca de la confi guración regional está encapsulada dentro de un objeto de locale.
Este objeto defi ne varios elementos relacionados con la confi guración regional y de idioma, como
el símbolo monetario, el separador de miles, etc. Cada fl ujo tiene una confi guración asociada. Para
ayudar a la internacionalización, tal vez quiera obtener un objeto de locale de un fl ujo, o establecer
uno nuevo. En esta solución se muestra el proceso.

 C a p í t u l o 5 : T r a b a j o c o n E / S 353

Paso a paso
Para obtener el objeto de locale actual relacionado con un fl ujo, se necesitan estos pasos:

1. Cree una instancia de locale que recibirá una copia de la confi guración regional y de

idioma actual.

2. Llame a getloc() en el fl ujo, para obtener una copia de la confi guración actual.

Para establecer la confi guración regional y de idioma con un fl ujo, se necesitan estos pasos:

1. Cree una instancia de locale que encapsule la confi guración regional y de idioma actual.

2. Llame a imbue() en el fl ujo, pasándole el objeto de locale del paso 1.

Análisis
La clase locale encapsula información geopolítica acerca del entorno de ejecución de un programa.
Por ejemplo, la confi guración regional y de idioma de un programa determina el símbolo mone-
tario, el formato de hora y de fecha, entre muchos otros. La clase locale necesita el encabezado
<locale>. Cada fl ujo tiene un objeto de locale asociado.

Para obtener la confi guración regional actual de un fl ujo, llame a getloc() en el fl ujo. Se mues-
tra aquí:

locale getloc() const

Devuelve el objeto de locale asociado con el fl ujo.
Para establecer la confi guración de un fl ujo, llame a imbue() en el fl ujo. Aquí se muestra:

locale imbue(const locale &nuevaubi)

La confi guración regional y de idioma del fl ujo que invoca se establece en nuevaubi, y se devuel-
ve la anterior.

Una manera fácil de construir una instancia de locale consiste en usar este constructor:

explicit locale(const char *nombre)

Aquí, nombre especifi ca el nombre de la confi guración, como german, spanish_spain o US. Si nom-
bre no representa una confi guración regional y de idioma válida, entonces se lanza una excepción
runtime_error.

Dada una instancia de locale, puede obtener su nombre al llamar a name(). Aquí se muestra:

string name() const

Se devuelve el nombre legible para el ser humano de la confi guración regional y de idioma.

Ejemplo
En el siguiente ejemplo se muestra cómo obtener y establecer una confi guración regional de fl ujo.
Primero se despliega la confi guración actual del fl ujo, que suele ser la de C (que, por lo general,
es la cadena predeterminada para un programa de C++). Luego establece la confi guración en
German_Germany. Por último, obtiene y despliega el símbolo monetario y el carácter usado para
el separador de miles.

// Demuestra getloc() e imbue() en un flujo.

#include <iostream>

354 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

#include <fstream>
#include <locale>

using namespace std;

int main()
{
 ofstream archsalida("prueba.dat");

 if(!archsalida) {
 cout << "No se puede abrir el archivo.\n";
 return 1;
 }

 // Despliega el nombre de la configuración regional y de idioma actual.
 cout << "La configuraci\u00a2n regional inicial es " << archsalida.getloc().name();
 cout << "\n\n";

 cout << "Estableciendo la configuraci\u00a2n regional en German_Germany.\n";

 // Crea un objeto de locale para Alemania.
 locale loc("German_Germany");

 // Establece la configuración regional de archsalida en loc.
 archsalida.imbue(loc);

 // Despliega el nombre de la nueva configuración regional y de idioma.
 cout << "La configuraci\u00a2n regional inicial es ahora " << archsalida.
 getloc().name();
 cout << endl;

 // Primero, confirma que la faceta moneypunct está disponible.
 if(has_facet<moneypunct<char, true> >(archsalida.getloc())) {
 // Obtiene la faceta moneypunct.
 const moneypunct<char, true> &mp =
 use_facet<moneypunct<char, true> >(archsalida.getloc());

 // Despliega el símbolo monetario y el separador de miles.
 cout << "S\u00a1mbolo monetario: " << mp.curr_symbol() << endl;
 cout << "Separador de miles: " << mp.thousands_sep() << endl;
 }

 archsalida.close();

 if(!archsalida.good()) {
 cout << "Error al cerrar el archivo.\n";
 return 1;
 }

 return 0;
}

 C a p í t u l o 5 : T r a b a j o c o n E / S 355

Aquí se muestra la salida:

La configuración regional inicial es C

Estableciendo la configuración regional en German_Germany.
La configuración regional inicial es ahora German_Germany.1252
Símbolo monetario: EUR
Separador de miles: .

Opciones
Como se mencionó, en el núcleo de la internacionalización se encuentra la clase locale. Ésta encap-
sula un conjunto de facetas que describen los aspectos geopolíticos del entorno de ejecución. Las
facetas están representadas por clases declaradas dentro de <locale>, como moneypunct que se
usa en el ejemplo. Entre otras, se incluyen numpunct, num_get, num_put, time_get y time_put.
Puede usar estas clases para leer y escribir información que está formada de manera relacionada
con una confi guración regional y de idioma. Consulte el capítulo 6 para conocer soluciones rela-
cionadas con la formación de datos.*

Use el sistema de archivos de C

Componentes clave

Encabezados Clases Funciones

<cstdio> int fclose(FILE *aa)
int feof(FILE *aa)
int ferror(FILE *aa)
FILE *fopen(const char *nombrearch,
 const char *modo)
int fgetc(FILE *aa)
int fputc(int car, FILE *aa)

En las soluciones anteriores se ha descrito cómo realizar una amplia variedad de tareas de manejo
de archivos al emplear el sistema de E/S de C++, que está basado en la jerarquía de clases descrita
en la revisión general presentada al principio de este capítulo. Se trata del sistema de E/S que, por
lo general, usará cuando escriba código de C++. Una vez dicho esto, ningún libro de C++ estaría
completo sin una solución, por lo menos, que describa los fundamentos del uso del "otro sistema
de E/S" de C++, que es el heredado de C.

Como casi todos los programadores de C++ lo saben, C++ se construyó a partir del lenguaje
C. Como resultado, C++ incluye todo el lenguaje C. Por eso es por lo que el bucle for en C, por
ejemplo, funciona igual que lo hace en C++. También es por eso por lo que las funciones basadas
en C, como tolower(), están disponibles para uso en un programa de C++. Esto es importante
porque C defi ne un sistema de E/S completo propio, que está separado del defi nido por C++.
Probablemente ya ha visto al E/S de C en acción en código de terceros. Por ejemplo, la función de
salida de la consola principal es printf() y una función de uso común para entrada es scanf(). En

*Nota del T. También vale la pena que explore la confi guración regional relacionada con su país, para conocer la manera de utilizar
ésta con el fi n de desplegar caracteres específi cos del español.

356 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

realidad, variantes de estas funciones se utilizan en algunas de las soluciones del capítulo 6, donde
se describe la formación de datos.

Debido a que el sistema de archivos de C tiene soporte completo en C++, en ocasiones verá
que se usa en programas de éste. Tal vez más importante sea que gran parte del código heredado
de C aún tiene un amplio uso. Si le estará dando mantenimiento a ese tipo de código, o tal vez
actualizándolo al sistema de E/S de C++, entonces es necesario un conocimiento básico del funcio-
namiento del sistema de archivos de C. Por último, en realidad nadie puede llamarse a sí mismo
un programador en C++ sin tener por lo menos un poco de conocimientos del subconjunto del
lenguaje C, incluido su tratamiento de E/S.

En esta solución se demuestra el mecanismo básico necesario para abrir, cerrar, leer y escribir
un archivo. También se muestra la manera de detectar errores. Aunque se podrían presentar mu-
chos elementos más del E/S de archivo de C en una solución, esto le proporcionará una compren-
sión general de los temas clave.

Paso a paso
Para usar el sistema de E/S de C para leer un archivo y escribir en él, se requieren estos pasos:

1. Abra un archivo al llamar a fopen().

2. Confi rme que el archivo está abierto al probar el valor devuelto por fopen(). Si es NULL,

el archivo no está abierto.

3. Si el archivo está abierto para entrada, lea caracteres al llamar a fgetc().

4. Si el archivo está abierto para salida, lea caracteres al llamar a fputc().

5. Cierre el archivo al llamar a fclose().

6. Revise errores al llamar a ferror().

7. Revise si se alcanzó el fi nal del archivo al llamar a feof().

Análisis
Aunque el sistema de archivos de C utiliza el mismo concepto de alto nivel del fl ujo, la manera
en que funciona es sustancialmente diferente del sistema de archivos de C++. Una diferencia clave es
que las funciones de E/S de C operan mediante apuntadores a archivos, en lugar de hacerlo sobre
objetos de clases que encapsulan un archivo. (Como se explicó, el apuntador a un archivo repre-
senta un archivo.) Por tanto, el sistema de archivos de C no se centra en una jerarquía de clases
sino alrededor del apuntador a archivos.

Un apuntador a archivos se obtiene al abrir un archivo. Una vez que tenga uno, puede operar
en él mediante una o más de las funciones de E/S de C. Aquí se muestran las usadas por esta
solución. Todas requieren el encabezado <cstdio>. Se trata de la versión de C++ del archivo de
encabezado original stdio.h usado por C.

Nombre Función

fopen() Abre un archivo.

fclose() Cierra un archivo.

fputc() Escribe un carácter en un archivo.

fgetc() Lee un carácter del archivo.

feof() Devuelve true si se llega al fi nal del archivo.

ferror() Devuelve true si ha ocurrido un error.

 C a p í t u l o 5 : T r a b a j o c o n E / S 357

El encabezado <cstdio> proporciona los prototipos para las funciones de E/S y defi ne estos
tres tipos: size_t, fpos_t y FILE. El tipo size_t es alguna variedad de entero sin signo, al igual que
fpos_t. El tipo FILE describe un archivo. Merece mayor atención.

El apuntador a archivo es el subproceso común que une a los procesos de E/S de C. Es un apun-
tador a una estructura de tipo FILE. Esta estructura contiene información que defi ne varios elemen-
tos del archivo, incluidos su nombre, estado y la posición actual del archivo. En esencia, el apunta-
dor a archivos identifi ca un archivo específi co, y el fl ujo asociado lo usa para dirigir la operación de
las funciones de E/S. Con el fi n de leer o escribir archivos, su programa necesita usar apuntadores a
archivo. Para obtener una variable de apuntador a archivo, use una instrucción como ésta:

FILE *af;

También hay varias macros defi nidas en <cstdio>. Las relevantes para esta solución son NULL
y EOF. La macro NULL defi ne un apuntador nulo. La EOF suele defi nirse como –1 y es el valor
devuelto cuando una función de entrada trata de leer después del fi nal del archivo.

A continuación se muestra una revisión general de cada función de E/S de C usada en esta
solución.

fopen()
La función fopen() abre un fl ujo para su uso y vincula un archivo con ese fl ujo. Luego devuelve el
apuntador a archivo asociado con ese archivo. Con mayor frecuencia (y para el resto del análisis)
el archivo es de disco. La función fopen() tiene este prototipo:

FILE *fopen(const char *nombrear, const char *modo)

donde nombrear es un apuntador a una cadena de caracteres que integra un nombre de archivo vá-
lido y puede incluir una especifi cación de ruta. La cadena señalada por modo determina la manera
en que el archivo se abrirá. En la siguiente tabla se muestran los valores legales para modo. (Cade-
nas como "r+b" también pueden representarse como "rb+".)

Modo Signifi cado

r Abre un archivo de texto para lectura.

w Abre un archivo de texto para escritura.

a Adjunta a un archivo de texto.

rb Abre un archivo binario para lectura.

wb Crea un archivo binario para escritura.

ab Adjunta a un archivo binario.

r+ Abre un archivo de texto para lectura/escritura.

w+ Crea un archivo de texto para lectura/escritura.

a+ Adjunta o crea un archivo de texto para lectura/escritura.

r+b Abre un archivo binario para lectura/escritura.

w+b Crea un archivo binario para lectura/escritura.

a+b Adjunta o crea un archivo binario para lectura/escritura.

358 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Observe que un archivo puede abrirse en modo de texto o binario. En casi todas las implemen-
taciones, en modo de texto, la secuencia retorno de carro/avance de línea se traduce en caracte-
res de nueva línea en la entrada. En la salida, ocurre lo inverso: las nuevas líneas se traducen en
secuencias retorno de carro/avance de línea. Esta traducción no ocurre en archivos binarios.

Como se estableció, la función fopen() devuelve un apuntador a archivo. Su programa nun-
ca debe modifi car el valor de este apuntador. Si ocurre un error cuando trata de abrir el archivo,
fopen() devuelve un apuntador nulo. Debe confi rmar que el archivo se abrió con éxito al probar
el valor devuelto por fopen(). He aquí un ejemplo de la manera en que se abre un archivo con
fopen(). Trata de abrir un archivo llamado prueba.dat para salida.

FILE *aa;

if((aa = fopen("prueba.dat", "w"))==NULL) {
 cout << "No se puede abrir prueba.dat para salida.\n";
 exit(1);
}

Si el archivo no se puede abrir por alguna razón (por ejemplo, si es de sólo lectura), entonces la
llamada a fopen() fallará y se devolverá un apuntador nulo. Por supuesto, la prueba para revisar
si falla una apertura puede escribirse de manera más compacta, como se muestra a continuación:

if (!(aa = fopen("prueba.dat", "w"))) { // ...

La prueba explícita contra NULL no es necesaria porque un apuntador nulo es un valor falso.

fclose()
La función fclose() cierra un fl ujo que estaba abierto al llamar a fopen(). Escribe cualquier dato
que sobre en el búfer del disco en el archivo y cierra éste en el nivel formal del sistema operativo.
La falla en el cierre de un fl ujo puede provocar problemas, como datos perdidos, archivos destrui-
dos y posibles errores intermitentes en su programa. Por tanto, siempre debe cerrar un archivo
cuando haya terminado con él. Cerrar un archivo también libera cualquier recurso del sistema
usado por el archivo, haciéndolo disponible para nuevo uso.

La función fclose() tiene este prototipo:

int fclose(FILE *aa)

donde aa es el apuntador a archivo devuelto por la llamada a fopen(). Un valor devuelto de cero
signifi ca una operación de cierre que ha tenido éxito. La función devuelve EOF si ocurre un error.
Una llamada a fclose() fallará cuando se ha eliminado prematuramente un disco de la unidad o no
hay más espacio en el disco, por ejemplo.

fputc()
La función fputc() escribe caracteres en un archivo. Aquí se muestra:

int fputc(int car, FILE *aa)

El parámetro aa especifi ca el archivo en que se escribirá, y car es el carácter que se escribe. Aunque
car está defi nido como int, sólo se escribe un byte de orden bajo. Si fputc() tiene éxito, devuelve car.
De otra manera, devuelve EOF.

 C a p í t u l o 5 : T r a b a j o c o n E / S 359

fgetc()
La función fgetc() lee caracteres de un archivo. Aquí se muestra:

int fgetc(FILE *aa)

El parámetro aa especifi ca el archivo que se leerá. Devuelve el siguiente carácter en el archivo,
devuelto como un valor int. Devuelve EOF cuando se ha alcanzado el fi nal del archivo. Por tanto,
para leer en el fi nal de un archivo de texto, podría usar el siguiente código:

do {
 car = fgetc(aa);
} while(car != EOF);

Sin embargo, fgetc() también devuelve EOF si ocurre un error. Puede usar ferror() para determi-
nar con precisión lo que ha ocurrido.

foef()
Como se acaba de describir, fgetc() devuelve EOF cuando se ha encontrado el fi nal del archivo.
Sin embargo, la prueba del valor devuelto por fgetc() tal vez no sea la mejor manera de deter-
minar cuando se ha llegado al fi nal de un archivo. En primer lugar, el sistema de archivos de C
puede operar en archivos de texto y binarios. Cuando se abre un archivo para entrada binaria, es
posible leer un valor de entero que sea igual a EOF. Esto causaría que la rutina de entrada indi-
que una condición de fi nal de archivo aunque no se haya alcanzado el fi nal físico del archivo. En
segundo lugar, fgetc() devuelve EOF cuando falla y cuando alcanza el fi nal del archivo. Si sólo se
emplea el valor devuelto de fgetc(), es imposible saber qué ocurrió. Para resolver estos problemas,
C incluye la función feof(), que determina cuando se ha encontrado el fi nal del archivo. La función
feof() se muestra a continuación:

int feof(FILE *aa)

Devuelve true si se ha alcanzado el fi nal del archivo; de otra manera, devuelve false. Por tanto, la
siguiente instrucción lee un archivo binario hasta que se encuentre el fi nal del archivo:

while(!feof(aa)) car = fgetc(aa);

Por supuesto, puede aplicar este método para archivos de texto, además de archivos binarios.

ferror()
La función ferror() determina si una operación con archivos ha producido un error. Aquí se mues-
tra la función ferror():

int ferror(FILE *aa)

El parámetro aa especifi ca el archivo en cuestión. La función devuelve true si ha ocurrido un error
durante la última operación con archivos; de otra manera, devuelve false.

Ejemplo
En el siguiente programa se ilustra el E/S de archivos de C. Se copia un archivo de texto. En el pro-
ceso, se eliminan tabuladores y se sustituye el número apropiado de espacios. Para usar el programa,
especifi que el nombre del archivo de entrada y el de salida, y el tamaño del tabulador en la línea de
comandos.

360 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Demuestra el sistema de E/S de C.
//
// Este programa copia un archivo, sustituyendo tabuladores
// con espacios en el proceso. Utiliza el sistema de E/S de C
// para manejar la E/S de archivo.

#include <iostream>
#include <cstdio>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
{
 FILE *entrada, *salida;
 int tamtab;
 int cuentatab;
 char car;
 int estado_completo = 0;

 if(argc != 4) {
 cout << "Uso: detab <entrada> <salida> <tama\u00a4o del tabulador>\n";
 return 1;
 }

 if((entrada = fopen(argv[1], "rb"))==NULL) {
 cout << "No se puede abrir el archivo de entrada.\n";
 return 1;
 }

 if((salida = fopen(argv[2], "wb"))==NULL) {
 cout << "No se puede abrir el ar4chivo de salida.\n";
 fclose (entrada);
 return 1;
 }

 // Obtiene el tamaño del tabulador.
 tamtab = atoi(argv[3]);

 cuentatab = 0;

 do {
 // Lee un carácter del archivo de entrada.
 car = fgetc(entrada);

 if(ferror(entrada)) {
 cout << "Error al leer el archivo de entrada.\n";
 estado_completo = 1;
 break;
 }

 // Si se encuentra un tabulador, se da salida al número apropiado de espacios.
 if(car == '\t') {

 C a p í t u l o 5 : T r a b a j o c o n E / S 361

 for(int i=cuentatab; i < tamtab; ++i) {
 // Escribe espacios en el archivo de salida.
 fputc(' ', salida);
 }
 cuentatab = 0;
 }
 else {
 // Escribe el carácter en el archivo de salida.
 fputc(car, salida);

 ++cuentatab;
 if(cuentatab == tamtab) cuentatab = 0;
 if(car == '\n' || car == '\r') cuentatab = 0;
 }

 if(ferror(salida)) {
 cout << "Error al escribir en el archivo de salida.\n";
 estado_completo = 1;
 break;
 }
 } while(!feof(entrada));

 fclose(entrada);
 fclose(salida);

 if(ferror(entrada) || ferror(salida)) {
 cout << "Error al cerrar un archivo.\n";
 estado_completo = 1;
 }

 return estado_completo;
}

Opciones
Puede leer y escribir bloques de datos usando el sistema de E/S de C con las funciones fread()
y fwrite(). Aquí se muestran:

size_t fread(void *buf, size_t num_bytes, size_t cuenta, FILE *aa)
size_t fwrite(const void *buf, size_t num_bytes, size_t cuenta, FILE *aa)

Para fread(), buf es un apuntador a una región de la memoria que recibirá los datos del archivo. Para
fwrite(), es un apuntador a la información que se escribirá en el archivo. El valor de cuenta determina
cuántos elementos se leen o escriben, y cada elemento tiene num_bytes de longitud. El archivo sobre
el que se actúa se especifi ca con aa. La función fread() devuelve el número de elementos leídos.
Este valor puede ser menor que cuenta si se alcanza el fi nal del archivo o si ocurre un error. La
función fwrite() devuelve el número de elementos escritos. Este valor será igual a cuenta a menos
que ocurra un error.

Hay versiones alternas de fgetc() y fputc() llamadas getc() y putc(). Funcionan igual que sus
contrapartes, excepto que pueden implementarse como macros.

Puede realizar operaciones de acceso aleatorio empleando el sistema de E/S de C con fseek().
Aquí se muestra:

int fseek(FILE *aa, long despl, int origen)

362 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

El archivo sobre el que se actúa está especifi cado por aa. El número de bytes de origen que se vol-
verá la posición actual se pasa en despl. El valor de origen debe ser uno de los siguientes (defi nidos
en <ctsdio>:

Origen Nombre de macro

Inicio del archivo SEEK_SET

Posición actual SEEK_CUR

Final del archivo SEEK_END

Por tanto, para buscar desde el principio del archivo, origen debe ser SEEK_SET. Para hacerlo
desde la posición actual, use SEEK_CUR y para el fi nal del archivo, use SEEK_END. La función
fseek() devuelve cero cuando se tiene éxito y un valor diferente de cero si ocurre un error.

El sistema de E/S de C da soporte a varias funciones que permiten E/S formada. Probable-
mente ha visto antes algunas de ellas. Las dos que se encuentran con más frecuencia son printf(),
que da salida a datos formados a la consola, y scanf(), que lee datos formados de la consola. Tam-
bién hay variaciones de éstas, llamadas fprintf() y fscanf(), que operan en un archivo, y sprintf() y
sscanf(), que usan una cadena para entrada y salida. En el capítulo 6, en que se brindan soluciones
para formación de datos, se presenta una breve revisión general de estas funciones.

Puede restablecer la posición actual del archivo al principio de éste al llamar a rewind(). Se
muestra a continuación:

void rewind(FILE *aa)

El archivo que se regresará a la posición inicial está especifi cado por aa.
Para limpiar un fl ujo usando el sistema de E/S de C, llame a ffl ush(), que se muestra a conti-

nuación:

int ffl ush(FILE *aa)

Escribe el contenido de cualquier dato en búfer al archivo asociado con aa. Si llama a ffl ush(), y
aa es nulo, todos los archivos abiertos para salida se limpian. La función ffl ush() devuelve cero si
tiene éxito; de otra manera, devuelve EOF.

Puede cambiar el nombre de un archivo al llamar a rename(). Puede borrar un archivo al lla-
mar a remove(). Estas funciones se describen en la siguiente solución.

Un punto fi nal: aunque C++ da soporte a los sistemas de E/S de C y C++, debe seguir algunas
directrices para evitar problemas. En primer lugar, una vez que se ha abierto un fl ujo empleando
uno de los sistemas, sólo debe actuarse sobre las funciones defi nidas por ese sistema. En otras
palabras, no debe mezclar E/S de C y C++ en el mismo archivo. En segundo lugar, en general, es
mejor usar el sistema de E/S basado en clases de C++. Éste da soporte al sistema de E/S de C
por razones de compatibilidad con los programas existentes de C. El sistema de E/S de C no está
orientado a los programas de C++.

 C a p í t u l o 5 : T r a b a j o c o n E / S 363

Cambie el nombre de un archivo y elimínelo

Componentes clave

Encabezados Clases Funciones

<cstdio> int remove(const char *nombrear)
int rename(const char *nombreant,
 const char *nombrenue)

En la solución anterior se presentó una breve revisión general del E/S de archivos de C. Como se
mencionó allí, C++ da soporte completo al sistema de E/S de C, de modo que suele ser mejor usar
el sistema de E/S para C++. Sin embargo, hay dos funciones defi nidas por el sistema de E/S de C
que ofrece soluciones similares a dos tareas comunes: cambiar el nombre de un archivo y borrarlo.
Las funciones son rename() y remove(). Se declaran en <cstdio>, y en esta solución se muestra
cómo usarlos.

Paso a paso
Para cambiar el nombre de un archivo se requiere un paso:

1. Llame a rename(), especifi cando el nombre actual del archivo y su nuevo nombre.

Para borrar un archivo se requiere un paso:

1. Llame a remove(), especifi cando el nombre del archivo que se eliminará.

Análisis
La función rename() cambia el nombre de un archivo. Aquí se muestra:

int rename(const char *nombreant, const char *nombrenue)

El nombre actual del archivo se pasa en nombreant. El nuevo se pasa en nombrenue. Devuelve cero
si se tiene éxito y un valor diferente de cero, de otra manera. En general, el archivo debe cerrarse
antes de tratar de cambiarle el nombre. Además, como regla general, no es posible cambiar el
nombre de un archivo de sólo lectura. Más aún, no es posible dar a un archivo un nombre que ya
esté siendo usado por otro archivo. En otras palabras, no puede crear una situación en que existan
nombres duplicados de archivos en el mismo directorio.

La función remove() borra un archivo. Aquí se muestra:

int remove(const char *nombrear)

Elimina del sistema el archivo cuyo nombre se especifi que en nombrear. Devuelve cero si tiene éxi-
to y un valor diferente de cero si no. El archivo debe cerrarse antes de hacer un intento de borrarlo.
Como regla general, el archivo no debe ser de sólo lectura o encontrarse en otra situación en que
se evite su eliminación.

364 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
En el siguiente ejemplo se muestran rename() y remove() en acción. Se crea un archivo llamado
prueba.dat. Luego, si el argumento de la línea de comandos es "cambiarnombre", se cambia el
nombre de prueba.dat por prueba2.dat. Si el argumento de la línea de comandos es "borrar", se
elimina prueba2.dat.

// Demuestra rename() y remove().

#include <iostream>
#include <cstdio>
#include <cstring>
#include <fstream>

using namespace std;

int main(int argc, char *argv[])
{
 int resultado;

 if(argc != 2) {
 printf("Uso: BorrarCambiarnombre <borrar/cambiarnombre>\n");
 exit(1);
 }

 ofstream archsalida("prueba.dat");

 if(!archsalida) {
 cout << "No se puede abrir el archivo prueba.dat.\n";
 return 1;
 }

 archsalida << "Escriba algunos datos en el archivo.";

 archsalida.close();

 if(!archsalida.good()) {
 cout << "Error al escribir en el archivo o cerrarlo.\n";
 return 0;
 }

 if(!strcmp("borrar", argv[1])) {
 resultado = remove("prueba2.dat");
 if(resultado) {
 cout << "No se puede eliminar el archivo.\n";
 return 1;
 }
 } else if(!strcmp("cambiarnombre", argv[1])) {
 resultado = rename("prueba.dat", "prueba2.dat");
 if(resultado) {
 cout << "No se puede cambiar el nombre del archivo.\n";
 return 1;
 }
 } else

 C a p í t u l o 5 : T r a b a j o c o n E / S 365

 cout << "Argumento de l\u00a1nea de comandos no v\u00a0lido.\n";

 return 0;
}

Opciones
Todos los sistemas operativos proporcionan funciones de API de bajo nivel que eliminan y cam-
bian el nombre de archivos. Pueden ofrecer un control muy fi no sobre estas operaciones.
Por ejemplo, pueden permitirle especifi car un descriptor de seguridad. Para un control detallado,
tal vez quiera usar los primitivos del sistema operativo, en lugar de remove() o rename().

En algunos entornos, puede usar rename() para cambiar el nombre de un directorio. También
puede mover un archivo de un directorio a otro empleando rename(). Revise la documentación de
su compilador para conocer los detalles.

 367

6
S

i está desplegando la hora y fecha, trabajando con valores monetarios o simplemente desean-
do limitar el número de dígitos decimales, la formación de datos es una parte importante de
muchos programas. También es un aspecto de la programación que plantea muchas pregun-

tas. Una razón es el tamaño y la complejidad del problema. Hay muchos tipos diferentes de datos,
formatos y opciones. Otra razón es la riqueza de las capacidades de formación de C++. A menudo,
hay más de una manera de producir un formato deseado. Por ejemplo, puede establecer varios
atributos de formación al emplear funciones como setf(), width() o precision(), o con manipula-
dores de E/S, como setw, fi xed o showpos. He aquí otro ejemplo: puede formar la fecha y hora al
usar la biblioteca de ubicación de C++ o la función strftime() heredada de C. Francamente, elegir
un método es a veces una decisión difícil, sobre todo cuando se incluye código heredado. Por
supuesto, el benefi cio de este soporte amplio y fl exible para formación es que puede usar la mejor
técnica para el trabajo a mano.

En este capítulo se examina el tema de la formación y se presentan soluciones que demuestran
varias maneras de resolver diversas tareas de formación comunes. En el proceso, se describen
aspectos de localización, incluido el uso de facetas. Aunque el énfasis principal está en las carac-
terísticas de formación defi nidas por C++, también se incluye el método basado en C original.

He aquí las soluciones en este capítulo:

Acceda a marcas de formato mediante funciones de miembro de fl ujo

Despliegue valores numéricos en diversos formatos

Establezca la precisión

Establezca el ancho de campo y el carácter de relleno

Justifi que la salida

Use los manipuladores de E/S para formar datos

Forme valores numéricos para una confi guración regional y de idioma

Forme valores monetarios empleando la faceta money_put

Use las facetas moneypunct y numpunct

Forme la fecha y hora con la faceta time_put

Forme datos en una cadena

•

•

•

•

•

•

•

•

•

•

•

C A P Í T U L O

Formación de datos

368 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Forme la fecha y hora con strftime()

Use printf() para formar datos

Nota importante antes de empezar. Como se explicó en el capítulo 5, el sistema de E/S de C++
está construido sobre clases genéricas que pueden operar sobre diferentes tipos de caracteres. Más
aún, declara especializaciones de esas clases para char y wchar_t. Para mayor conveniencia, en
este capítulo se usan exclusivamente las especializaciones de char. Por tanto, se usan los nombres
de especialización de char, como ios, ostream e istream (en lugar de basic_ios, basic_ostream,
basic_istream, etcétera). Sin embargo, la información también se aplica a fl ujos defi nidos en otros
tipos de carácter.

Revisión general del formato

Hay varias maneras en que el formato de datos puede especifi carse o afectarse. Puede ser:

Usar funciones de miembro de fl ujo para establecer o limpiar una o más marcas de formato.

Usar funciones de miembro de fl ujo para establecer el ancho de campo, la precisión y el

carácter de relleno.

Usar un manipulador de E/S dentro de una expresión de salida formada para establecer

marcas de formato u otros atributos.

Usar la funcionalidad defi nida por la biblioteca de localización de C++ para formar valores

numéricos, monetarios y de fecha y hora.

Usar la familia printf() de funciones, que se heredan del lenguaje C, para formar datos (ex-

cepto para fecha y hora).

Usar strftime(), también heredado de C, para formar fecha y hora.

Todos éstos se demuestran con las soluciones de este capítulo, pero el eje principal está en los pri-
meros cuatro porque representan el método moderno de formación que utiliza C++. Las funciones
printf() y strftime(), que se heredan de C, se cubren también para dar una visión completa, pero
casi todo el código nuevo debe usar las características de C++.

Aunque los detalles específi cos de cada método de formación se describen en las soluciones,
aquí se presenta una revisión general.

Las marcas de formato
Cada fl ujo está asociado con un conjunto de marcas de formato que controlan la manera en que se
forma la información. Estas marcas están contenidas en una enumeración de máscara de bits lla-
mada fmtfl ags que está defi nida por ios_base. (Consulte el capítulo 5 para conocer detalles sobre
fl ujos y el sistema de E/S de C++, en general.) Aquí se muestran las marcas de formato:

boolalpha dec fi xed hex

internal left oct right

scientifi c showbase showpoint showpos

skipws unitbuf uppercase

A continuación se presenta una breve descripción de cada marca. Varias se exploran de manera
detallada en las soluciones.

•

•

•

•

•

•

•

•

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 369

Las marcas left, right e internal determinan la manera en que se justifi can los datos dentro
de un campo. Forman un grupo en que sólo uno debe establecerse en cualquier momento dado.
Cuando está establecida la marca left, la salida se justifi ca a la izquierda. Cuando se establece
right, la salida se justifi ca a la derecha. Cuando la marca internal se establece, el valor numérico
se trata de manera especial para llenar un campo mediante la inserción de caracteres de relleno
(que, como opción predeterminada, es un espacio) entre cualquier carácter de signo o de base.
En muchas confi guraciones regionales, la opción predeterminada es la justifi cación a la derecha.

Como opción predeterminada, se da salida a los valores numéricos en decimal, pero es
posible seleccionar la base del número al usar las marcas oct, hex y dec. Estas marcas forman un
grupo en que sólo uno debe establecerse en cualquier momento determinado. Cuando la marca
oct se establece, la salida se despliega en octal. El establecimiento de la marca hex causa que la
salida se despliegue en hexadecimal. Para regresar la salida a decimal, se establece la marca dec.

El establecimiento de showbase causa que se muestre la base de valores numéricos. En el
caso de hexadecimales, un valor se antecederá con un 0x. Por ejemplo, 1F se desplegará como
0x1F. En el caso de octal, el valor se antecederá con un 0, como en 076. Los valores decimales no
se ven afectados.

Como opción predeterminada, cuando se despliega la notación científi ca, la e está en mi-
núsculas. Además, cuando se despliega un valor hexadecimal, la x está en minúsculas. Cuando
uppercase está establecida, estos caracteres se despliegan en mayúsculas.

El establecimiento de showpos causa que un signo de más al principio se despliegue antes
de los valores positivos.

El establecimiento de showpoint causa que se despliegue un punto decimal y ceros al princi-
pio en toda la salida de punto fl otante (se necesiten o no).

El establecimiento de la marca scientifi c causa que se desplieguen los valores numéricos de
punto fl otante empleando notación científi ca. Cuando se establece fi xed, los valores de punto
fl otante se despliegan usando notación de punto fl otante. Estas marcas forman un grupo en que
sólo debe establecerse una en un momento determinado. Cuando no se establece ninguna mar-
ca, el compilador elige un método apropiado.

Cuando se establece unitbuf, se limpia el búfer después de cada operación de inserción.
Cuando se establece boolalpha, puede darse entrada o salida a valores booleanos emplean-

do las palabras clave true y false. De otra manera, se utilizan los dígitos 1 y 0.
La marca skipws se aplica a fl ujos de entrada. Cuando se establece, se descartan los carac-

teres de espacio en blanco al inicio (espacios, tabuladores y nuevas líneas) cuando se realiza
entrada en un fl ujo. Cuando se limpia skipws, no se descartan.

También están defi nidos los valores basefi eld, adjustfi eld y fl oatfi eld. El basefi eld está defi -
nido como oct | dec | hex. Por tanto basefi eld le permite hacer referencia a los campos oct, dec
y hex colectivamente. De manera similar, los campos left, right e internal están combinados en
adjustfi eld. Por último, puede hacerse referencia a los campos scientifi c y fi xed como fl oatfi eld.
Como se demostrará en las soluciones, estos valores simplifi can el establecimiento de una marca
específi ca dentro de un grupo de marcas.

Las marcas de formato están defi nidas por ios_base, que es una clase de base para basic_ios.
Como se explicó en el capítulo 5, el sistema de E/S de C++ crea especializaciones para fl ujos
de tipo char y wchar_t. la especialización de char de basic_ios es ios. Por tanto, es común ver
las marcas de formato a las que se hace referencia a través de ios, como en ios::oct. Éste es el
método que se usará en este capítulo. (Aunque es perfectamente adecuado usar ios_base::oct, si
lo prefi ere.)

370 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Los atributos de ancho de campo, precisión
y carácter de relleno
Además de las marcas de formato que se acaban de describir, cada fl ujo de C++ está asociado con
los tres atributos que afectan el formato. Son los atributos de ancho de campo, precisión y carácter
de relleno. El ancho de campo especifi ca el número mínimo de caracteres que ocupará un elemen-
to formado. Especifi ca el número mínimo de caracteres que ocupará un elemento formado. Como
opción predeterminada, el ancho de campo es igual al número de caracteres en el elemento que
se está desplegando, pero puede cambiar esto para que un elemento quede contenido dentro de
un espacio mayor. Como opción predeterminada, el carácter usado para rellenar la salida es el
espacio, pero puede cambiar esto. Por último, la precisión predeterminada de los valores de punto
fl otante es 6, pero esto, también, está bajo su control.

Funciones miembro de fl ujo relacionadas con formato
Cada fl ujo de C++ contiene su propio conjunto de marcas de formato y atributos ancho de campo,
precisión y carácter de relleno. En el caso de cualquier fl ujo determinado, pueden establecerse
las marcas de formato, limpiarse o interrogarse mediante el uso de las funciones setf(), unsetf() y
fl ags(). Son miembros de ios_base. El ancho de campo se establece con width(), y la precisión con
precision(). Ambas son miembros de ios_base. El carácter de relleno se establece con fi ll(), que es
miembro de ios. Se describen con todo detalle en las soluciones.

Los manipuladores de E/S
Otra manera de establecer las marcas de formato y los atributos es mediante el uso de un manipu-
lador. Un manipulador es una función (o, en algunos casos, un objeto) que se incluye en una expre-
sión de E/S formada. Puede usarse para establecer o limpiar las marcas de formato o para afectar
el fl ujo, de otra manera. C++ defi ne varios manipuladores estándar. Se muestran a continuación:

boolalpha dec endl
ends fi xed fl ush
hex internal left
nobooalpha noshowbase noshowpoint
noshowpos noskipws nounitbuf
nouppercase oct resetiosfl ags(fmtfl ags f)
right scientifi c setbase(int base)
setfi ll(int car) setiosfl ags(fmtfl ags f) setprecision(int p)
setw(int w) showbase showpoint
showpos skipws unitbuf
uppercase ws

Los manipuladores caen en dos categorías generales: con parámetros y sin ellos. Un manipu-
lador con parámetros requiere un argumento cuando se usa. Un ejemplo de un manipulador con
parámetros es setw. Establece el ancho de campo en el tamaño que se pasa. Un manipulador
sin parámetros no toma un argumento. Por ejemplo, el manipulador endl no tiene un argumento.
Casi ninguno de los manipuladores estándar toman argumentos.

Casi todos los manipuladores sin parámetros están defi nidos por el encabezado <ios>, que
se incluye automáticamente en otros encabezados, como <iostream>. Tres están defi nidos por el
encabezado <ostream>: endl, ends y fl ush. Los manipuladores con parámetros están defi nidos en

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 371

<iomanip>. Los manipuladores se describen de manera detallada en Use manipuladores de E/S para
formar datos.

Forme datos utilizando la biblioteca de localización
Los datos de formato que rebasan las capacidades básicas proporcionadas por las marcas y los
atributos de formato requieren el uso de una o más funciones y clases de biblioteca. En el caso
de algunos tipos de formato, puede usar funciones heredadas de C (el lenguaje sobre el que se
construyó C++). Su utilidad principal está en el mantenimiento de código heredado y se describen
en las siguientes secciones. En el caso de nuevo código, por lo general usará las características de
formato defi nidas por la biblioteca de localización. Esta biblioteca está defi nida en el encabezado
<locale>, y proporciona soporte para formación de datos, como valores monetarios y fecha y hora,
cuya representación es sensible a la cultura y el idioma.

La biblioteca de localización está basada en la clase locale, que defi ne una confi guración regio-
nal y de idioma. Esta confi guración encapsula la información geográfi ca relacionada con un fl ujo.
Es importante comprender que cada fl ujo tiene su propio objeto de locale. Por tanto, el estableci-
miento de la confi guración regional y de idioma de un fl ujo afecta sólo a ese fl ujo. Esto difi ere del
lenguaje C, en que está disponible una confi guración global (C++ aún le da soporte a ésta para
proporcionar compatibilidad hacia atrás con C, pero las confi guraciones regionales y de idioma
basadas en fl ujo son mucho más fl exibles.)

La clave para el uso de una instancia de locale para el manejo de la formación es la faceta. Una
faceta es una instancia de una clase que hereda locale::facet. Cada faceta describe algún aspecto
de la confi guración regional y de idioma. Por ejemplo, la faceta que maneja formato monetario es
money_put. La faceta que forma hora y fecha es time_put. Al usar una faceta, los datos pueden
formarse como lo desee y también pueden adecuarse a la medida de una confi guración específi ca.
Esto le da mucha capacidad al subsistema de localización de C++. Una revisión general de las face-
tas se presentará en breve, y en las soluciones se brinda información específi ca acerca de las facetas
que manejan valores numéricos y monetarios, además de fecha y hora.

La familia de funciones printf()
Debido a que C++ se construyó a partir de C, incluye todas las bibliotecas de funciones defi nidas
por C. Esto signifi ca que C++ da soporte a la familia de funciones printf(). Estas funciones son
parte del sistema de E/S de C y proporcionan el mecanismo mediante el cual un programa de
C forma datos. Aunque el uso de printf() no está recomendado para nuevo código de C++, es la
función que usará cuando escriba programas de C. También se encuentra con frecuencia en código
heredado. Por tanto, ningún libro de C++ estaría completo sin un análisis de sus características.

Hay varias funciones en printf(). Aquí se presentan las usadas en este capítulo:

printf() Despliega salida formada en el dispositivo de salida estándar, que como opción predetermi-
nada es la consola.

fprintf() Escribe salida formada en un archivo.
sprintf() Escribe salida formada en una cadena.

Todas requieren el encabezado <cstdio>, y todas funcionan de la misma manera básica. Es
simplemente el destino de la salida lo que cambia. La operación de estas funciones se describe en
Use printf() para formar datos.

372 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

NOTA Las versiones de carácter amplio de la familia de funciones printf() también están disponibles.
Por ejemplo, la versión de carácter ancho de printf() es wprintf(). Las versiones de carácter ancho
usan el encabezado <cwchar>.

La función strftime()
Otra función de formato heredada de C es strftime(). Forma información de fecha y hora. Aunque
las facetas de C++, como time_put, proporcionan más fl exibilidad, la función strftime() puede ser
más fácil de usar en algunos casos. También suele encontrarse en código C heredado. Se describe
en Forme fecha y hora usando strftime().

Revisión general de las facetas

Las facetas son los medios para la formación de los datos en C++. Son parte de la biblioteca de
localización, que requiere el encabezado <locale>. Tal vez lo más importante que debe compren-
der acerca de las facetas es que resultan más fáciles de usar de lo que parece a primera vista. No
se intimide con su más bien compleja sintaxis de plantilla. Una vez que comprende el proceso
general, es fácil crear cualquier tipo de formato localizado que desee. Debido a que son varias las
soluciones en que se usan las facetas, tiene sentido describir el procedimiento general en un lugar,
y describir los detalles específi cos en las soluciones individuales.

Todas las facetas son clases que se derivan de locale::facet. Hay varias facetas integradas, como
money_put, time_get y num_put, que están declaradas en <locale>. Estas clases se usan para
formar datos para salida o leer datos formados de la entrada. En este capítulo sólo se trata la for-
mación de datos para salida, de modo que aquí no se usan las facetas de entrada. Más aún, en este
capítulo sólo se utilizan las facetas que forman valores numéricos y monetarios, además de fecha
y hora. La biblioteca de localización defi ne otras facetas que manejan otras necesidades sensibles a
la confi guración de región e idioma.

Conceptualmente, el uso de una faceta es fácil: se obtiene una faceta al llamar a use_facet() y
luego se llaman a funciones de esa faceta para formar datos u obtener información de localiza-
ción. Sin embargo, en la práctica, el proceso suele ser un poco más complejo. He aquí un esquema
general de estos pasos:

1. Construya un objeto de locale.

2. Establezca la confi guración regional y de idioma deseada al llamar a imbue() en el fl ujo

que estará recibiendo la salida formada. Pase imbue() al objeto de locale del paso 1.

3. Obtenga una faceta al llamar a use_facet(), especifi cando el nombre de la faceta. Se trata de

una función global defi nida por <locale>.

4. Para formar valores numéricos y monetarios, o la fecha y hora, o para obtener información

acerca de un formato, utilice la función defi nida por la faceta obtenida en el paso 3.

Revisemos más de cerca todos los pasos.
La clase locale defi ne varios constructores. Aquí se muestra el usado en este capítulo:

explicit locale(const char *nombre_loc)

El nombre de la confi guración regional y de idioma se pasa mediante nombre_loc. Debe ser un
nombre válido. Si no lo es, se lanza un runtime_error. Lo que constituye un nombre válido depen-
de de la implementación. En este libro se usan cadenas de confi guración regional y de idioma que

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 373

son compatibles con Visual C++ de Microsoft. Necesitará revisar la documentación de su compila-
dor para conocer las cadenas a las que da soporte.

Para establecer una confi guración regional y de idioma del fl ujo, llame a imbue(). Está defi nida
por ios_base y se encuentra disponible en todos los objetos de fl ujo. El proceso para el estableci-
miento de esta confi guración se describe de manera detallada en Obtenga o establezca una confi gura-
ción regional y de idioma de fl ujo en el capítulo 5. Es conveniente mostrar imbue() aquí una vez más:

locale imbue(const locale &locnue)

Se devuelven la confi guración regional y de idioma del fl ujo que invoca, y la confi guración anterior.
Para obtener una faceta, llame a use_facet(). Es una función global y se muestra aquí:

template <class Facet> const Facet &use_facet(const locale &loc)

Aquí, Facet debe ser una faceta válida. Especifi ca la faceta que se obtendrá, que normalmente será
defi nida por <locale>. (Es posible crear facetas personalizadas, pero rara vez necesitará hacerlo.)
La confi guración regional y de idioma para la que se obtendrá la faceta se pasa en loc. La función
use_facet() devuelve una referencia a la faceta especifi cada por Facet. Si ésta no existe, se lanza
bad_cast. (Si es necesario, puede determinar si una faceta existe al llamar a has_facet(), que tam-
bién es una función global defi nida por <locale>.)

Hay varias facetas predefi nidas. Las usadas en este libro son:

num_put Forma valores numéricos.
money_put Forma valores monetarios.
time_put Forma fecha y hora.
numpunct Obtiene signos de puntuación y reglas relacionadas con los formatos numéricos.
moneypunct Obtiene signos de puntuación y reglas relacionadas con los formatos monetarios.

Las soluciones muestran sus declaraciones, con excepción de todas las clases de plantilla que
toman el tipo de carácter como argumento de tipo. (Algunas también tienen otro tipo de argu-
mento.) Las facetas num_put, money_put y time_put forman números, dinero y hora y fecha,
respectivamente. Defi nen la función put(), que forma el valor que se pasa de acuerdo con las
reglas encapsuladas por la faceta. (Cada una de las funciones de put() se describe en su propia so-
lución.) La faceta numpuct encapsula información acerca de los signos de puntuación y las reglas
que determinan el formato de los datos numéricos. La faceta moneypunct encapsula los signos de
puntuación y las reglas que rigen el formato de valores monetarios.

Para obtener una faceta, utilizará use_facet(), especifi cando el nombre de la faceta como
parámetro de tipo. Por ejemplo, ésta obtiene una faceta money_put asociada con la confi guración
regional y de idioma usada por cout:

const money_put<char> &mp = use_facet<money_put<char> >(cout.getloc());

Observe que la versión char de money_put es obligatoria porque cout es un fl ujo de char. Una vez
que tiene una faceta, puede usarla para formación al llamar a funciones en ella. En esta solución se
describe el proceso de manera detallada.

He aquí un tema muy importante: cuando se usa un fl ujo de C++, se da salida automática a
los números al usar la faceta num_put. Por tanto, no necesita obtener manualmente esta faceta al
desplegar valores numéricos de una manera que sea específi ca de la confi guración regional y de
idioma. Simplemente establezca la confi guración del fl ujo al usar imbue() y el valor se formará
automáticamente para esa confi guración.

374 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

NOTA También puede establecer globalmente la confi guración regional y de idioma, empleando la
función heredada de C setlocale(). Sin embargo, este método no se recomienda para nuevo código.
El sistema de confi guración regional y de idioma de la faceta usada por C++ ofrece un método mejor
y más fl exible.

Acceda a las marcas de formato mediante las funciones de miembro de fl ujo

Componentes clave

Encabezados Clases Funciones

<ios> ios_base fmtfl ags setf(fmtfl ags marcas)
void unsetf(fmtfl ags marcas)
fmtfl ags fl ags()

Para cualquier fl ujo determinado, puede cambiar la manera en que se forman los datos al cambiar
una o más marcas de formato. Por ejemplo, si establece la marca showpos, entonces los valores
numéricos positivos se despliegan con un signo + al principio. Hay dos maneras en que pueden
establecerse las marcas de formato. En primer lugar, puede usar funciones que están defi nidas por
todas las clases de fl ujo, como setf(). En segundo lugar, puede usar un manipulador de E/S. En
esta solución se muestra cómo usar las funciones miembro del fl ujo. Los manipuladores se descri-
ben en una solución posterior.

Paso a paso
Para usar las funciones miembro de fl ujo para establecer, limpiar u obtener las marcas de formato,
se requieren estos pasos:

1. Para establecer una o más marcas en un fl ujo, llame a setf().

2. Para limpiar una o más marcas en un fl ujo, llame a unsetf().

3. Para obtener la confi guración de marca de formato actual, llame a fl ags().

Análisis
Para cualquier fl ujo determinado, puede establecer una marca de formato al llamar a la función
setf(), que se declara con ios_base. Por tanto, setf() es un miembro de todas las clases de fl ujo.
Aquí se muestra:

fmtfl ags setf(fmtfl ags marcas)

Esta función devuelve la confi guración anterior de las marcas de formato y habilita esas marcas
especifi cadas por marcas. Por ejemplo,

miflujo.setf(ios::showpos);

habilita la marca showpos para el fl ujo llamado mifl ujo.
El complemento de setf() es unsetf(). También se declara con ios_base. Limpia una o más mar-

cas de formato. Su forma general es:

void unsetf(fmtfl ags marcas)

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 375

Se limpian las marcas especifi cadas por marcas. Todas las otras marcas quedan sin afectación. Por
tanto, para deshabilitar la marca boolalpha para mifl ujo, utilizaría esta instrucción:

miflujo.unsetf(ios::boolalpha);

Puede establecer o limpiar más de una marca en una sola llamada a setf() o unsetf() al emplear
juntas con el operador lógico OR dos o más marcas. Por ejemplo, esto habilita las marcas showpos
y boolalpha:

miflujo.setf(ios::showpos | ios::boolalpha)

Lo siguiente deshabilita las marcas uppercase y boolalpha:

miflujo.unsetf(ios::uppercase | ios::boolalpha);

Puede obtener la confi guración de la marca de formato actual al usar fl ags(). Aquí se muestra:

fmtfl ags fl ags() const

Devuelve la máscara de bits de marca de formato. También se declara con ios_base:
Es importante comprender que cada instancia de fl ujo tiene su propio conjunto de marcas de

formato. Por tanto, el cambio de la confi guración de marca para un fl ujo afecta sólo a ese fl ujo.
Las marcas de formato de cualquier otro fl ujo quedan sin cambio.

Ejemplo
En el siguiente ejemplo se muestra cómo establecer y limpiar marcas de formato. Primero estable-
ce la marca boolalpha en cout y luego despliega un valor bool. Luego limpia la marca boolalpha
y vuelve a desplegar el valor. Observe la diferencia en la salida.

// Demuestra las funciones setf() y unsetf().

#include <iostream>

using namespace std;

int main()
{

 // Establece la marca boolalpha en cout.
 cout.setf(ios::boolalpha);

 cout << "El valor true cuando se establece la marca boolapha: "
 << true << endl;;

 // Ahora, limpia la marca boolalpha.
 cout.unsetf(ios::boolalpha);

 cout << "El valor true cuando se limpia la marca boolapha: "
 << true << endl;;

 return 0;
}

Aquí se muestra la salida:

El valor true cuando se establece la marca boolapha: true
El valor true cuando se limpia la marca boolapha: 1

376 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo adicional: despliegue la confi guración
de la marca de formato
Cuando se depuran problemas de formato, en ocasiones resulta útil ver cómo están establecidas
todas las marcas. De acuerdo con la experiencia del autor, algunos compiladores se comportan de
maneras inesperadas debido a la interacción entre marcas aparentemente sin relación. Además,
puede haber diferencias entre compiladores cuando dos marcas entran en confl icto. Por ejemplo,
si las marcas oct y dec están establecidas, ¿cuál formato se usa? Diferentes compiladores podrían
resolver esta situación de manera distinta. (Por supuesto, una buena práctica de programación
determina que sólo una de las marcas oct, dec o hex se establezca en cualquier momento.) El
hecho de poder ver las confi guraciones de marcas reales puede ayudar a explicar resultados que
de otra manera parecerían poco usuales. Con este fi n, en el siguiente programa se crea una función
llamada mostrarmarcas(), que toma un fl ujo como argumento y despliega la confi guración actual
de las marcas de formato de ese fl ujo:

// Este programa crea una función llamada mostrarmarcas()
// que despliega la configuración de marca de formato
// asociada con un flujo determinado.

#include <iostream>

using namespace std;

void mostrarmarcas(ios &flujo) ;

int main()
{
 // Muestra la condición predeterminada de marcas de formato.
 cout << "Configuraci\u00a2n predeterminada para cout:\n";
 mostrarmarcas(cout);

 // Establece las marcas right, showpoint y fixed.
 cout.setf(ios::right | ios::showpoint | ios::fixed);

 // Muestra las marcas después de llamar a setf().
 cout << "Marcas tras establecer right, showpoint y fixed:\n";
 mostrarmarcas(cout);

 return 0;
}

// Esta función despliega el estatus de las marcas de formato
// para el flujo especificado.
void mostrarmarcas(ios &flujo)
{
 ios::fmtflags f;

 // Obtiene la configuración de marcas actual.
 f = flujo.flags();

 if(f & ios::boolalpha) cout << "boolalpha:\thabilitada\n";
 else cout << "boolalpha:\tdeshabilitada\n";

 if(f & ios::dec) cout << "dec:\t\thabilitada\n";
 else cout << "dec:\t\tdeshabilitada\n";

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 377

 if(f & ios::hex) cout << "hex:\t\thabilitada\n";
 else cout << "hex:\t\tdeshabilitada\n";

 if(f & ios::oct) cout << "oct:\t\thabilitada\n";
 else cout << "oct:\t\tdeshabilitada\n";

 if(f & ios::fixed) cout << "fixed:\t\thabilitada\n";
 else cout << "fixed:\t\tdeshabilitada\n";

 if(f & ios::scientific) cout << "scientific:\thabilitada\n";
 else cout << "scientific:\tdeshabilitada\n";

 if(f & ios::right) cout << "right:\t\thabilitada\n";
 else cout << "right:\t\tdeshabilitada\n";

 if(f & ios::left) cout << "left:\thabilitada\n";
 else cout << "left:\t\tdeshabilitada\n";

 if(f & ios::internal) cout << "internal:\thabilitada\n";
 else cout << "internal:\tdeshabilitada\n";

 if(f & ios::showbase) cout << "showbase:\thabilitada\n";
 else cout << "showbase:\tdeshabilitada\n";

 if(f & ios::showpoint) cout << "showpoint:\thabilitada\n";
 else cout << "showpoint:\tdeshabilitada\n";

 if(f & ios::showpos) cout << "showpos:\thabilitada\n";
 else cout << "showpos:\tdeshabilitada\n";

 if(f & ios::uppercase) cout << "uppercase:\thabilitada\n";
 else cout << "uppercase:\tdeshabilitada\n";

 if(f & ios::unitbuf) cout << "unitbuf:\thabilitada\n";
 else cout << "unitbuf:\tdeshabilitada\n";

 if(f & ios::skipws) cout << "skipws:\t\thabilitada\n";
 else cout << "skipws:\t\tdeshabilitada\n";

 cout << " \n";
}

Aquí se muestra la salida. (Ésta se generó con Visual C++. Su compilador puede mostrar confi gu-
raciones predeterminadas diferentes.)

Configuración predeterminada para cout:
boolalpha: deshabilitada
dec: habilitada
hex: deshabilitada
oct: deshabilitada
fixed: deshabilitada
scientific: deshabilitada
right: deshabilitada
left: deshabilitada

378 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

internal: deshabilitada
showbase: deshabilitada
showpoint: deshabilitada
showpos: deshabilitada
uppercase: deshabilitada
unitbuf: deshabilitada
skipws: habilitada

Marcas tras establecer right, showpoint y fixed:
boolalpha: deshabilitada
dec: habilitada
hex: deshabilitada
oct: deshabilitada
fixed: habilitada
scientific: deshabilitada
right: habilitada
left: deshabilitada
internal: deshabilitada
showbase: deshabilitada
showpoint: habilitada
showpos: deshabilitada
uppercase: deshabilitada
unitbuf: deshabilitada
skipws: habilitada

Opciones
Hay una versión sobrecargada de setf() que toma esta forma general:

fmtfl ags setf(fmtfl ags marcas1, fmtfl ags marcas2)

En esta versión, sólo las marcas especifi cadas por marcas2 se ven afectadas. Primero se limpian
y luego se establecen de acuerdo con las marcas especifi cadas por marcas1. Tome nota de que,
aunque marcas1 contiene otras marcas, sólo las especifi cadas por marcas2 se verán afectadas. Se de-
vuelve la confi guración de marcas anterior. Tal vez el uso más común de la forma de dos paráme-
tros de setf() sea cuando establece las marcas de formato de base de número, justifi cación y punto
fl otante. Consulte las siguientes soluciones para conocer más detalles.

Puede establecer todas las marcas de formato al usar esta versión sobrecargada de fl ags():

ftmfl ags fl ags(ftmfl ags marcas)

Esta versión asigna el valor pasado en marcas a toda la máscara de bits de marcas de formato. Se
devuelve la máscara de bits anterior.

Las marcas de formato pueden establecerse mediante varios manipuladores. Por ejemplo, el
manipulador noboolalpha limpia la marca boolalpha. También puede establecer o limpiar una o
más marcas empleando los manipuladores setiosfl ags y resetiosfl ags. Consulte Use manipuladores
de E/S para formar datos.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 379

Despliegue valores numéricos en diversos formatos

Componentes clave

Encabezados Clases Funciones

<ios> ios_base fmtfl ags setf(fmtfl ags marcas)
void unsetf(fmtfl ags marcas)
oct
hex
dec
showbase
showpos
fi xed
scientifi c
basefi eld
fl oatfi eld

Mediante el uso de marcas de formato, se controlan varios aspectos del formato numérico. Por
ejemplo, puede dar salida a enteros en hexadecimal u octal o desplegar valores de punto fl otante
en notación fi ja o científi ca. En esta solución se demuestran estas marcas que afectan el formato de
números.

Paso a paso
El uso de marcas de formato para cambiar el formato de datos numéricos requiere estos pasos:

1. Para formar un entero en decimal, limpie las marcas especifi cadas por basefi eld y luego es-

tablezca la marca dec. Por lo general, el formato decimal es la opción predeterminada para

un fl ujo de salida.

2. Para formar un entero en hexadecimal, limpie las marcas especifi cadas por basefi eld y

luego establezca la marca hex.

3. Para formar un entero en octal, limpie las marcas especifi cadas por basefi eld y luego esta-

blezca la marca oct.

4. Para mostrar la base de un valor octal o hexadecimal, establezca la marca showbase.

5. Para formar un valor de punto fl otante en notación fi ja, limpie las marcas especifi cadas por

basefi eld y luego establezca la marca fi xed.

6. Para formar un valor de punto fl otante en notación científi ca, limpie las marcas especifi ca-

das por basefi eld y luego establezca la marca scientifi c.

7. Para hacer que un signo + se despliegue antes de los valores positivos, establezca la marca

showpos.

8. Para asegurar que el punto decimal esté siempre incluido en un valor de punto fl otante,

establezca la marca showpoint.

380 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

9. Para que se muestren en mayúsculas las letras en valores numéricos (dígitos hexadecima-

les mayores que 0, la e en notación científi ca, y la x en el indicador de la base hexadecimal),

establezca la marca uppercase.

Análisis
Las marcas de formato se establecen o limpian con las funciones setf() y unsetf(), que se describen
de manera detallada en la solución anterior.

En general, puede desplegar valores enteros en decimal (la opción predeterminada), hexadeci-
mal u octal. Esto se controla con el establecimiento de las marcas dec, hex y oct, respectivamente.
Para establecer la base del número, debe habilitar la marca deseada y deshabilitar las otras dos.
Por ejemplo, para dar salida a enteros en octal, debe habilitar oct y deshabilitar dec y hex. Colecti-
vamente, se hace referencia a las marcas oct, hex y dec como basefi eld.

La manera más fácil de habilitar una marca y asegurarse de que las otras dos están deshabili-
tadas consiste en usar la forma de dos argumentos setf(). Como se explicó en la solución anterior,
tiene esta forma general:

fmtfl ags setf(fmtfl ags marcas1, fmtfl ags marcas2)

En esta versión, sólo las marcas especifi cadas por marcas2 se ven afectadas. Primero se limpian y
luego se establecen de acuerdo con las marcas especifi cadas por marcas1. Por tanto, para establecer
la base de un número, pasará basefi eld a marcas2 (que hace que se limpien las marcas oct, hex y
dec) y pasará la marca deseada de base de número en marcas1. Por ejemplo, lo siguiente establece
la base del número de cout en hexadecimal:

cout.setf(ios::hex, ios::basefield);

Después de esta llamada, se establecerá la marca hex y se limpiarán las marcas dec y oct. Esto
signifi ca que toda la salida de enteros a cout se desplegará en hexadecimal.

Cuando se despliegan enteros, hará que la base se muestre al establecer la marca showbase.
Cuando se establece, los valores desplegados en octal empiezan con un cero a la izquierda. Los va-
lores desplegados en hexadecimal empiezan con un 0x. Los valores decimales no se ven afectados.

Como opción predeterminada, los valores de punto fl otante se forman en formato de punto
fi jo o en notación científi ca, lo que sea más corto. Puede especifi car la representación de punto fi jo
al establecer la marca fi xed. Puede especifi car notación científi ca al establecer la marca scientifi c.
En cualquier caso, la otra marca debe deshabilitarse. La manera más fácil de hacer esto es usar
la forma de dos argumentos de setf(), especifi cando que se deshabilitan las marcas de fl oatfi eld.
Recuerde que fl oatfi eld combina las marcas fi xed y scientifi c.

Para que un signo + anteceda a los valores positivos, establezca la marca showpos. En gene-
ral, showpos sólo afecta los valores de punto fl otante y los enteros desplegados en decimal. Los
desplegados en octal o hexadecimal no se verán afectados.

Para que se despliegue un punto decimal, aunque no haya dígitos fraccionales, establezca la
marca showpoint.

Como opción predeterminada, se despliegan en minúsculas las letras en valores numéricos,
que incluyen los dígitos hexadecimales de la a a la f, la e en notación científi ca y la x en el indica-
dor de base hexadecimal. Para cambiar a mayúsculas, especifi que la marca uppercase.

Ejemplo
En el siguiente ejemplo se muestran en acción las marcas de formato numérico:

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 381

// Demuestra las marcas de formato numérico.
//
// En este ejemplo se muestra cout, pero debe
// sustituirse cualquier flujo de salida.

#include <iostream>

using namespace std;

int main()
{
 int x = 100;
 double f = 98.6;
 double f2 = 123456.0;
 double f3 = 1234567.0;

 cout.setf(ios::hex, ios::basefield);
 cout << "x en hexadecimal: " << x << endl;

 cout.setf(ios::oct, ios::basefield);
 cout << "x en octal: " << x << endl;

 cout.setf(ios::dec, ios::basefield);
 cout << "x en decimal: " << x << "\n\n";

 cout << "f, f2 y f3 en el formato predeterminado de punto flotante:\n";
 cout << "f: " << f << " f2: " << f2 << " f3: " << f3 << endl;

 cout.setf(ios::scientific, ios::floatfield);
 cout << "Tras establecer la marca scientific:\n";
 cout << "f: " << f << " f2: " << f2 << " f3: " << f3 << endl;

 cout.setf(ios::fixed, ios::floatfield);
 cout << "Tras establecer la marca fixed:\n";
 cout << "f: " << f << " f2: " << f2 << " f3: " << f3 << "\n\n";

 // Vuelve al formato de punto flotante predeterminado.
 cout << "Regresando al formato predeterminado de punto flotante.\n";
 cout.unsetf(ios::fixed);

 cout << "f2 en formato predeterminado: " << f2 << "\n\n";

 // Establece la marca showpoint.
 cout << "Estableciendo la marca showpoint.\n";
 cout.setf(ios::showpoint);
 cout << "f2 con showpoint establecido: " << f2 << "\n\n";

 cout << "Limpiando la marca showpoint.\n\n";
 cout.unsetf(ios::showpoint);

 // Establece la marca showpos.
 cout.setf(ios::showpos);
 cout << "Estableciendo la marca showpos.\n";
 cout << "x en decimal tras establecer showpos: " << x << endl;

382 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << "f en notaci\u00a2n predeterminada tras establecer showpos: " << f <<
"\n\n";

 // Establece la marca uppercase.
 cout << "Estableciendo la marca uppercase.\n";
 cout.setf(ios::uppercase);
 cout << "f3 con la marca uppercase establecida: " << f3 << endl;

 return 0;
}

Aquí se muestra la salida:

x en hexadecimal: 64
x en octal: 144
x en decimal: 100

f, f2 y f3 en el formato predeterminado de punto flotante:
f: 98.6 f2: 123456 f3: 1.23457e+006
Tras establecer la marca scientific:
f: 9.860000e+001 f2: 1.234560e+005 f3: 1.234567e+006
Tras establecer la marca fixed:
f: 98.600000 f2: 123456.000000 f3: 1234567.000000

Regresando al formato predeterminado de punto flotante.
f2 en formato predeterminado: 123456

Estableciendo la marca showpoint.
f2 con showpoint establecido: 123456.

Limpiando la marca showpoint.

Estableciendo la marca showpos.
x en decimal tras establecer showpos: +100
f en notación predeterminada tras establecer showpos: +98.6

Estableciendo la marca uppercase.
f3 con la marca uppercase establecida: +1.23457E+006

Opciones
Las marcas de formato numérico pueden establecerse mediante manipuladores. Por ejemplo,
la marca showpoint puede establecerse con el manipulador showpoint y limpiarse con el nos-
howpoint. Consulte Use manipuladores de E/S para formar datos para conocer más detalles.

Para cualquier fl ujo determinado, la precisión predeterminada es de 6 dígitos, pero puede
cambiar esto al llamar a la función precision(). Consulte Establezca la precisión para conocer más
detalles. También puede especifi car un ancho de campo en que el valor se despliega al llamar a
width() y el carácter de relleno utilizado para rellenar campos que son más largos que la salida al
llamar a fi ll(). Se describen en Establezca el ancho de campo y el carácter de relleno.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 383

Establezca la precisión

Componentes clave

Encabezados Clases Funciones

<ios> ios_base streamsize precision(streamsize prec)

Cada fl ujo tiene una confi guración de precisión asociada que determina cuántos dígitos se desplie-
gan cuando se forma un valor de punto fl otante. La precisión predeterminada es 6. Puede cambiar
esto al llamar a precision(). Como se explica en el análisis que sigue, el signifi cado exacto de la
precisión difi ere de acuerdo con el formato de punto fl otante que se use.

Paso a paso
Para establecer la precisión se necesitan estos pasos:

1. Establezca la precisión al llamar a precision() en el fl ujo.

2. En algunos casos, tal vez necesite ajustar el formato de punto fl otante al establecer la marca

fi xed o scientifi c para lograr los resultados deseados.

Análisis
Cada fl ujo tiene su propio atributo de precisión. La precisión se establece al llamar a precision() en
el fl ujo. Esta función es un miembro de ios_base y se hereda de todas las clases de fl ujo. Aquí se
muestra una de sus formas:

streamsize precision(streamsize prec)

La precisión del fl ujo que invoca se establece con prec. Se devuelve la precisión anterior. La
precisión predeterminada de un fl ujo es 6. El tipo streamsize está defi nido como alguna forma
de entero que puede contener el número más largo de bytes que puede transferirse en cualquier
operación de E/S.

El efecto de la precisión se basa en el formato de punto fl otante que se está usando. En el caso
del formato predeterminado, la precisión determina el número de dígitos signifi cativos desplegados.
En la notación de punto fi jo o científi ca, la precisión determina el número de dígitos desplegados a la
derecha del punto decimal. (La notación científi ca se utiliza cuando se establece la marca scientifi c
y se ha limpiado la marca fi xed. La notación de punto fi jo se usa cuando se ha limpiado la marca
scientifi c y se establece la marca fi xed.)

El establecimiento de la precisión responde una de las preguntas tipo "¿cómo hacer?" más co-
munes: "¿Cómo despliego dos números decimales?" Esto se logra fácilmente al establecer la marca
fi xed y luego defi niendo la precisión en 2. Después de hacer esto, se desplegarán dos números
decimales en todos los casos, aunque no haya dígitos decimales signifi cativos. De manera más
general, si necesita especifi car un número fi jo de dígitos decimales, entonces establezca la marca
fi xed y especifi que el número de dígitos en una llamada a precision().

384 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
En el ejemplo siguiente se muestran los efectos del establecimiento de la precisión:

// Demuestra el establecimiento de la precisión.

#include <iostream>

using namespace std;

int main()
{
 double f = 123456.123456789;

 cout << "Usando el formato de n\u00a3mero predeterminado.\n";
 cout << "f con precisi\u00a2n predeterminada: " << f << "\n\n";

 cout << "Estableciendo la precisi\u00a2n de 9.\n";
 cout.precision(9);
 cout << "f con precisi\u00a2n de 9: " << f << "\n\n";

 cout << "Cambiando a formato de punto fijo.\n";
 cout.setf(ios::fixed, ios::floatfield);

 cout << "f con precisi\u00a2n de 9 en punto fijo: " << f << "\n\n";

 // Ahora, despliega dos lugares decimales.
 cout << "Despliega dos lugares decimales en todos los casos: ";
 cout.precision(2);
 cout << 12.456 << " " << 10.0 << " " << 19.1 << endl;

 return 0;
}

Aquí se muestra la salida:

Usando el formato de número predeterminado.
f con precisión predeterminada: 123456

Estableciendo la precisión de 9.
f con precisión de 9: 123456.123

Cambiando a formato de punto fijo.
f con precisión de 9 en punto fijo: 123456.123456789

Despliega dos lugares decimales en todos los casos: 12.46 10.00 19.10

Opciones
Hay una segunda forma de precision(), que se muestra aquí:

streamsize precision() const

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 385

Esta forma devuelve la posición actual, pero no la cambia.
Otra manera de establecer la precisión de un fl ujo consiste en usar el manipulador de E/S

setprecision. Se describe en Use los manipuladores de E/S para formar datos.

Establezca el ancho de campo y el carácter de relleno

Componentes clave

Encabezados Clases Funciones

<ios> ios_base streamsize width(streamsize a)

<ios> ios char fi ll(char car)

En esta solución se muestra cómo especifi car un ancho de campo y un carácter de relleno. Como
opción predeterminada, cuando se da salida a un valor, sólo ocupa el espacio adecuado para el nú-
mero de caracteres que se requiere para desplegarlo. Esto suele ser exactamente lo que se quiere.
Sin embargo, en ocasiones querrá que el valor llene un cierto ancho de campo, como cuando desea
que se alineen columnas de datos. Aunque hay varias maneras de lograr esa salida, por mucho la
más fácil consiste en especifi car un ancho de campo. Una vez hecho esto, cada elemento se rellena-
rá automáticamente para que ocupe todo el ancho de campo. El carácter de relleno predetermina-
do es un espacio, y esto suele ser lo que se quiere, pero puede cambiarlo.

Paso a paso
Para especifi car el ancho de campo y el carácter de relleno se requieren estos pasos:

1. Para especifi car un ancho de campo, llame a width() en el fl ujo.

2. Para especifi car un carácter de relleno, llame a fi ll() en el fl ujo.

Análisis
Puede especifi car un ancho de campo mínimo empleando la función width(). Tiene dos formas.
Aquí se muestra la usada en esta solución:

streamsize width(streamsize a)

Aquí, a se vuelve el ancho de campo y se devuelve el ancho de campo anterior. Como regla gene-
ral, el ancho de campo debe establecerse de inmediato antes de dar salida al elemento al que desea
aplicar el ancho. Después de que se da salida a ese elemento, el ancho de campo se regresa a su
opción predeterminada. (Se han visto implementaciones en que un solo establecimiento del ancho
de campo se aplica a toda la salida posterior, pero es un comportamiento no estándar.) El tipo
streamsize es un typedef para alguna forma de entero.

Después de que establezca un ancho de campo mínimo, cuando un valor usa menos del ancho
especifi cado, el campo se rellenará con el carácter de relleno actual (un espacio, como opción
predeterminada) para lograr el ancho deseado. Si el tamaño del valor excede el ancho de campo
mínimo, entonces se rebasará el campo. Los valores no se truncan.

386 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En la confi guración regional y de idioma predeterminada, la salida se alinea a la derecha. Esto
signifi ca que si un campo necesita rellenarse para alcanzar un ancho especifi cado, entonces los
caracteres de relleno se agregarán a la izquierda de los datos. Cuando la salida está alineada a la
izquierda, los caracteres de relleno se agregarán a la derecha de los datos. Cuando está establecida
la marca internal, se agrega el relleno en el interior de algunos tipos de formatos numéricos. Por
ejemplo, si la marca showpos está establecida, entonces el relleno tiene lugar entre el signo + y los
dígitos. Consulte Justifi que salida para conocer más detalles.

Cuando se necesita rellenar un campo, se hace con el carácter de relleno, que es un espacio,
como opción predeterminada. Puede especifi car un carácter diferente empleando la función fi ll().
Tiene dos formas. Ésta es la usada aquí:

char fi ll(char car)

Después de una llamada a fi ll(), car se vuelve el nuevo carácter de relleno y se devuelve el anterior.

Ejemplo
En el siguiente ejemplo se demuestra el establecimiento del ancho de campo y el carácter de
relleno. Hay dos cosas importantes que se deben observar en este programa. En primer lugar, una
llamada a width() afecta sólo a la salida del siguiente elemento. En segundo lugar, el carácter de
relleno se agrega entre el signo + y los dígitos cuando se despliegan los datos numéricos, en caso
de que estén establecidas las marcas internal y showpos.

// Demuestra width() y fill().

#include <iostream>

using namespace std;

int main()
{
 // Usa el ancho predeterminado.
 cout << "Hola" << endl;

 // Establece el ancho en 10.
 cout.width(10);
 cout << "Hola" << endl;

 // Observe cómo el ancho regresa a la opción predeterminada
 // después de que se da salida a un elemento.
 cout << "Hola" << endl;

 // Ahora establece el ancho y el carácter de relleno.
 cout.width(10);
 cout.fill('*');
 cout << "Hola" << endl;

 // Observe que el carácter de relleno sigue establecido.
 cout.width(12);
 cout << 123.45 << endl;

 // Ahora, rellena el ancho de campo con espacios

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 387

 // y establece las marcas internal y showpos.
 cout.width(12);
 cout.fill(' ');
 cout.setf(ios::showpos | ios::internal);
 cout << 765.34 << endl;

 return 0;
}

Aquí se muestra la salida:

Hola
 Hola
Hola
******Hola
******123.45
+ 765.34

Ejemplo adicional: alinee columnas de números
Uno de los usos más comunes de un ancho de campo mínimo consiste en crear tablas en que las
columnas de números se alinean una sobre otra. Para ello, simplemente especifi que un ancho de
campo que sea por lo menos del tamaño del número máximo de dígitos que desplegará, además
del punto decimal y el signo +, si están presentes. En el siguiente programa se demuestra el proce-
so al crear una tabla de potencias de 2 y 3. Observe que las columnas se alinean.

// Alinea columnas de datos.

#include <iostream>

using namespace std;

int main()
{

 cout << "Ra\u00a1z | Cuadrado | Cubo\n";
 for(int i = 1; i < 11; ++i) {
 cout.width(4);
 cout << i << " |";
 cout.width(9);
 cout << i * i << " |";
 cout.width(8);
 cout << i * i * i;
 cout << endl;
 }

 return 0;
}

Aquí se muestra la salida:

Raíz | Cuadrado | Cubo
 1 | 1 | 1
 2 | 4 | 8
 3 | 9 | 27
 4 | 16 | 64
 5 | 25 | 125

388 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 6 | 36 | 216
 7 | 49 | 343
 8 | 64 | 512
 9 | 81 | 729
 10 | 100 | 1000

Opciones
Hay formas sobrecargadas de width() y fi ll(), que se muestran aquí:

char fi ll() const

streamsize width() const

Estas formas obtienen, pero no cambian, la confi guración actual.
Otra manera de establecer un ancho de campo de un fl ujo y un carácter de relleno consiste

en usar los manipuladores de E/S setw() y setfi ll(). Se describen en Use manipuladores de E/S para
formar datos.

Justifi que la salida

Componentes clave

Encabezados Clases Funciones

<ios> ios_base fmtfl ags setf(fmtfl ags marcas)
fmtfl ags setf(fmtfl ags marcas1,marcas2)
adjustfi eld
internal
left
right

Por lo general, la salida se alinea a la derecha como opción predeterminada. Esto signifi ca que
cuando un ancho de campo excede el tamaño de los datos, se agrega relleno al principio del cam-
po para lograr el ancho deseado. (Consulte la solución anterior para conocer detalles sobre ancho
de campo y carácter de relleno.) Puede cambiar este comportamiento al establecer la marca de
formato left o internal. Puede regresar a la justifi cación a la derecha al establecer la marca right.
En esta solución se muestra el proceso.

Paso a paso
Para establecer la justifi cación se necesitan estos pasos:

1. Para dar salida justifi cada a la izquierda, limpie las marcas especifi cadas por adjustfi eld y

luego establezca la marca left.

2. Para dar salida justifi cada a la derecha, limpie las marcas especifi cadas por adjustfi eld y

luego establezca la marca right.

3. Para usar relleno interno para justifi car valores numéricos, limpie las marcas especifi cadas

por adjustfi eld y luego establezca la marca internal.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 389

Análisis
Hay tres marcas de formato que afectan a la justifi cación: right, left e internal. De manera colec-
tiva, puede hacer referencia a estas marcas con el valor adjustfi eld. En general, sólo una de estas
marcas debe establecerse a la vez. Por tanto, cuando se cambia el método de justifi cación, debe
habilitar la marca que quiera y asegurarse de que las otras dos marcas están deshabilitadas. Esto
se hace de manera fácil al usar la forma de dos argumentos setf() y el valor adjustfi eld. Verá un
ejemplo de esto en breve (consulte Acceda a las marcas de formato mediante funciones miembro de fl ujo
para conocer una descripción del establecimiento de las marcas de formato con setf()).

Como regla general, la salida está justifi cada a la derecha, como opción predeterminada. Esto
signifi ca que si el ancho de campo es más largo que los datos, el relleno se presentará a la izquier-
da de los datos. Por ejemplo, considere esta secuencia:

cout << 12345678 << endl;
cout.width(8);
cout << "prueba" << endl;

Producirá la siguiente salida:

12345678
 prueba

Cuando se da salida a la cadena "prueba" en un campo que tiene ocho caracteres de largo, se relle-
na con cuatro caracteres a la izquierda, como se muestra en la salida.

Para especifi car justifi cación a la izquierda, establecemos la marca de formato left, como se
muestra en esta secuencia:

cout.setf(ios::left, ios::adjustfield);
cout << 12345678 << endl;
cout.width(8);
cout << "prueba" << "|" << endl;

Produce esta salida:

12345678
prueba |

Como puede ver, el relleno se agrega a la derecha de los datos, en lugar de hacerlo a la izquierda.
Esto hace que los datos se alineen a la izquierda. Observe cómo la marca left está establecida para
usar la forma de dos argumentos de setf(). Primero limpia todas las marcas a las que hace referen-
cia adjustfi eld y luego establece la marca left. Esto asegura que sólo ésta quede establecida.

Cuando se da salida a datos numéricos, puede hacer que se añadan caracteres de relleno den-
tro de partes del formato al habilitar la marca internal. Por ejemplo, si habilita la marca showpos
(que causa que se muestre un signo + en valores positivos), entonces cualquier carácter de relleno
se presentará entre el signo + y los dígitos.

Ejemplo
En el siguiente programa se muestran las marcas de formato de justifi cación.

// Demuestra las marcas de formato left, right e internal.

#include <iostream>

using namespace std;

390 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 int main()
{

 // Usa el ancho predeterminado.
 cout << "Formato predeterminado.\n";
 cout << "|";
 cout << 123.45 << "|" << "\n\n";

 // Usa la justificación a la derecha predeterminada
 cout << "Justifica a la derecha en un campo con ancho de 12.\n";
 cout << "|";
 cout.width(12);
 cout << 123.45 << "|" << "\n\n";

 // Cambia a justificación a la izquierda.
 cout << "Justifica a la izquierda en un campo con ancho de 12.\n";
 cout.setf(ios::left, ios::adjustfield);
 cout << "|";
 cout.width(12);
 cout << 123.45 << "|" << "\n\n";

 // Habilita showpos, usa justificación a la izquierda.
 cout << "Habilitando la marca showpos.\n";
 cout.setf(ios::showpos);
 cout << "Justifica a la izquierda en un campo con ancho de 12, otra vez.\n";
 cout << "|";
 cout.width(12);
 cout << 123.45 << "|" << "\n\n";

 // Ahora, usa internal.
 cout << "Habilita la justificaci\u00a2n interna.\n";
 cout.setf(ios::internal, ios::adjustfield);
 cout << "Justificaci\u00a2n interna, en un campo con ancho de 12.\n";
 cout << "|";
 cout.width(12);
 cout << 123.45 << "|" << endl;

 return 0;
}

Aquí se muestra la salida:

Formato predeterminado.
|123.45|

Justifica a la derecha en un campo con ancho de 12.
| 123.45|

Justifica a la izquierda en un campo con ancho de 12.
|123.45 |

Habilitando la marca showpos.
Justifica a la izquierda en un campo con ancho de 12, otra vez.
|+123.45 |

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 391

Habilita la justificación interna.
Justificación interna, en un campo con ancho de 12.
|+ 123.45|

Opciones
Puede establecer el modo de justifi cación mediante el uso de los manipuladores de E/S left, right
e internal. Se describen en Use los manipuladores de E/S para formar datos.

Use los manipuladores de E/S para formar datos

Componentes clave

Encabezados Clases Funciones

<ios> endl
fi xed
left
right
scientifi c
showpoint
showpos

<iomanip> resetiosfl ags(ios_base::fmtfl ags marcas)
setprecision(int prec)
setw(int a)

C++ combina un conjunto extenso de manipuladores de E/S que le permiten incrustar directivas
de formato en una expresión de E/S. Los manipuladores se usan para establecer o limpiar las
marcas de formato relacionadas con un fl ujo. También le permiten especifi car el ancho de cam-
po, la precisión y el carácter de relleno. Por tanto, duplican la funcionalidad proporcionada por
las funciones miembro del fl ujo, proporcionando una opción conveniente que le permite escribir
código más compacto.

Hay varios manipuladores diferentes defi nidos por C++. En esta solución se presenta cómo
usar una muestra representativa. Debido a que todos los manipuladores trabajan del mismo modo
básico, las técnicas presentadas aquí se aplican a todos los manipuladores.

392 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Paso a paso
Para usar un manipulador de E/S se requieren estos pasos:

1. Para usar un manipulador con parámetros, incluya el encabezado <iomanip>. Casi todos

los manipuladores con parámetros están defi nidos por <ios>, que suele incluirse con otro

encabezado de E/S, como <iostream>.

2. Para invocar a un manipulador, incruste su nombre dentro de la expresión de salida. Si el

manipulador toma un argumento, entonces especifi que ese argumento entre paréntesis.

De otra manera, simplemente use el nombre del manipulador sin paréntesis.

Análisis
Hay dos tipos básicos de manipuladores de E/S: con parámetros y sin parámetros. Empezaremos
con los segundos. Aquí se muestran los manipuladores sin parámetros que operan en fl ujos de
salida:

Manipulador Propósito

boolalpha Habilita la marca boolalpha.

endl Da salida a una nueva línea.

ends Da salida a null.

dec Habilita la marca dec. Deshabilita las marcas hex y oct.

fi xed Habilita la marca fi xed. Deshabilita la marca scientifi c.

fl ush Limpia el fl ujo.

hex Habilita la marca hex. Deshabilita las marcas dec y oct.

internal Habilita la marca internal. Deshabilita las marcas left y right.

left Habilita la marca left. Deshabilita las marcas right e internal.

nobootalpha Deshabilita la marca noboolalpha.

noshowbase Deshabilita la marca noshowbase.

noshowpoint Deshabilita la marca noshowpoint.

noshowpos Deshabilita la marca noshowpos.

nounitbuf Deshabilita la marca nounitbuf.

nouppercase Deshabilita la marca nouppercase.

oct Habilita la marca oct. Deshabilita las marcas dec y hex.

right Habilita la marca right. Deshabilita las marcas left e internal.

scientifi c Habilita la marca scientifi c. Deshabilita la marca fi xed.

showbase Habilita la marca showbase.

showpoint Habilita la marca showpoint.

showpos Habilita la marca showpos.

unitbuf Habilita la marca unitbuf.

uppercase Habilita la marca uppercase.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 393

Casi todos los manipuladores están declarados en el encabezado <ios> (que se incluye automáti-
camente en otros encabezados, como <iostream>). Sin embargo, endl, ends y fl ush se declaran en
<iostream>.

Los manipuladores de salida sin parámetros controlan el establecimiento de las diversas mar-
cas de formato. Por ejemplo, para habilitar la marca showpoint, se usa el manipulador showpoint.
Para deshabilitar esta marca, se usa el noshowpoint. Observe que los manipuladores que contro-
lan la base del número, la justifi cación y el formato de punto fl otante seleccionan automáticamente
el formato especifi cado, deshabilitando las otras marcas del grupo. Por ejemplo, el manipulador
hex habilita automáticamente la marca hex y deshabilita las marcas dec y oct. Por tanto, para se-
leccionar salida hexadecimal, simplemente debe incluir el manipulador hex. Las marcas dec y oct
se limpian automáticamente.

Para usar un manipulador con parámetros, debe incluir <iomanip>. Defi ne los siguientes
manipuladores:

resetiosfl ags(ios_base::fmtfl ags m) Deshabilita las marcas especifi cadas en m.

setbase (int base) Establece la base del número en base.

setfi ll(int car) Establece el carácter de relleno en car.

setiosfl ags(ios_base::fmtfl ags m) Habilita las marcas especifi cadas en m.

setprecision(int p) Establece el número de dígitos de precisión.

setw(int a) Establece el ancho de campo en a.

Por ejemplo, para establecer el ancho de campo en 20, incruste setw(20) en la expresión de salida.
Como en el caso con la función width(), setw afecta sólo al ancho del siguiente elemento al que
habrá de darse salida. Puede usar setiosfl ags() y resetiosfl ags() para establecer o limpiar cualquier
combinación arbitraria de marcas.

Los manipuladores de E/S están incrustados en una expresión de E/S. Por ejemplo:

cout << setprecision(8) << left << 123.23;

Esto establece la precisión en 8, habilita la marca de justifi cación a la izquierda y luego da salida al
número 123.23.

Aunque los manipuladores proporcionan la misma funcionalidad que las funciones miembro
setf(), unsetf(), width(), precision() y fi ll() descritas en las soluciones anteriores, lo hacen de ma-
nera más defi nida. Por ejemplo, considere esta expresión:

cout << setw(12) << fixed << showpos << 98.6 << setw(10) << avg;

En una sola línea, establece el ancho de campo en 12, habilita las marcas fi xed y showpos y luego
da salida al número 98.6. En seguida, establece el ancho de campo en 10 y da salida al valor de
avg. El mismo resultado puede obtenerse al usar las funciones miembro de fl ujo, pero de forma
menos compacta:

cout.width(12);
cout.setf(ios::fixed, ios::floatfield);
cout.setf(showpos);
cout << 98.6;
cout.width(10);
cout << avg;

394 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Ejemplo
En el siguiente ejemplo se muestran varios de los manipuladores de E/S en acción:

// Demuestra varios manipuladores de E/S.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{
 cout << "Formato predeterminado: " << 123.123456789 << endl;

 cout << "Formato fijo con precisi\u00a2n de 7: ";
 cout << setprecision(7) << fixed << 123.123456789 << endl;

 cout << "Formato cient\u00a1fico con precisi\u00a2n de 7: ";
 cout << scientific << 123.123456789 << endl;

 cout << "Regresa al formato predeterminado: ";
 cout << resetiosflags(ios::floatfield) << setprecision(6)
 << 123.123456789 << "\n\n";

 cout << "Usa un ancho de campo de 20:\n";
 cout << "|" << setw(20) << "Probando" << "|\n\n";
 cout << "Usa un ancho de campo de 20 con justificaci\u00a2n a la izquierda:\n";
 cout << "|" << setw(20) << left << "Probando" << "|\n\n";

 cout << "Regresando a la justificaci\u00a2n a la derecha.\n\n" << right;

 cout << "Booleanos en ambos formatos: ";
 cout << true << " " << false << " " << boolalpha
 << true << " " << false << "\n\n";

 cout << "Predeterminado: " << 10.0 << endl;
 cout << "Tras establecer las marcas showpos y showpoint: ";
 cout << showpos << showpoint << 10.0 << "\n\n";

 cout << "El manipulador setw es muy \u00a3til cuando deben especificarse\n"
 << "anchos de campo repetidos. Por ejemplo:\n";
 cout << setw(8) << "He" << endl << setw(8) << "aqu\u00a1" << endl
 << setw(8) << "una" << endl << setw(8) << "columna" << endl
 << setw(8) << "de" << endl << setw(8) << "palabras";

 return 0;
}

Aquí se muestra la salida:

Formato predeterminado: 123.123
Formato fijo con precisión de 7: 123.1234568
Formato científico con precisión de 7: 1.2312346e+002
Regresa al formato predeterminado: 123.123

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 395

Usa un ancho de campo de 20:
| Probando|

Usa un ancho de campo de 20 con justificación a la izquierda:
|Probando |

Regresando a la justificación a la derecha.

Booleanos en ambos formatos: 1 0 true false

Predeterminado: 10
Tras establecer las marcas showpos y showpoint: +10.0000

El manipulador setw es muy útil cuando deben especificarse
anchos de campo repetidos. Por ejemplo:
 He
 aquí
 una
 columna
 de
palabras

Opciones
Puede establecer las marcas de formato al hacer llamadas específi cas a setf() en el fl ujo. Puede
establecer el ancho, la precisión y el carácter de relleno al llamar a width(), precision() y fi ll() en el
fl ujo. Este método se describió en las soluciones anteriores.

Tiene la opción de crear sus propios manipuladores. Las técnicas necesarias para hacerlo se
describen en el capítulo 5.

Forme valores numéricos para una confi guración regional y de idioma

Componentes clave

Encabezados Clases Funciones

<ios> ios_base locale imbue(const &locale nuevoloc)

<locale> locale

Cuando se da salida a un fl ujo con valores numéricos, están formados automáticamente con la fa-
ceta num_put defi nida por la confi guración regional y de idioma actual del fl ujo. Por tanto, es fácil
formar un valor numérico para una confi guración específi ca: simplemente cambie la confi guración
del fl ujo por el deseado. La faceta num_put para la nueva confi guración se usará automáticamen-
te. En esta solución se muestra el proceso.

396 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Paso a paso
Para formar números en relación con una confi guración regional y de idioma específi ca se necesi-
tan estos pasos:

1. Cree un objeto de locale que representa la confi guración regional y de idioma deseada.

2. Asigne la confi guración del fl ujo creada en el paso 1 al llamar a imbue().

Análisis
Las instrucciones para establecer una confi guración regional y de idioma del fl ujo se presentan en
Obtenga o establezca una confi guración regional y de idioma de fl ujo, en el capítulo 5. Aquí se presenta
un resumen.

La confi guración actual defi ne varios aspectos de un formato numérico, incluidos los carac-
teres usados para el punto decimal y el separador de miles. Como regla general, la confi guración
predeterminada es "C". Esta confi guración regional defi ne un entorno estándar C/C++, que usa el
punto como punto decimal y proporciona escasas opciones adicionales de formato. En el caso de
muchas aplicaciones, la confi guración predeterminada es adecuada. Sin embargo, en casos en que
quiera que se desplieguen valores numéricos en un formato compatible con la confi guración regio-
nal y de idioma del usuario, necesitará especifi carla de manera explícita.

Una manera de construir una instancia de locale consiste en usar este constructor:

explicit locale(const char *nombre)

Aquí, nombre especifi ca el nombre de la confi guración regional y de idioma, como German, Spa-
nish_Spain o US. Si nombre no representa una confi guración válida, entonces se lanza la excepción
runtime_error. Lo que constituye un nombre válido de confi guración puede variar (y segura-
mente lo hará) entre compiladores. Los ejemplos mostrados en este libro funcionan con Microsoft
Visual C++ y tal vez funcionarán con otros compiladores, pero debe consultar la documentación
de su compilador para conocer más detalles.

Para establecer la confi guración regional y de idioma del fl ujo, llame a imbue() en el fl ujo.
Aquí se muestra:

locale imbue(const locale &nuevoloc)

La confi guración del fl ujo que invoca se establece en nuevoloc, y se devuelve el anterior.

Ejemplo
En el siguiente ejemplo se muestra la manera en que diferentes confi guraciones regionales y de
idioma afectan al formato de los números. El programa empieza por desplegar un valor en el
formato predeterminado (que suele determinarse mediante la confi guración regional y de idioma
de C). Luego especifi ca la confi guración English, y despliega el mismo valor. Por último, usa la
confi guración Spanish_Spain. Observe que en English, el separador de miles es la coma y el punto
decimal es un punto. En Spanish_Sapin, esto es al revés: el separador de miles es el punto y el
punto decimal es la coma. Además, tome nota de que están establecidas la precisión y la marca
fi xed, pero no se ven afectadas por la confi guración regional y de idioma.

// Formato de valores numéricos con una configuración regional
// y de idioma específica.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 397

#include <iostream>
#include <locale>
#include <iomanip>

using namespace std;

int main()
{
 // Usa un formato fijo con 2 lugares decimales.
 cout << fixed << setprecision(2);

 cout << "Formato predeterminado: " << 12345678.12 << "\n\n";

 // Establece la configuración regional y de idioma en English.
 locale eloc("English");
 cout.imbue(eloc);

 cout << "Formato English: " << 12345678.12 << "\n\n";

 locale sloc("Spanish_Spain");
 cout.imbue(sloc);

 cout << "Formato Spanish: " << 12345678.12 << "\n\n";
 return 0;
}

Aquí se muestra la salida:

Formato predeterminado: 12345678.12

Formato English: 12,345,678.12

Formato Spanish: 12.345.678,12

Opciones
Tiene la opción de formar valores numéricos en un formato monetario al usar la faceta money_
put. Usa automáticamente la confi guración regional y de idioma actual. Consulte Forme valores
monetarios usando la faceta money_put para conocer más detalles.

Aunque en el ejemplo anterior, y en muchos de los ejemplos de este capítulo, se usa cout como
fl ujo de destino, el mismo método básico funciona con todos los fl ujos de salida. Por ejemplo, la si-
guiente secuencia crea un ofstream llamado archsalida y lo conecta con un archivo llamado prueba.
dat. Luego habilita la marca fi xed y establece la precisión en 2. A continuación, establece la confi gu-
ración regional y de idioma en Spanish_Spain. Por último, da salida a 12345678.12 a archsalida.

ofstream archsalida("prueba.dat");
archsalida.imbue(locale("Spanish_Spain"));
archsalida << fixed << setprecision(2);
archsalida << 12345678.12;

Después de que se ejecute esta secuencia, prueba.dat contendrá lo siguiente:

12.345.678,12

Como observará, está formado para español de España.
Aunque el uso del operador de E/S << es la manera más fácil (y, con frecuencia, la mejor) para

formar salida numérica, puede usar directamente la faceta money_put. Esto se hace al obtener

398 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

primero una referencia a la faceta num_put para la confi guración regional y de idioma actual al
llamar a use_facet(), que se describe en Revisión general de las facetas, casi al principio de este capí-
tulo. Luego, usando esta referencia, llame a put() para formar un valor y darle salida a un fl ujo.

La faceta num_put se declara así:

template <class CharT, class OutItr = ostreambuf_iterator<CharT> >
 class num_put : public locale::facet { // ...

CharT especifi ca el tipo de caracteres sobre el que se opera. OutItr especifi ca el tipo de iterador que se
utiliza para escribir datos formados. Observe que la opción predeterminada es ostreambuf_iterator.

La función put() defi nida por num_put tiene varias versiones. He aquí una. Forma un valor
double:

iter_type put(iter_type itr_fl ujo, ios_base &fl ujo,
 char_type carrelleno, double val) const

Un iterador al fl ujo de salida se pasa en itr_fl ujo. El tipo iter_type es un typedef para el tipo de ite-
rador. Como opción predeterminada, tipo es ostreambuf_iterator. Hay una conversión automática
a este tipo desde cualquier objeto de basic_ostream, de modo que, por lo general, simplemente
pasará el fl ujo sobre el que se está actuando. Se pasa una referencia al fl ujo de salida en fl ujo. Sus
confi guraciones de marca, precisión y ancho se usan para determinar el formato. El carácter de
relleno se pasa en carrelleno. El valor que habrá de formarse se pasa en val.

Al unir todas las piezas, la siguiente secuencia utiliza num_put para desplegar el número
1024.256 en formato fi jo, con una precisión de 2 y un ancho de 20, en la confi guración regional y de
idioma actual.

cout << fixed << setprecision(2) << setw(20);
const num_put<char> &np = use_facet<num_put<char> >(cout.getloc());
np.put(cout, cout,1 1, 1024.256);

Como observará, esto requiere mucho más esfuerzo que cuando se usa el operador << y no se
gana nada con eso.

Tiene la opción de leer un número de manera sensible a la confi guración regional y de idioma
utilizando num_get. Defi ne la función get() que lee un número en su forma de fl ujo.

Forme valores monetarios empleando la faceta money_put

Componentes clave

Encabezados Clases Funciones

<ios> ios_base locale getloc() const
<ios> ios locale imbue(const &locale nuevoloc)
<locale> locale template <class facet>

 const Facet &use_facet(const locale &loc)
<locale> money_put iter_type put(iter_type itr_fl ujo,

 bool sim_mon_int,
 ios_base &fl ujo,
 char_type carrelleno,
 long double val) const

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 399

En cuanto a la formación, tal vez la pregunta de tipo "¿Cómo hacer?" más frecuente sea "¿Cómo
despliego valores monetarios?". Debido a que el formato numérico predeterminado no está dise-
ñado para este fi n, el método apropiado es fuente de mucha confusión. Por fortuna, la solución es
muy simple: use la faceta money_put defi nida por la biblioteca de localización de C++. Al hacerlo
así, se produce automáticamente el formato correcto para la confi guración regional y de idioma
actual. En esta solución se muestra el proceso.

Paso a paso
Para desplegar un valor monetario mediante la faceta money_put se necesitan estos pasos:

1. Construya un objeto de locale que represente la confi guración regional y de idioma con

que se formará el valor monetario.

2. Establezca la confi guración al llamar a imbue() en el fl ujo que estará recibiendo la salida

formada. Pase imbue() al objeto de locale del paso 1.

3. Obtenga la faceta money_put al llamar a use_facet(), especifi cando la confi guración

regional y de idioma de la que obtendrá la faceta. En general, será la confi guración actual

empleada por el fl ujo de salida. Puede obtenerla al llamar a getloc() en el fl ujo.

4. Forme los datos al llamar a put() en el objeto devuelto por use_facet(), especifi cando el

fl ujo en que se escribirá la salida.

Análisis
Una revisión general del subsistema de localización de C++ se presentó cerca del principio de este
capítulo. Las funciones imbue() y getloc() se describieron en Obtenga o establezca la confi guración regio-
nal y de idioma de un fl ujo, en el capítulo 5. También se presentó un resumen del método imbue() en la
solución anterior. Recuerde que imbue() establece la confi guración regional y de idioma de un fl ujo.

La faceta money_put se declara como se muestra a continuación:

template <class CharT, class OutItr = ostreambuf_iterator<CharT> >
 class money_put : public locale::facet { // ...

CharT especifi ca el tipo de caracteres sobre los que se opera. OutItr especifi ca el tipo de iterador
que se utiliza para escribir datos formados. Observe que la opción predeterminada es ostream-
buf_iterator.

Para obtener la faceta money_put, debe llamar a use_facet(). Esta función se describió en Re-
visión general de las facetas, casi al principio de este capítulo. Recuerde que es una función genérica
global defi nida por <locale>, con el siguiente prototipo:

template <class Facet> const Facet &use_facet(const locale &loc)

El parámetro de la plantilla Facet especifi ca la faceta, que será money_put en este caso. La con-
fi guración regional y de idioma se pasa mediante loc. Se devuelve una referencia a la faceta. Por
tanto, use_facet() obtiene una versión específi ca de la faceta adecuada para la confi guración. Se
lanza una excepción bad_cast si la faceta deseada no está disponible. En general, las facetas prede-
fi nidas, incluida money_put, estarán disponibles.

Por lo general, la instancia de locale pasada a use_facet() será la usada por el fl ujo de salida al
que se aplicará la faceta. Puede obtener la confi guración regional y de idioma actual de un fl ujo
al llamar a getloc() en el fl ujo. Aquí se muestra cómo:

locale getloc() const

400 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Devuelve el objeto de locale asociado con el fl ujo.
Con el uso de la faceta devuelta por use_facet(), puede formar un valor monetario al llamar a

put(). Tiene dos formas. Aquí se muestra la usada en esta solución:

iter_type put(iter_type itr_fl ujo, bool sim_mon_int, ios_base &fl ujo,
 char_type carrelleno, long double val) const

En itr_fl ujo se pasa un iterador al fl ujo de salida. El tipo itr_type es un typedef para el tipo de
iterador. Como opción predeterminada, este tipo es ostreambuf_iterator. Se hace una conversión au-
tomática a este tipo desde cualquier objeto de basic_ostream, de modo que por lo general pasará el
fl ujo sobre el que se actuará. Si el símbolo monetario habrá de mostrarse en su forma internacional,
pase true a sim_mon_int. Pase false para usar el símbolo local. Pase una referencia al fl ujo de salida en
fl ujo. Si está establecida una marca showbase, entonces se mostrará el símbolo monetario. El carác-
ter de relleno se pasa en charrelleno. El valor que habrá de formarse se pasa en val. La función put()
devuelve un iterador que señala una posición después del último carácter al que se da salida.

La única peculiaridad asociada con money_put es que opera sobre datos que no contienen un
punto decimal. Por ejemplo, el valor 1724.89 se pasa a put() como 172489. El formador monetario
agrega la coma y el punto decimal. Para el caso de dólares estadounidenses, se transforma en
1,724.89. Si ha habilitado el símbolo monetario doméstico, entonces el resultado es $1,724.89.

Ejemplo
En el siguiente ejemplo se muestra cómo usar money_put.

// Usa money_put para dar salida a valores monetarios.

#include <iostream>
#include <locale>

using namespace std;

int main()
{
 double saldo = 5467.87;

 locale euloc("English_US");
 locale sloc("Spanish_Spain");

 // Establece la marca showbase para desplegar el símbolo monetario.
 cout << showbase;

 cout << "Formato monetario para d\u00a2lares de Estados Unidos:\n";
 cout.imbue(euloc);
 const money_put<char> &mon_eu =
 use_facet<money_put<char> >(cout.getloc());

 mon_eu.put(cout, false, cout, ' ', "123456");
 cout << endl;
 mon_eu.put(cout, true, cout, ' ', -299);
 cout << endl;
 mon_eu.put(cout, false, cout, ' ', saldo * 100);
 cout << "\n\n";

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 401

 cout << "Ahora muestra el monto en el formato internacional Spanish_Spain:\n";
 cout.imbue(sloc);
 const money_put<char> &mon_s =
 use_facet<money_put<char> >(cout.getloc());

 mon_s.put(cout, true, cout, ' ', 123456);
 cout << endl;
 mon_s.put(cout, true, cout, ' ', -299);
 cout << endl;
 mon_s.put(cout, true, cout, ' ', saldo * 100);

 return 0;
}

Aquí se muestra la salida:

Formato monetario para dólares de Estados Unidos:
$1,234.56
USD-2.99
$5,467.87

Ahora muestra el monto en el formato internacional Spanish_Spain:
EUR1.234,56
EUR-2,99
EUR5.467,87

Opciones
Hay una segunda forma de put() que da formato a una versión de cadena del valor. Se muestra a
continuación:

iter_type put(iter_type itr_fl ujo, bool sim_mon_int, ios_base &marcasfl ujo,
 char_type carrelleno, long double valcad) const

Funciona igual que la primera versión, excepto que el valor que habrá de formarse se pasa como
una cadena en valcad.

Como se explicó, si solicita una faceta que no está disponible, entonces se lanza una excepción
bad_cast. Para evitar esta posibilidad, puede determinar si una faceta está disponible para una
confi guración regional y de idioma dada al llamar a has_facet(). Se trata de una función de planti-
lla global defi nida por <locale>. Aquí se muestra:

template <class facet> bool has_facet(const locale &loc) throw()

Devuelve true si la faceta especifi cada está disponible y false, de lo contrario. En general, las face-
tas estándar siempre estarán disponibles, pero es probable que las personalizadas no lo estén. En
cualquier caso, tal vez quiera usar has_facet() para confi rmar que puede usarse una faceta.
Al hacerlo así puede evitar una excepción.

Tiene la opción de leer valores monetarios formados al usar la faceta money_get. Defi ne la
función get(), que lee un valor monetario en su forma de cadena.

402 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use las facetas moneypunct y numpunct

Componentes clave

Encabezados Clases Funciones

<locale> moneypunct string_type cur_symbol() const
char_type decimal_point() const
int frac_digits() const
char_type thousands_sep() const
string grouping() const

<locale> numpunct char_type decimal_point() const
char_type thousands_sep() const
string grouping() const

Aunque la formación de valores numéricos mediante num_put y de valores monetarios mediante
money_put suele ser la mejor opción, tiene la opción de tomar el control del proceso, si lo desea. La
clave está en obtener los signos de puntuación y las reglas usadas para formar valores monetarios
y numéricos relacionados con una confi guración regional y de idioma. Estos signos de puntuación
son el símbolo monetario, el separador de miles y el punto decimal. Las reglas son el número de
dígitos fraccionales desplegados y el número de dígitos en un grupo. Ambos están disponibles
mediante las facetas moneypunct y numpunct. En esta solución se muestra cómo obtenerlas.

Paso a paso
Para usar la faceta numpunct se necesitan estos pasos:

1. Obtenga la faceta numpunct para una confi guración regional y de idioma específi ca al

llamar a use_facet(). Utilice esta faceta para obtener la puntuación numérica y las reglas de

la confi guración, como se describe en los pasos siguientes.

2. Obtenga el carácter de punto decimal al llamar a decimal_point().

3. Obtenga el separador de miles al llamar a thousands_sep().

4. Obtenga la regla que determina la agrupación de dígitos al llamar a grouping().

Para usar la faceta moneypunct se necesitan estos pasos:

1. Obtenga la faceta moneypunct para una confi guración regional y de idioma específi ca al

llamar a use_facet(). Utilice esta faceta para obtener la puntuación numérica y las reglas de

la confi guración, como se describe en los pasos siguientes.

2. Obtenga el símbolo de moneda al llamar a cur_symbol().

3. Obtenga el carácter de punto decimal al llamar a decimal_point().

4. Obtenga el separador de miles al llamar a thousands_sep().

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 403

5. Obtenga el número de dígitos fraccionales usados para representar valores monetarios

al llamar a frac_digits().

6. Obtenga la regla que determina la agrupación de dígitos al llamar a grouping().

Análisis
Los signos de puntuación y las reglas para valores numéricos están encapsulados dentro de la
faceta numpunct. Se declara como se muestra a continuación:

template <class CharT> class numpunct : public locale::facet { // ...

CharT especifi ca el tipo de caracteres sobre el que se operará. Como todas las facetas, hereda
locale::facet.

Puede obtener una referencia a una faceta numpunct al llamar a use_facet(), especifi cando
numpunct como la faceta que habrá de obtenerse. La función use_facet() está defi nida global-
mente por <locale>, como se describió en Revisión general de las facetas. En la siguiente secuencia
se muestra cómo usarla para obtener una faceta numpunct para la confi guración regional y de
idioma usada por cout:

const numpunct<char> &numpunct = use_facet<numpunct<char> >(cout.getloc());

Dada una referencia a la faceta numpunct, puede obtener los diversos signos de puntuación
y las reglas que se relacionan con valores numéricos. Cada valor está modifi cado de acuerdo con
la confi guración regional y de idioma de la faceta. Estos elementos están disponibles mediante
funciones. A continuación se muestran las usadas en esta solución:

Función Descripción

char_type decimal_point() const Devuelve el carácter usado como punto decimal.

char_type thousands_sep() const Devuelve el carácter usado para separar (es decir,
agrupar) miles.

string grouping() const Devuelve las reglas que defi nen las agrupaciones de
dígitos.

Aquí, char_type es una typedef para el tipo de carácter, que será char para fl ujos de char.
Los signos de puntuación y las reglas para valores monetarios están encapsulados dentro de la

faceta moneypunct. Se declara como se muestra a continuación:

template <class CharT, bool Intl = false>
 class moneypunct : public locale::facet, public money_base { // ...

CharT especifi ca el tipo de caracteres sobre el que se operará. El tipo Intl indica si se usarán for-
matos internacionales o locales. La opción predeterminada es local. Como todas las facetas, hereda
locale::facet. La clase money_base defi ne aspectos de los formatos monetarios que son dependien-
tes de los parámetros de tipo. Se describen más a fondo en la secuencia Opciones de esta solución.

Como en el caso de numpunct, se obtiene una referencia a moneypunct al llamar a use_facet().
He aquí un ejemplo:

const moneypunct<char> &us_moneypunct = use_facet<moneypunct<char>
>(cout.getloc());

Esta instrucción obtiene la faceta moneypunct para la confi guración regional y de idioma de cout.

404 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Dada una referencia a la faceta moneypunct, puede obtener los diversos signos de puntuación
y las reglas que se relacionan con valores numéricos al llamar a funciones mediante la referencia.
Cada valor está modifi cado de acuerdo con la confi guración regional y de idioma de la faceta.
Aquí se muestran las usadas en esta solución:

Función Descripción

string_type cur_symbol() const Devuelve el carácter o los caracteres usados como
símbolo monetario.

char_type decimal_point() const Devuelve el carácter usado como punto decimal.

int frac_digits() const Devuelve el número de dígitos fraccionales que suelen
desplegarse para valores monetarios.

char_type thousands_sep() const Devuelve el carácter usado para separar (es decir,
agrupar) miles.

string grouping() const Devuelve las reglas que defi nen las agrupaciones de
dígitos.

Aquí, char_type es una typedef para el tipo de carácter, que será char para fl ujos de char y string_
type es un typedef para el tipo de string, que será string para los fl ujos de char.

El valor devuelto por grouping() es el mismo para numpunct y moneypunct. Es un valor de
cadena en que el valor de unicode de cada carácter representa el número de dígitos en un grupo,
yendo de derecha a izquierda, y empezando con el primer grupo a la izquierda del punto decimal.
Si el tamaño del grupo no está especifi cado, se utiliza el tamaño del grupo anterior. Por tanto, si
todos los tamaños son iguales, entonces sólo se especifi cará un valor. Recuerde que el que se usa es
el valor de unicode del carácter, no su dígito legible para los seres humanos. Por tanto, el carácter
'\003' (no '3') representa tres dígitos.

Ejemplo
En el siguiente ejemplo se muestra cómo usar moneypunct y numpunct para obtener los signos
de puntuación y las reglas de agrupamiento para Estados Unidos:

// Demuestra signos de puntuación y agrupaciones monetarias y numéricas.

#include <iostream>
#include <locale>

using namespace std;

int main()
{
 // Crea una configuración regional y de idioma para US English.
 locale usloc("English_US");

 // Establece la configuración regional y de idioma para US English.
 cout.imbue(usloc);

 // Obtiene una faceta moneypunct para cout.
 const moneypunct<char> &us_monpunct =
 use_facet<moneypunct<char> >(cout.getloc());

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 405

 cout << "Puntuaci\u00a2n monetaria para EU:\n";
 cout << " S\u00a1mbolo de moneda: " << us_monpunct.curr_symbol() << endl;
 cout << " Punto decimal: " << us_monpunct.decimal_point() << endl;
 cout << " Separador de miles: " << us_monpunct.thousands_sep() << endl;
 cout << " D\u00a1gitos de fracci\u00a2n: " << us_monpunct.frac_digits() << endl;

 cout << " N\u00a3mero de reglas de agrupaci\u00a2n: "
 << us_monpunct.grouping().size() << endl;

 for(unsigned i=0; i < us_monpunct.grouping().size(); ++i)
 cout << " Tama\u00a4o del grupo " << i << ": "
 << (int)us_monpunct.grouping()[0] << endl;

 cout << endl;

 // Obtiene una faceta numpunct para cout.
 const numpunct<char> &us_numpunct =
 use_facet<numpunct<char> >(cout.getloc());

 cout << "Puntuaci\u00a2n de n\u00a3meros para EU:\n";
 cout << " Punto decimal: " << us_monpunct.decimal_point() << endl;
 cout << " Separador de miles: " << us_monpunct.thousands_sep() << endl;

 cout << " N\u00a3mero de reglas de agrupaci\u00a2n: "
 << us_monpunct.grouping().size() << endl;

 for(unsigned i=0; i < us_monpunct.grouping().size(); ++i)
 cout << " Tama\u00a4o del grupo " << i << ": "
 << (int)us_monpunct.grouping()[0] << endl;

 return 0;
}

Aquí se muestra la salida:

Puntuación monetaria para EU:
 Símbolo de moneda: $
 Punto decimal: .
 Separador de miles: ,
 Dígitos de fracción: 2
 Número de reglas de agrupación: 1
 Tamaño del grupo 0: 3

Puntuación de números para EU:
 Punto decimal: .
 Separador de miles: ,
 Número de reglas de agrupación: 1
 Tamaño del grupo 0: 3

Opciones
La faceta numpunct defi ne las funciones truename() y falsename(), que se muestran a continuación:

string_type truename() const

string_type falsename() const

406 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Devuelven los nombres para true y false en relación con la confi guración regional y de idioma
especifi cada.

La faceta moneypunct le permite obtener los signos usados para indicar valores monetarios posi-
tivos y negativos al llamar a las funciones positive_sign() y negative_sign(), que se muestran aquí:

string_type positive_sign() const

string_type negative_sign() const

Observe que se devuelve una cadena, en lugar de un solo carácter. Esto permite el uso de varios
signos.

Con moneypunct, también puede obtener patrones que representan los formatos positivos y
negativos al llamar a pos_format() y neg_format(), respectivamente. Aquí se muestran:

pattern pos_format() const

pattern neg_format() const

Cada uno devuelve un objeto de pattern que describe el formato indicado.
El tipo pattern es una struct defi nida dentro de la clase money_base. Ésta es una clase de base

para moneypunct. Aquí se muestra:

class money_base {
public:
 enum part { none, space, symbol, sign, value };
 struct pattern {
 char field[4];
 };
};

Cada elemento de fi eld contiene un valor part. (El C++ estándar establece que se usa una matriz de
char, en lugar de una de part, con fi eld "simplemente para obtener mayor efi ciencia".) Cada elemen-
to de pattern indica cuál parte del formato monetario debe aparecer en ese punto, donde la primera
parte es fi eld[0], la segunda fi eld[1], etc. He aquí lo que signifi ca la enumeración de constantes:

none No hay una salida correspondiente.

space Un espacio.

symbol El símbolo de moneda.

sign El signo positivo o negativo.

value El valor.

Por ejemplo, suponiendo el programa anterior, la siguiente secuencia despliega el patrón negativo:

// Muestra el patrón numérico negativo.
for(int i=0; i < 4; ++i)
 switch(us_monpunct.neg_format().field[i]) {
 case money_base::none: cout << "ninguno ";
 break;
 case money_base::value: cout << "valor ";
 break;
 case money_base::space: cout << "espacio ";
 break;

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 407

 case money_base::symbol: cout << "s\u00a1mbolo ";
 break;
 case money_base::sign: cout << "signo ";
 break;
 }

Produce la siguiente salida:

signo símbolo valor ninguno

Esto indica que un valor monetario negativo empieza con un signo, seguido por el símbolo de
moneda y por último el valor.

Forme la fecha y hora con la faceta time_put

Componentes clave

Encabezados Clases Funciones

<ctime> struct tm &localtime(const time_t *hora)
time_t time(time_t *apt_h)

<ios> ios_base locale getloc() const

<ios> ios locale imbue(const &locale nuevoloc)

<locale> locale template <class Facet>
 const Facet &use_face(const locale &loc)

<locale> time_put iter_type put(iter_type itr_fl ujo,
 ios_base &no_usado,
 char_type carrelleno,
 const tm *h,
 const char_type *inicio_patron,
 const char_type *fi nal_patrón) const

Si "¿Cómo despliego valores monetarios?" es la pregunta de formato más frecuente, la que le sigue
en frecuencia es "¿Cómo despliego la hora y la fecha?" Aunque el concepto es fácil, la formación de
la hora y la fecha requiere más trabajo del que podría pensar al principio. El problema es doble. En
primer lugar, los formatos de fecha y hora son sensibles a la confi guración regional y de idioma.
Por tanto, no hay un formato universal que funcionará en todos los casos. En segundo lugar, la
hora y la fecha pueden desplegarse de muchas maneras. Como resultado, hay muchas opciones
para elegir.

408 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En general, hay dos maneras de formar la fecha y la hora usando C++. La primera consiste en
llamar a la función strftime() de C. Forma la fecha y la hora con base en la confi guración regional y
de idioma global. (Consulte Forme la fecha y la hora usando strftime() para conocer más detalles.) El
segundo método está defi nido por C++ y emplea la faceta time_put defi nida por el subsistema de
localización. El uso de time_put ofrece una ventaja principal: le permite formar la fecha y la hora
de acuerdo con la confi guración regional y de idioma de un fl ujo específi co, en lugar de aplicar la
confi guración global usada por strftime(). También está integrada con otras facetas de formación de
C++, como money_put. Por eso, la formación de la fecha y la hora usando time_put es el método
recomendado para casi todas las aplicaciones. En esta solución se muestra cómo ponerla en acción.

Paso a paso
Para formar la fecha y la hora usando la faceta time_put se necesitan estos pasos:

1. Construya un objeto de locale que representa la confi guración regional y de idioma para la

que se han formado la fecha y la hora.

2. Establezca la confi guración al llamar a imbue() en el fl ujo que estará recibiendo la salida

formada. Pase imbue() al objeto de locale del paso 1.

3. Obtenga la faceta time_put al llamar a use_facet(), especifi cando la confi guración regional

y de idioma de la que se obtendrá la faceta. En general, será la confi guración actual usada

por el fl ujo de salida. Puede obtenerlo al llamar a getloc() en el fl ujo.

4. Obtenga el apuntador tm que señala a la hora que se formará. Una manera de obtenerlo

consiste en llamar a localtime(). Devuelve la hora local proporcionada por el equipo.

5. Forme la fecha y la hora al llamar a put() en el objeto devuelto por use_facet(),

especifi cando el fl ujo al que se escribirá la salida.

Análisis
Una revisión general del subsistema de localización de C++ se presentó casi al principio de este
capítulo. Las funciones imbue() y getloc() se describieron en Obtenga o establezca la confi guración
regional y de idioma de un fl ujo, en el capítulo 5. También se presentó un resumen de los métodos
imbue() y getloc() en las dos soluciones anteriores.

Para formar la fecha y la hora, por lo general usará la faceta time_put. Se declara así:

template <class CharT, class OutItr = ostreambuf:iterator<CharT> >
 class time_put : public locale::facet { // ...

CharT especifi ca el tipo de caracteres sobre el que se operará. OutItr especifi ca el tipo de iterador
que se usa para escribir los datos formados. Observe que la opción predeterminada es ostream-
buf_iterator.

Para obtener la faceta time_put, debe llamar a use_facet(). Esta función se describe en Revisión
general de las facetas, casi al principio de este capítulo. Recuerde que es una función genérica global
defi nida por <locale>, con el siguiente prototipo:

template <class Facet> const Facet &use_facet(const locale &loc)

El parámetro de plantilla Facet especifi ca la faceta, que será time_put en este caso. La confi gura-
ción regional y de idioma se pasa mediante loc. Se devuelve una referencia a la faceta. Se lanza una
excepción bad_cast si la faceta deseada no está disponible. En general, las facetas predefi nidas,
incluida time_put, estarán disponibles.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 409

Con el uso de la faceta time_put obtenida de use_facet(), puede formar un valor de hora lla-
mando a put(). Tiene dos formas. Aquí se muestra la usada en esta solución:

iter_type put(iter_type itr_fl ujo, ios_base &no_usado, char_type carrelleno,
 const tm *h, const char_type *inicio_patron,
 const char_type *fi nal_patron) const

Un iterador al fl ujo de salida se pasa en itr_fl ujo. El tipo iter_type es un typedef para el tipo de
iterador. Como opción predeterminada, el tipo es ostreambuf_iterator. Hay una conversión
automática a este tipo desde cualquier objeto de basic_ostream, de modo que, por lo general,
simplemente pasará el fl ujo sobre el que se está actuando. El parámetro no_usado no se usa. (Puede
pasar una referencia al fl ujo de salida como marcador de posición.) El carácter de relleno se pasa
en carrelleno. Un apuntador a una estructura tm que contiene la fecha y la hora se pasa en t. Un
apuntador al principio de la cadena que defi ne un patrón que se usará para formar la fecha y la
hora se pasa en inicio_patron. Uno al fi nal de la cadena se pasa en fi nal_patron. El tipo char_type es
un typedef para el tipo de carácter. En el caso de cadenas de char, que son las que se usan en este
libro, este char_type es char.

La estructura de tm está defi nida en <time> y se hereda de C. Muestra lo que se llama la forma
"desglosada" de la fecha y la hora. Se presenta a continuación:

struct tm {
 int tm_sec; // segundos, 0-61
 int tm_min; // minutos, 0-59
 int tm_hour; // horas, 0-23
 int tm_mday; // día del mes, 1-31
 int tm_mon; // meses desde enero, 0-11
 int tm_year; // años desde 1900
 int tm_wday; // días desde el domingo, 0-6
 int tm_yday; // días desde el 1º de enero, 0-365
 int tm_isdst; // Indicador de hora de ahorro de luz del día
}

Puede construir un objeto de tm al establecer manualmente sus miembros, pero no lo hará con
frecuencia. Más a menudo, simplemente obtendrá un objeto de tm que contiene la fecha y la hora
actuales al usar una función defi nida por <ctime>. La usada por esta solución es localtime() y se
muestra a continuación:

struct tm *localtime(continuación time_t *hora)

Toma la hora codifi cada como un valor time_t y devuelve un apuntador a una estructura tm que
contiene la hora desglosada en sus componentes individuales. La hora está representada en hora
local. La estructura tm señalada por el apuntador devuelto por localtime() está asignada estáti-
camente y se sobreescribe cada vez que se llama a la función. Si quiere guardar el contenido de la
estructura, debe copiarla en otro lugar.

Puede obtener un valor time_t de varias maneras. El método usado en esta solución consiste
en llamar a time(). Es otra función defi nida por <ctime> y obtiene la hora actual del sistema. Se
muestra a continuación:

time_t time(time_t *apt_h)

410 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Devuelve la hora actual del sistema. Esto suele representarse como el número de segundos a partir
del 1 de enero de 1970. Si el sistema no tiene hora, se devuelve –1. La función puede llamarse con
un apuntador nulo o con uno a una variable de tipo time_t. Si se usa el primero, también se asig-
nará a la hora la variable señalada por apt_t.

En la función put(), la cadena de patrón señalada por inicio_patron contiene dos tipos de ele-
mentos. El primero son caracteres normales, que simplemente se despliegan como tales. El segun-
do son especifi cadores de formato de fecha y hora, que determinan cuáles componentes de fecha y
hora se despliegan. Estos especifi cadores de formato son los mismos que los usados por la función
strftime() heredada de C. Se presentan en la tabla 6-1. (Consulte Forme la fecha y hora con strfti-
me().) Los especifi cadores de formato empiezan con un signo de porcentaje (%) y son seguidos por
un comando de formato. Por ejemplo, %H causa que la hora se despliegue empleando el reloj de
24 horas. %Y hace que se muestre el año. Puede combinar caracteres regulares y especifi cadores
de fecha/hora en el mismo patrón. Por ejemplo,

char *custom_pat = "La fecha de hoy es %x";

Suponiendo que la fecha es 1 de enero de 2009, entonces esto produce la siguiente salida:

La fecha de hoy es 1/1/2009

Ejemplo
En el siguiente ejemplo se muestra time_put en acción. Despliega la fecha y hora en English y
Spanish_Spain.

// Da salida a la fecha y hora usando la faceta time_put.

#include <iostream>
#include <locale>
#include <cstring>
#include <ctime>

using namespace std;

int main()
{
 // Obtiene la hora actual del sistema.
 time_t t = time(NULL);
 tm *hora_act = localtime(&t);

 // Crea configuraciones regionales y de idioma para US y Spanish_Spain.
 locale usloc("English_US");
 locale sloc("Spanish_Spain");

 // Establece la configuración regional y de idioma para US
 // y obtiene la faceta time_put para US.
 cout.imbue(usloc);
 const time_put<char> &hora_us =
 use_facet<time_put<char> >(cout.getloc());

 // %c especifica el patrón de fecha y hora estándar.
 char *pat_est = "%c";
 char *pat_est_fin = pat_est + strlen(pat_est);

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 411

 // El siguiente patrón personalizado despliega horas y minutos
 // y después muestra la fecha.
 char *pat_przado = "%A %B %d, %Y %H:%M";
 char *pat_przado_fin = pat_przado + strlen(pat_przado);

 cout << "Formato de fecha y hora US est\u00a0ndar: ";
 hora_us.put(cout, cout, ' ', hora_act, pat_est, pat_est_fin);
 cout << endl;

 cout << "Formato de fecha y hora US personalizado: ";
 hora_us.put(cout, cout, ' ', hora_act, pat_przado, pat_przado_fin);
 cout << "\n\n";

 // Establece la configuración regional y de idioma y obtiene
 // la faceta time_put para España.
 cout.imbue(sloc);
 const time_put<char> &hora_g =
 use_facet<time_put<char> >(cout.getloc());

 cout << "Formato de fecha y hora Spanish_Spain est\u00a0ndar: ";
 hora_g.put(cout, cout, ' ', hora_act, pat_est, pat_est_fin);
 cout << endl;

 cout << "Formato de fecha y hora Spanish_Spain personalizado: ";
 hora_g.put(cout, cout, ' ', hora_act, pat_przado, pat_przado_fin);
 cout << endl;

 return 0;
}

Aquí se muestra la salida:

Formato de fecha y hora US estándar: 11/24/2008 3:54:15 PM
Formato de fecha y hora US personalizado: Monday November 24, 2008 15:54

Formato de fecha y hora Spanish_Spain estándar: 24/11/2008 15:54:15
Formato de fecha y hora Spanish_Spain personalizado: lunes noviembre 24, 2008
15:54

Opciones
Otra manera de formar la fecha y hora consiste en usar la función strftime() heredada del lenguaje C.
Si está usando la confi guración regional y de idioma global, entonces strftime() es un poco más fácil
de usar que la faceta time_put. Consulte Forme la fecha y hora con strftime() para conocer más detalles.

Hay una segunda forma de put() que le permite determinar un solo especifi cador de formato
de fecha y hora. Aquí se muestra:

iter_type put(iter_type fl ujo, ios_base &no_usado, char_type carrelleno,
 const tm *h, char ftm, char modo = 0) const

Los primeros cuatro parámetros son los mismos que en la primera versión. El especifi cador de
formato se pasa en fmt, y un modifi cador de formato opcional se pasa en modo. No todos los entor-
nos dan soporte a modifi cadores. Si lo tienen, están defi nidos por la implementación. La función
devuelve un iterador a uno después del último carácter escrito.

412 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Forme datos en una cadena

Componentes clave

Encabezados Clases Funciones

<sstream> ostringstream string str() const

En ocasiones, es útil construir de antemano una cadena que contenga salida formada. Así pue-
de darse salida a la cadena cuando sea necesario. Esta técnica resulta especialmente útil cuando
se trabaja en un entorno de ventanas, como Windows, en que los datos se despliegan mediante
un control. En este caso, a menudo necesitará formar los datos antes de desplegarlos. Esto suele
realizarse de manera más fácil en C++ mediante el uso de un fl ujo de cadena, como ostringstream.
Debido a que todos los fl ujos trabajan de la misma manera, las técnicas descritas en las soluciones
anteriores que escriben los datos formados en un fl ujo como cout también funcionan con fl ujos
de cadena. Una vez que ha construido la cadena formada, puede desplegarla usando cualquier
mecanismo que elija. En esta solución se muestra el proceso.

Paso a paso
Una manera de formar datos en una cadena requiere los siguientes pasos:

1. Cree un ostringstream.

2. Establezca las marcas de formato, precisión, ancho y carácter de relleno, de acuerdo con lo

necesario.

3. Dé salida a los datos al fl ujo de cadena.

4. Para obtener la cadena formada, llame a str().

Análisis
Los fl ujos de cadena, incluido ostringstream, se describieron en el capítulo 5. Consulte Use los
fl ujos de cadena para conocer más detalles sobre la creación y el uso de un fl ujo de cadena.

Las marcas de formato, precisión, ancho y carácter de relleno se establecen en el fl ujo de cade-
na de la misma manera que en cualquier otro fl ujo de C++. Por ejemplo, puede utilizar la función
setf() para establecer las marcas de formato. Use width(), precision() y fi ll() para establecer el
ancho, la precisión y el carácter de relleno. Como opción, puede utilizar los manipuladores de E/S
para establecer estos elementos.

Para crear una cadena formada, simplemente dé salida al fl ujo. Cuando quiera usar la cadena
formada, llame a str() en el fl ujo de cadena para obtenerla. Con ello, podrá desplegar, almacenar o
usar la cadena de la manera que guste.

Ejemplo
En el siguiente ejemplo se muestra cómo crear una cadena formada mediante el uso de un fl ujo de
cadena. Una vez que se ha construido la cadena formada, se le da salida:

// Usa un flujo de cadena para almacenar salida formada en una cadena.

#include <iostream>
#include <sstream>

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 413

#include <locale>
#include <iomanip>

using namespace std;

int main()
{
 locale usloc("English_US");

 ostringstream flucadsad;

 // Establece la marca showbase para que se despliegue el símbolo de moneda.
 flucadsad << showbase;

 // Establece la configuración regional y de idioma de flucadsad en US English.
 flucadsad.imbue(usloc);

 // Obtiene una faceta money_put para flucadsad.
 const money_put<char> &mon_eu =
 use_facet<money_put<char> >(flucadsad.getloc());

 // Forma un valor en dólares de EU.
 mon_eu.put(flucadsad, false, flucadsad, ' ', "5498499");

 cout << "Dinero formado para EU: ";
 cout << flucadsad.str() << "\n\n";

 // Da una nueva cadena vacía a flucadsad.
 flucadsad.str(string());

 // Ahora, construye una tabla de áreas de un círculo.
 flucadsad << setprecision(4) << showpoint << fixed << left;
 flucadsad << "Di\u00a0metro Area\n";

 cout << "Una tabla de \u00a0reas de un c\u00a1rculo.\n";
 for(int i=1; i < 10; ++i)
 flucadsad << left << " " << setw(6) << i << setw(8)
 << right << i*3.1416 << endl;

 // Despliega la cadena formada.
 cout << flucadsad.str();

 return 0;
}

Aquí se muestra la salida:

Dinero formado para EU: $54,984.99

Una tabla de áreas de un círculo.
Diámetro Área
 1 3.1416
 2 6.2832
 3 9.4248

414 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 4 12.5664
 5 15.7080
 6 18.8496
 7 21.9912
 8 25.1328
 9 28.2744

Opciones
La función heredada de C sprintf() ofrece otra manera de escribir salida formada a una cadena. Se
describió en la sección Opciones de la solución Use printf() para formar datos. Debido a las posibili-
dades de desbordamiento del búfer, y a que los fl ujos de cadena ofrecen una opción más fl exible,
sprintf() no se recomienda para nuevo código. Se incluye en este libro sólo debido a que hace uso
extenso del código C heredado.

Forme la fecha y hora con strftime()

Componentes clave

Encabezados Clases Funciones

<ctime> struct tm &localtime(const time_t *hora)
size_t strftime(char *cad, size_t tammax,
 const char *fmt,
 const struct tm *apt_h)

Aunque se recomienda usar la faceta time_put para casi todo el formato de fecha y hora, hay una
opción que puede ser útil en algunos casos: la función strftime(). Está defi nida en C y aún tiene
soporte en C++. Aunque carece de parte de la fl exibilidad de la faceta time_put (descrita en una
solución anterior), puede ser útil cuando está desplegando la fecha y hora para la confi guración
regional y de idioma global. En esta solución se muestra el proceso.

Paso a paso
Para usar strftime() para formar la fecha y hora se necesitan estos pasos:

1. Obtenga un apuntador a tm que señale a la hora que habrá de formarse. En el caso de la

hora local, este apuntador puede obtenerse al llamar a localtime().

2. Cree una matriz char con el largo sufi ciente para contener la salida formada. Recuerde

incluir espacio para el terminador de carácter nulo.

3. Para formar la fecha y hora, llame a strftime(), especifi cando los formatos deseados. Tam-

bién pasará un apuntador a la matriz de char del paso 2 y un apuntador a tm del paso 1.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 415

Análisis
La función strftime() forma la fecha y hora, poniendo el resultado en una cadena terminada en
carácter nulo. Requiere el encabezado <ctime> y tiene el siguiente prototipo:

size_t strftime(char *cad, size_t tammax, const char *fmt,
 const struct tm *apt_h)

La hora que habrá de formarse está en una estructura tm a la que señala apt_h. El formato de la
fecha y hora se especifi ca en la cadena a la que señala fmt. La salida formada se pone en la cadena
a la que señala cad. El resultado termina con un carácter nulo. Un máximo de tammax caracteres se
colocará en cad. Devuelve el número de carácter que habrá de ponerse en cad (excluido el termi-
nador de carácter nulo). Debe asegurarse de que cad señala a una matriz con el tamaño sufi ciente
para contener la salida máxima. Por tanto, debe tener por lo menos tammax elementos de largo.
Se devuelve cero si se necesitan más de tammax caracteres para contener el resultado formado.

La función strftime() forma la fecha y hora de acuerdo con los especifi cadores de formato. Cada
especifi cador empieza con el signo de porcentaje (%) y es seguido por un comando de formato. Estos
comandos se utilizan para especifi car la manera exacta en que se representará la distinta informa-
ción de fecha y hora. Cualquier otro carácter encontrado en fmt (la cadena de formato) se copia en
cad, que no cambia. La fecha y hora se forman de acuerdo con la confi guración regional y de idioma
global, que es "C", como opción predeterminada. Los comandos de formato se muestran en la tabla
6-1. Tome en cuenta que muchos de los comandos son sensibles a mayúsculas y minúsculas.

Para comprender la manera en que funcionan los formatos de fecha y hora, trabajemos
un ejemplo. Tal vez el formato de uso más común sea %c, que despliega la fecha y hora usando un
formato estándar apropiado para la confi guración regional y de idioma. Los formatos de fecha y
hora estándares pueden usarse por separado al especifi car %x (fecha) y %X (hora). Por ejemplo, la
cadena de formato "%x %X" hace que se desplieguen la fecha y hora estándares.

Aunque los formatos estándar son útiles, puede tomar control completo usando cualquier par-
te de la fecha, la hora, o ambas, que desee, de varias formas. Por ejemplo, "%H:%M" despliega la
hora, usando sólo horas y minutos, en un formato de 24 horas. Observe que las horas están separa-
das de los minutos por dos puntos. Como se explicó, se dará salida directa a cualquier carácter en
la cadena de formato que no sea parte de un especifi cador. He aquí un formato de fecha popular:
"%A, %d de %B de %Y". Despliega el día, mes y año empleando el formato de nombre largo, como
en Martes, 01 de noviembre de 2008.

En strftime(), el parámetro apt_t señala a un objeto de tipo tm que contiene lo que se denomina
la forma "desglosada" de la hora. La estructura tm también se defi ne en <ctime>. Una manera de
obtener un objeto de tm consiste en llamar a la función localtime(). Devuelve un apuntador a una
estructura tm que contiene la hora representada como hora local. Puede obtener la hora actual
al llamar a time(). Consulte Forme la fecha y hora con la faceta time_put para conocer información
adicional sobre tm, localtime() y time().

Ejemplo
En el siguiente ejemplo se muestra la función strftime() en acción:

#include <iostream>
#include <ctime>

using namespace std;

416 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

int main() {
 char cad[64];

 // Obtiene la hora actual del sistema.
 time_t t = time(NULL);

 // Muestra la cadena estándar de fecha y hora.
 strftime(cad, 64, "%c", localtime(&t));
 cout << "Formato est\u00a0ndar: " << cad << endl;

 // Muestra una cadena de fecha y hora personalizada.
 strftime(cad, 64, "%A, %B %d %Y %I:%M %p", localtime(&t));
 cout << "Formato personalizado: " << cad << endl;

 return 0;
}

Comando Reemplazado por

%a Nombre abreviado del día de la semana.

%A Nombre completo del día de la semana.

%b Nombre abreviado del mes.

%B Nombre completo del mes.

%c Cadena de fecha y hora estándar.

%d Día del mes, como decimal (1-31).

%H Hora (0-23).

%I Hora (1-12).

%j Día del año, como decimal (1-366).

%m Mes, como decimal (1-12)

%M Minuto, como decimal (0-59)

%p Equivalente de confi guración regional y de idioma de a.m. y p.m.

%S Segundo, como decimal (0-61).

%U Semana del año; el domingo es el primer día (0-53).

%w Día de la semana, como decimal (0-6; el domingo es 0).

%W Semana del año; el lunes es el primer día (0-53).

%x Cadena de fecha estándar.

%X Cadena de hora estándar.

%y Año en decimal, sin el siglo (0-99).

%Y Año, incluido el siglo, como decimal.

%Z Nombre de la zona horaria.

%% El signo de porcentaje.

TABLA 6-1 Los especifi cadores de formato de strftime().

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 417

Aquí se muestra la salida:

Formato estándar: 11/24/08 13:28:59
Formato personalizado: Monday, November 24 2008 01:28 PM

Opciones
Algunos compiladores dan soporte a modifi cadores de comandos de formato de fecha y hora,
pero son dependientes de la implementación. Por ejemplo, Microsoft Visual C++ le permite mo-
difi car un comando con #. El efecto preciso varía entre comandos. Por ejemplo, %#c hace que la
cadena de fecha y hora estándar se despliegue en su forma larga, con los nombres de los días de
la semana y el mes escritos. Necesitará revisar la documentación de su compilador para conocer
los modifi cadores que se aplican a su entorno de desarrollo.

La función strftime() usa la confi guración regional y de idioma global defi nida por C para
determinar los formatos de fecha y hora. Puede cambiar esta confi guración al llamar a la función
de C setlocale(), que se muestra a continuación:

char *setlocale que, const char *loc)

La función setlocale() trata de usar la cadena especifi cada por loc para establecer los parámetros
de confi guración regional y de idioma como se especifi ca en que. Las cadenas de confi guración son
dependientes de la implementación. Consulte la documentación de su compilador para conocer las
cadenas de localización a las que da soporte. Si loc es null, setlocale() devuelve un apuntador a la ca-
dena de localización actual. Al momento de la llamada, que debe ser una de las siguientes macros:

LC_ALL LC_COLLATE LC_CTYPE

LC_MONETARY LC_NUMERIC LC_TIME

LC_ALL alude a todas las categorías de localización. LC_COLLATE afecta a las funciones de
intercalación, como strcoll(). LC_CTYPE modifi ca la manera en que actúan las funciones de ca-
racteres. LC_MONETARY determina el formato monetario. LC_NUMERIC determina el formato
numérico. LC_TIME determina el comportamiento de la función strftime(). La función setlocale()
devuelve un apuntador a una cadena asociada con el parámetro que. Para usar setlocale(), debe
incluir <clocale>.

En el siguiente programa se vuelve a trabajar el ejemplo, de modo que la fecha y la hora se
desplieguen en forma compatible con Spanish_Spain. (La cadena de confi guración regional y de
idioma es compatible con Visual C++. Tal vez su compilador requiera una cadena diferente.)

#include <iostream>
#include <ctime>
#include <clocale>

using namespace std;

int main() {
 char cad[64];

 // Establece la configuración regional y de idioma en Spanish_Spain.
 setlocale(LC_ALL, "Spanish_Spain");

418 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Obtiene la hora actual del sistema.
 time_t t = time(NULL);

 // Muestra la cadena estándar de fecha y hora.
 strftime(cad, 64, "%c", localtime(&t));
 cout << "Formato estándar: " << cad << endl;

 // Muestra una cadena de fecha y hora personalizada.
 strftime(cad, 64, "%A, %B %Y %I:%M %p", localtime(&t));
 cout << "Formato personalizado: " << cad << endl;

 return 0;
}

Aquí se muestra la salida:

Formato estándar: 24/11/2008 13:56:11
Formato personalizado: lunes, 24 de noviembre de 2008 01:56

Observe que ahora la fecha y la hora están en español y tienen el estilo propio de este idioma*.
Aunque strftime() en ocasiones ofrece una opción conveniente, en casi todos los casos querrá usar

time_put para nuevo código. La razón es que el sistema de localización de C++ está completamente
integrado en los fl ujos de C++. Más aún, cada fl ujo puede tener su propia confi guración regional y
de idioma. La función strftime() usa la confi guración global, que es una característica heredada del
lenguaje C. El método moderno es que cada fl ujo tenga su propia confi guración regional y de idioma.

Use printf() para formar datos

Componentes clave

Encabezados Clases Funciones

<cstdio> int printf(const char *fmt, ...)

Aunque el uso de facetas como num_put y money_put es la manera moderna de formar datos, tal
vez las facetas no sean lo primero que le viene a la mente a casi ningún programador que trabaje con
C++. En cambio, tal vez lo sea la función printf(). Incorporada en C++ como parte de su legado de C,
printf() es, quizás, la función para formar salida más usada, mejor comprendida y más copiada que
existe. Aun programadores con poco conocimiento de C o C++ han oído de ella. También se ha agre-
gado al lenguaje Java. Aunque las marcas de formato, las funciones y las facetas defi nidas por los
fl ujos de C++, en esencia, duplican su funciones, la formación con el estilo de printf() aún se emplea
mucho porque ofrece una manera compacta de crear casi cualquier tipo de formato numérico o de
cadena. También se usa ampliamente en código heredado de C. Francamente, ningún programador
puede considerarse un maestro de C++ sin saber cómo manejar printf().

Antes de empezar, es necesario dejar en claro un tema importante: printf() es sólo parte de una
familia de funciones que trabajarán, en esencia, de la misma manera. Las otras funciones descritas

*Nota del T. Debido a que se ha establecido la confi guración regional y de idioma para español, no es necesario usar secuencias de
escape para caracteres especiales, como letras con acentos en el fl ujo afectado por esa confi guración.

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 419

en esta solución son sprintf() y fprintf(). Las tres forman datos mediante el uso de especifi cadores
de formato. La diferencia entre estas funciones es el destino de la salida formada. En el caso de
printf(), el destino es la salida estándar, que suele ser la consola. Para sprintf() el destino es una
cadena, y para fprintf(), es un archivo (como se especifi ca en el apuntador estilo C, no un fl ujo de
C++). Excepto por el lugar al que se envían los datos, la información presentada en esta solución
se aplica a las tres funciones.

NOTA Casi todo el código nuevo debe usar características de C++ para formación, no printf(). La
formación de C++ está integrada en los fl ujos de C++ y ofrece mejor soporte a internacionalización.
Además, printf() forma los datos de acuerdo con la confi guración regional y de idioma, no una con-
fi guración basada en fl ujos. Por tanto, el método de C++ es más fl exible. Por último, suele ser mejor
no mezclar salida a cout con salida de printf(). Como regla general, para cualquier fl ujo dado, debe
usar E/S de C++ o C. Por tanto, si quiere usar printf() en un programa, no debe usar cout en él.

Paso a paso
Para la formación de datos mediante printf() se necesitan los siguientes pasos:

1. Cree una cadena de formato que contenga los especifi cadores de formato deseados.

2. Pase la cadena de formato como el primer argumento de printf().

3. A partir del segundo argumento de printf(), pase los datos que desee formar. Debe haber

el mismo número de argumentos que de especifi cadores de formato, y deben estar en el

mismo orden.

Análisis
La función printf() escribe salida formada al dispositivo de salida estándar, que es la consola,
como opción predeterminada. Se muestra a continuación:

int printf(const char *fmt, lista-args)

Forma los datos pasados en lista-args de acuerdo con los especifi cadores de formato contenidos
en fmt. Devuelve el número de caracteres que se imprimirá en realidad. Si se devuelve un valor
negativo, se indica que ha ocurrido un error.

La cadena a la que señala fmt consta de dos tipos de elementos. El primero está integrado por
caracteres que se desplegarán tal cual. El segundo tipo contiene especifi cadores de formato que defi -
nen la manera en que se formarán los argumentos. Los especifi cadores de formato se muestran en
la tabla 6-2. Observe que todos empiezan con un signo de porcentaje y son seguidos por un código
de formato. Debe haber exactamente el mismo número de argumentos que de especifi cadores de
formato, y se asignan unos a otros en orden. Por ejemplo, la siguiente llamada a printf():

printf("Hola %c %s %d &s", 'a', "ustedes", 10);

despliega

Hola a ustedes 10

Si hay argumentos insufi cientes para asignar los especifi cadores de formato, la salida queda sin
defi nir. Si hay más argumentos que especifi cadores de formato, se descartan los sobrantes. En las
siguientes secciones se describen de manera detallada los especifi cadores de formato.

420 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Código Formato

%c Carácter.

%d Enteros decimales con signo.

%i Enteros decimales con signo.

%e Notación científi ca (e minúscula).

%E Notación científi ca (E mayúscula).

%f Punto fl otante decimal.

%g Usa %e o %f, la que sea más corta (si usa %e, la e será minúscula).

%G Usa %E o %f, la que sea más corta (si usa %E, la E será mayúscula).

%o Octal sin signo.

%s Cadena terminada en un carácter nulo.

%u Enteros decimales sin signo.

%x Hexadecimal sin signo (letras minúsculas).

%X Hexadecimal sin signo (letras mayúsculas).

%p Despliega una dirección.

%n El argumento asociado debe ser un apuntador a un entero, en que se coloca el número de
caracteres escrito hasta ahora.

%% Imprime un signo %.

TABLA 6-2 Los especifi cadores de formato usados por la familia de funciones printf().

Forme caracteres y cadenas
Para desplegar un carácter individual, use %c. Para imprimir una cadena terminada en un carác-
ter nulo, use %s. No puede usar printf() para desplegar un objeto de string.

Forme enteros
Puede usar %d o %i para formar un valor entero. Estos especifi cadores de formato son equivalen-
tes: ambos tienen soporte por razones históricas. Para dar salida a un unsigned int, utilice %u.

Tiene la opción de desplegar un entero sin signo en formato octal o hexadecimal usando %o y
%x, respectivamente. Debido a que el sistema numérico hexadecimal usa de la letra A a la F para
representar los números del 10 al 15, puede desplegar estas letras en mayúsculas o minúsculas.
Para el primer caso, utilice el especifi cador de formato %X; para minúsculas, use %x.

Forme valores de punto fl otante
El especifi cador de formato %f despliega un argumento double en formato de punto fl otante.
Los especifi cadores %e y %E indican a printf() que despliegue un argumento double en notación
científi ca. Los números representados en esta notación toman esta forma general:

x.dddddE+/-yy

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 421

Si quiere desplegar la letra "E" en mayúsculas, use el formato %E; de otra manera, use %e. Puede
usar %f o %e empleando los especifi cadores de formato %g o %G. Esto hace que printf() seleccio-
ne el especifi cador de formato que produzca la salida más corta. Donde sea aplicable, use %G si
quiere que "E" aparezca en mayúsculas; de otra manera, use %g.

Los prefi jos de tipo
Para permitir que printf() despliegue enteros short y long, necesitará agregar un prefi jo en el especi-
fi cador de tipo. Estos prefi jos pueden aplicarse a especifi cadores de tipo d, i, o, u y x. El modifi cador
l indica que sigue un tipo de datos largo. Por ejemplo, %ld signifi ca que un long int va a formarse.
El h indica un short int. Por tanto, %hu indica que los datos son del tipo short unsigned int.

Un modifi cador L puede ser prefi jo de los especifi cadores de punto fl otante e, f y g, e indica
que sigue un long double.

Si está usando un compilador moderno que da soporte a formatos de caracteres extendidos,
entonces puede usar el modifi cador l con el especifi cador c para indicar un carácter extendido de
tipo whcar_t. También puede usar el modifi cador I con el especifi cador s para indicar una cadena
de caracteres extendidos.

Despliegue una dirección
Para desplegar una dirección, utilice el especifi cador %p. La dirección se formará de una manera
compatible con el tipo de direccionamiento usado por el entorno en ejecución.

Especifi cador %n
El especifi cador %n es único porque en realidad no forma datos. En cambio, hace que el número
de caracteres que se ha escrito en el momento en que se encuentra %n se almacene en una varia-
ble de entero cuyo apuntador se especifi ca en la lista de argumentos. Por ejemplo, este fragmen-
to de código despliega el número 14 después de la línea "Se trata de una prueba":

int i;

printf("Se trata de una prueba"%n, &i);
printf("%d", i);

Establezca el ancho de campo y la precisión
Los especifi cadores de formato pueden incluir modifi cadores que especifi can el ancho de campo
y la precisión. Un entero colocado entre el signo % y el código de formato actúa como un espe-
cifi cador de ancho de campo mínimo. Esto rellena la salida para asegurar que tenga, por lo menos,
cierta longitud mínima. Si la cadena o el número es mayor que el mínimo, se imprimirá completa,
aunque rebase el mínimo. El relleno predeterminado se hace con espacios. Si quiere que se rellene
con 0, coloque un 0 antes del especifi cador de ancho de campo. Por ejemplo, %05d rellenará un
número de menos de cinco dígitos con 0 para que tenga una longitud total de 5.

El signifi cado exacto de modifi cador de precisión depende del especifi cador de formato que se está
modifi cando. Para agregar un modifi cador de precisión, coloque un punto decimal, seguido por la
precisión, después del especifi cador de ancho de campo. Para los formatos e, E y f, el modifi cador
de precisión determina el número de lugares decimales que se imprimirá. Por ejemplo, %10.4f des-
plegará un número de por lo menos 10 caracteres de ancho con cuatro lugares decimales. Cuando
el modifi cador de precisión se aplica a código de formato g o G, determina el número máximo de

422 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

dígitos signifi cativos desplegado. Cuando se aplica a enteros, el modifi cador de precisión especifi -
ca el número mínimo de dígitos que se desplegará. Se agregan ceros al principio, si es necesario.

Cuando el modifi cador de precisión se aplica a cadenas, el número después del punto especi-
fi ca la longitud de campo máxima. Por ejemplo, %5.7s desplegará una cadena que tendrá por lo
menos cinco caracteres de largo y no será mayor de siete. Si la cadena es más larga que el ancho de
campo máximo, los caracteres del fi nal se truncarán.

Los especifi cadores de ancho de campo y de precisión pueden alimentarse como argumentos a
printf(), en lugar de hacerlo como constantes. Para realizar esto, utilice * como marcador de posi-
ción. Cuando se revise la cadena de formato, printf() asignará cada * a un argumento en el orden
en que se presenten. Por ejemplo:

printf("|%*.*f|", 8, 3, 98.6);

producirá la siguiente salida:
| 98.600 |

En este ejemplo, el primer * coincidirá con 8, el segundo con 3 y f con 98.6.

Justifi que a la izquierda la salida
Como opción predeterminada, toda la salida se justifi ca a la derecha. Si el ancho de campo es
mayor que los datos impresos, éstos se colocarán a la derecha del campo. Puede imponer que la
información se justifi que a la izquierda al colocar un signo de menos directamente después de %.
Por ejemplo, %–10.2f justifi cará a la izquierda un número de punto fl otante con dos lugares deci-
males en un campo de diez caracteres.

Las marcas #, + y espacio
Además de la marca de justifi cación a la izquierda que se acaba de describir, printf() da soporte a
otras tres. Son #, + y espacio. A continuación se describe cada una de ellas.

La marca # tiene un signifi cado especial cuando se usa con algún especifi cador de formato de
printf(). Al anteceder a g, G, f, e o E con una marca # se asegura que el punto decimal esté presen-
te, aunque no haya dígitos decimales. Si antecede el formato x o X con #, el número hexadecimal
se imprimirá con un prefi jo 0x. Si antecede el formato o con #, el valor octal se imprimirá con un
prefi jo 0. La marca no puede aplicarse a ningún otro especifi cador de formato.

La marca + indica que un valor numérico con signo siempre debe incluir un signo, como en
+10 o –5.

La marca de espacio causa que se agregue un espacio al principio de valores que no son negativos.

Ejemplo
En el siguiente programa se muestran varios ejemplos de printf() en acción:

// Demuestra printf().

#include <cstdio>
#include <cmath>

using namespace std;

int main()
{
 int x = 10;
 double val = 568.345;

 C a p í t u l o 6 : F o r m a c i ó n d e d a t o s 423

 // No es necesaria una llamada a printf() para incluir
 // especificadores de formato o argumentos adicionales.
 printf("Se muestra la salida a la consola.\n");

 // Despliega valores numéricos.
 printf("Los valores de x y val: %d %f\n\n", x, val);
 printf("Los valores de x en hexadecimal con may\u00a3sculas: %X\n", x);

 printf("Mezcla datos %d en %f la cadena de formato.\n\n", 19, 234.3);

 // Especifica precisiones, anchos y marcas de signo diversos.
 printf("Se muestra val con precisiones, anchos y marcas de signo diversos: \n");
 printf("|%10.2f|%+12.4f|% 12.3f|%f|\n", val, val, val, val);
 printf("|%10.2f|%+12.4f|% 12.3f|%f|\n", -val, -val, -val, -val);
 printf("\n");

 // Despliega columnas de números, justificados a la derecha.
 printf("N\u00a3meros justificados a la derecha.\n");
 for(int i = 1; i < 11; ++i)
 printf("%2d %8.2f\n", i, sqrt(double(i)));

 printf("\n");

 // Ahora, justifica a la izquierda algunas cadenas en un campo de
 // 16 caracteres. Justifica a la derecha las cantidades.
 printf("%-16s Cantidad: %3d\n", "Martillos", 12);
 printf("%-16s Cantidad: %3d\n", "Pinzas", 6);
 printf("%-16s Cantidad: %3d\n", "Desarmadores", 19);

 return 0;
}

Aquí se muestra la salida:

Se muestra la salida a la consola.
Los valores de x y val: 10 568.345000

Los valores de x en hexadecimal con mayúsculas: A
Mezcla datos 19 en 234.300000 la cadena de formato.

Se muestra val con precisiones, anchos y marcas de signo diversos:
| 568.35| +568.3450| 568.345|568.345000|
| -568.35| -568.3450| -568.345|-568.345000|

Números justificados a la derecha.
 1 1.00
 2 1.41
 3 1.73
 4 2.00
 5 2.24
 6 2.45
 7 2.65
 8 2.83
 9 3.00
10 3.16

424 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Martillos Cantidad: 12
Pinzas Cantidad: 6
Desarmadores Cantidad: 19

Opciones
Por mucho, la mejor manera de aprender a usar de manera efectiva printf() es experimentar con
ella. Aunque la amplitud de la sintaxis de su formato facilita la creación de especifi cadores de
formato muy intimidantes, todos siguen las reglas descritas en el análisis. Desglose cada formato
en sus partes y le resultará fácil comprender lo que hace.

La función printf() no se usa para formar fecha y hora. La función de C que lo hace es strfti-
me(), descrita en la solución anterior. El método de C++ consiste en usar la faceta time_put, descri-
ta en Forma la fecha y hora con la faceta time_put.

Puede construir por anticipado una cadena que contenga salida formada al llamar a sprintf().
Parte de la familia printf() de funciones, sprintf() funciona igual que ésta, excepto que no usa la
salida estándar (por lo general, la consola), sino que escribe los datos formados en una cadena.
Se muestra a continuación:

int sprintf(char *cad, const char *fmt, ...)

La salida formada se pone en una matriz a la que señala cad. El resultado termina en un carácter
nulo. Por tanto, al regresar, la matriz de caracteres a la que señala cad contiene una cadena termi-
nada en un carácter nulo. Devuelve el número de caracteres copiado en realidad en cad. (La termi-
nación en carácter nulo no es parte de la cuenta.) Un valor negativo devuelto indica un error.

Es importante que tenga cuidado cuando use sprintf(), debido a la posibilidad de complica-
ciones en el sistema y riesgos de seguridad. Se menciona aquí principalmente debido a su amplio
uso en código C heredado. En el caso de nuevos proyectos, debe usar un fl ujo de cadena, como
ostringstream, para poner datos formados en una cadena. (Consulte Forme datos en una cadena.)
Cuando use sprintf(), debe asegurarse de que la matriz a la que señala cad tenga el tamaño sufi cien-
te para contener la salida que recibirá, incluido el terminador de carácter nulo. Si no se sigue esta
regla se tendrá un desbordamiento de búfer, que puede llevar a una brecha de seguridad o a que
el sistema deje de funcionar. En ningún caso debe usar sprintf() en datos no verifi cados, como
datos ingresados por un usuario. Además, no debe usar una cadena con formato ingresada por el
usuario porque tiene las mismas posibilidades de acarrear problemas.

NOTA sprintf() presenta la posibilidad de causar una caída del sistema o de provocar brechas de
seguridad. No se recomienda su uso en código nuevo. Muchos compiladores proporcionan versiones
no estándar de sprintf(), a menudo llamadas algo así como snprintf(), que le permiten especifi car el
número máximo de caracteres que se copiarán en la cadena. Si está manteniendo código C heredado,
se recomienda que use ese tipo de función para trarar de evitar problemas.

Puede enviar salida formada a un archivo al usar fprintf(). Se muestra a continuación:

int fprintf(FILE *aa, const char *fmt, ...)

Funciona igual que printf(), excepto que los datos formados se escriben en el archivo al que señala
aa. El valor devuelto es el número de caracteres al que se da salida en realidad. Si ocurre un error,
se devuelve un número negativo. Debido a que fprintf() usa el sistema de E/S de C, que se basa
en apuntadores a archivos en lugar de objetos de fl ujo, normalmente no lo utilizará en programas
de C++. Se usa ampliamente, por supuesto, en código heredado de C.

 425

7
U

no de los problemas con la escritura de un libro de programación estriba en encontrar un
punto apropiado para detenerse. Hay un universo casi ilimitado de temas entre los cuales
elegir, y cualquier cantidad de ellos podría merecer su inclusión. Es difícil encontrar dónde

trazar la línea. Por supuesto, todos los libros deben terminar. Por tanto, siempre es necesario un
punto fi nal, sea fácil encontrarlo o no. Este libro no es la excepción.

En éste, el capítulo fi nal del libro, el autor ha decidido concluir con una variedad de solucio-
nes que abarcan diversos temas. Éstas representan técnicas que se desean cubrir en el libro; sin
embargo, por una razón u otra, un capítulo completo no era apropiado para ninguna de ellas. Por
ejemplo, se quería mostrar cómo sobrecargar los operadores de caso especial de C++, como [], –>,
new y delete, etc. Aunque varias están dedicadas a sobrecargar estos operadores, no son sufi cien-
tes para un capítulo. También se desea incluir soluciones que atienden a alguna pregunta común
pero aislada tipo "¿Cómo hacer?"; por ejemplo, cómo crear un constructor de copia, implementar
una función de conversión o usar un ID de tipo en tiempo de ejecución. Todos son temas impor-
tantes, pero ninguno es lo sufi cientemente importante para merecer un capítulo propio. A pesar de
la naturaleza de rango amplio de las soluciones de este capítulo, todos tienen dos cosas en común:

1. Responden una pregunta frecuente.

2. Son aplicables a un amplio rango de programadores.

Más aún, todas describen conceptos clave que puede adaptar y mejorar fácilmente.
He aquí las soluciones contenidas en este capítulo:

Técnicas básicas de sobrecarga de operadores

Sobrecargue el operador de llamada a función ()

Sobrecargue el operador de subíndice []

Sobrecargue el operador –>

Sobrecargue new y delete

Sobrecargue los operadores de aumento y disminución

Cree una función de conversión

Cree un constructor de copia

Determine un tipo de objeto en tiempo de ejecución

•

•

•

•

•

•

•

•

•

C A P Í T U L O

Popurrí

426 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Use números complejos

Use auto_ptr

Cree un constructor explícito

Técnicas básicas de sobrecarga de operadores

Componentes clave

Encabezados Clases Funciones

tipo-ret operator#(lista-param)

En C++, los operadores pueden sobrecargarse en relación con una clase, incluidas las clases persona-
lizadas. Esto le permite defi nir lo que una operación específi ca, como + o /, signifi ca para un objeto
de la clase. También permite que estos objetos sean usados en expresiones, de la misma manera en
que se utilizan para usar tipos integrados. Recuerde que cuando defi ne una clase, está creando un
nuevo tipo de datos. Mediante la sobrecarga de operadores, puede integrar de manera transparen-
te este nuevo tipo de datos en su entorno de programación. Esta extensibilidad de tipo es una de las
características más importantes y poderosas de C++ porque le permite expandir el sistema
de tipos de C++ para cubrir sus necesidades.

La sobrecarga de operadores será un territorio familiar para la mayoría de los lectores por-
que es una habilidad básica de C++ y casi todos los programadores saben cómo sobrecargar los
operadores de uso más común. Por esto, la solución de sobrecarga de operadores de este capítulo
se concentra en estos operadores especializados: aumento y reducción, (), [], –>, new y delete. A
muchos programadores les parecen estos operadores confusos cuando se trata de sobrecarga, y
son la fuente de muchas preguntas tipo "¿Cómo hacer?". Sin embargo, para proporcionar la infor-
mación completa, en esta solución se presenta una breve revisión general de las técnicas básicas
usadas para sobrecargar un operador. Esta revisión general es sufi ciente para los propósitos de
este capítulo, pero no es un sustitutivo de un examen a profundidad del tema.

NOTA Para una revisión a profundidad de la sobrecarga de operadores, se recomienda el libro C++:
The Complete Reference, de Herb Schildt.

Paso a paso
Para sobrecargar un operador como una función miembro de una clase se requieren estos pasos:

1. Agregue una función operator a la clase, especifi cando el operador que quiera sobrecargar.

2. En el caso de operadores binarios, la función operator tendrá un parámetro, que recibirá el

operando del lado derecho. El operador del lado izquierdo se pasará mediante this.

3. En el caso de operadores unarios, la función operator no tendrá parámetros. Su único ope-

rando se pasa mediante this.

•

•

•

 C a p í t u l o 7 : P o p u r r í 427

4. En el cuerpo de la función, realice la operación.

5. Regrese el resultado de la operación.

Para sobrecargar un operador como una función que no es miembro se requieren estos pasos:

1. Cree una función operator que no sea miembro, que especifi que el operador que quiera

sobrecargar.

2. En el caso de operadores binarios, la función operator tendrá dos parámetros. El primer

parámetro recibe el operando del lado izquierdo, y el segundo recibe el operando del lado

derecho. Por lo menos uno de los operandos debe ser un objeto de la clase sobre la que se

está actuando o una referencia a éste.

3. En el caso de operadores unarios, la función operator tendrá un parámetro, que debe ser

un objeto de una referencia a la clase sobre la que se está actuando. Este parámetro es el

operando.

4. En el cuerpo de la función, realice la operación.

5. Regrese el resultado de la operación.

Análisis
Cuando sobrecarga un operador, defi ne el signifi cado de ese operador para una clase particular. Por
ejemplo, una clase que defi ne una lista vinculada podría usar el operador + para agregar un objeto
a la lista. Una clase que implementa una pila podría usar el + para incluir un objeto en la pila. Otra
clase podría usar el operador + de una manera completamente diferente. Cuando se sobrecarga un
operador, ninguno de sus signifi cados originales se pierde. Simplemente se defi ne una nueva opera-
ción, relacionada con una clase específi ca. La sobrecarga de + para manejar una lista vinculada, por
ejemplo, no causa que cambie su signifi cado relacionado con los enteros (es decir, la suma).

Para sobrecargar un operador, debe defi nir lo que signifi ca la operación en relación con la clase a
la que se aplica. Como regla general, puede usar funciones miembro o no miembro. (Las excepciones
a esta regla son las funciones de operador para =, (), [] y –>, que debe implementarse por una fun-
ción miembro no estática.) Aunque son similares, hay algunas diferencias entre los dos métodos.

Para crear una función de operador, utilice la palabra clave operator. Su forma general es:

tipo-ret operator#(lista-param)
{
 // operaciones
}

Aquí, el operador que está sobrecargando se sustituye con #, y tipo-ret es el tipo de valor devuelto
por la operación especifi cada. Aunque puede ser del tipo que elija, el valor devuelto es a menudo
del mismo tipo que la clase para la que se está sobrecargando el operador. Esta correlación facilita
el uso del operador sobrecargado en expresiones compuestas. Las excepciones son los operadores
lógicos y relacionales, que suele regresar un valor bool.

La naturaleza precisa de lista-param depende del tipo de operador que se está sobrecargando
y si está implementado como una función miembro o no miembro. En el caso de una función
operator unaria miembro, lista-param estará vacía y el operando se pasa a través del apuntador
this. Para una función operator binaria miembro, lista-param tendrá un parámetro, que recibe el
operando del lado derecho. El operando del lado izquierdo se pasa mediante this. En cualquier
caso, el objeto que invoca la función de operador es el pasado mediante el apuntador this.

428 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

En el caso de funciones operator que no son miembros, todos los argumentos se pasan explí-
citamente. Por tanto, una función operator unaria que no es miembro tendrá un parámetro, cuyo
tipo debe ser una clase, referencia a clase, enumeración o referencia a enumeración. Este parámetro
recibe el operando. Una función operator binaria que no es miembro tendrá dos parámetros, de los
cuales el tipo de por lo menos uno debe ser una clase, referencia a clase, enumeración o referencia a
enumeración. El primer parámetro recibe el operando del lado izquierdo y el segundo recibe el ope-
rando del lado derecho. Observe que una función de operador que no es miembro puede sobrecar-
garse en relación con un tipo de enumeración, pero esto no es común. Por lo general, los operadores
están sobrecargados en relación con un tipo de clase, y ése es el eje de esta solución.

Debido a las diferencias entre las funciones de operador miembros y no miembros, cada una se
describe por separado.

Funciones de operador miembro
Cuando se defi ne una función operator que actúa sobre objetos de una clase que haya creado, por
lo general usará una función miembro. La razón es simple: siendo miembro de una clase, la fun-
ción tiene acceso directo a todos los miembros de clase. También tiene un apuntador this.
Esto facilita que el operador actúe sobre un operando, y posiblemente lo modifi que.

La mejor manera de comprender cómo usar una función miembro para sobrecargar un opera-
dor consiste en trabajar con algunos ejemplos. Suponga una clase llamada tres_d que encapsula
coordinadas tridimensionales, como se muestra aquí:

class tres_d {
 int x, y, z; // Coordenadas 3-D
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 //...
};

Puede defi nir la operación + para objetos de tres_d al agregar una función operator+() a la clase.
Para ello, primero agregue su prototipo a la clase tres_d:

tres_d operator+(tres_d op_der);

Luego, implemente la función. He aquí una manera:

// Sobrecarga + para objetos de tipo tres_d.
tres_d tres_d::operator+(tres_d op_der)
{
 tres_d temp;

 temp.x = x + op_der.x;
 temp.y = y + op_der.y;
 temp.z = z + op_der.z;

 return temp;
}

 C a p í t u l o 7 : P o p u r r í 429

Esta función agrega las coordenadas de dos operandos de tres_d y devuelve un objeto que contie-
ne el resultado. Recuerde que en una función de operador miembro, el operando del lado izquier-
do invoca a la función de operador y se pasa implícitamente mediante this. El operando del lado
derecho se pasa de manera explícita como un argumento a la función. Por tanto, suponiendo que
objA y obj son objetos de tres_d, en la siguiente expresión

objA + obj B

objA se pasa mediante this y obj se pasa en op_der.
En la implementación de operator+() que se acaba de mostrar, observe que ningún operando

se modifi ca. Esto es para seguir con la semántica normal del operador +. Por ejemplo, en la expre-
sión 10 + 12, ni el 10 ni el 12 se modifi can. Aunque no hay una regla para imponerlo, en general es
mejor hacer que su operador sobrecargado trabaje de la manera esperada.

Por supuesto, hay algunos operadores, como asignación o aumento, en que un operando se
modifi ca con la operación. En este caso, necesitará modifi car un operando para que su función
operator refl eje el signifi cado normal del operador. Por ejemplo, suponiendo una vez más la clase
tres_d, hay una manera de implementar la asignación:

// Sobrecarga asignación para tres_d.
tres_d tres_d::operator=(tres_d op_der)
{
 x = op_der.x;
 y = op_der.y;
 z = op_der.z;

 return *this;
}

Aquí, los valores de coordenadas del operando del lado derecho (pasado en op_der) se asignan
al operando del lado izquierdo (pasado mediante this). Por tanto, el objeto que invoca se cambia
para refl ejar el valor que se está asignando. Una vez más, esto está de acuerdo con el signifi cado
esperado de =.

Dadas las dos funciones operator que se acaban de describir y suponiendo los objetos de
tres_d llamados objA, objB y objC, la siguiente instrucción es válida:

objC = objA + objB;

En primer lugar, la suma se realiza con operator+(); objA se pasa mediante this y objB se pasa
a través de op_der. El resultado se vuelve el operando del lado derecho pasado a operator=(), y
objC se pasa mediante this. Para una revisión más completa, objC contendrá la suma de objA
y objB, y objA y objB quedarán sin cambio.

La versión anterior de operator+() sumó un objeto de tres_d a otro, pero puede sobrecargar
operator+() para que agregue algún otro tipo de valor. Por ejemplo, esta versión de operator+()
suma un entero a cada coordenada:

// Sobrecarga + para sumar un entero a un objeto de tres_d.
tres_d tres_d::operator+(int op_der)
{
 tres_d temp;

 temp. x = x + op_der;

430 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 temp. y = y + op_der;
 temp. z = z + op_der;

 return temp;
}

Una vez que se ha defi nido esta versión de operator+(), puede usar una expresión como:

objA + 10

Esto causa que 10 se sume a cada coordenada. Comprenda que la versión anterior de operator+(),
que suma dos objetos de tres_d, aún está disponible. Es sólo que la defi nición de + relacionado con
tres_d se ha expandido para manejar la suma de enteros.

En el caso de una función de operador miembro unario, el único operando se pasa mediante this.
Por ejemplo, he aquí la versión de operator–(), que niega la coordenada y devuelve el resultado:

// Sobrecarga - para tres_d.
tres_d tres_d::operator-()
{
 tres_d temp;

 temp.x = -x;
 temp.y = -y;
 temp.z = -z;

 return temp;
}

Es posible crear una forma unaria y binaria de algunos operadores, como + y –. Simplemente
sobrecargue la función de operador de acuerdo con lo necesario. En el caso de funciones miembro,
la forma binaria tendrá un parámetro; la forma unaria no tendrá ninguno.

Todas las funciones operator anteriores regresarán un objeto de tipo tres_d, que es la clase para
la que están defi nidos. Así suele suceder siempre, excepto cuando sobrecarga los operadores lógi-
cos o relacionales. Esas funciones operator por lo general regresarán un resultado bool, que indica
el éxito o la falla de la operación. Por ejemplo, he aquí una manera de implementar el operador ==
para tres_d:

// Sobrecarga == para un objeto de tres_d.
bool tres_d::operator==(tres_d op_der)
{
 if((x == op_der.x) && (y == op_der.y) && (z == op_der.z))
 return true;

 return false;
}

Compara si un objeto de tres_d es menor que otro. Todos los valores del objeto que invoca deben
ser menores que los del operando que se encuentra a la derecha para que esta función devuelva
true.

 C a p í t u l o 7 : P o p u r r í 431

Funciones de operador que no son miembros
Como se mencionó al principio de este análisis, una función de operador binario que no es miem-
bro pasa sus operandos explícitamente, mediante sus parámetros. (Recuerde que las funciones
que no son miembros no tienen apuntadores this porque no se invocan en un objeto.) Una función
de operador binario que no es miembro tiene dos parámetros, y el operando de la izquierda se
pasa al primer parámetro y el de la derecha al segundo. Una función de operador unario que no
es miembro pasa su operando mediante su parámetro. De otra manera, las funciones de operador
que no son miembro trabajan de modo parecido a las que sí lo son.

Aunque a menudo usará funciones miembro cuando sobrecarga operadores, hay ocasiones en
que necesitará usar funciones de operador que no son miembro. Un caso es cuando quiere per-
mitir el uso de un tipo integrado (como int o char *) en el lado izquierdo de un operador binario.
Para comprender por qué, recuerde que el objeto que invoca una función de operador miembro se
pasa en this. En el caso de un operador binario, siempre es el objeto de la izquierda el que invoca a
la función. Esto es correcto, siempre y cuando el objeto de la izquierda defi na la operación especifi -
cada. Por ejemplo, suponiendo un objeto de tres_d llamado objA y la función operator+() mostra-
da antes, la siguiente es una expresión perfectamente válida:

objA + 10; // funcionará

Debido a que objA está en el lado izquierdo del operador +, invoca a la función miembro sobre-
cargada operator+(int), que suma 10 a objA. Sin embargo, esta instrucción no es correcta:

10 + Ob; // no funcionará

El problema es que el objeto a la izquierda del operador + es un entero, un tipo integrado para el
que no está defi nida ninguna operación relacionada con un entero y un objeto de tipo tres_d.

La solución a este problema está en sobrecargar el + por segunda ocasión, empleando una
función de operador que no es miembro para manejar el caso en que el entero está a la izquierda.
Por tanto, la función de operador miembro maneja objeto + entero, y la función de operación no
miembro maneja entero + objeto. Para dar a esta función acceso a los miembros de la clase, decláre-
la como friend. He aquí la manera en que una versión que no es miembro de operator+() puede
implementarse para manejar entero + objeto para la clase tres_d:

// Sobrecarga operator+() para int + obj.
// Se trata de una función que no es miembro.
tres_d operator+(int op_izq, tres_d op_der) {
 tres_d temp;

 temp.x = op_izq + op_der.x;
 temp.y = op_izq + op_der.y;
 temp.z = op_izq + op_der.z;

 return temp;
}

Ahora la instrucción

10 + Ob; // ahora es correcta

es legal.

432 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Otra ocasión en que una función de operador que no es miembro resulta útil es cuando se crea
un insertador o extractor personalizado. Como se explicó en el capítulo 5, << se sobrecarga para
que dé salida a datos (los inserte) en un fl ujo, y >> se sobrecarga para que dé entrada a datos (los
extraiga) de un fl ujo. Estas funciones no deben ser miembros porque cada una toma un objeto de
fl ujo como operando del lado izquierdo. El operando del lado derecho es un objeto al que se dará
salida o uno que se recibirá entrada. Consulte Cree insertadores y extractores en el capítulo 5, para
conocer más detalles.

Un último tema: no todos los operadores pueden implementarse mediante funciones que no
son miembro. Por ejemplo, el operador de asignación debe ser un miembro de su clase. También lo
deben ser los operadores (), [] y –>.

Ejemplo
En el siguiente ejemplo se pone en acción el análisis anterior, utilizando todas las piezas y demos-
trando los operadores.

// Demuestra los fundamentos de la sobrecarga de operadores usando
// la clase tres_d.
//
// Este ejemplo usa funciones miembro para sobrecargar los operadores
// binarios +, -, = y ==. También usa una función miembro para
// sobrecargar el - unario. Observe que el + se sobrecarga para
// tres_d + tres_d, y para tres_d + int.
//
// Las funciones que no son miembros se usan para crear un insertador
// predeterminado para objetos de tres_d, y para sobrecargar + para
// int + tres_d.

#include <iostream>

using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {
 int x, y, z; // Coordenadas 3-D
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 // Suma dos objetos de tres_d.
 tres_d operator+(tres_d op_der);

 // Suma un entero a un objeto de tres_d.
 tres_d operator+(int op_der);

 // Resta dos objetos de tres_d.
 tres_d operator-(tres_d op_der);

 // Sobrecarga la asignación.
 tres_d operator=(tres_d op_der);

 // Sobrecarga ==.
 bool operator==(tres_d op_der);

 C a p í t u l o 7 : P o p u r r í 433

 // Sobrecarga para operación unaria.
 tres_d operator-();

 // Hace que el insertador sobrecargado sea un amigo.
 friend ostream &operator<<(ostream &flujo, tres_d op);

 // Hace que el + sobrecargado sea un amigo.
 friend tres_d operator+(int op_izq, tres_d op_der);
};

// Sobrecarga el + binario para que se agreguen las coordenadas
// correspondientes.
tres_d tres_d::operator+(tres_d op_der)
{
 tres_d temp;

 temp.x = x + op_der.x;
 temp.y = y + op_der.y;
 temp.z = z + op_der.z;

 return temp;
}

// Sobrecarga el + binario para que pueda sumarse un entero a
// un objeto de tres_d.
tres_d tres_d::operator+(int op_der)
{
 tres_d temp;

 temp.x = x + op_der;
 temp.y = y + op_der;
 temp.z = z + op_der;

 return temp;
}

// Sobrecarga el - binario para que se resten las coordenadas
// correspondientes.
 tres_d tres_d::operator-(tres_d op_der)
{
 tres_d temp;

 temp.x = x - op_der.x;
 temp.y = y - op_der.y;
 temp.z = z - op_der.z;

 return temp;
}

// Sobrecarga el - unario, para que niegue las coordenadas.
tres_d tres_d::operator-()
{
 tres_d temp;

434 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 temp.x = -x;
 temp.y = -y;
 temp.z = -z;

 return temp;
}

// Sobrecarga asignación para tres_d.
tres_d tres_d::operator=(tres_d op_der)
{
 x = op_der.x;
 y = op_der.y;
 z = op_der.z;

 return *this;
}

// Sobrecarga == para un objeto de tres_d. Compara cada
// coordenada. Todos los valores del objeto que invoca
// deben ser iguales a los del operando de la derecha de
// esta función para que regrese true.
bool tres_d::operator==(tres_d op_der)
{
 if((x == op_der.x) && (y == op_der.y) && (z == op_der.z))
 return true;

 return false;
}

// Éstas son funciones de operador que no son miembros.
//
// Sobrecarga << como un insertador personalizado para objetos de tres_d.
ostream &operator<<(ostream &flujo, tres_d op) {
 flujo << op.x << ", " << op.y << ", " << op.z << endl;

 return flujo;
}

// Sobrecarga + para int + obj.
tres_d operator+(int op_izq, tres_d op_der) {
 tres_d temp;

 temp.x = op_izq + op_der.x;
 temp.y = op_izq + op_der.y;
 temp.z = op_izq + op_der.z;

 return temp;
}

int main()
{
 tres_d objA(1, 2, 3), objB(10, 10, 10), objC;

 cout << "Esto es objA: " << objA;

 C a p í t u l o 7 : P o p u r r í 435

 cout << "Esto es objB: " << objB;

 // Obtiene la negación de objA.
 objC = -objA;
 cout << "Esto es -objA: " << objC;

 // Suma objA a objB.
 objC = objA + objB;
 cout << "objA + objB: " << objC;

 // Resta objB a objA.
 objC = objA - objB;
 cout << "objA - objB: " << objC;

 // Suma obj + int.
 objC = objA + 10;
 cout << "objA + 10: " << objC;

 // Suma int + obj.
 objC = 100 + objA;
 cout << "100 + objA: " << objC;

 // Compara dos objetos.
 if(objA == objB) cout << "objA es igual que objB.\n";
 else cout << "objA no es igual a objB.\n";

 return 0;
}

Aquí se muestra la salida:

Esto es objA: 1, 2, 3
Esto es objB: 10, 10, 10
Esto es -objA: -1, -2, -3
objA + objB: 11, 12, 13
objA - objB: -9, -8, -7
objA + 10: 11, 12, 13
100 + objA: 101, 102, 103
objA no es igual a objB.

Opciones
Aunque en los ejemplos anteriores se ha pasado operandos tres_d por valor, en muchos casos tam-
bién puede pasar un operando por referencia. Por ejemplo, he aquí operator==() cambiado para
que el operando del lado derecho se pase por referencia:

bool tres_d::operator==(tres_d &op_der)
{
 if((x == op_der.x) && (y == op_der.y) && (z == op_der.z))
 return true;

 return false;
}

436 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

A menudo, el uso de una referencia puede aumentar el rendimiento de su programa, porque suele
ser más rápido pasar una referencia en lugar de un objeto completo. Sin embargo, tenga cuidado.
En el caso de objetos muy pequeños, el paso por valor puede ser más rápido.

Un lugar donde un parámetro de referencia es valioso es cuando un operando debe modifi car-
se con el operador. Uno de estos casos ocurre cuando una función operator que no es miembro se
usa para implementar una operación de aumento o reducción. Consulte Sobrecargue los operadores
de aumento y reducción para conocer más información.

C++ tiene varios operadores de caso especiales, como el operador de llamada a función () o el
de subíndice []. Estos operadores también pueden sobrecargarse, pero las técnicas para ello están
individualizadas para cada operador. Estos operadores especiales de caso son el tema de varias de
las siguientes soluciones.

Hay algunas restricciones que se aplican a la sobrecarga del operador:

1. No puede modifi car la precedencia de algún operador.

2. No puede modifi car el número de operandos necesarios para un operador, aunque puede

elegir que se ignore un operando.

3. Con excepción del operador de llamada a función (), las funciones de operador no pueden

tener argumentos predeterminados.

4. No es posible sobrecargar los siguientes operadores:

 . :: . * ?

Desde el punto de vista técnico, tiene la libertad de realizar cualquier actividad dentro de una
función de operador y no es necesario que mantenga alguna relación con el signifi cado normal del
operador. Sin embargo, cuando se aparta considerablemente del signifi cado normal de un opera-
dor, corre el riesgo de desestructurar peligrosamente su programa. Por ejemplo, cuando alguien
que lee su programa ve una instrucción como Ob1+Ob2, espera algo parecido a la suma, o por lo
menos relacionado con ella. La implementación de + para que actúe más como el operador ||, por
ejemplo, es inherentemente confusa. Por tanto, antes de desacoplar un operador sobrecargado de
su signifi cado normal, asegúrese de que tiene razones sufi cientes para hacerlo.

Un buen ejemplo en que el desacoplamiento es correcto se encuentra en la manera en que C++
sobrecarga los operadores << y >> para E/S. Aunque las operaciones de E/S no tienen relación
con el desplazamiento de bits, estos operadores proporcionan una "pista" visual de su signifi cado,
y el desacoplamiento funciona. He aquí otro buen ejemplo de desacoplamiento: una clase de pila
podría sobrecargar el + para poner un objeto en una pila. Aunque este uso difi ere de la suma, aún
es intuitivamente compatible con la suma porque "añade" un objeto a la pila.

Con excepción del operador =, las funciones de operador son heredadas por las clases deriva-
das. Sin embargo, una clase derivada tiene la libertad de sobrecargar cualquier operador que elija
(incluidas las sobrecargas por una clase de base).

 C a p í t u l o 7 : P o p u r r í 437

Sobrecargue el operador de llamada a función ()

Componentes clave

Encabezados Clases Funciones

tipo-ret operator()(lista-param)

Uno de los operadores más poderosos que puede sobrecargar es (), el operador de llamada a fun-
ción. También puede ser uno de los más confusos, sobre todo para los recién llegados. El operador
de llamada a función le permite defi nir una operación en un objeto que no puede realizarse al
sobrecargar cualquier otro operador. Por ejemplo, tal vez quiera defi nir una operación que toma
más de dos operadores. O quizá desee defi nir una operación que no tiene una analogía obvia con
cualquiera de los operadores normales. En este caso, el operador de llamada a función ofrece una
solución elegante. En esta solución se muestra el proceso.

Paso a paso
Para sobrecargar el operador de llamada a función () se necesitan estos pasos:

1. El operador de llamada a función debe ser un miembro no estático de la clase para la que

está defi nido. No puede ser una función que no sea miembro. Por tanto, agregue opera-

tor() como miembro a la clase en que estará operando.

2. Dentro de operator(), realice las acciones deseadas.

3. Al terminar, haga que operator() devuelva el resultado.

Análisis
Cuando sobrecarga el operador de llamada a función (), no está creando, en sí, una nueva manera
de llamar a una función. En cambio, está creando una función operator que puede pasarse en un
número arbitrario de operandos mediante el uso de la sintaxis de llamada a función. El operador
de llamada a función debe implementarse como una función miembro no estática de una clase.
La forma general del operador se muestra aquí:

tipo-ret operator#(lista-param) {
 // realiza la operación basada en los argumentos
 // y devuelve el resultado.
}

El operador de llamada a función se invoca en un objeto de su clase. El objeto que invoca se
pasa mediante this, y los argumentos se pasan a sus parámetros. Si no se necesitan argumentos,
entonces no es necesario que se especifi quen parámetros. La función devuelve el resultado de la
operación.

Trabajemos con un ejemplo. Suponiendo la clase tres_d de la solución anterior, el siguiente
operador de llamada a función devuelve un objeto de tres_d que representa un punto cuyas coor-
denadas son puntos medios entre el objeto que invoca y su argumento de tres_d.

438 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

// Sobrecarga la llamada a función. Toma un objeto de tres_d como
// un parámetro. Esta función devuelve un objeto de tres_d cuyas
// coordenadas son los puntos medios entre el objeto que invoca y obj.
tres_d tres_d::operator()(tres_d obj)
{
 tres_d temp;

 temp.x = (x + obj.x) / 2;
 temp.y = (y + obj.y) / 2;
 temp.z = (z + obj.z) / 2;

 return temp;
}

Dados tres objetos de tres_d llamados objA, objB y objC, lo siguiente llama a operator() en objA,
pasando en objB:

objC = objA(objB);

Aquí, objA(objB) se traduce en esta llamada a la función operator():

objA.operator()(objB)

El resultado se devuelve y almacena en objC.
Antes de seguir adelante, revisemos los elementos clave. En primer lugar, cuando sobrecarga

el operador (), defi ne los parámetros que quiere pasar a esa función. Cuando usa el operador () en
su programa, los argumentos que especifi que se copian en esos parámetros. El objeto que genera
la llamada (objA en el ejemplo anterior) se señala mediante el apuntador this.

Puede sobrecargar operator() para permitir diferentes tipos o cantidades de argumentos, o am-
bos. Por ejemplo, he aquí una versión de operator() para tres_d que toma tres argumentos int. Agre-
ga los valores de esos argumentos a las coordenadas del objeto que invoca y devuelve el resultado.

// Sobrecarga la llamada a función. Toma tres int como parámetros.
// Esta versión suma los argumentos a las coordenadas.
tres_d tres_d::operator()(int a, int b, int c)
{
 tres_d temp;

 temp.x = x + a;
 temp.y = y + b;
 temp.z = z + c;

 return temp;
}

Esta función permite el siguiente tipo de instrucción:

objC = objA(1, 2, 3);

Aquí, los valores 1, 2 y 3 se agregan a los campos x, y y z de objA, y el resultado se devuelve y
almacena en objC.

Un tema adicional: también puede sobrecargar operator() para que su lista de parámetros esté
vacía. En este caso, no se pasan argumentos a la función cuando se le llama.

 C a p í t u l o 7 : P o p u r r í 439

Ejemplo
En el siguiente ejemplo se unen las piezas descritas en el análisis.

// Demuestra el operador de llamada a función.

#include <iostream>

using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {
 int x, y, z; // Coordenadas 3-D
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 // Crea dos funciones de operador de llamada a función.
 tres_d operator()(tres_d obj);
 tres_d operator()(int a, int b, int c);

 // Hace que el insertador sobrecargado sea un amigo.
 friend ostream &operator<<(ostream &flujo, tres_d op);
};

// Sobrecarga la llamada a función. Toma un objeto de tres_d como
// un parámetro. Esta función devuelve un objeto de tres_d cuyas
// coordenadas son los puntos medios entre el objeto que invoca y obj.
tres_d tres_d::operator()(tres_d obj)
{
 tres_d temp;

 temp.x = (x + obj.x) / 2;
 temp.y = (y + obj.y) / 2;
 temp.z = (z + obj.z) / 2;

 return temp;
}

// Sobrecarga la llamada a función. Toma tres int como parámetros.
// Esta versión suma los argumentos a las coordenadas.
tres_d tres_d::operator()(int a, int b, int c)
{
 tres_d temp;

 temp.x = x + a;
 temp.y = y + b;
 temp.z = z + c;

 return temp;
}

// El insertador tres_d es una función de operador que no es miembro.
ostream &operator<<(ostream &flujo, tres_d op) {
 flujo << op.x << ", " << op.y << ", " << op.z << endl;

440 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 return flujo;
}

int main()
{
 tres_d objA(1, 2, 3), objB(10, 10, 10), objC;

 cout << "Esto es objA: " << objA;
 cout << "Esto es objB: " << objB;

 objC = objA(objB);
 cout << "objA(objB): " << objC;

 objC = objA(10, 20, 30);
 cout << "objA(10, 20, 30): " << objC;

 // Puede usar el resultado de uno como argumento de otro.
 objC = objA(objB(100, 200, 300));
 cout << "objA(objB(100, 200, 300)): " << objC;

 return 0;
}

Aquí se muestra la salida:

Esto es objA: 1, 2, 3
Esto es objB: 10, 10, 10
objA(objB): 5, 6, 6
objA(10, 20, 30): 11, 22, 33
objA(objB(100, 200, 300)): 55, 106, 156

Opciones
Cuando se implementa el operador de llamada a función para una clase, puede usarse una ins-
tancia de su clase como un objeto de función. Estos objetos se usan exclusivamente con la STL. En el
capítulo 4 se muestran varios ejemplos.

Ninguna de las dos versiones de operator() del ejemplo anterior modifi ca al objeto que invoca.
En cambio, devuelven el resultado. Aunque no hay una regla que lo imponga, es preferible este
método en casi todos los casos. En general, si va a modifi carse un objeto, es mejor que se presente
mediante un operador de asignación sobrecargado, no mediante el operador de llamada a función.
En otras palabras, normalmente no debe usarse

objA(objB);

como sustituto de

objA = objB;

En general, operator() debe reservarse para operaciones que no se relacionan con ninguna de las
otras operaciones. No es adecuado usar operator() como un operador "total" que sustituya a una
sobrecarga del operador apropiado. Usado de manera apropiada, operator() es una característica
poderosa. Mal usado, puede crear confusión en su código.

 C a p í t u l o 7 : P o p u r r í 441

Sobrecargue el operador de subíndice []

Componentes clave

Encabezados Clases Funciones

tipo-ret operator[](tipo_ind ind)

Si se tiene un operador favorito para sobrecarga, probablemente será [], el operador de subíndice.
¿Por qué? Porque permite la creación de matrices "seguras", que son aquellas en que se evita el
desbordamiento de límites. Como lo sabe, C++ no realiza revisión de límites en las matrices nor-
males. Sin embargo, al envolver una matriz en una clase y luego permitir que sólo se tenga acceso
a esa matriz mediante el operador de subíndice, puede evitar el acceso desde el exterior de la ma-
triz. También puede asegurarse de que sólo se asignen valores válidos a la matriz. Este mecanismo
se emplea con gran éxito en la STL, como en las clases vector y deque.

Por supuesto, el [] es útil en otros contextos. Por ejemplo, una clase que encapsula una soli-
citud de IP podría permitir el acceso a propiedades al indizar el objeto. En esencia, cada vez que
tenga una clase con elementos para los que tiene sentido la indización, el operador de subíndice
ofrece un método elegante. En esta solución se muestran las técnicas básicas necesarias para im-
plementarla.

Paso a paso
La sobrecarga del operador de subíndice [] requiere estos pasos:

1. El operador de subíndice debe ser un miembro no estático de la clase para la que está defi -

nido. No puede ser una función que no sea miembro. Por tanto, agregue operator[]() como

un miembro de la clase en que estará operando.

2. Dentro de operator[](), realice la acción deseada, que suele incluir el acceso a algún objeto

mediante un índice.

3. Al terminar, haga que operator[]() devuelva el objeto (o la referencia al objeto) con base en

el índice.

Análisis
El [] es un operador binario para los fi nes de la sobrecarga, y debe sobrecargarse con una función
miembro no estática. Tiene la forma general:

tipo-ret operator[](tipo_ind ind)
{
 // Accede al elemento especifi cado por ind.
}

El subíndice se pasa en ind, que suele ser un int, pero puede ser cualquier tipo. Por ejemplo, en un
contenedor asociativo, ind puede ser una clave. La función puede devolver cualquier tipo, pero
por lo general será el tipo de elemento que se está obteniendo.

442 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Cuando se evalúa el [], el objeto del subíndice debe ser una instancia de la clase para la que
está defi nido el operador de subíndice. Esta instancia se pasa mediante this. El objeto dentro de []
se pasa en ind. Por ejemplo, dado un objeto llamado obj, la expresión

obj[5]

se traduce en esta llamada a la función operator[]():

obj.operator[](5)

En este caso, 5 se pasa en el parámetro ind. Un apuntador a obj, el objeto que generó la llamada, se
pasa mediante this.

Puede designar la función operator[]() de manera tal que [] pueda usarse a la izquierda y a la
derecha de la instrucción de asignación. Para ello, simplemente especifi que el valor de devolución
de operator[]() como una referencia. Después de hacer esto, las siguientes expresiones son válidas:

x = obj[4];
obj[5] = 9;

La sobrecarga del operador [] proporciona un medio para implementar la indización segura
de matrices en C++. Éste es uno de sus principales usos y una de sus ventajas más importantes.
Como sabe, en C++ es posible desbordar el límite de una matriz (o quedarse corto con él) en
tiempo de ejecución. Sin embargo, si crea una clase que contiene la matriz y sólo permite el acceso
a esa matriz mediante el operador de subíndice [] sobrecargado, entonces interceptará cualquier
índice fuera del rango. En el siguiente ejemplo se ilustra esto.

Ejemplo
En el siguiente programa se muestra cómo sobrecargar el operador de subíndice al usarlo para
crear una "matriz segura" que evite errores de límite. Se defi ne una clase genérica llamada ma-
triz_segura, que encapsula una matriz. El tipo de ésta se especifi ca con un parámetro de tipo de
plantilla llamado T. La longitud de la matriz se especifi ca con un parámetro de plantilla sin tipo
llamado longi. La matriz encapsulada por matriz_segura se denomina matriz. La longitud de
la matriz está almacenada en una variable llamada longitud. Ambas son miembros privados de
matriz_segura. Se tiene acceso a los elementos de la matriz mediante el operator[]() sobrecargado.
Primero se confi rma que el acceso de una matriz está dentro de los límites. Si es así, operator[]()
devuelve entonces una referencia al elemento. La longitud de la matriz puede obtenerse al llamar
al método getlen().

// Sobrecarga [] para crear un tipo de matriz segura genérica.
//
// La función operator[]() revisa errores de límite de matriz
// para que se evite un rebase de límites o que se quede corto de él.
//
// Observe que en este ejemplo se usa un parámetro de plantilla sin
// tipo para especificar el tamaño de la matriz.

#include <iostream>
#include <cstdlib>

using namespace std;

 C a p í t u l o 7 : P o p u r r í 443

// Aquí, T especifica el tipo de matriz y el parámetro sin tipo
// longi especifica la longitud de la matriz.
template <class T, int longi> class matriz_segura {

 // La matriz mz está declarada como de tipo T y de longitud longi.
 // La matriz es privada. El acceso sólo se permite con operator[]().
 // De esta manera, pueden evitarse los límites de error.
 T mz[longi];
 int longitud;

public:
 // Crea una matriz_segura de tipo T con una longitud longi.
 matriz_segura();

 // Sobrecarga el operador de subíndice, de modo que acceda a los
 // elementos de mz.
 T &operator[](int i);

 // Devuelve la longitud de la matriz.
 int getlen() { return longitud; }
};

// Crea una matriz_segura de tipo T con una longitud longi.
// La variable longi es un parámetro de plantilla sin tipo.
template <class T, int longi> matriz_segura<T, longi>::matriz_segura() {
 // Inicializa los elementos de matriz a su valor predeterminado.
 for(int i=0; i < longi; ++i) mz[i] = T();
 longitud = longi;
}

// Devuelve una referencia al elemento del índice especificado.
// Proporciona revisión de rango para evitar errores de límite.
template <class T, int longi> T &matriz_segura<T, longi>::operator[](int i)
{
 if(i < 0 || i > longi-1) {
 // Toma aquí la acción apropiada. Esto es sólo
 // un marcador de posición de respuesta.
 cout << "\nEl valor " << i << " del \u00a1ndice queda fuera del l\u00a1mite.\n";
 exit(1);
 }
 return mz[i];
}

// Esto es una clase simple usada para demostrar una matriz de objetos.
// Observe que el constructor predeterminado da a x el valor -1.
class miclase {
public:
 int x;
 miclase(int i) { x = i; };
 miclase() { x = -1; }
};

int main()

444 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

{
 matriz_segura<int, 10> mz_int; // matriz de entero de tamaño 10
 matriz_segura<double, 5> mz_double; // matriz double de tamaño 15
 int i;

 cout << "Valores iniciales de mz_int: ";
 for(i=0; i < mz_int.getlen(); ++i) cout << mz_int[i] << " ";
 cout << endl;

 // Cambia los valores en mz_int.
 for(i=0; i < mz_int.getlen(); ++i) mz_int[i] = i;

 cout << "Nuevos valores para mz_int: ";
 for(i=0; i < mz_int.getlen(); ++i) cout << mz_int[i] << " ";
 cout << "\n\n";

 cout << "Valores iniciales para mz_double: ";
 for(i=0; i < mz_double.getlen(); ++i) cout << mz_double[i] << " ";
 cout << endl;

 // Cambia los valores en mz_double.
 for(i=0; i < mz_double.getlen(); ++i) mz_double[i] = (double) i/3;

 cout << "Nuevos valores para mz_double: ";
 for(i=0; i < mz_double.getlen(); ++i) cout << mz_double[i] << " ";
 cout << "\n\n";;

 // matriz_segura también trabaja con objetos.
 matriz_segura<miclase, 3> mc_mz; // miclase array of size 3

 cout << "Valores iniciales en mc_mz: ";
 for(i = 0; i < mc_mz.getlen(); ++i) cout << mc_mz[i].x << " ";
 cout << endl;

 // Da algunos valores a mc_mz.
 mc_mz[0].x = 19;
 mc_mz[1].x = 99;
 mc_mz[2].x = -97;

 cout << "Nuevos valores para mc_mz: ";
 for(i = 0; i < mc_mz.getlen(); ++i) cout << mc_mz[i].x << " ";
 cout << endl;

 // Esto crea un desbordamiento de límite.
 mz_int[12] = 100;

 // Convierta en comentario la línea anterior y luego quite las marcas
 // de comentario de la línea siguiente para quedarse corto del límite.
// mz_int[-2] = 100;

 return 0;
}

 C a p í t u l o 7 : P o p u r r í 445

Aquí se muestra la salida:

Valores iniciales de mz_int: 0 0 0 0 0 0 0 0 0 0
Nuevos valores para mz_int: 0 1 2 3 4 5 6 7 8 9

Valores iniciales para mz_double: 0 0 0 0 0
Nuevos valores para mz_double: 0 0.333333 0.666667 1 1.33333

Valores iniciales en mc_mz: -1 -1 -1
Nuevos valores para mc_mz: 19 99 -97

El valor 12 del índice queda fuera del límite.

En el programa, preste especial atención a esta instrucción:

mz_int[12] = 100;

Trata de asignar 100 a la ubicación 12 dentro de mz_int. ¡Pero ésta sólo tiene 10 elementos de
largo! Si fuera una matriz normal, entonces ocurriría un desbordamiento de límite. Por fortuna, en
este caso, el intento es interceptado por operator[]() y el programa se termina antes de que pueda
hacerse cualquier daño. (En la práctica real, se proporcionaría alguna especie de manejo de errores
para tratar con la condición de fuera del rango; no sería necesario que el programa terminara.)

Opciones
Aunque la sobrecarga del operador de subíndice suele ser el mejor método en casos en que se apli-
ca el concepto de "subíndice", en ocasiones verá que se usan, en cambio, funciones "get" y "put".
En este caso, el índice del elemento deseado se pasa a la función "get" o "put" explícitamente como
un argumento. Por ejemplo, podría usarse la siguiente secuencia para obtener la tercera cadena o
para establecer la cuarta en algún conjunto de valores de cadena:

cad = get(3);
put(4, "probando");

Por supuesto, el subíndice ofrece un método más limpio, pero el método "get" y "put" es común en
código C heredado. Si encuentra este tipo de código, tal vez quiera actualizarlo a C++ al sobrecar-
gar a [].

Sobrecargue el operador –>

Componentes clave

Encabezados Clases Funciones

tipo *operator–>()

446 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Uno de los operadores más interesantes es –>. Se le denomina el operador de acceso a miembro de
clase. Es un operador unario que devuelve un apuntador. Éste se relaciona de una manera u otra
con el objeto en que se invoca a –>. La naturaleza precisa de la relación está defi nida por la clase
para la que está defi nido –>. En cuanto a su relación con la sobrecarga, el –> es la fuente de mu-
chas preguntas (y, en ocasiones, de confusión). En esta solución se demuestra cómo sobrecargarlo.
Se incluye un ejemplo adicional que muestra la manera en que puede usarse un –> sobrecargado
para crear un "apuntador seguro".

Paso a paso
La sobrecarga del operador –> incluye los pasos siguientes:

1. El operador de acceso a miembros debe ser un miembro no estático de la clase para la que

está defi nido. No puede ser una función que no sea miembro. Por tanto, agregue operator-

>() como miembro a la clase en que estará operando.

2. Dentro de la función, obtenga un apuntador al objeto que invoca, o asociado de alguna

manera con él.

3. Devuelva el apuntador.

Análisis
El operador –> está sobrecargado como operador unario. Aquí se muestra su uso general:

objeto–>elemento

Aquí, objeto es el objeto que activa la llamada. Ésta debe ser una instancia de la clase para la que
está defi nido el operador de acceso a miembros, y se pasa a operator–>() mediante this. El elemen-
to debe ser algún miembro accesible dentro del objeto. La función debe devolver un apuntador a
objeto o a un objeto administrado por objeto. El uso principal del operador de acceso a miembro es
dar soporte a lo que se considera "apuntadores seguros" o "apuntadores inteligentes". Se trata de
apuntadores que verifi can la integridad de un apuntador antes de realizar una acción con él. Otros
usos incluyen la creación de apuntadores que administran automáticamente la memoria o que dan
soporte a la recolección de basura.

La forma general de un operator–>() se muestra a continuación:

tipo *operator–>() {
 // Devuelve un apuntador al objeto que invoca.
}

Aquí, tipo debe ser el mismo que la clase para la que el operator–> está defi nido. Una función
operator–>() debe ser un miembro no estático de su clase.

Ejemplo
En el siguiente ejemplo se muestra cómo sobrecargar –>. Simplemente devuelve un apuntador al
objeto que invoca. Esto permite el uso de –> para acceder a un miembro de miclase a través de
un objeto, en lugar de un apuntador a un objeto. Por tanto, la sobrecarga de operator–> hace que
los operadores –> y . sean equivalentes. Aunque este ejemplo es útil para ilustrar el efecto de la so-
brecarga de –>, porque es muy corto, no representa un buen uso (ni una práctica recomendada). Para
ver la manera en que se emplearía normalmente un –> sobrecargado, consulte el Ejemplo adicional.

 C a p í t u l o 7 : P o p u r r í 447

// Demuestra operator->().

#include <iostream>

using namespace std;

class miclase {
public:
 int i;

 // Sobrecarga -> para regresar un apuntador al objeto que invoca.
 miclase *operator->() { return this; }
};

int main()
{
 miclase ob;

 ob->i = 10; // igual que ob.i

 cout << ob.i << " " << ob->i;

 return 0;
}

Aquí se muestra la salida:

10 10

Ejemplo adicional: una clase simple de apuntador seguro
Aunque en el ejemplo anterior se presenta el mecanismo para sobrecargar –>, no se muestra toda
su capacidad. Por lo general, el –> está sobrecargado para implementar un tipo de apuntador
personalizado que restringe o monitorea, de una manera u otra, acciones sobre el apuntador. Por
ejemplo, podría crear un tipo de apuntador que proporcione recolección automática de basura. Sin
embargo, tal vez el uso más común sea crear un "apuntador seguro" que evite acciones no válidas
mediante el apuntador, como dejar de referenciar o acceder a un miembro mediante un apuntador
nulo. Este tipo de apuntador puede implementarse al sobrecargar los operadores * y –> para que
confi rmen que el apuntador no es nulo antes de proceder con la operación. Una implementación
simple de este concepto se desarrolló en este ejemplo.

En el siguiente programa se crea una clase de apuntador seguro simple llamada apt_seguro
que evita operaciones sobre un apuntador nulo. Hace esto al sobrecargar –> y *. (Cuando se usa
como operador para dejar de hacer referencia, el * se sobrecarga como operador unario.) Estos
operadores están sobrecargados para evitar que deje de hacerse referencia a un apuntador nulo o
que se use para acceder a un miembro.

La clase apt_seguro se implementa como clase de plantilla en que el parámetro de tipo espe-
cifi ca el tipo base del apuntador. Por ejemplo, para crear un apuntador seguro a un int, use esta
declaración:

apt_seguro<int> aptint;

448 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Una vez que haya creado el apuntador seguro, puede usarlo como uno normal. Por ejemplo, pue-
de asignarle una dirección de un objeto en memoria con la siguiente instrucción:

aptint = new int;

Puede establecer u obtener el valor del objeto mediante el apuntador al usar el operador *. Por
ejemplo:

*aptint = 23;

En el caso de apuntadores a objetos de clase, puede usar –> para acceder a un miembro. En el caso
de ambos operadores, apt_seguro confi rma que el apuntador no sea nulo antes de aplicar el * o –>.

La clase apt_seguro funciona al encapsular un apuntador en un campo llamado apt. Se trata
de un miembro privado, y el acceso a él sólo está permitido mediante operadores sobrecargados,
incluido el operador de asignación sobrecargado. También se proporciona una función de conver-
sión, que provee una conversión de apt_seguro a T *. Esto permite que se use un apt_seguro como
operando para el operador delete, por ejemplo.

Si se hace un intento de usar un apuntador nulo, los operadores sobrecargados * y –> lanza-
rán un objeto de tipo apt_malo, que es una clase de excepción personalizada. El código que usa
apt_seguro necesitará revisar esa excepción.

En el siguiente programa se incluyen las clases apt_seguro y apt_malo. También se defi ne una
clase llamada miclase, que se usa para demostrar –> con un apt_seguro. Aunque es muy simple,
apt_seguro le da una idea de la capacidad de sobrecargar el operador –> y de crear sus propios ti-
pos de apuntador. Los personalizados pueden ser muy útiles para evitar errores o para implemen-
tar esquemas personalizados de administración de memoria. Esté consciente de que, por supuesto,
un tipo de apuntador personalizado siempre será más lento que uno simple, debido al trabajo
adicional que introduce su código.

// Demuestra una clase muy simple de apuntador seguro.

#include <iostream>
#include <string>

using namespace std;

// El tipo de excepción lanzado por el apuntador seguro.
class apt_malo {
public:
 string msj;

 apt_malo(string cad) { msj = cad; }
};

// Una clase usada para demostrar el apuntador seguro.
class miclase {
public:
 int alfa;
 int beta;
 miclase(int p, int q) { alfa = p; beta = q; }
};

// Una clase muy simple de "apuntador seguro" que confirma

 C a p í t u l o 7 : P o p u r r í 449

// que un apuntador señale a algún lado antes de usarse.
//
// El parámetro de plantilla T especifica el tipo de base
// del apuntador.
//
// Nota: esta clase sólo sirve para demostración. Sólo está
// orientada a ejemplificar la sobrecarga del operador ->.
// Una clase de apuntador seguro adecuado para trabajo real
// tiene que ser más completa y más resistente.
//
template <class T> class apt_seguro {
 T *apt;
public:
 apt_seguro() { apt = 0; }

 // Sobrecarga -> para que evite un intento de usar un apuntador
 // nulo para acceder a un miembro.
 T *operator->() {
 if(!apt != 0) throw apt_malo("Intento de usar -> en un apuntador nulo.");
 else return apt;
 }

 // Sobrecarga el operador de apuntador unario *. Este operador
 // evita que se elimine la referencia a un apuntador nulo.
 T &operator*() {
 if(!apt) throw apt_malo("Intento de dejar de hacer referencia a un apuntador
nulo.");
 else return *apt;
 }

 // Conversión de apt_seguro a T *.
 operator T *() { return apt; }

 T *operator=(T *val) { apt = val; return apt; }
};

int main()
{
 // Primero, usa apt_seguro en un entero.

 apt_seguro<int> aptint;

 // Genera una excepción al tratar de usar un apuntador
 // antes de que señale a algún objeto.
 try {
 *aptint = 23;
 cout << "El valor al que apunta aptint es: " << *aptint << endl;
 } catch(apt_malo bp) {
 cout << bp.msj << endl;
 }

 // Apunta aptint a un objeto.
 aptint = new int;

450 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 // Ahora sí funcionará la siguiente secuencia.
 try {
 *aptint = 23;
 cout << "El valor al que apunta aptint es: " << *aptint << "\n\n";
 } catch(apt_malo bp) {
 cout << bp.msj << endl;
 }

 // Ahora, usa apt_seguro en una clase.

 apt_seguro<miclase> aptmc;

 // Esta secuencia trabajará de manera correcta.
 try {
 aptmc = new miclase(100, 200);
 cout << "Los valores de alfa y beta para aptmc son: "
 << aptmc->alfa << " y " << aptmc->beta << endl;

 aptmc->alfa = 27;
 cout << "Nuevo valor para aptmc->alfa: " << aptmc->alfa << endl;
 cout << "Igual que (*aptmc).alfa: " << (*aptmc).alfa << endl;

 aptmc->beta = 99;
 cout << "Nuevo valor para aptmc->beta: " << aptmc->beta << "\n\n";
 } catch(apt_malo bp) {
 cout << bp.msj << endl;
 }

 // Crea otro apuntador de miclase pointer, pero no lo inicializa.
 apt_seguro<miclase> aptmc2;

 // La siguiente asignación lanzará una excepción porque aptmc2
 // no señala a algún lado.
 try {
 aptmc2->alfa = 88;
 } catch(apt_malo bp) {
 cout << bp.msj << endl;
 }

 delete aptint;
 delete aptmc;

 return 0;
}

Aquí se muestra la salida:

Intento de dejar de hacer referencia a un apuntador nulo.
El valor al que apunta aptint es: 23

Los valores de alfa y beta para aptmc son: 100 y 200
Nuevo valor para aptmc->alfa: 27
Igual que (*aptmc).alfa: 27
Nuevo valor para aptmc->beta: 99

Intento de usar -> en un apuntador nulo.

 C a p í t u l o 7 : P o p u r r í 451

Opciones
Tenga cuidado cuando sobrecargue –>. Los apuntadores ya son una característica problemática para
algunos programadores. Si sobrecarga un –> de una manera confusa, poco intuitiva, simplemente
alterará la estructura de su código y difi cultará su mantenimiento. En general, sólo debe sobrecargar
–> cuando cree un tipo de apuntador personalizado. Más aún, su tipo personalizado debe actuar y
tener el aspecto de un apuntador normal. En otras palabras, su operación debe ser transparente y te-
ner un uso consistente con el de un apuntador integrado. Por supuesto, su tipo de apuntador puede
realizar revisiones adicionales o implementar un esquema de administración de memoria personali-
zado, pero debe funcionar como un apuntador normal cuando se usa en un programa.

En algunos casos, tal vez encuentre que C++ ya provee el tipo de apuntador que desea. Por
ejemplo, una clase que a menudo se pasa por alto y que es proporcionada por la biblioteca están-
dar de C++ es auto_ptr, que libera automáticamente la memoria a la que señala cuando el apunta-
dor sale del ámbito. Consulte Use auto_ptr para conocer más detalles.

Sobrecargue new y delete

Componentes clave

Encabezados Clases Funciones

void operator delete(void *apt)
void operator delete[](void *apt)
void *operator new(size_t tam)
void *operator new[](size_t tam)

Los recién llegados a C++ se sorprenden, en ocasiones, al aprender que ahora new y delete se
consideran operadores. Como tales, es posible sobrecargarlos. Tal vez decida hacerlo si quiere
usar algún método de asignación especial. Por ejemplo, tal vez quiera rutinas de asignación que
empiecen automáticamente a usar un archivo de disco como memoria virtual cuando el heap se
haya agotado. O tal vez desee usar un esquema de asignación basado en la recolección de basura.
Cada vez que lo necesite, es relativamente fácil sobrecargar estos operadores, y en esta solución se
muestra el proceso.

Paso a paso
Para sobrecargar new y delete se necesitan estos pasos:

1. Para sobrecargar new para objetos individuales, implemente operator new(). Haga que

devuelva un apuntador a un bloque de memoria que sea lo sufi cientemente grande como

para contener el objeto.

2. Para sobrecargar new para matrices de objetos, implemente operator new[](). Haga que

devuelva un apuntador a un bloque de memoria que sea lo sufi cientemente grande como

para contener la matriz.

3. Para sobrecargar delete para un objeto individual, implemente operator delete(). Haga

que libere la memoria usada por el objeto.

452 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

4. Para sobrecargar delete para un apuntador a una matriz, implemente operator delete[]().

Haga que libere la memoria usada por el objeto.

Análisis
Antes de empezar, necesita dejarse en claro un tema importante. Los operadores new y delete
pueden sobrecargarse globalmente o en relación con una clase específi ca. Cuando se sobrecargan
de manera global, la nueva versión de new y delete reemplaza a las versiones predeterminadas
cuando se asigna memoria a los tipos integrados y a cualquier clase que no proporcione su propia
sobrecarga de new y delete. Por desgracia, en ocasiones esto causa efectos colaterales indeseables.
Por ejemplo, código de tercero podría usar new y delete de una manera incompatible con las
versiones sobrecargadas. Por esto, no se recomienda la sobrecarga global de new y delete, excepto
en casos raros. En cambio, se recomienda la sobrecarga clase por clase. Cuando new y delete son
sobrecargados por una clase, sólo se usan cuando se asigna memoria para objetos de la clase. Esto
elimina la posibilidad de efectos colaterales fuera de la clase. Éste es el método usado en esta so-
lución, y en el siguiente análisis se supone que se les está sobrecargando en relación con una clase
mediante el uso de funciones miembro.

Hay dos formas básicas de new y delete. La primera es para asignación y liberación de objetos
individuales. La segunda para las de matrices de objetos. Ambas formas pueden sobrecargarse y
ambas se describen aquí. Empezaremos con las formas para objetos individuales.

He aquí las formas generales de new y delete sobrecargadas para objetos individuales:

// Asigna memoria a un objeto.
void *operator new(size_t tam)
{
 // Asigna memoria para el objeto y devuelve un apuntador a
 // la memoria. El tamaño en bytes del objeto se pasa en tam.
 // Lanza bad_alloc si falla.
}

// Libera memoria previamente asignada.
void operator delete(void *apt)
{
 // Libera la memoria a la que señala apt.
}

El parámetro tam contendrá el número de bytes necesarios para contener el objeto que se está
asignando. Es la cantidad de memoria que su versión de new debe asignar (size_t es un typedef
para alguna forma de entero sin signo). La función new sobrecargada debe devolver un apuntador
a la memoria que se asigna, o lanzar una excepción bad_alloc si ocurre un error de asignación.
Más allá de estas restricciones, el new sobrecargado puede hacer todo lo demás que necesite.
Cuando asigne un objeto usando new (sea su propia versión o no), se llamará automáticamente al
constructor del objeto.

La función delete recibe un apuntador a la región de la memoria que habrá de liberarse. Debe
regresarse al sistema la memoria previamente asignada. Cuando se elimina un objeto, se llama
automáticamente a su destructor. Es importante que delete sólo se use en un apuntador que se
asignó previamente mediante new.

 C a p í t u l o 7 : P o p u r r í 453

Si quiere tener la capacidad de asignar matrices a objetos empleando su propio sistema de
asignación, necesitará sobrecargar new[] y delete[], que son las formas de matriz de new y delete.
He aquí las formas generales:

// Asigna una matriz de objetos.
void *operator new[](size_t tam)
{
 // Asigna memoria para la matriz y devuelve un apuntador a
 // ella. El número de bytes que se asignará se pasa en tam.
 // Lanza bad_alloc si falla.
}

// Elimina una matriz de objetos.
void operator delete[](void *apt)
{
 // Libera la memoria a la que señala apt.
}

Cuando se asigna una matriz, se llama automáticamente al constructor de cada objeto en ella.
Cuando se libera una matriz, se llama automáticamente al destructor de cada objeto. No tiene que
proporcionar código explícito para completar estas acciones.

Ejemplo
En el siguiente ejemplo se sobrecargan news y delete para la clase tres_d. Se sobrecargan las for-
mas de objeto y de matriz de cada una. Para simplifi car el ejemplo, no se usa un nuevo esquema
de asignación. En cambio, los operadores sobrecargados simplemente invocarán las funciones de
la biblioteca estándar de C malloc() y free(). La función malloc() asigna un número específi co
de bytes y devuelve un apuntador a ellos. Devuelve null si no es posible asignar la memoria. Dado
un apuntador a memoria previamente asignado por malloc(), free() libera la memoria, dejándola
disponible para usarla de nuevo. En general malloc() y free() tienen una funcionalidad similar
a la de new y delete, pero de una manera más depurada.

// Sobrecarga new, new[], delete y delete[] para la clase tres_d.
//
// Este programa usa las funciones de C malloc() y free()
// para asignar y liberar memoria dinámica. Requieren el
// encabezado <cstdlib>.

#include <iostream>
#include <cstdlib>
#include <new>

using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {
 int x, y, z; // Coordenadas 3-D
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 // Establece las coordenadas de un objeto después de crearlo.

454 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 void set(int i, int j, int k) { x = i; y = j; z = k; }

 // Sobrecarga new y delete para objetos de tres_d.
 void *operator new(size_t tam);
 void operator delete(void *apt);

 // Sobrecarga new[] y delete[] para matrices de tres_d.
 void *operator new[](size_t tam);
 void operator delete[](void *apt);

 // Hace que el insertador sobrecargado sea un amigo.
 friend ostream &operator<<(ostream &flujo, tres_d op);
};

// El insertador de tres_d es una función de operador no miembro.
ostream &operator<<(ostream &flujo, tres_d op) {
 flujo << op.x << ", " << op.y << ", " << op.z << endl;

 return flujo;
}

// Sobrecarga new para tres_d.
void *tres_d::operator new(size_t tam)
{
 void *apt;

 cout << "Usando new sobrecargado para tres_d.\n";
 apt = malloc(tam);
 if(!apt) {
 bad_alloc ba;
 throw ba;
 }
 return apt;
}

// Sobrecarga delete para tres_d.
void tres_d::operator delete(void *apt)
{
 cout << "Usando delete sobrecargado para tres_d.\n";
 free(apt);
}

// Sobrecarga new[] para matrices de tres_d.
void *tres_d::operator new[](size_t tam)
{
 void *apt;

 cout << "Usando new[] sobrecargado para tres_d.\n";
 apt = malloc(tam);
 if(!apt) {
 bad_alloc ba;
 throw ba;
 }
 return apt;

 C a p í t u l o 7 : P o p u r r í 455

}

// Sobrecarga delete[] para matrices de tres_d.
void tres_d::operator delete[](void *apt)
{
 cout << "Usando delete[] sobrecargado para tres_d.\n";
 free(apt);
}

int main()
{
 tres_d *a1, *a2;
 int i;

 // Asigna un objeto de tres_d.
 try {
 a1 = new tres_d (10, 20, 30);
 } catch (bad_alloc xa) {
 cout << "Error de asignación para a1.\n";
 return 1;
 }

 cout << "Coordenadas del nuevo objeto al que apunta a1: " << *a1;

 // Libera el objeto.
 delete a1;

 cout << endl;

 // Asigna una matriz de tres_d.
 try {
 a2 = new tres_d [10]; // asigna una matriz
 } catch (bad_alloc xa) {
 cout << "Error de asignación para a2.\n";
 return 1;
 }

 // Asigna coordenadas a tres de los elementos de a2.
 a2[1].set(99, 88, 77);
 a2[5].set(-1, -2, -3);
 a2[8].set(56, 47, 19);

 cout << "Contenido de una matriz din\u00a0mica de tres_d:\n";
 for(i=0; i<10; i++) cout << a2[i];

 // Libera la matriz.
 delete [] a2;

 return 0;
}

456 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra la salida:

Usando new sobrecargado para tres_d.
Coordenadas del nuevo objeto al que apunta a1: 10, 20, 30
Usando delete sobrecargado para tres_d.

Usando new[] sobrecargado para tres_d.
Contenido de una matriz dinámica de tres_d:
0, 0, 0
99, 88, 77
0, 0, 0
0, 0, 0
0, 0, 0
-1, -2, -3
0, 0, 0
0, 0, 0
56, 47, 19
0, 0, 0
Usando delete[] sobrecargado para tres_d.

Opciones
C++ da soporte a una versión "sin lanzamiento de excepciones" de new. Esta opción hace que new
actúe como lo hacía en versiones anteriores de C++, en que devolvía null si no era posible asignar-
le memoria. (Las versiones modernas de C++ lanzan una excepción bad_alloc cuando new falla.)
Puede crear versiones sobrecargadas de las versiones que no lanzan excepciones al usar estas
formas de operator new() y operator new[]():

// Versión sin lanzamiento de excepciones de new.
void *operator new(size_t tam, const nothrow_t &no usada)
{
 // Asigna la memoria al objeto. Si tiene éxito, devuelve
 // un apuntador a la memoria. De lo contrario, devuelve null.
}

// Versión sin lanzamiento de excepciones de new[].
void *operator new[](size_t tam, const nothrow_t &no usada)
{
 // Asigna la memoria para la matriz. Si tiene éxito, devuelve
 // un apuntador a la memoria. De lo contrario, devuelve null.
}

El tipo nothrow_t está defi nido en <new>.
Cuando use la versión sin lanzamiento de excepciones, especifi que el objeto nothrow en la

llamada a new y revise un valor de devolución nulo, como se muestra aquí:

apt = new(nothrow) int;
if(!apt) {
 cout << "Ha fallado la asignaci\u00a2n.\n";
 // maneja la falla ...
}

El objeto nothrow es una instancia de nothrow_t y es proporcionado por <new>.

 C a p í t u l o 7 : P o p u r r í 457

Sobrecargue los operadores de aumento y disminución

Componentes clave

Encabezados Clases Funciones

tipo-ret operator++()
tipo-ret operator++(int no_usada)
tipo-ret operator--()
tipo-ret operator--(int no_usada)

En cuanto a la sobrecarga de operadores, ++ (aumento) y – – (reducción) generan la mayor parte
de las preguntas. Aunque ninguno de los dos es difícil de sobrecargar, resulta fácil hacerlo de ma-
nera ligeramente equivocada, lo que lleva a que el operador trabaje de manera correcta en algunos
casos, pero que falle en otros. Esto puede dar como resultado errores difíciles de diagnosticar. Los
operadores de aumento y reducción también tienen dos formas diferentes, de prefi jo y sufi jo, y
ambas deben sobrecargarse para que el operador siempre funcione correctamente. En esta solu-
ción se muestra cómo manejar estos operadores que, en ocasiones, resultan problemáticos.

Paso a paso
Para sobrecargar los operadores de aumento y reducción empleando funciones miembro, se re-
quieren estos pasos:

1. Para sobrecargar la forma de prefi jo del operador de aumento, cree una función opera-

tor++(). Dentro de esa función, aumente el objeto que invoca y devuelva el resultado.

2. Para sobrecargar la forma de sufi jo del operador de aumento, cree una función

operator++(int). Dentro de esa función, cree un objeto temporal que contenga el valor

original del operando. Luego, aumente el objeto que invoca. Por último, devuelva el

valor original.

3. Para sobrecargar la forma de prefi jo del operador de reducción, cree una función opera -

tor– –(). Dentro de esa función, reduzca el objeto que invoca y devuelva el resultado.

4. Para sobrecargar la forma de sufi jo del operador de reducción, cree una función operator

– –(int). Dentro de esa función, cree un objeto temporal que contenga el valor original del

operando. Luego, reduzca el objeto que invoca. Por último, devuelva el valor original.

Análisis
Hay dos formas de los operadores ++ y – –: prefi jo y sufi jo. La forma de prefi jo aumenta el ope-
rando y devuelve el resultado. La forma de sufi jo almacena el valor inicial del operando, aumenta
éste y luego regresa el valor original. Ambas formas pueden sobrecargarse, y cada una es sobrecar-
gada por su propia función.

Con mayor frecuencia, los operadores de aumento y reducción son funciones miembros de la
clase para la que están defi nidos. Éste es el método usado en esta solución. Sin embargo, también
pueden implementarse mediante funciones que no son miembro, y esto se describe en la sección
Opciones de esta solución.

458 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

He aquí las formas generales de operator++() y operator– –() cuando se implementan como
funciones miembro. Se muestran las formas de prefi jo y sufi jo:

// Aumento de prefi jo
tipo-ret operator++() {
 // Aumenta el operando y devuelve el resultado.
}

// Aumento de sufi jo
tipo-ret operator++(int no_usada) {
 // Almacena una copia del valor original de un operando.
 // Luego aumenta el operando.
 // Por último, devuelve el valor original.
}

// Reducción de prefi jo
tipo-ret operator--() {
 // Reduce el operando y devuelve el resultado.
}

// Aumento de sufi jo
tipo-ret operator--(int no_usada) {
// Almacena una copia del valor original de un operando.
 // Luego reduce el operando.
 // Por último, devuelve el valor original.
}

Preste especial atención al parámetro no usada. Suele ser cero y, por lo general, no se usa dentro de
la función. Es simplemente una manera en que C++ indica a cuál función llamar.

Hay tres claves para sobrecargar correctamente el aumento y la reducción:

Debe sobrecargar las formas de prefi jo y sufi jo.

Cuando implemente la forma de prefi jo, primero debe aumentar o reducir el valor y luego

devolver el valor modifi cado.

Cuando implemente la forma de sufi jo, recuerde que debe almacenar el valor inicial y

luego devolver ese valor. No devuelva por accidente el valor modifi cado.

Si sigue estas reglas, sus operadores de aumento y reducción se comportarán como los inte-
grados. Si no las sigue, puede incurrir en problemas. Por ejemplo, si no sobrecarga las formas de
prefi jo y sufi jo de un operador, entonces no podrá usarse la forma que no sobrecargue. Más aún,
si no sobrecarga la forma de sufi jo, algunos compiladores reportarán un error si trata de usar el
operador de sufi jo, y no compilarán su programa. Sin embargo, otros compiladores simplemente
lanzarán una advertencia y luego usarán, en cambio, la forma de prefi jo. Esto hará que el operador
de sufi jo actúe de manera inesperada.

•

•

•

 C a p í t u l o 7 : P o p u r r í 459

Ejemplo
En el siguiente ejemplo se sobrecargan los operadores de aumento y reducción para la clase
tres_d. Se proporcionan las formas de prefi jo y sufi jo.

// Sobrecarga ++ y -- para tres_d.

#include <iostream>

using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {
 int x, y, z; // 3-D coordinates
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 // Sobrecarga ++ y --. Proporciona formas de prefijo y sufijo.
 tres_d operator++(); // prefijo
 tres_d operator++(int nousada); // sufijo

 tres_d operator--(); // prefijo
 tres_d operator--(int nousada); // sufijo

 // Hace que el insertador sobrecargado sea un amigo.
 friend ostream &operator<<(ostream &flujo, tres_d op);
};

// Sobrecarga ++ de prefijo para tres_d.
tres_d tres_d::operator++() {
 x++;
 y++;
 z++;

 return *this;
}

// Sobrecarga ++ de sufijo para tres_d.
tres_d tres_d::operator++(int nousada) {
 tres_d temp = *this;

 x++;
 y++;
 z++;

 return temp;
}

// Sobrecarga -- de prefijo para tres_d.
tres_d tres_d::operator--() {
 x--;
 y--;
 z--;

460 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 return *this;
}

// Sobrecarga -- de sufijo para tres_d.
tres_d tres_d::operator--(int nousada) {
 tres_d temp = *this;

 x--;
 y--;
 z--;

 return temp;
}

// El insertador de tres_d es una función de operador que no es miembro.
ostream &operator<<(ostream &flujo, tres_d op) {
 flujo << op.x << ", " << op.y << ", " << op.z << endl;

 return flujo;
}

int main()
{
 tres_d objA(1, 2, 3), objB(10, 10, 10), objC;

 cout << "Valor original de objA: " << objA;
 cout << "Valor original de objB: " << objB;

 // Demuestra ++ y -- como operaciones independientes.
 ++objA;
 ++objB;

 cout << "++objA: " << objA;
 cout << "++objB: " << objB;

 --objA;
 --objB;

 cout << "--objA: " << objA;
 cout << "--objB: " << objB;

 objA++;
 objB++;

 cout << endl;

 cout << "objA++: " << objA;
 cout << "objB++: " << objB;

 objA--;
 objB--;

 cout << "objA--: " << objA;
 cout << "objB--: " << objB;

 C a p í t u l o 7 : P o p u r r í 461

 cout << endl;

 // Ahora, demuestra la diferencia entre las formas
 // de prefijo y sufijo de ++ y --.

 objC = objA++;
 cout << "Luego de que objC = objA++\n objC: " << objC <<" objA: "
 << objA << endl;

 objC = objB--;
 cout << "Luego de que objC = objB--\n objC: " << objC <<" objB: "
 << objB << endl;

 objC = ++objA;
 cout << "Luego de que objC = ++objA\n objC: " << objC <<" objA: "
 << objA << endl;

 objC = --objB;
 cout << "Luego de que objC = --objB\n objC: " << objC <<" objB: "
 << objB << endl;

 return 0;
}

Aquí se muestra la salida:

Valor original de objA: 1, 2, 3
Valor original de objB: 10, 10, 10
++objA: 2, 3, 4
++objB: 11, 11, 11
--objA: 1, 2, 3
--objB: 10, 10, 10

objA++: 2, 3, 4
objB++: 11, 11, 11
objA--: 1, 2, 3
objB--: 10, 10, 10

Luego de que objC = objA++
 objC: 1, 2, 3
 objA: 2, 3, 4

Luego de que objC = objB--
 objC: 10, 10, 10
 objB: 9, 9, 9

Luego de que objC = ++objA
 objC: 3, 4, 5
 objA: 3, 4, 5

Luego de que objC = --objB
 objC: 8, 8, 8
 objB: 8, 8, 8

462 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Opciones
Aunque el uso de funciones miembro para sobrecargar los operadores de aumento y reducción es
el método más común, también puede usar funciones que no son miembro. Tal vez quiera hacer
esto cuando sobrecarga el operador en relación con una enumeración, o cuando está defi niendo el
aumento y la reducción de acuerdo con una clase de la que no tiene el código fuente. Cualquiera
que sea la razón, es una tarea fácil. A continuación se muestran las formas que no son miembro de
los operadores de aumento y reducción:

// Aumento de prefi jo
tipo-ret operator++(type &op) {
 // Aumenta el operando y devuelve el resultado.
}

// Aumento de sufi jo
tipo-ret operator++(type &op, int no_usada) {
 // Almacena una copia del valor original del operando.
 // Luego aumenta el operando.
 // Por último, devuelve el valor original.
}

// Reducción de prefi jo
tipo-ret operator– –(type &op) {
 // Reduce el operando y devuelve el resultado.
}

// Aumento de sufi jo
tipo-ret operator– –(type &op, int no_usada) {
// Almacena una copia del valor original del operando.
 // Luego reduce el operando.
 // Por último, devuelve el valor original.
}

Observe que el operando se pasa mediante referencia. Esto es necesario para permitir que las fun-
ciones modifi quen el operando.

En general, cuando quiera aumentar o reducir un objeto, la sobrecarga de los operadores
++ y – – es el mejor método. Sin embargo, en algunos casos, tal vez el uso de las funciones sea
mejor. Por ejemplo, puede crear una función llamada inc() que aumente un objeto y dis() que
lo reduzca. Tal vez quiera hacer esto cuando no desea modifi car el valor del objeto. La función
inc() o dis() quizá no devuelva el nuevo valor, sino que deje el objeto sin modifi cación. Tam-
bién podría hacer esto al sobrecargar los operadores de aumento y reducción de manera que no
modifi quen el operando, pero esto podría hacer que funcionen de una manera inconsistente con
su semántica normal.

Debe tener cuidado cuando trabaje con programas heredados de C++ en que se utilizan los
operadores de aumento y reducción. En versiones anteriores de C++, no era posible especifi car
versiones separadas de un ++ o – – sobrecargado. La forma de prefi jo se usaba en ambas. Los com-
piladores modernos por lo general lanzarán una advertencia en esta situación, pero es mejor no
contar con ella. Lo más adecuado es confi rmar que el aumento y la reducción están sobrecargados
de manera apropiada. Si no lo están, necesita actualizarlos.

 C a p í t u l o 7 : P o p u r r í 463

Cree una función de conversión

Componentes clave

Encabezados Clases Funciones

operator tipo-destino()

En ocasiones, querrá usar un objeto de clase en una expresión que incluya otro tipo de datos. Aun-
que los operadores sobrecargados pueden proporcionar un medio de hacerlo, en ocasiones todo
lo que realmente quiere es una simple conversión del tipo de la clase al de destino. Para manejar
estos casos, C++ le permite crear una función de conversión. Ésta convierte automáticamente el tipo
de una clase en el de destino. Esto hace que la de conversión sea una de las funciones más útiles de
C++. Por desgracia, también es una de las características más subestimadas. En esta solución se
muestra cómo crear una función de conversión. En el proceso, se arroja un poco de luz sobre sus
capacidades a veces ignoradas.

Paso a paso
Para crear una función de conversión, se requieren estos pasos:

1. Para proporcionar una conversión del tipo de una clase a uno de destino, agregue una

función de conversión a la clase. Una función de conversión se basa en la palabra clave

operator, como se describe en el análisis siguiente.

2. Dentro de la función de conversión, convierta el objeto en el tipo de destino.

3. Devuelva el resultado, que debe ser un valor compatible con el tipo de destino.

Análisis
Una función de conversión usa la palabra clave operator. La forma general de una conversión se
muestra a continuación:

operator tipo-destino() {
 //Crea un valor que contiene la conversión.
 return valor;
}

Aquí, tipo-destino es el tipo de destino al que está convirtiendo su clase, y valor es el resultado de la
conversión. El objeto que se está convirtiendo se pasa mediante this. Las funciones de conversión
devuelven datos de tipo tipo-destino, y no se permite ningún otro especifi cador de tipo de devolu-
ción. Además, no se pueden incluir parámetros. Una función de conversión debe ser miembro de
la clase para la que se defi ne. Las funciones de conversión se heredan y pueden ser virtuales.

Una vez que ha creado una función de conversión, puede usarse un objeto de su clase en
expresiones del tipo de destino. Esto signifi ca que puede operarse mediante operadores (sin tener
que sobrecargarlos), siempre y cuando el tipo de la expresión sea igual que el del destino de la
función de conversión. Más aún, una función de conversión le permite pasar un objeto como ar-
chivo a una función, siempre y cuando el tipo de parámetro sea igual que el del destino. Éstas son
características poderosas, que pueden obtenerse casi sin esfuerzo de programación alguno.

464 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

La mejor manera de apreciar el poder de una función de conversión es trabajar con un ejemplo.
Suponga la clase tres_d mostrada aquí:

class tres_d {
 int x, y, z; // Coordenadas 3-D
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 // ...
};

Puede crear una conversión para int al agregar la siguiente función como un miembro:

operator int() { return x + y + z; }

Esto convierte un objeto de tres_d en un entero que contiene la suma de las coordenadas.
Suponiendo la conversión anterior, ahora la siguiente secuencia es válida:

tres_d objA(1, 2, 3), objB(-1, -2, -3);
int resultado;
resultado = 10 + objA;

Después de que esto se ejecuta, el resultado contendrá el valor 16(10+1+2+3). Debido a que 10 es
un valor int, cuando se le agrega objA, se invoca automáticamente operator int() en objA para
proporcionar la conversión.

Ejemplo
En el siguiente ejemplo se pone en acción el análisis anterior. Crea una conversión de tres_d a int.
Luego usa esa conversión para emplear un objeto de tres_d en una expresión de entero y pasa
objetos de tres_d como argumentos a funciones que especifi can un parámetro de entero.

// Crea funciones de conversión para tres_d.

#include <iostream>

using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {
 int x, y, z; // Coordenadas 3-D
public:
 tres_d() { x = y = z = 0; }
 tres_d(int i, int j, int k) { x = i; y = j; z = k; }

 // Una conversión a int.
 operator int() { return x + y + z; }

 // Hace que el insertador sobrecargado sea un amigo.
 friend ostream &operator<<(ostream &flujo, tres_d op);
};

// El insertador de tres_d es una función de operador no miembro.

 C a p í t u l o 7 : P o p u r r í 465

ostream &operator<<(ostream &flujo, tres_d op) {
 flujo << op.x << ", " << op.y << ", " << op.z << endl;

 return flujo;
}

// Devuelve la negación de v.
int neg(int v) {
 return -v;
}

// Devuelve true si x es menor que y.
bool lt(int x, int y) {
 if(x < y) return true;
 return false;
}

int main()
{
 tres_d objA(1, 2, 3), objB(-1, -2, -3);
 int resultado;

 cout << "El valor de objA: " << objA;
 cout << "El valor de objB: " << objB;
 cout << endl;

 // Usa objA en una expresión int.
 cout << "Usa un objeto de tres_d en una expresi\u00a2n int: ";
 resultado = 10 + objA;
 cout << "10 + objA: " << resultado << "\n\n";

 // Pasa objA a una función que toma un argumento int.
 cout << "Pasa un objeto de tres_d a un par\u00a0metro int: ";
 resultado = neg(objA);
 cout << "neg(objA): " << resultado << "\n\n";

 cout << "Compara la suma de las coordenadas con el uso de lt(): ";
 if(lt(objA, objB))
 cout << "objA es menor que objB\n";
 else if(lt(objB, objA))
 cout << "objB es menor que objA\n";
 else
 cout << "objA y objB suman el mismo valor.\n";

 return 0;
}

466 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Aquí se muestra la salida:

El valor de objA: 1, 2, 3
El valor de objB: -1, -2, -3

Usa un objeto de tres_d en una expresión int: 10 + objA: 16

Pasa un objeto de tres_d a un parámetro int: neg(objA): -6

Compara la suma de las coordenadas con el uso de lt(): objB es menor que objA

Opciones
Puede crear diferentes funciones de conversión para cubrir distintas necesidades. Por ejemplo,
podría defi nir conversiones de tres_d a int, double o long. Cada una se aplicará de manera auto-
mática, determinada por el tipo de conversión necesario.

En algunos casos, en lugar de usar una función de conversión, puede obtener el mismo re-
sultado (pero no tan fácilmente) al sobrecargar los operadores que estará usando. En el ejemplo
anterior, podría sobrecargar el + para operaciones que requieren objetos de tres_d y enteros. Por
supuesto, esto no permitiría aún que se pase un objeto de tres_d a una función que usa un pará-
metro int.

Cree un constructor de copia

Componentes clave

Encabezados Clases Funciones

nombreclase (const nombreclase &obj)

Una característica a menudo subestimada pero increíblemente importante de C++ es el construc-
tor de copias. Éste defi ne la manera en que se hace la copia de un objeto. Debido a que C++ pro-
porciona automáticamente un constructor de copias predeterminado para una clase, no todas
las clases necesitan defi nir uno de manera explícita. Sin embargo, en el caso de muchas clases,
el constructor de copias predeterminado es insufi ciente, y su uso causa problemas. Esto se debe
a que el constructor predeterminado crea una copia idéntica del original. Si un objeto contiene
un recurso, como un apuntador a memoria o un objeto de fl ujo de archivo, entonces si se hace
una copia, ésta también podría señalar a la misma memoria o tratar de usar el mismo archivo.
En casos como éste, pronto habrá problemas. La solución consiste en defi nir un constructor de
copias explícito que duplique un objeto, pero evite el posible problema. Con este fi n, en esta
solución se describe cómo crear un constructor de copias y se revisan las circunstancias bajo las
que se necesita.

 C a p í t u l o 7 : P o p u r r í 467

Paso a paso
Para crear un constructor de copias, se necesitan estos pasos:

1. Cree un constructor para la clase que tome sólo un parámetro, que es una referencia

al objeto que habrá de copiarse.

2. Dentro del constructor, copie el objeto de una manera compatible con la clase.

Análisis
Empecemos por examinar el problema que se pretende que resuelva el constructor de copias.
Como opción predeterminada, cuando se usa un objeto para inicializar otro, se hace una copia del
original campo por campo. En el caso de campos escalares (entre los que se incluyen los apuntado-
res), se tiene una copia idéntica, byte por byte, del campo. Aunque esto es perfectamente adecua-
do para muchos casos (y a menudo es exactamente lo que desea que suceda), hay situaciones en
que no debe usarse una copia idéntica. Una de las más comunes es cuando un objeto usa memoria
asignada dinámicamente. Por ejemplo, suponga una clase llamada miclase que utiliza este tipo
de memoria para algún propósito y que, en un campo, se mantiene un apuntador a esta memoria.
Más aún, suponga que esta memoria se asigna cuando se construye un objeto y se libera cuando
se ejecuta su destructor. Por último, suponga un objeto de miclase llamado A, que se usa para
inicializar B, como se muestra aquí:

miclase B = A;

Si se hace una copia idéntica de A y se asigna a B, entonces en lugar de que B contenga un apunta-
dor a su propia porción de memoria asignada dinámicamente, estará usando la misma porción de
memoria que A. Esto casi siempre llevará a problemas. Por ejemplo, cuando se destruyan A y B,
¡la misma porción de memoria se liberará dos veces! Una vez para A y una más para B.

Un tipo similar de problemas puede ocurrir de dos maneras adicionales. La primera ocurre
cuando se hace una copia de un objeto y se pasa como argumento a una función. Este objeto sale
del ámbito (y se destruye) cuando se devuelve la función. La segunda ocurre cuando se crea un
objeto temporal como valor devuelto de una función. Como tal vez lo sepa, los objetos temporales
se crean automáticamente para contener el valor devuelto por una función. Este objeto temporal
sale automáticamente de ámbito después de que termina la expresión que contiene la llamada
a la función. En ambos casos, si el objeto temporal actúa sobre un recurso, como a través de un
apuntador o un archivo abierto, entonces esas acciones tendrán efectos secundarios. En el caso de
miclase, esto daría como resultado que el mismo bloque de memoria se libere dos o más veces.
Es evidente que esta situación debe evitarse.

Para resolver el tipo de problemas que se acaba de describir, C++ le permite crear un cons-
tructor de copias explícito para una clase. Se llama a éste cuando un objeto inicializa a otro. Todas
las clases tienen un constructor de copias predeterminado, que produce una copia miembro por
miembro. Cuando defi ne su propio constructor de copias, éste se usa en lugar del predeterminado.

Antes de seguir adelante, es importante comprender que C++ defi ne dos tipos distintos de
situación en que el valor de un objeto se asigna a otro. El primero es la asignación. El segundo es la
inicialización, que puede ocurrir de tres maneras:

Cuando un objeto inicializa explícitamente otro, como en una declaración.

Cuando se hace una copia de un objeto para pasarlo a una función.

Cuando se genera un objeto temporal (con mayor frecuencia, como un valor devuelto).

•

•

•

468 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

El constructor de copias sólo se aplica a las inicializaciones. No lo hace a asignaciones.
La forma más general de un constructor de copias se muestra a continuación:

nombreclase (const nombreclase &ob) {

 // Cuerpo del constructor de copias.

}

Aquí, obj es una referencia al objeto que se encuentra en el lado derecho de la inicialización. Es
permisible que un constructor de copias tenga parámetros adicionales, siempre y cuando cuente
con argumentos predeterminados defi nidos para ellos. Sin embargo, en todos los casos, el primer
parámetro debe ser una referencia al objeto que hace la inicialización. Esta referencia puede ser
const, volatile, o ambas.

Una vez más, suponga una clase llamada miclase y un objeto de tipo miclase llamado A. Ade-
más, suponiendo que func1() toma un parámetro de miclase y que func2() devuelve un objeto de
miclase, cada una de las siguientes instrucciones requiere inicialización:

miclase B = A; // A inicializando B
miclase B(A); // A inicializando B
func1(A); // A pasada como parámetro
A = func2(); // A recibiendo un objeto temporal, devuelto

En los tres primeros casos, una referencia a A se pasa al constructor de copias. En el cuarto, se le
pasa una referencia al objeto devuelto por func2().

Dentro de un constructor de copias, debe manejar manualmente la duplicación de cada campo
dentro del objeto. Esto, por supuesto, le da oportunidad de evitar situaciones posiblemente dañi-
nas. Por ejemplo, en miclase que se acaba de describir, el nuevo objeto miclase podría asignar su
propia memoria. Esto permitiría que el original y la copia fueran objetos equivalentes, pero com-
pletamente separados. También evita el problema de que ambos objetos usen la misma memoria
porque si un objeto libera la memoria, no se afectará al otro. Si es necesario, puede inicializarse la
memoria para que incluya el mismo contenido que el original.

En algunos casos, los mismos problemas que pueden ocurrir cuando se hace una copia de un
objeto también ocurren cuando un objeto se asigna a otro. La razón es que el operador de asigna-
ción predeterminado hace una copia idéntica miembro por miembro. Puede evitar problemas al
sobrecargar operator=() para que maneje usted mismo el proceso de asignación. Consulte Técnicas
básicas de sobrecarga de operadores para conocer detalles acerca de la sobrecarga de asignación.

Ejemplo
En el siguiente ejemplo se demuestra el constructor de copias. Aunque es muy simple, enseña
de manera clara cuándo se llama o no a un proceso de copia. (Un uso práctico del constructor de
copias se muestra en el Ejemplo adicional que sigue.)

// Demuestra un constructor de copias.

#include <iostream>
using namespace std;

// Esta clase declara un constructor de copias.
class muestra {

 C a p í t u l o 7 : P o p u r r í 469

public:
 int v;

 // Constructor predeterminado.
 muestra() {
 v = 0;
 cout << "Dentro del constructor predeterminado.\n";
 }

 // Constructor con parámetros.
 muestra(int i) {
 v = i;
 cout << "Dentro del constructor con par\u00a0metros.\n";
 }

 // Constructor de copias.
 muestra(const muestra &obj) {
 v = obj.v;
 cout << "Dentro del constructor de copias.\n";
 }
};

// Pasa un objeto a una función. Se llama al constructor de
// copias cuando se crea un objeto temporal para contener el
// valor pasado a x.
int dosveces(muestra x) {
 return x.v * x.v;
}

// Devuelve un objeto de una función. Se llama al constructor
// de copias cuando se crea un temporal para el valor devuelto.
muestra original(int i) {
 muestra s(i);
 return s;
}

int main()
{
 cout << "Crea muest(8).\n";
 muestra muest(8);
 cout << "muest tiene el valor " << muest.v << endl;

 cout << endl;

 cout << "Crea muest2 y lo inicializa con muest.\n";
 muestra muest2 = muest;
 cout << "muest2 tiene el valor " << muest2.v << endl;

 cout << endl;

 cout << "Pasa muest a dosveces().\n";
 cout << "Resultado de dosveces(muest): " << dosveces(muest) << endl;
 cout << endl;

470 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << "Creando muest3.\n";
 muestra muest3;

 cout << endl;

 cout << "Ahora, asigna a muest3 el valor devuelto por original(10).\n";
 muest3 = original(10);
 cout << "muest3 ahora tiene el valor " << muest3.v << endl;

 cout << endl;

 // La asignación no invoca al constructor de copias.
 cout << "Ejecuta muest3 = muest.\n";
 muest3 = muest;
 cout << "Observe que no se ha usado el constructor de copias "
 << "para asignaciones.\n";

 return 0;
}

Aquí se muestra la salida:

Crea muest(8).
Dentro del constructor con parámetros.
muest tiene el valor 8

Crea muest2 y lo inicializa con muest.
Dentro del constructor de copias.
muest2 tiene el valor 8

Pasa muest a dosveces().
Dentro del constructor de copias.
Resultado de dosveces(muest): 64

Creando muest3.
Dentro del constructor predeterminado.

Ahora, asigna a muest3 el valor devuelto por original(10).
Dentro del constructor con parámetros.
Dentro del constructor de copias.
muest3 ahora tiene el valor 10

Ejecuta muest3 = muest.
Observe que no se ha usado el constructor de copias para asignaciones.

Como se observa, se llama al constructor de copias cuando un objeto inicializa a otro. No se le
llama durante la asignación. Un tema adicional: la instrucción

muestra muest2 = muest;

 C a p í t u l o 7 : P o p u r r í 471

también puede escribirse como

muestra muest2(muest);

Ambas formas dan como resultado que se use el constructor de copias para crear una copia de
muest.

Ejemplo adicional: una matriz segura que usa asignación dinámica
En el ejemplo anterior se mostró claramente cuándo se llama o no a un constructor de copias. Sin
embargo, no ilustra el tipo de situación en que uno es necesario. En este ejemplo sí se hace. De-
muestra la necesidad del constructor de copias al desarrollar otra implementación de una "matriz
segura", que es una que evita desbordamiento de límites o que se quede corto de éstos. El método
usado aquí depende de que la memoria asignada dinámicamente contenga la matriz. Como verá,
esta técnica requiere un constructor de copias explícito para evitar problemas.

Antes de empezar, resulta útil contrastar este método con el mostrado en Sobrecargue el operador
de subíndice [], en páginas anteriores de este capítulo. En esa solución, se creó en el ejemplo un tipo
de matriz llamada matriz_segura que encapsulaba una matriz estática que contenía, en realidad,
los elementos. Por tanto, cada matriz_segura era respaldada por una matriz estática de longitud
completa. Como resultado, si se necesitaba una matriz segura muy larga, el objeto de matriz_se-
gura resultante también era muy largo, porque encapsularía toda la matriz.

La versión desarrollada aquí utiliza un método diferente. La llamada matriz_segura_din asig-
na memoria dinámicamente a la matriz y almacena sólo un apuntador a esa memoria. Esto tiene la
ventaja de hacer más pequeños los objetos de la matriz segura (mucho más pequeños, en algunos
casos). Esto los hace más efi cientes cuando se pasan a funciones, por ejemplo. Por supuesto, se
requiere un poco más de trabajo para implementar una matriz segura que usa memoria dinámica,
porque se necesitan un constructor de copias y un operador de asignación sobrecargado. Como
matriz_segura, que se mostró antes, matriz_segura_din sobrecarga el operador de subíndice []
para permitir que los subíndices normales, tipo matriz, accedan a los elementos de la matriz.

La clase matriz_segura_din es genérica, lo que signifi ca que puede usarse para crear cualquier
tipo de matriz. El número de elementos en la matriz se pasa a un argumento sin tipo en su especi-
fi cación de plantilla. Luego, su constructor asigna memoria sufi ciente para que contenga la matriz
del tamaño y el tipo deseados. Un apuntador a esta memoria se almacena en aptm. El destructor
para matriz_segura_din libera automáticamente esta memoria cuando un objeto sale del ámbito.
De otra manera, como el [] está sobrecargado, puede usarse una matriz_segura_din como una
matriz normal.

Cuando una matriz_segura_din se usa para inicializar otra, se llama al constructor de copias.
Crea una copia del original al asignar primero memoria para la matriz y luego copiar elementos
de la matriz original en la memoria recién asignada. De esta manera, cada aptm del objeto señala
a su propia matriz. Sin el constructor de copias, se haría una copia idéntica de matriz_segura_din,
lo que daría como resultado dos objetos con aptm que señalan a la misma memoria. Entre otros
posibles problemas, esto daría como resultado un intento por liberar la misma memoria más de
una vez cuando el objeto sale del ámbito. El constructor de copias evita esto.

El mismo tipo de problema que evita el constructor de copias también puede ocurrir cuando
un objeto de matriz_segura_din se asigna a otro. Para evitar este problema, el operador de asigna-
ción también se sobrecarga para que el contenido de la matriz se copie, pero la memoria asignada
dinámicamente usada por cada objeto permanezca separada.

472 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Un último tema: el constructor de copias y el operador de asignación sobrecargada despliegan
un mensaje cada vez que se les llama. Esto es simplemente para ejemplifi cación. Por lo general,
ninguno generaría alguna salida.

// Una clase de matriz segura que evita errores de límite de matriz.
// Utiliza el operador de subíndice para acceder a los elementos de la
// matriz. Esta versión difiere del método utilizado en la solución:
//
// Sobrecargue el operador de subíndice []
//
// porque asigna memoria a la matriz de manera dinámica en lugar de
// estática.
//
// Un constructor de copias explícito se implementa de modo que una
// copia de un objeto de matriz_segura usa su propia memoria asignada.
// Por tanto, el objeto original y la copia NO señalan a la misma
// memoria. El operador de asignación también se sobrecarga por la misma
// razón. En ambos casos, el contenido de la matriz se copia para que
// la matriz y la copia contengan los mismos valores.

#include <iostream>
#include <new>
#include <cstdlib>

using namespace std;

// Una clase de matriz segura que asigna memoria dinámicamente para la
// matriz. La longitud de la matriz se pasa como un argumento sin tipo
// en la especificación de plantilla.
template <class T, int longi> class matriz_segura_din {
 T *aptm; // apuntador a la memoria que contiene la matriz
 int longitud; // número de elementos en la matriz
public:

 // El constructor matriz_segura_din.
 matriz_segura_din();

 // El constructor de copias matriz_segura_din.
 matriz_segura_din(const matriz_segura_din &obj);

 // Libera la memoria asignada cuando un objeto de
 // matriz_segura_din sale del ámbito.
 ~matriz_segura_din() {
 delete [] aptm;
 }

 // Sobrecarga la asignación.
 matriz_segura_din &operator=(const matriz_segura_din<T,longi> &op_der);

 // Usa el operador de subíndice para acceder a elementos en
 // la matriz segura.
 T &operator[](int i);

 // Devuelve el tamaño de la matriz.

 C a p í t u l o 7 : P o p u r r í 473

 int getlen() { return longitud; }
};

// Esto es un constructor de matriz_segura_din.
template <class T, int longi>
 matriz_segura_din<T, longi>::matriz_segura_din() {

 try {
 // Asigna la matriz.
 aptm = new T[longi];
 } catch(bad_alloc ba) {
 cout << "No puede asignar la matriz.\n";
 // Tome aquí la acción apropiada. Esto es sólo
 // una respuesta de marcador de posición.
 exit(1);
 }

 // Inicializa los elementos de la matriz a su valor predeterminado.
 for(int i=0; i < longi; ++i) aptm[i] = T();

 longitud = longi;
}

// Esto es el constructor de copias de matriz_segura_din.
template <class T, int longi>
 matriz_segura_din<T, longi>::matriz_segura_din(const matriz_segura_din &obj) {

 cout << "Usando el constructor de copias de matriz_segura_din para hacer una
copia.\n";

 try {
 // Asigna una matriz del mismo tamaño que la
 // usada por obj.
 aptm = new T[obj.longitud];
 } catch(bad_alloc ba) {
 // Tome aquí la acción apropiada. Esto es sólo
 // una respuesta de marcador de posición.
 cout << "No puede asignar una matriz.\n";
 exit(1);
 }
 longitud = obj.longitud;

 // Copia el contenido de la matriz.
 for(int i=0; i < longitud; ++i)
 aptm[i] = obj.aptm[i];
}

// Sobrecarga de asignación para que se haga una copia de la
// matriz. La copia se almacena en una memoria asignada que está
// separada del operando del lado derecho.
//
template<class T, int longi> matriz_segura_din<T, longi> &
 matriz_segura_din<T, longi>::operator=(const matriz_segura_din<T, longi> &op_
der) {

474 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 cout << "Asignando un objeto de matriz_segura_din a otro.\n";

 // Si es necesario, libere la memoria usada por el objeto.
 if(aptm && (longitud != op_der.longitud)) {

 // Elimine la memoria previamente asignada.
 delete aptm;

 try {
 // Asigna una matriz del mismo tamaño que el usado
 // por op_der.
 aptm = new T[op_der.longitud];
 } catch(bad_alloc ba) {
 // Tome aquí la acción apropiada. Esto es sólo una
 // respuesta de marcador de posición.
 cout << "No se puede asignar la matriz.\n";
 exit(1);
 }
 }

 longitud = op_der.longitud;

 // Copia el contenido de la matriz.
 for(int i=0; i < longitud; ++i)
 aptm[i] = op_der.aptm[i];
 return *this;
}

// Proporciona revisión de rango para matriz_segura_din al
// sobrecargar el operador []. Observe que se devuelve una
// referencia. Esto deja que se asigne un valor a un elemento
// de la matriz.
template <class T, int longi> T &matriz_segura_din<T, longi>::operator[](int i)
{
 if(i < 0 || i > longitud) {
 // Tome aquí la acción apropiada. Esto es sólo
 // una respuesta de marcador de posición.
 cout << "\nEl valor de \u00a1ndice de " << i << " est\u00a0 fuera del l\u00a-
mite.\n";
 exit(1);
 }
 return aptm[i];
}

// Una función simple para fines de demostración.
// Cuando se le llama, el constructor de copias se
// usará para crear una copia del argumento pasado a x.
template <class T, int longi>
 matriz_segura_din<T, longi> f(matriz_segura_din<T, longi> x) {

 cout << "f() est\u00a0 devolviendo una copia de x.\n";
 return x;
}

 C a p í t u l o 7 : P o p u r r í 475

// Esto es una clase simple usada para demostrar una matriz de objetos.
// Observe que el constructor predeterminado da a x el valor -1.
class miclase {
public:
 int x;
 miclase(int i) { x = i; };
 miclase() { x = -1; }
};

int main()
{

 // Usa la matriz de enteros.
 matriz_segura_din<int, 5> mz_int;

 for(int i=0; i < mz_int.getlen(); ++i) mz_int[i] = i;
 cout << "Contenido de mz_int: ";
 for(int i=0; i < mz_int.getlen(); ++i) cout << mz_int[i] << " ";
 cout << "\n\n";

 // Para generar un desbordamiento de límites, quite las líneas de
 // comentario de la siguiente línea:
// mz_int[19] = 10;

 // Para que se quede corto ante un límite, quite las líneas de
 // comentario de la siguiente línea:
// mz_int[-2] = 10;

 // Crea una copia de mz_int. Esto invocará el constructor de copias de
 // matriz_segura_din.
 cout << "Crea mz_int2 y lo inicializa con mz_int. Esto da como resultado\n"
 << "que se llame a un constructor de copias de matriz_segura_din.\n\n";
 matriz_segura_din<int, 5> mz_int2 = mz_int;
 cout << "Contenido de mz_int2: ";
 for(int i=0; i < mz_int2.getlen(); ++i) cout << mz_int2[i] << " ";
 cout << "\n\n";

 // Crea otra matriz segura para enteros, pero no le asigna
 // valores. Esto significa que sus elementos contendrán
 // sus valores predeterminados.
 cout << "Crea mz_int3.\n";
 matriz_segura_din<int, 5> mz_int3;

 cout << "Contenido original de mz_int3: ";
 for(int i=0; i < mz_int3.getlen(); ++i) cout << mz_int3[i] << " ";
 cout <<"\n\n";

 // Ahora, pasa mz_int3 a f() y asigna el resultado a mz_int:
 cout << "Ahora, se ejecutar\u00a0 esta l\u00a1nea: mz_int3 = f(mz_int);\n"
 << "Esto da lugar a la siguiente secuencia de eventos:\n"
 << " 1. Se llama al constructor de copias de matriz_segura_din\n"
 << " para copiar mz_int que se pasa al par\u00a0metro x de f().\n"

476 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 << " 2. Se llama de nuevo al constructor de copias cuando se\n"
 << " hace una copia para el valor devuelto de f().\n"
 << " 3. Se llama al operador de asignaci\u00a2n sobrecargado\n"
 << " para asignar el resultado de f() a mz_int3.\n\n";
 mz_int3 = f(mz_int);

 cout << "Contenido de mz_int3 tras recibir el valor de f(mz_int): ";
 for(int i=0; i < mz_int3.getlen(); ++i) cout << mz_int3[i] << " ";
 cout << "\n\n";

 cout << "Por supuesto, matriz_segura_din adem\u00a0s funciona con tipos de cla-
se.\n";
 matriz_segura_din<miclase, 3> mz_mc;
 cout << "Contenido original de mz_mc: ";
 for(int i=0; i < mz_mc.getlen(); ++i) cout << mz_mc[i].x << " ";
 cout << endl;
 mz_mc[0].x = 9;
 mz_mc[1].x = 8;
 mz_mc[2].x = 7;
 cout << "Valores en mz_mc tras establecerlos: ";
 for(int i=0; i < mz_mc.getlen(); ++i) cout << mz_mc[i].x << " ";
 cout << "\n\n";

 cout << "Ahora, se crea mz_mc2 y luego se ejecuta esta instrucci\u00a2n:\n"
 << " mz_mc2 = f(mz_mc);\n\n";
 matriz_segura_din<miclase, 3> mz_mc2;
 mz_mc2 = f(mz_mc);
 cout << "Contenido de mz_mc2 tras recibir f(mz_mc): ";
 for(int i=0; i < mz_mc2.getlen(); ++i) cout << mz_mc2[i].x << " ";
 cout << endl;

 return 0;
}

Aquí se muestra la salida:

Contenido de mz_int: 0 1 2 3 4

Crea mz_int2 y lo inicializa con mz_int. Esto da como resultado
que se llame a un constructor de copias de matriz_segura_din.

Usando el constructor de copias de matriz_segura_din para hacer una copia.
Contenido de mz_int2: 0 1 2 3 4

Crea mz_int3.
Contenido original de mz_int3: 0 0 0 0 0

Ahora, se ejecutará esta línea: mz_int3 = f(mz_int);
Esto da lugar a la siguiente secuencia de eventos:
 1. Se llama al constructor de copias de matriz_segura_din
 para copiar mz_int que se pasa al parámetro x de f().
 2. Se llama de nuevo al constructor de copias cuando se
 hace una copia para el valor devuelto de f().
 3. Se llama al operador de asignación sobrecargado
 para asignar el resultado de f() a mz_int3.

 C a p í t u l o 7 : P o p u r r í 477

Usando el constructor de copias de matriz_segura_din para hacer una copia.
f() está devolviendo una copia de x.
Usando el constructor de copias de matriz_segura_din para hacer una copia.
Asignando un objeto de matriz_segura_din a otro.
Contenido de mz_int3 tras recibir el valor de f(mz_int): 0 1 2 3 4

Por supuesto, matriz_segura_din además funciona con tipos de clase.
Contenido original de mz_mc: -1 -1 -1
Valores en mz_mc tras establecerlos: 9 8 7

Ahora, se crea mz_mc2 y luego se ejecuta esta instrucción:
 mz_mc2 = f(mz_mc);

Usando el constructor de copias de matriz_segura_din para hacer una copia.
f() está devolviendo una copia de x.
Usando el constructor de copias de matriz_segura_din para hacer una copia.
Asignando un objeto de matriz_segura_din a otro.
Contenido de mz_mc2 tras recibir f(mz_mc): 9 8 7

Opciones
Como se explicó en el análisis, la forma más común de constructor de copias sólo tiene un parámetro
que es una referencia a un objeto de la clase para la que está defi nido el constructor de copias. Sin
embargo, es permisible para un constructor de copias que tenga parámetros adicionales, siempre y
cuando tengan argumentos predeterminados. Por ejemplo, suponiendo la clase matriz_segura_din,
la siguiente declaración especifi ca un constructor de copias válido:

matriz_segura_din(const matriz_segura_din &obj, int num = -1);

Aquí, la opción predeterminada del parámetro num es –1. Podría usar este constructor para per-
mitir que sólo los primeros num elementos de la nueva matriz_segura_din se inicialicen con los
primeros num elementos de obj. Los elementos restantes pueden darse a un valor predetermina-
do. Cuando num es –1, toda la matriz se inicializa con obj. Esta versión del constructor de copias
podría escribirse así:

// Si num no es -1, inicializa los primeros num elementos de una matriz segura
// usando el valor de obj. Los otros elementos obtienen valores predeterminados.
// De otra manera, inicializa toda la matriz con los elementos de obj.
template <class T, int longi>
 matriz_segura_din<T, longi>::matriz_segura_din(const matriz_segura_din &obj,
 int num) {

 cout << "Usando el constructor de copias de matriz_segura_din para hacer una
copia.\n";

 try {
 // Asigna una matriz del mismo tamaño que la
 // usada por obj.
 aptm = new T[obj.longitud];
 } catch(bad_alloc ba) {
 // Tome aquí la acción apropiada. Esto es sólo
 // una respuesta de marcador de posición.
 cout << "No puede asignar una matriz.\n";

478 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 exit(1);
 }
 longitud = obj.longitud;

 // Copia el contenido de obj, hasta el número pasado mediante num.
 // Si num es -1, entonces se copian todos los valores.
 if(num == -1) num = obj.longitud;

 for(int i=0; i < num; ++i)
 aptm[i] = obj.aptm[i];

 // Inicializa cualquier elemento restante con su valor predeterminado.
 for(int i=num; i < longitud; ++i)
 aptm[i] = T();
}

Podría utilizar este constructor como se muestra aquí:

matriz_segura_din<int, 5> mz_int2 (mz_int, 3);

Aquí, los primeros tres elementos de mz_int se usan para inicializar los primeros tres elementos
de mz_int2. A los elementos restantes se les da un valor predeterminado, que para enteros es cero.

Como se explicó en el análisis (y se demostró con la clase matriz_segura_din en el Ejemplo
adicional), si necesita implementar un constructor de copias, a menudo también necesita sobrecargar
el operador de asignaciones. La razón es que el mismo problema que necesita usar el constructor de
copias también estará presente durante la asignación. Es importante no subestimar la asignación.

Determine un tipo de objeto en tiempo de ejecución

Componentes clave

Encabezados Clases Funciones

<typeinfo> type_info bool operator==(const type_info &ob) const
bool operator!=(const type_info &ob) const
bool before(const type_info &ob) const
const char *name() const

En lenguajes polimórfi cos como C++, puede haber situaciones en que el tipo de un objeto es des-
conocido en tiempo de compilación debido a que la naturaleza precisa de ese objeto no se determi-
na sino hasta que el programa se ejecuta. Recuerde que C++ implementa polimorfi smo mediante
el uso de jerarquías de clase, funciones virtuales y apuntadores a clases base. Debido a que un
apuntador a clase base puede usarse para señalar un objeto de la clase base de cualquier objeto deri-
vado de esa base, no siempre es posible saber de antemano cuál tipo de objeto será señalado por un

 C a p í t u l o 7 : P o p u r r í 479

apuntador a la base. Esta determinación debe hacerse en tiempo de ejecución, empleando informa-
ción de tipo en tiempo de ejecución (RTTI, RunTime Type Information). La característica clave que
permite esto es el operador typeid. Para algunos lectores, RTTI y typeid son características bien
comprendidas, pero para otros son la fuente de muchas preguntas. Por esto, en esta solución se
describen las técnicas básicas de RTTI.

Paso a paso
Para identifi car el tipo de un objeto en tiempo de ejecución se requieren los pasos siguientes:

1. Para obtener el tipo de un objeto, use typeid(objeto). Devuelve una instancia de type_info

que describe el tipo de objeto.

2. Para obtener una instancia de type_info para un tipo específi co, use typeid(tipo). Devuel-

ve un objeto de type_info que representa tipo.

Análisis
Para obtener un tipo de objeto, use el operador typeid. Tiene dos formas. La primera se usa para
determinar el tipo de un objeto. Se muestra aquí:

typeid(objeto)

Aquí, objeto es una expresión que describe el objeto cuyo tipo estará obteniendo. Éste puede ser el
propio objeto, un apuntador al que se quita la referencia, o una referencia al objeto. typeid devuel-
ve una referencia a un objeto const de tipo type_info que describe el tipo de objeto. La clase type_
info está declarada en el encabezado <typeinfo>. Por tanto, debe incluirlo cuando usa typeid.

La clase type_info defi ne los siguientes miembros públicos:

const char *name() const

bool operator==(const type_info &ob) const

bool operator!=(const type_info &ob) const

bool before(const type_info &ob) const

La función name() devuelve un apuntador al nombre del tipo, representado como una cadena
terminada en un carácter nulo. Por ejemplo, suponiendo algún objeto llamado obj, la siguiente
instrucción despliega el nombre de tipo del objeto:

cout << typeid(obj).name();

Los == y != sobrecargados funcionan para la comparación de tipos. La función before() devuelve
true si el objeto que invoca está antes del objeto usado como un parámetro en orden de intercala-
ción. (Esta función no tiene nada que hacer con la herencia o las jerarquías de clase.)

La segunda forma de typeid toma un nombre de tipo como su argumento. Aquí se muestra:

typeid(nombre-tipo)

Aquí nombre-tipo especifi ca un nombre de tipo válido, como int, string, vector, etc. Por ejemplo, la
siguiente expresión es perfectamente aceptable:

typeid(int).name()

Aquí, typeid devuelve el objeto type_info que describe int. El principal uso de esta forma de
typeid consiste en comparar un tipo desconocido con uno conocido. Por ejemplo,

480 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

if(typeid(int) == typeid(*apt)) ...

Si apt señala a un int, entonces será correcta la instrucción if.
El uso más importante de typeid se presenta cuando se aplica mediante un apuntador de una

clase base polimórfi ca. En este caso, automáticamente devolverá el tipo del objeto al que se está
señalando. Recuerde que un apuntador de clase base puede señalar a objetos de la clase base o a
un objeto de cualquier clase derivada de esa base. En todos los casos, typeid devuelve el tipo más
derivado. Por tanto, si el apuntador señala a un objeto de clase base, entonces se devuelve el tipo de
clase base. Si el apuntador señala a un objeto de clase derivada, se devuelve el tipo de clase deriva-
da. Por tanto, typeid le permite determinar en tiempo de ejecución el tipo del objeto al que se está
señalando mediante un apuntador a clase base.

Las referencias a un objeto de una jerarquía de clase polimórfi ca funcionan igual que los apun-
tadores. Cuando se aplica typeid a una referencia a un objeto de una clase polimórfi ca, devolverá
el tipo de objeto al que se está haciendo referencia, que puede ser un tipo derivado. La circuns-
tancia en que hará uso de esta característica con más frecuencia es cuando los objetos se pasan a
funciones por referencia.

Si aplica typeid a un apuntador o referencia a un objeto de una jerarquía de clases no polimór-
fi ca, entonces se obtiene el tipo base del apuntador. Es decir, no se hace una determinación de lo
que señala el apuntador.

Ejemplo
En el siguiente programa se demuestra el operador typeid. Crea una clase abstracta llamada
fi gura_dos_d que defi ne la dimensión de un objeto bidimensional, como un círculo o un triángulo.
También especifi ca una pura función virtual llamada area(), que debe implementarse mediante
una clase derivada para que devuelva el área de una forma. El programa crea tres subclases de
fi gura_dos_d: rectángulo, triángulo y círculo.

El programa también defi ne las funciones trazador() y mismaforma(). La función original()
crea una instancia de una subclase de fi gura_dos_d, que será un círculo, triángulo o rectángulo,
y devuelve un apuntador de fi gura_dos_d a él. El tipo específi co de objeto creado se determina
mediante la salida de una llamada a rand(), el generador de números aleatorios de C++. Por tanto,
no hay manera de saber por anticipado qué tipo de objeto se generará. El programa crea seis obje-
tos. Debido a que puede generarse cualquier tipo de fi gura mediante una llamada a trazador(), el
programa depende de typeid para determinar qué tipo de objetos se han creado en realidad.

La función mismaforma() compara dos objetos de fi gura_dos_d. Los objetos son los mismos
sólo si son del mismo tipo y tienen las mismas dimensiones. Utiliza typeid para confi rmar que los
objetos son del mismo tipo.

// Demuestra el id de tipo en tiempo de ejecución.

#include <iostream>
#include <cstdlib>

using namespace std;

// Una clase polimórfica que encapsula formas bidimensionales,
// como triángulos, rectángulos y círculos. Declara una
// función virtual llamada área(), cuyas clases derivadas
// se sobrecargan para calcular y devolver el área de una figura.
class figura_dos_d {

 C a p í t u l o 7 : P o p u r r í 481

protected:
 double x, y;
public:
 figura_dos_d(double i, double j) {
 x = i;
 y = j;
 }

 double getx() { return x; }
 double gety() { return y; }

 virtual double area() = 0;
};

// Crea una subclase de figura_dos_d para triángulos.
class triangulo : public figura_dos_d {
 public:
 triangulo(double i, double j) : figura_dos_d(i, j) { }

 double area() {
 return x * 0.5 * y;
 }
};

// Crea una subclase de figura_dos_d para rectángulos.
class rectangulo : public figura_dos_d {
 public:
 rectangulo(double i, double j) : figura_dos_d(i, j) { }

 double area() {
 return x * y;
 }
};

// Crea una subclase of figura_dos_d para círculos.
class circulo : public figura_dos_d {
 public:
 circulo(double i, double j=0) : figura_dos_d(i, j) { }

 double area() {
 return 3.14 * x * x;
 }
} ;

// Un trazador de objetos derivados de figura_dos_d.
figura_dos_d *trazador() {
 static double i = (rand() % 100) / 3.0, j = (rand() % 100) / 3.0;

 i += rand() % 10;
 j += rand() % 12;

 cout << "Generando objeto.\n";

 switch(rand() % 3) {

482 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 case 0: return new circulo(i);
 case 1: return new triangulo(i, j);
 case 2: return new rectangulo(i, j);
 }

 return 0;
}

// Compara la igualdad de dos figuras. Esto significa que sus tipos
// y dimensiones deben ser iguales.
bool mismaforma(figura_dos_d *alfa, figura_dos_d *beta) {

 cout << "Comparando un objeto de " << typeid(*alfa).name()
 << " con un objeto de " << typeid(*beta).name()
 << "object\n";

 if(typeid(*alfa) != typeid(*beta)) return false;

 if(alfa->getx() != beta->getx() &&
 alfa->gety() != beta->gety()) return false;

 return true;
}

int main()
{
 // Crea un apuntador a clase base a figura_dos_d.
 figura_dos_d *a;

 // Genera objetos de figura_dos_d.
 for(int i=0; i < 6; i++) {
 // Genera un objeto.
 a = trazador();

 // Despliega el nombre del objeto.
 cout << "El objeto es " << typeid(*a).name() << endl;

 // Despliega su área.
 cout << " El \u00a0rea es " << a->area() << endl;

 // Mantiene una cuenta de los tipos de objetos que se han generado.
 if(typeid(*a) == typeid(triangulo))
 cout << " La base es " << a->getx() << " La altura es "
 << a->gety() << endl;

 else if(typeid(*a) == typeid(rectangulo))
 cout << " El largo es " << a->getx() << " La altura es "
 << a->gety() << endl;

 else if(typeid(*a) == typeid(circulo))
 cout << " El di\u00a0metro es " << a->getx() << endl;

 cout << endl;
 }

 C a p í t u l o 7 : P o p u r r í 483

 cout << endl;

 // Crea algunos objetos para comparar.
 triangulo t(2, 3);
 triangulo t2(2, 3);
 triangulo t3(3, 2);
 rectangulo r(2, 3);

 // Compara dos objetos de figura_dos_d.
 if(mismaforma(&t, &t2))
 cout << "t y t2 son iguales.\n";

 if(!mismaforma(&t, &t3))
 cout << "t y t3 son diferentes.\n";

 if(!mismaforma(&t, &r))
 cout << "t y r son diferentes.\n";

 cout << endl;

 return 0;
}

Aquí se muestra la salida:

Generando objeto.
El objeto es class rectangulo
 El área es 465.222
 El largo es 17.6667 La altura es 26.3333

Generando objeto.
El objeto es class circulo
 El área es 1474.06
 El diámetro es 21.6667

Generando objeto.
El objeto es class rectangulo
 El área es 954.556
 El largo es 23.6667 La altura es 40.3333

Generando objeto.
El objeto es class circulo
 El área es 2580.38
 El diámetro es 28.6667

Generando objeto.
El objeto es class triangulo
 El área es 776.278
 La base es 29.6667 La altura es 52.3333

Generando objeto.
El objeto es class circulo
 El área es 3148.72
 El diámetro es 31.6667

484 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Comparando un objeto de class triangulo con un objeto de class triangulo
t y t2 son iguales.
Comparando un objeto de class triangulo con un objeto de class triangulo
t y t3 son diferentes.
Comparando un objeto de class triangulo con un objeto de class rectangulo
t y r son diferentes.

Opciones
El operador typeid puede aplicarse a clases de plantilla. El tipo de un objeto que es una instancia
de una clase de plantilla está determinado, en parte, por los datos usados para sus parámetros de
tipo cuando se crea una instancia del objeto. Dos instancias de la misma clase de plantilla que se
crean usando datos diferentes son, por tanto, tipos diferentes. Por ejemplo, suponga la clase de
plantilla miclase, que se muestra aquí:

template <class T> class miclase {
 // ...
};

La siguiente secuencia:

miclase<int> mc_int;
miclase<double> mc_dbl;

cout << "El tipo de mc_int es " << typeid(mc_int).name() << endl
 << "El tipo de mc_dbl es " << typeid(mc_dbl).name() << endl

if(typeid(mc_int) != typeid(mc_dbl))
 cout << "Los dos objetos son de tipo diferente";

produce la siguiente salida:

El tipo de mc_int es miclase<int>
El tipo de mc_dbl es miclase<double>
Los dos objetos son de tipo diferente

Como puede ver, aunque mc_int y mc_dbl son objetos de miclase, sus tipos difi eren porque se
usan diferentes plantillas de argumentos.

Use números complejos

Componentes clave

Encabezados Clases Funciones

<complex> complex T imag() const
T real() const

 C a p í t u l o 7 : P o p u r r í 485

Una característica en ocasiones subestimada de C++ es el soporte a números complejos. Un núme-
ro complejo contiene dos componentes: una parte real y una imaginaria. Esta última especifi ca un
múltiplo de i, que es la raíz cuadrada de –1. Por tanto, un número complejo suele representarse de
esta forma:

a + bi

donde a especifi ca la parte real y b la imaginaria. En C++, los números complejos tienen soporte
con la clase complex. En esta solución se muestran las técnicas básicas para usarla.

Paso a paso
Para usar números complejos se requieren estos pasos:

1. Cree uno o más objetos de complex. La clase complex es genérica, y usted debe especifi -

car el tipo de los componentes. Por lo general, esto será un tipo de punto fl otante, como

double.

2. Realice operaciones con objetos de complex al usar operadores sobrecargados. Todos los

operadores aritméticos están defi nidos por complex.

3. Obtenga el componente real de una instancia de complex al llamar a real().

4. Obtenga el componente imaginario de una instancia de complex al llamar a imag().

Análisis
La especifi cación de plantilla para complex se muestra a continuación:

template <class T> class complex

Aquí, T especifi ca el tipo usado para representar los componentes de un número complejo. Hay
tres especializaciones predefi nidas de complex:

class complex<fl oat>

class complex<double>

class complex<long double>

No está defi nida la especifi cación de algún otro argumento de tipo.
La clase complex tiene los siguientes constructores:

complex(const T &real = T(), const T &imaginario = T())

complex(const complex &ob)

template <class T1> complex(const complex<T1> &ob);

El primero construye un objeto de complex con un componente real de real y uno imaginario de
imaginario. El valor predeterminado de estos valores es cero, si no está especifi cado. El segundo
crea una copia de ob. El tercero crea un objeto de complex a partir de ob.

486 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Las siguientes operaciones están defi nidas para objetos de complex:

+ – * /

–= += /= *=

= == !=

Los operadores sin asignación se sobrecargan de tres maneras: una vez para operadores que
requieren un objeto de complex a la izquierda y un objeto escalar a la derecha, una vez más para
operaciones que requieren un objeto escalar a la izquierda y uno de complex a la derecha, y fi nal-
mente para operaciones que requieren dos objetos de complex. Por ejemplo, los siguientes tipos de
operaciones de suma están permitidos:

ob_complex + escalar

escalar + ob_complex

ob_complex + ob_complex

Están defi nidas dos funciones miembro para complex: real() e imag(). Aquí se muestran:

T real() const

T imag() constructores

La función real() devuelve el componente real del objeto que invoca, e imag() devuelve el compo-
nente imaginario.

El encabezado <complex> también defi ne versiones de complex de las funciones matemáticas
estándar, como abs(), sin(), cos() y pow().

Ejemplo
He aquí un programa de ejemplo que demuestra complex:

// Demuestra la clase complex.

#include <iostream>
#include <complex>

using namespace std;

int main()
{
 complex<double> cmpx1(1, 0);
 complex<double> cmpx2(1, 1);

 cout << "cmpx1: " << cmpx1 << endl << "cmpx2: " << cmpx2 << endl;

 // Suma dos números complejos.
 cout << "cmpx1 + cmpx2: " << cmpx1 + cmpx2 << endl;

 // Multiplica dos números complejos.
 cout << "cmpx1 * cmpx2: " << cmpx1 * cmpx2 << endl;

 C a p í t u l o 7 : P o p u r r í 487

 // Suma un número escalar a uno complejo.
 cmpx1 += 2.0;
 cout << "cmpx1 += 2.0: " << cmpx1 << endl;

 // Encuentra el seno de cmpx2.
 cout << "sin(cmpx2): " << sin(cmpx2) << endl;

 return 0;
}

Aquí se muestra la salida:

cmpx1: (1,0)
cmpx2: (1,1)
cmpx1 + cmpx2: (2,1)
cmpx1 * cmpx2: (1,1)
cmpx1 += 2.0: (3,0)
sin(cmpx2): (1.29846,0.634964)

Opciones
Para el caso de programadores que se concentran en cálculos numéricos, C++ provee más soporte
del que se podría imaginar. Además de complex, C++ incluye la clase valarray que da soporte a
operaciones de matrices numéricas. También proporciona dos clases de utilería llamadas slice y
gslice, que encapsulan una parte (es decir, una porción o "rebanada") de una matriz. Estas clases
requieren el encabezado <valarray>. En el encabezado <numeric> están defi nidos cuatro algorit-
mos numéricos llamados accumulate(), adjacent_difference(), inner_product() y partial_sum().
Todos tienen algún interés para el programador.

Use auto_ptr

Componentes clave

Encabezados Clases Funciones

<memory> auto_ptr T *get() const throw()
T*release() throw()
Void reset(X *ptr = 0) throw ()

C++ incluye una clase llamada auto_ptr que se diseñó para simplifi car la administración de me-
moria asignada dinámicamente. Como muchos lectores sabrán, uno de los aspectos del uso de la
asignación dinámica que provoca más problemas es la prevención de las fugas de memoria. Una
manera en que ocurre una fuga de memoria es cuando se asigna ésta, pero nunca se libera. La cla-
se auto_ptr representa un intento por prevenir esta situación. En esta solución se describe su uso.

488 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Paso a paso
Para usar auto_ptr se necesitan estos pasos:

1. Cree un auto_ptr, especifi cando el tipo de base del apuntador.

2. Asigne memoria usando new, y asigne un apt a la memoria al auto_ptr creado en el paso 1.

3. Use el auto_ptr como un apuntador normal. Sin embargo, no libere la memoria a la que

apunta auto_ptr. En otras palabras, no use delete para liberar la memoria.

4. Cuando se destruye el auto_ptr, como cuando sale del ámbito, se libera automáticamente

la memoria a la que señala auto_ptr.

5. Puede obtener el apuntador contenido por un auto_ptr al llamar a get().

6. Puede establecer el apuntador de auto_ptr al llamar a reset().

7. Puede liberar la propiedad de auto_ptr del apuntador al llamar a release().

Análisis
Un auto_ptr es un apuntador que posee el objeto al que señala. La propiedad de este objeto puede
transferirse a otro auto_ptr, pero algún auto_ptr siempre posee el objeto. Por ejemplo, cuando un
objeto de auto_ptr se asigna a otro, sólo el destino de la asignación será su propietario. Cuando
se destruye un auto_ptr, como cuando sale del ámbito, el objeto al que señala auto_ptr se libera
automáticamente. Debido a que sólo un auto_ptr poseerá (contendrá un apuntador a) cualquier
objeto determinado en cualquier momento dado, el objeto sólo se liberará una vez, cuando se
destruye el auto_ptr que tiene la propiedad. Cualquier otro auto_ptr que previamente haya tenido
la propiedad no entrará en acción. El mecanismo asegura que los objetos asignados dinámicamen-
te se liberen apropiadamente en todas las circunstancias. Entre otros benefi cios de este método se
encuentra el de que los objetos asignados dinámicamente pueden liberarse de manera automática
sin que ocurra una excepción.

La especifi cación de plantilla para auto_ptr se muestra a continuación:

template <class T> class auto_ptr

Aquí, T especifi ca el tipo de apuntador almacenado por auto_ptr.
He aquí el constructor para auto_ptr:

explicit auto_ptr(T *apt = 0) throw()

auto_ptr(auto_ptr &ob) throw()

template <class T2> auto_ptr(auto_ptr<T2> &ob) throw()

El primer constructor crea un auto_ptr al objeto especifi cado por apt. El segundo crea una copia
de auto_ptr especifi cada por ob y trasfi ere la propiedad al nuevo objeto. El tercero convierte &ob al
tipo T * (si es posible) y transfi ere la propiedad.

 C a p í t u l o 7 : P o p u r r í 489

La clase auto_ptr defi ne los operadores =, * y –>. También defi ne estas tres funciones:

T *get() const throw()

T *release() throw()

void reset(X *apt = 0) throw()

La función get() devuelve un apuntador al objeto almacenado. La función release() elimina la
propiedad del objeto almacenado del auto_ptr que invoca y devuelve un apuntador al objeto.
Después de una llamada a release(), el objeto al que se apunta no se destruye automáticamente
cuando el objeto auto_ptr sale del ámbito. La función reset() llama a delete en el apuntador con-
tenido por auto_ptr (a menos que sea igual a apt) y luego establece el apuntador a apt.

Ejemplo
He aquí un programa corto que demuestra el uso de auto_ptr. Crea una clase llamada X que al-
macena un valor entero. Dentro de main(), se crea un objeto X y se asigna a un auto_ptr. Observe
cómo se tiene acceso a los miembros de X mediante el auto_ptr, usando el operador de apuntador
normal –>. Además, observe cómo uno y sólo uno de los auto_ptr posee el apuntador al objeto de
X en un momento determinado. Ésta es la razón por la que sólo un objeto de X se destruye cuando
termina el programa.

// Demuestra un auto_ptr.

#include <iostream>
#include <memory>

using namespace std;

class X {
public:
 int v;

 X(int j) {
 v = j;
 cout << "Construyendo X(" << v <<")\n";
 }

 ~X() { cout << "Destruyendo X(" << v <<")\n"; }

 void f() { cout << "Dentro de f()\n"; }
};

int main()
{
 auto_ptr<X> a1(new X(3)), a2;

 cout << "a1 apunta a un X con el valor " << a1->v
 << "\n\n";

 // Transfiere la propiedad a a2.
 cout << "Asignando a1 a a2.\n";

490 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

 a2 = a1;
 cout << "Ahora, a2 apunta a un X con el valor " << a2->v
 << endl;
 if(!a1.get()) cout << "El apuntador de a1 ahora es null.\n\n";

 // Puede llamar a una función mediante un auto_ptr.
 cout << "Llama a f() mediante a2: ";
 a2->f();
 cout << endl;

 // Asigna al apuntador encapsulado por un auto_ptr a
 // un apuntador normal.
 cout << "Obtiene el apuntador almacenado en a2 y lo asigna al \n"
 << "apuntador normal llamado apt.\n";
 X *apt = a2.get();
 cout << "apt apunta a un X con el valor " << apt->v
 << "\n\n";

 return 0;

 // En este momento, el objeto asignado se libera y
 // se llama a su destructor. Aunque hay dos objetos
 // de auto_ptr, sólo uno posee el apuntador. Por
 // tanto, sólo se destruye un objeto de X.
}

Aquí se muestra la salida producida por este programa:

Construyendo X(3)
a1 apunta a un X con el valor 3

Asignando a1 a a2.
Ahora, a2 apunta a un X con el valor 3
El apuntador de a1 ahora es null.

Llama a f() mediante a2: Dentro de f()

Obtiene el apuntador almacenado en a2 y lo asigna al
apuntador normal llamado apt.
apt apunta a un X con el valor 3

Destruyendo X(3)

Opciones
Aunque auto_ptr es útil, no evita todos los problemas relacionados con los apuntadores. Por ejem-
plo, aún es posible operar por accidente sobre un apuntador nulo. Sin embargo, puede usar un
auto_ptr como base para su propio tipo personalizado de "apuntador seguro". Para experimentar
con este concepto, pruebe el uso de auto_ptr para el miembro apt de la clase apt_seguro mostrada
en el Ejemplo adicional de Sobrecargue el operador –>.

Otra cosa que auto_ptr no proporciona es recolección de basura. Como casi todos los lectores
saben, la recolección de basura es el esquema de administración de memoria en que la memoria
se recicla automáticamente cuando ya no se usa en algún objeto. Aunque aspectos de auto_ptr

 C a p í t u l o 7 : P o p u r r í 491

parecen relacionados con la recolección de basura, como el hecho de que la memoria asignada
se libera automáticamente cuando el auto_ptr sale del ámbito, la recolección de basura depende
de un mecanismo fundamentalmente diferente. En la actualidad, el C++ estándar no defi ne una
biblioteca de recolección de basura, pero es probable que la siguiente versión de C++ sí la incluya.

Un tema adicional: para pasar un auto_ptr a una función, recomiendo el uso de un parámetro
de referencia. En el transcurso de los años, se han visto cambios importantes en la manera en que
diferentes compiladores manejan el paso de un valor de auto_ptr. El paso de una referencia evita
el problema.

Cree un constructor explícito

Componentes clave

Encabezados Clases Funciones

cualquier clase explicit constructor(tipo param)

Para concluir este libro de C++, se ha elegido una de sus características más esotéricas: el cons-
tructor explícito. Con los años, el autor se ha preguntado varias veces acerca de esta característica,
porque se usa con frecuencia en la biblioteca estándar de C++. Aunque no es difícil, resulta una
característica especializada cuyo signifi cado no se comprende universalmente. En esta solución se
describe el objetivo de un constructor explícito y se muestra cómo crear uno.

Paso a paso
Para crear un constructor explícito se necesitan estos pasos:

1. Cree un constructor que tome un argumento.

2. Modifi que el constructor con la palabra clave explicit.

Análisis
C++ defi ne la palabra clave explicit para que maneje una condición especial de caso que ocurre con
un constructor que requiere sólo un argumento. Para comprender el propósito de explicit, considere
la siguiente clase:

class miclase {
 int val;
public:
 miclase(int x) { val = x; }
 int getval() { return val; }
};

492 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Observe que el constructor de miclase tiene un parámetro. Esto signifi ca que puede crear un
objeto de miclase como éste:

miclase ob(4);

En esta declaración, el valor 4, que se especifi ca entre paréntesis después de ob, es un argumento
pasado al parámetro x de miclase(). Este valor se usa después para inicializar val. Se trata de una
forma común de inicialización, y se usa ampliamente en este libro. Sin embargo, hay una opción,
como se muestra en la siguiente instrucción, que también inicializa val en 4:

miclase ob = 4; // se convierte automáticamente en miclase(4)

Como lo sugiere el comentario, esta forma de inicialización se convierte automáticamente en una
llamada al constructor de miclase, y 4 es el argumento. Es decir, el compilador maneja la instruc-
ción anterior como si fuera ésta:

miclase ob(4);

En general, en cualquier momento en que tenga un constructor que requiera sólo un argu-
mento, puede usar ob(x) u ob = x para inicializar un objeto. La razón es que cada vez que cree un
constructor que requiera un argumento, está creando implícitamente una conversión del tipo de
ese argumento al de la clase.

Si no quiere que ocurran conversiones implícitas, puede evitarlas al usar explicit. Este espe-
cifi cador sólo se aplica a constructores. Un constructor especifi cado como explícito sólo se usará
cuando una inicialización use la sintaxis del constructor normal. No realizará ninguna conversión
automáticamente. Por ejemplo, al declarar explicit el constructor de miclase, como se muestra
aquí:

explicit miclase(int x) { val = x; }

no se proporcionará la conversión automática. Ahora, sólo se permitirán constructores de la forma

miclase ob(27);

Ya no se permitirá esta forma

miclase ob = 27; // ¡Ahora es un error!

Ejemplo
En el siguiente ejemplo se integran las piezas y se ilustra un constructor explicit. En primer lugar,
he aquí un programa que ilustra la conversión automática que ocurre cuando un constructor no se
modifi ca con explicit:

#include <iostream>

using namespace std;

class miclase {
 int val;
public:
 // El siguiente constructor NO es explícito.
 miclase(int x) { val = x; }

 C a p í t u l o 7 : P o p u r r í 493

 int getval() { return val; }
};

int main()
{
 miclase ob(4); // Correcto
 cout << "val en ob: " << ob.getval() << endl;

 // La siguiente instrucción es correcta debido a la
 // conversión implícita de int a miclase.
 miclase ob2 = 19;
 cout << "val en ob2: " << ob2.getval() << endl;

 return 0;
}

Aquí se muestra la salida:

val en ob: 4
val en ob2: 19

Como puede ver, ambas formas de inicialización son permitidas, y ambas inicializan una instancia
de miclase, como se esperaba.

La siguiente versión del programa agrega el modifi cador explicit al constructor de miclase:

#include <iostream>

using namespace std;

class miclase {
 int val;
public:
 // Ahora miclase(int) es explícito.
 explicit miclase(int x) { val = x; }

 int getval() { return val; }
};

int main()
{
 miclase ob(4); // Aún es correcto
 cout << "val en ob: " << ob.getval() << endl;

 // La siguiente instrucción es un error porque ya no está
 // permitida la conversión implícita de int a miclase.
 miclase ob2 = 19; // ¡Error!
 cout << "val en ob2: " << ob.getval() << endl;

 return 0;
}

494 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

Después de hacer miclase(int) explícita, la instrucción

miclase ob2 = 19; //¡Error!

es ahora un error y no se compilará.

Opciones
El modifi cador explicit sólo se aplica a constructores que requieren un argumento. Sin embargo,
esto no signifi ca que el constructor deba tener un solo parámetro. Simplemente signifi ca que cual-
quier parámetro después del primero debe tener argumentos predeterminados. Por ejemplo:

class miclase {
 int val;
 int otro_valor;
public:
 explicit miclase(int x, int y = 0) { val = x; otro_val = y; }
 // ...
};

Debido a que el valor predeterminado de y es 0, el uso de explicit aún es válido. Su uso evita la
siguiente declaración:

miclase contador = 19; // no válida.

Si el constructor no ha sido declarado como explicit, la instrucción anterior se permitiría; y tendría
el valor predeterminado de 0. Debido a explicit, es necesario invocar explícitamente al constructor,
como en el ejemplo siguiente:

miclase contador(19);

Por supuesto, también puede especifi car un segundo argumento:

miclase contador(19, 99);

 495

Símbolos
–>

sobrecarga, 445-451
usado con iteradores, 154

*
e iteradores, 71, 109
e iteradores de fl ujo, 267, 268, 269
y fl ujos, 284

[]
cómo sobrecargar, 441-445
usado con deque, 119, 120
usado con map, 158-159
usado con objetos de cadena, 15, 52, 54
usado con vector, 111, 112, 114, 117

=
sobrecarga, 468, 478
usado con objetos de cadena, 15, 52, 53
y contenedores, 98

==
sobrecargado con type_info, 479
usado con objetos de cadena, 15, 52, 54
y contenedores, 98, 109, 141, 154-155, 172
! y fl ujos, 284, 289, 292, 294, 297, 300, 302,

304-305, 306, 309, 315
!=

sobrecargado con type_info, 479
usado con objetos de cadena, 15
y contenedores, 98

–, sobrecarga para uso con objetos de cadena, 86-91
–=, sobrecarga para uso con objetos de cadena,

86-91
– –, cómo sobrecargar, 457-462
(), cómo sobrecargar, 437-440
+ usado con objetos de cadena, 15, 52, 53, 86

+= usado con objetos de cadena, 15
++

cómo sobrecargar, 457-462
usado con istream_iterator, 267
usado con istreambuf_iterator, 268

<
usado con objetos de cadena, 15
y contenedores, 98, 109, 141, 154-155, 172

<<
usado con objetos de cadena, 15
usado para formar salida numérica, 397, 398

<< operador de inserción para fl ujos, 284, 293, 294
creación de uno personalizado, 341-344
para manipuladores con parámetros, sobre-

carga de, 348, 349-350
y manipuladores, 346, 348

<=
usado con objetos de cadena, 15, 54
y contenedores, 98

>
usado con objetos de cadena, 15, 52, 54
y contenedores, 98, 154-155

>>, usado con objetos de cadena, 15
>>, operador de extracción para fl ujos, 284, 298,

299-300
creación de uno personalizado, 341-344
para manipuladores con parámetros, sobre-

carga de, 349
y formación de salida numérica, 397
y manipuladores, 346, 348

>=
usado con objetos de cadena, 15
y contenedores, 98

Índice

496 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

A A
accumulate(), algoritmo, 487
Adaptadores, 96

adjacent_difference(), algoritmo, 487
adjacent_fi nd(), algoritmo, 184, 187, 199
adjustfi eld, 369, 388, 389
apuntador a función, usando, 262-265
contenedor, 96-97, 132-140
de función, 262
de función miembro, 265
iterador de inserción, 274-277

Adhesivos, 96, 188
cómo usar, 255-259
cómo usar funciones con, 262

<algorithm>, encabezado, 66, 71, 73, 77, 182
Algoritmo, creación de uno personalizado, 238-244

con un predicado, 239, 242-244
Algoritmos de STL, 94

de orden y relacionados, tabla de, 186
e iteradores, 182-183, 200, 225
naturaleza de las funciones de plantilla de,

182-183
organizada por agrupaciones funcionales,

tabla de, 187
para fl ujos, aplicación, 265-266, 272-273
revisión general, 182-184, 185-187
secuencia que no se modifi ca, tabla de, 184
secuencia que se modifi ca, tabla de, 185
ventajas de, 66, 182
y objetos de cadena, 66, 70, 71, 73, 76

Algoritmos numéricos, 487
allocator, clase, 95
Allocator, nombre de tipo genérico, 12, 96
allocator_type, 97
Ancho de campo, establecimiento del, 385-388, 393

para alinear columnas de números, 387-388
uso de printf(), 421-422

app, 290
append(), 13, 58

versión de iterador de, 77
Apuntadores

a archivos en C, 356, 357, 358
a archivos en C++, 326
a función, 95-96, 184, 190, 245, 248
adaptación en un objeto de función, 262-265
auto_ptr. Véase auto_ptr

clase base, 478, 480
comparación entre apuntadores y objetos de

función, 249, 255
de función. Véase Función, apuntadores
de función y manipuladores, 346, 348
get, 327
put, 327
similitud con los iteradores, 109, 154
uso de la sobrecarga de –> para crear un

apuntador seguro, 446, 447-450
uso de sintaxis de indización de matriz con,

24
Archivos

binarios, 290-291
binarios y E/S de acceso aleatorio, 327
cambio de nombre y eliminación, 362-365
comparación entre archivos de texto y bina-

rios, 290-291
creación de un fi ltro basado en la STL, 272-

273
de texto y E/S de acceso aleatorio, 329
defi nición, 280, 281
escritura de datos binarios sin formato para,

300-305
escritura de datos formados en un archivo de

texto, 293-296
fl ujos de, 290-291
lectura de datos binarios sin formar de uno,

305-309
lectura de datos formados de un archivo de

texto, 296-300
lectura y escritura de, 314-317
receta para comparación de, 320-322
revisión de uno, 332-337
traducciones de caracteres en, 290-291
uso de get() y getline() para leer de, 310-314
ventajas del cierre explícito de, 289, 293, 326
y E/S de acceso aleatorio, 326-332

argument_type, 250
Asignación, sobrecarga del operador de, 468, 478
Asignadores de STL, 95
Asociativos, contenedores, 94, 97

requisitos de, 100-101
técnicas básicas, 145-156

assign(), 13, 58, 118, 124
versión de iterador de, 76, 112, 113, 119

 Í n d i c e 497

at(), 14, 58, 99, 111, 112-113, 119
ate, 290
Aumento, cómo sobrecargar el operador de, 457-

162
auto_ptr, clase, 451

para crear un apuntador seguro, 490
uso de, 487-491

B B
back(), 99, 112, 113, 119, 120, 126, 133, 134
back_insert_iterator, clase, 275
back_inserter(), adaptador de iterador de inser-

ción, 274-275
bad(), 283, 288, 296, 300, 304, 318, 322
bad_alloc, excepción, 38, 452
badbit, marca de error, 288, 318, 336
bad_cast, excepción, 399, 402, 408
basefi eld, 369, 379, 380
basic_fi lebuf, clase, 281, 282, 286
basic_fstream, clase, 281, 282, 285, 286
basic_ifstream, clase, 281, 282, 285, 286
basic_ios, clase, 281, 282, 283-284, 286, 332, 369
basic_iostream, clase, 281, 282, 285, 286
basic_istream, clase, 281, 282, 283, 285, 286
basic_istringstream, clase, 281, 282, 286, 337
basic_ofstream, clase, 281, 282, 284, 285, 286
basic_ostream, clase, 281, 282, 284, 285, 286, 400, 409
basic_ostringstream, clase, 281, 282, 286, 337
basic_streambuf, clase, 281, 282, 286
basic_string, clase, 7, 12

ventajas del uso de cadenas, 51-52, 57, 70
basic_stringbuf, clase, 281, 282, 286
basic_stringstream, clase, 281, 282, 286, 337
before(), 479
beg, 327
begin(), 14, 71, 72, 98, 103, 104, 113, 120, 126, 146,

149, 159, 190
Biblioteca de localización, 31, 372

formación de datos mediante la, 367, 370-371
Biblioteca de plantillas estándar (STL), 93

revisión general, 94-96
y la clase string, 15, 58

BiIter, 95, 183
binario, 290-291, 301, 306
binary_function, estructura, 249, 250
binary_negate, clase, 260

binary_search(), algoritmo, 186, 187, 197-198
bind1st(), adhesivo, 188, 256, 258-259
bind2nd(), adhesivo, 188, 256, 257, 258, 260, 263-

264,
binder1st, clase, 256,
binder2nd, clase, 256
BinPred, nombre de tipo genérico, 96, 183
bitset, clase, 179
<bitset>, encabezado, 179
boolalpha

marca de formato, 368, 369
manipulador, 370, 392

C C
c_str(), 14, 83, 85
C++

estándar internacional para, 4
biblioteca estándar, 5

Cadenas
caracteres extendidos, 7, 12
como matrices, 7, 8, 9
comparación entre C y C++, 7, 8
fl ujos. Véase Flujos de cadena, C++
literales, 8, 16

Cadenas terminadas en un carácter nulo, 7
búsqueda de, 20-23
combinación de objetos de cadena con, 15, 58
comparación ignorando diferencias entre

mayúsculas y minúsculas, 27-31
conversión de un objeto de cadena en una,

83-85
conversión en fi chas de, 44-50
creación de una función de búsqueda y reem-

plazo, 31-38
división en categorías de caracteres dentro de

una, 39-43
inversión de, 23-27
limitaciones de, 11-12
operadores y, 11
programa para el recuento de palabras, 41-43
realización de operaciones básicas en, 16-20
revisión general de, 8-11
tabla de funciones de uso común, 9-10
ventajas de, 16

Calculadora de sufi jo, uso de una pila para su
creación, 137-140

498 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

capacity(), 14, 52, 54, 112, 114
Caracteres de relleno, establecimiento, 385, 386-

388, 393
catch, instrucción, 323
<cctype>, encabezado, 28, 39, 40
cerr, 287
char*, cadena, 8
char, 7, 302, 304, 307, 368

fl ujos basados en, 285-286
char_traits, clase, 282
char_type, 283, 403, 404
Cierre, operación de, 280
cin, 287, 298

e istream_iterator, 267, 269
clear(), 13, 59, 99, 100, 103, 104, 126, 146, 148

defi nido por basic_ios, 283, 290, 318
<clocale>, encabezado, 417
clog, 287
close(), 285, 292-293, 294, 298, 302, 306, 307
Comp, nombre de tipo genérico, 96, 183
compare(), 14, 59
Complex numbers, using, 484-487
complex, clase, 485
<complex>, encabezado, 486
Conjuntos, rendimiento de operaciones, 217-222
const_iterator, 72, 97, 113
const_reference, 97, 112
const_reverse_iterator, 72, 97, 113
Constante, categoría de rendimiento de tiempo, 101

amortizado, 101
Constructor

de copias. Véase Copias, constructor
explicit, creación de uno, 491-494

constructores, 294, 301
Contenedor de secuencias, 94, 97

constructores, 170
especifi cación de plantilla, 170
establecimiento del contenedor, 97, 146, 147,

156
iteradores, 171
receta en que se usa, 169-174, 178-179
requisitos para, 99-100
reversible, 105
técnicas básicas, 102-110

Contenedores, 94
adaptadores, 97-98, 132-140
almacenamiento de objetos defi nidos por el

usuario en uno, 140-144
asociativos. Véase Asociativos, contenedores
búsqueda de un elemento en uno, 192-199
clase de cadena como uno, 15, 58, 66, 70, 76
clases de plantilla usadas para implementar,

96
de orden, 189-192
declaración de un iterador para uno, 104
defi nido por la STL, tabla de, 97
elección de, 103, 110
garantías de rendimiento, 101
inserción de elementos en uno, 274-277
requisitos para todos, 98
reversibles, 98, 105
secuencia. Véase Secuencias, contenedores

Conversión en fi chas
de una cadena terminada en un carácter

nulo, 44-50
de un objeto de cadena, 63-65

Copias, constructor
creación de uno, 466-478
para implementar una matriz segura, usando

uno, 471-478
copy()

algoritmo, 185, 187, 225-227
función, 13

copy_backward(), algoritmo, 185, 187, 227
count(), 100, 155
cout, 287, 294

y ostream_iterator, 267, 269
y printf(), 419

<cstdio>, encabezado, 356, 357, 362, 363, 371
<cstring>, encabezado, 9, 11, 17
<ctime>, encabezado, 409, 415
cur, 327
cur_symbol(), 402, 404

D D
data(), 14, 85
dec

manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 393

decimal_point(), 402, 403, 404
delete, operador, 488

sobrecarga de, 451-456
deque, contenedor, 94, 96, 97, 103, 118, 133, 134

características de rendimiento, 120

 Í n d i c e 499

constructores, 119
especifi cación de plantilla, 119
garantía de rendimiento, 110
iteradores, 120
receta para uso de, 118-124

<deque>, encabezado, 97
Desbordamiento de búfer, 12, 17, 18, 311
divides, objeto de función, 95, 184, 246

E E
E/S, archivo de C

cambio de nombre y eliminación de un archi-
vo usando, 363-365

uso de, 355-362
y C++, 355-356, 362

E/S, archivo de C++, 282
de acceso aleatorio, uso de, 326-332

E/S, C++
búferes, 316
e iteradores de fl ujo, 265-273, 280
fl ujos. Véase Flujos, C++
manipuladores. Véase Manipuladores
revisión general, 280-287
uso de fl ujos de cadena, 282, 337-341
y E/S de archivo de C, 355-356, 362

empty(), 14, 98, 103, 104, 133, 134, 135, 146, 149
end, 327
end(), 14, 71, 72, 98, 103, 104-105, 113, 120, 126, 146,

149, 155, 159, 190
endl, manipulador, 370, 392, 393
ends, manipulador, 370, 392, 393
EOF

detección, 317-322
macro del sistema de E/S de C, 357, 358, 359,

362
eof(), 283, 288, 300, 309, 326

recetas que usan, 317-322
eofbit, marca de error, 288, 318, 333, 336
equal()

algoritmo, 184, 187, 203
función, 269

equal_range()
algoritmo, 186, 187, 198
función, 100, 141, 155, 168-169, 178

equal_to, objeto de función, 184, 246, 260
erase(), 13, 52, 54, 58, 86, 87, 100, 146, 148, 162, 163,

165, 167-168, 170, 171

versiones de iterador, 71, 73, 99, 100, 103, 104,
110, 120, 126, 127, 156, 168, 178

Excepciones, 289, 296, 300, 304, 309, 322-326, 336
exception, clase, 323
exceptions(), 283, 296, 300, 304, 323
explicit, uso de la palabra clave, 491-494
Extensibilidad de tipos, 426
Extractores, 341

creación de extractores personalizados, 341-
344

F F
Facetas, 355, 371, 372-373, 418
fail(), 283, 284, 288, 289, 292, 294, 296, 297, 300, 302,

304, 306, 309, 315, 322, 326
failbit, marca de error, 288, 292, 307, 318, 323
failed(), 266, 269
failure, 323
falsename(), 405-406
fclose(), 356, 358
Fecha y hora

especifi caciones de formato, 410
uso de strftime() para formación, 414-418, 424
uso de time_put para formación, 407-411, 424

feof(), 356, 359
ferror(), 356, 359
ffl ush(), 362
fgetc(), 356, 359
Ficha, defi nición, 44
FILE, tipo, 357
fi lebuf, clase, 286
fi ll(), 283, 382, 385, 386, 388, 393, 412
fi nd(), algoritmo, 66, 71, 73, 141, 184, 187, 193-195

garantía de rendimiento, 101
fi nd(), función, 13, 60, 65-66, 67, 86, 87

versiones de iterador de, 100, 146, 148-149,
155, 159, 163, 164, 170, 171

y el operador <, 141
fi nd_end(), algoritmo, 184, 187, 202-203
fi nd_fi rst_not_of(), 13, 60, 63
fi nd_fi rst_of()

algoritmo, 66, 184, 187, 198
función, 13, 60, 61, 63

fi nd_if(), algoritmo, 184, 187, 193-195, 257
fi nd_last_not_of(), 13, 60, 61
fi nd_last_of(), 13, 60, 61
fi rst_argument_type, 250

500 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

fi xed
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 383

fl ags(), 283, 370, 374, 375, 378
fl ip(), 118
fl oatfi eld, 369, 379, 380
Flujo de iteradores, 265-273, 280

de bajo nivel, 268-269
formado, 267-268
programa de demostración, 269-271
uso de, para crear un fi ltro de archivos basa-

do en STL, 272-273
Flujos, C++, 280-281

archivo, 290-291
atributo de ancho de campo, 369, 385-388
atributo de carácter de relleno, 369, 370, 385,

386-388
atributo de precisión, 369, 370, 383-385
clases, 281-285
confi guración regional y de idioma, obten-

ción y establecimiento, 352-355, 371
especializaciones de clases, 285-287
predefi nidos, 287

Flujos de cadena, C++
formación de datos en, 412-414
uso de, 282, 337-341

fl ush, manipulador, 370, 392, 393
fl ush(), 284, 315, 316
fmtfl ags, enumeración de máscara de bits, 283, 287,

368
fopen(), 356, 357-358
for_each(), algoritmo, 184, 187, 208-210, 215, 244
ForIter, 95, 183
Formación, 367-424

datos en una cadena, 412-414
fecha y hora. Véase Fecha y hora
revisión general, 368-371
valores monetarios. Véase Monetarios, valores
valores numéricos. Véase Numéricos, valores
y facetas, 372-373
y justifi cación de salida. Véase Justifi cación de

salida
y manipuladores de E/S. Véase, manipula-

dores
y marcas de formato. Véase Marcas de for-

mato
y printf(). Véase printf()

fpos_t, tipo, 357
fprintf(), 362, 371, 419, 424
fputc(), 356, 358
frac_digits(), 403, 404
fread(), 361
free(), 453
front(), 99, 111, 113, 119, 120, 126, 133, 134, 135
front_insert_inserter, clase, 275
front_inserter(), adaptador de iterador de inser-

ción, 274-275
fscanf(), 362
fseek(), 361-362
fstream, clase, 286, 290, 291, 314, 315, 317, 327

constructores, 315
<fstream>, encabezado, 282, 285, 294, 297, 298, 301,

306, 315
Fugas de memoria, 488
Func, nombre de tipo genérico, 183
Función

cómo sobrecargar el operador de llamada a
función, 437-440

creación de una función de conversión, 463-
466

de operador. Véase operator, funciones
defi nición de una función de comparación,

188
Función de comparación, defi nición de, 188
Función de conversión, creación, 463-466
<functional>, encabezado, 188, 246, 250, 256, 262
fwrite(), 361

G G
gcount(), 284, 309, 337
generate(), algoritmo, 185, 187, 215-216
generate_n(), algoritmo, 185, 187, 215
Generator, nombre de tipo genérico, 183
get(), 284, 309, 314, 315

defi nido por auto_ptr, 488, 489
para detectar el fi nal del archivo, 322
receta usada para leer un archivo, 310-313,

318-320
y la faceta money_get, 402

Get, apuntador, 327
getc(), 361

defi nido por num_get, 398
getline(), 284, 300, 309

receta usada para leer un archivo, 310-314

 Í n d i c e 501

getloc(), 283, 353, 399-400
good(), 283, 288, 289, 293, 294, 298, 302, 306, 307,

315, 318, 322, 326
goodbit, marca de error, 288
greater, objeto de función, 95, 184, 188, 190, 246,

255, 257, 258-259
greater_equal, objeto de función, 184, 246
grouping(), 402, 403, 404
gslice, clase, 487

H H
has_facet(), 373, 402
Heap, creación y administración de un montón,

235-238
hex

manipulador, 370, 392, 393
marca de formato, 368, 369, 379, 380, 393

I I
ifstream, clase, 286, 290, 291, 297, 298, 305, 306, 314,

315, 318, 327
constructores, 297, 306

ifstream::traits_type::eof(), 322
ignore(), 284, 333, 334-336
imag(), 485, 486
imbue(), 283, 353, 372, 373, 396, 399, 408
in, 290
includes(), algoritmo, 186, 187, 217, 218, 219, 222
Información de tipo en tiempo de ejecución (RTTI),

478
InIter, 72, 73, 95, 183
inner_product(), algoritmo, 487
inplace_merge(), algoritmo, 186, 187, 231, 232

versión de función de comparación, 234
insert(), 13, 53, 58

versión de iterador de, 71, 73, 99, 100, 103,
104, 109-110, 111, 113, 117, 120, 125, 126,
146, 148, 156, 158, 159, 162, 163, 164, 170,
171, 178

insert_iterator, clase, 275
Insertadores, 341

personalizados, creación de, 341-344
inserter(), adaptador de iterador de inserción,

274-275
int_type, 283, 333
internal

manipulador, 370, 387, 391

marca de formato, 368, 369, 386, 388, 389
<iomanip>, encabezado, 352, 370, 392, 393
ios, clase, 286, 290, 291, 327, 369
ios::app, 296, 304
ios::ate, 296, 304
ios::badbit, 323
ios::binary, 301, 302, 306, 315
ios::eofbit, 318, 322, 323
ios::failbit, 288, 318, 323
ios::goodbit, 323
ios::in, 306, 315
ios::out, 294, 296, 301, 302, 315
ios_base, clase, 281, 282-283, 287, 288, 290, 291, 323,

327, 369, 370, 372, 374, 375, 383
ios_base::badbit, 323
ios_base::eofbit, 323
ios_base::failbit, 323
ios_base::failure, 296, 300, 304, 323
ios_base::goodbit, 323
<ios>, encabezado, 282, 283, 370, 392, 393
iostate, tipo, 283, 288, 323
iostream, clase, 286, 315
<iostream>, encabezado, 287, 370, 392, 393
is_open(), 285, 292
isalpha(), 39, 40, 41
isalum(), 39, 40
iscntrl(), 39, 40
isdigit(), 39, 40
isgraph(), 39, 40
islower(), 39, 40, 248
isprint(), 39, 40
ispunct(), 39, 40, 41
isspace(), 39, 40
istream, clase, 286, 287, 298, 315, 318, 327, 341, 342,

345, 349
istream_iterator, clase, 266-267
istream_type, 267, 268
<istream>, encabezado, 284, 298
istreambuf_iterator, clase, 266-267, 268-269
istringstream, clase, 286, 337, 338

constructor, 337, 340
isupper(), 39, 40
isxdigit(), 39, 40
iter_type, 398, 400, 409
Iteradores, 94-95, 103

adaptadores con el uso de inserción, 274-
277

502 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

<list>, encabezado, 97
locale, clase, 352, 353, 355, 371, 372, 396, 399, 408
locale::facet, 371, 372, 403
<locale>, encabezado, 31, 43, 353, 355, 371, 372,

373, 399, 402
localtime(), 408, 409, 415
Logarítmica, categoría de rendimiento de tiempo,

101
logical_and, objeto de función, 184, 246
logical_not, objeto de función, 188, 246
logical_or, objeto de función, 184, 246
longitud(), 14, 58
lower_bound()

algoritmo, 186, 187, 198
función, 100, 141, 155

M M
main(), devolución de un valor de, 4
make_heap(), algoritmo, 186, 187, 235

versión de función de comparación, 238
make_pair(), 148
malloc(), 453
Manejo de errores

en los ejemplos de la receta, 3, 289
excepciones para, uso de, 289, 296, 300, 304,

309, 322-326, 336
funciones para informe de errores, uso de,

288-289, 322, 326, 336
Manipuladores, 287, 344-345, 370

creación de manipuladores con parámetros,
348-352

creación de manipuladores sin parámetros,
344-347

en comparación con funciones miembro de
fl ujo, 393

estándares, lista, 370
para formar datos mediante, 391-398
y <iomanip>, 352, 370
y fl ujos de cadena, 347, 412

map, contenedor, 94, 97
características de rendimiento, 159
constructores, 147, 157-158
especifi cación de plantilla, 147, 157
iteradores, 149-150, 154, 158, 159
receta en que se usa, 156-162
técnicas básicas para el uso de uno, 145-156

benefi cios del uso de, 70, 73
declaración, 104, 108
inversos, benefi cios de su uso, 117
operaciones con soporte mediante, tabla de,

95
similitud con los apuntadores, 109, 154
y adaptadores de contenedor, 132
y algoritmos, 182-183, 200, 225
y mapas, 154
y objetos de cadena, 15, 70-76

iterator, 14, 71, 72, 97, 108, 113, 148
<iterator>, encabezado, 266, 272

J J
Justifi cación de salida

uso de marcas de formato, 388-391
uso de printf(), 422

K K
key_comp(), 100
key_type(), 97

L L
LC_ALL, macro, 417
LC_COLLATE, macro, 417
LC_CTYPE, macro, 417
LC_MONETARY, macro, 417
LC_NUMERIC, macro, 417
LC_TIME, macro, 417
left

manipulador, 370, 392
marca de formato, 368, 369, 388, 389

length_error, excepción, 16, 58
less, objeto de función, 95, 184, 246, 259, 260
less_equal, objeto de función, 184, 246
Lineal, categoría de rendimiento de tiempo, 101
list, contenedor, 94, 97, 103, 133, 134, 140

características de rendimiento, 127
combinación de, 126, 130, 232
constructores, 125
eliminación de elementos, 127, 130-131, 228
especifi cación de plantilla, 125
garantía de rendimiento, 101, 110
iteradores, 125, 131
ordenamiento de, 126, 130, 183
recetas para uso de, 124-131

 Í n d i c e 503

ventajas del uso de, 179
<map>, encabezado, 97, 147, 148, 158, 164
Marcas de error, 288-289

Marcas de formato, 287, 368-369
cómo desplegarlas para su establecimiento,

376-378
uso de funciones miembro de fl ujo para acce-

der a, 374-378
uso de manipuladores para establecerlas, 382
y formación de valores numéricos, 379-383

Matrices
comprobación de límites, 12, 441
constructor de copias para implementar una

matriz segura, uso, 471-78
desbordamiento, 12, 16, 19-20, 37, 51, 57-58
dinámicas y vector, 111
sobrecarga de [] para crear matrices seguras,

441, 442-445
Véase también Desbordamiento de búfer

max_size(), 14, 16, 52, 53, 98, 110
mem_fun(), adaptador de función de apuntador a

miembro, 265
mem_fun_ref(), adaptador de función de apunta-

dor a miembro, 265
memchr(), 11
memcmp(), 11
memcpy(), 11
memmove(), 11, 32
memset(), 11
merge(), algoritmo, 182, 186, 187, 231-232

versión de función de comparación de, 234
merge(), función, 125, 126

versión de función de comparación de, 130
minus, objeto de función, 95, 184, 246
mismatch(), algoritmo, 184, 187, 199, 203
modulus, objeto de función, 184, 246
Monetarios, valores

uso de money_put para formarlos, 398-401
uso de moneypunct con, 402-407

money_base, clase, 403, 406
money_get facet, 402
money_put, faceta, 371, 372, 373, 397, 408

declaración de plantilla, 399
uso de la, 398-401

moneypunct, faceta, 355, 373

declaración de plantilla, 403
uso de la, 402-407

multimap, contenedor, 97, 146, 156, 162
características de rendimiento, 165
constructores, 164
especifi cación de plantilla, 163-164
iteradores, 164
receta en que se usa, 163-169
ventajas del uso de uno, 179

multiplies, objeto de función, 95, 184, 246
multiset, contenedor, 97, 156

constructores, 171
especifi cación de plantilla, 171
iteradores, 99
receta en que se usa, 169-172, 174-179

N N
name(), 353

defi nida por type_info, 479
neg_format(), 406-407
Negadores, 96, 188

cómo usar funciones con, 262
cómo usarlos, 259-261

negate, objeto de función, 188, 246
negative_sign(), 406
new, operador, 488

sobrecarga de, 451-456
<new>, encabezado, 456
next_permutation(), algoritmo, 186, 187, 207, 222-224
noboolalpha, manipulador, 370, 392
noshowbase, manipulador, 370, 392
noshowpoint, manipulador, 370, 392, 393
noshowpos, manipulador, 370, 392
not_equal_to, objeto de función, 184, 246
not1(), negador, 188, 259, 260
not2(), negador, 188, 259, 260
nothrow, 456
nothrow_t, 456
nounitbuf, manipulador, 370, 392
nouppercase, manipulador, 370, 392
npos, variable, 12, 14-15, 61
NULL, macro, 357, 358
num_get, faceta, 355, 398
num_put, faceta, 355, 372, 373, 395, 397-398
<numeric>, encabezado, 487
Numéricos, valores

504 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

establecimiento de la posición del punto
fl otante. Véase Punto fl otante, valores

formación de, de acuerdo con una confi gura-
ción regional y de idioma, 395-398

uso de marcas de formato para formar, 379-
383

y numpunct, 402-406
numpunct, faceta, 355, 373

declaración de plantilla, 403
uso de, 402-406

O O
Objetos de función, 95-96

adaptación de un apuntador a función en
uno, 262-265

integrados, uso de, 245-248
para mantener información de estado usan-

do, 253-255
personalizados, creación de uno, 248-255
revisión general, 184, 188
uso de un adhesivo para unir un valor con

uno, 255-259
ventajas de, 249

oct
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 393

off_type, 283, 327
ofstream, clase, 286, 290, 291, 293, 314, 315, 327

constructores, 294, 301
Opción de función miembro de clase –>, cómo

sobrecargarlo, 445-451
open(), 285, 290-291, 292, 293, 294, 297, 301, 302,

304, 305, 315
openmode, enumeración, 283, 290
Operación de apertura, 280
operador, funciones

forma general de una, 427
miembro, 426-427, 428-430
que no son miembro, 427-428, 431-432
y herencia, 436

Operadores
con soporte mediante contenedores, 98
de inserción y extracción, 341
y cadena terminada en un carácter nulo, 11
y objetos de cadena, 15, 52, 53-54, 58-59

operator delete[](), 452, 453
operator delete(), 451, 452

operator new(), 451, 452
versión sin lanzamiento de excepciones de,

456
operator new[](), 451, 453

versión sin lanzamiento de excepciones de,
456

operator!=(), versión de type_info de, 479
operator–()

forma miembro de, 458
forma no miembro de, 462

operator(), 95, 184, 188, 245, 248, 249, 250, 263, 265
operator()(), 437
operator–(int)

forma miembro de, 458
forma no miembro de, 462

operator, palabra clave, 427, 463
operator[](), 99, 112, 120

uso de, 441-445
versión de map de, 158-159

operator++()
forma miembro de, 458
forma no miembro de, 462

operator++(int)
forma miembro de, 458
forma no miembro de, 462

operator<(), 141, 172, 175, 179
operator=(), 468, 478
operator==(), 141, 172

versión de type_info de, 479
operator–>(), 445-451
ostream, clase, 286, 287, 294, 315, 316, 327, 341, 342,

345, 348
ostream_iterator, clase, 266-268
ostream_type, 268, 269
<ostream>, encabezado, 284, 294, 370, 393
ostreambuf_iterator, clase, 266-267, 269, 398, 399,

400, 408, 409
ostringstream, clase, 286, 337, 338, 412

constructor, 337, 340
out, 290
out_of_range, excepción, 16, 113
OutIter, 72, 73, 95, 183

P P
pair, clase, 101, 147-148, 158, 159, 164, 199
pair<const Key, T>, 148, 158, 164
pair<Key, T>, 148

 Í n d i c e 505

Palabras, programa para el recuento de, 41-43
partial_sort(), algoritmo, 186, 187, 191-192
partial_sort_copy(), algoritmo, 186, 187, 192
partial_sum(), algoritmo, 487
patrón, estructura, 406
peek(), 284, 333, 334-336
plus, objeto de función, 95, 184, 246
pointer_to_binary_function, clase, 263
pointer_to_unary_function, clase, 263
Polimorfi smo, 478
pop(), 124, 133, 134, 135
pop_back(), 99, 111, 113, 119, 120, 125, 126, 133, 135
pop_front(), 99, 112, 119, 120, 124, 125, 126, 134
pop_heap(), algoritmo, 186, 187, 235, 236, 237

versión de función de comparación, 238
pos_format(), 406
pos_type, 283, 332
Posición actual, 281
positive_sign(), 406
precision(), 283, 370, 382, 383-385, 393, 412
Predicado binario, 77-78, 96
Predicado

binario, 77-78, 96, 188
unario, 96, 188

prev_permutation(), algoritmo, 186, 187, 207, 222-224
printf (), 355, 362, 368, 371

especifi cadores de formato, tabla de, 420
uso de, 418-424

priority_queue, adaptador de contenedor, 97-98,
110, 119

constructores, 135
especifi cación de plantilla, 134
receta para su uso, 132-137

ptr_fun(), adaptador de apuntador a función, 262-
263, 265

Punto fl otante, valores
uso de precision() para establecer la precisión

de, 383-385
uso de printf() para formar, 420-421
uso de setprecision para establecer la preci-

sión de, 385, 393
push(), 124, 133, 134, 135
push_back(), 13, 52, 54-55, 99, 111, 113, 114, 117,

119, 120, 125, 126, 133, 134, 135, 275
push_front(), 99, 112, 119, 120, 124, 125, 126, 275
push_heap(), algoritmo, 186, 187, 235-236

versión de función de comparación, 238

Put, apuntador, 327
put(), 284, 304, 314, 315

defi nido por money_put, 400, 402
defi nido por num_put, 397-398
defi nido por time_put, 408, 409, 410, 411
usado con facetas, 373

putback(), 284, 336
putc(), 361

Q Q
queue, adaptador de contenedor, 96, 97-98, 110,

119, 124
constructor, 134
especifi cación de plantilla, 133-134
receta en que se usa, 132-137
y list, 140

<queue>, encabezado, 97

R R
RandIter, 95, 183
random_shuffl e(), algoritmo, 185, 187, 203-204,

224-225
rbegin(), 14, 71, 72, 98, 103, 105, 113, 120, 126, 146,

149-150, 159
rdstate(), 283, 288-289, 296, 300, 304, 322, 326

para detectar el fi nal del archivo, 322
read(), 284, 306, 307, 309, 310, 315
readsome(), 336
real(), 485, 486
Recolección de basura, 490-491
Recursión para invertir una cadena, 26
Reducción, cómo sobrecargar el operador de,

457-462
referencia

a clase defi nida por vector<bool>, 118
a tipo, 97, 112

release(), 488, 489
remove()

algoritmo, 185, 187, 228
función de C, 362, 363-365
función de contenedor list, 125, 126, 127, 130

remove_copy(), algoritmo, 185, 187, 230
y adaptador de iterador de inserciones, 277

remove_copy_if(), algoritmo, 185, 187, 230
remove_if()

algoritmo, 185, 187, 230, 248, 257, 258

506 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

búsqueda de una coincidencia, 199-203
cambio de una, usando transform() para,

211-215
ordenadas, combinación de dos, 231-234
de un contenedor a otro, copia de, 225-227
defi nición de una, 94
establecimiento de operación en una, 217-222
generación de una, 215-216
inversión, giro y barajeado de una, 203-207
permutación de una, 222-225
recorrer en ciclo mediante una, 208-210
reemplazo y eliminación de elementos en

una, 227-230
SEEK_CUR, macro, 362
SEEK_END, macro, 362
SEEK_SET, macro, 362
seekdir, enumeración, 283, 327
seekg(), 284, 315, 327, 332

para acceder a registros de tamaño fi jo, 329-
332

seekp(), 284, 315, 327, 332
para acceder a registros de tamaño fi jo, 331-

332
<set>, encabezado, 97, 170, 171
set_difference(), algoritmo, 186, 187, 217, 218, 221-

222
set_intersection(), algoritmo, 186, 187, 217, 218-219,

221-222
set_symmetric_difference(), algoritmo, 186, 187,

217, 218, 221-222
set_union(), algoritmo, 186, 187, 217, 218, 221-222
setbase(), manipulador, 370, 393
setf(), 283, 370, 374, 375, 380, 393

forma de dos argumentos de, 378, 380, 389,
393

y fl ujos de cadena, 412
setfi ll(), manipulador, 370, 393
setiosfl ags(), manipulador, 370, 393
setlocale(), 373, 417
setprecision(), manipulador, 370, 393
setstate(), 283
setw(), manipulador, 370, 393
showbase

manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 400

showpoint
manipulador, 370, 392, 393

función, 126, 130-131
rename(), 362, 363-365
rend(), 14, 71, 72, 98, 103, 105, 113, 120, 126, 146,

149-150, 159
replace(), algoritmo, 185, 187, 188
replace(), función, 13, 66, 67, 68, 69

versión de iterador, 71, 73, 77, 78
replace_copy(), algoritmo, 185, 187, 230

con iteradores de fl ujo, 272-273
y adaptadores de iterador de inserción, 277

replace_copy_if(), algoritmo, 185, 187, 230
replace_if(), algoritmo, 185, 187, 230
reserve(), 14, 52, 54, 58, 112, 114
reset(), 488, 489
resetiosfl ags(), manipulador, 370, 393
resize(), 13, 112, 114, 119
Result, tipo genérico, 263
result_type, 250
reverse()

algoritmo, 185, 187, 203-204
función, 125, 126, 127

reverse_copy(), algoritmo, 185, 187, 207
y adaptadores de iterador de inserción, 277

reverse_iterator, 14, 71, 72, 97, 113
rewind(), 362
rfi nd(), 13, 60
right

manipulador, 370, 392
marca de formato, 368, 369, 388, 389

rotate(), algoritmo, 185, 187, 203-204
uso de iteradores inversos para realizar un

giro a la derecha con, 206-207
rotate_copy(), algoritmo, 185, 187, 207
runtime_error, excepción, 353, 372, 396

S S
scanf(), 355, 362
scientifi c

manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 383

search(), algoritmo, 66, 69, 77, 78, 81, 82, 184, 187,
197

para encontrar una secuencia coincidente,
199-203

search_n(), algoritmo, 184, 187, 203
second_argument_type, 250
Secuencias de contenedor

 Í n d i c e 507

marca de formato, 368, 369, 379, 380, 393
showpos

manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 386, 389

size(), 14, 52, 54, 58, 98, 103, 104, 114, 134, 135, 146,
149

Size, nombre de tipo genérico, 183
size_t, tipo, 11, 17, 357, 452
size_type, 14, 54, 97
sizeof, 17, 19
skipws

manipulador, 370
marca de formato, 368, 369

slice, clase, 487
Sobrecarga de operadores

restricciones, 436
técnicas básicas para, 426-436
y comparación entre el paso de operandos

por valor y por referencia, 435-436
y el operador de acceso a miembros de la

clase –>, 445-451
y el operador de llamada a función (), 437-440
y el operador de subíndice [], 441-445
y los operadores de aumento y reducción,

457-462
y new y delete, 451-456

sort(), algoritmo, 118, 124, 141, 183, 186, 187, 189-190
garantía de rendimiento, 101

sort(), función, 125, 126
versión de función de comparación, 130

sort_heap(), algoritmo, 186, 187, 235, 236, 237
versión de función de comparación, 238

splice(), 125, 126-127
sprintf(), 362, 371, 414, 419, 424

problemas con, 424
sscanf(), 362
stable_sort(), algoritmo, 186, 187, 192
Stack

uso de deque como tipo primero en entrar
primero en salir, 124

uso de deque como tipo primero en entrar
último en salir, 124

stack, adaptador de contenedor, 97-98, 110, 119, 124
constructor, 133

especifi cación de plantilla, 133
para crear una calculadora que usa sufi jo,

137-140

receta en que se usa, 132-137
<stack>, encabezado, 97, 133
std, uso del espacio de nombres, 4-5
<stdexcept>, encabezado, 16
STL. Véase Biblioteca de plantillas estándar (STL)
str(), 337, 338, 341
strcat(), 9, 12, 17-18
strchr(), 9, 21
strcmp(), 9, 17, 18, 263

naturaleza sensible a diferencias entre ma-
yúsculas y minúsculas de, 27

strcpy(), 9, 10, 11, 12, 17
strcpy_s(), 11
strcspn(), 10, 22
streambuf, clase, 286
streambuf_type, 268, 269
<streambuf>, encabezado, 282
streamsize, 302, 307, 333, 383, 385
strftime(), 367, 368, 371, 408, 410, 411, 424

especifi cadores de formato, tabla de, 416
uso de, 414-416

string, clase, 7
aspecto compatible con, de, 15, 58, 66, 76
como un contenedor para caracteres, 70
constructores, 12-13, 52-53, 72-73
excepciones, 16
lista de algunas funciones, 13-14
revisión general, 11-16
y E/S, 282

<string>, encabezado, 12, 52
string, objetos

búsqueda, 59-66
conversión de un objeto de cadena en una ca-

dena terminada en un carácter nulo, 83-85
conversión en fi chas, 63-65
creación de funciones de base de datos y

búsqueda y reemplazo sensibles a diferen-
cias entre mayúsculas y minúsculas para,
76-82

creación de una función de búsqueda y reem-
plazo para, 66-69

implementación de una resta para, 85-91
mezcla de cadenas terminadas en un carácter

nulo con, 15, 58
para E/S, uso de, 282, 337-341
realización de operaciones básicas con, 51-59
uso de iteradores con, 70-76

508 C + + S o l u c i o n e s d e p r o g r a m a c i ó n

uso de operadores con, 15
y el especifi cador de precisión printf(), 422

string_type, 404
stringbuf, clase, 286
stringstream, clase, 286, 337, 338

constructor, 337, 340
strlen(), 10, 17, 23, 24
strncat(), 10, 20
strncmp(), 10, 20
strncpy(), 10, 20, 32, 33
strpbrk(), 10, 21
strrchr(), 10, 22-23
strspn(), 10, 22
strstr(), 10, 21, 32
strtok(), 10, 23, 44-45, 50, 63

limitaciones de, 47
struct, 246

comparación entre el uso de clases y, 43
Subíndice, cómo sobrecargar el operador de,

441-445
substr(), 14, 52, 55
swap(), 13, 98, 103, 105, 147

versión de map de, 150
versión de vector<bool> de, 118

swap_ranges(), algoritmo, 185, 187, 227

T T
T, nombre de tipo genérico, 183
tellg(), 284, 332
tellp(), 284, 332
this, apuntador, 426, 428, 429, 430, 431
thousands_sep(), 402, 403, 404
time(), 409-410, 415
time_get, faceta, 355, 372
time_put, faceta, 355, 371, 373, 414, 418, 424

declaración de plantilla, 408
uso de, 407-411
ventajas del uso de, 408

time_t, valor, 409-410
Tipo de objeto en tiempo de ejecución, determina-

ción, 478-484
tm, estructura, 409, 414, 415
tolower(), 28, 78, 355

versión de <locale> de, 31, 82
top(), 133, 135
toupper(), 31, 82

traits_type, 283, 322
traits_type::eof(), 333
transform(), algoritmo, 71, 73, 185, 187, 210, 211-

215, 244
truename(), 405-406
trunc, 290, 291
try, bloque, 323-324
type_info, clase, 479
typeid, operador, 478, 479-484
<typeinfo>, encabezado, 479

U U
Ubicación actual, 281
unary_function, estructura, 249-250
unary_negate, clase, 260
unget(), 284, 333, 334-336
unique(), algoritmo, 185, 187, 230
unique(), función, 125, 126, 127

forma de predicado binario, 131
unique_copy(), algoritmo, 185, 187, 230
unitbuf

manipulador, 370, 392
marca de formato, 368, 369

UnPred, nombre de tipo genérico, 96, 183
unsetf(), 283, 370, 374, 375, 380, 393
upper_bound()

algoritmo, 186, 187, 198
función, 101, 141, 155, 163, 165, 170, 171, 172

uppercase
manipulador, 370, 392
marca de formato, 368, 369, 380

use_facet(), 372, 373, 397, 399, 402, 403, 408-409
uso del espacio de nombres std, 4-5
<utility>, encabezado, 148

V V
valarray, clase, 487
<valarray>, encabezado, 487
value_comp(), 101
value_type, 14, 97, 101, 148, 158, 164
vector, contenedor, 15, 94, 119, 124, 133

constructores, 104, 112
de caracteres, receta para extraer frases de

uno, 194-197
efectos de la eliminación de uno, 114
efectos de las inserciones, 114

 Í n d i c e 509

ejemplo para ilustrar las operaciones básicas
con contenedores de secuencias, 105-109

especialización de vector<bool>, 118
especifi cación de plantilla, 103-104, 112
garantía de rendimiento y características,

101, 110, 114
iteradores, 113
receta en que se usa, 111-118
receta para el almacenamiento de objetos

defi nidos por el usuario en, 141-144
<vector>, encabezado, 97, 104, 112

W W
wchar_t, 7, 12, 368

desbordamiento de matrices de cadena y,
 20

fl ujos basados en, 285-286
width(), 283, 370, 382, 385-386, 388, 393, 412
write(), 284, 301, 302, 304-305, 315
ws, manipulador, 370
wstring, clase, 7, 12, 52

	Soluciones de programación C++

	contenido

	Introducción

	Capítulo 1. Revisión general

	Capítulo 2. Manejo de cadenas

	Capítulo 3. Trabajo con contenedores STL

	Capítulo 4. Algoritmos, objetos de función y otros componentes de STL

	Capítulo 5. Trabajo con E/S

	Capítulo 6. Formación de datos

	Capítulo 7. Popurrí

	Índice

