B DLICT LA
D

-
.

F . i
R ’
et o nyn

| T |
L= o f

» Aprenda técnicas poderosas de programacion en C++
* Maximice el cddigo en linea y las instrucciones paso a pasu
* Logre resultados en menos tiempo

[ﬂ Herb Schildt

C++
Soluciones de programacion

Acerca del autor

Herbert Schildt es una de las principales autoridades
en C++, C, Java y C# y es maestro programador en
Windows. Se han vendido mas de 3.5 millones de
copias de los libros sobre programacién de Herb en
todo el mundo y se han traducido a todos los idiomas
importantes. Es autor de gran cantidad de bestsellers
de C++, incluidos C++: The Complete Reference, C++:
A Beginner’s Guide, C++ from the Ground Up y STL
Programming form the Ground Up. Sus otros best sellers
incluyen C: Manual de referencia; Java: Manual de refer-
encia; Fundamentos de Java; Java, soluciones de program-
acion y Java 2: Manual de referencia. Schildt tiene titulos
de grado y posgrado de la Universidad de Illinois. Su
sitio Web es www.HerbSchildt.com.

Acerca del editor técnico

Jim Keogh introdujo la programacién en PC en
Estados Unidos en su columna Popular Electronics
Magazine en 1982, cuatro afios después de que Apple
Computer empez6 en una cochera.

Fue integrante del equipo que construy6 una de las
primeras aplicaciones de Windows para una firma de
Wall Street, presentada por Bill Gates en 1986. Keogh
ha dedicado casi dos décadas a desarrollar sistemas de
computo para firmas de Wall Street, como Salomon,
Inc., y Bear Stearns, Inc.

Keogh form¢ parte del cuerpo docente de la Uni-
versidad de Columbia, donde impartié cursos de tec-
nologia, incluido el laboratorio de desarrollo de Java.
Desarroll6 y dirigi6 la carrera de comercio electrénico
en la Universidad de Columbia. Actualmente es parte
del cuerpo docente de la Universidad de Nueva York.
Es autor de J2EE: The Complete Reference, J2ME: The
Complete Reference, ambos publicados por McGraw-
Hill, y mds de 55 titulos adicionales. Entre sus otros li-
bros se incluyen Linux Programming for Dummies, Unix
Programming for Dummies, Java Database Programming
for Dummies, Essential Guide to Networking, Essential
Guide to Computer Hardware, The C++ Programmer’s
Notebook y E-Mergers.

C++
Soluciones de programacion

Herb Schildt

Traduccion

Eloy Pineda Rojas
Traductor profesional

MEXICO « BOGOTA « BUENOS AIRES * CARACAS * GUATEMALA « MADRID « NUEVA YORK
SAN JUAN ¢ SANTIAGO * SAO PAULO * AUCKLAND « LONDRES » MILAN « MONTREAL
NUEVA DELHI « SAN FRANCISCO ¢ SINGAPUR ¢ ST. LOUIS * SIDNEY * TORONTO

Director editorial: Fernando Castellanos Rodriguez
Editor de desarrollo: Miguel Angel Luna Ponce
Supervisor de produccion: Marco Antonio Gémez Ortiz

C++ SOLUCIONES DE PROGRAMACION

Prohibida la reproduccién total o parcial de esta obra,
por cualquier medio, sin la autorizacion escrita del editor.

% Educacion

DERECHOS RESERVADOS © 2009, respecto a la primera edicion en espafiol por
McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.

Corporativo Punta Santa Fe

Prolongacion Paseo de la Reforma 1015, Torre A,

Piso 17, Colonia Desarrollo Santa Fe,

Delegacion Alvaro Obregon,

C.P. 01376, México, D.F.

Miembro de la Camara Nacional de la Industria Editorial Mexicana, Reg. Num. 736

ISBN: 978-970-10-7266-0

Traducido de la primera edicién de

Herb Schildt's C++ Programming Cookbook

By: Herb Schildt

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved

ISBN: 978-0-07-148860-0
1234567890 0876543219

Impreso en México Printed in Mexico

The McGraw-Hill Companies

Contenido

Introduccion ... xvii
Revisiongeneral ittt iiiiieie i, 1
QUE CONBIENE . . .ottt e e et et e e e 1
Como estan organizadas las soluciones o o i il 2
Unabreve advertencia............. .. i 3
Es necesaria experienciaen C++ i i 3
CQUE VErsiON de CH+72 L.t 4
Dos convenciones de codificacion o o o iiiiiiiiiiii oL 4
Regresodeunvalordemain()................ L 4
¢Uso del espaciodenombresstd?............... .. . i 5
Manejodecadenasoiiiiiiiiiiiiiiii i i i it 7
Revision general de las cadenas terminadas en un caracternulo................. 8
Revision general delaclasestring. o i i 11
Excepcionesdecadenas. ... 16
Realice operaciones béasicas en cadenas terminadas en un caracternulo 16
Pasoapaso ... 17
ANALISIS. ..o 17
Ejemplo 18
Opciones ... 19
Busque una cadena terminada en un cardcternuloo o L. 20
Pasoapaso ..o e 21
ANALISIS. ..o 21
Ejemplo 21
Opciones ... 22
Invierta una cadena terminada en un cardcternulo.............. o L. 23
Pasoapasooooiiiii e 23
ANALISIS. ..o 24
Ejemplo ... 24
Opciones ... 25
Ignore diferencias entre maytsculas y mintisculas cuando compare
cadenas terminadas en un cardcternulo o oo 27
Pasoapaso ... 27
ANALISIS. ..o 28
Ejemplo ... 29
Opciones ... 31
Cree una funcién de buisqueda y reemplazo para cadenas terminadas
enuncardcternulo ... 31

Vi

C++ Soluciones de programacion

Pasoapasoooiiii
ANALISIS. . ..o
Ejemplo
OpCiones
Ordene en categorias caracteres dentro de una cadena terminada
enuncardcternulo
Pasoapasoooiiiiii
ANALISIS. . ..o
Ejemplo
Ejemplo adicional: conteode palabras oo oL
OpCiones
Convierta en fichas una cadena terminada en un caracternulo
Pasoapasoooiiii
ANALISIS. . ..o
Ejemplo
OpCiones
Realice operaciones basicas en objetos destring,
Pasoapasoooiiii
ANALISIS. . ..o
Ejemplo
OpCiones
Busque unobjetostring.
Pasoapasoo
ANALISIS. . ..o
Ejemplo
Ejemplo adicional: una clase de conversion en fichas para objetos string . . .
OpCiones
Cree una funcién de btisqueda y reemplazo para objetos string
Pasoapasoooiiii
ANALISIS. . ..o
Ejemplo
OpCiones
Opere en objetos string mediante iteradores o oL
Pasoapasoooiiii
ANALISIS. . ..o
Ejemplo
OpCiones
Cree una buisqueda no sensible a maytisculas y mintsculas y funciones
de buisqueda y reemplazo para objetos stringol
Pasoapasoooiiii
ANALISIS. . ..o
Ejemplo
OpCiones
Convierta un objeto string en una cadena terminada en un cardcternulo
Pasoapasoo

Andlisis. ... 83
Ejemplo 83
Opciones 85
Implemente la resta para objetosstring o oo ool 85
Pasoapasoooiiiii 86
Analisis. ... 87
Ejemplo 88
Opciones 90
Trabajo con contenedores STLttt 93
Revision general de STL 94
Contenedores 94
Algoritmos. 94
Iteradores. 94
Asignadores. ... 95
Objetosdefuncion i i i i 95
Adaptadores 96
Predicados...... 96
Adhesivosynegadores i i i il 96
Laclasedecontenedor. 96
Funcionalidad comtin i i i 98
Problemas de rendimiento i i i il 101
Técnicas basicas de contenedor de secuencias................ 102
Pasoapaso ... 103
Andlisis. 103
Ejemplo o 105
Opciones 109
Usevector 111
Pasoapaso ... 111
Andlisis. 112
Ejemplo o 115
Opciones 118
Usedequet e 118
Pasoapaso ..o 119
Andlisis. 119
Ejemploo 120
Opciones 124
Uselist. 124
Pasoapasoo i 125
Andlisis. 125
Ejemplo 127
Opciones 130

Use los adaptadores de contenedor de secuencias: snack, queue
ypriority_queue 132

Pasoapaso ... 132

Vi C++ Soluciones de programacién

Analisis. ... 133
Ejemplo 135
Ejemplo adicional: use stack para crear una calculadora
decuatrofunciones................ .. . i 137
OpCiones 140
Almacene en un contenedor objetos definidos por el usuario.................... 140
Pasoapasoooiiiiii 140
Analisis. ... 141
Ejemplo 141
OpCiones 144
Técnicas bésicas de contenedor asociativo............ oo ool 145
Pasoapasoooiiii 146
Analisis. ... 147
Ejemplo 150
OpCiones 155
USEmMap . . oottt 156
Pasoapasoooiiii 157
Analisis. ... 157
Ejemplo 159
OpCiones 162
Usemultimap. e 163
Pasoapasoo 163
Analisis. ... 163
Ejemplo 165
OpCiones 167
Usesetymultiset. 169
Pasoapasoooiiii 170
Analisis. ... 170
Ejemplo 172
Ejemplo adicional: use multiset para almacenar objetos
conclavesduplicadas........... o o ool 174
OpCiones 178
4. Algoritmos, objetos de funcién y otros componentesde STL 181
Revisién general de los algoritmos o oo ool 182
¢Por qué se necesitan los algoritmos?l 182
Los algoritmos son funcionesde plantilla 182
Las categorfas de algoritmos. oo il 183
Revision general de objetos de funcidn.o oo ool 184
Revision general de adhesivos ynegadores. o L. 188
Ordeneuncontenedor. 189
Pasoapaso ... 189
ANALISIS. . ..o 189
Ejemplo 190

OpCiones 191

Contenido ix

Encuentre un elemento enun contenedor o oo ool 192
Pasoapasoooiiiii 193
Andlisis. ... 193
Ejemplo 194
Ejemplo adicional: extraiga frases de un vector de caracteres.............. 195
Opciones 197

Use search() para encontrar una secuencia coincidente................... 199
Pasoapasoooiiiii 200
Analisis. ... 200
Ejemplo 200
Opciones 202

Invierta, gire y modifique el orden de una secuencia..................... 203
Pasoapasoooiiii 204
Analisis. o 204
Ejemplo 204
Ejemplo adicional: use iteradores inversos para realizar

unarotacidonaladerecha o ool 206
Opciones 207

Recorra en ciclo un contenedor con for each() 208
Pasoapasoooiiii 208
Analisis. ... 208
Ejemplo 209
Opciones 210

Use transform() para cambiar una secuencia. 211
Pasoapasoooiiii 211
Andlisis. ... 212
Ejemplo 212
Opciones 214

Realice operaciones con conjuntos.o o o ool 217
Pasoapasoooiiii 217
Andlisis. o 218
Ejemplo 219
Opciones 221

Permute una secuencia i 222
Pasoapasoooiiiii 222
Andlisis. ... 222
Ejemplo 223
Opciones 224

Copie una secuencia de un contenedoraotro............o oL 225
Pasoapasoooiiiii 225
Andlisis. ... 225
Ejemplo 226
Opciones 227

Reemplace y elimine elementos en un contenedor....................... 227

Pasoapasocooiiiii 228

X

C++ Soluciones de programacion

Analisis. ... 228
Ejemplo 228
OpCiones 230
Combine dos secuencias ordenadas o ool 231
Pasoapasoooiiii i 231
Analisis. ... 231
Ejemplo 232
OpCiones 234
Creeyadministreunheap i i 235
Pasoapasoooiiii 235
Analisis. ... 235
Ejemplo 236
OpCiones 238
Creeunalgoritmo. ... 238
Pasoapasoooiiii 238
Analisis. ... 239
Ejemplo 240
Ejemplo adicional: use un predicado con un algoritmo personalizado. 242
OpCiones 244
Use un objeto de funcién integrado. oo ool 245
Pasoapasoooiiii 245
Analisis. ... 246
Ejemplo 246
OpCiones 248
Cree un objeto de funcién personalizado............ ool 248
Pasoapasoooiiii 249
Analisis. ... 249
Ejemplo 250
Ejemplo adicional: use un objeto de funcién para mantener
informaciéndeestado.......... .. o o o ool 253
OpCiones 255
Useunadhesivo...... ... i 255
Pasoapasoooiiii 256
Analisis. 256
Ejemplo 257
OpCiones 258
Useunnegador. i 259
Pasoapasoooiiii 259
Analisis. ... o 260
Ejemplo 260
OpCiones 261
Use el adaptador de apuntadora funcién oo oL 262
Pasoapasoo 262
Analisis. ... 262

Ejemploo 263

Contenido xi

Opciones 265
Uselositeradoresdeflujo........... ... i i i 265
Pasoapasoooiiiii 266
Andlisis. ... 266
Ejemplo 269
Ejemplo adicional: cree un filtro de archivode STL 272
Opciones 273
Use los adaptadores de iterador deinserciéon o L. 274
Pasoapasoooiiiii 274
Analisis. ... 275
Ejemplo 275
Opciones 277
Trabajocon E/S. oo 279
Revision general de E/S 280
Flujosde C++ ... 280
Lasclasesdeflujode C++........ i i i 281
Las especializaciones de clases relacionadas con los flujos 285
Flujos predefinidosde C++. o i i i il 287
Lasmarcasde formato........... i il 287
Los manipuladoresde E/S......... i i 287
Revisidn de errores. 288
Aperturay cierredeunarchivo.......... o o i i oo il 289
Escriba datos formados en un archivodetexto........... 293
Pasoapaso ... 293
Andlisis. 294
Ejemplo o 295
Opciones 296
Lea datos formados de un archivodetexto............. L. 296
Pasoapaso ... 297
Andlisis. 297
Ejemploo 298
Opciones 300
Escriba datos binarios sin formarenunarchivo............. L. 300
Pasoapaso ... 301
Andlisis. 301
Ejemploo 302
Opciones 304
Lea datos binarios sin formar deunarchivo oo o oL 305
Pasoapasoo i 305
Andlisis. 306
Ejemploo 307
Opciones 309
Use get() y getline() paraleer unarchivo................, 310

Pasoapaso ... 310

C++ Soluciones de programacion

Analisis. ... 310
Ejemplo 311
OpCiones 313
Leaunarchivoyescribaenél......... il 314
Pasoapasooooiiii 314
Analisis. ... 315
Ejemplo 316
OpCiones 317
Deteccionde EOF 317
Pasoapasoooiiiiii 318
Analisis. ... 318
Ejemplo 318
Ejemplo adicional: una utileria simple de comparacién de archivos. 320
OpCiones 322
Use excepciones para detectar y manejar erroresde E/S............ 322
Pasoapasoooiiiiii 323
Analisis. ... 323
Ejemplo 324
OpCiones 326
Use E/S de archivo de acceso aleatorio 326
Pasoapasoooiiiii 327
Analisis. ... 327
Ejemplo 328
Ejemplo adicional: use E/S de acceso aleatorio para acceder
aregistros de tamafiofijo........ o o ool 329
OpCiones 332
Reviseunarchivo........... . . i 332
Pasoapasoooiiiii 333
Analisis. ... 333
Ejemplo 334
OpCiones 336
Uselosflujosdecadena............ i i 337
Pasoapasoooiiii 337
Analisis. ... 338
Ejemplo 338
OpCiones 340
Cree insertadores y extractores personalizados. 341
Pasoapasoooiiii 341
Analisis. ... 342
Ejemplo 343
OpCiones 344
Cree un manipulador sin pardmetros oo ool 344
Pasoapasoooiiii 345
Analisis. ... 345

Ejemploo 346

Opciones 347
Cree un manipulador con pardmetros o ool 348
Pasoapasoooiiiiii 348
ANALISIS. . ..o 349
Ejemplo 350
Opciones 352
Obtenga o establezca una configuracién regional y de idioma de flujo. 352
Pasoapasoooiiiii 353
ANALISIS. . ..o 353
Ejemplo 353
Opciones 355
Use el sistemadearchivosde C........... 355
Pasoapasoooiiiiii 356
ANALISIS. . ..o 356
Ejemplo 359
Opciones 361
Cambie el nombre de un archivoyeliminelo 363
Pasoapasoooiiiiii 363
ANALISIS. . ..o 363
Ejemplo 364
Opciones 365
Formaciéndedatos............c.oiiiiiiiiiiiiiiiiiiiiiiii i 367
Revision general del formato i i il 368
Las marcas de formato................ .. . i 368
Los atributos de ancho de campo, precision y caracter de relleno 370
Funciones miembro de flujo relacionadas con formato 370
Los manipuladoresde E/S......... i i i 370
Forme datos utilizando la biblioteca de localizacién 371
La familia de funciones printf() i 371
La funcién strftime() 372
Revision general de lasfacetas........... i i i il il 372
Acceda a las marcas de formato mediante las funciones de miembro de flujo. 374
Pasoapaso ... 374
ANALISIS. . ..o 374
Ejemplo o 375
Ejemplo adicional: despliegue la configuracion
delamarcadeformato............. ool 376
Opciones 378
Despliegue valores numéricos en diversos formatos 379
Pasoapaso ... 379
ANALISIS. . ..o 380
Ejemploo 380
Opciones 382

Establezcala precision. i i 383

Xiv C++ Soluciones de programacion

Pasoapasoooiiiii 383
Analisis. ... 383
Ejemplo 384
OpCiones 384
Establezca el ancho de campo y el caracterderelleno.................... 385
Pasoapasocooiiii 385
Analisis. ... 385
Ejemplo 386
Ejemplo adicional: alinee columnas de ndmeros. 387
OpCiones 388
Justifiquelasalida 388
Pasoapasocooiiii 388
Analisis. ... 389
Ejemplo 389
OpCiones 391
Use los manipuladores de E/S para formardatos 391
Pasoapasocooiiii 392
Analisis. ... 392
Ejemplo 394
OpCiones 395
Forme valores numéricos para una configuracion regional y de idioma. 395
Pasoapasoo 396
Analisis. ... 396
Ejemplo 396
Opciones 397
Forme valores monetarios empleando la faceta money_put.................. ... 398
Pasoapasoo 399
Analisis. ... 399
Ejemplo 400
OpCiones 401
Use las facetas moneypunct y numpunct 402
Pasoapasoo 402
Analisis. ... 403
Ejemplo 404
OpCiones 405
Forme la fecha y hora con la faceta time_put 407
Pasoapasoo 408
Analisis. ... 408
Ejemplo 410
OpCiones 411
Formedatosenunacadena i il 412
Pasoapasoo 412
Analisis. ... 412
Ejemplo 412

OpCiones 414

Contenido XV

Forme la fecha y hora constrftime(). o o oL 414
Pasoapasoooiiiii 414
ANALISIS. . ..o 415
Ejemplo 415
Opciones 417

Use printf() para formardatos................ i 418
Pasoapasoooiiiiii 419
ANALISIS. . ..o 419
Ejemplo 422
Opciones 424

07 o1 e o 425

Técnicas basicas de sobrecarga de operadores............... L. 426
Pasoapaso ... 426
ANALISIS. . ..o 427
Ejemploo 432
Opciones 435

Sobrecargue el operador de llamadaafuncion () o o L. 437
Pasoapaso ... 437
ANALISIS. . ..o 437
Ejemploo 439
Opciones 440

Sobrecargue el operador de subindice [].......... oo ool 441
Pasoapaso ... 441
ANALISIS. . ..o 441
Ejemploo 442
Opciones ... 445

Sobrecargue el operador —> 445
Pasoapaso ... 446
ANALISIS. . ..o 446
Ejemploo 446
Ejemplo adicional: una clase simple de apuntador seguro 447
Opciones 451

Sobrecarguenew ydelete............. i 451
Pasoapaso 451
ANALISIS. . ..o 452
Ejemplo o 453
Opciones ... 456

Sobrecargue los operadores de aumento y disminucién 457
Pasoapaso 457
ANALISIS. . ..o 457
Ejemplo o 459
Opciones 462

Cree una funcién de conversion. o i i 463

Pasoapaso ... 463

Xvi C++ Soluciones de programacion

Analisis. ... 463
Ejemplo 464
OpCiones 466
Cree un constructordecopia i i 466
Pasoapasocooiiii 467
Analisis. ... 467
Ejemplo 468
Ejemplo adicional: una matriz segura que usa asignaciéon dinamica. 471
OpCiones 477
Determine un tipo de objeto en tiempo de ejecucién L. 478
Pasoapasocooiiii 479
Analisis. ... 479
Ejemplo 480
OpCiones 484
Use ndmeros complejos. i 484
Pasoapasocooiiii 485
Analisis. ... 485
Ejemplo 486
OpCiones 487
Useauto_ptr 487
Pasoapasoo 488
Analisis. ... 488
Ejemplo 489
OpCiones 490
Cree un constructor explicito o i 491
Pasoapasoo 491
Analisis. ... 491
Ejemplo 492
OpCiones 494

¥ .
53 e Bt 495

Introduccion

on los afios, amigos y lectores pidieron un libro de soluciones para Java, donde compar-

tiera algunas de las técnicas y los métodos que uso cuando programo. Desde el principio

me gusto la idea, pero no lograba darme tiempo para ella en un calendario de escritura
muy ocupado. Como muchos lectores saben, escribo demasiado acerca de varias facetas de la
programacion, con énfasis especial en C++, Java y C#. Debido a los rdpidos ciclos de revision de
estos lenguajes, dedico casi todo mi tiempo disponible a actualizar mis libros para que cubran las
versiones mas recientes de esos lenguajes. Por fortuna, a principios de 2007 se abrié una ventana
de oportunidad y finalmente pude dedicar tiempo al proyecto. Empecé con Java, lo que llevo a
mi primer Soluciones de programacion de Java. En cuanto terminé el libro de Java, pasé a C++. El
resultado es, por supuesto, este libro. Debo admitir que ambos proyectos estan entre los que mas
he disfrutado.

Con base en el formato de soluciones, este libro destila la esencia de muchas técnicas de
proposito general en un conjunto de técnicas paso a paso. En cada una se describe un conjunto de
componentes clave, como clases, funciones y encabezados. Luego se muestran los pasos necesarios
para ensamblar esos componentes en una secuencia de cédigo que logre los resultados deseados.
Esta organizacion facilita la bisqueda de técnicas en que estd interesado para ponerla en accion.

En realidad, “en accién” es una parte importante de este libro. Creo que los buenos libros de
programacién contienen dos elementos: teoria sélida y aplicacion practica. En las soluciones, las
instrucciones paso a paso y los anélisis proporcionan la teoria. Para llevar esa teoria a la practica,
siempre se incluye un ejemplo completo de cédigo. En los ejemplos se demuestra en forma con-
creta, sin ambigiiedades, la manera en que pueden aplicarse. En otras palabras, en los ejemplos se
eliminan las “adivinanzas” y se ahorra tiempo.

Aunque ningtin libro puede incluir todas las soluciones que pudieran desearse (hay un ntime-
ro casi ilimitado de ellas), traté de abarcar un amplio rango de temas. Mis criterios para incluir una
solucién se analizan de manera detallada en el capitulo 1, pero, en resumen, inclui las que serian
utiles para muchos programadores y que responderian preguntas frecuentes. Aun con estos crite-
rios, fue dificil decidir qué incluir y qué dejar fuera. Esta fue la parte mds desafiante de la escritura
del libro. Al final, se impusieron la experiencia, el juicio y la intuicién. Por fortuna, jhe incluido
algo para satisfacer a cada programador!

HS

Xviiiu C++ Soluciones de programacién

Cadigo de ejemplo en Web

El c6digo fuente para todos los ejemplos de este libro esta disponible de manera gratuita en Web
en www.mcgraw-hill-educacion.com

Mas de Herbert Schildt

C++ Soluciones de programacién es s6lo uno de los muchos libros de programacién de Herb. He aqui
algunos otros que le resultaran de interés:

Para aprender més acerca de C++, estos libros le resultaran especialmente ttiles.

C++: The Complete Reference

C++: A Begginer's Guide

C++ from the Ground Up

STL Programming from the Ground Up
The Art of C++

Para aprender mds acerca de Java recomendamos:

Java Soluciones de programacion
Java: Manual de referencia, séptima edicion
Java 2: Manual de referencia
Fundamentos de Java
Swing: A Begginer’s Guide
Para aprender acerca de C#, sugerimos los siguientes libros de Schildt:

C#: The Complete Reference
C#: A Begginer’s Guide

Si quiere aprender acerca del lenguaje C, entonces le interesar4 el siguiente titulo.

C: Manual de referencia

Cuando necesite respuestas sélidas, rapidas, busque algo de Herbert Schildt,
la autoridad reconocida en programacion.

CAPITULO
Revision general

n este libro se presenta una coleccién de técnicas que muestran la manera de realizar varias

tareas de programacién en C++. En €l, se usa el formato de “soluciones”. Con cada una se

ilustra la manera de realizar una operacién especifica. Por ejemplo, hay soluciones que leen
bytes de un archivo, invierten una cadena, ordenan el contenido de un contenedor, forman datos
numéricos, etc. De la misma manera que una receta en un libro de cocina describe un conjunto de
ingredientes y una secuencia de instrucciones necesarias para preparar un platillo, cada técnica
de este libro describe un conjunto de elementos clave de un programa y la secuencia de pasos
necesarios que debe usarse para completar una tarea de programacion.

Al final de cuentas, el objetivo de este libro es ahorrar tiempo y esfuerzo durante el desarrollo

de un programa. Muchas tareas de programacion constan de un conjunto estandar de funcio-
nes y clases, que debe aplicarse en una secuencia especifica. El problema es que en ocasiones no
sabe cudles funciones usar o qué clases son apropiadas. En lugar de tener que abrirse paso entre
grandes cantidades de documentacion y tutoriales en linea para determinar la manera de encarar
alguna tarea, puede buscar su solucién. En cada solucién se muestra una manera de llegar a una
secuencia, describiendo los elementos necesarios y el orden en que deben usarse. Con esta infor-
macion, puede disefiar una solucién que se amolde a su necesidad especifica.

Qué contiene

Este libro no es exhaustivo. El autor decidi6é qué incluir y dejar fuera. Al elegir las soluciones
para este libro, el autor se concentré en cuatro 4reas principales: manejo de cadenas, biblioteca
estandar de plantillas (STL, Standard Template Library), E/S y formato de datos. Se trata de
temas esenciales que interesan a una amplia variedad de programadores. Son temas muy exten-
sos, que requieren muchas péaginas para explorarse a fondo. Como resultado, cada uno de estos
temas se volvi6 la base para uno o més capitulos. Sin embargo, es importante establecer que el
contenido de esos capitulos no esta limitado s6lo a esos temas. Como la mayoria de los lectores
sabe, casi todo en C++ estd interrelacionado. En el proceso de crear soluciones para un aspecto
de C++, suelen incluirse varios otros, como localizacién, asignacién dindmica, o sobrecarga de
operadores. Por tanto, también suelen ilustrar otras técnicas de C++.

2 C++ Soluciones de programacion

Ademas de las soluciones relacionadas con los temas principales, se afiadieron otras que el
autor deseaba incluir pero que no abarcarian un capitulo completo. Estas se agruparon en
el capitulo final. Varias de esas soluciones se concentran en la sobrecarga de operadores mas espe-
cializados de C++, como [], —>, new y delete. Otras ilustran el uso de las clases auto_ptr y com-
plex o muestran cémo crear una funcién de conversién, un constructor de copia o uno explicito.
También hay una solucién que demuestra el ID de tipo en tiempo de ejecucién.

Por supuesto, la eleccién de los temas sélo fue el principio del proceso de seleccion. Dentro de
cada categoria, se tuvo que decidir qué incluir y qué dejar fuera. En general, se incluyé una solu-
cién si cumple los dos criterios siguientes:

1. Latécnica es util para un amplio rango de programadores.
2. Proporciona una respuesta a una pregunta frecuente de programacion.

El primer criterio se explica por si solo. Se incluyeron soluciones que describen la manera de
completar un conjunto de tareas que, por lo general, se encontrarian cuando se crean aplicaciones
de C++. Algunas de ellas ilustran un concepto general que puede adaptarse para resolver varios
tipos diferentes de problemas. Por ejemplo, en el capitulo 2 se muestra una solucién que busca
una sustitucién dentro de una cadena. Este procedimiento general es 1itil en varios contextos,
como encontrar una direccién de correo electronico o un nimero telefonico dentro de una frase,

o extraer una palabra clave de una consulta de base de datos. Otras soluciones describen técnicas
mas especificas pero usadas ampliamente. Por ejemplo, en el capitulo 6 se muestra cémo formar la
fecha y la hora.

El segundo criterio se basa en la experiencia del autor en libros de programacién. Durante los
afos en que ha estado escribiendo, le han planteado cientos y cientos de preguntas tipo “;Cémo
hacer?” por parte de los lectores. Estas preguntas vienen de todas las 4reas de programacién de
C++y van de muy faciles a muy dificiles. Sin embargo, ha encontrado que un nticleo central
de preguntas se presenta una y otra vez. He aqui un ejemplo: “;Cémo formo un niimero para
que tenga dos lugares decimales?” He aqui otra: “;Cémo creo un objeto de funcién?” Hay muchas
otras. Estos mismos tipos de preguntas también se presentan con frecuencia en varios foros de
programadores en Web. El autor utiliza estas preguntas frecuentes para guiar su seleccién.

Las soluciones de este libro abarcan varios niveles de habilidad. Algunas ilustran técnicas ba-
sicas, como leer bytes de un archivo o sobrecargar el operador << para dar salida a objetos de una
clase personalizada. Otras son mds avanzadas, como usar la biblioteca de localizacién para formar
valores monetarios, convertir una cadena en fichas o sobrecargar el operador []. Por tanto, el nivel
de dificultad de una solucién individual puede ir de relativamente facil a muy avanzado. Por
supuesto, casi todo en programacién es facil una vez que sabe como hacerlo, pero dificil cuando
no. Por tanto, no se sorprenda si algunas parecen obvias. S6lo significa que sabe cémo realizar esa
tarea.

Como estan organizadas
Cada solucién de este libro usa el mismo formato, que tiene las siguientes partes:

* Una tabla de elementos clave usados por la solucion.
* Una descripcién del problema que resuelve.

e Los pasos necesarios para completarla.

e Un andlisis a profundidad de los pasos.

Capitulo 1: Revision general 3

e Un ejemplo de cédigo que aplica la solucion.
® Opciones que sugieren otras maneras de llegar a una solucién.

Una solucién empieza por describir la tarea que se realizard. Los elementos clave empleados
se muestran en una tabla. Entre éstas se incluyen funciones, clases y encabezados necesarios.
Por supuesto, llevar una solucién a la préctica puede implicar el uso de elementos adicionales,
pero los elementos clave son fundamentales para la tarea que se tiene a mano.

Cada solucién presenta entonces instrucciones paso a paso que resumen el procedimiento.

A éstas les sigue un andlisis a fondo de los pasos. En muchos casos, el resumen bastard, pero los
detalles estaran alli si los necesita.

A continuacién, se presenta un ejemplo de c6digo que muestra la solucién ejecutandose. Todos
los ejemplos de cédigo se presentan completos. Esto evita ambigiiedades y le permite ver con cla-
ridad precisamente lo que estd sucediendo sin tener que llenar detalles adicionales. En ocasiones,
se incluye un ejemplo extra que ilustra ain mas la manera en que puede aplicarse la solucién.

Se concluye con un analisis de varias opciones. Esta seccién es especialmente importante porque
sugiere diferentes modos de implementar una solucién u otra manera de pensar en el problema.

Una breve advertencia

Cuando utilice este libro debe tener en cuenta algunos elementos importantes. En primer lugar,
una solucién muestra una manera de resolver una situacién. Es posible que existan (y a menudo
existen) otras maneras. Tal vez su aplicacién especifica requiera un método diferente del mos-
trado. Las soluciones de este libro pueden servir como puntos de partida, ayudar a elegir un
método general para llegar a una respuesta y despertar su imaginacién. Sin embargo, en todos
los casos, debe determinar lo que es apropiado para su aplicacién, y lo que no lo es.

En segundo lugar, es importante entender que los ejemplos de c6digo no estan optimizados
para su desempefio. Estdn optimizados para clarificar y mejorar la comprensién. Su propésito es ilustrar
con claridad los pasos de la solucién. En muchos casos, tendrd pocos problemas al escribir un
c6digo mas eficiente o corto. Ademads, los ejemplos son exactamente eso: ejemplos. Son usos sim-
ples que no necesariamente reflejan el modo en que escribird el c6digo para su propia aplicacion.
En todas las circunstancias, debe crear su propio método que se adapte a las necesidades de su
aplicacion.

En tercer lugar, cada ejemplo de cédigo contiene el manejo de errores apropiado para ese
ejemplo especifico, pero tal vez no sea idéneo en otras situaciones. En todos los casos, debe
manejar apropiadamente los diversos errores y excepciones que pueden resultar cuando adapte
un procedimiento para usarlo en su propio cédigo. Es necesario repetir esto de otra manera.
Cuando se implementa una solucién, debe proporcionar el manejo de errores apropiado para
su aplicacién. No basta simplemente con suponer que la manera en que se manejan (o se dejan
de manejar) los errores o excepciones en un ejemplo es suficiente o adecuada para su uso. Por lo
general, se requerird manejo adicional de errores en las aplicaciones reales.

Es necesaria experiencia en C++

Este libro es para todos los programadores en C++, sean principiantes o experimentados. Sin em-
bargo, en él se supone que el lector cuenta con los fundamentos de la programacién en C++,

4 C++ Soluciones de programacion

incluidas las palabras clave y la sintaxis, y que estd familiarizado con las funciones y las clases cen-
trales de las bibliotecas. También debe tener la capacidad de crear, compilar y ejecutar programas
de C++. Nada de esto se ensefia aqui. (En este libro sélo se trata la aplicaciéon de C++ a diversos
problemas de programacion. No intenta ensefiar fundamentos del lenguaje C++.) Si necesita me-
jorar sus habilidades en C++, se recomiendan los libros C++: The Complete Reference, C++ From
the Ground Up y C++: A Beginner’s Guide, de Herb Schildt. Publicados por McGraw-Hill, Inc.

¢Qué version de C++?

El c6digo y los andlisis de este libro se basan en el estandar internacional ANSI/ISO para C++. A
menos que se determine explicitamente, no se usan extensiones que no son estandar. Como resul-
tado, casi todas las técnicas presentadas aqui son transportables y pueden usarse con cualquier
compilador de C++ que se adhiera al estindar internacional para C++. El c6digo de este libro se
desarroll6 con Visual C++ de Microsoft. Se usaron tanto Visual Studio como Visual C++ Express
(que esta disponible sin costo alguno en Microsoft).

NoTtA Al momento de escribir este libro, el estandar internacional para C++ estd en proceso de actuali-
zacion. Se estan contemplando muchas caracteristicas nuevas. Sin embargo, ninguna de ellas aiin es
parte de C++, ni se usa en este libro. Por supuesto, en futuras ediciones de este libro se utilizardn estas
nuevas caracteristicas.

Dos convenciones de codificacion

Antes de pasar a las soluciones, hay dos temas que deben atenderse y que se relacionan con la ma-
nera en que estd escrito el cddigo de este libro. El primero se relaciona con el regreso de un valor
desde main(). El segundo se relaciona con el uso de namespace std. A continuacién se explican
las decisiones tomadas en relacién con estas dos caracteristicas.

Regreso de un valor de main()
Los ejemplos de cédigo de este libro siempre devuelven explicitamente un valor entero de main().
Por convencién, un valor devuelto de cero indica una terminacion exitosa. Un valor diferente de
cero indica alguna forma de error.

Sin embargo, no es necesaria la devolucién explicita de un valor de main(), porque, en pala-
bras del estdndar internacional para C++:

“Si el control alcanza el final de main sin encontrar una instruccién return, el efecto es ejecutar return 0;”

Por esto, en ocasiones encontrara cédigo que no devuelve explicitamente un valor de main(),
dependiendo en cambio del valor de devolucién implicito de cero. Pero éste 1o es el método usado
en este libro.

En cambio, todas las funciones de main() en este libro devuelven explicitamente un valor, por
dos razones. En primer lugar, algunos compiladores lanzan una advertencia cuando un método
diferente de void no regresa un valor de manera explicita. Para evitar esta advertencia, main()
debe incluir una instruccién return. En segundo lugar, jparece una buena practica devolver expli-
citamente un valor, puesto que main() esta declarado con un tipo de devolucién int!

Capitulo 1: Revision general 5

¢Uso del espacio de nombres std?
Uno de los problemas que encara el autor de un libro de C++ es si se usa o no la linea:

using namespace std;

casi en la parte superior de cada programa. Esta instruccién trae a la vista el contenido del espacio
de nombres std. Este contiene la biblioteca estandar de C++. Por tanto, al usar el espacio de nom-
bres std, se trae la biblioteca estandar al espacio de nombres global, y es posible hacer referencia
directa a nombres como cout, en lugar de std::cout.

Eluso de

using namespace std;

es muy comun y, en ocasiones, polémico. A algunos programadores les desagrada, lo que sugiere
que abona en contra del empaquetamiento de la biblioteca estdndar en el espacio de nombres std
y atrae conflictos con c6digo de terceros, sobre todo en proyectos grandes. Aunque esto es cierto,
otros sefialan que en programas cortos (como los ejemplos mostrados en este libro) y en proyectos
pequefios, la conveniencia que ofrece supera facilmente la posibilidad remota de conflictos, lo que
rara vez ocurre (si llega a suceder) en estos casos. Francamente, en programas para los que el ries-
go de conflictos es, en esencia, nulo, tener que escribir siempre std::cout, std::cin, std::ofstream,
std::string, etc., es tedioso. También hace el c6digo mas extenso.

Mientras el debate continda, en este libro se usa

using namespace std;

en los programas de ejemplo, por dos razones. En primer lugar, acorta el c6digo, lo que significa
que puede caber més c6digo en una linea. En un libro, la longitud de una linea esté limitada. Al no
tener que usar constantemente std:: se acortan las lineas, lo que significa que cabrd més cédigo en
una linea sin que ésta se tenga que dividir. Cuanto menor sea la cantidad de lineas divididas, mas
facil sera leer el c6digo. En segundo lugar, hace que los ejemplos de c6digo sean menos extensos,
lo que mejora su claridad en la pagina impresa. De acuerdo con la experiencia del autor, using
namespace std es muy ttil cuando se muestran en un libro los programas de ejemplo. Sin embar-
g0, su uso en los ejemplos no significa el respaldo de la técnica, en general. El lector debe decidir lo
apropiado para sus propios programas.

CAPITULO
Manejo de cadenas

asi siempre hay méas de una manera de hacer algo en C++. Esta es una razén por la que C++ es
un lenguaje tan rico y poderoso. Le permite al programador elegir el mejor método para la tarea
a mano. En ningtin lado es més evidente este aspecto de varias facetas de C++ que en las cade-
nas. En C++, las cadenas se basan en dos subsistemas separados pero interrelacionados. Un tipo
de cadena se hereda de C. El otro esta definido en C++. Juntos, proporcionan al programador dos mane-
ras diferentes de pensar y manejar secuencias de caracteres.

El primer tipo de cadena al que da soporte C++ es la cadena terminada en un cardcter nulo. Se trata
de la matriz char que contiene los caracteres que componen una cadena, seguida por null. La cadena
terminada en un cardcter nulo se hereda de C y le da un control de bajo nivel sobre operaciones de
cadena. Como resultado, la cadena terminada en un caracter nulo ofrece una manera muy eficiente
de manejar las secuencias de caracteres. C++ también da soporte a cadenas de caracteres amplias,
terminadas en un cardcter nulo, que son matrices de tipo wchar_t.

El segundo tipo de cadena es un objeto de tipo basic_string, que es una clase de plantilla
definida por C++. Por tanto, basic_string define un tipo tinico cuyo propésito es representar
secuencias de caracteres. Debido a que define un tipo de clase, ofrece un método de alto nivel para
trabajar con cadenas. Por ejemplo, define muchas funciones de miembros que realizan varias ma-
nipulaciones de cadenas, y varios operadores de sobrecarga para operaciones de cadena. Hay dos
especializaciones de basic_string que estan definidas por C++: string y wstring. La clase string
opera en caracteres de tipo char, y wstring opera en caracteres de tipo wchar_t. Por tanto, wstring
encapsula una cadena de caracteres ampliados.

Como se acaba de explicar, las cadenas terminadas en un cardcter nulo y basic_string sopor-
tan cadenas de tipo char y wchar_t. La principal diferencia entre cadenas basadas en char y en
wchar_t es el tamafio del caracter. De otro modo, los dos tipos de cadenas se manejan, en esencia,
de la misma manera. Por conveniencia y debido a que las cadenas basadas en char son, por mu-
cho, las mas comunes, constituyen el tipo de cadenas utilizadas en las soluciones de este capitulo.
Sin embargo, con poco esfuerzo pueden adoptarse las mismas técnicas basicas para cadenas de
cardcter ampliado.

El tema de las cadenas en C++ es muy extenso. Francamente, seria facil llenar un libro comple-
to con cdédigo relacionado con ellas. Por tanto, limitar las soluciones de cadenas a un solo capitulo
representa todo un desafio. Al final, se seleccionaron las que responden preguntas comunes, ilustran
aspectos clave de cada tipo de cadena o demuestran principios generales que pueden adaptarse a una
amplia variedad de usos.

8

C++ Soluciones de programacion

He aqui las soluciones contenidas en este capitulo:

* Realice operaciones bésicas en cadenas terminadas en un caracter nulo

* Busque una cadena terminada en un caracter nulo

¢ Invierta una cadena terminada en un caracter nulo

¢ Ignore diferencias entre maytsculas y mintisculas cuando compare cadenas terminadas en
un caracter nulo

¢ Cree una funcién de biisqueda y reemplazo para cadenas terminadas en un caracter nulo

* Ordene en categorias caracteres dentro de una cadena terminada en un caracter nulo

¢ Convierta en fichas una cadena terminada en un caracter nulo

* Realice operaciones bésicas en objetos de string

* Busque un objeto string

¢ Cree una funcién de biisqueda y reemplazo para objetos string

* Opere en objetos string mediante iteradores

¢ Cree una btsqueda no sensible a maytsculas y mintisculas y funciones de bisqueda y reem-
plazo para objetos string

¢ Convierta un objeto string en una cadena terminada en un caracter nulo

¢ Implemente la resta para objetos string

NoOTA Una cobertura a fondo de las cadena terminada en un cardcter nulo y la clase string se encuen-
tra en el libro C++: The Complete Reference, de Herb Schildt.

Revision general de las cadenas terminadas en un caracter nulo

El tipo de cadena méas comtin empleado en un programa C++ es la cadena terminada en un caricter
nulo. Como se menciong, se trata de una matriz de char que termina con un caracter nulo. Por tanto,
una cadena terminada en un caracter nulo #o es, en si, un tipo tinico. En cambio, es una convencion
reconocida por todos los programadores en C++. La cadena terminada en un caracter nulo esta defini-
da en el lenguaje C y la mayoria de los programadores en C++ atin la usan ampliamente. También se
hace referencia a ella como una cadena char * o, en ocasiones, como una cadena C. Aunque las cadenas
terminadas en un cardcter nulo son un territorio familiar para la mayoria de los programadores en
C++, atin es 1til revisar sus atributos y capacidades clave.

Hay dos razones por las que las cadenas terminadas en un caracter nulo se usan ampliamente
en C++. En primer lugar, todas las literales de cadena estan representadas como cadenas termi-
nadas en un caracter nulo. Por tanto, cada vez que crea una literal de cadena, esta creando una
cadena terminada en un cardcter nulo. Por ejemplo, en la instruccién

const char *ptr = "Hola";

la literal "Hola" es una cadena terminada en un caracter nulo. Esto significa que es una matriz char
que contiene los caracteres Hola y termina en un valor nulo. En esta instruccién, un apuntador a
la matriz se asigna a ptr. Resulta interesante observar que ptr se especifica como const. El estindar
de C++ especifica que las literales de cadena son matrices de tipo const char. Por tanto, es me-

jor usar un apuntador const char * para apuntar a una. Sin embargo, el estdndar actual también
define una conversién automatica (pero ya desautorizada) a char *, y es muy comtin ver cédigo en
que se omite const.

Capitulo 2: Manejo de cadenas 9

La segunda razén por la que las cadenas terminadas en un caracter nulo se usan ampliamente
es la eficiencia. El empleo de una matriz terminada en un caracter nulo para contener una cadena
permite la implementacién de operaciones con muchas cadenas de una manera muy fina. (En
esencia, las operaciones con este tipo de cadenas son simplemente operaciones especializadas con
matrices.) Por ejemplo, he aqui una manera de escribir la funcién de la biblioteca estandar str-
cpy(), que copia el contenido de una cadena en otra.

// Una manera de implementar la funcidén strcpy() esténdar.
char *strcpy(char *destino, const char *origen)

char *d = destino;

// Copia el contenido del origen en el destino.

while (*origen) *destino++ = *origen++;

// El destino termina en un cardcter nulo.
*destino = '\0';

// Devuelve el apuntador al principio del destino.
return d;

Preste especial atencion a la linea:

while (*origen) *destino++ = *origen++;

Debido a que la cadena de origen termina con un caracter nulo, puede crearse un bucle muy
eficiente que simplemente copia caracteres hasta que el cardcter al que sefala destino es nulo. Re-
cuerde que en C++ cualquier valor diferente de cero es verdadero, pero cero es falso. Debido a que
el caracter nulo es cero, el bucle while se detiene cuando se encuentra el terminador nulo. Bucles
como el que se acaba de mostrar son comunes cuando se trabaja con cadenas terminadas

en un caracter nulo.

La biblioteca C++ estandar define varias funciones que operan en cadenas terminadas en un
cardcter nulo. Esto requiere el encabezado <cstring>. Estas funciones serdn familiares, sin duda,
para muchos lectores. Més atin, las soluciones en este capitulo explican por completo las funciones
de cadena que emplean. Sin embargo, atin es 1til presentar una breve lista de las funciones mas
comunes de cadenas terminadas en un caracter nulo.

Funcion

Descripcion

char *strcat(char *cadl, const
char *cad2)

Une la cadena seinalada por cad2 al final de la cadena sefalada por cadl. Devuelve
cadl. Si la cadena se superpone, el comportamiento de streat() queda indefinido.

char *strchr(const char *cad,
int car)

Devuelve un apuntador a la primera aparicion del byte de orden bajo de car en la
cadena a la que senala cad. Si no se encuentran coincidencias, se devuelve un
apuntador nulo.

int strcmp(const char *cadl, const
char cad2)

Compara lexicograficamente la cadena sefalada por cadl con la sefalada por cad2.
Devuelve menos de cero si cadl es menor que cad2, méas de cero si cadl es mayor
que cad2 y cero si las cadenas son iguales.

10

C++ Soluciones de programacion

Funcion

Descripcion

char *strcpy(char *destino,
const char *origen)

Copia la cadena sefalada por origen en la cadena senalada por destino. Regresa
destino. Si la cadena se superpone, el comportamiento de strepy() queda indefinido.

size_t strcspn(const char *cadl,
const char *cad2)

Devuelve el indice del primer caracter en la cadena sefalada por cadl que coincide
con cualquier caracter en la cadena apuntada por cad2. Si no se encuentra una coin-
cidencia, se devuelve la longitud de cadl.

size_t strlen(const char *cad)

Devuelve el nimero de caracteres en la cadena sefalada por cad. No se cuenta el
terminador nulo.

char *strncat(char *cad1,
const char *cad2,
size_t cuenta)

Une no mas de cuenta caracteres de la cadena sefhalada por cad2 al final de cadl.
Devuelve cadl. Si las cadenas se superponen, el comportamiento de strncat()
queda indefinido.

char *strncmp(const char *cadl,
const char *cad2,
size_t cuenta)

Compara lexicograficamente no mas de los primeros cuenta caracteres en la cadena
sefalada por cadl con la sefalada por cad2. Devuelve menos de cero si cadl es menor
que cad2, mas de cero si cadl es mayor que cad2 y cero si las cadenas son iguales.

char *strncpy(char *destino,
const char *origen,
size_t cuenta)

Copia no mas de cuenta caracteres de la cadena sehalada por origen en la cadena
sefalada por destino. Si origen contiene menos de cuenta caracteres, los caracteres
nulos se anadiran al final de destino hasta que cuenta caracteres se hayan copiado.
Sin embargo, si origen es mayor que cuenta caracteres, la cadena resultante ya no
terminara en un caracter nulo. Devuelve destino. Si la cadena se superpone, el com-
portamiento de strepy() queda indefinido.

char *strpbrk(const char *cad1l,
const char *cad2)

Devuelve un apuntador al primer caracter de la cadena senalada por cadl que coin-
cide con cualquier caracter de la cadena senalada por cad2. Si no se encuentra una
coincidencia, se devuelve un apuntador nulo.

char *strrchr(const char *cad, int
car)

Devuelve un apuntador a la Ultima aparicion del byte de orden bajo de car en la cadena
senalada por cad. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

size_t strspn(const char *cad1,
const char *cad2)

Devuelve el indice del primer caracter en la cadena senalada por cadl que no coinci-
de con cualquier caracter en la cadena apuntada por cad2.

char *strstr(const char *cad1,
const char *cad2)

Devuelve un apuntador a la primera aparicion de la cadena sefalada por cad2 en
la cadena senalada por cadl. Si no se encuentra una coincidencia, se devuelve un
apuntador nulo.

char *strtok(char *cad, const char
*delims)

Devuelve un apuntador a la siguiente ficha en la cadena sehalada por cad. Los carac-
teres de la cadena sefhalada por delims especifican los delimitadores que determinan
los limites de una ficha. Se devuelve un apuntador nulo cuando no hay una ficha

que devolver. Para convertir una cadena en ficha, la primera llamada a strtok() debe
hacer que cad senale a la cadena que se convertira en ficha. Llamadas posteriores
deben pasar un apuntador nulo a cad.

Observe que varias de las funciones, como strlen() y strspn(), usan el tipo size_t. Se trata de
una forma de entero no asignado y esta definido por <cstring>.

El encabezado <cstring> también define varias funciones que empiezan con el prefijo "mem".
Estas funciones operan sobre caracteres, pero no usan la convencién de terminacién en carécter
nulo. En ocasiones son ttiles cuando se manipulan cadenas y también pueden utilizarse para otros
fines. Las funciones son memchr(), memcmp(), memcpy(), memmove() y memset(). Las primeras
tres operan de manera similar a strchr(), stremp(), strepy(), respectivamente, excepto porque toman
un paradmetro adicional que especifica el niimero de caracteres en que operan. La funcién memset()
asigna un valor especifico a un bloque de memoria. La funcién memmove() mueve un bloque de

Capitulo 2: Manejo de cadenas 11

caracteres. A diferencia de memcpy(), memmove() puede utilizarse para mover caracteres en matri-
ces que se superponen. Es la tinica funcion "mem" empleada en este capitulo y se muestra aqui:

void *memmove(void *destino, const void *origen, size_t, cuenta)

Copia cuenta caracteres de la matriz sefialada por origen en la sefialada por destino. Devuelve
destino. Como se menciond, la copia se realiza correctamente, aunque se superpongan las matrices.
Sin embargo, en este caso, la matriz sefialada por origen puede modificarse (aunque origen esté
especificado como const).

NorA Visual C++ de Microsoft "descontiniia” (ya no recomienda el uso de) varias funciones de
cadena estandar, como strcpy(), por razones de seguridad. Por ejemplo, Microsoft recomienda, en
cambio, el uso de strcpy_s(). Sin embargo, estas opciones no estdn definidas por el estindar de C++
y no son estdndares. Por tanto, en este libro se utilizardn las funciones especificadas por el estdndar
internacional para C++.

Revision general de la clase string

Aunque las cadenas terminadas en un cardcter nulo son muy eficientes, experimentan dos pro-
blemas. En primer lugar, no definen un tipo. Es decir, la representacion de una cadena como una
matriz de caracteres terminados por un caracter nulo es una convencién. Aunque ésta es bien com-
prendida y tiene un amplio reconocimiento, no es un tipo de datos, en el sentido normal. (En otras
palabras, la cadena terminada en un carécter nulo no es parte del sistema de tipo de C++.) Como
resultado, este tipo de carpetas no puede manipularse con operadores. Por ejemplo, no puede unir
dos cadenas terminadas en un caracter nulo al usar el operador + o = para asignar una cadena
terminada en un carécter nulo a otra. Por tanto, la siguiente secuencia no funcionara:

// Esta secuencia es un error.

char cadA[] = "alfa";
char cadB[] = "beta";
char cadC[9] = cadA + cadB; // iPerddn! iNo funciona!

En cambio, debe usar llamadas a funciones de biblioteca para realizar estas operaciones, como se
muestra a continuacién:

// Esta secuencia si funciona.
char cadA[] = "alfa";

char cadB[] = "beta";

char cadC[9];

strcpy (cadC, cada) ;

strcat (cadB, cadh) ;

Esta secuencia correcta usa strcpy() y strcat() para asignar a cadC una cadena que contiene la
unién de cadA y cadB. Aunque logra el resultado deseado, la manipulacién de cadenas mediante
el uso de funciones en lugar de operadores hace que aun las operaciones méas rudimentarias sean
un poco confusas.

12

C++ Soluciones de programacion

El segundo problema con las cadenas terminadas en un caracter nulo es la facilidad con que pue-
den crearse errores. En las manos de un programador inexperto o descuidado, es muy facil sobrepa-
sar el final de la matriz que contiene una cadena. Debido a que C++ no proporciona comprobacién de
limites en las operaciones con matrices (o apuntadores), no hay nada que evite que se rebase el final
de una matriz. Por tanto, si la cadena de origen contiene mads caracteres de los que puede contener
la matriz de destino, ésta se desbordara. En el mejor de los casos, un desbordamiento de una matriz
simplemente hara que deje de funcionar el programa. Sin embargo, en el peor de los casos, da como
resultado una brecha de seguridad basada en el ahora notorio ataque "desbordamiento de bufer".

Debido al deseo de integrar cadenas en el sistema general de tipos de C++ y para evitar el
desbordamiento de matrices, se afiladié a C++ un tipo de datos de cadena. Esta basado en la clase
de plantilla basic_string, que estd declarado en el encabezado <string>. Como se menciond, hay
dos especializaciones de esta clase: string y wstring, que también se declaran en <string>. La
clase string es para cadenas char. La clase wstring es para cadena de caracteres ampliados basada
en wchar_t. Aparte del tipo de caracteres, las dos especializaciones funcionan, en esencia, de la
misma manera. Debido a que las cadenas char son, por mucho, las que se usan con mas frecuen-
cia, el siguiente analisis y soluciones utilizan string, pero casi toda la informaciéon puede adaptarse
facilmente a wstring.

La clase string crea un tipo de datos dinamico. Esto significa que una instancia de string
puede crecer lo necesario durante el tiempo de ejecucién para adaptarse a un aumento en la
longitud de la cadena. Esto no sélo elimina el problema de desbordamiento del bifer, sino que
lo libera de tener que preocuparse por especificar la longitud correcta de una cadena. La clase
string maneja esto automaticamente.

La clase string define varios constructores y muchas funciones. He aqui tres constructores de
uso comun:

string(const Allocator %asig = Allocator())

string(const char *cad, const Allocator %asig = Allocator())

string(const string &cad, size_type ind_inicio = 0, size_tipe num = npos,
const Allocator %asig = Allocator())

La primera forma crea un objeto string vacio. La segunda crea un objeto string a partir de la cadena
terminada en un cardcter nulo sefialada por cad. Esta forma le permite crear una string a partir de
una cadena terminada en un caracter nulo. La tercera forma crea una string a partir de otra string.
La cadena creada contiene num caracteres de cad, empezando en el indice especificado por ind_inicio.
Con frecuencia, en el tercer constructor se permiten los pardmetros ind_inicio y num, como opcién
predeterminada. En este caso, ind_inicio contiene cero (lo que indica el inicio de la cadena) y num con-
tiene el valor npos, que indica (en este caso) la longitud de la cadena maés larga posible. En todos los
casos, observe que los constructores permiten que se especifique el asignador. Se trata de un objeto
de tipo Allocator que proporciona asignacion de memoria a la cadena. Con mayor frecuencia, este
argumento se permite como opcién predeterminada, lo que da como resultado el uso del asignador
predeterminado.

He aqui el aspecto del constructor cuando se usan los valores predeterminados del argumento,
lo que sucede con frecuencia:

string()
string(const char *cad)
string(const string &cad)

Capitulo 2: Manejo de cadenas 13

Todos ellos usan el asignador predeterminado. El primero crea una cadena vacia. El segundo y
tercero crean una que contiene cad.

La clase string define muchas funciones, y casi todas tienen varias formas de sobrecarga. Por
tanto, no resulta préactica una descripcién completa de cada funcién de string. En cambio, las
soluciones individuales describen con detalle las funciones que emplean. Sin embargo, para darle
una idea del poder que tiene a su disposicion con string, he aqui una lista de funciones esenciales,
agrupadas en categorias.

En las siguientes funciones se busca el contenido de una cadena:

find Devuelve el indice en que se encuentra la primera apariciéon de una subcadena o un carac-
ter dentro de la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

rfind Devuelve el indice en que se encuentra la Ultima aparicién de una subcadena o un carac-
ter dentro de la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

find_first_of Busca en la cadena que invoca la primera aparicion de cualquier caracter contenido dentro
de una segunda cadena y devuelve el indice en que se encuentra la coincidencia dentro de
la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

find_last_of Busca en la cadena que invoca la ultima apariciéon de cualquier caracter contenido dentro

de una segunda cadena y devuelve el indice en que se encuentra la coincidencia dentro de
la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

find_first_not_of

Busca en la cadena que invoca la primera aparicién de cualquier caracter que no esta
contenido dentro de una segunda cadena y devuelve el indice en que se encuentra la coinci-
dencia dentro de la cadena que invoca. Devuelve npos si no se encuentra una coincidencia.

find_last_not_of

Busca en la cadena que invoca la ultima aparicién de cualquier caracter que no esta con-
tenido dentro de una segunda cadena y devuelve el indice en que se encuentra

la coincidencia dentro de la cadena que invoca. Devuelve npos si no se encuentra una
coincidencia.

El siguiente conjunto de funciones de cadena modifica el contenido de una cadena:

append Anade una cadena al final de la cadena que invoca.

assign Asigna una nueva cadena a la cadena que invoca.

clear Elimina todos los caracteres de la cadena que invoca.

copy Copia un rango de caracteres de la cadena que invoca en una matriz.

erase Elimina uno o mas caracteres de la cadena que invoca.

insert Inserta una cadena, subcadena o uno o mas caracteres en la cadena que invoca.
push_back Agrega un caracter al final de la cadena que invoca.

replace Reemplaza una parte de la cadena que invoca.

resize Disminuye o alarga la cadena que invoca. Cuando se acorta, es posible que se pierdan

caracteres.

swap

Intercambia dos cadenas.

14

C++ Soluciones de programacion

Las siguientes funciones devuelven informacién acerca de un objeto string:

capacity Devuelve el nimero de caracteres que la cadena que invoca puede contener sin que se
asigne mas memoria.

c_str Devuelve un apuntador a una cadena terminada en un caracter nulo que contiene los
mismos caracteres que los contenidos en la cadena que invoca.

data Devuelve un apuntador a una matriz que contiene los caracteres en la cadena que invoca.
Esta matriz no termina en un caracter nulo.

empty Devuelve true si la cadena que invoca esta vacia.

length Devuelve el ndmero de caracteres contenido en la cadena que invoca.

max_size Devuelve el tamano méaximo de una cadena.

size Igual que length.

El siguiente conjunto de funciones da soporte a iteradores:

begin Devuelve un iterador al principio de la cadena.

end Devuelve un iterador a la ubicacion en que pasa el final de la cadena.

rbegin Devuelve un iterador inverso al final de una cadena.

rend Devuelve un iterador inverso al lugar que se encuentra uno antes del inicio de la cadena.

Las siguientes dos funciones obtienen una subcadena o un carécter de una cadena:

at Devuelve una referencia al caracter en un indice especificado dentro de la cadena que
invoca.
substr Devuelve una cadena que es una subcadena de la que invoca. Se especifican el indice

inicial y el nimero de caracteres en la subcadena.

Ademas de las funciones que se acaban de mostrar, hay dos mas. Puede comparar dos cadenas
al llamar a compare(). Puede hacer que una cadena asigne memoria suficiente para contener un
numero de caracteres especifico al llamar a reverse(). Debido a que string es una estructura de
datos dindmica, la asignacién previa de memoria evita la necesidad de costosas reasignaciones a
medida que aumenta el tamario de la cadena. Por supuesto, esto s6lo resulta titil si sabe de ante-
mano el tamafio de la cadena mas larga.

La clase string también define varios tipos, incluido size_type, que es una forma de entero no
asignado que puede contener un valor igual a la longitud de la cadena mads larga a la que da so-
porte la implementacién. El tipo de caracter contenido por la cadena estd definido por value_type.
La clase string también declara varios tipos de iterador, incluido iterator y reverse_iterator.

La clase string declara una variable static const, llamada npos, de tipo size_type. Este valor
estd inicializado en —1. Esto da como resultado un npos que contiene el valor no asignado més
grande que size_type puede representar. Por tanto, en todos los casos, npos representa un valor
que es por lo menos uno mas largo que el tamafio de la cadena mas larga. La variable npos suele
usarse para indicar la condicién "final de la cadena". Por ejemplo, si una bisqueda falla, se devuel-
ve npos. También se utiliza para solicitar que alguna operacion tenga lugar hasta el final de una

cadena.

Capitulo 2: Manejo de cadenas 15

Se han sobrecargado varias operaciones para aplicar a objetos de cadena. Se muestran a conti-
nuacién:

Operador Significado

= Asignacion

+ Union

+= Asignacion de union
== lgualdad

1= Desigualdad

< Menor que

<= Menor que o igual a
> Mayor que

>= Mayor que o igual a
[Subindices

<< Salida

>> Entrada

Estos operadores le permiten usar objetos string en expresiones y eliminar la necesidad de llamadas
a funciones como strepy(), strcat() o stremp(), que se requieren para cadenas terminadas en un carac-
ter nulo. Por ejemplo, puede usar un operador de relacién como < para comparar dos objetos string,
asignar un objeto string a otro al usar el operador =y unir dos objetos de cadena con el operador +.

En general, puede combinar objetos string con cadenas terminadas en un caracter nulo dentro
de una expresién, siempre y cuando el resultado deseado sea un objeto string. Por ejemplo, el ope-
rador + puede usarse para unir un objeto string con otro o un objeto string con una cadena estilo
C. Es decir, tienen soporte las siguientes variaciones:

cadena + cadena
cadena + cadena C
cadena C + cadena

Ademas, puede usar = para asignar una cadena terminada en un caracter nulo a un objeto string o
comparar ambos mediante operadores relacionales.

Hay otro aspecto importante en la clase string: también es un contenedor compatible con STL.
La clase string da soporte a iteradores y funciones como begin(), end() y size(), que deben imple-
mentar todos los contenedores. Debido a que string es un contenedor, es compatible con los otros
contenedores estdndar, como vector. También puede operarse mediante los algoritmos STL. Esto le
da una capacidad y flexibilidad extraordinarias cuando se manejan cadenas.

Tomada como un todo, la clase string hace que el manejo de cadena sea excesivamente con-
veniente y libre de problemas. Puede realizar operaciones con cadenas mas comunes mediante
operadores, y una serie rica en funciones miembro de string como biisqueda, reemplazo y compa-
racion de cadena facil y relativamente libre de errores. No es necesario que se preocupe por des-
bordar una matriz, por ejemplo, cuando asigna una cadena a otra. En general, el tipo string ofrece
seguridad y conveniencia que excede en mucho la de cadenas terminadas en un caracter nulo.

16 c++ Soluciones de programacion

A pesar de las ventajas de la clase string, las cadenas terminadas en un caracter nulo se usan
ampliamente en C++. Una razén de esto es que (como se explicé antes) las literales de cadena son
cadenas terminadas en caracter nulo. Otra razén es que todo el poder de string tiene un precio.
En algunos casos, las operaciones con objetos string son mds lentas que las operaciones termina-
das en un carécter nulo. Por tanto, para aplicaciones en que el alto desempeno es una aplicaciéon
importante y no se requieren los beneficios de una string, las cadenas terminadas en un caracter
nulo son todavia una buena eleccién. Es importante aclarar, sin embargo, que para muchas otras
aplicaciones, la clase string es todavia la mejor eleccién.

Excepciones de cadenas

Aunque el manejo de cadenas mediante string evita muchos de los accidentes comunes con ca-
denas terminadas en un cardcter nulo, ain es posible que se generen errores. Por fortuna, cuando
ocurre un error al manipular un objeto string, se obtiene una excepcién, en lugar de que un pro-
grama deje de funcionar o se produzca una brecha de seguridad. Esto le da una oportunidad de
rectificar el error, o por lo menos de realizar un apagado ordenado.

Hay dos excepciones que pueden generarse cuando se trabaja con objetos string. La primera es
lenght_error. Esta se lanza cuando se hace un intento de crear una cadena més larga que la cadena
mas larga posible. Esto podria suceder en varios casos diferentes, como cuando se unen cadenas
o se inserta una subcadena en otra. La longitud de la cadena maés larga posible se encuentra al
llamar a la funcién max_size(). La segunda excepcién es out_of_range. Se lanza cuando un argu-
mento esta fuera de rango. Ambas excepciones se declaran en <stdexcept>. Debido a que ninguno
de los ejemplos de este capitulo genera estas excepciones, los ejemplos no los manejan de manera
explicita. Sin embargo, en sus propias aplicaciones, tal vez necesite hacerlo.

Realice operaciones basicas en cadenas terminadas en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> char *strcat(char *cad1l, const char *cad2)
int strcmp(const char *cad1, const char *cad2)
char *strcpy(char *destino, const char *origen)
size_t strlen(const char *cad)

En esta solucién se muestra como realizar las siguientes operaciones basicas con cadenas termina-
das en un caracter nulo:

¢ Obtener la longitud de una cadena
¢ Copiar una cadena

¢ Unir una cadena al final de otra

¢ Comparar dos cadenas

Capitulo 2: Manejo de cadenas 17

Hay dos operaciones que suelen ser necesarias cada vez que se usan cadenas terminadas en un
caracter nulo en un programa de C++. Serdn familiares para muchos lectores (sobre todo quie-
nes tienen antecedentes en programacién en C). Se empieza con ellas porque ilustran conceptos
fundamentales relacionados con el trabajo con este tipo de cadenas. También ilustran por qué
debe tener cuidado con evitar desbordamientos de bufer cuando use cadenas terminadas en un
caracter nulo.

Paso a paso
Para realizar las operaciones béasicas con cadenas terminadas en un cardcter nulo se requieren
estos pasos:

Incluir el encabezado <cstring>.

Para obtener la longitud de la cadena, llame a strlen().
Para copiar una cadena en otra, llame a strcpy().

Para unir una cadena al final de otra, llame a strcat().
Para comparar dos cadenas, llame a stremp().

G L=

Andlisis
Las funciones que dan soporte a cadenas terminadas en un cardcter nulo se declaran en el encabe-
zado <cstring>. Por tanto, un programa que utiliza éstas u otras funciones que operan en cadenas
terminadas en un caracter nulo, debe incluir este encabezado.

Para obtener la longitud de una cadena terminada en un carécter nulo, llame a strlen(), que se
muestra aqui:

size_t strlen(const char *cad)

Devuelve el nimero de caracteres en la cadena sefialada por cad. Como se explicé en la revisién
general, una cadena terminada en un caracter nulo es simplemente una matriz de caracteres que
cumple esta condicion. El valor devuelto por strlen() no incluye el terminador de cardcter nulo.
Por tanto, la cadena "prueba" tiene una longitud de 6. Sin embargo, comprenda que la matriz
que contendrd "prueba" debe tener por lo menos 7 caracteres de largo para que haya espacio
para el terminador de cardcter nulo. El tipo size_t es alguna forma de entero no asignado que
puede representar el resultado de las operaciones de sizeof. Por tanto, es un tipo que puede
representar la longitud de la cadena mas larga.

Para copiar una cadena terminada en un caracter nulo en otra, se usa strcpy(), que se muestra
a continuacién:

char *strcpy(char *destino, const char *origer)

Esta funcién copia los caracteres en la cadena sefialada por origen en la matriz sefialada por
destino. El resultado termina en un cardcter nulo. En todos los casos, debe asegurarse de que la
matriz sefialada por destino es lo suficientemente larga para contener los caracteres sefialados
por origen. Si no, la copia sobrescribira el final de la matriz de destino. Esto corromperd su
programa y es una manera en que puede generarse el famoso "ataque de desbordamiento de
bufer". Esta funcion devuelve destino.

18

C++ Soluciones de programacion

Para unir una cadena terminada en un caracter nulo con el final de otra, se llama a strcat():
char *strcat(char *cadl, const char *cad?2)

Esta funcién copia los caracteres en la cadena a la que sefiala cad? al final de la cadena a la que
sefiala cadl. La cadena resultante termina en un cardcter nulo. Es fundamental que la matriz
a la que sefiala cad1 sea lo suficientemente larga para contener la cadena resultante. De lo
contrario, se presentara un desbordamiento de matriz. Esto corrompera su programa y es otra
manera de que pueda presentarse un ataque de desbordamiento de btifer. La funcién devuel-
ve cadl.

Puede comparar lexicograficamente (mediante el orden del diccionario) dos cadenas emplean-
do stremp(), que se muestra a continuacion:

int stremp(const char *cad1, const char *cad2)

Devuelve cero si las dos cadenas son iguales. De otra manera, devuelve menos de cero si la cadena a
la que apunta cad1 es menor que la sehalada por cad2 y mayor que cero si la cadena a la que apunta
cadl es mayor que la sefialada por cad2. La comparacion es sensible a maytsculas y mintsculas.

Ejemplo

En el siguiente ejemplo se muestran strcpy(), strcat() y strlen() en accién:

// Demuestra las funciones badsicas de cadena terminada en un caracter nulo.
#include <iostream>
#include <cstrings

using namespace std;

int main() {
char cadA[10] = "Gato";
char cadB[6] = "Cebra";
char cadC[6] = "Cabra";
char cadD[7] = "Jirafa";
cout << "Las cadenas son: " << endl;
cout << "cadA: " << cadA << endl;
cout << "cadB: " << cadB << endl;
cout << "cadC: " << cadC << endl;
cout << "cadD: " << cadD << "\n\n";

// Despliega la longitud de cadA.
cout << "La longitud de cadA es " << strlen(cadA) << endl;

// Une cadB con cadA.

strcat (cadA, cadB) ;

cout << "cadA una vez unida: " << cadA << endl;

cout << "La longitud de cadA es ahora " << strlen(cadAdA) << endl;

// Copia cadC en cadB.
strcpy (cadB, cadC);
cout << "cadB contiene ahora: " << cadB << endl;

// Compara cadenas.
if (!strcmp (cadB, cadQ))

Capitulo 2: Manejo de cadenas 19

cout << "cadB es igual a cadC\n";
int resultado = strcmp(cadC, cadD) ;
if (!resultado)

cout << "cadC es igual a cadD\n";
else if (resultado < 0)

cout << "cadC es menor gque cadD\n";
else if (resultado > 0)
cout << "cadC es mayor que cadD\n";

return O0;

}
Aqui se muestra la salida:

Las cadenas son:
cadA: Gato

cadB: Cebra
cadC: Cabra
cadD: Jirafa

La longitud de cadA es 4

cadA una vez unida: GatoCebra
La longitud de cadA es ahora 9
cadB contiene ahora: Cabra
cadB es igual a cadC

cadC es menor que cadD

Observe cémo se declaré que la matriz que contiene cadA es mayor de lo necesario para con-
tener su cadena inicial. Este espacio adicional le permite acomodar la unién de cadB. Ademas,
observe como cadB y cadC tienen el mismo tamafio. Esto permite copiar el contenido de cadC
en cadB. Recuerde, en todos los casos, que la matriz que recibe el resultado de una copia o
unién de una cadena debe ser lo suficientemente larga. Por ejemplo, en el programa anterior,
tratar de copiar cadD en cadC causaria un error, porque cadC sélo tiene seis elementos de lar-
go, pero cadD requiere siete (seis para los caracteres de Jirafa y uno para el terminado

de caracter nulo).

Opciones

En casos en que no sabe en tiempo de compilacién si la longitud de la matriz de destino es sufi-
ciente para contener el resultado de una copia o unién de cadena, necesitara confirmar ese hecho
en tiempo de ejecucién antes de tratar la operacion. Una manera de hacer esto es usar sizeof para
determinar el tamafio de la matriz de destino. Por ejemplo, suponiendo el programa de ejemplo
anterior, he aqui la manera de agregar una "revisién de seguridad" que asegura que cadA es lo
bastante larga para contener la unién de cadA y cadB:

if (sizeof (cadA) > strlen(cadhA) + strlen(cadB)) strcat(cadA, cadB) ;

Aqui, el tamafio de la matriz de destino se obtiene al llamar a sizeof en la matriz. Esto devuelve
la longitud de la matriz en bytes, lo que en matrices de tipo char es igual al ntimero de caracteres
en la matriz. Este valor debe ser mayor que la suma de las dos cadenas que se uniran. (Recuerde
que se necesita un caracter adicional para contener el terminador de caracter nulo.) Al usar este
método, asegura que la matriz de destino no se desbordara.

20 c++ Soluciones de programacion

NoOTA La técnica anterior para evitar un desbordamiento de matriz funciona para cadenas char,

no para cadenas wchar_t. En el caso de estas 1iltimas, no necesita usar una expresion como
if (sizeof (cadA) > wcslen(cadA) *sizeof (wchar t) +

wcslen(cadB) *sizeof (wchar t)) // .
Esto toma en consideracion el tamarfio de un cardcter ampliado.

En ocasiones tal vez quiera operar s6lo en una parte de una cadena, en lugar de toda ella. Por
ejemplo, tal vez quiera copiar sélo una parte de la cadena a otra o comparar sélo una parte de dos
cadenas. C++ incluye funciones que manejan estos tipos de situaciones. Son strncpy(), strncat() y
strncmp(). Cada una se describe a continuacion.

Para copiar s6lo una porcién de una cadena en otra, use strncpy, mostrado aqui:

char *strncpy (char *destino, const char *origen, size_t cuenta)

La funcién no copia mas de cuenta caracteres de origen a destino. Si origen contiene menos de cuenta
caracteres, los caracteres nulos se adjuntaran al final de destino hasta que se hayan copiado cuenta
caracteres. Sin embargo, si la cadena sefialada por origen es mas larga que cuenta caracteres, la
cadena resultante sefialada por destino no terminara en un caracter nulo. Devuelve destino.

Puede unir s6lo una parte de una cadena a otra al llamar a strncat(), que se muestra a conti-
nuacién:

char *strncat(char *cadl, const char *cad2, size_t cuenta)

Une no més de cuenta caracteres de la cadena sefialada por cad? al final de cadl. Devuelve cadl.
Para comparar una parte de una cadena a otra, use strncmp(), que se muestra a continuacion:

int strnemp(const char *cad1, const char *cad2, size_t cuenta)

La funcién strnecmp() compara no més de los primeros cuenta caracteres en la cadena a la que
sefiala cadl con los de la cadena a la que sefiala cad2. Devuelve menos de cero si cadl es menor que
cad2, mayor que cero si cadl es mayor que cad2, y cero si las dos cadenas son iguales.

Busque una cadena terminada en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> char *strchr(const char *cad, int car)

char *strpbrk(const char *cad1, const char *cad2)

char *strstr(const char *cad1l, const char *cad2)

Otra parte comiin del manejo de cadenas incluye la bisqueda. He aqui tres ejemplos. Tal vez
quiera saber si una cadena contiene la subcadena ".com" o ".net" cuando se procesa una direccién

Capitulo 2: Manejo de cadenas 21

de Internet. Quiza desee encontrar el primer punto en un nombre de archivo, de modo que puede
dar soporte al nombre de archivo a partir de su extensién. Tal vez quiera explorar un registro de
facturas para encontrar la cadena "Vencido" para que pueda contar el niimero de cuentas vencidas.
Para manejar estos tipos de tareas, C++ proporciona funciones que buscan una cadena terminada
en un cardcter nulo. En esta solucién se muestran varias de ellas. De manera especifica, muestra
c6émo buscar un cardcter determinado, cualquier conjunto de caracteres o una subcadena en una
cadena.

Paso a paso
Para buscar una cadena se requieren los siguientes pasos:

1. Para buscar un carécter especifico, llame a strchr().
2. Para buscar cualquier cardcter en un conjunto de éstos, llame a strpbrk().
3. Para buscar una subcadena, llame a strstr().

r'd ']
Analisis
Para encontrar la primera aparicién de un caracter determinado dentro de una cadena, llame a
strchr() que se muestra aqui:

char *strchr(const char *cad, int car)

Devuelve un apuntador a la primera aparicién del byte de orden bajo de car en la cadena sefialada
por cad. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.

Para encontrar la primera aparicion de cualquier cardcter dentro de un conjunto de caracteres,
llame a strpbrk(), que se muestra a continuacién:

char *strpbrk(const char *cad1, const char *cad?2)

Esta funciéon devuelve un apuntador al primer carécter en la cadena a la que sefiala cad1 y que
coincide con cualquier cardcter en la cadena sefialada por cad2. Sino se encuentran coincidencias, se
devuelve un apuntador nulo.

Para encontrar la primera aparicion de una subcadena determinada dentro de una cadena,
llame a strstr() que se muestra aqui:

char *strstr(const char *cad1, const char *cad?2)

Devuelve un apuntador a la primera aparicion de la cadena que sefiala cad2 dentro de la cadena
seflalada por cadl. Si no se encuentra una coincidencia, se devuelve un apuntador nulo.
Ejemplo

En el siguiente ejemplo se demuestran strchr(), strpbrk() y strstr():

// Busca una cadena terminada en un caracter nulo.
#include <iostream>
#include <cstrings>

using namespace std;

int main() {

22

C++ Soluciones de programacion

const char *url = "HerbSchildt.com";

const char *url2 = "Apache.org";

const char *diremail = "Herb@HerbSchildt.com";
const char *tld[] = { ".com", ".net", ".org" };

const char *p;

// Primero, determina si url y url2 contienen .com, .net u .org.
for (int 1=0; i < 3; i++) {
p = strstr(url, tld[i]);
if (p) cout << url << " tiene el dominio de nivel superior " << tld[i] << endl;

p = strstr(url2, tld[i]);
if (p) cout << url2 << " tiene el dominio de nivel superior " << tld[i] << endl;

}

// Busca un cardcter especifico.

p = strchr(diremail, '@');

if (p) cout << "El nombre del sitio de la direcci\u0Oa2n de correo electr)\
u00a2nico es: " << p+l << endl;

// Busca un caracter entre un conjunto de ellos.
// En este caso, encuentra el primer @ o punto.
p = strpbrk(diremail, "@.");

if (p) cout << "Se encontr\ull0a2 " << *p << endl;

return 0;

}

En el c6digo anterior, observara el uso de la secuencia de escape "\u00a2" para la "o". Es indispen-
sable el uso de estas secuencias para el despliegue de caracteres especiales como 4 o fi en la salida
del programa. Aqui se muestra la salida:

HerbSchildt.com tiene el dominio de nivel superior .com

Apache.org tiene el dominio de nivel superior .org

El nombre del sitio de la direccidén de correo electrdnico es: HerbSchildt.com
Se encontrd @

Opciones

Ademéds de la bisqueda de funciones usada en esta solucién, hay varias otras a las que da sopor-
te C++. Dos que resultan especialmente titiles en algunos casos son strspn() y strespn(). Aqui se
muestran:

size_t strspn(const char *cad1, const char *cad?2)
size_t strcspn(const char *cadl, const char *cad2)

La funcién strspn() devuelve el indice del primer caracter en la cadena sehalada por cadl que no
coincide con cualquiera de los caracteres en la cadena a la que apunta cad2. La funcién strespn()

devuelve el indice del primer caracter en la cadena sefialada por cad1 que coincide con cualquier
cardcter en la cadena sefialada por cad2.

Capitulo 2: Manejo de cadenas 23

Puede encontrar la tltima aparicién de un caracter dentro de una cadena terminada en un
caracter nulo al llamar a strrchr():

char *strrchar(const char *cad, int car)

Devuelve un apuntador a la dltima aparicién del byte de orden bajo de car en la cadena sefialada
por cad. Sino se encuentra una coincidencia, se devuelve un apuntador nulo.

La funcién strtok() también se utiliza para buscar una cadena. Se describe en su propia solu-
cién. Consulte Convierta en fichas una cadena terminada en un cardcter nulo.

Invierta una cadena terminada en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> size_t strlen(char *cad)

En esta solucién se muestra como realizar una tarea simple, pero ttil: revertir una cadena terminada
en un caracter nulo. Aunque la inversién de una cadena es una operacion fécil para el programador
experimentado, es una fuente comun de preguntas para el principiante. Por esta sola razén merece
su inclusién en este libro. Sin embargo, hay otras varias razones para incluirla. En primer lugar, hay
muchas maneras de invertir una cadena, y cada variacién ilustra una técnica diferente para manejar
una cadena terminada en un caracter nulo. En segundo lugar, el mecanismo basico usado para inver-
tir una cadena puede adaptarse a otros tipos de manipulaciones de cadena. Por tltimo, demuestra
en términos muy préacticos como manejar cadenas terminadas en un caracter nulo suele depender
de cédigo practico de muy bajo nivel. A menudo, este cédigo puede ser muy eficiente, pero requiere
mas trabajo que el uso de la clase string.

En la solucién mostrada aqui se invierte la cadena. Esto significa que se modifica la cadena
original. Por lo general, esto es lo que se necesita. Sin embargo, en la seccién Opciones se muestra
una variacién que crea una copia inversa de la cadena.

Paso a paso

Hay muchas maneras de afrontar la tarea de invertir una cadena. En esta solucién se usa un méto-
do simple pero efectivo que esta basado en el intercambio de extremo a extremo de los caracteres
correspondientes de la cadena. Se pone este cédigo dentro de una funcién llamada invcad().

1. Cree una funcién llamada invcad() que tenga este prototipo:

void invcad (char *cad)

La cadena que habra de invertirse se pasa a cad.
2. Dentro de invcad(), cree un bucle for que controle las dos variables que se usaran para
indizar la matriz que contiene la cadena. Inicialice la primera variable en cero y auméntela

24

C++ Soluciones de programacion

cada vez que se recorra el bucle. Inicialice la segunda variable en el indice del dltimo caréc-

ter de la cadena y dismintiyalo con cada iteracion. Este valor se obtiene al llamar a strlen().

Con cada paso que se recorra el bucle, intercambie los caracteres en los dos indices.

4. Detenga el bucle cuando el primer indice sea igual o mayor que el segundo indice. En este
punto, se invertira la cadena.

@

Andlisis

Como la mayoria de los lectores sabe, cuando se usa un nombre de matriz por si solo, sin un
indice, representa un apuntador a la matriz. Por tanto, cuando pasa una matriz a una funcién, en
realidad s6lo esta pasando un apuntador a esa matriz. Esto significa que una funcién que recibira
una cadena terminada en un caracter nulo como argumento debe declarar que su parametro es de
tipo char *. Por eso, el parametro cad de invcad() se declara como char *cad.

Aunque cad es un apuntador, puede indizarse como una matriz, empleando la sintaxis normal
de indizacién de matriz. Para invertir el contenido de una cadena, cree un bucle for que controla
dos variables, que sirven como indices en la cadena. Un indice empieza en cero e indiza a partir
del principio de la cadena. El otro indice empieza en el dltimo caracter de la cadena. Cada vez que
recorra el bucle, se intercambian los caracteres que se encuentran en los indices especificados. Lue-
go, el primer indice se aumenta y se reduce el segundo. Cuando los indices convergen (es decir,
cuando el primer indice es igual o mayor que el segundo), la cadena se invierte. He aqui la manera
de escribir este bucle:

int i, j;

char t;

for(i = 0, j = strlen(cad)-1; i < j; ++i, --3) {
t = cadl[i];
cad[i] = cadlj];
cad[j] = t;

}

Observe que el indice del dltimo caracter de la cadena se obtiene al restar uno del valor de-
vuelto por strlen(). Aqui se muestra su prototipo:

size_t strlen(const char *cad)

La funcién strlen() devuelve la longitud de una cadena terminada en un cardcter nulo, que es
el nimero de caracteres en la cadena. Sin embargo, no se cuenta el terminador de caracter nulo.
Debido a que el indizado de la matriz en C++ empieza en cero, debe restarse 1 a este valor para
obtener el indice del dltimo carécter en la cadena.

Ejemplo
Uniendo las piezas, he aqui una manera de escribir la funcién invcad():
// Invierte una cadena en el lugar.
void invcad(char *cad) {
int i, j;
char t;

for(i = 0, j = strlen(cad)-1; i < j; ++i, --3) {

Capitulo 2: Manejo de cadenas 25

t = cadl[il]l;
cad[i] = cadljl;
cad[j] = t;

}
}

En el siguiente programa se muestra invcad() en accién:
// Invierte una cadena en el lugar.
#include <iostream>
#include <cstrings>

using namespace std;

void invcad(char *cad) ;

int main() {
char cad[] = "abcdefghijklmnopgrstuvwxyz";
cout << "Cadena original: " << cad << endl;

invcad(cad) ;
cout << "Cadena invertida: " << cad << endl;

return O;

}

// Invierte una cadena en el lugar.
void invcad(char *cad) ({

int i, 3J;

char t;

for(i = 0, j = strlen(cad)-1; i < j; ++i, --3) {
t = cadl[il;
cad[i] = cadlj];
cad[j]l = t;

}
}

Aqui se muestra la salida:

Cadena original: abcdefghijklmnopgrstuvwxyz
Cadena invertida: zyxwvutsrgponmlkjihgfedcba

Opciones

Aunque invertir una cadena terminada en un caracter nulo es una tarea simple, permite algunas
variaciones interesantes. Por ejemplo, el método usado en la solucién depende de la indizacién de
la matriz, que tal vez es la manera mas clara de implementar esta funcién. Sin embargo, quizds no
sea la mas eficiente. Una opcién consiste en usar apuntadores en lugar de indizacion de matriz.
Dependiendo del compilador que estd usando (y las optimizaciones activadas), las operaciones de
apuntador pueden ser mas rapidas que la indizaciéon de matriz. Ademads, muchos programadores
simplemente prefieren el uso de apuntadores en lugar de indizacién de matriz cuando se recorre
en ciclo una matriz de manera estrictamente secuencial. Cualquiera que sea la razén, la version

26 C++ Soluciones de programacion

de apuntador es facil de implementar. He aqui una manera de retrabajar invcad(), de modo que
sustituye las operaciones de apuntador para indizacién de matriz:

// Invierte una cadena en el lugar. Use apuntadores en lugar de indizacidén de
matriz.
void invcad(char *cad) {

char t;

char *inc_p
char *dec_p

cad;
&cad[strlen(cad) -11;

while (inc_p <= dec_p) {

t = *inc p;
*inc p++ = *dec p;
*dec_p-- = t;

}
}

Una de las maneras méds interesantes de revertir una cadena emplea la recursién. He aqui una
implementacién:

// Invierte una cadena en el lugar al usar recursidn.
void invcad r(char *cad) {
invcad_recursiva(cad, 0, strlen(cad)-1);

// A esta funcidn se le llama con un apuntador a la cadena que se
// invertird y los indices de principio y final de los caracteres
// que se invertirédn. Por tanto, su primera llamada pasa cero
// para inicio y strlen(cad)-1 para final. La posicidn del
// terminador del cardcter nulo no cambia.
void invcad recursiva(char *cad, int inicio, int final) {

if (inicio < final)

invcad recursiva(cad, inicio+1, final-1);

else

return;
char t = cadl[inicio];
cad[inicio] = cadl[final];
cad[finall = t;

}

Observe que invcad_r() llama a invcad_recursiva() para revertir la cadena. Esto permite que se lla-
me a invcad_r() iinicamente con un apuntador a la cadena. Observe c6mo las llamadas recursivas
invierten la cadena. Cuando inicio es menor que final, se hace una llamada recursiva a invcad_re-
cursiva(); y el indice inicial aumenta en uno y el indice final disminuye en uno. Cuando estos dos
indices se unen, se ejecuta la instruccion return. Esto causa que las llamadas recursivas empiecen
a devolverse, mientras se intercambian los correspondientes caracteres. Como algo interesante,
puede usarse la misma técnica general para invertir el contenido de cualquier tipo de matriz. Su
uso en una cadena terminada en un caracter nulo es simplemente un caso especial.

La dltima opcidén presentada aqui funciona de manera diferente de los métodos anteriores,
porque crea una copia de la cadena original que contiene el inverso de la cadena original. Por tan-
to, deja ésta sin cambio. Esta técnica es ttil cuando no debe modificarse la cadena original.

Capitulo 2: Manejo de cadenas 27

// Hace una copia inversa de una cadena.
void invcadcopia (char *cadr, const char *cadorg) {

cadr += strlen(cadorg) ;
*cadr-- = '\0';

while (*cadorg) *cadr-- = *cadorg++;

}

A esta funcién se le pasa un apuntador a la cad original en cadorg y uno a la matriz char que
recibird la cadena invertida en cadr. Por supuesto, la matriz sehalada por cadr debe ser lo suficien-
temente grande para contener la cadena invertida mas el terminador nulo. He aqui un ejemplo de
cémo puede llamarse a revsrtcpy():

char cad[5] = "abcd";
char inv[r];
invcad copia(rev, cad);

Después de la llamada, inv contendrd los caracteres dcba y cad quedara sin modificacién.

Ignore diferencias entre maytisculas y mintisculas cuando compare

cadenas terminadas en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<cctype> int tolower(int car)

La funcién stremp() es sensible a maytsculas y mintsculas. Por tanto, las cadenas "prueba" y
"Prueba” son diferentes a la comparacién. Aunque una comparacién sensible a maytsculas

y minusculas suele ser lo que se necesita, hay ocasiones en que se requiere un método que no

las diferencie. Por ejemplo, si esta alfabetizando una lista de entradas para el indice de un libro,
algunas de estas entradas podrian ser nombres propios, como los de una persona. A pesar de las
diferencias entre mayusculas y mintsculas, tal vez quiera que se preserve el orden alfabético. Por
ejemplo, querra que "Stroustrup” aparezca después de "clase". El problema es que las mindsculas
estan representadas por valores que son 32 més grandes que las maytsculas. Por tanto, al realizar
una comparacion sensible a maytsculas y mintisculas entre "Stroustrup” y "clase”, la segunda
aparece antes que la primera. Para resolver este problema, debe usar una funcién de comparacién
que ignore las diferencias entre maytsculas y mintsculas. En esta solucién se muestra una manera
de hacerlo.

Paso a paso

Una manera de ignorar las diferencias entre maytsculas y mintdsculas cuando se comparan cade-
nas terminadas en un caracter nulo es crear su propia versién de la funcién stremp(). Es muy facil
de hacer, como se muestra. La clave estd en convertir cada conjunto de caracteres a maytsculas

28 C++ Soluciones de programacion

o mintsculas iguales y luego compararlas. En esta solucién se convierten todos los caracteres a
mindsculas utilizando la funcién tolower(), pero también funcionaria la conversién a maytsculas.

1. Cree una funcién llamada stremp_ign_mayus() que tenga este prototipo:

int strcmp_ign mayus (const char *cadl, const char *cadl);

2. Dentro de stremp_ign_mayus(), compare cada cardcter correspondiente en las dos ca-
denas. Para ello, configure un bucle que itere, siempre y cuando no se haya alcanzado el
terminador de caradcter nulo de una de las cadenas.

3. Dentro del bucle, convierta primero cada cardcter a mintisculas, al llamar a tolower(). Luego
compare los dos caracteres. Siga comparando caracteres hasta que se alcance el final de una
de las cadenas, o cuando los dos caracteres sean diferentes. Observe que tolower() requiere el
encabezado <cctype>.

4. Cuando el bucle se detiene, devuelve el resultado de restar el dltimo cardcter comparado
de la segunda cadena al dltimo caracter comparado de la primera cadena. Esto causa que
la funcién devuelva menos de cero si cadl es menor que cad2, cero si los dos son iguales
(en este caso, la terminacién de caracter nulo de cad2 se resta de la de cadl) o mayor que
cero si cadl es mayor que cad?2.

Andlisis

La funcién estdndar tolower() se defini6 originalmente en C y tiene soporte en C++ de dos maneras
distintas. La versién usada aqui estd declarada dentro del encabezado <cctype>. Convierte maytscu-
las en mintsculas con base en un conjunto de caracteres definido por la configuracién regional.

Se muestra aqui:

int tolower(int car)

Devuelve el equivalente en mintsculas de car, que debe ser un valor de 8 bites. Los caracteres no
alfabéticos se devuelven sin cambio.

Para comparar dos cadenas terminadas en un caracter nulo, independientemente de las
diferencias entre maytsculas y mintsculas, debe comparar los caracteres correspondientes en la
cadena después de normalizarlos a maytsculas o mintsculas. En la solucién, los caracteres estan
convertidos en mintisculas. He aqui un ejemplo de un bucle que compara caracteres en dos cade-
nas pero ignora las diferencias entre maytsculas y mintsculas:

while (*cadl && *cad2) ({
if (tolower (*cadl) !=
break;

tolower (*cad2))

++cadl;
++cad2;

}

Observe que el bucle se detendra cuando se alcance el final de cualquier cadena o cuando se en-
cuentre una diferencia.

Cuando el bucle termine, debe devolver un valor que indique el resultado de la comparacién.
Esto es facil de hacer. Simplemente devuelve el resultado de restar el tiltimo caracter sefialado por
cad2 al dltimo carécter sefialado por cadl, como se muestra aqui:

return tolower (*cadl) - tolower (*cad2) ;

Capitulo 2: Manejo de cadenas 29

Esto devuelve cero si se ha encontrado el terminador nulo de ambas cadenas, lo que indica
igualdad. De otra manera, si el caracter sefialado por cadl es menor que el senalado por cad2, se
devuelve un valor negativo, lo que indica que la primera cadena es menor que la segunda. Si el
cardcter al que sefala cad1l es mayor que el senalado por cad2, se devuelve un valor positivo, lo
que indica que la primera cadena es mayor que la segunda. Por tanto, produce el mismo resultado
que stremp(), pero de una manera no sensible a maytsculas y mindsculas.

Ejemplo
Para unir todo, he aqui una manera de implementar una funcién de comparacién de cadena no
sensible a maytsculas y mintsculas llamada stremp_ign_mayus():

// Una funcidén de comparacidén simple de cadenas que ignora diferencias entre
// mayGsculas y minGsculas.
int strcmp_ign mayus (const char *cadl, const char *cad2) ({

while (*cadl && *cad2) {
if (tolower (*cadl) !=
break;

tolower (*cad2))

++cadl;
++cad2;

}

return tolower (*cadl) - tolower (*cad2) ;

}
El siguiente programa pone en funcionamiento a stremp_ign_mayus():

// Ignora la diferencia entre maylsculas y mindsculas al comparar la cadena.
#include <iostream>
#include <cctype>

using namespace std;

int strcmp_ ign mayus (const char *strl, const char *cad2);
void mostrarresultado (const char *cadl, const char *cad2, int resultado) ;

int main() {
char cadA[]= "pruebA";
char cadB[] = "Prueba'";
char cadC[] = "pruebas";
char cadD[] = "pre";

int resultado;

cout << "Las cadenas son: " << endl;
cout << "cadA: " << cadA << endl;
cout << "cadB: " << cadB << endl;
cout << "cadC: " << cadC << endl;

cout << "cadD: " << cadD << "\n\n";

30 cCc++ Soluciones de programacion

// Compara las cadenas ignorando mayusculas y mintsculas.
resultado = strcmp ign mayus(cadA, cadB);
mostrarresultado (cadA, cadB, resultado) ;

resultado = strcmp ign mayus(cadA, cadC);
mostrarresultado (cadA, cadC, resultado) ;

resultado = strcmp ign mayus(cadA, cadD);
mostrarresultado (cadA, cadD, resultado) ;

resultado = strcmp_ ign mayus(cadD, cadA);
mostrarresultado (cadD, cadA, resultado) ;

return 0;

}

// Una funcidén de comparacidn simple de cadenas que ignora diferencias entre
// mayGsculas y minGsculas.
int strcmp_ign mayus (const char *cadl, const char *cad2) ({

while (*cadl && *cad2)

if (tolower (*cadl) != tolower (*cad2))
break;
++cadl;
++cad2;
1
return tolower (*cadl) - tolower (*cad2) ;

}

void mostrarresultado (const char *cadl, const char *cad2, int resultado) {

n

cout << cadl << " is ";

if (!resultado)

cout << "igual a ";
else if (resultado < 0)

cout << "menor que ";
else

cout << "mayor que ";

cout << cad2 << endl;

}
Aqui se muestra la salida:

Las cadenas son:
cadA: pruebA
cadB: Prueba
cadC: pruebas
cadD: pre

Capitulo 2: Manejo de cadenas K|

pruebA es igual a Prueba
pruebA es menor que pruebas
pruebA es mayor que pre
pre es menor que pruebA

Opciones

Como se explico, la version de tolower() declarada en <cctype> convierte caracteres con base

en la configuracion regional de idioma. Esto es lo que querra casi siempre, de modo que es una
buena (y conveniente) opcion en casi todos los casos. Sin embargo, tolower() también se declara
dentro de <locale>, que declara los miembros de la biblioteca de ubicacién de C++. (La ubicacién
ayuda en la creacion de c6digo que puede internacionalizarse facilmente.) He aqui esta version de
tolower():

template <class charT> charT tolower(charT car, const locale &loc)

Esta version de tolower() permite especificar una configuracion diferente cuando se convierten las
maytsculas y mintisculas de una letra. Por ejemplo:

char car;

//
locale loc ("French") ;
cout << tolower (car, 1loc);

Esta llamada a tolower() usa la informacién de configuracién regional y de idioma compatible con
el francés.

Aunque no hay una ventaja en usarlo, también es posible convertir cada caracter en la cadena
a mayusculas (en lugar de mintdsculas) para eliminar las diferencias entre maytsculas y mintscu-
las. Esto se hace con la funcién toupper(), que se muestra aqui:

int toupper(int car)

Funciona de la misma manera que tolower(), excepto que convierte los caracteres en maytsculas.

Cree una funcion de biisqueda y reemplazo para cadenas terminadas

en un caracter nulo

Componentes clave

Encabezado Clases Funciones
<ccstring> char *strncpy(char *destino, const char *origen,
int cuenta)

void *memmove(void *destino, const void *origen,
size_t cuenta)

Cuando se trabaja con cadenas, no es poco comun que se necesite sustituir una subcadena con
otra. Esta operacién requiere dos pasos. En primer lugar, debe encontrar la subcadena que se

32

C++ Soluciones de programacion

reemplazard y, en segundo lugar, debe reemplazarla con la nueva subcadena. A este proceso suele
llamarsele "btisqueda y reemplazo"; en esta solucién se muestra una manera de realizar esto en
cadenas terminadas en un carécter nulo.

Hay varias maneras de implementar una funcion de "bisqueda y reemplazo". Se usa un mé-
todo en que el reemplazo tiene lugar en la cadena original, con lo que la modifica. En la seccion
Opciones se describen otros dos métodos para esta solucion.

Paso a paso

Una manera de implementar una funcion de "biisqueda y reemplazo" para una cadena terminada
en un cardcter nulo incluye los siguientes pasos. Crea una funcién llamada buscar_y_reemplazar()
que reemplaza la primera aparicién de una subcadena con otra.

1. Cree una funcién llamada buscar_y_reemplazar(), que tenga este prototipo:

bool buscar_y reemplazar (char *cadorg, int longmax,
const char *subcadant, const char *subcadnue)

Se pasa un apuntador a la cadena original mediante cadorg. El niimero méximo de caracteres
que cadorg puede tener se pasa en longmax. Un apuntador a la subcadena que se buscara se
pasa mediante subcadant, y uno al reemplazo se pasa en subcadnue. La funcién devolvera un
valor true si se hace una sustitucién. Es decir, devuelve true si la cadena contenia originalmente
por lo menos un caso de subcadant. Si no se realiza sustitucién alguna, se devuelve false.

2. Busque una subcadena al llamar a strstr(). Devuelve un apuntador al principio de la pri-
mera subcadena de sustitucién de un apuntador nulo, si no se encuentra una coincidencia.

3. Sise encuentra la subcadena, desplace los caracteres restantes en la cadena lo necesario
para crear un "agujero” que sea exactamente del tamafio de la subcadena de reemplazo.
Esto puede hacerse més facil al llamar a memmove().

4. Mediante strncpy(), copie la subcadena de reemplazo en el "agujero” en la cadena original.

5. Se devuelve el valor true si se hizo una sustitucién y false si la cadena original queda sin
cambio.

'] ']
Analisis
Para encontrar una subcadena dentro de una cadena, use la funcién strstr() que se muestra aqui:

char *strstr(const char *cadl, const char *cad2)

Devuelve un apuntador al principio de la primera aparicién de la cadena sefialada por cad2 en la
cadena sefialada por cadl. Sino se encuentra una coincidencia, se devuelve un apuntador nulo.
Desde el punto de vista conceptual, cuando se reemplaza una subcadena con otra, debe eli-
minarse la anterior e insertarse su reemplazo. En la practica, no es necesario eliminar realmente
la subcadena antigua. En cambio, simplemente puede sobreescribir la antigua con la nueva. Sin
embargo, debe evitar que los caracteres restantes en la cadena se sobreescriban cuando la nueva
subcadena sea més larga que la antigua. También debe asegurar que no quede un hueco cuando la
nueva subcadena sea mds corta que la antigua. Por tanto, a menos que la nueva subcadena sea del
mismo tamafio que la antigua, necesitard subir o bajar los caracteres restantes en la cadena original
para que cree un "hueco” en la cadena original que sea del mismo tamafio que la nueva. Una ma-
nera fécil de hacer esto consiste en usar memmove(), que se muestra a continuacién:

void *memmove(void *destino, const void *destino, size_t cuenta)

Capitulo 2: Manejo de cadenas 33

Copia cuenta caracteres de la matriz sefialada por origen en la matriz sefialada por destino. Devuel-
ve destino. La copia se realiza correctamente aunque las matrices se superpongan. Esto significa
que puede usarse para subir o bajar caracteres en la misma matriz.

Después de que ha creado el "agujero” del tamafio apropiado en la cadena, puede copiar la
nueva subcadena en €l al llamar a strncpy(), como se muestra aqui:

char *strncpy(char *destino, const char *origen, size_t cuenta)

Esta funcién copia no méas que cuenta caracteres de origen a destino. Si la cadena sefialada por origen
contiene menos que cuenta caracteres, se adjuntaran caracteres nulos al final de destino hasta que se
hayan copiado cuenta caracteres. Sin embargo, si la cadena sefialada por origen es mas larga
que cuenta caracteres, la cadena resultante no terminard en un carécter nulo. Devuelve destino.
Si las dos cadenas se superponen, el comportamiento de strncpy() queda sin definir.

Haga que buscar_y_reemplazar() devuelva el valor true cuando tiene lugar una sustitucién y
false si no se encuentra la subcadena o si la cadena modificada excede la longitud méxima permi-
sible de la cadena resultante.

Ejemplo
He aqui una manera de implementar la funcién buscar_y_reemplazar (). Reemplaza la primera
aparicién de subcadant con subcadnue.

// Reemplaza la primera aparicidén de subcadant con subcadnue
// en la cadena sefialada por cad. Esto significa que la funcién
// modifica la cadena seflalada por cad.
//
// El tamafio madximo de la cadena resultante se pasa en longmax.
// Este valor debe ser menor que el tamafio de la matriz que
// contiene cad para evitar un desbordamiento de la matriz.
//
// Devuelve true si se hizo un reemplazo y falso, si no.
bool buscar_y reemplazar (char *cad, int longmax,
const char *subcadant, const char *subcadnue) {

// No permite que se sustituya el terminado de carécter nulo.
if (!*subcadant) return false;

// A continuacidén, revisa que la cadena resultante tenga una

// longitud menor o igual al nimero maximo de caracteres permitido
// en lo especificado por longmax. Si se excede el maximo, la

// funcién termina al devolver false.

int len = strlen(cad) - strlen(subcadant) + strlen(subcadnue) ;

if (len > longmax) return false;

// Ve si la subcadena especificada estd en la cadena.
char *p = strstr(cad, subcadant) ;

// Si se encuentra la subcadena, se reemplaza con la nueva.
if (p) |

34

C++ Soluciones de programacion

// Primero, se usa memmove () para mover el resto de la cadena
// para que la nueva subcadena pueda reemplazar a la antigua.
// En otras palabras, este paso aumenta o disminuye el tamafio
// del "agujero" que llenard la nueva subcadena.
memmove (p+strlen (subcadnue), p+strlen(subcadant),

strlen(p) -strlen(subcadant)+1) ;
// Ahora, copie la subcadena en cad.
strncpy (p, subcadnue, strlen(subcadnue)) ;

return true;

}

// Devuelve false si no se hizo un reemplazo.
return false;

}

Observe que la funcién no pondra mas de longmax caracteres en cad. El parametro longmax se
usa para evitar desbordamientos de matriz. Debe pasarle un valor que sea, como minimo, uno me-
nos que el tamafio de la matriz sefialada por cad. Debe ser uno menos que el tamafio de la matriz
porque debe abrir espacio para el terminador de caracter nulo.

En el siguiente programa se muestra la funcion buscar_y_reemplazar() en accion:

// Implementa "blUsqueda y reemplazo" para cadena terminada en un cardcter nulo.
#include <iostream>
#include <cstrings

using namespace std;

bool buscar y reemplazar (char *cadorg, int longmax,
const char *subcadant, const char *subcadnue) ;

int main() {
char cad[80] = "alfa beta gamma alfa beta gamma";
cout << "Cadena original: " << cad << "\n\n";

cout << "Primero, reemplaza todos los casos de alfa con omega.\n";

// Reemplaza todas las apariciones de alfa con omega.
while (buscar y reemplazar(cad, 79, "alfa", "omega"))
cout << "Luego de un reemplazo: " << cad << endl;

cout << "\nEnseguida, reemplaza todos los casos de gamma con zeta.\n";
// Reemplaza todos los casos de gamma con zeta.
while (buscar y reemplazar(cad, 79, "gamma", "zeta"))
cout << "Luego de un reemplazo: " << cad << endl;
cout << "\nAl final, elimina todas las apariciones de beta.\n";
// Reemplaza todas las apariciones de beta con una cadena nula.

// Esto se aplica al eliminar beta de la cadena.
while (buscar y reemplazar (cad, 79, "beta", ""))

Capitulo 2: Manejo de cadenas

cout << "Luego de un reemplazo: " << cad << endl;

return 0;

}

// Reemplaza la primera aparicidén de subcadant con subcadnue
// en la cadena seflalada por cad. Esto significa que la funcién
// modifica la cadena seflalada por cad.
//
// El tamafio mdximo de la cadena resultante se pasa en longmax.
// Este valor debe ser menor que el tamafio de la matriz que
// contiene cad para evitar un desbordamiento de la matriz.
//
// Devuelve true si se hizo un reemplazo y falso, si no.
bool buscar_y reemplazar (char *cad, int longmax,
const char *subcadant, const char *subcadnue) {

// No permite que se sustituya el terminado de carécter nulo.
if (! *subcadant) return false;

// A continuacidn, revisa que la cadena resultante tenga una

// longitud menor o igual al nUmero médximo de caracteres permitido
// en lo especificado por longmax. Si se excede el maximo, la

// funcién termina al devolver false.

int len = strlen(cad) - strlen(subcadant) + strlen (subcadnue) ;

if (len > longmax) return false;

// Ve si la subcadena especificada estd en la cadena.
char *p = strstr(cad, subcadant) ;

// Si se encuentra la subcadena, se reemplaza con la nueva.
if (p) |

// Primero, se usa memmove () para mover el resto de la cadena
// para que la nueva subcadena pueda reemplazar a la antigua.
// En otras palabras, este paso aumenta o disminuye el tamaflo
// del "agujero" que llenard la nueva subcadena.
memmove (p+strlen (subcadnue), p+strlen (subcadant),

strlen(p) -strlen(subcadant) +1) ;

// Ahora, copie la subcadena en cad.
strncpy (p, subcadnue, strlen (subcadnue)) ;

return true;

}

// Devuelve false si no se hizo un reemplazo.
return false;

}
Aqui se muestra la salida:

Cadena original: alfa beta gamma alfa beta gamma

Primero, reemplaza todos los casos de alfa con omega.

35

36 C++ Soluciones de programacion

Luego de un reemplazo: omega beta gamma alfa beta gamma
Luego de un reemplazo: omega beta gamma omega beta gamma

Enseguida, reemplaza todos los casos de gamma con zeta.
Luego de un reemplazo: omega beta zeta omega beta gamma
Luego de un reemplazo: omega beta zeta omega beta zeta

Al final, elimina todas las apariciones de beta.
Luego de un reemplazo: omega zeta omega beta zeta
Luego de un reemplazo: omega =zeta omega zeta

Opciones

Como estd escrita, la funcion buscar_y_reemplazar() sustituye una subcadena dentro de la cadena
original. Esto significa que ésta se modifica. Sin embargo, es posible emplear un método diferente
en que la cadena original queda sin cambiar y la cadena sustituida se devuelve en otra matriz.
Una manera de hacer esto consiste en pasar un apuntador a una cadena en que se copie el resulta-
do. Esta técnica deja la cadena original sin cambio. Aqui se muestra esta opcién:

// Esto reemplaza la primera aparicidén de subcadant con subcadnue.

// La cadena resultante se copia en la cadena pasada en

// cadresult. Esto significa que la cadena original queda sin

// cambio. La cadena resultante debe ser del largo suficiente para

// contener la cadena obtenida después de reemplazar subcadant con

// subcadnue. El nimero madximo de caracteres a copiar en cadresult

// se pasa en longmax. Devuelve true si se hizo un reemplazo,

// y false, de lo contrario.

bool buscar y reemplazar copia(const char *cadorg, char *cadresult, int longmax,
const char *subcadant, const char *subcadnue) {

// No permite que se sustituya el terminador de cardcter nulo.
if (!*subcadant) return false;

// A continuacidén, revisa que la cadena resultante tenga una

// longitud menor al nGmero méaximo de caracteres permitido

// en lo especificado por longmax. Si se excede el maximo, la

// funcién termina al devolver false.

int len = strlen(cadorg) - strlen(subcadant) + strlen (subcadnue) ;
if (len > longmax) return false;

// Ve si la subcadena especificada estd en la cadena.
const char *p = strstr(cadorg, subcadant);

// Si se encuentra la subcadena, se reemplaza con la nueva.
if (p) |

// Copia la primera parte de la cadena original.
strncpy (cadresult, cadorg, p-cadorg) ;

// Termina con un cardcter nulo la primera parte de cadresult

Capitulo 2: Manejo de cadenas 37

// para que operen en él las otras funciones de cadena.
* (cadresult + (p-cadorg)) = '\0';

// Sustituye la nueva subcadena.
strcat (cadresult, subcadnue) ;

// Agrega el resto de la cadena original,
// sobre la subcadena que se reemplazd.
strcat (cadresult, p+strlen(subcadant)) ;

return true;

}

// Devuelve false si no se hizo un reemplazo.
return false;

}

Los comentarios dan una descripcién "paso a paso” de la manera en que funciona buscar_y_re-
emplazar_copia(). He aqui un resumen. La funcién empieza por encontrar la primera aparicién
de cadorg de la subcadena pasada en subcadant. Luego copia la cadena original (cadorg) en la
cadena resultante (cadresult) hasta el punto en que se encontr6 la subcadena. A continuacién,
copia la cadena de reemplazo en cadresult. Por tltimo, copia el resto de cadorg en cadresult. Por
tanto, al regresar, cadresult contiene una copia de cadprg, con la tnica diferencia de la sustitucién
de subcadnue por subcadant. Para evitar el desbordamiento de la matriz, buscar_y_reempla-
zar_copia() sélo copiara hasta longmax caracteres en cadresult. Por tanto, la matriz sefialada por
cadresult debe tener por lo menos longmax+1 caracteres de largo. El caracter extra deja espacio
para el terminador de caracter nulo.

Otra opcién 1til en algunos casos consiste en hacer que la funcién buscar_y_reemplazar()
asigne dindmicamente una nueva cadena que contenga la cadena resultante y devuelva un apun-
tador a ella. Este método ofrece una gran ventaja: no necesita preocuparse por el hecho de que se
desborden los limites de la matriz porque puede asignar una matriz de tamano apropiado. Esto
significa que no es necesario que conozca el tamano de la cadena resultante de antemano. La prin-
cipal desventaja es que debe acordarse de eliminar la cadena asignada dindmicamente cuando ya
no se necesite. He aqui una manera de implementar este método:

// Reemplaza la primera aparicidén de subcadant con subcadnue

// en cad. Devuelve un apuntador a una nueva cadena que contiene

// el resultado. La cadena seflalada por cad queda sin cambio.

// Se asigna dinédmicamente memoria para la nueva cadena y debe

// liberarse cuando ya no se necesite. Si no se hace una sustitucién,

// se devuelve un apuntador nulo. Esta funcién lanza mala_asign si

// ocurre una falla en la asignacidén de memoria.

char *buscar_y reemplazar_ asign(const char *cad, const char *subcadant,
const char *subcadnue) throw(mala asign) {

// No permite que se sustituya el terminador de cardcter nulo.
if (! *subcadant) return 0;

38

C++ Soluciones de programacion

// Asigna una matriz con el largo suficiente para contener la cadena
//resultante.

int tam = strlen(cad) + strlen(subcadnue) - strlen(subcadant) + 1;
char *resultado = new char[tam];

const char *p = strstr(cad, subcadant);
if (p) |

// Copia primero la parte de la cadena original.
strncpy (resultado, cad, p-cad);

// Termina con un cardcter nulo la primera parte del resultado
// para que las otras funciones de la cadena operan en él.
* (resultado+ (p-cad)) = '\0';

// Sustituye la nueva cadena.
strcat (resultado, subcadnue) ;

// Agrega el resto de la cadena original.
strcat (resultado, p+strlen(subcadant)) ;
} else {
delete [] resultado; // libera la memoria no utilizada.
return 0;

}

return resultado;

}

Observe que buscar_y_reemplazar_asign() lanza mala_asign() si falla la asignacién de la ma-
triz temporal. Recuerde que la memoria es finita y que puede quedarse sin ella. Esto es especial-
mente cierto para los sistemas incrustados. Por tanto, el llamador de esta version tal vez necesite
manejar esta excepcion. Por ejemplo, he aqui el marco conceptual basico que puede utilizar para
llamar a buscar_y_reemplazar_asign():

char *apt;
try {

apt = buscar_ y reemplazar_ asign(cad, ant, nue)
} catch(mala_asign excepcién) ({

// Aqui se toma la accién apropiada.

}

if (apt) {
// Usa la cadena...

// Elimina la memoria cuando ya no se necesite.
delete [] apt;

Capitulo 2: Manejo de cadenas 39

Ordene en categorias caracteres dentro de una cadena terminada

en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<cctype> int isalnum(int car)
int isalpha(int car)
int iscntrl(int car)
int isdigit(int car)
int isgraph(int car)
int islower(int car)
int isprint(int car)
int ispunct(int car)
int isspace(int car)
int isupper(int car)
int isxdigit(int car)

En ocasiones, querrd saber qué tipos de caracteres contiene una cadena. Por ejemplo, tal vez quiera
eliminar todos los espacios en blanco (espacios, tabuladores y saltos de linea) de un archivo o el
despliegue de caracteres que no se imprimen usando algtin tipo de representacion visual. Realizar
estas tareas significa que puede ordenar los caracteres en tipos diferentes, como alfabético, control,
digitos, puntuacién, etc. Por fortuna, C++ facilita mucho la realizacién de esto empleando una o
mas funciones estdndar que determinan una categoria de caracteres.

Paso a paso
Las funciones de carécter facilitan el ordenamiento en categorias de un caracter. Incluye estos
pasos:

1. Todas las funciones de ordenamiento de caracteres en categorias se declaran en <cctype>.
Por tanto, deben incluirse en su programa.

Para determinar si un caracter es una letra o un digito, llame a int isalnum(int car).
Para determinar si un caracter es una letra, llame a int isalpha(int car).

Para determinar si un caracter es un cardcter de control, llame a int iscntrl(int car).
Para determinar si un caracter es un digito, llame a int isdigit(int car).

Para determinar si un caracter es visible, llame a int isgraph(int car).

Para determinar si un caracter es una letra mintscula, llame a int islower(int car).
Para determinar si un caracter es imprimible, llame a int isprint(int car).

Para determinar si un caracter es un signo de puntuacién, llame a int ispunct(int car).
Para determinar si un caracter es un espacio en blanco, llame a int isspace(int car).
Para determinar si un caracter es una letra mayuscula, llame a int isupper(int car).
Para determinar si un cardcter es un digito hexadecimal, llame a int isxdigit(int car).

O XN WON

—_ e
N = o

40

C++ Soluciones de programacion

Andlisis
Las funciones de ordenamiento de caracteres en categorias se definieron originalmente en C y
tienen soporte en C++ en un par de maneras diferentes. Las versiones empleadas aqui se declaran
dentro del encabezado <cctype>. Todos ordenan en categorias los caracteres con base en la confi-
guracién local y de idioma.

Todas las funciones is. . . se desempefian exactamente de la misma manera. Cada una se descri-
be brevemente aqui:

int isalnum(int car) | Devuelve un valor diferente de cero si car es una letra o un digito, y cero de otra manera.

int isalpha(int car) Devuelve un valor diferente de cero si car es una letra, y cero de otra manera.
int iscntrl(int car) Devuelve un valor diferente de cero si car es un caracter de control, y cero de otra manera.
int isdigit(int car) Devuelve un valor diferente de cero si car es un digito, y cero de otra manera.

int isgraph(int car) Devuelve un valor diferente de cero si car es un caracter imprimible diferente un espacio, y
cero de otra manera.

int islower(int car) Devuelve un valor diferente de cero si car es una letra minuscula, y cero de otra manera.
int isprint(int car) Devuelve un valor diferente de cero si car es imprimible (incluido un espacio), y cero de otra
manera.

int ispunct(int car) Devuelve un valor diferente de cero si car es un signo de puntuacion, y cero de otra manera.

int isspace(int car) | Devuelve un valor diferente de cero si car es un espacio en blanco, y cero de otra manera.

int isupper(int car) Devuelve un valor diferente de cero si car es una letra mayuscula, y cero de otra manera.

int isxdigit(int car) Devuelve un valor diferente de cero si car es un digito hexadecimal (0-9, A-F o a-f), y cero de
otra manera.

Casi todas las funciones se explican por si solas. Sin embargo, observe que la funcién ispunct() de-
vuelve un valor true para cualquier caracter que sea un signo de puntuacién. Esto se define como
cualquier cardcter que no sea una letra, un digito o un espacio. Por tanto, operadores como +y /
se ordenan en categorias como signos de puntuacién.

Ejemplo

En el siguiente ejemplo se muestran en accién las funciones isalpha(), isdigit(), isspace() e is-
punct(). Se usan para contar el niimero de letras, espacios y signos de puntuacién contenidos
dentro de una cadena.

// Cuenta espacios, signos de puntuacidn, digitos y letras.

#include <iostreams>
#include <cctype>

using namespace std;

int main() {
const char *cad = "Tengo 30 manzanas y 12 peras. \uOOa8Tienes algo?";
int letras = 0, espacios = 0, punt = 0, digitos = 0;

cout << cad << endl;

Capitulo 2: Manejo de cadenas 41

while (*cad) ({
if (isalpha(*cad)) ++letras;
else if (isspace(*cad)) ++espacios;
else 1if (ispunct (*cad)) ++punt;
else if(isdigit(*cad)) ++digitos;

++cad;
cout << "Letras: " << letras << endl;
cout << "D\uOOalgitos: " << digitos << endl;
cout << "Espacios: " << espacios << endl;
cout << "Signos de puntuaci\ulOa2n: " << punt << endl;
return O;

}
Aqui se muestra la salida:

Tengo 30 manzanas y 12 peras. ¢Tienes algo?
Letras: 29

Digitos: 4

Espacios: 7

Signos de puntuacidn: 2

Ejemplo adicional: conteo de palabras

Hay una aplicacién bien conocida en que se usan las funciones de ordenamiento de caracteres en
categorias: una utileria de conteo de palabras. Como resultado, un programa para este fin es el
ejemplo quintaesencial para funciones como isalphal() e ispunct(). En el siguiente ejemplo se crea
una versién muy simple de la utileria de conteo de palabras. El conteo real lo maneja la funcién
contarpalabras(). Se pasa un apuntador a una cadena. Luego cuenta las palabras, lineas, espacios
y signos de puntuacién en la cadena y devuelve el resultado.

Esta version de contarpalabras() usa una estrategia muy simple: sélo cuenta palabras com-
pletas que estdn integradas exclusivamente por letras. Esto significa que una palabra con guiones
cuenta como dos palabras separadas. Como resultado, la seccién "terminada en un caracter
nulo" cuenta como dos palabras. Més atin, una palabra no debe contener cualquier digito. Por
ejemplo, la secuencia "probandol123probando" contara como dos palabras. La funcién contar-
palabras(), no obstante, permite que un caracter diferente de una letra esté en una palabra: el
apostrofo. Esto permite el uso de posesivos en inglés (como Tom's) y contracciones (como it's). Sin
embargo, la funcién contarpalabras().

// Cuenta palabras, lineas, espacios y signos de puntuacidn.
#include <iostream>
#include <cctype>

using namespace std;

// Una estructura que contiene las estadisticas de conteo de palabras.
struct cp {

int palabras;

int espacios;

int punt;

int lineas;

42 c++ Soluciones de programacion

cp () |
palabras = punt = espacios = lineas = 0;

}
Vi

cp contarpalabras (const char *cad);

int main() {

const char *prueba = "Al proporcionar una clase de cadena y dar "
"soporte a cadenas terminadas-en-nulo, \nC++ "
"ofrece un entorno rico para tareas intensas en "
"cadenas, \incluido el uso de signos como el de Mario's House.

cout << "Dada la frase: " << "\n\n";

cout << prueba << endl;

cp cpal = contarpalabras (prueba) ;

cout << "\nPalabras: " << cpal.palabras << endl;

cout << "Espacios: " << cpal.espacios << endl;

cout << "L\uOOalneas: " << cpal.lineas << endl;

cout << "Signos de puntuaci\uO0Oa2n: " << cpal.punt << endl;

return 0;

}

// Una funcién muy simple de "conteo de palabras".
// Cuenta las palabras, espacios y signos de puntuacidn en
// una cadena y devuelve el resultado en una estructura cp.
cp contarpalabras (const char *cad)

cp datos;

// Si la cadena no es nula, entonces contiene por lo menos una linea.
if (*cad) ++datos.lineas;

while (*cad) {

// Revisa una palabra.

if (isalpha (*cad)) {
// Inicia la buisqueda de palabras. Ahora busca el final.
// de las palabras. Permite apdstrofes en las palabras.".

while (isalpha(*cad) || *cad == '\'') {
if (*cad == '\'') ++datos.punt;
++cad;

}

datos.palabras++;

}

else {

// Cuenta signos de puntuacidn, espacios (incluidos saltos de péagina)
lineas.

if (ispunct (*cad)) ++datos.punt;

else if (isspace(*cad)) {

Yy

Capitulo 2: Manejo de cadenas 43

++datos.espacios;

// Si hay alglin caracter después del salto de linea, aumenta
// el contador de lineas.

if(*cad == '\n' && *(cad+1l)) ++datos.lineas;

}

++cad;

}
}

return datos;

}

Aqui se muestra la salida:

Dada la frase:

Al proporcionar una clase de cadena y dar soporte a cadenas terminadas-en-nulo,
C++ ofrece un entorno rico para tareas intensas en cadenas,
incluido el uso de signos como el de Mario's House.

Palabras: 34

Espacios: 31

Lineas: 3

Signos de puntuacidén: 8

Hay un par de temas de interés en este programa. En primer lugar, observe que la funcién con-
tarpalabras() devuelve los resultados en un objeto de tipo cp, que es una struct. Se us6 una struct
en lugar de una class porque cp es, en esencia, un objeto de s6lo datos. Aunque cp no contiene un
constructor predeterminado (que realiza una inicializacién simple), no define funciones miembro
o constructores parametrizados. Por tanto, struct cumple mejor su propdsito (que es contener da-
tos) que class. En general, es preferible usar class cuando hay funciones de miembros. Se prefiere
usar struct con objetos que simplemente hospedan datos. Por supuesto, en C++, ambos crean un
tipo de clase y no hay una regla inmutable al respecto.

En segundo lugar, el conteo de lineas aumenta cuando se encuentra un caracter de nueva linea
sélo si no va seguido inmediatamente después por un carédcter de terminacién nulo. Esta compro-
bacién se maneja con esta linea:

if (*cad == '\n' && *(cad+l)) ++datos.lineas;

En esencia, esto asegura que el niimero de lineas de texto que se veria es igual a la cuenta de lineas
devuelta por la funcién. Esto evita que una linea final completamente vacia se cuente como una
linea. Por supuesto, la linea atin puede aparecer en blanco si todo lo que contiene son espacios.

Opciones

Como se menciond, las funciones de ordenamiento en categorias definidas en <cctype> se rela-
cionan con la configuracién regional y de idioma. Ademas, versiones de estas funciones también
estan soportadas por <locale> y permiten especificar una configuracién.

44 c++ Soluciones de programacion

Convierta en fichas una cadena terminada en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<cstring> char *strtok(char *cad,
const char *delimitadores);

La conversion en fichas de una cadena es una tarea de programacién que casi todo programador
enfrentard en un momento u otro. Convertir en fichas es el proceso de reducir una cadena a sus
partes individuales, a las que se les denomina fichas (o token). Por tanto, una ficha representa el
elemento indivisible més pequefo que puede extraerse de una cadena y que signifique algo.

Por supuesto, lo que constituye una ficha depende de cada tipo de entrada que se estd proce-
sando y su proposito. Por ejemplo, si quiere obtener las palabras en una frase, entonces una ficha
es un conjunto de caracteres rodeados por espacios en blanco o signos de puntuacién. Por ejemplo,
dada la frase:

Yo prefiero manzanas, peras y uvas.

Las fichas individuales son:

Yo prefiero manzanas

peras y uvas

Cada ficha esta delimitada por el espacio en blanco o el signo de puntuacién que separa a una de
otra. Cuando se convierte una cadena en fichas que contiene una lista de pares clave/valor organi-
zados de esta manera:

Clave=valor, clave=valor, clave=valor, ...

Las fichas son la clave y el valor. El signo = y la coma son separadores que delimitan las fichas. Por
ejemplo, dado

precio=10.15, cantidad=4

Las fichas son

precio 10.15 cantidad 4

Lo importante es que lo que constituye una ficha cambiard, dependiendo de la circunstancia. Sin
embargo, el proceso general de convertir una cadena en fichas es el mismo en todos los casos.

Debido a que convertir una cadena en fichas es una tarea importante y comtin, C++ proporcio-
na soporte integrado mediante la funcién strtok(). En la solucién se muestra como usarla.

Capitulo 2: Manejo de cadenas 45

Paso a paso
Para usar strtok() para convertir una cadena en fichas se requieren estos pasos:

1. Cree una cadena que contenga los caracteres que separan una ficha de otra. Hay delimita-
dores de fichas.

2. Para obtener la primera ficha en la cadena, llame a strtok() con un apuntador a la cadena
que se convertird en ficha y uno a la cadena que contiene los delimitadores.

3. Para obtener las fichas restantes en la cadena, siga llamando a strtok(). Sin embargo, pase
un apuntador nulo para el primer argumento. Puede cambiar los delimitadores, de acuer-
do con lo necesario.

4. Cuando strtok() devuelve null, la cadena se ha convertido por completo en fichas.

Analisis
La funcién strtok() tiene el siguiente prototipo:

char *strtok(char *cad, const char *delimitadores)

Un apuntador a la cadena desde la que se obtendran una o mas fichas se pasa en cad. Un apunta-
dor a la cadena que contiene los caracteres que delimitan una ficha se pasan en delimitadores. Por
tanto, delimitadores contiene los caracteres que dividen una ficha de otra. Un apuntador nulo se
devuelve si ya no hay maés fichas en cad. De otra manera, se devuelve un apuntador a una cadena
que contiene la siguiente ficha.

La conversién de cadenas en fichas es un proceso de dos pasos. La primera llamada a strtok()
pasa un apuntador a la cadena que se habra de convertir en ficha. Cada llamada posterior a str-
tok() pasa un apuntador nulo a cad. Esto causa que strtok() siga convirtiendo en fichas la cadena
desde el punto en que se encontré la ficha anterior. Cuando ya no se encuentran maés fichas,
se devuelve un apuntador nulo.

Un aspecto ttil de strtok() es que puede cambiar los delimitadores necesarios durante el
proceso de conversién en fichas. Por ejemplo, tome en consideracion la cadena que contiene pares
clave/valor organizados de la manera siguiente:

cuenta = 10, max = 99, mend Inicio = 12, nombre = "Tom Jones, jr.", ...

Para leer casi todas las claves y los valores de esta cadena, puede utilizarse el siguiente conjunto
delimitador:

Sin embargo, para leer una cadena entre comillas que incluye cualquier caracter, incluidas comas,
se necesita este delimitador:

H\!l!l

Debido a que strtok() le permite cambiar conjuntos de delimitadores "al vuelo", puede especificar
los delimitadores que son necesarios en cualquier momento. Esta técnica se ilustra en el siguiente
ejemplo.

46 Cc++ Soluciones de programacion

Ejemplo
Se muestra como usar strtok() para convertir en fichas una cadena terminada en un caracter nulo:
// Demuestra strtok().

#include <iostream>
#include <cstring>

using namespace std;
int main() {
// Primero, usa strtok() para convertir una frase en fichas.

// Crea una cadena de delimitadores para frases simple.
char delims[] = ".,\u00a8 ?;!";

char cad[] = "Yo prefiero manzanas, peras y uvas. \u00a8Y t\u00a3?";
char *ficha;
cout << "Obtiene las palabras de una frase.\n";

// Pasa la cadena que se convertird en fichas y obtiene la primera ficha.
ficha = strtok(cad, delims) ;

// Obtiene todas las fichas restantes.
while (ficha)
cout << ficha << endl;

// Cada llamada posterior a strtok() pasa NULL
// para el primer argumento.
ficha = strtok(NULL, delims) ;

}

// Ahora, usa strtok() para extraer claves y valores almacenados
// en pares clave/valor dentro de una cadena.
char parescv[] = "cuenta=10, nombre=\"Tom Jones, jr.\", max=100, min=0.01";

// Crea una lista de delimitadores para pares clave/valor.
char delimscv[] = " =,";

cout << "\nConvierte en fichas valores clave/valor.\n";

// Obtiene la primera clave.
ficha = strtok(parescv, delimscv) ;

// Obtiene las fichas restantes.
while (ficha) {
cout << "Clave: " << ficha << " ";

// Obtiene un valor.

// Primero, si la clave es nombre, el valor seréa

// una cadena entre comillas.

if (!strcmp ("nombre", ficha))
// Observe que esta llamada usa s6lo comillas como delimitador. Esto le
// permite leer una cadena entre comillas que incluye cualquier caracter.

Capitulo 2: Manejo de cadenas 47

ficha = strtok (NULL, "\"");

}

else {
// De otra manera, lee un valor simple.
ficha = strtok(NULL, delimscv) ;

}

cout << "Valor: " << ficha << endl;

// Obtiene la siguiente clave.
ficha = strtok (NULL, delimscv) ;

return O0O;

}
Aqui se muestra la salida:

Obtiene las palabras de una frase.
Yo

prefiero

manzanas

peras

Yy
uvas

Y

ta

Convierte en fichas valores clave/valor.
Clave: cuenta Valor: 10

Clave: nombre Valor: Tom Jones, jr.
Clave: max Valor: 100

Clave: min Valor: 0.01

Preste especial atenciéon a la manera en que se leen los pares clave/valor. Los delimitadores usados
para leer un valor simple difieren de los usados para leer una cadena entre comillas. Més atin, los
delimitadores se cambian durante el proceso de conversién en fichas. Como ya se explicé, cuando
se convierte una cadena en fichas, puede cambiar el conjunto de delimitadores a medida que lo
necesite.

Opciones

Aunque el uso de strtok() es simple y muy efectivo cuando se aplica en situaciones para las que re-
sulta adecuado, su uso estd inherentemente limitado. El principal problema es que strtok() convierte
en fichas una cadena basada en un conjunto de delimitadores, y una vez que se ha encontrado uno,
se pierde. Esto dificulta el uso de strtok() para convertir en fichas una cadena en que los delimitado-
res podrian también ser fichas. Por ejemplo, considere la siguiente instruccién simple de C++:

X = cuenta+12;

Para analizar esta instruccién, el signo + debe manejarse como un delimitador que termina cuenta y
como una ficha que indica la suma. El problema es que no hay una manera facil de hacer esto emplean-
do strtok(). Para obtener cuenta, el + debe estar en el conjunto de delimitadores. Sin embargo, una vez
que el + se ha encontrado, se consume. Por tanto, tampoco puede leerse como una ficha. Un segundo

48

C++ Soluciones de programacion

problema con strtok() es que resulta dificil detectar los errores en el formato de la cadena que se esta
convirtiendo en fichas (por lo menos hasta que se alcanza prematuramente el final de la cadena).

Debido al problema de aplicar strtok() a un amplio rango de casos, suelen usarse otros mé-
todos para convertir en fichas. Uno de éstos consiste en escribir su propia funcién "para obtener
fichas". Esto le da control completo sobre el proceso de conversion en fichas y le permite regresar
facilmente fichas basadas en el contexto mas que en delimitadores. Aqui se muestra un ejemplo
simple de este método. A la funcién personalizada para obtener fichas se le denomina obtenerfi-
chas(). Se convierte en fichas una cadena en los siguientes tipos de fichas:

¢ Cadenas alfanuméricas, como cuenta, indice27 o WordPad.
¢ Numeros enteros sin signo, como 2,99 o 0.
¢ Signos de puntuacién, entre ellos operadores, como +y /.

Por tanto, obtenerfichas() puede usarse para convertir en fichas expresiones muy simples, como

X = cuenta+12

while(x<9)x = x -w;

La funcién obtenerfichas() se usa de manera parecida a strtok(). En la primera llamada, se pasa
un apuntador a la cadena que habra de convertirse en fichas. En llamadas posteriores, se pasa un
apuntador nulo. Devuelve un apuntador cuando no hay mas fichas. Para convertir en fichas una
nueva cadena, simplemente empiece el proceso al pasar un apuntador a la nueva cadena. Aqui se
muestra la funciéon obtenerfichas() simple, junto con una funcién main() para demostrar su uso:

// Demuestra una funcidén obtenerficha () personalizada que puede
// devolver las fichas incluidas en expresiones muy simples.
#include <iostream>

#include <cstrings>

#include <cctypes>

using namespace std;
const char *obtenerficha(const char *cad) ;
int main() {
char ejemploA[] = "max=12+3/89; cuenta27 = 19* (min+piso);";

char ejemploBI[] "while(i < max) i1 = contador * 2;";
const char *fic;

// Convierte en fichas la primera cadena.
fic = obtenerficha(ejemplod) ;
cout << "Fichas que se encuentran en: " << ejemploA << endl;
while (fic) {
cout << fic << endl;
fic = obtenerficha (NULL) ;
1

cout << "\n\n";

//

Capitulo 2: Manejo de cadenas

// Reinicia obtenerficha() al pasar la segunda cadena.
fic = obtenerficha(ejemploB) ;
cout << "Fichas que se encuentran en: " << ejemploB << endl;
while (fic) {
cout << fic << endl;
fic = obtenerficha (NULL) ;

}

return 0;

Una funcidn obtenerficha () personalizada muy simple. Las fichas estén
formadas por cadenas alfanuméricas, nimeros y signos de puntuacidn de
un solo caréacter. Aungue esta funcidén es muy limitada, demuestra el
marco conceptual basico que puede expandirse y mejorarse para obtener
otros tipos de fichas.

En la primera llamada, pasa un apuntador a la cadena que se convertira.
en fichas. En llamadas posteriores, pasa un apuntador nulo. Devuelve
un apuntador a la ficha actual, o un apuntador nulo si es que no hay
méas fichas.

#define TAM_MAX FICHA 128

(ef@)

nst char *obtenerficha(const char *cad) {

static char ficha[TAM MAX FICHA+1];

static const char *apt;

int cuenta; // contiene la cuenta actual de caracteres
char *aptficha;

if (cad) {
apt = cad;

}

aptficha

= ficha;
cuenta = 0;

while (isspace (*apt)) apt++;

if (isalpha(*apt))

while (isalpha (*apt) || isdigit (*apt)) ({
*aptficha++ = *apt++;
++cuenta;
if (cuenta == TAM MAX FICHA) break;

} else if (isdigit(*apt))
while (isdigit (*apt)) {
*aptficha++ = *apt++;
++cuenta;
if (cuenta == TAM MAX FICHA) break;

} else if (ispunct (*apt))
*aptficha++ = *apt++;

} else return NULL;

// Null termina la ficha.
*aptficha = '\0';

return ficha;

49

50

C++ Soluciones de programacion

Aqui se muestra la salida del programa:

Fichas que se encuentran en: max=12+3/89; cuenta27 = 19* (min+piso) ;
max

12
+
3
/
89

cuenta27

19

*

(
min
+
piso
)

7

Fichas que se encuentran en: while(i < max) i = contador * 2;
while

contador
*

2

7

La operacién de obtenerfichas() es muy sencilla. Simplemente examina el siguiente cardcter de

la cadena de entrada y luego lee el tipo de ficha con que inicia ese tipo de caracter. Por ejemplo,

si la ficha es una letra, entonces obtenerfichas() lee una ficha alfanumérica. Si el siguiente carac-
ter es un digito, entonces lee un entero. Si es un signo de puntuacién, entonces la ficha contiene
ese caracter. Observe que obtenerfichas() no deja que la longitud de una ficha exceda la longitud
maxima de la ficha, especificada en TAM_MAX_FICHA. También observe que obtenerfichas() no
modifica la cadena de entrada. Esto difiere de strtok(), que sila modifica. Por tdltimo, observe que
el apuntador devuelto por obtenerfichas() es const. Esto significa que puede usarse para modifi-
car la matriz estética ficha. Por ultimo, aunque obtenerfichas() es muy simple, puede adaptarse y
mejorarse facilmente para adecuarse a otras situaciones, mas complejas.

Capitulo 2: Manejo de cadenas 51

Realice operaciones basicas en objetos de string

Componentes clave

Encabezado

Clases

Funciones

<string>

string

size_type capacity() const
string &erase(size_type ind = 0,
size_type long = npos)
string &insert(size_type ind,
const string &cad
size_type max_size() const
char &operator{](size_type ind)
string &operator=(const string &cad)
void push_back(const char car)
void reserve(size_type num = 0)
size_type size() const;
string substr(size_type ind = 0O,
size_type long = npos) const

<string

string operator+(const string %izqarr,
const string %derarr)
string operator==(const string %izqarr,
const string %derarr)
bool operator<=(const string %izqarr,
const string %derarr)
bool operator>(const string %izqarr,
const string %derarr)

Como se explicé al principio de este capitulo, C++ proporciona dos maneras de manejar cadenas.
La primera es la cadena terminada en un carécter nulo (también llamada cadena C). Esta se hered6
de C y atin se usa ampliamente en programacién con C++. También es el tipo de cadena usado en
las soluciones anteriores. El segundo tipo de cadena es un objeto de la clase de plantillas basic_
string. La cual esta definida por C++ y es parte de la biblioteca de clases estindar de C++. En el
resto de las soluciones de este capitulo se utiliza basic_string.

Las cadenas de tipo basic_string tienen varias ventajas sobre las terminadas en un caracter

nulo. He aqui algunas de las mas importantes:

* basic_string define un tipo de datos. (Recuerde que una cadena terminada en un caracter

nulo es simplemente una convencioén.)

* basic_string encapsula la secuencia de caracteres que forma la cadena, con lo que evita
operaciones inapropiadas. Cuando se usa basic_string, no es posible generar un desborda-

miento de matriz, por ejemplo.

* Los objetos de basic_string son dinamicos. Crecen a medida que se necesitan para acomo-
darse al tamarfio de la cadena que se estd incluyendo. Por tanto, no es necesario saber de

antemano el largo de la cadena.

* basic_string define operadores que manipulan cadenas. Esto simplifica muchos tipos de
manejo de cadenas.

52

C++ Soluciones de programacion

* basic_string define un conjunto completo de funciones de miembro que simplemente fun-
cionan con cadenas. Pocas veces tiene que escribir su propia funcién para realizar alguna
manipulacién de cadenas.

Hay dos especializaciones integradas de basic_string: string (que es para caracteres de tipo
char) y wstring (que es para caracteres ampliados). Por conveniencia, todas las soluciones de este
libro usan string, pero casi toda la informacién es aplicable a cualquier tipo de basic_string.

En esta solucién se demuestran varias de las operaciones basicas que pueden aplicarse a
objetos de tipo string. Se muestra coémo construir una string. Luego se presentan varios de sus
operadores y funciones miembro. También se demuestra cémo ajustan su tamafio en tiempo de
ejecucion los objetos string para acomodar un aumento en el tamafio de la secuencia de caracteres.

Paso a paso
Para realizar las operaciones basicas de string se requieren estos pasos:

1. Laclase string esta declarada dentro del encabezado <string>. Por tanto, debe incluirse
éste en cualquier programa que utilice string.
2. Un objeto string se crea al usar uno de sus constructores. En esta solucién se demuestran
tres. El primero crea una string vacia, el segundo crea una inicializada por una literal
string, y el tercero crea una que se inicializa con otra.
Para obtener la longitud de la cadena mas larga posible, llame a max_size().
Para asignar una cadena a otra, use el operador =.
Para unir dos objetos string, use el operador +.
Para comparar lexicograficamente dos objetos string, use los operadores relacionales,
como > 0 ==.
7. Para obtener una referencia a un caracter en un indice especificado, use el operador de
indizacién [].
8. Para obtener el niimero de caracteres contenido actualmente por string, llame a size().
9. Para obtener la capacidad actual de string, llame a capacity().
10. Para especificar una capacidad, llame a reserve().
11. Para eliminar todos los caracteres o parte de ellos en una string, llame a erase().
12. Para agregar un caracter al final de una cadena, llame a push_back().
13. Para obtener una subcadena, llame a substr().

SRR

Anlisis
La clase string define varios constructores. Aqui se muestran los usados en esta solucién:
explicit string(const Allocator &asign = Allocator())
string(const char *cad, const Allocator &asign = Allocator())
string(const string &cad, size_type ind = 0,
size_type long = npos Allocator &asign = Allocator())

El primer constructor crea una cadena vacia. El segundo, una que es inicializada por una cadena
terminada en un caracter nulo sefialada por cad. El tercero, una que es inicializada por una subca-
dena de cad que empieza en ind y se ejecuta por long caracteres. Aunque parecen un poco intimi-
dantes, son faciles de usar. Por lo general, el asignador (que controla la manera en que se asigna

Capitulo 2: Manejo de cadenas 53

la memoria) estd permitido como opcién predeterminada. Esto significa que, por lo general, no
querra especificar un asignador cuando crea una string. Por ejemplo, lo siguiente crea una cadena
vacia y una inicializada con una literal de cadena:

string micad; // cadena vacia
string micad2("Hola"); / /cadena inicializada con la secuencia Hola

En el tercer constructor, suelen usarse las opciones predeterminadas para ind y long, lo que signifi-
ca que la cadena contiene una copia completa de cad.

Aunque los objetos string son dindmicos, y crecen de acuerdo con las necesidades en tiempo de
ejecucién, una cadena atin puede tener una longitud maxima. Aunque este méaximo suele ser de-
masiado, tal vez sea ttil conocerlo en algunos casos. Para obtener la longitud de cadena méxima,
llame a max_size(), que se muestra aqui:

size_type max_size() const

Devuelve la longitud de la cadena mas larga posible.
Puede asignar una string a otra al usar el operador =. Este se ha implementado como una fun-
cién miembro. Tiene varias formas. He aqui una usada en esta solucién:

string &operator=(const string &cad)

Asigna la secuencia de caracteres en cad a la string que invoca. Devuelve una referencia al objeto
que invoca. Otras versiones del operador de asignacion le permiten asignar una cadena terminada
en un cardcter nulo o un caracter a un objeto string.

Puede unir una string con otra al usar el operador +. Se define como una funcién que no es
miembro. Tiene varias formas. He aqui la usada en esta solucién:

string operator+(const string &izqarr, const string &derarr)

Une derarr con izqarr y devuelve un objeto string que contiene el resultado. Otras versiones del
operador de unién le permiten unir un objeto string con una cadena terminada en un caracter
nulo o con un caracter.

Puede insertar una cadena en otra al usar la funcién insert(). Tiene varias formas. La usada
aqui es:

string &insert(size_type ind, const string &cad)

Inserta cad en la cadena que invoca en el indice especificado por ind. Devuelve una referencia al
objeto que invoca.

Todos los operadores relacionales estan definidos en la clase string por funciones de operador
que no son miembro. Realizan comparaciones lexicograficas de las secuencias de caracteres con-
tenidas dentro de dos cadenas. Cada operador tiene varias formas sobrecargadas. Los operadores
usados aqui son ==, <=y >, pero todos los operadores relacionales funcionan de la misma manera
basica. He aqui las versiones de estos operadores que se usan en esta solucién:

bool operator==(const string &izqarr, const string &derarr)
bool operator<=(const string &izqarr, const string &derarr)
bool operator>(const string &izgarr, const string &derarr)

54

C++ Soluciones de programacion

En todos los casos, izqarr se refiere al operando de la izquierda y derarr al de la derecha. Se devuel-
ve el resultado de la comparacién. Otras versiones de estos operadores le permiten comparar un
objeto string con una cadena terminada en un cardcter nulo.

Puede obtener una referencia a un elemento especifico en una string al usar el operador de
indizacién de la matriz []. Estd implementado como una funcién miembro, como se muestra aqui:

char &operator[](size_type ind)

Devuelve una referencia al caracter en el indice basado en cero especificado por ind. Por ejemplo,
dado un objeto string llamado micad, la expresién micad[2] devuelve una referencia al tercer
caracter en micad. También estd disponible una version con const.

El nimero de caracteres contenido en la cadena puede obtenerse al llamar a size(), como se
muestra aqui:

size_type size() const

Devuelve el nimero de caracteres en la cadena. Como se explic en la revisién general, al princi-
pio de este capitulo, size_type es un elemento de typedef que representa alguna forma de entero
sin signo.

El ntimero de caracteres que un objeto string puede contener no estd predeterminado. En cam-
bio, el objeto crecera de acuerdo con las necesidades para adecuarse al tamafo de la cadena que
habré de encapsular. Sin embargo, todos los objetos string empiezan con una capacidad inicial,
que es el nimero maximo de caracteres que puede contener antes de que deba asignarse mas me-
moria. La capacidad de un objeto string puede determinarse al llamar a capacity(), que
se muestra aqui:

size_type capacity() const

Devuelve la capacidad actual de la string que invoca.

La capacidad de un objeto string puede ser importante porque las asignaciones de memoria
ocupan mucho tiempo. Si sabe por anticipado el niimero de caracteres que contendrd una string,
entonces puede establecer la capacidad en esa cantidad, eliminando asi una reasignacion de me-
moria. Para esto, llame a reserve(), que se muestra a continuacién:

void reserve(size_type num = 0)

Establece la capacidad de la string que invoca para que sea por lo menos igual a num. Si num es
menor o igual al ntimero de caracteres en la cadena, entonces la llamada a reserve() es una solici-
tud para reducir la capacidad a un tamarfio igual. Sin embargo, esta solicitud puede ignorarse.

Puede eliminar uno o méds caracteres de una cadena al llamar a erase(). Hay tres versiones de
erase(). Aqui se muestra la que se usa en esta solucién:

string &erase(size_type ind = 0, size_type long = npos)

A partir de ind, elimina long caracteres del objeto que invoca. Devuelve una referencia al objeto
que invoca.

Una de las funciones miembro de string mas interesantes es push_back(). Agrega un caracter
al final de la cadena:

void push_back (const char car)

Capitulo 2: Manejo de cadenas 55

Agrega car al final de la cadena que invoca. Es muy ttil cuando quiere crear una cola de caracteres.
Puede obtener una parte de una cadena (es decir, una subcadena), al llamar a substr(), que se
muestra aqui:

string substr(size_type ind = 0, size_type long = npos) const

Devuelve una subcadena de long caracteres, empezando en ind dentro de la string que invoca.

Ejemplo

En el siguiente ejemplo se ilustran varias de las operaciones fundamentales con cadenas:

// Demuestra las operaciones basicas con cadenas.
#include <iostreams
#include <string>

using namespace std;

int main()

{
// Crea algunos objetos de cadena. Tres se inicializan
// usando la literal de cadena pasada como argumento.
string cadl ("Alfa");
string cad2 ("Beta") ;
string cad3 ("Gamma") ;
string cad4;

// Salida de una cadena via cout.
cout << "Las cadenas originales son:\n";

cout << " cadl: " << cadl << endl ;
cout << " cad2: " << cad2 << endl ;
cout << " cad3: " << cad3 << "\n\n";

// Despliega la longitud méxima de la cadena.
cout << "La longitud m\uOOaOxima de la cadena es: " << cadl.max size()
<< "\n\n";

// Despliega el tamafilo de cadl.
cout << "cadl contiene " << cadl.size() << " caracteres.\n";

// Despliega la capacidad de cadl.
cout << "Capacidad de cadl: " << cadl.capacity() << "\n\n";

// Despliega los caracteres de una cadena, de uno en uno
// empleando el operador de indizacidn.
for (unsigned i = 0; i < cadl.size(); ++1i)
cout << "cadl[i]: " << cadl[i] << endl;
cout << endl;

// Asigna una cadena a otra.
cad4 = cadl;
cout << "cad4 tras la asignacil\u0Oa2n de cadl: " << cad4 << "\n\n";

56 C++ Soluciones de programacion

// Une dos cadenas.
cad4 = cadl + cad3;
cout << "cad4 tras la asignacil\uO0Oa2n de cadl+cad3: " << cad4d << "\n\n";

// Inserta una cadena en otra.
cad4.insert (4, cad2);
cout << "cad4 tras insertar cad2: " << cad4 << "\n\n";

// Obtiene una subcadena.

cad4 = cad4.substr (4, 4);

cout << "cad4 tras la asignacil\u0Oa2n de cad4.substr(4, 3): "
<< cad4 << "\n\n";

// Compara dos cadenas.
cout << "Compara cadenas.\n";
if (cad3 > cadl) cout << "cad3 > cadl\n";
if (cad3 == cadl+cad2)
cout << "cad3 == cadl+cad2\n";
if (cadl <= cad2)
cout << "cadl <= cad2\n\n";

// Crea un objeto de cadena usando otro.

cout << "Inicializa cad5 con el contenido de cadl.\n";
string cad5(cadl) ;

cout << "cad5: " << cad5 << "\n\n";

// Borra cad4.

cout << "Borrando cad4.\n";

cad4 .erase () ;

if (cad4.empty()) cout << "cad4 est\u00a0 ahora vac\uOOala.\n";

cout << "El tamal\uOOa4o y la capacidad de cad4 son " << cad4.size() << " "
<< cad4.capacity() << "\n\n";

// Usa push back() para agregar caracteres a cad4.

for(char ch = '"A'; ch <= '2'; ++ch)
cad4 .push_back (ch) ;
cout << "cad4 tras llamar a push back(): " << cad4 << endl;

cout << "El tama\uOOad4o y la capacidad de cad4 son ahora " << cad4.size() << " "
<< cad4.capacity() << "\n\n";

// Establece la capacidad de cad4 en 128.

cout << "Estableciendo la capacidad de cad4 en 128\n";

cad4 .reserve (128) ;

cout << "La capacidad de cad4 es ahora: " << cad4.capacity() << "\n\n";

// Ingresa una cadena via cin.

cout << "Ingrese una cadena: ";

cin >> cadl;

cout << "Introdujo: " << cadl << "\n\n";

return 0;

Capitulo 2: Manejo de cadenas 571

Aqui se muestra la salida:

Las cadenas originales son:
cadl: Alfa
cad2: Beta
cad3: Gamma

La longitud méxima de la cadena es: 4294967294

cadl contiene 4 caracteres.
Capacidad de cadl: 15

cadl[i]: A
cadl[i]: 1
cadl[i]: £
cadl[i]: a

cad4 tras la asignacidén de cadl: Alfa
cad4 tras la asignacidn de cadl+cad3: AlfaGamma
cad4 tras insertar cad2: AlfaBetaGamma

cad4 tras la asignacidén de cad4.substr (4, 3): Beta

Compara cadenas.
cad3 > cadl
cadl <= cad2

Inicializa cad5 con el contenido de cadl.
cad5: Alfa

Borrando cad4.
cad4 estd ahora vacia.
El tamafio y la capacidad de cad4 son 0 15

cad4 tras llamar a push_back(): ABCDEFGHIJKLMNOPQRSTUVWXYZ
El tamafio y la capacidad de cad4 son ahora 26 31

Estableciendo la capacidad de cad4 en 128
La capacidad de cad4 es ahora: 143

Ingrese una cadena: prueba
Introdujo: prueba

Tal vez lo mas importante que hay que notar en el ejemplo es que el tamafio de las cadenas
no esta especificado. Como se explico, los objetos string reciben un tamafio automaticamente
para contener la cadena que se les da. Por tanto, cuando se asignan o unen cadenas, la cadena
de destino crecera de acuerdo con lo necesario para acomodar el tamafio de la nueva cadena. No
es posible rebasar el final de la cadena. Este aspecto dindmico de los objetos string es una de las
maneras en que son mejores que las cadenas terminadas en un caracter nulo estandar, que son el
tema de los rebases de limite. (Como se mencioné en la revision general, un intento de crear string
que excede la cadena més larga posible da como resultado que se lance lenght_error. Por tanto, no
es posible rebasar string().)

58

C++ Soluciones de programacion

Hay otro elemento importante que debe tomarse en cuenta en la ejecucion de ejemplo. Cuando
la capacidad de cad4 se aumenta, al llamar a reserve() con un argumento de 128, la capacidad real
se vuelve 143. Recuerde que una llamada a reserve() causa que la capacidad aumente por lo menos
al valor especificado. La implementacién es libre de asignarle un valor méas elevado. Esto podria
suceder porque las asignaciones podian ser més eficientes en bloques de cierto tamafio, por ejem-
plo. (Por supuesto, debido a las diferencias entre compiladores, tal vez vea un valor de capacidad
diferente cuando ejecute su programa de ejemplo. Son de esperar esas diferencias.)

Opciones
Incluso para las operaciones bdsicas con cadenas, string ofrece muchas opciones. Aqui se mencio-
nan varias de ellas.

Como se explicd, para obtener el niimero de caracteres mantenido actualmente por una ca-
dena, puede llamar a size(). Sin embargo, también puede llamar a lenght(). Devuelven el mismo
valor y funcionan de la misma manera. En esencia, size() y lenght() son simplemente dos nombres
diferentes para la misma funcién. La razén para los dos nombres es histérica. Todos los contene-
dores STL deben implementar el método size(). Aunque no siempre se considera como parte de
STL, string cumple con todos los requisitos para un contenedor y es compatible con STL. Parte
de estos requisitos es que un contenedor debe proporcionar una funcién size(). Por tanto, size()
se vuelve parte de string.

La funcién insert() tiene varias formas adicionales. Por ejemplo, puede insertar una parte de
una string en otra, uno o mas caracteres en una string, o0 una cadena terminada en un caracter
nulo en una string.

La funcién erase() tiene varias formas adicionales que le permiten eliminar caracteres a los que
hace referencia un iterador (consulte Opere en objetos string mediante iteradores).

Aunque el uso del operador de indizacién [] es mds sencillo, también puede obtener una refe-
rencia a un cardcter especifico al llamar al método at(). Aqui se muestra como se implementa para
string:

char &at(size_type ind)

Devuelve una referencia al caracter en el indice basado en cero especificado por ind. También estd
disponible una versién de const.

Como se muestra en la solucién, pueden realizarse asignaciones y uniones simples empleando
los operadores = y + definidos por string. En casos en que se necesitan asignaciones o uniones més
sofisticadas, string proporciona las funciones assign() y append(). Estas funciones tienen muchas
formas que le permiten asignar o adjuntar partes de una cadena, toda una cadena terminada en
un cardcter nulo (o parte de ella), o uno o més caracteres. También hay formas que dan soporte a
iteradores. Aunque éstos son demasiados para describirse en una solucién, he aqui un ejemplo de
cada una:

string &assign(const string &cad, size_type ind, size_type long)
string &append(const string &cad, size_type ind, size_type long)

La version de assign() asigna una subcadena de cad a la cadena que invoca. La subcadena empieza
en ind y se ejecuta por long caracteres. Esta versién de append() adjunta una subcadena de cad al
final de la cadena que invoca. La subcadena empieza en ind y se ejecuta por long caracteres. Ambas
funciones devuelven una referencia al objeto que invoca.

Capitulo 2: Manejo de cadenas 59

Los operadores relacionales son la manera mas facil de compartir una cadena con otra. Ade-
mas de las formas usadas en la solucion, otras versiones de estos operadores le permiten comparar
un objeto string con una cadena terminada en un caracter nulo. Para proporcionar flexibilidad
agregada, string también brinda la funcién compare(), que le permite comparar partes de dos
cadenas. He aqui un ejemplo. Compara una cadena con una subcadena de la cadena que invoca.

int compare(size_type ind, size_type long, const string &cad) const

Esta funciéon compara cad con la subcadena dentro de la cadena que invoca y que empieza en ind
y tiene long caracteres de largo. Devuelve menos de cero si la secuencia en la cadena que invoca es
menor que cad, cero si las dos secuencias son iguales, y mayor que cero si la secuencia en la cadena
que invoca es mayor que cad.

Puede eliminar todos los caracteres de una string de dos maneras. En primer lugar, como se
muestra en la solucién, puede usar la funcién erase(), permitiendo los argumentos predetermina-
dos. Como opcién, puede llamar a clear(), que se muestra aqui:

void clear()

Busque un objeto string

Componentes clave

Encabezado Clases Funciones

<string> string size_type find(const char *cad,

size_type ind = 0) const
size_type find(const string *cad,

size_type ind = 0) const
size_type find_first_of(const char *cad,

size_type ind = 0) const
size_type find_first_of(const string *cad,

size_type ind = 0) const
size_type find_first_not_of(const char *cad,

size_type ind = 0) const
size_type find_last_of(const char *cad,

size_type ind = npos) const
size_type find_last_not_of(const char *cad,

size_type ind = npos) const
size_type rfind(const char *cad,

size_type ind = npos) const

La clase string define una serie poderosa de funciones que busca una cadena. Estas funciones le
permiten encontrar:

* La primera apariciéon de una subcadena o un carécter.

* La dltima aparicién de una subcadena o un carécter.

* La primera apariciéon de cualquier carcter en un conjunto de caracteres.
* La dltima aparicién de cualquier cardcter en un conjunto de caracteres.

60 cC++ Soluciones de programacidn

¢ La primera aparicion de cualquier cardcter que no es parte de un conjunto de caracteres.
¢ La dltima aparicién de cualquier cardcter que no es parte de un conjunto de caracteres.

En esta solucién se demuestra su uso.

Paso a paso
La bisqueda de una string incluye estos pasos:

1. Para encontrar la primera aparicién de una secuencia o caracter, llame a find().

2. Para encontrar la tltima aparicién de una secuencia o caracter, llame a rfind().

3. Para encontrar la primera aparicién de cualquier cardcter en un conjunto de caracteres,
llame a find_first_of().

4. Para encontrar la dltima aparicién de cualquier caracter en un conjunto de caracteres,
llame a find_last_of().

5. Para encontrar la primera aparicién de cualquier cardcter que no es parte de un conjunto
de caracteres, llame a find_first_not_of().

6. Para encontrar la tltima aparicién de cualquier caracter que no es parte de un conjunto de
caracteres, llame a find_last_not_of().

Analisis
Todas las funciones de buisqueda tienen cuatro formas, lo que les permite especificar el objetivo
de la bisqueda como una string, una cadena terminada en un carédcter nulo, una porcién de una
cadena terminada en un caracter nulo, o un carécter. Aqui se describen las formas usadas por los
ejemplos de esta solucién.

La funcién find() encuentra la primera aparicién de una subcadena o un caricter dentro de
otra cadena. Aqui estan las formas usadas en esta solucién o en el Ejemplo adicional:

size_type find(const string &cad, size_type ind = 0) const
size_type find(const char *cad, size_type ind = 0) const

Ambas devuelven el indice de la primera aparicién de cad dentro de la cadena que invoca. El para-
metro ind especifica el indice en que empezara la bisqueda dentro de la cadena que invoca. En la
primera forma, cad es una referencia a una string. En la segunda forma, cad es un apuntador a una
cadena terminada en un cardcter nulo. Si no se encuentra una coincidencia, se devuelve npos.

La funcién rfind() encuentra la tltima aparicién de una subcadena o un caracter dentro de otra
cadena. La forma que se usa aqui es:

size_type rfind(const char *cad, size_type ind = npos) const

Devuelve el indice de la tdltima aparicién de cad dentro de la cadena que invoca. El pardmetro ind
especifica el indice en que empezard la bisqueda dentro de la cadena que invoca. Si no se encuen-
tra una coincidencia, se devuelve npos.

Para encontrar la primera aparicion de cualquier cardcter dentro de un conjunto de caracteres,
se llama a find_first_of(). He aqui las formas usadas en esta solucién o en el Ejemplo adicional:

size_type find_first_of(const string &cad, size_type ind = 0) const
size_type find_first_of(const char *cad, size_type ind = 0) const

Capitulo 2: Manejo de cadenas 61

Ambos devuelven el indice del primer caracter dentro de la cadena que invoca y que coincide con
cualquier caracter en cad. La bisqueda empieza en el indice ind. Se devuelve npos si no se en-
cuentra una coincidencia. La diferencia entre las dos es simplemente el tipo de cad, que puede ser
string o una cadena terminada en un caracter nulo.

Para encontrar la primera aparicion de cualquier cardcter que no es parte de un conjunto de
caracteres, llame a find_first_not_of(). He aqui las formas usadas en esta solucién o en el Ejemplo
adicional:

size_type find_first_not_of(const string &cad, size_type ind = 0) const
size_type find_first_not_of(const char *cad, size_type ind = 0) const

Ambas devuelven el indice del primer cardcter dentro de la cadena que invoca y que no coincide
con cualquier caracter en cad. La bisqueda empieza en el indice ind. Se devuelve npops sino se
encuentra una coincidencia. La diferencia entre ambas es simplemente el tipo de cad, que puede
ser string o una cadena terminada en un caracter nulo.

Para encontrar la tltima aparicién de cualquier caracter que no es parte de un conjunto de
caracteres, llame a find_last_of(). Esta es la forma usada en la solucién:

size_type find_last_of(const char *cad, size_type ind = npos) const

Devuelve el indice del dltimo caracter dentro de la cadena que invoca y que coincide con cual-
quier caracter en cad. La buisqueda empieza en el indice ind. Se devuelve npos si no se encuentra
una coincidencia.

Para encontrar la dltima aparicién de cualquier caracter que no es parte del conjunto de carac-
teres, llame a find_last_not_of(). La forma usada en esta solucién es:

size_type find_last_not_of(const char *cad, size_type ind = npos) const

Devuelve el indice del tltimo caracter dentro de la cadena que invoca y que no coincide con cual-
quier caracter en cad. La bisqueda empieza en el indice ind. Se devuelve npos si no se encuentra
una coincidencia.

NoTA Como se acaba de describir, se devuelve npos con las funciones find... cuando no se encuentra
una coincidencia. La variable npos es de tipo string::size_type, que es alguna forma de entero sin sig-
no. Sin embargo, npos se inicializa en —1. Esto causa que npos contenga su valor sin signo mds largo
posible. Microsoft recomienda que si estard comparando el valor de alguna variable con npos, entonces
esa variable debe declararse de tipo string::size_type, en lugar de int o unsigned para asegqurar que
la comparacion se maneja correctamente en todos los casos. Este es el método empleado en estas solu-
ciones. Sin embargo, no es poco comiin ver codigo en que npos se declara como int o unsigned.

Ejemplo
En el siguiente ejemplo se muestran las funciones de btisqueda en accién:
// Busca en una cadena.

#include <iostreams>
#include <string>

62

C++ Soluciones de programacion

using namespace std;
void mostrarresultado(string s, string::size type i);

int main()

{

}

string::size type ind;

// Crea una cadena.
string cad("uno dos tres, uno dos tres");
string cad2;

cout << "La cadena en que se busca: " << cad << "\n\n";

cout << "Buscando el primer caso de 'dos'\n";
ind = cad.find("dos") ;
mostrarresultado(cad, ind) ;

cout << "Buscando el \u0OOa3ltimo cso de 'dos'\n";
ind = cad.rfind("dos") ;
mostrarresultado(cad, ind) ;

cout << "Buscado el primer caso de t o r\n";
ind = cad.find first of ("txr");
mostrarresultado (cad, ind) ;

cout << "Buscando el \u00a3ltimo csso de t o r\n";
ind = cad.find last of ("tr");
mostrarresultado(cad, ind) ;

cout << "Buscando el primer caso de cualquier car\uOOaOcter diferente "
<< "de u, n, o, o espacio\n";

ind = cad.find first not_of ("uno ");

mostrarresultado(cad, ind) ;

cout << "Buscando el \u0OOa3ltimo caso de cualquier car\uOOaOcter diferente
<< "de u, n, o, o espacio\n";

ind = cad.find last not of ("uno ");

mostrarresultado(cad, ind) ;

return 0;

// Despliega el resultado de la bisqueda.
void mostrarresultado(string s, string::size type i) {

if (i == string::npos) {
cout << "No se ha encontrado alguna coincidencia.\n";
return;

}

cout << "Se encontr\u00a2 una coincidencia en el \uOOalndice " << i << endl;

cout << "Cadena restante desde el punto de coincidencia: "
<< s.substr(i) << "\n\n";

Capitulo 2: Manejo de cadenas

Aqui se muestra la salida:

La cadena en que se busca: uno dos tres, uno dos tres

Buscando el primer caso de 'dos'
Se encontrd una coincidencia en el indice 4
Cadena restante desde el punto de coincidencia: dos tres, uno dos tres

Buscando el tGltimo caso de 'dos'
Se encontrd una coincidencia en el indice 18
Cadena restante desde el punto de coincidencia: dos tres

Buscado el primer caso de t or r
Se encontrd una coincidencia en el indice 8
Cadena restante desde el punto de coincidencia: tres, uno dos tres

Buscando el Gltimo caso de t o ¢
Se encontrd una coincidencia en el indice 23
Cadena restante desde el punto de coincidencia: tres

Buscando el primer caso de cualquier caracter diferente de u, n, o, o espacio
Se encontrd una coincidencia en el indice 4
Cadena restante desde el punto de coincidencia: dos tres, uno dos tres

Buscando el Gltimo caso de cualquier caracter diferente de u, n, o, o espacio

Se encontrd una coincidencia en el indice 25
Cadena restante desde el punto de coincidencia: s

Ejemplo adicional: una clase de conversion en fichas para objetos string

63

La biblioteca estandar de C++ contiene la funcién strtok(), que puede usarse para convertir
en fichas una cadena terminada en un caracter nulo (consulte Convierta en fichas una cadena
terminada en un cardcter nulo). Sin embargo, la clase string no define un equivalente correspon-
diente. Por fortuna, es muy facil crear uno. Antes de empezar, es importante establecer que
hay varias maneras diferentes de realizar esta tarea. En este ejemplo se muestra una de varias.

En el siguiente programa se crea una clase llamada convertirenfichas que encapsula esta
funcién. Para convertir en fichas una cadena, construya primero una convertirenfichas, pa-
sando la cadena como un argumento. A continuacién, llame a obtener_ficha() para obtener
las fichas individuales en la cadena. Los delimitadores que definen los limites de cada ficha
se pasan a obtener_ficha() como cadena. Los delimitadores pueden cambiarse con cada lla-
mada a obtener_ficha(). Esta funcién devuelve una cadena vacia cuando no hay maés fichas
para devolver. Observe que se usan las funciones find_first_of() y find_first_not_of£().

// Crea una clase llamada convertirenfichas que hace lo indicado.
#include <iostream>
#include <string>

using namespace std;

// La clase convertirenfichas se usa para la accidn correspondiente.
// Pasa al constructor la cadena que habra de convertirse en fichas.
// Para obtener la siguiente ficha, llame a obtener ficha(),

// pasadndolo en una cadena que llama al delimitador.

64

C++ Soluciones de programacion

class convertirenfichas
string s;
string::size_type indinicio;
string::size type indfinal;

public:
convertirenfichas (const string &cad)
s = cad;
indinicio = 0;

}

// Devuelve una ficha desde la cadena.
string obtener ficha(const string &delims) ;

Vi

// Devuelve una ficha desde la cadena. Devuelve

// una cadena vaclia cuando ya no se encuentran mias fichas.

// Pasa los delimitadores en delims.

string convertirenfichas::obtener ficha(const string &delims) {

// Devuelve una cadena vacia cuando no hay mas
// fichas por regresar.
if (indinicio == string::npos) return string("");

// Empezando en indinicio, encuentra el siguiente delimitador.
indfinal = s.find first of (delims, indinicio);

// Construye una cadena que contiene la ficha.
string fic(s.substr(indinicio, indfinal-indinicio));

// Encuentra el inicio de la siguiente ficha. Es un
// caracter que no es un delimitador.
indinicio = s.find first not_of (delims, indfinal);

// Devuelve la siguiente ficha.
return fic;

}

int main/()

{
// Cadenas que habran de convertirse en fichas.
string cadA("Yo tengo cuatro, cinco, seis fichas. ");
string cadB("Tal vez tenga m\u0OaOs fichas.\n\u00a8Y t\u00a3?");

// Estas cadenas contienen los delimitadores.
string delimitadores (" ,.\u00a8?\n");

// Esta cadena contendra la siguiente ficha.
string ficha;

// Crea dos convertirenfichas.
convertirenfichas ficA(cada) ;
convertirenfichas ficB(cadB) ;
// Despliega las fichas en cadA.

Capitulo 2: Manejo de cadenas

cout << "Las fichas en cadA:\n";
ficha = ficA.obtener ficha(delimitadores) ;
while (ficha != "") {

cout << ficha << endl;

ficha = ficA.obtener ficha(delimitadores) ;

}

cout << endl;

// Despliega las fichas en cadB.
cout << "Las fichas en cadB:\n";
ficha = ficB.obtener ficha(delimitadores) ;
while (ficha != "") {
cout << ficha << endl;
ficha = ficB.obtener ficha(delimitadores) ;

return 0;

}
He aqui la salida:

Las fichas en cadA:
Yo

tengo

cuatro

cinco

seis

fichas

Las fichas en cadB:
Tal

vez

tenga

mas

fichas

Y

ta

Hay una facil mejora que tal vez quiera hacer a convertirenfichas: una funcién reset(). Esta
funcién podria llamarse para habilitar una cadena que vuelva a convertirse en fichas desde el
inicio. Esto es facil. Simplemente establezca indinicio en cero, como se muestra aqui:

void rest() { indinicio = 0; }

Opciones
Como se menciond, cada una de las funciones de find... tienen cuatro formas. Por ejemplo, he
aqui todas las formas de find():

size type find(const string &cad, size type ind = 0) const

size type find(const char *cad, size type ind = 0) const

size type find(const char *cad, size type ind, size type long) const
size type find(char cad, size_ type ind = 0) const

65

66

C++ Soluciones de programacion

Las primeras dos formas se describieron antes. La tercera busca la primera aparicién de los pri-
meros long caracteres. La cuarta busca la primera de car. En todos los casos, la bisqueda empieza
en el indice especificado por ind dentro de la string que invoca, y se devuelve el indice en que se
encuentra la coincidencia. Si no se encuentra una, se devuelve npos. Las otras funciones de find...
tienen formas similares.

Como se menciond en la revisién general, al principio del capitulo, la clase string satisface los
requisitos generales para que sea un contenedor compatible con STL. Esto significa que los algorit-
mos declarados en <algorithm> pueden operar en él. Por tanto, puede hacerse una bisqueda en un
objeto string al usar los algoritmos de bisqueda, como search(), find(), find_first_of(), etc. La venta-
ja que ofrecen los algoritmos es la capacidad de proporcionar un predicado definido por el usuario
que le permite especificar cuando un caracter en la cadena coincide con otro. Esta caracteristica se
utiliza en la solucién Cree una busqueda intensiva de mayiisculas y miniisculas y funciones de biisqueda y
reemplazo para objetos string para implementar una funcién de buisqueda que ignora las diferencias
entre maytsculas y mintsculas. (STL y los algoritmos se cubren a fondo en los capitulos 3 y 4.)

Cree una funcion de bisqueda y reemplazo para objetos string

Componentes clave

Encabezado Clases Funciones

<string> string size_type find(const string &cad,
size_type ind = 0) const
string &replace(size_type ind,
size_type long,
const string &cad)

La clase string proporciona soporte muy rico para el reemplazo de una subcadena con otra. Esta
operacién es proporcionada por la funcién replace(), de la que hay diez formas. Estas le dan una
gran flexibilidad en la especificaciéon de la manera en que el proceso de reemplazo tendra lugar. Por
ejemplo, puede especificar la cadena de reemplazo como un objeto string o una cadena terminada
en un caracter nulo. Puede especificar cudl parte de la cadena que invoca se reemplazard al especi-
ficar indices o0 mediante el uso de iteradores. En ésta solucién se usa replace() junto con la funcién
find(), que se demostr6 en la anterior, para implementar una funcién de bisqueda y reemplazo para
objetos string. Como verd, debido al soporte que string proporciona mediante find() y replace(), la
implementacién de la busqueda y reemplazo es simple. También representa una implementacioén
mucho mas clara que la misma funcién implementada para cadenas terminadas en un caracter nulo.
(Consulte Cree una funcion de biisqueda y reemplazo para cadenas terminadas en un cardcter nulo.)

Paso a paso
Crear una funcién de biisqueda y reemplazo para objetos string implica estos pasos:
1. Cree una funcién llamada buscar_y_reemplazar() que tenga este prototipo:

bool buscar_ y reemplazar (string &cad, const string &subcadant,
const string S$subcadnue) ;

Capitulo 2: Manejo de cadenas 67

La cadena que habra de cambiarse se pasa via cad. La subcadena que se reemplazara se
pasa en subcadant. El reemplazo se pasa en subcadnue.

2. Use la funcién find() para encontrar la primera aparicion de subcadant.

3. Use la funcién replace() para sustituir subcadnue.

4. Devuelve el valor true si se realizé un reemplazo y false, sino.

Anlisis
El método find() se describi6 en la solucién anterior y el andlisis no se repetira aqui.

Una vez que se ha encontrado la subcadena, puede reemplazarse al llamar a replace(). Hay
diez formas de replace(). Aqui se muestra la usada en esta solucion:

string &replace(size_type ind, size_type long, const string &cad)

Empezando en ind, dentro de la cadena que invoca, esta version reemplaza hasta long caracte-
res con la cadena en cad. La razén de que reemplace "hasta" long caracteres es que no es posible
reemplazar més alla del final de la cadena. Por tanto, si long + ind excede la longitud total de la
cadena, s6lo se reemplazaran los caracteres de ind al final. La funcién devuelve una referencia a
la cadena que invoca.

Ejemplo

He aqui la manera de implementar la funcién buscar_y_reemplazar():

// En la cadena a la que hace referencia cad, reemplaza subcadant con subcadnue.
// Por tanto, esta funcién modifica la cadena a la que hace referencia cad.
// Devuelve true si ocurre un reemplazo, y false si no.
bool buscar_ y reemplazar (string &cad, const string &subcadant,
const string &subcadnue) {
string::size_ type indinicio;

indinicio = cad.find (subcadant) ;

if (indinicio != string::npos) ({
cad.replace (indinicio, subcadant.size (), subcadnue) ;
return true;

}

return false;

}

Si compara esta versiéon de buscar_y_reemplazar() con la creada para cadenas terminadas en un
cardcter nulo, verd que ésta es mucho mas pequefia y simple. Hay dos razones para esto. En pri-
mer lugar, porque los objetos de tipo string son dindmicos: pueden crecer o reducirse de acuerdo
con las necesidades.

Por tanto, es facil reemplazar una subcadena con otra. No es necesario preocuparse de rebasar
el limite de la matriz cuando la longitud de la cadena aumenta, por ejemplo. En segundo lugar,
string proporciona una funcién replace() que maneja automaticamente la eliminacién de la subca-
dena antigua y la insercién de la nueva. Esto no se necesita para manejarse manualmente, como en
el caso de la insercién de una cadena terminada en un carédcter nulo.

68

C++ Soluciones de programacion

En el siguiente ejemplo se muestra la funcién buscar_y_reemplazar() en acciéon:

// Implementa la opcién de bisqueda y reemplazo para objetos de cadena.
#include <iostreams>
#include <string>

using namespace std;

bool buscar_y reemplazar (string &cad, const string &subcadant,
const string &subcadnue) ;

int main/()

{

string cad = "Si esto es una prueba, s\u0Oa2lo esto es.";
cout << "Cadena original: " << cad << "\n\n";
cout << "Reemplazando 'es'con 'fue':\n";

// Lo siguiente reemplaza es con fue. Tome nota de que
// pasa literales de cadena para las subcadenas.

// Se convierten automdticamente en objetos de cadena.
while (buscar y reemplazar (cad, "es", "fue"))

cout << cad << endl;

cout << endl;

// Por supuesto, también puede pasar explicitamente objetos de cadena.
string cadant ("s\u0Oa2lo") ;

string cadnue ("entonces s\u0O0a2lo") ;

cout << "Reemplaza 's\uOOa2lo' con 'entonces s\uOOa2lo'" << endl;
buscar_y reemplazar(cad, cadant, cadnue);

cout << cad << endl;

return O0;

}

// En la cadena a la que hace referencia cad, reemplaza subcadant con subcadnue.
// Por tanto, esta funcidén modifica la cadena a la que hace referencia cad.
// Devuelve true si ocurre un reemplazo, y false si no.
bool buscar_ y reemplazar (string &cad, const string &subcadant,
const string &subcadnue) {
string::size_ type indinicio;

indinicio = cad.find(subcadant) ;

Capitulo 2: Manejo de cadenas 69

if (indinicio != string::npos)
cad.replace(indinicio, subcadant.size(), subcadnue) ;
return true;

}

return false;

}
Aqui se muestra la salida:

Cadena original: Si esto es una prueba, sdlo esto es.

Reemplazando 'es' con 'fue':

Si fueto es una prueba, sbélo esto es.

Si fueto fue una prueba, sdlo esto es.
Si fueto fue una prueba, sdlo fueto es.
Si fueto fue una prueba, sélo fueto fue.

Reemplaza 'sélo' con 'entonces sdélo!
Si fueto fue una prueba, entonces sdlo fueto fue.

Opciones
La funcién replace() tiene otras formas diversas. Las tres que se usan con mas frecuencia se descri-
ben aqui. Todas devuelven una referencia a la cadena que invoca.

La siguiente forma de replace() toma una cadena terminada en un caracter nulo como cadena
de reemplazo:

string &replace(size_type ind, size_type long, const char *cad)

Empezando en ind dentro de la cadena que invoca, reemplaza hasta long caracteres con la cadena
en cad.
Para reemplazar una subcadena con una parte de otra cdm utilice esta forma:

string &replace(size_type ind1, size_type long1, const char *cad
size_type ind2, size_type long2)

Reemplaza hasta long1 caracteres en la cadena que invoca, empezando en ind1, con los long2 carac-
teres a partir de la cadena en cad, empezando en ind2.
La siguiente forma de replace() opera en iteradores:

string &replace(iterator inicio, iterator final, const string &cad)

El rango especificado por inicio y final es reemplazado con los caracteres en cad.

La funcién buscar_y_reemplazar() opera de una manera sensible a maytsculas y mintsculas.
Es posible realizar una bisqueda y reemplazo sensible a maytsculas y mintisculas, pero se requie-
re un poco de trabajo. Una manera es implementar una funcién de este tipo que use el algoritmo
de STL search() estandar. Este le permite especificar un predicado binario que puede hacerse a la
medida para probar si dos caracteres son iguales con independencia de las diferencias entre ma-
ytsculas y mintsculas. Luego puede usar esta funcién para encontrar la ubicaciéon de la subcade-
na que habré de eliminarse. Para ver este método en accién, consulte Cree una biisqueda no sensible a
mayiisculas y mimisculas y funciones de biisqueda y reemplazo para objetos string.

70

C++ Soluciones de programacion

Opere en objetos string mediante iteradores

Componentes clave

Encabezado Clases Funciones

<string> string iterator begin()

iterator end()

reverse_iterator rbegin()

reverse_iterator rend()

iterator erase(iterator inicio, iterator final)

template <class Inlter>

void insert(iterator itr, Inlter inicio,
Inlter final)

string &replace(iterator inicio,
iterator final,
const char *cad)

<algorithm> template <class Inlter, class T>
Inlter find(Inlter inicio,
Inlter final,
const T &val)
template <class Inlter, class Outlter,
class Func>
Outlter transform(Inlter inicio,
Inlter final,
Outlter resultado,
Func funUnaria)

En esta solucién se muestra cémo usar los iteradores con objetos de tipo string. Como la mayoria
de los lectores sabe, los iteradores son objetos que acttian como apuntadores. Le dan la capacidad
de hacer referencia a los contenidos del contenedor al usar una sintaxis parecida a un apuntador.
También son el mecanismo que deja que diferentes tipos de contenedores sean manejados de la
misma manera y que permite diferentes tipos de contenedores para intercambiar datos. Son uno
de los conceptos mas poderosos de C++.

Como se explicé en la revisién general de string, cerca del principio de este capitulo, basic_
string satisface los requisitos basicos de un contenedor. Por tanto, la especializacién de string de
basic_string es, en esencia, un contenedor de caracteres. Uno de los requisitos de todos los conte-
nedores es que den soporte a iteradores. Al dar soporte a iteradores, string ofrece tres beneficios
importantes:

1. Los iteradores pueden mejorar algunos tipos de operaciones de string.

2. Los iteradores permiten que los diveros algoritmos STL operen en objetos string.

3. Lositeradores permiten que string sea compatible con otros contenedores STL. Por ejem-
plo, mediante iteradores, puede copiar los caracteres de una string en un vector o construir
una string a partir de caracteres almacenados en deque.

La clase string da soporte a todas las operaciones basicas de iterador. También proporciona
versiones de varias de las funciones, como insert() y replace(), que estan disenadas para trabajar
con iteradores. En esta solucién se demuestran las operaciones bésicas y tres funciones habilitadas

Capitulo 2: Manejo de cadenas 1

por iteradores, y se muestra la manera en que los iteradores permiten que string se integre en el
marco conceptual general del STL.

NoTA Para conocer un andlisis detallado de los iteradores, consulte el capitulo 3, que presenta solu-
ciones basadas en STL.

Paso a paso
Para operar en una cadena mediante iteradores se requieren estos pasos:

1. Declare una variable que contendrd un iterador. Para ello, debe usar uno de los tipos de

iterador definidos por string, como iterator o reverse_iterator.

Para obtener un iterador al principio de una cadena, llame a begin().

Para obtener un iterador al final de una cadena, llame a end().

Para obtener un iterador inverso al principio de la cadena invertida, llame a rbegin().

Para obtener un iterador inverso al final de la cadena invertida, llame a rend().

Puede recorrer en ciclo los caracteres de una cadena mediante un iterador de una manera

muy parecida a la que puede usar para que un apuntador recorra en ciclo los elementos

de una matriz.

7. Puede crear un objeto string que se inicializa con los caracteres sefialados por un rango de
iteradores. Entre otros usos, esto le permite construir una string que contiene elementos
de otro tipo de contenedor, como vector.

8. Muchas de las funciones de string definen versiones que operan a través de iteradores.
Las demostradas en esta solucién son erase(), insert() y replace(). Le permiten eliminar,
insertar y reemplazar caracteres dentro de los iteradores determinados de una cadena a los
extremos de los caracteres.

9. Debido a que los algoritmos STL funcionan mediante iteradores, puede usar cualquiera
de los algoritmos en objetos de tipo string. Aqui se demuestran dos: find() y transform().
Requieren el encabezado <algorithm>.

AN R

Anlisis

Una revision general de los iteradores se presenta en el capitulo 3, y esa informacién no se repi-

te aqui. Sin embargo, es 1itil revisar unos cuantos puntos clave. En primer lugar, el objeto al que
sefala un iterador se accede mediante el operador * de la misma manera en que éste se usa para
acceder al objeto senalado por un apuntador. Como se aplica a string, el objeto sefialado por un
iterador es un valor char. En segundo lugar, cuando se incrementa un iterador, sefiala al siguiente
objeto del contenedor. Cuando se reduce, sefiala al objeto anterior. Para string, esto significa que el
iterador sefiala al siguiente caracter o al anterior.

Hay dos estilos bésicos de iteradores a los que da soporte string: directos o inversos. Cuando
se incrementa, un iterador directo se acerca al final de la cadena y cuando se reduce, lo hace hacia
el principio. Un iterador inverso trabaja al revés. Cuando un iterador inverso se incrementa, se
mueve hacia el principio de la cadena y cuando se reduce se mueve hacia el final. De estos dos
iteradores basicos, la clase string declara cuatro tipos basicos de iteradores que tienen los siguien-
tes nombres de tipo:

12

C++ Soluciones de programacion

iterator Iterador que se mueve hacia adelante que puede leer y escribir a lo que senala.
const_iterator Iterador que se mueve hacia adelante y que es de sélo lectura.

reverse_iterator Iterador que se mueve hacia atras que puede leer y escribir a lo que senala.
const_reverse_iterator Iterador que se mueve hacia atras y que es de sélo lectura.

En la solucién sélo se usan iterator y reverse_iterator, pero los otros dos funcionan de la mis-
ma manera, excepto que no se puede escribir el objeto al que senalan.

En los analisis siguientes, las mismas funciones usan los nombres de tipo genérico Inlter y
Outlter. En este libro, Inlter es un tipo de iterador que es, por lo menos, capaz de leer operacio-
nes. Outlter es un tipo de iterador que es, por lo menos, capaz de escribir operaciones. (Otros
tipos de iteradores se analizan en el capitulo 3.)

Para declarar un iterador para una string, use uno de los tipos antes mencionados. Por
ejemplo:

string::iterator itr;

declara un iterador directo que no es const y que puede usarse con un objeto string.

Para obtener un iterador al principio de una cadena (que es el primer caracter de la cadena),
llame a begin(). Para obtener un iterador que sefale a uno después del final de la cadena, llame a
end(). Por tanto, el dltimo caracter de la cadena estd en end()-1. Aqui se muestran estas funciones:

iterator begin()
iterator end()

La ventaja de que end() devuelva un iterador a uno después del tltimo caracter es que pueden
escribirse bucles muy eficientes que recorren en ciclo todos los caracteres de una cadena. He aqui
un ejemplo:

string::iterator itr;

for (itr = cad.begin(); itr != cad.end(); ++itr) ({
//

}

Cuando itr sea igual a end(), todos los caracteres de cad se habran examinado.

Cuando se usa un iterador inverso, puede obtener uno al tltimo caracter en la cadena al llamar
a rbegin(). Para obtener un iterador inverso a uno antes del primer carécter en la cadena, llame a
rend(). Se muestran aqui:

reverse_iterator rbegin()
reverse_iterator rend()

Se usa un iterador inverso de la misma manera en que usa un iterador regular. La tinica diferencia
es que recorre la cadena en la direccién inversa.

La clase string proporciona un constructor que le permite crear una cadena que se inicializa
con caracteres sefialados por iteradores. Aqui se muestra:

template <class Inlter> string(Inlter inicio, Inlter final,
const Allocator &asig = Allocator())

Capitulo 2: Manejo de cadenas 13

El rango de caracteres esté especificado por inicio y final. El tipo de estos iteradores esta especifi-
cado por el tipo genérico Inlter, que indica que los iteradores deben dar soporte a operaciones de
lectura. Sin embargo, no tienen que ser de tipo string::iterator. Esto significa que puede usar este
constructor para crear una cadena que contenga caracteres de otro contenedor, como vector.

Varias de las funciones de string tienen formas sobrecargadas que utilizan iteradores para
acceder al contenido de la cadena. En esta solucién se usan tres que son representativas: insert(),
erase() y replace(). A continuacién se muestran las versiones usadas en esta solucion:

iterator erase(iterator inicio, iterator final)
string &replace(iterator inicio, iterator final, const char *cad)
template <class Inlter>

void insert(iterator itr, Inlter inicio, Inlter final)

El método erase() elimina los caracteres en el rango sefialado por inicio a final. Devuelve un itera-
dor al caracter que sigue al tltimo cardcter eliminado. La funcién replace() reemplaza con cad los
caracteres en el rango especificado por inicio y final. Devuelve una referencia al objeto que invo-
ca. (Otras versiones habilitadas por iterador de replace() le permiten pasar una string a cad.) El
método insert() inserta los caracteres en el rango sefialado por inicio y final inmediatamente antes
del elemento especificado por itr. En insert(), observe que inicio y final son del tipo genérico Inlter,
lo que significa que los iteradores deben dar soporte a operaciones de lectura. Todos los tipos
de iterador de string satisfacen esta restriccion. Asi lo hacen muchos otros iteradores. Por tanto,
puede insertar caracteres de otro tipo de contenedor en una string. Esta es una de las ventajas de
los iteradores.

Debido a que los algoritmos STL funcionan mediante iteradores, puede usarlos en string. Los
algoritmos STL estdn declarados en <algorithm> y realizan varias operaciones en contenedores. En
esta solucion se demuestra el uso de dos algoritmos, find() y transform(), que se muestran aqui:

template <class Inlter, class T>
Inlter find(Inlter inicio, Inlter final, const T &uval)

template <class Inlter, class Outlter, class Func>
Outlter transform(Inlter inicio, Inlter final, Outlter resultado, Func funUnaria)

El algoritmo find() busca el valor especificado por val en el rango sefialado por inicio y final. De-
vuelve un iterador a la primera aparicién del elemento o a final, si el valor no estd en la secuencia.
El algoritmo transform() aplica una funcién a un rango de elementos especificado por inicio y final,
poniendo el resultado en resultado. La funcién que habra de aplicarse esta especificada en funlna-
ria. Esta funcién recibe un valor de la secuencia y debe regresar su transformacién. Por tanto, los
tipos de pardmetro y de devolucién deben ser compatibles con el tipo de objetos almacenados en
el contenedor, que en el caso de string es char. El algoritmo transform() devuelve un iterador al
final de la secuencia resultante. Observe que el resultado es de tipo Outlter, lo que significa que
debe dar soporte a operaciones de escritura.

Ejemplo

En el siguiente ejemplo se muestra como usar iteradores con objetos string. También se demues-
tran versiones de iterador de las funciones miembro de string insert(), replace() y find(). Ademas
se usan los algoritmos STL find() y transform().

74

C++ Soluciones de programacion

// Demuestra iteradores con cadenas.
#include <iostream>

#include <strings>

#include <cctype>

#include <algorithms>

#include <vector>

using namespace std;

int main()

{

string cadA("La prueba es la siguiente.");

// Crea un iterador a una cadena.
string::iterator itr;

// Usa un iterador para recorrer en ciclo los caracteres
// de una cadena.
cout << "Despliega una cadena mediante un iterador.\n";
for (itr = cadA.begin(); itr != cadA.end(); ++itr)

cout << *itr;
cout << "\n\n";

// Usa un iterador inverso para desplegar la cadena invertida.
cout << "Despliega una cadena invertida usando un iterador inverso.\n";
string::reverse iterator ritr;
for (ritr = cadA.rbegin(); ritr != cadA.rend(); ++ritr)
cout << *ritr;
cout << "\n\n";

// Inserta una cadena mediante un iterador.

// Primero, usa el algoritmo STL find() para obtener un
// iterador al principio de la primera 'a'.
itr = find(cadA.begin(), cadA.end(), 'a');

// Luego, incrementa el iterador para que sefiale al
// caracter después de 'a', que en este caso es un espacio.
++1itr;

// Inserta en cad usando la versidn de iterador de insert().
cout <<"Inserta en una cadena mediante un iterador.\n";
string cadB (" mayor") ;

cadA.insert (itr, cadB.begin(), cadB.end()) ;

cout << cadA << "\n\n";

// Ahora, reemplaza 'mayor' con 'mejor'.
cout << "Reemplaza mayor con mejor.\n";
itr = find(cadA.begin(), cadA.end(), 'm'");
cadA.replace (itr, itr+5, "mejor");

cout << cadA << "\n\n";

// Ahora, elimina ' mejor'.
cout << "Elimina ' mejor'.\n";

Capitulo 2: Manejo de cadenas

itr = find(cadA.begin(), cadA.end(), 'm');
cadA.erase(itr, itr+6);
cout << cadA << "\n\n";

// Usa un iterador con el algoritmo STL transform() para convertir
// una cadena a mayUsculas.
cout << "Use el algoritmo STL transform() para convertir una "
<< "cadena en may\uOOa3sculas.\n";
transform(cadA.begin(), cadA.end(), cadA.begin(), toupper);
cout << cadA << "\n\n";

// Crea una cadena desde un vector<chars.
vector<char> vec;
for(int 1=0; i < 10; ++1)

vec.push_back ('A'+1) ;

string cadC(vec.begin(), vec.end()) ;
cout << "Se muestra cadC, construida a partir de un vector:\n";
cout << cadC << endl;

return O;

}
Aqui se muestra la salida:

Despliega una cadena mediante un iterador.
La prueba es la siguiente.

Despliega una cadena invertida usando un iterador inverso.
.etneiugis al se abeurp aL

Inserta en una cadena mediante un iterador.
La mayor prueba es la siguiente.

Reemplaza mayor con mejor.
La mejor prueba es la siguiente.

Elimina ' mejor'.
La prueba es la siguiente.

Use el algoritmo STL transform() para convertir una cadena en maylsculas.
LA PRUEBA ES LA SIGUIENTE.

Se muestra cadC, construida a partir de un vector:
ABCDEFGHIJ

Opciones

Como se menciond, varias de las funciones miembro definidas por string tienen formas que
operan en iteradores o que los devuelven. Ademads de insert(), erase() y replace() usadas en esta
solucién, string proporciona versiones habilitadas por iteradores de las funciones append() y

assign(). Se muestran aqui:

75

76

C++ Soluciones de programacion

template<class Inlter> string &append(Inlter inicio, Inlter final)
template<class Inlter> string &assign(Inlter inicio, Inlter final)

Esta version de append() agrega la secuencia especificada por inicio y final al final de la cadena
que invoca. Esta version de assign() asigna la secuencia especificada por inicio y final a la cadena que
invoca. Ambas devuelven una red a la cadena que invoca.

Cree una busqueda no sensible a maytisculas y minusculas y funciones

de bisqueda y reemplazo para objetos string

Componentes clave

Encabezado Clases Funciones
<cctype> int tolower(int car)
<string> string iterator begin()

iterator end()
string &replace(iterator inicio, iterator final,
const string &subcadnue)

<algorithm> template <class Forlterl, class Forlter2,
class BinPred>
Forlter3 search(Forlterl iniciol,
Forlterl finall,
Forlter2 inicio2,
Forlter2 final2,
BinPred pfn)

Aunque string es muy poderosa, no da soporte directo a dos funciones muy ttiles. La primera

es una funcién de bisqueda que ignora diferencias entre mayusculas y mintdsculas. Como casi
todos los lectores saben, este tipo de blisqueda es una caracteristica comtin y valiosa en muchos
contextos. Por ejemplo, cuando se buscan coincidencias de la palabra "esto" en un documento, por
lo general también querra que se encuentre "Esto". La segunda es una funcién de biisqueda y re-
emplazo no sensible a maytsculas y mintsculas, que reemplaza un subcadena con otra, indepen-
dientemente de las diferencias entre mayusculas y mintsculas. Puede usar este tipo de funcién,
por ejemplo, para reemplazar instancias de "www" o "WWW" con las palabras "World Wide Web"
en un solo paso. Cualquiera que sea el propdsito, es facil crear funciones de biisqueda y reemplazo
que no sean sensibles a maytsculas y mintsculas y que operan en objetos string. En esta solucién
se muestra una manera.

Las funciones desarrolladas por ésta, dependen de iteradores para acceder a los caracteres de
una cadena. Debido a que string es un contenedor compatible con STL, proporciona soporte para
iteradores. Este soporte es muy importante porque permite que una string se opere con algoritmos
STL. Esta capacidad expande de manera significativa las maneras en que pueden modificarse las
cadenas. También le permite crear soluciones mejoradas a las que, de otra manera, serian tareas
mas desafiantes. (Consulte la solucién anterior para conocer informacion sobre el uso de iterado-
res con string.)

Capitulo 2: Manejo de cadenas 11

Paso a paso
Una manera de crear una funciéon de bisqueda que ignora diferencias entre mayusculas y
mintsculas incluye estos pasos:

1.

Cree una funcién de comparacion llamada comp_ign_mayus() que realice una compara-
cién no sensible a maytsculas y mintisculas de dos valores char. He aqui un prototipo:

bool comp ign mayus (char x, char y);

Haga que la funcién devuelva un valor true si dos caracteres son iguales y false, si no.
Cree una funcién llamada buscar_ign_mayus() que tenga este prototipo:

string::iterator buscar_ign mayus(strinf &cad, const string &subcad) ;

La cadena en que se buscard se pasa en cad. La subcadena que se buscard es subcad.
Dentro de buscar_ign_mayus(), use el algoritmo STL search() para buscar una subcadena
en una cadena. Este algoritmo busca una coincidencia u otra en una secuencia. Las secuen-
cias estdn especificadas por rangos de iteradores. Especifique la funcién comp_ign_ma-
yus() creada en el paso 1 como el predicado binario que determina cuando un carécter es
igual a otro. Esto permite que search() ignore diferencias entre maytsculas y mintisculas
cuando se busca. Observe que search() estd declarada en el encabezado <algorithm>, que
debe incluirse.

Haga que buscar_ign_mayus() devuelva un iterador al inicio de la primera coincidencia o
cad.end(), si no se encuentra una coincidencia.

Para crear una funcién de bisqueda y reemplazo que ignore las diferencias entre maytusculas y
mintsculas, siga estos pasos:

1. Necesitara la funcién buscar_ign_mayus() descrita por los pasos anteriores. Por tanto, si
aun no la ha creado, debe hacerlo en este momento.

2. Cree una funcién llamada buscar_y_reemplazar_ign_mayus() que tenga este prototipo:
bool buscar_y reemplazar_ign mayus(string &cad, const string &subcadant,

const string &subcadnue) ;

La cadena que habra de modificarse se pasa en cad. La cadena que habra de reemplazarse
se pasa en subcadant. La cadena con que se sustituird se pasa en subcadnue.

3. Use buscar_ign_mayus() para encontrar la primera aparicion de subcadant dentro de cad.

4. Use la version de iterador de la funcién replace() de string para reemplazar la primera
aparicion de subcadant con subcadnue.

5. Haga que buscar_y_reemplazar_ign_mayus() devuelva el valor true si se hace el reempla-
zo y false si cad no contiene un caso de subcadant.

Analisis

Antes de que use el algoritmo search() para realizar una biisqueda no sensible a maytsculas y
mintsculas, debe crear una funcién que compara dos valores char de una manera independiente
de maytsculas y mintisculas. Debe regresar true si los caracteres son iguales y false si no lo son.
En el lenguaje de STL, a esta funcion se le denomina predicado binario. (Consulte el capitulo 3 para
conocer un andlisis de los predicados binarios.)

78

C++ Soluciones de programacion

Esta funcion se utiliza con el algoritmo search() para comparar dos elementos. Al hacer que ignore
las diferencias entre maytsculas y mintsculas, la bisqueda se realizard independientemente de
estas diferencias. He aqui una manera de codificar esta funcién:

bool comp_ign mayus(char x, char y) {
return tolower (x) == tolower (y);

}

Observe que se utiliza la funcién tolower() para obtener el equivalente en mintsculas de cada
cardcter. (Consulte Ignore diferencias entre mayiisculas y mintisculas cuando compare cadenas terminadas
en un cardcter nulo para conocer detalles sobre tolower().) Al convertir cada argumento a mindscu-
las, se eliminan las diferencias entre mayusculas y mintsculas.

Para encontrar una subcadena, llame al algoritmo search(). Aqui se muestra la versién utiliza-
da en esta solucién:

template <class Forlterl, class Forlter2, class BinPred>
Forlter3 search(Forlterl iniciol, Forlterl finall,
Forlter2 inicio2, Forlter2 final2,
BinPred pfn)

Busca una aparicion de la secuencia especificada por inicio2 y final2 dentro del rango de la secuen-
cia especificada por iniciol y finall. En este libro, los nombres de tipo genérico ForlIterl y Forlter2
indican iteradores que tienen capacidades de lectura/escritura y que puedan moverse hacia
adelante. El predicado binario pfnn determina cuando dos elementos son iguales. (En este libro, el
nombre de tipo genérico BinPred indica un predicado binario.) Para los objetivos de la solucién,
pase comp_ign_mayus() a este pardmetro. Si se encuentra una coincidencia, la funcién devuelve
un iterador al principio de la secuencia coincidente. De otra manera, se devuelve finall.

La funcién buscar_y_reemplazar_ign_mayus() usa el iterador devuelto por buscar_ign_mayus()
para encontrar la ubicacion en que se sustituye una subcadena con otra. Para manejar el reemplazo
real, puede usar esta versién de la funcién replace() de string, que opera mediante iteradores:

string &replace(iterator inicio, iterator final, const string &subcadnue)

Reemplaza el rango especificado por inicio y final con subcadnue. Por tanto, se modifica la cadena
que invoca. Devuelve una referencia a la cadena que invoca.

Ejemplo
He aqui una manera de crear la funcién buscar_ign_mayus(). Utiliza comp_ign_mayus() para
determinar cuando dos caracteres son iguales.

// Ignora la diferencia entre mayisculas y mindsculas cuando busca.
// una subcadena. La cadena en que se busca se pasa en cad. La
// subcadena que se buscard se pasa en subcad. Devuelve un iterador
// al principio de la coincidencia o cad.end() si no se encuentra una.
//
// Obsérvese que se usa el algoritmo search() y especifica el
// predicado binario comp ign mayus() .
string::iterator buscar ign mayus(string &cad, const string &subcad)
return search(cad.begin(), cad.end(),
subcad.begin(), subcad.end(),
comp_ign mayus) ;

Capitulo 2: Manejo de cadenas 79

Como lo indican los comentarios, buscar_ign_mayus() encuentra (independientemente de las dife-
rencias entre mayusculas y mintisculas) la primera aparicién de subcad y devuelve un iterador al
principio de la secuencia coincidente. Devuelve cad.end() si no se encuentra una coincidencia.

He aqui una manera de implementar buscar_y_reemplazar_ign_mayus(). Observe que utiliza
buscar_ign_mayus() para encontrar la subcadena que se reemplazara.

// Esta funcidén reemplaza la primera aparicidén de subcadant con
// subcadnue en la cadena pasada en cad. Devuelve true si ocurre
// un reemplazo, y falso, si no.
//
// Observe que esta funcidn modifica la cadena a la que cad hace
// referencia. Ademds, nétese gque usa buscar ign mayus() para encontrar la
// subcadena que se reemplazara.
bool buscar_y reemplazar_ ign mayus (string &cad, const string &subcadant,
const string &subcadnue) {
string::iterator itrinicio;

itrinicio = buscar_ign mayus(cad, subcadant) ;

if (itrinicio != cad.end()) {
cad.replace(itrinicio, itrinicio+subcadant.size(), subcadnue) ;
return true;

}

return false;

}

Esta funcién reemplaza la primera aparicién de subcadant con subcadnue. Devuelve el valor true
si ocurre un reemplazo (es decir, si cad contiene subcadant) y falso, si no. Como lo indican los
comentarios, esta funcion modifica cad en el proceso. Utiliza buscar_ign_mayus() para encontrar
la primera aparicién de subcadant. Por tanto, la biisqueda se realiza independientemente de las
diferencias entre mayusculas y mintsculas.

En el siguiente ejemplo se muestran buscar_ign_mayus() y buscar_y_reemplazar_ign_ma-
yus() en accién:

// Implementa bisquedas y blUsquedas y reemplazo no sensibles
// a maylGsculas y mindsculas para objetos de cadena.
#include <iostreams>

#include <strings>

#include <cctypes>

#include <algorithm>

using namespace std;

bool comp ign mayus (char x, char y);

string::iterator buscar_ign mayus(string &cad, const string &subcad) ;

bool buscar y reemplazar ign mayus (string &cad, const string &subcadant,
const string &subcadnue) ;

int main()

{
string cadA("Es una prueba no sensible a may\uOOa3sculas y min\uOOa3sculas.");
string cadB ("prueba") ;

80 cCc++ Soluciones de programacion

string cadC ("PRUEBA") ;
string cadD ("pruebas") ;

cout << "Primero, se demuestra buscar ign mayus().\n";
cout << "Cadena en que se busca:\n" << cadA << "\n\n";

cout << "Buscando " << cadB << ". ";
if (buscar ign mayus (cadA, cadB) != cadA.end())
cout << "Encontrada\n";

cout << "Buscando " << cadC << ". ";
if (buscar ign mayus (cadA, cadC) != cadA.end())
cout << "Encontrada\n";

cout << "Buscando " << cadD << ". ";

if (buscar ign mayus (cadA, cadD) != cadA.end())
cout << "Encontrada\n";

else

cout << "No encontrada\n";

// Usa el iterador devuelto por buscar_ ign mayus() para
// desplegar el resto de la cadena.
cout << "\nEl resto de la cadena tras encontrar 'no':\n";
string::iterator itr = buscar ign mayus(cadA, "no");
while(itr != cadA.end())

cout << *itr++;
cout << "\n\n";

// BAhora, demuestra la blUsqueda y reemplazo.
cadA = "Alfa Beta Gamma alfa beta gamma";
cout << "Ahora se demuestra buscar y reemplazar ign mayus().\n";
cout << "Cadena que recibe los reemplazos:\n" << cadA << "\n\n";
cout << "Reemplazando todos los casos de alfa con zeta:\n";
while (buscar y reemplazar ign mayus(cadA, "alfa", "zeta"))

cout << cadA << endl;

return O0;

}

// Ignora la diferencia entre mayGsculas y mindGsculas cuando busca.
// una subcadena. La cadena en que se busca se pasa en cad. La
// subcadena que se buscard se pasa en subcad. Devuelve un iterador
// al principio de la coincidencia o cad.end() si no se encuentra una.
//
// Obsérvese que se usa el algoritmo search() y especifica el
// predicado binario comp ign mayus() .
string::iterator buscar ign mayus(string &cad, const string &subcad) {
return search(cad.begin(), cad.end(),
subcad.begin(), subcad.end(),
comp_ign mayus) ;

}

// Ignora la diferencia entre maylsculas y mindsculas cuando se compara
// la igualdad entre dos caracteres. Devuelve true si los caracteres

Capitulo 2: Manejo de cadenas

// son iguales, independientemente de las diferencias entre mayusculas
// y minasculas.
bool comp_ ign mayus (char x, char y) {

return tolower (x) == tolower (y) ;

}

// Esta funcidén reemplaza la primera aparicidén de subcadant con
// subcadnue en la cadena pasada en cad. Devuelve true si ocurre
// un reemplazo, y falso, si no.
//
// Observe que esta funcidén modifica la cadena a la que cad hace
// referencia. Ademds, nbétese que usa buscar ign mayus() para encontrar la
// subcadena que se reemplazara.
bool buscar_ y reemplazar ign mayus (string &cad, const string &subcadant,
const string &subcadnue) {
string::iterator itrinicio;

itrinicio = buscar_ign mayus(cad, subcadant) ;

if (itrinicio != cad.end())
cad.replace(itrinicio, itrinicio+subcadant.size(), subcadnue) ;
return true;

}

return false;

}
Aqui se muestra la salida:

Primero, se demuestra buscar ign mayus() .
Cadena en que se busca:
Es una prueba no sensible a maylsculas y minGsculas.

Buscando prueba. Encontrada.
Buscando PRUEBA. Encontrada.
Buscando pruebas. No encontrada.

El resto de la cadena tras encontrar 'no':
no sensible a maylGsculas y mintsculas.

Ahora se demuestra buscar_ y reemplazar ign mayus().
Cadena que recibe los reemplazos:
Alfa Beta Gamma alfa beta gamma

Reemplazando todos los casos de alfa con zeta:

zeta Beta Gamma alfa beta gamma
zeta Beta Gamma zeta beta gamma

Opciones

Aunque el autor prefiere implementar una biisqueda no sensible a maytsculas y mintsculas
mediante el uso del algoritmo STL search() como en esta solucién, hay otro método. Puede im-

81

plementar usted mismo esta funcién de biisqueda, trabajando caracter tras caracter y tratando de

encontrar manualmente una subcadena coincidente. He aqui una manera de hacer esto:

82

C++ Soluciones de programacion

// Implementa manualmente buscar ign mayus () .

// Como la versidén original, la cadena de bUsqueda se pasa en cad

// y la subcadena que se buscard se pasa en subcad. Devuelve

// un iterador al inicio de la coincidencia o cad.end()

// si no se encuentra una coincidencia.

string::iterator buscar ign mayus (string &cad, const string &subcad) {
string::iterator iniciol, encontrada en;
string::const_ iterator inicio2;

// Si la cadena coincidente es nula, devuelve un iterador al
// principio de cad.

if (subcad.begin() == subcad.end()) return cad.begin() ;
iniciol = encontrada_en = cad.begin() ;
while (iniciol != cad.end()) {
inicio2 = subcad.begin() ;
while (tolower (*iniciol) == tolower (*inicio2)) {
++iniciol;
++inicio2;
if (inicio2 == subcad.end()) return encontrada_ en;
if (iniciol == cad.end()) return cad.end() ;

}

++encontrada_en;
iniciol = encontrada en;

}

return cad.end() ;

}

Como verd, el método manual incluye mucho més cédigo. Es maés, el desarrollo y la prueba de
esta funcién toma mads tiempo que el uso del algoritmo STL search(). Por tltimo, no se hizo un
intento de optimizar el c6digo anterior. La optimizacién también toma una cantidad importante
de tiempo. Por esto, casi siempre son preferibles los algoritmos STL a los métodos "caseros".

La funcién tolower() convierte caracteres con base en la configuracion regional de idioma. Para
comparar caracteres para una configuracion diferente, puede usar la versién de tolower() que se
declara dentro de <locale>.

Aunque no hay ventaja en hacerlo, también es posible convertir cada caracter en la cadena a
maytsculas (en lugar de mindsculas) para eliminar las diferencias entre maytsculas y mindsculas.
Esto se hace mediante la funcién toupper(), que se muestra aqui:

int toupper(int car)

Funciona igual que tolower(), con la excepcion de que convierte caracteres a maytsculas.

Capitulo 2: Manejo de cadenas 83

Convierta un objeto string en una cadena terminada en un caracter nulo

Componentes clave

Encabezado Clases Funciones

<string> string const char *c_str() const

La clase string proporciona mecanismos faciles que toman una cadena terminada en un caracter
nulo y la convierten en un objeto string. Por ejemplo, puede construir una cadena que se inicializa
con una cadena terminada en un caracter nulo. También puede asignar una de estas cadenas a un
objeto string. Por desgracia, el procedimiento inverso no es muy facil. La razén es que la cadena
terminada en un carécter nulo no es un tipo de datos, sino una convencién. Esto significa que no
puede inicializar este tipo de cadena con una string ni asignar una string a un apuntador char *,
por ejemplo. Sin embargo, string proporciona la funcién c_str() que convierte un objeto string en
una cadena terminada en un caracter nulo. En esta solucién se muestra el proceso.

Paso a paso
Para obtener una cadena terminada en un caracter nulo que contenga la misma secuencia de ca-
racteres que si lo encapsulara un objeto string, siga estos pasos:

1. Cree una matriz de char que sea lo suficientemente grande como para contener los caracte-
res contenidos en el objeto string, ademés del terminador de caracter nulo. Puede tratarse
de una matriz declarada estaticamente o una que se asigne dinamicamente mediante new.

2. Para obtener un apuntador a una cadena terminada en un caracter nulo que corresponda a
la cadena contenida en un objeto string, llame a c_str().

3. Copie la cadena terminada en un carécter nulo obtenida en el paso 2 en la matriz creada en
el paso 1.

sgn =
Analisis
Para obtener una representacion de una cadena terminada en un caracter nulo de la secuencia de
cardcter almacenada en el objeto string, llame a c_str(), que se muestra aqui:

const char *c_str() const

Aunque no es necesario que la secuencia de caracteres en una string termine en un caracter nulo,
el apuntador devuelto por una llamada a c_str() sefialard siempre a una matriz de cadena termi-
nada en un cardcter nulo que contiene la misma secuencia. Sin embargo, tome en cuenta que el
apuntador devuelto es const. Por tanto, no puede usarse para modificar la cadena. Mas atn, este
apuntador es valido sélo hasta que se llama a una funcién miembro que no es const en el mismo
objeto string. Como resultado, por lo general querrd copiar la cadena terminada en un caracter
nulo en otra matriz.

Ejemplo
En el siguiente ejemplo se muestra cémo convertir un objeto de cadena en una cadena terminada
en un caracter nulo:

84 c++ Soluciones de programacion

// Convierte un objeto string en una cadena terminada en un caracter nulo.
#include <iostream>

#include <strings>

#include <cstring>

using namespace std;

int main()

{
string cad("Se trata de una prueba.");
char ccad[80];

cout << "La cadena original:\n";
cout << cad << "\n\n";

// Obtiene un apuntador a la cadena.
const char *p = cad.c_str();

cout << "La versi\u0OOa2n de la cadena terminada en un car\uOOaOcter nulo:\n";
cout << p << "\n\n";

// Copia la cadena en una matriz asignada estaticamente.

//

// Primero, confirma que la matriz tenga la longitud necesaria

// para contener la cadena.

if (sizeof (ccad) < cad.size() + 1) {
cout << "La matriz es demasiado peque\u0Oa8a para contener la cadena.\n";
return 0O;

}

strcpy (ccad, p);

cout << "La cadena copiada en ccad:\n" << ccad << "\n\n";

// Luego, copia la cadena en una matriz asignada dindmicamente.

try {
// Asigna dindmicamente la matriz.
char *p2 = new char([cad.size()+1];

// Copia la cadena en la matriz.
strcpy (p2, cad.c_str());

cout << "La cadena tras copiarse en una matriz asignada din\uOOaOmicamente:\n";
cout << p2 << endl;

delete [] p2;

} catch(bad_alloc ba) {
cout << "Fall\uOO0a2 la asignaci\uOOa2n\n";
return 1;

return 0;

}

Capitulo 2: Manejo de cadenas 85

Aqui se muestra la salida:

La cadena original:
Se trata de una prueba.

La versidén de la cadena terminada en un cardcter nulo:
Se trata de una prueba.

La cadena copiada en ccad:
Se trata de una prueba.

La cadena tras copiarse en una matriz asignada dindmicamente:
Se trata de una prueba.

Opciones

Como se explico, la funcién c_str() devuelve un apuntador a una matriz terminada en un caracter
nulo de char. Si s6lo necesita acceder a los caracteres que integran la secuencia encapsulada por
una cadena, sin el terminador de caracter nulo, entonces puede usar la funcién data(). Devuelve
un apuntador a una matriz de char que contiene los caracteres, pero esa matriz no termina en un
cardcter nulo. Aqui se muestra:

const char *data() const

Debido a que se devuelve un apuntador const, no puede usarlo para modificar los caracteres de la
matriz. Si quiere modificar la secuencia de caracteres, copiela en otra matriz.

Aunque el apuntador devuelto por c_str() es const, es posible sobreescribir esto al usar
const_cast, como se muestra aqui:

char *p = const_ cast<char *> (cad.c_str());

Después de que se ejecuta esta instruccién, seria posible modificar la secuencia de caracteres a la
que sefala p. Sin embargo, jno se recomienda hacer esto! Al cambiar la secuencia de caracteres con-
trolada por un objeto string desde cédigo exterior al objeto podria causar facilmente que el objeto
se corrompa, lo que podria llevar a que el programa deje de funcionar o produzca una brecha de
seguridad. Por tanto, los cambios al objeto string siempre deben tomar lugar mediante funciones
miembro de string. Nunca debe tratar de cambiar la secuencia mediante un apuntador devuelto
por c_str() o data(). Si ve una construccién como ésta, debe considerarlo cédigo no vélido y dar
pasos para remediar la situacién.

Implemente la resta para ob

etos string

Componentes clave

Encabezado Clases Funciones

<string> string string &erase(size_type ind = 0,
size_type long = npos)
size_type find(const string &cad,

size_type ind = 0) const

86

C++ Soluciones de programacion

Como sabe, el operador + estd sobrecargado por objetos de tipo string y une dos cadenas y de-
vuelve el resultado. Sin embargo, el operador — no est4 sobrecargado para string. Algunos pro-
gramadores encuentran esto un poco sorpresivo porque, intuitivamente, se esperaria que se use el
operador — para eliminar una subcadena de una cadena, como se ilustra con esta secuencia:

string cad A("uno dos tres");
string cadB;
string = cad-"dos";

En este punto, esperaria que cadB contenga la secuencia "uno tres", que es la secuencia original
con la palabra "dos" eliminada. Por supuesto, esto no es posible empleando sélo los operadores
definidos para string por la biblioteca estandar, porque la resta no es uno de ellos. Por fortuna, es
muy facil remediar esta situacién, como se muestra en esta solucién.

Para dar soporte a resta de subcadenas, se implementan los operadores — y —= para objetos de
tipo string. Cada uno elimina la primera aparicion de la cadena a la izquierda de la cadena de la
derecha. En el caso de —, se devuelve el resultado pero no se modifica ninguno de los dos ope-
randos. Para —=, la subcadena se elimina del operando de la izquierda. Por tanto, se modifica el
operando de la izquierda.

Paso a paso
Para sobrecargar operator—() para objetos de tipo string se requieren estos pasos:

1. Cree una versién de operator-() que tenga el siguiente prototipo:

string operator- (const string &izqg, const string &der) ;

Cuando una cadena se resta de otra, la cadena de la izquierda sera izq y la de la derecha
sera der.

2. Dentro de operator—(), cree una cadena que contendra el resultado de la resta, e inicialice

esa cadena con la secuencia de caracteres de izq.

Use find() para encontrar la primera aparicién de der en la cadena resultante.

4. Sise encuentra una subcadena resultante, use erase() para eliminar la subcadena de la
cadena de resultado.

5. Devuelva la cadena resultante.

»

Para sobrecargar operator-=() para objetos de tipo string se requieren estos pasos:

1. Cree una version de operator-=() que tenga el siguiente prototipo:

string operator-= (string &izqg, const string &der) ;

Aqui, la cadena de la izquierda serd izq y la de la derecha sera der. Mds atn, izq recibira el
resultado de la resta.

2. Dentro de operator—(), use find() para encontrar la primera apariciéon de der en la cadena a
la que hace referencia con izq.

4. Sise encuentra una subcadena resultante, use erase() para eliminar la subcadena de izq.
Esto da como resultado que se modifique la cadena en izq.

5. Devuelva izq.

Capitulo 2: Manejo de cadenas 87

Analisis

Cuando los operadores binarios estdn sobrecargados por funciones que no son miembros, el ope-
rando de la izquierda siempre se pasa en el primer parametro y el de la derecha en el segundo.
Por tanto, dada una funcién operator—() con este prototipo:

string operator- (const string &izg, const string &der) ;
la expresion
cadA - cadB

causa que se pase a izq una referencia a cadA y a de una a cadB. Mas atin, dada una funcién ope-
rator-=() con este prototipo:

string operator-=(string &izqg, const string &der) ;

La instruccién

cadA -= cadB

causa que se pase a izq una referencia a cadA y a der una a cadB.

Aunque no hay un mecanismo que lo imponga, por lo general es mejor sobrecargar opera-
dores de una manera consistente con su significado y sus efectos normales. Por tanto, cuando un
operador binario como — esta sobrecargado, se devuelve el resultado pero no se modifica ninguno
de los dos operandos. Esto sigue el uso normal de la — en expresiones como 10-3. En este caso, el
resultado es 7, pero no se modifica ni 10 ni 3. Por supuesto, la situacién es diferente para la ope-
racién —=. En este caso, el operando de la izquierda recibe la salida de la operacién. Por tanto, un
operator—=() sobrecargado modifica el operando de la izquierda. En esta solucién se siguen estas
convenciones.

El proceso real de eliminar la primera aparicién de una subcadena es muy facil, y sélo incluye
dos pasos principales. En primer lugar, se llama a la funcién find() de string para localizar el inicio
de la primera coincidencia. La funcién find() esta detallada en Busque un objeto string, pero he aqui
un breve resumen. La funcién find() tiene varias formas. La que se usa aqui es:

size_type find(const string &cad, size_type ind = 0) const

Devuelve el indice de la primera aparicién de cad dentro de la cadena que invoca. La bisqueda
empieza en el indice especificado por ind. Se devuelve npos si no se encuentra una coincidencia.

Suponiendo que se encuentre una coincidencia, se elimina la subcadena al llamar a erase().
Esta funcién se analiza en Realice operaciones bdsicas en cadenas terminadas en un cardcter nulo. He
aqui una rapida recapitulacion. La funcién erase() tiene tres formas. Aqui se muestra la usada en
esta solucion:

string &erase(size_type ind = 0, size_type long = npos)

Empezando en ind, elimina long caracteres a partir de la cadena que invoca. Devuelve una referen-
cia a la cadena que invoca.

Cuando se implementa operator-(), ninguno de los operandos debe modificarse. Por tanto,
debe usarse una cadena temporal que contendrd el resultado de la resta. Inicialice esta cadena con
la secuencia de caracteres en el operando de la izquierda. Luego, elimine la subcadena especifica-
da por el operando de la derecha. Por tltimo, devuelva el resultado.

88

C++ Soluciones de programacion

Cuando se implementa operator-=(), el operando de la izquierda debe contener el resultado
de la resta. Por tanto, se elimina la subcadena especificada por el operando de la derecha a partir de
la cadena a la que se hace referencia con el operando de la izquierda. Aunque este tltimo contiene
el resultado, también debe devolver la cadena resultante. Esto permite que el operador —= se use
como parte de una expresion mas larga.

Ejemplo

He aqui una manera de implementar operator—() y operator-=() para objetos de tipo string:

// Sobrecarga - (resta) para objetos string de modo que elimina
// la primera aparicidén de la subcadena de la izquierda a partir
// de la cadena de la derecha y devuelve el resultado. Ninguno
// de los operandos se modifica. Si no se encuentra la subcadena
// el resultado contiene la misma cadena que el operando izquierdo.
string operator- (const string &izg, const string &der) {
string::size_ type i;
string resultado(izq) ;

i = resultado.find(der) ;
if (i != string: :npos)
resultado.erase (i, der.size()) ;

return resultado;

}

// Sobrecarga -= para objetos string. Elimina la primera aparicidn

// de la subcadena de la derecha de la cadena de la izquierda. Por

// tanto, se modifica la cadena a la que considera en la izquierda.

// También se devuelve la cadena resultante.

string operator-=(string &izg, const string &der)
string::size type i;

= izqg.find(der) ;
f(i != string::npos)
izg.erase(i, der.size());

i
i

return izqg;

En el siguiente ejemplo se muestran estos operadores en accion:

// Implementa operator-() y operator-=() para cadenas.
#include <iostreams>
#include <string>

using namespace std;

string operator- (const string &izg, const string &der) ;
string operator-=(string &izqg, const string &der) ;

int main/()

{

string cad("S\u0Oal, esto es una prueba.");

}

//
/7
//
//
//
st

}

//
//
//
//

Capitulo 2: Manejo de cadenas

string res_ cad;
cout << "Contenido de cad: " << cad << "\n\n";

// Resta "es" de cad y coloca el resultado en res_cad.

res_cad = cad - "es";
cout << "Resultado de cad - \"es\": " << res cad << "\n\n";
// Usa -= para restar "es" de res cad. Esto regresa el
// resultado a res cad.
res_cad -= "es";
cout << "Resultado de res cad -= \"es\": " << res cad << "\n\n";
cout << "Se muestra de nuevo cad: " << cad
<< "\nNote que cad ha quedado sin cambio por las "
<< "operaciones anteriores." << "\n\n";

cout << "Algunos ejemplos adicionales:\n\n";

// Trata de restar "xyz". Esto no provoca cambios.
res cad = cad - "xyz";
cout << "Resultado de cad - \"xyz\": " << res cad << "\n\n";

// Elimina los dltimos tres caracteres de cad.
res cad = cad - "ba.";
cout << "Resultado de cad - \"ba.\": " << res cad << "\n\n";

// Elimina una cadena nula, lo que no produce cambios.

res cad = cad - "";
cout << "Resultado de cad - \"\": " << res cad << "\n\n";
return O;
Sobrecarga - (resta) para objetos string de modo que elimina
la primera aparicidén de la subcadena de la izquierda a partir

de la cadena de la derecha y devuelve el resultado. Ninguno

de los operandos se modifica. Si no se encuentra la subcadena
el resultado contiene la misma cadena que el operando izquierdo.
ring operator- (const string &izg, const string &der) {
string::size type i;

string resultado(izq) ;

i = resultado.find(der) ;
if (i != string::npos)
resultado.erase (i, der.size()) ;

return resultado;

Sobrecarga -= para objetos string. Elimina la primera aparicidn
de la subcadena de la derecha de la cadena de la izquierda. Por
tanto, se modifica la cadena a la que considera en la izquierda.
También se devuelve la cadena resultante.

string operator-=(string &izqg, const string &der) {

89

90

C++ Soluciones de programacion

string::size type i;

= izqg.find(der) ;
f(i != string::npos)
izg.erase(i, der.size());

i
i

return izqg;

}
Aqui se muestra la salida:

Contenido de cad: Si, esto es una prueba.
Resultado de cad - "es": Si, to es una prueba.
Resultado de res cad -= "es": Si, to una prueba.

Se muestra de nuevo cad: Si, esto es una prueba.
Note que cad ha quedado sin cambio por las operaciones anteriores.

Algunos ejemplos adicionales:

Resultado de cad - "xyz": Si, esto es una prueba.
Resultado de cad - "ba.": Si, esto es una prue
Resultado de cad - "": Si, esto es una prueba.
Opciones

Las versiones de operator—() y operator—=() descritas en la solucién s6lo eliminan la primera
aparicion de la subcadena en la derecha de la cadena de la izquierda. Sin embargo, con un poco de
trabajo, puede cambiar su operacién para que elimine todas las apariciones de la subcadena.

He aqui una manera de hacerlo:

// Sobrecarga - (resta) para objetos string de modo que elimina
// TODAS las apariciones de la subcadena en la izquierda a partir
// de la cadena de la derecha. Se devuelve el resultado. No se
// modifica ninguno de los operandos.
string operator- (const string &izg, const string &der) {
string::size_type i;
string resultado(izq) ;

if(der !'= "m) {
do {
i = resultado.find(der) ;
if (i !'= string::npos)
resultado.erase (i, der.size()) ;
} while(i != string::npos);

}

return resultado;

Capitulo 2: Manejo de cadenas L) |

// Sobrecarga -= para objetos string de modo que elimina

// TODAS las apariciones de la subcadena en la derecha a partir

// de la cadena de la izquierda. El resultado se incluye en la

// cadena sefialada por el operando de la izquierda. Por tanto,

// se modifica el operando de la izquierda. También se devuelve.

// la cadena resultante.

string operator-=(string &izq, const string &der) ({
string::size type i;

if(der != ") {
do {
i = izqg.find(der) ;
if (i != string::npos)
izg.erase(i, der.size());
} while(i != string::npos) ;

}

return izqg;

}

Otra opcién que tal vez le resulte 1til en algunos casos es implementar la resta de cadenas
para que opere de manera independiente de diferencias entre maytsculas y mintsculas. Para ello,
utilice el método descrito en Cree una biisqueda no sensible a mayiisculas y miniisculas y funciones de
biisqueda y reemplazo para objetos string para realizar una biisqueda no sensible a maytsculas y
mindsculas para encontrar la subcadena que se eliminara.

CAPITULO
Trabajo con contenedores STL

/
E ste es el primero de dos capitulos que presentan soluciones que usan la biblioteca de planti-

llas estandar (STL, Standard Template Library). Se necesitan dos capitulos porque la STL es

una parte extraordinariamente grande e importante de C++. No sélo proporciona soluciones
preelaboradas a algunos de los problemas de programacién mas desafiantes, también redefine la
manera en que se pueden enfrentar muchas tareas comunes. Por ejemplo, en lugar de tener que
proporcionar su propio cédigo para una lista vinculada, puede usar la clase list de STL. Si su pro-
grama necesita asociar una clave con un valor y proveer un medio para encontrar ese valor dada
la clave, puede usar la clase map. Debido a que STL proporciona implementaciones sélidas, depu-
radas, de los "motores de datos" de uso mas comun, puede usar uno sin importar lo que necesite,
sin dedicar el tiempo necesario ni afrontar el problema de desarrollar los propios.

Este capitulo empieza con una revisiéon general de la STL, y luego presenta soluciones que
demuestran el niicleo de la STL: sus contenedores. En el proceso, muestra la manera en que los
iteradores se utilizan para acceder y recorrer en ciclo el contenido de un contenedor. En el siguien-
te capitulo se muestra cémo usar algoritmos y varios otros componentes de la STL.

He aqui las soluciones contenidas en este capitulo:

e Técnicas basicas de contenedor de secuencias

¢ Use vector

* Use deque

* Use list

* Use los adaptadores de contenedor de secuencias: snack, queue y priority_queue
* Almacene en un contenedor objetos definidos por el usuario

e Técnicas basicas de contenedor asociativo

¢ Use map

¢ Use multimap

* Use set y multiset

NoTA Para conocer una descripcion a fondo de STL, consulte el libro Programming from the
Ground Up. Gran parte de la revision general y las descripciones de este capitulo estin adaptadas
de ese trabajo. La STL también recibe amplia cobertura en el libro C++: The Complete Reference.
Ambos libros son de Herb Schildt.

93

9%

C++ Soluciones de programacion

Revision general de STL

En esencia, la biblioteca de plantillas estandar es un conjunto complejo de clases y funciones de
plantilla que implementa muchas estructuras de datos y algoritmos populares y de uso comun.
Por ejemplo, incluye soporte para vectores, listas, colas y pilas. También proporciona muchos algo-
ritmos (como de ordenamiento, biisqueda y combinacién) que operan en ellos. Debido a que STL
estd construido a partir de clases y funciones de plantillas, las estructuras de datos y los algorit-
mos pueden aplicarse a casi cualquier tipo de datos. Esto es, por supuesto, parte de su poder.

STL estd organizado alrededor de tres elementos bésicos: contenedores, algoritmos e iteradores.
Para ponerlo en palabras simples, los algoritmos actiian como contenedores mediante iteradores.
Maés que otra cosa, el disefio y la implementacién de estas caracteristicas determinan la naturaleza
de STL. Ademas de contenedores, algoritmos e iteradores, STL depende de otros diversos elemen-
tos estandar para soporte: asignadores, adaptadores, objetos de funcion, predicados, adhesivos y negadores.

Contenedores

Como su nombre lo indica, un contenedor es un objeto que puede contener otros objetos. Hay
varios tipos diferentes de contenedores. Por ejemplo, la clase vector define una matriz dindmica,
deque crea una cola de doble extremo, y list proporciona una lista vinculada. A estos contenedo-
res se les denomina contenedores de secuencia porque, en terminologia de STL, una secuencia es una
lista lineal. La STL también define contenedores asociativos, que permiten recuperacion eficiente de
valores basados en claves. Por tanto, los contenedores asociativos almacenan pares clave/valor.
Un map es un ejemplo. Almacena pares clave/valor en que cada clave es tinica. Esto facilita la
recuperacién de un valor especifico dada su clave.

Algoritmos

Los algoritmos acttian como contenedores. Entre sus capacidades se incluyen inicializacién, orde-
namiento, bisqueda, combinacién, reemplazo y transformacién de contenido de un contenedor.
Muchos algoritmos operan en un rango de elementos dentro de un contenedor.

Iteradores

Los iteradores son objetos que acttian, més o menos, como apuntadores. Le dan la capacidad de
recorrer en ciclo el contenido de un contenedor de manera muy parecida a como se usaria uno
para recorrer de la misma forma una matriz. Hay cinco tipos de iteradores:

Iterador Acceso permitido

Acceso aleatorio Almacena y recupera valores. Los elementos pueden accederse de manera
aleatoria.

Bidireccional Almacena y recupera valores. Movimiento directo e inverso.

Directo Almacena y recupera valores. Sélo se mueve hacia adelante.

Entrada Recupera, pero no almacena valores. S6lo se mueve hacia adelante.

Salida Almacena, pero no recupera valores. Sélo se mueve hacia adelante.

En general, un iterador que tiene mayores capacidades de acceso puede usarse en lugar de uno
que tiene menores opciones. Por ejemplo, un iterador directo puede usarse en lugar de uno
de entrada.

Capitulo 3: Trahajo con contenedores STL 95

Los iteradores se manejan como apuntadores. Puede aumentarlos o disminuirlos. Puede apli-
car los operadores * y —>. Los iteradores se declaran usando el tipo iterator definido por diversos
contenedores.

La STL también da soporte a varios iteradores. Los iteradores inversos son bidireccionales o
de acceso aleatorio y recorren una secuencia en direccién inversa. Por tanto, si un iterador inver-
so sefala al final de una secuencia, el aumento de ese iterador causara que sefiale a un elemento
antes del final.

Todos los iteradores deben dar soporte a los tipos de operadores de apuntador permitidos en
esa categoria. Por ejemplo, una clase de iterador de entrada debe dar soporte a —>, ++,*, ==y =
Mais atin, el operador * no puede usarse para asignar un valor. En contraste, un iterador de acceso
aleatorio debe dar soporte a —>, +, ++, —, — —, ¥, <, >, <=, >=, —=, +=, ==, |=y []. Ademads, el * debe
permitir asignacién. A continuacién se muestran los operadores con soporte para cada tipo:

Iterador Operaciones soportadas

Acceso aleatorio ¥ o> = 4 -, -, [, >, <=, 5=, - =, 4=, ==, 1=
Bidireccional X, > = 4+, ——, ==, |=

Directo ¥, >, =, 4+, ==, 1=

Entrada ¥ > = 4+, ==, 1=

Salida ¥ = ++

Cuando se hace referencia a varios tipos de iteradores en descripciones de plantillas, en este
libro se usarén los siguientes términos:

Término Representa

Bilter Iterador bidireccional

Forlter Iterador directo

Inlter Iterador de entrada

Outlter Iterador de salida

Randlter Iterador de acceso aleatorio
Asignadores

Cada contenedor tiene definido un asignador. Los asignadores administran la asignacién de me-
moria a un contenedor. El asignador predeterminado es un objeto de clase allocator, pero pueden
definirse los propios, si es necesario, para aplicaciones especializadas. Para casi todos los usos,
basta con el asignador predeterminado.

Objetos de funcion

Los objetos de funcién son instancias de clases que definen operator(). Hay varios objetos de funcio-
nes predefinidos, como less(), greater(), plus(), minus(), multiplies() y divides(). Tal vez el objeto
de funcién de uso més extenso sea less(), que determina cuando un objeto es menos que otro. Los
objetos de funcién pueden usarse en lugar de apuntadores de funcion en los algoritmos STL.
Los objetos de funcién aumentan la eficiencia de algunos tipos de operaciones y proporcionan
soporte para ciertas operaciones que, de otra manera, no seria posible usando sélo un apuntador a
funcién.

96

C++ Soluciones de programacion

Adaptadores

En el sentido mas general, un adaptador transforma una cosa en otra. Hay adaptadores de conte-
nedor, de iterador y de funcién. Un ejemplo de adaptador de contenedor es queue, que adapta el
contenedor deque para usar como una cola estdndar.

Predicados
Varios de los algoritmos y contenedores usan un tipo especial de funcién llamada predicado. Hay
dos variaciones de predicados: unarios y binarios. Un predicado unario toma un argumento. Un
predicado binario tiene dos argumentos. Estas funciones devuelven resultados true/false, pero
usted define las condiciones precisas que hacen que devuelva uno de estos valores. En este libro,
cuando se requiere un predicado unario, se indicara usando el tipo UnPred. Cuando se necesita
un predicado binario, se usara el tipo BinPred. En un predicado binario, los argumentos siempre
estdn en el orden primero, segundo. Para los predicados unarios y binarios, los argumentos conten-
dran valores de tipo de objetos que estan almacenados en el contenedor.

Algunos algoritmos usan un tipo especial de predicado binario que compara dos elementos.
Las funciones de comparacién devuelven true si su primer argumento es menos que el segundo. En
este libro, las funciones de comparacién se indicaran usando el tipo Comp.

Adhesivos y negadores

Otras dos entidades que pueblan las STL son los adhesivos y los negadores. Un adhesivo une un
argumento a un objeto de funcion. Un negador devuelve el complemento de un predicado. Ambos
aumentan la versatilidad de la STL.

La clase de contenedor

En el nticleo de la STL se encuentran sus contenedores. Se muestran en la tabla 3-1. También se
muestran los encabezados necesarios para usar cada contenedor. Como podria esperarse, cada
contenedor tiene diferentes capacidades y atributos.

Los contenedores se implementan usando clases de plantillas. Por ejemplo, aqui se muestra la
especificacion de plantilla para el contenedor deque. Todos los contenedores usan especificaciones
similares:

template <class T, class Allocator = allocator<T> > class deque

Aqui, el tipo genérico T especifica el tipo de objetos contenidos por deque. El asignador usado
por deque se especifica con Allocator, que tiene como opcién predeterminada la clase asignado-
ra estandar. Para la mayor parte de las aplicaciones, simplemente usara el asignador predetermi-
nado, y eso es lo que se hace en todo el cddigo de este capitulo. Sin embargo, es posible definir
su propia clase asignadora si se llega a necesitar un esquema de asignacion especial. Si no esta
familiarizado con los argumentos predeterminados en las plantillas, sélo recuerde que funcio-
nan de manera muy parecida a los argumentos predeterminados en funciones. Si el argumento
de tipo genérico no esta especificado explicitamente cuando se crea un objeto, entonces se usa el
tipo predeterminado.

Capitulo 3: Trahajo con contenedores STL 97

Contenedor Descripcion Encabezado requerido
deque Una cola de doble extremo. <deque>
list Una lista lineal. <list>
map Almacena pares clave/valor en que cada clave esta asociada <map>

con un solo valor.
multimap Almacena pares clave/valor en que una clave puede estar aso- <multimap>

ciada con dos o0 mas valores.
multiset Un conjunto en que cada elemento no es necesariamente Unico. <multiset>
priority_queue Una cola con prioridades. <queue>
queue Una cola. <queue>
set Un conjunto en que cada elemento es Unico. <set>
stack Una pila. <stack>
vector Una matriz dinamica. <vector>

TaBLA 3-1 Contenedores definidos por la STL.

Cada clase de contenedor incluye varios typedef que crean un conjunto de nombres de tipo

estandar. Varios de estos nombres de typedef se muestran aqui:

size_type Algun tipo de entero sin signo.

reference Una referencia a un elemento.

const_reference Una referencia const a un elemento.

iterator Un iterador.

const_iterator Un iterador const.

reverse_iterator Un iterador inverso.

const_reverse_iterator Un iterador inverso const.

value_type
secuencia.

El tipo de valor almacenado en un contenedor. Igual que T para los contenedores de

allocator_type El tipo del asignador.

key_type El tipo de una clave.

Como se menciond, hay dos amplias categorias de contenedores: de secuencia y asociativas.
Los de secuencia son vector, list y deque. Los asociativos son map, multimap, set y multiset. Los
contenedores de secuencia, como su nombre lo indica, operan en secuencias, que son, en si, listas
lineales de objetos. Los contenedores asociativos operan en listas de claves. De estos ultimos, los
que implementan mapas operan en pares clave/valor y permiten la recuperacién de un valor

dada su clave.

A las clases stack, queue y priority_queue se les denomina adaptadores de contenedor porque
usan (es decir, adaptan) uno de los contenedores de secuencia para que contengan sus elemen-
tos. Por tanto, uno de los contenedores de secuencia subraya la funcionalidad proporcionada por
stack, queue y priority_queue. Desde la perspectiva del programador, los adaptadores de conte-

nedor se parecen a los otros contenedores y acttian como ellos.

98

C++ Soluciones de programacion

Funcionalidad comiin
La STL especifica un conjunto de requisitos que todos los contenedores deben satisfacer. Al es-
pecificar una funcionalidad comtin, STL asegura que los algoritmos pueden actuar sobre todos
los contenedores, y que todos los contenedores pueden usarse de una manera bien entendida y
consistente que es independiente de los detalles de cada implementacién de contenedor. Esta es
otra de las fortalezas importantes de STL.

Todos los contenedores deben dar soporte al operador de asignacién. También deben dar so-
porte a todos los operadores 16gicos. En otras palabras, todos los contenedores deben dar soporte
a estos operadores:

=, ==, <’ <=, !:/ >/ >=

Todos los contenedores deben proporcionar un constructor que cree un contenedor vacio y
una copia del constructor. Deben proveer un destructor que libere toda la memoria usada por el
contenedor y llamar al destructor para todos los elementos del contenedor.

Todos los contenedores también deben dar soporte a iteradores. Entre otras ventajas, esto ase-
gura que los algoritmos puedan operar en todos los adaptadores.

Todos los contenedores deben proveer las siguientes funciones:

iterator begin() Devuelve un iterador al primer elemento del contenedor.

const_iterator begin() const Devuelve un iterador const al primer elemento del contenedor.

bool empty() const Devuelve true si el contenedor esta vacio.

iterator end() Devuelve un iterador a uno después del ultimo elemento en el contenedor.

const_iterator end() const Devuelve un iterador const a uno después del Ultimo elemento en el
contenedor.

size_type max_size() const Devuelve el nimero maximo de elementos que puede incluir el contenedor.

size_type size() const Devuelve el nimero de elementos almacenados en el contenedor.

void swap(TipoContenedor c) Intercambia el contenido de dos contenedores.

A un contenedor que da soporte a acceso bidireccional a sus elementos se le denomina contene-
dor reversible. Ademas de los requisitos basicos, un contenedor reversible también debe proporcio-
nar iteradores inversos y las siguientes funciones:

reverse_iterator rbegin() Devuelve un iterador inverso al ultimo elemento en el contenedor.

const_reverse_iterator rbegin() const Devuelve un iterador const inverso al Ultimo elemento en el contenedor.

reverse_iterator rend() Devuelve un iterador inverso a uno antes del primer elemento del
contenedor.
const_reverse_iterator rend() const Devuelve un iterador const inverso a uno antes del primer elemento del

contenedor.

Capitulo 3:

Requisitos de contenedor de secuencias

Trabajo con contenedores STL 99

Ademéds de la funcionalidad comtin a todos los contenedores, un contenedor de secuencias agrega

las siguientes funciones:

void clear()

Elimina todos los elementos del contenedor.

iterator erase(iterator i)

Elimina los elementos senalados por i. Devuelve un
iterador al elemento después del eliminado.

iterator erase(iterator inicio, iterator final)

Elimina elementos en el rango especificado por inicio
y final. Devuelve un iterador al elemento que sigue el
dltimo elemento eliminado.

iterator insert(iterator i, const T &val)

Inserta val inmediatamente antes del elemento especi-
ficado por i. Devuelve un iterador al elemento.

&val)

void iterator insert(iterator i, size_type num, const T

Inserta num copias de val inmediatamente antes del
elemento especificado por i.

template <class Inlter>
void insert(iterator i, Inlter inicio, Inlter final)

Inserta la secuencia definida por inicio y final inmediata-
mente antes del elemento especificado por i.

La STL define un conjunto de funciones para contenedores de secuencia que son opcionales,
pero que se implementan con frecuencia. Aqui se muestran:

reference at(size_type ind)

Devuelve una referencia a un elemento especificado por
ind.

const_reference at(size_type ind) const

Devuelve una referencia const a un elemento especificado
por ind.

reference back()

Devuelve una referencia al Ultimo elemento del contenedor.

const_reference back() const

Devuelve una referencia const al dltimo elemento del
contenedor.

reference front()

Devuelve una referencia al primer elemento del contenedor.

const_reference front() const

Devuelve una referencia const al primer elemento del
contenedor.

reference operator[](size_type ind)

Devuelve una referencia al elemento especificado por ind.

const_reference operator[](size_type ind) const

Devuelve una referencia const al elemento especificado por
ind.

void pop_back()

Elimina el dltimo elemento del contenedor.

void pop_front()

Elimina el primer elemento del contenedor.

void push_back(const T &val)

Agrega un elemento con el valor especificado por val al final
del contenedor.

void push_front(const T &val)

Agrega un elemento con el valor especificado por val al
inicio del contenedor.

100

C++ Soluciones de programacion

Los contenedores de secuencia también deben proporcionar constructores que permiten que
un contenedor se inicialice mediante elementos especificados por un par de iteradores o con un
numero especifico de un elemento determinado. Por supuesto, un contenedor de secuencias tiene
la libertad de proporcionar funcionalidad adicional.

Requisitos de contenedores asociativos
Ademds de la funcionalidad requerida de todos los contenedores, los asociativos tienen varios
otros requisitos. En primer lugar, todos deben dar soporte a las siguientes funciones:

void clear()

Elimina todos los elementos del contenedor.

size_type count(const key_type &c) const

Devuelve el nimero de veces que ¢ se presenta en el contenedor.

void erase(iterator i)

Elimina los elementos senalados por i.

void erase(iterator inicio, iterator final)

Elimina los elementos en el rango inicio y final.

size_type erase(const key_type &c)

Elimina los elementos que tienen claves con el valor c. Devuelve el
ndimero de elementos que se han eliminado.

pair<iterator, iterator>
equal_range(const key_type &c)

Devuelve un par de iteradores que sefalan a los limites superior e
inferior en el contenedor para la clave especificada.

pair<const_iterator, const_iterator>
equal_range(const key_type &c) const

Devuelve un par de iteradores const que sefalan a los limites
superior e inferior en el contenedor para la clave especificada.

iterator find(const key_type &c)

Devuelve un iterador a la clave especificada. Si no se encuentra,
entonces se devuelve un iterador al final del contenedor.

const_iterator find(const key_type &c) const

Devuelve un iterador const a la clave especificada. Si no se en-
cuentra, entonces se devuelve un iterador al final del contenedor.

pair<iterator, bool>
insert(const value_type &val)

Inserta val en el contenedor. Si éste requiere claves Unicas, enton-
ces val s6lo se inserta si aun no existe. Si los elementos estan
insertados, se devuelve pair<iterator, true>. De otra manera, se
devuelve pair<iterator, false>.

iterator insert(iterator inicio,
const value_type &val)

Inserta val. La busqueda del punto de insercion apropiado empie-
za en el elemento especificado por inicio. En el caso de contene-
dores que requieren claves Unicas, los elementos se insertan sélo
si aun no existen. Se devuelve un iterador al elemento.

template <class Inlter>
void insert(Inlter inicio, Inlter final)

Inserta un rango de elementos. En el caso de contenedores que
requieren claves Unicas, los elementos se insertan sélo si aldn no
existen.

key_compare key_comp() const

Devuelve el objeto de funcién que compara dos claves.

iterator lower_bound(const key_type &c)

Devuelve el iterador al primer elemento con una clave igual o
mayor que c.

const_iterator lower_bound(const key_type
&c) const

Devuelve el iterador const al primer elemento con una clave igual
0 mayor que c.

iterator upper_bound(const key_type &c)

Devuelve un iterador al primer elemento con una clave mayor
que c.

const_iterator upper_bound(const key_type
&c) const

Devuelve un iterador const al primer elemento con una clave
mayor que c.

value_compare value_comp() const

Devuelve el objeto de funcién que compara los dos valores.

Capitulo 3: Trabajo con contenedores STL 101

Observe que algunas de las funciones devuelven un objeto pair. Se trata de una clase que
encapsula dos objetos. En el caso de contenedores asociativos que son mapas, value_type repre-
senta un pair que encapsula una clave y un valor. La clase pair se explica de manera detallada en
Técnicas bdsicas de contenedor asociativo.

Los contenedores asociativos deben proporcionar constructores que permitan que los elemen-
tos especificados por un par de iteradores inicialicen un contenedor. Deben también dar soporte
a constructores que le permitan especificar las funciones de comparacioén usadas para comparar
dos claves. Por supuesto, un contenedor asociativo tiene la libertad de proporcionar funcionalidad
adicional.

Problemas de rendimiento

Hay otro aspecto importante relacionado con las STL que se afiade a su capacidad y su aplicabili-
dad general: las garantias de rendimiento. Aunque un fabricante de compiladores tiene la libertad
de implementar los mecanismos usados por otro contenedor y algoritmo por su cuenta, todas las
implementaciones deben adecuarse a las garantias de rendimiento especificadas por el STL. Se
definen las siguientes categorias generales de rendimiento:

constante
lineal
logaritmica

Como diferentes contenedores almacenan su contenido de manera diferente, tendrdn garantias

de rendimiento distintas. Por ejemplo, la insercién en la parte media de un vector ocupa tiempo
lineal. En contraste, la insercién en una list toma tiempo constante. Diferentes algoritmos podrian
comportarse de manera diferente. Por ejemplo, el algoritmo sort() se ejecuta de manera proporcio-
nal a N log N, pero find() 1o hace en tiempo lineal.

En algunos casos, se dird que una operacién toma tiempo constante amortizado. Este término
se emplea para describir una situacién en que una operacion suele tomar tiempo constante, pero
en ocasiones requiere mas. (Por ejemplo, inserciones al final del vector suelen ocurrir en tiempo
constante, pero si debe asignarse mas memoria, entonces la insercién requiere tiempo lineal.) Si la
operacién mas larga es lo suficientemente rara, entonces puede considerarse como amortizada a
través de varias operaciones mas cortas.

En general, la especificacién STL requiere que los contenedores y algoritmos se implementen
usando técnicas que aseguran (hablando de manera general) un rendimiento 6ptimo del motor en
tiempo de ejecucion. Esto es importante porque le garantiza al programador que los bloques de
construccion de STL cumplan con un cierto nivel de eficiencia, sin importar qué implementacion
de STL se esté usando. Sin esta garantia, el rendimiento del c6digo basado en STL dependeria por
completo de cada implementacién individual y podria variar ampliamente.

102 c++ Soluciones de programacidn

Técnicas basicas de contenedor de secuencias

Componentes clave

Encabezados Clases Funciones
<vector> vector iterator begin()
void clear()

bool empty() const

iterator end()

iterator erase(iterator i)

iterator insert(iterator i, const T &val)
reverse_iterator rbegin()
reverse_iterator rend()

size_type size() const

void swap(vector<T, Allocator> &ob)

<Vector> template <class T, class Allocator>
bool operator==(const vector<T, Allocator>
&izqsup
const vector<T, Allocator>
&dersup)

template <class T, class Allocator>
bool operator<(const vector<T, Allocator>
&izqsup
const vector<T, Allocator>
&dersup)
template <class T>, class Allocator>
bool operator>(const vector<T, Allocator>
&izqsup,
const vector<T, Allocator>
&dersup)

Todos los contenedores de secuencias comparten una funcionalidad comtn. Por ejemplo, todos le
permiten agregar elementos al contenedor, eliminar elementos de él o recorrerlo en ciclo mediante
un iterador. Todos dan soporte al operador de asignacién y los operadores 16gicos, y todos estan
construidos de la misma manera. En esta solucion se describe esta funcionalidad comtin, mostran-
do las técnicas basicas que aplican a todos los contenedores de secuencias.

En esta solucién se muestra cémo:

e Crear un contenedor de secuencias.

¢ Agregar elementos al contenedor.

¢ Determinar el tamafio del contenedor.

¢ Usar un iterador para recorrer en ciclo el contenedor.

Capitulo 3: Trabajo con contenedores STL 103

¢ Asignar un contenedor a otro.

* Determinar cuando un contenedor es equivalente a otro.
¢ Eliminar elementos de un contenedor.

¢ Intercambiar los elementos de un contenedor con otro.

¢ Determinar si un contenedor esta vacio.

En esta solucién se usa la clase de contenedor vector, pero sélo se emplean los métodos comunes
a los contenedores de secuencias. Por tanto, pueden aplicarse los mismos principios generales a
cualquier tipo de contenedor de secuencias.

Paso a paso

Para crear y usar un contenedor de secuencias se requieren estos pasos:

1. Cree una instancia del contenedor deseado. En esta solucién, se usa vector, pero puede
sustituirse con cualquier otro contenedor de secuencias.

Agregue elementos al contenedor al llamar a insert().

Obtenga varios elementos en el contenedor al llamar a size().

Determine si el contenedor esta vacio (es decir, no contiene elementos) al llamar a empty().
Elimine elementos del contenedor al llamar a erase().

Elimine todos los elementos de un contenedor al llamar a clear().

Obtenga un iterador al principio de la secuencia al llamar a begin(). Obtenga un iterador a
uno después del final de la secuencia al llamar a end().

8. En el caso de contenedores de secuencias reversibles, obtenga un iterador inverso al final
de la secuencia, al llamar a rbegin(). Obtenga un iterador inverso a uno antes del inicio de
la secuencia al llamar a rend().

9. Recorra en ciclo los elementos del contenedor mediante un iterador.

10. Intercambie el contenido de un contenedor con otro mediante swap().
11. Determine cuando un contenedor es igual, menor que, o mayor que otro.

NSk N

Andlisis
Aunque la operacién interna de STL es muy compleja, su empleo en realidad es muy facil. En mu-
chos aspectos, la parte mas dificil de su uso esta en decidir cudl tipo de contenedor se debe usar.
Cada uno ofrece ciertos beneficios y requiere ciertas compensaciones. Por ejemplo, vector es muy
bueno cuando se requiere un objeto de acceso aleatorio, tipo matriz, y no se hardn demasiadas
inserciones o eliminaciones. Una list ofrece insercién y eliminacién a bajo costo, pero a cambio de
busquedas lentas. Una cola de doble extremo tiene soporte por parte de deque. En esta solucién se
usa vector para demostrar las operaciones bésicas de contenedores de secuencias, pero el progra-
ma funcionard con list o deque. Esta es una de las ventajas mas importantes de STL; todos los
contenedores de secuencias dan soporte a un nivel basico de funcionalidad comtn.

La especificacién de plantilla para vector se muestra a continuacion:

template <class T, class Allocator = allocator<T> > class vector

104

C++ Soluciones de programacion

Aqui, T es el tipo de datos que se habran de almacenar y Allocator especifica el asignador,
que es, como opcién predeterminada, el estdndar. Para usar vector, debe incluir el encabezado
<vector>.

La clase vector da soporte a varios constructores. Los dos usados en esta solucién son los nece-
sarios para todos los contenedores de secuencias. Se muestran a continuacién:

explicit vector(const Allocator %asign = Allocator())
vector(const vector<T, Allocator> &ob)

La primera forma construye un vector vacio. La segunda forma es un constructor de copia de
vector.

Después de que se ha creado un contenedor, pueden agregarsele objetos. Una manera de
hacer esto y que funciona para todos los contenedores de secuencias es llamar a insert(). Todos los
contenedores de secuencias dan soporte, por lo menos, a tres versiones de insert(). Esta es la usada
aqui:

iterator insert(iterator i, const T &wval)

Inserta val en el contenedor que invoca en el punto especificado por i. Devuelve un iterador al ele-
mento insertado. Un contenedor de secuencias crecerd autométicamente a medida que se necesita
cuando se le agreguen elementos.

Puede eliminar uno o més elementos de un contenedor de secuencias al llamar a erase(). Tiene
por lo menos dos formas. La usada en esta solucién se muestra a continuacién:

iterator erase(iterator 7)

Elimina el elemento al que sefiala i. Devuelve un iterador al elemento después del eliminado.
Para eliminar todos los elementos en un contenedor, llame a clear(). Aqui se muestra:

void clear()

Puede determinar el nimero de elementos en un contenedor al llamar a size(). Para determi-
nar si un contenedor esta vacio, llame a empty(). Ambas funciones se muestran a continuacion:

bool empty() const
size_type size() const

Puede obtener un iterador al principio de la secuencia al llamar a begin(). Un iterador a uno
después del tdltimo elemento en la secuencia se obtiene al llamar a end(). Aqui se muestran estas
funciones:

iterator begin()
iterator end()

También hay versiones const de estas funciones.

Para declarar una variable que se usard como iterador, debe especificar el tipo de iterador del
contenedor. Por ejemplo, esto declara un iterador que puede apuntar a elementos dentro de un
vector<double>:

vector<doubles>::iterator itr;

Capitulo 3: Trabajo con contenedores STL 105

Es til destacar que end() no devuelve un iterador que sefiala al tiltimo elemento del contene-
dor. En cambio, devuelve un iterador que sefiala a uno después del tltimo elemento. Por tanto, el
dltimo elemento de un contenedor es sefialado por end()-1. Esta caracteristica le permite escribir
algoritmos muy eficientes que recorren en ciclo todos los elementos de un contenedor, incluido
el dltimo, usando un iterador. Cuando éste tiene el mismo valor que el devuelto por end(), sabra
que se ha tenido acceso a todos los elementos. Por ejemplo, he aqui un bucle que recorre todos los
elementos de un contenedor de secuencias llamado cont:

for(itr = cont.begin(); itr != cont.end(); ++itr) //

El bucle se ejecuta hasta que itr es igual a cont.end(). Por tanto, todos los elementos de cont ten-
dran que procesarse.

Como ya se explico, un contenedor reversible es uno en que los elementos pueden recorrerse
en orden inverso (de atras hacia adelante). Todos los contenedores de secuencias integrados son
reversibles. Para un contenedor reversible, puede obtener un iterador inverso al final de la secuen-
cia al llamar a rbegin(). Un iterador a uno antes del primer elemento en la secuencia se obtiene al
llamar a rend(). Aqui se muestran estas funciones:

reverse_iterator rbegin()
reverse_iterator rend()

También hay versiones const de estas funciones. Un iterador inverso se declara como un iterador
regular. Por ejemplo,

vector<doubles>: :reverse_ iterator ritr;

Puede usar un iterador inverso para recorrer en ciclo un vector en orden inverso. Por ejemplo,
dado un iterador inverso llamado ritr, he aqui un bucle que recorre todos los elementos en un
contenedor de secuencias reversible llamado cont de atras hacia adelante:

for(ritr = cont.rbegin(); ritr != cont.rend(); ++ritr) //

El iterador inverso ritr empieza en el elemento sefialado por rbegin(), que es el tltimo elemento
de la secuencia. Se ejecuta hasta que es igual a rend(), que sefiala a un elemento que esta uno antes
del inicio de la secuencia. (En ocasiones resulta titil considerar a rbegin() y rend() como iteradores
que regresan al inicio y el final de una secuencia invertida.) Cada vez que se aumenta un iterador
inverso, sefiala al elemento anterior. Cada vez que se reduce, sefiala al siguiente elemento.

El contenido de dos contenedores de secuencia puede intercambiarse al llamar a swap(). He
aqui la manera en que se define para vector:

void swap(vector<T, Allocator> &ob)
El contenido del contenedor que invoca se intercambia con el especificado por ob.
Ejemplo
En el siguiente ejemplo se demuestran las operaciones basicas de contenedor de secuencias:

// Demuestra las operaciones basicas de contenedor de secuencias.
// En este ejemplo se usa vector, pero puede aplicarse la misma
// técnica a cualquier contenedor de secuencias.

106 C++ Soluciones de programacidn

#include <iostream>
#include <vector>

using namespace std;
void mostrar (const char *msg, vector<chars> vect);

int main() {
// Declara un vector vacio que puede contener objetos char.
vector<char> v;

// Declara un iterador a un vector<chars.
vector<chars>::iterator itr;

// Obtiene un iterador al principio de v.
itr = v.begin();

// Inserta caracteres en v. Se devuelve un iterador al
// objeto insertado.

itr = v.insert (itr, 'A');

itr = v.insert (itr, 'B');

v.insert (itr, 'C');

// Despliega el contenido de v.
mostrar ("El contenido de v: ", Vv);

// Declara un iterador inverso.
vector<chars>::reverse iterator ritr;

// Usa un iterador inverso para mostrar el contenido de v en reversa.
cout << "Se muestra v en reversa: ";
for(ritr = v.rbegin(); ritr != v.rend(); ++ritr)
cout << *ritr << " ";
cout << "\n\n";

// Crea otro vector que es el mismo que el primero.
vector<char> v2(v) ;

mostrar ("E1l contenido de v2: ",v2);

cout << "\n";

// Muestra el tamafio de v, que es el nuimero de elementos
// contenidos por v.
cout << "El tama\uOOa4o de v es " << v.size() << "\n\n";

// Compara dos contenedores.
if (v == v2) cout << "v y v2 son equivalentes.\n\n";

// Inserta mads caracteres en v y v2. Esta vez,

// se insertan al final.

cout << "Se insertan caracteres adicionales en v y v2.\n";
v.insert(v.end(), 'D');

v.insert (v.end (), 'E');

Capitulo 3: Trahajo con contenedores STL
v2.insert (v2.end (), 'X');
mostrar ("El contenido de v: ", Vv);
mostrar ("El contenido de v2: ", v2);

cout << "\n";

// Determina si v es menos que v2. Se trata de

// una comparacidn lexicogrédfica. Por ello, el

// primer elemento no coincidente del contenedor determina
// cudl contenedor es menos que otro.

if (v < v2) cout << "v es menos que v2.\n\n";

// Ahora, inserta Z al inicio de v.

cout << "Se inserta Z al inicio de v.\n";
v.insert (v.begin(), 'Z');

mostrar ("El contenido de v: ", Vv);

cout << "\n";

// Ahora, compara v con Vv2 una vez mas.
if (v > v2) cout << "Ahora, v es mayor que v2.\n\n";

// Elimina el primer elemento de v2.

v2.erase (v2.begin()) ;

mostrar ("v2 tras eliminar el primer elemento: ", v2);
cout << "\n";

// Crea otro vector.
vector<char> v3;

v3.insert (v3.end(), 'X'");
v3.insert(v3.end(), 'Y');
v3.insert(v3.end(), 'Z');
mostrar ("E1l contenido de v3: ", v3);

cout << "\n";

// Intercambia el contenido de v y v3.
cout << "Se intercambian v y v3.\n";
v.swap (v3) ;

mostrar ("El contenido de v: ", Vv);
mostrar ("El contenido de v3: ", v3);
cout << "\n";

// Limpia v.
v.clear () ;
if (v.empty()) cout << "v ahora est\u00a0 vac\uOOalo.";

return O0;

}

// Despliega el contenido de un vector<char> al usar

// un iterador.

void mostrar (const char *msg, vector<chars vect) {
vector<char>::iterator itr;

cout << msg;
for (itr=vect.begin(); itr != vect.end(); ++itr)

107

108 C++ Soluciones de programacidn

cout << *itr << " ";
cout << "\n";

}

Aqui se muestra la salida:

El contenido de v: C B A
Se muestra v en reversa: A B C

El contenido de v2: C B A

El tamafio de v es 3

v y v2 son equivalentes.

Se insertan caracteres adicionales en v y v2.
El contenido de v: C B ADE

El contenido de v2: C B A X

vV es menos que Vv2.

Se inserta Z al inicio de v.
El contenido de v: Z C B ADE

Ahora, v es mayor que Vv2.
v2 tras eliminar el primer elemento: B A X
El contenido de v3: X Y Z

Se intercambian v y v3.
El contenido de v: X Y Z
El contenido de v3: Z C B ADE

v ahora esta vacio.

Aunque gran parte del programa se explica por si solo, hay varios puntos de interés que mere-
cen una revision de cerca. En primer lugar, observe que no se especifica algiin asignador cuando
se declaran los contenedores del programa (v, v2 y v3). Como se explicé, en casi todos los usos de
STL, la opcién correcta es el asignador predeterminado.

A continuacion, observe cOmo el iterador itr se declara en esta instrucciéon:

vector<char>::iterator itr;

Esto declara un iterador que puede usarse con objetos de tipo vector<char>. Cada clase de conte-
nedor crea un typedef para iterator. Los iteradores a otros tipos de vectores u otros contenedores
se declaran de la misma manera general. Por ejemplo:

vector<doubles>: :iterator itrA;
deque<string>::iterator itrB;

Aqui, itrA es un iterador que puede usarse en contenedores vector<double> e itrB aplica a conte-
nedores de tipo deque<string>. En general, debe declarar un iterador de una manera que coincida

Capitulo 3: Trabajo con contenedores STL 109

con los tipos de contenedor y de objetos contenidos en él. Lo mismo es valido para los iteradores
inversos.

A continuacién, se obtiene un iterador al principio del contenedor al llamar a begin(), y luego
el siguiente conjunto de llamadas a insert() pone elementos en v:

itr = v.insert (itr, 'A');
itr = v.insert (itr, 'B');
v.insert (itr, 'C');

Cada llamada inserta el valor que se encuentra inmediatamente antes del elemento sefialado por
el iterador y pasado en itr. Se devuelve un iterador al elemento insertado. Por tanto, estas tres
llamadas causan que v contenga la secuencia CBA.

Ahora, revise la funcién mostrar(). Se usa para desplegar el contenido de un vector<char>.
Preste especial atencion al siguiente bucle:

for (itr=vect.begin(); itr != vect.end(); ++1itr)
cout << *itr << " ";

Recorre en ciclo el vector pasado a vect, empezando con el primer elemento y deteniéndose cuan-
do se ha encontrado el ultimo. Recuerde que end() devuelve un iterador que sefiala a un elemento
después del final del contenedor. Por tanto, cuando itr es igual a vect.end(), se ha alcanzado el
final del contenedor. Estos tipos de bucles son muy comunes cuando se trabaja con STL. Ademas,
observe como se vuelve a hacer referencia a itr mediante el operador * casi de la misma manera en
que se haria con un apuntador. En general, los iteradores funcionan como apuntadores y se mane-
jan, en esencia, de la misma manera.

A continuacién, en main(), observe como el iterador inverso ritr se usa para recorrer en ciclo el
contenido de v en orden inverso. Un iterador inverso funciona de manera parecida a uno normal,
excepto que accede a los elementos del contenedor en orden inverso.

Ahora, observe como se comparan dos contenedores mediante el uso de los operadores ==y <.
En el caso de contenedores de secuencias, las comparaciones son lexicogréficas y se aplican a los
elementos. Aunque el término "lexicografico" significa "orden del diccionario", su significado se
generaliza a la manera en que se relaciona con STL. En el caso de comparaciones entre contene-
dores, dos de éstos son iguales si contienen el mismo niimero de elementos, en el mismo orden, y
todos los elementos correspondientes son iguales. De otra manera, el resultado de la comparacién
lexicografica se basa en los primeros elementos que no coinciden. Por ejemplo, dadas estas dos
secuencias:

secl:7,8,9
sec2:7,8,11

secl es menos que sec2 porque la primera diferencia es entre 9 y 11, y 9 es menor que 11. Debido a
que la comparacién es lexicografica, secl es todavia menos que sec2, aunque la longitud de secl se
aumente a 7, 8, 9, 10, 11, 12. Los primeros elementos no coincidentes (en este caso, 9 y 11) determi-
nan el resultado.

Opciones
Ademas de la version de insert() usada en esta solucién, todos los contenedores de secuencias dan
soporte a las dos formas mostradas aqui:

110

C++ Soluciones de programacion

void insert(iterator i, size_type num, const T &wval)
template <class Inlter> void insert(iterator i, Inlter inicio, Inlter final)

La primera forma inserta num copias de val inmediatamente antes del elemento especificado por
i. La segunda forma inserta la secuencia que se ejecuta desde inicio hasta final-1 inmediatamente
antes del elemento especificado por i. Observe que inicio y final no necesitan estar sefialados dentro
del contenedor que invoca. Por tanto, esta forma puede usarse para insertar elementos de un
contenedor en otro. Més atin, no es necesario que los contenedores sean del mismo tipo. Siempre y
cuando los elementos sean compatibles, puede insertar elementos de deque en list, por ejemplo.
Hay una segunda forma de erase() que tiene soporte en todos los contenedores de secuencias.
Aqui se muestra:

iterator erase(iterator inicio, iterator final)

Esta version elimina elementos en el rango inicio a final-1 y devuelve un iterador al elemento des-
pués del ltimo elemento eliminado.

Ademads de los operadores ==, <y >, todos los contenedores de secuencias dan soporte a los
operadores logicos <=, >=y !=.

Puede encontrar el niimero méaximo de elementos que un contenedor puede incluir al llamar a
max_size(), que se muestra aqui:

size_type max_size() const

Debe comprender que el tamafio maximo variard, dependiendo del tipo de datos que incluye el
contenedor. Ademas, diferentes tipos de contenedores pueden tener (y probablemente tendran)
diferentes capacidades méximas.

Como se menciond, el ejemplo anterior funciona para todos los contenedores de secuencias.
Para probar esto, trate de sustituir vector con deque o list. Como ver4, el programa produce el
mismo resultado. Por supuesto, la eleccién del contenedor apropiado es una parte importante
del uso correcto de la STL. Recuerde que diferentes contenedores tendran diferentes garantias de
rendimiento. Por ejemplo, la insercién de un elemento en medio de una deque toma tiempo lineal.
La insercién en una list toma tiempo constante. La inserciéon en la parte media de un vector usa
tiempo lineal, pero la misma al final puede ocurrir en tiempo constante (si no se requiere una rea-
signacién). En general, si no hay una razén poderosa para elegir un contenedor sobre otro, vector
suele ser la mejor eleccién porque implementa lo que es, en esencia, una matriz dindmica (consulte
Use vector).

En algunos casos, querrd usar uno de los adaptadores de contenedores de secuencias, como
queue, stack o priority_queue, que proporciona una funcionalidad especifica que desee. Por
ejemplo, si quiere que un contenedor implemente una pila clasica, entonces use stack. Para colas
de un solo extremo, use queue. Para una cola que estd ordenada de acuerdo con una prioridad,
use priority_queue.

Capitulo 3: Trabajo con contenedores STL 111

Use vector

Componentes clave

Encabezados Clases Funciones

<vector> vector template <class Inlter>
void assign(Inlter inicio, Inlter final)
reference at(size_type i)
reference back()
size_type capacity() const
reference front()
reference operator()(size_type i)
void pop_back
void push_back(const T $val)
void reserve(size_type num)
void resize(size_type num, T val = T())

En esta solucion se demuestra vector, que es probablemente el contenedor de secuencias de uso
mas extendido porque implementa una matriz dindmica. A diferencia de una estatica, cuyas
dimensiones se fijan en tiempo de compilacién, una matriz dindmica puede crecer de acuerdo
con las necesidades durante la ejecuciéon del programa. Esto hace que vector resulte una excelente
opcidén para situaciones en que necesita una matriz, pero no sabe por anticipado el tamafio que
debe tener. Aunque la matriz creada por vector es dindmica, atin puede accederse a sus elementos
empleando el operador de subindice de matriz normal []. Esto facilita la colocacién de vector en
situaciones en que, de otra manera, se requeriria una matriz.

NoOTA El ¢je de esta solucion estd en los atributos y las caracteristicas de vector que lo hacen tinico.
Consulte Técnicas bésicas de contenedor de secuencias para conocer informacion que aplica a
todos los contenedores de secuencias.

Paso a paso
Para usar vector se requieren los siguientes pasos:

Cree una instancia de vector del tipo deseado y el tamafio inicial.

Asigne u obtenga valores para los elementos mediante el operador de subindice.
Use la funcién at() como una opcién al operador de subindice.

Agregue elementos al vector usando insert() o push_back().

Elimine elementos del final al llamar a pop_back().

Obtenga una referencia al primer elemento del vector al llamar a front().

SN

112

C++ Soluciones de programacion

7. Obtenga una referencia al tltimo elemento del vector al llamar a back().
8. Asigne un rango de elementos a un vector al llamar a assign().
9. Para obtener la capacidad actual de un vector, llame a capacity(). Para especificar una
capacidad, llame a reserve().
10. Para cambiar el tamafio de un vector, llame a resize().

Analisis
Aqui se muestra la especificacion de la plantilla para vector:

template <class T, class Allocator=allocator<T> > class vector

Aqui, T es el tipo de datos que se estan almacenando y Allocator especifica el asignador, que es,
como opcién predeterminada, el asignador estdndar. Para usar vector, debe incluir el encabezado
<vector>.

He aqui los constructores de vector:

explicit vector(const Allocator &asign = Allocator())
explicit vector(size_type num, const T &val =T (),
const Allocator &asign = Allocator())
vector(const vector<T, Allocator> &ob)
template <class Inlter> vector(Inlter inicio, Inlter final,
const Allocator &asign = Allocator())

La primera forma construye un vector vacio. La segunda, uno que tiene num elementos con el va-
lor val. La tercera es un constructor de copia de vector. La cuarta construye un vector que contiene
los elementos en el rango inicio a final-1. El asignador usado por el vector se especifica con asign,
que suele permitirse como opcién predeterminada.

La clase vector da soporte a iteradores de acceso aleatorio, y el [] esta sobrecargado. Esto per-
mite que se indice un objeto vector como una matriz.

La clase vector implementa todas las funciones y operaciones de contenedor de secuencias
necesarias, como erase(), insert(), swap() y los operadores 16gicos. También proporciona todas las
funciones necesarias para un contenedor reversible. Brinda casi todas las funciones opcionales de
contenedor de secuencias. Las tinicas de estas funciones que no implementa son push_front() y
pop_front().

Los elementos dentro de un vector pueden accederse de dos maneras. En primer lugar, y lo
mas conveniente, es mediante el uso del operador de subindice []. Aqui se muestra:

reference operator[](size_type i)

Devuelve una referencia al elemento del indice especificado por i. El tipo reference es un typedef
para T &. (También se proporciona una versién const de la funcién que devuelve una const_refe-
rence.) Este operador puede utilizarse para establecer u obtener el valor en un indice especificado.
Por supuesto, el indice que especifique debe estar dentro del rango actual del vector. Como en las
matrices, la indizacién empieza en cero.

Otra manera de acceder a los elementos en un vector consiste en usar el método at(). Aqui se
muestra:

reference at(size_type 1)

Capitulo 3: Trabajo con contenedores STL 113

Devuelve una referencia a un elemento en el indice especificado por i. (También se proporciona
una version const de la funcion que devuelve una const_reference.) Esta referencia puede em-
plearse para obtener el valor en un indice especificado. Por supuesto, el indice que especifique
debe estar dentro del rango actual del vector. Como el operador [], la indizacién usando at() tam-
bién empieza en cero.

Aunque el uso del operador [] es mas conveniente, la funcién at() ofrece un beneficio. Si se hace
un intento por acceder a un elemento que esta fuera de los limites actuales de vector, at() lanzara
una excepcién out_of_range. Por tanto, proporciona comprobacién de limites. Lo que no hace [].

Aunque todos los vectores tienen un tamafio inicial (que puede ser cero), es posible aumen-
tarlo al agregar elementos al vector. Hay dos maneras faciles de hacer esto: insertar elementos
empleando la funcion insert() y agregar elementos al final al llamar a push_back(). La funcién
insert() se describe en Técnicas bdsicas de contenedor de secuencias y ya no se trata mas aqui. A conti-
nuacién se muestra la funcién push_back():

void push_back(const T &wval)

Agrega un elemento con el valor especificado por val al final del vector. El tamafio de éste se au-
menta automdticamente para acomodar la adicién.

El complemento de push_back() es pop_back(). Elimina un elemento del final del vector. Se
muestra a continuacién:

void pop_back()

Después de que se ejecuta pop_back(), el tamafio del vector se reduce en uno.
Puede obtener una referencia al tiltimo elemento del vector al llamar a back(). Se devuelve una
referencia al primer elemento mediante front(). Aqui se muestran estas funciones:

reference back()
reference front()

La clase vector también proporciona versiones const de estas funciones.

El tipo de iterador proporcionado por vector es de acceso aleatorio. Esto significa que puede
agregarse un valor entero al iterador, o restarsele a éste, lo que permite que el iterador sefiale a
cualquier elemento arbitrario dentro del contenedor. También permite que un iterador recorra un
vector en direccién directa o inversa. La clase vector define dos tipos de iterador: directo o inverso.
Los iteradores directos son objetos de tipo iterator o const_iterator, los inversos son de tipo rever-
se_iterator o const_reverse_iterator.

Se obtiene un iterador directo al inicio de un vector al llamar a begin(), y uno al final se obtiene
al llamar a end(). Un iterador inverso al final del vector se obtiene al llamar a rbegin(), y uno a
uno antes del inicio se obtiene con rend(). Estas funciones y el procedimiento bésico requerido
para recorrer en ciclo un contenedor de secuencias se describen en Técnicas bdsicas de contenedor de
secuencias.

Puede asignar un nuevo conjunto de valores a un vector al usar la funcién assign(). Tiene dos
formas. La usada en esta solucién se muestra a continuacién:

template <class Inlter> void assign(Inlter inicio, Inlter final)

Reemplaza todo el contenido del vector que invoca con los valores especificados en el rango inicio
a final-1. Observe que inicio y final pueden ser cualquier tipo de iterador de entrada. Esto significa

114

C++ Soluciones de programacion

que puede usar assign() para asignar valores de otro vector o cualquier otro tipo de contenedor.
La tinica regla es que los valores deben ser compatibles con el objeto que invoca.

Todos los vectores se crean con una capacidad inicial. Este es el nimero de elementos que puede
contener el vector antes de que se necesite asignar mas memoria. Puede obtener la capacidad
actual al llamar a capacity(), que se muestra aqui:

size_type capacity() const

Es importante que no se confunda capacidad con tamano. El tamafio de un vector, que esta dispo-
nible al llamar a la funcién de contenedor estdndar size(), es el niimero de elementos que contiene
actualmente. La capacidad es cuanto puede contener antes de que ocurra una reasignacion.

Puede reservar memoria para un nimero especifico de elementos al llamar a reserve(), que se
muestra aqui:

void reserve(size_type num)

La funcién reserve() reserva memoria al menos por el niimero de elementos especificado en num.
En otras palabras, establece la capacidad del vector que invoca igual o mayor que num. (Por tanto,
un compilador tiene la libertad de ampliar la capacidad para obtener mayor eficiencia.) Debido a
que el aumento de la capacidad puede causar una reasignacién de la memoria, podria invalidar
cualquier apuntador o referencia a elementos dentro de un vector. Si sabe de antemano que un
vector contendrd un ntimero especifico de elementos, entonces el uso de reserve() evitara reasig-
naciones innecesarias que cuestan mucho tiempo.

Tiene la opcién de cambiar el tamafio de un vector al llamar a resize(), que se muestra aqui:

void resize(size_type num, T val = T())

Establece el tamafio del vector al especificado por num. Si el tamafio se aumenta, entonces los elemen-
tos con el valor especificado por val se agregan al final. Observe que val corresponde al valor predeter-
minado de T. Si disminuye el tamafio del vector, entonces los elementos se eliminan del final.

La clase vector tiene las siguientes caracteristicas de rendimiento. La insercién o eliminacién
de elementos al final de un vector se presenta en tiempo constante amortizado. Cuando ocurren al
principio o en medio, las inserciones o eliminaciones tienen lugar en tiempo lineal. Como se acaba
de explicar, es posible reservar espacio adicional en un vector al usar la funcién reserve(). Al asignar
previamente memoria adicional, evitard que ocurran reasignaciones. Por tanto, si administra de ma-
nera correcta sus vectores, la mayor parte de las inserciones pueden ocurrir en tiempo constante.

El acceso a un elemento mediante el operador de subindice toma lugar en tiempo constante. En
general, el acceso a elementos en un vector es méas rapido de lo que seria con cualquier otro contene-
dor de secuencias definido por STL. Por esto es por lo que vector se usa para matrices dindmicas.

En todos los casos, cuando ocurre una insercién, ya no seran validas las referencias y los itera-
dores a elementos después del punto de insercién. Sin embargo, en algunos casos, como cuando se
agrega el elemento al final mediante una llamada a push_back(), es probable que no sean validas
todas las referencias e iteradores a elementos. Esta situacion se presenta sdlo si es necesario que
el vector asigne mds memoria. En este caso, ocurre una reasignacién, y el contenido del vector
puede moverse a una nueva ubicacion. Si el vector se mueve fisicamente, ya no seran validos los
iteradores y las referencias previos. Por tanto, para todos los fines précticos, es mejor suponer que
las referencias y los iteradores no son vélidos después de las inserciones. Cuando se elimina un
elemento de un vector, ya no son validos los iteradores y las referencias a elementos que estdn
después del punto de borrado.

Capitulo 3: Trabajo con contenedores STL 115

Ejemplo

En el siguiente ejemplo se muestra vector en accién:

// Demuestra vector.

#include <iostreams>
#include <vectors>

using namespace std;
void mostrar (const char *msg, vector<int> vect);
int main() {

// Declara un vector gque tiene una capacidad inicial de 10.
vector<int> v (10) ;

// Asigna algunos valores a sus elementos. Obsérvese que se
// hace mediante la sintaxis de subindice de matriz estandar.
// Toémese nota de que el nimero de elementos en el vector

// se obtiene al llamar a size().

for (unsigned i=0; i < v.size(); ++i) vI[i] = i*i;

mostrar ("El contenido de v: ", Vv);

// Calcula el promedio de los valores. Una vez mas,
// observe el uso del operador de subindice.

int sum = 0;

for (unsigned i=0; 1 < v.size(); ++1i) sum += v[i];

double avg = sum / v.size();

cout << "El promedio de los elementos es " << avg << "\n\n";

// Agrega elementos al final de v.
v.push_back(100) ;
v.push back(121) ;

mostrar ("v tras incluir elementos al final: ", v);
cout << endl;

// Rhora usa pop back() para eliminar un elemento.
v.pop_back() ;

mostrar ("v tras usar back-pop con un elemento: ", Vv);
cout << endl;

cout << "El primero y \uOOa3ltimo elemento de v como"
<< " lo indican begin() y end()-1:\n"
<< *v.begin() << ", " << *(v.end()-1) << "\n\n";

cout << "El primero y \uOOa3ltimo elemento de v como"
<< " lo indican rbegin() y rend()-1:\n"
<< *v.rbegin() << ", " << *(v.rend()-1) << "\n\n";

// Declara un iterador a un vector<ints>.
vector<int>::iterator itr;

116 Cc++ Soluciones de programacidn

// Ahora, declara un iterador inverso a un vector<ints>
vector<ints>::reverse_iterator ritr;

// Recorre en ciclo v en direccidén directa usando un iterador.
cout << "Se aplica un bucle al vector en direcci\u0Oa2n directa:\n";
for(itr = v.begin(); itr != v.end(); ++itr)
cout << *itr << " ";
cout << "\n\n";
cout << "Ahora, se usa un iterador inverso para aplicar un bucle"
<< " en direcci\u00a2n inversa:\n";

// Recorre v en ciclo en direccién inversa utilizando un iterador inverso.
for (ritr = v.rbegin(); ritr != v.rend(); ++ritr)

cout << *ritr << " ";
cout << "\n\n";

// Crea otro vector que contiene un subrango de v.
vector<int> v2(v.begin()+2, v.end()-4);

// Despliega el contenido de v2 usando un iterador.
mostrar ("v2 contiene un subrango de v: ", v2);

cout << endl;

// Cambia los valores de algunos de los elementos de v2.

v2[1] = 100;
v2[2] = 88;
v2[4] = 99;
mostrar ("Tras las asignaciones, v2 ahora contiene: ", v2);

cout << endl;

// Crea un vector vacio y luego le asigna una
// secuencia que es la inversa de v.
vector<int> v3;

v3.assign(v.rbegin(), v.rend()) ;

mostrar ("v3 contiene la inversa de v: ", v3);
cout << endl;

// Muestra el tamafio y la capacidad de v.
cout << "El tama\uOOa4o de v es " << v.size() << ". La capacidad es "
<< Vv.capacity() << ".\n";

// Ahora, cambia el tamafio de v.

v.resize (20) ;

cout << "Tras llamar a resize(20), el tama\uOOa4o de v es "
<< v.size() << " y la capacidad es "
<< v.capacity() << ".\n";

// Ahora, reserva espacio para 50 elementos.

v.reserve (50) ;

cout << "Tras llamar a reserve (50), el tama\uOOa4o de v es "
<< v.size() << " y la capacidad es "
<< v.capacity() << ".\n";

return 0;

Capitulo 3: Trabajo con contenedores STL 117

// Despliega el contenido de un vector<ints.
void mostrar(const char *msg, vector<ints vect) {
cout << msg;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

Aqui se muestra la salida:

El contenido de v: 0 1 4 9 16 25 36 49 64 81
El promedio de los elementos es 28

v tras incluir elementos al final: 0 1 4 9 16 25 36 49 64 81 100 121
v tras usar back-pop con un elemento: 0 1 4 9 16 25 36 49 64 81 100

El primero y tGltimo elemento de v como lo indican begin() y end()-1:
0, 100

El primero y Gltimo elemento de v como lo indican rbegin() y rend()-1:
100, 0

Se aplica un bucle al vector en direccidén directa:
01 4 9 16 25 36 49 64 81 100

Ahora, se usa un iterador inverso para aplicar un bucle en direccidén inversa:
100 81 64 49 36 25 16 9 4 1 O

v2 contiene un subrango de v: 4 9 16 25 36
Tras las asignaciones, v2 ahora contiene: 4 100 88 25 99
v3 contiene la inversa de v: 100 81 64 49 36 25 16 9 4 1 0

El tamafio de v es 11. La capacidad es 15.
Tras llamar a resize(20), el tamafio de v es 20 y la capacidad es 22.
Tras llamar a reserve(50), el tamaflo de v es 20 y la capacidad es 50.

Casi todo el programa se explica por si solo, pero vale la pena analizar mas un par de puntos.
En primer lugar, tome nota de que el operador de subindice se utiliza para asignar un valor a un
elemento de un vector o para obtener el valor actual de un elemento. Por tanto, funciona de la mis-
ma manera que cuando se aplica a una matriz. Un punto clave que se debe comprender es que s6lo
puede usar subindices para acceder a un elemento existente. Por ejemplo, en el programa, v tiene al
principio 10 elementos. Por tanto, no puede asignar, por ejemplo, un valor v[15]. Si necesita expan-
dir un vector después de crearlo, debe usar el método push_back(), que agrega un valor al final,

o el método insert(), que puede usarse para insertar uno o mas elementos en cualquier lugar de la
secuencia.

En segundo lugar, tome nota de que los iteradores inversos se usan en dos lugares: primero,
para recorrer en ciclo un vector en direccién inversa y, después, para llamar a assign(), con el fin
de asignar a v3 una secuencia que es la inversa de la de v. Es este segundo uso el més interesante.
Al emplear un iterador inverso, es posible obtener una secuencia invertida en un paso, en lugar de

118

C++ Soluciones de programacion

los dos que se necesitarian si la secuencia se copiara primero como esta y luego se invirtiera. En oca-
siones, los operadores inversos pueden mejorar operaciones que, de otra manera, serian complejas.

Opciones
Hay otra forma de assign() que le permite asignar un valor a un vector. Se muestra aqui:

void assign(size_type num, const T& val)

Esta version elimina todos los elementos anteriormente contenidos por el vector y luego asigna
num copias de val al vector. Esta versién de assign() es ttil cuando quiere reinicializar un vector a
un valor conocido, por ejemplo.

El contenedor vector no almacena elementos en orden. Sin embargo, es posible ordenar un
vector al usar el algoritmo sort(). Consulte Ordene un contenedor, en el capitulo 4.

En algunos casos, el contenedor deque es una buena opcién a vector. Tiene capacidades
similares, como permitir el acceso a sus elementos mediante el operador de subindice, pero tiene
caracteristicas de rendimiento diferentes. Consulte Use deque para conocer detalles.

La STL también contiene una especificacion de vector para valores bool: vector<bool>. Incluye
toda la funcionalidad de vector y agrega estos dos miembros:

void flip() Invierte todos los bits en el vector.

static void swap(reference i, reference j) Intercambia los bits especificados poriy j.

Mediante la especificacién para bool, vector puede empaquetar valores true/false en bits indivi-
duales. La especificacion vector<bool> define una clase llamada reference, que se usa para emular
una referencia a un bit.

Componentes clave

Encabezados Clases Funciones

<deque> deque template <class Inlter>
void assign(Inlter inicio, Inlter final)
reference at(size_type i)
reference back()
reference front()
reference operator[](size_type i)
void pop_back()
void pop_front()
void push_back(const T &val)
void push_front(const T &val)
void resize(size_type num, T val = T())

Tal vez el segundo contenedor de uso méds comuin sea deque. Hay dos razones para esto. En
primer lugar, deque da soporte a todas las funciones opcionales definidas por los contenedores de

Capitulo 3: Trabajo con contenedores STL 119

secuencias. Esto hace que la STL sea un contenedor con caracteristicas mas completas. En segundo
lugar deque es el contenedor predeterminado de los adaptadores de contenedor queue y stack.
(El contenedor predeterminado usado por priority_queue es vector.) Esta solucion muestra la
manera de poner a deque en accién.

NOTA El ¢je de esta solucion estdi en los atributos y las caracteristicas de deque que lo hacen tinico.
Consulte Técnicas basicas de contenedor de secuencias para conocer informacion que aplica a
todos los contenedores de secuencias.

Paso a paso
Para usar un deque se requieren estos pasos:

Cree una instancia de deque del tipo deseado y el tamafio inicial.

Asigne u obtenga valores para los elementos mediante el operador de subindice.

Use la funcién at() como una opcién del operador de subindice.

Agregue elementos a la cola de dos extremos empleando insert(), push_back() o push_
front().

Elimine elementos del final al llamar a pop_back(). Elimine elementos del frente al llamar
a pop_front().

Obtenga una referencia al primer elemento en la cola de dos extremos al llamar a front().
Obtenga una referencia al ultimo elemento en la cola de dos extremos al llamar a back().
Asigne un rango de elementos a una cola de dos extremos al llamar a assign().

Para cambiar el tamafio de la cola de dos extremos, llame a resize().

Ll Y

o1

O PN

Analisis
La especificacién de plantilla para deque es:

template <class T, class Allocator = allocator<T> class deque

Aqui, T es el tipo de datos almacenado en la cola de dos extremos y Allocator especifica el asigna-
dor, que tiene como opcién predeterminada el asignador estandar. Para usar deque, debe incluir el
encabezado <deque>.

He aqui los constructores de deque:

explicit deque(const Allocator &asign = Allocator())

explicit deque(size_type num, const T &val =T (),
const Allocator &asign = Allocator())

deque(const deque<T, Allocator> &ob)

template <class Inlter> vector(Inlter inicio, Inlter final,
const Allocator &asign = Allocator())

La primera forma construye una cola de dos extremos vacia. La segunda, una deque que tiene
num elementos con el valor val. La tercera, una cola de dos extremos que contiene los mismos
elementos que ob. Este es el constructor de copia de deque. La cuarta forma construye una cola de
dos extremos que contiene los elementos en el rango inicio a final-1. El asignador usado por la cola
de dos extremos esta especificado por asign y suele permitirse como opcién predeterminada.

El contenedor deque da soporte a los iteradores de acceso aleatorio, y [] esta sobrecargado.
Esto significa que un objeto deque puede indizarse como una matriz. También significa que una

120

C++ Soluciones de programacion

cola de dos extremos puede recorrerse en direcciones directas e inversas mediante el uso de un
iterador.

El contenedor deque proporciona todas las funciones de contenedor de secuencias requeri-
das, incluidas las de un contenedor reversible, y todas las funciones de contenedor de secuencias
opcionales. Esto hace que deque sea el contenedor de propésito méas general.

Aunque deque y vector tienen diferentes caracteristicas de rendimiento, ofrecen funcionali-
dad casi idéntica. Por ejemplo, las funciones de secuencias estdindares implementadas por deque,
como insert(), erase(), begin(), end(), rbegin(), rend(), operator[](), front(), back(), push_back(),
etc., funcionan en deque de la misma manera que en vector. La funcién resize() proporcionada
por deque también funciona como la proporcionada por vector. Debido a que se presenta un
anélisis detallado de estos métodos estdndar en Use vector, esos andlisis no se duplican aqui. (Sin
embargo, tome nota de que deque no da soporte a los métodos capacity() y reserve() definidos
por vector. No son necesarios para deque.)

La clase deque da soporte a dos funciones no proporcionadas por vector: push_front() y
pop_front(). Se muestran aqui:

void push_front(const T &wval)
void pop_front()

La funcién push_front() agrega un elemento con el valor especificado por val al inicio del contene-
dor. Este automaticamente aumenta de tamafo para acomodar la adicién. La funcién pop_front()
elimina un elemento del inicio del contenedor.

La clase deque tiene las siguientes caracteristicas de rendimiento. Insertar o eliminar elemen-
tos del final de un objeto deque toma lugar en tiempo constante. Cuando ocurre en el medio, las
inserciones o eliminaciones tienen lugar en tiempo lineal. El acceso de un elemento mediante el
operador de subindice tiene lugar en tiempo constante. Debido a que la adicién o eliminacién de
elementos de los extremos de una cola de dos extremos son muy eficientes, estas colas resultan
una excelente elecciéon cuando esos tipos de operaciones ocurrirdn con frecuencia. La capacidad de
hacer adiciones eficientes al inicio de la cola de dos extremos es una de las principales diferencias
entre vector y deque.

Una insercién en el medio de un contenedor deque invalida todos los iteradores y las referen-
cias al contenido de ese contenedor. Debido a que deque suele implementarse como una matriz
dindmica de doble extremo, una insercién implica que los elementos existentes se "dispersaran”
para acomodarse a los nuevos elementos. Por tanto, si un iterador esta sefialando a un elemento
antes de una insercién, no hay garantia de que estard sefialando al mismo elemento después de la
insercién. Lo mismo aplica a las referencias.

Una insercién a la cabeza o la cola de deque invalida los iteradores, pero no las referencias. Un
borrado en la parte media invalida iteradores y referencias. Un borrado limitado a cualquier extre-
mo solo invalida a esos iteradores y referencias que sefialan a elementos que habran de borrarse.

Ejemplo

En el siguiente ejemplo se muestra deque en accién. Para fines de comparacién, se vuelve a traba-
jar el ejemplo usado para vector, sustituyendo deque por vector en todo el listado. Debido a que
vector y deque proveen caracteristicas muy similares, gran parte de los dos programas son igua-
les. Por supuesto, las llamadas a capacity() y reserve() que se encuentran en la versién de vector
se han eliminado, porque esas funciones no tienen soporte en deque. Ademads, se han agregado las

Capitulo 3: Trabajo con contenedores STL 121

funciones push_front() y pop-front(). Como se explicd, deque proporciona estas funciones, pero
no lo hace vector:

// Demuestra deque.

#include <iostreams
#include <deques>

using namespace std;
void show(const char *msg, deque<ints> q);
int main() {

// Declara una deque que tiene una capacidad inicial de 10.
deque<int> dg(10) ;

// Asigna algunos valores a sus elementos. Obsérvese que se
// hace mediante la sintaxis de subindice de matriz esténdar.
// Toémese nota de que el nimero de elementos en deque

// se obtiene al llamar a size().

for (unsigned 1=0; i < dg.size(); ++1i) dgl[i] = i*i;

show ("E1l contenido de dg: ", dq);

// Calcula el promedio de los valores. Una vez mas,

// observe el uso del operador de subindice.

int sum = 0;

for (unsigned i=0; i < dg.size(); ++1i) sum += dgli];

double avg = sum / dg.size();

cout << "El promedio de los elementos es " << avg << "\n\n";

// Agrega elementos al final de dqg.
dg.push back (100) ;
dg.push back (121) ;

show ("dg tras incluir elementos al final: ", dq);
cout << endl;

// BRhora usa pop_back() para eliminar un elemento.
dg.pop_back() ;

show ("dg tras usar back-pop con un elemento: ", dq);
cout << endl;

cout << "El primero y \uOOa3ltimo elemento de dg como"
<< " lo indican begin() y end()-1:\n"
<< *dg.begin() << ", " << *(dg.end()-1) << "\n\n";

cout << "El primero y \uOOa3ltimo elemento de dg como"
<< " lo indican rbegin() y rend()-1:\n"
<< *dg.rbegin() << ", " << *(dg.rend()-1) << "\n\n";

// Declara un iterador a una deque<ints.
deque<int>::iterator itr;

122 c++ Soluciones de programacidn

// BAhora, declara un iterador inverso a una deque<int>
deque<int>::reverse_ iterator ritr;

// Recorre en ciclo dg en direccidn directa usando un iterador.
cout << "Se aplica un bucle al vector en direcci\u0Oa2n directa:\n";
for(itr = dg.begin(); itr != dg.end(); ++itr)
cout << *itr << " ";
cout << "\n\n";
cout << "Ahora, se usa un iterador inverso para aplicar un bucle"
<< " en direcci\u00a2n inversa:\n";

// Recorre dg en ciclo en direccidn inversa uilizando un iterador inverso.
for (ritr = dq.rbegin(); ritr != dg.rend(); ++ritr)

cout << *ritr << " ";
cout << "\n\n";

// Crea otra deque que contiene un subrango de dqg.
deque<int> dg2 (dg.begin()+2, dg.end()-4);

// Despliega el contenido de dg2 empleando un iterador.
show ("dg2 contiene un subrango de dg: ", dqg2);

cout << endl;

// Cambia los valores de algunos de los elementos de dg2.

dg2[1] = 100;

dg2[2] = 88;

dg2[4] = 99;

show ("Tras las asignaciones, dg2 ahora contiene: ", dqg2);

cout << endl;

// Crea una deque vacia y luego le asigna una
// secuencia que es la inversa de dqg.
deque<int> dqg3;

dg3.assign(dg.rbegin(), dg.rend());

show ("dg3 contiene la inversa de dqg: ", dg3);
cout << endl;

// Incluye un elemento al frente de dqg.
dg.push_front (-31416) ;

show("dg tras usar push front(): ", dq);
cout <<endl;

// BAhora, limpia dg al eliminar elementos de uno en uno.
cout << "Al eliminar elementos al frente de dg.\n";
while(dg.size() > 0) {
cout << "Eliminando: " << dqg.front() << endl;
dg.pop_front () ;

if (dg.empty()) cout << "Ahora dg est\u00a0 vac\uOOala.\n";

return O;

}

// Despliega el contenido de una deque<ints.
void show (const char *msg, deque<int> q)

Capitulo 3: Trahajo con contenedores STL

cout << msg;

for (unsigned i=0;
cout << gl[i]

cout << "\n";

i < g.size(); ++1)

<< Mo,

}

Aqui se muestra la salida:

El contenido de dg: 0 1 4 9 16 25 36 49 64 81
El promedio de los elementos es 28
01 4 9 16 25 36 49 64 81 100 121

dg tras incluir elementos al final:

dg tras usar back-pop con un elemento: 0 1 4 9 16 25 36 49 64 81 100
El primero y Gltimo elemento de dg como lo indican begin()

0, 100

y end()-1:

El primero y Gltimo elemento de dg como lo indican rbegin ()
100, O

y rend()-1:

Se aplica un bucle al vector en direccidén directa:
01 4 9 16 25 36 49 64 81 100

Ahora, se usa un iterador inverso para aplicar un bucle en direccidén inversa:
100 81 64 49 36 25 16 9 4 1 0

dg2 contiene un subrango de dg: 4 9 16 25 36

Tras las asignaciones, dg2 ahora contiene: 4 100 88 25 99

dg3 contiene la inversa de dg: 100 81 64 49 36 25 16 9 4 1 0

dg tras usar push front(): -31416 0 1 4 9 16 25 36 49 64 81 100

Al eliminar

elementos al frente de dqg.

Eliminando: -31416
Eliminando: 0
Eliminando: 1
Eliminando: 4
Eliminando: 9
Eliminando: 16
Eliminando: 25
Eliminando: 36
Eliminando: 49
Eliminando: 64
Eliminando: 81
Eliminando: 100

dg esta vacia.

123

124 c++ Soluciones de programacidn

Opciones
Aungque las funciones push_front() y pop_front() le permiten usar deque como una pila tipo
primero en entrar ultimo en salir, la STL ofrece un método mejor. El adaptador de contenedor
stack proporciona una implementacién que aplica este tipo de pila y provee las funciones clésicas
push() y pop(). En el mismo sentido, aunque podria usar deque para crear una cola primero en
entrar primero en salir al emplear push_front() y pop_back(), el adaptador de contenedor queue
es una mejor posibilidad. Como opcién predeterminada, tanto stack como queue usan un conte-
nedor deque para contener los elementos. (Consulte Use los adaptadores de contenedor de secuencias:
stack, queue y priority_queue.)

Como vector, deque también ofrece otra forma de assign() que le permite asignar un valor a
deque. Se muestra aqui:

void assign(size_type num, const T& val)

Esta version elimina cualquier elemento previamente incluido en el contenedor y luego le asigna
num copias de val. Podria usar esta version de assign() para reinicializar una cola de dos extremos
para un valor conocido, por ejemplo.

Como vector, deque 10 almacena elementos en orden. Sin embargo, es posible ordenar una
cola de dos extremos al usar el algoritmo sort(). Consulte ordene un contenedor, en el capitulo 4.

Como ya se explico, vector y deque son muy similares. Para algunos usos, como cuando se
necesitan pocas inserciones (sobre todo en el medio), un vector sera mas eficiente que una cola de
dos extremos y representa una mejor elecciéon. (Consulte Use vector para conocer mas detalles.)

Componentes clave

Encabezados Clases Funciones

<list> list void merge(list<T, Allocator> &ob)
void push_back(const T &val)
reverse_iterator rbegin()
void remove(const T &val)
void reverse()
void sort()
void splice(iterator i, list<T, Allocator> &ob)
void unique()

La clase list implementa un contenedor de secuencias bidireccional que se establece, con
frecuencia, como una lista doblemente vinculada. A diferencia de otros dos contenedores de
secuencias, vector y deque, que dan soporte a acceso aleatorio, list sélo puede accederse de ma-
nera secuencial. Sin embargo, como las listas son bidireccionales, pueden accederse de adelante
hacia atrds, o viceversa. La clase list ofrece los mismos beneficios asociados con cualquier lista
doblemente vinculada: tiempos rapidos de insercién y eliminacién.

Capitulo 3: Trabajo con contenedores STL 125

Por supuesto, el acceso a un elemento especifico en la lista es una operacién mas lenta. Una list
es particularmente ttil cuando se agregaran con frecuencia elementos a la parte media del conte-
nedor, o se eliminardn elementos de ésta, y no es necesario el acceso directo. En esta solucién se
demuestran los aspectos clave de list.

NoOTA El¢je de la solucion estd en los atributos y las caracteristicas de list que la hacen iinica. Con-
sulte Técnicas bésicas de contenedor de secuencias para conocer informacion que aplica a todos
los contenedores de secuencias.

Paso a paso
Para usar list se requieren los siguientes pasos:

1. Cree una instancia de list del tipo deseado.

2. Agregue elementos a la lista al llamar a insert(), push_front() o push_back().

3. Elimine un elemento al final de la lista al llamar a pop_back(). Elimine un elemento del
principio de la lista al llamar a pop_front().

Ordene una lista al llamar a sort().

Combine dos listas ordenadas al llamar a merge().

Una una lista a otra al llamar a splice().

Elimine un elemento o varios elementos especificos de la lista al llamar a remove().
Elimine elementos duplicados al llamar a unique().

Invierta la lista al llamar a reverse().

O 2NN O

Anlisis
La especificacién de plantilla para list es:

template <class T, class Allocator = allocator<T> > class list

Aqui, T es el tipo de datos que se estd almacenando y Allocator especifica el asignador, que es,
como opcidén predeterminada, el estindar. Para usar list, debe incluir el encabezado <list>.
La clase list tiene los siguientes constructores:

explicit list(const Allocator &asign = Allocator())

explicit list(size_type num, const T &uval =T (),
const Allocator &asign = Allocator())

list(const list<T, Allocator> &ob)

template <class Inlter> list(Inlter inicio, InIter final,
const Allocator &asign = Allocator())

La primera forma construye una lista vacia. La segunda, una lista que contiene num elementos con
el valor val. La tercera, un constructor de copia de list. La cuarta construye una lista que contiene
los elementos en el rango de inicio a final-1. El asignador usado por list esta especificado por asign,
que suele permitirse como opcién predeterminada.

126

C++ Soluciones de programacion

La clase list da soporte a iteradores bidireccionales. Por tanto, el contenedor puede accederse
mediante un iterador en direcciones directa e inversa. Sin embargo, no tienen soporte las ope-
raciones de acceso aleatorio. Por tanto, no se proporciona la funcién at() y el operador [] no estd
sobrecargado.

Ademds de las funciones de secuencia y de contenedor de secuencias reversibles requeridas,
list implementa las siguientes opciones: front(), back(), push_front(), push_back(), pop_front() y
pop_back(). Estas funciones estan descritas en la revision general y en Técnicas bdsicas de contenedor
de secuencias. Andlisis adicionales se encuentran en Use vector y Use deque. Las tinicas funciones
adicionales que no se implementan son at() y operator[]().

La clase list agrega varias funciones propias, incluidas merge(), reverse(), unique(), remove(),
remove_if() y sort(). Estas funciones duplican la funcionalidad proporcionada por los algoritmos
estandar de los mismos nombres. Estan definidas por list porque se encuentran especialmente
optimizadas para operaciones en objetos de tipo list y ofrecen una opcién de alto rendimiento a
los algoritmos estandar.

Puede agregar elementos a una lista al usar las funciones de contenedor de secuencias estdnda-
res insert(), push_front y push_back(). Para eliminar elementos de una lista se llama a las funcio-
nes de contenedor de secuencias estandares erase(), clear(), pop_back() y pop_front().

La clase list da soporte a iteradores directos e inversos. Como los otros contenedores de
secuencias, se trata de objetos de tipo iterator y reverse_iterator. Las funciones begin() y end()
devuelven iteradores al principio y al final de la lista. Las funciones rbegin() y rend() devuel-
ven iteradores inversos al final y uno antes del principio, respectivamente. Estas funciones y las
técnicas necesarias para usarlas se utilizan para recorrer en ciclo un contenedor y se describen en
Técnicas bdsicas de contenedor de secuencias.

El contenido de una lista no se ordena automaticamente. Sin embargo, algunas operaciones,
como la mezcla, requieren una lista ordenada. Para ordenar una lista, llame a la funcién sort().
Tiene dos versiones. Aqui se muestra la usada en esta solucion:

void sort()

Después de una llamada a sort(), la lista se ordenara de manera ascendente, con base en el orden
natural de los elementos. (La segunda versién le permite especificar una funcién de comparacién
que se usard para determinar el orden de los elementos. Consulte la secuencia Opciones de esta
solucién para conocer mas detalles.)

Una funcién particularmente poderosa implementada por list es merge(). Combina dos listas
que deben ordenarse empleando el mismo criterio. Durante una mezcla, cada elemento de la lista
de origen se inserta en su ubicacién apropiada en la lista de destino. Por tanto, el resultado es una
lista ordenada que contiene todos los elementos de las dos listas originales. La funcién merge()
tiene dos versiones. Aqui se muestra la usada por esta solucién:

void merge(list<T, Allocator> &ob)

Combina la lista ordenada pasada en ob con la lista que invoca ordenada. El resultado estd ordena-
do. Después de la mezcla, la lista contenida en ob queda vacia.

Una operacion relacionada con la mezcla es el empalme, que se realiza mediante la funcion
splice(). Cuando ocurre un empalme, la lista de origen se inserta como una unidad en la lista de
destino. No tiene lugar la integracién elemento por elemento de las dos listas, y no es necesario
que cualquiera de las listas esté ordenada. Un empalme es, en esencia, sélo una operacién de cor-
tar y pegar. Hay tres versiones de splice(). Aqui se muestra la usada en esta solucién:

Capitulo 3: Trabajo con contenedores STL 127

void splice(iterator 7, list<T, Allocator> &ob)

El contenido de ob se inserta en la lista que invoca en la ubicacién sefialada por i. Después de la
operacion, ob estd vacio. Un empalme tiene lugar en cualquier punto de la secuencia de destino:
al frente, en medio o a la mitad. Cuando un empalme est4 al frente de una lista, la secuencia em-
palmada estd insertada antes de begin(). Cuando ocurre un empalme al final, la secuencia
empalmada se inserta antes de end().

Puede eliminar un elemento especifico de una lista utilizando remove(), que se muestra aqui:

void remove(const T &wval)

Elimina elementos con el valor val de la lista que invoca. Si ningtin elemento coincide con val, en-
tonces la lista queda sin cambio. A primera vista, remove() puede parecer redundante, porque list
también define la funcion erase(). Sin embargo, éste no es el caso. La diferencia recae en el hecho
de que erase() requiere iteradores a los elementos que habran de eliminarse. La funcién remove()
busca automaticamente en la lista el elemento especificado.

Otra manera de eliminar elementos de una lista es mediante el uso de la funcién unique(),
que elimina elementos duplicados consecutivos. Tiene dos formas. La usada en esta solucién se
muestra a continuacion:

void unique()

Elimina elementos duplicados de la lista que invoca. Por tanto, la lista resultante no contiene
elementos duplicados consecutivos. Si la lista inicial estd ordenada, entonces después de aplicar
unique(), cada elemento serd tinico.

Para revertir una lista, utilice la funcién reverse(), que se muestra aqui:

void reverse()

Invierte todo el contenido de la lista que invoca.

La clase list tiene las siguientes caracteristicas de rendimiento. La insercién o eliminacién de
elementos en una lista ocurre en tiempo constante. No importa en qué lugar de la lista acontezca
la insercién o eliminacion. Debido a que list suele implementarse como una lista vinculada, una
insercién o eliminacién sélo incluye la reorganizacion de los vinculos y no un desplazamiento de
elementos o la reasignaciéon de memoria.

A diferencia de vector y deque, la insercién en una lista no invalida iteradores o referencias a
elementos. Una eliminacién sélo invalida los iteradores o las referencias a los elementos elimina-
dos. El hecho de que estas operaciones no afecten la validez de iteradores o referencias a elemen-
tos existentes hace que la clase list sea especialmente ttil para las aplicaciones en que se desean
iteradores o referencias no volatiles.

Ejemplo

Se demuestra list:

// Demuestra list

#include <iostream>
#include <list>

128 Cc++ Soluciones de programacidn

using namespace std;
void mostrar (const char *msj, list<char> lista);
int main() {

// Declara dos listas.
list<char> listaa;
list<char> listaB;

// Usa push back() para dar algunos elementos a la lista.
listaA.push back ('A');

listaA.push back('F');

listaA.push back('B');

listaA.push back('R'")

7

listaB.push back ('X");
listaB.push back('A'");
listaB.push back('F');

mostrar ("E1 contenido original de listaA: ", listad);

mostrar ("E1l contenido original de 1listaB: ", listaB);

cout << "El tama\uOOa4o de listaA es " << listaA.size() << endl;
cout << "El tama\uOOa4o de listaB es "<< listaB.size() << endl;
cout << endl;

// Ordena listaA y listaB
listaA.sort () ;
listaB.sort () ;

mostrar ("E1l contenido ordenado de listaA: ", listad);
mostrar ("El contenido ordenado de listaB: ", listaB) ;
cout << endl;

// Mezcla listaB en listaA.

listaA.merge (listaB) ;

mostrar ("listaA tras la mezcla: " , listad);

if (listaB.empty()) cout << "listaB ahora est\u00a0 vac\uOOala.\n";
cout << endl;

// Elimina duplicados de listaA.

listaA.unique() ;

mostrar ("listaA tras llamar a unique(): ", listad);
cout << endl;

// Da a listaB algunos elementos nuevos.
listaB.push back('G');
listaB.push back ('H') ;
listaB.push back('P');

mostrar ("Nuevo contenido de listaB: ", listaB);
cout << endl;

// Ahora, empalma listaB en listaA.

Capitulo 3: Trahajo con contenedores STL

list<char>::iterator itr = listaA.begin() ;

++itr;
listaA.splice(itr, listaB);
mostrar ("listaA tras el empalme: ", listad);

cout << endl;

// Elimina A y H.

listaA.remove ('A') ;

listaA.remove ('H') ;

mostrar ("listaA tras eliminar A y H: ", listad);
cout << endl;

return 0;

}

// Despliega el contenido de una list<chars.
void mostrar(const char *msj, list<chars> lista) ({
list<char>::iterator itr;

cout << msj;

for(itr = lista.begin(); itr != lista.end(); ++itr)
cout << *itr << " ";

cout << "\n";

}
Aqui se muestra la salida:

El contenido original de listaA: A F B R
El contenido original de listaB: X A F
El tamafio de listaA es 4

El tamafio de listaB es 3

El contenido ordenado de listaA: A B F R
El contenido ordenado de listaB: A F X

listaA tras la mezcla: AAB F F R X
listaB ahora estéd vacia ().

listaA tras llamar a unique(): A B F R X
Nuevo contenido de listaB: G H P
listaA tras el empalme: A GH P B F R X

listaA tras eliminar A y H: G P B F R X

129

130

C++ Soluciones de programacion

Opciones
El contenedor list le da control detallado sobre varias de sus operaciones porque diversas funcio-
nes le permiten especificar funciones de comparacién o predicados que determinan sus salidas.
A continuacién se describen.

Cuando se ordena una instancia de list, hay una segunda forma de sort() que le permite espe-
cificar una funcién de comparacién que se utilizara para determinar cudndo un elemento es mayor
que otro. Esta version se muestra a continuacion:

template <class Comp> void sort(Comp fucomp)

Aqui, fucomp especifica un apuntador a una funcién que toma dos argumentos, que deben ser del
mismo tipo que los elementos del contenedor que invoca. Para ordenar de manera ascendente, la
funcién debe devolver true cuando el primer argumento es menos que el segundo. Sin embargo,
puede especificar cualquier criterio de ordenamiento que desee. Por ejemplo, puede ordenar la
lista en orden inverso al revertir la comparacién. He aqui una funcién de comparacién inversa que
puede usarse para ordenar al revés las listas del programa anterior:

// Una funcién de comparacidn inversa.
bool compinv(char a, char b) {

if (b < a) return true;

else return false;

}

Observe que los operandos estan invertidos en la operacién <. Esto ocasiona que la funcién de-
vuelva true si b es menor que a, lo que causa que la lista se ordene de manera descendente. (Por lo
general, se usaria la comparacién a < b, lo que provocaria que el resultado ordenado esté en orden
ascendente.) He aqui como se usa esta funcién para ordenar a la inversa listaA:

listaA.sort (compinv)

Otro lugar en que puede especificar una funcién de comparacién cuando trabaja con una list
es con esta version de la funcién merge():

template <class Comp> void merge(list<T, Allocator> &ob, Comp fucomp)

En esta version, la lista ordenada pasada en ob se mezcla con la lista que invoca ordenada con base
en el orden especificado por la funcién fucomp. Después de la mezcla, la lista contenida en ob esta
vacia. Por lo general, la misma funcién de comparacién usada para ordenar una lista también se
usa para mezclar listas. Por supuesto, son posibles usos especiales en que no sucede asi.

Como se explicd, puede eliminar un elemento especifico al llamar a remove(). Sin embargo,
también puede eliminar elementos que satisfagan una cierta condicién al usar remove_if(), que se
muestra aqui:

template <class UnPred> void remove_if(UnPred pr)

Esta funcién elimina elementos para los cuales el predicado unario pr es true. Si ningtin elemento
satisface el predicado, entonces la lista queda sin cambio. Podria usar remove_if() para eliminar
todos los elementos de una lista que satisfagan alguna condicion general. Por ejemplo, suponien-
do el programa anterior, podria usar este predicado para eliminar todos los elementos que se
encuentran entre Ay G, inclusive:

Capitulo 3: Trabajo con contenedores STL 131

bool mipred(char car) ({
if (car <= 'G' && car >= 'A') return true;
return false;

}

Por tanto, para eliminar todas las letras de la A a la G de listaA, usaria esta llamada a remove_if():

listaA.remove if (mipred) ;

La versién de unique() usada por la solucion elimina elementos duplicados adyacentes. Hay
una segunda forma que le permite especificar un predicado binario que define lo que constituye
un elemento duplicado. (En otras palabras, el predicado determina cuando dos elementos son
iguales.) Aqui se muestra esta forma de unique():

template <class BinPred> void unique(BinPred pr)

Esta forma usa pr para determinar cuando un elemento es igual que otro. Esto significa que usted
podria usar un criterio diferente de la igualdad consciente de bits. Por ejemplo, si una lista esta
almacenando informacién de nombres y contactos, entonces podria especificar que dos elementos
son iguales si sus direcciones de correo electrénico coinciden. Como opcién, podria especificar

un predicado que normaliza cada elemento antes de la comparacion. Por ejemplo, suponiendo

el programa anterior, el siguiente predicado devolvera true si dos elementos son la misma letra,
independientemente de la diferencias entre maytsculas y mintsculas. Por tanto, dada la secuencia
XxABcdEe, eliminard X y E, porque estan duplicadas.

bool ign mayus pred(char a, char b) ({
if (tolower (a) == tolower (b) return true;
else return false;

}
Para usar ign_mayus_pred() llame a unique(), como se muestra aqui:
listaA.unique (ign _mayus pred) ;

Como ya se menciond, list da soporte a iteradores bidireccionales. Esto significa que una lista
puede recorrerse en direccién directa o inversa. Por tanto, suponiendo el ejemplo anterior, el
siguiente fragmento usa un reverse_iterator para desplegar el contenido de listaA de atras hacia
adelante:

list<chars>::reverse_ iterator ritr;
for(ritr = listaA.rbegin(); ritr != listaA.rend(); ++ritr)
cout << *ritr << " ";

132

C++ Soluciones de programacion

Use los adaptadores de contenedor de secuencias: stack,

queue y priority_queue

Componentes clave

Encabezados Clases Funciones
<stack> stack bool empty() const
void pop()

void push(const value_type &val)
size_type size() const
value_type &top()

<queue> queue value_type &back()
bool empty() const
value_type &front()
void pop()
void push(const value_type &val)
size_type size() const

<queue> priority_queue bool empty() const
void pop()
void push(const value_type &val)
size_type size() const
const value_type &top() const

La STL proporciona tres adaptadores de contenedor, llamados stack, queue y priority_queue.
Utilizan uno de los contenedores de secuencias como contenedor basico, adaptandolo a sus fines
especiales. En esencia, un adaptador de contenedor es simplemente una interfaz muy controla-
da con otro contenedor. Aunque los adaptadores de contenedor estan integrados en uno de los
contenedores de secuencias, también son, en si mismos, contenedores y se usan de manera muy
parecida a los otros contenedores. S6lo que el acceso a sus elementos estd restringido. En esta
solucién se demuestra su uso.

Antes de empezar, necesita destacarse un punto importante. Los adaptadores de contenedor no
dan soporte a toda la funcionalidad de sus contenedores. Las manipulaciones permitidas por un
adaptador son un subconjunto muy restringido de lo permitido por el contenedor de base. Mien-
tras que las restricciones precisas difieren de un adaptador a otro, hay una diferencia compartida
entre todos: no dan soporte a iteradores. Si los adaptadores se lo dieran, entonces seria una tarea
trivial evadir la estructura de datos definida por el adaptador (como una pila) y acceder a sus
elementos fuera de orden.

Paso a paso
Para usar los adaptadores de contenedor de secuencia se requieren estos pasos:

1. Cree una instancia del adaptador de contenedor, seleccionando el adecuado para
su aplicacion.

Capitulo 3: Trabajo con contenedores STL 133

2. Utilice las funciones definidas por el adaptador para insertar, acceder y eliminar elementos
del contenedor. Cada adaptador define su propio conjunto de estas funciones. Por ejemplo,
para incluir un elemento en una stack, llame a push(). Para obtener el siguiente elemento
de una queue, llame a front().

Analisis
La clase stack da soporte a una pila del tipo tltimo en entrar primero en salir. A continuacién se
muestra la especificacién de su plantilla:

template <class T, class Container = deque<T> > class stack

Aqui, T es el tipo de datos que se almacenan y Container es el tipo de contenedor usado para
contener la pila, que es deque, como opcién predeterminada.
El adaptador stack tiene el siguiente constructor:

explicit stack(const Container &cnt = Container())

El constructor stack() crea una pila vacia. Para usar una pila, incluya el encabezado <stack>. El
contenedor se mantiene en un objeto protegido llamado ¢ de tipo Container.

En general, stack puede adaptar cualquier contenedor que dé soporte a las siguientes opera-
ciones:

back()
pop_back()
push_back()

Por tanto, también puede usar una list o un vector como contenedor de una pila.

La clase stack define la funcién mostrada aqui. Observe que sélo puede accederse a los ele-
mentos de una pila en el orden tltimo en entrar primero en salir. Esto impone su naturaleza de
tipo pila.

Miembro Descripcion

bool empty() const Devuelve true si la pila que invoca esta vacia y false, de
otra manera.

void pop() Elimina la parte superior de la pila.

void push(const value_type &val) Incluye un elemento en la pila.

size_type size() const Devuelve el nimero de elementos que se encuentra en
la pila.

value_type &top() Devuelve una referencia a la parte superior de la pila.

const value_type &top() const

La clase queue da soporte a una cola normal tipo primero en entrar primero en salir. Los ele-
mentos se insertan en una cola en un extremo y se eliminan en el otro. No es posible acceder a los
elementos de ninguna otra manera. Aqui se muestran las especificaciones de la plantilla de queue:

template <class T, class Container = deque<T> > class queue

134

C++ Soluciones de programacion

Aqui, T es el tipo de datos que se estd almacenando y Container es el tipo de contenedor usado
para contener la cola, que es deque, como opcién predeterminada. El contenedor se mantiene en
un objeto protegido llamado ¢ de tipo Container.

El adaptador queue tiene el siguiente constructor:

explicit queue(const Container &cnt = Container())

El constructor queue() crea una cola vacia. Para usar una cola, incluya el encabezado <queue>.
En general, queue puede adaptar cualquier contenedor que dé soporte a las siguientes opera-
ciones:

back()
front()
pop_back()
push_back()

Por tanto, también puede usar list como contenedor para una cola. Sin embargo, no puede usar
vector, porque no proporciona la funcién pop_front().

El adaptador queue define la funcién mostrada aqui. Como puede ver, restringen queue al
proporcionar sélo acceso tipo primero en entrar primero en salir a sus elementos.

Miembro Descripcion

value_type &back() const value_type &back() const Devuelve una referencia al dltimo elemento de una
cola.

bool empty() const Devuelve true si la cola que invoca esta vacia y false,
de otra manera.

value_type &front() Devuelve una referencia al primer elemento de la cola.

const value_type &front() const

void pop() Elimina el primer elemento de la cola.

void push(const value_type &val) Agrega un elemento con el valor especificado por val al
final de la cola.

size_type size() const Devuelve el nimero de elementos que se encuentran
en la cola.

La clase priority_queue da soporte a colas de prioridad de un solo extremo. Una cola con prio-
ridades organiza su contenido por prioridad. A continuacién se muestra la especificaciéon de
la plantilla de priority_queue:

template <class T, class Container = vector<T>,
class Comp = less<nombretipo Container::value_type> >
class priority_queue

Aqui T es el tipo de datos que se estdn almacenando. Container es el tipo de contenedor usado
para contener la cola con prioridades, que es vector, como opcion predeterminada. El contenedor
se mantiene en un objeto protegido llamado ¢ de tipo Container. Comp especifica el objeto de
funcién de comparacién que determina cuando un miembro tiene menor prioridad que otro. Este
objeto se mantiene en un miembro protegido llamado comp de tipo Compare.

Capitulo 3: Trabajo con contenedores STL 135

El adaptador priority_queue tiene los siguientes constructores:

explicit priority_queue(const Comp &fucomp = Comp(),
Container &cnt = Container())

template <class Inlter> priority_queue(Inlter inicio, Inlter final,
const Comp &fucomp = Comp(),
Container &cnt = Container())

El primer constructor priority_queue() crea una cola con prioridades vacia. El segundo crea una
que contiene los elementos especificados por el rango inicio a final-1. Para usar priority_queue,
incluye el encabezado <queue>.

En general priority_queue puede adaptar cualquier contenedor que soporte las siguientes
operaciones:

front()
pop_back()
push_back()

El contenedor también ha de soportar iteradores de acceso aleatorio. Asi, usted puede usar deque
como contenedor para una cola con prioridades. Sin embargo, no puede usar list porque no sopor-
ta los iteradores de acceso aleatorio.

La primera clase priority_queue define las funciones mostradas aqui. Los elementos en una
priority_queue sélo pueden accederse en orden de prioridad.

Miembro Descripcion

bool empty() const Devuelve true si la cola con prioridades que invoca esta
vacia y false, de otra manera.

void pop() Elimina el primer elemento de la cola con prioridades.

void push(const value_type &val) Agrega un elemento a la cola con prioridades.

size_type size() const Devuelve el nimero de elementos que se encuentra en

la cola con prioridades.

const value_type &top() const Devuelve una referencia al elemento con la mayor
prioridad. No se elimina el elemento.

Ejemplo

En el siguiente ejemplo se muestran los tres contenedores en accién:

// Demuestra los adaptadores de contenedor de secuencias.

#include <iostream>
#include <string>
#include <queue>
#include <stacks

using namespace std;

136

C++ Soluciones de programacion

int main()

{

// Demuestra gqueue.
queue<string> g;

cout << "Demuestra una cola para cadenas.\n";

cout << "Incluyendo uno dos tres cuatro\n";
g.push ("uno") ;

g.push("dos") ;

g.push("tres") ;

g.push("cuatro") ;

cout << "Ahora, recupera esos valores en orden primero en entrar primero en
salir.\n";
while (!qg.empty()) {

cout << "Recuperando ";

cout << g.front() << "\n";

g.pop () ;
cout << endl;

// Demuestra priority queue.
priority queue<ints> pg;

cout << "Demuestra priority queue para enteros.\n";

cout << "Recuperando 1, 3, 4, 2.\n";
pg.push (1) ;
pg.push (
(
(

3);
4) ;
2);

7

pg.push
pg.push

cout << "Ahora, recupera esos valores en orden de prioridad.\n";
while (!pg.empty()) {

cout << "Recuperando ";

cout << pg.top() << "\n";

pg.pop () ;
cout << endl;

// Por Gltimo, demuestra stack.
stack<char> pila;

cout << "Demuestra stack para caracteres.\n";

cout << "Recuperando A, B, C y D.\n";
pila.push('A');

pila.push('B');
pila.push('C');
pila.push('D');

cout << "Ahora, recupera esos valores en orden \u0Oa3ltimo en entrar primero
salir.\n";

en

Capitulo 3: Trabajo con contenedores STL 137

while (!pila.empty()) {
cout << "Recuperando: ";
cout << pila.top() << "\n";
pila.pop() ;

}

return 0;

}
Aqui se muestra la salida:

Demuestra una cola para cadenas.

Incluyendo uno dos tres cuatro

Ahora, recupera esos valores en orden primero en entrar primero en salir.
Recuperando uno

Recuperando dos

Recuperando tres

Recuperando cuatro

Demuestra priority queue para enteros.

Recuperando 1, 3, 4, 2.

Ahora, recupera esos valores en orden de prioridad.
Recuperando 4

Recuperando 3

Recuperando 2

Recuperando 1

Demuestra stack para caracteres.

Recuperando A, B, C y D.

Ahora, recupera esos valores en orden Ultimo en entrar primero en salir.
Recuperando: D

Recuperando: C

Recuperando: B

Recuperando: A

Ejemplo adicional: use stack para crear una calculadora

de cuatro funciones

Las pilas son una de las estructuras de datos mas ttiles en la computacion. En el nivel de maqui-
na, proporcionan el mecanismo mediante el cual puede llamarse a una subrutina. En el nivel del
programa, las pilas se usan para resolver varios problemas comunes. Por ejemplo, muchas rutinas
de bisqueda basadas en inteligencia artificial dependen de pilas. Ademas, muchos tipos de reco-
rridos de drbol emplean una pila. Un uso interesante de una pila es una calculadora estilo sufijo.
Cuando se usa este tipo de calculadora, primero se ingresan los operandos y luego la operacién
que desea aplicar. Por ejemplo, para sumar 10 y 12, primero ingresa el 10, después el 12 y al dltimo
+. A medida que se ingresa cada operando, se incluye en la pila. Cuando se ingresa un operador,
se recuperan los dos elementos superiores, se realiza la operacién y se incluye el resultado en la
pila. En el siguiente programa se usa la clase stack para implementar esa calculadora.

// Una calculadora de sufijo de cuatro funciones.
#include <iostream>

#include <stack>

#include <string>

#include <cmath>

138 C++ Soluciones de programacidn

using namespace std;

int main()

{

stack<double> pila;
double a, b;
string c;

do {
cout << ": ";
cin >> c;
switch(c[0]) {
case 's': // sale de la calculadora
break;
case '.': // muestra la parte superior de la pila
cout << pila.top() << "\n";
break;
case '+': // suma
if (pila.size() < 2) {
cout << "Falta el operando\n";
break;
}
a = pila.top();
pila.pop() ;
b = pila.top();
pila.pop() ;
cout << a+b << "\n";
pila.push(a+b) ;
break;
case '-': // resta
// Ve si el usuario ingresd un nGmero negativo.
if(c.size() != 1) {

// Incluye el valor en la pila.
pila.push(atof(c.c_str()));
break;

}

// De otra manera, es una resta
if (pila.size() < 2) {
cout << "Falta el operando\n";
break;

}

a = pila.top();
pila.pop() ;
b = pila.top();
pila.pop() ;
cout << b-a << "\n";
pila.push(b-a) ;
break;

case '*': // Multiplica

Capitulo 3:

if (pila.size() < 2) {
cout << "Falta el operando\n";
break;

}

a = pila.top();
pila.pop() ;
b = pila.top();
pila.pop() ;
cout << a*b << "\n";
pila.push(a*b) ;
break;

case '/': // divide
if (pila.size() < 2) {

cout << "Falta el operando\n";

break;

}

a = pila.top();
pila.pop() ;
b = pila.top();
pila.pop () ;
cout << b/a << "\n";
pila.push(b/a) ;
break;
default:
// Incluye el valor en la pila
pila.push(atof (c.c_str()));
break;

} while(c 1= "s");

return 0;

}

Aqui se muestra una ejecucién de ejemplo:

10

Trahajo con contenedores STL

139

140

C++ Soluciones de programacion

En su mayor parte, la operacion de la calculadora es intuitiva, pero hay un par de temas que se
deben tener en cuenta. En primer lugar, para ver el valor que se encuentra en la parte superior de
la pila, ingrese un punto. Esto significa que necesitara anteceder valores que sean menores de 1 con
un cero, como en 0.12, por ejemplo. En segundo lugar, observe que cuando una entrada empieza
con un signo de menos, si es mayor que 1, se supone que el usuario estd ingresando un niimero
negativo y no estd solicitando una resta.

Opciones

Siempre y cuando el contenedor cumpla con los requisitos especificados por el adaptador, cual-
quiera puede usarse como contenedor base. Para usar uno diferente, simplemente especifique su
nombre de clase cuando se cree una instancia del adaptador. Por ejemplo, lo siguiente crea una
queue que adapta list en lugar de deque:

queue<char, list<char> > qg;

Debido a que q utiliza list en su contenedor, estara sujeto a todos los beneficios y las desventajas
de list. Por lo general, el contenedor predeterminado es su mejor opcién, pero si cuenta con otra
opcion. Incluso podria usar su propio contenedor como base para una queue. El mismo principio
general se aplica también a los otros adaptadores de contenedor.

Otro punto: observe que hay un espacio entre los dos paréntesis angulares de cierre que termi-
nan la declaracién anterior. Debido a una rareza en la sintaxis de C++, este espacio es necesario.
Sin €, el compilador tomard por error dos paréntesis angulares de cierre como un signo de des-
plazamiento a la derecha (>>) y no como terminadores de plantilla anidados. Un error comtin es
el olvido de este espacio, que puede ser dificil de encontrar porque su programa tiene un aspecto
correcto.

Almacene en un contenedor objetos definidos por el usuario

Componentes clave

Encabezados Clases Funciones

Definida por el usuario bool operator<(tipo-usuario a, tipo-usuario b)
bool operator==(tipo-usuario a, tipo-usuario b)

Puede usarse un contenedor STL para almacenar objetos de clases creados por usted. Sin embar-
go, estas clases deben cumplir un conjunto minimo de requisitos. En esta solucién se describen
éstos y se demuestra su implementacién. Se crea una clase llamada part que encapsula el nom-
bre y el niimero asociado con alguna parte, como un clavo o un tornillo. Sin embargo, puede
usarse el mismo método bésico para almacenar cualquier tipo de objeto dentro de cualquier tipo
de contenedor.

Paso a paso
Para habilitar objetos de una clase creada por usted y que se almacene en un contenedor de se-
cuencia se incluyen los siguientes pasos:

Capitulo 3: Trabajo con contenedores STL 141

La clase debe tener un constructor de copia puiblicamente accesible.

La clase debe proporcionar un destructor ptblicamente accesible.

La clase debe proveer un operador de asignacién ptiblicamente accesible.

En algunos casos, la clase debe brindar un constructor predeterminado ptiblicamente acce-

sible.

5. En algunos casos, la clase debe proporcionar una funcién operator==() ptiblicamente acce-
sible.

6. En algunos casos, la clase debe dar una funcién operator<() piblicamente accesible.

=W N

Para habilitar objetos de una clase creada por usted para que se almacene en un contenedor
asociativo se requieren los siguientes pasos:

1. Deben cumplirse todos los requisitos descritos por un contenedor de secuencias.
2. La clase debe proporcionar una funcién operator<() puiblicamente accesible porque todos
los contenedores asociativos estan ordenados.

P] I} -
Analisis
En el caso de todos los contenedores, si un objeto habra de almacenarse en un contenedor, enton-
ces su clase debe proporcionar funciones ptblicamente accesibles:

¢ Constructor de copia
* Destructor
e operator==()

Dependiendo del uso especifico, suelen necesitarse un constructor predeterminado (sin pardme-
tros) publicamente accesible y operator==(). Sin embargo, un tema clave que debe comprenderse
es que el constructor de copia predeterminado, el constructor sin parametros, el destructor y el
operador de asignacién proporcionados autométicamente por una clase satisfacen este requisito.
Por tanto, no siempre necesita declarar explicitamente estos elementos.

Con el fin de usar un contenedor de secuencias, como vector, con ciertos algoritmos, como
sort(), su clase debe proporcionar una funcioén operator<() que compara dos objetos. Algunos otros
algoritmos, como find(), requieren que se proporcione una funcién operator==() y que determina
cuando un objeto es igual a otro.

Para que se almacene un objeto en un contenedor asociativo, como set o multiset, debe
proporcionar un operator<(). Los conjuntos estan ordenados al usar el operador <. También es
usado por las funciones find(), upper_bound(), lower_bound() y equal_range().

Ejemplo

En el siguiente ejemplo se crea una clase llamada parte que encapsula el nombre y el niimero de
una parte. Observe que estdn definidos operator<() y operator==(). El operador < permite que un
contenedor que almacena objetos de parte habra de operarse en algoritmos que requieren com-
paraciones. En el programa se demuestra esto al ordenar el vector usando el algoritmo sort(). El
operador == permite la igualdad de dos objetos de parte que se determinaran con algoritmos
como find(), que también es usado por el programa. (Las soluciones que describen los algoritmos
STL se presentan en el capitulo 4.)

142

C++ Soluciones de programacion

// Almacena objetos definidos por el usuario en un vector.

//
// Los objetos que se almacenan son instancias de la
// clase parte. El operator<() y operator==() estan

// definidos por objetos de parte. Esto deja que se
// apliquen varios algoritmos de operador, como

// sort() y find().

#include <iostream>

#include <vectors>

#include <algorithm>

#include <string>

using namespace std;

// Esta clase almacena informacién sobre partes.
class parte {

string nombre;

unsigned numero;

public:
// Constructor predeterminado.
parte() { nombre = ""; numero = 0; }

// Construye un objeto completo de parte.
parte(string n, unsigned num) {

nombre = n;

numero = num;

}

// Funciones para acceso de datos de partes.
string obtener nombre() { return nombre; }
unsigned obtener numero() { return numero; }

void mostrar (const char *msj, vector<parte> vect) ;

// Compara objetos empleando nUmeros de parte.
bool operator<(parte a, parte b)

{
}

// Revisa la igualdad con base en el nUmero de parte.
bool operator==(parte a, parte b)

{
}

int main()

{

return a.obtener numero() < b.obtener numero();

return a.obtener_numero() == b.obtener_numero() ;

vector<parte> listaparte;

// Inicializa la lista de partes.
listaparte.push back (parte("tornillo", 9324));

listaparte.push back (parte ("desarmador",
listaparte.push back (parte("tuerca",

Capitulo 3:

listaparte.push back(parte("clavo",

// Despliega el contenido del vector.
mostrar ("Lista de partes sin ordenar:\n",

cout <<

// Usa el algoritmo sort () para ordenar la lista de partes.
// Esto requiere que se defina operator<() para parte.
staparte.begin(), listaparte.end()) ;

sort (1i

mostrar ("Lista de partes ordenada por n\uOOa3mero:\n",

// Usa el algoritmo find() para encontrar una parte dado su ndmero.
// Esto requiere que se defina operator==()
cout << "Buscando el n\uOOa3nero de parte 6912.\n";

endl;

vector<partes>::iterator itr;

cout << "Parte encontrada. Su nombre es " << itr->obtener nombre ()

itr = find(listaparte.begin(), listaparte.end(), parte("",
return O;

}

// Despliega el contenido de un vector<partes.
rar (const char *msj, vector<parte> vect)

void most

vector<partes>::iterator itr;

cout <<
cout <<

for(itr=vect.begin(); itr != vect.end();
<< " " << itr->obtener numero()
<< itr->obtener nombre() << endl;;

cout

cout <<

}

msJ;
" Parte# Nombre\n";

u\nn’.

Aqui se muestra la salida:

Lista de partes sin ordenar:

Parte#
9324
8452
6912
1274

Lista de
Parte#
1274
6912
8452
9324

Buscando

Parte encontrada. Su nombre es tuerca.

Nombre
tornillo
desarmador
tuerca
clavo

partes ordenada por nimero:
Nombre

clavo

tuerca

desarmador

tornillo

el nGnero de parte 6912.

Trahajo con contenedores STL

listaparte) ;

listaparte) ;

para parte.

143

144

C++ Soluciones de programacion

Opciones
Un ejemplo que demuestra el almacenamiento de un objeto de clase definido por el usuario en un
set se presenta en Use set y multiset.

De acuerdo con la experiencia del autor, hay algunas variaciones entre compiladores en rela-
cién con la clase precisa que debe proporcionarse para objetos de esa clase que se almacenardn en
el contenedor y que se operaran con algoritmos. Las necesidades descritas en esta solucion estan
de acuerdo con las especificadas en el estindar ANSI/ISO para C++. Sin embargo, se han visto
algunos casos en que deben cumplirse requisitos adicionales. Las discrepancias entre implemen-
taciones fueron mayores en el pasado que hoy en dia. No obstante, aunque en esta solucién se
describen requisitos generales que debe cumplir una clase para almacenarse en un contenedor,
deben tratarse como directrices (en lugar de reglas inmutables) que tal vez necesite ajustar para
adecuarse a su situacién especifica.

Capitulo 3: Trabajo con contenedores STL 145

Técnicas basicas de contenedor asociativo

Componentes clave

Encabezados Clases Funciones
<map> map iterator begin()
void clear()

bool empty() const
iterator end()
size_type erase(const key_type &c)
iterator find(const key_type &c)
pair<iterator, bool> insert(const value_type &val)
reverse_iterator rbegin()
reverse_iterator rend()
size_type size() const
void swap(map<Key, T, Comp,
Allocator> &ob)

<map> template <class Key, class T,
class Comp, class Allocator>
bool operator==
const map<Key, T, Comp, Allocator>
&supizq.
const map<Key, T, Comp, Allocator>
&supder)
template <class Key, class T,
class Comp, class Allocator>
bool operator<(
const map<Key, T, Comp, Allocator>
&supizq,
const map<Key, T, Comp, Allocator>
&supder)
template <class Key, class T,
class Comp, class Allocator>
bool operator>(
const map<Key, T, Comp, Allocator>

&supizq,
const map<Key, T, Comp, Allocator>
&supder)
<utility> pair
<utility> template <class TipoC, clase TipoV>

pair<tipoC, TopiV> make_pair(
const tipoC &c,
const tipoV &v)

146 Cc++ Soluciones de programacidn

Todos los contenedores asociativos comparten funcionalidad comtin, y todos se manejan, en esen-
cia, de la misma manera. En esta solucién se utiliza esta funcionalidad comtn para demostrar las
técnicas bdasicas necesarias para crear y usar un contenedor asociativo.

En esta solucion se muestra como:

¢ Crear un contenedor asociativo.

¢ Crear elementos que constan de pares clave/valor.

¢ Agregar elementos a un contenedor asociativo.

¢ Determinar el tamafio del contenedor.

¢ Usar un iterador para recorrer en ciclo el contenedor.
¢ Asignar un contenedor a otro.

® Determinar cuando un contenedor es equivalente a otro.
¢ Eliminar elementos del contenedor.

¢ Intercambiar el contenido de un contenedor con otro.
¢ Determinar si un contenedor esta vacio.

¢ Encontrar un elemento dada su clave.

La solucién usa la clase map. En general, las técnicas descritas aqui también se aplican a los otros
contenedores asociativos, como set, definido por la STL. Sin embargo, map almacena pares clave/
valor en que el tipo de clave y el tipo del valor pueden diferir. El contenedor set almacena objetos
en que la clave y el valor son parte del mismo objeto. Mas atin, map crea un contenedor en que
cada clave debe ser tinica. Un contenedor multimap, en contraste, permite claves duplicadas. Por
tanto, mientras los principios generales mostrados aqui se aplican a cualquier contenedor asociati-
vo, se necesitard cierta adaptacion, dependiendo de cual contenedor asociativo se use.

Paso a paso
Para crear y usar un contenedor asociativo se requieren estos pasos:

Crear una instancia del contenedor asociativo deseado. En esta solucién, se usa map.

Construir objetos pair, que son el tipo de objetos almacenados en un map.

Agregar elementos al contenedor al llamar a insert().

Obtener el nimero de elementos en el contenedor al llamar a size().

Determinar si el contenedor esté vacio (es decir, no contiene elementos) al llamar a

empty().

Eliminar elementos del contenedor al llamar a erase().

Eliminar todos los elementos de un contenedor al llamar a clear().

Encontrar un elemento con una clave especificada al llamar a find().

Obtener un iterador al principio del contenedor al llamar a begin(). Obtener un iterador

a uno después del final del contenedor al llamar a end().

10. Obtener un iterador inverso al final del contenedor al llamar a rbegin(). Obtener un itera-
dor a uno antes del inicio del contenedor al llamar a rend().

11. Recorrer en ciclo los elementos de un contenedor mediante un iterador.

G L=

L X N

Capitulo 3: Trabajo con contenedores STL 147

12. Intercambiar el contenido de un contenedor con otro mediante swap().
13. Determinar cuando un contenedor es igual, menor que o mayor que otro.

Andlisis
La STL da soporte a dos sabores basicos de contenedor asociativo: mapas y conjuntos. En un mapa
cada elemento consta de un par clave/valor y el tipo de clave puede diferir del tipo del valor.
En un conjunto, la clave y el valor se incrustan en el mismo objeto. Aunque mapas y conjuntos
operan, en esencia, de la misma manera, un map se usa en la solucién porque demuestra mejor las
técnicas esenciales requeridas para usar cualquier contenedor asociativo.

La especificacién de plantilla para map se muestra a continuacién:

template <class Key, class T, class Comp = less<Key>
class Allocator = allocator<T> > class map

Aqui, Key es el tipo de datos de las claves y T es el tipo de valores que se esta almacenando (asig-
nando). La funcién que compara dos claves esta especificada por Comp. Observe que las opciones
predeterminadas usan el objeto de funcién less. El asignador esta especificado por Allocator, cuya
opcién predeterminada es el asignador estdndar.

Un aspecto central de un contenedor asociativo es que mantiene una coleccién ordenada de
elementos basados en el valor de las claves. El orden especifico es determinado por la funcién
de comparacién, que es less como opcion predeterminada. Esto significa que, como opcién prede-
terminada, los elementos de un contenedor asociativo estdn almacenados en orden ascendente. Sin
embargo, es posible especificar un objeto de comparacién que almacena de manera diferente los
elementos.

La clase map da soporte a tres constructores. Aqui se muestran los dos usados en esta solucion:

explicit map(const Comp &fucomp = Comp(), const Allocator &asign = Allocator())
map(const map<Key, T, Componente, Allocator> &ob)

La primera forma construye un mapa vacio. La segunda forma construye un mapa que contiene
los mismos elementos que ob y es el constructor de copia de map. El parametro fucomp especifica
la funcién de componente usada para ordenar el mapa. En casi todos los casos, puede permitir
esto como opcidén predeterminada. El pardmetro asign especifica el asignador, que también suele
admitirse como opcién predeterminada. Para usar un mapa, debe incluir el encabezado <map>.

El tipo de objeto contenido por un mapa es una instancia de pair, que es una struct que encap-
sula dos objetos. Se declara ast:

template <class TipoC, class TipoC> struct pair {
typedef TipoC first type;
typedef TipoV second_ type;
TipoC first; //para elementos de mapa, contiene la clave
TipoV second; //para elementos de mapa, contiene el valor

// Constructores

pair () ;

pair (const TipoC &c, const TipoV &v) ;

template<class A, class B> pair(const pairA, B> &ob) ;

148

C++ Soluciones de programacion

La clase pair puede usarse para contener cualquier par de objetos. Sin embargo, cuando se usa
para contener un par clave/valor, el valor en first contiene la clave y el valor en second contiene
el valor asociado con esa clave. La clase pair necesita el encabezado <utility>, que se incluye auto-
maéticamente en <map>.

Puede construir un pair al usar uno de los constructores de pair o empleando la funcién
make_pair(), que también se declara en <utility>; construye un objeto pair basado en los tipos de
datos usados como parametros. La funcién make_pair es genérica y tiene este prototipo:

template <class TipoC, class TipoV)
pair<TipoC, TipoV) make_pair(const TipoC &c, const TipoV &v)

Como puede ver, devuelve un objeto pair que consta de valores de los tipos especificados por TipoC
y TipoV. La ventaja de make_pair() es que los tipos del objeto que se estd almacenando son determi-
nados automaticamente por el compilador en lugar de que usted los especifique en forma explicita.

Para map, el tipo value_type es un tipedef para pair<const Key, T>. Por tanto, un mapa
contiene instancias de pair. Mas atn, el tipo iterator definido por map senala a objetos de tipo
pair<Key, T>. Por tanto, cuando una funcién map devuelve un iterador, la clave estd disponible
mediante el campo first de pair y el valor se obtiene mediante el campo second del pair.

Después de que se ha creado un par, los objetos de pair pueden agregarse a él. Una manera
de hacer esto que funciona para todos los contenedores asociativos consiste en llamar a insert().
Todos los contenedores asociativos dan soporte por lo menos a tres versiones de insert(). Este es el
usado aqui:

pair<iterator, bool> insert(const value_type &uval)

Inserta val en el contenedor que invoca en un punto que mantiene el orden del contenedor asocia-
tivo. (Recuerde que value_type es un type_def para pair<const Key, T>.) La funcién devuelve un
objeto de pair que indica el resultado de la operacién. Si val puede insertarse, el valor bool (que
es el campo second) serd true, y false, de otra manera. El valor iterator (que estd en el campo first)
sefialard al elemento insertado, si se tiene éxito, o al elemento ya existente que usa la misma clave. La
operacién de insercién fallara si se hace un intento por insertar un elemento en un contenedor que
requiere claves tinicas (como map o set) y el contenedor ya incluye la clave. Un contenedor asocia-
tivo crecera autométicamente a medida que se necesite cuando se le agreguen elementos.

Puede eliminar uno o mds elementos de un contenedor asociativo al llamar a erase(). Tiene por
lo menos tres formas. Aqui se muestra la usada en esta solucién:

size_type erase(const key_type &tc)

Elimina del contenedor todos los elementos que tienen claves con el valor c. En el caso de conte-
nedores asociativos que requieren claves tinicas, una llamada a erase() elimina sélo un elemento.
Devuelve el nimero de elementos eliminados, que podria ser cero o uno para un map.

Puede eliminar todos los elementos de un contenedor asociativo al llamar a clear(), que se
muestra aqui:

void clear()

Puede obtener un iterador a un elemento en un contenedor asociativo que tiene una clave
especificada al llamar a find(), que se muestra aqui:

iterator find(const key_type &c)

Capitulo 3: Trabajo con contenedores STL 149

Aqui, c especifica la clave. Si el contenedor incluye un elemento que tiene una clave igual ac,
find() devuelve un iterador al primer elemento coincidente. Si la clave no se encuentra, entonces
se devuelve end().

Puede determinar el nimero de elementos en un contenedor al llamar a size(). Para determi-
nar si un contenedor esté vacio, llame a empty(), como se muestra aqui.

bool empty() const
size_type size() const

Puede obtener un iterador al primer elemento del contenedor al llamar a begin(). Debido a que
los contenedores asociativos estdn ordenados, éste siempre sera el primer elemento especificado
por la funcién de comparacién. Un iterador a una parte del dltimo elemento en la secuencia se
obtiene al llamar a end(). Aqui se muestran estas funciones:

iterator begin()
iterator end()

Para declarar una variable que se usara como un iterador, debe especificar el tipo de iterador
del contenedor. Por ejemplo, esto declara un iterador que puede sefialar a elementos dentro de
map<string, int>:

map<string, ints::iterator itr;

Puede usar iteradores para recorrer en ciclo el contenido de un contenedor asociativo. El
proceso es similar al usado para recorrer en ciclo el contenido de un contenedor de secuencias. La
principal diferencia es que en contenedores asociativos que almacenan pares clave/valor, el objeto
sefialado por el iterador es un pair. Por ejemplo, suponiendo un iterador declarado de manera
apropiada llamado itr, he aqui un bucle que despliega todas las claves y los valores en un map
llamado mimapa:

for (itr=mimapa.begin(); itr != mimapa.end() ++itr)
cout << "Clave: " << itr->first << ", Valor:" << itr->second << endl;

El bucle se ejecuta hasta que itr es igual a mimapa.end(), lo que asegura, por tanto, que se desplie-
guen todos los elementos. Recuerde que end() no devuelve un apuntador al dltimo elemento de
un contenedor. En cambio, devuelve un apuntador a uno después del dltimo elemento. Por tanto, el
altimo elemento de un contenedor es sefialado por end()-1.

Como se explico en la revision general, un contenedor reversible es aquel en que los elementos
pueden recorrerse en orden inverso (de atras hacia adelante). Todos los contenedores asociativos
integrados son reversibles. Cuando se usa un contenedor reversible, puede obtener un iterador
inverso al final del contenedor al llamar a rbegin(). Un iterador inverso a uno antes del primer
elemento en el contenedor se obtiene al llamar a rend(). Aqui se muestran estas funciones:

reverse_iterator rbegin()
reverse_iterator rend()

También hay versiones const de estas funciones. Un iterador inverso se declara como un iterador
regular. Por ejemplo:

map<string, ints>::reverse iterator ritr;

150

C++ Soluciones de programacion

Puede usar un iterador inverso para recorrer en ciclo un mapa en orden inverso. Por ejemplo,
dado un iterador inverso llamado ritr, he aqui un bucle que despliega las claves y los valores de
un mapa llamado mimapa, de atras al frente:

for (ritr=mimapa.rbegin(); ritr != mimapa.rend() ++ritr)
cout << "Clave: " << ritr->first << ", Valor:" << ritr->second << endl;

El iterador inverso ritr empieza en el elemento sefialado por rbegin(), que es el Gltimo elemento
del contenedor. Se ejecuta hasta que es igual a rend(), que sefiala a un elemento que estd uno an-
tes del inicio del contenedor. (En ocasiones es ttil pensar que *rbegin() y rend() devuelven apunta-
dores al inicio y el final de un contenedor inverso.) Cada vez que se aumenta un iterador inverso,
sefala al elemento anterior. Cada vez que se disminuye, sefiala al siguiente elemento.

El contenido de dos contenedores asociativos puede intercambiarse al llamar a swap(). He aqui
la manera en que se declara con map.

void swap(map<Key, T, Comp, Allocator> &ob)

El contenido del contenedor que invoca se intercambia con el especificado por ob.

Ejemplo

En el siguiente ejemplo se usa map para demostrar las técnicas basicas de contenedor asociativo:

// Demuestra las operaciones basicas de contenedor asociativo.
//

// En este ejemplo se usa map, pero pueden aplicarse las mismas
// técnicas badsicas a cualquier contenedor asociativo.

#include <iostream>
#include <strings>
#include <map>

using namespace std;
void mostrar (const char *msj, map<string, ints> mp);

int main() {
// Declara un mapa vacio que contiene pares clave/valor
// en que la clave es una cadena y el valor es un entero.
map<string, int> m;

// Inserta caracteres en v. Se devuelve un iterador
// al objeto insertado.

m.insert (pair<string, ints>("Alfa", 100));

m.insert (pair<string, ints>("Gamma", 300));

m.insert (pair<string, ints>("Beta", 200));

// Declara un iterador a un map<string, itrs>.
map<string, ints>::iterator itr;

// Despliega el primer elemento en m.
itr = m.begin();
cout << "El primer par clave/valor en m: "

Capitulo 3: Trahajo con contenedores STL

<< itr->first << ", " << itr->second << endl;

// Despliega el Gltimo elemento en m.
itr = m.end() ;
--itr;
cout << "E1l \uOOa3ltimo par clave/valor en m: "
<< itr->first << ", " << itr->second << "\n\n";

// Despliega todo el contenido de m.
mostrar ("Todo el contenido de m: ", m);

// Muestra el tamafio de m, que es el nimero de
// elementos contenidos por m.
cout << "E1 tama\uOOa4o de m es " << m.size() << "\n\n";

// Declara un iterador inverso a un map<string, itrs>.
map<string, ints>::reverse iterator ritr;

// Ahora, muestra el contenido de m en orden inverso.
cout << "El1 contenido de m invertido:\n";

for (ritr=m.rbegin(); ritr != m.rend(); ++ritr)
cout << " " << ritr->first << ", " << ritr->second << endl;
cout << endl;

// Encuentra un elemento dada su clave.
itr = m.find ("Beta") ;

if (itr != m.end())
cout << itr->first << " tiene el valor " << itr-ssecond << "\n\n";
else

cout << "Clave no encontrada.\n\n";

// Crea otro mapa que es igual al primero.
map<string, ints> m2(m);
mostrar ("El contenido de m2: ", m2) ;

// Compara dos mapas.
if (m == m2) cout << "m y m2 son equivalentes.\n\n";

// Inserta mas elementos en m y m2.

cout << "Se insertan elementos adicionales en m y m2.\n";
m.insert (make pair ("Epsilon", 99));
m2.insert (make pair ("Zeta", 88));

mostrar ("E1l contenido de m es ahora: ", m);

mostrar ("El contenido de m2 es ahora: ", m2);

// Determina la relacidén entre m y m2. Es una

// comparacidén lexicografica. Por ello, el primer
// elemento en el contenedor determina cuédl

// contenedor es menor que el otro.

if (m < m2) cout << "m es menor gque m2.\n\n";

// Elimina Beta de m.
m.erase ("Beta") ;

151

152 c++ Soluciones de programacidn

mostrar ("m tras eliminar Beta: ", m);
if (m > m2) cout << "Ahora, m es mayor que m2.\n\n";

// Intercambia el contenido de m y m2.
cout << "Se intercambian m y m2.\n";
m.swap (m2) ;

mostrar ("E1l contenido de m: ", m);
mostrar ("E1l contenido de m2: ", m2);

// Limpia m.
m.clear () ;
if (m.empty()) cout << "m est\u00a0 vac\uOOalo.";

return 0;

}

// Despliega el contenido de un map<string, int> al usar

// un iterador.

void mostrar (const char *msj, map<string, int> mp) {
map<string, ints>::iterator itr;

cout << msj << endl;
for (itr=mp.begin(); itr != mp.end(); ++itr)

cout << " " << itr->first << ", " << itr-s>second << endl;
cout << endl;

}
Aqui se muestra la salida:

El primer par clave/valor en m: Alfa, 100
El dltimo par clave/valor en m: Gamma, 300

Todo el contenido de m:
Alfa, 100
Beta, 200
Gamma, 300

El tamafio de m es 3

El contenido de m invertido:

Gamma, 300
Beta, 200
Alfa, 100

Beta tiene el valor 200

El contenido de m2:

Alfa, 100
Beta, 200
Gamma, 300

m y m2 son equivalentes.

Capitulo 3: Trabajo con contenedores STL 153

Se insertan elementos adicionales en m y m2.
El contenido de m es ahora:

Alfa, 100

Beta, 200

Epsilon, 99

Gamma, 300

El contenido de m2 es ahora:

Alfa, 100
Beta, 200
Gamma, 300
Zeta, 88

m es menor que m2.

m tras eliminar Beta:
Alfa, 100
Epsilon, 99
Gamma, 300

Ahora, m es mayor que m2.

Se intercambian m y m2.
E1l contenido de m:

Alfa, 100
Beta, 200
Gamma, 300
Zeta, 88

E1l contenido de m2:
Alfa, 100
Epsilon, 99
Gamma, 300

m estéd vacio.

Gran parte del programa se explica por si solo, pero hay unos cuantos aspectos que merecen
un examen de cerca. En primer lugar, observe cémo se declara un objeto de map mediante la linea
siguiente:

map<string, int> m;

Esto declara un mapa llamado m que contiene pares clave/valor en que la clave es de tipo string
y el valor es de tipo int. Esto significa que los tipos de objetos contenidos por m son casos de
pair<string, int>. Observe que se usa la funcién de comparacién predeterminada less. Esto signi-
fica que los objetos se almacenan en el mapa en orden ascendente. Ademas, observe que se usa el
asignador predeterminado.

A continuacién, los pares clave/valor se insertan en m al llamar a insert(), como se muestra
aqui:

m.insert (pair<string, ints("Alfa", 100));
m.insert (pair<string, ints>("Gamma", 300)) ;
m.insert (pair<string, ints>("Beta", 200));

154

C++ Soluciones de programacion

Debido a que m usa la funcién de comparacién predeterminada, el contenido se ordena auto-
maticamente de manera ascendente con base en las claves. Por tanto, el orden de las claves en
el mapa después de las llamadas anteriores a insert() es Alfa, Beta, Gamma, como lo confirma la
salida.

A continuacion, se declara un iterador al mapa mediante la linea siguiente:

map<string, int>::iterator itr;

Debido a que el tipo de iterador debe coincidir exactamente con el tipo de contenedor, es necesario
especificar los mismos tipos de clave y valor. Por ejemplo, un iterador que contiene pares clave/
valor de tipo string/int no funciona con un mapa que contiene pares clave/valor de tipo ofstream/
string.

Luego, el programa usa el iterador para desplegar el primero y el dltimo par clave/valor en el
mapa al usar esta secuencia:

// Despliega el primer elemento en m.
itr = m.begin();
cout << "El primer par clave/valor en m: "
<< itr->first << ", " << itr->second << endl;

// Despliega el Gltimo elemento en m.

itr = m.end() ;
--itr;
cout << "El \uOOa3ltimo par clave/valor en m: "
<< itr->first << ", " << itr-ssecond << "\n\n";

Como se explico, la funciéon rbegin() devuelve un iterador al primer elemento en el contenedor y
end() devuelve un iterador a uno después del 1ltimo elemento. Por esto itr disminuye después de
la llamada a end() para que pueda desplegarse el tltimo elemento. Recuerde que el tipo de objeto
seflalado por un iterador map es una instancia de pair. La clave estd contenida en el campo first
y el valor en el second. Ademas, observe cémo los campos de pair se especifican al aplicar el ope-
rador —> a itr de la misma manera en que usaria —> con un apuntador. En general, los iteradores
funcionan como apuntadores y se manejan, en esencia, de la misma manera.

A continuacién, todo el contenido de m se despliega al llamar a mostrar(), que despliega el
contenido de map<string, int> que se pasa. Preste especial atencién a la manera en que se desplie-
gan los pares clave/valor mediante el siguiente bucle for:

for(itr=mp.begin(); itr != mp.end(); ++itr)
cout << " " << itr->first << ", " << itr->second << endl;

Debido a que end() obtiene un iterador que sefiala a uno después del final del contenedor, el bucle
se detiene automéaticamente después de que se ha desplegado el tltimo elemento.

Luego, el programa despliega el contenido de m invertido mediante el uso de un iterador in-
verso y un bucle que ejecuta de m.begin() a m.rend(). Como se explicé, un iterador inverso opera
en el contenedor de atras hacia adelante. Por tanto, el incremento de un iterador inverso causa que
sefale al elemento anterior en el contenedor.

Preste especial atencién a la manera en que se comparan dos contenedores mediante el uso
de los operadores ==, <y >. En el caso de contenedores asociativos, la comparacién se conduce
empleando una comparacion lexicografica de los elementos, que en el caso de map son pares cla-

Capitulo 3: Trabajo con contenedores STL 155

ve/valor. Aunque el término "lexicografico" significa "orden de diccionario", su significado suele
generalizarse a lo que se relaciona con STL. En el caso de comparaciones entre contenedores, dos
de éstos son iguales si contienen el mismo niimero de elementos, en el mismo orden, y todos los
elementos correspondientes son iguales. En el caso de contenedores asociativos que contienen pa-
res clave/valor, esto significa que cada clave y valor del elemento deben coincidir. Si se encuentra
una falta de coincidencia, el resultado de una comparacion lexicografica se basa en los primeros
elementos que no coinciden. Por ejemplo, suponga que un mapa contiene el par:

prueba, 10
y otro contiene:

prueba, 20

Aungque las claves sean las mismas, debido a que los valores difieren, estos dos elementos no son
equivalentes. Por tanto, se juzgara que el primer mapa es menor que el segundo.
Otro tema interesante es la secuencia que encuentra un elemento dada su clave. Aqui se muestra:

// Encuentra un elemento dada su clave.
itr = m.find("Beta") ;

if (itr != m.end())
cout << itr->first << " tiene el valor " << itr-s>second << "\n\n";
else

cout << "Clave no encontrada.\n\n";

La capacidad de encontrar un elemento dada su clave es uno de los aspectos definitorios de los
contenedores asociativos. (jPor esa razon se les denomina "contenedores asociativos"!) El método
find() busca el contenedor que invoca una clave que coincida con una especificada como argumen-
to. Si se encuentra, se devuelve un iterador al elemento. De otra manera, se devuelve end().

Opciones
Puede contar el nimero de elementos en un contenedor asociativo que coincide con una clave
especificada al llamar a count(), que se muestra aqui:

size_type count(const key_type &c) const

Devuelve el nimero de veces que ocurre c en el contenedor. En el caso de contenedores que re-
quieren claves tinicas, serd cero o uno.

Todos los contenedores asociativos le permiten determinar un rango de elementos en que cae
un elemento. Esta capacidad tiene soporte con tres funciones: lower_bound(), upper_bound() y
equal_range(). Se muestran a continuacién. (También hay versiones const de estas funciones.)

iterator lower_bound(const key_type &c)
iterator upper_bound(const key_type &c)
pair<iterator, iterator> equal_range(const key_type &c)

La funcién lower_bound() devuelve un iterador al primer elemento en el contenedor con una
clave igual o mayor que c. La funcién upper_bound() devuelve un iterador al primer elemento en
el contenedor con una clave mayor que c. La funcién equal_range() devuelve un par de iteradores
que sefialan al limite superior y el limite inferior en el contenedor en el caso de una clave especifi-
ca al llamar a equal_range().

156 Cc++ Soluciones de programacidn

Todos los contenedores asociativos dan soporte a tres formas de insert(). Uno se describié
antes. Aqui se muestran las otras dos versiones de insert():

iterator insert(iterator i, const value_type &val)
template <class Inlter> void insert(Inlter inicio, Inlter final)

La primera forma inserta val en el contenedor. En el caso de contenedores asociativos que permi-
ten duplicados, esta forma de insercién siempre tendra éxito. De otra manera, insertara val sélo si
su clave no esté ya en el contenedor. En cualquier caso, se devuelve un iterador al elemento con
la misma clave. El iterador especificado por i indica un buen lugar para iniciar la bisqueda del
punto de insercién apropiado. Debido a que los contenedores asociativos se ordenan con base en
las claves, proporcionan un buen punto de partida que puede agilizar las inserciones. La segunda
forma de insert() inserta el rango de inicio a final-1. Las claves duplicadas se insertaran dependien-
do del contenedor. En todos los casos, el contenedor asociativo resultante permanecera ordenado
con base en claves.

Ademas de la forma de erase() usada en esta solucion, todos los contenedores asociativos dan
soporte a otras dos formas. Aqui se muestran:

void erase(iterator i)
void erase(iterator inicio, iterator final)

La primera forma elimina el elemento sefialado por i. La segunda forma elimina los elementos en
el rango de inicio a final-1.

Como ya se menciond, la STL da soporte a dos categorias de contenedores asociativos: mapas
y conjuntos. Un mapa almacena pares clave/valor. Un conjunto almacena objetos en que la clave y
el valor son iguales. Dentro de estas dos categorias, hay dos divisiones: los contenedores asociati-
vos que requieren claves tnicas y los que permiten claves duplicadas. Los contenedores mapa y
set requieren claves tinicas. Los contenedores multimap y multiset permiten claves duplicadas.
Debido a que cada contenedor asociativo usa una estrategia diferente, suele bastar con elegir el
mejor para una aplicacién. Por ejemplo, si necesita almacenar pares clave/valor y todas las claves
son Uinicas, use map. En el caso de mapas que requieren claves duplicadas, use multimap.

Componentes clave

Encabezados Clases Funciones

<map> map iterator find(const key_type &c)
pair<iterator, bool>
insert(const value_type &val)
T &operator[](const key_type &c)

<utility> pair

Capitulo 3: Trabajo con contenedores STL 157

En esta solucién se describe lo que es probablemente el contenedor de uso mas amplio: map. Un
mapa almacena pares clave/valor, y todas las claves deben ser tnicas. Por tanto, dada una clave,
puede encontrar facilmente su valor. Esto hace que map sea especialmente ttil para mantener
listas de propiedades, almacenar configuraciones de atributos y opciones, o en cualquier otro
lugar en que debe encontrarse un valor mediante una clave. Por ejemplo, podria usar un map
para crear una lista de contactos que use el nombre de una persona como clave y un niimero de
teléfono como valor. Ese mapa le permitiria recuperar facilmente un ndmero de teléfono a partir
de un nombre. Un mapa es un contenedor ordenado, con el orden basado en las claves. Como
opcién predeterminada, las claves estan en orden ascendente, pero es posible especificar un orden
diferente.

NoTA El mecanismo bdsico que se requiere para usar un contenedor asociativo, incluido map, se
describié en Técnicas basicas de contenedor asociativo. La solucién dada aqui se centra en los
aspectos de map que van mds alld de estas técnicas generales.

Paso a paso
Para usar map se requieren estos pasos:

1. Cree una instancia de map del tipo deseado.
2. Agregue elementos al mapa al llamar a insert() o usar el operador de subindice.
3. Obtenga o establezca el valor de un elemento al usar el operador de subindice.
4. Encuentre un elemento especifico en el mapa al llamar a find().

Analisis

La clase map da soporte a un contenedor asociativo en que se asignan claves tinicas con valo-
res. En esencia, una clave es simplemente un nombre que se le da a un valor. Una vez que se ha
almacenado un valor, puede recuperarlo al usar su clave. Por tanto, en su sentido més general, un
mapa es una lista de pares clave/valor.

La especificacién de plantilla para map se muestra a continuacién:

template <class Key, class T, class Comp = less<key>,
class Allocator = allocator<pair<const Key, T> > > class map

Aqui, Key es el tipo de datos de las claves. T es el tipo de datos de los valores almacenados, y
Comp es una funcién que compara dos claves. Los siguientes constructores estin definidos en
map:

explicit map(const Comp &fucomp = Comp(),

const Allocator &asign = Allocator())
map(const map<Key, T, Comp, Allocator> &ob)
template <class Inlter> map<Inlter inicio, Inlter final,

const Comp &fucomp = Comp(),

const Allocator &asign = Allocator())

La primera forma construye un mapa vacio. La segunda, un mapa que contiene los mismos ele-
mentos que ob y es un constructor de copia de map. La tercera forma construye un mapa que con-

158

C++ Soluciones de programacion

tiene los elementos en el rango inicio a final-1. La funcién especificada por fucomp, si esta presente,
determina el orden del mapa. Con més frecuencia, permitird que fucomp y asign estén presentes,
como opcién predeterminada. Para usar map, debe incluir <map>.

La clase map da soporte a iteradores bidireccionales. Por tanto, el contenedor puede accederse
mediante un iterador en direcciones directa e inversa, pero no se da soporte a las operaciones de
acceso aleatorio. Sin embargo, el operador [] si tiene soporte, pero no en su uso tradicional.

Los pares clave/valor estan almacenados en un mapa como objetos de tipo pair. (Consulte Téc-
nicas bdsicas de contenedor asociativo para conocer detalles sobre pair.) El tipo de iterador definido
por map sefala a objetos de tipo pair<const Key, T>. Por tanto, cuando una funcién map devuel-
ve un iterador, la clave esta disponible mediante el miembro first de pair y el valor se obtiene
mediante el campo second de pair.

La clase map da soporte a todas las funciones estdndar especificadas por contenedores asocia-
tivos, como find(), count(), erase(), etc. Se describen en Técnicas bdsicas de contenedor asociativo.

Pueden agregarse elementos a un mapa de dos maneras. La primera es mediante la funcién
insert(). La operacion general de insert() se describe en Técnicas bdsicas de contenedor asociativo. He
aqui un resumen. Todos los contenedores asociativos dan soporte por lo menos a tres versiones de
insert(). El usado en esta solucién es:

pair<iterator, bool> insert(const value_type &uval)

Inserta val en el contenedor que invoca en un punto que mantiene el orden del contenedor aso-
ciativo. En map, value_type es un type_def para pair<const Key, T>. Por tanto, esta version de
insert() inserta un par clave/valor en el mapa que invoca. Devuelve un objeto pair que indica el
resultado de la operacién. Como ya se explic6, map requiere que todas las claves sean tinicas. Por
tanto, si val contiene una clave tnica, la insercion tendra éxito. En este caso, el valor bool del obje-
to pair devuelto (que es el campo second) serd true. Sin embargo, si la clave especificada ya existe,
entonces este valor serd false. La porcion iterator del objeto de pair devuelto (que es el campo
first) sefialara al objeto insertado si se tiene éxito, o a un elemento que ya existe que usa la misma
clave.

La segunda manera de agregar un par clave/valor a un mapa incluye el uso de operator[]().
Le sorprenderd la manera en que funciona. Aqui se muestra su prototipo:

T &operator[](const key_type &c)

Observe que c (que recibe el valor de indice) no es un entero. En cambio, es un objeto que repre-
senta una clave. Esta clave se utiliza después para encontrar el valor, y la funcién devuelve una
referencia al valor asociado con la clave. Por tanto, el operador de subindice se implementa con
map, para que use una clave como indice y devuelva el valor asociado con esa clave.

Para comprender mejor los efectos de operator[l(), resulta de ayuda trabajar con un ejemplo.
Considere un mapa llamado mapatels que contiene pares clave/valor que constan del nombre y
el niimero telefénico de una persona. Ademds, suponga que hay una entrada en el mapa que tiene
la clave "Juan", con el valor "555-0001". En este caso, la siguiente instruccién despliega el niimero
telefénico vinculado con "Juan':

cout << mapatels(["Juan"];

Debido a que "555-0001" es el valor relacionado con "Juan", esta instrucciéon despliega 555-0001.
Hay un aspecto muy importante del operador [] que se aplica a map y que expande en gran
medida sus capacidades. Debido a la manera en que se implementa [], siempre se tendrd éxito. Si la

Capitulo 3: Trabajo con contenedores STL 159

clave que estd buscando no se encuentra en el mapa, se inserta automaticamente, y su valor es el
del constructor predeterminado del tipo (que es cero para los tipos integrados). Por tanto, jsiempre
encontrard cualquier clave que busque!

Como se menciond, el valor devuelto por el operador [] es una referencia al valor asociado
con la clave usada como indice. Por tanto, puede usar el operador [] en el lado izquierdo de una
asignacion para dar a un elemento un nuevo valor. Por ejemplo:

mapatels["Juan"] = "555-1234";

Esta instruccién asigna el ntimero 555-1234 a la clave "Juan". S5i "Juan" no se encuentra en el mapa,
se agregara primero automdticamente (con un valor predeterminado para la clave) y luego se asig-
na el niimero 555-1234. Si ya existia, entonces su valor simplemente se cambia al nuevo niimero.

Un tema importante: si se agregan elementos al llamar a insert() o al usar operator[](), el mapa
se mantiene en orden basado en claves.

Debido a que la clase map da soporte a iteradores bidireccionales, puede recorrerse en direc-
ciones directa e inversa mediante un iterador. Méas aun, la clase map da soporte a los tipos iterator
y reverse_iterator. (También se proporcionan los tipos const correspondientes.) Debido a que los
elementos de map constan de objetos pair, los iteradores de map sefalan a estos objetos.

Puede obtener un iterador al primer elemento en un mapa al llamar a begin(). Un iterador a
uno después del tultimo elemento se obtiene al llamar a end(). Puede obtener un iterador inverso al
final del mapa al llamar a rbegin() y un iterador inverso al elemento que es uno antes del principio
del mapa al llamar a rend(). Estas funciones y la técnica usada para recorrer en ciclo un contenedor
asociativo mediante el uso de un iterador se describen en Técnicas bisicas de contenedor asociativo.

Puede obtener un iterador a un elemento especifico al llamar a find(), que se implementa como
ésta para map:

iterator find(const key_type &c)

Esta funciéon devuelve un iterador al elemento cuya clave coincide con c. Si no se encuentra la
clave, entonces se devuelve end(). Una versién const también estd disponible. Es importante
comprender que, a diferencia de [], si no se encuentra la entrada que se busca, find() no creara el
elemento.

La clase map tiene las siguientes caracteristicas de rendimiento. Los mapas estdn disefiados
por el almacenamiento eficiente de pares clave/valor. En general, la insercién o eliminacién de
elementos en un mapa tiene lugar en tiempo logaritmico. Hay dos excepciones. En primer lugar,
un elemento que se inserta en una ubicaciéon determinada tiene lugar en tiempo constante amorti-
zado. Este tiempo también se consume cuando un elemento especifico se elimina dado un iterador
al elemento. La insercién en un mapa no invalida iteradores o referencias a elementos. Una elimi-
nacién sélo invalida iteradores o referencias a los elementos eliminados.

Ejemplo
En el siguiente ejemplo se muestra map en accién. Crea un contenedor que funciona como directo-
rio telefénico, en que el nombre es la clave y el namero es el valor.

// Demuestra map.

//

// Este programa crea una lista telefénica simple en
// que el nombre de una persona es la clave y el

160

C++ Soluciones de programacion
// nGmero telefdnico es el valor. Por tanto, puede
// buscar un nimero telefédnico dado un nombre.
#include <iostream>
#include <string>
#include <map>
#include <utilitys>
using namespace std;

void mostrar (const char *msj, map<string, string> mt);

int main() {
map<string, string> mapatels;

// Inserta elementos al usar operator|[].

mapatels ["Juan"] = "555-1234";
mapatels["Diana"] = "314 555-6576";
mapatels["Carlos"] = "660 555-9843";
mostrar ("E1l mapa original es: ", mapatels);

cout << endl;

// Ahora, cambia el numero telefdénico de Carlos.
mapatels["Carlos"] = "415 997-8893";

cout << "Nuevo n\uOOa3mero para Carlos: " << mapatels["Carlos"] << "\n\n";

// Usa find() para encontrar un ndmero.
map<string, strings>::iterator itr;
itr = mapatels.find("Diana") ;
if (itr != mapatels.end())
cout << "El n\uOOa3mero de Diana es " << itr-ssecond << "\n\n";

// Bucle para map en direccidén inversa.

map<string, strings::reverse iterator ritr;

cout << "Despliega mapatels en orden inverso:\n";

for (ritr = mapatels.rbegin(); ritr != mapatels.rend(); ++ritr)
cout << " " << ritr->first << ": " << ritr-ssecond << endl;

cout << endl;

// Crea un objeto pair que contendra el resultado
// de una llamada a insert ().
pair<map<string, strings>::iterator, bools> resultado;

// Usa insert () para agregar una entrada.

resultado = mapatels.insert (pair<string, strings("Joel", "555-9999"));
if (resultado.second) cout << "Joel agregado.\n";

mostrar ("mapatels tras agregar Joel: ", mapatels);

// No se permiten claves duplicadas, como se prueba ahora.
resultado = mapatels.insert (pair<string, strings("Joel", "555-1010"));

if (resultado.second) cout << "Se ha agregado un duplicado de Joel added.

error.";
else cout << "No se permite un duplicado de Joel.\n";

Capitulo 3: Trabajo con contenedores STL 161

mostrar ("mapatels tras tratar de agregar un duplicado a la clave Joel: ", mapatels);

return O0;

}

// Despliega el contenido de map<string, string> al emplear

// un iterador.

void mostrar (const char *msj, map<string, string> mt) {
map<string, strings>::iterator itr;

cout << msj << endl;

for (itr=mt.begin(); itr != mt.end(); ++itr)
cout << " " << itr->first << ": " << itr->second << endl;

cout << endl;

}
Aqui se muestra la salida:

El mapa original es:
Carlos: 660 555-9843
Diana: 314 555-6576
Juan: 555-1234

Nuevo nimero para Carlos: 415 997-8893
El ntGmero de Diana es 314 555-6576

Despliega mapatels en orden inverso:
Juan: 555-1234
Diana: 314 555-6576
Carlos: 415 997-8893

Joel agregado.

mapatels tras agregar Joel:
Carlos: 415 997-8893
Diana: 314 555-6576
Joel: 555-9999
Juan: 555-1234

No se permite un duplicado de Joel.
mapatels tras tratar de agregar un duplicado a la clave Joel:
Carlos: 415 997-8893
Diana: 314 555-6576
Joel: 555-9999
Juan: 555-1234

En el programa, observe cdmo se usa el operador []. En primer lugar, agrega elementos a ma-
patels en las siguientes instrucciones:

mapatels ["Juan"] = "555-1234";
mapatels["Diana"] = "314 555-6576";
mapatels["Carlos"] = "660 555-9843";

162

C++ Soluciones de programacion

Cuando se crea mapatels, esta vacia. Por tanto, cuando se ejecutan las instrucciones anteriores, no
habra elementos en mapatels que tengan las claves especificadas. Esto causa que la clave y el valor
se agreguen. (En esencia, un objeto pair que contiene la clave y el valor se construye automatica-
mente y se agrega al mapa.)

El siguiente uso de [] cambia el ntimero telefénico asociado con Carlos:

mapatels["Carlos"] = "415 997-8893";

Debido a que la clave "Carlos" ya estd en el mapa, se encuentra su entrada, y su valor se establece
es el nuevo nimero telefénico.

Opciones
Como se explic, map contiene pares clave/valor en que cada clave es tinica. Si quiere usar un
mapa que permita claves duplicadas, use multimap. Se describe en la siguiente solucién.

Como se describié en Técnicas bdsicas de contenedor asociativo, todos los contenedores asociati-
vos dan soporte a otras dos formas de insert() ademads de la usada por la solucién. Una forma es
especialmente 1til cuando se trabaja con mapas porque le da una manera de combinar dos mapas.
Se muestra aqui:

template <class Inlter> void insert(InIter inicio, Inlter final)

Esta funcion inserta el elemento en el rango de inicio a final-1 en el mapa que invoca. Los elemen-
tos se insertan de tal manera que el mapa que invoca permanece ordenado. Por supuesto, los tipos
de los elementos deben coincidir con los almacenados en el mapa que invoca y duplicar elementos
que no se permiten. He aqui un ejemplo de la manera en que puede usarse esta versién de insert().
Suponiendo el programa anterior, la siguiente secuencia crea una segunda lista telefénica llamada
amigos y luego se agregan estos niimeros a mapatels:

map<string, strings> amigos;

amigos ["Luis"] = "555-4857";
amigos ["Carmen"] = "555-1101";
amigos ["Laura"] = "555-0100";

// Inserta los elementos de amigos en mapatels.
mapatels.insert (amigos.begin (), amigos.end()) ;

Después de que se ejecuta esta secuencia, mapatels contendra todas las entradas originales, ade-
mas de las contenidas en amigos. El mapatels resultante permanece en orden. El mapa amigos
permanecera sin cambio.

Como todos los contenedores asociativos, map proporciona tres formas de erase() que le per-
miten eliminar elementos de un map. Se describen en Técnicas bdsicas de contenedor asociativo, pero
uno merece mencioén especial. Se muestra aqui:

size_type erase(const key_type &c)

La version de erase() elimina el elemento con la clave pasada en c y devuelve el nimero de
elementos eliminados. Sin embargo, en el caso de map, nunca se eliminard més de un elemento
porque se duplican elementos que no se permiten. Por tanto, si la clave especificada por ¢ existe en
el mapa que invoca, se eliminard y se devolvera 1. De otra manera, se devolvera 0.

Capitulo 3: Trabajo con contenedores STL 163

Componentes clave

Encabezados Clases Funciones

<map> multimap size_type erase(const key_type &c)
iterator insert(const value_type &val)
iterator find(const key_type &c)
iterator upper_bound(const key_type &c)

<utility> pair

Una variable de map es multimap. Como map, multimap almacena pares clave/valor. Sin embar-
g0, en un mapa multiple, no es necesario que las claves sean tnicas. En otras palabras, una clave
podria asociarse con dos o més valores diferentes. Este tipo de contenedor es titil en dos tipos
generales de situaciones. En primer lugar, ayuda en casos en que no puedan evitarse claves dupli-
cadas. Por ejemplo, un directorio telefénico en linea podria tener dos niimeros diferentes para la
misma persona. Al usar multimap, el nombre de una persona puede usarse como una clave que se
asigna a ambos ndmeros. En segundo lugar, es muy adecuado para situaciones en que una clave
describe una relacién general que existe entre sus valores. Por ejemplo, los familiares podrian re-
presentarse en un mapa multiple que usa el apellido de la familia como clave. Los valores son los
nombres. Con este método, para encontrar todos los miembros de la familia Prado, simplemente
usaria Prado como clave.

NoOTA Aparte de permitir claves duplicadas, multimap funciona de manera parecida a map, que se
describe en la solucion anterior. También da soporte a todas las operaciones descritas en Técnicas
bésicas de contenedor asociativo. Esta solucion se concentra en los aspectos iinicos de multi-
map.

Paso a paso
Para usar multimap se requieren estos pasos:

1. Cree una instancia de multimap del tipo deseado.

2. Agregue elementos, que pueden incluir claves duplicadas, al mapa mdiltiple, al llamar a
insert().

3. Encuentre todos los elementos con una clave especificada al usar find() y upper_bound().

4. Elimine todos los elementos dentro de un mapa miultiple que tenga la misma clave al usar
erase().

Analisis
Aqui se muestra la especificacién de la plantilla multimap:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T> > > class multimap

164 Cc++ Soluciones de programacidn

Aqui, Key es el tipo de datos de las claves, T es el tipo de datos de los valores que se estan almace-
nando (incluyendo en el mapa) y Comp es una funcién que compara dos claves. Tiene los siguien-
tes constructores:

explicit multimap(const Comp &fucomp = Comp(),

const Allocator &asign = Allocator())
multimap(const multimap<Key, T, Comp, Allocator> &ob)
template <class Inlter> multimap<Inlter inicio, Inlter final,

const Comp &fucomp = Comp(),

const Allocator &asign = Allocator())

La primera forma construye un mapa multiple vacio. La segunda, un constructor de copia de mul-
timap. La tercera forma construye un mapa mdiltiple que contiene los elementos en el rango inicio
a final-1. La funcién especificada por fucomp determina el orden del mapa multiple. El asignador
usado por el mapa multiple esta especificado por asign. Por lo general, fucomp y asign se permiten
como opcién predeterminada. Para usar multimap, debe incluir <map>.

La clase multimap da soporte a iteradores bidireccionales. Por tanto, el contenedor puede
accederse mediante un iterador en direcciones directa e inversa. A diferencia de map, multimap
no da soporte al operador []. (Como no hay una asignacién uno a uno de claves a valores, no es
posible indizar un objeto multimap empleando una clave.)

En general, multimap se usa como map. La principal diferencia es que se permiten las claves
duplicadas. Esta diferencia tiene su mayor impacto en dos operaciones: insertar un elemento y
encontrar un elemento. Cada una se habra de examinar, empezando con la insercién.

Puede agregar elementos a un mapa multiple al usar la funcién insert(). Hay tres versiones de
insert(). Aqui se muestra la usada en esta solucién:

iterator insert(const value_type &uval)

Inserta val (que es un objeto pair) en el mapa muiltiple que invoca. (Al igual que map, value_type
es un typedef para pair<const Key, T>.) Debido a que se permiten claves duplicadas, val siempre
se insertara (hasta que se agote la memoria, por supuesto). La funcién devuelve un iterador que
sefala a un elemento insertado. Por tanto, insert() siempre tiene éxito. Esto difiere de la versién
correspondiente de insert() usada por map, que falla si hay un intento de insertar un elemento
duplicado.

Debido a que la caracteristica definitoria de multimap es su capacidad de almacenar mas de
un valor para una clave determinada, esto plantea la pregunta obvia: ;cémo encuentro todos los
valores asociados con una clave? La respuesta es un poco més complicada de lo que esperaria
porque la sola funcién find() es insuficiente para encontrar varias coincidencias. Recuerde que
find() es una funcién que deben implementar todos los contenedores asociativos. Se define asi
para multimap:

iterator find(const key_type &c)

Aqui, c especifica la clave. Si el mapa muiltiple contiene un elemento con una clave igual a c, find()
devuelve un iterador al primer elemento coincidente. Si no se encuentra la clave, entonces se de-
vuelve end(). (También se proporciona una versién const de find().)

Debido a que find() siempre devuelve un iterador a la primera clave coincidente, no hay manera
de hacer que pase a la siguiente. En cambio, para obtener ésta, debe incrementar el iterador de-
vuelto por find(). El proceso se detiene cuando se ha encontrado la tltima clave coincidente.

Capitulo 3: Trabajo con contenedores STL 165

El punto final se obtiene mediante el uso de la funcién upper_bound(). Aqui se muestra su ver-
sién que no es const:

iterator upper_bound(const key_type c)

La funcién upper_bound() devuelve un iterador al primer elemento en el contenedor con una
clave mayor que c. En otras palabras, devuelve un iterador al elemento que viene después de los
que tienen la clave que especificé. Por tanto, suponiendo algiin mapa multiple llamado mm, para
encontrar todas las coincidencias de una clave dada, usara una secuencia como ésta:

itr = mm.find(clave) ;

if (itr !'= end()) {
do
//
++itr;
} while(itr != mm.upperbound (clave)) ;

}

En primer lugar, se hace un intento por encontrar un elemento que coincida con la clave especi-
ficada. Si se encuentra una coincidencia, entonces se ingresa en el bucle do. (Recuerde que find()
devuelve end() si no se encuentra la clave.) Dentro del bucle, el iterador se aumenta y su valor se
comprueba contra el limite superior para la clave. Este proceso contintia hasta que itr sefiala al
limite superior.

Puede eliminar todos los elementos que comparten una clave dada al emplear esta forma de
erase():

size_type erase(const key_type &c)

Elimina elementos del mapa multiple que tienen claves con el valor c. Devuelve el niimero de
elementos eliminados. Se da soporte a otras dos versiones de erase(), que operan en iteradores.

La clase multimap tiene las mismas caracteristicas de rendimiento que map. En general, la
insercién o eliminaciéon de elementos en un mapa tiene lugar en tiempo logaritmico. Las dos ex-
cepciones son cuando un elemento se inserta en una ubicacién determinada y cuando un elemento
especifico se elimina dado un iterador a ese elemento. En estos casos, se requiere tiempo constante
amortizado. La insercién en un mapa mdltiple no invalida a iteradores o referencias a elementos.
Una eliminacién sé6lo invalida los iteradores o referencias a los elementos eliminados.

Ejemplo

En el siguiente ejemplo se demuestra la manera en que puede usarse multimap para almacenar
pares clave/valor en que pueden ocurrir duplicados. Se vuelve a trabajar el programa de ejemplo
usado por la solucién anterior para que use un mapa multiple en lugar de un mapa para almace-
nar la lista de nombres y niimeros telefénicos.

// Demostracidén de multimap.

//

// Este programa usa un mapa miltiple para almacenar nombres
// y nGmeros telefdnicos. Permite que un nombre se asocie

// con mads de un nimero telefédénico.

#include <iostreams>
#include <map>

166 C++ Soluciones de programacidn
#include <string>
using namespace std;
void mostrarnums (const char *n, multimap<string, string> mp) ;
int main()
{

multimap<string, string> mapatels;

// Inserta elementos al usar operator[].

mapatels.insert (pair<string, strings("Juan", "Casa: 555-1111"));
mapatels.insert (pair<string, strings("Juan", "Trabajo: 555-1234"));
mapatels.insert (pair<string, strings("Juan", "Celular: 555-2224"));
mapatels.insert (pair<string, strings>("Diana", "Casa: 314 555-6576"));
mapatels.insert (pair<string, strings>("Diana", "Celular: 314 555-8822"));
mapatels.insert (pair<string, strings>("Carlos", "Casa: 660 555-9843"));
mapatels.insert (pair<string, strings>("Carlos", "Trabajo: 660 555-1010")) ;
mapatels.insert (pair<string, strings>("Carlos", "Celular: 217 555-9995"));

// Muestra todos los numeros telefénicos de Juan, Diana y Carlos
mostrarnums ("Juan", mapatels);

cout << endl;

mostrarnums ("Diana", mapatels) ;

cout << endl;

mostrarnums ("Carlos", mapatels) ;

cout << endl;

// Bhora elimina todos los nUmeros telefdnicos de Carlos:
cout << "Eliminando todos los n\u0OOa3meros de Carlos.\n";
int cuenta = mapatels.erase("Carlos");

cout << "Se han eliminado " << cuenta << " elementos.\n\n";

cout << "Tras eliminar a Carlos, fallan los intentos de encontrar el
n\uOOa3mero:\n";
mostrarnums ("Carlos", mapatels) ;

return 0;

}

// Muestra todos los nimeros para un nombre dado.
void mostrarnums (const char *n, multimap<string, strings> mmp) {
multimap<string, strings::iterator itr;

// Encuentra la primera clave coincidente.
itr = mmp.£find(n);

// Si se encontrd la clave, se despliegan todos los nimeros
// telefdnicos que tienen esa clave.

if (itr != mmp.end())
cout << "Los n\ulOOa3meros de " << n << ": " << endl;
do {

cout << " " << itr-s>second << endl;

Capitulo 3: Trabajo con contenedores STL 167

++1itr;
} while (itr != mmp.upper bound(n)) ;
else
cout << "No se han encontrado entradas para " << n << ".\n";

}
Aqui se muestra la salida:

Los nUGmeros de Juan:
Casa: 555-1111
Trabajo: 555-1234
Celular: 555-2224

Los nGmeros de Diana:
Casa: 314 555-6576
Celular: 314 555-8822

Los nGmeros de Carlos:
Casa: 660 555-9843
Trabajo: 660 555-1010
Celular: 217 555-9995

Eliminando todos los ntmeros de Carlos.
Se han eliminado 3 elementos.

Tras eliminar a Carlos, fallan los intentos de encontrar el numero:
No se han encontrado entradas para Carlos.

Hay tres caracteristicas importantes en este programa. En primer lugar, observe como se usa
insert() para insertar elementos con claves duplicadas en mapatels, que en este programa es
multimap. Como se explico, insert() siempre tendra éxito (hasta que se agote la memoria, por
supuesto) debido a que multimap permite claves duplicadas. En segundo lugar, tome nota de que
se encuentran todos los elementos con una clave especifica. Como se explicé en el andlisis anterior,
para encontrar todas las entradas coincidentes con una clave dada, encuentre la primera clave al
llamar a find(). Luego, encuentre las claves coincidentes subsecuentes al incrementar el iterador
devuelto por find() hasta que sea igual al limite superior, como se obtiene de upper_bound(). Por
altimo, tome nota de que esta llamada a erase() elimina todos los elementos que contiene la clave
"Carlos":

int cuenta = mapatels.erase("Carlos") ;

Si quiere eliminar un elemento especifico que tenga la clave "Carlos", entonces necesitara encon-
trar primero la entrada que quiera borrar y eliminarla usando otra forma de erase(). Este procedi-
miento se describe en la secuencia Opciones de esta solucion.

Opciones
Como se explicé, esta forma de erase() elimina todos los elementos que comparten la clave especi-
ficada:

size_type erase(const key_type &c)

168

C++ Soluciones de programacion

Elimina elementos que tienen claves con el valor c. Si quiere eliminar uno o mas elementos especifi-
cos, entonces necesitard usar una de las otras formas de erase(). Recuerde que todos los contenedo-
res asociativos, incluido multimap, dan soporte a las siguientes formas adicionales de erase():

void erase(iterator i)
void erase(iterator inicio, iterator final)

La primera forma elimina el elemento sefialado por i. La segunda elimina los elementos en el rango de
inicio a final-1. Puede usar estas formas para eliminar elementos especificos de un multimap. Por ejem-
plo, suponiendo el programa anterior, la siguiente secuencia elimina el ntimero telefénico de Carlos:

multimap<string, string::iterator itr;

// Encuentra la primera clave coincidente.
itr = mapatels.find("Carlos");

// Ahora, busca el nimero telefdnico especifico que se eliminara.

if (itr != mapatels.end()) {
do {
// Si la entrada contiene el teléfono del trabajo, lo elimina.
if (itr->second.find ("Trabajo") != string::npos) {
mapatels.erase (itr) ;
break;
1
++itr
} while (itr != mapatels.upper bound("Carlos")) ;

}

Esta secuencia funciona al encontrar el primer elemento coincidente con la clave "Carlos". Luego
usa un bucle para revisar todos los elementos con la clave "Carlos" para ver si uno de ellos con-
tiene el niimero telefénico del trabajo. En la lista, los ntimeros del trabajo estan antecedidos por la
subcadena "Trabajo", de modo que se revisa cada valor para ver si contiene la subcadena "Trabajo".
Si la incluye, la entrada se elimina y se termina el bucle.

En ocasiones, es titil conocer los puntos de inicio y final de un conjunto de elementos que com-
parten una clave. Para realizar esto, utilice equal_range(), como se muestra aqui:

pair<iterator, iterator> equal_range(const key_type &c)

Devuelve un objeto pair que contiene iteradores que sefialan al limite inferior (en el campo first) y
el limite superior (en el campo second) en el mapa multiple para la clave especificada. (También se
proporciona una version const de la funcién.) Aunque todos los contenedores asociativos propor-
cionan equal_range(), es mas 1til con los que permiten duplicar claves. Recuerde que el limite
inferior es el primer elemento que tiene una clave que es igual o mayor que ¢, y el limite superior
es el primer elemento que tiene una clave mayor que c¢. Suponiendo el programa anterior, he aqui
un ejemplo que muestra cémo puede usarse equal_range() para desplegar todos los niimeros
telefénicos de Carlos:

multimap<string, string::iterator itr;
pair< multimap<string, string::iterator,

multimap<string, string::iterators pr;
pr = mapatels.equal range ("Carlos") ;

Capitulo 3: Trabajo con contenedores STL 169

itr = pr.first;

cout << "Los n\uOOa3meros de carlos:\n";

while (itr != pr.second)
cout << itr->second << ende;
++itr;

Use set y multiset

Componentes clave

Encabezados Clases Funciones

<set> set size_type erase(const key_type &val)
iterator find(const key_type &val)
pair<iterator, bool>
insert(const value_type &val)

<set> multiset size_type erase(const key_type &val)
iterator find(const key_type &val)
pair<iterator, bool>
insert(const value_type &val)
iterator upper_bound(const key_type &val)
const

En esta solucién se demuestran set y multiset. Los contenedores de set son similares a los de ma-
pas, excepto que la clave y el valor no estdn separados entre si. Es decir, los conjuntos almacenan
objetos en que la clave es parte del valor. En realidad, si utiliza un conjunto para almacenar uno de
los tipos integrados, como un entero, la clave y el valor son iguales. Los conjuntos proporcionan
contenedores muy eficientes cuando no es necesario separar la clave de los datos. El contenedor
set requiere que todas las claves sean tnicas. El contenedor multiset permite claves duplicadas.
Aparte de esta diferencia, set y multiset funcionan de maneras similares.

Debido a que set y multiset almacenan objetos en que la clave y el valor son inseparables,
podria pensar inicialmente que las aplicaciones para set y multiset estin muy limitadas. En
realidad, cuando almacena tipos simples, como int o char, un set simplemente crea una lista
ordenada. Sin embargo, el poder de los conjuntos se vuelve evidente cuando se almacenan los
objetos. En este caso, la clave del objeto se determina con el operador < y/o == definido por la
clase. Por tanto, la clave del objeto podria constar de una sola parte de éste. Esto significa que
set puede proporcionar un medio muy eficiente para almacenar objetos que se recuperan con
base en el valor de un campo definido por el objeto. Por ejemplo, podria usar set para almacenar
objetos que contienen informacién de empleados, como nombre, direccién, ndmero telefénico
y un ntimero de ID. En este caso, el nimero de ID podria usarse como clave. Debido a que el
principal uso de set y multiset es para contener objetos en lugar de valores simples, éste es el eje
de la solucién.

170 c++ Soluciones de programacidn

NOTA Las técnicas necesarias para set y multiset son similares a las usadas por map y multimap,
Yy no se repetirdan aqui sus andlisis. Para conocer informacion general sobre el uso de contenedores
asociativos, consulte Técnicas bésicas de contenedor asociativo. Ademds, consulte Use map y
Use multimap para conocer informacion relacionada.

Paso a paso
Para usar set se requieren los pasos siguientes:

Cree una instancia de set del tipo deseado.

Agregue elementos al conjunto al llamar a insert(). Cada clave de elemento debe ser tinica.
Encuentre un elemento especifico en un conjunto al llamar a find().

Elimine un elemento con una clave especificada al llamar a erase().

W N

Para usar multiset, se requieren los pasos siguientes:

1. Cree una instancia de multiset del tipo deseado.
2. Agregue elementos al conjunto al llamar a insert(). Se permiten claves duplicadas.
3. Encuentre todos los elementos con una clave especifica usando find() y upper_bound().
4. Elimine todos los elementos que tengan la misma clave usando erase().
Andlisis

La clase set da soporte a un conjunto en que se almacenan claves tinicas en orden ascendente.
Aqui se muestra su especificaciéon de plantilla:

template <class Key, class Comp, = less<Key>,
class Allocator = allocator<Key> > class set

Aqui, Key es el tipo de datos de las claves (que también contienen los datos) y Comp es una fun-
cién que compara dos claves. La clase set tiene los siguientes constructores:

explicit set(const Comp &fucomp = Comp(),
const Allocator &asign = Allocator())
set(const set<Key, Comp, Allocator> &ob)
template <class Inlter> map<Inlter inicio, Inlter final,
const Comp &fucomp = Comp(),
const Allocator &asign = Allocator())

La primera forma construye un conjunto vacio. La segunda es el constructor de copia de set. La
tercera construye un conjunto que contiene los elementos especificados por el rango de inicio a
final-1. La funcién especificada por fucomp, si esta presente, determina el orden del conjunto. Como
opcién predeterminada, se utiliza less. Para usar set debe incluir <set>.

Capitulo 3: Trabajo con contenedores STL 171

La clase multiset da soporte a un conjunto en que se permiten claves duplicadas. Aqui se
muestra su especificacion de plantilla:

template <class Key, class Comp, = less<Key>,
class Allocator = allocator<Key> > class multiset

Aqui, Key es el tipo de datos de las claves y Comp es una funcién que compara dos claves.
La clase multiset tiene los siguientes constructores:

explicit multiset(const Comp &fucomp = Comp(),
const Allocator &asign = Allocator())
multiset(const multiset<Key, Comp, Allocator> &ob)
template <class Inlter> map<Inlter inicio, Inlter final,
const Comp &fucomp = Comp(),
const Allocator &asign = Allocator())

La primera forma construye un conjunto multiple vacio. La segunda construye un conjunto mul-
tiple que contiene los mismos elementos que ob. La tercera construye un conjunto mdltiple que
contiene los elementos especificados por el rango de inicio a final-1. La funcién especificada por
fucomp, si esta presente, determina el orden del conjunto. Como opcién predeterminada, less es la
funcién de comparacién. El encabezado para multiset también es <set>.

Tanto set como multiset dan soporte a iteradores bidireccionales. Por tanto, es posible acceder
a los contenedores mediante un iterador en las direcciones directa e inversa, pero no se da soporte a
las operaciones de acceso aleatorio.

Las funciones insert(), erase() y find() se describen en Técnicas bdsicas de contenedor asociativo.
He aqui una breve revisién de las formas usadas por esta solucién. Cuando se usa con set, esta
versién de insert()

pair<iterator, bool> insert(const value_type &wval)

fallara si val contiene una clave que ya se encuentra en el contenedor. (En este caso, se devuelve

false en el campo second del objeto pair, y un iterador al elemento existente en el campo first.)

Cuando se usa con multiset, insert() siempre tendra éxito. En ambos casos, cuando insert() tiene

éxito, el campo first del objeto pair devuelto contendra un iterador que sefiala al objeto insertado.
Cuando se usa con set, esta forma de erase()

size_type erase(const key_type &uval)

elimina el elemento cuya clave coincide con val. Cuando se usa con multiset, elimina todos
los elementos cuyas claves coinciden con val. En ambos casos, se devuelve el niimero de elementos
eliminados.

A continuacién se muestra la funcién find():

iterator find(const key_type &uval)

Para set, devuelve un iterador al elemento cuya clave coincide con val. Para multiset, devuelve un
iterador al primer elemento cuya clave coincide con val. Para encontrar todos los elementos con

claves coincidentes, use upper_bound() para establecer el limite superior. Todos los elementos que
se encuentran entre los sefialados por find() y por upper_bound() contendran claves coincidentes.

172

C++ Soluciones de programacion

Como se explicé en Almacene en un contenedor objetos definidos por el usuario, en general, para
que un objeto se almacene en un contenedor asociativo, su clase debe sobrecargar el operador <. Esto
se debe a que los contenedores asociativos se ordenan al usar el operador <. El operador < tam-
bién se usa con las funciones find(), upper_bound(), lower_bound() y equal_range(). Por tanto,
el secreto del uso de set para almacenar objetos de clase es el operator < () correctamente sobrecar-
gado. Por lo general, el operador < esta definido de manera tal que s6lo un miembro de la clase se
compara. Este miembro, por tanto, forma la clave, aunque toda la clase forma el elemento.

En algunos casos, también necesita definir operator==().

NOTA De acuerdo con la experiencia del autor, hay alguna variacion entre compiladores precisamente
en los operadores y funciones que debe definir una clase para que se almacenen instancias de esa
clase en un contenedor. Esto resulta especialmente cierto en compiladores antiguos. Como resultado,
tal vez encuentre que deben sobrecargarse operadores adicionales.

Ejemplo

En el siguiente ejemplo se muestra set en acciéon. Se usa para almacenar objetos que contienen
informacién de empleados. El ID de empleado se usa como una clave. Por tanto, operator<() se
implementa de modo que compara ID. Observe que operator==() también estd implementado.
Este operador no es necesario para el siguiente programa, pero se necesita en algunos algoritmos,
como find(). Por tanto, se incluye para que esté completo. (Recuerde que, dependiendo de la im-
plementacion y el uso, tal vez deban definirse otras funciones.)

// Demuestra set.

//

// Este ejemplo almacena objetos que contienen

// informacidén de empleados. El ID se usa como clave.

#include <iostream>
#include <sets>
#include <strings>

using namespace std;

// Esta clase almacena informacién del empleado.
class empleado {

string nombre;

string ID;

string telefono;

string departamento;

public:
// Constructor predeterminado.
empleado() { ID = nombre = telefono = departamento = ""; }

// Construye un objeto temporal usando sélo el ID, que es la clave.
empleado (string id) { ID = id;
nombre = telefono = departamento = ""; }

// Construye un objeto de empleado completo.
empleado (string n, string id, string dept, string p)

{

Capitulo 3: Trabajo con contenedores STL 173

nombre = n;

ID = id;

telefono = p;
departamento = dept;

}

// Acceso a funciones para datos del empleado.

string obtener nombre() { return nombre; }
string obtener id() { return ID; }

string obtener depto() { return departamento; }
string obtener tel() { return telefono; }

}i

// Compara objetos usando el ID.
bool operator< (empleado a, empleado b)

{
}

// Revisa la igualdad con base en ID.
bool operator==(empleado a, empleado b)

{
}

// Crea un objeto para insertar datos de empleados.
ostream &operator<< (ostream &s, empleado &o)

{

return a.obtener id() < b.obtener id();

return a.obtener id() == b.obtener id();

S << o.obtener nombre() << endl;
S << "Emp#: " << o.obtener id() << endl;
S << "Dept: " << o.obtener depto() << endl;
s << "telefono: " << o.obtener tel() << endl;
return s;

}

int main()

{

set<empleado> listaemps;

// Inicializa la lista empleado.

listaemps.insert (empleado ("Sergio Prado", "9423",

"Atenci\u0O0a2n a clientes", "555-1010"));
listaemps.insert (empleado ("Susana Torres", "8723",

"Ventas", "555-8899"));
listaemps.insert (empleado ("Aldo Montes", "5719",

"Reparaciones", "555-0174"));

// Crea un iterador al conjunto.
set<empleados>::iterator itr = listaemps.begin() ;

174

C++ Soluciones de programacion

// Despliega el contenido del conjunto.
cout << "El conjunto actual: \n\n";

do {
cout << *itr << endl;
++itr;
} while(itr != listaemps.end());

cout << endl;

// Encuentra un empleado especifico.

cout << "Buscando al empleado 8723.\n";

itr = listaemps.find(empleado("8723")) ;

if (itr != listaemps.end()) ({
cout << "Encontrado. Su informaci\uOOa2n es:\n";
cout << *itr << endl;

}

return 0;

}
Aqui se muestra la salida:

El conjunto actual:

Aldo Montes

Emp#: 5719

Dept: Reparaciones
Tel: 555-0174

Susana Torres
Emp#: 8723

Dept: Ventas
Tel: 555-8899

Sergio Prado

Emp#: 9423

Dept: Atencidén a clientes
Tel: 555-1010

Buscando al empleado 8723.
Encontrado. Su informacién es:
Susana Torres

Emp#: 8723

Dept: Ventas

Tel: 555-8899

Ejemplo adicional: use multiset para almacenar objetos

con claves duplicadas

Como ya se explico, la diferencia entre set y multiset es que un conjunto debe contener claves
Unicas, pero un conjunto multiple puede almacenar claves duplicadas. En general, multiset se ma-
neja de la misma manera que multimap. Por ejemplo, para encontrar todos los elementos con una
clave dada, llame a find() para obtener un iterador a la primera clave coincidente. Luego aumente

Capitulo 3: Trabajo con contenedores STL 175

ese iterador para obtener el siguiente elemento hasta que el iterador sea igual al limite superior.

(Consulte Use multimap para conocer una descripcién detallada de esta técnica.) Un mecanismo
similar se utiliza para encontrar un elemento especifico. Encuentre la primera clave coincidente.
Luego busque el elemento especifico dentro del rango delimitado.

Con el siguiente programa se demuestra la manera en que un conjunto multiple puede almace-
nar elementos con claves duplicadas. Se ha vuelto a trabajar el ejemplo anterior para que la clave sea
el departamento en lugar de ID. Esto significa que operator<() ha cambiado para comparar nombres
de departamento en lugar de ID. Luego el programa despliega todos los empleados en el departa-
mento de Reparaciones. Termina al mostrar la informacién para Cecilia Lona en ese departamento.

// Demuestra multiset.

//

// Este ejemplo almacena objetos que contienen
// informacidén de empleados. Se usa como clave
// el nombre del departamento.

#include <iostream>
#include <set>
#include <string>

using namespace std;

// Esta clase almacena informacidén del empleado.
class empleado {

string nombre;

string ID;

string telefono;

string departamento;

public:
// Constructor predeterminado.
empleado() { ID = nombre = telefono = departamento = ""; }

// Construye un objeto temporal usando sélo el departamento,
// que es la clave.
empleado (string d) { departamento = d;

nombre = telefono = ID = ""; }

// Construye un objeto de empleado completo.
empleado (string n, string id, string dept, string p)
{

nombre = n;

ID = id;

telefono = p;

departamento = dept;

}

// Acceso a funciones para datos del empleado.

string obtener nombre() { return nombre; }
string obtener id() { return ID; }
string obtener depto() { return departamento; }

string obtener tel() { return telefono; }

176 Cc++ Soluciones de programacidn

// Compara objetos usando el departamento.
bool operator< (empleado a, empleado b)

{
}

// Crea un objeto para insertar datos de empleados.
ostream &operator<< (ostream &s, empleado &o)

{

return a.obtener depto() < b.obtener depto();

S << o.obtener nombre() << endl;

S << "Emp#: " << o.obtener id() << endl;

S << "Dept: " << o.obtener depto() << endl;
S << "Tel: " << o.obtener tel() << endl;
return s;

}

int main/()

{

multiset<empleado> listaemps;

// Initialize the empleado list.

listaemps.insert (empleado ("Sergio Prado", "9423",

"Atenci\u0O0a2n a clientes", "555-1010"));
listaemps.insert (empleado ("Susana Torres", "8723",

"Ventas", "555-8899"));
listaemps.insert (empleado ("Aldo Montes", "5719",

"Reparaciones", "555-0174"));
listaemps.insert (empleado("Cecilia Lona", "0719",

"Reparaciones", "555-0175"));

// Declara un iterador al conjunto mdltiple.
multiset<empleado>::iterator itr = listaemps.begin() ;

// Despliega el contenido del conjunto mdltiple.
cout << "El conjunto actual: \n\n";

do {
cout << *itr << endl;
++itr;
} while(itr != listaemps.end());

cout << endl;
// Encuentra a todos los empleados en el departamento Reparaciones.

cout << "Todos los empleados del departamento de Reparaciones:\n\n";

empleado e ("Reparaciones"); // objeto temporal que contiene la clave Reparaciones.
itr = listaemps.find(e);
if (itr != listaemps.end()) ({

do {

Capitulo 3: Trabajo con contenedores STL 177

cout << *itr << endl;
++itr;
} while(itr != listaemps.upper bound(e)) ;

}

// Ahora encuentra a Cecilia Lona en Reparaciones.
cout << "Buscando a Cecilia Lona en Reparaciones:\n";
itr = listaemps.find(e);

if(itr != listaemps.end())
do {
if (itr->obtener nombre() == "Cecilia Lona") {

cout << "Encontrada:\n";
cout << *itr << endl;
break;
++itr;
} while(itr != listaemps.upper bound(e)) ;

}

return 0;

}
Aqui se muestra la salida:

El conjunto actual:

Sergio Prado

Emp#: 9423

Dept: Atencidén a clientes
Tel: 555-1010

Aldo Montes

Emp#: 5719

Dept: Reparaciones
Tel: 555-0174

Cecilia Lona

Emp#: 0719

Dept: Reparaciones
Tel: 555-0175

Susana Torres
Emp#: 8723
Dept: Ventas
Tel: 555-8899

Todos los empleados del departamento de Reparaciones:

Aldo Montes

Emp#: 5719

Dept: Reparaciones
Tel: 555-0174

178

C++ Soluciones de programacion

Cecilia Lona

Emp#: 0719

Dept: Reparaciones
Tel: 555-0175

Buscando a Cecilia Lona en Reparaciones:
Encontrada:

Cecilia Lona

Emp#: 0719

Dept: Reparaciones
Tel: 555-0175
Opciones

Como todos los certificados asociativos, set y multiset definen tres versiones de erase(). Una es la
descrita en esta solucién. Aqui se muestran las otras formas:

void erase(iterator i)
void erase(iterator inicio, iterator final)

La primera forma elimina el elemento sefialado por i. La segunda elimina los elementos en el ran-
go de inicio a final-1. Estas formas son especialmente ttiles cuando quiere eliminar un elemento es-
pecifico del conjunto multiple. Como se explicd, la forma de erase() usada por la solucién elimina
todos los elementos cuyas claves coinciden con una clave especificada. Debido a que un conjunto
multiple permite que mas de un elemento tenga la misma clave, si quiere eliminar un elemento
especifico, entonces necesitara encontrar ese elemento y eliminarlo al usar erase(iterator). (Consul-
te Use multimap para conocer un ejemplo que use este método.)

Los contenedores set y multiset también dan soporte a las tres formas estdndar de insert().
Entre éstas se incluye la usada por la solucion y las dos formas mostradas aqui:

iterator insert(iterator 7, const value_type &uval)
template <class Inlter> void insert(Inlter inicio, Inlter final)

Para el caso de multiset, la primera forma inserta val en el contenedor. Para set, val se inserta si
no contiene una clave duplicada. En todos los casos, se devuelve un iterador al elemento con la
misma clave. El iterador especificado por i indica dénde iniciar la bisqueda del punto de insercion
apropiado. Debido a que los conjuntos se almacenan con base en claves, debe tratar de usar un
valor para i que sea cercano al punto de inserciéon. La segunda versién inserta los elementos en
el rango de inicio a final-1. Por supuesto, cuando se usan con set, no se insertan los elementos con
claves duplicadas.

Cuando se usa un multiset, en ocasiones es 1itil saber los puntos inicial y final de un rango de
elementos que comparten una clave. Para realizar esto, use equal_range(), que se muestra aqui:

pair<iterator, iterator> equal_range(const key_type &c)

Devuelve un objeto pair que contiene iteradores que sefialan al limite inferior (en el campo first)
y superior (en el campo second) en el conjunto miiltiple correspondiente a la clave especificada.
(También se proporciona una versién const de la funcion.) Recuerde que el limite inferior es el
primer elemento que tiene una clave que es igual o mayor que ¢, y el limite superior es el primer
elemento que tiene una clave mayor que c. Por tanto, equal_range() devuelve iteradores al rango
de elementos que comparten una clave comun.

Capitulo 3: Trabajo con contenedores STL 179

Si quiere almacenar un conjunto de bits, considere la clase bitset. Utiliza el encabezado <bit-
set> y crea un contenedor especializado para valores de bits. Sin embargo, la clase bitset no es un
contenedor plenamente formado y no es parte de la STL. Sin embargo, para algunas aplicaciones,
bitset podria ser una mejor opcién que un contenedor STL completo.

Aunque set y multiset son muy ttiles en algunas aplicaciones, son preferibles map y multi-
map por dos razones. En primer lugar, proporcionan las implementaciones prototipicas de con-
tenedores que contienen pares clave/valor, porque la clave esta separada del valor. En segundo
lugar, la clave puede cambiar sin que necesite un cambio a la implementacién de operator<() en
los objetos que se estan almacenando. Por supuesto, en todos los casos, debe usar el contenedor
mas adecuado para sus aplicaciones.

CAPITULO

Algoritmos, objetos de funcion
y otros componentes de STL

fueron el eje del capitulo 3. El tema central de este capitulo son los algoritmos. Debido

al gran niimero de algoritmos, no es posible presentar una solucién para cada uno. En
cambio, se muestra cémo usar algoritmos para manejar diversas situaciones de programacion
STL. Estas soluciones también forman una muestra representativa de técnicas que pueden gene-
ralizarse a otros algoritmos. Por tanto, si no encuentra una solucién que describa directamente
lo que desea hacer, tal vez pueda adaptar una. Este capitulo también incluye soluciones que
demuestran otras partes clave de la STL, incluidos objetos de funcién, adhesivos y negadores.
También hay soluciones que demuestran un adaptador de funcién, tres adaptadores de iterador
y los iteradores de flujo.

He aqui las soluciones contenidas en este capitulo:

En esencia, STL consta de contenedores, iteradores y algoritmos. De ellos, los dos primeros

* Ordene un contenedor

* Encuentre un elemento en un contenedor

¢ Use search() para encontrar una secuencia coincidente
¢ Invierta, gire y modifique el orden de una secuencia
e Recorra en ciclo un contenedor con for_each()

¢ Use transform() para cambiar una secuencia

¢ Realice operaciones con conjuntos

¢ Permute una secuencia

¢ Copie una secuencia de un contenedor a otro

* Reemplace y elimine elementos en un contenedor

¢ Combine dos secuencias ordenadas

¢ Cree y administre un heap

¢ Cree un algoritmo

¢ Use un objeto de funcién integrado

181

182

C++ Soluciones de programacion

¢ Cree un objeto de funcion personalizado

¢ Use un adhesivo

¢ Use un negador

¢ Use el adaptador de apuntador a funcion

¢ Use los iteradores de flujo

¢ Use los adaptadores de iterador de insercién

Revision general de los algoritmos

Los algoritmos expanden el poder y el alcance de STL al proporcionar una base comtin de funcio-
nalidad que esta disponible para todos los contenedores. También ofrecen soluciones listas para
usarse a varias tareas de programacién dificiles. Por ejemplo, hay algoritmos que buscan en una
secuencia la ocurrencia de otra, que ordenan una secuencia o que aplican una transformacién a
una secuencia. Junto con los contenedores e iteradores, definen la esencia de STL.

¢Por qué se necesitan los algoritmos?

Los algoritmos son uno de los tres principales componentes de STL, y ofrecen funcionalidad no
proporcionada por los propios contenedores. Como se ha mostrado en el capitulo anterior, la clase
contenedora incluye varias funciones que dan soporte a una amplia variedad de operaciones. Este
hecho plantea la siguiente pregunta: ;Por qué se necesitan algoritmos separados? La respuesta
tiene tres partes.

En primer lugar, los algoritmos permiten que dos tipos diferentes de contenedores operen al
mismo tiempo. Debido a que casi todos los algoritmos operan mediante iteradores, el mismo algo-
ritmo puede usar iteradores a diferentes tipos de contenedores. Por ejemplo, el algoritmo merge()
puede usarse para combinar un vector con una lista.

En segundo lugar, los algoritmos contribuyen a la extensibilidad de STL. Debido a que un
algoritmo puede operar en cualquier tipo de contenedor que retine los requisitos minimos, es po-
sible crear nuevos contenedores que puedan manipularse mediante algoritmos estdndar. Siempre
y cuando un contenedor dé soporte a iteradores (lo que todos los contenedores deben hacer), los
algoritmos de STL pueden usarlo. También es posible crear nuevos algoritmos. Siempre y cuando
el nuevo opere mediante iteradores, puede aplicarse a cualquier contenedor.

En tercer lugar, los algoritmos mejoran STL. Debido a que proporcionan operaciones que
pueden aplicarse a un amplio rango de contenedores, no es necesario que las funciones miembro
de cada contenedor dupliquen esta funcionalidad. También le dan al programador una manera
consistente de realizar una operacién que puede aplicarse a cualquier tipo de contenedor.

Los algoritmos son funciones de plantilla
Los algoritmos de STL son funciones de plantilla. Esto significa que pueden aplicarse a cualquier
tipo de contenedor. Con muy pocas excepciones, los algoritmos operan mediante iteradores. (Las
excepciones usan pardmetros de referencia.) Todos los algoritmos de STL requieren el encabezado
<algorithm>.

En las descripciones de algoritmos encontradas en este capitulo, se usan los siguientes nom-
bres de tipo de iterador genérico.

Capitulo 4: Algoritmos, objetos de funcién... 183

Nombre genérico Representa

Bilter Iterador bidireccional

Forlter Iterador directo

Inlter Iterador de entrada

Outlter Iterador de salida

Randlter Iterador de acceso aleatorio

No todos los algoritmos funcionaran con todos los tipos de iteradores. Por ejemplo, el algorit-
mo sort() requiere iteradores de acceso aleatorio. Esto significa que sort() puede usarse en conte-
nedores de list, por ejemplo. (Por esto es por lo que list proporciona sus propias funciones para
ordenar listas.) Cuando se elige un algoritmo, debe asegurarse de que el contenedor en que se
operara proporciona los iteradores necesarios.

Ademas de los iteradores, los prototipos de algoritmos a menudo especifican varios otros nom-
bres de tipo genéricos, que se usan para representar predicados, funciones de comparacion, etc.
Aqui se muestran los usados en este capitulo:

T Algun tipo de datos

Size Algun tipo de entero

Func Algun tipo de funcion

Generator Una funcién que genera objetos
BinPred Predicado binario

UnPred Predicado unario

Comp Funcién de comparacion

Las categorias de algoritmos

La STL define un amplio niimero de algoritmos, y es comun agruparlos por categoria. Hay mu-
chas maneras de hacerlo. Una esta integrada por las categorias usadas por el estdndar internacio-
nal para C++, que se muestran aqui:

¢ Operaciones con secuencias que no se modifican
* Operaciones con secuencias que se modifican
¢ Operaciones de ordenamiento y relacionadas

De la tabla 4-1 a la 4-3 se muestran los algoritmos que comparan cada una de estas categorias.
Las operaciones con secuencias que no se modifican no cambian los contenedores sobre los que
operan. Las operaciones que se modifican si. La categoria de ordenamiento incluye los diversos
algoritmos de orden, ademas de los algoritmos que necesitan una secuencia ordenada o que, de
una u otra manera, ordenan una secuencia.

Aunque las categorias definidas en el estindar C++ son dtiles, cada una contiene una gran
cantidad de algoritmos. Otra manera de organizar los algoritmos consiste en ordenarlos en grupos
mas pequefios, funcionales, como los mostrados en la tabla 4-4.

184 c++ Soluciones de programacidn

Algoritmo Objetivo

adjacent_find Busca elementos coincidentes adyacentes dentro de una secuencia y devuelve
un iterador a la primera coincidencia.

count Devuelve el nimero de elementos en la secuencia.

count_if Devuelve el nimero de elementos en la secuencia que satisfagan algin
predicado.

equal Determina si dos rangos son iguales.

find Busca un valor en un rango y devuelve un iterador a la primera ocurrencia del
elemento.

find_end Busca una subsecuencia en un rango. Devuelve un iterador a la Ultima ocurren-
cia de la subsecuencia dentro del rango.

find_first_of Encuentra el primer elemento dentro de una secuencia que coincide con un
elemento dentro de un rango.

find_if Busca, en un rango, un elemento para el que un predicado unario definido por el
usuario devuelve true.

for_each Aplica una funcién a un rango de elementos.

mismatch Encuentra la primera falta de coincidencia entre elementos de dos secuencias.
Se devuelven iteradores a los dos elementos.

search Busca una subsecuencia dentro de una secuencia.

search_n Busca una secuencia de un nimero especificado de elementos similares.

TaBLA 4-1 Algoritmos de secuencias que no se modifican.

Revision general de objetos de funcion

Los objetos de funcién son clases que definen operator(). A menudo, puede emplearse un obje-
to en lugar de un apuntador a funcién, como cuando se pasa un predicado a un algoritmo. Los
objetos de funcién ofrecen més flexibilidad que los apuntadores a funciones, y pueden ser mas
eficientes en algunas situaciones. La STL proporciona muchos objetos de funcién integrados, como
less y minus. También puede definir los propios.

Hay dos tipos de objetos de funcién: unarios y binarios. Un objeto de funcién unaria requiere
un argumento; uno binario requiere dos. Debe usar el tipo de funcién requerido. Por ejemplo, si un
algoritmo esta esperando una funcién binaria, debe pasarle un objeto de funcién binaria.

Aqui se muestran los objetos de funcién binaria integrados:

plus minus multiplies divides modulus
equal_to not_equal_to greater greater_equal less
less_equal logical_and logical_or

Capitulo 4: Algoritmos, objetos de funcién... 185

Algoritmo

Proposito

copy

Copia una secuencia.

copy_backward

Igual que copy(), excepto que mueve los elementos del final de la primera secuencia.

fill

Llena un rango con el valor especificado.

fill_n Asigna un numero especifico de elementos con un valor especificado.

generate Asigna los elementos en uno de los valores devueltos por una funcién generadora.

generate_n Asigna a un nimero especificado de elementos los valores devueltos por una funcion
generadora.

iter_swap Intercambia los valores senalados por sus dos argumentos de iterador.

partition Organiza una secuencia de modo tal que todos los elementos para los que un predicado

devuelve true vengan antes de aquellos para los que el predicado devuelve false.

random_shuffle

Organiza aleatoriamente una secuencia.

replace

Reemplaza elementos en una secuencia.

replace_copy

Reemplaza elementos mientras se copia.

replace_copy_if

Mientras se copia, reemplaza elementos para los que un predicado unario definido por el
usuario es true.

replace_if

Reemplaza elementos para los que un predicado unario definido por el usuario es true.

remove

Elimina elementos de un rango especificado.

remove_copy

Elimina y copia elementos de un rango especificado.

remove_copy_if

Mientras se copia, elimina elementos de un rango especificado para el que un predicado
unario definido por el usuario es true.

remove_if Elimina elementos de un rango especificado para el que un predicado unario definido por
el usuario es true.
reverse Invierte el orden de un rango.

reverse_copy

Invierte el orden de un rango mientras se copia.

rotate

Gira a la izquierda los elementos en un rango.

rotate_copy

Gira a la izquierda los elementos en un rango mientras se copia.

stable_partition

Organiza una secuencia de modo tal que todos los elementos para los que un predica-
do devuelve true vengan antes de aquellos para los que el predicado devuelve false. El
particionamiento es estable. Esto significa que se preserva el ordenamiento relativo de la
secuencia.

swap

Intercambia dos valores.

swap_ranges

Intercambia elementos en un rango.

transform Aplica una funcién a un rango de elementos y almacena la salida en una nueva secuencia.
unique Elimina elementos duplicados de un rango.
unique_copy Elimina elementos duplicados de un rango mientras se copia.

TaBLA 4-2 Operaciones de secuencias que se modifican.

186

C++ Soluciones de programacion

Algoritmo

Proposito

binary_search

Realiza una blsqueda binaria en una secuencia ordenada.

equal_range Devuelve un rango en que puede insertarse un elemento en una secuencia sin
modificar el orden de la misma.
includes Determina si una secuencia incluye todos los elementos en otra secuencia.

inplace_merge

Mezcla un rango con otro. Ambos rangos deben ordenarse en orden creciente.
La secuencia resultante se ordena.

lexicographical_compare

Compara lexicograficamente una secuencia con otra.

lower_bound Encuentra el primer punto en la secuencia que no es menor que un valor espe-
cificado.

make_heap Construye un heap a partir de una secuencia.

max Devuelve el maximo de dos valores.

max_element

Devuelve un iterador al elemento méaximo dentro de un rango.

merge Mezcla dos secuencias ordenadas, colocando el resultado en una tercera
secuencia.

min Devuelve el minimo de dos valores.

min_element Devuelve un iterador al elemento minimo dentro de un rango.

next_permutation

Construye la siguiente permutacion de una secuencia.

nth_element Organiza una secuencia de modo tal que todos los elementos menores que un
elemento E especificado vengan antes de ese elemento y todos los elementos
mayores que E vengan después de él.

partial_sort Ordena un rango.

partial_sort_copy

Ordena un rango y luego copia todos los elementos que quepan dentro de una
secuencia resultante.

pop_heap

Intercambia el primero y el dltimo-1 elementos y luego reconstruye el heap.

prev_permutation

Construye la permutacion previa de una secuencia.

push_heap

Incluye un elemento al final de una heap.

set_difference

Produce una secuencia que contiene la diferencia entre dos conjuntos ordenados.

set_intersection

Produce una secuencia que contiene la interseccién entre dos conjuntos
ordenados.

set_symmetric_difference

Produce una secuencia que contiene la diferencia simétrica entre dos conjuntos
ordenados.

set_union Produce una secuencia que contiene la unién de dos conjuntos ordenados.
sort Ordena un rango.

sort_heap Ordena un heap dentro de un rango especificado.

stable_sort Ordena un rango. El orden es estable. Esto significa que elementos iguales no

se reorganizan.

upper_bound

Encuentra el dltimo punto en una secuencia que no es mayor que algun valor.

TaBLA 4-3 Algoritmos de ordenamiento y relacionados.

Capitulo 4: Algoritmos, objetos de funcién... 187
Copia
copy copy_backward iter_swap fill
fill_n swap swap_ranges
Secuencias no ordenadas de busqueda
adjacent_find equal find find_end
find_if find_first_of mismatch search
search_n

Elementos de reemplazo y eliminacion

remove remove_if remove_copy remove_copy_if
replace replace_if replace_copy replace_copy_if
unique unique_copy

Reordenamiento de una secuencia

rotate rotate_copy random_shuffle partition

reverse reverse_copy stable_partition next_permutation

prev_permutation

Ordenamiento y biisqueda de una secuencia ordenada

nth_element

sort

stable_sort

partial_sort

partial_sort_copy

binary_search

lower_bound

upper_bound

equal_range

Mezcla de secuencias ordenadas

merge

inplace_merge

Operaciones con conjuntos

includes

set_difference

set_intersection

set_symmetric_difference

set_union

Operaciones con heap

make_heap | push_heap pop_heap sort_heap

Minimo y maximo

max | max_element min min_element
Transformacion y generacion de una secuencia

generate | generate_n transform

Varios

count | count_if | for_each lexicographical_compare

TaBLA 4-4 Los algoritmos de STL organizados por agrupamientos funcionales.

188

C++ Soluciones de programacion

He aqui los objetos de funcién unaria:

logical_not negate

Todos los objetos de funcién integrados son clases de plantilla que sobrecargan operator().
Debido a que son clases de plantilla, pueden trabajar en cualquier tipo de datos para los que
estan definidas las operaciones asociadas. Los objetos de funcién integrados usan el encabezado
<functional>.

Aunque es permisible construir un objeto de funcién por anticipado, a menudo lo construird
cuando se pasa a un algoritmo. Se hace esto al llamar explicitamente a su constructor con el uso de
la siguiente forma general:

func_ob<tipo>()
Por ejemplo,
sort (inicio, final, mayor<ints>())

construye un objeto mayor para usarlo en operandos de tipo int y lo pasa al algoritmo sort().

Hay un tipo especial de objeto de funcién llamado predicado. La caracteristica definida de un
predicado es que devuelve un valor bool. En otras palabras, un predicado devuelve un resultado
true/false. Hay predicados unarios y binarios. Uno unario toma un argumento. Uno binario toma
dos. Hay un tipo especial de predicado que realiza una comparacién menor que, devolviendo true
s0lo si el elemento es menor que otro. A este tipo de predicado se le denomina en ocasiones funcion
de comparacion.

Revision general de adhesivos y negadores

Como se explico en la seccién anterior, un objeto de funcién binaria toma dos parametros. Por lo
general, éstos reciben valores de la secuencia o las secuencias bajo las que el objeto est4d operando.
Sin embargo, habré ocasiones en que querrd que uno de los valores se una a un valor especifico.
Por ejemplo, tal vez quiera usar less para comparar elementos de una secuencia contra un valor
especificado. Para manejar este tipo de situacién, usard un adhesivo. La STL proporciona dos ad-
hesivos: bind1st() y bind2nd(). El primero une un valor con el primer argumento de un objeto de
funcién binaria. El segundo une un valor al segundo argumento.

Relacionados con los adhesivos estan los negadores. Estos son not1() y not2(). Devuelven la
negacion (es decir, el complemento) de cualquier predicado que modifiquen.

Capitulo 4: Algoritmos, objetos de funcién... 189

Ordene un contenedor

Componentes clave

Encabezados Clases Funciones

<algorithm> template<class Randlter>
void sort(Randlter inicio, Randlter fin)
template<class Randlter, class Comp>
void sort(Randlter inicio, Randlter fin,
Comp fucomp)

Una de las operaciones de contenedor méds comunes es el ordenamiento. La razén para esto es
facil de comprender. No se requieren contenedores de secuencia para mantener sus elementos en
orden. Por ejemplo, ni vector ni deque mantienen un contenedor ordenado. Por tanto, si quiere
que los elementos de uno de estos contenedores se ordenen, necesitara ordenarlo. Por fortuna, es
facil ordenar uno de estos contenedores mediante el algoritmo sort(). El contenedor puede orde-
narse de manera natural o en un orden determinado mediante una funcién de comparacién. Esta
solucién describe el proceso y ofrece tres opciones interesantes.

Paso a paso
Para ordenar un contenedor de manera natural sélo se usa un paso:

1. Llame a la forma de dos paradmetros sort(), pasando sus iteradores al principio y el final del
rango que habra de ordenarse.

Ordenar un contenedor en un orden determinado mediante una funcién de comparacién que
proporciona incluye estos pasos:

1. Sihabra de ordenar con base en una funcién de comparacién que se proporcionard, cree la
funcién comparacién.

2. Llame a la forma de tres parametros de sort(), pasando en iteradores al principio y al final
de la secuencia y a la funcién de comparacion.

']]
Analisis
La STL proporciona varios algoritmos de ordenamiento. En el centro, se encuentra sort(), que se
muestra a continuacion:

template <class RandlIter>
void sort(Randlter inicio, Randlter final)

template <class RandlIter, class Comp>
void sort(Randlter inicio, Randlter final, Comp fucomp)

El algoritmo sort() ordena el rango de inicio a final-1. La segunda forma le permite pasar una fun-
cién de comparacién a fucomp que determina cuando un elemento es menor que otro. Esta funcién
puede pasarse mediante un apuntador o un objeto de funcién, como greater(). (Consulte Use un
objeto de funcién integrado para conocer una solucién en que se analizan los objetos de funcién.
Consulte Cree un objeto de funcién personalizado para conocer detalles sobre la creaciéon de su propio
objeto de funcién.)

190

C++ Soluciones de programacion

Observe que sort() requiere iteradores de acceso aleatorio. Sélo unos cuantos contenedores, como
vector y deque, dan soporte a iteradores de acceso aleatorio. Estos contenedores, como list, que no
lo dan, deben proporcionar sus propias rutinas de ordenamiento.

Es importante comprender que sort() ordena el rango especificado por sus argumentos, que no
necesitan incluir todo el contenido del contenedor. Por tanto, sort() puede usarse para ordenar un
subconjunto de un contenedor. Para ordenar un contenedor completo, debe especificar begin() y
end() como puntos de inicio y final.

Ejemplo

En el siguiente ejemplo se muestran ambas versiones de sort() en accién. Se crea un vector y lue-
go lo ordena de manera natural. Luego usa el objeto de funcién estdndar greater() para ordenar
el vector de manera descendente. Por dltimo, reordena los seis elementos centrales de manera
natural.

// Demuestra el algoritmo sort ()

#include <cstdlibs>
#include <iostream>
#include <vectors>
#include <functionals>
#include <algorithm>

using namespace std;
void mostrar (const char *msj, vector<ints> vect);
int main()
{ vector<int> v (10) ;
// Inicializa v con valores aleatorios.
for (unsigned i=0; i < v.size(); i++)

v[i] = rand() % 100;

mostrar ("Orden original:\n", v);
cout << endl;

// Ordena todo el contenedor.
sort (v.begin(), v.end()) ;

mostrar ("Tras aplicar el orden natural:\n", v);
cout << endl;

// Ahora, ordena de manera descendente al usar greater().
sort (v.begin(), v.end(), greater<ints>());

mostrar ("Tras aplicar el orden descendente:\n", v);
cout << endl;

// Ordena un subconjunto del contenedor.
sort (v.begin()+2, v.end()-2);

Capitulo 4: Algoritmos, objetos de funcién... 191

mostrar ("Tras ordenar los elementos de v[2] a v[7] de manera natural:\n", v);

return 0;

}

// Despliega el contenedor de vector<ints.
void mostrar (const char *msj, vector<int> vect) {
cout << msj;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}
Aqui se muestra la salida:

Orden original:
41 67 34 0 69 24 78 58 62 64

Tras aplicar el orden natural:
0 24 34 41 58 62 64 67 69 78

Tras aplicar el orden descendente:
78 69 67 64 62 58 41 34 24 0

Tras ordenar los elementos de v[2] a v[7] de manera natural:
78 69 34 41 58 62 64 67 24 0

Opciones
Una variacién interesante del ordenamiento se encuentra en partial_sort(). Tiene las dos versiones
mostradas aqui:

template <class RandlIter>
void partial_sort(Randlter inicio, Randlter medio, Randlter final)

template <class Randlter, class Comp>
void partial_sort(Randlter inicio, Randlter medio, Randlter final, Comp fucomp)

El algoritmo partial_sort() ordena elementos del rango inicio a final-1. Sin embargo, después de la
ejecucion, sélo se ordenaran los elementos en el rango inicio a medio-1. El resto estd en orden arbi-
trario. Por tanto, partial_sort() examina todos los elementos de inicio a final, pero sélo ordena los
elementos medio-inicio de todo el rango, y esos elementos son todos menos los elementos restantes,
no ordenados. Podria usar partial_sort() para obtener las 10 canciones més vendidas de la lista de
todas las canciones proporcionadas por un servicio de musica en linea, por ejemplo. La segunda
forma le permite especificar una funcién de comparaciéon que determina cuando un elemento es
menor que otro. Suponiendo el programa de ejemplo, el siguiente fragmento ordena los primeros
cinco elementos de v:

partial sort (v.begin(), v.begin()+5, v.end));

192 c++ Soluciones de programacidn

Después de que se ejecuta esta instruccién, los primeros cinco elementos de v estardn en orden.
Los elementos restantes estaran ordenados de manera no especifica.

Una variacion ttil en el ordenamiento parcial es partial_sort_copy(), que pone los elementos
ordenados en otra secuencia. Tiene las siguientes dos versiones:

template <class Inlter, class RandlIter>
Randlter partial_sort_copy(Inlter inicio, Inlter final,
Randlter inicio_resultado, Randlter final_resultado)
template <class Inlter, Randlter, class Comp>
void partial_sort_copy(Inlter inicio, Inlter final,
Randlter inicio_resultado, Randlter final_resultado,
Comp fucomp)

Ambos ordenan el rango de inicio a final-1 y luego copian todos los elementos que conforman la
secuencia resultante definida por inicio_resultado a final_resultado. Se devuelve un iterador a uno
después del dltimo elemento copiado en la secuencia resultante. La segunda forma le permite
especificar una funcién de comparacién que determina cuando un elemento es menor que otro.

Otra opcién de ordenamiento es stable_sort(), que proporciona un orden que no reorganiza
elementos iguales. Tiene dos formas:

template <class RandIter>
void stable_sort(Randlter inicio, Randlter final)

template <class RandlIter, class Comp>
void stable_sort(RandlIter inicio, Randlter final, Comp fucomp)

Ordena el rango de inicio a final-1, pero no se reordena los elementos iguales. La segunda forma le
permite especificar una funcién de comparacién que determina cuando un elemento es menor que
otro.

Encuentre un elemento en un contenedor

Componentes clave

Encabezados Clases Funciones
<algorithm> template <class Inlter, class T>
Inlter find(Inlter inicio, Inlter final,
const T &val)

template <class Inlter, class UnPred>
Inlter find_if(Inlter inicio, Inlter final,
UnPred funp)

Capitulo 4: Algoritmos, objetos de funcién... 193

Con frecuencia, querra encontrar un elemento especifico dentro de un contenedor. Por ejemplo, tal
vez quiera encontrar un elemento para que pueda eliminarse, verse o actualizarse con nueva in-
formacién. Cada vez que sea necesario, la STL proporciona varios algoritmos que, de una manera
u otra, le permiten encontrar un elemento especifico dentro de un contenedor. En esta solucién se
revisan dos: find() y find_if(), pero otros varios se describen en la seccién Opciones de esta solu-
cién. La principal ventaja de find() y find_if() es que no requieren que se ordene el contenedor. Por
tanto, funcionan en todos los casos.

Paso a paso
Para usar find() para encontrar un elemento dentro de un contenedor se requieren estos pasos:

1. Cree una instancia de un objeto que desee encontrar.
2. Llame a find(), pasando en iteradores al rango de biisqueda y el objeto que se buscara.

Para usar find_if() para buscar un elemento dentro de un contenedor se requieren estos pasos:

1. Cree un predicado unario que devuelve true cuando se encuentra el objeto deseado.
2. Llame a find_if(), pasando en iteradores al rango que se ordenard y el predicado del paso 1.

Anlisis
Tal vez los algoritmos de uso més extenso sean find() y su pariente cercano, find_if(). El algoritmo
find() busca en un rango la primera aparicién de un elemento especificado. Aqui se muestra:

template <class Inlter, class T>
Inlter find(Inlter inicio, Inlter final, const T &uval)

Busca, en el rango inicio a final-1, el valor especificado por val. Devuelve un iterador a la primera
aparicion del elemento o al final si val no esta en el rango.

El algoritmo find_if() busca en un rango la primera aparicién de un elemento que cumple las
condiciones especificadas por un predicado. Aqui se muestra:

template <class Inlter, class UnPred>
Inlter find_if(Inlter inicio, Inlter final, UnPred funp)

Busca en el rango de inicio a final-1 un elemento para el cual el predicado unario funp devuelve
true. Devuelve un iterador al primer elemento que satisfaga funp, o al final, si val no esta en el ran-
go. Este algoritmo es particularmente til cuando quiera buscar un elemento que cumple ciertos
criterios. Por ejemplo, si un contenedor contiene una lista de correo, podria usar find_if() para
encontrar direcciones que tienen un cédigo postal especifico.

Tanto find() como find_if() pueden operar en un rango no ordenado. Esto significa que pueden
usarse en cualquier tipo de contenedor y no hay necesidad de que se mantenga en orden. También
funcionardn con un contenedor ordenado, pero existen mejores algoritmos de biisqueda para este
tipo de contenedores. Consulte la seccién Opciones en esta solucién, para conocer un ejemplo.

194 c++ Soluciones de programacidn

Ejemplo

Con el siguiente ejemplo se ilustran find() y find_if(). Se usa un vector para contener cadenas.
Luego se usa find() para encontrar la primera cadena que coincida con "dos". Luego se usa
find_if() para encontrar una cadena que tiene tres caracteres o menos.

// Demuestra los algoritmos find() y find if ().

#include <iostream>
#include <vectors>
#include <algorithm>
#include <strings>

using namespace std;
bool es cadena_ corta(string cad) ;
int main()

{

vector<string> v;
vector<strings>::iterator itr;

v.push back ("uno") ;
v.push_back("dos") ;
v.push back("tres") ;
v.push back ("cuatro") ;
v.push back("cinco") ;
v.push back("seis") ;

cout << "Contenido de v: ";

for (unsigned i=0; i < v.size(); ++1i)
cout << v[i] << " ";

cout << "\n\n";

// Encuentra el elemento que contiene "dos".
cout << "Buscando \"dos\"\n";

itr = find(v.begin(), v.end(), "dos");

if (itr 1= v.end()) {
cout << "Se ha encontrado \"dos\", Reemplazando con \"DOS\"\n";
*itr = "DOS";

1

cout << endl;

// Encuentra todas las cadenas que tienen menos de cuatro caracteres de largo.
cout << "Buscando todas las cadenas que tienen 3 o menos caracteres.\n";
itr = v.begin();

do {
itr = find if (itr, v.end(), es_cadena_ corta);
if(itr != v.end()) {
cout << "Encontrado " << *itr << endl;
++1itr;

}

} while(itr != v.end());

Capitulo 4: Algoritmos, objetos de funcidn... 195

return 0;

}

// Devuelve true si la cadena tiene tres caracteres o menos.
bool es_cadena corta(string cad)

{

if (cad.size() <= 3) return true;
return false;

}
Aqui se muestra la salida:

Contenido de v: uno dos tres cuatro cinco seis

Buscando "dos"
Se ha encontrado "dos", Reemplazando con "DOS"

Buscando todas las cadenas que tienen tres o menos caracteres.
Encontrado uno
Encontrado DOS
Encontrado seis

En el programa, observe como se usa find_if() en un bucle para permitir que se encuentren
todas las cadenas que tengan tres o menos caracteres. Cada biisqueda empieza donde se quedé
la anterior. Esto es posible porque find_if() devuelve un iterador al elemento encontrado. Este
iterador puede entonces aumentarse y usarse para empezar la busqueda siguiente. Recuerde que
find() y find_if() (y casi todos los demds algoritmos) operan en un rango especifico de elementos,
en lugar de hacerlo en todo lo que incluye el contenedor. Esto hace que estos algoritmos resulten
mucho mas versatiles de lo que de otra manera serian.

Ejemplo adicional: extraiga frases de un vector de caracteres

Aunque en el ejemplo anterior se presenta la mecanica de find_if(), no se muestra todo su poten-
cial. Al crear con todo cuidado un predicado, puede usarse find_if() para realizar operaciones de
busqueda muy complejas. Por ejemplo, su predicado puede mantener informacién de estado que
se usa para encontrar elementos con base en un contexto. En el siguiente programa se presenta un
estudio de caso simple. Se usa find_if() para extraer frases de un vector de caracteres. Se utiliza

un predicado llamado es_inicio_frase() para encontrar el inicio de cada frase. Esta funcién mantie-
ne informacién de estado cuando se ha alcanzado el final de una frase.

// Extrae frases de un vector de caracteres con ayuda de find if ().
#include <iostreams>

#include <vectors>

#include <algorithm>

#include <cstrings
#include <cctype>

using namespace std;
bool es_inicio frase(char car);

template<class InIters>
void mostrar rango(const char *msj, InIter start, InIter end);

196 C++ Soluciones de programacidn

int main()
vector<chars> v;
vector<chars>::iterator itr;
const char *cad = "\uOOa8Se trata de una prueba? \u00adS\u0Oal, es una prueba!
Como esta otra.";

for (unsigned i=0; i < strlen(cad); i++)
v.push _back(cad[i]) ;

mostrar rango ("El contenido de v: ", v.begin(), v.end());
cout << endl;

// Encuentra el principio de todas las frases.
cout << "Se usa find if() para mostrar todas las frases de v:\n";

// itr inicio seflalard al principio de la frase y
// itr final seflalard al principio de la siguiente frase.
vector<chars>::iterator itr inicio, itr final;

itr inicio = v.begin() ;
do {
// Encuentra el inicio de una frase.
itr inicio = find if(itr_inicio, v.end(), es_inicio_frase);

// Encuentra el principio de la siguiente frase.
itr final = find if (itr_inicio, v.end(), es_inicio_ frase);

// Muestra la secuencia intermedia.

mostrar rango("", itr inicio, itr final);
} while(itr final != v.end());
return 0;

}

// Devuelve true si car es la primera letra de una frase.
bool es_inicio_frase(char car) ({
static bool findefrase = true;

if ((car) && findefrase) {
findefrase = false;
return true;

}

if(car=='." || car=='?" || car=='!"') findefrase = true;
return false;

}

// Muestra un rango de elementos.
template<class InIter>
void mostrar rango(const char *msj, InIter start, InIter end) {

InIter itr;

Capitulo 4: Algoritmos, objetos de funcidn... 197

cout << msj;

for(itr = start; itr != end; ++itr)
cout << *itr;
cout << endl;

}
Aqui se muestra la salida:

El contenido de v: ¢Se trata de una prueba? (Si, es una prueba! Como esta otra.

Se usa find if() para mostrar todas las frases de v:
;Se trata de una prueba?

iSi, es una prueba!

Como esta otra.

Preste especial atencién a la manera en que funciona el predicado es_inicio_frase(). Busca el
primer caracter después del final de una frase anterior. Utiliza una static bool llamada findefrase
para indicar que se ha encontrado el final de una frase. Se supone que se ha llegado a éste si se en-
cuentra un caracter de terminacion de frase (un punto o un signo de interrogacién o admiracién).
En este caso, findefrase se establece como true. Cuando es true, entonces se supone que el siguien-
te caracter es el inicio de la siguiente frase. Cuando esto ocurre, findefrase se establece como false
y es_inicio_frase() devuelve true. En todos los demds casos, devuelve false. Observe que es true al
principio para que se encuentre la primera frase.

Opciones
Para buscar una secuencia de elementos, en lugar de un valor especifico, utilice el algoritmo sear-
ch(). Se describe en la siguiente solucién.

Si estd operando en una secuencia ordenada, entonces puede usar una bisqueda binaria para
encontrar un valor. En casi todos los casos, este tipo de biisqueda es mucho més rapida que una
secuencial. Por supuesto, requiere una secuencia ordenada. Aqui se muestran los prototipos de
binary_search():

template <class Forlter, class T>
bool binary_search(Forlter inicio, Forlter end, const T &val)
template <class Forlter, class T, class Comp>
bool binary_search(Forlter inicio, Forlter end, const T &val, Comp fucomp)

El algoritmo binary_search realiza una btisqueda binaria del valor especificado por val en un
rango ordenado de inicio a final-1. Devuelve true si se encuentra val, y false, de otra manera. La
primera versién compara los elementos de la secuencia especificada. La segunda versién le per-
mite especificar su propia funcién de comparacion. Cuando se acttia sobre iteradores de acceso
aleatorio, binary_search() consume tiempo logaritmico. En el caso de otros tipos de iteradores, el
niimero de comparaciones es logaritmico, aunque el tiempo que se toma moverse entre elementos
no lo sea.

198

C++ Soluciones de programacion

Podria sorprenderle el hecho de que binary_search() devuelve un resultado true/false en lu-
gar de un iterador al elemento que encuentra. Una justificacion para este método esta basada en el
argumento de que una secuencia ordenada puede contener dos o més valores que coinciden con
el que se busca. Por tanto, hay poco valor en devolver el primero encontrado. La validez de este
argumento ha estado sujeta a debate; no obstante, es la manera en que funciona binary_search().

Para obtener en realidad un iterador a un elemento en una secuencia ordenada, utilizara uno
de estos algoritmos: lower_bound(), upper_bound() o equal_range(). Los prototipos para las
versiones que no son de predicado de estos algoritmos se muestran a continuacion:

template <class Forlter, class T>
pair<Forlter, Forlter> equal_range(Forlter inicio, Forlter final,
const T &wal)

template <class Forlter, class T>
Forlter lower_bound(Forlter inicio, Forlter final, const T &uval)

template <class Forlter, class T>
Forlter upper_bound(Forlter inicio, Forlter final, const T &wval)

El algoritmo lower_bound() devuelve un iterador al primer elemento que es igual o mayor
que val, upper_bound() devuelve un iterador uno mas alla del dltimo elemento coincidente (en
otras palabras, el primer elemento mayor que val) y equal_range() devuelve un par de iteradores
que sefalan a los limites inferior y superior. Todos estos algoritmos operan en tiempo logaritmico
cuando actiian en iteradores de acceso aleatorio debido a que, ademads, usan una bisqueda bina-
ria para encontrar sus valores respectivos. En el caso de otros tipos de iteradores, el ntimero de
comparaciones es logaritmico, aunque el tiempo que toma moverse entre elementos no lo sea. En
general, si quiere obtener un iterador al primer elemento coincidente en una secuencia ordenada,
use equal_range(). Si los iteradores de limite inferior y superior difieren, entonces sabra que por
lo menos se ha encontrado un elemento coincidente y el iterador del limite inferior sefialara a la
primera aparicién del elemento.

Aunque encontrar un elemento especifico suele ser lo que se necesita, en algunos casos, querra
encontrar la primera aparicién de cualquier elemento de un conjunto. Una manera de hacer esto es
usar el algoritmo find_first_of(), que se muestra aqui:

template <class Forlter, class Forlter2>
Forlter find_first_of(Forlterl iniciol, Forlterl finall,
Forlter2 inicio2, Forlter2 final2)

template <class Forlterl, class Forlter2, class BinPred>
Forlter find_first_of(Forlter1 iniciol, Forlterl finall,
Forlter?2 inicio2, Forlter2 final2,
BindPred funp)

Encuentra el primer elemento dentro de un rango iniciol a finall-1, que coincide con cualquier
elemento dentro del rango inicio? a final2-1. Devuelve un iterador al elemento coincidente o finall
si no se encuentra coincidencia. La segunda forma le permite especificar un predicado binario que
determina cuando dos elementos son iguales.

Capitulo 4: Algoritmos, objetos de funcidn... 199

Un algoritmo interesante que serd titil en algunos casos es adjacent_find(). Busca la primera
apariciéon de un par coincidente de elementos adyacentes. Aqui se muestran sus primeras dos
versiones:

template <class Forlter> Forlter adjacent_find(Forlter inicio, Forlter final)

template <class Forlter, class BinPred> Forlter adjacent_find(Forlter inicio, Forlter final,
BinPred funp)

El algoritmo adjacent_find() busca elementos coincidentes adyacentes dentro del rango inicio a
final-1. Devuelve un iterador al primer elemento del primer par coincidente. Devuelve fin si no se
encuentran elementos coincidentes adyacentes. La segunda forma le permite especificar un predi-
cado binario que determina cuando dos elementos son iguales.

Otra variacién interesante en la biisqueda es el algoritmo mismatch(), que le permite encontrar
la primera falta de coincidencia entre dos secuencias. Aqui se muestra su prototipo:

template <class Inlterl, class Inlter2>
pair<Inlterl, Inlter2> mismatch(Inlter1 iniciol, Inlterl finall, Inlter2 inicio2)

template <class Inlter1, class Inlter2, class BinPred>
pair<Inlterl, Inlter2> mismatch(Inlterl iniciol, Inlterl finall,
Inlter2 inicio2, BinPred funp)

El algoritmo mismatch() encuentra la primera falta de coincidencia entre los elementos en el rango
iniciol a final-1, y el que empieza con inicio2. Se devuelven los iteradores a los dos elementos no
coincidentes. Si no se encuentra una falta de coincidencia, entonces se devuelven los iteradores
iltimol y primero2 + (iiltimol-primerol). Por tanto, es la longitud de la primera secuencia la que de-
termina el niimero de elementos probados. La segunda forma le permite especificar un predicado
binario que determina cuando un elemento es igual a otro. (La clase de plantilla pair contiene dos
campos, llamados first y second, que contienen el par de iteradores. Consulte el capitulo 3 para
conocer mas detalles.)

Use search() para encontrar una secuencia coincidente

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class Forlterd, class Forlter2>
Forlterl search(Forlterl iniciol,
Forlterl finall,
Forlter2 inicio2,
Forlter2 final2)

200

C++ Soluciones de programacion

En la solucién anterior se mostré cdmo buscar un elemento especifico. En esta solucién se mues-
tra como buscar una secuencia de elementos. Este tipo de bisqueda, obviamente, es muy ttil en
varias situaciones. Por ejemplo, suponga una deque que contiene cadenas que indican el éxito

o la falla en los intentos por iniciar sesién en una red. Tal vez quiera revisar el contenedor para
encontrar apariciones en que se ha ingresado una contrasefia incorrecta tres veces en fila, que
podria indicar un intento de irrupcién. Para ello, necesita buscar una secuencia de tres fallos. La
busqueda de una sola falla no es suficiente. El principal algoritmo que se usa para encontrar una
secuencia es search(), y se demuestra en esta solucién.

Paso a paso
Para buscar una secuencia de elementos se requieren estos pasos:

1. Defina la secuencia que desea encontrar.
2. Llame a search(), pasdndolo en iteradores al inicio y el final del rango y de la secuencia en
que se buscara.

Analisis
El algoritmo search() busca una secuencia de elementos. Tiene dos formas. Aqui se muestra la
usada en esta solucién:

template <class Forlterl, class Forlter2>
Forlterl search(Forlterl iniciol, Forlterl finall,
Forlter2 inicio2, Forlter2 final2)

La secuencia que se estd buscando esta definida por el rango iniciol a final-1. La subsecuencia que
se esta buscando esta especificada por inicio2 a final2-1. Si se encuentra, se devuelve un iterador a
su principio. De otra manera, se devuelve finall.

No es obligatorio que las secuencias de biisqueda estén en el mismo tipo de contenedor. Por
ejemplo, puede buscar una secuencia en una lista que coincide con una secuencia de un vector.
Esta es una de las ventajas de los algoritmos de STL. Debido a que funcionan mediante iteradores,
pueden aplicarse a cualquier contenedor que dé soporte al tipo de iterador requerido, que es un
iterador directo, en este caso.

Ejemplo

En el siguiente ejemplo se muestra search() en acciéon. Busca una deque que contiene una respues-
ta de inicio de sesién en red. Busca una serie de intentos de inicio de sesién en que se introdujo

la contrasefia incorrecta tres veces en fila, lo que podria indicar un posible ingreso indebido. Para
este ejemplo, suponga que el registro de red puede contener varios tipos de respuesta, como inicio
correcto, conexion fallida, etc. Sin embargo, cuando se introduce una contrasefa incorrecta, las dos
siguientes respuestas se colocan en el registro:

contrasefia no valida
reingrese contrasefia

Para buscar posibles intentos de ingreso indebido, el programa busca casos en que estas respues-
tas ocurren tres veces en fila. Si encuentra esta respuesta, informa que ha ocurrido un posible
intento indebido de ingreso en la red.

Capitulo 4: Algoritmos, objetos de funcién... 201

Nota Otro ejemplo del algoritmo search() se encuentra en el capitulo 2, en la solucion Cree una
busqueda no sensible a maytsculas y mintsculas y funciones de btisqueda y reemplazo
para objetos string.

// Demuestra search().

#include <iostream>
#include <deques>
#include <algorithm>
#include <string>

using namespace std;

int main()
deque<string> registro;
deque<string> ingreso_ indebido;
deque<string>::iterator itr;

// Crea una secuencia de tres respuestas de contrasefia no valida.
ingreso_indebido.push back ("contrase\u00a4a no v\u00a0Olida");
ingreso_ indebido.push back("reingrese contrase\uOOa4a ");
ingreso_indebido.push back ("contrase\u00a4a no v\u00a0lida");
ingreso_indebido.push back ("reingrese contrase\uOOa4a ") ;
ingreso_ indebido.push back ("contrase\u0Oa4a no v\u00a0lida") ;

// Crea algunas entradas de registro.

registro.push back("inicio correcto") ;

registro.push back("contrase\u0OOa4a no v\u0OaoOlida") ;
registro.push back("reingrese contrase\u0OOa4a ") ;
registro.push back("inicio correcto") ;

registro.push back("conexi\u0Oa2n fallida");
registro.push back("inicio correcto") ;

registro.push back("inicio correcto");

registro.push back("contrase\u0OOa4a no v\u00Oa0lida") ;
registro.push back("reingrese contrase\uOOa4a ");
registro.push back("contrase\u00Oa4a no v\u00a0Olida") ;
registro.push back("reingrese contrase\uOOa4a ");
registro.push back("contrase\u0Oa4a no v\u0OaoOlida") ;
registro.push back("conflicto en puerto");
registro.push back("inicio correcto") ;

cout << "El registro:\n";

for(itr = registro.begin(); itr != registro.end(); ++itr)
cout << *itr << endl;

cout << endl;

// Ve si se hizo un intento indebido.
itr = search(registro.begin(), registro.end(), ingreso indebido.begin(),

ingreso_indebido.end()) ;

if (itr != registro.end())

202

C++ Soluciones de programacion

cout << "Se ha encontrado un posible intento de ingreso indebido.\n";
else
cout << "No se encontraron fallas repetidas de contrase\uOOada.\n";

return 0;

}
Aqui se muestra la salida:

El registro:

inicio correcto
contrasefila no valida
reingrese contrasefia
inicio correcto
conexidn fallida
inicio correcto
inicio correcto
contrasefla no valida
reingrese contrasefia
contrasefla no valida
reingrese contrasefia
contrasefia no valida
conflicto en puerto
inicio correcto

Se ha encontrado un posible intento de ingreso indebido.

Es importante comprender que la llamada a search() s6lo tendra éxito si ocurren tres respues-
tas de contrasefna no véalida en fila. Para confirmarlo, trate de convertir en comentarios una de las
llamadas a registro.push_back("reingrese contrase\u00a4a "). Cuando se ejecute el programa,
ya no encontrara una secuencia coincidente.

Opciones
Hay una segunda forma de search() que le permite especificar un predicado binario que determi-
na cuando dos elementos son iguales. Aqui se muestra:

template <class Forlterl, class Forlter2, class BinPred>
Forlterl search(Forlterl iniciol, Forlterl finall,
Forlter2 inicio2, Forlter2 final2, BinPred funp)

Funciona de la misma manera que la primera version, con la excepcién de que el predicado bina-
rio se pasa en fun.
Puede encontrar la tdltima aparicién de una secuencia al llamar a find_end(), que se muestra aqui:

template <class Forlterl, class Forlter2>
Forlterl find_end(Forlterl iniciol, Forlter1 finall,
Forlter2 inicio2, Forlter2 final2)

template <class Forlterl, class Forlter2, class BinPred>
Forlterl find_end(Forlterl iniciol, Forlter1 finall,
Forlter2 inicio2, Forlter2 final2,
BinPred funp)

Capitulo 4: Algoritmos, objetos de funcién... 203

Funciona de la misma manera que search(), con la excepciéon de que encuentra la dltima aparicién,
en lugar de la primera, en el rango especificado por inicio2 y final2, dentro del rango especificado
por iniciol a finall.

Para buscar una secuencia de una longitud especificada en que todos los valores son los mis-
mos, considere el uso de search_n(). Tiene dos formas, que se muestran aqui:

template <class Forlterl, class Size, class T>
Forlterl search_n(Forlter1 inicio, Forlterl final,
Size num, const T &uval)

template <class Forlterl, class Size, class T, class BinPred>
Forlterl search_n(Forlter1 inicio, Forlterl final,
Size num, const T &wal, BinPred funp)

Dentro del rango inicio a final-1, search_n() busca una secuencia de num elementos que son iguales
a val. Si se encuentra la secuencia, se devuelve un iterador a su principio. De otra manera, se de-
vuelve final. La segunda forma le permite especificar un predicado binario que determina cuando
un elemento es igual a otro.

Otros algoritmos que se relacionan con la buisqueda de una secuencia son equal(), que compa-
ra la igualdad entre dos secuencias, y mismatch(), que encuentra la primera falta de coincidencia
entre dos secuencias.

Invierta, gire y modifique el orden de una secuencia

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class Randiter>
void random_shuffle(Randlter inicio,
Randlter final)
template <class Bilter>
void reverse(Bilter inicio, Bilter final)
template <class Forlter>
void rotate(Forlter inicio, Forlter mid,
Forlter final)

En esta solucion se demuestra el uso de tres algoritmos relacionados: reverse(), rotate() y ran-
dom_shuffle(). Se relacionan entre si porque cada uno cambia el rango al que se aplica. El algorit-
mo reverse() invierte la secuencia, rotate() la gira (es decir, toma un elemento de un extremo y lo
coloca en el otro) y random_shuffle() dispone en orden aleatorio los elementos.

204

C++ Soluciones de programacion

Paso a paso

Para invertir, girar o "barajar" una secuencia, se requieren estos pasos:

1. Invierta una secuencia al llamar a reverse(), especificando los extremos del rango que se
habréa de invertir.

2. Gire una secuencia al llamar a rotate(), especificando los extremos del rango que se habra
de girar.

3. Disponga en orden aleatorio los elementos dentro de una secuencia al llamar a random_
shuffle(), especificando los extremos del rango que se habra de barajar.

Andlisis
Puede invertir el contenido de una secuencia al llamar a reverse(). Tiene el prototipo:

template <class Bilter> void reverse(Bilter inicio, Bilter final)

El algoritmo reverse () invierte el orden del rango inicio a final-1.
El algoritmo reverse() realiza una rotacion a la izquierda. Una rotacién es un desplazamiento
en que el valor se transfiere de un extremo al otro. El prototipo para rotate() se muestra aqui:

template <class Forlter>
void rotate(Forlter inicio, Forlter medio, Forlter final)

El algoritmo rotate() gira a la izquierda los elementos en el rango de inicio a final-1, de modo que el
elemento especificado por medio se vuelve el primer elemento nuevo.

Un algoritmo particularmente ttil para los programadores que crean simulaciones es random_
shuffle(). Reordena los elementos en una secuencia de manera aleatoria. Tiene las dos versiones
mostradas aqui:

template <class RandlIter>
void random_shuffle(Randlter inicio, Randlter final)
template <class RandlIter, class Generator>
void random_shuffle(Randlter inicio, Randlter final, Generator gen_al)

El algoritmo random_shuffle() distribuye en orden aleatorio el rango de inicio a final-1. En la
segunda forma, gen_al especifica un generador de ntimeros aleatorios. Esta funcién debe tener la
siguiente forma general:

gen_al(num)

Debe devolver un ntimero aleatorio entre cero y num. Observe que random_shuffle() requiere ite-
radores de acceso aleatorio. Esto significa que puede usarse en contenedores como vector y deque,
pero no list, por ejemplo.

Ejemplo

En el siguiente ejemplo se demuestran reverse(), rotate() y random_shuffle():
// Invierte, gira y ordena de manera aleatoria una secuencia.
#include <iostream>

#include <vector>
#include <algorithm>

Capitulo 4: Algoritmos, objetos de funcidn...

using namespace std;
void mostrar (const char *msj, vector<int> vect);

int main()

{

vector<int> v;
for(int i=0; i<10; i++) v.push back(i);

mostrar ("Orden original: ", v);
cout << endl;

// Invierte v.

reverse (v.begin(), v.end());
mostrar ("Tras invertir: ", vVv);
cout << endl;

// Invierte de nuevo para restaurar el orden original.
reverse (v.begin(), v.end());

mostrar ("Tras la segunda llamada a reverse(): ", v);
cout << endl;

// Gira a la izquierda una posicidn.
rotate(v.begin(), v.begin()+1l, v.end());

mostrar ("Orden tras girar a la izquierda una posiciu\uOOa2n: ", v);
cout << endl;

// Ahora gira a la izquierda dos posiciones.
rotate (v.begin(), v.begin()+2, v.end());

mostrar ("Orden tras girar a la izquierda dos posiciones: ", v);
cout << endl;

// Dispone v en orden aleatorio.

random_shuffle (v.begin(), v.end());
mostrar ("Tras aplicar el orden aleatorio: ", v);
return O0;

}

// Despliega el contenido de vector<ints.
void mostrar (const char *msj, vector<ints> vect) {
cout << msj;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

205

206 C++ Soluciones de programacion

Aqui se muestra la salida:

Orden original: 01 2 3 4 56 7 8 9

Tras invertir: 9 8 7 6 5 4 3 2 1 0

Tras la segunda llamada a reverse(): 01 2 3 4 56 7 8 9

Orden tras girar a la izquierda una posicidén: 1 2 3 4 56 7 8 90
Orden tras girar a la izquierda dos posiciones: 3 4 56 7 8 9 0 1 2
Tras aplicar el orden aleatorio: 1 4 2 53 8 0 6 7 9

Ejemplo adicional: use iteradores inversos

para realizar una rotacion a la derecha

Aunque la STL proporciona un algoritmo de giro a la izquierda, no provee uno para girar a la
derecha. Al principio, esto podria parecer un error serio en el disefio de STL, o por lo menos una
omisién que podria causar problemas. Pero no es el caso. Para realizar una rotacién a la derecha,
use el algoritmo rotate(), pero lldmelo usando iteradores inversos. Como éstos actian en reversa,
el efecto neto de este tipo de llamada es que se realiza una rotacién a la derecha en la secuencia.
Esta técnica se demuestra con el siguiente programa.

// Gira una secuencia a la derecha empleando iteradores inversos
// con el algoritmo rotate().

#include <iostream>
#include <vector>
#include <algorithms>
using namespace std;
void mostrar (const char *msj, vector<ints> vect);
int main()
vector<int> v;

for (int i=0; i<10; i++) v.push back(i);

mostrar ("Orden original: ", v);
cout << endl;

// Gira a la derecha dos posiciones empleando iteradores inversos.

rotate (v.rbegin(), v.rbegin()+2, v.rend());
mostrar ("Orden tras dos rotaciones a la derecha: ", Vv);
return O0;

}

// Despliega el contenido de vector<ints.

Capitulo 4: Algoritmos, objetos de funcién... 207

void mostrar (const char *msj, vector<ints vect) {
cout << msj;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

He aqui la salida del programa:
Orden original: 0 1 2 3 4 5 6 7 8 9

Orden tras dos rotaciones a la derecha: 8 9 01 2 3 4 56 7

Como puede ver, la secuencia original se ha girado dos posiciones.

Como se ilustra con esta aplicacion de rotate(), parte de la capacidad y la elegancia de STL pro-
viene de las sutilezas de su disefio. Al definir iteradores inversos, los creadores de STL permitieron
que varios algoritmos operaran en orden inverso, reduciendo asi la necesidad de definir explicita-
mente un complemento de ejecucién hacia atrds para cada algoritmo. Aunque hubiera sido posible
crear una biblioteca de plantillas que no incluyeran cosas como iteradores inversos, es este tipo de
construcciones lo que da elegancia a su disefio.

Opciones

Hay una variacién de reverse() llamada reverse_copy() que le podria resultar ttil en algunos ca-
sos. En lugar de invertir el contenido de la secuencia especificada, copia la secuencia invertida en
otro rango. He aqui su prototipo:

template <class Bilter, class OutIter>
void reverse_copy(Bilter inicio, Bilter final, Outlter inicio_resultado)

Copia en orden inverso el rango inicio a final-1 en la secuencia cuyo elemento inicial es sefialado
por inicio_resultado. El rango al que sefiala inicio_resultado debe ser por lo menos del mismo tamarnio
que el rango invertido.

De manera similar, hay una variacién de rotate() llamada rotate_copy() que copia la secuencia
girada en otro rango. Aqui se muestra:

template <class Forlter, class Outlter>
void rotate_copy(Forlter inicio, Forlter medio, Forlter final, Outlter inicio_resultado)

Copia el rango inicio a final-1 en el rango cuyo primer elemento es sefialado por inicio_resultado. El
rango al que sefala éste debe ser por lo menos del mismo tamarfio que el rango girado. En el pro-
ceso, gira a la izquierda los elementos, de modo que el elemento especificado por medio se vuelve
el primer elemento nuevo. Devuelve un iterador a uno después del final del rango resultante.

Puede crear permutaciones de un rango al llamar a next_permutation() o prev_permutation().
Se describen en Permute una secuencia.

208

C++ Soluciones de programacion

Recorra en ciclo un contenedor con for_each()

Componentes clave

Encabezados Clases Funciones
<algorithm> template<class Inlter, class Func>
Func for_each(Inlter inicio, Inlter final,

Func fn)

Como casi todos los programadores saben, recorrer en ciclo el contenido de un contenedor es una
actividad muy comun. Por ejemplo, para desplegar el contenido de un contenedor, necesitara
recorrerlo en ciclo del principio al final, desplegando cada elemento de uno en uno. Esta actividad
puede realizarse de diferentes maneras. Por ejemplo, puede recorrer en ciclo cualquier tipo de con-
tenedor mediante el uso de un iterador. Contenedores como vector y deque le permiten recorrer
en ciclo sus contenedores mediante el operador de subindice de matriz. El algoritmo for_each
ofrece otro método de hacerlo. Recorre en ciclo un rango de elementos, aplicando una operacion
especifica a cada uno. En esta solucién se demuestra su uso.

Paso a paso
Para recorrer en ciclo un rango de elementos, mediante el uso de for_each(), se requieren estos
pasos:

1. Cree una funcién (o un objeto de funcién) que sera llamado por cada elemento en el rango.
2. Llame a for_each(), pasando iteradores al principio y al final del rango que habra de proce-
sarse y la funcién que habra de aplicarse.

Anlisis
Aqui se muestra el prototipo para el algoritmo for_each():

template<class Inlter, class Func>
Func for_each(Inlter inicio, Inlter final, Func fn)

El algoritmo for_each() aplica la funcién fn al rango de elementos especificado por inicio a final.
Por tanto, cada elemento del rango llama una vez a fn. for_each() devuelve fi. Puede pasar un
apuntador a funcién o un objeto de funcién a frn. En ambos casos, frn debe tomar un argumento
cuyo tipo sea compatible con el de los elementos en el rango especificado. Puede devolver un
valor. Sin embargo, si fn devuelve un valor, éste es ignorado por for_each(). Por tanto, con frecuen-
cia el tipo devuelto por fn es void. Sin embargo, un valor devuelto podria ser 1til en situaciones en
que no se llama al algoritmo for_each(). Por ejemplo, fn podria mantener una cuenta del niime-

ro de elementos que se procesa y devolver esta cuenta después de la que devuelve el algoritmo
for_each().

Capitulo 4: Algoritmos, objetos de funcién... 209

Ejemplo

En el siguiente ejemplo se muestra for_each() en acciéon. Se utiliza para dos propésitos. En primer
lugar, una llamada a for_each() despliega el contenido de un contenedor, de elemento en elemen-
to. Utiliza la funcién mostrar() para desplegar cada elemento. En segundo lugar, calcula la suma
de los elementos del contenedor. En este caso, for_each() pasa un apuntador a la funcién sumato-
ria(). Observe que esta funcién devuelve la sumatoria. Este valor no es usado por for_each(). En
cambio, se obtiene después de lograr la suma de los elementos.

// Demuestra el algoritmo for each().
#include <iostream>

#include <vectors>

#include <algorithm>

using namespace std;

// Despliega un valor int.
void mostrar (int i)
cout << i << " ";

// Mantiene una suma actualizada de los valores pasados a 1.
int sumatoria(int i) {
static int suma = 0;

suma += 1;
return suma;

}

int main()

{

vector<int> v;
int i;

for(i=1; i < 11; i++) v.push back(i);
cout << "Contenido de v: ";

for_each(v.begin(), v.end(), mostrar);
cout << "\n";

for each(v.begin(), v.end(), sumatoria);
cout << "Sumatoria de v: " << sumatoria(0);

return O;

}

Aqui se muestra la salida:

Contenido de v: 1 2 3 4 56 7 8 9 10
Sumatoria de v: 55

Como se explico en el andlisis, la funcién pasada a for_each() debe tener un parametro, y el
tipo de éste debe ser el mismo que el de elementos en el contenedor en que se usa for_each(). En
este ejemplo, como v es un vector de int, mostrar() y sumatoria() tienen un parametro int. Cada
vez que se llama a una de estas funciones, se pasa un elemento del rango especificado. Debe

210

C++ Soluciones de programacion

destacarse que la funcién sumatoria() es muy limitada. Una mejor manera de implementarlo es
como un objeto de funcién, como se muestra en Cree un objeto de funcion personalizado.

Opciones

El estindar internacional de C++ ordena en categorias for_each() como un algoritmo que no modi-
fica. Sin embargo, esta etiqueta puede llevar un poco a equivocos. Por ejemplo, no hay nada que
evite que la funcion pasada a for_each() use un parametro de referencia y modifique el elemento
mediante la referencia. En otras palabras, una funcién aplicada a cada elemento en un contenedor
debe declararse asi:

void fu(tipo &arg)

En este caso, arg es un pardmetro de referencia. Por tanto, el valor al que sefala arg podria cam-
biarse mediante una asignacién, como se muestra aqui:

arg = nuevovalor;

Por ejemplo, la siguiente funcién invertird un caracter que se pasa, cambiando una maytscula en
mindscula y viceversa. Observe que se pasa car como referencia.

// Invierte las maylsculas y minGsculas de un cardcter pasado en car.
void inv_mayus (char &car) {

if (islower(car)) car = toupper (car) ;

else car = tolower (car) ;

}

Por tanto, suponiendo un vector llamado v que contiene caracteres, la siguiente llamada a for_
each() modificard v de modo tal que cada caracter del contenedor vea invertidas sus maytsculas y
minusculas.

for each(v.begin(), v.end(), inv mayus);

Aunque el c6digo anterior funciona, el autor no se siente muy cémodo con él por dos razones.
En primer lugar, como se explicd, el estindar internacional para C++ ordena for_each() como un
algoritmo que no modifica. Aunque técnicamente no se rompe esta regla (debido a que el algorit-
mo, en si, no modifica la secuencia), el cambio del contenido del contenedor como un efecto colate-
ral de la funcién pasada a for_each() parece inconsistente y erréneo. En segundo lugar, STL ofrece
una mejor manera de modificar una secuencia que utiliza el algoritmo transform(), que se describe
en Use transform() para cambiar una secuencia.

El programa de ejemplo pasé un apuntador a funcién a for_each(), pero también puede pasar
un objeto de funcién. Recuerde que un objeto de funcién es una instancia de una clase que imple-
menta operator(). Los objetos de funcién se describen de manera detallada en Use un objeto de fun-
cion integrado y Cree un objeto de funcion personalizado. Para conocer un ejemplo que use un objeto de
funcién con for_each(), consulte Cree un objeto de funcién personalizado.

Capitulo 4: Algoritmos, objetos de funcién... 211

Use transform() para cambiar una secuencia

Componentes clave

Encabezados Clases Funciones
<algorithm> template <class Inlter, class Outlter,
class Func>

Outlter transform(Inlter inicio, Inlter final,

Outlter resultado,

Func funcunaria)

template <class Inlterl, class Inlter2,
class Outlter, class Func>

Outlter transform(Inlterl iniciol,

Inlterl finall,

Inlter2 inicio2,

Outlter resultado,

Func funcbinaria)

En ocasiones, querra aplicar una transformacién a todos los elementos dentro de una secuencia y
almacenar el resultado. La mejor manera de lograr esto consiste en usar el algoritmo transform().
Tiene dos formas. La primera le permite aplicar una transformacién a un rango de elementos de
una sola secuencia. La segunda, aplicar una transformacién a elementos de dos secuencias. En am-
bos casos, se almacena la secuencia resultante. Un aspecto clave de transform() es que la secuen-
cia resultante puede ser la misma que la secuencia de entrada o puede ser diferente. Por tanto,
transform() puede usarse para cambiar los elementos de una secuencia o para crear una secuencia
separada que contiene el resultado. En esta solucién se muestra el proceso.

Paso a paso
Para aplicar transform() a los elementos de un solo rango se requieren los siguientes pasos:

1. Cree una funcién (u objeto de funcién) que realice la transformacién deseada. Debe tener
un solo pardmetro que reciba un elemento de un rango de entrada.

2. Llame a transform(), especificando el rango de entrada, el de salida y la funcién de trans-
formacién.

Para aplicar transform() a pares de elementos de dos rangos se requieren los siguientes pasos:

1. Cree una funcién (u objeto de funcién) que realice la transformacién deseada. Debe tener
dos parametros, y cada uno recibe un elemento de un rango de entrada.
2. Llame a transform(), especificando ambos rangos de entrada, y la funcién de transformacion.

212

C++ Soluciones de programacion

Andlisis
El algoritmo transform() tiene estas dos formas:

template <class Inlter, class Outlter, class Func>
Outlter transform(Inlter inicio, Inlter final, Outlter resultado, Func funcunaria)

template <class Inlter1, class Inlter2, class Outlter, class Func>
Outlter transform(Inlterl iniciol, Inlterl finall, Inlter2 inicio2,
Outlter resultado, Func funcbinaria)

El algoritmo transform() aplica una funcién a un rango de elementos y almacena la salida
en resultado. El rango al que sefala resultado debe tener por lo menos el tamafio del rango que se
estad transformando. En la primera forma, el rango esté especificado por inicio a final. La funcién
que se aplicara esta especificada por funcunaria. Recibe el valor de un elemento en su parametro y
debe devolver su transformacién. En la segunda forma de transform(), la transformacion se aplica
usando una funcién que recibe el valor de un elemento de la secuencia que habré de transformar-
se (iniciol a finall) en su primer pardmetro y un elemento de la segunda secuencia (empezando en
inicio2) como segundo pardmetro. Ambas versiones de transform() devuelven un iterador al final
de la secuencia resultante.

Un aspecto clave de transform() es que puede usarse para cambiar el contenido de una secuen-
cia en el lugar. Por tanto, para la primera forma de transform(), resultado e inicio pueden especificar
el mismo elemento. Para la segunda forma, el resultado puede ser el mismo que iniciol o inicio2.

Hay un tema importante relacionado con transform(): el estaindar internacional de C++
establece que la funcién de transformacién (funcunaria o funcbinaria) no debe producir efectos
colaterales.

Ejemplo
En el siguiente ejemplo se muestran ambas formas de transform() en accion. La primera se usa
para calcular los reciprocos de una secuencia de valores double que se conservan en un vector.
Esta transformacion se aplica dos veces. En primer lugar, almacena los resultados en la secuencia
original. La segunda vez, los almacena en otra secuencia. En ambos casos, la funcién reciprocal()
se pasa a transform().

La segunda forma de transform() calcula los puntos medios entre dos valores enteros conteni-
dos en dos secuencias. Almacena el resultado en una tercera secuencia. La funcién puntomedio()
realiza el cdlculo del punto medio, y es la funcion que se pasa a transform().

// Demuestra el algoritmo transform() .

//

// Ambas versiones de transform() se usan dentro del
// programa. La primera altera la secuencia de doubles
// para que contenga valores reciprocos. La segunda

// crea una secuencia que contiene los puntos medios
// entre los valores en otras dos secuencias.

#include <iostreams>
#include <vector>
#include <algorithm>

Capitulo 4: Algoritmos, objetos de funcién... 213

using namespace std;

double reciproco (double val) ;
int puntomedio (int a, int b);

template<class T> void mostrar(const char *msj, vector<T> vect);

int main()

{

int 1i;

// Primero, se demuestra la forma de una secuencia de transform().
vector<double> v;

// Cologque valores en v.
for(i=1; i < 10; ++1i) v.push back((double)i) ;

cout << "Demuestra la forma de una sola secuencia de transform().\n";
mostrar ("Contenido inicial de wv:\n", v);
cout << endl;

// Transforma v al aplicar la funcidn reciproco() .

// Coloca de nuevo el resultado en v.

cout << "Calcula rec\uOOalprocos para v y almacena los resultados en v.\n";
transform(v.begin(), v.end(), v.begin(), reciproco);

mostrar ("Contenido transformado de v:\n", v);

// Transforma v por segunda vez, colocando el resultado en una nueva secuencia.
cout << "Transforma v de nuevo. Esta vez almacena los resultados en v2.\n";
vector<double> v2(10) ;

transform(v.begin(), v.end(), v2.begin(), reciproco);

mostrar ("Esto es v2:\n", v2);
cout << endl;

// Ahora, demuestra la forma de dos secuencias de transform()

cout << "Demuestra la forma de dos secuencias de transform().\n";
vector<int> v3, v4, v5(10);

for(i = 0; 1 < 10; ++i) v3.push back(i);

for(i = 10; i < 20; ++1i) 1if(i%2) v4.push back(i); else v4.push back(-1i);

mostrar ("Contenido de v3:\n", v3);
mostrar ("Contenido de v4:\n", v4);

cout << endl;

cout << "Calcula puntos medios entre v3 y v4 y almacena los resultados en v5.\n";
transform(v3.begin(), v3.end(), v4.begin(), v5.begin(), puntomedio) ;

mostrar ("Contenido de v5:\n", v5);

return O0;

214 c++ Soluciones de programacidn

// Despliega el contenido de un vector<ints.
template<class T> void mostrar (const char *msj, vector<Ts> vect) {
cout << msj;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

// Devuelve el punto medio entero entre dos valores.
int puntomedio(int a, int b) {

return((a-b) / 2) + b;
}

// Devuelve el reciproco de un double.
double reciproco (double val) {

if(val == 0.0) return 0.0;

return 1.0 / val; // devuelve reciproco

}
Aqui se muestra la salida:

Demuestra la forma de una sola secuencia de transform().
Contenido inicial de v:
12345¢6 7189

Calcula reciprocos para v y almacena los resultados en v.
Contenido transformado de v:

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111
Transforma v de nuevo. Esta vez almacena los resultados en v2.
Esto es v2:

1234567890

Demuestra la forma de dos secuencias de transform() .
Contenido de v3:

012345671829

Contenido de v4:

-10 11 -12 13 -14 15 -16 17 -18 19

Calcula puntos medios entre v3 y v4 y almacena los resultados en v5.
Contenido de v5:
-5 6 -58 -5 10 -5 12 -5 14

Un punto clave ilustrado por el programa es que la funcién o el objeto de funcién usado por
transform() debe especificar un pardmetro o varios pardmetros cuyos tipos son compatibles con
los de los elementos en las secuencias. Ademas, debe devolver un tipo compatible.

Opciones

No es necesario que el rango especificado en la versién de dos secuencias de transform() esté en
dos contenedores separados. Se trata de un error de comprensién. En cambio, debe especificar am-
bos rangos desde el mismo contenedor. Por ejemplo, suponiendo el programa anterior, lo siguien-
te calcula los puntos medios entre los primeros y tltimos cinco elementos de v3 y los almacena en
los primeros cinco elementos de v5:

Capitulo 4: Algoritmos, objetos de funcién... 215

transform(v3.begin(), v3.begin()+5, v3.begin()+5, v5.begin(), puntomediol() ;

Como ya se menciond, es posible almacenar el resultado de nuevo en una de las secuencias
originales, lo que permite que una secuencia se modifique en el lugar. Cuando se usa la forma de
dos secuencias de transform(), la secuencia de destino puede ser cualquiera de las de entrada.
Por ejemplo, esta instruccion calcula los puntos medios de las secuencias contenidas en v3 y v4 y
almacena el resultado en v4:

transform(v3.begin(), v3.end(), v4.begin(), v4.begin(), puntomedio() ;

Esto funciona debido a que los valores de cada par de elementos se obtienen primero de cada
secuencia y luego se pasan a puntomedio(). El resultado se almacena después en v4. Por tanto,
los valores originales en v4 se obtienen antes de que se sobrescriban.

En el ejemplo anterior se pasaron apuntadores de funcién a transform(), pero también puede
usar objetos de funcién. Estos se describen de manera detallada en Use un objeto de funcién integra-
do y Cree un objeto de funcion personalizado. Para conocer un ejemplo que usa un objeto de funcién
con transform(), consulte Cree un objeto de funcién personalizado.

Si quiere realizar una operacién sin modificacién en una secuencia, considere el uso de
for_each(). Consulte Recorra en ciclo un contenedor con for_each().

En algunos casos, tal vez quiera generar una secuencia de elementos que no sean transforma-
ciones de otra secuencia. Para ello, puede usar los algoritmos generate() o generate_n(). Aqui se
muestran:

template <class Forlter, class Generator>
void generate(Forlter inicio, Forlter final, Generator fungen)

template <class Forlter, class Size, class Generator>
void generate_n(Outlter inicio, Size num, Generator fungen)

Los algoritmos generate() y generate_n() asignan valores devueltos por una funciéon generadora a
elementos dentro de un rango especifico. En generate(), el rango que se estd asignando estd especi-
ficado por inicio a final. En el caso de generate_n(), el rango empieza en inicio y se ejecuta por num
elementos. La funcién generadora se pasa en fungen. No tiene parametros y debe devolver objetos
que son compatibles con el tipo de la secuencia deseada. He aqui un ejemplo muy simple que
demuestra generate(). Utiliza una funcién llamada pot_de_dos() para generar una secuencia

que contiene una potencia de 2.

// Genera una secuencia.
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

double pot_de dos() ;

216 C++ Soluciones de programacion

int main()

{

vector<double> v (5) ;

// Genera una secuencia.
generate (v.begin(), v.end(), pot_de dos);

cout << "Potencias de 2: ";
for (unsigned i=0; i < v.size(); ++1)
cout << v[i] << " ";

return O0;

}

// Una funcién generadora simple que genera las potencias de 2.
double pot de dos() {

static double val = 1.0;

double t;

t = val;
val += val;

return t;

}

Se despliega la siguiente salida:

Potencias de 2: 1 2 4 8 16

Capitulo 4: Algoritmos, objetos de funcién... 217

Realice operaciones con conjuntos

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class Inlterl, class Inlter2,
class Outlter>
Outlter set_union(
Inlterl iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2,
Outlter resultado)
template <class Inlterl, class Inlter2,
class Outlter>
Outlter set_difference(
Inlterd iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2,
Outlter resultado)
template <class Inlterl, class Inlter2,
class Outlter>
Outlter set_symmetric_difference(
Inlterl iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2,
Outlter resultado)
template <class Inlterl, class Inlter2,
class Outlter>
Outlter set_intersection(
Inlterl iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2,
Outlter resultado)
template <class Inlterl, class Inlter2>
bool includes(Inlterl iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2)

La STL proporciona cinco algoritmos que realizan operaciones con conjuntos. Debe comprenderse
que estos algoritmos operan sobre cualquier tipo de contenedor; no se usan sélo con las clases set
o multiset. El requisito es que el contenido del contenedor debe estar ordenado. Estos algoritmos
de conjuntos son set_union, set_difference(), set_symmetric_difference(), set_intersection() e
includes(). En esta solucién se demuestra su uso.

Paso a paso
Para usar los algoritmos de conjuntos se requieren estos pasos:

1. Las dos secuencias que participardn en los algoritmos de conjunto deben ordenarse. Am-
bos deben contener elementos del mismo tipo o de tipos compatibles.
2. Obtenga la unién de los dos conjuntos al llamar a set_union().

218

C++ Soluciones de programacion

3. Obtenga la diferencia entre dos conjuntos al llamar a set_difference().

4. Obtenga la diferencia simétrica entre dos conjuntos al llamar a set_symmetric_diffe-
rence().

5. Obtenga la interseccién de dos conjuntos al llamar a set_intersection().

6. Determine si un conjunto incluye otro conjunto completo al llamar a includes(). Este algo-
ritmo puede usarse para determinar una relacién de subconjunto.

Analisis
Para obtener la unién de dos conjuntos ordenados, se usa set_union(). Tiene dos formas. Aqui se
muestra la usada en esta solucion:

template <class Inlter], class Inlter2, class Outlter>
Outlter set_union(Inlter] iniciol, Inlterl finall,
Inlter?2 inicio2, Inlter2 final2, Outlter resultado)

Produce una secuencia que contiene la unién de los dos conjuntos definidos por los rangos iniciol
a final-1 e inicio2 a final2-1. Por tanto, el conjunto resultante contiene los elementos que se encuen-
tran en ambos conjuntos. El resultado se ordena y se coloca en resultado. Los rangos de entrada no
deben superponerse al rango resultante. Se devuelve un iterador al final del rango resultante.

Para obtener la diferencia entre dos conjuntos ordenados, se utiliza set_difference(). Tiene dos
formas. Aqui se muestra la usada en esta solucion:

template <class Inlter], class Inlter2, class Outlter>
Outlter set_difference(Inlterl iniciol, Inlter1 finall,
Inlter?2 inicio2, Inlter2 final2, Outlter resultado)

El algoritmo set_difference() produce una secuencia que contiene la diferencia entre los dos con-
juntos definidos por los rangos iniciol a final-1 e inicio2 a final2-1. Es decir, el conjunto definido por
inicio2, final2 se elimina del conjunto definido por iniciol, finall. El resultado se ordena y se coloca
en resultado. Los rangos de entrada no deben superponerse al rango resultante. Se devuelve un
iterador al final del rango resultante.

La diferencia simétrica de dos conjuntos ordenados puede encontrarse empleando el algoritmo
set_symmetric_difference. Tiene dos formas. Aqui se muestra la usada en esta solucién:

template <class Inlterl, class Inlter2, class Outlter>
Outlter set_symmetric_difference(Inlter] iniciol, Inlterl finall,
Inlter?2 inicio2, Inlter2 final2, Outlter resultado)

El algoritmo set_symmetric_difference() produce una secuencia que contiene la diferencia simé-
trica entre los dos conjuntos ordenados definidos por los rangos iniciol a final-1 e inicio2 a final2-1.
La diferencia simétrica de dos conjuntos sélo contiene los elementos que no son comunes para
ambos conjuntos. El resultado se ordena y se coloca en resultado. Los rangos de entrada no deben
superponerse al rango resultante. Se devuelve un iterador al final del rango resultante.

La interseccion de dos conjuntos ordenados puede obtenerse al llamar a set_intersection().
Tiene dos formas. Aqui se muestra la usada en esta solucién:

Capitulo 4: Algoritmos, objetos de funcién... 219

template <class Inlterl, class Inlter2, class Outlter>
Outlter set_intersection(Inlterl iniciol, Inlter1 finall,
Inlter?2 inicio2, Inlter2 final2, Outlter resultado)

El algoritmo set_intersection() produce una secuencia que contiene la interseccion de los dos con-
juntos definidos por los rangos inicio a final-1 e inicio2 a final2-1. Son los elementos comunes para
ambos conjuntos. El resultado se ordena y se coloca en resultado. Los rangos de entrada no deben
superponerse al rango resultante. Se devuelve un iterador al final del rango resultante.

En el caso de todos los algoritmos anteriores, el rango sefialado por resultado debe tener el
largo suficiente para contener los elementos que se almacenardn en él. Los algoritmos de conjunto
sobrescriben los elementos existentes. No insertan nuevos elementos.

Para ver si todo el contenido de un conjunto ordenado estd incluido en otro, use includes().
Tiene dos formas. Aqui se muestra la usada en esta solucién:

template <class Inlterl, class Inlter2>
bool includes(Inlter1 iniciol, Inlter] finall,
Inlter?2 inicio2, Inlter2 final2)

El algoritmo includes() determina si el rango inicio a final-1 incluye todos los elementos en el
rango inicio2 a final2-1. Devuelve true si se encuentran los elementos, y false, de otra manera. El
algoritmo includes() puede usarse para determinar si un conjunto es un subconjunto de otro.

Recuerde que los algoritmos de conjunto pueden usarse con cualquier secuencia ordenada,
no sélo instancias de set o multiset. Sin embargo, en todos los casos, la secuencia debe estar
ordenada.

Ejemplo

Con el siguiente programa se demuestran todos los algoritmos de conjunto:

// Demuestra los algoritmos de conjuntos.

//
// Este programa usa list, pero puede usarse
// cualquier otro contenedor de secuencias.

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

template<class InIter>
void mostrar rango (const char *msj, InIter start, InIter end);

int main()

list<char> listal, lista2, resultado(15), lista3;
list<char>::iterator res_end;

for (int i=0; i < 5; i++) listal.push back('A'+i);
for(int i=3; i < 10; i++) lista2.push back('A'+i);

mostrar rango ("Contenido de listal: ", listal.begin(), listal.end());

220 cCc++ Soluciones de programacion

cout << endl;

mostrar rango ("Contenido de lista2: ", lista2.begin(), lista2.end());
cout << endl;

// Create the union of listal and listaZ2.

res_end = set _union(listal.begin(), listal.end(),
lista2.begin(), lista2.end(),
resultado.begin()) ;

mostrar rango ("Uni\uOOa2n de listal y lista2: ", resultado.begin(), res_end);
cout << endl;

// Crea un conjunto que contiene listal - lista2.

res_end = set _difference(listal.begin(), listal.end(),
lista2.begin(), lista2.end(),
resultado.begin()) ;

mostrar rango("listal - lista2: ", resultado.begin(), res_end);
cout << endl;

// Crea la diferencia simétrica entre listal y lista2.

res_end = set symmetric difference(listal.begin(), listal.end(),
lista2.begin(), lista2.end(),
resultado.begin()) ;

mostrar_ rango ("Diferencia simétrica entre listal y lista2: ",
resultado.begin(), res_end);
cout << endl;

// Crea la interseccidn entre listal y lista2.

res_end = set intersection(listal.begin(), listal.end(),
lista2.begin(), lista2.end(),
resultado.begin()) ;

mostrar rango ("Intersecci\uOOa2n entre listal y lista2: ", resultado.begin(),
res_end) ;
cout << endl;

// Usa includes() para revisar el subconjunto.
lista3.push back('A'");
lista3.push back('C");
lista3.push back('D");

if (includes (listal.begin(), listal.end(),
lista3.begin(), lista3.end()))
cout << "lista3 es un subconjunto de listal\n";
else

cout << "lista3 no es un subconjunto de listal\n";

return 0;

Capitulo 4:

// Muestra un rango de elementos.
template<class InIter>

void mostrar rango(const char *msj,

InIter itr;

cout << msj;

for(itr = start; itr != end; ++itr)

cout << *itr << " ";
cout << endl;

}
Este programa genera la siguiente salida:

Contenido de listal: A B C D E

Contenido de lista2: DEF GH I J

Algoritmos, objetos de funcion...

InIter start, InIter end) ({

Unidén de listal y lista2: ABCDEFGHTIJ

listal - lista2: A B C

Diferencia simétrica entre listal y lista2: ABCF GH I J

Interseccidén entre listal y lista2: D E

lista3 es un subconjunto de listal

Opciones

221

Todos los algoritmos de conjunto proporcionan una segunda forma que le permite especificar una

funcién de comparacién, lo que determina cuando un elemento es menor que otro. Puede usar

esta funcién para especificar el orden de la secuencia de entrada y del resultado. Estas formas se

muestran aqui:

template <class Inlterl, class Inlter2, class Outlter, class Comp>
Outlter set_union(Inlter] iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2, Outlter resultado, Comp fucomp)

template <class Inlterl, class Inlter2, class Outlter, class Comp>
Outlter set_difference(Inlterl iniciol, Inlter1 finall,

Inlter?2 inicio2, Inlter2 final2,
Outlter resultado, Comp fucomp)

template <class Inlterl, class Inlter2, class Outlter, class Comp>
Outlter set_symmetric_difference(Inlter1 iniciol, Inlterl finall,
Inlter?2 inicio2, Inlter2 final2, Outlter resultado, Comp fucomp)

template <class Inlterl, class Inlter2, class Outlter, class Comp>
Outlter set_intersection(Inlterl iniciol, Inlter1 finall,

Inlter?2 inicio2, Inlter2 final2,

Outlter resultado, Comp fucomp)

222 Cc++ Soluciones de programacidn

template <class Inlterl, class Inlter2, class Comp>
bool includes(Inlter1 iniciol, Inlter1 finall,
Inlter?2 inicio2, Inlter2 final2, Comp fucomp)

Para todos los casos, los rangos especificados por iniciol, finall e inicio2, final2 deben ordenarse de
acuerdo con la funcién de comparacion pasada en fucomp, que determina cuando un elemento es
menor que otro. El resultado se ordenara de acuerdo con fucomp. De otra manera, estas funciones
trabajan como sus versiones ya descritas.

Permute una secuencia

Componentes clave

Encabezados Clases Funciones
<algorithm> template <class Bilter>
bool next_permutation(Bilter inicio,

Bilter final)
template <class Bilter>
bool prev_permutation(Bilter inicio,
Bilter final)

Dos de los algoritmos mds intrigantes son next_permutation() y prev_permutation(). Se usan
para realizar permutaciones de una secuencia. Suelen usarse en simulaciones y en pruebas. Estos
algoritmos requieren iteradores bidireccionales y s6lo pueden usarse en secuencias que pueden
ordenarse. En esta solucién se demuestra su uso.

Paso a paso
Para permutar una secuencia se requieren estos pasos:

1. La secuencia que habra de permutarse debe dar soporte a iteradores bidireccionales y per-
mitir el ordenamiento.

2. Para obtener la siguiente permutacion, llame a next_permutation(), especificando iterado-
res al principio y al final del rango que habré de permutarse.

3. Para obtener la permutacién anterior, llame a prev_permutation(), especificando iterado-
res al principio y al final del rango que habré de permutarse.

rd]
Analisis
Puede generar una permutacién de cualquier secuencia ordenada al usar los algoritmos next_per-

mutation() y prev_permutation(). Cada una tiene dos formas. Aqui se muestran las usadas en esta
solucién:

Capitulo 4: Algoritmos, objetos de funcidn... 223

template <class Bilter>

bool next_permutation(Bilter inicio, Bilter final)
template <class Bilter>

bool prev_permutation(Bilter inicio, Bilter final)

El algoritmo next_permutation() construye la siguiente permutacién del rango inicio a final-1.
El algoritmo prev_permutation() construye la permutacién anterior del rango inicio a final-1. Las
permutaciones se generan suponiendo que una secuencia ordenada representa la primera permu-
tacion. Si se han agotado todas las permutaciones, ambos algoritmos devuelven false. En este caso,
next_permutation() organiza los rangos en orden ascendente y prev_permutation en descendente.
De otra manera, ambas funciones devuelven true. Por tanto, un bucle que obtiene todas las per-
mutaciones posibles se ejecutara hasta que se devuelva false.

Ejemplo
En el siguiente ejemplo se usa next_permutation() para generar todas las permutacione posi-

bles de la secuencia ABC. Luego se usa prev_permutation() para generar las permutaciones a la
inversa.

// Demuestra next permutation() y prev permutation().

#include <iostream>
#include <vectors>
#include <algorithm>

using namespace std;

int main/()
vector<char> v;
unsigned i;

// Esto crea la secuencia ordenada ABC.
for(i=0; i<3; i++) v.push back('A'+i);

// Demuestra next permutation() .
cout << "Todas las permutaciones de ABC con el uso de next permutation():\n";
do {
for(i=0; i < v.size(); i++)
cout << vI[i];
cout << "\n";
} while (next permutation(v.begin(), v.end()));

// En este punto, v se ha vuelto a recorrer para contener ABC.
cout << endl;
// Demuestra prev_permutation() .

// En primer lugar, se respalda la primera permutacién.
prev_permutation(v.begin(), v.end());

224

C++ Soluciones de programacion

cout << "Todas las permutaciones de ABC con el uso de prev permutation() :\n";
do {
for(i=0; i<v.size(); i++)
cout << v[i];
cout << "\n";
} while (prev_permutation(v.begin(), v.end()));

return 0;

}
Aqui se muestra la salida del programa:

Todas las permutaciones de ABC con el uso de next permutation() :
ABC
ACB
BAC
BCA
CAB
CBA

Todas las permutaciones de ABC con el uso de prev_permutation() :
CBA
CAB
BCA
BAC
ACB
ABC

Opciones

Tanto next_permutation() como prev_permutation() proporcionan una segunda forma que le
permite especificar una funcién de comparacién, que determina cuando un elemento es menor
que otro. Puede usar esta funcién para especificar el orden de la secuencia. (En otras palabras, esta
funcién determina el orden de la secuencia.) Aqui se muestran estas formas:

template <class Bilter, class Comp>
bool next_permutation(Bilter inicio, Bilter final, Comp fucomp)

template <class Bilter, class Comp>
bool prev_permutation(Bilter inicio, Bilter final, Comp fucomp)

El orden de permutacion se basara en fucomp. De otra manera, estas funciones trabajardn como sus
versiones previamente descritas.

Los algoritmos next_permutation() y prev_permutation() generan permutaciones en un orden
bien definido. En algunas situaciones, tal vez quiera volver aleatoria la generacién de permuta-
ciones. Una manera de hacer esto es con el algoritmo random_shuffle(). Ordena una secuencia de
manera aleatoria. Aqui se muestra una de sus formas:

template <class RandlIter> void random_shuffle(Randlter inicio, Randlter final)

Vuelve aleatorio el rango inicio a final-1. De acuerdo con el programa anterior de ejemplo, lo si-
guiente produce una permutacién aleatoria de v:

random_shuffle (v.begin(), v.end());

Capitulo 4: Algoritmos, objetos de funcién... 225

También hay una segunda forma de random_shuffle() que le permite especificar un generador de
nimeros aleatorios personalizados. Consulte Invierta, gire y modifique el orden de una secuencia.

Copie una secuencia de un contenedor a otro

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class Inlter, class Outlter>
Outlter copy(Inlter inicio, Inlter final,
Outlter resultado)

Aunque es conceptualmente simple, uno de los algoritmos STL méas importantes es copy(), que
copia una secuencia. También es importante porque le da una manera de copiar elementos de un
contenedor a otro. Mds atin, no es necesario que los tipos de contenedor sean iguales. Por ejemplo,
empleando copy(), puede copiar elementos de un vector a una list. Por supuesto, lo que hace esto
posible es el hecho de que copy() (como casi todos los algoritmos de STL) funciona mediante itera-
dores. Se ha dicho que los iteradores son el pegamento que une la STL. El algoritmo copy() ilustra
este punto, y en esta solucion se muestra cémo ponerlo en accion.

Paso a paso
Para usar copy() con el fin de copiar elementos de un tipo de contenedor a otro se requieren estos
pasos:

1. Confirme que el contenedor de destino es lo suficientemente grande como para contener
los elementos que se copiaran en él.

2. Llame a copy() para copiar los elementos, especificando el rango que habra de copiarse y
un iterador al inicio del destino.

Analisis
Aqui se muestra el algoritmo copy():

template <class Inlter, class Outlter>
Outlter copy(Inlter inicio, Inlter final, Outlter resultado)

Este algoritmo copia el rango inicio a final-1 en la secuencia de destino, empezando en resulta-

do. Devuelve un apuntador a uno después del final de la secuencia resultante. He aqui un tema
importante: los elementos copiados no se agregan al contenedor de destino. En cambio, sobrescri-
ben elementos existentes. Por tanto, el contenedor de destino al que sefala resultado debe ser lo
suficientemente grande como para contener los elementos que habran de copiarse. El algoritmo
copy() no aumentara automaticamente el tamafio del contenedor de destino cuando se copian ele-
mentos en él. El algoritmo simplemente supone que el contenedor de destino es lo suficientemente
grande.

226

C++ Soluciones de programacion

No es necesario que resultado sefiale al mismo contenedor que inicio a final, ni que use el mismo
contenedor. Esto significa que puede usar copy() para copiar el contenido de un tipo de conte-
nedor en otro. La tinica restriccién es que el tipo de elemento del contenedor de destino debe ser
compatible con el de origen.

Otro aspecto titil de copy() es que puede usarse para desplazar elementos a la izquierda dentro
del mismo rango, siempre y cuando el tltimo elemento del rango no se superponga con el rango de
destino.

Ejemplo
En el siguiente ejemplo se muestra la manera de usar copy() para copiar elementos de una list en
un vector.

// Usa copy() para copiar elementos de una lista a un vector.

#include <iostream>
#include <vectors>
#include <list>
#include <algorithms>

using namespace std;

template<class T> void mostrar (const char *msj, T cont);

int main/()

{

list<char> lista;

// Agrega elementos a lista.
char cad[] = "Los algoritmos act\u0Oa3n sobre los contenedores";
for(int i = 0; cad[i]l; i++) lista.push back(cad[i]);

// Crea un vector que contiene 53 puntos al principio.
vector<char> v (53, '.');

mostrar ("Contenido de lista:\n", lista);
mostrar ("Contenido de v:\n", Vv);

// Copia lista en v.
copy(lista.begin(), lista.end(), v.begin()+5);

// Despliega resultado.
mostrar ("Contenido de v tras la copia:\n", v);
return 0;

}

template<class T> void mostrar (const char *msj, T cont) ({
cout << msj;
T::iterator itr;
for (itr=cont.begin(); itr != cont.end(); ++itr)
cout << *itr;

cout << "\n\n";

Capitulo 4: Algoritmos, objetos de funcién... 227

Aqui se muestra la salida:

Contenido de lista:
Los algoritmos actilan sobre los contenedores

Contenido de v:

Contenido de v tras la copia:
..... Los algoritmos actilan sobre los contenedores.....

Opciones
La STL proporciona dos variaciones ttiles de copy(). La primera es copy_backward(), que se
muestra aqui:

template <class Bilter1, class Bilter2>
Bilter2 copy_backward(Bilter1 inicio, Bilterl final, Bilter2 resultado)

Este algoritmo funciona como copy(), excepto porque mueve primero elementos del final del
rango especificado, y resultado debe sefialar inicialmente a uno después del principio del rango de
destino. Por tanto, puede usarse para desplazar a la derecha elementos dentro del mismo rango,
siempre y cuando el primer elemento del rango no se superponga al rango de destino.

La segunda opcién de copia es swap_ranges(). Intercambia el contenido de un rango con otro.
Por tanto, proporciona una copia bidireccional. Se muestra aqui:

template <class Forlterl, class Forlter2>
Forlter2 swap_ranges(Forlter iniciol, Forlter inicio2, Forlter2 inicio2)

El algoritmo swap_ranges() intercambia elementos en el rango iniciol a finall-1 con elementos en
la secuencia que empieza en inicio2. Devuelve un apuntador al final de la secuencia especificada
por inicio2. No deben superponerse los rangos que se intercambian.

Reemplace y elimine elementos en un contenedor

Componentes clave

Encabezados Clases Funciones
<algortihm> template <class Forlter, class T>
Forlter remove(Forlter inicio, Forlter final,

const T &val)
template <class Forlter, class T>
void replace(Forlter inicio, Forlter final,
const T &ant, const T &nue)

228

C++ Soluciones de programacion

La STL proporciona funciones que le permiten reemplazar o eliminar elementos. En el niicleo de la
funcionalidad estan replace() y remove(). Aunque ambas operaciones pueden realizarse mediante
el uso de funciones definidas por el contenedor, en muchos casos, estos algoritmos depuran la
tarea. En esta solucién se demuestran.

Paso a paso
Para eliminar o reemplazar uno o mas elementos en una secuencia se requieren estos pasos:

1. Para eliminar todos los elementos que coinciden con un valor especifico, llame a remove(),
especificando el rango que habra de eliminarse y el valor que se eliminara.

2. Para reemplazar todas las apariciones de elementos que coinciden con un valor especifico,
llame a replace(), especificando el rango que habra de modificarse, y el valor que se reem-
plazara y el que se sustituira.

Anilisis
El algoritmo remove() elimina todas las apariciones de un elemento especificado de un rango
especificado. Aqui se muestra:

template <class Forlter, class T>
Forlter remove(Forlter inicio, Forlter final, const T &val)

Este algoritmo elimina todos los elementos del rango inicio a final-1 que son iguales a val. Devuelve
un iterador al final de los elementos restantes. El orden de los elementos restantes queda sin cambio.

Dentro de un rango especificado, el algoritmo replace() reemplaza todas las apariciones de un
elemento especificado con otro. Aqui se muestra:

template <class Forlter, class T>
void replace(Forlter inicio, Forlter final, const T &ant, const T &nue)

Dentro del rango especificado inicio a final-1, replace() reemplaza elementos que coinciden con el
valor ant con elementos que tienen el valor nue.

NOTA La clase contenedora list proporciona su propia implementacion de remove() que estd optimi-
zada para listas. Por tanto, cuando se eliminan elementos de una list, debe usar la funcion en lugar
del algoritmo remove().

Ejemplo

En el siguiente ejemplo se muestran remove() y replace():

// Demuestra remove () y replace().

#include <iostream>
#include <vectors>

#include <algorithm>
using namespace std;

template<class InIters>
void mostrar rango(const char *msj, InIter inicio, InIter final);

Capitulo 4: Algoritmos, objetos de funcidn...

int main()
vector<chars> v;
vector<chars>::iterator itr, itr final;

// Crea un vector que contiene ABCDEADBCDE.
for (int i=0; i<5; i++) {
v.push back ('A'+i);
!
for (int i=0; i<5; i++) {
v.push back ('A'+i) ;

}

mostrar rango ("Contenido original de v:\n", v.begin(), v.end());
cout << endl;

// Elimina todas las A.
itr final = remove(v.begin(), v.end(), 'A');

mostrar rango ("v tras eliminar todas las A:\n", v.begin(), itr final);
cout << endl;

// Reemplaza B con digitos X.
replace (v.begin(), v.end(), 'B', 'X');

mostrar rango ("v tras reemplazar B con X:\n", v.begin(), itr final);
cout << endl;

return 0O;

}

// Muestra un rango de elementos de un vector<chars.
template<class InIter>
void mostrar rango (const char *msj, InIter inicio, InIter final) {
InIter itr;

cout << msj;

for(itr = inicio; itr != final; ++itr)
cout << *itr << " ";

cout << endl;

}
Aqui se muestra la salida:

Contenido original de v:
A BCDEABTCDE

tras eliminar todas las A:
BCDEUBCDE

<

<

tras reemplazar B con X:
X CDEXGCDE

229

230

C++ Soluciones de programacion

Opciones

La STL proporciona varias opciones para eliminar y reemplazar elementos. Dos que le resultaran

particularmente ttiles son remove_copy() y replace_copy(). Ambas generan una nueva secuencia

que contiene el resultado de la operacién. Por tanto, la secuencia original queda sin alteracién.
Aqui se muestra el prototipo para remove_copy():

template <class Inlter, class Outlter, class T>
Outlter remove_copy(Inlter inicio, Inlter final, Outlter resultado, const T &wval)

Copia elementos del rango especificado, eliminando los que sean iguales a val. Pone el resultado
en la secuencia a la que sefiala resultado y devuelve un iterador a uno después del final del resulta-
do. El rango de destino debe ser lo suficientemente grande para contener el resultado.

El prototipo para replace_copy() se muestra a continuacion:

template <class Inlter, class Outlter, class T>
Outlter replace_copy(Inlter inicio, Inlter final,
Outlter resultado, const T &ant, const T &nue)

Copia elementos del rango especificado, reemplazando elementos iguales a ant con nue. Coloca el
resultado en la secuencia sefialada por resultado y devuelve un iterador a uno después del final
del resultado. El rango de destino debe tener el tamafio suficiente para contener el resultado.

Hay variaciones de remove(), replace(), remove_copy() y replace_copy() que le permiten espe-
cificar un predicado unario que determina cuando debe eliminarse o reemplazarse un elemento.
Se les denomina remove_if(), replace_if(), remove_copy_if() y replace_copy_if().

Otro algoritmo que elimina elementos de una secuencia es unique(). Elimina elementos dupli-
cados consecutivos de un rango. Tiene las dos formas mostradas aqui:

template <class Forlter>
Forlter unique(Forlter inicio, Forlter final)

template <class Forlter, class BinPred>
Forlter unique(Forlter inicio, Forlter final, BinPred funp)

Se eliminan elementos duplicados consecutivos en el rango especificado. La segunda forma le per-
mite especificar un predicado binario que determina cuando un elemento es igual a otro. unique()
devuelve un iterador al final del rango resultante. Por ejemplo, suponiendo el programa anterior,
si v contiene la secuencia AABCCBDE, entonces después de la ejecucion de esta instruccion

itr final = unique(v.begin(), v.end());

el rango v.begin() a itr_final contendra ABCBDE. La STL también proporciona unique_copy(), que
funciona de la misma manera que unique(), excepto que el resultado se coloca en otra secuencia.

Capitulo 4: Algoritmos, objetos de funcidn... 231

Combine dos secuencias ordenadas

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class Inlterl, class Inlter2,
class Outlter>

Outlter merge(Inlterd iniciol, Inlterl finall,
Inlter2 inicio2, Inlter2 final2
Outlter resultado)

template <class Bilter>
void inplace_merge(Bilter inicio, Bilter medio,
Bilter final)

Hay dos algoritmos de STL que combinan dos secuencias ordenadas: merge() e inplace_merge().
Para ambos, el resultado es una secuencia ordenada que incluye el contenido de las dos secuen-
cias originales. Como recordaré, la mezcla est4 directamente apoyada por el contenedor list. Sin
embargo, no es proporcionada por otros contenedores integrados. Por tanto, si quiere combinar
secuencias de elementos de cualquier otra cosa diferente de un contenedor list, necesitard usar
uno de los algoritmos de mezcla.

Hay dos maneras en que puede realizarse una mezcla. En primer lugar, puede almacenarse el
resultado en una tercera secuencia. En segundo lugar, si la mezcla incluye dos secuencias del mis-
mo contenedor, entonces el resultado puede almacenarse en el lugar. El primer método es propor-
cionado por merge(), y el segundo por inplace_merge(). En esta solucién se ilustran ambos.

Paso a paso
Para mezclar dos secuencias, almacenando el resultado en una tercera secuencia, se requieren
estos pasos:

1. Asegtirese de que las secuencias que se mezclardn estdn ordenadas.
2. Llame a merge(), pasandola en los rangos que habran de mezclarse y un iterador al princi-
pio del rango de destino que contendra el resultado.

Para mezclar dos secuencias en el lugar se requieren estos pasos:

1. Asegurese de que las secuencias que habrdn de mezclarse estan ordenadas.
2. Llame a inplace_merge(), pasandola en los rangos que habran de mezclarse. El resultado
se almacenara en el lugar.

sgn_m
Analisis
El algoritmo merge() mezcla dos secuencias ordenadas y almacena el resultado en una tercera
secuencia. Tiene dos formas. La usada en esta solucién se muestra a continuacién:

template <class Inlterl, class Inlter2, class Outlter>
Outlter merge(Inlterl iniciol, Inlter1 finall
Inlter2 inicio2, Inlter2 final2
Outlter resultado)

232

C++ Soluciones de programacion

El algoritmo merge() mezcla dos secuencias ordenadas, colocando el resultado en una tercera
secuencia. Los rangos que habran de mezclarse estan definidos por iniciol, finall e inicio2, final2.

El resultado se pone en el contenedor sefialado por resultado. Este contenedor debe ser del tamafio
suficiente para contener los elementos que se almacenaran en él, porque los elementos mezcla-
dos sobrescriben los elementos existentes. El algoritmo merge() no inserta nuevos elementos. Se
devuelve un iterador a uno después del final de la secuencia resultante.

Es importante comprender que merge() no requiere que la secuencia de entrada o la resultante
sean del mismo tipo de contenedor. Por ejemplo, puede usar merge() para mezclar una secuencia
de una instancia de vector con una secuencia de una instancia de deque, almacenando el resultado
en un objeto de list. Por tanto, merge() ofrece una manera de combinar elementos de contenedores
separados.

El algoritmo inplace_merge() realiza una mezcla en dos rangos ordenados consecutivos dentro
del mismo contenedor, y el resultado reemplaza a los dos rangos originales. Tiene dos formas.
Aqui se muestra la usada por esta solucién:

template <class Bilter>
void inplace_merge(Bilter inicio, Bilter medio, Bilter final)

Dentro de una sola secuencia, el algoritmo inplace_merge() mezcla el rango de inicio a medio-1
con el rango de medio a final-1; ambos rangos deben estar ordenados. Después de la ejecucion, la
secuencia resultante se ordena y esta contenida en el rango inicio a final-1.

NoOTA La clase del contenedor list proporciona su propia implementacion de merge() que estd opti-
mizado para listas. Por tanto, cuando se mezclan listas, debe usar esa funcién en lugar del algoritmo
merge().

Ejemplo

En el siguiente ejemplo se muestran merge() e inplace_merge() en acciéon. Se usa merge() para
mezclar un vector con una deque. El resultado se almacena en una list. Observe que tanto las

secuencias de entrada como el resultado estdn ordenados. Luego se usa inplace_merge() para

mezclar dos secuencias dentro del mismo vector.

// Demuestra merge () e inplace merge ().

#include <iostreams>
#include <vectors>
#include <deque>
#include <list>
#include <algorithm>

using namespace std;

template<class InIters>
void mostrar rango(const char *msj, InIter inicio, InIter final);

int main/()

{
vector<char> v;
deque<char> dqg;
list<char> resultado(26) ;

Capitulo 4: Algoritmos, objetos de funcién... 233

list<char>::iterator res final;
// Primero, demuestra merge () .

for(int i=0; i < 26; i+=2) v.push back('A'+i);
for(int i=0; i < 26; i+=2) dg.push back('B'+i);

mostrar rango ("Contenido original de v:\n", v.begin(), v.end());
cout << endl;

mostrar rango ("Contenido original de dg:\n", dg.begin(), dg.end());
cout << endl;

// Mezcla v con dq.

res_final = merge(v.begin(), v.end(),
dg.begin(), dg.end(),
resultado.begin()) ;

mostrar_ rango ("Resultado de mezclar v con dg:\n", resultado.begin(), res final);
cout << "\n\n";

// Rhora, demuestra inplace merge () .
vector<char> v2;
for(int i=0; i < 26; i+=2) v2.push back('B'+i);

for (int i=0; i < 26; i+=2) v2.push back('A'+i);

mostrar rango ("Contenido original de v2:\n", v2.begin(), v2.end());
cout << endl;

// Mezcla dos rangos de v2.
inplace_merge (v2.begin(), v2.begin()+13, v2.end());

mostrar rango ("Contenido de v2 tras mezclar en el lugar:\n", v2.begin(),
v2.end()) ;

return O;

}

// Muestra un rango de elementos.
template<class InIter>
void mostrar rango (const char *msj, InlIter inicio, InIter final) {

InIter itr;
cout << msj;
for(itr = inicio; itr != final; ++itr)

cout << *itr << " ";
cout << endl;

234 Cc++ Soluciones de programacidn

Aqui se muestra la salida:

Contenido original de v:
ACEGIKMOQSUWY

Contenido original de dg:
BDFHJLNPRTYVXZ

Resultado de mezclar v con dg:
ABCDEFGHIJKLMNOPQRSTUVWIXY?Z

Contenido original de v2:
BDFHJLNPRTVXZACEGIKMOQSUWY

Contenido de v2 tras mezclar en el lugar:
ABCDEFGHIJKLMNOPQRSTUVWIXYZ

Opciones
Hay una segunda forma de merge() que le permite especificar una funcién de comparaciéon que
determina cuando un elemento es menor que otro. Aqui se muestra:

template <class Inlterl, class Inlter2, class Outlter, class Comp>
Outlter merge(Inlterl iniciol, Inlter1 finall
Inlter2 inicio2, Inlter2 final2
Outlter resultado, Comp fucomp)

Funciona igual que la primera forma, excepto que fucomp se usa para comparar dos elementos.
Cuando se usa esta manera, la secuencia que se estd mezclando también debe ordenarse de acuer-
do con fucomp.

Hay también una segunda forma de inplace_merge() que le permite especificar una funcién de
comparacion. Se muestra aqui:

template <class Bilter, class Comp>
void inplace_merge(Bilter inicio, Bilter medio, Bilter final, Comp fucomp)

Funciona como la primera versién, excepto que usa fucomp para determinar cuando un elemento
es menor que otro. Como es de esperar, las secuencias también deben ordenarse de acuerdo con
fucomp.

Capitulo 4: Algoritmos, objetos de funcién... 235

Cree y administre un heap

Componentes clave

Encabezados Clases Funciones

<algorithm> template <class Randlter>
void make_heap(Randlter inicio,
Randlter final)
template <class Randlter>
void pop_heap(Randlter inicio, Randlter final)
template <class Randlter>
void push_heap(Randlter inicio,
Randlter final)
template <class Randlter>
void sort_heap(Randlter inicio, Randlter final)

Un heap, o montén, es una estructura de datos en que el elemento superior (también llamado el
primer elemento) es el elemento mas grande de la secuencia. Los heaps permiten la insercién y eli-
minacién rapida (en tiempo logaritmico) de un elemento. Son titiles para crear colas de prioridad
en que el elemento de mayor prioridad debe estar disponible inmediatamente, pero no se necesita
una lista completamente ordenada. La STL proporciona cuatro algoritmos que dan soporte a ope-
raciones con heaps, y en esta solucién se demuestra su uso.

Paso a paso
Para crear y administrar un heap, se requieren estos pasos:

1. Para crear un heap, llame a make_heap(), especificando el rango de elementos que habra
de crearse en un heap.

2. Para agregar un elemento a un heap, llame a push_heap().

3. Para eliminar un elemento del heap, llame a pop_heap().

4. Para ordenar el heap, llame a sort_heap().

Analisis
Un heap se construye usando el algoritmo make_heap(). Tiene dos formas. Aqui se muestra la
usada en esta solucién:

template <class RandlIter>
void make_heap(Randlter inicio, Randlter final)

Construye un heap a partir de la secuencia definida por inicio a final. Cualquier contenedor que da
soporte a los iteradores de acceso aleatorio puede usarse para contener un heap. La construcciéon
de un heap ocupa tiempo lineal.

Puede incluir un nuevo elemento en el heap usando push_heap(). Tiene dos formas. La usada
en esta solucién se muesta a continuacién:

template <class RandlIter>
void pop_heap(Randlter inicio, Randlter final)

236

C++ Soluciones de programacion

Coloca el elemento en final-1 en el heap definido por inicio a final-2. En otras palabras, el heap
actual termina en final-2 y push_heap() agrega el elemento en final-1. El resultado es un heap que
termina en final-1. La inclusién de un elemento en un heap consume tiempo logaritmico.

Puede eliminar un elemento usando pop_heap(). Tiene dos formas. Aqui se muestra la usada
en esta solucién:

template <class RandIter>
void push_heap(Randlter inicio, Randlter final)

El algoritmo pop_heap() intercambia los elementos de inicio y final-1 y luego reconstruye el
heap. El heap resultante termina en final-2. La eliminacién de un elemento de un heap consume
tiempo logaritmico.

Puede ordenar un heap de manera ascendente usando sort_heap(). Aqui se muestra su proto-
tipo:

template <class RandIter>
void sort_heap(RandlIter inicio, Randlter final)

El algoritmo sort_heap() ordena un heap dentro del rango especificado por inicio y final. El ordena-
miento de un heap requiere tiempo proporcional a N log N.

Ejemplo
He aqui un programa que construye un heap, luego agrega y elimina elementos. Termina por
ordenar el heap.

// Demuestra los algoritmos de heap.

#include <iostream>

#include <vectors>

#include <algorithm>

using namespace std;

void mostrar (const char *msj, vector<chars> vect);
int main/()

{

vector<char> v;
int i;

for (i=0; i<20; i+=2) v.push back('A'+i);

mostrar ("v antes de construir el heap:\n", v);
cout << endl;

// Construye un heap.
make heap (v.begin(), v.end());

mostrar ("v tras construir el heap:\n", v);
cout << endl;

// Incluye H en el heap.

Capitulo 4: Algoritmos, objetos de funcién... 237

v.push back('H'); // primero coloca H en el vector
push heap(v.begin(), v.end()); // ahora, coloca H en el heap

mostrar ("v tras incluir H en el heap:\n", v);
cout << endl;

// Extrae un valor del heap.
pop_heap (v.begin(), v.end());

mostrar ("v tras extraer un valor del heap:\n", v);
cout << endl;

// Ordena el heap
sort_heap(v.begin(), v.end()-1);
mostrar ("v tras ordenar el heap:\n", v);

return 0;

}

// Despliega el contenido de un vector<chars.
void mostrar (const char *msj, vector<char> vect) {
cout << msj;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

He aqui la salida del programa:

<

antes de construir el heap:
ACEGIKMOOQS

<

tras construir el heap:
SQMOIZKEAGZC

<

tras incluir H en el heap:
SQMOIUKEAGCH

v tras extraer un valor del heap:
QOMHIKEAGCS

<

tras ordenar el heap:
ACEGHTIZKMOOQ QS

Observe el contenido de v tras llamar a pop_heap(). La S atin esta presente, pero ahora se en-
cuentra al final. Como se describié, la eliminacién de un elemento de un heap hace que el primer
elemento se mueva al final y luego se construye un nuevo heap sobre los elementos restantes
(N-1). Por tanto, aunque el elemento eliminado (S, en este caso) permanece en el contenedor, no
es parte del heap. Ademas, observe que la llamada a sort_heap() especifica v.end()-1 como punto
final del ordenamiento. Esto se debe a que la S ya no es parte del heap, porque se ha eliminado en
el paso anterior.

238 C++ Soluciones de programacidn

Opciones

Todas las funciones del heap tienen una segunda forma que le permite especificar una funcién
de comparacién que determina cuando un elemento es menor que otro. Aqui se muestran estas
versiones:

template <class Randlter, class Comp>
void make_heap(Randlter inicio, Randlter final, Comp fucomp)

template <class RandlIter, class Comp>
void pop_heap(Randlter inicio, Randlter final, Comp fucomp)

template <class RandlIter, class Comp>
void push_heap(Randlter inicio, Randlter final, Comp fucomp)

template <class Randlter, class Comp>
void sort_heap(RandlIter inicio, Randlter final, Comp fucomp)

En todos los casos, fiicomp especifica la funciéon de comparacion usada para determinar el orden de
los elementos.

Aungque los algoritmos de heap son ttiles, requieren que usted maneje manualmente el heap.
Por fortuna, hay un método maés facil que es aplicable a muchas situaciones: el adaptador de
contenedor priority_queue, el cual mantiene automaticamente los elementos en el contenedor en
orden de prioridad.

Cree un algoritmo

Componentes clave

Encabezados Clases Funciones

template<tipos-iter, otros-tipos>
tipo-ret nombre(args-iter, otros-args)
template<tipos-iter, otros-tipos, tipo_pred>
tipo-ret nombre(args-iter, otros-args, predicado)

Aunque la STL proporciona un rico conjunto de algoritmos integrados, también puede crear los
propios. Esto es posible porque la STL se disefié para acomodar extensiones facilmente. Siempre
y cuando siga unas cuantas reglas simples, sus algoritmos serdn completamente compatibles
con los contenedores de STL y otros elementos. Por tanto, al crear sus propios algoritmos, se
expandird su marco conceptual de STL para cubrir sus necesidades. En esta solucién se muestra
el proceso.

Paso a paso
Para crear sus propios algoritmos, se requieren estos pasos:

Capitulo 4: Algoritmos, objetos de funcién... 239

1. Cree una funcién de plantilla que tome uno o mas iteradores como argumentos.

Realice todas las operaciones mediante los iteradores pasados a la funcién.

3. Sise necesita un predicado, incliyalo en la lista de pardmetros para la funcion, y luego
defina el predicado.

N

Anlisis

En general, el proceso de crear un algoritmo es simple. S6lo cree una plantilla de funcién que
opere mediante iteradores que se pasan como argumentos. (Técnicamente, un algoritmo también
puede operar mediante referencias, pero casi todo el tiempo deben usarse iteradores.) El tipo de
iterador es especificado por un parametro de plantilla. Por tanto, el prototipo de un algoritmo
personalizado tendr4 el aspecto de los prototipos de los algoritmos integrados. Tenga en mente un
tema importante: el nombre de tipo genérico que le dé a un iterador no tiene efecto en los tipos de
iteradores que puede realmente usar cuando llame al algoritmo. Los nombres de tipo de iterador
genéricos son simples convenciones que documentan los tipos de iteradores requeridos por el
algoritmo. Por tanto, el uso del nombre Bilter en una plantilla no impone que s6lo puedan usarse
iteradores con capacidades bidireccionales. En cambio, son los operadores aplicados al iterador
dentro del algoritmo los que determinan cudles capacidades se requieren. Por ejemplo, si aplica

+ o — al iterador, entonces s6lo pueden usarse iteradores de acceso aleatorio como argumentos.

En principio, un algoritmo personalizado puede devolver cualquier tipo de valor. Por ejemplo,
considere la amplia variedad de tipos de devolucién encontrados en los algoritmos integrados.
find() devuelve un iterador, count() devuelve un valor entero y equal() devuelve un resultado
booleano. No obstante lo anterior, he aqui una buena regla a seguir: cuando tenga sentido que
su algoritmo devuelva un iterador, debe hacerlo. Esto a menudo hace que su algoritmo sea més
versatil porque permite que el resultado de un algoritmo sea usado como entrada de otro. Por
supuesto, la naturaleza especifica de su algoritmo determinara su tipo de devolucién.

Si su algoritmo necesita usar un predicado, incluya un parametro de plantilla para el predica-
do. Luego, proporcione el predicado cuando se llame al algoritmo.

Al unir todo, he aqui las principales formas generales de un algoritmo:

template<tipos-iter, otros-tipos>
tipo-ret nombre(args-iter, otros-args)

template<tipos-iter, otros-tipos, tipo_pred>
tipo-ret nombre(args-iter, otros-args, predicado)

Por supuesto, su aplicacién especifica determinard el tipo de devolucién especifico, de argumentos
y de predicado.

Como un elemento interesante, en varios de los ejemplos de este capitulo se usa una funciéon
llamada show_range(). Toma un apuntador a una cadena terminada en un caracter nulo y dos ite-
radores como argumentos. Luego despliega la cadena seguida por los elementos dentro del rango
especificado. Debido a que show_range() accede a los elementos mediante iteradores, funciona de
manera parecida a un algoritmo. Sin embargo, en opinién del autor no es un algoritmo, en sentido
estricto, porque produce salida que est4 codificada para que se despliegue mediante cout. No
obstante, muestra la manera en que los iteradores delinean la creacion de funciones que pueden
aplicarse a contenedores. (Es posible dar salida a informacién a un flujo mediante un iterador.
Consulte Use los iteradores de flujo para conocer mas detalles.)

240

C++ Soluciones de programacion

Ejemplo

En el siguiente ejemplo se muestra un algoritmo personalizado llamado disjuntos(), que compara
los elementos en dos rangos. Si no contienen elementos comunes, entonces disjuntos() devuelve
true. De otra manera, devuelve false.

// Esta funcién es un algoritmo que determina si el contenido
// de dos rangos es disjunto. Es decir, si no contienen
// elementos en comidn.
template<class InIter>
bool disjuntos (InIter inicio, InIter final,
InIter inicio2, InIter final2) {

InIter itr;

for(; inicio != final; ++inicio)
for(itr = inicio2; itr != final2; ++itr)
if (*inicio == *itr) return false;

return true;

}

Como puede ver, todas las operaciones ocurren mediante iteradores. Debido a que los iteradores
s6lo se mueven en direccién directa y a que recuperan pero no almacenan valores, disjuntos()
puede llamarse con cualquier tipo de iterador que da soporte a operaciones de entrada.

El siguiente programa pone a disjuntos() en accién. Observe que el programa también usa la
funcién mostrar_rango(), que despliega los elementos dentro de un rango. Como se menciono,
esta funcion se usa en varios de los ejemplos de este capitulo y funciona de manera similar a un
algoritmo porque opera mediante iteradores.

// Este programa demuestra el algoritmo disjuntos().

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

template<class InIters>
void mostrar rango(const char *msj, InIter inicio, InIter final);

template<class InIters>
bool disjuntos(InIter inicio, InIter final,
InIter inicio2, InIter final2);

int main()

{

list<char> listal, lista2, lista3;

for(int i=0; i < 5; i++) listal.push back('A'+i);
for(int i=6; i < 10; i++) lista2.push back('A'+i);
for (int i=8; i < 12; i++) lista3.push back('A'+i)

I

mostrar rango ("Contenido de listal: ", listal.begin(), listal.end());

Capitulo 4: Algoritmos, objetos de funcién... 241

mostrar rango ("Contenido de lista2: ", lista2.begin(), lista2.end());
mostrar rango ("Contenido de lista3: ", lista3.begin(), lista3.end());

cout << endl;

// Prueba listal y lista2.
if (disjuntos(listal.begin(), listal.end(), lista2.begin(), lista2.end()))
cout << "listal y lista2 son disjuntos\n";
else cout << "listal y lista2 no son disjuntos.\n";

// Prueba lista2 y lista3.
if (disjuntos(lista2.begin(), lista2.end(), lista3.begin(), lista3.end()))
cout << "lista2 y lista3 son disjuntas\n";
else cout << "lista2 y lista3 no son disjuntas.\n";

return O0;

// Muestra un rango de elementos.
template<class InIter>
void mostrar rango (const char *msj, InIter inicio, InIter final) {

InIter itr;
cout << msj;

for(itr = inicio; itr != final; ++itr)
cout << *itr << " ";
cout << endl;

}

// Esta funcién es un algoritmo que determina si el contenido
// de dos rangos es disjunto. Es decir, si no contienen
// elementos en comdn.
template<class InIter>
bool disjuntos(InIter inicio, InIter final,
InIter inicio2, InIter final2) {

InIter itr;

for(; inicio != final; ++inicio)
for(itr = inicio2; itr != final2; ++itr)
if (*inicio == *itr) return false;

return true;

}

Aqui se muestra la salida:

Contenido de listal: A B C D E
Contenido de lista2: GH I J
Contenido de lista3: I J K L

listal y lista2 son disjuntas
lista2 y lista3 no son disjuntas.

242

C++ Soluciones de programacion

Ejemplo adicional: use un predicado con un algoritmo personalizado

Es facil agregar un predicado, como una funcién de comparacion, a un algoritmo. Simplemente
especifique un tipo genérico para la funcién y luego incluya un pardmetro de ese tipo en la lista de
argumentos. Dentro del algoritmo, llame a la funcién cuando sea necesario mediante su parame-
tro. Por ejemplo, he aqui una sobrecarga de disjuntos() que le permite especificar un predicado
que determina cuando un elemento es igual a otro:

// Esta sobrecarga de disjuntos() permite especificar una funcién
// de compracidn que determina cuando dos elementos son iguales.
template<class InIter, class Comp>
bool disjuntos (InIter inicio, InIter final,
Inlter inicio2, InIter final2, Comp fucomp) {

InIter itr;

for(; inicio != final; ++inicio)
for(itr = inicio2; itr != final2; ++itr)
if (fucomp (*inicio, *itr)) return false;

return true;

}

Preste especial atencién al pardmetro fucomp. Puede recibir un apuntador a funcién o un objeto
de funcién. Luego se utiliza esta funcién para determinar cuando dos elementos son iguales. En

el siguiente programa se demuestra esta version de disjuntos() para ignorar diferencias entre
maytusculas y mintisculas cuando se determina si dos rangos de caracteres son disjuntos. Se utiliza
la funcién de predicado binario igual_ignoramayus() para determinar cuando dos caracteres son
iguales independientemente de las diferencias entre maytsculas y mindsculas.

// Demuestra una versidn de disjuntos() que toma una funcidén de comparacidn.

#include <iostream>
#include <list>
#include <algorithms>
#include <cctype>

using namespace std;

template<class InIter>
void mostrar rango(const char *msj, InIter inicio, InIter final);

template<class InIter>
bool disjuntos(InIter inicio, InIter final,
InIter inicio2, InIter final2);

// Sobrecarga disjuntos() para tomar una funcidén de comparacidn.
template<class InIter, class Comp>
bool disjuntos (InIter inicio, InIter final,
InIter inicio2, InIter final2, Comp fucomp) ;

bool igual_ ignoramayus (char carl, char car2);

Capitulo 4:

int main()

{

list<char> listal, lista2;

for(int i=0; i < 5; i++) listal.push back('A'+i);
for(int i=2; i < 7; i++) lista2.push back('a'+i);
mostrar rango ("Contenido de listal: ", listal.begin(), listal.end());
mostrar rango ("Contenido de lista2: ", lista2.begin(), lista2.end());

cout << endl;

// Prueba listal y lista2.

cout << "Probando listal y lista2 de manera sensible a \n";
cout << "may\uOOa3sculas y min\uOOa3sculas.\n";

if (disjuntos(listal.begin(), listal.end(),

lista2.begin(),

cout << "listal y lista2 son disjuntas\n";
else cout << "listal y lista2 no son disjuntas.\n";

cout << endl;

// Prueba listal y lista2, pero ignora las diferencias entre maylUsculas

// y mintsculas.

cout << "Probando listal y lista2 e ignorando diferencias entre\n";

cout << "may\uOOa3sculas y min\uOOa3sculas.\n";

if (disjuntos(listal.begin(), listal.end(),
igual_ ignoramayus))

lista2.begin(),

cout << "listal y lista2 son disjuntas\n";
else cout << "listal y lista2 no son disjuntas.\n";

return O;

}

// Muestra un rango de elementos
template<class InIter>

void mostrar rango(const char *msj, InIter inicio, InIter final)

InIter itr;
cout << msj;

for(itr = inicio; itr != final; ++itr)
cout << *itr << " ";
cout << endl;

}

// Esta funcién es un algoritmo que determina

si el contenido

// de dos rangos es disjunto. Es decir, si no contienen

// elementos en comln.
template<class InIter>

bool disjuntos(InIter inicio, InIter final,

InIter inicio2, InIter final2)

InIter itr;

Algoritmos, objetos de funcidn...

lista2.end()))

lista2.end(),

{

243

244 c++ Soluciones de programacidn

for(; inicio != final; ++inicio)
for(itr = inicio2; itr != final2; ++itr)
if (*inicio == *itr) return false;

return true;

}

// Esta sobrecarga de disjuntos() permite especificar una funcidén
// de comparacidén que determina cuando dos elementos son iguales.
template<class InIter, class Comp>
bool disjuntos (InIter inicio, InIter final,
InIter inicio2, InIter final2, Comp fucomp) {

InIter itr;

for(; inicio != final; ++inicio)
for(itr = inicio2; itr != final2; ++itr)
if (fucomp (*inicio, *itr)) return false;

return true;

}

// Esta funcidn devuelve true si carl y car2 representan la misma
// letra, a pesar de diferencias entre maylsculas y mindsculas.
bool igual ignoramayus (char carl, char car2) {

if (tolower (carl) == tolower (car2)) return true;

return false;

}
Aqui se muestra la salida:

Contenido de listal: A B C D E

Contenido de lista2: c de f g

Probando listal y lista2 de manera sensible a
maytsculas y mintsculas.

listal y lista2 son disjuntas.

Probando listal y lista2 e ignorando diferencias entre
maylGsculas y mintGsculas.
listal y lista2 no son disjuntas.

Opciones

Aunque la creacién de su algoritmo es muy facil, como se muestra en los ejemplos anteriores, a
menudo no necesitara crearlos. En muchos casos, puede alcanzar el resultado deseado al usar for_
each() o transform() y especificar una funcién que realiza la operacién deseada. En otros casos,

tal vez pueda usar las formas predicadas de uno de los algoritmos estdndar de STL. Por supuesto,
cuando ninguno de estos métodos funciona, es simple crear su propio algoritmo.

Capitulo 4: Algoritmos, objetos de funcién... 245

Use un objeto de funcion integrado

Componentes clave

Encabezados Clases Funciones

<functional> divides ret-type operator(list-args)
equal_to
greater
greater_equal
less
less_equal
logical_and
logical_not
logical_or
minus
modulus
multiplies
negate
not_equal_to
plus

En esta solucién se muestra como usar los objetos de funcién integrada definidos por la STL. Una
revisién general de los objetos de funcién se presento casi al principio de este capitulo, pero sera
util empezar por resumir los puntos clave:

* Los objetos de funcién son instancias de clases que definen operator().

* Un objeto de funcién puede usarse en lugar de un apuntador a funcién, como cuando se
pasa un predicado a un algoritmo.

* Hay dos tipos de funcién de objetos: unarios y binarios. Un objeto de funciéon unaria requie-
re un argumento; uno binario requiere dos.

* Los objetos de funcién ofrecen mas flexibilidad y, en algunos casos, pueden ser mas eficien-
tes que los apuntadores de funcién.

La STL proporciona varios objetos de funcién integrados, que son el tema de esta solucién.
También es posible crear sus propios objetos de funcién. Esta se describe en la siguiente solucion.

Paso a paso
Para crear un objeto de funcién integrada se requieren estos pasos:

1. Cree una instancia del objeto de funcién deseada. Especifique el tipo de datos sobre los que
operara en su argumento de tipo.

2. Pase el objeto creado en el paso 1 como un argumento a cualquier algoritmo que requiera
un argumento de funcién.

246

C++ Soluciones de programacion

Andlisis
Todos los objetos de funcién integrados son clases de plantilla, lo que significa que pueden funcio-
nar sobre cualquier tipo de datos para los cuales esta definida su operacién asociada. Los objetos
de funcién integrada usan el encabezado <functional>.

La STL define varios objetos de funcion binaria y dos objetos de funciéon unaria. Los segundos
son logical_not y negate. Los objetos de funcion binaria integrados se muestran a continuacién:

plus minus multiplies divides modulus
equal_to not_equal_to greater greater_equal less
less_equal logical_and logical_or

Cada objeto de funcién realiza la accién implicada en su nombre. Por ejemplo, negate devuelve
la negacion de un valor, less devuelve true si un valor es menor que otro, y divides devuelve el
resultado de dividir un valor entre otro.

Los dos objetos de funcién usados en el ejemplo son negate y multiplies. He aqui cémo se
declaran:

template <class T> estruct negate : funcion_unaria<T, T> {
T operator()(const T & a) const;
I
template <class T> estruct multiplies : funcion_binaria<T, T> {

T operator()(const T & a, const T & b) const;
b

Observe que se declaran usando la palabra clave struct. Recuerde que en C++, struct crea un tipo
de clase. Los otros objetos de funcién se declaran de una manera similar.
Para usar un objeto de funcién, primero debe construir uno. Por ejemplo:

negate<ints> ()
construye un objeto de negate para usar en operandos de tipo int, y
multiplies<double, doubles()

construye un objeto de multiplies para usar en operandos double.
A menudo, una instancia de un objeto de funcién no se construye hasta que en realidad se pasa
a un algoritmo. Por ejemplo, esta instruccion:

transform(iniciol, finall, inicio2, negate<doubles>()) ;

construye un objeto de funcién negate y lo pasa a transform() en un paso. Con frecuencia, no hay
necesidad de construir una instancia independiente.

Ejemplo
En el siguiente ejemplo se demuestra el objeto de funcién unaria negate y el binario multiplies. La
misma técnica se aplica a cualquier objeto de funcién integrado.

Capitulo 4: Algoritmos, objetos de funcién... 247

NoTA Otro ejemplo que utiliza un objeto de funcién integrado se encuentra en Ordene un contene-
dor. Usa el objeto de funcion greater para ordenar un contenedor en orden inverso.

// Demuestra los objetos de funcidn negate y multiplies.

#include <iostreams
#include <vector>
#include <algorithm>
#include <functionals>

using namespace std;
template<class T> void mostrar (const char *msj, T cont);

int main()

{

vector<int> v, v2, resultado(10);

for (unsigned i=0; i < 10; ++i) v.push back(i);
for (unsigned i=0; i < 10; ++1i) v2.push back(i);

mostrar ("Contenido de v:\n", v);
mostrar ("Contenido de v2:\n", v2);
cout << endl;

// Multiplica v y v2.
transform(v.begin(), v.end(), v2.begin(), resultado.begin(),
multiplies<int>()) ;

mostrar ("Resultado de multiplicar los elementos de v con los de v2:\n", resultado);
cout << endl;

// Luego, niega el contenido de resultado.
transform(v.begin(), v.end(), v.begin(), negate<ints>());

mostrar ("Tras negar v:\n", v);

return O;

}

// Despliega el contenido de un contenedor.
template<class T> void mostrar (const char *msj, T cont) ({
cout << msj;

T::iterator itr;
for (itr=cont.begin(); itr != cont.end(); ++itr)

cout << *itr << " ";

cout << "\n";

248 C++ Soluciones de programacidn

Aqui se muestra la salida:

Contenido de v:
012345¢6 789
Contenido de v2:
0123454671829

Resultado de multiplicar los elementos de v con los de v2:
01 4 9 16 25 36 49 64 81

Tras negar v:
0 -1-2 -3 -4 -5 -6 -7 -8 -9

Opciones
Como regla general, si un objeto de funcién integrada manejara la situacién, debe usarla. En
los casos en que no, puede crear su propio objeto de funcién, como se describe en la siguiente
solucion. Otra opcién consiste en pasar un apuntador a una funcién estandar. Por ejemplo, dado
un contenedor que contiene una secuencia de caracteres, puede pasar la funcion islower() a
remove_if() para eliminar todas las minisculas.

Un objeto de funcién puede tener un limite de valor mediante el uso de un adhesivo. Consulte
Use un adhesivo para conocer detalles.

Cree un objeto de funcion personalizado

Componentes clave

Encabezados Estructuras Funciones y Typedefs

<functional> binary_function argument_type
result_type

<functional> unary_function first_argument_type
second_argument_type
result_type

result_type operator(argument_type arg)
result_type
operator(first_argument_type arg1,
second_argument_type arg2)

Uno de los componentes clave de la STL es el objeto de funcién. Como se explicé en Revisién gene-
ral de objetos de funcion, un objeto de funcién es una instancia de una clase que implementa opera-
tor(). Por tanto, cuando se ejecuta en el objeto la funcién que llama al operador, que es (), se ejecuta
operator(). Un objeto de funcién puede pasarse a cualquier algoritmo que requiera un apuntador
a funcién. Por tanto, puede usarse un objeto de funcién como predicado. Hay varios objetos de
funcién integrados, como less, y su uso se describe en la solucién anterior. También puede crear
sus propios objetos de funcién. En esta solucién se muestra el proceso.

Capitulo 4: Algoritmos, objetos de funcién... 249

Antes de empezar, vale la pena mencionar algunas palabras acerca de la razén por la que
podria crear sus propios objetos de funcién. A primera vista, pareceria que los objetos de funcién
requieren un poco mas de trabajo que simplemente usar apuntadores de funcién pero que no ofre-
cen ventajas. Este no es el caso. Los objetos de funcién expanden el alcance y el poder de la STL de
tres maneras.

En primer lugar, un objeto de funcién puede proporcionar un mecanismo mas eficiente para
el paso de funciones a algoritmos. Por ejemplo, es posible para el compilador poner en linea un
objeto de funcién. En segundo lugar, con el uso de un objeto de funcién puede simplificarse y
estructurarse mejor la implementacién de operaciones complicadas, porque la clase que define un
objeto de funcién puede contener valores y proporcionar capacidades adicionales. En tercer lugar,
un objeto de funcién define un tipo de nombre. Una funcién no. Esto permite que objetos de fun-
cién se especifiquen como argumentos de tipo de plantilla. Por tanto, aunque no hay nada equivo-
cado con el uso de apuntadores a funcién donde sea aplicable, los objetos de funcién ofrecen una
opcién poderosa.

Paso a paso
Para crear un objeto de funcién se requieren estos pasos:

1. Cree una clase que implemente operator().

2. Parala mayor flexibilidad, haga que la clase del paso 1 herede la estructura unary_func-
tion o binary_function, dependiendo de si estd creando un objeto de funcién binaria o
unaria. Estos definen los nombres de tipo estandar para el archivo o los argumentos de la
funcién y el tipo que se devuelve.

3. Cuando se implemente la clase, evite crear efectos colaterales.

Anlisis

Para crear un objeto de funcién, defina una clase que sobrecargue la funcién operator() y luego
cree una instancia de esa clase. Esta instancia puede pasarse a un algoritmo, que luego puede
llamar a la funcién operator() mediante la instancia.

Hay dos tipos de objetos de funcién: unario y binario. Un objeto de funcién unaria implementa
operator() de modo que toma un argumento. Para un objeto de funcién binaria, operator() toma
dos argumentos. Tal como se usan con algoritmos de STL, cada argumento recibe un elemento del
rango o los rangos en que estd operando el algoritmo. Por tanto, el tipo de argumento debe ser
compatible con el tipo de elemento que se le pasa.

Todos los objetos de funciéon de STL integrados son clases de plantilla. Sus objetos de funcién
también pueden definirse como clases de plantilla, pero no es obligatorio. En ocasiones, un objeto
de funcién personalizado sirve a un propésito especifico y una versién de plantilla no es 1til.

Con el fin de obtener la mayor flexibilidad para su objeto de funcién, su clase debe heredar
una de estas estructuras definidas por la STL:

template <class Argument, class Result, estruct unary function ({
typedef Argument argument type;
typedef Result result type;

i

250

C++ Soluciones de programacion

template <class Argumentl, class Argument2, class Result>
struct binary function {

typedef Argumentl first argument type;

typedef Argument2 second argument type;

typedef Result result type;

}i

Una clase que crea un objeto de funcién unaria hereda unary_function. Una clase que crea uno
binario hereda binary_function. Tanto unary_function como binary_function se declaran en el
encabezado <functional>. En general, deben heredarse como ptiblicas, que es la opciéon predeter-
minada para estructuras.

Las estructuras unary_function y binary_function proporcionan definiciones para el tipo o
los tipos de argumentos y el tipo de devolucién del objeto de funcion. Estos nombres se usan con
algunos adaptadores y pueden ser titiles en otros casos. Por tanto, debe usar estos nombres en su
objeto de funcién. En otras palabras, debe usar result_type como tipo de devolucién para opera-
tor(). Debe usar argument_type como tipo de argumento para operator() en un objeto de funcién
unaria y usar first_argument_type y second_argument_type como tipos de los argumentos para
un objeto de funcién binaria. Por tanto, las formas generales de operator() tienen este aspecto:

result_type operator(argument_type arg)
result_type operator(first_argument_type arg1, second_argument_type arg2)

Un objeto de funcién no debe crear efectos colaterales. En otras palabras, no debe realizar ac-
ciones no relacionadas con su objetivo. Por ejemplo, un objeto de funcién cuyo propésito es com-
parar dos elementos en busca de igualdad no debe modificar uno de los elementos en el proceso.

Ejemplo

En el siguiente ejemplo se muestran casos de objetos de funcién unaria y binarios. Se vuelve a
trabajar el programa de ejemplo de la solucién Use transform() para cambiar una secuencia. En esa
version, los apuntadores de funcién se pasan al algoritmo transform(). Las funciones calculan el
reciproco de un valor y el punto medio entre dos valores. Esta versiéon del programa usa objetos de
funcién en lugar de apuntadores de funcién. Crea una clase de objeto de funcién unaria llamado
reciproco que calcula el reciproco de un valor. Crea una clase de objeto de funcién binaria llamado
puntomedio que calcula el punto medio entre dos valores.

// Demuestra los objetos de funcidn unaria y binarios.

//

// En este programa se vuelve a trabajar el ejemplo de la

// solucién "Use transform() para cambiar una secuencia". En ese

// programa se usaron apuntadores a funcidén en llamadas a transform() .
// En esta versidén se usan objetos de funcidn.

#include <iostreams>
#include <vector>
#include <algorithms>
#include <functionals>

Capitulo 4: Algoritmos, objetos de funcidn...

using namespace std;

// Un objeto de funcidén que calcula un reciproco.
class reciproco : unary function<double, double> {

public:

result_ type suma;

result type operator () (argument type val)

if (val

== 0.0) return 0.0;

return 1.0 / val; // devuelve el reciproco

}
}i

// Un objeto de funcidn que encuentra el punto medio

// dos valores.
class puntomedio : binary function<int, int, double> {

public:

result type operator () (
return((a-b) / 2) + b;

}
}i

template<class T> void mostrar (const char *msj,

int main()

{

int i;

vector<double> v;

// Pone valores en v.

for(i=1;

i < 10; ++i) v.push back((double)i);

mostrar ("Contenido inicial de v:\n", v);
cout << endl;

// Primero, demuestra un objeto de funcidn unaria.

// Transforma v al aplicar el objeto de funcidn reciproco.

// Pone de nuevo el resultado en v.
cout << "Usa un objeto de funcil\u0Oa2n unario en llamadas a transform() para\n";
cout << "calcular rec\uOOalprocos para v y almacenar de nuevo el resultado en

v.\n";

transform(v.begin(), v.end(), v.begin(), reciproco()) ;

mostrar ("Contenido transformado de v:\n", v);
cout << endl;

entre

first argument type a, second argument type b)

vector<T> vect) ;

251

// Transforma v por segunda vez, poniendo el resultado en una nueva secuencia.
cout << "Usa un objeto de funci\u0O0a2n unario para transformar v de nuevo.\n";

cout <<

"Esta vez se almacenan los resultados en v2.\n";

vector<double> v2(10) ;
transform(v.begin(), v.end(), v2.begin(), reciproco());

252 C++ Soluciones de programacidén

mostrar ("He aqu\u00al v2:\n", v2);
cout << endl;

vector<int> v3, v4, v5(10);
for(i = 0; 1 < 10; ++i) v3.push back(i);
for(i = 10; i < 20; ++1i) 1f(i%2) v4.push back(i); else v4.push back(-i);

mostrar ("Contenido de v3:\n", v3);
mostrar ("Contenido de v4:\n", v4);
cout << endl;

// Ahora, demuestra un objeto de funcidn binaria.
cout << "Ahora, usa un objeto de funci\u0Oa2n binario para encontrar los puntos

medios\n";
cout << "entre elementos en v3 y v4 y almacena los resultados en v5.\n";
transform(v3.begin(), v3.end(), v4.begin(), v5.begin(), puntomedio());

mostrar ("Contenido de v5:\n", v5);

return 0;

}

// Despliega el contenido de un vector<ints.
template<class T> void mostrar (const char *msj, vector<Ts vect) {
cout << msj;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

Aqui se muestra la salida:

Contenido inicial de v:
1234546789

Usa un objeto de funcidén unaria en llamadas a transform() para
calcular reciprocos para v y almacenar de nuevo el resultado en v.
Contenido transformado de v:

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111

Usa un objeto de funcidn unaria para transformar v de nuevo.
Esta vez se almacenan los resultados en v2.

He aqui v2:

12345678290

Contenido de v3:

012345¢6 71829

Contenido de v4:

-10 11 -12 13 -14 15 -16 17 -18 19

Ahora, usa un objeto de funcidén binaria para encontrar los puntos medios
entre elementos en v3 y v4 y almacenar los resultados en v5.

Contenido de v5:

-56 -58 -5 10 -5 12 -5 14

Capitulo 4: Algoritmos, objetos de funcién... 253

Ejemplo adicional: use un objeto de funcién para mantener

informacion de estado

Aunque en el ejemplo anterior se demuestra coémo crear dos objetos de funcién diferentes, no
muestra la capacidad real de los objetos de funcién. Por ejemplo, éstos pueden usarse con adhesi-
vos y negadores, y esto se describe en Use un adhesivo y Use un negador. Otra caracteristica impor-
tante de los objetos de funcién es su capacidad de mantener informacién de estado. Es posible
para la clase que defina un objeto de funcién para incluir variables de instancia que almacene
informacién acerca del uso del objeto de funcién, como el resultado de algun célculo. Esto puede
ser til en varios contextos. Por ejemplo, una variable podria mantener el éxito o la falla de una
operacién. La capacidad de mantener informacién de estado expande en gran medida los tipos de
problemas a los que puede aplicarse un objeto de funcién.

En el siguiente ejemplo se demuestra la capacidad de un objeto de funcién para almacenar
informacién de estado al retrabajar una funcién de sumatoria usada en el ejemplo de for_each()
mostrado en Recorra en ciclo un contenedor con for_each(). En ese ejemplo, un apuntador a una
funcién llamada sumatoria() se pasaba a for_each(). Esta funcién construia un total constante de
los valores en el rango sobre el que operaba for_each(). La funcién sumatoria() usaba una variable
estdtica para contener la suma actual. Cada vez que se llamaba a la funcién, el valor pasado a la
funcién se agregaba al total constante y se devolvia éste (es decir, la sumatoria actual). Aunque
este método funcionaba, es poco elegante. Un método mucho mejor consiste en convertir sumato-
ria() en un objeto de funcién en que el total constante se mantiene en una variable de instancia. No
s6lo permite que se obtenga la sumatoria sin una llamada a funcién, también permite que el total
se restablezca.

He aqui una manera de crear una clase de objeto de funcién de sumatoria:

// Un objeto de funcién que calcula una sumatoria entera.
class sumatoria : unary function<int, voids> {
public:

argument type suma;

sumatoria() { suma = 0; }

// Agregue al total constante y devuelve una

// referencia al objeto que invoca.

result type operator () (argument type i) {
suma += 1;

}
}i

Observe que el total constante se mantiene en un campo llamado suma dentro de la clase su-
matoria. Esto permite que la sumatoria se obtenga del objeto, en lugar de tener que invocar una
funcién. Para restablecer el objeto, simplemente asigna cero a suma.

En el siguiente programa se vuelve a trabajar el ejemplo de for_each() para que use el objeto
de funcién sumatoria:

// Usa un objeto de funcidén con for each().

#include <iostream>
#include <vector>
#include <algorithm>
#include <functionals>

254

C++ Soluciones de programacion

using namespace std;

// Un objeto de funcidén que calcula una sumatoria entera.
class sumatoria : unary function<int, voids> {
public:

Vi

argument type suma;
sumatoria() { suma = 0; }

// Agregue al total constante y devuelve una

// referencia al objeto que invoca.

result type operator () (argument type i) {
suma += 1;

1

int main()

{

S

vector<int> v;
for(int i=1; i < 11; i++) v.push back(i);

cout << "Contenido de v: ";

for (unsigned i=0; i < v.size(); ++1i)
cout << v[i] << " ";

cout << "\n";

// Declara un objeto de funcidén que recibe el objeto
// devuelto por for each().
sumatoria s;

// Esto llama a for each() con un objeto de funcidén, en lugar de
// un apuntador a funcidn. El objeto de funcidn devuelto por

// for each() puede usarse para obtener el total de la sumatoria.
s = for each(v.begin(), v.end(), sumatoria());

cout << "Sumatoria de v: " << s.suma << endl;

// Cambia el valor de v[4] y vuelve a calcular la sumatoria.
// Debido a que se crea un nuevo objeto de funcién, la

// sumatoria empieza una vez mas en cero.

cout << "Estableciendo v[4] en 99\n";

v(4]l= 99;

s = for each(v.begin(), v.end(), sumatoria());
cout << "La sumatoria de v es ahora: " << s.suma;
return O;

Observe como se llama a for_each():

= for each(v.begin(), v.end(), sumatoria());

Capitulo 4: Algoritmos, objetos de funcion... 255

Se pasa una nueva instancia de sumatoria. Este objeto de funcién se usa mediante esta invocacién
de for_each(). Recuerde que el algoritmo for_each() devuelve el objeto de funcién que se pasa. En
tal caso, este objeto se asigna a s, que es un objeto de sumatoria. Esto significa que s contendra la
sumatoria. Este valor se obtiene de s.suma.

Opciones
Cuando se usa un objeto de funcién, tiene la opcién de unir un valor a él. Este procedimiento se
describe en Use un adhesivo y Use un negador.

En algunos casos, puede usar un objeto de funcién integrada, en lugar de uno personalizado.
Por ejemplo, si quiere determinar si un valor es mayor que otro, puede usar el objeto de funcién
greater. Consulte Use un objeto de funcion integrada para conocer mas detalles.

Aunque los objetos de funcién son mas poderosos que los apuntadores de funcién, no hay
nada equivocado en usar uno de estos tltimos en situaciones para las que es apropiado. Por
ejemplo, si un vector contiene caracteres, entonces es adecuado pasar un apuntador a la funcién
estdndar tolower() para que transform() convierta letras en mintsculas. En este caso, se obten-
drian pocos beneficios, si acaso, en la creacién de toda una clase para manejar esta operacién.

Componentes clave

Encabezados Clases Funciones

<functional> template <class Op, class T>
binderlst<Op>
bind1st(const Op &obj_fun_bina,
const T &valor)
template <class Op, class T>
binder2nd<Op>
bind2nd(const Op &obj_fun_bina,
const T &valor)

En la solucién se muestra como unir un valor a un objeto de funcién. Recuerde que un objeto de
funcién binaria toma dos pardmetros. Por lo general, estos parametros reciben valores del rango
o los rangos en que esta operando el objeto. Por ejemplo, cuando se ordena, la funcién de compa-
racién binaria recibe pares de elementos del rango que se esta ordenando. Aunque el comporta-
miento predeterminado de un objeto de funcion binaria es muy 1itil, hay ocasiones en que querra
modificarlo. Para comprender por qué, tome en consideracién lo siguiente.

Suponga que quiere eliminar todos los elementos de una secuencia que son mayores que
algtn valor, como 10. Su primera idea es, muy naturalmente, usar el objeto de funcion greater. Sin
embargo, como opcion predeterminada, greater recibe ambos valores del rango en que esté ope-
rando. Por tanto, por si mismo, no hay manera de hacer que compare elementos de una secuencia
con el valor 10. Para usar greater con este propdsito, necesita alguna manera de unir el valor 10
a su operando del lado derecho. Es decir, necesita alguna manera de hacer que gretaer realice la
siguiente comparacién:

256 C++ Soluciones de programacidn

val > 10

donde val es un elemento de una secuencia. Por fortuna, la STL proporciona un mecanismo,
llamado adhesivos, que realiza esto. Un adhesivo vincula un valor a uno de los argumentos de un
objeto de funcién binaria. La salida de un adhesivo es un objeto de funcién unaria, que puede
usarse en cualquier lugar en que puede utilizarse cualquier otro objeto de funcién unaria.

Hay dos adhesivos definidos por la STL: binds1st() y bind2nd(). En esta solucién se muestra
su uso.

Paso a paso
Para usar un adhesivo para unir un valor a un objeto de funcién se requieren estos pasos:

1. Para unir un valor al primer argumento de un objeto de funcién binaria, llame a bind1st().
2. Para unir un valor al segundo argumento de un objeto de funcién binaria, llame a bind2nd().
3. Use el resultado del adhesivo en cualquier lugar en que se requiere un predicado unario.

Anlisis
Aqui se muestran los prototipos para binds1st() y bind2nd():

template <class Op, class T>
binderlst<Op> bind1st(const Op &obj_fun_bina, const T &uvalor)

template <class Op, class T>
binder2nd <Op> bind2nd(const Op &obj_fun_bina, const T &wvalor)

Aqui, obj_fun_bina especifica el objeto de funciéon binaria al que se unira valor. bind1st() devuelve
un objeto de funcién unaria (encapsulado como un objeto de binderlst), que tiene el operando
obj_fun_bina del lado izquierdo del operando unido a value. bind2nd() devuelve un objeto de
funcién unaria (encapsulado en un objeto de binder2nd) que tiene al operando del lado derecho
unido a valor. Por ejemplo,

bindlst (less<double>, 0.01)

une el valor 0.01 al primer argumento (del lado izquierdo) del objeto de funcién less, y
bind2nd (less<double>, 0.01)

une el valor al segundo argumento (del lado derecho). De los dos, bind2nd() es el de uso mas
comun.

Las clases binderlst y binder2nd representan los objetos de funcién unaria devueltos por los
adhesivos. También se declaran en <functional>. Por lo general, no usara directamente la clase
binderlst o binder2nd. En cambio, por lo comtin pasara la salida de un adhesivo directamente a
un algoritmo. Por tanto, binderlst y binder2nd no se describirdn mas aqui.

Capitulo 4: Algoritmos, objetos de funcion... 257

Debido a que un adhesivo convierte un objeto de funcién binaria en uno unario, el resultado
de un adhesivo puede pasarse a cualquier algoritmo que requiere un predicado unario. Por ejem-
plo, esto pasa un objeto de funcién unaria a find_if():

find_if(v.begin(), v.end(), bind2nd(less<int>, 19))

Esto causa que find_if() devuelva un iterador al primer valor en v que es menor que 19.

Ejemplo
En el siguiente programa se demuestra bind2nd(). Utiliza el algoritmo remove_if() para eliminar
elementos de una secuencia basada en la salida de un predicado. Recuerde que tiene el prototipo:

template <class Forlter, class UnPred>
Forlter remove_if(Forlter inicio, Forlter final, Unpred funp)

El algoritmo elimina elementos de la secuencia definida por inicio y final para el que el predicado
unario definido por funp es true. El algoritmo devuelve un apuntador al nuevo final de la secuen-
cia, que refleja la eliminacién de los elementos.

En el siguiente programa se eliminan todos los valores de una secuencia que es mayor que el
valor de 10. Debido a que el predicado requerido por remove_if es unario, no podemos simple-
mente usar el objeto de funcién greater como tal, porque greater es un objeto de funcién bina-
ria. En cambio, debemos unir el valor 10 al segundo argumento de greater usando el adhesivo
bind2nd().

// Demuestra bind2nd() .

#include <iostream>
#include <list>
#include <functionals>
#include <algorithm>

using namespace std;

template<class InIter>
void mostrar rango(const char *msj, InIter inicio, InIter final);

int main()
list<int> lista;
list<int>::iterator itr_ inv;

for (unsigned i=1; i < 20; ++i) lista.push back(i);

mostrar rango ("Secuencia original:\n", lista.begin(), lista.end());
cout << endl;

// Usa bind2nd() para crear un objeto de funcidn unaria
// que devolverd true cuando un valor es mayor que 10.
// Esto lo usa remove if () para eliminar todos los
// elementos de lista que son mayores de 10.
itr inv = remove if (lista.begin(), lista.end(),

bind2nd (greater<int> (), 10));

258

C++ Soluciones de programacion

mostrar rango ("Secuencia resultante:\n", lista.begin(), itr_ inv);

return 0;

}

// Muestra un rango de elementos.
template<class InIter>
void mostrar rango(const char *msj, Inlter inicio, InIter final) {

InIter itr;
cout << msj;

for(itr = inicio; itr != final; ++itr)
cout << *itr << " ";
cout << endl;

}
La salida producida por el programa se muestra aqui.

Secuencia original:
123456 78910 11 12 13 14 15 16 17 18 19

Secuencia resultante:
12345678910

Como lo muestra la salida, la secuencia resultante contiene los elementos del 1 al 10. Los ele-
mentos mayores que 10 se han eliminado. He aqui cémo funciona. Cuando se ejecuta remove_if(),
el objeto de funcién binaria greater recibe un elemento de lista en su primer parametro y el valor
10 en su segundo, porque el segundo parametro estd unido a 10 empleando bind2nd(). Por tanto,
para cada elemento de la secuencia, la comparacién

elemento > 10
se evalud. Cuando es true, se elimina el elemento.
Opciones
Aunque bind2nd() suele ser el adhesivo méas usado de los dos, bind1st() esta disponible como

opcion. Como se explico, el adhesivo bind1st() une un valor al primer parametro. Para ver los
efectos, trate de sustituir esta linea en el programa anterior:

endp = remove if (lista.begin(), lista.end(), bindlst (greater<int>(), 10));

Esto causa que los elementos de la secuencia se pasen al segundo parametro de greater, con el
valor 10 unido al primer pardmetro. Por tanto, para cada elemento de la secuencia, se realiza la
siguiente comparacion:

10 > elemento

Capitulo 4: Algoritmos, objetos de funcién... 259

Esto causa que greater devuelva true para elementos que son menores de 10. Aqui se muestra la
salida producida después de que haya sustituido bind1st().

Secuencia original:
123456 78 9 10 11 12 13 14 15 16 17 18 19

Secuencia resultante:
10 11 12 13 14 15 16 17 18 19

Como puede ver, se han eliminado los elementos que son menores de 10.

Aunque valido, al autor le disgusta el uso de bind1st() como se acaba de mostrar porque
parece ir en contra de la intuicién. Si quiere eliminar elementos que son menores de 10, seria mejor
usar esta instruccion:

endp = remove if (lista.begin(), lista.end(), bind2nd(less<int>(), 10));

Aqui, se usa el objeto de funcién less y los resultados reflejan lo que se esperaria que ocurra nor-
malmente cuando se emplea less. Con el empleo de bind1st() y la inversion de la comparacién se
logran los mismos resultados, pero agrega un poco de confusién sin razén alguna.

Componentes clave

Encabezados Clases Funciones

<functional> template <class Pred> unary_negate<Pred>
notl(const Pred &pred_unario)

template <class Pred> unary_negate<Pred>
not2(const Pred &pred_binario)

Hay un objeto relacionado con un adhesivo, llamado negador. Los negadores son not1() y not2().
Devuelven la negacién (es decir, el complemento) de cualquier predicado que modifican. Los
negadores delinean la STL porque le permiten adaptar eficientemente un predicado para produ-
cir el resultado opuesto, con lo que se evita la necesidad de crear un segundo predicado. En esta
solucién se demuestra su uso.

Paso a paso
Para usar un negador se requieren estos pasos:

1. Para negar un predicado unario, use not1().
2. Paranegar un predicado binario, use not2().

260

C++ Soluciones de programacion

Analisis
Los negadores son not1() y not2(). Tienen estos prototipos:

template <class Pred> unary_negate<Pred>
notl(const Pred &pred_unario)

template <class Pred> unary_negate<Pred>
not2(const Pred &pred_binario)

El negador notl() es para usarse con predicados unarios, y el predicado para negar se pasa en
pred_unario. Para negar predicados binarios, use not2(), pasando el predicado binario en pred_bi-
nario. El resultado de ambos negadores es un predicado que devuelve la negacién del predicado
original representado como un objeto de unary_negate o binary_negate.

Por lo general, no interactuard de manera directa con la clase unary_negate o binary_negate
y no se describen mas ampliamente aqui. En cambio, la salida de not1() o not2() suele pasarse de
modo directo a un algoritmo. Por ejemplo, esta instruccién elimina elementos de un contenedor si
no son iguales a 'A":

remove if (v.begin(), v.end(), notl (bind2nd(equal to<char>(), 'A'))):

Aunque equal_to es un objeto de funcién binaria, el adhesivo bind2nd() lo convierte en un objeto
unario. Por esto es por lo que se usa notl() en lugar de not2().

Ejemplo

En el siguiente ejemplo se demuestran not1() y not2(). En primer lugar, muestra un modo de ordenar
una secuencia de manera descendente empleando la negacién del objeto de funcién less para deter-
minar el orden. Luego se usa notl() para eliminar todos los elementos que no son iguales a H.

// Demuestra notl() y not2().

#include <iostream>
#include <vector>
#include <algorithms>
#include <functionals>

using namespace std;

template<class InIters>
void mostrar rango(const char *msj, InIter inicio, InIter final);

int main()
vector<char> v;

for (int i=0; i < 26; i++) v.push back('A'+i);

mostrar rango ("Orden original de v:\n", v.begin(), v.end());
cout << endl;

// Usa not2() para invertir el orden de v.
sort (v.begin(), v.end(), not2(less<char>()));

Capitulo 4: Algoritmos, objetos de funcién... 261

mostrar rango ("Tras ordenar v empleando not2(less<chars()):\n",
v.begin(), v.end());
cout << endl;

// Usa notl() para eliminar todos los elementos que no son iguales a H.
vector<char>::iterator res_final;
res_final = remove if (v.begin(), v.end(),

notl (bind2nd(equal_ to<char>(), 'H')));

mostrar rango ("v tras eliminar elementos no iguales a H:\n",
v.begin(), res final);

return 0;

}

// Muestra un rango de elementos.
template<class InIter>
void mostrar rango (const char *msj, Inlter inicio, InIter final) {
InIter itr;

cout << msj;

for(itr = inicio; itr != final; ++itr)
cout << *itr << " ";

cout << endl;

}
Produce la siguiente salida:

Orden original de v:
ABCDEFGHIJKLMNOPQRSTUVWIXYZ

Tras ordenar v empleando not2 (less<char>()):
ZYXWVUTSRQPONMLIKJIHGEFEDC CIBA

v tras eliminar elementos no iguales a H:
H

Opciones

Aunque puede ser muy ttil negar la salida de un predicado y puede mejorar el manejo de muchas
situaciones, tal vez no siempre sea la mejor opcién. En ocasiones, querrd crear un predicado sepa-
rado que realice la negacién. Por ejemplo, considere un caso en que puede realizarse la negacién
de alguna operacién de manera mas eficiente al calcular directamente el resultado negativo, en
lugar de revertir la salida del resultado afirmativo. En esta situacién, la creaciéon de un predica-

do aparte es mas eficiente que calcular primero el resultado y luego negarlo. En esencia, podria
encontrar un caso en que sea mas rapido el calculo de la negacién que del resultado afirmativo. En
esta situacion, no tiene sentido calcular primero la opcién afirmativa y luego negarla.

262 C++ Soluciones de programacidn

Use el adaptador de apuntador a funcion

Componentes clave

Encabezados Clases Funciones

<functional> pointer_to_unary_function Result operator()(Arg arg) const;
<functional> pointer_to_binary_function Result operator()(Arg argl1, Arg2 arg2) const;
<functional> template <class Arg, class Result>

pointer_to_unary_function<Arg, Result>
ptr_fun(Result (*func)(Arg))

template <class Argl, class Arg2, class Result>
pointer_to_binary_function<Argl, Arg2, Result>
ptr_fun(Result (*func)(Argl, Arg2))

El encabezado <functional> define varias clases, llamadas adaptadores a funcién, que le permiten
adaptar un apuntador a funcién a una forma que puede usarse con diversos componentes de STL.
Varios de estos adaptadores estan disefiados para situaciones mas alld del alcance de este libro,
pero uno resulta especialmente interesante porque resuelve un problema muy comtn: permitir un
apuntador a funcién que habra de usarse con un adhesivo o un negador.

Como se ha mostrado en las soluciones anteriores, es posible pasar un apuntador a una
funcién (en lugar de pasar un objeto de funcién) como un predicado a un algoritmo. Siempre y
cuando la funcién realice la operacién deseada, no hay problema en hacer esto. Sin embargo, si
quiere unir un valor o usar un negador con esa funcién, entonces ocurriran problemas porque
no es posible aplicar directamente estos modificadores a apuntadores a funcién. Para permitir
que se usen funciones con adhesivos y negadores, necesitard usar los adaptadores de apuntador
a funcién.

Paso a paso
Para adaptar un apuntador a funcién en un objeto de funcion se requieren estos pasos:

1. Para crear un objeto de funcién a partir de una funcién unaria, llame a ptr_fun(), pasando-
lo en un apuntador a la funcién unaria. El resultado es un objeto de funcién unaria.

2. Para crear un objeto de funcién a partir de una funcién binaria, llame a ptr_fun(), pasdndo-
lo en un apuntador a la funcién binaria. El resultado es un objeto de funcién binaria.

Anlisis
El adaptador de apuntador a funcién es ptr_fun(). Aqui se muestran ambas formas:

Capitulo 4: Algoritmos, objetos de funcién... 263

template <class Arg, class Result>
pointer to unary function<Arg, Results>
ptr_fun(Result (*func) (Arg))

template <class Argl, class Arg2, class Results>
pointer to binary function<Argl, Arg2, Results>
ptr_fun(Result (*func) (Argl, Arg2))

Devuelve un objeto de tipo pointer_to_unary o uno de tipo pointer_to_binary_function. Aqui se
muestran estas clases:

template <class Arg, class Result>
class pointer to unary function:
public unary function<Arg, Result>

{

public:
explicit pointer to unary function(Result (*func) (Arg)) ;
Result operator() (Arg arg) const;

¥

template <class Argl, class Arg2, class Results>
class pointer to_binary function:
public binary function<Argl, Arg2, Result>

{
public:
explicit pointer_ to_binary function(
Result (*func) (Argl, Arg2));
Result operator() (Argl argl, Arg2 arg2) const;

}i

Por lo general, no interactuard con estas clases de manera directa. Su principal propésito es
construir un objeto de funcién que encapsula func. Para pointer_to_unary_function, operator()
devuelve

func(arg)
Y para pointer_to_binary_function, operator() devuelve
func(argl, arg2)

El tipo de resultado de operator() esta especificado por el tipo genérico Result. Por tanto, un obje-
to de esas clases puede pasarse como argumento a un adhesivo o un negador.

Ejemplo

He aqui un ejemplo que utiliza ptr_fun(). Crea un vector de apuntadores a caracter que sefala a
cadenas de caracteres. Luego utiliza la funcién de biblioteca estindar stremp() para encontrar el
apuntador que sefiale a "Tres". Debido a que stremp() no es un objeto de funcién, se usa el adapta-
dor ptr_fun() para permitir que el valor "Tres" se una al segundo parametro de stremp() emplean-
do bind2nd(). Debido a que stremp() devuelve false cuando se tiene éxito, el negador not1() se
aplica para invertir esta condicion.

264 C++ Soluciones de programacidn

Sin el uso de ptr_fun(), no seria posible aplicar bind2nd() a stremp(). Es decir, debido a que
stremp() es una funcion, no es posible usarla directamente con bind2ndJ().

// Usa un adaptador de apuntador a funcién.

#include <iostream>
#include <vector>
#include <algorithm>
#include <functionals>
#include <cstrings

using namespace std;

template<class InIters>
void mostrar rango(const char *msj, InIter inicio, InIter final);

int main()

{

vector<char *> v;
vector<char *>::iterator itr;

v.push back ("Uno") ;

v.push back ("Dos") ;

v.push back ("Tres") ;

v.push back ("Cuatro") ;

v.push back ("Cinco");

mostrar rango("La secuencia contiene: ", v.begin(), v.end());

cout << endl;
cout << "Buscando Tres en la secuencia.\n\n";

// Usa un adaptador de apuntador a funcidn.

itr = find if (v.begin(), v.end(),
notl (bind2nd (ptr_fun(strcmp), "Tres")));
if (itr !'= v.end()) {
cout << "\uOOadEncontrado!\n";
mostrar rango("La secuencia a la que apunta es: ", itr, v.end());
1
return O0;

}

// Muestra un rango de elementos..
template<class InIter>
void mostrar rango(const char *msj, Inlter inicio, InIter final) {

Inlter itr;

cout << msj;

for(itr = inicio; itr != final; ++itr)
cout << *itr << " ";

cout << endl;

}

Capitulo 4: Algoritmos, objetos de funcién... 265

Aqui se muestra a salida de este programa:

La secuencia contiene: Uno Dos Tres Cuatro Cinco
Buscando Tres en la secuencia.

iEncontrado!
La secuencia a la que apunta es: Tres Cuatro Cinco

Opciones
Otro método para adaptar una funcién consiste en crear su propia clase de objeto de funcién.
Haga que su operator() llame a la funcién y devuelva el resultado. Aunque es mucho menos ele-
gante que usar un adaptador de apuntador a funcidn, esta técnica puede ser ttil en situaciones en
que el resultado de la funcién se procesa un poco antes del uso.

El adaptador ptr_fun() sélo trabaja con funciones que no son miembros. La STL define adapta-
dores para funciones miembro, que se denominan mem_fun() y mem_fun_ref(). Se les denomina
colectivamente adaptadores de funcién de apuntador a miembro.

Use los iteradores de flujo

Componentes clave

Encabezados Clases Funciones

<iterator> istream_iterator *
++

<iterator> ostream_iterator *
++

<iterator> Istreambuf_iterator *
++
bool equal(istreambuf_iterator<CharType,
Attr> &ob)

<iterator> ostreambuf_iterator *
++
bool failed const throw()

La STL define cuatro clases que le permiten obtener iteradores a flujos de E/S. Se les suele de-
nominar iteradores de flujo, y se encuentran entre algunos de los objetos de STL més interesantes,
porque pormiten que un flujo de Entrada/Salida se opere de manera muy parecida a como lo hace
en contenedores. Los beneficios de los iteradores de flujo son mas evidentes cuando se usan con
algoritmos, donde un flujo puede proporcionar entrada a alguna accién, o recibir salida de ésta.
Aungque casi todas las operaciones de E/S atin utilizan operadores y funciones estindar de E/S, la

266

C++

Soluciones de programacion

capacidad de aplicar algoritmos a flujo ofrece una nueva manera de pensar acerca de la programa-

cién de

E/S. Los iteradores de flujo también pueden simplificar ciertas situaciones dificiles o tedio-

sas de E/S. Aunque un analisis a profundidad de los iteradores de flujo es muy amplio y esta mas

alla del

alcance de este libro, en esta solucion se describe el método basico necesario para usarlos.

Paso a paso
Para usar los iteradores de flujo para ingresar datos se requieren estos pasos:

1.

4.

Para crear un iterador en un flujo de entrada formado, construya un objeto de tipo
istream_iterator, especificando el flujo de entrada.

Para crear un iterador a un flujo de entrada de caracteres, construya un objeto de tipo
istreambuf_iterator, especificando el flujo de entrada.

Para ingresar datos del flujo, deje de hacer referencia al iterador. Luego, aumente el itera-
dor. Esto hace que lea el siguiente elemento del flujo. Repita este proceso hasta que se lean
los datos o se alcance el final del flujo.

El constructor predeterminado construye un iterador que indica el fin del flujo.

Para usar los iteradores de flujo para dar salida a los datos, se requieren estos pasos:

1.

2.

4.

Para crear un iterador en un flujo de salida formado, construya un objeto de tipo ostream_
iterator, especificando el flujo de salida.

Para crear un iterador a un flujo de salida de caracteres, construya un objeto de tipo os-
treambulf_iterator, especificando el flujo de salida.

Para dar salida a los datos del flujo, asigne el valor mediante el iterador para dejar de hacer
referencia. No es necesario aumentar el iterador. Cada asignaciéon avanza autométicamente
la salida.

Si ocurre un error en la salida, se devolvera la funcién failed().

Analisis

La STL

define cuatro clases de iterador de flujo. Se declaran en <iterator> y se muestran aqui:

Clase

Descripcion

istream_iterator Un iterador de flujo de entrada.

istreambuf_iterator Un iterador de bufer de flujo de entrada.

ostream_iterator Un iterador de flujo de salida.

ostreambuf_iterator Un iterador de bufer de flujo de salida.

Capitulo 4: Algoritmos, objetos de funcién... 267

Una diferencia importante entre los iteradores es que istream_iterator y ostream_iterator pue-
den operar directamente sobre varios tipos de datos, como int o double. Los iteradores istream-
buf_iterator y ostreambuf_iterator pueden operar s6lo sobre caracteres. Sin embargo, la ventaja
que ofrecen estos dos ultimos es que le permiten realizar E/S de archivo de bajo nivel. Aqui se
ofrece una revisién general de cada clase.

Los iteradores de flujo formados
Los iteradores istream_iterator y ostream_iterator pueden leer o escribir datos formados, lo que
significa que pueden leer o escribir valores de cardcter, de entero, de punto flotante, booleanos y
de cadena. Esto los hace especialmente titiles cuando operan en flujos que contienen informacién
legible para los seres humanos. Por ejemplo, podria usar ostream_iterator para escribir un entero
a cout, o istream_iterator para leer una cadena de cin.

La clase istream_iterator da soporte a operaciones de iterador de entrada en un flujo. Aqui se
muestra su definicién de plantilla:

template <class T, class CharType=char, class Attr = char_traits<CharType>,
class Diff = ptrdiff_t> class istream_iterator:
public iterator<input_iterator_tag, T, Diff, const T *, const T &>

Aqui, T es el tipo de datos que se estd transfiriendo, CharType es el tipo de caracter (char o
wechar_t) sobre el que estd operando el flujo, y Diff es un tipo capaz de contener la diferencia entre
dos direcciones. Note que T es el tinico pardmetro de tipo genérico que no es por omisién. Por
tanto, debe especificar cuando se crea un istream_operator. Este tiene los siguientes constructores:

istream_iterator()
istream_iterator(istream_type &flujo)
istream_iterator(const istream_iterator<T, CharType, Attr, Diff> &ob)

El primer constructor crea un iterador que indica final del flujo. Este objeto puede usarse para
revisar el final de la entrada. (Es decir, se comparard igual que final del flujo.) El segundo crea un
iterador al flujo especificado por flujo. Luego lee el primer objeto del flujo. El tipo istream_type es
un typedef que especifica el tipo de flujo de entrada. La tercera forma es el constructor de copia de
istream_iterator.

La clase istream_iterator define los siguientes operadores: — >, *, ++. Los dos primeros acttian
como se esperaria. El operador ++ requiere un poco de explicacién. Cuando se usa en su forma de
prefijo, ++ causa que se lea el siguiente valor del flujo de entrada. Cuando se usa en su forma de
sufijo, se almacena el valor actual del valor del flujo y luego se lee el siguiente valor. En cualquier
caso, para recuperar el valor, use el operador * en el iterador. Los operadores ==y != también se
definen para objetos de tipo istream_iterator.

La clase ostream_iterator da soporte a las operaciones de iterador de salida en un flujo. Aqui
se muestra la definicién de su plantilla:

template <class T, class CharType=char, class Attr = char_traits<CharType> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>

268

C++ Soluciones de programacion

Aqui, T es el tipo de datos que se esta transfiriendo y CharType es el tipo de caracter (char o
wechar_t) sobre el que estd operando el flujo. Observe que T es el tinico pardmetro de tipo genérico
que no es la opcion predeterminada. Por tanto, debe especificar cuando se crea un ostream_opera-
tor. Este tiene los siguientes constructores:

ostream_iterator(ostream_type &flujo)
ostream_iterator(ostream_type &flujo, const CharType *delim)
ostream_iterator(const ostream_iterator<T, CharType, Attr> &ob)

El primer constructor crea un iterador al flujo especificado por flujo. El tipo ostream_type es un
typedef que especifica el tipo de flujo de salida. La segunda forma crea un iterador al flujo especi-
ficado por flujo y usa los delimitadores especificados por delim. Los delimitadores se escriben en el
flujo después de cada operacién de salida. La tercera forma es el constructor de copia de ostream_
iterator.

La clase ostream_iterator define los siguientes operadores: =, *, ++. Para ostream_iterator el
operador ++ no tiene efecto. Para escribir el flujo de salida, simplemente asigne un valor mediante
el operador *.

Los iteradores de flujo de bajo nivel
Los iteradores de flujo de bajo nivel son istreambuf_iterator y ostreambuf_iterator. Estos itera-
dores leen y escriben caracteres, no datos formados. La ventaja principal de los iteradores de flujo
de bajo nivel es que le dan a su programa acceso a un flujo simple de E/S byte por byte, evitando
traducciones de caracteres que son posibles con los iteradores de flujo formado. Cuando se usan
estos iteradores, hay una correspondencia uno a uno entre lo que esta en el flujo y lo que se escribe
o0 lee mediante el iterador.

La clase da soporte a operaciones de iterador de entrada de caracteres de bajo nivel en un flujo.
Aqui se muestra su definicién de plantilla:

template <class CharType, class Attr = char_traits<CharType> >
class istreambuf_iterator:
public iterator<input_iterator_tag, CharType, nombretipo Attr::off_type,
CharType *, CharType &>

Aqui, CharType es el tipo de caracter (char o wchar._t) sobre el que esta operando el flujo. istream-
buf_iterator tiene los siguientes constructores:

istreambuf_iterator() throw()
istreambuf_iterator(istream_type &flujo) throw()

istreambulf_iterator(streambuf_type, *buferflujo) throw()

El primer constructor crea un iterador que indica el fin del flujo. El segundo, uno al flujo especi-
ficado por flujo. El tipo istream_type es un typedef que especifica el tipo del flujo de entrada. La
tercera forma crea un iterador al flujo especificado por buferflujo. El tipo streambuf_type es un
typedef que especifica el tipo de brfer de flujo.

La clase istreambuf_iterator define los siguientes operadores: *, ++. El operador ++ trabaja
como se describi6 para istream_iterator. Para leer un caracter de la cadena, aplique * al iterador.

Capitulo 4: Algoritmos, objetos de funcién... 269

Para pasar al siguiente caracter, aumente el iterador. Los operadores ==y != también se
definen para objetos de tipo istreambuf_iterator.
istreambuf_iterator define la funcién miembro equal(), que se muestra aqui:

bool equal(istreambuf_iterator<CharType, Attr> &ob)

Su operacién va un poco en contra de la intuiciéon. Devuelve true si el iterador que invoca y ob
sefialan al final del flujo. También devuelve true si ambos operadores no sefialan al final del flujo.
No es necesario que sefialen a lo mismo. Devuelve false, de otra manera. Los operadores ==y !=
funcionan igual.

La clase ostreambuf_iterator da soporte a operaciones de iterador de salida de caracteres de
bajo nivel en un flujo. Aqui se muestra su definicién de plantilla:

template <class CharType, class Attr = char_traits<CharType> >
class ostreambuf_iterator:
public iterator<output_iterator_tag, void, void, void, void>

Aqui, CharType es el tipo de caracter (char o wchar_t) sobre el que esta operando el flujo. os-
treambuf_iterator tiene los siguientes constructores:

ostreambuf_iterator(ostream_type &flujo) throw()

ostreambuf_iterator(streambuf_type, *buferflujo) throw()

La primera crea un iterador al flujo especificado por flujo. El tipo ostream_type es un typedef
que especifica el tipo de flujo de entrada. La segunda forma crea un iterador que usa el bifer
de flujo especificado por buferflujo. El tipo streambuf_type es un typedef que especifica el tipo de
bufer de flujo.
La clase ostreambulf_iterator define los siguientes operadores: =, *, ++. El operador ++ no tiene
efecto. Para escribir un carécter en el flujo, simplemente asigne un valor mediante el operador *.
La clase ostreambuf_iterator también define la funcién failed(), como se muestra aqui:

bool failed() const throw()

Devuelve false si no ha ocurrido una falla, y true de otra manera.

Ejemplo

En el siguiente programa se demuestra la manera en que istream_iterator y ostream_iterator pue-
den usarse para leer de cin y escribir en cout. Aunque por lo general usara los iteradores de flujo
para este fin, el programa ilustra claramente la manera en que funcionan. Por supuesto, el poder
real de los iteradores de flujo se encuentra cuando se usan con algoritmos, lo que se demuestra
con el ejemplo adicional que sigue.

// Usa istream iterator y ostream ilerator para leer de cin y escribir en cout.

#include <iostream>
#include <iterators>
#include <string>
#include <vector>

210

C++ Soluciones de programacion

using namespace std;

int main()

{

unsigned i;

double d;

string cad;
vector<int> vi;
vector<double> vd;
vector<string> vs;

// Usa istream iterator para leer de cin.

// Crea un iterador de flujo de entrada para enteros.
cout << "Ingrese algunos enteros, ingrese 0 para detener.\n";
istream iterator<ints> itr ent (cin);
do {
i = *itr ent; // lee el siguiente entero
if(i 1= 0) {
vi.push back(i); // lo almacena
++itr ent; // ingresa el siguiente entero

} while (i != 0);

// Crea un iterador de flujo de entrada para doubles
cout << "Ingrese algunos doubles, ingrese 0 para detener.\n";
istream iterator<double> itr double(cin);
do {
d = *itr double; // lee el siguiente double
if(d 1= 0.0) {
vd.push back(d); // lo almacena
++itr double; // ingresa el siguiente double
}

} while (4 != 0.0);

// Crea un iterador de flujo de entrada para cadena.

cout << "Ingrese algunas cadenas, ingrese 'salir' para detener.\n";

istream iterator<string> itr cadena(cin);

do {
cad = *itr cadena; // lee la siguiente cadena
if(cad != "salir") {

vs.push back(cad); // la almacena
++itr cadena;

}

} while (cad != "salir"); // ingresa la siguiente cadena
cout << endl;

cout << "Esto es lo que ingres\u0OOa2:\n";

for(i=0; i < vi.size(); i++) cout << vil[i] << " ";

cout << endl;

for(i=0; i < vd.size(); i++) cout << vd[i] << " ";
cout << endl;

Capitulo 4: Algoritmos, objetos de funcidn...
for(i=0; 1 < vs.size(); i++) cout << vs[i] << " ";
// Rhora, usa ostream iterator para escribir a cout.

// Crea un iterador de salida para cadenas.
ostream iterator<string> salida_itr cadena (cout) ;

*salida itr cadena = "\n";
*salida itr cadena = string("\nSe trata de una cadena\n");
*salida itr cadena = "Aqu\u0Oal hay otra.\n";

// Crea un iterador de salida para int.
ostream iterator<int> salida_itr_ ent (cout) ;
*salida_itr ent = 10;

*salida_itr cadena = " ";

*salida itr ent = 15;

*salida_ itr cadena = " ";

*salida_itr ent = 20;

*salida itr cadena = "\n";

// Crea un interador de salida para bool.
ostream iterator<bool> salida_ itr bool (cout) ;
*salida_itr bool = true;

*salida itr_cadena = " ";

*salida_itr bool = false;

return O;

}
Aqui se muestra una ejecucién de ejemplo:

Ingrese algunos enteros, ingrese 0 para detener.
1230

Ingrese algunos doubles, ingrese 0 para detener.

1.1 2.2 3.3 0.0

Ingrese algunas cadenas, ingrese 'salir' para detener.
Se trata de una prueba

salir

Esto es lo que ingresd:
123

1.1 2.2 3.3

Se trata de una prueba

Se trata de una cadena
Agui hay otra.

10 15 20

10

211

212

C++ Soluciones de programacion

Ejemplo adicional: cree un filtro de archivo de STL

Aunque el uso de iteradores de flujo para escribir en la consola o leer de ésta, como se hace en el
ejemplo anterior, es un uso intrigante, no muestra su real capacidad. No es hasta que se combinan
los iteradores de flujo con algoritmos cuando emerge su verdadero potencial. En el siguiente pro-
grama se muestra un ejemplo de la manera en que se mejora un proyecto de programacién que, de
otro modo, seria tedioso.

Como se explicd, los iteradores de flujo de bajo nivel operan sobre caracteres, pasando por
alto la inclusién en bifer y las posibles traducciones de caracteres que podrian ocurrir con los
iteradores de flujo de alto nivel. Esto los hace perfectos para manipular el contenido de un archivo
mediante un algoritmo. La operacién sobre el contenido de un archivo mediante uno o mas algo-
ritmos de STL es un concepto poderoso. A menudo resulta posible implementar una operaciéon
de archivo sofisticada que normalmente requerirfa varias lineas de c6digo en una simple llamada
a un algoritmo. En el ejemplo expuesto aqui se demuestra esto. Implementa un filtro de archivo
relativamente simple.

Un filtro de archivo es un programa de utileria que elimina o reemplaza informacién especifica
cuando se copia un archivo. El siguiente programa es un ejemplo simple de este tipo de filtro. Co-
pia un archivo y en el proceso reemplaza un caracter con otro. El nombre del archivo, el caracter
que se reemplazard y el cardcter de reemplazo se especifican en la linea de comandos. Para mane-
jar el reemplazo, se usan los iteradores de flujo de cardcter y el algoritmo replace_copy().

// Usa istreambuf iterator, ostreambuf iterator y replace copy ()
// para filtrar un archivo.

#include <iostream>
#include <fstream>
#include <iterators>
#include <algorithm>

using namespace std;

int main(int argc, char *argv[])

{

if(argc != 5) {
cout << "Uso: Reemplazar entrada salida antiguocar nuevocar\n";
return 1;

}

ifstream entrada(argv[l]) ;
ofstream salida(argv([2]);

// Se asegura de que los archivos se abren con éxito.

if (lentrada.is_open()) {
cout << "No se puede abrir el archivo de entrada.\n";
return 1;

1

if (!salida.is_open()) {
cout << "No se puede abrir el archivo de salida.\n";
return 1;

}

// Crea iteradores de flujo.

Capitulo 4: Algoritmos, objetos de funcién... 2713

istreambuf iterator<char> itr entrada(entrada) ;
ostreambuf iterator<char> itr salida(salida) ;

// Copia el archivo, reemplazando caracteres en el proceso.
replace_copy(itr entrada, istreambuf iterator<chars(),
itr_salida, *argv([3], *argv[4]);

// Los destructores de ofstream e ifstream llaman a close(),

// asi que las siguientes llamadas no son necesarias en este caso.
// Sin embargo, para evitar confusidén, en este libro se cierran
// explicitamente todos los archivos.

entrada.close() ;

salida.close() ;

return O;

Para comprender los efectos del programa, suponga un archivo llamado Prueba.dat que con-
tiene lo siguiente:

Esta es una prueba que utiliza el iterador de flujo con un algoritmo.

A continuacién, suponiendo que el programa se llama Reemplazar, después de que se ejecuta esta
linea de comandos:

C:>Reemplazar Prueba.dat Prueba2.dat t X

Todos los casos de t se reemplazaran con X cuando se copie Prueba.dat en Prueba2.dat. Por tanto,
el contenido de éste sera:

EsXa es una prueba que uXiliza el iXerador de flujo con un algoriXmo.

Observe que una vez que los archivos estan abiertos, slo se requiere una instruccién, la llama-
da a replace_copy(), para copiar el archivo, reemplazando en el proceso todos los casos de un ca-
racter con otro. Para hacer esto sin el uso de replace_copy() se requeririan varias lineas de cédigo.
Si lo piensa, queda claro que los algoritmos de STL ofrecen una solucién elegante a muchos tipos
de tareas de manejo de archivos. Esta es una de las capacidades mas importantes, pero subutiliza-
das de la STL.

Opciones
Los iteradores de flujo son realmente una caracteristica tinica. No son una opcién directamente pa-
ralela. Si quiere operar en flujos mediante iteradores, lo hard mediante los iteradores de flujo que
se acaban de describir. Por supuesto, siempre podria crear sus propias implementaciones persona-
lizadas, pero apenas seria (si acaso) una razén para ello. Los iteradores de flujo ofrecen una opcién
poderosa al método "normal" para E/S, como los operadores y los manipuladores de E/S.

Para el caso de soluciones que se concentran en el sistema de E/S de C++, consulte el capitulo 5.

274

C++ Soluciones de programacion

Use los adaptadores de iterador de insercion

Componentes clave

Encabezados Clases Funciones

<iterator> template <class Cont>
front_insert_iterator<Cont>
front_inserter(Cont &cnt)
template <class Cont>
back_insert_iterator<Cont>
back_inserter(Cont &cnt)
template <class Continuacion, class Outlter>
insert_iterator<Cont>
inserter(Cont &cnt, Outlter itr)

La STL define tres adaptadores de iterador que se usan para obtener un iterador que inserta, en
lugar de sobreescribir, elementos en un contenedor. A estos adaptadores se les denomina back_in-
serter(), front_inserter() e inserter(). Se declaran en <iterator>. En esta solucién se muestra como
usarlos.

Los adaptadores de iterador de insercién son herramientas muy titiles. Para comprender por
qué, considere los dos comportamientos asociados con iteradores. En primer lugar, cuando se usan
iteradores normales para copiar un elemento en un contenedor, el contenido actual del rango de
destino se sobreescribe. Es decir, el elemento que se esta copiando no se inserta en el contenedor,
sino que reemplaza (es decir, sobreescribe) al elemento anterior. Por tanto, no se preserva el con-
tenido anterior del contenedor de destino. En segundo lugar, cuando se copian elementos en un
contenedor mediante un iterador normal, es posible sobreescribir el final del contenedor. Recuerde
que un contenedor no aumentard automaticamente su tamafio cuando se usa como el destino de
un algoritmo; debe tener el tamario suficiente para acomodar el ntimero de elementos que recibira
antes de que una operacion de copia tenga lugar. Un iterador de insercién le permite modificar
estos dos comportamientos.

Cuando se agrega un elemento a un contenedor mediante un iterador de insercién, el elemento
se inserta en la ubicacién a la que sefiala el iterador, y cualquier elemento restante se mueve para
hacer espacio al nuevo elemento. Por tanto, se preserva el contenido original del contenedor. Si
es necesario, se aumenta el tamafio del contenedor para acomodar el elemento insertado. No es
posible sobreescribir el final del contenedor de destino.

Paso a paso
Para adaptar un iterador para operaciones de insercion se requieren estos pasos:

1. Para obtener un iterador que puede insertar en cualquier punto de un contenedor, llame
a inserter(), especificando el contenedor y un iterador al punto en que quiere que ocurra
la insercién.

2. Para obtener un iterador que puede insertar al final de un contenedor, llame a back_inser-
ter(), especificando el contenedor.

3. Para obtener un iterador que puede insertar al frente de un contenedor, llame a front_in-
serter(), especificando el contenedor.

Capitulo 4: Algoritmos, objetos de funcion... 275

r'd ']
Analisis
Para obtener un iterador que puede insertar elementos en cualquier punto de un contenedor, use
la funcién inserter(), que se muestra aqui:

template <class Continuacién, class Outlter> insert_iterator<Cont>
inserter(Cont &cnt, Outlter itr)

Aqui, cnt es el contenedor sobre el que se estd operando e itr sefiala a la ubicacién en que ocurrirdn
las inserciones. Devuelve un iterador de tipo insert_iterator. La clase insert_iterator encapsula un
iterador de salida que inserta objetos en un contenedor.

Para obtener un iterador que pueda insertar elementos al final de un contenedor, llame a
back_inserter(). Aqui se muestra:

template <class Cont> back_insert_iterator<Cont> back_inserter(Cont &cnt)

El contenedor que recibe las inserciones se pasa via cnt. Devuelve un iterador de tipo back_insert_
iterator. La clase back_insert_iterator encapsula un iterador de salida que inserta objetos al final
de un contenedor. El contenedor que recibe debe dar soporte a la funcién push_back().

Para obtener un iterador que puede insertar elementos al frente de un contenedor, llame a
front_inserter(). Aqui se muestra:

template <class Cont> front_insert_iterator<Cont> front_inserter(Cont &cnt)

El contenedor que recibe las inserciones se pasa via cnt. Devuelve un iterador de tipo front_insert_
iterator. La clase front_insert_iterator encapsula un iterador de salida que inserta objetos al frente
del contenedor. El contenedor que recibe debe dar soporte a la funcién push_front(). Esto significa
que un vector, por ejemplo, no puede ser el destino de front_insert_iterator.

Ejemplo

Cada uno de estos iteradores insertan en el contenido de un contenedor, en lugar de sobreescribir-
lo. En el siguiente ejemplo se demuestra cada tipo de iterador de insercion al copiar el contenido
de una deque en otra. Debido a que se usan los iteradores de insercién, la deque original no se
sobreescribe. En cambio, los nuevos elementos se insertan en €l.

// Usa adaptadores de iterador de insercidn para insertar
// una deque en otra mediante el algoritmo copy() .

#include <iostream>
#include <iterators>
#include <deque>
#include <string>
using namespace std;

void mostrar (const char *msj, deque<strings> dq) ;

int main()

{

276

}

C++ Soluciones de programacion

deque<string> dqg, dg2, dg3, dg4;

dg.push_back ("Los") ;
dg.push_back ("iteradores") ;
dg.push_back ("son") ;
dg.push_back ("une") ;
dg.push_back("a") ;
dg.push back ("STL.") ;

dg2.push back("el") ;
dg2.push back ("pegamento") ;
dg2.push_back ("que") ;

dg3.push back ("Hasta") ;
dg3.push back ("el") ;
dg3.push back("final.");

dg4 .push back ("frente.");
dg4 .push_back ("el") ;
dg4 .push_back ("En") ;

cout << "Tama\uOOa4o original de dg: " << dg.size() << endl;
mostrar ("Contenido original de dg:\n", dq);
cout << endl;

// Usa un insert iterator para insertar dg2 en dg.
copy (dg2.begin(), dg2.end(), inserter(dq, dg.begin()+3));

cout << "Tama\uOOa4o de dg tras insertar dg2: ";
cout << dg.size() << endl;

mostrar ("Contenido de dg tras insertar dg2:\n", dq);
cout << endl;

// Usa un back insert iterator para insertar dg3 en dg.
copy (dg3.begin(), dg3.end(), back inserter(dq)) ;

cout << "Tama\uOOa4o de dg tras insertar dg3: ";
cout << dg.size() << endl;

mostrar ("Contenido de dg tras insertar dg3:\n", dq);
cout << endl;

// Usa un front insert iterator para insertar dg4 en dqg.
copy (dg4 .begin(), dg4.end(), front inserter(dq));

cout << "Tama\uOOa4o de dg tras insertar dg4: ";
cout << dg.size() << endl;

mostrar ("Contenido de dg tras insertar dg4:\n", dq);

return 0;

// Despliega el contenido de una deque<strings.
void mostrar (const char *msj, deque<strings> dq) {

Capitulo 4: Algoritmos, objetos de funcion... 2117

cout << msj;

for (unsigned i=0; i < dg.size(); ++1i)
cout << dgli] << " ";

cout << "\n";

He aqui la salida del programa.

Tamaflo original de dg: 6
Contenido original de dg:
Los iteradores son los que se unen a STL.

Tamafilo de dg tras insertar dg2: 9
Contenido de dg tras insertar dg2:
Los iteradores son el pegamento que une a STL.

Tamafio de dg tras insertar dg3: 12
Contenido de dg tras insertar dg3:
Los iteradores son el pegamento que une a STL. Hasta el final.

Tamafio de dg tras insertar dg4: 15
Contenido de dg tras insertar dg4:
En el frente. Los iteradores son el pegamento que une a STL. Hasta el final.

Como puede ver, dq2 se insert6é en medio, dq3 se insert6 al final y dq4 se inserto al frente de dq.
En el proceso, se aument6 automéaticamente el tamafio de dq para contener los elementos adicio-
nales. Si no se ha usado un iterador de insercién, se habria sobrescrito el contenido original de dq.

Opciones

Los adaptadores de iterador de insercién suelen usarse cuando un algoritmo copia el resultado de
una operacion en otro contenedor. Esta situacién ocurre con algoritmos como replace_copy(), re-
verse_copy(), remove_copy(), etc. También ocurre con casi todo el conjunto de algoritmos. Al usar
un adaptador de iterador de insercién, puede habilitar estos algoritmos para insertar el resultado
en el contenedor de destino, en lugar de sobreescribir los elementos existentes. Esta capacidad
expande en gran medida los tipos de problemas a los que pueden aplicarse estos algoritmos.

CAPITULO
Trabajo con E/S

los lectores saben, E/S es una parte integral de casi todos los proyectos de programacion.

Como resultado, casi todos los lenguajes de computacion tienen importantes subsistemas
dedicados a él, y C++ no es una excepciéon. La biblioteca de E/S de C++ tiene una enorme can-
tidad de opciones, pero resulta flexible y facil de usar. También es extensible. Con base en una
jerarquia compleja de clases, el sistema de E/S ofrece al programador un marco conceptual bien
organizado que puede aplicarse a casi cualquier situacién.

Debido a la importancia de E/S, es un tema que genera muchas preguntas de tipo "¢;Cémo ha-
cer?", tanto de novatos como de profesionales experimentados. Por supuesto, dado el tamafio y el
alcance de la biblioteca de E/S, no es posible presentar soluciones que cubran todos los aspectos y
detalles de este poderoso subsistema. Para ello, se requeriria un libro completo. En cambio, en este
capitulo se responden varias de las preguntas mas comunes. Como era de esperarse, su principal
eje estd en el manejo de archivos, incluidas soluciones que muestran cémo leer y escribir datos,
realizar acceso aleatorio y detectar errores. En otras soluciones se describe como crear manipula-
dores personalizados de E/S, sobrecargar los operadores de E/S y usar un flujo de cadena.

Como elemento adicional, se incluye una soluciéon que describe el nticleo del sistema de E/S
heredado del lenguaje C. Debido a que C++ estaba integrado en C, C+#+ también incluye todo el
sistema de archivo de C. Aunque no se recomienda para programas de C++, el sistema de archivos
de C atin esta muy difundido en cédigo C heredado. La soluciéon basada en C sera interesante para
cualquier persona que necesite mantener cédigo C o llevarlo a C++.

Otro tema importante es que, a pesar de que el sistema de E/S también maneja la formacién de
datos para entrada y operaciones, este tema se explora de manera independiente en el capitulo 6.
El eje de este capitulo esta en la base del E/S de C++.

He aqui las soluciones contenidas en este capitulo:

En este capitulo se presentan soluciones que utilizan el sistema de E/S de C++. Como todos

¢ Escriba datos formados en un archivo de texto

¢ Lea datos formados de un archivo de texto

¢ Escriba datos binarios sin formar en un archivo

¢ Lea datos binarios sin formar de un archivo

* Use get() y getline() para leer un archivo

¢ Lea un archivo y escriba en él

e Deteccion de EOF

* Use excepciones para detectar y manejar errores de E/S

279

280

C++ Soluciones de programacion

¢ Use E/S de archivo de acceso aleatorio

* Revise un archivo

¢ Use los flujos de cadena

* Cree insertadores y extractores personalizados

¢ Cree un manipulador sin pardmetros

¢ Cree un manipulador con pardmetros

* Obtenga o establezca una configuracién regional y de idioma de flujo
¢ Use el sistema de archivos de C

¢ Cambie el nombre de un archivo y eliminelo

NoTA Como se explicé en Use los iteradores de flujo en el capitulo 4, es posible usar algoritmos de
STL junto con iteradores de flujo para realizar una amplia variedad de tareas de E/S y manejo de ar-
chivos. En algunos casos, el uso de iteradores de flujo y de algoritmos simplifica algunas tareas que,
de otra manera, serian complicadas. Sin embargo, el eje de este capitulo estd en el sistema de E/S de
C++. Por ello, en las soluciones no se usan los algoritmos de STL. Sélo recuerde que los iteradores
de flujo y los algoritmos de STL ofrecen una opcidn interesante que podria ser 1itil en algunos casos.

Revision general de E/S

El sistema de E/S de C++ estd basado en una coleccién coherente, interrelacionada de clases que
proporcionan la funcionalidad necesaria para realizar operaciones de entrada y salida eficientes
en diversos dispositivos, incluidos la consola y los archivos de disco. Aunque ninguna parte del
sistema de E/S resulta dificil de dominar, es muy grande y depende de varias clases y muchas
funciones. Por tanto, aqui se presenta una breve revisién del sistema de E/S de C++. Este analisis
es suficiente para los objetivos de las soluciones de este capitulo, pero los lectores que deseen reali-
zar programacion avanzada de E/S, como derivar clases para manejar dispositivos especializados,
necesitaran estudiar el sistema de E/S con un detalle mayor.

Flujos de C++

La base del sistema de E/S de C++ es el flujo. Un flujo es una abstracciéon que produce o consume
informacion. Todos los flujos se comportan de la misma manera, aunque los dispositivos fisicos
reales a los que se vinculan sean diferentes. Esto significa que la manera en que opera un tipo de
flujo es la misma para todos los flujos. Por ejemplo, la funcién pull() puede usarse para escribir en
la pantalla, en un archivo de disco o en la impresora.

En su forma mds comtn, un flujo es una interfaz 16gica con un archivo. De acuerdo con la
definicion del término archivo en C++, puede aludir a un archivo de disco, la pantalla, el teclado,
un puerto, un archivo en cinta, etc. Aunque los archivos tienen diferentes formas y capacidades,
todos los flujos son iguales. La ventaja de este método es que para el programador, un dispositivo
de hardware serda muy parecido a otro. El flujo proporciona una interfaz consistente.

Un flujo esta vinculado a un archivo mediante una operacién abierta. Un flujo se disocia de un
archivo mediante una operacioén de cierre.

Hay dos tipos de flujos: de texto y binario. Un flujo de texto se usa con informacién legible para
el ser humano. En un flujo de texto, es posible que se realice alguna traduccién de caracteres. Por
ejemplo, cuando se da salida al caracter de nueva linea, puede convertirse en una secuencia retor-
no de carro/avance de linea. Por esto, tal vez no haya correspondencia uno a uno entre lo que se

Capitulo 5: Trabajo con E/S 281

envia al flujo y lo que se escribe en el archivo. Un flujo binario puede usarse con cualquier tipo de
datos. No ocurrira traduccién de caracteres, y hay correspondencia uno a uno entre lo que se envia
al flujo y lo que en realidad contiene el archivo.

Un concepto adicional que se debe comprender es el de ubicacién actual. Esta (a la que también
se denomina posicion actual) es la ubicacién, en un flujo, donde ocurrira la operacién de E/S. Por
ejemplo, considere una situacién en que un flujo estd vinculado a un archivo. Si éste tiene 100
bytes de largo y se ha leido la mitad del archivo, la siguiente operaciéon de lectura ocurrird en
el byte 50, que es la ubicacién actual.

Para resumir: en C++, la E/S se realiza mediante una interfaz l6gica llamada flujo. Todos los
flujos tienen propiedades similares, y cada flujo se opera con las mismas funciones de E/S, sin im-
portar qué tipo de archivo estd relacionado con él. Un archivo es la entidad fisica real que contiene
los datos. Aunque los archivos sean diferentes, los flujos no. (Por supuesto, es posible que algunos
dispositivos no den soporte a todas las operaciones, como las de acceso aleatorio, de modo que sus
flujos asociados no daran tampoco soporte a esas operaciones.)

Las clases de flujo de C++
El sistema de E/S de C++ esta construido a partir de un sistema mas bien complejo de clases de
plantillas. Aqui se muestran estas clases.

Clase Propésito

basic_ios Proporciona operaciones de E/S de propdsito general.
basic_streambuf Soporte de nivel inferior para E/S.

basic_istream Soporte para operaciones de entrada. Hereda basic_ios.
basic_ostream Soporte para operaciones de salida. Hereda basic_ios.
basic_iostream Soporte para operaciones de entrada/salida. Hereda basic_istream y basic_ostream.
basic_filebuf Soporte de bajo nivel para E/S de archivo. Hereda basic_streambuf.
basic_ifstream Soporte para entrada de archivo. Hereda basic_istream.
basic_ofstream Soporte para salida. Hereda basic_ostream.

basic_fstream Soporte para entrada/salida de archivos. Hereda basic_iostream.
basic_stringbuf Soporte de bajo nivel para E/S de cadena. Hereda basic_streambuf.
basic_istringstream Soporte para entrada cadena. Hereda basic_istream.
basic_ostringstream Soporta para salida de cadena. Hereda basic_ostream.
basic_stringstream Soporte para entrada/salida de cadena. Hereda basic_iostream.

La clase ios_base, que no es de plantilla, también forma parte de la jerarquia de clases de E/S.
Proporciona definiciones para varios elementos del sistema de E/S que no dependen de pardme-
tro de plantilla.

282

C++ Soluciones de programacion

El sistema de E/S de C++ utiliza dos jerarquias de clase de plantilla relacionadas pero diferentes.
La primera se deriva de la clase de E/S de bajo nivel llamada basic_streambuf, que requiere el enca-
bezado <streambuf>. Esta clase proporciona las operaciones basicas de entrada y salida de bajo nivel
de un bufer de flujo, que proporciona el soporte basico para todo el sistema de E/S de C++. Cada flu-
jo contiene un objeto de basic_streambuf, aunque por lo general no necesitara tener acceso directo a
él. Las clases basic_filebuf y basic_stringbuf derivan de basic_streambuf. A menos que esté hacien-
do programacién avanzada de E/S, no necesitara usar directamente basic_streambuf ni su subclase.
En cambio, utilizara sus caracteristicas mediante funciones definidas por las clases de flujo.

La jerarquia de clase con la que estara trabajando de manera mdas comn se deriva de basic_ios.
Estéd declarada en el encabezado <ios>. Se trata de una clase de E/S de alto nivel que define carac-
teristicas comunes para todos los flujos, como revisién de errores e informacién de estado. Una
clase base para basic_ios es ios_base. Como se explicd, define varias funciones sin plantilla usadas
por basic_ios, como formacién. La clase basic_ios se usa como base para varias clases derivadas, in-
cluidas basic_istream, basic_ostream y basic_iostream. Estas clases proporcionan la funcionalidad
esencial necesaria para flujos con capacidad de entrada, salida y entrada/salida, respectivamente.

Las clases de E/S reciben parametros para los tipos de caracteres sobre los que acttian y para los
rastros asociados con esos caracteres. Por ejemplo, he aqui la especificaciéon de plantilla para basic_ios:

template <class CharType, class CharTraits = char_traits<CharType> >
class basic_ios: public ios_base

Aqui CharType especifica el tipo de caracter (como char o wchar_t) y CharTraits especifica un tipo
que describe el atributo de CharType. Observe que la opcién predeterminada de CharTraits es
char_traits<CharType>. El tipo genérico char_traits es una clase de utileria que define los atribu-
tos asociados con un caracter.

Para realizar E/S de archivo, debe incluir el encabezado <fstream> en su programa. Define
varias clases, incluidas basic_ifstream, basic_ofstream y basic_fstream. Estas clases son derivadas
de basic_istream, basic_ostream y basic_iostream, respectivamente. Recuerde que estas tres dlti-
mas clases derivan de basic_ios, de modo que los flujos de archivos también tienen acceso a todas
las operaciones definidas por basic_ios.

El sistema de E/S también da soporte al uso de una string como origen o destino de operacio-
nes de E/S. Para ello, usara las clases de flujo de cadena. El soporte de bajo nivel es proporcionado
por basic_stringbuf, que deriva de basic_streambuf. Las clases de flujo de cadena son basic_is-
tringstream, basic_ostringstream y basic_stringstream. Estas clases derivan de basic_istream, ba-
sic_ostream y basic_iostream, respectivamente. Crean flujos de cadena con opciones de entrada,
salida y entrada/salida.

Como se menciond, cada flujo tiene asociado un objeto derivado de basic_streambuf, pero
casi nunca necesitard interactuar directamente con el objeto de basic_strambuf. En cambio, en casi
todos los casos (incluidas todas las soluciones de este capitulo), utilizard las caracteristicas propor-
cionadas por las clases de flujo, que se derivan de basic_ios. En las siguientes secuencias se ofrece
una breve revision general de cada una. En las soluciones individuales se describen a profundidad
las caracteristicas que utilizan. Empezaremos con ios_base.

ios_base

La clase ios_base encapsula los aspectos de E/S que son comunes a todos los flujos y que no de-
penden de parametros de plantilla. Requiere el encabezado <ios>. La clase ios_base define varios
tipos y funciones. He aqui los tipos usados en este libro:

Capitulo 5: Trabajo con E/S 283

fmtflags Mascara de bits que determina el formato de la informacién a la que se da salida.
iostate Maéscara de bits que indica el estado de un flujo.

openmode La mascara de bits que indica cémo se abre un archivo.

seekdir Una enumeracion que controla la manera en que se maneja la E/S de acceso aleatorio.

He aqui una muestra de sus métodos:

flags() Obtiene o establece todas las marcas de formato.

setf() Obtiene o establece marcas especificas de formato.

unsetf() Limpia una o mas marcas de formato.

precision() Obtiene o establece la precision.

width() Obtiene o establece el ancho del campo.

imbue() Establece la configuracion regional y de idioma.

getloc() Obtiene la configuracion regional y de idioma.
basic_ios

La clase basic_ios hereda ios_base y luego define las caracteristicas relacionadas con plantillas
que son comunes a todos los flujos. Utiliza el encabezado <ios>. Define los siguientes typedefs que
indican tipo (y, por tanto, el tamafo) de varios tipos usados por el sistema de E/S. Aqui se

muestran:
char_type El tipo de caracter.
int_type El tipo de entero.
pos_type Un tipo que puede representar una posicién dentro de un archivo.
off_type Un tipo que puede representar un desplazamiento dentro de un archivo.
traits_type Un tipo que describe los atributos de un caréacter.

La clase basic_ios también define varias funciones. Aqui se muestran las usadas en este capitulo:

clear() Limpia las marcas de error de E/S.

exceptions() Establece u obtiene los errores que pueden causar el lanzamiento de una excepcion.
eof() Devuelve true si se alcanza el final del archivo.

bad() Devuelve true si ha ocurrido un error no recuperable.

fail() Devuelve true si ha ocurrido un error.

fill() Obtiene o establece el caracter de relleno usado para llenar un flujo.

good() Devuelve true si no ha ocurrido un error.

rdstate() Obtiene una mascara de bits que contiene las marcas de estado de E/S.

setstate() Establece una o mas marcas de E/S.

284

C++ Soluciones de programacion

Observe que muchos de éstos se relacionan con las marcas que representan el estado de un flujo
de E/S. Se usan para detectar y manejar errores en condiciéon de final de archivo. (Las técnicas de
manejo de errores se describen mds adelante, en esta misma revisién general.)

La clase basic_ios también define los operadores * y ! que pueden aplicarse a un flujo. El
operador * devuelve un apuntador nulo si un flujo es erréneo y, de lo contrario, uno no nulo.
El ! devuelve el resultado de fail(). Por tanto, si no han ocurrido errores, ! devuelve false.
De otra manera, devuelve true.

basic_istream
La clase basic_istream hereda basic_ios y define la funcionalidad comtin a todos los flujos de
entrada. Por tanto, basic_istream es el eje de todos los flujos de entrada. Requiere el encabezado
<istream>.

La clase basic_istream define el extractor >>, que lee datos formados del flujo de entrada. Este
operador estd sobrecargado para todos los tipos integrados. Varias funciones estan definidas por
basic_istream. Aqui se muestran las usadas en este capitulo:

geount() Devuelve el nimero de caracteres leido por la Ultima operacién de entrada.
get() Lee y elimina uno o més caracteres del flujo de entrada.

getline() Lee y elimina una linea de texto del flujo de entrada.

ignore() Lee y descarta caracteres del flujo de entrada.

peek() Lee, pero no elimina, un caréacter del flujo de entrada.

putback() Devuelve un caracter al flujo de entrada.

read() Lee y elimina caracteres del flujo de entrada.

seekg() Establece la posicion del archivo para entrada.

tellg() Devuelve la posicion actual en el flujo de entrada.

unget() Devuelve al flujo de entrada el dltimo caracter leido del flujo.

basic_ostream
La clase basic_ostream hereda basic_ios y define la funcionalidad comtn a todos los flujos de
salida. Por tanto, basic_ostream es una clase de base para basic_ofstream, por ejemplo. Requiere
el encabezado <ostream>.

La clase basic_ostream define el insertador <<, que escribe datos formados en el flujo de
salida. Este operador estd sobrecargado para todos los tipos de entrada. Varias funciones estan
definidas por basic_ostream. Aqui se muestran las usadas en este capitulo:

flush() Escribe datos incluidos en el bufer al flujo de salida.
put() Escribe un caracter en el flujo de salida.

seekp() Establece la posicion actual del archivo para salida.
tellp() Devuelve la posicion actual del flujo de salida.
write() Escribe caracteres al flujo de salida.

Capitulo 5: Trabajo con E/S 285

basic_iostream
La clase basic_iostream hereda basic_istream y basic_ostream. Por tanto, encapsula las caracteris-
ticas de un flujo que tienen opciones de entrada y salida.

basic_ifstream

La clase basic_ifstream hereda basic_istream y agrega la funcionalidad necesaria para la entrada
de archivo. Requiere el encabezado <fstream>. Define cuatro funciones; de ellas, en este capitulo
se usan las siguientes tres:

close() Cierra un archivo, liberando cualquier recurso del sistema usado por ese archivo.

is_open() Devuelve true si un archivo esta abierto.

open() Abre un archivo para entrada. También es posible usar un constructor basic_ifstream para
abrir un archivo.

basic_ofstream

La clase basic_ofstream hereda basic_ostream y agrega la funcionalidad requerida para salida de
archivos. Necesita el encabezado <fstream>. Define cuatro funciones; de ellas, en este capitulo se
utilizan las tres siguientes:

close() Cierra un archivo, liberando cualquier recurso del sistema usado por ese archivo.

is_open() Devuelve true si un archivo esta abierto.

open() Abre un archivo para entrada. También es posible usar un constructor basic_ofstream para
abrir un archivo.

basic_fstream

La clase basic_fstream hereda basic_iostream. Por tanto, contiene la funcionalidad requerida
para entrada y salida de archivos. Necesita el encabezado <fstream>. Define cuatro funciones;
de ellas, en este capitulo se utilizan las tres siguientes:

close() Cierra un archivo, liberando cualquier recurso del sistema usado por ese archivo.

is_open() Devuelve true si un archivo esta abierto.

open() Abre un archivo para entrada. También es posible usar un constructor basic_fstream para
abrir un archivo.

Las especializaciones de clases relacionadas

con los flujos

Como ya se explicd, las clases relacionadas con flujo en C++ son plantillas que toman el tipo de ca-
racter y sus atributos como parametros de tipo. Esto significa que el sistema de E/S puede operar
sobre flujos basados en caracteres de ocho bits y en caracteres extendidos. Como conveniencia, la
biblioteca de E/S crea dos especializaciones de jerarquias de clases de plantilla: una para char y
otra para wchar_t. Al usar estas especializaciones, no tendra que proporcionar de manera continua
los parametros de tipo cuando se declaran y usan objetos de flujo.

286

C++ Soluciones de programacion

He aqui una lista de los nombres de clases de plantilla a sus versiones char y wchar_t.

Clase de plantilla Especializacion para char Especializacion para wchar_t
basic_ios ios wios
basic_istream istream wistream
basic_ostream ostream wostream
basic_iostream jostream wiostream
basic_fstream fstream wfstream
basic_ifstream ifstream wifstream
basic_ofstream ofstream wofstream
basic_istringstream istringstream wistringstream
basic_ostringstream ostringstream wostringstream
basic_stringstream stringstream wstringstream
basic_streambuf streambuf wstreambuf
basic_filebuf filebuf wfilebuf
basic_stringbuf stringbuf wstringbuf

Observe que los nombres empleados para los flujos de char son simplemente el nombre de la clase
de plantilla sin la parte basic_. Por ejemplo, la versién para char de basic_ifstream es ifstream. La
version de basic_ios es ios. Los flujos de caracter extendido usan el mismo método, pero con la w
agregada.

Las especializaciones son los nombres que suelen usarse cuando se programa, porque crean
automaticamente el tipo de flujo deseado, en lugar de tener que especificar un argumento de tipo.
Por ejemplo, por lo general usaré ifstream para abrir un archivo, no basic_ifstream<char>, y
normalmente especificard ios, no basic_ios<char>. Asi, no sélo esta utilizando la especializacién,
también asegura que se creen en todos los casos los objetos de flujo apropiados, con lo que se
evitan errores.

De los dos tipos de flujo, los de char se usan con mas frecuencia. Una razén para esto es que en
C++, un char corresponde a un byte, y en el nivel mas bajo, toda la E/S esta basada en bytes. Por
tanto, a menos que explicitamente esté operando con caracteres extendidos, los flujos de char son
los apropiados.

Debido a que la mayor parte de los flujos estdn basados en char, los nombres correspondientes
a éstos se usaran en los ejemplos y los andlisis en el resto de este capitulo y en todo el libro.

Capitulo 5: Trabajo con E/S 287

RECUERDE En este capitulo y todo el libro, los nombres de flujo de char, como ios y ofstream, se
usan en los ejemplos y los andlisis.

Flujos predefinidos de C++
Cuando un programa de C++ empieza a ejecutarse, se abren automaticamente cuatro flujos inte-
grados. Son los siguientes:

Flujo Significado Dispositivo predeterminado
cin Entrada estandar Teclado
cout Salida estandar Pantalla
cerr Salida de error estandar Pantalla
clog Version para bufer de cerr Pantalla

Los flujos cout, clog y cerr son instancias de ostream; el flujo cin es una instancia de istream. Por
tanto, todos los flujos relacionados con char usan el encabezado <iostream>.

Como opcién predeterminada, los flujos estdndar se usan para comunicarse con la consola. Sin
embargo, en entornos que dan soporte a redireccionamiento de E/S, los flujos estandar pueden re-
dirigirse a otros dispositivos o archivos. Para mayor simplicidad, en los ejemplos de este capitulo
se supone que no ha ocurrido ningtin redireccionamiento de E/S.

El C++ estandar también define cuatro flujos adicionales: win, wout, werr y wlog. Son versio-
nes de caracteres extendidos de los flujos estandar, y estan basados en caracteres de tipo wchar_t.
Los caracteres extendidos se usan para contener los conjuntos de caracteres largos asociados con
algunos idiomas.

Las marcas de formato

Cada flujo esta asociado con un conjunto de marcas de formato que controlan la manera en que
la informacion se presenta. Estas marcas estan contenidas en una enumeracién de mascaras de
bits llamada fmtflags que esta definida por ios_base. Debido a que la formacién es un tema muy
amplio, se cubre de manera independiente en el capitulo 6. Por tanto, el analisis de las marcas de
formato y las soluciones que las usan se pospondra hasta entonces.

Los manipuladores de E/S

El sistema de E/S de C++ proporciona varios manipuladores que son funciones que pueden incluir-
se en una expresion de E/S formada. Se usan para establecer o limpiar las marcas de formato men-
cionadas en la seccién anterior. También pueden usarse para otros fines, como salida a un cardcter
nulo o para omitir espacios en blanco en la entrada. Algunos manipuladores, como endl (que
inserta una nueva linea en un flujo de salida), resultan familiares para todos los programadores de
C++. Otros son menos conocidos. También es posible crear manipuladores propios.

Los manipuladores integrados se describen de manera detallada en el capitulo 6, donde se pre-
sentan soluciones relacionadas con la formacién de datos. Sin embargo, en este capitulo se mues-
tra como crear manipuladores propios. Los manipuladores personalizados pueden usarse para el
fin que desee. Un uso comun consiste en proporcionar un medio conveniente para controlar un
dispositivo que no es estandar, como un graficador, que requiere cédigos de formato o posiciona-
miento especiales.

288

C++ Soluciones de programacion

Revision de errores

La E/S de archivo plantea un desafio especial cuando se trata de manejo de errores, porque las
fallas de E/S son una posibilidad real cuando se leen y escriben archivos. A pesar de que el hard-
ware de computacién (e Internet) es mucho mas confiable que en el pasado, atn falla mucho, y
cualquier falla debe manejarse de una manera consistente con las necesidades de su aplicacién. En
general, su cddigo debe monitorear todas las operaciones de archivo en busca de errores y tomar
la accion apropiada, si ocurre alguna.

El sistema de E/S de C++ proporciona amplias opciones para deteccién de errores. Como ya
se menciond, ios_base define un tipo llamado iostate que representa las diversas clases de errores
que ocurren, codificados en una mdscara de bits. Estas marcas de errores estan definidas por los
siguientes valores:

badbit Establece si ha ocurrido un error catastroéfico.

failbit Establece si ha ocurrido un error del que es posible recuperarse.

eofbit Establece si se ha alcanzado el final del archivo. (Esta no es necesariamente una condicién de
error.)

goodbit Un valor que indica que ninguno de los otros bits se ha establecido.

Observe que eofbit se incluye en la lista de marcas. Una condicién de final de archivo no siempre
representa un error. Esa determinacion estd basada en el contexto. (Por ejemplo, si estd buscando a
propésito el final del archivo, jno serd un "error" que lo encuentre!) Recuerde que ios_base se he-
reda de basic_ios, de modo que esas marcas de formato son miembros de todas las clases de flujo.
En el caso de flujos de char, por lo general se aludira a esos valores mediante la especializacién ios
(por ejemplo, ios:failbit).

En la clase basic_ios estan definidas varias funciones que pueden obtener el estado de las mar-
cas de iostate. Aqui se muestran:

bool bad() const Devuelve true si se establece badbit.

bool eof() const Devuelve true si se establece eofbit.

bool fail() const Devuelve true si se establece failbit.

bool good() const Devuelve true si no se establecen bits.

iostate rdstate() const Devuelve el valor de mascara de bits actual asociado con el flujo.

Puede usar estas funciones para buscar errores. Por ejemplo, una manera de confirmar que no han
ocurrido errores consiste en llamar a good() en el flujo, como se muestra aqui:

if (miflujo good()) cout << "No hay errores. \n";
Otra manera de revisar errores consiste en usar la funcién rdstate(), que se muestra aqui:
iostate rdstate() const

Devuelve un valor en que estan codificados los bits de estado. Por ejemplo, esta secuencia informa
el éxito o la falla de una operacién de E/S:

Capitulo 5: Trabajo con E/S 289

if (! (miflujo.rdstate() & (ios::badbit | ios::failbit))) {
cout << "Archivo escrito correctamente. \n";

} else {
cout << "Ha ocurrido un error de archivo.";

}

Por supuesto, por lo general es més facil llamar simplemente a good().
Una vez que se ha establecido un bit de error, permanece hasta que se limpia. Para limpiar un
error, llame a clear(). Estd definido por ios y se muestra aqui:

void clear(iostate marca = ios::goodbit)

Limpia (es decir, restablece) todas las marcas. Luego establece las marcas en marca. Puede estable-
cer mas de una marca al unirlas con el operador 16gico OR. Como opcién predeterminada, no se
establecen marcas; por tanto, simplemente se limpian todas las condiciones de error.

También puede probar el estado de un flujo mediante el uso del operador !. Como ya se expli-
c6, ! devuelve la salida de fail(). Por tanto, si un flujo ha experimentado un error, entonces devol-
verd true. Por ejemplo,

if (lmiflujo())
// . . . ocurrid un error

}

Otra manera de manejar errores consiste en usar manejo de excepciones. Esta técnica se descri-
be de manera detallada en la solucién Use excepciones para detectar y manejar errores de E/S.

En los ejemplos de este capitulo, cualquier error de E/S que ocurra se manejara con el simple
despliegue de un mensaje. Aunque es aceptable para los programas de ejemplo, por lo general en las
aplicaciones reales sera necesario proporcionar una respuesta méas sofisticada a un error de E/S. Por
ejemplo, tal vez quiera dar al usuario la capacidad de volver a probar la operacioén, especificar una
operacién alterna o manejar de otra manera el problema. La prevencion de la pérdida o la corrupcion
de datos es uno de los principales objetivos. Para ser un estupendo programador es necesario saber
cémo manejar de manera efectiva las cosas que podrian salir mal cuando falla una operacién de E/S.

Un tema final: un error comiin cuando se manejan archivos consiste en olvidarse de cerrar un
archivo cuando se ha dejado de usar. Los archivos abiertos usan recursos del sistema. Por tanto,
hay limites para el nimero de archivos que pueden abrirse a la vez. El cierre de un archivo tam-
bién asegura que cualquier dato escrito en el archivo realmente se escribe en el dispositivo fisico.
Por tanto, la regla es muy simple: Si abre un archivo, ciérrelo. Aunque los archivos se cierran
automaticamente cuando se ejecuta el destructor de un flujo de archivo (como al final de una
aplicacion), es mejor no depender de esto porque puede llevar a habitos descuidados e incorrectos.
Es mejor cerrar explicitamente cada archivo cuando ya no se necesita, manejando cualquier error
que podria ocurrir. Por esto, todos los archivos se cierran explicitamente en los ejemplos de este
capitulo, aunque el programa se haya terminado.

Apertura y cierre de un archivo

Antes de que tenga lugar cualquier operacion de E/S en un archivo, éste debe abrirse. Aunque los
puntos especificos difieren de acuerdo con el tipo de archivo que se esta abriendo, el procedimien-
to general es el mismo para todos los tipos. Por esto, tiene sentido describir las técnicas bésicas de
apertura de archivos en un solo lugar, en vez de hacerlo en cada solucién. Para mayor convenien-
cia, en el siguiente andlisis se usan los nombres definidos por las especializaciones de char, pero
algunas técnicas bésicas también se aplicarian a archivos de caracteres extendidos.

290

C++ Soluciones de programacion

En C++, un archivo se abre al vincularlo con un flujo. Por tanto, antes de que pueda abrir un
archivo, primero debe obtener una instancia de flujo. Hay tres tipos de flujo: entrada, salida y en-
trada/salida. Para crear un flujo de entrada de archivo, se usa ifstream. Para crear uno de salida,
se usa ofstream. Los flujos que realizardn operaciones tanto de entrada como de salida se declaran
como objetos de la clase fstream. Por ejemplo, este fragmento crea un flujo de entrada, uno de
salida y uno capaz de entrada y salida:

ifstream entrada; // entrada
ofstream salida; // salida
fstream es; // entrada y salida

Una vez que ha creado un flujo, puede asociarlo con un archivo al usar open(). Esta funcién
es un miembro de cada una de las tres clases de flujo. A continuacién se muestra el prototipo para
cada uno:

void ifstream::open(const char *nombrear, ios::openmode modo = ios::in)

void ofstream::open(const char *nombrear, ios::openmode modo = ios::out)

void fstream::open(const char *nombrear, ios::openmode modo = ios::in | ios::out)
Aqui, nombrear es el nombre del archivo; puede incluir un especificador de ruta. El valor de modo
determina la manera en que se abre un archivo. Debe ser uno o més de los valores definidos por

openmode, que es una enumeracion definida por ios (mediante su clase de base ios_base). He
aqui los valores definidos por openmode:

app La salida se adjunta al final del archivo.

ate Se hace una busqueda inicial al final del archivo.

binary El archivo se abre en modo binario en lugar de texto. (El modo de texto es la opcién predetermi-
nada.)

in El archivo se abre para entrada. (No puede usarse con ofstream.)

out El archivo se abre para salida. (No puede usarse con ifstream.)

trunc El archivo se trunca.

Puede incluirse mas de un valor de modo al usar el operador OR junto construccién |. A continua-
cién se realiza una descripcién detallada de su efecto.

El valor in especifica que el archivo puede contener entrada. El valor out, que puede conte-
ner salida. En todos los casos, por lo menos debe usarse uno de estos valores cuando se abre un
archivo.

La inclusién de app causa que toda la salida al archivo se adjunte al final. Estos valores s6lo
pueden usarse con archivos con capacidad de salida. La inclusién de ate causa una bisqueda al
final del archivo cuando se abre éste. A pesar de este comportamiento de ate, las operaciones de
E/S aun pueden ocurrir en cualquier lugar dentro del archivo.

El valor binary causa que un archivo se abra en modo binario. Como opcién predeterminada,
todos los archivos se abren en modo de texto. En este modo, pueden darse varias traducciones de
cardcter; por ejemplo, es posible que la secuencia retorno de carro/avance de linea se convierta
en nueva linea. Sin embargo, cuando un archivo se abre en modo binario, no ocurrira esta traduc-
cién de caracteres. Es necesario comprender que cualquier archivo, sin importar si contiene texto

Capitulo 5: Trabajo con E/S 291

formado o datos sin trabajar, puede abrirse en modo binario o de texto. La tinica diferencia es si
tienen lugar las traducciones de caracteres.

El valor trunc causa que se destruya el contenido de un archivo preexistente del mismo nom-
bre, y el archivo se trunca a una longitud cero.

Debido a que ios hereda ios_base, a menudo verd estos valores de modo calificados con ios::
en lugar de ios_base::. Por ejemplo, a menudo verd ios::out en lugar de ios_base::out. En este libro
se utiliza la forma ios:: porque es mds corta. (En realidad, también podria usar constructores como
ofstream::out o ifstream::in, pero lo tradicional es que se use ios::.)

Para unir los diversos elementos, el siguiente fragmento crea un flujo de salida llamado ar-
chsalida y usa open() para vincularlo con un archivo llamado prueba.dat. Aunque usa ofstream
(que crea un flujo de archivo de salida), el método general se aplica a todos los flujos de archivo.

// Crea un objeto de ofstream.
ofstream archsalida;

// BAbre un archivo en archsalida
archsalida.open ("prueba.dat") ;

Esta secuencia crea primero un objeto de ofstream llamado archsalida, que no esta vinculado con
un archivo. Por tanto, aunque archsalida sea una instancia de ofstream, no puede usarse para
escribir salida porque no esta asociada atin con un archivo especifico. La llamada a open() vincu-
la archsalida con el archivo llamado prueba.dat y abre el archivo para operaciones de salida.
Después de que regresa open(), es posible escribir en un archivo mediante archsalida. Debido a
que el pardmetro de modo de open() tiene como opcién predeterminada automadtica ios_out, no es
necesario especificarlo explicitamente en este caso.

Aunque no hay nada incorrecto con el método anterior de "dos pasos”, todas las clases de flujo
de archivo (fstream, ofstream e ifstream) le permiten abrir un archivo al mismo tiempo que el
objeto de flujo se crea al pasar el nombre del archivo al constructor. He aqui los constructores de
flujo que le permiten especificar un archivo:

ofstream(const char *nombrear, ios::openmode modo = ios::out)
ifstream(const char *nombrear, ios::openmode modo = ios::in)

fstream(const char *nombrear, ios::openmode modo = ios:in | ios::out)

Como puede ver, el pardmetro modo tiene como opcién predeterminada un valor apropiado para
el flujo. Por ejemplo, he aqui una manera mucho més compleja de crear archsalida y vincularla
con prueba.dat:

ofstream archsalida ("prueba.dat") ;

Cuando se ejecuta esta instruccion, se construye un objeto de ofstream que se vincula con un
archivo llamado prueba.dat, y luego se abre ese archivo para salida. Como antes, aunque ofstream
se usa en este ejemplo, el mismo método general se aplica a todos los flujos de archivo.

Es importante comprender que open() y los constructores de flujo de archivo tratan de abrir un
archivo. Sin embargo, este intento puede fallar por varias razones, como cuando el llamador no
tiene los permisos apropiados de seguridad para abrir el archivo, o cuando se alcanza el limite de
archivos abiertos al que da soporte el entorno. Por tanto, antes de usar un archivo, debe confir-
mar que se ha abierto correctamente. Hay varias maneras de hacer esto. Una consiste en llamar a
is_open() en la instancia de flujo de archivo. Aqui se muestra:

292

C++ Soluciones de programacion

bool is_open()

Devuelve true si el archivo esta abierto y false, si no. Por ejemplo, la siguiente secuencia verifica
que archsalida en realidad esté abierto:

ofstream archsalida ("prueba.dat") ;
// Verifica que el archivo se ha abierto correctamente.
if (larchsalida.is open()) {

cout << "no pudo abrirse archsalida. \n";

// maneja el error

}

Esto funciona porque si falla el intento de abrir el archivo, entonces is_open() devuelve false, por-
que archsalida no esta abierto. Es importante comprender que puede usar is_open() en cualquier
momento en que necesite saber si un archivo estd abierto. Su uso no esta limitado a verificar que la
operacion de apertura fue correcta.

Aunque el uso de is_open() es vélido, y se aplica de manera ocasional en los ejemplos de este
libro, hay otros modos de verificar que el archivo se ha abierto de forma correcta. Estas otras ma-
neras se basan en el hecho de que la falla al abrir crea una condicién de error en el flujo. En forma
especifica, si no es posible abrir un archivo (mediante una llamada explicita a open() o mediante
el constructor de flujo de archivo), entonces la marca de falla failbit se establecera en el flujo para
indicar una falla de E/S. Por tanto, si no puede abrirse, una llamada a fail() en el flujo devolvera
true. Esto significa que puede detectar una falla al llamar a fail() en el flujo. Por tanto, he aqui otro
modo de detectar una falla en la apertura:

ofstream archsalida ("prueba.dat") ;

if (archsalida.fail()) {
cout << "no pudo abrirse archsalida. \n";
// maneja el error

}

En este caso, si falla el intento de abrir el archivo, fail() devolvera true. Sin embargo, he aqui una
manera mds simple.

Como se explicé antes, cuando el operador ! se aplica a un flujo de archivo, devuelve el resulta-
do de fail() llamado en el mismo flujo. Por tanto, para probar una falla en la apertura, puede usar
esta secuencia:

ofstream archsalida ("prueba.dat") ;

if (larchsalida)
cout << "no pudo abrirse archsalida. \n";
// maneja el error

}

Esta es la forma que vera con frecuencia en c6digo escrito de manera profesional.

Cuando haya terminado con un archivo, debe asegurarse de que estd cerrado. En general, un
archivo se cierra automaticamente con el destructor del flujo de archivo cuando las instancias de
éste salen del &mbito, como cuando termina un programa. También puede cerrar explicitamente
un archivo al llamar a close(), que tiene soporte en todas las clases de flujo de archivo. Aqui se
muestra:

void close()

Capitulo 5: Trabajo con E/S 293

El cierre de un archivo causa que el contenido de cualquier biifer se limpie y se liberen los recursos
del sistema vinculados con el archivo.

Aunque los archivos se cierran autométicamente cuando se destruye el flujo de archivo,
muchos programadores creen que es una mejor practica cerrarlos explicitamente cuando ya no
se necesiten. Una razon para esto es que la apertura de archivos consume recursos del sistema. El
cierre de archivos libera estos recursos. Por tanto, en todos los ejemplos de este capitulo se cierran
explicitamente todos los archivos, aun al final de un programa, simplemente para ejemplificar de
manera explicita el uso de close() y para destacar que los archivos deben cerrarse.

Escriba datos formados en un archivo de texto

Componentes clave

Encabezados Clases Funciones

<fstream> ofstream void close()
bool good() const
void open(const char *nombrear,
ios::openmode modo = ios::out)

<ostream> <<

C++ le ofrece dos maneras de escribir datos en un archivo. En primer lugar, puede escribir datos
sin formato en su forma simple, binaria. En segundo lugar, puede escribir datos formados. Estos
son datos en su forma de texto, legible para los seres humanos. En este método, el formato de
los datos escritos en el archivo serd el mismo que veria en la pantalla. A un archivo que contiene
datos formados suele denominarsele archivo de texto. La escritura de datos formados en un archi-
vo de texto es el tema de esta solucién.

Paso a paso
Para escribir datos formados en un archivo se requieren estos pasos:

1. Cree una instancia de ofstream.

2. Abra el archivo al llamar a open() en la instancia de ofstream creada en el paso 1. Como
opcioén, puede abrir el archivo al mismo tiempo que crea el objeto de ofstream. (Consulte
la seccién Anilisis de esta solucién.)

Confirme que el archivo se ha abierto correctamente.

Escriba datos en el archivo al usar el operador de insercién <<.

Cierre el archivo al llamar a close().

Confirme que las operaciones de escritura han sido correctas. Esto puede hacerse al llamar
a good() en el flujo de salida.

SANNA S

294

C++ Soluciones de programacion

Anlisis
Una revision general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capitulo. Aqui se presentan los detalles especificos relacionados
con ofstream.

Para crear un flujo de salida vinculado con un archivo, cree un objeto de tipo ofstream. Tiene
estos dos constructores:

ofstream()

explicit ofstream(const char *nombrear, ios::openmode modo = ios:out)

El primero crea una instancia de ofstream que no esta vinculada con un archivo. El segundo crea
una instancia de ofstream y luego abre el archivo especificado por nombrear con el modo especi-
ficado por modo. Observe que modo tiene como opcién predeterminada ios::out. Esto causa que se
cree el archivo, y que se destruya cualquier archivo anterior con el mismo nombre. Ademas,
el archivo se abre automéaticamente para salida de texto. (Como opcién predeterminada, todos los
archivos se abren en modo de texto. Para el caso de la salida binaria, debe solicitar explicitamente
el modo binario.) La clase ofstream requiere el encabezado <fstream>.

Si utiliza el constructor predeterminado, entonces necesitard vincular un archivo con la ins-
tancia de ofstream después de construirla. Para esto, llame a open(). Aqui se muestra la versiéon
definida por ofstream:

void open(const char *nombrear, ios::openmode modo = ios::out)

Abre el archivo especificado por nombrear con el modo especificado por modo. Observe que, al
igual que el constructor ofstream, la opcion predeterminada de modo es ios::out.

Antes de escribir en el archivo, debe confirmar que se ha abierto. Puede hacer esto de diversas
maneras. El método usado en esta solucion consiste en aplicar el operador ! a la instancia de ofs-
tream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el flujo. Por tanto,
si devuelve true, la operacion de apertura ha fallado.

Una vez que se ha abierto correctamente un archivo de salida, puede escribir salida formada
en él mediante el operador de insercién <<. Est4 definido por todos los objetos de tipo ostream,
entre ellos ofstream, porque hereda ostream. Utiliza el encabezado <ostream>, que suele incluirse
con <fstream>, de modo que no necesitara incluirlo explicitamente. El operador << se usa para
escribir salida formada a un archivo, de la misma manera que se usa para escribir salida en la
consola mediante cout. Por ejemplo, suponiendo que archsalida representa un archivo de salida
abierto, la siguiente instruccién escribe un entero, una cadena y un punto flotante en él:

archsalida << 10 << " Esto es una prueba " << 1.109;

Debido a que el archivo se ha abierto para salida de texto, esta informacién se escribe en su forma
legible para los seres humanos. Por tanto, el archivo contendrd lo siguiente:

10 Esto es una prueba 1.109

Cuando haya terminado de escribir en un archivo, debe cerrarlo. Esto se hace al llamar a clo-
se(), que se muestra aqui:

void close()

El archivo se cierra autométicamente cuando se llama al destructor de ofstream. Sin embargo, por
las razones establecidas en Apertura y cierre de un archivo, en este libro se llamara explicitamente a
close() en todos los casos.

Capitulo 5: Trabajo con E/S 295

En esta solucién se comprueba que no han ocurrido errores de E/S al llamar a good() en el
flujo. Aqui se muestra:

bool good() const

Devuelve true si no estan establecidas marcas de error.

Ejemplo

En el siguiente ejemplo se escriben datos formados en un archivo de texto llamado prueba.dat.
Observe que no esta especificado el pardmetro modo del constructor de ofstream. Esto significa
que la opcion predeterminada es ios::out. Para este ejemplo, en el programa se utiliza la funcién
good() para informar del éxito o la falla de las operaciones de archivo. Como se explicé, también
son posibles otros métodos.

// Escribe salida formada en un archivo de texto.

#include <iostream>
#include <fstream>

using namespace std;

int main/()

{
// Crea un objeto de ofstream y trata de abrir
// el archivo prueba.dat.
ofstream archsalida ("prueba.dat");

// Verifica que el archivo se abrid correctamente.
if (larchsalida) {
cout << "No se puede abrir el archivo.\n";
return 1;

}

// Escribe salida en el archivo.
archsalida << 10 << " " << -20 << " " << 30.2 << "\n";
archsalida << "Esto es una prueba.";

// Cierra explicitamente el archivo.
archsalida.close() ;

if (larchsalida.good()) {
cout << "Ha ocurrido un error con el archivo.";
return 1;

}
}

Aqui se muestra el contenido de prueba.dat:

10 -20 30.2
Esto es una prueba.

Como se observa, los datos estdn almacenados en formato de texto, legible para el ser humano.

296 C++ Soluciones de programacion

Opciones

Cuando se usa ofstream, el parametro modo de open() o el constructor de ofstream debe incluir
ios::out (que es la opcion predeterminada), pero también puede incluir otros valores. Uno de

los mas ttiles es ios::app, porque causa que toda la salida se presente al final del archivo. Esto
significa que no se perdera el contenido de un archivo preexistente del mismo nombre. En cambio,
la salida se agrega al final del contenido anterior. Por ejemplo, si utiliza esta llamada a ofstream()
para abrir prueba.dat en el programa anterior:

ofstream archsalida ("prueba.dat", ios::out | ios::app);

entonces la salida se escribira al final del archivo. Por tanto, cada vez que ejecute el programa, el
archivo se hara mas largo.

Para provocar una btisqueda inicial al final del archivo, incluya ios::ate. Después de la bisque-
da inicial al final, la salida puede darse en cualquier lugar.

Aunque el uso de good() es una manera conveniente de confirmar el éxito de una operacién
de salida con formato, no es la tinica manera. Por ejemplo, puede usar las funciones bad() o fail().
También puede usar rdstate(). Consulte Revision de errores en la revisién general, para conocer mas
detalles.

Otra manera de revisar posibles errores de E/S es mediante el uso de excepciones. Para ello,
debe especificar los errores que lanzaran excepciones al llamar a exceptions() en el objeto ofs-
tream. Luego debe capturar excepciones de tipo ios_base::failure. (Consulte Use excepciones para
detectar y manejar errores de E/S para conocer mas detalles.)

Si quiere escribir datos binarios, abra el flujo de salida en modo binario. (Consulte Escriba datos
binarios sin formato en un archivo para conocer mas detalles.) Para leer datos formados de un archi-
vo, utilice ifstream. (Consulte Lea datos formados de un archivo de texto.) Para abrir un archivo para
entrada y salida, cree un objeto de fstream. (Consulte Lea un archivo y escriba en él.)

Lea datos formados de un archivo de texto

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream void close()
bool good() const
void open(const char *nombrear,
ios::openmode modo = ios::in)

<istream> >>

Puede leer datos formados de un archivo de texto al usar las opciones de entrada formadas del sis-
tema de E/S de C++. Aqui, datos formados significa la forma de texto, legible para los seres huma-
nos de los datos, en lugar de su representacion binaria sin trabajar. Por ejemplo, dado un archivo
que contiene lo siguiente:

10 Hola 123.23

Capitulo 5: Trabajo con E/S 297

puede usar las caracteristicas de entrada formada de C++ para leer el entero 10, la cadena Hola y el
valor de punto flotante 123.23, almacenando el resultado en un valor int, string y double, respecti-
vamente. En general, puede leer valores de cadena, enteros, booleanos y de punto flotante que estdn
almacenados en su forma legible para los seres humanos. En esta solucién se muestra este proceso.

Paso a paso
Para leer datos formados de un archivo se requieren estos pasos:

1. Cree una instancia de ifstream.

2. Abra el archivo al llamar a open() en la instancia de ifstream creada en el paso 1. Como
opcién, puede abrir el archivo al mismo tiempo que crea el objeto de ifstream. (Consulte la
seccion Andlisis de esta solucion.)

Confirme que el archivo se ha abierto correctamente.

Lea datos del archivo al usar el operador de extraccion >>.

Cierre el archivo al llamar a close().

Confirme que las operaciones de lectura han sido correctas. Esto puede hacerse al llamar a
good() en el flujo de entrada.

AN

Andlisis
Una revision general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capitulo. Aqui se presentan los detalles especificos relacionados
con ifstream.

Para crear un flujo de entrada vinculado con un archivo, cree un objeto de tipo ifstream. Tiene
estos dos constructores:

ifstream()

explicit ifstream(const char *nombrear, ios::openmode modo = ios:in)

El primero crea una instancia de ifstream que no esta vinculada con un archivo. El segundo crea
una instancia de ifstream y luego abre el archivo especificado por nombrear con el modo especifi-
cado por modo. Observe que modo tiene como opcién predeterminada ios::in. Esto causa que
el archivo se abra automaticamente para entrada de texto. (Como opcién predeterminada, todos
los archivos se abren en modo de texto. Para el caso de la entrada binaria, debe solicitar explici-
tamente el modo binario.) Es obligatorio que exista el archivo especificado por nombrear. De lo
contrario, se producird un error. La clase ifstream requiere el encabezado <fstream>.

Si utiliza el constructor predeterminado, entonces necesitard vincular un archivo con la ins-
tancia de ifstream después de construirla. Para esto, llame a open(). Aqui se muestra la versién
definida por ifstream:

void open(const char *nombrear, ios::openmode modo = ios::in)

Abre el archivo especificado por nombrear con el modo especificado por modo. Observe que, al
igual que el constructor ifstream, la opciéon predeterminada de modo es ios::in.

Antes de tratar de leer del archivo, debe confirmar que se ha abierto. Puede hacer esto de
diversas maneras. El método usado en esta solucion consiste en aplicar el operador ! a la instancia
de ifstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el flujo. Por
tanto, si devuelve true, la operacién de apertura ha fallado.

298

C++ Soluciones de programacion

Una vez que se ha abierto correctamente un archivo de entrada, puede leer datos formados de
él mediante el operador de extracciéon >>. Estd definido por todos los objetos de tipo istream, entre
ellos ifstream, porque hereda istream. Utiliza el encabezado <istream>, que suele incluirse con
<fstream>, de modo que no necesitard incluirlo explicitamente. El operador >> se usa para leer
entrada formada de un archivo, de la misma manera que se utiliza para leer entrada de la consola
mediante cin. Por ejemplo, suponiendo que archentrada representa un archivo de entrada abierto,
la siguiente instruccion lee un valor int, string y double de él:

int x;
string cad;
double wval;

archentrada >> x;
archentrada >> cad;
archentrada >> val;

Suponiendo que el archivo al que se hace referencia con archentrada contiene lo siguiente:
10 Hola 123.23

entonces, después de leer los datos, x contendra el valor 10, cad contendra la cadena Hola y val
contendrd el valor 123.23.

Cuando haya terminado de leer un archivo, debe cerrarlo. Esto se hace al llamar a close(), que
se muestra aqui:

void close()

El archivo se cierra automaticamente cuando se llama al destructor de ifstream. Sin embargo, por
las razones establecidas en Apertura y cierre de un archivo, en este libro se llamara explicitamente a
close() en todos los casos.

En esta solucién se comprueba que no han ocurrido errores de E/S al llamar a good() en el
flujo. Aqui se muestra:

bool good() const

Devuelve true si no estan establecidas marcas.

Ejemplo
En el siguiente ejemplo se muestra cémo leer entrada formada de un archivo de texto. Se lee el
archivo producido por el programa de ejemplo de Escriba datos formados en un archivo de texto.

// Lee datos formados de un archivo.

//

// Nota: este programa lee el archivo prueba.dat
// producido por el programa de ejemplo de

//

// Escriba datos formados en un archivo de texto
//

// El archivo prueba.dat creado por ese programa

// contiene los siguientes datos:

//

// 10 -20 30.2

Capitulo 5: Trabajo con E/S 299

// Esto es una prueba.

#include <iostream>
#include <fstream>
#include <strings>

using namespace std;

int main()

{
int i, n;
double d;
string cad;

// Crea un objeto de ifstream y trata de abrir el archivo prueba.dat.
ifstream archentrada ("prueba.dat") ;

// Verifica que el archivo se ha abierto correctamente.
if (larchentrada) {

cout << "No se puede abrir el archivo.\n";

return 1;

}

// Lee los datos formados.
archentrada >> 1i;
archentrada >> n;
archentrada >> d;
archentrada >> cad;

// Cierra el archivo de entrada.
archentrada.close() ;

// Confirma que no ocurrieron errores en la entrada.

if (larchentrada.good()) {
cout << "Ha ocurrido un error con el archivo.";
return 1;

}

// Despliega los datos.
cout << i << " " << n << " " <<
d << " " << cad << "\n";

return 0;

}
Aqui se muestra la salida:

10 -20 30.2 Esto

Observe que sélo se despliega la palabra "Esto” en lugar de toda la frase "Esto es una prueba". Se debe
a que el operador >> utiliza el espacio en blanco como un separador de campo. Por tanto, la linea

archentrada >> cad;

deja de leer caracteres cuando se encuentra el primer espacio, que es el que sigue a "Esto" en la
frase. Se requieren operaciones de entrada adicionales para leer el resto de la frase.

300

C++ Soluciones de programacion

Opciones

Como ya se sefiald, cuando se lee una cadena, el operador >> lee caracteres hasta que se encuentra
un espacio en blanco. Si quiere leer una linea de texto completo, entonces querra usar una de las
funciones de entrada no formada, como getline(). Consulte Use get() y getline() para leer un archivo.

En algunas situaciones de entrada, querra leer datos hasta que alcance el final del archivo. Pue-
de determinar cuando se ha encontrado el final de un archivo al llamar a eof() en el flujo. Consulte
Deteccién de EOF.

Aunque el uso de good() es una manera conveniente de confirmar el éxito de una operacién de
entrada con formato, no es la tinica manera. Por ejemplo, puede usar las funciones bad() o fail().
También puede usar rdstate() o el operador ! en el flujo. Consulte Revision de errores en la revisién
general, para conocer mas detalles. También puede revisar posibles errores de E/S mediante el uso
de excepciones. Para ello, debe especificar los errores que lanzaran excepciones al llamar a excep-
tions() en el objeto ifstream. Luego debe capturar excepciones de tipo ios_base::failure. (Consulte
Use excepciones para detectar y manejar errores de E/S para conocer mds detalles.)

Cuando se lee una cadena mediante el operador de extracciéon >>, debe evitarse el uso de una
matriz de caracteres para recibir la entrada. Use, en cambio, una string. Si utiliza una matriz de
caracteres, entonces es posible que el final de la matriz pueda desbordarse con una secuencia de
entrada inesperadamente larga. Esta es una fuente de la famosa falla de seguridad "desborda-
miento de bufer". Debido a que string es una estructura de datos dindmica, puede tratar mejor con
una entrada inesperadamente larga. En algunos casos, podria ser atin mejor evitar por completo
el uso de >> para leer cadenas, dependiendo, en cambio, de las funciones de entrada sin formato.
Consulte Lea datos binarios sin formato de un archivo.

Si quiere leer datos binarios, abra el flujo de entrada en modo binario. (Consulte Lea datos
binarios sin formato de un archivo para conocer mas detalles.) Para escribir datos formados en un ar-
chivo, utilice ofstream. (Consulte Escriba datos formados en un archivo de texto.) Para abrir un archivo
para entrada y salida, cree un objeto de fstream. (Consulte Lea un archivo y escriba en él.)

Escriba datos binarios sin formar en un archivo

Componentes clave

Encabezados Clases Funciones

<fstream> ofstream void close()
bool good() const
void open(const char *nombrear,
ios::openmode modo = ios::out)
ostream &write(const char *cad,
streamsize num)

En la solucién Escriba datos formados en un archivo se describié cémo escribir datos formados (es

decir, basados en texto) en un archivo de texto. Aunque este tipo de salida es 1til en muchas situa-
ciones, a menudo querra escribir datos sin formato. Aqui "sin formato" significa que estan escritos
byte por byte en su forma binaria sin trabajaz, sin traduccién o sin formato con una representaciéon

legible para los seres humanos. La salida no formada suele usarse para crear archivos de datos,

Capitulo 5: Trabajo con E/S 301

en que éstos estan almacenados en su forma binaria. Por supuesto, también puede utilizar salida
no formada para crear un archivo de texto al escribir valores tipo char. Sin importar cudl sea el
proposito, en esta solucién se muestra el procedimiento basico empleado para escribir salida sin
formato en un archivo.

Paso a paso
Una manera de escribir datos no formados en un archivo requiere estos pasos:

1. Cree una instancia de ofstream.

2. Abra el archivo al llamar a open() en la instancia de ofstream creada en el paso 1. Como
opcién, puede abrir el archivo al mismo tiempo que crea el objeto de ofstream. (Consulte
la seccidn Andlisis de esta solucion.)

Confirme que el archivo se ha abierto correctamente.

Una manera de escribir datos no formados en el archivo consiste en llamar a write().
Cierre el archivo al llamar a close().

Confirme que las operaciones de escritura han sido correctas. Esto puede hacerse al llamar
a good() en el flujo de entrada.

AN

Andlisis
Una revision general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capitulo. Aqui se presentan los detalles especificos relacionados
con el uso de ofstream para escribir datos binarios, sin formato.

Para realizar salida binaria sin formato, debe tener un objeto de tipo ofstream que dé soporte
a operaciones binarias. La clase ofstream usa el encabezado <fstream> y define estos dos cons-
tructores:

ofstream()

explicit ofstream(const char *nombrear, ios::openmode modo = ios:out)

El primero crea una instancia de ofstream que no esta vinculada adn con un archivo. El segundo
crea una instancia de ofstream y luego abre el archivo especificado por nombrear con el modo espe-
cificado por modo. Observe que modo tiene como opcién predeterminada ios::out, pero no incluye
la marca ios::binary. Como opcién predeterminada, un archivo se abre en modo de texto. Para
abrirlo para salida sin formato, el argumento de modo debe especificar ios::out y ios::binary.

Por ejemplo, lo siguiente abre un archivo llamado prueba.dat para salida binaria:

ofstream archsalida ("prueba.dat", ios::out \ ios: :binary) ;

Esto causa que se destruya cualquier archivo anterior con el nombre prueba.dat y que se cree un
nuevo archivo.

Cuando se especifica la marca de modo binary, los datos se escriben en su forma binaria, sin
trabajar, con lo que se evitan posibles traducciones de caracteres (como la conversién de nueva
linea en la secuencia retorno de carro/avance de linea) que podria ocurrir cuando el archivo se
abre en modo de texto. (Recuerde que si no se especifica ios::binary, el archivo se abre de manera
automatica en modo de texto.) Si no se usa el modo binario, puede ocurrir que el patrén de bits
contenido en el archivo sea diferente del que se encuentra en el bloque original de la memoria.
Por tanto, siempre debe especificar ios::binary cuando abra un archivo para salida binaria.

302

C++ Soluciones de programacion

Si utiliza el constructor predeterminado, entonces necesitard vincular un archivo con la ins-
tancia de ofstream después de construirla. Para esto, llame a open(). Aqui se muestra la versiéon
definida por ofstream:

void open(const char *nombrear, ios::openmode modo = ios::out)

Abre el archivo especificado por nombrear con el modo especificado por modo. Observe que, al
igual que el constructor ofstream, la opcion predeterminada de modo es ios::out. Por tanto, debe
especificar explicitamente ios::out y ios::binary para escribir datos binarios sin formato.

Antes de tratar de escribir en el archivo, debe confirmar que se ha abierto. Puede hacer esto de
diversas maneras. El método usado en esta solucion consiste en aplicar el operador ! a la instancia
de ofstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el flujo. Por
tanto, si devuelve true, la operacién de apertura ha fallado.

Una manera de escribir salida sin formato a un archivo consiste en usar la funcién write().
Escribe un bloque de datos en un flujo. Aqui se muestra:

ostream &write(const char *buf, streamsize num)

Aqui buf es un apuntador al bloque de memoria que se escribird y num especifica el nimero de
bytes que se habra de escribir. El tipo streamsize esta definido como alguna forma de entero que
puede contener el nimero mas grande de bytes que es posible transferir en cualquier operacién de
E/S. La funcién devuelve una referencia al flujo. Aunque buf estd especificado como char *, puede
usar write() para escribir cualquier tipo de datos binarios. Simplemente convierta un apuntador

a los datos a char * y especifique la longitud del bloque en bytes. (Recuerde que, en C++, un char
es siempre exactamente de un byte de largo.) Por ejemplo, esta secuencia escribe en archsalida el
valor double en val:

double val = 10.34;
archsalida.write((char *) &val, sizeof (double) ;

Debe comprender que los datos se escriben en su formato interno, de punto flotante. Por tanto, el
archivo contiene la imagen de patrén de bits de val, no su forma legible para los seres humanos.

Cuando haya terminado de escribir en un archivo, debe cerrarlo. Esto se hace al llamar a clo-
se(), que se muestra aqui:

void close()

El archivo se cierra automaticamente cuando se llama al destructor de ofstream. Sin embargo, por
las razones establecidas en Apertura y cierre de un archivo, en este libro se llamara explicitamente a
close() en todos los casos.

En esta solucion se comprueba que no han ocurrido errores de E/S al llamar a good() en el
flujo. Aqui se muestra:

bool good() const
Devuelve true si no estan establecidas marcas de error.
Ejemplo

En el siguiente ejemplo se demuestra la escritura de datos binarios en un archivo. Se crea una
estructura llamada inventario que almacena el nombre, la cantidad y el costo de un articulo del

Capitulo 5: Trabajo con E/S 303

inventario. Luego, se crea una matriz de tres elementos de estructuras de inventario llamada inv
y se almacena informacién de inventario en esa matriz. Luego escribe esa matriz en un archivo
llamado InvDat.dat. Después de que termina el programa, el archivo contendrd una copia byte

por byte de la informacién de inv.

// Usa write() para dar salida a un bloque de datos binarios.

#include <iostream>
#include <fstream>
#include <cstrings

using namespace std;

// Una estructura simple de inventario.
struct inventario ({

char producto[20];

int cantidad;

double costo;

}i

int main()
// Crea y abre un archivo para salida binaria.
ofstream archsalida("InvDat.dat", ios::out | ios

// Confirma que el archivo se abrid sin error.
if (larchsalida) {
cout << "No se puede abrir el archivo.\n";
return 1;

}

// Crea algunos datos de inventario.
inventario inv[3];

strcpy (inv [0] .producto, "Martillos") ;
inv[0] .cantidad = 3;
inv[0] .costo = 9.99;

strcpy (inv[1] .producto, "Pinzas");
inv[1l] .cantidad = 12;
inv[1l] .costo = 7.85;

strcpy (inv[2] .producto, "Llaves");
inv([2] .cantidad = 19;
inv([2] .costo = 2.75;

// Escribe datos de inventario en el archivo.
for(int 1=0; 1i<3; 1i++)

::binary) ;

archsalida.write((const char *) &inv[i], sizeof (inventario)) ;

// Cierra el archivo.
archsalida.close() ;

304

C++ Soluciones de programacion

// Confirma que no hubo errores de archivo.

if (larchsalida.good()) {
cout << "Ha ocurrido un error con el archivo.";
return 1;

}

return 0;

Opciones
Otra manera de escribir datos sin formato en un flujo es llamando a put(). Aqui se muestra:

ostream &put(char car)

Esta funcion escribe el valor de bytes pasado en car al flujo asociado. (Recuerde que en C++, un
char tiene un byte de largo. Por tanto, cada llamada a put() escribe un byte de datos.) La funcién
devuelve una referencia al flujo. He aqui un ejemplo de la manera en que puede usarse. Supo-
niendo que archsalida es un flujo de salida abierto, lo siguiente escribe los caracteres en la cadena
sefalada por cad:

const char *cad = "Hola";
while (*cad) archsalida.put (*cad++) ;

Después de que se ejecuta la secuencia, el archivo contendra los caracteres "Hola".

Tanto put() como write() pueden usarse en un flujo de salida de texto (es decir, un flujo no espe-
cificado como binario). Sin embargo, si lo hace, entonces pueden ocurrir algunas traducciones de ca-
racter. Por ejemplo, una nueva linea se convertird en una secuencia retorno de carro/avance de linea.
En general, si esta usando put() o write(), normalmente abrira el archivo en operaciones binarias.

Como opcién predeterminada, cuando se abre un archivo para salida, se destruye el contenido
de cualquier archivo preexistente del mismo nombre. Puede evitar esto al incluir la marca ios::app
en el pardmetro de modo de open() o el constructor ofstream. Hace que toda la salida ocurra al final
del archivo, preservando asi su contenido. Para provocar una bisqueda inicial al final del archivo,
incluya ios::ate. Después de la bisqueda inicial al final, la salida puede darse en cualquier lugar.

Aunque el uso de good() es una manera conveniente de confirmar el éxito de una operaciéon
de salida sin formato, no es la inica manera. Por ejemplo, puede usar las funciones bad() o fail().
También puede usar rdstate(). Consulte Revisién de errores en la revisién general, para conocer mas
detalles. También puede revisar posibles errores de E/S mediante el uso de excepciones. Para ello,
debe especificar los errores que lanzardn excepciones al llamar a exceptions() en el objeto ofs-
tream. Luego debe capturar excepciones de tipo ios_base::failure. (Consulte Use excepciones para
detectar y manejar errores de E/S para conocer mas detalles.)

Otra manera de revisar errores cuando usa write() o put() consiste en revisar el estado del
flujo. Debido a que write() o put() devuelve una referencia al flujo en que operan, puede aplicarse
el operador ! al objeto devuelto. Recuerde que cuando ! se aplica a un flujo, devuelve el resultado
de fail() aplicado al mismo flujo. Por tanto, puede probar si se hizo una llamada correcta a write()
como ésta:

if (lwrite(...)) { // ... maneja el error de escritura

Capitulo 5: Trabajo con E/S 305

Por ejemplo, en el programa anterior, puede usar la siguiente secuencia para escribir los registros
de inventario, confirmando el éxito de cada operacién de salida en el proceso:

if (!write((const char *) &inv[i]), sizeof (inventario))) {
cout << "Error al escribir el archivo.";
// maneja el error

}

El hecho de tomar este método para revisar errores afina su cddigo fuente. Sin embargo, debido
a que cada llamada a write() también da como resultado que se evaliie una instruccién if (lo que
toma tiempo), no afina el rendimiento de su programa. Como regla general, las excepciones ofre-
cen una mejor opcién en este tipo de situacion.

Para leer informacién binaria, sin formato de un archivo, consulte Lea datos binarios sin formar
de un archivo. Para leer datos formados de un archivo, use ifstream. (Consulte Lea datos formados de
un archivo de texto.)

Lea datos binarios sin formar de un archivo

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream void close()
bool good() const
void open(const char *nombrear,
ios::openmode modo = ios::in)
ostream &read(char *cad, streamsize num)

En la solucién Lea datos formados de un archivo se describié cémo leer datos formados (es decir, ba-
sados en texto) de un archivo de texto. Aunque este tipo de entrada es 1itil en muchas situaciones,
a menudo querra leer datos sin formato, en su forma binaria sin trabajar, sin ninguna traduccién
de caracteres (lo que es posible con la entrada formada). Por ejemplo, si fuera a crear una utileria
de comparacién de archivos, querria operar sobre los datos binarios dentro de los archivos, byte
por byte. Sin importar cual sea la necesidad, en esta solucién se muestra el procedimiento basico
empleado para leer entrada sin formato de un archivo.

Paso a paso
Una manera de leer datos no formados de un archivo requiere estos pasos:

1. Cree una instancia de ifstream.

2. Abra el archivo al llamar a open() en la instancia de ifstream creada en el paso 1. Como
opcién, puede abrir el archivo al mismo tiempo que crea el objeto de ifstream. (Consulte la
seccion Anilisis de esta solucion.)

306

C++ Soluciones de programacion

Confirme que el archivo se ha abierto correctamente.

Una manera de leer datos no formados en el archivo consiste en llamar a read().

Cierre el archivo al llamar a close().

Confirme que las operaciones de escritura han sido correctas. Esto puede hacerse al llamar
a good() en el flujo de entrada.

AN

Anlisis
Una revision general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capitulo. Aqui se presentan los detalles especificos relacionados
con el uso de ifstream para leer datos binarios, sin formato.

Para realizar entrada de datos binarios sin formato, debe tener un objeto de tipo ifstream que
dé soporte a operaciones binarias. La clase ifstream usa el encabezado <fstream> y define estos
dos constructores:

ifstream()

explicit ifstream(const char *nombrear, ios::openmode modo = ios:in)

El primero crea una instancia de ifstream que no esta vinculada atin con un archivo. El segundo
crea una instancia de ifstream y luego abre el archivo especificado por nombrear con el modo es-
pecificado por modo. Observe que modo tiene como opcién predeterminada ios::in, pero no incluye
la marca ios::binary. Como opcién predeterminada, los archivos se abren en modo de texto. Para
abrirlo para entrada binaria, el argumento modo debe especificar ios::in y ios::binary. Por ejemplo,
lo siguiente abre un archivo llamado prueba.dat para entrada binaria:

ifstream archentrada ("prueba.dat", ios::in | ios: :binary) ;

Cuando se especifica la marca de modo binary, los datos se leen byte por byte en su forma
binaria, sin trabajar. Esto evita posibles traducciones de caracteres (como la conversiéon de nueva
linea en la secuencia retorno de carro/avance de linea) que podria ocurrir cuando el archivo se
abre en modo de texto. (Si no se especifica ios::binary, el archivo se abre de manera automatica en
modo de texto.) Si no se usa el modo binario, puede llevar a que la informacién leida sea diferente
de la que se encuentra en el archivo. Por tanto, siempre debe especificar ios::binary cuando abra
un archivo para entrada binaria.

Si utiliza el constructor predeterminado, entonces necesitard vincular un archivo con la ins-
tancia de ifstream después de construirla. Para esto, llame a open(). Aqui se muestra la versién
definida por ifstream:

void open(const char *nombrear, ios::openmode modo = ios::in)

Abre el archivo especificado por nombrear con el modo especificado por modo. Observe que, al
igual que el constructor ifstream, la opcién predeterminada de modo es ios::in. Por tanto, debe
especificar explicitamente ios::in y ios::binary para leer datos binarios sin formato.

Antes de tratar de leer el archivo, debe confirmar que se ha abierto. Puede hacer esto de di-
versas maneras. El método usado en esta solucion consiste en aplicar el operador ! a la instancia
de ifstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en el flujo. Por
tanto, si devuelve true, la operacién de apertura ha fallado.

Capitulo 5: Trabajo con E/S 307

Una manera de leer salida sin formato de un archivo consiste en usar la funcién read(). Lee un
bloque de datos en un flujo. Aqui se muestra:

istream &read(const char *buf, streamsize num)

Aqui, buf es un apuntador al bloque de memoria (como una matriz) en que se almacenara la
entrada. El niimero de bytes que se leera se especifica con num. El tipo streamsize estd definido
como alguna forma de entero que puede contener el niimero mas grande de bytes que es posible
transferir en cualquier operaciéon de E/S. La funcién devuelve una referencia al flujo. Si es menor
que el niimero especificado de bytes disponible (lo que sucedera si trata de leer al final del archi-
vo), read() leerd menos de num bytes y failbyte se enviara en el flujo que invoca (lo que indica un
error). Aunque buf estd especificado como char *, puede usar read() para leer cualquier tipo de
datos binarios. Simplemente convierta un apuntador a los datos a char * y especifique la longitud
del bloque en bytes. (Recuerde que, en C++, un char es siempre exactamente de un byte de largo.)
En el programa de ejemplo se muestra este proceso.

Cuando haya terminado de leer en un archivo, debe cerrarlo. Esto se hace al llamar a close(),
que se muestra aqui:

void close()

El archivo se cierra automaticamente cuando se llama al destructor de ifstream. Sin embargo,
a manera de ejemplo, en este libro se llamara explicitamente a close() en todos los casos.

En esta solucién se comprueba que no han ocurrido errores de E/S al llamar a good() en el
flujo. Aqui se muestra:

bool good() const
Devuelve true si no estan establecidas marcas de error.
Ejemplo
En el siguiente ejemplo se demuestra cémo leer datos binarios sin formato. Se hace al leer el archi-
vo InvDat.dat creado por el programa de ejemplo en Escriba datos binarios sin formato en un archivo.

Este archivo contiene tres estructuras de inventario. Después de la llamada a read(), la matriz inv
contendrd el mismo patrén de bytes que el almacenado en el archivo.

// Usa read() para dar entrada a bloques de datos binarios.

//

// Este programa lee el archivo InvDat.dat

// que se cred en el programa de ejemplo de

//

// Escriba datos binarios sin formato en un archivo

#include <iostream>
#include <fstream>

using namespace std;
// Una estructura simple de inventario.

struct inventario
char producto[20];

308 C++ Soluciones de programacidon

int cantidad;
double costo;

}i

int main()
// BAbre el archivo para entrada binaria.
ifstream archentrada ("InvDat.dat", ios::in ios::binary) ;

// Confirma que el archivo se abrid sin error.
if (larchentrada)
cout << "No se puede abrir el archivo.\n";
return 1;

inventario inv[3];
// Lee bloques de datos binarios.
for(int 1=0; 1i<3; 1++)

archentrada.read((char *) &inv[i], sizeof (inventario)) ;

// Cierra el archivo.
archentrada.close () ;

// Confirma que no hubo errores de archivo.

if (larchentrada.good()) {
cout << "Ha ocurrido un error con el archivo.\n";
return 1;

}

// Despliega los datos de inventario leidos del archivo.
for (int 1=0; i < 3; i++) {
cout << inv[i] .producto << "\n";

cout << " cantidad en existencia: " << inv[i].cantidad;
cout << "\n costo: " << inv[i].costo << "\n\n";
return 0;

}
Aqui se muestra la salida:

Martillos
cantidad en existencia: 3
costo: 99.95

Pinzas
cantidad en existencia: 12
costo: 78.55

Llaves
cantidad en existencia: 19
costo: 27.55

Capitulo 5: Trabajo con E/S 309

Opciones

Como ya se explicd, read() lee un niimero especificado de bytes de un archivo. Sin embargo, si
solicita mas bytes de los disponibles en el archivo (como cuando lee cerca del final o en el final
del archivo), read() obtendrd menos bytes del niimero solicitado. Puede determinar cuantos bytes
realmente se leyeron al llamar a gcount(). Se muestra a continuacién:

streamsize gcount() const

Devuelve el nimero de caracteres leido por una llamada anterior a read(), o a cualquier otra fun-
cién de entrada sin formato. Puede ver la funcién gcount() en accién en el Ejemplo adicional de la
solucién Deteccién de EOF.

En el ejemplo anterior se usé good() para revisar errores, pero hay varias opciones. Consulte
Revision de errores en la revisién general y la solucion Use excepciones para detectar y manejar errores
de E/S para conocer mas detalles. También puede revisar errores de entrada para monitorear el
estado del flujo. Debido a que read() devuelve una referencia al flujo sobre el que estd operando,
puede aplicar el operador ! al objeto devuelto. Recuerde que cuando se aplica ! a un flujo, devuel-
ve el resultado de fail() aplicado al mismo flujo. Por tanto, puede probar el éxito de una llamada a
read() de la manera siguiente:

if(lread(...)) { // ... maneja el error de lectura

Por ejemplo, en el programa anterior, puede usar la siguiente secuencia para leer los registros del
inventario, confirmando el éxito de cada operacién de lectura en el proceso:

// Lee bloques de datos binarios.
for (int 1=0; 1<3; i++)
if (larchentrada.read((char *) &inv (i), sizeof (inventario))) {
cout <<< "Error al leer el archivo.";
// maneja el error ...

}

El hecho de tomar este método para revisar errores afina su cédigo fuente. Sin embargo, debido
a que cada llamada a read() también da como resultado que se evaltie una instruccién if (lo que
toma tiempo), no afina el rendimiento de su programa. Como regla general, las excepciones ofre-
cen una mejor opcién en este tipo de situacion.

Otra manera de leer entrada sin formato, basada en caracteres, consiste en usar la funcién get()
o getline(). Se describen en Use get() y getline() para leer de un archivo.

En algunas situaciones de entrada, querra leer datos hasta que llegue al final del archivo. Pue-
de determinar cuando se ha encontrado el final de un archivo al llamar a eof() en el flujo. Consulte
Deteccién de EOF.

Para leer datos formados, abra el flujo de entrada en modo de texto. Consulte Lea datos forma-
dos de un archivo de texto para conocer mas detalles. Para escribir datos formados en un archivo, use
ofstream. Consulte Escriba datos formados en un archivo de texto. Para abrir un archivo para entrada
y salida, cree un objeto de fstream. Consulte Lea un archivo y escriba en él.

310

C++ Soluciones de programacion

Use get() y getline() para leer un archivo

Componentes clave

Encabezados Clases Funciones

<ifstream> ifstream istream &get(char &car)
istream &get(char *buf, streamsize num)
istream &getline(char *buf, streamsize num)

En la solucién anterior se describié la manera de leer datos binarios sin formato mediante el uso
de la funcién read(). Esta funcién es especialmente titil cuando se leen bloques de datos, como

en el programa de ejemplo de la solucion anterior. Sin embargo, cuando se leen datos char, como
caracteres individuales o lineas de texto, las funciones get() y getline() pueden resultar mas conve-
nientes. En esta soluciéon se muestra como usarlas.

Paso a paso
Para leer caracteres de un archivo usando get() se requieren estos pasos:

1. Abra el archivo para entrada. Puede abrirse en modo de texto o binario. Sin embargo, esté

consciente de que si el archivo se abre en modo de texto, puede presentarse cierta traduc-

cién de caracteres, como la conversion de caracteres de nueva linea en secuencias retorno

de carro/avance de linea.

Una manera de leer un solo cardcter consiste en usar get(char &car).

3. Una manera de leer una secuencia de caracteres consiste en usar get(char *buf, streamsize
num).

4. Confirme que las operaciones de lectura han tenido éxito.

N

Para leer una linea completa de texto con el uso de getline() se requieren estos pasos:

1. Abra el archivo para entrada. Puede abrirse en modo de texto o binario. Sin embargo, esté
consciente de que si el archivo se abre en modo de texto, puede presentarse cierta traduc-
cién de caracteres, como la conversion de caracteres de nueva linea en secuencias retorno
de carro/avance de linea.

2. Una manera de leer una linea que termina en un carécter de nueva linea consiste en llamar
a getline(char *buf, streamsize num).

3. Confirme que las operaciones de lectura han tenido éxito.

Analisis
En las soluciones anteriores se describieron los pasos necesarios para abrir un archivo para en-
trada o salida en modo de texto o binario. Consulte esas soluciones para conocer detalles sobre la
apertura de un archivo.

Hay varias versiones de get(). Aqui se muestran las dos usadas en esta solucién:

istream &get(char &car)

istream &get(char *buf, streamsize num)

Capitulo 5: Trabajo con E/S 311

La primera forma lee un sélo caracter del flujo que invoca, y coloca ese valor en car. La segunda
forma lee caracteres de una matriz sefialada por buf hasta que se han leido num-1 caracteres, se ha
encontrado un caracter de nueva linea o se ha llegado al final del archivo. La matriz a la que sefia-
la buf estara terminada por un caracter nulo por get(). Si se encuentra el caracter de nueva linea en
el flujo de entrada, no se extrae. En cambio, permanece en el flujo hasta la siguiente operacién de
entrada. Ambas devuelven una referencia al flujo.

La funcién getline() tiene las dos formas. La usada en esta solucion se muestra aqui:

istream &getline(char *buf, streamsize num)

Lee caracteres en la matriz sefialada por buf hasta que se han leido los caracteres num-1, se ha encon-
trado una nueva linea de caracteres, o se ha llegado al final del archivo. La matriz a la que sefala buf
estard terminada por un caracter nulo por getline(). Si se encuentra el cardcter de nueva linea en el
flujo de entrada, se extrae pero no se coloca en buf. La funcién devuelve una referencia al flujo.

Como se observa, getline() es casi idéntica a la version get(buf, num) de get(). Ambas leen
caracteres de la entrada y los colocan en la matriz a la que sefiala buf hasta que se han leido
num-1 caracteres o se ha encontrado un caracter de nueva linea. La diferencia es que getline()
lee y elimina el caracter de nueva linea del flujo de entrada; get() no lo hace.

Es importante comprender que get() y getline() pueden usarse en archivos abiertos en modo
de texto o binario. La tinica diferencia es que si el archivo estd abierto en modo de texto, puede
ocurrir cierta traduccién de caracteres, como la conversion de nuevas lineas en secuencias retorno
de carro/avance de linea.

Cuando se usa get() o getline(), debe asegurarse de que la matriz que estard recibiendo entra-
da sea lo suficientemente grande como para contener la entrada que recibira. Por tanto, debe ser
por lo menos del mismo largo que la cuenta de caracteres pasada en num. Si se pasa por alto esta
regla, puede producirse un desbordamiento de bufer, que probablemente hara que el programa
deje de funcionar. También representa una posible amenaza a la seguridad porque deja su aplica-
cién abierta al famoso "ataque de desbordamiento de bufer". En general, debe ejercerse cuidado
extremo cuando se incluyen datos en una matriz.

Tiene la opcién de confirmar el éxito de get() o getline() de la misma manera que lo haria
al llamar a read(). Consulte la solucién anterior y Revision de errores, en la revisiéon general casi al
principio de este capitulo, para conocer méds detalles.

Ejemplo
En el siguiente ejemplo se muestran get() y getline() en accién.

// Usa get() y getline() para leer caracteres.

#include <iostream>
#include <fstream>

using namespace std;
int main()

{

char car;
char cad[256];

// Primero, escribe algunos datos en un archivo.

312

C++ Soluciones de programacion

ofstream archsalida ("prueba.dat") ;

if (larchsalida) {
cout << "No se puede abrir el archivo para salida.\n";
return 1;

}

// Escribe en el archivo.

archsalida << "Veamos una 1l\uOOalnea de texto.\n";

archsalida << "Y ahora otra 1l\u0OOalnea de texto.\n";

archsalida << "Y al final la \uOOa3ltima l\uOOalnea de texto.\n";

archsalida.close() ;

if (larchsalida.good()) {
cout << "Ha ocurrido un error mientras se escrib\u0OOala en el archivo
return 1;

}

// BAhora, abre el archivo para entrada.

ifstream archentrada ("prueba.dat", ios::in);

if (larchentrada)
cout << "No se puede abrir el archivo para entrada.\n";
return 1;

1
cout << "Usa get () :\n";

// Obtiene los tres primeros caracteres del archivo.
cout << "S\uOOa2lo son los tres primeros caracteres: ";
for(int i1=0; i < 3; ++1i) {

archentrada.get (car) ;

cout << car;

}

cout << endl;

// Ahora, usa get() para leer el final de la linea.
archentrada.get (cad, 255);

cout << "Esto es el resto de la primera l\uOOalnea: ";
cout << cad << endl;

// Debido a que la llamada anterior a get() no elimind
// el cardcter de nueva linea del flujo de entrada, debe
// eliminarse con otra llamada a get(car):
archentrada.get (car) ;

cout << "\nAhora se usa getline() :\n";

An";

// Por udltimo, usa getline() para leer las dos lineas siguientes de texto.

archentrada.getline (cad, 255);
cout << cad << endl;
archentrada.getline (cad, 255);
cout << cad;

archentrada.close() ;
if (larchentrada.good()) {

cout << "Ha ocurrido un error mientras se lee o se cierra el archivo.\n";

Capitulo 5: Trabajo con E/S 313

return 1;

}

return 0;

}
Aqui se muestra la salida:

Usa get () :
S6lo son los tres primeros caracteres: Vea
Esto es el resto de la primera linea: mos una linea de texto.

Ahora se usa getline():
Y ahora otra linea de texto.
Y al final la Gltima linea de texto.

En el programa, observe esta secuencia:

// BAhora, usa get() para leer el final de la linea.
archentrada.get (cad, 255);

cout << "Esto es el resto de la primera 1l\uOOalnea: ";
cout << cad << endl;

// Debido a que la llamada anterior a get() no elimind
// el carédcter de nueva linea del flujo de entrada, debe
// eliminarse con otra llamada a get (car) :
archentrada.get (car) ;

Como se explico, la version get(buf, num) de get() no elimina un caracter de nueva linea del
flujo de entrada. Por tanto, la nueva linea se leera en la siguiente operacién de entrada. A menu-
do, como pasa con el programa de ejemplo, es necesario eliminar y descartar el cardcter de nueva
linea. Esto se maneja con la llamada a la versién de get(car)*.

Opciones
Hay otra forma de get() que proporciona una opcién cuando sélo se lee un caracter. Se muestra a
continuacioén:

int get()

Esta forma de get() devuelve el siguiente cardcter del flujo. Devuelve un valor que representa el
final del archivo si se ha alcanzado éste. Para flujos basados en char, como ifstream, el valor EOF
es char_traits<char>::eof().

Cuando se lee una secuencia de caracteres mediante get(), puede especificar el delimitador al
emplear esta forma:

istream &get(char *buf, streamsize num, char delim)

Funciona igual que get(buf, num) descrito en esta solucién, excepto que detiene la lectura cuando
se encuentra el caracter pasado en delim (o cuando se han leido num-1 caracteres o se ha alcanzado
el final del archivo).

*Nota del revisor técnico: Observe que al escribir las secuencias de escape, se escriben de manera diferente en el archivo y su
presentacion en pantalla. Por razones de consistencia, se prefiere que la salida a la pantalla sea la correcta. Se sugiere explorar las
opciones de configuracion regional y de idioma de C++ para tratar adecuadamente este tema.

314 c++ Soluciones de programacidn

Cuando se lee una linea de texto mediante getline(), puede especificar el delimitador mediante
el uso de esta forma:

istream &getline(char *buf, streamsize num, char delim).

Funciona igual que getline(buf, num) descrito en esta solucion, excepto que detiene la lectura
cuando se encuentra el caracter pasado en delim (o cuando se han leido num-1 caracteres o se ha
alcanzado el final del archivo).

Lea un archivo y escriba en él

Componentes clave

Encabezados Clases Funciones

<fstream> fstream void close()
ostream &flush()
istream &get(char &car)
bool good() const
void open(const char *nombrear,
ios::openmode modo = ios::in | ios::out)
ostream &put(char car)

Es posible abrir un archivo para que pueda usarse con entrada y salida. Esto suele hacerse cuan-
do un archivo de datos necesita actualizarse. En lugar de volver a escribir todo el archivo, puede
escribir s6lo una pequena parte de él. Esto resulta especialmente valioso en archivos que usan
registros de longitud fija, porque ofrece una manera conveniente de actualizar un registro sin
reescribir todo el archivo. Por supuesto, abrir un archivo para entrada y salida resulta ttil en otras
situaciones, como cuando quiere leer el contenido de un archivo, modificarlo y luego volver a
escribir el contenido modificado en el mismo archivo. Al usar un archivo abierto para entrada y
salida, s6lo necesita abrir y cerrar el archivo una vez, con lo que se afina su c6digo. Cualquiera
que sea su proposito, en esta solucién se muestra el procedimiento bésico necesario para leer un
archivo y escribir en él.

Paso a paso
Para realizar operaciones de entrada y salida en un archivo se requieren los siguientes pasos:

1. Abra el archivo para lectura y escritura al crear un objeto de tipo fstream. La clase fstream
hereda ifstream y ofstream. Esto significa que permite operaciones de entrada y salida.

2. Use las funciones de salida definidas por ofstream para escribir en el archivo. La que se usa
en esta solucién es put().

3. Use las funciones de entrada definidas por ifstream para leer el archivo. La que se usa en
esta solucion es get().

Capitulo 5: Trabajo con E/S 315

4. Para muchas implementaciones de compilador, cuando cambia entre entrada y salida,
necesitara llamar a seekg(), seekp() o flush(). En esta solucién se usa flush().

5. Cierre el archivo.

6. Confirme que las operaciones de entrada y salida fueron correctas. Esto puede hacerse al
llamar a good() en el flujo de entrada o de varias otras maneras.

Anlisis

Una revision general de la apertura y el cierre de un archivo se encuentra en Apertura y cierre de un
archivo, casi al principio de este capitulo. Aqui se presenta la informacién relacionada especifica-
mente con fstream.

La clase fstream hereda la clase iostream, que hereda istream y ostream. Esto permite el
soporte de operaciones de entrada y salida. Mas atin, todas las técnicas descritas en las soluciones
anteriores, como leer y escribir de un ifstream u ofstream, se aplican a fstream. La tinica diferen-
cia es que fstream da soporte a lectura y escritura.

Para realizar operaciones de entrada/salida, debe tener un objeto de tipo fstream que dé
soporte a operaciones de entrada y salida. La clase fstream usa el encabezado <fstream> y define
estos dos constructores:

fstream()

explicit fstream(const char *nombrear, ios::openmode modo = ios:in | ios::out)

El primero crea una instancia de fstream que no estd vinculada atin con un archivo. El segun-
do crea una instancia de fstream y luego abre el archivo especificado por nombrear con el modo
especificado por modo. Observe que modo tiene como opcién predeterminada ios::in y ios::out.
Ademas, observe que no incluye la marca ios::binary. Por tanto, como opcién predeterminada,
el archivo se abre en modo de texto. Para abrirlo para E/S binaria, incluya la marca ios::binary.
Cuando un archivo se abre en modo de texto, pueden ocurrir traducciones de caracteres, como el
reemplazo de nueva linea por la secuencia retorno de carro/avance de linea. La apertura del texto
en modo binario evita estas traducciones.

Si utiliza el constructor predeterminado, entonces necesitard vincular un archivo con la instan-
cia de fstream después de que se construya al llamar a open(). Aqui se muestra la versién definida
por fstream:

void open(const char *nombrear, ios::openmode modo = ios:in | ios::out)

Abre el archivo especificado por nombrear con el modo especificado por modo. Observe que, como
el constructor fstream, la opcién predeterminada de modo es ios::in | ios::out. Por tanto, el archivo
se abre automaticamente para operaciones predeterminadas de entrada y salida cuando modo esta
en su opcién predeterminada.

Antes de tratar de escribir en el archivo, debe confirmar que el archivo esta abierto. Puede
hacer esto de diversas maneras. El método usado en esta solucién consiste en aplicar el operador !
a la instancia de fstream. Recuerde que el operador ! devuelve la salida de una llamada a fail() en
el flujo. Por tanto, si devuelve true, la operacion de apertura ha fallado.

Una vez abierto, puede leer el archivo y escribir en él usando cualquiera de los métodos
proporcionados por istream y ostream, como get(), put(), read() y write(). Estos métodos se han
descrito en las soluciones anteriores.

En el caso de algunos compiladores, necesita limpiar la salida al llamar a flush() o realizar
una operacion de busqueda al llamar a seekg() o seekp() cuando se cambia entre operaciones de

316

C++ Soluciones de programacion

lectura y escritura. En esta solucién se utiliza flush(). (Para conocer més detalles sobre seekg()
y seekp(), consulte Utilice E/S de archivo de acceso aleatorio.) El método flush() estd definido por
ostream y se muestra a continuacion:

ostream &flush()

Limpia el bufer de salida. Esto asegura que el contenido del buifer se escriba en el archivo. El siste-
ma de E/S de C++ utiliza buiferes para mejorar la eficiencia de las operaciones con archivos. Para
la entrada, los datos se leen del archivo, de biifer en bufer. Cuando se alcanza el final del biifer de
entrada, se lee la informacién del siguiente btifer. En el caso de la salida, cuando escribe sus datos,
en realidad se escriben en un bfer de salida. S6lo cuando el biifer estd lleno los datos se escriben
fisicamente en un archivo. La funcién flush() modifica este comportamiento y hace que el conteni-
do actual del biifer se escriba en el archivo, esté lleno el bifer o no. Esto asegura que el contenido
del archivo refleje inmediatamente cualquier operacién de escritura que haya tenido lugar. En lo
que se relaciona con los archivos de lectura/escritura, la llamada a flush() después de que ha escri-
to el archivo asegura que las operaciones de lectura reflejen el estado real del archivo:

Ejemplo

En los siguientes ejemplos se muestra cémo abrir un archivo de texto llamado prueba.dat para
lectura y escritura. Es necesario que el archivo prueba.dat exista. Después de que abre el archivo,
escribe tres "X" al principio del archivo. A continuacién limpia el bufer de salida y luego lee los
siguientes diez caracteres del archivo.

// Usa fstream para leer un archivo y escribir en é&l.

#include <iostream>
#include <fstream>

using namespace std;

int main()

{

char car;

// Abre un archivo para operaciones de entrada y salida.
fstream archentradasalida ("prueba.dat") ;

if (larchentradasalida) {
cout << "No se puede abrir el archivo para salida.\n";
return 1;

}

// Escribe tres X.
for(int i=0; i < 3; ++1) archentradasalida.put('X'");

if (larchentradasalida.good()) ({
cout << "Ha ocurrido un error mientras se escrib\u0OOala en el archivo.\n";
return 1;

}

// Limpia el bufer de salida.

Capitulo 5: Trabajo con E/S 317

archentradasalida.flush() ;

// Obtiene los siguientes 10 caracteres del archivo.
cout << "Aqu\uOOal se muestran los diez caracteres siguientes: ";
for(int i=0; i < 10; ++1i) {
archentradasalida.get (car) ;
cout << car;
}

cout << endl;

if (larchentradasalida.good())
cout << "Ha ocurrido un error mientras se le\u0OOala el archivo.\n";
return 1;

}

archentradasalida.close() ;

if (larchentradasalida.good())
cout << "Ha ocurrido un error mientras se cerraba el archivo.\n";
return 1;

return 0;

}

Suponiendo que prueba.dat contiene lo siguiente:

abcdefghijklmnop

el programa produciré esta salida:

Aqui se muestran los diez caracteres siguientes: defghijklm
y el contenido de prueba.dat cambiara a:

XXXdefghijklmnop

Opciones
Para realizar operaciones de entrada/salida en un archivo, no hay en realidad ninguna opcién
adicional al uso de fstream.

Deteccion de EOF

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream bool eof() const

318

C++ Soluciones de programacion

En algunos casos, querrd saber cudndo se ha alcanzado el final del archivo. Por ejemplo, si esta
leyendo una lista de valores de un archivo, entonces tal vez quiera seguir leyendo hasta que ya no
haya mds valores. Para esto debe contar con alguna manera de saber cuando se ha alcanzado el
final del archivo. Por fortuna, el sistema de E/S de C++ proporciona una funcién para hacer esto:
eof(). En esta solucién se muestra como usarla.

Paso a paso
Para detectar EOF se requieren estos pasos:

1. Abra el archivo que se leera para entrada.
Empiece a leer datos del archivo.

3. Después de cada operacion de entrada, determine si se ha alcanzado el final del archivo al
llamar a eof().

Andlisis
La funcién eof() determina si se ha alcanzado el final del archivo. Esta declarada por istream, que
se hereda de ifstream. Se muestra a continuacién:

bool eof() const

Devuelve true si se ha encontrado el final del flujo; de lo contrario, devuelve false.

Hay un aspecto importante del sistema de E/S de C++ que se relaciona con el final del archivo.
Cuando se hace un intento por leer al final del archivo, se establecen ios::eofbit e ios::failbit. Por
tanto, el encuentro del final del archivo también se considera una condicioén de error, aunque eso
sea lo que se pretende. Més atin, si quiere detectar una falla de entrada causada por algo diferente
del encuentro del final del archivo, entonces necesitara probar explicitamente esto al excluir que se
revise la condicion de final de archivo. Por ejemplo, esta instruccién if se presenta si esta estableci-
da badbit o failbit, pero no eofbit:

if (larchentrada.eof () && (archentrada.fail() || archentrada.bad())) { //

Recuerde que una operacion de entrada puede fallar por muchas razones. El encuentro del final
del archivo es s6lo una de ellas.

Debido a que las marcas de estado de E/S permanecen hasta que se limpian, el encuentro del
final del archivo causara que good() devuelva false, aunque usted haya causado a propdsito esa
condicién. Necesita tomar esto en cuenta cuando busque y maneje errores. Por ejemplo, después
de que se ha encontrado el final del archivo, puede usar la funcién clear() para restablecer las mar-
cas de E/S. Consulte Revisién de errores en la revisién general, para conocer més detalles, incluidas
las funciones clear(), good(), bad() y fail().

Ejemplo

En el siguiente ejemplo se demuestra eof(). Crea un programa que lee y despliega el contenido de
un archivo de texto. Utiliza eof() para saber cuando se ha leido todo el archivo. Observe que utili-
za la funcion get() definida por istream. Se describe en Use get() y getline() para leer un archivo.

// Usa eof () para leer y desplegar un archivo de texto.
//

// El nombre del archivo se especifica en la linea de

Capitulo 5: Trabajo con E/S

// comandos. Por ejemplo, suponiendo que este programa
// se llama Mostrar, la siguiente linea de comandos
// desplegarad el archivo llamado prueba.txt:

//
// Mostrar prueba.txt

//

#include <iostreams
#include <fstream>

using namespace std;

int main(int argc, char *argvl[])

{

char car;

if(argc != 2) |
cout << "Uso: Mostrar <nombrearchivos\n";
return 1;

}

// Crea un objeto de ifstream y trata de abrir el archivo.
ifstream archentrada(argv[1l]) ;

// Verifica que el archivo se abrid correctamente.
if (larchentrada)
cout << "No se puede abrir el archivo.\n";
return 1;

}

do {
// Lee el siguiente caracter, si lo hay.
archentrada.get (car) ;

// Revisa si hay errores NO causados por alcanzar EOF.

if (larchentrada.eof () && (archentrada.fail() || archentrada.bad())) ({
cout << "Error en la entrada\n";
archentrada.close() ;
return 1;

}

// Si atn no se encuentra EOF, despliega el siguiente caréacter.
if (!archentrada.eof ()) cout << car;
} while(!archentrada.eof());

// Limpia los bits eof y fail.
archentrada.clear() ;

// Cierra el archivo de entrada.
archentrada.close() ;

// Confirma que el archivo se cerrd sin error.
if (larchentrada.good()) {
cout << "Error al cerrar el archivo.";

319

320

C++ Soluciones de programacion

return 1;

}

return 0;

}

Observe que el programa revisa errores de entrada que no estan relacionados con una condicién
de final de archivo. Esto permite que el programa informe si sucedi6 algo inesperado cuando ley6
el archivo. Después de que se encuentra el final del archivo, los bits de estado de E/S se limpian

y se cierra el archivo. Esto nos permite confirmar que la operacién de cierre se dio sin error. Por
supuesto, sus propias aplicaciones determinardn cémo revisar los errores. En el programa siguien-
te se muestra s6lo un ejemplo.

Ejemplo adicional: una utileria simple de comparacion de archivos

En el siguiente programa se le da un buen uso a eof(). Crea una utileria simple que compara

dos archivos. Abre ambos para entrada binaria. Esto significa que el programa puede usarse en
archivos de texto y binarios, como ejecutables. Compara los dos archivos al leer un biifer de datos
de cada uno mediante el uso de read() y luego compara el contenido de los biferes. Utiliza eof()
para determinar cuando ambos archivos se han leido por completo. Si los archivos tienen diferen-
tes longitudes, o si su contenido no coincide, los archivos difieren. De otra manera, son iguales.
Observe que el programa usa la funcion gcount() para determinar cudntos bytes de datos se han
obtenido con read(). Cundo se realiza entrada al final del archivo, el niimero de bytes leidos puede
ser menos del solicitado en la llamada a read().

// Una utileria simple de comparacidén de archivos.

#include <iostreams>
#include <fstreams>
using namespace std;

int main(int argc, char *argv[])
{

bool igual = true;

bool errarch = false;

unsigned char bufl[1024], buf2[1024];

if (argc!=3) {
cout << "Uso: comparchivos <archivols <archivo2>\n";
return 1;

}

// Abre ambos archivos para operaciones binarias.
ifstream archl(argv([l], ios::in | ios::binary);
if (tarchl) {
cout << "No se puede abrir " << argv[l] << endl;
return 1;

}

ifstream arch2 (argv([2], ios::in ios::binary) ;
if (tarch2) {

Capitulo 5: Trabajo con E/S

cout << "No se puede abrir " << argv([2] << endl;
archl.close() ;
if (larchl.good())

cout << "Error al cerrar " << argv([l] << endl;
return 1;
cout << "Comparando archivos...\n";
do {

// Lee un biGfer completo de datos de cada archivo.
archl.read((char *) bufl, sizeof bufl);
arch2.read((char *) buf2, sizeof buf2);

// Revisa errores de lectura.

if (larchl.eof () && !archl.good()) {
cout << "Error al leer " << argv[l] << endl;
errarch = true;
break;

if (larch2.eof () && !arch2.good()) {
cout << "Error al leer " << argv[2] << endl;
errarch = true;
break;

}

// Si la longitud de los dos archivos es diferente, entonces
// al final del archivo, las gcount seran diferentes.

if (archl.gcount () != arch2.gcount()) {
cout << "Los archivos tienen diferente longitud.\n";
igual = false;
break;

}

// Compara el contenido de los buferes.

for(int i=0; i < archl.gcount(); ++1i)
if (bufl[i] != buf2[i]) {
cout << "Los archivos son diferentes.\n";
igual = false;
break;

}

} while(!archl.eof () && !arch2.eof () && igual) ;

if (lerrarch && igual) cout << "Los archivos son iguales.\n";
// Limpia eofbit, y tal vez bits de error.

archl.clear () ;

arch2.clear () ;

archl.close() ;
arch2.close() ;

321

322

C++ Soluciones de programacion

if (larchl.good() || !arch2.good()) {
cout << "Error al cerrar los archivos.\n";
return 1;
!
return 0;
}
Opciones

Puede detectar el final de archivo de varias maneras. En primer lugar, puede usar la funcién rds-
tate(), que devuelve todas las marcas de estado en la forma de una méscara de bits. Luego puede
probar el final de archivo al vincular con operaciones l6gicas OR mediante ios::eofbit con el valor
devuelto por rdstate(). (Esta funcion se describe en Revision de errores.)

Si utiliza esta forma de get()

int get()
entonces el valor obtenido de ifstream::traits_type::eof() se devuelve cuando se encuentra el final
del archivo. El typedef traits_type especifica valores asociados con el tipo de caracter usado por el

flujo, que son char en el caso de ifstream. Por tanto, cuando se usa esta forma de get(), la siguiente
secuencia detecta el final del archivo:

car = archentrada.get();
if (car == ifstream::traits_type::eof()) cout << "EOF encontrado";

iPor supuesto, es mucho mas facil usar la funcién eof() definida por ifstream!

Use excepciones para detectar y manejar errores de E/S

Componentes clave

Encabezados Clases Funciones
<ios> ios void exceptions(iostate exc)
<ios> ios_base::failure const char *what() const

El sistema de E/S de C++ le da dos maneras de revisar errores. En primer lugar, puede usar las
funciones good(), bad(), fail() y rdstate() para interrogar explicitamente las marcas de estado. Este
método se describe en Revision de errores, en la revisiéon general que se hizo al principio del capitu-
lo. También es el método usado en casi todas las soluciones de este capitulo, porque es la manera
en que se detectan los errores, como opcién predeterminada. La segunda manera incluye el uso
de excepciones. En este método, un error de E/S causa que se lance una excepcion. Su cédigo
puede capturar esta excepcion y tomar la accién apropiada para manejar el error. En esta soluciéon
se muestra como usar las excepciones para detectar y manejar los errores de E/S.

Capitulo 5: Trabajo con E/S 323

Paso a paso
Para detectar y manejar errores de E/S mediante el uso de excepciones se requieren los siguientes
pasos:

1. En el flujo que desee monitorear, en busca de errores, llame a la funcién exceptions(), pa-

sdndola en una mdscara de bits iostate que contiene la marca o las marcas de la excepcién

0 las excepciones que desee para generar errores.

Realice operaciones de E/S desde el interior de un bloque try.

3. La instruccién catch del bloque try debe capturar excepciones de tipo failure. Es el tipo de
excepcién generada por el sistema de E/S.

4. Para determinar qué tipo de falla ocurri6, llame a what() en el objeto de excepcién.

N

Analisis

Como opcién predeterminada, el sistema de E/S no lanza una excepcién cuando ocurre un error.
Por tanto, para usar excepciones, debe solicitar explicitamente su uso. Més atin, debe especificar
cudles tipos de errores lanzardn una excepcion. Para ello, utilizara la funcién exceptions(). Est4
definida por ios_base y es heredada por todas las clases de flujo. Aqui se muestra:

void exceptions(iostate exc)

Aqui, exc es una mascara de bits que contiene valores iostate que representan la condicién que
lanzara una excepcién. Estos valores son ios_base:failbit, ios_base::badbit, ios_base::goodbit

y ios_base::eofbit. Como se relacionan con flujos char, suele hacerse referencia a estos valores
como ios::failbit, ios::badbit, ios::goodbit y ios::eofbit. Por tanto, para causar que un flujo de char
llamado miflujo genere excepciones cada vez que un error cause que se establezca failbit, puede
usar lo siguiente:

miflujo.exceptions (ios::failbit) ;

Después de esta llamada, cada vez que un error de E/S cause que se establezca failbit, se genera
una excepcién. Un tema adicional: como se explicé en Revision de errores en la revisién general
presentada casi al principio de este capitulo, el final de archivo no siempre se considera un error,
en sentido estricto, pero puede usar excepciones para vigilarlo.

Una vez que haya habilitado las excepciones, debe realizar operaciones de E/S dentro de un
bloque try que capture excepciones que tienen un tipo de base ios_base::failure. Observe que esta
clase es una clase miembro de ios_base. Se declara de la manera en que se muestra a continuacién:

class ios_base::failure : public exception |
public:
explicit failure(const string &cad);
virtual ~failure();
virtual const char *what() const throw();

);

324

C++ Soluciones de programacion

Observe que hereda exception(), que es una clase de base para todas las excepciones. La funcién
what() devuelve una cadena que describe la excepcién. En teoria, podria usar la cadena devuelta
por what() para determinar lo que ocurrié. En la practica, suele ser mejor depender de la l6gica
de su propio programa para realizar esta funcién, porque la cadena devuelta por what() tal vez
no sea especifica de la causa real del error. Por ejemplo, s6lo podria establecer cudl bit de error se
establecio. Més atin, esta cadena podria variar entre compiladores (y tal vez asi serd), o incluso
entre versiones diferentes del mismo compilador. Por esto es por lo que a veces no resulta particu-
larmente 1til.

Ejemplo

En el siguiente ejemplo se muestra como usar excepciones para manejar errores cuando se realiza
E/S. Se vuelve a trabajar el programa de ejemplo de Escriba datos binarios sin formato en un archivo
de modo que utilice excepciones para detectar y manejar errores de E/S. Observe que cada opera-
cién de E/S (abrir el archivo, leer datos y cerrar el archivo) se realiza dentro de su propio bloque
try. Esto facilita el responder a cada excepcion en forma individualizada. Por supuesto, el méto-
do que use debe ser adecuado para su aplicacién y sus necesidades especificas. Observe que el
programa usa la cadena devuelta por what() para desplegar el error. Esto se incluye simplemente
para la demostracion. Excepto por la depuracién, normalmente no desplegaria esta cadena.

// Usa excepciones para vigilar y manejar errores de E/S.

//

// En este programa se vuelve a trabajar el programa de:
//

// Escriba datos binarios sin formato en un archivo

//

// De modo que utilice excepciones para detectar y manejar errores de E/S.

#include <iostreams>
#include <fstreams>
#include <cstrings

using namespace std;

// Una estructura simple de inventario.
struct inventario {

char producto[20];

int cantidad;

double costo;

Vi
int main()
{

int completion status = 0;

// Crea un flujo de salida.
ofstream archsalida;

// Habilita la excepcidén para errores de E/S.
archsalida.exceptions(ios::failbit | ios: :badbit) ;

// Trata de abrir el archivo para salida binaria.

Capitulo 5: Trabajo con E/S 325

try {
archsalida.open("InvDat.dat", ios::out | ios::binary);

} catch(ios base::failure exc) {
cout << "No se puede abrir el archivo.\n";
cout << "La cadena devuelta por what(): " << exc.what() << endl;
return 1;

}

// Crea algunos datos de inventario.
inventario inv[3];

strcpy (inv [0] .producto, "Martillos") ;
inv[0] .cantidad = 3;
inv[0] .costo = 99.95;

strcpy (inv[1] .producto, "Pinzas");
inv[1l] .cantidad = 12;
inv[1l] .costo = 78.55;

strcpy (inv[2] .producto, "Llaves");
inv[2] .cantidad = 19;
inv([2] .costo = 27.55;

// Escribe datos de inventario en el archivo. Si ocurre un error,
// la excepcidén se manejarad con la instruccidn catch.
try
for(int i=0; 1<3; i++)
archsalida.write((const char *) &inv[i], sizeof (inventario)) ;
} catch(ios base::failure exc) {
cout << "Ha ocurrido un error cuando se trataba de escribir en el archivo.\n";
cout << "La cadena devuelta por what(): " << exc.what() << endl;
completion_ status = 1;

}

// También maneja un error que podria ocurrir cuando cierra el archivo.

try {
// Cierra el archivo.
archsalida.close() ;

} catch(ios base::failure exc) {
cout << "Ha ocurrido un error cuando se trataba de cerrar el archivo.\n";
cout << "La cadena devuelta por what(): " << exc.what() << endl;
completion_status = 1;

}

return completion_status;

He aqui algunos temas que deben quedar claros en relacién con el ejemplo anterior. En primer
lugar, observe que si el archivo no puede abrirse, entonces el programa se cierra. Esto es apropia-
do, porque si el archivo no puede abrirse, entonces no puede escribirse en él y no hay razén para
seguir adelante. Méas atin, debido a que el archivo no esta abierto, no es necesario que se cierre.
Por tanto, es apropiado salir del programa en este momento.

326

C++ Soluciones de programacion

A continuacioén, observe que el manejador de excepciones para write() no cierra el programa.
En cambio, establece la variable completion_status en 1 y deja que siga la ejecucién del progra-
ma. En este momento, aunque haya ocurrido un error, el archivo atn estd abierto y debe cerrar-
se. Por tanto, la ejecucion sigue hasta la llamada a close().

Es importante comprender que, en este ejemplo, el archivo se cerrard automdticamente cuando
el programa termine, porque el destructor de ofstream cierra el archivo (como se explicé en la
revision general presentada en paginas anteriores de este capitulo). Sin embargo, en casi todos los
programas reales, la situacién no es tan facil. Por ejemplo, si se permite al usuario volver a probar
la operacién de un archivo, entonces es imperativo que asegure que el intento anterior cerrd el
archivo. De otra manera, habra problemas. Por ejemplo, puede volverse imposible abrir de nuevo
el archivo, porque nunca se cerré. Ademas, el programa consume recursos del sistema, como ma-
nejadores de archivo, de los que existe un ntimero finito. Lo importante es que, debido a que una
excepcién causa un cambio abrupto en el flujo normal de la ejecucién, es necesario asegurar en
esos casos que se cierre cualquier archivo que se haya abierto.

Opciones

Como se explico en Revisién de errores, puede vigilar errores al usar las funciones good(), fail(),
rdstate() y, en algunos casos, eof(). Aunque el uso de excepciones puede simplificar el manejo
de errores en algunos casos, para muchos programas cortos, como los de este libro, el uso de las
funciones para reporte de errores es mas facil. Esto resulta especialmente cierto cuando lo que le
preocupa es que la operacion general de E/S (apertura, lectura o escritura y cierre) tenga éxito.
Por esto, casi todos los programas de este libro que realizan E/S de archivo usaran las funciones
de reporte de errores y sin excepciones. Por supuesto, el método que use estara dictado por los
aspectos y las necesidades especificas de su aplicacion.

de archivo de acceso aleatorio

Componentes clave

Encabezados Clases Funciones
<fstream> ifstream istream &seekg(off_type despl, ios::seekdir, origen)
<fstream> ofstream ostream &seekp(off_type despl, ios::seekdir, origen)

En general, hay dos maneras en que puede accederse a un archivo, de manera secuencial o alea-
toria. Con el acceso secuencial, el apuntador a archivo recorre el archivo de manera estrictamente
lineal, de principio a fin. Con el acceso aleatorio, es posible colocar el apuntador a archivo en
cualquier ubicacién del archivo. Por tanto, el acceso aleatorio le permite leer de una parte especi-
fica de un archivo o escribir en ella, segin se requiera o bajo pedido. Es importante comprender
que cualquier archivo puede tener acceso de cualquier manera. Por tanto, el acceso aleatorio no
es dependiente del archivo, sino de las funciones usadas para acceder a éste. Dicho eso, por lo
general el acceso aleatorio se utilizard en un archivo que estd compuesto por registros de longitud
fija. Mediante el acceso aleatorio, es posible leer o escribir un registro especifico. En esta solucién
se muestran las técnicas necesarias para usar acceso aleatorio en C++.

Capitulo 5: Trabajo con E/S 321

Paso a paso
Para usar acceso aleatorio se requieren estos pasos:

Abra el archivo deseado para E/S binaria.

Para archivos de entrada, mueva el apuntador para obtener al llamar a seekg().

Para archivos de salida, mueva el apuntador para colocar al llamar a seekp().

En el caso de archivo capaces de entrada y salida, use seekg() para mover el apuntador
para obtener. Use seekp() para mover el apuntador para colocar.

5. Una vez que se ha establecido la ubicacion, realice la operacién deseada.

LS

Andlisis
El sistema de E/S de C++ administra dos apuntadores asociados con un archivo. Uno es el apunta-
dor para obtener, que especifica en qué lugar del archivo ocurrird la siguiente operacién de entrada.
El otro es el apuntador para colocar, que especifica en qué lugar del archivo ocurrird la siguiente
operacién de salida. Cada vez que tiene lugar una operacién de entrada o salida, el apuntador
apropiado se avanza de manera secuencial y automatica. Al usar las funciones de acceso aleato-
rio, puede colocar el apuntador para obtener o colocar a voluntad, permitiendo que el archivo se
acceda de manera no secuencial.

Las funciones seekg() y seekp() cambian la ubicacién de los apuntadores para colocar y
obtener, respectivamente. Cada una tiene dos formas. Aqui se muestran las usadas en esta solu-
cioén:

istream &seekg(off_type despl, ios::seekdir origen)
ostream &seekp(off_type despl, ios::seekdir origen)

Aqui, off_type es un tipo entero definido por ios que puede contener el valor vélido mas largo
que despl puede tener. seekdir es una enumeracién definida por ios_base (que es heredado por
ios) que determina la manera en que se realizara la busqueda.

La funcién seekg() mueve el apuntador para obtener del archivo asociado un nimero despl de
caracteres a partir del origen especificado, que debe ser uno de tres valores:

beg Principio del archivo
cur Ubicacién actual
end Final del archivo

La funcién seekp() mueve el apuntador para colocar del archivo asociado un nimero despl de
caracteres a partir del origen especificado, que debe ser uno de los valores mostrados.

La funcién seekp() se declara con ostream y es heredada por ofstream. La funcion seekg()
se declara con istream y es heredada por ifstream. Tanto istream como ostream se heredan de
fstream, que permite operaciones de entrada y salida.

Por lo general, la E/S de acceso aleatorio sélo debe realizarse en los archivos abiertos para ope-
raciones binarias. Las traducciones de caracteres que pueden ocurrir en archivos de texto podrian
causar que una solicitud de posicién esté fuera de sincronia con el contenido real del archivo.

328

C++ Soluciones de programacion

Cuando un archivo esta abierto para operaciones de lectura y escritura, como cuando se usa
un objeto de fstream, entonces por lo general debe realizar una operacién de bisqueda cuando se
cambia entre lectura y escritura. (Consulte Lea un archivo y escriba en él.)

Ejemplo

En el siguiente programa se usa seekp() y seekg() para invertir caracteres en un archivo. El nom-
bre del archivo y el niimero de caracteres que se invertird, empezando en el principio, se especifica
en la linea de comandos. Debido a que son necesarias las operaciones de lectura y escritura, el
archivo se abre usando fstream, que permite entrada y salida.

// Demuestra E/S de acceso aleatorio.

//

// Este programa invierte los primeros N caracteres dentro de
// un archivo. El nombre del archivo y el nGmero de caracteres
// que se invertirad se especifica en la linea de comandos.

#include <iostreams>
#include <fstream>
#include <cstdlibs>

using namespace std;

int main(int argc, char *argv[])
long n, i, 3;
char carl, car2;

if (argc!=3) {
cout << "Uso: Invertir <nombrearchivo> <num>\n";
return 1;

}

// Abre el archivo para operaciones binarias de entrada y salida.
fstream archentradasalida(argv[1l], ios::in | ios::out | ios::binary);

if (larchentradasalida) {
cout << "No se puede abrir el archivo de entrada.\n";
return 1;

}

// Convierte la representacidén de cadena del nGmero de
// caracteres que se invierten en un valor largo.
n = atol(argv[2]) - 1;

// Usa acceso aleatorio para invertir los caracteres.
for (i=0, j=n; i < j; ++i, --3) {

// Primero, obtiene los dos caracteres.
archentradasalida.seekg(i, ios::beg);
archentradasalida.get (carl) ;
archentradasalida.seekg(j, ios::beg);
archentradasalida.get (car2) ;

Capitulo 5: Trabajo con E/S 329

// Now, write them to the opposite locations.
archentradasalida.seekp (i, ios::beg);
archentradasalida.put (car2) ;
archentradasalida.seekp(j, ios::beg);
archentradasalida.put (carl) ;

// Confirma el éxito de cada ciclo de lectura y escritura.
if (larchentradasalida.good()) {
cout << "Error al leer o escribir caracteres.";
archentradasalida.clear () ;
break;

}
}

// Cierra el archivo.
archentradasalida.close () ;

// Confirma que no ocurrieron errores cuando se cerrd el archivo.

if (larchentradasalida.good()) ({
cout << "Ha ocurrido un error con el archivo.";
return 1;

return 0;

Para usar el programa, especifique el nombre del archivo que desee invertir, seguido por el
numero de caracteres que se invertira. Por ejemplo, para invertir los primeros diez caracteres de
un archivo llamado PRUEBA, utilice esta linea de comandos:

invertir prueba 10
Si el archivo hubiera contenido:

abcdefghijklmnopgrstuvwxyz

entonces el archivo contendra lo siguiente después de que se ejecuta el programa:

jihgfedcbaklmnopgrstuvwxyz

Ejemplo adicional: use E/S de acceso aleatorio para acceder

a registros de tamano fijo

Como se menciond, uno de los principales usos de la E/S de acceso aleatorio esta en bases de
datos que contienen registros de tamafo fijo. Por ejemplo, considere una base de datos que con-
tiene informacion de inventario. Para encontrar una entrada especifica en ese archivo, necesitara
rastrearlo registro por registro. Tal vez quiera actualizar o eliminar un registro especifico. Estos
tipos de operaciones se facilitan mediante el uso del E/S de acceso aleatorio. El siguiente ejemplo
le da una idea del proceso. Utiliza el InvDat.dat creado por el programa de ejemplo en Escriba
datos binarios sin formato en un archivo. Despliega la entrada que especifique por nimero en la linea
de comandos.

330 cC++ Soluciones de programacidn

// Usa E/S de acceso aleatorio para leer registros especificos de
// inventario de un archivo de datos. Este programa lee el archivo
// InvDat.dat, creado por el programa de ejemplo en la solucidn:

//

// Escriba datos binarios sin formato en un archivo

#include <iostream>
#include <fstreams>
#include <cstdlib>

using namespace std;

// Una estructura simple de inventario.
struct inventario {

char producto[20];

int cantidad;

double costo;

Vi

int main(int argc, char *argvl[])
inventario entrada;
long num_registro;

if(argc != 2) {
cout << "Uso: MostrarRegistro <num-registro>\n";
return 1;

}

// Convierte la representacidén de cadena del ntmero de
// entrada en un valor largo.
num_registro = atol(argv[1l]);

// Confirma que el nimero de registro es mayor o

// igual a cero.

if (num_registro < 0)
cout << "Los n\uOOa3meros de registro deben ser mayores o iguales a 0.\n";
return 1;

}

// Abra el archivo para entrada binaria.
ifstream archBDInv ("InvDat.dat", ios::in ios::binary) ;

// Confirma que el archivo se abrié sin error.
if (larchBDInv) ({
cout << "No se puede abrir el archivo.\n";
return 1;

}

// Lee y despliega la entrada especificada en la linea de comandos.
// Primero, busca el registro deseado.
archBDInv.seekg (sizeof (inventario) * num registro, ios::beg);

// Luego, lee el registro.

Capitulo 5: Trabajo con E/S 331

archBDInv.read((char *) &entrada, sizeof (inventario)) ;

// Cierra el archivo.
archBDInv.close () ;

// Confirma que no hubo errores de archivo.

if (larchBDInv.good()) {
cout << "Ha ocurrido un error con el archivo.\n";
return 1;

}

// Despliega el inventario para la entrada especificada.
cout << entrada.producto << endl;

cout << "Cantidad en existencia: " << entrada.cantidad;
cout << "\nCosto: " << entrada.costo << endl;
return 0;

}
He aqui una ejecucién de ejemplo:

C:>MostrarRegistro 1
Pinzas

Cantidad en existencia: 12
Costo: 78.55

La caracteristica clave del programa es el uso de seekg() para mover al registro especificado
mediante el uso de esta instruccién:

archBDInv.seekg (sizeof (inventario) * num registro, ios::beg);

Para encontrar un registro especifico, primero multiplica el tamafio de la estructura inventario
(que es la longitud de cada registro en la base de datos) mediante el niimero de registros que habra
de obtenerse. Luego busca esta ubicacién en el archivo. El mismo método bésico puede aplicarse a
cualquier archivo que contenga registros de longitud fija.

Empleando el acceso aleatorio, también es posible actualizar un registro en el lugar. Por
ejemplo, en el programa anterior, si abre el archivo para entrada y salida usando el objeto fstream,
como se muestra aqui:

fstream archBDInv ("InvDat.dat",
ios base::in | ios base::binary | ios::out);

luego la siguiente secuencia cambia el registro especificado y después lee la informacién actualizada:

// Crea un nuevo articulo de inventario.
strcpy (entrada.producto, "Taladro") ;
entrada.cantidad = 3;

entrada.costo = 99.95;

// Establece el apuntador para colocar al inicio del registro al llamar a seekp().
archBDInv.seekp (sizeof (inventario) * num registro, ios::beg);

// Cambia el registro.

332 Cc++ Soluciones de programacidon

archBDInv.write ((char *) &entrada, sizeof (inventario)) ;

// Establece el apuntador para obtener al inicio del registro al llamar a seekg() .
archBDInv.seekg(sizeof (inventario) * num registro, ios::beg);

// Luego, lee el registro actualizado.
archBDInv.read((char *) &entrada, sizeof (inventario)) ;

Opciones
Puede determinar la posicién actual de cada apuntador a archivo al usar estas funciones:

pos_type tellg()
pos_type tellp()

Aqui, pos_type es un tipo definido por basic_ios que puede contener el valor mas grande que
cualquier funcién puede devolver. Puede usar los valores devueltos por tellg() y tellp() como
argumentos para las siguientes formas de seekg() y seekp(), respectivamente:

istream &seekg(pos_type pos)
ostream &seekp(pos_type pos)

Estas funciones le permiten guardar la posicién actual del archivo, realizar otras operaciones de
archivo y luego restablecer la ubicacién del archivo a su posicién previamente guardada.

Revise un archivo

Componentes clave

Encabezados Clases Funciones

<fstream> ifstream istream &ignore(streamsize num=1,
int_type delim =
traits_type::eof())
int_type peek()
istream &unget()

Hay algunas situaciones de entrada que se facilitan al poder revisar un archivo. Por ejemplo, si
un archivo contiene informacién contextual, entonces tal vez necesite procesar una parte de él
de manera diferente a otra. C++ proporciona tres funciones que ayudan en esta tarea: peek(),
unget() e ignore(). Le permiten obtener, pero no eliminar el siguiente caracter del archivo, de-
volver un caracter al flujo y omitir uno o mas caracteres. En esta solucién se muestra la manera
en que se usan.

Capitulo 5: Trabajo con E/S 333

Paso a paso
La revision de un archivo requiere los pasos siguientes:

1. Para obtener pero no eliminar el siguiente caracter del flujo de entrada, llame a peek().

2. Para regresar un cardcter al flujo de entrada, llame a unget().

3. Paraignorar caracteres hasta que se encuentra uno especifico o hasta que se ha ignorado
un nimero especifico de caracteres, llame a ignore().

Andlisis
Puede obtener el siguiente caracter en el flujo de entrada sin eliminarlo de ese flujo al usar peek().
Tiene este prototipo:

int_type peek()

Devuelve el siguiente caracter en el flujo o el indicador de final de archivo si se encuentra éste, que
es traits_type::eof(). El tipo int_type es un typedef para alguna forma de entero.

Puede devolver el tltimo caracter leido de un flujo empleando unget(). Esto permite que el
cardcter se lea por la siguiente operacién de entrada. Aqui se muestra la funcién unget():

istream &unget()

Si atin no se han leido caracteres del flujo, ocurre un error y se establece badbit. La funcién de-
vuelve una referencia al flujo.
La funcién ignore() lee y descarta caracteres del flujo de entrada. Tiene este prototipo:

istream &ignore(streamsize num=1, int_type delim = traits_type::eof())

Lee y descarta caracteres hasta que se han ignorado num caracteres (1, como opcién predeter-
minada) o hasta que se encuentra el caracter especificado por delim. Como opcién predetermi-
nada, delim es traits_type::eof(). Si se encuentra el cardcter delimitador, se elimina del flujo de
entrada. Si se encuentra el final del archivo, entonces se establece la marca de estado eofbit
asociada con el flujo. El tipo streamsize es un typedef para alguna forma de entero que puede
contener el niimero mas grande de bytes que pueden transferirse en cualquier operacién de E/S.
El tipo int_type es un typedef para alguna forma de entero. La funcién devuelve una referencia
al flujo.

De las tres funciones, la mds interesante es ignore() porque le da una manera facil y eficiente
de buscar en un flujo la aparicién de un caracter. Una vez que se ha encontrado este archivo,
puede empezar a leer (o escribir) el flujo en ese punto. Esto puede ser muy ttil en diversas
situaciones. Por ejemplo, si tiene un flujo que contiene nimeros de ID de empleado en la forma
#dddd (como #2244), entonces puede buscar facilmente un nimero de ID al ignorar caracteres
hasta que se encuentre un #.

334 c++ Soluciones de programacidn

Ejemplo

En el siguiente ejemplo se muestran peek(), unget() e ignore() en accién. El programa crea prime-
ro un archivo de datos llamado prueba.dat que contiene varios ID de empleado. Sin embargo,
hay dos tipos de ID. El primero es un nimero de cuatro digitos en la forma #dddd, como #0101.
El segundo ID es un marcador de posicién que usa una palabra para describir por qué falta el
numero de ID. Luego el programa busca, lee y despliega todos los ID en el archivo. Para realizar
esto, utiliza la revisién de un archivo.

// Demuestra peek (), unget() e ignore() .

!/

// Este programa lee un archivo que contiene dos tipos

// de ID. El primero es un nuimero de cuatro digitos en esta
// forma: #dddd. El segundo es una palabra que describe

// por qué falta el nGmero de ID. El programa crea un

// archivo de datos llamado prueba.dat que contiene varios
// nGmeros de ID. Luego, el programa busca, lee y despliega
// todos los ID del archivo.

#include <iostream>
#include <fstreams>
#include <cctypes>

using namespace std;

int main()
char car;
char numid|[5] ;

// numid termina en un cardcter nulo de modo que puede contener una cadena char *.
numid([4] = O;

// Crea un objeto de ofstream y trata de abrir el archivo prueba.dat.
ofstream archsalida ("prueba.dat") ;

// Verifica que el archivo se ha abierto correctamente.
if (larchsalida) {
cout << "No puede abrir prueba.dat para salida.\n";
return 1;

}

// Escribe alguna informacidn en el archivo.
archsalida << "Luis Soto #5345\nRafael Romo #negado\nTere Torres #6922\n";
archsalida << "Hugo Herrera #fpendiente\n, Sara Jara, #8875\n";

// Cierra el archivo de salida.
archsalida.close() ;

if (larchsalida.good()) {
cout << "Error al crear el archivo de datos.";
return 1;

}

Capitulo 5: Trabajo con E/S

// Trata de abrir el archivo prueba.dat.
ifstream archentrada ("prueba.dat") ;

if (larchentrada)

cout << "No se puede abrir prueba.dat para entrada.\n";
return 1;

// Usa excepciones para revisar errores.
archentrada.exceptions (ios::badbit | ios::failbit);

try {

// Encuentra y despliega todos los numeros de ID:
do {

// Encuentra el inicio de un ntmero de ID.
archentrada.ignore (40, '#');

// Si se encuentra el final del archivo, deja de leer.

if (archentrada.eof ()) {
archentrada.clear(); // limpia eofbit
break;

}

// Obtiene pero no extrae el siguiente caracter después de #.
car = archentrada.peek() ;

// Ve si el siguiente cardcter es un digito.
if (isdigit(car))

// Si el caracter es un digito, lee el nGmero de ID. Como
// numid tiene un nulo en el quinto caracter, la lectura de
// cuatro caracteres en los primeros cuatro elementos crea
// una cadena terminada en un caracter nulo.
archentrada.read((char *)numid, 4) ;

cout << "ID #: " << numid << endl;

} else {

335

// Debido a que el siguiente char no es un digito, lee la descripcidn.

cout << "ID no disponible: ";

car = archentrada.get () ;
while (isalpha(car))

cout << car;

car = archentrada.get();

}i

// Regresa el char que no es una letra para que pueda encontrarse
// y otras instrucciones get() lo procesen.
archentrada.unget () ;

cout << endl;

336

C++ Soluciones de programacion

} while(archentrada.good()) ;
} catch(ios_base::failure exc) {
cout << "Error al leer el archivo de datos.\n";

}

try {
// Cierra prueba.dat para entrada.
archentrada.close () ;

} catch (ios_base::failure exc) {
cout << "Error al cerrar el archivo de datos.";
return 1;

}

return O;

}

Aqui se muestra la salida:

ID #: 5345

ID no disponible: negado

ID #: 6922

ID no disponible: pendiente
ID #: 8875

En este programa se utiliza la revision de archivo para leer los ID. En primer lugar, se usa
ignore() para encontrar un caracter #; éste marca el inicio de un ID. Luego se utiliza peek() para
determinar si lo que sigue es un ntmero de ID real o una descripcion verbal. Si el caracter obte-
nido de peek() es un digito, se lee un nimero de cuatro digitos. De otra manera, se lee la descrip-
cién. Esta termina en cuanto se lee un caracter no alfabético. En este caso, el tltimo caracter leido
se coloca de nuevo en el flujo de entrada.

Un tema adicional de interés: observe que el programa usa una combinacién de excepciones y
funciones de deteccién de errores para buscar éstos. Esta es una parte de la capacidad del sistema
de E/S de C++: puede usar cualquier método que funcione mejor para la situaciéon que se tiene
entre manos.

Opciones
Como se explico, unget() devuelve el cardcter més recientemente leido al flujo que invoca. Puede
"devolver" un caracter diferente de éste al llamar a putback(). Aqui se muestra:

istream &putback(char car)

Coloca car en el flujo para que sea el primer caracter leido por la siguiente operacién de entrada. Si
ocurre un errot, badbit se establece en el flujo que invoca.

Otra funcién que a veces es 1itil en situaciones de revisioén es readsome(). En esencia, lee carac-
teres del biifer de entrada. Si no hay suficientes caracteres en el biifer para satisfacer la solicitud,
entonces se establece eofbit en el flujo que invoca. Aqui se muestra la funcién:

streamsize readsome(char *buf, streamsize num)

Capitulo 5: Trabajo con E/S 337

Trata de leer num caracteres del biifer de entrada, almacenandolos en buf. Devuelve el nimero de
caracteres que se ley6 en realidad.

Otra funcién que puede ser ttil cuando se revisa un archivo (y para muchos otros propositos)
es gcount(). Se muestra a continuacion:

streamsize gcount() const

Devuelve el nimero de caracteres leido por una llamada anterior a una funcién de entrada sin
formato.

Use los flujos de cadena

Componentes clave

Encabezados Clases Funciones

<sstream> istringstream string str() const
ostringstream
stringstream

Como se explicé en Revision general de E/S, C++ da soporte al uso de una cadena como origen o
destino de operaciones de E/S. Para permitir esto, define tres clases de plantilla de flujo de cadena
llamadas basic_istringstream, basic_ostringstream y basic_stringstream. Aqui se muestran sus
formas de char:

istringstream Usa una string para entrada.
ostringstream Usa una string para salida.
stringstream Usa una string para entrada y salida.

En general, las clases de flujo de cadena funcionan como las otras clases de flujo. La tnica diferen-
cia es que el origen o destino de los datos es una string en lugar de algtin dispositivo externo. En
esta solucion se demuestra su uso.

Paso a paso
Para el uso de un flujo de cadena se requieren estos pasos:

1. Cree un flujo de cadena al usar uno de los constructores correspondientes.

2. Realice E/S del flujo de la misma manera en que lo harfa empleando cualquier otro tipo de
flujo, como uno de archivo.

3. Para obtener el contenido de un bufer de cadena, llame a str().

338

C++ Soluciones de programacion

Andlisis

Para crear un flujo de cadena, usarad uno de los constructores de flujo de cadena. Cada flujo de ca-

dena define dos constructores, uno que lo inicializa con una cadena y otro que no lo hace. Cuando

se realiza entrada, por lo general inicializara la cadena. Para salida, a menudo no necesitard inicia-

lizarla. En situaciones de entrada/salida, inicializara la cadena dependiendo de su aplicacion.
Aqui se muestra el constructor istringstream usado en esta solucion:

explicit istringstream(const string &buf, ios::openmode modo = ios::in).

Crea un flujo de entrada de char basado en una cadena. Inicializa esta cadena con el contenido de
buf. Por tanto, las operaciones de lectura obtendran los caracteres pasados mediante buf.
Aqui se muestra el constructor ostringstream usado en esta solucion:

explicit ostringstream(ios::openmode modo = ios::out)

Crea un flujo de salida de char basado en una cadena. Todas las operaciones de escritura pondran
caracteres en una cadena mantenida por ostringstream.
Aqui se muestra el constructor stringstream usado en esta solucién:

explicit stringstream(ios::openmode modo = ios::in | ios::out)

Crea un flujo de cadena de char que permite entrada y salida. El biifer no estd inicializado. Cuan-
do se cambia entre lectura y escritura, por lo general debe realizar una operacién de btisqueda o
limpieza. (Consulte Lea un archivo y escriba en él.)

Puede obtener el contenido actual de la cadena al llamar a esta versién de str():

string str() const

Devuelve una copia del contenido del buifer de cadena actual.

Un tema adicional: no es necesario cerrar un flujo de cadena. En realidad, las clases de flujo de
cadena no definen una funcién open() ni close(). Esto se debe a que las clases de flujo de cadena
no operan sobre un dispositivo externo. Simplemente tratan una cadena como el origen de la en-
trada o el destino de la salida del flujo. Por esto no es necesario confirmar que un flujo de cadena
se cred correctamente antes de usarlo.

Ejemplo

En el siguiente ejemplo se muestran las clases de flujo de cadena en accién.

// Usa un flujo de cadena.

#include <iostream>
#include <sstreams>

using namespace std;
int main/()

char car;

// Crea un flujo de salida.
ostringstream cadsalida;

Capitulo 5: Trabajo con E/S

cout << "Usa un flujo de cadena de salida llamado cadsalida.\n";

// Escribe una salida en el flujo de cadena.
cadsalida << 10 << " " << -20 << " " << 30.2 << "\n";
cadsalida << "Esto es una prueba.";

// BAhora, obtiene una copia del contenido del bufer del flujo
// v lo usa para desplegar el contenido del bufer.
cout << "El contenido actual de cadsalida se obtiene de str () :\n"

<< cadsalida.str() << endl;

// Escribe algo méds a cadsalida.
cadsalida << "\nSe trata de salida adicional.\n";

cout << endl;
cout << "Se usa un flujo de cadena de entrada llamado cadentrada.\n";

// Ahora, usa el contenido de cadsalida para crear cadentrada:
istringstream cadentrada (cadsalida.str());

// Despliega el contenido de cadentrada mediante llamadas a get ().
cout << "El contenido actual de cadentrada mediante get () :\n";

do {
car = cadentrada.get();
if (!cadentrada.eof ()) cout << car;

} while(!cadentrada.eof()) ;

cout << endl;

// BAhora crea el flujo de cadena para entrada/salida.

cout << "Ahora, se usa un flujo de cadena llamado cadentrsal.\n";
stringstream cadentrsal;

// Escribe alguna salida en cadentrsal.
cadentrsal << 10 << " + " << 12 << " is " << 10+12 << endl;

// Ahora, despliega el contenido de cadentrsal mediante get ().

cout << "El contenido actual de cadentrsal mediante get () :\n";
do {

car = cadentrsal.get();

if (!cadentrsal.eof ()) cout << car;

} while(!cadentrsal.eof()) ;
cout << endl;

// Limpia eofbit en cadentrsal.
cadentrsal.clear () ;

cadentrsal << "Salida adicional para cadentrsal.\n";

// Lo siguiente seguird leyendo desde el punto en que se detuvieron

339

340

C++ Soluciones de programacion

// las lecturas adicionales.
cout << "Ahora se presentan los caracteres que se acaban de agregar a cadentr-
sal:\n";

do {
car = cadentrsal.get();
if (!cadentrsal.eof ()) cout << car;

} while(!cadentrsal.eof());

}
Aqui se muestra la salida:

Usa un flujo de cadena de salida llamado cadsalida.
El contenido actual de cadsalida se obtiene de str():
10 -20 30.2

Esto es una prueba.

Usa un flujo de cadena de entrada llamado cadentrada.
El contenido actual de cadentrada mediante get () :

10 -20 30.2

Esto es una prueba.

Se trata de salida adicional.

Ahora, usa un flujo de cadena llamado cadentrsal.
El contenido actual de cadentrsal mediante get () :
10 + 12 es 22

Ahora se presentan los caracteres gque se acaban de agregar a cadentrsal:
Salida adicional para cadentrsal.

Opciones
Cuando se crea una instancia de ostringstream, es posible inicializar el bifer con una secuencia de
caracteres empleando esta version de su constructor:

explicit ostringstream(const string &buf, ios::openmode modo = ios::out)

Aqui, el contenido de buf se copiara en el bufer de salida.

Cuando se crea una instancia de istringstream, no es necesario inicializar el bifer de entra-
da con una secuencia de caracteres. (Puede establecer el contenido del bifer de flujo de cadena
después del hecho al llamar a una segunda forma de str(), que se mostrara en breve.) He aqui la
version de istringstream que no inicializa el bufer de entrada:

explicit istringstream(ios::openmode modo = ios::in)

Observe que sélo se especifica el modo, y su opcion predeterminada es de entrada.
Para stringstream, puede inicializar el bifer con una secuencia conocida de caracteres al usar
la forma de su constructor:

explicit stringstream(const string &buf, ios::openmode modo = ios::in | ios::out)

El contenido de buf se copia en el biifer asociado con el objeto stringstream.

Capitulo 5: Trabajo con E/S 341

Para las tres clases de flujo de cadena, puede establecer el contenido del bifer al llamar a esta
forma de str():

void str(const string &buf)

Reinicializa el bufer con el contenido de buf.

Cree insertadores y extractores personalizados

Componentes clave

Encabezados Clases Funciones
<ostream> ostream ostream &operator<<(ostream &flujo,

const class_type &obj)
<istream> istream istream &operator<<(istream &flujo,

class_type &obj)

En el lenguaje de C++, el operador de salida << es conocido como el operador de inserciéon porque
inserta caracteres en un flujo. De igual manera, el operador de entrada >> es denominado operador
de extraccién porque extrae caracteres de un flujo. Las funciones que sobrecargan a los operadores
de insercién y extracciéon suelen denominarse insertadores y extractores, respectivamente. Las
clases de E/S de C++ sobrecargan a los operadores de inserciéon y extraccién para todos los tipos
integrados. Sin embargo, también es posible crear sus propias versiones sobrecargadas de estos
operadores para los tipos de clase que cree. En esta solucién se muestra el procedimiento.

Paso a paso
Para sobrecargar un insertador para objetos de clase se necesitan estos pasos:

1. Sobrecargue el operador << para que tome una referencia a un ostream en su primer para-

metro y una a const al objeto para salida en el segundo parametro.

Implemente el insertador para que dé salida al objeto en la manera en que lo desee.

Haga que el insertador devuelva la referencia al flujo.

4. Por lo general, hard que el insertador sea un amigo de la clase en que esta operando, de
modo que tenga acceso a los miembros privados de la clase.

Sl

Para sobrecargar un extractor para objetos de clase, se necesitan estos pasos:

1. Sobrecargue el operador >> para que tome una referencia a un istream en su primer para-
metro y una referencia al objeto que recibe entrada en el segundo pardmetro.

2. Implemente el extractor para que lea el flujo de entrada y almacene los datos en un objeto
de la clase.

342

C++ Soluciones de programacion

3. Haga que el extractor devuelva la referencia al flujo.
4. Por lo general, hard que el extractor sea un amigo de la clase en que estd operando, de
modo que tenga acceso a los miembros privados de la clase.

Analisis
Es muy simple crear un insertador para una clase que cree. He aqui una forma general tipica para
un insertador:

ostream &operator<<(ostream &flujo, const tipo_clase &obj)
{

// cuerpo del insertador

devuelve stream;

}

Observe que la funcién devuelve una referencia a un flujo de tipo ostream. Més atin, el primer
pardmetro a la funcion es una referencia al flujo de salida. El segundo parametro es una referencia a
const al objeto que habra de insertarse. Técnicamente, el segundo parametro puede recibir una copia
del objeto (es decir, puede ser un pardmetro de valor), y no es necesario que sea const. Sin embargo,
lo mas com1in es que no se altere cuando un objeto es salida, y suele ser mas rdpido pasarlo por
referencia que por valor. Asi, por lo general el segundo parametro es una referencia a const para el
objeto. Por supuesto, esto esta determinado por la situacién especifica. En todos los casos, el inserta-
dor debe devolver flujo. Esto permite que el insertador se use en una expresién de E/S més grande.

Dentro de una funcién de insertador, puede poner cualquier tipo de procedimiento u opera-
cién que desee. Es decir, depende por completo de usted la manera en que el insertador dard sa-
lida al objeto. Sin embargo, en todos los casos, para que el insertador se mantenga con las buenas
précticas de programacion, no debe producir efectos colaterales. Por tanto, no debe modificarse el
objeto. Tampoco debe realizar operaciones que no estén relacionadas con la insercién. Por ejemplo,
jtal vez no sea buena idea hacer que un insertador recicle la memoria no utilizada como efecto
colateral a una operacién de insercién!

Los extractores son el complemento de los insertadores. Almacenan entrada en un objeto. La
forma general de una funcién extractora es:

istream &operator>>(istream &flujo, const tipo_clase &obj)
{

// cuerpo del extractor

devuelve stream;

}

Los extractores devuelven una referencia a un flujo de tipo istream, que es un flujo de entrada. El
primer pardmetro también debe ser una referencia a un flujo de tipo istream. Observe que el segun-
do parametro debe ser una referencia a un objeto de la clase para la que el extractor esta sobrecar-
gado. Esto es asi para que el objeto pueda modificarse mediante la operacién de entrada (extraccion).
Como los insertadores, un extractor debe confinar sus operaciones para leer datos del flujo de
entrada y almacenarlo en el objeto especificado. No debe generar efectos colaterales. No debe leer
mas entrada que necesaria para el objeto. Por ejemplo, un extractor por lo general no debe leer un
espacio final.
En muchos casos, querrd hacer que el insertador o el extractor sea un amigo de la clase
para la que estd sobrecargado. Al hacerlo asi, otorga acceso a los miembros privados de la

Capitulo 5: Trabajo con E/S 343

clase. Esto podria requerirse para obtener datos para salida o para almacenar datos de entrada.
Por supuesto, esto no seria posible si estuviera creando un insertador o extractor para una clase a
la que no tiene el cédigo fuente, como una clase de terceros.

Ejemplo

A continuacién se muestran ejemplos de un insertador y un extractor personalizados. Crea una clase
llamada TresD, que almacena coordenadas tridimensionales. Utiliza un insertador personalizado
para dar salida a las coordenadas. Utiliza un extractor personalizado para leer las coordenadas.

// Demuestra un insertador y extractor de objetos
// de tipo TresD.

#include <iostream>
using namespace std;

class TresD {
int x, y, z; // Coordenadas 3-D
public:
TresD(int a, int b, int ¢) { x = a; vy = b; z = ¢; }

// Hace que el insertador y el extractor sean amigos de TresD.
friend ostream &operator<< (ostream &flujo, const TresD &obj) ;
friend istream &operator>s>(istream &flujo, TresD &obj) ;

//
}i

// Insertador TresD. Despliega las coordenadas X, Y, Z.
ostream &operator<< (ostream &flujo, const TresD &obj)
{

flujo << obj.x << ", ";

flujo << obj.y << ", ";

flujo << obj.z << "\n";

return flujo; // devuelve el flujo

}

// Extractor TresD. Obtiene valores tridimensionales.
istream &operator>>(istream &flujo, TresD &obj)

{
flujo >> obj.x >> obj.y >> obj.z;
return flujo;

}

int main()

{
TresD td(1, 2, 3);

cout << "Las coordenadas en td: " << td << endl;

cout << "Ingrese las nuevas coordenadas 3D: ";
cin >> td;

344

C++ Soluciones de programacion

cout << "Las coordenadas en td son ahora: " << td << endl;

return 0;

}

Aqui se muestra una ejecucién de ejemplo:

Las coordenadas en td: 1, 2, 3

Ingrese las nuevas coordenadas 3D: 9 8 7
Las coordenadas en td son ahora: 9, 8, 7

Opciones

Como se menciond, cuando se crea un insertador, no es técnicamente necesario pasar por referen-
cia el objeto al que se estd dando salida. En algunos casos, tal vez quiera usar, en cambio, un para-
metro de valor. Esto podria tener sentido cuando se opera sobre objetos muy pequefios en que la
cantidad de tiempo que se requiere para sacar el objeto de una pila (que es lo que sucede cuando
se pasa un argumento por valor) es menor que la que toma extraer la direccion del objeto (que es
lo que sucede cuando un objeto se pasa por referencia).

Componentes clave

Encabezados Clases Funciones
<istream> istream istream &nombre-manip(istream &flujo)
<ostream> ostream ostream &nombre-manip(ostream &flujo)

Los manipuladores de E/S son funciones que estdn insertadas dentro de una expresién de E/S.
Afectan el flujo, como cuando cambian sus marcas de formato, o insertan caracteres en un flujo o
los extraen de él. Debido a que operan dentro de una expresién de E/S, los manipuladores afinan
la codificacién de muchas tareas. C++ proporciona muchos manipuladores integrados, y se descri-
ben en el capitulo 6, donde se presentan las soluciones relacionadas con la formacién de datos. Sin
embargo, también es posible crear sus propios manipuladores personalizados.

Por lo general, se usa un manipulador personalizado para consolidar una secuencia o separar
operaciones de E/S en un solo paso. Por ejemplo, no es poco comtn que tengan situaciones en que
la misma secuencia de operaciones de E/S ocurre con frecuencia dentro de un programa. En esos
casos, puede usar un manipulador personalizado para realizar estas acciones, con lo que simpli-
fica su c6digo fuente y se evitan errores. He aqui otro ejemplo: tal vez necesite realizar operacio-
nes de E/S en un dispositivo que no es estandar. Por ejemplo, podria usar un manipulador para
enviar c6digos de control a un tipo especial de impresora o a un sistema de reconocimiento éptico.
Un manipulador personalizado puede simplificar este proceso al permitirle que envie los codigos
por nombre. Cualesquiera que sean los propésitos, los manipuladores personalizados son exten-
siones populares del sistema de E/S de C++.

Capitulo 5: Trabajo con E/S 345

Hay dos tipos basicos de manipuladores: los que operan en los flujos de entrada y los que lo
hacen en los de salida. Ademas de estas dos amplias categorias, hay una divisiéon secundaria: los
manipuladores que toman un argumento y los que no. Las técnicas usadas para crear manipulado-
res sin pardmetros difieren de las usadas para crear otros con pardmetros. En esta solucién
se muestra como crear manipuladores personalizados sin parametros. En la siguiente solucién se
muestra una manera de crear manipuladores con pardmetros.

Paso a paso
Para crear su propio manipulador de salida sin pardmetros se requieren estos pasos:

1. Cree una funcién que tome una referencia a un objeto de ostream como un parametro
y devuelva una referencia a un ostream.

2. Dentro de esa funcién, realice acciones en el ostream pasado como argumento.

3. Devuelva una referencia al argumento de ostream.

Para crear su propio manipulador de entrada sin pardmetros se requieren estos pasos:

1. Cree una funcién que tome una referencia a un objeto de istream como un pardmetro
y devuelva una referencia a un istream.

2. Dentro de esa funcion, realice acciones en el istream pasado como argumento.

3. Devuelva una referencia al argumento de istream.

Andlisis
Todas las funciones de manipulador de salida sin parametros tienen este esqueleto:
ostream &nombre-manip(ostream &flujo)
{
// aqui va su c6digo
return flujo;

Aqui, nombre-manip es el nombre del manipulador y flujo es una referencia al flujo de salida
en que operard el manipulador. Observe que también se devuelve flujo. Esto es necesario para
permitir que el manipulador se use como parte una expresiéon de E/S mads larga. Es importante
tomar nota de que aunque el manipulador tenga como tnico argumento una referencia al flujo
en que estd operando, no se usa un argumento cuando el manipulador se inserta en una opera-
cion de salida.

Todas las funciones de manipulador de entrada sin pardmetros tienen este esqueleto:

istream &nombre-manip(istream &flujo)

{
// aqui va su c6digo
return flujo;

}

346

C++ Soluciones de programacion

Un manipulador de entrada recibe una referencia al flujo para el que se invocé. El manipulador
debe devolver este flujo. Aunque éste toma un argumento de istream, no se pasan argumentos
cuando se invoca el manipulador.

Una vez que haya definido un manipulador, puede usarlo con sélo especificar su nombre en
una expresion de insercién o extraccién. La razén por la que esto funciona es que los operado-
res >>y << se sobrecargan para aceptar un apuntador a funcién que tiene una referencia a flujo
como Unico pardmetro. Los operadores << y >> se implementan de modo que pueden llamar a la
funcién mediante el apuntador, pasando en una referencia al flujo. Este proceso le permite que su
manipulador personalizado reciba una referencia al flujo que se afectaré.

Es importante comprender que (excepto en casos muy inusuales) su manipulador debe operar
en el flujo que se le pasa. Un error comiin que cometen los principiantes consiste en incluir en el
cdédigo una referencia al flujo, como cout, en lugar de usar el flujo pasado al pardmetro. El proble-
ma es que su manipulador funcionard correctamente en algunos casos y fallara en otros. Aunque
este error suele ser facil de encontrar y corregir, en ocasiones es intimidante, dependiendo del flujo
en que lo haya codificado. La regla es facil: un manipulador debe operar en el flujo que se pasa.

Ejemplo

En el siguiente ejemplo se muestra un manipulador personalizado de entrada y salida. Al mani-
pulador de salida se le llama relleno_ast(). Especifica el asterisco (*) como caracter de relleno y
asigna 10 al ancho de campo. Por tanto, después de una llamada a relleno_ast(), se despliega el
numero 1234 como ******1234. (Para conocer méds acerca de la formacién de datos, consulte el capi-
tulo 6.) El manipulador de entrada se denomina omitir_digitos(). Omite los digitos iniciales en el
flujo de entrada. Por tanto, si el flujo de entrada contiene 9786 ABC0101, entonces lee y descarta

el 9786 inicial y deja ABC0101 en el flujo de entrada.

// Demuestra un manipulador de salida personalizado llamado relleno ast ()
// y un manipulador de entrada personalizado de nombre omitir digitos().

#include <iostream>
#include <iomanip>
#include <strings>
#include <cctype>

using namespace std;

// Un manipulador de salida simple que establece el carédcter de relleno
// como * y establece el ancho de campo en 10.

ostream &relleno ast (ostream &flujo) {

flujo << setfill('*') << setw(10);

return flujo;

}

// Un manipulador de entrada simple que omite los digitos iniciales.
istream &omitir digitos(istream &flujo)
char car;

do {
car = flujo.get();

Capitulo 5: Trabajo con E/S 341

} while(!flujo.eof () && isdigit (car));
if (!flujo.eocf ()) flujo.unget () ;

return flujo;

}

int main()

{

string cad;

// Demuestra el manipulador de salida personalizado.
cout << 512 << endl;
cout << relleno ast << 512 << endl;

// Demuestra el manipulador de entrada personalizado.
cout << "Ingrese algunos caracteres: ";

cin >> omitir digitos >> cad;

cout << "Contenido de cad: " << cad;

return 0;

}
He aqui una ejecucién de ejemplo:
512

*kkkkk*x5] D

Ingrese algunos caracteres: 123ABC
Contenido de cad: ABC

Opciones

Si ha codificado correctamente su manipulador personalizado para que opere en el flujo que se ha
pasado, entonces puede usarse en cualquier tipo de flujo. Por ejemplo, en el programa anterior,
puede usar relleno_ast() en un flujo de archivo o uno de cadena. Para confirmar esto, agregue la
siguiente secuencia al programa. Utiliza relleno_ast() en un ostringstream y un ofstream.

// Usa relleno ast () en un stringstream.
ostringstream flujosalida;

flujosalida << relleno_ast << 29;

cout << flujosalida.str();

// Usa relleno_ast en un ofstream.
ofstream archsalida ("prueba.dat") ;
if (larchsalida)
cout << "Error al abrir el archivo.\n";
return 1;

}

archsalida << relleno ast << 19;

Después de volver a compilar, vera que relleno_ast() funciona correctamente en flujosalida y
archsalida.

También puede crear manipuladores personalizados. El proceso es el tema de la siguiente
solucién.

348 C++ Soluciones de programacidn

Cree un manipulador con parametros

Componentes clave

Encabezados Clases Funciones y campos

<istream> istream istream &operator>>(istream &fiujo,
clase-manip cm)

<ostream> ostream ostream &operator<<(ostream &flujo,
clase-manip cm)

clase-manip definido por el usuario

Como se mostré en la solucién anterior, es muy facil crear un manipulador sin parametros. La
razon es que << 0 >> estan sobrecargados para (entre muchas otras cosas) un apuntador a funcién.
Como se explico en la solucién anterior, cuando se usa un manipulador sin pardmetros, se pasa un
apuntador al insertador o extractor sobrecargado y se llama a la funcién, y el flujo se pasa como
argumento. Por desgracia, este mecanismo simple no funcionara con manipuladores que requie-
ren un argumento porque no hay manera de pasar un argumento mediante el apuntador a fun-
cién. Como resultado, la creacién de un manipulador con pardmetros depende de un mecanismo
fundamentalmente diferente, que es un poco mas complicado. Més atin, hay varias maneras de
implementar un manipulador con pardmetros. En esta solucién se muestra una manera relativa-
mente simple y sencilla.

Paso a paso
Para crear un manipulador de salida con pardmetros se necesitan estos pasos:

1. Cree una clase cuyo nombre sea el del manipulador. Por ejemplo, si éste se llama mimanip,
entonces el nombre de la clase debe ser mimanip.

2. Cree un campo privado en la clase que contendra el argumento pasado al manipulador.
El tipo del campo debe ser el mismo que el tipo de datos que se pasara al manipulador.

3. Cree un constructor para la clase que tenga un pardmetro, que sea del mismo tipo que el
de los datos que se pasardn al manipulador. Haga que el constructor inicialice el valor del
campo del paso 2 con el pasado al constructor.

4. Cree un insertador sobrecargado que tome una referencia a ostream como primer argu-
mento y un objeto de la clase del paso 1 como su segundo argumento. Dentro de esta
funcién, realice las acciones del manipulador. Devuelva una referencia al flujo.

5. Haga que el insertador sobrecargado sea un amigo de la clase del paso 1.

6. Para usar el manipulador, use el constructor de la clase en la expresion de salida, pa-
sandolo en el argumento deseado. Esto causara que se construya un argumento, y luego
se llamara al insertador sobrecargado, empleando ese objeto como operando del lado
derecho.

Capitulo 5: Trabajo con E/S 349

Para crear un manipulador de entrada con pardmetros, se necesitan estos pasos:

1. Cree una clase cuyo nombre sea el del manipulador. Por ejemplo, si éste se llama mimanip,
entonces el nombre de la clase debe ser mimanip.

2. Cree un campo privado en la clase que contendra el argumento pasado al manipulador.

El tipo del campo debe ser el mismo que el tipo de datos que se pasara al manipulador.

3. Cree un constructor para la clase que tenga un parametro, que sea del mismo tipo que el
de los datos que se pasaran al manipulador. Haga que el constructor inicialice el valor del
campo del paso 2 con el pasado al constructor.

4. Cree un extractor sobrecargado que tome una referencia a istream como primer argumento
y un objeto de la clase del paso 1 como su segundo argumento. Dentro de esta funcion,
realice las acciones del manipulador. Devuelva una referencia al flujo.

5. Haga que el extractor sobrecargado sea un amigo de la clase del paso 1.

6. Para usar el manipulador, use el constructor de la clase en la expresién de entrada, pasan-
dolo en el argumento deseado. Esto causara que se construya un argumento, y luego se
llamard al extractor sobrecargado, empleando ese objeto como operando del lado derecho.

Andlisis
En general, la creaciéon de un manipulador con pardmetros requiere dos elementos. El primero es
una clase que almacene el argumento pasado al manipulador. El segundo es un insertador o ex-
tractor que esté sobrecargado para tomar un objeto de esa clase como operando del lado derecho.
Cuando el manipulador se incluye en una expresiéon de E/S, se construye un objeto de la clase,
y el argumento se guarda. Luego el insertador o extractor opera en ese objeto y puede acceder al
argumento.

Trabajemos esto paso a paso, creando un insertador con pardmetros simple llamado sangrado,
que da sangria a la salida con un ntimero especifico de espacios. Por ejemplo, la expresién

cout << sangrado(1l0) << "Hola";

causard que se dé salida a 10 espacios, seguidos por la cadena "Hola". Como se explicé, todos los
manipuladores con pardmetros requieren dos elementos. El primero es una clase que almacena el
argumento pasado al manipulador. Por tanto, para crear el manipulador sangrado, empiece por
crear una clase llamada sangrado que almacene el argumento pasado a su constructor y especifi-
que un insertador sobrecargado como amigo, como se muestra aqui:

// Una clase que da soporte al manipulador de salida sangrado.
class sangrado {

int len;
public:

sangrado (int i) { len = i; }

friend ostream &operator<<(ostream &flujo, sangrado ndt) ;

}i

Como puede ver, el constructor toma un argumento, que se almacena en el campo privado len.
Esta es la tinica funcionalidad que proporciona indent. Simplemente almacena el argumento.
Sin embargo, declara que operator<<() es un amigo. Esto le da a la funcién de operador acceso
al campo privado len.

350

C++ Soluciones de programacion

El segundo elemento que necesita crear es un insertador sobrecargado que toma una ins-
tancia de sangrado como operando del lado derecho. (Consulte Cree insertadores y extractores
personalizados para conocer detalles sobre la creacion de un insertador o un extractor.) Haga
que este operador dé salida al niimero de espacios especificado por el campo len del objeto
en que estd operando. He aqui una manera de implementar esta funcién:

// Crea un insertador para objetos de tipo sangrado.
ostream &operator<<(ostream &flujo, sangrado ndt) ({

for(int i=0; i < ndt.len; ++i) flujo << " ";

return flujo;

}

Como puede ver, este operador toma una referencia a ostream como operando del lado izquierdo
y un objeto de sangrado como operando del lado derecho. Da salida el niimero de espacios especi-
ficado por el objeto de sangrado y luego devuelve el flujo. Debido a que operator<<() es un amigo
de sangrado, puede acceder al campo len, aunque sea privado.

Cuando se usa sangrado dentro de una expresion de salida, causa que un objeto de tipo san-
grado se cree con el argumento especificado. Luego, se invoca la funcién operator<<() sobrecarga-
da, pasandola en el flujo y en el objeto de sangrado recién creado.

Ejemplo

En el siguiente ejemplo se muestran un manipulador de entrada y uno de salida con pardmetros.
Al manipulador de entrada se le denomina omitircar y, en la entrada, omite los caracteres iniciales
que coinciden con el pasado a omitircar. Por ejemplo, omitircar('X') omite las X al principio. El
manipulador de salida es sangrado, que se describi6 en la secuencia Andlisis de esta solucion.

// Crea manipuladores simples de entrada y salida con parametros.

//

// El manipulador sangrado da salida un nimero especifico de espacios.
// El manipulador omitircar omite un cardcter especifico en la entrada.

#include <iostream>
#include <string>
#include <sstream>

using namespace std;

// Juntos, la clase y el operador sobrecargado siguientes crean
// el manipulador sangrado.

// Una clase que da soporte al manipulador de salida sangrado.
class sangrado {

int len;
public:

sangrado (int i) { len = i; }

friend ostream &operator<<(ostream &flujo, sangrado ndt) ;

Vi

// Crea un insertador para objetos de tipo sangrado.

Capitulo 5: Trabajo con E/S

ostream &operator<<(ostream &flujo, sangrado ndt) ({
for(int i=0; 1 < ndt.len; ++i) flujo << " ";

return flujo;

}

// Juntos, la clase y el operador sobrecargado siguientes crean
// el manipulador omitircar.

// Una clase que da soporte al manipulador de entrada omitircar.
class omitircar {

char car;
public:

omitircar(char ¢) { car = c; }

friend istream &operators>>(istream &flujo, omitircar sc);

}i

// Crea un extractor para objetos de tipo omitircar.
istream &operators>(istream &flujo, omitircar sc) {
char car;

do {

car = flujo.get();
} while(!flujo.eocf () && car == sc.car);
if(!flujo.eocf ()) flujo.unget () ;

return flujo;

}

// Demuestra sangrado y omitircar.
int main() {
string cad;

// Usa sangrado para afiadir sangrias a la salida.

cout << sangrado(9) << "Esto se ha sangrado 9 lugares.\n"
<< sangrado(9) << "Igual que esto.\n" << sangrado(18)
<< "Pero esto se ha sangrado 18 lugares.\n\n";

// Usa omitircar para ignorar los ceros iniciales.

cout << "Ingresa algunos caracteres: ";

cin >> omitircar('0') >> cad;

cout << "Se omiten los ceros iniciales. Contenido de cad: "
<< cad << "\n\n";

// Usa sangria en un ostringstream.

cout << "Usa sangrado con un flujo de cadena.\n";

ostringstream flujocadsal;

flujocadsal << sangrado(5) << 128;

cout << "El contenido de flujocadsal:\n" << flujocadsal.str() << endl;

return O0;

351

352

C++ Soluciones de programacion

Aqui se muestra una ejecucién de ejemplo:

Esto se ha sangrado 9 lugares.
Igual que esto.
Pero esto se ha sangrado 18 lugares.

Ingresa algunos caracteres: 000abc
Se omiten los ceros iniciales. Contenido de cad: abc

Usa sangrado con un flujo de cadena.
El contenido de flujocadsal:
128

Opciones

En esta solucién se muestra una manera facil de crear manipuladores con parametros, pero no es
la tinica manera. En el encabezado <iomanip> estan definidos los manipuladores con parametros
especificados por el estindar C++. Si examina este encabezado, probablemente verda un método
mas sofisticado, que utiliza plantillas y tal vez macros complejas. Podra usar el método mostrado
en ese encabezado para crear sus propios manipuladores con pardmetros que se integren con los
tipos de clase definidos por ese encabezado. Sin embargo, debido a que las clases en <iomanip>
son especificas de la implementacién, pueden ser diferentes (y probablemente lo serdn) entre
compiladores. El método utilizado en esta solucién es transportable. Ademas, por lo general el
mecanismo empleado por <iomanip> es muy complicado y puede resultar dificil de comprender
sin un estudio considerable. A menudo, simplemente es més facil usar la técnica mostrada en esta
solucién. Con toda franqueza, es el método preferido por el autor.

Obtenga o establezca una configuracion regional y de idioma de flujo

Componentes clave
Encabezados Clases Funciones
<ios> ios_base locale getloc() const
<ios> ios locale imbue(const locale &nuevaubi)
<locale> locale string name() const

Tiene la opcién de obtener o establecer el objeto de locale asociado con un flujo. En C++, la infor-
macién especifica de la configuracién regional estd encapsulada dentro de un objeto de locale.
Este objeto define varios elementos relacionados con la configuracién regional y de idioma, como
el simbolo monetario, el separador de miles, etc. Cada flujo tiene una configuracién asociada. Para
ayudar a la internacionalizacion, tal vez quiera obtener un objeto de locale de un flujo, o establecer
uno nuevo. En esta solucién se muestra el proceso.

Capitulo 5: Trabajo con E/S 353

Paso a paso
Para obtener el objeto de locale actual relacionado con un flujo, se necesitan estos pasos:

1. Cree una instancia de locale que recibira una copia de la configuracién regional y de
idioma actual.
2. Llame a getloc() en el flujo, para obtener una copia de la configuracién actual.

Para establecer la configuracion regional y de idioma con un flujo, se necesitan estos pasos:

1. Cree una instancia de locale que encapsule la configuracion regional y de idioma actual.
2. Llame a imbue() en el flujo, pasdndole el objeto de locale del paso 1.

Andlisis
La clase locale encapsula informacién geopolitica acerca del entorno de ejecucién de un programa.
Por ejemplo, la configuracion regional y de idioma de un programa determina el simbolo mone-
tario, el formato de hora y de fecha, entre muchos otros. La clase locale necesita el encabezado
<locale>. Cada flujo tiene un objeto de locale asociado.

Para obtener la configuracién regional actual de un flujo, llame a getloc() en el flujo. Se mues-
tra aqui:

locale getloc() const

Devuelve el objeto de locale asociado con el flujo.
Para establecer la configuracién de un flujo, llame a imbue() en el flujo. Aqui se muestra:

locale imbue(const locale &nuevaubi)

La configuracion regional y de idioma del flujo que invoca se establece en nuevaubi, y se devuel-
ve la anterior.
Una manera facil de construir una instancia de locale consiste en usar este constructor:

explicit locale(const char *nombre)

Aqui, nombre especifica el nombre de la configuraciéon, como german, spanish_spain o US. Si nom-
bre no representa una configuracion regional y de idioma vélida, entonces se lanza una excepcién
runtime_error.

Dada una instancia de locale, puede obtener su nombre al llamar a name(). Aqui se muestra:

string name() const
Se devuelve el nombre legible para el ser humano de la configuracién regional y de idioma.
Ejemplo
En el siguiente ejemplo se muestra como obtener y establecer una configuracién regional de flujo.
Primero se despliega la configuracién actual del flujo, que suele ser la de C (que, por lo general,
es la cadena predeterminada para un programa de C++). Luego establece la configuracién en

German_Germany. Por tltimo, obtiene y despliega el simbolo monetario y el cardcter usado para
el separador de miles.

// Demuestra getloc() e imbue() en un flujo.

#include <iostream>

354 C++ Soluciones de programacidn

#include <fstreams
#include <locale>

using namespace std;

int main/()

{

ofstream archsalida ("prueba.dat") ;

if (larchsalida)
cout << "No se puede abrir el archivo.\n";
return 1;

}

// Despliega el nombre de la configuracidén regional y de idioma actual.
cout << "La configuracil\u00a2n regional inicial es " << archsalida.getloc() .name () ;
cout << "\n\n";

cout << "Estableciendo la configuraci\uOOa2n regional en German Germany.\n";

// Crea un objeto de locale para Alemania.
locale loc("German_ Germany") ;

// Establece la configuracidén regional de archsalida en loc.
archsalida.imbue (loc) ;

// Despliega el nombre de la nueva configuracidén regional y de idioma.
cout << "La configuraci\u0Oa2n regional inicial es ahora " << archsalida.
getloc () .name () ;

cout << endl;

// Primero, confirma que la faceta moneypunct estd disponible.
if (has_facet<moneypunct<char, trues> >(archsalida.getloc())) {
// Obtiene la faceta moneypunct.
const moneypunct<char, true> &mp =
use_ facet<moneypunct<char, true> >(archsalida.getloc()) ;

// Despliega el simbolo monetario y el separador de miles.
cout << "S\uOOalmbolo monetario: " << mp.curr_ symbol() << endl;
cout << "Separador de miles: " << mp.thousands sep() << endl;

}

archsalida.close() ;

if (larchsalida.good ()) {
cout << "Error al cerrar el archivo.\n";
return 1;

}

return O0;

Capitulo 5: Trabajo con E/S 355

Aqui se muestra la salida:

La configuracién regional inicial es C

Estableciendo la configuracién regional en German Germany.

La configuracién regional inicial es ahora German Germany.1252
Simbolo monetario: EUR

Separador de miles:

Opciones

Como se menciond, en el niicleo de la internacionalizacién se encuentra la clase locale. Esta encap-
sula un conjunto de facetas que describen los aspectos geopoliticos del entorno de ejecucion. Las
facetas estan representadas por clases declaradas dentro de <locale>, como moneypunct que se
usa en el ejemplo. Entre otras, se incluyen numpunct, num_get, num_put, time_get y time_put.
Puede usar estas clases para leer y escribir informacién que esta formada de manera relacionada
con una configuracion regional y de idioma. Consulte el capitulo 6 para conocer soluciones rela-
cionadas con la formacién de datos.*

Use el sistema de archivos de C

Componentes clave

Encabezados Clases Funciones

<cstdio> int fclose(FILE *aa)
int feof(FILE *aa)
int ferror(FILE *aa)
FILE *fopen(const char *nombrearch,
const char *modo)
int fgetc(FILE *aa)
int fputc(int car, FILE *aa)

En las soluciones anteriores se ha descrito cémo realizar una amplia variedad de tareas de manejo
de archivos al emplear el sistema de E/S de C++, que esta basado en la jerarquia de clases descrita
en la revisién general presentada al principio de este capitulo. Se trata del sistema de E/S que, por
lo general, usard cuando escriba cédigo de C++. Una vez dicho esto, ningtin libro de C++ estaria
completo sin una solucién, por lo menos, que describa los fundamentos del uso del "otro sistema
de E/S" de C++, que es el heredado de C.

Como casi todos los programadores de C++ lo saben, C++ se construy¢ a partir del lenguaje
C. Como resultado, C++ incluye todo el lenguaje C. Por eso es por lo que el bucle for en C, por
ejemplo, funciona igual que lo hace en C++. También es por eso por lo que las funciones basadas
en C, como tolower(), estdn disponibles para uso en un programa de C++. Esto es importante
porque C define un sistema de E/S completo propio, que esta separado del definido por C++.
Probablemente ya ha visto al E/S de C en accién en c6digo de terceros. Por ejemplo, la funcion de
salida de la consola principal es printf() y una funcién de uso comun para entrada es scanf(). En

*Nota del T. También vale la pena que explore la configuracion regional relacionada con su pais, para conocer la manera de utilizar
ésta con el fin de desplegar caracteres especificos del espafol.

356

C++ Soluciones de programacion

realidad, variantes de estas funciones se utilizan en algunas de las soluciones del capitulo 6, donde
se describe la formacién de datos.

Debido a que el sistema de archivos de C tiene soporte completo en C++, en ocasiones vera
que se usa en programas de éste. Tal vez mds importante sea que gran parte del c6digo heredado
de C atin tiene un amplio uso. Si le estard dando mantenimiento a ese tipo de c6digo, o tal vez
actualizdndolo al sistema de E/S de C++, entonces es necesario un conocimiento bésico del funcio-
namiento del sistema de archivos de C. Por dltimo, en realidad nadie puede llamarse a si mismo
un programador en C++ sin tener por lo menos un poco de conocimientos del subconjunto del
lenguaje C, incluido su tratamiento de E/S.

En esta solucién se demuestra el mecanismo bdsico necesario para abrir, cerrar, leer y escribir
un archivo. También se muestra la manera de detectar errores. Aunque se podrian presentar mu-
chos elementos més del E/S de archivo de C en una solucién, esto le proporcionara una compren-
sion general de los temas clave.

Paso a paso
Para usar el sistema de E/S de C para leer un archivo y escribir en él, se requieren estos pasos:

1. Abra un archivo al llamar a fopen().

2. Confirme que el archivo esta abierto al probar el valor devuelto por fopen(). Si es NULL,
el archivo no esta abierto.

Si el archivo esta abierto para entrada, lea caracteres al llamar a fgetc().

Si el archivo esta abierto para salida, lea caracteres al llamar a fputc().

Cierre el archivo al llamar a fclose().

Revise errores al llamar a ferror().

Revise si se alcanz6 el final del archivo al llamar a feof().

NS k@

Analisis

Aunque el sistema de archivos de C utiliza el mismo concepto de alto nivel del flujo, la manera
en que funciona es sustancialmente diferente del sistema de archivos de C++. Una diferencia clave es
que las funciones de E/S de C operan mediante apuntadores a archivos, en lugar de hacerlo sobre
objetos de clases que encapsulan un archivo. (Como se explic, el apuntador a un archivo repre-
senta un archivo.) Por tanto, el sistema de archivos de C no se centra en una jerarquia de clases
sino alrededor del apuntador a archivos.

Un apuntador a archivos se obtiene al abrir un archivo. Una vez que tenga uno, puede operar
en él mediante una o més de las funciones de E/S de C. Aqui se muestran las usadas por esta
solucién. Todas requieren el encabezado <cstdio>. Se trata de la versién de C++ del archivo de
encabezado original stdio.h usado por C.

Nombre Funcion

fopen() Abre un archivo.

fclose() Cierra un archivo.

fputc() Escribe un caracter en un archivo.

fgetc() Lee un caracter del archivo.

feof() Devuelve true si se llega al final del archivo.
ferror() Devuelve true si ha ocurrido un error.

Capitulo 5: Trabajo con E/S 357

El encabezado <cstdio> proporciona los prototipos para las funciones de E/S y define estos
tres tipos: size_t, fpos_t y FILE. El tipo size_t es alguna variedad de entero sin signo, al igual que
fpos_t. El tipo FILE describe un archivo. Merece mayor atencién.

El apuntador a archivo es el subproceso comtn que une a los procesos de E/S de C. Es un apun-
tador a una estructura de tipo FILE. Esta estructura contiene informacién que define varios elemen-
tos del archivo, incluidos su nombre, estado y la posicién actual del archivo. En esencia, el apunta-
dor a archivos identifica un archivo especifico, y el flujo asociado lo usa para dirigir la operacién de
las funciones de E/S. Con el fin de leer o escribir archivos, su programa necesita usar apuntadores a
archivo. Para obtener una variable de apuntador a archivo, use una instruccién como ésta:

FILE *af;

También hay varias macros definidas en <cstdio>. Las relevantes para esta solucién son NULL
y EOF. La macro NULL define un apuntador nulo. La EOF suele definirse como -1 y es el valor
devuelto cuando una funcién de entrada trata de leer después del final del archivo.

A continuacién se muestra una revisién general de cada funcién de E/S de C usada en esta
solucién.

fopen()

La funcién fopen() abre un flujo para su uso y vincula un archivo con ese flujo. Luego devuelve el
apuntador a archivo asociado con ese archivo. Con mayor frecuencia (y para el resto del anélisis)
el archivo es de disco. La funcién fopen() tiene este prototipo:

FILE *fopen(const char *nombrear, const char *modo)

donde nombrear es un apuntador a una cadena de caracteres que integra un nombre de archivo va-
lido y puede incluir una especificacién de ruta. La cadena sefialada por modo determina la manera
en que el archivo se abrira. En la siguiente tabla se muestran los valores legales para modo. (Cade-
nas como "r+b" también pueden representarse como "rb+".)

Modo Significado

r Abre un archivo de texto para lectura.

w Abre un archivo de texto para escritura.

a Adjunta a un archivo de texto.

rb Abre un archivo binario para lectura.

wb Crea un archivo binario para escritura.

ab Adjunta a un archivo binario.

r+ Abre un archivo de texto para lectura/escritura.

w+ Crea un archivo de texto para lectura/escritura.

a+ Adjunta o crea un archivo de texto para lectura/escritura.
r+b Abre un archivo binario para lectura/escritura.

w+b Crea un archivo binario para lectura/escritura.

a+b Adjunta o crea un archivo binario para lectura/escritura.

358 C++ Soluciones de programacidn

Observe que un archivo puede abrirse en modo de texto o binario. En casi todas las implemen-
taciones, en modo de texto, la secuencia retorno de carro/avance de linea se traduce en caracte-
res de nueva linea en la entrada. En la salida, ocurre lo inverso: las nuevas lineas se traducen en
secuencias retorno de carro/avance de linea. Esta traduccion no ocurre en archivos binarios.

Como se establecid, la funcién fopen() devuelve un apuntador a archivo. Su programa nun-
ca debe modificar el valor de este apuntador. Si ocurre un error cuando trata de abrir el archivo,
fopen() devuelve un apuntador nulo. Debe confirmar que el archivo se abrié con éxito al probar
el valor devuelto por fopen(). He aqui un ejemplo de la manera en que se abre un archivo con
fopen(). Trata de abrir un archivo llamado prueba.dat para salida.

FILE *aa;

if ((aa = fopen ("prueba.dat", "w"))==NULL) ({
cout << "No se puede abrir prueba.dat para salida.\n";
exit (1) ;

}

Si el archivo no se puede abrir por alguna razén (por ejemplo, si es de sélo lectura), entonces la
llamada a fopen() fallard y se devolvera un apuntador nulo. Por supuesto, la prueba para revisar
si falla una apertura puede escribirse de manera mas compacta, como se muestra a continuacion:

if (!(aa = fopen("prueba.dat", "w"))) { //

La prueba explicita contra NULL no es necesaria porque un apuntador nulo es un valor falso.

fclose()
La funcién fclose() cierra un flujo que estaba abierto al llamar a fopen(). Escribe cualquier dato
que sobre en el bufer del disco en el archivo y cierra éste en el nivel formal del sistema operativo.
La falla en el cierre de un flujo puede provocar problemas, como datos perdidos, archivos destrui-
dos y posibles errores intermitentes en su programa. Por tanto, siempre debe cerrar un archivo
cuando haya terminado con él. Cerrar un archivo también libera cualquier recurso del sistema
usado por el archivo, haciéndolo disponible para nuevo uso.

La funcién fclose() tiene este prototipo:

int fclose(FILE *aa)

donde aa es el apuntador a archivo devuelto por la llamada a fopen(). Un valor devuelto de cero
significa una operacion de cierre que ha tenido éxito. La funcién devuelve EOF si ocurre un error.
Una llamada a fclose() fallara cuando se ha eliminado prematuramente un disco de la unidad o no
hay maés espacio en el disco, por ejemplo.

fputc()
La funcién fputc() escribe caracteres en un archivo. Aqui se muestra:
int fputc(int car, FILE *aa)

El pardmetro aa especifica el archivo en que se escribird, y car es el caracter que se escribe. Aunque
car esta definido como int, sélo se escribe un byte de orden bajo. Si fputc() tiene éxito, devuelve car.
De otra manera, devuelve EOF.

Capitulo 5: Trabajo con E/S 359

fgetc()

La funcién fgetc() lee caracteres de un archivo. Aqui se muestra:
int fgetc(FILE *aa)

El parametro aa especifica el archivo que se leera. Devuelve el siguiente caracter en el archivo,
devuelto como un valor int. Devuelve EOF cuando se ha alcanzado el final del archivo. Por tanto,
para leer en el final de un archivo de texto, podria usar el siguiente cédigo:

do {
car = fgetc(aa);
} while(car != EOF);

Sin embargo, fgetc() también devuelve EOF si ocurre un error. Puede usar ferror() para determi-
nar con precisiéon lo que ha ocurrido.

foef()

Como se acaba de describir, fgetc() devuelve EOF cuando se ha encontrado el final del archivo.
Sin embargo, la prueba del valor devuelto por fgetc() tal vez no sea la mejor manera de deter-
minar cuando se ha llegado al final de un archivo. En primer lugar, el sistema de archivos de C
puede operar en archivos de texto y binarios. Cuando se abre un archivo para entrada binaria, es
posible leer un valor de entero que sea igual a EOF. Esto causaria que la rutina de entrada indi-
que una condicién de final de archivo aunque no se haya alcanzado el final fisico del archivo. En
segundo lugar, fgetc() devuelve EOF cuando falla y cuando alcanza el final del archivo. Si sélo se
emplea el valor devuelto de fgetc(), es imposible saber qué ocurrié. Para resolver estos problemas,
Cincluye la funcién feof(), que determina cuando se ha encontrado el final del archivo. La funcién
feof() se muestra a continuacién:

int feof(FILE *aa)

Devuelve true si se ha alcanzado el final del archivo; de otra manera, devuelve false. Por tanto, la
siguiente instruccién lee un archivo binario hasta que se encuentre el final del archivo:

while(!feof (aa)) car = fgetc(aa);

Por supuesto, puede aplicar este método para archivos de texto, ademas de archivos binarios.

ferror()
La funcién ferror() determina si una operacién con archivos ha producido un error. Aqui se mues-
tra la funcién ferror():

int ferror(FILE *aa)

El parametro aa especifica el archivo en cuestién. La funcién devuelve true si ha ocurrido un error
durante la dltima operacién con archivos; de otra manera, devuelve false.

Ejemplo

En el siguiente programa se ilustra el E/S de archivos de C. Se copia un archivo de texto. En el pro-
ceso, se eliminan tabuladores y se sustituye el niimero apropiado de espacios. Para usar el programa,
especifique el nombre del archivo de entrada y el de salida, y el tamafio del tabulador en la linea de
comandos.

360 cC++ Soluciones de programacidn

// Demuestra el sistema de E/S de C.

//

// Este programa copia un archivo, sustituyendo tabuladores
// con espacios en el proceso. Utiliza el sistema de E/S de C
// para manejar la E/S de archivo.

#include <iostream>
#include <cstdio>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
FILE *entrada, *salida;
int tamtab;
int cuentatab;

char car;
int estado _completo = 0;
if(argc != 4) {

cout << "Uso: detab <entrada> <salida> <tama\uOOa4o del tabulador>\n";
return 1;

}

if ((entrada = fopen(argv[l], "rb"))==NULL) ({
cout << "No se puede abrir el archivo de entrada.\n";
return 1;

1

if((salida = fopen(argv[2], "wb"))==NULL) {

cout << "No se puede abrir el ar4chivo de salida.\n";
fclose (entrada) ;
return 1;

}

// Obtiene el tamafio del tabulador.
tamtab = atoi(argv[3]);

cuentatab = 0;

do {
// Lee un caracter del archivo de entrada.
car = fgetc(entrada) ;

if (ferror (entrada)) {
cout << "Error al leer el archivo de entrada.\n";
estado_completo = 1;
break;

}

// Si se encuentra un tabulador, se da salida al numero apropiado de espacios.
if(car == '"\t") {

Capitulo 5: Trabajo con E/S 361

for (int i=cuentatab; i < tamtab; ++i) {
// Escribe espacios en el archivo de salida.
fputc (' ', salida);

cuentatab = 0;
else {

// Escribe el caréacter en el archivo de salida.
fputc(car, salida);

++cuentatab;
if (cuentatab == tamtab) cuentatab = 0;
if(car == '\n' || car == '\r') cuentatab = 0;

}

if (ferror (salida)) {
cout << "Error al escribir en el archivo de salida.\n";
estado_completo = 1;
break;

} while(!feof (entrada)) ;

fclose (entrada) ;
fclose(salida) ;

if (ferror (entrada) || ferror(salida)) {
cout << "Error al cerrar un archivo.\n";
estado_completo = 1;

}

return estado completo;

Opciones
Puede leer y escribir bloques de datos usando el sistema de E/S de C con las funciones fread()
y fwrite(). Aqui se muestran:

size_t fread(void *buf, size_t num_bytes, size_t cuenta, FILE *an)
size_t fwrite(const void *buf, size_t num_bytes, size_t cuenta, FILE *aa)

Para fread(), buf es un apuntador a una regiéon de la memoria que recibira los datos del archivo. Para
fwrite(), es un apuntador a la informacién que se escribird en el archivo. El valor de cuenta determina
cuéntos elementos se leen o escriben, y cada elemento tiene num_bytes de longitud. El archivo sobre
el que se acttia se especifica con aa. La funcién fread() devuelve el niimero de elementos leidos.
Este valor puede ser menor que cuenta si se alcanza el final del archivo o si ocurre un error. La
funcién fwrite() devuelve el nimero de elementos escritos. Este valor serd igual a cuenta a menos
que ocurra un error.

Hay versiones alternas de fgetc() y fputc() llamadas getc() y putc(). Funcionan igual que sus
contrapartes, excepto que pueden implementarse como macros.

Puede realizar operaciones de acceso aleatorio empleando el sistema de E/S de C con fseek().
Aqui se muestra:

int fseek(FILE *aa, long despl, int origen)

362

C++ Soluciones de programacion

El archivo sobre el que se acttia esta especificado por aa. El ntimero de bytes de origen que se vol-
verd la posicion actual se pasa en despl. El valor de origen debe ser uno de los siguientes (definidos
en <ctsdio>:

Origen Nombre de macro
Inicio del archivo SEEK_SET
Posicion actual SEEK_CUR
Final del archivo SEEK_END

Por tanto, para buscar desde el principio del archivo, origen debe ser SEEK_SET. Para hacerlo
desde la posicién actual, use SEEK_CUR y para el final del archivo, use SEEK_END. La funcién
fseek() devuelve cero cuando se tiene éxito y un valor diferente de cero si ocurre un error.

El sistema de E/S de C da soporte a varias funciones que permiten E/S formada. Probable-
mente ha visto antes algunas de ellas. Las dos que se encuentran con mas frecuencia son printf(),
que da salida a datos formados a la consola, y scanf(), que lee datos formados de la consola. Tam-
bién hay variaciones de éstas, llamadas fprintf() y fscanf(), que operan en un archivo, y sprintf() y
sscanf(), que usan una cadena para entrada y salida. En el capitulo 6, en que se brindan soluciones
para formacién de datos, se presenta una breve revisién general de estas funciones.

Puede restablecer la posicion actual del archivo al principio de éste al llamar a rewind(). Se
muestra a continuacion:

void rewind(FILE *aa)

El archivo que se regresard a la posicién inicial esté especificado por aa.
Para limpiar un flujo usando el sistema de E/S de C, llame a fflush(), que se muestra a conti-
nuacion:

int fflush(FILE *aa)

Escribe el contenido de cualquier dato en bifer al archivo asociado con aa. Si llama a fflush(), y
aa es nulo, todos los archivos abiertos para salida se limpian. La funcién fflush() devuelve cero si
tiene éxito; de otra manera, devuelve EOF.

Puede cambiar el nombre de un archivo al llamar a rename(). Puede borrar un archivo al lla-
mar a remove(). Estas funciones se describen en la siguiente solucién.

Un punto final: aunque C++ da soporte a los sistemas de E/S de C y C++, debe seguir algunas
directrices para evitar problemas. En primer lugar, una vez que se ha abierto un flujo empleando
uno de los sistemas, s6lo debe actuarse sobre las funciones definidas por ese sistema. En otras
palabras, no debe mezclar E/S de C y C++ en el mismo archivo. En segundo lugar, en general, es
mejor usar el sistema de E/S basado en clases de C++. Este da soporte al sistema de E/S de C
por razones de compatibilidad con los programas existentes de C. El sistema de E/S de C no esta
orientado a los programas de C++.

Capitulo 5: Trabajo con E/S 363

Cambie el nombre de un archivo y eliminelo

Componentes clave

Encabezados Clases Funciones

<cstdio> int remove(const char *nombrear)
int rename(const char *nombreant,
const char *nombrenue)

En la solucién anterior se present6 una breve revision general del E/S de archivos de C. Como se
mencioné alli, C++ da soporte completo al sistema de E/S de C, de modo que suele ser mejor usar
el sistema de E/S para C++. Sin embargo, hay dos funciones definidas por el sistema de E/S de C
que ofrece soluciones similares a dos tareas comunes: cambiar el nombre de un archivo y borrarlo.
Las funciones son rename() y remove(). Se declaran en <cstdio>, y en esta solucion se muestra
como usarlos.

Paso a paso
Para cambiar el nombre de un archivo se requiere un paso:

1. Llame a rename(), especificando el nombre actual del archivo y su nuevo nombre.
Para borrar un archivo se requiere un paso:

1. Llame a remove(), especificando el nombre del archivo que se eliminara.

sgn _m
Analisis
La funcién rename() cambia el nombre de un archivo. Aqui se muestra:

int rename(const char *nombreant, const char *nombrenue)

El nombre actual del archivo se pasa en nombreant. El nuevo se pasa en nombrenue. Devuelve cero
si se tiene éxito y un valor diferente de cero, de otra manera. En general, el archivo debe cerrarse
antes de tratar de cambiarle el nombre. Ademads, como regla general, no es posible cambiar el
nombre de un archivo de sélo lectura. Més atin, no es posible dar a un archivo un nombre que ya
esté siendo usado por otro archivo. En otras palabras, no puede crear una situaciéon en que existan
nombres duplicados de archivos en el mismo directorio.

La funcién remove() borra un archivo. Aqui se muestra:

int remove(const char *nombrear)

Elimina del sistema el archivo cuyo nombre se especifique en nombrear. Devuelve cero si tiene éxi-
to y un valor diferente de cero si no. El archivo debe cerrarse antes de hacer un intento de borrarlo.
Como regla general, el archivo no debe ser de sé6lo lectura o encontrarse en otra situacién en que
se evite su eliminacién.

364 C++ Soluciones de programacidn

Ejemplo
En el siguiente ejemplo se muestran rename() y remove() en accion. Se crea un archivo llamado
prueba.dat. Luego, si el argumento de la linea de comandos es "cambiarnombre", se cambia el

nombre de prueba.dat por prueba2.dat. Si el argumento de la linea de comandos es "borrar", se
elimina prueba2.dat.

// Demuestra rename () y remove ().

#include <iostream>
#include <cstdio>
#include <cstrings>
#include <fstreams>

using namespace std;
int main(int argc, char *argvl[])

{

int resultado;

if(argc != 2) {
printf ("Uso: BorrarCambiarnombre <borrar/cambiarnombres>\n") ;
exit (1) ;

}

ofstream archsalida ("prueba.dat") ;
if (larchsalida) {

cout << "No se puede abrir el archivo prueba.dat.\n";
return 1;

}

archsalida << "Escriba algunos datos en el archivo.";

archsalida.close() ;

if (larchsalida.good()) {
cout << "Error al escribir en el archivo o cerrarlo.\n";
return 0;

1

if (!strcmp ("borrar", argv[il))

resultado = remove ("prueba2.dat") ;
if (resultado) {
cout << "No se puede eliminar el archivo.\n";

return 1;
} else if (!strcmp ("cambiarnombre", argv([1])) {
resultado = rename ("prueba.dat", "prueba2.dat");

if (resultado) {

cout << "No se puede cambiar el nombre del archivo.\n";
return 1;

}

} else

Capitulo 5: Trabajo con E/S 365

cout << "Argumento de l\uOOalnea de comandos no v\u0OaOlido.\n";

return O0;

}

Opciones
Todos los sistemas operativos proporcionan funciones de API de bajo nivel que eliminan y cam-
bian el nombre de archivos. Pueden ofrecer un control muy fino sobre estas operaciones.
Por ejemplo, pueden permitirle especificar un descriptor de seguridad. Para un control detallado,
tal vez quiera usar los primitivos del sistema operativo, en lugar de remove() o rename().

En algunos entornos, puede usar rename() para cambiar el nombre de un directorio. También
puede mover un archivo de un directorio a otro empleando rename(). Revise la documentacién de
su compilador para conocer los detalles.

CAPITULO
Formacion de datos

i esta desplegando la hora y fecha, trabajando con valores monetarios o simplemente desean-

do limitar el ntimero de digitos decimales, la formacién de datos es una parte importante de

muchos programas. También es un aspecto de la programacién que plantea muchas pregun-
tas. Una razon es el tamafio y la complejidad del problema. Hay muchos tipos diferentes de datos,
formatos y opciones. Otra razon es la riqueza de las capacidades de formacién de C++. A menudo,
hay méas de una manera de producir un formato deseado. Por ejemplo, puede establecer varios
atributos de formacién al emplear funciones como setf(), width() o precision(), o con manipula-
dores de E/S, como setw, fixed o showpos. He aqui otro ejemplo: puede formar la fecha y hora al
usar la biblioteca de ubicacion de C++ o la funcién strftime() heredada de C. Francamente, elegir
un método es a veces una decision dificil, sobre todo cuando se incluye cédigo heredado. Por
supuesto, el beneficio de este soporte amplio y flexible para formacién es que puede usar la mejor
técnica para el trabajo a mano.

En este capitulo se examina el tema de la formacion y se presentan soluciones que demuestran
varias maneras de resolver diversas tareas de formacién comunes. En el proceso, se describen
aspectos de localizacioén, incluido el uso de facetas. Aunque el énfasis principal esta en las carac-
teristicas de formacién definidas por C++, también se incluye el método basado en C original.

He aqui las soluciones en este capitulo:

* Acceda a marcas de formato mediante funciones de miembro de flujo
¢ Despliegue valores numeéricos en diversos formatos

¢ Establezca la precision

¢ Establezca el ancho de campo y el caracter de relleno

¢ Justifique la salida

¢ Use los manipuladores de E/S para formar datos

¢ Forme valores numéricos para una configuracién regional y de idioma
¢ Forme valores monetarios empleando la faceta money_put

¢ Use las facetas moneypunct y numpunct

¢ Forme la fecha y hora con la faceta time_put

¢ Forme datos en una cadena

367

368

C++ Soluciones de programacion

* Forme la fecha y hora con strftime()
¢ Use printf() para formar datos

Nota importante antes de empezar. Como se explic en el capitulo 5, el sistema de E/S de C++
estd construido sobre clases genéricas que pueden operar sobre diferentes tipos de caracteres. Mas
aun, declara especializaciones de esas clases para char y wchar_t. Para mayor conveniencia, en
este capitulo se usan exclusivamente las especializaciones de char. Por tanto, se usan los nombres
de especializacién de char, como ios, ostream e istream (en lugar de basic_ios, basic_ostream,
basic_istream, etcétera). Sin embargo, la informacién también se aplica a flujos definidos en otros
tipos de cardcter.

Revision general del formato

Hay varias maneras en que el formato de datos puede especificarse o afectarse. Puede ser:

¢ Usar funciones de miembro de flujo para establecer o limpiar una o mas marcas de formato.

¢ Usar funciones de miembro de flujo para establecer el ancho de campo, la precisién y el
caracter de relleno.

¢ Usar un manipulador de E/S dentro de una expresion de salida formada para establecer
marcas de formato u otros atributos.

¢ Usar la funcionalidad definida por la biblioteca de localizacién de C++ para formar valores
numéricos, monetarios y de fecha y hora.

¢ Usar la familia printf() de funciones, que se heredan del lenguaje C, para formar datos (ex-
cepto para fecha y hora).

¢ Usar strftime(), también heredado de C, para formar fecha y hora.

Todos éstos se demuestran con las soluciones de este capitulo, pero el eje principal estd en los pri-
meros cuatro porque representan el método moderno de formacién que utiliza C++. Las funciones
printf() y strftime(), que se heredan de C, se cubren también para dar una visién completa, pero
casi todo el c6digo nuevo debe usar las caracteristicas de C++.

Aungque los detalles especificos de cada método de formacion se describen en las soluciones,
aqui se presenta una revisién general.

Las marcas de formato

Cada flujo esta asociado con un conjunto de marcas de formato que controlan la manera en que se
forma la informacién. Estas marcas estdn contenidas en una enumeracién de méascara de bits lla-
mada fmtflags que estd definida por ios_base. (Consulte el capitulo 5 para conocer detalles sobre
flujos y el sistema de E/S de C++, en general.) Aqui se muestran las marcas de formato:

boolalpha dec fixed hex
internal left oct right
scientific showbase showpoint showpos
skipws unitbuf uppercase

A continuacién se presenta una breve descripciéon de cada marca. Varias se exploran de manera

detallada en las soluciones.

Capitulo 6: Formacion de datos 369

Las marcas left, right e internal determinan la manera en que se justifican los datos dentro
de un campo. Forman un grupo en que sélo uno debe establecerse en cualquier momento dado.
Cuando esta establecida la marca left, la salida se justifica a la izquierda. Cuando se establece
right, la salida se justifica a la derecha. Cuando la marca internal se establece, el valor numérico
se trata de manera especial para llenar un campo mediante la inserciéon de caracteres de relleno
(que, como opcién predeterminada, es un espacio) entre cualquier caracter de signo o de base.
En muchas configuraciones regionales, la opcién predeterminada es la justificacion a la derecha.

Como opcién predeterminada, se da salida a los valores numéricos en decimal, pero es
posible seleccionar la base del niimero al usar las marcas oct, hex y dec. Estas marcas forman un
grupo en que s6lo uno debe establecerse en cualquier momento determinado. Cuando la marca
oct se establece, la salida se despliega en octal. El establecimiento de la marca hex causa que la
salida se despliegue en hexadecimal. Para regresar la salida a decimal, se establece la marca dec.

El establecimiento de showbase causa que se muestre la base de valores numéricos. En el
caso de hexadecimales, un valor se antecedera con un Ox. Por ejemplo, 1F se desplegara como
0x1F. En el caso de octal, el valor se antecedera con un 0, como en 076. Los valores decimales no
se ven afectados.

Como opcién predeterminada, cuando se despliega la notacion cientifica, la e estd en mi-
ndsculas. Ademas, cuando se despliega un valor hexadecimal, la x estd en mintdsculas. Cuando
uppercase estéd establecida, estos caracteres se despliegan en maytsculas.

El establecimiento de showpos causa que un signo de més al principio se despliegue antes
de los valores positivos.

El establecimiento de showpoint causa que se despliegue un punto decimal y ceros al princi-
pio en toda la salida de punto flotante (se necesiten o no).

El establecimiento de la marca scientific causa que se desplieguen los valores numéricos de
punto flotante empleando notacién cientifica. Cuando se establece fixed, los valores de punto
flotante se despliegan usando notacién de punto flotante. Estas marcas forman un grupo en que
s6lo debe establecerse una en un momento determinado. Cuando no se establece ninguna mar-
ca, el compilador elige un método apropiado.

Cuando se establece unitbuf, se limpia el buifer después de cada operacién de insercién.

Cuando se establece boolalpha, puede darse entrada o salida a valores booleanos emplean-
do las palabras clave true y false. De otra manera, se utilizan los digitos 1 y 0.

La marca skipws se aplica a flujos de entrada. Cuando se establece, se descartan los carac-
teres de espacio en blanco al inicio (espacios, tabuladores y nuevas lineas) cuando se realiza
entrada en un flujo. Cuando se limpia skipws, no se descartan.

También estan definidos los valores basefield, adjustfield y floatfield. El basefield esta defi-
nido como oct | dec | hex. Por tanto basefield le permite hacer referencia a los campos oct, dec
y hex colectivamente. De manera similar, los campos left, right e internal estdn combinados en
adjustfield. Por ultimo, puede hacerse referencia a los campos scientific y fixed como floatfield.
Como se demostrard en las soluciones, estos valores simplifican el establecimiento de una marca
especifica dentro de un grupo de marcas.

Las marcas de formato estdn definidas por ios_base, que es una clase de base para basic_ios.
Como se explicé en el capitulo 5, el sistema de E/S de C++ crea especializaciones para flujos
de tipo char y wchar_t. la especializacion de char de basic_ios es ios. Por tanto, es comun ver
las marcas de formato a las que se hace referencia a través de ios, como en ios::oct. Este es el
método que se usaré en este capitulo. (Aunque es perfectamente adecuado usar ios_base::oct, si
lo prefiere.)

3170

C++ Soluciones de programacion

Los atributos de ancho de campo, precision

y caracter de relleno

Ademéds de las marcas de formato que se acaban de describir, cada flujo de C++ esta asociado con
los tres atributos que afectan el formato. Son los atributos de ancho de campo, precision y cardcter
de relleno. El ancho de campo especifica el niimero minimo de caracteres que ocupara un elemen-
to formado. Especifica el nimero minimo de caracteres que ocupara un elemento formado. Como
opcién predeterminada, el ancho de campo es igual al niimero de caracteres en el elemento que

se estd desplegando, pero puede cambiar esto para que un elemento quede contenido dentro de
un espacio mayor. Como opcién predeterminada, el cardcter usado para rellenar la salida es el
espacio, pero puede cambiar esto. Por 1ltimo, la precisién predeterminada de los valores de punto
flotante es 6, pero esto, también, esta bajo su control.

Funciones miembro de flujo relacionadas con formato

Cada flujo de C++ contiene su propio conjunto de marcas de formato y atributos ancho de campo,
precision y caracter de relleno. En el caso de cualquier flujo determinado, pueden establecerse

las marcas de formato, limpiarse o interrogarse mediante el uso de las funciones setf(), unsetf() y
flags(). Son miembros de ios_base. El ancho de campo se establece con width(), y la precisién con
precision(). Ambas son miembros de ios_base. El caracter de relleno se establece con fill(), que es
miembro de ios. Se describen con todo detalle en las soluciones.

Los manipuladores de E/S

Otra manera de establecer las marcas de formato y los atributos es mediante el uso de un manipu-
lador. Un manipulador es una funcién (o, en algunos casos, un objeto) que se incluye en una expre-
sién de E/S formada. Puede usarse para establecer o limpiar las marcas de formato o para afectar

el flujo, de otra manera. C++ define varios manipuladores estdndar. Se muestran a continuacién:

boolalpha dec endl|

ends fixed flush

hex internal left

nobooalpha noshowbase noshowpoint
noshowpos noskipws nounitbuf
nouppercase oct resetiosflags(fmtflags f)
right scientific setbase(int base)
setfill(int car) setiosflags(fmtflags f) setprecision(int p)
setw(int w) showbase showpoint
showpos skipws unitbuf
uppercase ws

Los manipuladores caen en dos categorias generales: con parametros y sin ellos. Un manipu-
lador con pardmetros requiere un argumento cuando se usa. Un ejemplo de un manipulador con
pardmetros es setw. Establece el ancho de campo en el tamafio que se pasa. Un manipulador
sin pardmetros no toma un argumento. Por ejemplo, el manipulador endl no tiene un argumento.
Casi ninguno de los manipuladores estdndar toman argumentos.

Casi todos los manipuladores sin pardmetros estan definidos por el encabezado <ios>, que
se incluye automéaticamente en otros encabezados, como <iostream>. Tres estdn definidos por el
encabezado <ostream>: endl, ends y flush. Los manipuladores con pardmetros estdn definidos en

Capitulo 6: Formacion de datos 3711

<iomanip>. Los manipuladores se describen de manera detallada en Use manipuladores de E/S para
formar datos.

Forme datos utilizando la biblioteca de localizacion

Los datos de formato que rebasan las capacidades bésicas proporcionadas por las marcas y los
atributos de formato requieren el uso de una o mds funciones y clases de biblioteca. En el caso

de algunos tipos de formato, puede usar funciones heredadas de C (el lenguaje sobre el que se
construyé C++). Su utilidad principal estd en el mantenimiento de cédigo heredado y se describen
en las siguientes secciones. En el caso de nuevo cédigo, por lo general usara las caracteristicas de
formato definidas por la biblioteca de localizacién. Esta biblioteca estd definida en el encabezado
<locale>, y proporciona soporte para formaciéon de datos, como valores monetarios y fecha y hora,
cuya representacion es sensible a la cultura y el idioma.

La biblioteca de localizacién estd basada en la clase locale, que define una configuracién regio-
nal y de idioma. Esta configuracién encapsula la informacién geografica relacionada con un flujo.
Es importante comprender que cada flujo tiene su propio objeto de locale. Por tanto, el estableci-
miento de la configuracién regional y de idioma de un flujo afecta sélo a ese flujo. Esto difiere del
lenguaje C, en que estd disponible una configuracién global (C++ atin le da soporte a ésta para
proporcionar compatibilidad hacia atras con C, pero las configuraciones regionales y de idioma
basadas en flujo son mucho maés flexibles.)

La clave para el uso de una instancia de locale para el manejo de la formacién es la faceta. Una
faceta es una instancia de una clase que hereda locale::facet. Cada faceta describe algtin aspecto
de la configuracion regional y de idioma. Por ejemplo, la faceta que maneja formato monetario es
money_put. La faceta que forma hora y fecha es time_put. Al usar una faceta, los datos pueden
formarse como lo desee y también pueden adecuarse a la medida de una configuracién especifica.
Esto le da mucha capacidad al subsistema de localizacién de C++. Una revisioén general de las face-
tas se presentard en breve, y en las soluciones se brinda informacién especifica acerca de las facetas
que manejan valores numéricos y monetarios, ademas de fecha y hora.

La familia de funciones printf()

Debido a que C++ se construyo a partir de C, incluye todas las bibliotecas de funciones definidas

por C. Esto significa que C++ da soporte a la familia de funciones printf(). Estas funciones son

parte del sistema de E/S de C y proporcionan el mecanismo mediante el cual un programa de

C forma datos. Aunque el uso de printf() no estd recomendado para nuevo cédigo de C++, es la

funcién que usara cuando escriba programas de C. También se encuentra con frecuencia en cédigo

heredado. Por tanto, ningtin libro de C++ estaria completo sin un anélisis de sus caracteristicas.
Hay varias funciones en printf(). Aqui se presentan las usadas en este capitulo:

printf() Despliega salida formada en el dispositivo de salida estandar, que como opcién predetermi-
nada es la consola.

fprintf() Escribe salida formada en un archivo.

sprintf() Escribe salida formada en una cadena.

Todas requieren el encabezado <cstdio>, y todas funcionan de la misma manera bésica. Es
simplemente el destino de la salida lo que cambia. La operacién de estas funciones se describe en
Use printf() para formar datos.

312

C++ Soluciones de programacion

NOTA Las versiones de cardcter amplio de la familia de funciones printf() también estin disponibles.
Por ejemplo, la version de cardcter ancho de printf() es wprintf(). Las versiones de cardicter ancho
usan el encabezado <cwchar>.

La funcion strftime()

Otra funcién de formato heredada de C es strftime(). Forma informacién de fecha y hora. Aunque
las facetas de C++, como time_put, proporcionan mas flexibilidad, la funcién strftime() puede ser
mas fécil de usar en algunos casos. También suele encontrarse en cédigo C heredado. Se describe
en Forme fecha y hora usando strftime().

Revision general de las facetas

Las facetas son los medios para la formacién de los datos en C++. Son parte de la biblioteca de
localizacién, que requiere el encabezado <locale>. Tal vez lo més importante que debe compren-
der acerca de las facetas es que resultan mds féciles de usar de lo que parece a primera vista. No
se intimide con su més bien compleja sintaxis de plantilla. Una vez que comprende el proceso
general, es facil crear cualquier tipo de formato localizado que desee. Debido a que son varias las
soluciones en que se usan las facetas, tiene sentido describir el procedimiento general en un lugar,
y describir los detalles especificos en las soluciones individuales.

Todas las facetas son clases que se derivan de locale:facet. Hay varias facetas integradas, como
money_put, time_get y num_put, que estan declaradas en <locale>. Estas clases se usan para
formar datos para salida o leer datos formados de la entrada. En este capitulo sélo se trata la for-
macién de datos para salida, de modo que aqui no se usan las facetas de entrada. Mds atin, en este
capitulo sélo se utilizan las facetas que forman valores numéricos y monetarios, ademas de fecha
y hora. La biblioteca de localizacién define otras facetas que manejan otras necesidades sensibles a
la configuracion de regioén e idioma.

Conceptualmente, el uso de una faceta es facil: se obtiene una faceta al llamar a use_facet() y
luego se llaman a funciones de esa faceta para formar datos u obtener informacién de localiza-
cién. Sin embargo, en la practica, el proceso suele ser un poco mas complejo. He aqui un esquema
general de estos pasos:

1. Construya un objeto de locale.

2. Establezca la configuracion regional y de idioma deseada al llamar a imbue() en el flujo
que estara recibiendo la salida formada. Pase imbue() al objeto de locale del paso 1.

3. Obtenga una faceta al llamar a use_facet(), especificando el nombre de la faceta. Se trata de
una funcién global definida por <locale>.

4. Para formar valores numéricos y monetarios, o la fecha y hora, o para obtener informacién
acerca de un formato, utilice la funcién definida por la faceta obtenida en el paso 3.

Revisemos més de cerca todos los pasos.
La clase locale define varios constructores. Aqui se muestra el usado en este capitulo:

explicit locale(const char *nombre_loc)

El nombre de la configuracion regional y de idioma se pasa mediante nombre_loc. Debe ser un
nombre vélido. Sino lo es, se lanza un runtime_error. Lo que constituye un nombre vélido depen-
de de la implementacién. En este libro se usan cadenas de configuracién regional y de idioma que

Capitulo 6: Formacion de datos 3713

son compatibles con Visual C++ de Microsoft. Necesitara revisar la documentacién de su compila-
dor para conocer las cadenas a las que da soporte.

Para establecer una configuracién regional y de idioma del flujo, llame a imbue(). Esta definida
por ios_base y se encuentra disponible en todos los objetos de flujo. El proceso para el estableci-
miento de esta configuracién se describe de manera detallada en Obtenga o establezca una configura-
cion regional y de idioma de flujo en el capitulo 5. Es conveniente mostrar imbue() aqui una vez mas:

locale imbue(const locale &locnue)

Se devuelven la configuracién regional y de idioma del flujo que invoca, y la configuracién anterior.
Para obtener una faceta, llame a use_facet(). Es una funcién global y se muestra aqui:

template <class Facet> const Facet &use_facet(const locale &loc)

Aqui, Facet debe ser una faceta vélida. Especifica la faceta que se obtendrd, que normalmente sera
definida por <locale>. (Es posible crear facetas personalizadas, pero rara vez necesitard hacerlo.)
La configuracién regional y de idioma para la que se obtendrd la faceta se pasa en loc. La funcién
use_facet() devuelve una referencia a la faceta especificada por Facet. Si ésta no existe, se lanza
bad_cast. (Si es necesario, puede determinar si una faceta existe al llamar a has_facet(), que tam-
bién es una funcién global definida por <locale>.)

Hay varias facetas predefinidas. Las usadas en este libro son:

num_put Forma valores numéricos.

money_put Forma valores monetarios.

time_put Forma fecha y hora.

numpunct Obtiene signos de puntuacion y reglas relacionadas con los formatos numéricos.
moneypunct Obtiene signos de puntuacion y reglas relacionadas con los formatos monetarios.

Las soluciones muestran sus declaraciones, con excepcion de todas las clases de plantilla que
toman el tipo de cardcter como argumento de tipo. (Algunas también tienen otro tipo de argu-
mento.) Las facetas num_put, money_put y time_put forman nimeros, dinero y hora y fecha,
respectivamente. Definen la funcién put(), que forma el valor que se pasa de acuerdo con las
reglas encapsuladas por la faceta. (Cada una de las funciones de put() se describe en su propia so-
lucién.) La faceta numpuct encapsula informacién acerca de los signos de puntuacién y las reglas
que determinan el formato de los datos numéricos. La faceta moneypunct encapsula los signos de
puntuacion y las reglas que rigen el formato de valores monetarios.

Para obtener una faceta, utilizara use_facet(), especificando el nombre de la faceta como
pardmetro de tipo. Por ejemplo, ésta obtiene una faceta money_put asociada con la configuracién
regional y de idioma usada por cout:

const money put<char> &mp = use facet<money put<char> >(cout.getloc());

Observe que la version char de money_put es obligatoria porque cout es un flujo de char. Una vez
que tiene una faceta, puede usarla para formacién al llamar a funciones en ella. En esta solucion se
describe el proceso de manera detallada.

He aqui un tema muy importante: cuando se usa un flujo de C++, se da salida automaética a
los nimeros al usar la faceta num_put. Por tanto, no necesita obtener manualmente esta faceta al
desplegar valores numéricos de una manera que sea especifica de la configuracién regional y de
idioma. Simplemente establezca la configuracién del flujo al usar imbue() y el valor se formara
automaticamente para esa configuracion.

374 Cc++ Soluciones de programacidn

NoOTA También puede establecer globalmente la configuracion regional y de idioma, empleando la
funcion heredada de C setlocale(). Sin embargo, este método no se recomienda para nuevo codigo.
El sistema de configuracion regional y de idioma de la faceta usada por C++ ofrece un método mejor
y mads flexible.

Acceda a las marcas de formato mediante las funciones de miembro de flujo

Componentes clave

Encabezados Clases Funciones

<ios> ios_base fmtflags setf(fmtflags marcas)
void unsetf(fmtflags marcas)
fmtflags flags()

Para cualquier flujo determinado, puede cambiar la manera en que se forman los datos al cambiar
una o mas marcas de formato. Por ejemplo, si establece la marca showpos, entonces los valores
numéricos positivos se despliegan con un signo + al principio. Hay dos maneras en que pueden
establecerse las marcas de formato. En primer lugar, puede usar funciones que estan definidas por
todas las clases de flujo, como setf(). En segundo lugar, puede usar un manipulador de E/S. En
esta solucion se muestra coémo usar las funciones miembro del flujo. Los manipuladores se descri-
ben en una solucién posterior.

Paso a paso
Para usar las funciones miembro de flujo para establecer, limpiar u obtener las marcas de formato,
se requieren estos pasos:

1. Para establecer una o mas marcas en un flujo, llame a setf().
2. Para limpiar una o més marcas en un flujo, llame a unsetf().
3. Para obtener la configuracion de marca de formato actual, llame a flags().

Analisis

Para cualquier flujo determinado, puede establecer una marca de formato al llamar a la funcién
setf(), que se declara con ios_base. Por tanto, setf() es un miembro de todas las clases de flujo.
Aqui se muestra:

fmtflags setf(fmtflags marcas)

Esta funciéon devuelve la configuracién anterior de las marcas de formato y habilita esas marcas
especificadas por marcas. Por ejemplo,

miflujo.setf (ios: :showpos) ;

habilita la marca showpos para el flujo llamado miflujo.
El complemento de setf() es unsetf(). También se declara con ios_base. Limpia una o mds mar-
cas de formato. Su forma general es:

void unsetf(fmtflags marcas)

Capitulo 6: Formacion de datos 375

Se limpian las marcas especificadas por marcas. Todas las otras marcas quedan sin afectacion. Por
tanto, para deshabilitar la marca boolalpha para miflujo, utilizaria esta instruccién:

miflujo.unsetf (ios::boolalpha) ;

Puede establecer o limpiar mas de una marca en una sola llamada a setf() o unsetf() al emplear
juntas con el operador 16gico OR dos o mas marcas. Por ejemplo, esto habilita las marcas showpos
y boolalpha:

miflujo.setf (ios::showpos | ios::boolalpha)

Lo siguiente deshabilita las marcas uppercase y boolalpha:

miflujo.unsetf (ios: :uppercase | ios::boolalpha) ;
Puede obtener la configuracion de la marca de formato actual al usar flags(). Aqui se muestra:
fmtflags flags() const

Devuelve la méscara de bits de marca de formato. También se declara con ios_base:

Es importante comprender que cada instancia de flujo tiene su propio conjunto de marcas de
formato. Por tanto, el cambio de la configuracién de marca para un flujo afecta sélo a ese flujo.
Las marcas de formato de cualquier otro flujo quedan sin cambio.

Ejemplo

En el siguiente ejemplo se muestra cémo establecer y limpiar marcas de formato. Primero estable-
ce la marca boolalpha en cout y luego despliega un valor bool. Luego limpia la marca boolalpha
y vuelve a desplegar el valor. Observe la diferencia en la salida.

// Demuestra las funciones setf() y unsetf ().
#include <iostream>
using namespace std;

int main()

{

// Establece la marca boolalpha en cout.
cout.setf (ios: :boolalpha) ;

cout << "El valor true cuando se establece la marca boolapha: "
<< true << endl;;

// Ahora, limpia la marca boolalpha.
cout.unsetf (ios: :boolalpha) ;

cout << "El1 valor true cuando se limpia la marca boolapha: "
<< true << endl;;

return O0;

}
Aqui se muestra la salida:

El valor true cuando se establece la marca boolapha: true
El valor true cuando se limpia la marca boolapha: 1

376

C++ Soluciones de programacion

Ejemplo adicional: despliegue la configuracion

de la marca de formato

Cuando se depuran problemas de formato, en ocasiones resulta ttil ver cémo estan establecidas
todas las marcas. De acuerdo con la experiencia del autor, algunos compiladores se comportan de
maneras inesperadas debido a la interaccioén entre marcas aparentemente sin relaciéon. Ademas,
puede haber diferencias entre compiladores cuando dos marcas entran en conflicto. Por ejemplo,
si las marcas oct y dec estan establecidas, ;cual formato se usa? Diferentes compiladores podrian
resolver esta situacién de manera distinta. (Por supuesto, una buena préctica de programaciéon
determina que s6lo una de las marcas oct, dec o hex se establezca en cualquier momento.) El
hecho de poder ver las configuraciones de marcas reales puede ayudar a explicar resultados que
de otra manera parecerian poco usuales. Con este fin, en el siguiente programa se crea una funcién
llamada mostrarmarcas(), que toma un flujo como argumento y despliega la configuracién actual
de las marcas de formato de ese flujo:

// Este programa crea una funcidén llamada mostrarmarcas ()
// que despliega la configuracidn de marca de formato
// asociada con un flujo determinado.

#include <iostream>
using namespace std;
void mostrarmarcas(ios &flujo) ;

int main()

{

// Muestra la condicidén predeterminada de marcas de formato.
cout << "Configuraci\uOOa2n predeterminada para cout:\n";
mostrarmarcas (cout) ;

// Establece las marcas right, showpoint y fixed.
cout.setf (ios::right | ios::showpoint | ios::fixed);

// Muestra las marcas después de llamar a setf ().
cout << "Marcas tras establecer right, showpoint y fixed:\n";
mostrarmarcas (cout) ;

return 0;

}

// Esta funcién despliega el estatus de las marcas de formato
// para el flujo especificado.
void mostrarmarcas (ios &flujo)

{

ios::fmtflags f;

// Obtiene la configuracidén de marcas actual.
f = flujo.flags();

if (f & ios::boolalpha) cout << "boolalpha:\thabilitada\n";
else cout << "boolalpha:\tdeshabilitada\n";

if (f & ios::dec) cout << "dec:\t\thabilitada\n";
else cout << "dec:\t\tdeshabilitada\n";

Capitulo 6: Formacion de datos 311

if(f & ios::hex) cout << "hex:\t\thabilitada\n";
else cout << "hex:\t\tdeshabilitada\n";

if(f & ios::oct) cout << "oct:\t\thabilitada\n";
else cout << "oct:\t\tdeshabilitada\n";

if(f & ios::fixed) cout << "fixed:\t\thabilitada\n";
else cout << "fixed:\t\tdeshabilitada\n";

if(f & ios::scientific) cout << "scientific:\thabilitada\n";
else cout << "scientific:\tdeshabilitada\n";

if(f & ios::right) cout << "right:\t\thabilitada\n";
else cout << "right:\t\tdeshabilitada\n";

if(f & ios::left) cout << "left:\thabilitada\n";
else cout << "left:\t\tdeshabilitada\n";

if(f & ios::internal) cout << "internal:\thabilitada\n";
else cout << "internal:\tdeshabilitada\n";

if (f & ios::showbase) cout << "showbase:\thabilitada\n";
else cout << "showbase:\tdeshabilitada\n";

if (f & ios::showpoint) cout << "showpoint:\thabilitada\n";
else cout << "showpoint:\tdeshabilitada\n";

if (f & ios::showpos) cout << "showpos:\thabilitada\n";
else cout << "showpos:\tdeshabilitada\n";

if (f & ios::uppercase) cout << "uppercase:\thabilitada\n";
else cout << "uppercase:\tdeshabilitada\n";

if(f & ios::unitbuf) cout << "unitbuf:\thabilitada\n";
else cout << "unitbuf:\tdeshabilitada\n";

if (f & ios::skipws) cout << "skipws:\t\thabilitada\n";
else cout << "skipws:\t\tdeshabilitada\n";

cout << " \n";

}

Aqui se muestra la salida. (Esta se generd con Visual C++. Su compilador puede mostrar configu-
raciones predeterminadas diferentes.)

Configuracidén predeterminada para cout:

boolalpha: deshabilitada
dec: habilitada

hex: deshabilitada
oct: deshabilitada
fixed: deshabilitada
scientific: deshabilitada
right: deshabilitada

left: deshabilitada

318

C++ Soluciones de programacion

internal: deshabilitada
showbase: deshabilitada
showpoint: deshabilitada
showpos: deshabilitada
uppercase: deshabilitada
unitbuf: deshabilitada
skipws: habilitada

Marcas tras establecer right, showpoint y fixed:

boolalpha: deshabilitada
dec: habilitada
hex: deshabilitada
oct: deshabilitada
fixed: habilitada
scientific: deshabilitada
right: habilitada
left: deshabilitada
internal: deshabilitada
showbase: deshabilitada
showpoint: habilitada
showpos: deshabilitada
uppercase: deshabilitada
unitbuf: deshabilitada
skipws: habilitada
Opciones

Hay una version sobrecargada de setf() que toma esta forma general:
fmtflags setf(fmtflags marcas1, fmtflags marcas2)

En esta version, solo las marcas especificadas por marcas2 se ven afectadas. Primero se limpian
y luego se establecen de acuerdo con las marcas especificadas por marcas1. Tome nota de que,
aunque marcas] contiene otras marcas, solo las especificadas por marcas2 se veran afectadas. Se de-
vuelve la configuracién de marcas anterior. Tal vez el uso mas comtn de la forma de dos parame-
tros de setf() sea cuando establece las marcas de formato de base de ntimero, justificacién y punto
flotante. Consulte las siguientes soluciones para conocer mas detalles.

Puede establecer todas las marcas de formato al usar esta versién sobrecargada de flags():

ftmflags flags(ftmflags marcas)

Esta version asigna el valor pasado en marcas a toda la mascara de bits de marcas de formato. Se
devuelve la mascara de bits anterior.

Las marcas de formato pueden establecerse mediante varios manipuladores. Por ejemplo, el
manipulador noboolalpha limpia la marca boolalpha. También puede establecer o limpiar una o
mas marcas empleando los manipuladores setiosflags y resetiosflags. Consulte Use manipuladores
de E/S para formar datos.

Capitulo 6: Formacion de datos 379

Despliegue valores numéricos en diversos formatos

Componentes clave

Encabezados Clases Funciones

<ios>

ios_base fmtflags setf(fmtflags marcas)
void unsetf(fmtflags marcas)
oct
hex
dec
showbase
showpos
fixed
scientific
basefield
floatfield

Mediante el uso de marcas de formato, se controlan varios aspectos del formato numérico. Por
ejemplo, puede dar salida a enteros en hexadecimal u octal o desplegar valores de punto flotante
en notacién fija o cientifica. En esta solucién se demuestran estas marcas que afectan el formato de
ndmeros.

Paso a paso
El uso de marcas de formato para cambiar el formato de datos numéricos requiere estos pasos:

1.

Para formar un entero en decimal, limpie las marcas especificadas por basefield y luego es-
tablezca la marca dec. Por lo general, el formato decimal es la opcién predeterminada para
un flujo de salida.

Para formar un entero en hexadecimal, limpie las marcas especificadas por basefield y
luego establezca la marca hex.

Para formar un entero en octal, limpie las marcas especificadas por basefield y luego esta-
blezca la marca oct.

Para mostrar la base de un valor octal o hexadecimal, establezca la marca showbase.

Para formar un valor de punto flotante en notacién fija, limpie las marcas especificadas por
basefield y luego establezca la marca fixed.

Para formar un valor de punto flotante en notacién cientifica, limpie las marcas especifica-
das por basefield y luego establezca la marca scientific.

Para hacer que un signo + se despliegue antes de los valores positivos, establezca la marca
showpos.

Para asegurar que el punto decimal esté siempre incluido en un valor de punto flotante,
establezca la marca showpoint.

380

C++ Soluciones de programacion

9. Para que se muestren en maytsculas las letras en valores numeéricos (digitos hexadecima-
les mayores que 0, la e en notacién cientifica, y la x en el indicador de la base hexadecimal),
establezca la marca uppercase.

Andlisis
Las marcas de formato se establecen o limpian con las funciones setf() y unsetf(), que se describen
de manera detallada en la solucién anterior.

En general, puede desplegar valores enteros en decimal (la opcién predeterminada), hexadeci-
mal u octal. Esto se controla con el establecimiento de las marcas dec, hex y oct, respectivamente.
Para establecer la base del ntimero, debe habilitar la marca deseada y deshabilitar las otras dos.
Por ejemplo, para dar salida a enteros en octal, debe habilitar oct y deshabilitar dec y hex. Colecti-
vamente, se hace referencia a las marcas oct, hex y dec como basefield.

La manera mas facil de habilitar una marca y asegurarse de que las otras dos estan deshabili-
tadas consiste en usar la forma de dos argumentos setf(). Como se explicé en la solucién anterior,
tiene esta forma general:

fmtflags setf(fmtflags marcas1, fmtflags marcas2)

En esta version, s6lo las marcas especificadas por marcas2 se ven afectadas. Primero se limpian y
luego se establecen de acuerdo con las marcas especificadas por marcas1. Por tanto, para establecer
la base de un nimero, pasaréd basefield a marcas2 (que hace que se limpien las marcas oct, hex y
dec) y pasara la marca deseada de base de nimero en marcas1. Por ejemplo, lo siguiente establece
la base del niimero de cout en hexadecimal:

cout.setf (ios::hex, i1os::basefield);

Después de esta llamada, se establecera la marca hex y se limpiardn las marcas dec y oct. Esto
significa que toda la salida de enteros a cout se desplegara en hexadecimal.

Cuando se despliegan enteros, hara que la base se muestre al establecer la marca showbase.
Cuando se establece, los valores desplegados en octal empiezan con un cero a la izquierda. Los va-
lores desplegados en hexadecimal empiezan con un 0x. Los valores decimales no se ven afectados.

Como opcién predeterminada, los valores de punto flotante se forman en formato de punto
fijo o en notacién cientifica, lo que sea mas corto. Puede especificar la representacién de punto fijo
al establecer la marca fixed. Puede especificar notacién cientifica al establecer la marca scientific.
En cualquier caso, la otra marca debe deshabilitarse. La manera mds fécil de hacer esto es usar
la forma de dos argumentos de setf(), especificando que se deshabilitan las marcas de floatfield.
Recuerde que floatfield combina las marcas fixed y scientific.

Para que un signo + anteceda a los valores positivos, establezca la marca showpos. En gene-
ral, showpos sélo afecta los valores de punto flotante y los enteros desplegados en decimal. Los
desplegados en octal o hexadecimal no se veran afectados.

Para que se despliegue un punto decimal, aunque no haya digitos fraccionales, establezca la
marca showpoint.

Como opcién predeterminada, se despliegan en mintisculas las letras en valores numéricos,
que incluyen los digitos hexadecimales de la a a la {, la e en notacién cientifica y la x en el indica-
dor de base hexadecimal. Para cambiar a maytsculas, especifique la marca uppercase.

Ejemplo

En el siguiente ejemplo se muestran en accién las marcas de formato numérico:

Capitulo 6: Formacion de datos 381

// Demuestra las marcas de formato numérico.
//

// En este ejemplo se muestra cout, pero debe
// sustituirse cualquier flujo de salida.

#include <iostream>
using namespace std;
int main()

{
int x = 100;
double £ = 98.6;
double f2 = 123456.0;
double f3 = 1234567.0;

cout.setf (ios::hex, ios::basefield);
cout << "x en hexadecimal: " << x << endl;

cout.setf (ios::oct, ios::basefield);
cout << "x en octal: " << x << endl;

cout.setf (ios::dec, ios::basefield);
cout << "x en decimal: " << x << "\n\n";

cout << "f, f2 y £3 en el formato predeterminado de punto flotante:\n";
cout << "f: " << £ << " f2: " << f2 << " £3: " << £3 << endl;

cout.setf (ios::scientific, ios::floatfield) ;
cout << "Tras establecer la marca scientific:\n";
cout << "f: " << f << " f2: " << f2 << " f3: " << f3 << endl;

cout.setf (ios::fixed, ios::floatfield);
cout << "Tras establecer la marca fixed:\n";
cout << "f: " << f << " f2: " << f2 << " f3: " << f3 << "\n\n";

// Vuelve al formato de punto flotante predeterminado.
cout << "Regresando al formato predeterminado de punto flotante.\n";
cout.unsetf (ios::fixed) ;

cout << "f2 en formato predeterminado: " << f2 << "\n\n";

// Establece la marca showpoint.

cout << "Estableciendo la marca showpoint.\n";
cout.setf (ios: :showpoint) ;

cout << "f2 con showpoint establecido: " << f2 << "\n\n";

cout << "Limpiando la marca showpoint.\n\n";
cout.unsetf (ios: :showpoint) ;

// Establece la marca showpos.

cout.setf (ios: : showpos) ;

cout << "Estableciendo la marca showpos.\n";

cout << "x en decimal tras establecer showpos: " << x << endl;

382

C++ Soluciones de programacion

cout << "f en notaci\uO0a2n predeterminada tras establecer showpos:

n \n\n" ;

// Establece la marca uppercase.

cout << "Estableciendo la marca uppercase.\n";
cout.setf (ios: :uppercase) ;

cout << "f3 con la marca uppercase establecida: " << f3 << endl;

return 0;

}
Aqui se muestra la salida:

x en hexadecimal: 64
x en octal: 144
x en decimal: 100

f, f2 y £3 en el formato predeterminado de punto flotante:
f: 98.6 f2: 123456 £3: 1.23457e+006

Tras establecer la marca scientific:

f: 9.860000e+001 f2: 1.234560e+005 £3: 1.234567e+006
Tras establecer la marca fixed:

f: 98.600000 £f2: 123456.000000 £3: 1234567.000000

Regresando al formato predeterminado de punto flotante.
f2 en formato predeterminado: 123456

Estableciendo la marca showpoint.
f2 con showpoint establecido: 123456.

Limpiando la marca showpoint.
Estableciendo la marca showpos.
x en decimal tras establecer showpos: +100

f en notacidén predeterminada tras establecer showpos: +98.6

Estableciendo la marca uppercase.
f3 con la marca uppercase establecida: +1.23457E+006

Opciones

Las marcas de formato numérico pueden establecerse mediante manipuladores. Por ejemplo,
la marca showpoint puede establecerse con el manipulador showpoint y limpiarse con el nos-
howpoint. Consulte Use manipuladores de E/S para formar datos para conocer méds detalles.

Para cualquier flujo determinado, la precision predeterminada es de 6 digitos, pero puede
cambiar esto al llamar a la funcién precision(). Consulte Establezca la precisién para conocer méas
detalles. También puede especificar un ancho de campo en que el valor se despliega al llamar a
width() y el caracter de relleno utilizado para rellenar campos que son més largos que la salida al

llamar a fill(). Se describen en Establezca el ancho de campo y el cardcter de relleno.

Capitulo 6: Formacion de datos 383

Establezca la precision

Componentes clave

Encabezados Clases Funciones

<ios> ios_base streamsize precision(streamsize prec)

Cada flujo tiene una configuracién de precisioén asociada que determina cudntos digitos se desplie-
gan cuando se forma un valor de punto flotante. La precisién predeterminada es 6. Puede cambiar
esto al llamar a precision(). Como se explica en el andlisis que sigue, el significado exacto de la
precision difiere de acuerdo con el formato de punto flotante que se use.

Paso a paso
Para establecer la precisién se necesitan estos pasos:

1. Establezca la precisién al llamar a precision() en el flujo.
2. En algunos casos, tal vez necesite ajustar el formato de punto flotante al establecer la marca
fixed o scientific para lograr los resultados deseados.

Analisis

Cada flujo tiene su propio atributo de precision. La precision se establece al llamar a precision() en
el flujo. Esta funcién es un miembro de ios_base y se hereda de todas las clases de flujo. Aqui se
muestra una de sus formas:

streamsize precision(streamsize prec)

La precision del flujo que invoca se establece con prec. Se devuelve la precision anterior. La
precision predeterminada de un flujo es 6. El tipo streamsize estd definido como alguna forma
de entero que puede contener el nimero mas largo de bytes que puede transferirse en cualquier
operaciéon de E/S.

El efecto de la precision se basa en el formato de punto flotante que se estd usando. En el caso
del formato predeterminado, la precisién determina el niimero de digitos significativos desplegados.
En la notacién de punto fijo o cientifica, la precisién determina el niimero de digitos desplegados a la
derecha del punto decimal. (La notacién cientifica se utiliza cuando se establece la marca scientific
y se ha limpiado la marca fixed. La notacién de punto fijo se usa cuando se ha limpiado la marca
scientific y se establece la marca fixed.)

El establecimiento de la precision responde una de las preguntas tipo ";como hacer?" mas co-
munes: ";Cémo despliego dos niimeros decimales?" Esto se logra facilmente al establecer la marca
fixed y luego definiendo la precision en 2. Después de hacer esto, se desplegaran dos niimeros
decimales en todos los casos, aunque no haya digitos decimales significativos. De manera mas
general, si necesita especificar un ntimero fijo de digitos decimales, entonces establezca la marca
fixed y especifique el niimero de digitos en una llamada a precision().

384

C++ Soluciones de programacion

Ejemplo

En el ejemplo siguiente se muestran los efectos del establecimiento de la precision:

// Demuestra el establecimiento de la precisidn.
#include <iostream>

using namespace std;

int main ()

{

double £ = 123456.123456789;

cout << "Usando el formato de n\uOOa3mero predeterminado.\n";
cout << "f con precisil\u0O0a2n predeterminada: " << £ << "\n\n";

cout << "Estableciendo la precisil\u00a2n de 9.\n";

cout .precision(9) ;

cout << "f con precisil\u0Oa2n de 9: " << f << "\n\n";

cout << "Cambiando a formato de punto fijo.\n";
cout.setf (ios::fixed, ios::floatfield) ;

cout << "f con precisil\u0Oa2n de 9 en punto fijo:

// Ahora, despliega dos lugares decimales.

" << £ << "\n\n";

cout << "Despliega dos lugares decimales en todos los casos: ";

cout .precision(2) ;

cout << 12.456 << " " << 10.0 << " " << 19.1 << endl;

return 0;

}
Aqui se muestra la salida:

Usando el formato de nimero predeterminado.
f con precisidén predeterminada: 123456

Estableciendo la precisidn de 9.
f con precisidén de 9: 123456.123

Cambiando a formato de punto fijo.

f con precisién de 9 en punto fijo: 123456.123456789

Despliega dos lugares decimales en todos los casos:

Opciones
Hay una segunda forma de precision(), que se muestra aqui:

streamsize precision() const

12.46 10.00 19.10

Capitulo 6: Formacion de datos 385

Esta forma devuelve la posicién actual, pero no la cambia.
Otra manera de establecer la precisién de un flujo consiste en usar el manipulador de E/S
setprecision. Se describe en Use los manipuladores de E/S para formar datos.

Establezca el ancho de campo y el caracter de relleno

Componentes clave

Encabezados Clases Funciones
<ios> ios_base streamsize width(streamsize a)
<ios> ios char fill(char car)

En esta solucién se muestra cémo especificar un ancho de campo y un caracter de relleno. Como
opcién predeterminada, cuando se da salida a un valor, sélo ocupa el espacio adecuado para el ni-
mero de caracteres que se requiere para desplegarlo. Esto suele ser exactamente lo que se quiere.
Sin embargo, en ocasiones querrd que el valor llene un cierto ancho de campo, como cuando desea
que se alineen columnas de datos. Aunque hay varias maneras de lograr esa salida, por mucho la
mas facil consiste en especificar un ancho de campo. Una vez hecho esto, cada elemento se rellena-
rd automaticamente para que ocupe todo el ancho de campo. El cardcter de relleno predetermina-
do es un espacio, y esto suele ser lo que se quiere, pero puede cambiarlo.

Paso a paso
Para especificar el ancho de campo y el caracter de relleno se requieren estos pasos:

1. Para especificar un ancho de campo, llame a width() en el flujo.
2. Para especificar un caracter de relleno, llame a fill() en el flujo.

Analisis
Puede especificar un ancho de campo minimo empleando la funcién width(). Tiene dos formas.
Aqui se muestra la usada en esta solucién:

streamsize width(streamsize a)

Aqui, a se vuelve el ancho de campo y se devuelve el ancho de campo anterior. Como regla gene-
ral, el ancho de campo debe establecerse de inmediato antes de dar salida al elemento al que desea
aplicar el ancho. Después de que se da salida a ese elemento, el ancho de campo se regresa a su
opcién predeterminada. (Se han visto implementaciones en que un solo establecimiento del ancho
de campo se aplica a toda la salida posterior, pero es un comportamiento no estandar.) El tipo
streamsize es un typedef para alguna forma de entero.

Después de que establezca un ancho de campo minimo, cuando un valor usa menos del ancho
especificado, el campo se rellenara con el caracter de relleno actual (un espacio, como opcién
predeterminada) para lograr el ancho deseado. Si el tamafio del valor excede el ancho de campo
minimo, entonces se rebasard el campo. Los valores no se truncan.

386

C++ Soluciones de programacion

En la configuracion regional y de idioma predeterminada, la salida se alinea a la derecha. Esto
significa que si un campo necesita rellenarse para alcanzar un ancho especificado, entonces los
caracteres de relleno se agregaran a la izquierda de los datos. Cuando la salida esta alineada a la
izquierda, los caracteres de relleno se agregaran a la derecha de los datos. Cuando estd establecida
la marca internal, se agrega el relleno en el interior de algunos tipos de formatos numéricos. Por
ejemplo, si la marca showpos esta establecida, entonces el relleno tiene lugar entre el signo + y los
digitos. Consulte Justifique salida para conocer mas detalles.

Cuando se necesita rellenar un campo, se hace con el caracter de relleno, que es un espacio,
como opcién predeterminada. Puede especificar un caracter diferente empleando la funcién £ill().
Tiene dos formas. Esta es la usada aqui:

char fill(char car)

Después de una llamada a fill(), car se vuelve el nuevo caricter de relleno y se devuelve el anterior.

Ejemplo

En el siguiente ejemplo se demuestra el establecimiento del ancho de campo y el caracter de
relleno. Hay dos cosas importantes que se deben observar en este programa. En primer lugar, una
llamada a width() afecta s6lo a la salida del siguiente elemento. En segundo lugar, el caracter de
relleno se agrega entre el signo + y los digitos cuando se despliegan los datos numéricos, en caso
de que estén establecidas las marcas internal y showpos.

// Demuestra width() y £ill().
#include <iostream>
using namespace std;

int main()

{
// Usa el ancho predeterminado.
cout << "Hola" << endl;

// Establece el ancho en 10.
cout.width(10) ;
cout << "Hola" << endl;

// Observe cbémo el ancho regresa a la opcidn predeterminada
// después de que se da salida a un elemento.
cout << "Hola" << endl;

// BAhora establece el ancho y el carédcter de relleno.
cout.width(10) ;

cout.fil11('*");

cout << "Hola" << endl;

// Observe que el caracter de relleno sigue establecido.
cout.width(12) ;
cout << 123.45 << endl;

// Ahora, rellena el ancho de campo con espacios

Capitulo 6: Formacion de datos 387

// y establece las marcas internal y showpos.
cout.width(12) ;

cout.f111 (" ') ;

cout.setf (ios::showpos | ios::internal);

cout << 765.34 << endl;

return O;

}

Aqui se muestra la salida:

Hola

Hola
Hola
******Hola
******123 .45
+ 765.34

Ejemplo adicional: alinee columnas de niimeros

Uno de los usos méas comunes de un ancho de campo minimo consiste en crear tablas en que las
columnas de ntimeros se alinean una sobre otra. Para ello, simplemente especifique un ancho de
campo que sea por lo menos del tamafo del nimero méaximo de digitos que desplegard, ademas
del punto decimal y el signo +, si estan presentes. En el siguiente programa se demuestra el proce-
so al crear una tabla de potencias de 2 y 3. Observe que las columnas se alinean.

// Alinea columnas de datos.
#include <iostream>
using namespace std;

int main/()

{
cout << "Ra\u0Oalz | Cuadrado | Cubo\n";
for(int 1 = 1; i < 11; ++1i) {
cout.width(4) ;
cout << i << " |";
cout.width(9) ;
cout << i * 1 << " |";
cout.width (8) ;
cout << 1 * i * i;
cout << endl;
}
return 0;
}
Aqui se muestra la salida:
Raiz | Cuadrado | Cubo
1 | 1| 1
2 | 4 | 8
3| 9 | 27
4 | 16 | 64
5 | 25 | 125

388 C++ Soluciones de programacidn

6 | 36 | 216

7 | 49 | 343

8 | 64 | 512

9 | 81 | 729

10 | 100 | 1000
Opciones

Hay formas sobrecargadas de width() y fill(), que se muestran aqui:

char fill() const

streamsize width() const

Estas formas obtienen, pero no cambian, la configuracién actual.

Otra manera de establecer un ancho de campo de un flujo y un carécter de relleno consiste
en usar los manipuladores de E/S setw() y setfill(). Se describen en Use manipuladores de E/S para
formar datos.

Justifique la salida

Componentes clave

Encabezados Clases Funciones

<ios> ios_base fmtflags setf(fmtflags marcas)
fmtflags setf(fmtflags marcas1,marcas2)
adjustfield
internal
left
right

Por lo general, la salida se alinea a la derecha como opcién predeterminada. Esto significa que
cuando un ancho de campo excede el tamafio de los datos, se agrega relleno al principio del cam-
po para lograr el ancho deseado. (Consulte la solucién anterior para conocer detalles sobre ancho
de campo y carécter de relleno.) Puede cambiar este comportamiento al establecer la marca de
formato left o internal. Puede regresar a la justificacién a la derecha al establecer la marca right.
En esta solucién se muestra el proceso.

Paso a paso
Para establecer la justificacién se necesitan estos pasos:

1. Para dar salida justificada a la izquierda, limpie las marcas especificadas por adjustfield y
luego establezca la marca left.

2. Para dar salida justificada a la derecha, limpie las marcas especificadas por adjustfield y
luego establezca la marca right.

3. Para usar relleno interno para justificar valores numéricos, limpie las marcas especificadas
por adjustfield y luego establezca la marca internal.

Capitulo 6: Formacion de datos 389

Andlisis
Hay tres marcas de formato que afectan a la justificacién: right, left e internal. De manera colec-
tiva, puede hacer referencia a estas marcas con el valor adjustfield. En general, sélo una de estas
marcas debe establecerse a la vez. Por tanto, cuando se cambia el método de justificacién, debe
habilitar la marca que quiera y asegurarse de que las otras dos marcas estan deshabilitadas. Esto
se hace de manera facil al usar la forma de dos argumentos setf() y el valor adjustfield. Vera un
ejemplo de esto en breve (consulte Acceda a las marcas de formato mediante funciones miembro de flujo
para conocer una descripcién del establecimiento de las marcas de formato con setf()).

Como regla general, la salida esta justificada a la derecha, como opcion predeterminada. Esto
significa que si el ancho de campo es mas largo que los datos, el relleno se presentara a la izquier-
da de los datos. Por ejemplo, considere esta secuencia:

cout << 12345678 << endl;
cout.width(8) ;
cout << "prueba" << endl;

Producird la siguiente salida:

12345678
prueba

Cuando se da salida a la cadena "prueba" en un campo que tiene ocho caracteres de largo, se relle-
na con cuatro caracteres a la izquierda, como se muestra en la salida.

Para especificar justificacién a la izquierda, establecemos la marca de formato left, como se
muestra en esta secuencia:

cout.setf (ios::left, ios::adjustfield);
cout << 12345678 << endl;
cout.width(8) ;

cout << "prueba" << "|" << endl;

Produce esta salida:

12345678
prueba |

Como puede ver, el relleno se agrega a la derecha de los datos, en lugar de hacerlo a la izquierda.
Esto hace que los datos se alineen a la izquierda. Observe como la marca left esta establecida para
usar la forma de dos argumentos de setf(). Primero limpia todas las marcas a las que hace referen-
cia adjustfield y luego establece la marca left. Esto asegura que sélo ésta quede establecida.

Cuando se da salida a datos numéricos, puede hacer que se afiadan caracteres de relleno den-
tro de partes del formato al habilitar la marca internal. Por ejemplo, si habilita la marca showpos
(que causa que se muestre un signo + en valores positivos), entonces cualquier cardcter de relleno
se presentara entre el signo + y los digitos.

Ejemplo

En el siguiente programa se muestran las marcas de formato de justificacion.

// Demuestra las marcas de formato left, right e internal.
#include <iostreams>

using namespace std;

390 cCc++ Soluciones de programacidn

int main ()

{

// Usa el ancho predeterminado.

cout << "Formato predeterminado.\n";
cout << "|";

cout << 123.45 << "|" << "\n\n";

// Usa la justificacién a la derecha predeterminada
cout << "Justifica a la derecha en un campo con ancho de 12.\n";

cout << "|";
cout.width(12) ;
cout << 123.45 << "|" << "\n\n";

// Cambia a justificacién a la izquierda.
cout << "Justifica a la izquierda en un campo con ancho de 12.\n";
cout.setf (ios::left, ios::adjustfield);

cout << "|";
cout.width(12) ;
cout << 123.45 << "|" << "\n\n";

// Habilita showpos, usa justificacidén a la izquierda.

cout << "Habilitando la marca showpos.\n";

cout.setf (ios: :showpos) ;

cout << "Justifica a la izquierda en un campo con ancho de 12, otra vez.\n";

cout << "|";
cout.width(12) ;
cout << 123.45 << "|" << "\n\n";

// BAhora, usa internal.

cout << "Habilita la justificaci\u0Oa2n interna.\n";

cout.setf (ios::internal, ios::adjustfield);

cout << "Justificaci\uOOa2n interna, en un campo con ancho de 12.\n";

cout << "|";

cout.width(12) ;

cout << 123.45 << "|" << endl;
return 0;

}
Aqui se muestra la salida:

Formato predeterminado.
|123.45]

Justifica a la derecha en un campo con ancho de 12.
| 123.45]|

Justifica a la izquierda en un campo con ancho de 12.
|123.45 |

Habilitando la marca showpos.
Justifica a la izquierda en un campo con ancho de 12, otra vez.
| +123.45 |

Capitulo 6: Formacion de datos 391

Habilita la justificacidén interna.
Justificacidén interna, en un campo con ancho de 12.
| + 123.45]|

Opciones
Puede establecer el modo de justificacién mediante el uso de los manipuladores de E/S left, right
e internal. Se describen en Use los manipuladores de E/S para formar datos.

Use los manipuladores de E/S para formar datos

Componentes clave

Encabezados Clases Funciones

<ios> endl
fixed
left
right
scientific
showpoint
showpos

<iomanip> resetiosflags(ios_base::fmtflags marcas)
setprecision(int prec)
setw(int a)

C++ combina un conjunto extenso de manipuladores de E/S que le permiten incrustar directivas
de formato en una expresién de E/S. Los manipuladores se usan para establecer o limpiar las
marcas de formato relacionadas con un flujo. También le permiten especificar el ancho de cam-
po, la precisién y el caracter de relleno. Por tanto, duplican la funcionalidad proporcionada por
las funciones miembro del flujo, proporcionando una opcién conveniente que le permite escribir
c6digo méas compacto.

Hay varios manipuladores diferentes definidos por C++. En esta solucién se presenta como
usar una muestra representativa. Debido a que todos los manipuladores trabajan del mismo modo
bésico, las técnicas presentadas aqui se aplican a todos los manipuladores.

392 cCc++ Soluciones de programacidon

Paso a paso
Para usar un manipulador de E/S se requieren estos pasos:

1. Para usar un manipulador con pardmetros, incluya el encabezado <iomanip>. Casi todos
los manipuladores con pardmetros estan definidos por <ios>, que suele incluirse con otro
encabezado de E/S, como <iostream>.

2. Para invocar a un manipulador, incruste su nombre dentro de la expresiéon de salida. Si el
manipulador toma un argumento, entonces especifique ese argumento entre paréntesis.
De otra manera, simplemente use el nombre del manipulador sin paréntesis.

Andlisis
Hay dos tipos basicos de manipuladores de E/S: con parametros y sin pardmetros. Empezaremos
con los segundos. Aqui se muestran los manipuladores sin pardmetros que operan en flujos de

salida:
Manipulador Proposito
boolalpha Habilita la marca boolalpha.
endl Da salida a una nueva linea.
ends Da salida a null.
dec Habilita la marca dec. Deshabilita las marcas hex y oct.
fixed Habilita la marca fixed. Deshabilita la marca scientific.
flush Limpia el flujo.
hex Habilita la marca hex. Deshabilita las marcas dec y oct.
internal Habilita la marca internal. Deshabilita las marcas left y right.
left Habilita la marca left. Deshabilita las marcas right e internal.
nobootalpha Deshabilita la marca noboolalpha.
noshowbase Deshabilita la marca noshowbase.
noshowpoint Deshabilita la marca noshowpoint.
noshowpos Deshabilita la marca noshowpos.
nounitbuf Deshabilita la marca nounitbuf.
nouppercase Deshabilita la marca nouppercase.
oct Habilita la marca oct. Deshabilita las marcas dec y hex.
right Habilita la marca right. Deshabilita las marcas left e internal.
scientific Habilita la marca scientific. Deshabilita la marca fixed.
showbase Habilita la marca showbase.
showpoint Habilita la marca showpoint.
showpos Habilita la marca showpos.
unitbuf Habilita la marca unitbuf.
uppercase Habilita la marca uppercase.

Capitulo 6: Formacion de datos 393

Casi todos los manipuladores estdn declarados en el encabezado <ios> (que se incluye automati-
camente en otros encabezados, como <iostream>). Sin embargo, endl, ends y flush se declaran en
<iostream>.

Los manipuladores de salida sin pardmetros controlan el establecimiento de las diversas mar-
cas de formato. Por ejemplo, para habilitar la marca showpoint, se usa el manipulador showpoint.
Para deshabilitar esta marca, se usa el noshowpoint. Observe que los manipuladores que contro-
lan la base del ndamero, la justificacién y el formato de punto flotante seleccionan automaticamente
el formato especificado, deshabilitando las otras marcas del grupo. Por ejemplo, el manipulador
hex habilita autométicamente la marca hex y deshabilita las marcas dec y oct. Por tanto, para se-
leccionar salida hexadecimal, simplemente debe incluir el manipulador hex. Las marcas dec y oct
se limpian automaticamente.

Para usar un manipulador con pardmetros, debe incluir <iomanip>. Define los siguientes
manipuladores:

resetiosflags(ios_base::fmtflags m) Deshabilita las marcas especificadas en m.
setbase (int base) Establece la base del nimero en base.
setfill(int car) Establece el caracter de relleno en car.
setiosflags(ios_base::fmtflags m) Habilita las marcas especificadas en m.
setprecision(int p) Establece el nimero de digitos de precision.
setw(int a) Establece el ancho de campo en a.

Por ejemplo, para establecer el ancho de campo en 20, incruste setw(20) en la expresién de salida.
Como en el caso con la funcion width(), setw afecta s6lo al ancho del siguiente elemento al que
habra de darse salida. Puede usar setiosflags() y resetiosflags() para establecer o limpiar cualquier
combinacién arbitraria de marcas.

Los manipuladores de E/S estan incrustados en una expresién de E/S. Por ejemplo:

cout << setprecision(8) << left << 123.23;

Esto establece la precisién en 8, habilita la marca de justificacién a la izquierda y luego da salida al
nimero 123.23.

Aunque los manipuladores proporcionan la misma funcionalidad que las funciones miembro
setf(), unsetf(), width(), precision() y fill() descritas en las soluciones anteriores, lo hacen de ma-
nera mas definida. Por ejemplo, considere esta expresion:

cout << setw(1l2) << fixed << showpos << 98.6 << setw(1l0) << avg;

En una sola linea, establece el ancho de campo en 12, habilita las marcas fixed y showpos y luego
da salida al ntimero 98.6. En seguida, establece el ancho de campo en 10 y da salida al valor de
avg. El mismo resultado puede obtenerse al usar las funciones miembro de flujo, pero de forma
menos compacta:

cout.width(12) ;

cout.setf (ios::fixed, ios::floatfield);
cout .setf (showpos) ;

cout << 98.6;

cout.width(10) ;

cout << avg;

394 cCc++ Soluciones de programacidn

Ejemplo

En el siguiente ejemplo se muestran varios de los manipuladores de E/S en accién:

// Demuestra varios manipuladores de E/S.

#include <iostream>
#include <iomanip>

using namespace std;
int main/()

cout << "Formato predeterminado: " << 123.123456789 << endl;

cout << "Formato fijo con precisil\u00a2n de 7: ";
cout << setprecision(7) << fixed << 123.123456789 << endl;

cout << "Formato cient\uOOalfico con precisi\u0Oa2n de 7: ";
cout << scientific << 123.123456789 << endl;

cout << "Regresa al formato predeterminado: ";
cout << resetiosflags(ios::floatfield) << setprecision(6)

<< 123.123456789 << "\n\n";

cout << "Usa un ancho de campo de 20:\n";

cout << "|" << setw(20) << "Probando" << "|\n\n";
cout << "Usa un ancho de campo de 20 con justificacil\u00a2n a la izquierda:\n";
cout << "|" << setw(20) << left << "Probando" << "[\n\n";

cout << "Regresando a la justificacil\u00a2n a la derecha.\n\n" << right;

cout << "Booleanos en ambos formatos: ";

cout << true << " " << false << " " << boolalpha
<< true << " " << false << "\n\n";
cout << "Predeterminado: " << 10.0 << endl;

cout << "Tras establecer las marcas showpos y showpoint: ";
cout << showpos << showpoint << 10.0 << "\n\n";

cout << "El manipulador setw es muy \u00a3til cuando deben especificarse\n"
<< "anchos de campo repetidos. Por ejemplo:\n";

cout << setw(8) << "He" << endl << setw(8) << "aqu\u00al" << endl
<< setw(8) << "una" << endl << setw(8) << "columna" << endl
<< setw(8) << "de" << endl << setw(8) << "palabras";

return O;

}
Aqui se muestra la salida:

Formato predeterminado: 123.123

Formato fijo con precisidén de 7: 123.1234568

Formato cientifico con precisidn de 7: 1.2312346e+002
Regresa al formato predeterminado: 123.123

Capitulo 6: Formacion de datos 395

Usa un ancho de campo de 20:
| Probando|

Usa un ancho de campo de 20 con justificacidn a la izquierda:
| Probando |

Regresando a la justificacién a la derecha.
Booleanos en ambos formatos: 1 0 true false

Predeterminado: 10
Tras establecer las marcas showpos y showpoint: +10.0000

El manipulador setw es muy Gtil cuando deben especificarse
anchos de campo repetidos. Por ejemplo:

He
aqui
una
columna
de
palabras

Opciones
Puede establecer las marcas de formato al hacer llamadas especificas a setf() en el flujo. Puede
establecer el ancho, la precisién y el cardcter de relleno al llamar a width(), precision() y fill() en el
flujo. Este método se describi6 en las soluciones anteriores.

Tiene la opcién de crear sus propios manipuladores. Las técnicas necesarias para hacerlo se
describen en el capitulo 5.

Forme valores numéricos para una configuracion regional y de idioma

Componentes clave

Encabezados Clases Funciones
<ios> ios_base locale imbue(const &locale nuevoloc)
<locale> locale

Cuando se da salida a un flujo con valores numéricos, estan formados automaticamente con la fa-
ceta num_put definida por la configuracion regional y de idioma actual del flujo. Por tanto, es facil
formar un valor numérico para una configuracion especifica: simplemente cambie la configuracion
del flujo por el deseado. La faceta num_put para la nueva configuracion se usard automaticamen-
te. En esta solucion se muestra el proceso.

396

C++ Soluciones de programacion

Paso a paso
Para formar ntimeros en relacién con una configuracién regional y de idioma especifica se necesi-
tan estos pasos:

1. Cree un objeto de locale que representa la configuracién regional y de idioma deseada.
2. Asigne la configuracion del flujo creada en el paso 1 al llamar a imbue().

Andlisis

Las instrucciones para establecer una configuracién regional y de idioma del flujo se presentan en
Obtenga o establezca una configuracion regional y de idioma de flujo, en el capitulo 5. Aqui se presenta
un resumen.

La configuracion actual define varios aspectos de un formato numérico, incluidos los carac-
teres usados para el punto decimal y el separador de miles. Como regla general, la configuracion
predeterminada es "C". Esta configuracién regional define un entorno estandar C/C++, que usa el
punto como punto decimal y proporciona escasas opciones adicionales de formato. En el caso de
muchas aplicaciones, la configuracién predeterminada es adecuada. Sin embargo, en casos en que
quiera que se desplieguen valores numéricos en un formato compatible con la configuracién regio-
nal y de idioma del usuario, necesitara especificarla de manera explicita.

Una manera de construir una instancia de locale consiste en usar este constructor:

explicit locale(const char *nombre)

Aqui, nombre especifica el nombre de la configuracién regional y de idioma, como German, Spa-
nish_Spain o US. Si nombre no representa una configuracion vélida, entonces se lanza la excepcién
runtime_error. Lo que constituye un nombre valido de configuracién puede variar (y segura-
mente lo hard) entre compiladores. Los ejemplos mostrados en este libro funcionan con Microsoft
Visual C++ y tal vez funcionaran con otros compiladores, pero debe consultar la documentacion
de su compilador para conocer més detalles.

Para establecer la configuracién regional y de idioma del flujo, llame a imbue() en el flujo.
Aqui se muestra:

locale imbue(const locale &nuevoloc)

La configuracion del flujo que invoca se establece en nuevoloc, y se devuelve el anterior.

Ejemplo

En el siguiente ejemplo se muestra la manera en que diferentes configuraciones regionales y de
idioma afectan al formato de los niimeros. El programa empieza por desplegar un valor en el
formato predeterminado (que suele determinarse mediante la configuracion regional y de idioma
de C). Luego especifica la configuracién English, y despliega el mismo valor. Por tltimo, usa la
configuraciéon Spanish_Spain. Observe que en English, el separador de miles es la coma y el punto
decimal es un punto. En Spanish_Sapin, esto es al revés: el separador de miles es el punto y el
punto decimal es la coma. Ademads, tome nota de que estan establecidas la precisién y la marca
fixed, pero no se ven afectadas por la configuracién regional y de idioma.

// Formato de valores numéricos con una configuracidén regional
// y de idioma especifica.

Capitulo 6: Formacion de datos 397

#include <iostream>
#include <locale>
#include <iomanip>

using namespace std;
int main/()

// Usa un formato fijo con 2 lugares decimales.
cout << fixed << setprecision(2);

cout << "Formato predeterminado: " << 12345678.12 << "\n\n";

// Establece la configuracién regional y de idioma en English.
locale eloc("English") ;
cout . imbue (eloc) ;

cout << "Formato English: " << 12345678.12 << "\n\n";

locale sloc("Spanish Spain") ;
cout.imbue (sloc) ;

cout << "Formato Spanish: " << 12345678.12 << "\n\n";
return O;

}

Aqui se muestra la salida:

Formato predeterminado: 12345678.12
Formato English: 12,345,678.12

Formato Spanish: 12.345.678,12

Opciones

Tiene la opcién de formar valores numéricos en un formato monetario al usar la faceta money_
put. Usa automaticamente la configuracién regional y de idioma actual. Consulte Forme valores
monetarios usando la faceta money_put para conocer mas detalles.

Aunque en el ejemplo anterior, y en muchos de los ejemplos de este capitulo, se usa cout como
flujo de destino, el mismo método bésico funciona con todos los flujos de salida. Por ejemplo, la si-
guiente secuencia crea un ofstream llamado archsalida y lo conecta con un archivo llamado prueba.
dat. Luego habilita la marca fixed y establece la precisién en 2. A continuacién, establece la configu-
raciéon regional y de idioma en Spanish_Spain. Por ltimo, da salida a 12345678.12 a archsalida.

ofstream archsalida ("prueba.dat") ;
archsalida.imbue (locale ("Spanish Spain")) ;
archsalida << fixed << setprecision(2);
archsalida << 12345678.12;

Después de que se ejecute esta secuencia, prueba.dat contendra lo siguiente:
12.345.678,12

Como observaré, estd formado para espaiol de Espana.
Aunque el uso del operador de E/S << es la manera mas facil (y, con frecuencia, la mejor) para
formar salida numérica, puede usar directamente la faceta money_put. Esto se hace al obtener

398 C++ Soluciones de programacidn

primero una referencia a la faceta num_put para la configuracién regional y de idioma actual al

llamar a use_facet(), que se describe en Revision general de las facetas, casi al principio de este capi-

tulo. Luego, usando esta referencia, llame a put() para formar un valor y darle salida a un flujo.
La faceta num_put se declara ast:

template <class CharT, class Outltr = ostreambuf_iterator<CharT> >
class num_put : public locale::facet{ // ...

CharT especifica el tipo de caracteres sobre el que se opera. Outltr especifica el tipo de iterador que se
utiliza para escribir datos formados. Observe que la opcion predeterminada es ostreambuf_iterator.

La funcién put() definida por num_put tiene varias versiones. He aqui una. Forma un valor
double:

iter_type put(iter_type itr_flujo, ios_base &flujo,
char_type carrelleno, double val) const

Un iterador al flujo de salida se pasa en itr_flujo. El tipo iter_type es un typedef para el tipo de ite-
rador. Como opcién predeterminada, tipo es ostreambuf_iterator. Hay una conversién automatica
a este tipo desde cualquier objeto de basic_ostream, de modo que, por lo general, simplemente
pasara el flujo sobre el que se estd actuando. Se pasa una referencia al flujo de salida en flujo. Sus
configuraciones de marca, precisién y ancho se usan para determinar el formato. El caracter de
relleno se pasa en carrelleno. El valor que habra de formarse se pasa en val.

Al unir todas las piezas, la siguiente secuencia utiliza num_put para desplegar el nimero
1024.256 en formato fijo, con una precision de 2 y un ancho de 20, en la configuracién regional y de
idioma actual.

cout << fixed << setprecision(2) << setw(20);
const num put<char> &np = use_facet<num put<char> >(cout.getloc()) ;
np.put (cout, cout,l 1, 1024.256);

Como observard, esto requiere mucho mds esfuerzo que cuando se usa el operador << y no se
gana nada con eso.

Tiene la opcién de leer un niimero de manera sensible a la configuracién regional y de idioma
utilizando num_get. Define la funcién get() que lee un niimero en su forma de flujo.

Forme valores monetarios empleando la faceta money_put

Componentes clave

Encabezados Clases Funciones
<ios> ios_base locale getloc() const
<ios> ios locale imbue(const &locale nuevoloc)
<locale> locale template <class facet>

const Facet &use_facet(const locale &loc)
<locale> money_put iter_type put(iter_type itr_flujo,

bool sim_mon_int,
ios_base &flujo,
char_type carrelleno,
long double val) const

Capitulo 6: Formacion de datos 399

En cuanto a la formacién, tal vez la pregunta de tipo ";Cémo hacer?" mas frecuente sea ";Cémo
despliego valores monetarios?". Debido a que el formato numérico predeterminado no esta dise-
fiado para este fin, el método apropiado es fuente de mucha confusién. Por fortuna, la solucién es
muy simple: use la faceta money_put definida por la biblioteca de localizacién de C++. Al hacerlo
asi, se produce automdticamente el formato correcto para la configuracién regional y de idioma
actual. En esta solucién se muestra el proceso.

Paso a paso
Para desplegar un valor monetario mediante la faceta money_put se necesitan estos pasos:

1. Construya un objeto de locale que represente la configuracion regional y de idioma con
que se formara el valor monetario.

2. Establezca la configuracién al llamar a imbue() en el flujo que estard recibiendo la salida
formada. Pase imbue() al objeto de locale del paso 1.

3. Obtenga la faceta money_put al llamar a use_facet(), especificando la configuracién
regional y de idioma de la que obtendra la faceta. En general, serd la configuracién actual
empleada por el flujo de salida. Puede obtenerla al llamar a getloc() en el flujo.

4. Forme los datos al llamar a put() en el objeto devuelto por use_facet(), especificando el
flujo en que se escribira la salida.

Anlisis

Una revision general del subsistema de localizacién de C++ se presenté cerca del principio de este

capitulo. Las funciones imbue() y getloc() se describieron en Obtenga o establezca la configuracion regio-

nal y de idioma de un flujo, en el capitulo 5. También se presenté un resumen del método imbue() en la

solucién anterior. Recuerde que imbue() establece la configuracién regional y de idioma de un flujo.
La faceta money_put se declara como se muestra a continuacién:

template <class CharT, class Outltr = ostreambuf_iterator<CharT> >
class money_put : public locale::facet { // ...

CharT especifica el tipo de caracteres sobre los que se opera. Outltr especifica el tipo de iterador
que se utiliza para escribir datos formados. Observe que la opcién predeterminada es ostream-
buf_iterator.

Para obtener la faceta money_put, debe llamar a use_facet(). Esta funcion se describi6 en Re-
vision general de las facetas, casi al principio de este capitulo. Recuerde que es una funcién genérica
global definida por <locale>, con el siguiente prototipo:

template <class Facet> const Facet &use_facet(const locale &loc)

El pardmetro de la plantilla Facet especifica la faceta, que serd money_put en este caso. La con-
figuracion regional y de idioma se pasa mediante loc. Se devuelve una referencia a la faceta. Por
tanto, use_facet() obtiene una version especifica de la faceta adecuada para la configuracion. Se
lanza una excepcion bad_cast si la faceta deseada no estd disponible. En general, las facetas prede-
finidas, incluida money_put, estaran disponibles.

Por lo general, la instancia de locale pasada a use_facet() sera la usada por el flujo de salida al
que se aplicara la faceta. Puede obtener la configuracion regional y de idioma actual de un flujo
al llamar a getloc() en el flujo. Aqui se muestra cémo:

locale getloc() const

400

C++ Soluciones de programacion

Devuelve el objeto de locale asociado con el flujo.
Con el uso de la faceta devuelta por use_facet(), puede formar un valor monetario al llamar a
put(). Tiene dos formas. Aqui se muestra la usada en esta solucién:

iter_type put(iter_type itr_flujo, bool sim_mon_int, ios_base &flujo,
char_type carrelleno, long double val) const

En itr_flujo se pasa un iterador al flujo de salida. El tipo itr_type es un typedef para el tipo de
iterador. Como opcién predeterminada, este tipo es ostreambuf_iterator. Se hace una conversién au-
tomatica a este tipo desde cualquier objeto de basic_ostream, de modo que por lo general pasara el
flujo sobre el que se actuara. Si el simbolo monetario habra de mostrarse en su forma internacional,
pase true a sim_mon_int. Pase false para usar el simbolo local. Pase una referencia al flujo de salida en
flujo. Si estd establecida una marca showbase, entonces se mostrara el simbolo monetario. El cardc-
ter de relleno se pasa en charrelleno. El valor que habrd de formarse se pasa en val. La funciéon put()
devuelve un iterador que sefiala una posicién después del tltimo caracter al que se da salida.

La tnica peculiaridad asociada con money_put es que opera sobre datos que no contienen un
punto decimal. Por ejemplo, el valor 1724.89 se pasa a put() como 172489. El formador monetario
agrega la coma y el punto decimal. Para el caso de délares estadounidenses, se transforma en
1,724.89. Si ha habilitado el simbolo monetario doméstico, entonces el resultado es $1,724.89.

Ejemplo

En el siguiente ejemplo se muestra como usar money_put.

// Usa money put para dar salida a valores monetarios.

#include <iostream>
#include <locale>

using namespace std;

int main()

{

double saldo = 5467.87;

locale euloc ("English US");
locale sloc("Spanish Spain");

// Establece la marca showbase para desplegar el simbolo monetario.
cout << showbase;

cout << "Formato monetario para d\uOOa2lares de Estados Unidos:\n";
cout .imbue (euloc) ;
const money put<char> &mon eu =

use_ facet<money put<char> >(cout.getloc());

mon_eu.put (cout, false, cout, ' ', "123456");
cout << endl;

mon_eu.put (cout, true, cout, ' ', -299);

cout << endl;

mon_eu.put (cout, false, cout, ' ', saldo * 100);

cout << "\n\n";

Capitulo 6: Formacion de datos 401

cout << "Ahora muestra el monto en el formato internacional Spanish Spain:\n";
cout.imbue (sloc) ;
const money put<char> &mon s =

use_ facet<money put<char> >(cout.getloc());

mon_s.put (cout, true, cout, ' ', 123456);

cout << endl;

mon_s.put (cout, true, cout, ' ', -299);

cout << endl;

mon_s.put (cout, true, cout, ' ', saldo * 100);
return 0O;

}
Aqui se muestra la salida:

Formato monetario para dbélares de Estados Unidos:
$1,234.56
USD-2.99
$5,467.87

Ahora muestra el monto en el formato internacional Spanish Spain:
EUR1.234,56

EUR-2,99

EUR5.467,87

Opciones
Hay una segunda forma de put() que da formato a una version de cadena del valor. Se muestra a
continuacioén:

iter_type put(iter_type itr_flujo, bool sim_mon_int, ios_base &marcasflujo,
char_type carrelleno, long double valcad) const

Funciona igual que la primera versién, excepto que el valor que habra de formarse se pasa como
una cadena en valcad.

Como se explico, si solicita una faceta que no esta disponible, entonces se lanza una excepcion
bad_cast. Para evitar esta posibilidad, puede determinar si una faceta esta disponible para una
configuracién regional y de idioma dada al llamar a has_facet(). Se trata de una funcién de planti-
lla global definida por <locale>. Aqui se muestra:

template <class facet> bool has_facet(const locale &loc) throw()

Devuelve true si la faceta especificada estd disponible y false, de lo contrario. En general, las face-
tas estdndar siempre estaran disponibles, pero es probable que las personalizadas no lo estén. En
cualquier caso, tal vez quiera usar has_facet() para confirmar que puede usarse una faceta.
Al hacerlo asi puede evitar una excepcion.

Tiene la opcidén de leer valores monetarios formados al usar la faceta money_get. Define la
funcién get(), que lee un valor monetario en su forma de cadena.

402 c++ Soluciones de programacidon

Use las facetas moneypunct y numpunct

Componentes clave

Encabezados Clases Funciones

<locale> moneypunct string_type cur_symbol() const
char_type decimal_point() const
int frac_digits() const
char_type thousands_sep() const
string grouping() const

<locale> numpunct char_type decimal_point() const
char_type thousands_sep() const
string grouping() const

Aunque la formacién de valores numéricos mediante num_put y de valores monetarios mediante
money_put suele ser la mejor opcidn, tiene la opcién de tomar el control del proceso, si lo desea. La
clave estd en obtener los signos de puntuacién y las reglas usadas para formar valores monetarios
y numéricos relacionados con una configuracion regional y de idioma. Estos signos de puntuacion
son el simbolo monetario, el separador de miles y el punto decimal. Las reglas son el niimero de
digitos fraccionales desplegados y el nimero de digitos en un grupo. Ambos estdn disponibles
mediante las facetas moneypunct y numpunct. En esta solucion se muestra como obtenerlas.

Paso a paso
Para usar la faceta numpunct se necesitan estos pasos:

1. Obtenga la faceta numpunct para una configuracién regional y de idioma especifica al
llamar a use_facet(). Utilice esta faceta para obtener la puntuacién numérica y las reglas de
la configuracién, como se describe en los pasos siguientes.

2. Obtenga el cardcter de punto decimal al llamar a decimal_point().

3. Obtenga el separador de miles al llamar a thousands_sep().

4. Obtenga la regla que determina la agrupacién de digitos al llamar a grouping().

Para usar la faceta moneypunct se necesitan estos pasos:

1. Obtenga la faceta moneypunct para una configuracién regional y de idioma especifica al
llamar a use_facet(). Utilice esta faceta para obtener la puntuacién numérica y las reglas de
la configuracion, como se describe en los pasos siguientes.

Obtenga el simbolo de moneda al llamar a cur_symbol().

Obtenga el cardcter de punto decimal al llamar a decimal_point().

4. Obtenga el separador de miles al llamar a thousands_sep().

®»

Capitulo 6: Formacion de datos 403

5. Obtenga el nimero de digitos fraccionales usados para representar valores monetarios
al llamar a frac_digits().
6. Obtenga la regla que determina la agrupacién de digitos al llamar a grouping().

] I -
Analisis
Los signos de puntuacion y las reglas para valores numéricos estan encapsulados dentro de la
faceta numpunct. Se declara como se muestra a continuacion:

template <class CharT> class numpunct : public locale::facet { // ...

CharT especifica el tipo de caracteres sobre el que se operard. Como todas las facetas, hereda
locale::facet.

Puede obtener una referencia a una faceta numpunct al llamar a use_facet(), especificando
numpunct como la faceta que habra de obtenerse. La funcién use_facet() esta definida global-
mente por <locale>, como se describié en Revision general de las facetas. En la siguiente secuencia
se muestra como usarla para obtener una faceta numpunct para la configuracion regional y de
idioma usada por cout:

const numpunct<char> &numpunct = use facet<numpunct<char> > (cout.getloc()) ;

Dada una referencia a la faceta numpunct, puede obtener los diversos signos de puntuacién
y las reglas que se relacionan con valores numéricos. Cada valor esta modificado de acuerdo con
la configuracién regional y de idioma de la faceta. Estos elementos estdn disponibles mediante
funciones. A continuacién se muestran las usadas en esta solucién:

Funcion Descripcion

char_type decimal_point() const Devuelve el caracter usado como punto decimal.

char_type thousands_sep() const Devuelve el caracter usado para separar (es decir,
agrupar) miles.

string grouping() const Devuelve las reglas que definen las agrupaciones de
digitos.

Aqui, char_type es una typedef para el tipo de caracter, que sera char para flujos de char.
Los signos de puntuacién y las reglas para valores monetarios estdn encapsulados dentro de la
faceta moneypunct. Se declara como se muestra a continuacion:

template <class CharT, bool Intl = false>
class moneypunct : public locale::facet, public money_base { // ...

CharT especifica el tipo de caracteres sobre el que se operara. El tipo Intl indica si se usaran for-
matos internacionales o locales. La opcién predeterminada es local. Como todas las facetas, hereda
locale::facet. La clase money_base define aspectos de los formatos monetarios que son dependien-
tes de los parametros de tipo. Se describen mas a fondo en la secuencia Opciones de esta solucion.

Como en el caso de numpunct, se obtiene una referencia a moneypunct al llamar a use_facet().
He aqui un ejemplo:
const moneypunct<char> &us_moneypunct = use_facet<moneypunct<chars>

> (cout.getloc()) ;

Esta instruccién obtiene la faceta moneypunct para la configuracién regional y de idioma de cout.

404 cCc++ Soluciones de programacidon

Dada una referencia a la faceta moneypunct, puede obtener los diversos signos de puntuacién
y las reglas que se relacionan con valores numéricos al llamar a funciones mediante la referencia.
Cada valor esta modificado de acuerdo con la configuracién regional y de idioma de la faceta.
Aqui se muestran las usadas en esta solucion:

Funcion Descripcion

string_type cur_symbol() const Devuelve el caracter o los caracteres usados como
simbolo monetario.

char_type decimal_point() const Devuelve el caracter usado como punto decimal.

int frac_digits() const Devuelve el nimero de digitos fraccionales que suelen
desplegarse para valores monetarios.

char_type thousands_sep() const Devuelve el caracter usado para separar (es decir,
agrupar) miles.

string grouping() const Devuelve las reglas que definen las agrupaciones de
digitos.

Aqui, char_type es una typedef para el tipo de caracter, que sera char para flujos de char y string_
type es un typedef para el tipo de string, que sera string para los flujos de char.

El valor devuelto por grouping() es el mismo para numpunct y moneypunct. Es un valor de
cadena en que el valor de unicode de cada caracter representa el niimero de digitos en un grupo,
yendo de derecha a izquierda, y empezando con el primer grupo a la izquierda del punto decimal.
Si el tamafio del grupo no estd especificado, se utiliza el tamafio del grupo anterior. Por tanto, si
todos los tamarios son iguales, entonces s6lo se especificara un valor. Recuerde que el que se usa es
el valor de unicode del caracter, no su digito legible para los seres humanos. Por tanto, el caracter
"\003' (no '3') representa tres digitos.

Ejemplo
En el siguiente ejemplo se muestra como usar moneypunct y numpunct para obtener los signos
de puntuacién y las reglas de agrupamiento para Estados Unidos:

// Demuestra signos de puntuacidn y agrupaciones monetarias y numéricas.

#include <iostream>
#include <locale>

using namespace std;

int main()

{
// Crea una configuracidn regional y de idioma para US English.
locale usloc ("English US") ;

// Establece la configuracidn regional y de idioma para US English.
cout.imbue (usloc) ;

// Obtiene una faceta moneypunct para cout.
const moneypunct<char> &us_monpunct =
use_ facet<moneypunct<char> > (cout.getloc()) ;

Capitulo 6: Formacion de datos 405

cout << "Puntuacil\uOOa2n monetaria para EU:\n";

cout << " S\uOOalmbolo de moneda: " << us_monpunct.curr_symbol () << endl;
cout << " Punto decimal: " << us_monpunct.decimal point () << endl;
cout << " Separador de miles: " << us_monpunct.thousands sep() << endl;
cout << " D\uOOalgitos de fracci\u0OOa2n: " << us_monpunct.frac digits() << endl;
cout << " N\uOOa3mero de reglas de agrupaci\uOOa2n: "
<< us_monpunct.grouping() .size() << endl;

for (unsigned i=0; i < us_monpunct.grouping() .size(); ++1i)

cout << " Tama\uOOa4o del grupo " << i << ": "

<< (int)us_monpunct.grouping() [0] << endl;
cout << endl;
// Obtiene una faceta numpunct para cout.
const numpunct<char> &us_numpunct =

use_ facet<numpunct<char> > (cout.getloc()) ;

cout << "Puntuacil\uOOa2n de n\uOOa3meros para EU:\n";

cout << " Punto decimal: " << us_monpunct.decimal point () << endl;
cout << " Separador de miles: " << us_monpunct.thousands sep() << endl;
cout << " N\uOOa3mero de reglas de agrupacil\uOOa2n: "
<< us_monpunct.grouping() .size() << endl;

for (unsigned i=0; i < us_monpunct.grouping() .size(); ++1)

cout << " Tama\uOOa4o del grupo " << i << ": "

<< (int)us_monpunct.grouping() [0] << endl;

return O;

}
Aqui se muestra la salida:

Puntuacidén monetaria para EU:
Simbolo de moneda: $
Punto decimal:
Separador de miles: ,
Digitos de fraccidn: 2
Namero de reglas de agrupacidén: 1
Tamafilo del grupo 0: 3

Puntuacidén de nGmeros para EU:
Punto decimal:
Separador de miles: ,
NGmero de reglas de agrupacidén: 1
Tamafilo del grupo 0: 3

Opciones
La faceta numpunct define las funciones truename() y falsename(), que se muestran a continuacién:

string type truename() const

string type falsename() const

406 C++ Soluciones de programacidon

Devuelven los nombres para true y false en relacion con la configuracién regional y de idioma
especificada.

La faceta moneypunct le permite obtener los signos usados para indicar valores monetarios posi-
tivos y negativos al llamar a las funciones positive_sign() y negative_sign(), que se muestran aqui:

string_type positive_sign() const
string_type negative_sign() const

Observe que se devuelve una cadena, en lugar de un solo carécter. Esto permite el uso de varios
signos.

Con moneypunct, también puede obtener patrones que representan los formatos positivos y
negativos al llamar a pos_format() y neg_format(), respectivamente. Aqui se muestran:

pattern pos_format() const

pattern neg_format() const

Cada uno devuelve un objeto de pattern que describe el formato indicado.
El tipo pattern es una struct definida dentro de la clase money_base. Esta es una clase de base
para moneypunct. Aqui se muestra:

class money base {
public:
enum part { none, space, symbol, sign, value };
struct pattern ({
char field|[4];
}i

}i

Cada elemento de field contiene un valor part. (E1 C++ estandar establece que se usa una matriz de
char, en lugar de una de part, con field "simplemente para obtener mayor eficiencia".) Cada elemen-
to de pattern indica cual parte del formato monetario debe aparecer en ese punto, donde la primera
parte es field[0], la segunda field[1], etc. He aqui lo que significa la enumeracién de constantes:

none No hay una salida correspondiente.
space Un espacio.

symbol El simbolo de moneda.

sign El signo positivo o negativo.

value El valor.

Por ejemplo, suponiendo el programa anterior, la siguiente secuencia despliega el patrén negativo:

// Muestra el patrén numérico negativo.
for(int 1=0; 1 < 4; ++1)
switch (us_monpunct.neg_format () .field[i]) {
case money base::none: cout << "ninguno ";
break;
case money_ base::value: cout << "valor ";
break;
case money base::space: cout << "espacio ";
break;

Capitulo 6: Formacion de datos 407

case money base::symbol: cout << "s\uOOalmbolo ";
break;
case money base::sign: cout << "signo ";
break;
}

Produce la siguiente salida:

signo simbolo valor ninguno

Esto indica que un valor monetario negativo empieza con un signo, seguido por el simbolo de
moneda y por ultimo el valor.

Forme la fecha y hora con la faceta time_put

Componentes clave

Encabezados Clases Funciones

<ctime> struct tm &localtime(const time_t *hora)
time_t time(time_t *apt_h)

<ios> ios_base locale getloc() const
<ios> ios locale imbue(const &locale nuevoloc)
<locale> locale template <class Facet>

const Facet &use_face(const locale &loc)

<locale> time_put iter_type put(iter_type itr_flujo,
ios_base &no_usado,
char_type carrelleno,
const tm *h,
const char_type *inicio_patron,
const char_type *final_patron) const

Si ";Coémo despliego valores monetarios?" es la pregunta de formato més frecuente, la que le sigue
en frecuencia es ";Cémo despliego la hora y la fecha?" Aunque el concepto es facil, la formacién de
la hora y la fecha requiere mas trabajo del que podria pensar al principio. El problema es doble. En
primer lugar, los formatos de fecha y hora son sensibles a la configuracién regional y de idioma.
Por tanto, no hay un formato universal que funcionara en todos los casos. En segundo lugar, la
hora y la fecha pueden desplegarse de muchas maneras. Como resultado, hay muchas opciones
para elegir.

408

C++ Soluciones de programacion

En general, hay dos maneras de formar la fecha y la hora usando C++. La primera consiste en
llamar a la funcién strftime() de C. Forma la fecha y la hora con base en la configuracién regional y
de idioma global. (Consulte Forme la fecha y Ia hora usando strftime() para conocer mas detalles.) El
segundo método estd definido por C++ y emplea la faceta time_put definida por el subsistema de
localizacién. El uso de time_put ofrece una ventaja principal: le permite formar la fecha y la hora
de acuerdo con la configuracién regional y de idioma de un flujo especifico, en lugar de aplicar la
configuracién global usada por strftime(). También esté integrada con otras facetas de formacién de
C++, como money_put. Por eso, la formacién de la fecha y la hora usando time_put es el método
recomendado para casi todas las aplicaciones. En esta solucion se muestra cémo ponerla en accién.

Paso a paso
Para formar la fecha y la hora usando la faceta time_put se necesitan estos pasos:

1. Construya un objeto de locale que representa la configuracion regional y de idioma para la
que se han formado la fecha y la hora.

2. Establezca la configuracion al llamar a imbue() en el flujo que estara recibiendo la salida
formada. Pase imbue() al objeto de locale del paso 1.

3. Obtenga la faceta time_put al llamar a use_facet(), especificando la configuracién regional
y de idioma de la que se obtendra la faceta. En general, sera la configuracion actual usada
por el flujo de salida. Puede obtenerlo al llamar a getloc() en el flujo.

4. Obtenga el apuntador tm que sefiala a la hora que se formard. Una manera de obtenerlo
consiste en llamar a localtime(). Devuelve la hora local proporcionada por el equipo.

5. Forme la fecha y la hora al llamar a put() en el objeto devuelto por use_facet(),
especificando el flujo al que se escribira la salida.

Andlisis
Una revision general del subsistema de localizacion de C++ se presento casi al principio de este
capitulo. Las funciones imbue() y getloc() se describieron en Obtenga o establezca la configuracion
regional y de idioma de un flujo, en el capitulo 5. También se presenté un resumen de los métodos
imbue() y getloc() en las dos soluciones anteriores.

Para formar la fecha y la hora, por lo general usaré la faceta time_put. Se declara ast:

template <class CharT, class Outltr = ostreambuf:iterator<CharT> >
class time_put : public locale::facet{ // ...

CharT especifica el tipo de caracteres sobre el que se operard. Outltr especifica el tipo de iterador
que se usa para escribir los datos formados. Observe que la opcién predeterminada es ostream-
buf_iterator.

Para obtener la faceta time_put, debe llamar a use_facet(). Esta funcién se describe en Revision
general de las facetas, casi al principio de este capitulo. Recuerde que es una funcién genérica global
definida por <locale>, con el siguiente prototipo:

template <class Facet> const Facet &use_facet(const locale &loc)

El pardmetro de plantilla Facet especifica la faceta, que serd time_put en este caso. La configura-
cién regional y de idioma se pasa mediante loc. Se devuelve una referencia a la faceta. Se lanza una
excepcion bad_cast si la faceta deseada no estd disponible. En general, las facetas predefinidas,
incluida time_put, estardn disponibles.

Capitulo 6: Formacion de datos 409

Con el uso de la faceta time_put obtenida de use_facet(), puede formar un valor de hora lla-
mando a put(). Tiene dos formas. Aqui se muestra la usada en esta solucién:

iter_type put(iter_type itr_flujo, ios_base &no_usado, char_type carrelleno,
const tm *h, const char_type *inicio_patron,
const char_type *final_patron) const

Un iterador al flujo de salida se pasa en itr_flujo. El tipo iter_type es un typedef para el tipo de
iterador. Como opcién predeterminada, el tipo es ostreambuf_iterator. Hay una conversién
automatica a este tipo desde cualquier objeto de basic_ostream, de modo que, por lo general,
simplemente pasar4 el flujo sobre el que se estd actuando. El parametro no_usado no se usa. (Puede
pasar una referencia al flujo de salida como marcador de posicién.) El cardcter de relleno se pasa
en carrelleno. Un apuntador a una estructura tm que contiene la fecha y la hora se pasa en t. Un
apuntador al principio de la cadena que define un patrén que se usara para formar la fecha y la
hora se pasa en inicio_patron. Uno al final de la cadena se pasa en final_patron. El tipo char_type es
un typedef para el tipo de caracter. En el caso de cadenas de char, que son las que se usan en este
libro, este char_type es char.

La estructura de tm est4 definida en <time> y se hereda de C. Muestra lo que se llama la forma
"desglosada" de la fecha y la hora. Se presenta a continuacién:

struct tm {
int tm sec; // segundos, 0-61
int tm min; // minutos, 0-59
int tm _hour; // horas, 0-23
int tm mday; // dia del mes, 1-31
int tm_mon; // meses desde enero, 0-11
int tm year; // aflos desde 1900
int tm wday; // dias desde el domingo, 0-6
int tm _yday; // dias desde el 1° de enero, 0-365
int tm isdst; // Indicador de hora de ahorro de luz del dia

}

Puede construir un objeto de tm al establecer manualmente sus miembros, pero no lo haré con
frecuencia. Mas a menudo, simplemente obtendra un objeto de tm que contiene la fecha y la hora
actuales al usar una funcién definida por <ctime>. La usada por esta solucién es localtime() y se
muestra a continuacion:

struct tm *localtime(continuacién time_t *hora)

Toma la hora codificada como un valor time_t y devuelve un apuntador a una estructura tm que
contiene la hora desglosada en sus componentes individuales. La hora esté representada en hora
local. La estructura tm sefialada por el apuntador devuelto por localtime() esta asignada estati-
camente y se sobreescribe cada vez que se llama a la funcién. Si quiere guardar el contenido de la
estructura, debe copiarla en otro lugar.

Puede obtener un valor time_t de varias maneras. El método usado en esta solucién consiste
en llamar a time(). Es otra funcién definida por <ctime> y obtiene la hora actual del sistema. Se
muestra a continuacién:

time_t time(time_t *apt_h)

410

C++ Soluciones de programacion

Devuelve la hora actual del sistema. Esto suele representarse como el niimero de segundos a partir
del 1 de enero de 1970. Si el sistema no tiene hora, se devuelve —1. La funcién puede llamarse con
un apuntador nulo o con uno a una variable de tipo time_t. Si se usa el primero, también se asig-
nard a la hora la variable sefialada por apt_t.

En la funcién put(), la cadena de patrén sefialada por inicio_patron contiene dos tipos de ele-
mentos. El primero son caracteres normales, que simplemente se despliegan como tales. El segun-
do son especificadores de formato de fecha y hora, que determinan cudles componentes de fecha y
hora se despliegan. Estos especificadores de formato son los mismos que los usados por la funcién
strftime() heredada de C. Se presentan en la tabla 6-1. (Consulte Forme la fecha y hora con strfti-
me().) Los especificadores de formato empiezan con un signo de porcentaje (%) y son seguidos por
un comando de formato. Por ejemplo, %H causa que la hora se despliegue empleando el reloj de
24 horas. %Y hace que se muestre el afio. Puede combinar caracteres regulares y especificadores
de fecha/hora en el mismo patrén. Por ejemplo,

char *custom pat = "La fecha de hoy es 3%x";

Suponiendo que la fecha es 1 de enero de 2009, entonces esto produce la siguiente salida:

La fecha de hoy es 1/1/2009

Ejemplo
En el siguiente ejemplo se muestra time_put en accién. Despliega la fecha y hora en English y
Spanish_Spain.

// Da salida a la fecha y hora usando la faceta time put.

#include <iostream>
#include <locale>
#include <cstring>
#include <ctime>

using namespace std;

int main()
// Obtiene la hora actual del sistema.
time_t t = time (NULL) ;
tm *hora act = localtime(&t) ;

// Crea configuraciones regionales y de idioma para US y Spanish Spain.
locale usloc ("English US") ;
locale sloc("Spanish Spain");

// Establece la configuracidén regional y de idioma para US
// y obtiene la faceta time put para US.
cout.imbue (usloc) ;
const time put<char> &hora us =
use facet<time put<char> > (cout.getloc()) ;

// %c especifica el patrdn de fecha y hora estéandar.
char *pat_est = "%c";
char *pat_est fin = pat est + strlen(pat_est);

Capitulo 6: Formacion de datos 411

// El siguiente patrdén personalizado despliega horas y minutos
// y después muestra la fecha.

char *pat_przado = "%A %B %d, %Y %H:%M";

char *pat przado fin = pat przado + strlen(pat przado) ;

cout << "Formato de fecha y hora US est\uOOaOndar: ";
hora_us.put (cout, cout, ' ', hora act, pat est, pat_est fin);
cout << endl;

cout << "Formato de fecha y hora US personalizado: ";
hora us.put(cout, cout, ' ', hora act, pat przado, pat przado fin);
cout << "\n\n";

// Establece la configuracidn regional y de idioma y obtiene
// la faceta time put para Espafla.
cout.imbue (sloc) ;
const time put<char> &hora g =
use facet<time put<char> > (cout.getloc()) ;

cout << "Formato de fecha y hora Spanish Spain est\uOOaOndar: ";
hora g.put (cout, cout, ' ', hora_act, pat_est, pat est fin);
cout << endl;

cout << "Formato de fecha y hora Spanish Spain personalizado: ";
hora g.put (cout, cout, ' ', hora_act, pat_przado, pat_przado fin);
cout << endl;

return O;

}

Aqui se muestra la salida:

Formato de fecha y hora US estandar: 11/24/2008 3:54:15 PM
Formato de fecha y hora US personalizado: Monday November 24, 2008 15:54

Formato de fecha y hora Spanish Spain estdndar: 24/11/2008 15:54:15
Formato de fecha y hora Spanish Spain personalizado: lunes noviembre 24, 2008
15:54

Opciones

Otra manera de formar la fecha y hora consiste en usar la funcién strftime() heredada del lenguaje C.

Si estd usando la configuracién regional y de idioma global, entonces strftime() es un poco mas facil

de usar que la faceta time_put. Consulte Forme la fecha y hora con strftime() para conocer mas detalles.
Hay una segunda forma de put() que le permite determinar un solo especificador de formato

de fecha y hora. Aqui se muestra:

iter_type put(iter_type flujo, ios_base &mno_usado, char_type carrelleno,
const tm *h, char ftm, char modo = 0) const

Los primeros cuatro pardmetros son los mismos que en la primera versién. El especificador de
formato se pasa en fmt, y un modificador de formato opcional se pasa en modo. No todos los entor-
nos dan soporte a modificadores. Si lo tienen, estan definidos por la implementacién. La funcién
devuelve un iterador a uno después del tdltimo carécter escrito.

412 c++ Soluciones de programacidn

Forme datos en una cadena

Componentes clave

Encabezados Clases Funciones

<sstream> ostringstream string str() const

En ocasiones, es 1til construir de antemano una cadena que contenga salida formada. Asi pue-

de darse salida a la cadena cuando sea necesario. Esta técnica resulta especialmente ttil cuando

se trabaja en un entorno de ventanas, como Windows, en que los datos se despliegan mediante

un control. En este caso, a menudo necesitara formar los datos antes de desplegarlos. Esto suele
realizarse de manera maés facil en C++ mediante el uso de un flujo de cadena, como ostringstream.
Debido a que todos los flujos trabajan de la misma manera, las técnicas descritas en las soluciones
anteriores que escriben los datos formados en un flujo como cout también funcionan con flujos

de cadena. Una vez que ha construido la cadena formada, puede desplegarla usando cualquier
mecanismo que elija. En esta solucién se muestra el proceso.

Paso a paso
Una manera de formar datos en una cadena requiere los siguientes pasos:

1. Cree un ostringstream.

2. Establezca las marcas de formato, precisién, ancho y caracter de relleno, de acuerdo con lo
necesario.

3. Dé salida a los datos al flujo de cadena.

4. Para obtener la cadena formada, llame a str().

Andlisis
Los flujos de cadena, incluido ostringstream, se describieron en el capitulo 5. Consulte Use los
flujos de cadena para conocer mds detalles sobre la creacion y el uso de un flujo de cadena.

Las marcas de formato, precision, ancho y caracter de relleno se establecen en el flujo de cade-
na de la misma manera que en cualquier otro flujo de C++. Por ejemplo, puede utilizar la funcién
setf() para establecer las marcas de formato. Use width(), precision() y fill() para establecer el
ancho, la precisién y el caracter de relleno. Como opcién, puede utilizar los manipuladores de E/S
para establecer estos elementos.

Para crear una cadena formada, simplemente dé salida al flujo. Cuando quiera usar la cadena
formada, llame a str() en el flujo de cadena para obtenerla. Con ello, podra desplegar, almacenar o
usar la cadena de la manera que guste.

Ejemplo
En el siguiente ejemplo se muestra cémo crear una cadena formada mediante el uso de un flujo de
cadena. Una vez que se ha construido la cadena formada, se le da salida:

// Usa un flujo de cadena para almacenar salida formada en una cadena.

#include <iostream>
#include <sstream>

Capitulo 6: Formacion de datos

#include <locale>
#include <iomanip>

using namespace std;

int main()

{

}

locale usloc ("English US");

ostringstream flucadsad;

// Establece la marca showbase para que se despliegue el simbolo de moneda.

flucadsad << showbase;

413

// Establece la configuracidén regional y de idioma de flucadsad en US English.

flucadsad. imbue (usloc) ;

// Obtiene una faceta money put para flucadsad.
const money put<char> &mon eu =
use facet<money put<char> >(flucadsad.getloc()) ;

// Forma un valor en délares de EU.
mon_eu.put (flucadsad, false, flucadsad, ' ', "5498499");

cout << "Dinero formado para EU: ";
cout << flucadsad.str() << "\n\n";

// Da una nueva cadena vacia a flucadsad.
flucadsad.str(string()) ;

// Ahora, construye una tabla de areas de un circulo.
flucadsad << setprecision(4) << showpoint << fixed << left;
flucadsad << "Di\uOOaOmetro Area\n";

cout << "Una tabla de \u0OaOreas de un c\uOOalrculo.\n";
for(int i=1; i < 10; ++1)
flucadsad << left << " " << getw(6) << 1 << setw(8)
<< right << 1i*3.1416 << endl;

// Despliega la cadena formada.
cout << flucadsad.str();

return 0;

Aqui se muestra la salida:

Dinero formado para EU: $54,984.99

Una tabla de areas de un circulo.

Didmetro Area
1 3.1416
2 6.2832

3 9.4248

414 c++ Soluciones de programacidn

12.5664
15.7080
18.8496
21.9912
25.1328
28.2744

W 0 J o0 Ul

Opciones

La funcién heredada de C sprintf() ofrece otra manera de escribir salida formada a una cadena. Se
describi6 en la seccion Opciones de la solucioén Use printf() para formar datos. Debido a las posibili-
dades de desbordamiento del bifer, y a que los flujos de cadena ofrecen una opcién maés flexible,
sprintf() no se recomienda para nuevo cédigo. Se incluye en este libro s6lo debido a que hace uso
extenso del cédigo C heredado.

Forme la fecha y hora con strftime()

Componentes clave

Encabezados Clases Funciones

<ctime> struct tm &localtime(const time_t *hora)
size_t strftime(char *cad, size_t tammax,
const char *fmt,
const struct tm *apt_h)

Aunque se recomienda usar la faceta time_put para casi todo el formato de fecha y hora, hay una
opcién que puede ser ttil en algunos casos: la funcién strftime(). Esta definida en C y atin tiene
soporte en C++. Aunque carece de parte de la flexibilidad de la faceta time_put (descrita en una
solucién anterior), puede ser til cuando estd desplegando la fecha y hora para la configuracién
regional y de idioma global. En esta solucién se muestra el proceso.

Paso a paso
Para usar strftime() para formar la fecha y hora se necesitan estos pasos:

1. Obtenga un apuntador a tm que sefiale a la hora que habra de formarse. En el caso de la
hora local, este apuntador puede obtenerse al llamar a localtime().

2. Cree una matriz char con el largo suficiente para contener la salida formada. Recuerde
incluir espacio para el terminador de caracter nulo.

3. Para formar la fecha y hora, llame a strftime(), especificando los formatos deseados. Tam-
bién pasara un apuntador a la matriz de char del paso 2 y un apuntador a tm del paso 1.

Capitulo 6: Formacion de datos 415

Analisis
La funcién strftime() forma la fecha y hora, poniendo el resultado en una cadena terminada en
carécter nulo. Requiere el encabezado <ctime> y tiene el siguiente prototipo:

size_t strftime(char *cad, size_t tammax, const char *fmt,
const struct tm *apt_h)

La hora que habra de formarse estd en una estructura tm a la que sefiala apt_h. El formato de la
fecha y hora se especifica en la cadena a la que senala fmt. La salida formada se pone en la cadena
a la que sefala cad. El resultado termina con un caracter nulo. Un méximo de tammax caracteres se
colocard en cad. Devuelve el niimero de caracter que habra de ponerse en cad (excluido el termi-
nador de cardcter nulo). Debe asegurarse de que cad sefiala a una matriz con el tamafio suficiente
para contener la salida méaxima. Por tanto, debe tener por lo menos tammax elementos de largo.

Se devuelve cero si se necesitan mas de tammax caracteres para contener el resultado formado.

La funcién strftime() forma la fecha y hora de acuerdo con los especificadores de formato. Cada
especificador empieza con el signo de porcentaje (%) y es seguido por un comando de formato. Estos
comandos se utilizan para especificar la manera exacta en que se representara la distinta informa-
cién de fecha y hora. Cualquier otro cardcter encontrado en fmt (la cadena de formato) se copia en
cad, que no cambia. La fecha y hora se forman de acuerdo con la configuracién regional y de idioma
global, que es "C", como opcién predeterminada. Los comandos de formato se muestran en la tabla
6-1. Tome en cuenta que muchos de los comandos son sensibles a mayusculas y mintsculas.

Para comprender la manera en que funcionan los formatos de fecha y hora, trabajemos
un ejemplo. Tal vez el formato de uso mas comun sea %c, que despliega la fecha y hora usando un
formato estdndar apropiado para la configuracién regional y de idioma. Los formatos de fecha y
hora estdndares pueden usarse por separado al especificar %x (fecha) y %X (hora). Por ejemplo, la
cadena de formato "%x %X" hace que se desplieguen la fecha y hora estandares.

Aunque los formatos estdndar son titiles, puede tomar control completo usando cualquier par-
te de la fecha, la hora, o ambas, que desee, de varias formas. Por ejemplo, "%H:%M" despliega la
hora, usando sé6lo horas y minutos, en un formato de 24 horas. Observe que las horas estan separa-
das de los minutos por dos puntos. Como se explicd, se dara salida directa a cualquier caracter en
la cadena de formato que no sea parte de un especificador. He aqui un formato de fecha popular:
"%A, %d de %B de %Y". Despliega el dia, mes y aiio empleando el formato de nombre largo, como
en Martes, 01 de noviembre de 2008.

En strftime(), el pardmetro apt_t sefiala a un objeto de tipo tm que contiene lo que se denomina
la forma "desglosada" de la hora. La estructura tm también se define en <ctime>. Una manera de
obtener un objeto de tm consiste en llamar a la funcién localtime(). Devuelve un apuntador a una
estructura tm que contiene la hora representada como hora local. Puede obtener la hora actual
al llamar a time(). Consulte Forme la fecha y hora con la faceta time_put para conocer informacion
adicional sobre tm, localtime() y time().

Ejemplo
En el siguiente ejemplo se muestra la funcién strftime() en accion:

#include <iostream>
#include <ctime>

using namespace std;

416 Cc++ Soluciones de programacidn

int main() {
char cad[64];

// Obtiene la hora actual del sistema.
time t t = time (NULL) ;

// Muestra la cadena estandar de fecha y hora.
strftime (cad, 64, "%c", localtime(&t)) ;
cout << "Formato est\u0OOaOndar: " << cad << endl;

// Muestra una cadena de fecha y hora personalizada.
strftime(cad, 64, "%$A, %B %d %Y %I:%M %p", localtime(&t));

cout << "Formato personalizado: " << cad << endl;
return 0;
}
Comando Reemplazado por
%a Nombre abreviado del dia de la semana.
%A Nombre completo del dia de la semana.
%b Nombre abreviado del mes.
%B Nombre completo del mes.
%cC Cadena de fecha y hora estandar.
%d Dia del mes, como decimal (1-31).
%H Hora (0-23).
%l Hora (1-12).
%j Dia del ano, como decimal (1-366).
%m Mes, como decimal (1-12)
%M Minuto, como decimal (0-59)
%p Equivalente de configuracion regional y de idioma de a.m. y p.m.
%S Segundo, como decimal (0-61).
%U Semana del ano; el domingo es el primer dia (0-53).
%W Dia de la semana, como decimal (0-6; el domingo es 0).
%W Semana del ano; el lunes es el primer dia (0-53).
%X Cadena de fecha estandar.
%X Cadena de hora estandar.
%y Ano en decimal, sin el siglo (0-99).
%Y Ano, incluido el siglo, como decimal.
%Z Nombre de la zona horaria.
%% El signo de porcentaje.

TaBLA 6-1 Los especificadores de formato de strftime().

Capitulo 6: Formacion de datos 417

Aqui se muestra la salida:

Formato estdndar: 11/24/08 13:28:59
Formato personalizado: Monday, November 24 2008 01:28 PM

Opciones
Algunos compiladores dan soporte a modificadores de comandos de formato de fecha y hora,
pero son dependientes de la implementacién. Por ejemplo, Microsoft Visual C++ le permite mo-
dificar un comando con #. El efecto preciso varia entre comandos. Por ejemplo, %#c hace que la
cadena de fecha y hora estandar se despliegue en su forma larga, con los nombres de los dias de
la semana y el mes escritos. Necesitard revisar la documentaciéon de su compilador para conocer
los modificadores que se aplican a su entorno de desarrollo.

La funcién strftime() usa la configuracion regional y de idioma global definida por C para
determinar los formatos de fecha y hora. Puede cambiar esta configuracién al llamar a la funcion
de C setlocale(), que se muestra a continuacién:

char *setlocale que, const char *loc)

La funcién setlocale() trata de usar la cadena especificada por loc para establecer los pardmetros

de configuracién regional y de idioma como se especifica en que. Las cadenas de configuraciéon son
dependientes de la implementacién. Consulte la documentacion de su compilador para conocer las
cadenas de localizacion a las que da soporte. Si loc es null, setlocale() devuelve un apuntador a la ca-
dena de localizacién actual. Al momento de la llamada, que debe ser una de las siguientes macros:

LC_ALL LC_COLLATE LC_CTYPE

LC_MONETARY LC_NUMERIC LC_TIME

LC_ALL alude a todas las categorias de localizacién. LC_COLLATE afecta a las funciones de
intercalacién, como strcoll(). LC_CTYPE modifica la manera en que acttian las funciones de ca-
racteres. LC_MONETARY determina el formato monetario. LC_NUMERIC determina el formato
numérico. LC_TIME determina el comportamiento de la funcién strftime(). La funcién setlocale()
devuelve un apuntador a una cadena asociada con el parametro que. Para usar setlocale(), debe
incluir <clocale>.

En el siguiente programa se vuelve a trabajar el ejemplo, de modo que la fecha y la hora se
desplieguen en forma compatible con Spanish_Spain. (La cadena de configuracién regional y de
idioma es compatible con Visual C++. Tal vez su compilador requiera una cadena diferente.)

#include <iostream>
#include <ctimes>
#include <clocales>

using namespace std;

int main() {
char cadl[64];

// Establece la configuracidén regional y de idioma en Spanish Spain.
setlocale (LC_ALL, "Spanish Spain");

418

C++ Soluciones de programacion

// Obtiene la hora actual del sistema.
time_t t = time (NULL) ;

// Muestra la cadena estandar de fecha y hora.
strftime (cad, 64, "%c", localtime(&t));
cout << "Formato estdndar: " << cad << endl;

// Muestra una cadena de fecha y hora personalizada.
strftime (cad, 64, "%A, $B %Y %I:%M %p", localtime(&t));
cout << "Formato personalizado: " << cad << endl;

return O0;

}

Aqui se muestra la salida:

Formato estdndar: 24/11/2008 13:56:11
Formato personalizado: lunes, 24 de noviembre de 2008 01:56

Observe que ahora la fecha y la hora estdn en espafiol y tienen el estilo propio de este idioma*.
Aungque strftime() en ocasiones ofrece una opcién conveniente, en casi todos los casos querra usar
time_put para nuevo cédigo. La razén es que el sistema de localizacién de C++ esta completamente
integrado en los flujos de C++. Mds atin, cada flujo puede tener su propia configuracién regional y
de idioma. La funcién strftime() usa la configuracién global, que es una caracteristica heredada del
lenguaje C. El método moderno es que cada flujo tenga su propia configuracion regional y de idioma.

Use printf() para formar datos

Componentes clave

Encabezados Clases Funciones

<cstdio> int printf(const char *fmt, ...)

Aungque el uso de facetas como num_put y money_put es la manera moderna de formar datos, tal
vez las facetas no sean lo primero que le viene a la mente a casi ningtin programador que trabaje con
C++. En cambio, tal vez lo sea la funcién printf(). Incorporada en C++ como parte de su legado de C,
printf() es, quizas, la funcion para formar salida mas usada, mejor comprendida y mas copiada que
existe. Aun programadores con poco conocimiento de C o C++ han oido de ella. También se ha agre-
gado al lenguaje Java. Aunque las marcas de formato, las funciones y las facetas definidas por los
flujos de C++, en esencia, duplican su funciones, la formacion con el estilo de printf() atin se emplea
mucho porque ofrece una manera compacta de crear casi cualquier tipo de formato numérico o de
cadena. También se usa ampliamente en c6digo heredado de C. Francamente, ningtin programador
puede considerarse un maestro de C++ sin saber cémo manejar printf().

Antes de empezar, es necesario dejar en claro un tema importante: printf() es sélo parte de una
familia de funciones que trabajaran, en esencia, de la misma manera. Las otras funciones descritas

*Nota del T. Debido a que se ha establecido la configuracion regional y de idioma para espanol, no es necesario usar secuencias de
escape para caracteres especiales, como letras con acentos en el flujo afectado por esa configuracion.

Capitulo 6: Formacion de datos 419

en esta solucién son sprintf() y fprintf(). Las tres forman datos mediante el uso de especificadores
de formato. La diferencia entre estas funciones es el destino de la salida formada. En el caso de
printf(), el destino es la salida estdndar, que suele ser la consola. Para sprintf() el destino es una
cadena, y para fprintf(), es un archivo (como se especifica en el apuntador estilo C, no un flujo de
C++). Excepto por el lugar al que se envian los datos, la informacién presentada en esta solucién
se aplica a las tres funciones.

NoT1A Casi todo el cédigo nuevo debe usar caracteristicas de C++ para formacion, no printf(). La
formacién de C++ estd integrada en los flujos de C++ y ofrece mejor soporte a internacionalizacion.
Ademds, printf() forma los datos de acuerdo con la configuracion regional y de idioma, no una con-
figuracién basada en flujos. Por tanto, el método de C++ es mds flexible. Por iiltimo, suele ser mejor
no mezclar salida a cout con salida de printf(). Como regla general, para cualquier flujo dado, debe
usar E/S de C++ o C. Por tanto, si quiere usar printf() en un programa, no debe usar cout en él.

Paso a paso
Para la formacién de datos mediante printf() se necesitan los siguientes pasos:

1. Cree una cadena de formato que contenga los especificadores de formato deseados.

2. Pase la cadena de formato como el primer argumento de printf().

3. A partir del segundo argumento de printf(), pase los datos que desee formar. Debe haber
el mismo nidmero de argumentos que de especificadores de formato, y deben estar en el
mismo orden.

Analisis
La funcién printf() escribe salida formada al dispositivo de salida estandar, que es la consola,
como opcién predeterminada. Se muestra a continuacién:

int printf(const char *fmt, lista-args)

Forma los datos pasados en lista-args de acuerdo con los especificadores de formato contenidos
en fmt. Devuelve el niimero de caracteres que se imprimira en realidad. Si se devuelve un valor
negativo, se indica que ha ocurrido un error.

La cadena a la que sefiala fint consta de dos tipos de elementos. El primero estd integrado por
caracteres que se desplegaran tal cual. El segundo tipo contiene especificadores de formato que defi-
nen la manera en que se formaran los argumentos. Los especificadores de formato se muestran en
la tabla 6-2. Observe que todos empiezan con un signo de porcentaje y son seguidos por un cédigo
de formato. Debe haber exactamente el mismo niimero de argumentos que de especificadores de
formato, y se asignan unos a otros en orden. Por ejemplo, la siguiente llamada a printf():

printf ("Hola %c %s %d &s", 'a', "ustedes", 10);
despliega
Hola a ustedes 10

Si hay argumentos insuficientes para asignar los especificadores de formato, la salida queda sin
definir. Si hay més argumentos que especificadores de formato, se descartan los sobrantes. En las
siguientes secciones se describen de manera detallada los especificadores de formato.

420

C++ Soluciones de programacion

Codigo Formato

%C Caracter.

%d Enteros decimales con signo.

%i Enteros decimales con signo.

%e Notacion cientifica (e mindscula).

%E Notacién cientifica (E mayuscula).

%f Punto flotante decimal.

%g Usa %e o %f, la que sea mas corta (si usa %e, la e serd minuscula).

%G Usa %E o %f, la que sea mas corta (si usa %E, la E sera mayuscula).

%0 Octal sin signo.

%s Cadena terminada en un caracter nulo.

%u Enteros decimales sin signo.

%X Hexadecimal sin signo (letras mindsculas).

%X Hexadecimal sin signo (letras mayusculas).

%p Despliega una direccion.

%n El argumento asociado debe ser un apuntador a un entero, en que se coloca el nimero de
caracteres escrito hasta ahora.

%% Imprime un signo %.

TaBLA 6-2 Los especificadores de formato usados por la familia de funciones printf().

Forme caracteres y cadenas
Para desplegar un carécter individual, use %c. Para imprimir una cadena terminada en un carac-
ter nulo, use %s. No puede usar printf() para desplegar un objeto de string.

Forme enteros

Puede usar %d o %i para formar un valor entero. Estos especificadores de formato son equivalen-

tes: ambos tienen soporte por razones histéricas. Para dar salida a un unsigned int, utilice %u.
Tiene la opcién de desplegar un entero sin signo en formato octal o hexadecimal usando %o y

%X, respectivamente. Debido a que el sistema numérico hexadecimal usa de la letra A a la F para

representar los ntimeros del 10 al 15, puede desplegar estas letras en maytsculas o mintsculas.

Para el primer caso, utilice el especificador de formato %X; para mindsculas, use %x.

Forme valores de punto flotante

El especificador de formato %f despliega un argumento double en formato de punto flotante.
Los especificadores %e y %E indican a printf() que despliegue un argumento double en notacion
cientifica. Los niimeros representados en esta notacién toman esta forma general:

x.dddddE+/-yy

Capitulo 6: Formacion de datos 421

Si quiere desplegar la letra "E" en maytisculas, use el formato %E; de otra manera, use %e. Puede
usar %f o %e empleando los especificadores de formato %g o %G. Esto hace que printf() seleccio-
ne el especificador de formato que produzca la salida més corta. Donde sea aplicable, use %G si
quiere que "E" aparezca en mayusculas; de otra manera, use %g.

Los prefijos de tipo

Para permitir que printf() despliegue enteros short y long, necesitard agregar un prefijo en el especi-
ficador de tipo. Estos prefijos pueden aplicarse a especificadores de tipo d, i, 0, u y x. El modificador
lindica que sigue un tipo de datos largo. Por ejemplo, %Id significa que un long int va a formarse.
El h indica un short int. Por tanto, %hu indica que los datos son del tipo short unsigned int.

Un modificador L puede ser prefijo de los especificadores de punto flotante e, f y g, e indica
que sigue un long double.

Si esta usando un compilador moderno que da soporte a formatos de caracteres extendidos,
entonces puede usar el modificador 1 con el especificador ¢ para indicar un caracter extendido de
tipo whcar_t. También puede usar el modificador I con el especificador s para indicar una cadena
de caracteres extendidos.

Despliegue una direccion
Para desplegar una direccion, utilice el especificador %p. La direccién se formara de una manera
compatible con el tipo de direccionamiento usado por el entorno en ejecucion.

Especificador %n

El especificador %n es tinico porque en realidad no forma datos. En cambio, hace que el ntimero
de caracteres que se ha escrito en el momento en que se encuentra %n se almacene en una varia-
ble de entero cuyo apuntador se especifica en la lista de argumentos. Por ejemplo, este fragmen-
to de cédigo despliega el nimero 14 después de la linea "Se trata de una prueba':

int i;

printf ("Se trata de una prueba"%n, &i);
printf ("&d", 1i);

Establezca el ancho de campo y la precision

Los especificadores de formato pueden incluir modificadores que especifican el ancho de campo
y la precisién. Un entero colocado entre el signo % y el c6digo de formato acttia como un espe-
cificador de ancho de campo minimo. Esto rellena la salida para asegurar que tenga, por lo menos,
cierta longitud minima. Si la cadena o el niimero es mayor que el minimo, se imprimird completa,
aunque rebase el minimo. El relleno predeterminado se hace con espacios. Si quiere que se rellene
con 0, coloque un 0 antes del especificador de ancho de campo. Por ejemplo, %05d rellenara un
nimero de menos de cinco digitos con 0 para que tenga una longitud total de 5.

El significado exacto de modificador de precision depende del especificador de formato que se esta
modificando. Para agregar un modificador de precision, coloque un punto decimal, seguido por la
precisioén, después del especificador de ancho de campo. Para los formatos e, E y £, el modificador
de precisiéon determina el niimero de lugares decimales que se imprimira. Por ejemplo, %10.4f des-
plegard un nimero de por lo menos 10 caracteres de ancho con cuatro lugares decimales. Cuando
el modificador de precision se aplica a c6digo de formato g o G, determina el niimero méaximo de

422

C++ Soluciones de programacion

digitos significativos desplegado. Cuando se aplica a enteros, el modificador de precision especifi-
ca el nimero minimo de digitos que se desplegara. Se agregan ceros al principio, si es necesario.

Cuando el modificador de precision se aplica a cadenas, el ntimero después del punto especi-
fica la longitud de campo méxima. Por ejemplo, %5.7s desplegard una cadena que tendra por lo
menos cinco caracteres de largo y no serd mayor de siete. Si la cadena es mas larga que el ancho de
campo maximo, los caracteres del final se truncaran.

Los especificadores de ancho de campo y de precisiéon pueden alimentarse como argumentos a
printf(), en lugar de hacerlo como constantes. Para realizar esto, utilice * como marcador de posi-
cién. Cuando se revise la cadena de formato, printf() asignara cada * a un argumento en el orden
en que se presenten. Por ejemplo:

printf (" |%*.*f|", 8, 3, 98.6);

producird la siguiente salida:
| 98.600 |

En este ejemplo, el primer * coincidira con 8, el segundo con 3 y f con 98.6.

Justifique a la izquierda la salida

Como opcién predeterminada, toda la salida se justifica a la derecha. Si el ancho de campo es
mayor que los datos impresos, éstos se colocaran a la derecha del campo. Puede imponer que la
informacién se justifique a la izquierda al colocar un signo de menos directamente después de %.
Por ejemplo, %-10.2f justificara a la izquierda un nimero de punto flotante con dos lugares deci-
males en un campo de diez caracteres.

Las marcas #, + y espacio
Ademds de la marca de justificacion a la izquierda que se acaba de describir, printf() da soporte a
otras tres. Son #, + y espacio. A continuacién se describe cada una de ellas.

La marca # tiene un significado especial cuando se usa con algtn especificador de formato de
printf(). Al anteceder a g, G, £, e o E con una marca # se asegura que el punto decimal esté presen-
te, aunque no haya digitos decimales. Si antecede el formato x o X con #, el niimero hexadecimal
se imprimira con un prefijo 0x. Si antecede el formato o con #, el valor octal se imprimird con un
prefijo 0. La marca no puede aplicarse a ningtn otro especificador de formato.

La marca + indica que un valor numérico con signo siempre debe incluir un signo, como en
+10 0 -5.

La marca de espacio causa que se agregue un espacio al principio de valores que no son negativos.

Ejemplo

En el siguiente programa se muestran varios ejemplos de printf() en accion:

// Demuestra printf ().

#include <cstdio>
#include <cmath>

using namespace std;

int main ()

{

int x = 10;
double val = 568.345;

Capitulo 6: Formacion de datos

// No es necesaria una llamada a printf () para incluir
// especificadores de formato o argumentos adicionales.
printf ("Se muestra la salida a la consola.\n");

// Despliega valores numéricos.
printf ("Los valores de x y val: %d %$f\n\n", x, val);
printf ("Los valores de x en hexadecimal con may\uOOa3sculas: %X\n", x);

printf ("Mezcla datos %d en %f la cadena de formato.\n\n", 19, 234.3);

// Especifica precisiones, anchos y marcas de signo diversos.

printf ("Se muestra val con precisiones, anchos y marcas de signo diversos:

printf ("|%$10.2f|%+12.4£|% 12.3f|%f|\n", val, val, val, val);
printf (" |%10.2f|%+12.4£|% 12.3f|%f|\n", -val, -val, -val, -val);
printf ("\n") ;

// Despliega columnas de numeros, justificados a la derecha.
printf ("N\uOOa3meros justificados a la derecha.\n");
for(int 1 = 1; i < 11; ++1i)

printf ("%$2d %8.2f\n", i, sqgrt(double(i)));

printf ("\n") ;

// Ahora, justifica a la izquierda algunas cadenas en un campo de
// 16 caracteres. Justifica a la derecha las cantidades.

printf ("%$-16s Cantidad: %3d\n", "Martillos", 12);
printf ("$-16s Cantidad: %3d\n", "Pinzas", 6);

printf ("%$-16s Cantidad: %3d\n", "Desarmadores", 19);
return 0;

}

Aqui se muestra la salida:

Se muestra la salida a la consola.
Los valores de x y val: 10 568.345000

Los valores de x en hexadecimal con mayuisculas: A
Mezcla datos 19 en 234.300000 la cadena de formato.

Se muestra val con precisiones, anchos y marcas de signo diversos:
| 568.35| +568.3450] 568.345|568.345000 |
| -568.35]| -568.3450| -568.345|-568.345000]

Nimeros justificados a la derecha.
1 .00
.41
.73
.00
.24
.45
.65
.83
.00
.16

O W O J0 Uk WN
W W NDNNNNNRE R

=

423

\n") ;

424

C++ Soluciones de programacion

Martillos Cantidad: 12
Pinzas Cantidad: 6
Desarmadores Cantidad: 19
Opciones

Por mucho, la mejor manera de aprender a usar de manera efectiva printf() es experimentar con
ella. Aunque la amplitud de la sintaxis de su formato facilita la creacién de especificadores de
formato muy intimidantes, todos siguen las reglas descritas en el andlisis. Desglose cada formato
en sus partes y le resultara facil comprender lo que hace.

La funcién printf() no se usa para formar fecha y hora. La funcién de C que lo hace es strfti-
me(), descrita en la solucién anterior. El método de C++ consiste en usar la faceta time_put, descri-
ta en Forma la fecha y hora con la faceta time_put.

Puede construir por anticipado una cadena que contenga salida formada al llamar a sprintf().
Parte de la familia printf() de funciones, sprintf() funciona igual que ésta, excepto que no usa la
salida estandar (por lo general, la consola), sino que escribe los datos formados en una cadena.
Se muestra a continuacion:

int sprintf(char *cad, const char *fmt, ...)

La salida formada se pone en una matriz a la que sefiala cad. El resultado termina en un caracter
nulo. Por tanto, al regresar, la matriz de caracteres a la que sefiala cad contiene una cadena termi-
nada en un caracter nulo. Devuelve el niimero de caracteres copiado en realidad en cad. (La termi-
nacién en caracter nulo no es parte de la cuenta.) Un valor negativo devuelto indica un error.

Es importante que tenga cuidado cuando use sprintf(), debido a la posibilidad de complica-
ciones en el sistema y riesgos de seguridad. Se menciona aqui principalmente debido a su amplio
uso en c6digo C heredado. En el caso de nuevos proyectos, debe usar un flujo de cadena, como
ostringstream, para poner datos formados en una cadena. (Consulte Forme datos en una cadena.)
Cuando use sprintf(), debe asegurarse de que la matriz a la que sefiala cad tenga el tamafio suficien-
te para contener la salida que recibir4, incluido el terminador de caracter nulo. Si no se sigue esta
regla se tendrd un desbordamiento de bifer, que puede llevar a una brecha de seguridad o a que
el sistema deje de funcionar. En ningtin caso debe usar sprintf() en datos no verificados, como
datos ingresados por un usuario. Ademads, no debe usar una cadena con formato ingresada por el
usuario porque tiene las mismas posibilidades de acarrear problemas.

NoOTA sprintf() presenta la posibilidad de causar una caida del sistema o de provocar brechas de
seguridad. No se recomienda su uso en cédigo nuevo. Muchos compiladores proporcionan versiones
no estindar de sprintf(), a menudo llamadas algo asi como snprintf(), que le permiten especificar el
niimero mdximo de caracteres que se copiardn en la cadena. Si estd manteniendo cédigo C heredado,
se recomienda que use ese tipo de funcion para trarar de evitar problemas.

Puede enviar salida formada a un archivo al usar fprintf(). Se muestra a continuacion:
int fprintf(FILE *aa, const char *fmt, ...)

Funciona igual que printf(), excepto que los datos formados se escriben en el archivo al que sefiala
aa. El valor devuelto es el nimero de caracteres al que se da salida en realidad. Si ocurre un error,
se devuelve un ntimero negativo. Debido a que fprintf() usa el sistema de E/S de C, que se basa
en apuntadores a archivos en lugar de objetos de flujo, normalmente no lo utilizara en programas
de C++. Se usa ampliamente, por supuesto, en cédigo heredado de C.

CAPITULO
Popurri

no de los problemas con la escritura de un libro de programacién estriba en encontrar un

punto apropiado para detenerse. Hay un universo casi ilimitado de temas entre los cuales

elegir, y cualquier cantidad de ellos podria merecer su inclusién. Es dificil encontrar dénde
trazar la linea. Por supuesto, todos los libros deben terminar. Por tanto, siempre es necesario un
punto final, sea facil encontrarlo o no. Este libro no es la excepcion.

En éste, el capitulo final del libro, el autor ha decidido concluir con una variedad de solucio-
nes que abarcan diversos temas. Estas representan técnicas que se desean cubrir en el libro; sin
embargo, por una razén u otra, un capitulo completo no era apropiado para ninguna de ellas. Por
ejemplo, se queria mostrar cémo sobrecargar los operadores de caso especial de C++, como [, —>,
new y delete, etc. Aunque varias estdn dedicadas a sobrecargar estos operadores, no son suficien-
tes para un capitulo. También se desea incluir soluciones que atienden a alguna pregunta comuin
pero aislada tipo ";Cémo hacer?"; por ejemplo, cémo crear un constructor de copia, implementar
una funcién de conversién o usar un ID de tipo en tiempo de ejecucién. Todos son temas impor-
tantes, pero ninguno es lo suficientemente importante para merecer un capitulo propio. A pesar de
la naturaleza de rango amplio de las soluciones de este capitulo, todos tienen dos cosas en comun:

1. Responden una pregunta frecuente.
2. Son aplicables a un amplio rango de programadores.

Mas atin, todas describen conceptos clave que puede adaptar y mejorar facilmente.
He aqui las soluciones contenidas en este capitulo:

e Técnicas basicas de sobrecarga de operadores

* Sobrecargue el operador de llamada a funcién ()

* Sobrecargue el operador de subindice []

¢ Sobrecargue el operador —>

* Sobrecargue new y delete

* Sobrecargue los operadores de aumento y disminuciéon
e Cree una funcién de conversion

¢ Cree un constructor de copia

* Determine un tipo de objeto en tiempo de ejecucion

425

426 Cc++ Soluciones de programacion

¢ Use ntimeros complejos
¢ Use auto_ptr
¢ Cree un constructor explicito

Técnicas basicas de sobrecarga de operadores

Componentes clave

Encabezados Clases Funciones

tipo-ret operator#(lista-param)

En C++, los operadores pueden sobrecargarse en relacion con una clase, incluidas las clases persona-
lizadas. Esto le permite definir lo que una operacién especifica, como + o/, significa para un objeto
de la clase. También permite que estos objetos sean usados en expresiones, de la misma manera en
que se utilizan para usar tipos integrados. Recuerde que cuando define una clase, estd creando un
nuevo tipo de datos. Mediante la sobrecarga de operadores, puede integrar de manera transparen-
te este nuevo tipo de datos en su entorno de programacion. Esta extensibilidad de tipo es una de las
caracteristicas mds importantes y poderosas de C++ porque le permite expandir el sistema
de tipos de C++ para cubrir sus necesidades.

La sobrecarga de operadores sera un territorio familiar para la mayoria de los lectores por-
que es una habilidad basica de C++ y casi todos los programadores saben cémo sobrecargar los
operadores de uso mas comun. Por esto, la solucién de sobrecarga de operadores de este capitulo
se concentra en estos operadores especializados: aumento y reduccion, (), [1, —>, new y delete. A
muchos programadores les parecen estos operadores confusos cuando se trata de sobrecarga, y
son la fuente de muchas preguntas tipo ";Cémo hacer?". Sin embargo, para proporcionar la infor-
macion completa, en esta solucion se presenta una breve revision general de las técnicas basicas
usadas para sobrecargar un operador. Esta revisién general es suficiente para los propésitos de
este capitulo, pero no es un sustitutivo de un examen a profundidad del tema.

NOTA Para una revisién a profundidad de la sobrecarga de operadores, se recomienda el libro C++:
The Complete Reference, de Herb Schildt.

Paso a paso
Para sobrecargar un operador como una funcién miembro de una clase se requieren estos pasos:

1. Agregue una funcién operator a la clase, especificando el operador que quiera sobrecargar.

2. En el caso de operadores binarios, la funcién operator tendrd un parametro, que recibiré el
operando del lado derecho. El operador del lado izquierdo se pasard mediante this.

3. En el caso de operadores unarios, la funcién operator no tendrd parametros. Su tnico ope-
rando se pasa mediante this.

Capitulo 7: Popurri 421

4. En el cuerpo de la funcién, realice la operacién.
5. Regrese el resultado de la operacion.

Para sobrecargar un operador como una funcién que no es miembro se requieren estos pasos:

1. Cree una funcién operator que no sea miembro, que especifique el operador que quiera
sobrecargar.

2. En el caso de operadores binarios, la funcién operator tendrd dos pardmetros. El primer
parametro recibe el operando del lado izquierdo, y el segundo recibe el operando del lado
derecho. Por lo menos uno de los operandos debe ser un objeto de la clase sobre la que se
estd actuando o una referencia a éste.

3. En el caso de operadores unarios, la funcién operator tendra un pardmetro, que debe ser
un objeto de una referencia a la clase sobre la que se estd actuando. Este parametro es el
operando.

4. En el cuerpo de la funcién, realice la operacion.

5. Regrese el resultado de la operacién.

Analisis

Cuando sobrecarga un operador, define el significado de ese operador para una clase particular. Por
ejemplo, una clase que define una lista vinculada podria usar el operador + para agregar un objeto
a la lista. Una clase que implementa una pila podria usar el + para incluir un objeto en la pila. Otra
clase podria usar el operador + de una manera completamente diferente. Cuando se sobrecarga un
operador, ninguno de sus significados originales se pierde. Simplemente se define una nueva opera-
cién, relacionada con una clase especifica. La sobrecarga de + para manejar una lista vinculada, por
ejemplo, no causa que cambie su significado relacionado con los enteros (es decir, la suma).

Para sobrecargar un operador, debe definir lo que significa la operacién en relacién con la clase a
la que se aplica. Como regla general, puede usar funciones miembro o no miembro. (Las excepciones
a esta regla son las funciones de operador para =, (), [1 y —>, que debe implementarse por una fun-
cién miembro no estatica.) Aunque son similares, hay algunas diferencias entre los dos métodos.

Para crear una funcién de operador, utilice la palabra clave operator. Su forma general es:

tipo-ret operator#(lista-param)
{
// operaciones

}

Aqui, el operador que estd sobrecargando se sustituye con #, y tipo-ret es el tipo de valor devuelto
por la operacién especificada. Aunque puede ser del tipo que elija, el valor devuelto es a menudo
del mismo tipo que la clase para la que se estd sobrecargando el operador. Esta correlacién facilita
el uso del operador sobrecargado en expresiones compuestas. Las excepciones son los operadores
l6gicos y relacionales, que suele regresar un valor bool.

La naturaleza precisa de lista-param depende del tipo de operador que se estd sobrecargando
y si estd implementado como una funcién miembro o no miembro. En el caso de una funcién
operator unaria miembro, lista-param estara vacia y el operando se pasa a través del apuntador
this. Para una funcién operator binaria miembro, lista-param tendrd un parametro, que recibe el
operando del lado derecho. El operando del lado izquierdo se pasa mediante this. En cualquier
caso, el objeto que invoca la funcién de operador es el pasado mediante el apuntador this.

428

C++ Soluciones de programacion

En el caso de funciones operator que no son miembros, todos los argumentos se pasan expli-
citamente. Por tanto, una funcién operator unaria que no es miembro tendrd un parametro, cuyo
tipo debe ser una clase, referencia a clase, enumeracién o referencia a enumeracion. Este parametro
recibe el operando. Una funcién operator binaria que no es miembro tendrd dos pardmetros, de los
cuales el tipo de por lo menos uno debe ser una clase, referencia a clase, enumeracién o referencia a
enumeracion. El primer pardmetro recibe el operando del lado izquierdo y el segundo recibe el ope-
rando del lado derecho. Observe que una funcién de operador que no es miembro puede sobrecar-
garse en relacién con un tipo de enumeracion, pero esto no es comun. Por lo general, los operadores
estan sobrecargados en relacion con un tipo de clase, y ése es el eje de esta solucion.

Debido a las diferencias entre las funciones de operador miembros y no miembros, cada una se
describe por separado.

Funciones de operador miembro
Cuando se define una funcién operator que acttia sobre objetos de una clase que haya creado, por
lo general usard una funcién miembro. La razén es simple: siendo miembro de una clase, la fun-
cién tiene acceso directo a todos los miembros de clase. También tiene un apuntador this.
Esto facilita que el operador actiie sobre un operando, y posiblemente lo modifique.

La mejor manera de comprender cémo usar una funcién miembro para sobrecargar un opera-
dor consiste en trabajar con algunos ejemplos. Suponga una clase llamada tres_d que encapsula
coordinadas tridimensionales, como se muestra aqui:

class tres_d {
int x, vy, z; // Coordenadas 3-D
public:
tres d() { x =y =12 =0; }
tres d(int i, int j, int k) { x = 1i; vy = 3; z = k; }

//. ..
Vi

Puede definir la operacién + para objetos de tres_d al agregar una funcién operator+() a la clase.
Para ello, primero agregue su prototipo a la clase tres_d:

tres_d operator+(tres_d op der);
Luego, implemente la funcién. He aqui una manera:

// Sobrecarga + para objetos de tipo tres d.
tres_d tres_d::operator+(tres_d op_der)

{

tres_d temp;

temp.x = x + op_der.x;
temp.y y + op_der.y;
temp.z = z + op_der.z;

return temp;

Capitulo 7: Popurri 429

Esta funcién agrega las coordenadas de dos operandos de tres_d y devuelve un objeto que contie-
ne el resultado. Recuerde que en una funcién de operador miembro, el operando del lado izquier-
do invoca a la funcién de operador y se pasa implicitamente mediante this. El operando del lado
derecho se pasa de manera explicita como un argumento a la funcién. Por tanto, suponiendo que
objA y obj son objetos de tres_d, en la siguiente expresién

objA + obj B

objA se pasa mediante this y obj se pasa en op_der.

En la implementacién de operator+() que se acaba de mostrar, observe que ningtin operando
se modifica. Esto es para seguir con la semdntica normal del operador +. Por ejemplo, en la expre-
sién 10 + 12, ni el 10 ni el 12 se modifican. Aunque no hay una regla para imponerlo, en general es
mejor hacer que su operador sobrecargado trabaje de la manera esperada.

Por supuesto, hay algunos operadores, como asignaciéon o aumento, en que un operando se
modifica con la operacién. En este caso, necesitara modificar un operando para que su funcién
operator refleje el significado normal del operador. Por ejemplo, suponiendo una vez més la clase
tres_d, hay una manera de implementar la asignacién:

// Sobrecarga asignacidn para tres d.
tres_d tres_d::operator=(tres_d op_der)

{

X = op_der.x;
y = op_der.y;
z = op_der.z;

return *this;

}

Aqui, los valores de coordenadas del operando del lado derecho (pasado en op_der) se asignan
al operando del lado izquierdo (pasado mediante this). Por tanto, el objeto que invoca se cambia
para reflejar el valor que se esta asignando. Una vez mas, esto estd de acuerdo con el significado
esperado de =.

Dadas las dos funciones operator que se acaban de describir y suponiendo los objetos de
tres_d llamados objA, objB y objC, la siguiente instruccion es valida:

objC = objA + objB;

En primer lugar, la suma se realiza con operator+(); objA se pasa mediante this y objB se pasa
a través de op_der. El resultado se vuelve el operando del lado derecho pasado a operator=(), y
objC se pasa mediante this. Para una revisién més completa, objC contendrd la suma de objA
y objB, y objA y objB quedarédn sin cambio.

La version anterior de operator+() sumé un objeto de tres_d a otro, pero puede sobrecargar
operator+() para que agregue algtin otro tipo de valor. Por ejemplo, esta versién de operator+()
suma un entero a cada coordenada:

// Sobrecarga + para sumar un entero a un objeto de tres d.
tres d tres_d::operator+(int op_der)

{

tres_d temp;

temp. x = X + op_der;

430

C++ Soluciones de programacion

temp. y = y + op_der;
temp. z = z + op_der;

return temp;

}

Una vez que se ha definido esta version de operator+(), puede usar una expresion como:

objA + 10

Esto causa que 10 se sume a cada coordenada. Comprenda que la versién anterior de operator+(),
que suma dos objetos de tres_d, atin estd disponible. Es s6lo que la definicion de + relacionado con
tres_d se ha expandido para manejar la suma de enteros.

En el caso de una funcién de operador miembro unario, el tinico operando se pasa mediante this.
Por ejemplo, he aqui la version de operator—(), que niega la coordenada y devuelve el resultado:

// Sobrecarga - para tres_d.
tres _d tres_d::operator- ()

{

tres_d temp;

temp.x = -X;
temp.y = -y;
temp.z = -z;

return temp;

}

Es posible crear una forma unaria y binaria de algunos operadores, como + y —. Simplemente
sobrecargue la funcién de operador de acuerdo con lo necesario. En el caso de funciones miembro,
la forma binaria tendrd un parametro; la forma unaria no tendra ninguno.

Todas las funciones operator anteriores regresardn un objeto de tipo tres_d, que es la clase para
la que estédn definidos. Asi suele suceder siempre, excepto cuando sobrecarga los operadores 16gi-
cos o relacionales. Esas funciones operator por lo general regresaran un resultado bool, que indica
el éxito o la falla de la operacién. Por ejemplo, he aqui una manera de implementar el operador ==
para tres_d:

// Sobrecarga == para un objeto de tres d.
bool tres d::operator==(tres_d op der)

{
if((x == op_der.x) && (y == op_der.y) && (z == op_der.z))
return true;

return false;

}

Compara si un objeto de tres_d es menor que otro. Todos los valores del objeto que invoca deben
ser menores que los del operando que se encuentra a la derecha para que esta funcién devuelva
true.

Capitulo 7: Popurri 431

Funciones de operador que no son miembros

Como se menciono al principio de este anélisis, una funcién de operador binario que no es miem-
bro pasa sus operandos explicitamente, mediante sus pardmetros. (Recuerde que las funciones
que no son miembros no tienen apuntadores this porque no se invocan en un objeto.) Una funcién
de operador binario que no es miembro tiene dos pardmetros, y el operando de la izquierda se
pasa al primer parametro y el de la derecha al segundo. Una funcién de operador unario que no
es miembro pasa su operando mediante su pardmetro. De otra manera, las funciones de operador
que no son miembro trabajan de modo parecido a las que si lo son.

Aunque a menudo usara funciones miembro cuando sobrecarga operadores, hay ocasiones en
que necesitara usar funciones de operador que no son miembro. Un caso es cuando quiere per-
mitir el uso de un tipo integrado (como int o char *) en el lado izquierdo de un operador binario.
Para comprender por qué, recuerde que el objeto que invoca una funcién de operador miembro se
pasa en this. En el caso de un operador binario, siempre es el objeto de la izquierda el que invoca a
la funcién. Esto es correcto, siempre y cuando el objeto de la izquierda defina la operacion especifi-
cada. Por ejemplo, suponiendo un objeto de tres_d llamado objA y la funcién operator+() mostra-
da antes, la siguiente es una expresién perfectamente valida:

objA + 10; // funcionara

Debido a que objA esta en el lado izquierdo del operador +, invoca a la funcién miembro sobre-
cargada operator+(int), que suma 10 a objA. Sin embargo, esta instruccién no es correcta:

10 + Ob; // no funcionaré

El problema es que el objeto a la izquierda del operador + es un entero, un tipo integrado para el
que no esta definida ninguna operacién relacionada con un entero y un objeto de tipo tres_d.

La solucién a este problema estd en sobrecargar el + por segunda ocasién, empleando una
funcién de operador que no es miembro para manejar el caso en que el entero estd a la izquierda.
Por tanto, la funcién de operador miembro maneja objeto + entero, y la funcién de operacién no
miembro maneja enfero + objeto. Para dar a esta funcién acceso a los miembros de la clase, declare-
la como friend. He aqui la manera en que una versién que no es miembro de operator+() puede
implementarse para manejar entero + objeto para la clase tres_d:

// Sobrecarga operator+ () para int + obj.

// Se trata de una funcién que no es miembro.

tres_d operator+(int op izqg, tres_d op der) ({
tres_d temp;

temp.x = op_izg + op_der.x;
temp.y op_izg + op_der.y;
temp.z = op_izg + op_der.z;

return temp;

}
Ahora la instruccién

10 + Ob; // ahora es correcta

es legal.

432

C++ Soluciones de programacion

Otra ocasién en que una funcién de operador que no es miembro resulta ttil es cuando se crea
un insertador o extractor personalizado. Como se explicé en el capitulo 5, << se sobrecarga para
que dé salida a datos (los inserte) en un flujo, y >> se sobrecarga para que dé entrada a datos (los
extraiga) de un flujo. Estas funciones no deben ser miembros porque cada una toma un objeto de
flujo como operando del lado izquierdo. El operando del lado derecho es un objeto al que se daré
salida o uno que se recibira entrada. Consulte Cree insertadores y extractores en el capitulo 5, para
conocer més detalles.

Un dltimo tema: no todos los operadores pueden implementarse mediante funciones que no
son miembro. Por ejemplo, el operador de asignacién debe ser un miembro de su clase. También lo
deben ser los operadores (), [1 y —>.

Ejemplo
En el siguiente ejemplo se pone en accién el analisis anterior, utilizando todas las piezas y demos-
trando los operadores.

// Demuestra los fundamentos de la sobrecarga de operadores usando
// la clase tres d.

//
// Este ejemplo usa funciones miembro para sobrecargar los operadores
// binarios +, -, = y ==. También usa una funcidén miembro para

// sobrecargar el - unario. Observe que el + se sobrecarga para

// tres d + tres d, y para tres d + int.

//

// Las funciones que no son miembros se usan para crear un insertador
// predeterminado para objetos de tres d, y para sobrecargar + para
// int + tres d.

#include <iostream>
using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {

int x, y, z; // Coordenadas 3-D
public:

tres d() { x =y =12 =0; }

tres d(int i, int j, int k) { x = 1i; yv = Jj; z = k; }

// Suma dos objetos de tres d.
tres_d operator+(tres_d op_der) ;

// Suma un entero a un objeto de tres d.
tres_d operator+ (int op_ der) ;

// Resta dos objetos de tres d.
tres_d operator- (tres_d op_der);

// Sobrecarga la asignacidn.
tres_d operator=(tres_d op_ der);

// Sobrecarga ==
bool operator==(tres_d op_der) ;

Capitulo 7: Popurri 433

// Sobrecarga para operacidn unaria.

tres_d

operator- () ;

// Hace que el insertador sobrecargado sea un amigo.

friend

ostream &operator<<(ostream &flujo, tres _d op);

// Hace que el + sobrecargado sea un amigo.

friend

i

tres_d operator+(int op_izqg, tres_d op der);

// Sobrecarga el + binario para que se agreguen las coordenadas
// correspondientes.
tres d tres_d::operator+(tres_d op_der)

{

tres_d

temp.x
temp.y
temp.z

return

}

temp;
= X + op_der.x;
=y + op_der.y;

= 2z + op_der.z;

temp;

// Sobrecarga el + binario para que pueda sumarse un entero a
// un objeto de tres d.
tres _d tres_d::operator+(int op_der)

{

tres_d

temp.x
temp.y
temp.z

return

}

temp;

= X + op_der;
y + op_der;
= z + op_der;

temp;

// Sobrecarga el - binario para que se resten las coordenadas
// correspondientes.

tres_d

{

tres_d

temp.x
temp.y
temp.z

return

}

tres_d::operator-(tres_d op_ der)

temp;
= x - op_der.x;
=y - op_der.y;
= z - op_der.z;
temp;

// Sobrecarga el - unario, para que niegue las coordenadas.
tres d tres_d::operator- ()

{

tres_d

temp;

434 c++ Soluciones de programacion

temp.x = -X;
temp.y = -vy;
temp.z = -z;

return temp;

}

// Sobrecarga asignacidn para tres d.
tres_d tres_d::operator=(tres_d op_der)

{

x = op_der.x;
y = op_der.y;
z = op_der.z;

return *this;

}

// Sobrecarga == para un objeto de tres d. Compara cada
// coordenada. Todos los valores del objeto que invoca
// deben ser iguales a los del operando de la derecha de
// esta funcién para que regrese true.
bool tres_d::operator==(tres_d op_der)
{
if((x == op_der.x) && (y == op_der.y) && (z == op_der.z))
return true;

return false;

}

// Estas son funciones de operador que no son miembros.

!/
// Sobrecarga << como un insertador personalizado para objetos de tres d.
ostream &operator<< (ostream &flujo, tres_d op)

flujo << op.Xx << ", " << Op.y << ", " << op.z << endl;

return flujo;

}

// Sobrecarga + para int + obj.
tres_d operator+(int op_izqg, tres_d op_der) ({
tres_d temp;

temp.x = op_izg + op_der.x;
temp.y = op_izg + op_der.y;
temp.z = op_izg + op_der.z;

return temp;

}

int main/()

{

tres d objA(1, 2, 3), objB(10, 10, 10), objC;

cout << "Esto es objA: " << objA;

cout << "Esto es objB: " << objB;

// Obtiene la negacidén de objA.
objC = -objA;
cout << "Esto es -objA: " << objC;

// Suma objA a objB.
objC = objA + objB;
cout << "objA + objB: " << 0bjC;

// Resta objB a objA.
objC = objA - objB;
cout << "objA - objB: " << 0objC;

// Suma obj + int.
objC = objA + 10;
cout << "objA + 10: " << objC;

// Suma int + obj.
objC = 100 + objA;
cout << "100 + objA: " << objC;

// Compara dos objetos.

Capitulo 7:

if (objA == objB) cout << "objA es igual que objB.\n";

else cout << "objA no es igual a objB.\n";

return 0;

}

Aqui se muestra la salida:

Esto es objA: 1, 2, 3
Esto es objB: 10, 10, 10
Esto es -objA: -1, -2, -3
objA + objB: 11, 12, 13
objA - objB: -9, -8, -7
objA + 10: 11, 12, 13
100 + objA: 101, 102, 103
objA no es igual a objB.

Opciones

Popurri

435

Aunque en los ejemplos anteriores se ha pasado operandos tres_d por valor, en muchos casos tam-
bién puede pasar un operando por referencia. Por ejemplo, he aqui operator==() cambiado para

que el operando del lado derecho se pase por referencia:

bool tres d::operator==(tres_d &op der)

{
if((x == op_der.x) && (y == op_der.y) && (z ==
return true;

return false;

}

op_der.z)

)

436

C++ Soluciones de programacion

A menudo, el uso de una referencia puede aumentar el rendimiento de su programa, porque suele
ser mas rapido pasar una referencia en lugar de un objeto completo. Sin embargo, tenga cuidado.
En el caso de objetos muy pequeiios, el paso por valor puede ser mds rapido.

Un lugar donde un pardmetro de referencia es valioso es cuando un operando debe modificar-
se con el operador. Uno de estos casos ocurre cuando una funcién operator que no es miembro se
usa para implementar una operaciéon de aumento o reduccion. Consulte Sobrecargue los operadores
de aumento y reduccién para conocer mas informacion.

C++ tiene varios operadores de caso especiales, como el operador de llamada a funcién () o el
de subindice []. Estos operadores también pueden sobrecargarse, pero las técnicas para ello estan
individualizadas para cada operador. Estos operadores especiales de caso son el tema de varias de
las siguientes soluciones.

Hay algunas restricciones que se aplican a la sobrecarga del operador:

1. No puede modificar la precedencia de algtin operador.

2. No puede modificar el niimero de operandos necesarios para un operador, aunque puede
elegir que se ignore un operando.

3. Con excepcién del operador de llamada a funcién (), las funciones de operador no pueden
tener argumentos predeterminados.

4. No es posible sobrecargar los siguientes operadores:
w ¥ 9

Desde el punto de vista técnico, tiene la libertad de realizar cualquier actividad dentro de una
funcién de operador y no es necesario que mantenga alguna relacion con el significado normal del
operador. Sin embargo, cuando se aparta considerablemente del significado normal de un opera-
dor, corre el riesgo de desestructurar peligrosamente su programa. Por ejemplo, cuando alguien
que lee su programa ve una instruccién como Ob1+0b2, espera algo parecido a la suma, o por lo
menos relacionado con ella. La implementacién de + para que actie mas como el operador | |, por
ejemplo, es inherentemente confusa. Por tanto, antes de desacoplar un operador sobrecargado de
su significado normal, asegtirese de que tiene razones suficientes para hacerlo.

Un buen ejemplo en que el desacoplamiento es correcto se encuentra en la manera en que C++
sobrecarga los operadores << y >> para E/S. Aunque las operaciones de E/S no tienen relaciéon
con el desplazamiento de bits, estos operadores proporcionan una "pista” visual de su significado,
y el desacoplamiento funciona. He aqui otro buen ejemplo de desacoplamiento: una clase de pila
podria sobrecargar el + para poner un objeto en una pila. Aunque este uso difiere de la suma, atin
es intuitivamente compatible con la suma porque "afiade" un objeto a la pila.

Con excepcién del operador =, las funciones de operador son heredadas por las clases deriva-
das. Sin embargo, una clase derivada tiene la libertad de sobrecargar cualquier operador que elija
(incluidas las sobrecargas por una clase de base).

Capitulo 7: Popurri 437

Sobrecargue el operador de llamada a funcion ()

Componentes clave

Encabezados Clases Funciones

tipo-ret operator()(lista-param)

Uno de los operadores mas poderosos que puede sobrecargar es (), el operador de llamada a fun-
cién. También puede ser uno de los méas confusos, sobre todo para los recién llegados. El operador
de llamada a funcién le permite definir una operacién en un objeto que no puede realizarse al
sobrecargar cualquier otro operador. Por ejemplo, tal vez quiera definir una operacién que toma
mas de dos operadores. O quiza desee definir una operacién que no tiene una analogia obvia con
cualquiera de los operadores normales. En este caso, el operador de llamada a funcién ofrece una
solucién elegante. En esta solucion se muestra el proceso.

Paso a paso
Para sobrecargar el operador de llamada a funcién () se necesitan estos pasos:

1. El operador de llamada a funcién debe ser un miembro no estatico de la clase para la que
estd definido. No puede ser una funcién que no sea miembro. Por tanto, agregue opera-
tor() como miembro a la clase en que estard operando.

2. Dentro de operator(), realice las acciones deseadas.

3. Al terminar, haga que operator() devuelva el resultado.

Analisis

Cuando sobrecarga el operador de llamada a funcién (), no estd creando, en si, una nueva manera
de llamar a una funcién. En cambio, estd creando una funcién operator que puede pasarse en un
numero arbitrario de operandos mediante el uso de la sintaxis de llamada a funcién. El operador
de llamada a funcién debe implementarse como una funcién miembro no estatica de una clase.
La forma general del operador se muestra aqui:

tipo-ret operator#(lista-param) {
// realiza la operacién basada en los argumentos
// y devuelve el resultado.

}

El operador de llamada a funcién se invoca en un objeto de su clase. El objeto que invoca se
pasa mediante this, y los argumentos se pasan a sus pardmetros. Si no se necesitan argumentos,
entonces no es necesario que se especifiquen parametros. La funciéon devuelve el resultado de la
operacion.

Trabajemos con un ejemplo. Suponiendo la clase tres_d de la solucién anterior, el siguiente
operador de llamada a funcién devuelve un objeto de tres_d que representa un punto cuyas coor-
denadas son puntos medios entre el objeto que invoca y su argumento de tres_d.

438

C++ Soluciones de programacion

// Sobrecarga la llamada a funcidén. Toma un objeto de tres d como

// un parametro. Esta funcidén devuelve un objeto de tres d cuyas

// coordenadas son los puntos medios entre el objeto que invoca y obj.
tres d tres_d::operator() (tres_d obj)

{

tres_d temp;

temp.x = (x + obj.x) / 2;
temp.y = (y + obj.y) / 2;
temp.z = (z + obj.z) / 2;

return temp;

}

Dados tres objetos de tres_d llamados objA, objB y objC, lo siguiente llama a operator() en objA,
pasando en objB:

objC = objA(objB) ;
Aqui, objA(objB) se traduce en esta llamada a la funcién operator():
objA.operator () (objB)

El resultado se devuelve y almacena en objC.

Antes de seguir adelante, revisemos los elementos clave. En primer lugar, cuando sobrecarga
el operador (), define los pardmetros que quiere pasar a esa funcién. Cuando usa el operador () en
su programa, los argumentos que especifique se copian en esos pardmetros. El objeto que genera
la llamada (objA en el ejemplo anterior) se sefiala mediante el apuntador this.

Puede sobrecargar operator() para permitir diferentes tipos o cantidades de argumentos, o am-
bos. Por ejemplo, he aqui una version de operator() para tres_d que toma tres argumentos int. Agre-
ga los valores de esos argumentos a las coordenadas del objeto que invoca y devuelve el resultado.

// Sobrecarga la llamada a funcidén. Toma tres int como parametros.
// Esta versién suma los argumentos a las coordenadas.
tres_d tres_d::operator() (int a, int b, int c)

{

tres_d temp;

temp.x = X + a;
temp.y = y + b;
temp.z = z + C;

return temp;

}
Esta funcién permite el siguiente tipo de instruccién:
objC = objA(1l, 2, 3);

Aqui, los valores 1, 2 y 3 se agregan a los campos x, y y z de objA, y el resultado se devuelve y
almacena en objC.

Un tema adicional: también puede sobrecargar operator() para que su lista de pardmetros esté
vacia. En este caso, no se pasan argumentos a la funcién cuando se le llama.

Capitulo 7: Popurri 439

Ejemplo

En el siguiente ejemplo se unen las piezas descritas en el andlisis.

// Demuestra el operador de llamada a funcidn.
#include <iostream>
using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {

int x, y, z; // Coordenadas 3-D
public:

tres d() { x =y =2 = 0;

tres d(int i, int j, int k) { x = 1i; vy = 3; z = k; }

// Crea dos funciones de operador de llamada a funcidn.
tres_d operator() (tres_d obj) ;
tres_d operator () (int a, int b, int c);

// Hace que el insertador sobrecargado sea un amigo.
friend ostream &operator<< (ostream &flujo, tres d op);

i

// Sobrecarga la llamada a funcidén. Toma un objeto de tres d como

// un parametro. Esta funcidén devuelve un objeto de tres d cuyas

// coordenadas son los puntos medios entre el objeto que invoca y obj.
tres_d tres_d::operator() (tres_d obj)

{

tres_d temp;

temp.x = (X + obj.x) / 2;
temp.y = (y + obj.y) / 2;
temp.z = (z + obj.z) / 2;

return temp;

}

// Sobrecarga la llamada a funcidén. Toma tres int como pardmetros.
// Esta versidén suma los argumentos a las coordenadas.
tres _d tres_d::operator() (int a, int b, int c)

{

tres_d temp;

temp.x = X + a;
temp.y = y + b;
temp.z = 2z + C;

return temp;

}

// El insertador tres_d es una funcién de operador que no es miembro.
ostream &operator<< (ostream &flujo, tres_d op) ({
flujo << op.x << ", " << Op.y << ", " << op.z << endl;

440

C++ Soluciones de programacion

return flujo;

}

int main ()

{

tres_d objA(l, 2, 3), objB(10, 10, 10), objC;

cout << "Esto es objA: " << objA;
cout << "Esto es objB: " << 0objB;

objC = objA(objB) ;
cout << "objA(objB): " << objC;

objC = objA (10, 20, 30);
cout << "objA (10, 20, 30): " << objC;

// Puede usar el resultado de uno como argumento de otro.
objC = objA(ocbjB(100, 200, 300));
cout << "objA(objB (100, 200, 300)): " << objC;

return O;

}

Aqui se muestra la salida:

Esto es objA: 1, 2, 3

Esto es objB: 10, 10, 10

objA(cbjB): 5, 6, 6

objA (10, 20, 30): 11, 22, 33

objA (objB (100, 200, 300)): 55, 106, 156

Opciones
Cuando se implementa el operador de llamada a funcién para una clase, puede usarse una ins-
tancia de su clase como un objeto de funcién. Estos objetos se usan exclusivamente con la STL. En el
capitulo 4 se muestran varios ejemplos.

Ninguna de las dos versiones de operator() del ejemplo anterior modifica al objeto que invoca.
En cambio, devuelven el resultado. Aunque no hay una regla que lo imponga, es preferible este
método en casi todos los casos. En general, si va a modificarse un objeto, es mejor que se presente
mediante un operador de asignaciéon sobrecargado, no mediante el operador de llamada a funcién.
En otras palabras, normalmente no debe usarse

objA (objB) ;
como sustituto de
objA = objB;

En general, operator() debe reservarse para operaciones que no se relacionan con ninguna de las
otras operaciones. No es adecuado usar operator() como un operador "total" que sustituya a una
sobrecarga del operador apropiado. Usado de manera apropiada, operator() es una caracteristica
poderosa. Mal usado, puede crear confusién en su cédigo.

Capitulo 7: Popurri 441

Sobrecargue el operador de subindice []

Componentes clave

Encabezados Clases Funciones

tipo-ret operator[](tipo_ind ind)

Si se tiene un operador favorito para sobrecarga, probablemente serd [], el operador de subindice.
(Por qué? Porque permite la creacién de matrices "seguras", que son aquellas en que se evita el
desbordamiento de limites. Como lo sabe, C++ no realiza revision de limites en las matrices nor-
males. Sin embargo, al envolver una matriz en una clase y luego permitir que sélo se tenga acceso
a esa matriz mediante el operador de subindice, puede evitar el acceso desde el exterior de la ma-
triz. También puede asegurarse de que s6lo se asignen valores vélidos a la matriz. Este mecanismo
se emplea con gran éxito en la STL, como en las clases vector y deque.

Por supuesto, el [] es 1itil en otros contextos. Por ejemplo, una clase que encapsula una soli-
citud de IP podria permitir el acceso a propiedades al indizar el objeto. En esencia, cada vez que
tenga una clase con elementos para los que tiene sentido la indizacién, el operador de subindice
ofrece un método elegante. En esta solucion se muestran las técnicas basicas necesarias para im-
plementarla.

Paso a paso
La sobrecarga del operador de subindice [] requiere estos pasos:

1. El operador de subindice debe ser un miembro no estatico de la clase para la que esta defi-
nido. No puede ser una funcién que no sea miembro. Por tanto, agregue operator[]() como
un miembro de la clase en que estara operando.

2. Dentro de operator[](), realice la accién deseada, que suele incluir el acceso a algtin objeto
mediante un indice.

3. Al terminar, haga que operator[]() devuelva el objeto (o la referencia al objeto) con base en
el indice.

Andlisis
El [] es un operador binario para los fines de la sobrecarga, y debe sobrecargarse con una funciéon
miembro no estatica. Tiene la forma general:

tipo-ret operator[](tipo_ind ind)

// Accede al elemento especificado por ind.

}

El subindice se pasa en ind, que suele ser un int, pero puede ser cualquier tipo. Por ejemplo, en un
contenedor asociativo, ind puede ser una clave. La funcién puede devolver cualquier tipo, pero
por lo general serd el tipo de elemento que se estd obteniendo.

442

C++ Soluciones de programacion

Cuando se evalda el [], el objeto del subindice debe ser una instancia de la clase para la que
estd definido el operador de subindice. Esta instancia se pasa mediante this. El objeto dentro de []
se pasa en ind. Por ejemplo, dado un objeto llamado obj, la expresién

obj [5]
se traduce en esta llamada a la funcién operator[]():

obj.operator|[] (5)

En este caso, 5 se pasa en el parametro ind. Un apuntador a obj, el objeto que gener¢ la llamada, se
pasa mediante this.

Puede designar la funcién operator[]() de manera tal que [] pueda usarse a la izquierda y a la
derecha de la instruccién de asignacién. Para ello, simplemente especifique el valor de devolucién
de operator[]() como una referencia. Después de hacer esto, las siguientes expresiones son validas:

x = obj[4];
obj [5] = 9;

La sobrecarga del operador [] proporciona un medio para implementar la indizacién segura
de matrices en C++. Este es uno de sus principales usos y una de sus ventajas mas importantes.
Como sabe, en C++ es posible desbordar el limite de una matriz (o quedarse corto con él) en
tiempo de ejecucién. Sin embargo, si crea una clase que contiene la matriz y sélo permite el acceso
a esa matriz mediante el operador de subindice [] sobrecargado, entonces interceptara cualquier
indice fuera del rango. En el siguiente ejemplo se ilustra esto.

Ejemplo

En el siguiente programa se muestra cémo sobrecargar el operador de subindice al usarlo para
crear una "matriz segura” que evite errores de limite. Se define una clase genérica llamada ma-
triz_segura, que encapsula una matriz. El tipo de ésta se especifica con un pardmetro de tipo de
plantilla llamado T. La longitud de la matriz se especifica con un pardmetro de plantilla sin tipo
llamado longi. La matriz encapsulada por matriz_segura se denomina matriz. La longitud de

la matriz esta almacenada en una variable llamada longitud. Ambas son miembros privados de
matriz_segura. Se tiene acceso a los elementos de la matriz mediante el operator[]() sobrecargado.
Primero se confirma que el acceso de una matriz estd dentro de los limites. Si es asi, operator[]()
devuelve entonces una referencia al elemento. La longitud de la matriz puede obtenerse al llamar
al método getlen().

// Sobrecarga [] para crear un tipo de matriz segura genérica.
!/
// La funcidn operator|[] () revisa errores de limite de matriz

// para que se evite un rebase de limites o que se quede corto de él.

//
// Observe gque en este ejemplo se usa un paradmetro de plantilla sin
// tipo para especificar el tamafio de la matriz.

#include <iostream>
#include <cstdlib>

using namespace std;

Capitulo 7: Popurri 443

// Aqui, T especifica el tipo de matriz y el pardmetro sin tipo
// longi especifica la longitud de la matriz.
template <class T, int longi> class matriz_segura {

// La matriz mz estd declarada como de tipo T y de longitud longi.
// La matriz es privada. El acceso sb6lo se permite con operator[] ().
// De esta manera, pueden evitarse los limites de error.

T mz[longil;

int longitud;

public:
// Crea una matriz segura de tipo T con una longitud longi.
matriz_ segura() ;

// Sobrecarga el operador de subindice, de modo que acceda a los
// elementos de mz.
T &operator[] (int 1i);

// Devuelve la longitud de la matriz.
int getlen() { return longitud; }

}i

// Crea una matriz segura de tipo T con una longitud longi.
// La variable longi es un pardmetro de plantilla sin tipo.

template <class T, int longi> matriz segura<T, longis>::matriz segura() {
// Inicializa los elementos de matriz a su valor predeterminado.
for(int i=0; i < longi; ++i) mz[i] = T();

longitud = longi;

}

// Devuelve una referencia al elemento del indice especificado.
// Proporciona revisidn de rango para evitar errores de limite.
template <class T, int longi> T &matriz_ segura<T, longis>::operator([] (int i)
{
if(i < 0 |] 1 > longi-1) {
// Toma aquili la accidn apropiada. Esto es sdélo
// un marcador de posicién de respuesta.
cout << "\nEl valor " << i << " del \uOOalndice queda fuera del 1\uOOalmite.\n";
exit (1) ;
}

return mz[i];

}

// Esto es una clase simple usada para demostrar una matriz de objetos.
// Observe que el constructor predeterminado da a x el valor -1.
class miclase ({

public:
int x;
miclase(int i) { x = i; };
miclase() { x = -1; }

}i

int main/()

444 c++ Soluciones de programacidn

matriz segura<int, 10> mz_int; // matriz de entero de tamafio 10
matriz segura<double, 5> mz_double; // matriz double de tamafio 15
int 1i;

cout << "Valores iniciales de mz_int: ";
for(i=0; i < mz_int.getlen(); ++i) cout << mz_int[i] << " ";
cout << endl;

// Cambia los valores en mz_int.
for(i=0; i < mz_int.getlen(); ++i) mz_int[i] = i;

cout << "Nuevos valores para mz_int: "
for(i=0; i < mz_int.getlen(); ++1i) cout << mz_int[i] << " ";
cout << "\n\n";

cout << "Valores iniciales para mz_double: ";
for(i=0; i < mz_double.getlen(); ++i) cout << mz_double[i] << " "
cout << endl;

// Cambia los valores en mz_double.
for(i=0; i < mz_double.getlen(); ++i) mz_double[i] = (double) 1/3;

cout << "Nuevos valores para mz_double: ";
for(i=0; i < mz_double.getlen(); ++i) cout << mz_double[i] << " ";
cout << "\n\n";;

// matriz segura también trabaja con objetos.
matriz segura<miclase, 3> mc_mz; // miclase array of size 3

cout << "Valores iniciales en mc_mz: ";
for(i = 0; 1 < mc_mz.getlen(); ++i) cout << mc mz[i] .x << " ";
cout << endl;

// Da algunos valores a mc_mz.
mc_mz[0] .x = 19;

mc_mz[1].x = 99;

mc_mz[2].x = -97;

cout << "Nuevos valores para mc_mz: ";
for(i = 0; 1 < mc_mz.getlen(); ++1i) cout << mc_mz[i].x << " ";
cout << endl;

// Esto crea un desbordamiento de limite.
mz_int [12] = 100;

// Convierta en comentario la linea anterior y luego gquite las marcas
// de comentario de la linea siguiente para quedarse corto del limite.
// mz_int[-2] = 100;

return 0;

}

Capitulo 7: Popurri 445

Aqui se muestra la salida:

Valores iniciales de mz_int: 0 0 0 O O O O O 0 O
Nuevos valores para mz _int: 0 1 2 3 4 5 6 7 8 9

Valores iniciales para mz_double: 0 0 0 0 0
Nuevos valores para mz_double: 0 0.333333 0.666667 1 1.33333

Valores iniciales en mc_mz: -1 -1 -1
Nuevos valores para mc_mz: 19 99 -97

El valor 12 del indice queda fuera del limite.
En el programa, preste especial atencién a esta instruccion:
mz_int [12] = 100;

Trata de asignar 100 a la ubicacion 12 dentro de mz_int. jPero ésta sélo tiene 10 elementos de
largo! Si fuera una matriz normal, entonces ocurriria un desbordamiento de limite. Por fortuna, en
este caso, el intento es interceptado por operator[l() y el programa se termina antes de que pueda
hacerse cualquier dafio. (En la practica real, se proporcionaria alguna especie de manejo de errores
para tratar con la condicién de fuera del rango; no seria necesario que el programa terminara.)

Opciones

Aunque la sobrecarga del operador de subindice suele ser el mejor método en casos en que se apli-
ca el concepto de "subindice", en ocasiones verad que se usan, en cambio, funciones "get" y "put".
En este caso, el indice del elemento deseado se pasa a la funcién "get" o "put” explicitamente como
un argumento. Por ejemplo, podria usarse la siguiente secuencia para obtener la tercera cadena o
para establecer la cuarta en algtin conjunto de valores de cadena:

cad = get(3);
put (4, "probando") ;

Por supuesto, el subindice ofrece un método mas limpio, pero el método "get" y "put” es comtin en
cdédigo C heredado. Si encuentra este tipo de c6digo, tal vez quiera actualizarlo a C++ al sobrecar-
gar a [].

Sobrecargue el operador ->

Componentes clave

Encabezados Clases Funciones

tipo *operator—>()

446

C++ Soluciones de programacion

Uno de los operadores mas interesantes es —>. Se le denomina el operador de acceso a miembro de
clase. Es un operador unario que devuelve un apuntador. Este se relaciona de una manera u otra
con el objeto en que se invoca a —>. La naturaleza precisa de la relacién esta definida por la clase
para la que esta definido —>. En cuanto a su relacién con la sobrecarga, el —> es la fuente de mu-
chas preguntas (y, en ocasiones, de confusién). En esta solucién se demuestra cémo sobrecargarlo.
Se incluye un ejemplo adicional que muestra la manera en que puede usarse un —> sobrecargado
para crear un "apuntador seguro".

Paso a paso
La sobrecarga del operador —> incluye los pasos siguientes:

1. El operador de acceso a miembros debe ser un miembro no estatico de la clase para la que
estd definido. No puede ser una funcién que no sea miembro. Por tanto, agregue operator-
>() como miembro a la clase en que estara operando.

2. Dentro de la funcién, obtenga un apuntador al objeto que invoca, o asociado de alguna
manera con él.

3. Devuelva el apuntador.

r'd O]
Analisis
El operador —> esta sobrecargado como operador unario. Aqui se muestra su uso general:

objeto—>elemento

Aqui, objeto es el objeto que activa la llamada. Esta debe ser una instancia de la clase para la que
estd definido el operador de acceso a miembros, y se pasa a operator—>() mediante this. El elemen-
to debe ser algiin miembro accesible dentro del objeto. La funcién debe devolver un apuntador a
objeto o a un objeto administrado por objeto. El uso principal del operador de acceso a miembro es
dar soporte a lo que se considera "apuntadores seguros” o "apuntadores inteligentes". Se trata de
apuntadores que verifican la integridad de un apuntador antes de realizar una accién con él. Otros
usos incluyen la creacién de apuntadores que administran automaticamente la memoria o que dan
soporte a la recoleccion de basura.

La forma general de un operator—>() se muestra a continuacién:

tipo *operator—>() {
// Devuelve un apuntador al objeto que invoca.

}

Aqui, tipo debe ser el mismo que la clase para la que el operator—> esta definido. Una funcién
operator—>() debe ser un miembro no estatico de su clase.

Ejemplo

En el siguiente ejemplo se muestra coémo sobrecargar —>. Simplemente devuelve un apuntador al
objeto que invoca. Esto permite el uso de —> para acceder a un miembro de miclase a través de
un objeto, en lugar de un apuntador a un objeto. Por tanto, la sobrecarga de operator—> hace que
los operadores —> y . sean equivalentes. Aunque este ejemplo es 1til para ilustrar el efecto de la so-
brecarga de —>, porque es muy corto, no representa un buen uso (ni una practica recomendada). Para
ver la manera en que se emplearia normalmente un —> sobrecargado, consulte el Ejemplo adicional.

Capitulo 7: Popurri 447

// Demuestra operator->().
#include <iostream>
using namespace std;

class miclase {
public:
int i;

// Sobrecarga -> para regresar un apuntador al objeto que invoca.
miclase *operator->() { return this; }

}i

int main/()

{

miclase ob;
ob->i = 10; // igual que ob.i
cout << ob.i << " " << ob->i;

return O;

}

Aqui se muestra la salida:

10 10

Ejemplo adicional: una clase simple de apuntador seguro

Aunque en el ejemplo anterior se presenta el mecanismo para sobrecargar —>, no se muestra toda
su capacidad. Por lo general, el —> esta sobrecargado para implementar un tipo de apuntador
personalizado que restringe o monitorea, de una manera u otra, acciones sobre el apuntador. Por
ejemplo, podria crear un tipo de apuntador que proporcione recoleccién automatica de basura. Sin
embargo, tal vez el uso méds comtin sea crear un "apuntador seguro" que evite acciones no vélidas
mediante el apuntador, como dejar de referenciar o acceder a un miembro mediante un apuntador
nulo. Este tipo de apuntador puede implementarse al sobrecargar los operadores * y —> para que
confirmen que el apuntador no es nulo antes de proceder con la operacién. Una implementacién
simple de este concepto se desarroll6 en este ejemplo.

En el siguiente programa se crea una clase de apuntador seguro simple llamada apt_seguro
que evita operaciones sobre un apuntador nulo. Hace esto al sobrecargar —> y *. (Cuando se usa
como operador para dejar de hacer referencia, el * se sobrecarga como operador unario.) Estos
operadores estdn sobrecargados para evitar que deje de hacerse referencia a un apuntador nulo o
que se use para acceder a un miembro.

La clase apt_seguro se implementa como clase de plantilla en que el parametro de tipo espe-
cifica el tipo base del apuntador. Por ejemplo, para crear un apuntador seguro a un int, use esta
declaracién:

apt_seguro<int> aptint;

448

C++ Soluciones de programacion

Una vez que haya creado el apuntador seguro, puede usarlo como uno normal. Por ejemplo, pue-
de asignarle una direccion de un objeto en memoria con la siguiente instruccién:

aptint = new int;

Puede establecer u obtener el valor del objeto mediante el apuntador al usar el operador *. Por
ejemplo:

*aptint = 23;

En el caso de apuntadores a objetos de clase, puede usar —> para acceder a un miembro. En el caso
de ambos operadores, apt_seguro confirma que el apuntador no sea nulo antes de aplicar el * 0 —>.
La clase apt_seguro funciona al encapsular un apuntador en un campo llamado apt. Se trata

de un miembro privado, y el acceso a él s6lo estd permitido mediante operadores sobrecargados,
incluido el operador de asignacion sobrecargado. También se proporciona una funcién de conver-
sién, que provee una conversion de apt_seguro a T *. Esto permite que se use un apt_seguro como
operando para el operador delete, por ejemplo.

Si se hace un intento de usar un apuntador nulo, los operadores sobrecargados * y —> lanza-
rén un objeto de tipo apt_malo, que es una clase de excepcién personalizada. El c6digo que usa
apt_seguro necesitara revisar esa excepcion.

En el siguiente programa se incluyen las clases apt_seguro y apt_malo. También se define una
clase llamada miclase, que se usa para demostrar —> con un apt_seguro. Aunque es muy simple,
apt_seguro le da una idea de la capacidad de sobrecargar el operador —> y de crear sus propios ti-
pos de apuntador. Los personalizados pueden ser muy ftitiles para evitar errores o para implemen-
tar esquemas personalizados de administracién de memoria. Esté consciente de que, por supuesto,
un tipo de apuntador personalizado siempre sera més lento que uno simple, debido al trabajo
adicional que introduce su cédigo.

// Demuestra una clase muy simple de apuntador seguro.

#include <iostreams>
#include <strings>

using namespace std;

// El tipo de excepcién lanzado por el apuntador seguro.
class apt_malo {
public:

string msj;

apt_malo(string cad) { msj = cad; }

}i

// Una clase usada para demostrar el apuntador seguro.
class miclase ({
public:

int alfa;

int beta;

miclase (int p, int gq) { alfa = p; beta = q; }

Vi

// Una clase muy simple de "apuntador seguro" que confirma

Capitulo 7: Popurri 449

// que un apuntador seflale a algin lado antes de usarse.
/7
// El pardmetro de plantilla T especifica el tipo de base
// del apuntador.
/7
// Nota: esta clase sb6lo sirve para demostracidén. Sélo esta
// orientada a ejemplificar la sobrecarga del operador ->.
// Una clase de apuntador seguro adecuado para trabajo real
// tiene que ser mads completa y mads resistente.
//
template <class T> class apt_seguro {

T *apt;
public:

apt_seguro() { apt = 0; }

// Sobrecarga -> para que evite un intento de usar un apuntador

// nulo para acceder a un miembro.

T *operator->() {
if (lapt != 0) throw apt malo("Intento de usar -> en un apuntador nulo.");
else return apt;

}

// Sobrecarga el operador de apuntador unario *. Este operador
// evita que se elimine la referencia a un apuntador nulo.
T &operator* ()
if (lapt) throw apt malo("Intento de dejar de hacer referencia a un apuntador
nulo.") ;
else return *apt;

}

// Conversidén de apt seguro a T *.
operator T *() { return apt; }

T *operator=(T *val) { apt = val; return apt; }
int main()
// Primero, usa apt seguro en un entero.

apt_seguro<int> aptint;

// Genera una excepcidén al tratar de usar un apuntador
// antes de que seflale a algin objeto.

try {
*aptint = 23;
cout << "El valor al que apunta aptint es: " << *aptint << endl;

} catch(apt_malo bp)
cout << bp.msj << endl;

}

// Apunta aptint a un objeto.
aptint = new int;

450

C++ Soluciones de programacion

// BAhora si funcionard la siguiente secuencia.

try {
*aptint = 23;
cout << "El valor al que apunta aptint es: " << *aptint << "\n\n";

} catch(apt_malo bp) ({
cout << bp.msj << endl;
}

// BRhora, usa apt seguro en una clase.
apt_seguro<miclase> aptmc;

// Esta secuencia trabajard de manera correcta.
try {
aptmc = new miclase (100, 200);
cout << "Los valores de alfa y beta para aptmc son: "
<< aptmc->alfa << " y " << aptmc->beta << endl;

aptmc->alfa = 27;
cout << "Nuevo valor para aptmc->alfa: " << aptmc->alfa << endl;
cout << "Igual que (*aptmc).alfa: " << (*aptmc).alfa << endl;

aptmc->beta = 99;

cout << "Nuevo valor para aptmc-s>beta: " << aptmc-s>beta << "\n\n";
} catch(apt_malo bp) ({

cout << bp.msj << endl;
}

// Crea otro apuntador de miclase pointer, pero no lo inicializa.
apt_seguro<miclase> aptmc2;

// La siguiente asignacidén lanzard una excepcidn porque aptmc2
// no sefiala a algin lado.

try {
aptmc2->alfa = 88;
} catch(apt_malo bp) {
cout << bp.msj << endl;
}

delete aptint;
delete aptmc;

return 0;

}

Aqui se muestra la salida:

Intento de dejar de hacer referencia a un apuntador nulo.
El valor al que apunta aptint es: 23

Los valores de alfa y beta para aptmc son: 100 y 200
Nuevo valor para aptmc->alfa: 27

Igual que (*aptmc).alfa: 27

Nuevo valor para aptmc-s>beta: 99

Intento de usar -> en un apuntador nulo.

Capitulo 7: Popurri 451

Opciones

Tenga cuidado cuando sobrecargue —>. Los apuntadores ya son una caracteristica problemética para
algunos programadores. Si sobrecarga un —> de una manera confusa, poco intuitiva, simplemente
alterard la estructura de su coédigo y dificultara su mantenimiento. En general, s6lo debe sobrecargar
—> cuando cree un tipo de apuntador personalizado. Méas atin, su tipo personalizado debe actuar y
tener el aspecto de un apuntador normal. En otras palabras, su operaciéon debe ser transparente y te-
ner un uso consistente con el de un apuntador integrado. Por supuesto, su tipo de apuntador puede
realizar revisiones adicionales o implementar un esquema de administraciéon de memoria personali-
zado, pero debe funcionar como un apuntador normal cuando se usa en un programa.

En algunos casos, tal vez encuentre que C++ ya provee el tipo de apuntador que desea. Por
ejemplo, una clase que a menudo se pasa por alto y que es proporcionada por la biblioteca estan-
dar de C++ es auto_ptr, que libera automaticamente la memoria a la que sefiala cuando el apunta-
dor sale del &mbito. Consulte Use auto_ptr para conocer mas detalles.

Sobrecargue new y delete

Componentes clave

Encabezados Clases Funciones

void operator delete(void *apt)
void operator delete[](void *apt)
void *operator new(size_t tam)
void *operator new[](size_t tam)

Los recién llegados a C++ se sorprenden, en ocasiones, al aprender que ahora new y delete se
consideran operadores. Como tales, es posible sobrecargarlos. Tal vez decida hacerlo si quiere
usar algin método de asignacién especial. Por ejemplo, tal vez quiera rutinas de asignacién que
empiecen automaticamente a usar un archivo de disco como memoria virtual cuando el heap se
haya agotado. O tal vez desee usar un esquema de asignacién basado en la recoleccién de basura.
Cada vez que lo necesite, es relativamente facil sobrecargar estos operadores, y en esta solucién se
muestra el proceso.

Paso a paso
Para sobrecargar new y delete se necesitan estos pasos:

1. Para sobrecargar new para objetos individuales, implemente operator new(). Haga que
devuelva un apuntador a un bloque de memoria que sea lo suficientemente grande como
para contener el objeto.

2. Para sobrecargar new para matrices de objetos, implemente operator new[](). Haga que
devuelva un apuntador a un bloque de memoria que sea lo suficientemente grande como
para contener la matriz.

3. Para sobrecargar delete para un objeto individual, implemente operator delete(). Haga
que libere la memoria usada por el objeto.

452

C++ Soluciones de programacion

4. Para sobrecargar delete para un apuntador a una matriz, implemente operator delete[]().
Haga que libere la memoria usada por el objeto.

Andlisis

Antes de empezar, necesita dejarse en claro un tema importante. Los operadores new y delete
pueden sobrecargarse globalmente o en relacion con una clase especifica. Cuando se sobrecargan
de manera global, la nueva versién de new y delete reemplaza a las versiones predeterminadas
cuando se asigna memoria a los tipos integrados y a cualquier clase que no proporcione su propia
sobrecarga de new y delete. Por desgracia, en ocasiones esto causa efectos colaterales indeseables.
Por ejemplo, cédigo de tercero podria usar new y delete de una manera incompatible con las
versiones sobrecargadas. Por esto, no se recomienda la sobrecarga global de new y delete, excepto
en casos raros. En cambio, se recomienda la sobrecarga clase por clase. Cuando new y delete son
sobrecargados por una clase, s6lo se usan cuando se asigna memoria para objetos de la clase. Esto
elimina la posibilidad de efectos colaterales fuera de la clase. Este es el método usado en esta so-
lucién, y en el siguiente andlisis se supone que se les estd sobrecargando en relacién con una clase
mediante el uso de funciones miembro.

Hay dos formas basicas de new y delete. La primera es para asignacién y liberacién de objetos
individuales. La segunda para las de matrices de objetos. Ambas formas pueden sobrecargarse y
ambas se describen aqui. Empezaremos con las formas para objetos individuales.

He aqui las formas generales de new y delete sobrecargadas para objetos individuales:

// Asigna memoria a un objeto.

void *operator new(size_t tam)

{
// Asigna memoria para el objeto y devuelve un apuntador a
// la memoria. El tamafio en bytes del objeto se pasa en tam.
// Lanza bad_alloc si falla.

}

// Libera memoria previamente asignada.
void operator delete(void *apt)
{

// Libera la memoria a la que sefala apt.

}

El parametro tam contendra el niimero de bytes necesarios para contener el objeto que se esta
asignando. Es la cantidad de memoria que su versién de new debe asignar (size_t es un typedef
para alguna forma de entero sin signo). La funcién new sobrecargada debe devolver un apuntador
a la memoria que se asigna, o lanzar una excepcién bad_alloc si ocurre un error de asignacién.
Mas alla de estas restricciones, el new sobrecargado puede hacer todo lo demds que necesite.
Cuando asigne un objeto usando new (sea su propia versién o no), se llamara automéaticamente al
constructor del objeto.

La funcién delete recibe un apuntador a la regiéon de la memoria que habra de liberarse. Debe
regresarse al sistema la memoria previamente asignada. Cuando se elimina un objeto, se llama
automaticamente a su destructor. Es importante que delete sélo se use en un apuntador que se
asigno previamente mediante new.

Capitulo 7: Popurri 453

Si quiere tener la capacidad de asignar matrices a objetos empleando su propio sistema de
asignacion, necesitard sobrecargar newl[] y delete[], que son las formas de matriz de new y delete.
He aqui las formas generales:

// Asigna una matriz de objetos.

void *operator new/[](size_t tam)

{
// Asigna memoria para la matriz y devuelve un apuntador a
// ella. El nimero de bytes que se asignara se pasa en tam.
// Lanza bad_alloc si falla.

}

// Elimina una matriz de objetos.
void operator delete[](void *apt)
{
// Libera la memoria a la que sefala apt.

}

Cuando se asigna una matriz, se llama automéaticamente al constructor de cada objeto en ella.
Cuando se libera una matriz, se llama automaticamente al destructor de cada objeto. No tiene que
proporcionar cédigo explicito para completar estas acciones.

Ejemplo

En el siguiente ejemplo se sobrecargan news y delete para la clase tres_d. Se sobrecargan las for-
mas de objeto y de matriz de cada una. Para simplificar el ejemplo, no se usa un nuevo esquema
de asignacion. En cambio, los operadores sobrecargados simplemente invocaran las funciones de
la biblioteca estdndar de C malloc() y free(). La funcién malloc() asigna un nimero especifico

de bytes y devuelve un apuntador a ellos. Devuelve null si no es posible asignar la memoria. Dado
un apuntador a memoria previamente asignado por malloc(), free() libera la memoria, dejandola
disponible para usarla de nuevo. En general malloc() y free() tienen una funcionalidad similar

ala de new y delete, pero de una manera mas depurada.

// Sobrecarga new, new[], delete y delete[] para la clase tres d.
//

// Este programa usa las funciones de C malloc() y free()

// para asignar y liberar memoria dindmica. Requieren el

// encabezado <cstdlibs>.

#include <iostream>
#include <cstdlibs>
#include <new>

using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {

int x, vy, z; // Coordenadas 3-D
public:

tres d() { x =y =2z = 0; }

tres d(int i, int j, int k) { x = 1i; y = J; z = k; }

// Establece las coordenadas de un objeto después de crearlo.

454 c++ Soluciones de programacidn

void set(int i, int j, int k) { x = 1i; v = j; z = k; }

// Sobrecarga new y delete para objetos de tres d.
void *operator new(size t tam);
void operator delete(void *apt) ;

// Sobrecarga newl[] y delete[] para matrices de tres d.
void *operator newl(] (size t tam);
void operator delete[] (void *apt) ;

// Hace que el insertador sobrecargado sea un amigo.
friend ostream &operator<<(ostream &flujo, tres_d op);

Vi

// El insertador de tres d es una funcidén de operador no miembro.
ostream &operator<<(ostream &flujo, tres d op) ({
flujo << op.x << ", " << Op.y << ", " << op.z << endl;

return flujo;

}

// Sobrecarga new para tres_d.
void *tres_d::operator new(size t tam)

{

void *apt;

cout << "Usando new sobrecargado para tres d.\n";
apt = malloc (tam);
if (tapt) {

bad_alloc ba;

throw ba;

}

return apt;

}

// Sobrecarga delete para tres d.

void tres_ d::operator delete(void *apt)

{
cout << "Usando delete sobrecargado para tres d.\n";
free (apt) ;

}

// Sobrecarga new[] para matrices de tres d.
void *tres_d::operator newl[] (size_t tam)

{

void *apt;

cout << "Usando new[] sobrecargado para tres d.\n";
apt = malloc(tam) ;
if (lapt) {

bad_alloc ba;

throw ba;

}

return apt;

Capitulo 7:

}

// Sobrecarga delete[] para matrices de tres d.

void tres_d::operator delete[] (void *apt)

{
cout << "Usando delete[] sobrecargado para tres d.\n";
free (apt) ;

}

int main()
tres_d *al, *a2;
int 1i;

// Asigna un objeto de tres d.

try {
al = new tres_d (10, 20, 30);

} catch (bad_alloc xa) {
cout << "Error de asignacién para al.\n";
return 1;

cout << "Coordenadas del nuevo objeto al gque apunta al: " <<

// Libera el objeto.
delete al;

cout << endl;

// Asigna una matriz de tres d.
try {
a2 = new tres d [10]; // asigna una matriz
} catch (bad_alloc xa) {
cout << "Error de asignacién para a2.\n";
return 1;

}

// Asigna coordenadas a tres de los elementos de a2.
a2[1l] .set (99, 88, 77);
a2[5] .set (-1, -2, -3);
a2[8] .set (56, 47, 19);

cout << "Contenido de una matriz din\uOOaOmica de tres d:\n";

for(i=0; 1<10; i++) cout << a2[i];

// Libera la matriz.
delete [] a2;

return 0;

Popurri

*al;

455

456 C++ Soluciones de programacidn

Aqui se muestra la salida:

Usando new sobrecargado para tres_d.
Coordenadas del nuevo objeto al que apunta al: 10, 20, 30
Usando delete sobrecargado para tres d.

Usando new[] sobrecargado para tres d.
Contenido de una matriz dindmica de tres d:

0, 0, 0
99, 88, 77
0, 0, 0
0, 0, 0
0, 0, 0
-1, -2, -3
0, 0, 0
0, 0, 0
56, 47, 19
0, 0, 0

Usando delete[] sobrecargado para tres d.

Opciones

C++ da soporte a una versién "sin lanzamiento de excepciones" de new. Esta opcién hace que new
acttie como lo hacia en versiones anteriores de C++, en que devolvia null si no era posible asignar-
le memoria. (Las versiones modernas de C++ lanzan una excepcién bad_alloc cuando new falla.)
Puede crear versiones sobrecargadas de las versiones que no lanzan excepciones al usar estas
formas de operator new() y operator new[]():

// Version sin lanzamiento de excepciones de new.
void *operator new(size_t tam, const nothrow_t &no usada)
{
// Asigna la memoria al objeto. Si tiene éxito, devuelve
// un apuntador a la memoria. De lo contrario, devuelve null.

}

// Version sin lanzamiento de excepciones de new][].

void *operator new[](size_t tam, const nothrow_t &no usada)

{
// Asigna la memoria para la matriz. Si tiene éxito, devuelve
// un apuntador a la memoria. De lo contrario, devuelve null.

}

El tipo nothrow_t esta definido en <new>.
Cuando use la versién sin lanzamiento de excepciones, especifique el objeto nothrow en la
llamada a new y revise un valor de devolucién nulo, como se muestra aqui:

apt = new(nothrow) int;

if (tapt) {
cout << "Ha fallado la asignaci\u0OOa2n.\n";
// maneja la falla

}

El objeto nothrow es una instancia de nothrow_t y es proporcionado por <new>.

Capitulo 7: Popurri 457

Sobrecargue los operadores de aumento y disminucion

Componentes clave

Encabezados Clases Funciones

tipo-ret operator++()

tipo-ret operator++(int no_usada)
tipo-ret operator—()

tipo-ret operator-(int no_usada)

En cuanto a la sobrecarga de operadores, ++ (aumento) y — — (reduccion) generan la mayor parte
de las preguntas. Aunque ninguno de los dos es dificil de sobrecargar, resulta facil hacerlo de ma-
nera ligeramente equivocada, lo que lleva a que el operador trabaje de manera correcta en algunos
casos, pero que falle en otros. Esto puede dar como resultado errores dificiles de diagnosticar. Los
operadores de aumento y reduccién también tienen dos formas diferentes, de prefijo y sufijo, y
ambas deben sobrecargarse para que el operador siempre funcione correctamente. En esta solu-
cién se muestra como manejar estos operadores que, en ocasiones, resultan problematicos.

Paso a paso
Para sobrecargar los operadores de aumento y reduccién empleando funciones miembro, se re-
quieren estos pasos:

1. Para sobrecargar la forma de prefijo del operador de aumento, cree una funcién opera-
tor++(). Dentro de esa funcién, aumente el objeto que invoca y devuelva el resultado.

2. Para sobrecargar la forma de sufijo del operador de aumento, cree una funcién
operator++(int). Dentro de esa funcién, cree un objeto temporal que contenga el valor
original del operando. Luego, aumente el objeto que invoca. Por tltimo, devuelva el
valor original.

3. Para sobrecargar la forma de prefijo del operador de reduccion, cree una funcién opera-
tor- —(). Dentro de esa funcién, reduzca el objeto que invoca y devuelva el resultado.

4. Para sobrecargar la forma de sufijo del operador de reduccién, cree una funcién operator
— —(int). Dentro de esa funcién, cree un objeto temporal que contenga el valor original del
operando. Luego, reduzca el objeto que invoca. Por ultimo, devuelva el valor original.

Andlisis

Hay dos formas de los operadores ++ y — —: prefijo y sufijo. La forma de prefijo aumenta el ope-
rando y devuelve el resultado. La forma de sufijo almacena el valor inicial del operando, aumenta
éste y luego regresa el valor original. Ambas formas pueden sobrecargarse, y cada una es sobrecar-
gada por su propia funcién.

Con mayor frecuencia, los operadores de aumento y reducciéon son funciones miembros de la
clase para la que estdn definidos. Este es el método usado en esta solucién. Sin embargo, también
pueden implementarse mediante funciones que no son miembro, y esto se describe en la seccién
Opciones de esta solucion.

458 C++ Soluciones de programacidn

He aqui las formas generales de operator++() y operator— —() cuando se implementan como
funciones miembro. Se muestran las formas de prefijo y sufijo:

// Aumento de prefijo
tipo-ret operator++() {
// Aumenta el operando y devuelve el resultado.

}

// Aumento de sufijo

tipo-ret operator++(int no_usada) {
// Almacena una copia del valor original de un operando.
// Luego aumenta el operando.
// Por ultimo, devuelve el valor original.

}

// Reduccién de prefijo
tipo-ret operator--() {
// Reduce el operando y devuelve el resultado.

}

// Aumento de sufijo

tipo-ret operator--(int no_usada) {

// Almacena una copia del valor original de un operando.
// Luego reduce el operando.
// Por tltimo, devuelve el valor original.

}

Preste especial atencién al parametro no usada. Suele ser cero y, por lo general, no se usa dentro de
la funcién. Es simplemente una manera en que C++ indica a cual funcién llamar.
Hay tres claves para sobrecargar correctamente el aumento y la reduccién:

* Debe sobrecargar las formas de prefijo y sufijo.

¢ Cuando implemente la forma de prefijo, primero debe aumentar o reducir el valor y luego
devolver el valor modificado.

¢ Cuando implemente la forma de sufijo, recuerde que debe almacenar el valor inicial y
luego devolver ese valor. No devuelva por accidente el valor modificado.

Si sigue estas reglas, sus operadores de aumento y reduccién se comportaran como los inte-
grados. Si no las sigue, puede incurrir en problemas. Por ejemplo, si no sobrecarga las formas de
prefijo y sufijo de un operador, entonces no podra usarse la forma que no sobrecargue. Méas atin,
si no sobrecarga la forma de sufijo, algunos compiladores reportaran un error si trata de usar el
operador de sufijo, y no compilardn su programa. Sin embargo, otros compiladores simplemente
lanzaran una advertencia y luego usaran, en cambio, la forma de prefijo. Esto hara que el operador
de sufijo actie de manera inesperada.

Capitulo 7: Popurri 459

Ejemplo
En el siguiente ejemplo se sobrecargan los operadores de aumento y reduccién para la clase
tres_d. Se proporcionan las formas de prefijo y sufijo.

// Sobrecarga ++ y -- para tres d.
#include <iostream>
using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {

int x, y, z; // 3-D coordinates
public:

tres d() { x =y =12 =10; }

tres_d(int i, int j, int k) { x = 1i; v = Jj; z = k; }

// Sobrecarga ++ y --. Proporciona formas de prefijo y sufijo.
tres_d operator++(); // prefijo
tres d operator++(int nousada); // sufijo

tres_d operator--(); // prefijo
tres d operator-- (int nousada); // sufijo

// Hace que el insertador sobrecargado sea un amigo.
friend ostream &operator<< (ostream &flujo, tres d op);

}i

// Sobrecarga ++ de prefijo para tres d.
tres_d tres d::operator++() {

X++;

VH+i

Z++;

return *this;

}

// Sobrecarga ++ de sufijo para tres d.
tres_d tres d::operator++ (int nousada) {
tres d temp = *this;

X++;
YH+;
Z++;

return temp;

}

// Sobrecarga -- de prefijo para tres d.
tres d tres_d::operator--() {

460 cCc++ Soluciones de programacidn

return *this;

}

// Sobrecarga -- de sufijo para tres d.
tres_d tres_d::operator-- (int nousada) {
tres_d temp = *this;

z--;

return temp;

}

// El insertador de tres d es una funcidén de operador que no es miembro.
ostream &operator<<(ostream &flujo, tres d op) ({
flujo << op.x << ", " << Op.y << ", " << op.z << endl;

return flujo;

}

int main()

{

tres d objA(1, 2, 3), objB(10, 10, 10), objC;

cout << "Valor original de objA: " << o0bjA;
cout << "Valor original de objB: " << objBj;
// Demuestra ++ y -- como operaciones independientes.
++0bjA;

++0bjB;

cout << "++0bjA: " << oObjA;

cout << "++0bjB: " << objB;

--objA;

--objB;

cout << "--objA: " << objaA;

cout << "--objB: " << objB;

ObjA++;

ObjB++;

cout << endl;

cout << "objA++: " << obja;
cout << "objB++: " << objB;
objA--;
objB--;
cout << "objA--: " << obja;

cout << "objB--: " << objB;

Capitulo 7: Popurri 461

cout << endl;

// Ahora, demuestra la diferencia entre las formas
// de prefijo y sufijo de ++ y --.

objC = oObjA++;
cout << "Luego de que objC = objA++\n objC: " << objC <<" objA: "
<< ObjA << endl;

objC = objB--;
cout << "Luego de que objC = objB--\n objC: " << objC <<" objB: "
<< objB << endl;

objC = ++0bjA;
cout << "Luego de que objC = ++objA\n objC: " << objC <<" objA: "
<< ObjA << endl;

objC = --objB;
cout << "Luego de que objC = --objB\n objC: " << objC <<" objB: "
<< objB << endl;

return 0;

}
Aqui se muestra la salida:

Valor original de objaA: 1, 2, 3
Valor original de objB: 10, 10, 10
++0bjA: 2, 3, 4

++objB: 11, 11, 11

--objA: 1, 2, 3

--objB: 10, 10, 10

OobjA++: 2, 3, 4
objB++: 11, 11, 11
objA--: 1, 2, 3
objB--: 10, 10, 10

Luego de que objC = objA++
objC: 1, 2, 3
objA: 2, 3, 4

Luego de que objC = objB--
objC: 10, 10, 10
objB: 9, 9, 9

Luego de que objC = ++0bjA
objC: 3, 4, 5
objA: 3, 4, 5

Luego de que objC = --objB
objc: 8, 8, 8
objB: 8, 8, 8

462

C++ Soluciones de programacion

Opciones

Aunque el uso de funciones miembro para sobrecargar los operadores de aumento y reduccion es
el método méas comun, también puede usar funciones que no son miembro. Tal vez quiera hacer
esto cuando sobrecarga el operador en relacién con una enumeracion, o cuando estd definiendo el
aumento y la reduccion de acuerdo con una clase de la que no tiene el cédigo fuente. Cualquiera
que sea la razon, es una tarea facil. A continuacién se muestran las formas que no son miembro de
los operadores de aumento y reduccién:

// Aumento de prefijo
tipo-ret operator++(type &op) {
// Aumenta el operando y devuelve el resultado.

}

// Aumento de sufijo

tipo-ret operator++(type &op, int no_usada) {
// Almacena una copia del valor original del operando.
// Luego aumenta el operando.
// Por tltimo, devuelve el valor original.

}

// Reduccién de prefijo
tipo-ret operator— —(type &op) {
// Reduce el operando y devuelve el resultado.

}

// Aumento de sufijo

tipo-ret operator— —(type &op, int no_usada) {

// Almacena una copia del valor original del operando.
// Luego reduce el operando.
// Por tltimo, devuelve el valor original.

}

Observe que el operando se pasa mediante referencia. Esto es necesario para permitir que las fun-
ciones modifiquen el operando.

En general, cuando quiera aumentar o reducir un objeto, la sobrecarga de los operadores
++ y — — es el mejor método. Sin embargo, en algunos casos, tal vez el uso de las funciones sea
mejor. Por ejemplo, puede crear una funcién llamada inc() que aumente un objeto y dis() que
lo reduzca. Tal vez quiera hacer esto cuando no desea modificar el valor del objeto. La funcién
inc() o dis() quiza no devuelva el nuevo valor, sino que deje el objeto sin modificacién. Tam-
bién podria hacer esto al sobrecargar los operadores de aumento y reduccién de manera que no
modifiquen el operando, pero esto podria hacer que funcionen de una manera inconsistente con
su semantica normal.

Debe tener cuidado cuando trabaje con programas heredados de C++ en que se utilizan los
operadores de aumento y reduccién. En versiones anteriores de C++, no era posible especificar
versiones separadas de un ++ o — — sobrecargado. La forma de prefijo se usaba en ambas. Los com-
piladores modernos por lo general lanzaran una advertencia en esta situacién, pero es mejor no
contar con ella. Lo més adecuado es confirmar que el aumento y la reduccién estdn sobrecargados
de manera apropiada. Si no lo estan, necesita actualizarlos.

Capitulo 7: Popurri 463

Cree una funcion de conversion

Componentes clave

Encabezados Clases Funciones

operator tipo-destino()

En ocasiones, querrd usar un objeto de clase en una expresién que incluya otro tipo de datos. Aun-
que los operadores sobrecargados pueden proporcionar un medio de hacerlo, en ocasiones todo

lo que realmente quiere es una simple conversién del tipo de la clase al de destino. Para manejar
estos casos, C++ le permite crear una funcién de conversion. Esta convierte autométicamente el tipo
de una clase en el de destino. Esto hace que la de conversion sea una de las funciones mas ttiles de
C++. Por desgracia, también es una de las caracteristicas mas subestimadas. En esta solucién se
muestra cémo crear una funcién de conversién. En el proceso, se arroja un poco de luz sobre sus
capacidades a veces ignoradas.

Paso a paso
Para crear una funcién de conversién, se requieren estos pasos:

1. Para proporcionar una conversion del tipo de una clase a uno de destino, agregue una
funcién de conversién a la clase. Una funcién de conversion se basa en la palabra clave
operator, como se describe en el andlisis siguiente.

2. Dentro de la funcién de conversién, convierta el objeto en el tipo de destino.

3. Devuelva el resultado, que debe ser un valor compatible con el tipo de destino.

sgn _m
Analisis
Una funcién de conversioén usa la palabra clave operator. La forma general de una conversion se
muestra a continuacion:

operator tipo-destino() {
//Crea un valor que contiene la conversién.
return valor;

}

Aqui, tipo-destino es el tipo de destino al que esta convirtiendo su clase, y valor es el resultado de la
conversion. El objeto que se esta convirtiendo se pasa mediante this. Las funciones de conversién
devuelven datos de tipo tipo-destino, y no se permite ningtin otro especificador de tipo de devolu-
cién. Ademds, no se pueden incluir pardmetros. Una funcién de conversién debe ser miembro de
la clase para la que se define. Las funciones de conversion se heredan y pueden ser virtuales.

Una vez que ha creado una funcién de conversion, puede usarse un objeto de su clase en
expresiones del tipo de destino. Esto significa que puede operarse mediante operadores (sin tener
que sobrecargarlos), siempre y cuando el tipo de la expresién sea igual que el del destino de la
funcién de conversiéon. Més atin, una funcién de conversién le permite pasar un objeto como ar-
chivo a una funcién, siempre y cuando el tipo de pardmetro sea igual que el del destino. Estas son
caracteristicas poderosas, que pueden obtenerse casi sin esfuerzo de programacién alguno.

464 Cc++ Soluciones de programacion

La mejor manera de apreciar el poder de una funcién de conversién es trabajar con un ejemplo.
Suponga la clase tres_d mostrada aqui:

class tres_d {
int x, vy, z; // Coordenadas 3-D
public:
tres d() { x =y =12 =0; }
tres d(int i, int j, int k) { x = 1i; vy = 3; z = k; }

//
Vi

Puede crear una conversién para int al agregar la siguiente funcién como un miembro:

operator int() { return x + y + z; }

Esto convierte un objeto de tres_d en un entero que contiene la suma de las coordenadas.
Suponiendo la conversion anterior, ahora la siguiente secuencia es valida:

tres d objA(1, 2, 3), objB(-1, -2, -3);
int resultado;
resultado = 10 + oObjA;

Después de que esto se ejecuta, el resultado contendra el valor 16(10+1+2+3). Debido a que 10 es
un valor int, cuando se le agrega objA, se invoca automéaticamente operator int() en objA para
proporcionar la conversion.

Ejemplo

En el siguiente ejemplo se pone en accién el analisis anterior. Crea una conversion de tres_d a int.
Luego usa esa conversion para emplear un objeto de tres_d en una expresion de entero y pasa
objetos de tres_d como argumentos a funciones que especifican un parametro de entero.

// Crea funciones de conversidén para tres d.
#include <iostream>
using namespace std;

// Una clase que encapsula coordenadas tridimensionales.
class tres_d {

int x, y, z; // Coordenadas 3-D
public:

tres d() { x =y =2 =0; }

tres d(int i, int j, int k) { x = 1i; v = 3; z = k; }

// Una conversidén a int.
operator int() { return x + y + z; }

// Hace que el insertador sobrecargado sea un amigo.
friend ostream &operator<<(ostream &flujo, tres d op);

}i

// El insertador de tres d es una funcién de operador no miembro.

Capitulo 7:

ostream &operator<< (ostream &flujo, tres_d op)

flujo << op.x << ", " << Op.y << ", " << op.z << endl;

return flujo;

}

// Devuelve la negacidn de v.
int neg(int v) {
return -v;

// Devuelve true si x es menor que y.
bool 1t (int x, int y) {

if(x < y) return true;

return false;

}

int main()

{
tres_d objA(1, 2, 3), objB(-1, -2, -3);
int resultado;

cout << "El valor de objA: " << objA;
cout << "El valor de objB: " << objB;

cout << endl;

// Usa objA en una expresidén int.

cout << "Usa un objeto de tres d en una expresi\u0OOa2n int:

resultado = 10 + objA;
cout << "10 + oObjA: " << resultado << "\n\n";

// Pasa objA a una funcidn gque toma un argumento int.

cout << "Pasa un objeto de tres d a un par\uOOaOmetro int:

resultado = neg(obja) ;
cout << "neg(objA): " << resultado << "\n\n";

cout << "Compara la suma de las coordenadas con el uso de 1lt():

if (1t (objA, objB))
cout << "objA es menor que objB\n";
else if (1t (objB, objA))
cout << "objB es menor gque objA\n";
else
cout << "objA y objB suman el mismo valor.\n";

return 0;

n.

7

Popurri

no.
7

465

466 C++ Soluciones de programacion

Aqui se muestra la salida:

El valor de obja: 1, 2, 3
El valor de objB: -1, -2, -3

Usa un objeto de tres_d en una expresién int: 10 + objA: 16

Pasa un objeto de tres_d a un parémetro int: neg(objA): -6
Compara la suma de las coordenadas con el uso de 1lt(): objB es menor que objA
Opciones

Puede crear diferentes funciones de conversién para cubrir distintas necesidades. Por ejemplo,
podria definir conversiones de tres_d a int, double o long. Cada una se aplicard de manera auto-
matica, determinada por el tipo de conversion necesario.

En algunos casos, en lugar de usar una funcién de conversién, puede obtener el mismo re-
sultado (pero no tan facilmente) al sobrecargar los operadores que estara usando. En el ejemplo
anterior, podria sobrecargar el + para operaciones que requieren objetos de tres_d y enteros. Por
supuesto, esto no permitiria aiin que se pase un objeto de tres_d a una funcién que usa un para-
metro int.

Cree un constructor de copia

Componentes clave

Encabezados Clases Funciones

nombreclase (const nombreclase &obj)

Una caracteristica a menudo subestimada pero increiblemente importante de C++ es el construc-
tor de copias. Este define la manera en que se hace la copia de un objeto. Debido a que C++ pro-
porciona automaticamente un constructor de copias predeterminado para una clase, no todas
las clases necesitan definir uno de manera explicita. Sin embargo, en el caso de muchas clases,
el constructor de copias predeterminado es insuficiente, y su uso causa problemas. Esto se debe
a que el constructor predeterminado crea una copia idéntica del original. Si un objeto contiene
un recurso, como un apuntador a memoria o un objeto de flujo de archivo, entonces si se hace
una copia, ésta también podria sefialar a la misma memoria o tratar de usar el mismo archivo.
En casos como éste, pronto habrd problemas. La solucién consiste en definir un constructor de
copias explicito que duplique un objeto, pero evite el posible problema. Con este fin, en esta
solucion se describe como crear un constructor de copias y se revisan las circunstancias bajo las
que se necesita.

Capitulo 7: Popurri 467

Paso a paso
Para crear un constructor de copias, se necesitan estos pasos:

1. Cree un constructor para la clase que tome sélo un pardmetro, que es una referencia
al objeto que habra de copiarse.
2. Dentro del constructor, copie el objeto de una manera compatible con la clase.

Anlisis

Empecemos por examinar el problema que se pretende que resuelva el constructor de copias.
Como opcién predeterminada, cuando se usa un objeto para inicializar otro, se hace una copia del
original campo por campo. En el caso de campos escalares (entre los que se incluyen los apuntado-
res), se tiene una copia idéntica, byte por byte, del campo. Aunque esto es perfectamente adecua-
do para muchos casos (y a menudo es exactamente lo que desea que suceda), hay situaciones en
que no debe usarse una copia idéntica. Una de las mas comunes es cuando un objeto usa memoria
asignada dindmicamente. Por ejemplo, suponga una clase llamada miclase que utiliza este tipo

de memoria para algtin propdsito y que, en un campo, se mantiene un apuntador a esta memoria.
Mads atn, suponga que esta memoria se asigna cuando se construye un objeto y se libera cuando
se ejecuta su destructor. Por tdltimo, suponga un objeto de miclase llamado A, que se usa para
inicializar B, como se muestra aqui:

miclase B=A;

Si se hace una copia idéntica de A y se asigna a B, entonces en lugar de que B contenga un apunta-
dor a su propia porcién de memoria asignada dinamicamente, estard usando la misma porcién de
memoria que A. Esto casi siempre llevara a problemas. Por ejemplo, cuando se destruyan A y B,
jla misma porcién de memoria se liberard dos veces! Una vez para A y una més para B.

Un tipo similar de problemas puede ocurrir de dos maneras adicionales. La primera ocurre
cuando se hace una copia de un objeto y se pasa como argumento a una funcién. Este objeto sale
del dmbito (y se destruye) cuando se devuelve la funcién. La segunda ocurre cuando se crea un
objeto temporal como valor devuelto de una funcién. Como tal vez lo sepa, los objetos temporales
se crean automaticamente para contener el valor devuelto por una funcién. Este objeto temporal
sale automaticamente de &mbito después de que termina la expresiéon que contiene la llamada
a la funcién. En ambos casos, si el objeto temporal actda sobre un recurso, como a través de un
apuntador o un archivo abierto, entonces esas acciones tendran efectos secundarios. En el caso de
miclase, esto darfa como resultado que el mismo bloque de memoria se libere dos o0 mas veces.

Es evidente que esta situacién debe evitarse.

Para resolver el tipo de problemas que se acaba de describir, C++ le permite crear un cons-
tructor de copias explicito para una clase. Se llama a éste cuando un objeto inicializa a otro. Todas
las clases tienen un constructor de copias predeterminado, que produce una copia miembro por
miembro. Cuando define su propio constructor de copias, éste se usa en lugar del predeterminado.

Antes de seguir adelante, es importante comprender que C++ define dos tipos distintos de
situacién en que el valor de un objeto se asigna a otro. El primero es la asignacién. El segundo es la
inicializacién, que puede ocurrir de tres maneras:

¢ Cuando un objeto inicializa explicitamente otro, como en una declaracién.
¢ Cuando se hace una copia de un objeto para pasarlo a una funcién.
¢ Cuando se genera un objeto temporal (con mayor frecuencia, como un valor devuelto).

468 C++ Soluciones de programacidn

El constructor de copias sélo se aplica a las inicializaciones. No lo hace a asignaciones.
La forma mas general de un constructor de copias se muestra a continuacion:

nombreclase (const nombreclase &ob) {
// Cuerpo del constructor de copias.

}

Aqui, obj es una referencia al objeto que se encuentra en el lado derecho de la inicializacién. Es
permisible que un constructor de copias tenga pardmetros adicionales, siempre y cuando cuente
con argumentos predeterminados definidos para ellos. Sin embargo, en todos los casos, el primer
parametro debe ser una referencia al objeto que hace la inicializacién. Esta referencia puede ser
const, volatile, o ambas.

Una vez mads, suponga una clase llamada miclase y un objeto de tipo miclase llamado A. Ade-
mas, suponiendo que funcl() toma un pardmetro de miclase y que func2() devuelve un objeto de
miclase, cada una de las siguientes instrucciones requiere inicializacion:

miclase B = A; // A inicializando B

miclase B(A); // A inicializando B

funcl (3) ; // A pasada como parametro

A = func2(); // A recibiendo un objeto temporal, devuelto

En los tres primeros casos, una referencia a A se pasa al constructor de copias. En el cuarto, se le
pasa una referencia al objeto devuelto por func2().

Dentro de un constructor de copias, debe manejar manualmente la duplicacién de cada campo
dentro del objeto. Esto, por supuesto, le da oportunidad de evitar situaciones posiblemente dafii-
nas. Por ejemplo, en miclase que se acaba de describir, el nuevo objeto miclase podria asignar su
propia memoria. Esto permitiria que el original y la copia fueran objetos equivalentes, pero com-
pletamente separados. También evita el problema de que ambos objetos usen la misma memoria
porque si un objeto libera la memoria, no se afectara al otro. Si es necesario, puede inicializarse la
memoria para que incluya el mismo contenido que el original.

En algunos casos, los mismos problemas que pueden ocurrir cuando se hace una copia de un
objeto también ocurren cuando un objeto se asigna a otro. La razén es que el operador de asigna-
cién predeterminado hace una copia idéntica miembro por miembro. Puede evitar problemas al
sobrecargar operator=() para que maneje usted mismo el proceso de asignaciéon. Consulte Técnicas
bdsicas de sobrecarga de operadores para conocer detalles acerca de la sobrecarga de asignacién.

Ejemplo

En el siguiente ejemplo se demuestra el constructor de copias. Aunque es muy simple, ensefia
de manera clara cudndo se llama o no a un proceso de copia. (Un uso practico del constructor de
copias se muestra en el Ejemplo adicional que sigue.)

// Demuestra un constructor de copias.

#include <iostream>
using namespace std;

// Esta clase declara un constructor de copias.
class muestra {

Capitulo 7: Popurri 469

public:
int v;

// Constructor predeterminado.
muestra () {
v = 0;
cout << "Dentro del constructor predeterminado.\n";

}

// Constructor con parametros.
muestra (int i)
v = 1i;
cout << "Dentro del constructor con par\uOOaOmetros.\n";

}

// Constructor de copias.
muestra (const muestra &obj) {
v = obj.v;
cout << "Dentro del constructor de copias.\n";
!
}i

// Pasa un objeto a una funcidén. Se llama al constructor de
// copias cuando se crea un objeto temporal para contener el
// valor pasado a x.
int dosveces (muestra x) {

return x.v * xX.v;

}

// Devuelve un objeto de una funcidén. Se llama al constructor
// de copias cuando se crea un temporal para el valor devuelto.
muestra original (int i)

muestra s (i) ;

return s;

}

int main()

{

cout << "Crea muest (8).\n";
muestra muest (8) ;
cout << "muest tiene el valor " << muest.v << endl;

cout << endl;

cout << "Crea muest2 y lo inicializa con muest.\n";
muestra muest2 = muest;

cout << "muest2 tiene el valor " << muest2.v << endl;
cout << endl;

cout << "Pasa muest a dosveces().\n";

cout << "Resultado de dosveces (muest): " << dosveces (muest) << endl;
cout << endl;

470 c++ Soluciones de programacidn

cout << "Creando muest3.\n";
muestra muest3;

cout << endl;

cout << "Ahora, asigna a muest3 el valor devuelto por original (10).\n";
muest3 = original (10) ;
cout << "muest3 ahora tiene el valor " << muest3.v << endl;

cout << endl;

// La asignacidén no invoca al constructor de copias.

cout << "Ejecuta muest3 = muest.\n";

muest3 = muest;

cout << "Observe que no se ha usado el constructor de copias "
<< "para asignaciones.\n";

return O;

}
Aqui se muestra la salida:

Crea muest (8) .
Dentro del constructor con pardmetros.
muest tiene el valor 8

Crea muest2 y lo inicializa con muest.
Dentro del constructor de copias.
muest2 tiene el valor 8

Pasa muest a dosveces().
Dentro del constructor de copias.
Resultado de dosveces (muest): 64

Creando muest3.
Dentro del constructor predeterminado.

Ahora, asigna a muest3 el valor devuelto por original (10) .
Dentro del constructor con pardmetros.

Dentro del constructor de copias.

muest3 ahora tiene el valor 10

Ejecuta muest3 = muest.
Observe que no se ha usado el constructor de copias para asignaciones.

Como se observa, se llama al constructor de copias cuando un objeto inicializa a otro. No se le
llama durante la asignacion. Un tema adicional: la instruccién

muestra muest2 = muest;

Capitulo 7: Popurri 471

también puede escribirse como

muestra muest2 (muest) ;

Ambas formas dan como resultado que se use el constructor de copias para crear una copia de
muest.

Ejemplo adicional: una matriz segura que usa asignacion dinamica

En el ejemplo anterior se mostré claramente cudndo se llama o no a un constructor de copias. Sin
embargo, no ilustra el tipo de situacion en que uno es necesario. En este ejemplo si se hace. De-
muestra la necesidad del constructor de copias al desarrollar otra implementacién de una "matriz
segura”, que es una que evita desbordamiento de limites o que se quede corto de éstos. El método
usado aqui depende de que la memoria asignada dindmicamente contenga la matriz. Como vers,
esta técnica requiere un constructor de copias explicito para evitar problemas.

Antes de empezar, resulta 1til contrastar este método con el mostrado en Sobrecargue el operador
de subindice [], en paginas anteriores de este capitulo. En esa solucién, se cre6 en el ejemplo un tipo
de matriz llamada matriz_segura que encapsulaba una matriz estatica que contenia, en realidad,
los elementos. Por tanto, cada matriz_segura era respaldada por una matriz estatica de longitud
completa. Como resultado, si se necesitaba una matriz segura muy larga, el objeto de matriz_se-
gura resultante también era muy largo, porque encapsularia toda la matriz.

La version desarrollada aqui utiliza un método diferente. La llamada matriz_segura_din asig-
na memoria dindmicamente a la matriz y almacena sélo un apuntador a esa memoria. Esto tiene la
ventaja de hacer mas pequefios los objetos de la matriz segura (mucho mas pequefios, en algunos
casos). Esto los hace mas eficientes cuando se pasan a funciones, por ejemplo. Por supuesto, se
requiere un poco méds de trabajo para implementar una matriz segura que usa memoria dindmica,
porque se necesitan un constructor de copias y un operador de asignacién sobrecargado. Como
matriz_segura, que se mostrd antes, matriz_segura_din sobrecarga el operador de subindice []
para permitir que los subindices normales, tipo matriz, accedan a los elementos de la matriz.

La clase matriz_segura_din es genérica, lo que significa que puede usarse para crear cualquier
tipo de matriz. El nimero de elementos en la matriz se pasa a un argumento sin tipo en su especi-
ficacién de plantilla. Luego, su constructor asigna memoria suficiente para que contenga la matriz
del tamafio y el tipo deseados. Un apuntador a esta memoria se almacena en aptm. El destructor
para matriz_segura_din libera automdticamente esta memoria cuando un objeto sale del &mbito.
De otra manera, como el [] esta sobrecargado, puede usarse una matriz_segura_din como una
matriz normal.

Cuando una matriz_segura_din se usa para inicializar otra, se llama al constructor de copias.
Crea una copia del original al asignar primero memoria para la matriz y luego copiar elementos
de la matriz original en la memoria recién asignada. De esta manera, cada aptm del objeto sefala
a su propia matriz. Sin el constructor de copias, se haria una copia idéntica de matriz_segura_din,
lo que daria como resultado dos objetos con aptm que sefialan a la misma memoria. Entre otros
posibles problemas, esto daria como resultado un intento por liberar la misma memoria mas de
una vez cuando el objeto sale del &mbito. El constructor de copias evita esto.

El mismo tipo de problema que evita el constructor de copias también puede ocurrir cuando
un objeto de matriz_segura_din se asigna a otro. Para evitar este problema, el operador de asigna-
cién también se sobrecarga para que el contenido de la matriz se copie, pero la memoria asignada
dindmicamente usada por cada objeto permanezca separada.

472 c++ Soluciones de programacion

Un tltimo tema: el constructor de copias y el operador de asignacién sobrecargada despliegan
un mensaje cada vez que se les llama. Esto es simplemente para ejemplificacion. Por lo general,
ninguno generaria alguna salida.

// Una clase de matriz segura que evita errores de limite de matriz.
// Utiliza el operador de subindice para acceder a los elementos de la
// matriz. Esta versién difiere del método utilizado en la solucidén:
//

// Sobrecargue el operador de subindice []

//

// porque asigna memoria a la matriz de manera dindmica en lugar de

// estatica.

//

// Un constructor de copias explicito se implementa de modo que una

// copia de un objeto de matriz segura usa su propia memoria asignada.
// Por tanto, el objeto original y la copia NO sefialan a la misma

// memoria. El operador de asignacidén también se sobrecarga por la misma
// razdén. En ambos casos, el contenido de la matriz se copia para que
// la matriz y la copia contengan los mismos valores.

#include <iostream>
#include <new>
#include <cstdlib>

using namespace std;

// Una clase de matriz segura que asigna memoria dinadmicamente para la
// matriz. La longitud de la matriz se pasa como un argumento sin tipo
// en la especificacién de plantilla.
template <class T, int longi> class matriz_ segura din {

T *aptm; // apuntador a la memoria que contiene la matriz

int longitud; // nGmero de elementos en la matriz
public:

// El constructor matriz segura_ din.
matriz_segura_din() ;

// El constructor de copias matriz segura_ din.
matriz_ segura_din(const matriz_ segura_din &obj) ;

// Libera la memoria asignada cuando un objeto de
// matriz_segura_din sale del &ambito.
~matriz_segura din() {

delete [] aptm;
1

// Sobrecarga la asignacidn.

matriz segura_din &operator=(const matriz_ segura din<T,longi> &op der) ;
// Usa el operador de subindice para acceder a elementos en

// la matriz segura.

T &operator[] (int i) ;

// Devuelve el tamafio de la matriz.

Capitulo 7:
int getlen() { return longitud; }
}i
// Esto es un constructor de matriz segura din.
template <class T, int longis>
matriz_segura din<T, longi>::matriz_segura din()

try {
// Asigna la matriz.
aptm = new T[longi];
} catch(bad_alloc ba) {
cout << "No puede asignar la matriz.\n";
// Tome aquili la accidn apropiada. Esto es sdélo
// una respuesta de marcador de posicidn.
exit (1) ;

}

Popurri 473

// Inicializa los elementos de la matriz a su valor predeterminado.

for(int i=0; i < longi; ++i) aptm([i] = T();

longitud = longi;

// Esto es el constructor de copias de matriz segura din.
template <class T, int longi>

matriz_segura din<T, longis::matriz_segura_din(const matriz_segura_din &obj) {

cout << "Usando el constructor de copias de matriz segura_din para hacer una

copia.\n";

try {
// Asigna una matriz del mismo tamafio que la

// usada por obj.
aptm = new T[obj.longitud];
} catch(bad alloc ba) {
// Tome aquili la accidn apropiada. Esto es sdélo
// una respuesta de marcador de posicidn.
cout << "No puede asignar una matriz.\n";
exit (1) ;

}

longitud = obj.longitud;
// Copia el contenido de la matriz.

for(int i=0; i < longitud; ++1i)
aptm[i] = obj.aptm[i];
}

// Sobrecarga de asignacidn para que se haga una copia de la

// matriz. La copia se almacena en una memoria asignada que estéa

// separada del operando del lado derecho.

//

template<class T, int longi> matriz_segura_din<T, longi> &

matriz segura din<T, longis::operator=(const matriz segura din<T, longis> &op

der)

474

C++ Soluciones de programacion

cout << "Asignando un objeto de matriz segura din a otro.\n";

// Si es necesario, libere la memoria usada por el objeto.
if (aptm && (longitud != op_ der.longitud)) {

// Elimine la memoria previamente asignada.
delete aptm;

try {
// Asigna una matriz del mismo tamaflo que el usado

// por op_der.
aptm = new T[op_der.longitud];

} catch(bad_alloc ba)
// Tome aqul la accidn apropiada. Esto es sdlo una
// respuesta de marcador de posicién.
cout << "No se puede asignar la matriz.\n";
exit (1) ;

}

}

longitud = op_der.longitud;

// Copia el contenido de la matriz.
for(int i=0; i < longitud; ++1i)
aptm[i] = op_der.aptml[il;
return *this;

}

// Proporciona revisidén de rango para matriz segura din al
// sobrecargar el operador []. Observe que se devuelve una
// referencia. Esto deja que se asigne un valor a un elemento
// de la matriz.
template <class T, int longi> T &matriz segura din<T, longis>::operator[] (int i)
{
if(i < 0 || 1 > longitud) {
// Tome aquli la accidn apropiada. Esto es sdélo
// una respuesta de marcador de posicidn.
cout << "\nEl valor de \uOOalndice de " << i1 << " est\u00a0 fuera del 1\uOOa-
mite.\n";
exit (1) ;
}

return aptml[i];

}

// Una funcidén simple para fines de demostracidn.
// Cuando se le llama, el constructor de copias se
// usard para crear una copia del argumento pasado a x.
template <class T, int longis>
matriz_segura din<T, longi> f(matriz_segura_din<T, longi> x) {

cout << "f () est\u00a0 devolviendo una copia de x.\n";
return x;

}

Capitulo 7: Popurri 475

// Esto es una clase simple usada para demostrar una matriz de objetos.
// Observe que el constructor predeterminado da a x el valor -1.
class miclase ({

public:
int x;
miclase (int i) { x = i; };
miclase() { x = -1; }

}i

int main()

{

// Usa la matriz de enteros.
matriz_ segura_din<int, 5> mz_int;

for(int i=0; i < mz_int.getlen(); ++1i) mz_int[i] = 1i;
cout << "Contenido de mz_int: ";
for(int i=0; i < mz_int.getlen(); ++i) cout << mz_int[i] << " ";

cout << "\n\n";

// Para generar un desbordamiento de limites, quite las lineas de
// comentario de la siguiente linea:
// mz_int[19] = 10;

// Para que se quede corto ante un limite, quite las lineas de
// comentario de la siguiente linea:
// mz_int[-2] = 10;

// Crea una copia de mz_int. Esto invocard el constructor de copias de

// matriz_segura_din.

cout << "Crea mz_int2 y lo inicializa con mz_int. Esto da como resultado\n"
<< "que se llame a un constructor de copias de matriz_ segura din.\n\n";

matriz_segura_din<int, 5> mz_int2 = mz_int;

cout << "Contenido de mz_int2: ";

for(int i=0; i < mz_int2.getlen(); ++i) cout << mz_int2[i] << " ";

cout << "\n\n";

// Crea otra matriz segura para enteros, pero no le asigna
// valores. Esto significa que sus elementos contendréan

// sus valores predeterminados.

cout << "Crea mz_int3.\n";

matriz_ segura_din<int, 5> mz_int3;

cout << "Contenido original de mz_int3: ";
for(int i=0; i < mz_int3.getlen(); ++i) cout << mz_int3[i] << " ";
cout <<"\n\n";

// Rhora, pasa mz_int3 a f() y asigna el resultado a mz_int:

cout << "Ahora, se ejecutar\u00a0 esta 1l\uOOalnea: mz_int3 = f(mz_ int);\n"
<< "Esto da lugar a la siguiente secuencia de eventos:\n"
<< " 1. Se llama al constructor de copias de matriz segura_din\n"
<< " para copiar mz_int que se pasa al par\uOOaOmetro x de f().\n"

416

C++ Soluciones de programacion

<< " 2. Se llama de nuevo al constructor de copias cuando se\n"

<< " hace una copia para el valor devuelto de £().\n"

<< " 3. Se llama al operador de asignaci\u0Oa2n sobrecargado\n"

<< " para asignar el resultado de f£() a mz_int3.\n\n";
mz_int3 = f(mz_int);

cout << "Contenido de mz_int3 tras recibir el valor de f(mz_int): ";
for(int i=0; i < mz_int3.getlen(); ++1i) cout << mz_int3[i] << " ";
cout << "\n\n";

cout << "Por supuesto, matriz segura din adem\u00aOs funciona con tipos de

se.\n";

matriz_ segura_ din<miclase, 3> mz_mc;

cout << "Contenido original de mz_mc: ";

for(int i=0; i < mz_mc.getlen(); ++i) cout << mz mc[i].x << " ";
cout << endl;

mz_mc[0].x = 9;

mz_mc [1] .x 8;

mz_mc[2].x = 7;

cout << "Valores en mz_mc tras establecerlos: ";

for (int i=0; i < mz_mc.getlen(); ++i) cout << mz mc[i] .x << " ";
cout << "\n\n";

cout << "Ahora, se crea mz _mc2 y luego se ejecuta esta instruccil\u0Oa2n:\n"

<< " mz_mc2 = f(mz_mc);\n\n";
matriz segura din<miclase, 3> mz _mc2;
mz_mc2 = f(mz_mc);
cout << "Contenido de mz_mc2 tras recibir f(mz _mc): ";
for(int i=0; i < mz_mc2.getlen(); ++i) cout << mz mc2[i].x << " ";

cout << endl;

return O0;

Aqui se muestra la salida:

Contenido de mz_int: 0 1 2 3 4

Crea mz_int2 y lo inicializa con mz_int. Esto da como resultado
que se llame a un constructor de copias de matriz segura din.

cla-

Usando el constructor de copias de matriz_segura_din para hacer una copia.

Contenido de mz_int2: 0 1 2 3 4

Crea mz_int3.
Contenido original de mz_int3: 0 0 0 0 O

Ahora, se ejecutaréd esta linea: mz_int3 = f(mz_int);
Esto da lugar a la siguiente secuencia de eventos:
1. Se llama al constructor de copias de matriz_segura din
para copiar mz_int que se pasa al parametro x de f().
2. Se llama de nuevo al constructor de copias cuando se
hace una copia para el valor devuelto de f().
3. Se llama al operador de asignacidén sobrecargado
para asignar el resultado de f£() a mz_int3.

Capitulo 7: Popurri 411

Usando el constructor de copias de matriz_ segura_din para hacer una copia.
f() estd devolviendo una copia de x.

Usando el constructor de copias de matriz_ segura din para hacer una copia.
Asignando un objeto de matriz segura din a otro.

Contenido de mz_int3 tras recibir el valor de f(mz_int): 0 1 2 3 4

Por supuesto, matriz_ segura din ademés funciona con tipos de clase.
Contenido original de mz_mc: -1 -1 -1
Valores en mz_mc tras establecerlos: 9 8 7

Ahora, se crea mz_mc2 y luego se ejecuta esta instruccidn:
mz_mc2 = f(mz_mc) ;

Usando el constructor de copias de matriz segura_din para hacer una copia.
f() estéd devolviendo una copia de x.

Usando el constructor de copias de matriz segura_din para hacer una copia.
Asignando un objeto de matriz segura din a otro.

Contenido de mz_mc2 tras recibir f(mz _mc): 9 8 7

Opciones

Como se explicé en el andlisis, la forma mas comtin de constructor de copias sélo tiene un pardmetro
que es una referencia a un objeto de la clase para la que esta definido el constructor de copias. Sin
embargo, es permisible para un constructor de copias que tenga pardmetros adicionales, siempre y
cuando tengan argumentos predeterminados. Por ejemplo, suponiendo la clase matriz_segura_din,
la siguiente declaracién especifica un constructor de copias valido:

matriz segura din(const matriz segura din &obj, int num = -1);

Aqui, la opcién predeterminada del pardmetro num es —1. Podria usar este constructor para per-
mitir que s6lo los primeros num elementos de la nueva matriz_segura_din se inicialicen con los
primeros num elementos de obj. Los elementos restantes pueden darse a un valor predetermina-
do. Cuando num es -1, toda la matriz se inicializa con obj. Esta versién del constructor de copias
podria escribirse asi:

// Si num no es -1, inicializa los primeros num elementos de una matriz segura
// usando el valor de obj. Los otros elementos obtienen valores predeterminados.
// De otra manera, inicializa toda la matriz con los elementos de obj.
template <class T, int longi>
matriz_segura_din<T, longi>::matriz_segura_din(const matriz_segura din &obj,
int num) {

cout << "Usando el constructor de copias de matriz_ segura din para hacer una
copia.\n";

try {
// Asigna una matriz del mismo tamafio que la
// usada por obj.
aptm = new T[obj.longitud];

} catch(bad_alloc ba) {
// Tome aqui la accidén apropiada. Esto es sdlo
// una respuesta de marcador de posicidn.
cout << "No puede asignar una matriz.\n";

418

C++ Soluciones de programacion

exit (1) ;

}

longitud = obj.longitud;

// Copia el contenido de obj, hasta el nGmero pasado mediante num.
// Si num es -1, entonces se copian todos los valores.
if (num == -1) num = obj.longitud;

for(int i=0; i < num; ++1i)
aptm([i] = obj.aptm[i];

// Inicializa cualquier elemento restante con su valor predeterminado.
for (int i=num; i < longitud; ++1)
aptm[i] = T();

Podria utilizar este constructor como se muestra aqui:
matriz_ segura din<int, 5> mz_int2 (mz_int, 3);

Aqui, los primeros tres elementos de mz_int se usan para inicializar los primeros tres elementos
de mz_int2. A los elementos restantes se les da un valor predeterminado, que para enteros es cero.
Como se explicé en el andlisis (y se demostrd con la clase matriz_segura_din en el Ejemplo
adicional), si necesita implementar un constructor de copias, a menudo también necesita sobrecargar
el operador de asignaciones. La razén es que el mismo problema que necesita usar el constructor de
copias también estara presente durante la asignacion. Es importante no subestimar la asignacion.

Determine un tipo de objeto en tiempo de ejecucion

Componentes clave

Encabezados Clases Funciones

<typeinfo> type_info bool operator==(const type_info &ob) const
bool operator!=(const type_info &ob) const
bool before(const type_info &ob) const
const char *name() const

En lenguajes polimérficos como C++, puede haber situaciones en que el tipo de un objeto es des-
conocido en tiempo de compilaciéon debido a que la naturaleza precisa de ese objeto no se determi-
na sino hasta que el programa se ejecuta. Recuerde que C++ implementa polimorfismo mediante
el uso de jerarquias de clase, funciones virtuales y apuntadores a clases base. Debido a que un
apuntador a clase base puede usarse para sefialar un objeto de la clase base de cualquier objeto deri-
vado de esa base, no siempre es posible saber de antemano cudl tipo de objeto sera sefialado por un

Capitulo 7: Popurri 479

apuntador a la base. Esta determinacion debe hacerse en tiempo de ejecucion, empleando informa-
cién de tipo en tiempo de ejecucién (RTTI, RunTime Type Information). La caracteristica clave que
permite esto es el operador typeid. Para algunos lectores, RTTI y typeid son caracteristicas bien
comprendidas, pero para otros son la fuente de muchas preguntas. Por esto, en esta solucion se
describen las técnicas bésicas de RTTL

Paso a paso
Para identificar el tipo de un objeto en tiempo de ejecucién se requieren los pasos siguientes:

1. Para obtener el tipo de un objeto, use typeid(objeto). Devuelve una instancia de type_info
que describe el tipo de objeto.

2. Para obtener una instancia de type_info para un tipo especifico, use typeid(tipo). Devuel-
ve un objeto de type_info que representa tipo.

Andlisis
Para obtener un tipo de objeto, use el operador typeid. Tiene dos formas. La primera se usa para
determinar el tipo de un objeto. Se muestra aqui:

typeid(objeto)

Aqui, objeto es una expresién que describe el objeto cuyo tipo estara obteniendo. Este puede ser el
propio objeto, un apuntador al que se quita la referencia, o una referencia al objeto. typeid devuel-
ve una referencia a un objeto const de tipo type_info que describe el tipo de objeto. La clase type_
info estd declarada en el encabezado <typeinfo>. Por tanto, debe incluirlo cuando usa typeid.

La clase type_info define los siguientes miembros publicos:

const char *name() const
bool operator==(const type_info &ob) const
bool operator!=(const type_info &ob) const

bool before(const type_info &ob) const

La funcién name() devuelve un apuntador al nombre del tipo, representado como una cadena
terminada en un carécter nulo. Por ejemplo, suponiendo algtin objeto llamado obj, la siguiente
instruccién despliega el nombre de tipo del objeto:

cout << typeid(obj) .name() ;

Los ==y != sobrecargados funcionan para la comparacién de tipos. La funcién before() devuelve
true si el objeto que invoca esté antes del objeto usado como un parametro en orden de intercala-
cién. (Esta funcién no tiene nada que hacer con la herencia o las jerarquias de clase.)

La segunda forma de typeid toma un nombre de tipo como su argumento. Aqui se muestra:

typeid(nombre-tipo)

Aqui nombre-tipo especifica un nombre de tipo vélido, como int, string, vector, etc. Por ejemplo, la
siguiente expresion es perfectamente aceptable:

typeid(int) .name ()

Aqui, typeid devuelve el objeto type_info que describe int. El principal uso de esta forma de
typeid consiste en comparar un tipo desconocido con uno conocido. Por ejemplo,

480

C++ Soluciones de programacion

if (typeid(int) == typeid(*apt))

Si apt sefiala a un int, entonces sera correcta la instruccién if.

El uso mds importante de typeid se presenta cuando se aplica mediante un apuntador de una
clase base polimérfica. En este caso, automaticamente devolvera el tipo del objeto al que se esta
sefialando. Recuerde que un apuntador de clase base puede sefialar a objetos de la clase base 0 a
un objeto de cualquier clase derivada de esa base. En todos los casos, typeid devuelve el tipo més
derivado. Por tanto, si el apuntador sefiala a un objeto de clase base, entonces se devuelve el tipo de
clase base. Si el apuntador sefiala a un objeto de clase derivada, se devuelve el tipo de clase deriva-
da. Por tanto, typeid le permite determinar en tiempo de ejecucion el tipo del objeto al que se estd
seflalando mediante un apuntador a clase base.

Las referencias a un objeto de una jerarquia de clase polimérfica funcionan igual que los apun-
tadores. Cuando se aplica typeid a una referencia a un objeto de una clase polimérfica, devolvera
el tipo de objeto al que se estd haciendo referencia, que puede ser un tipo derivado. La circuns-
tancia en que hara uso de esta caracteristica con mas frecuencia es cuando los objetos se pasan a
funciones por referencia.

Si aplica typeid a un apuntador o referencia a un objeto de una jerarquia de clases no polimoér-
fica, entonces se obtiene el tipo base del apuntador. Es decir, no se hace una determinacién de lo
que sefiala el apuntador.

Ejemplo
En el siguiente programa se demuestra el operador typeid. Crea una clase abstracta llamada
figura_dos_d que define la dimensién de un objeto bidimensional, como un circulo o un tridngulo.
También especifica una pura funcién virtual llamada area(), que debe implementarse mediante
una clase derivada para que devuelva el area de una forma. El programa crea tres subclases de
figura_dos_d: rectangulo, triangulo y circulo.

El programa también define las funciones trazador() y mismaforma(). La funcién original()
crea una instancia de una subclase de figura_dos_d, que sera un circulo, triangulo o rectangulo,
y devuelve un apuntador de figura_dos_d a él. El tipo especifico de objeto creado se determina
mediante la salida de una llamada a rand(), el generador de niimeros aleatorios de C++. Por tanto,
no hay manera de saber por anticipado qué tipo de objeto se generara. El programa crea seis obje-
tos. Debido a que puede generarse cualquier tipo de figura mediante una llamada a trazador(), el
programa depende de typeid para determinar qué tipo de objetos se han creado en realidad.

La funcién mismaforma() compara dos objetos de figura_dos_d. Los objetos son los mismos
s6lo si son del mismo tipo y tienen las mismas dimensiones. Utiliza typeid para confirmar que los
objetos son del mismo tipo.

// Demuestra el id de tipo en tiempo de ejecucidn.

#include <iostream>
#include <cstdlibs>

using namespace std;

// Una clase polimdérfica que encapsula formas bidimensionales,

// como tridngulos, rectangulos y circulos. Declara una

// funcién virtual llamada &area(), cuyas clases derivadas

// se sobrecargan para calcular y devolver el &rea de una figura.
class figura dos 4 {

Capitulo 7: Popurri

protected:

double x, vy;

public:

figura dos _d(double i, double j) {
X = 1i;
y = Ji

}

double getx() { return x; }
double gety() { return y; }

virtual double area() = 0;

}i

// Crea una subclase de figura dos_d para tridngulos.
class triangulo : public figura dos 4 {
public:
triangulo(double i, double j) : figura dos d(i, j) { }

double area() {
return x * 0.5 * y;

}
}i

// Crea una subclase de figura dos_d para rectdngulos.
class rectangulo : public figura dos d {

public:
rectangulo (double i, double j) : figura dos d(i, j) { }
double area() {

return x * y;

}
}i

// Crea una subclase of figura dos d para circulos.
class circulo : public figura dos_d {
public:
circulo(double i, double j=0) : figura dos d(i, j) { }

double area() {
return 3.14 * x * Xx;

}
b

// Un trazador de objetos derivados de figura dos d.
figura dos_d *trazador()

static double i = (rand() % 100) / 3.0, j = (rand() % 100) / 3.0;
i += rand() % 10;
j += rand() % 12;

cout << "Generando objeto.\n";

switch(rand() % 3) {

481

482 Cc++ Soluciones de programacion

case 0: return new circulo(i) ;
case 1: return new triangulo(i, j);
case 2: return new rectangulo(i, j);

}

return 0;

}

// Compara la igualdad de dos figuras. Esto significa que sus tipos
// v dimensiones deben ser iguales.
bool mismaforma (figura dos d *alfa, figura dos_d *beta) {

cout << "Comparando un objeto de " << typeid(*alfa) .name ()
<< " con un objeto de " << typeid(*beta) .name ()
<< "object\n";

if (typeid(*alfa) != typeid(*beta)) return false;
if (alfa->getx () != beta->getx() &&
alfa->gety() != beta->gety()) return false;

return true;

}

int main()

{
// Crea un apuntador a clase base a figura dos_d.
figura dos_d *a;

// Genera objetos de figura dos_d.
for(int i=0; i < 6; i++) {

// Genera un objeto.

a = trazador () ;

// Despliega el nombre del objeto.
cout << "El objeto es " << typeid(*a) .name() << endl;

// Despliega su &rea.
cout << " E1l \uOOalOrea es " << a->area() << endl;

// Mantiene una cuenta de los tipos de objetos que se han generado.
if (typeid(*a) == typeid(triangulo))
cout << " La base es " << a->getx() << " La altura es "
<< a->gety() << endl;

else if(typeid(*a) == typeid(rectangulo))
cout << " El largo es " << a->getx() << " La altura es "

<< a->gety() << endl;

else if (typeid(*a) == typeid(circulo))
cout << " El di\uOOaOmetro es " << a->getx() << endl;

cout << endl;

cout << endl;

// Crea algunos objetos para comparar.
triangulo t(2, 3);

triangulo t2(2, 3);

triangulo t3(3, 2);

rectangulo r (2, 3)

7

// Compara dos objetos de figura dos_d.
if (mismaforma (&t, &t2))
cout << "t y t2 son iguales.\n";

if (!mismaforma (&t, &t3))
cout << "t y t3 son diferentes.\n";

if (!mismaforma (&t, &r))
cout << "t y r son diferentes.\n";

cout << endl;

return O;

}
Aqui se muestra la salida:

Generando objeto.
El objeto es class rectangulo
El area es 465.222
El largo es 17.6667 La altura es 26.3333

Generando objeto.

El objeto es class circulo
El area es 1474.06
El diametro es 21.6667

Generando objeto.
El objeto es class rectangulo
El area es 954.556
El largo es 23.6667 La altura es 40.3333

Generando objeto.

El objeto es class circulo
El &rea es 2580.38
El diametro es 28.6667

Generando objeto.
El objeto es class triangulo
El area es 776.278
La base es 29.6667 La altura es 52.3333

Generando objeto.

El objeto es class circulo
El area es 3148.72
El diadmetro es 31.6667

Capitulo 7: Popurri

483

484 c++ Soluciones de programacidn

Comparando un objeto de class triangulo con un objeto de class triangulo
t y t2 son iguales.

Comparando un objeto de class triangulo con un objeto de class triangulo
t y t3 son diferentes.

Comparando un objeto de class triangulo con un objeto de class rectangulo
t y r son diferentes.

Opciones

El operador typeid puede aplicarse a clases de plantilla. El tipo de un objeto que es una instancia
de una clase de plantilla estd determinado, en parte, por los datos usados para sus parametros de
tipo cuando se crea una instancia del objeto. Dos instancias de la misma clase de plantilla que se
crean usando datos diferentes son, por tanto, tipos diferentes. Por ejemplo, suponga la clase de
plantilla miclase, que se muestra aqui:

template <class T> class miclase {
!/
}i

La siguiente secuencia:

miclase<int> mc_int;
miclase<double> mc_dbl;

cout << "El tipo de mc_int es " << typeid(mc_int) .name() << endl
<< "El tipo de mc_dbl es " << typeid(mc_dbl) .name() << endl

if (typeid(mc_int) != typeid(mc_dbl))
cout << "Los dos objetos son de tipo diferente";

produce la siguiente salida:
El tipo de mc_int es miclase<int>
El tipo de mc_dbl es miclase<double>

Los dos objetos son de tipo diferente

Como puede ver, aunque mc_int y mc_dbl son objetos de miclase, sus tipos difieren porque se
usan diferentes plantillas de argumentos.

Use niimeros complejos

Componentes clave

Encabezados Clases Funciones

<complex> complex T imag() const
T real() const

Capitulo 7: Popurri 485

Una caracteristica en ocasiones subestimada de C++ es el soporte a niimeros complejos. Un ntime-
ro complejo contiene dos componentes: una parte real y una imaginaria. Esta tltima especifica un

multiplo de i, que es la raiz cuadrada de —1. Por tanto, un nimero complejo suele representarse de
esta forma:

a+bi

donde a especifica la parte real y b la imaginaria. En C++, los niimeros complejos tienen soporte
con la clase complex. En esta soluciéon se muestran las técnicas basicas para usarla.

Paso a paso

Para usar niimeros complejos se requieren estos pasos:

1. Cree uno o més objetos de complex. La clase complex es genérica, y usted debe especifi-
car el tipo de los componentes. Por lo general, esto serd un tipo de punto flotante, como
double.

2. Realice operaciones con objetos de complex al usar operadores sobrecargados. Todos los
operadores aritméticos estan definidos por complex.

3. Obtenga el componente real de una instancia de complex al llamar a real().

4. Obtenga el componente imaginario de una instancia de complex al llamar a imag().

Analisis
La especificacién de plantilla para complex se muestra a continuacién:

template <class T> class complex

Aqui, T especifica el tipo usado para representar los componentes de un niimero complejo. Hay
tres especializaciones predefinidas de complex:
class complex<float>
class complex<double>
class complex<long double>
No esta definida la especificacién de algtin otro argumento de tipo.
La clase complex tiene los siguientes constructores:
complex(const T &real = T(), const T &imaginario = T())
complex(const complex &ob)
template <class T1> complex(const complex<T1> &ob);
El primero construye un objeto de complex con un componente real de real y uno imaginario de

imaginario. El valor predeterminado de estos valores es cero, si no esta especificado. El segundo
crea una copia de ob. El tercero crea un objeto de complex a partir de ob.

486

C++ Soluciones de programacion

Las siguientes operaciones estdn definidas para objetos de complex:

= == 1=

Los operadores sin asignacién se sobrecargan de tres maneras: una vez para operadores que
requieren un objeto de complex a la izquierda y un objeto escalar a la derecha, una vez mds para
operaciones que requieren un objeto escalar a la izquierda y uno de complex a la derecha, y final-
mente para operaciones que requieren dos objetos de complex. Por ejemplo, los siguientes tipos de
operaciones de suma estdn permitidos:

ob_complex + escalar

escalar + ob_complex

ob_complex + ob_complex
Estan definidas dos funciones miembro para complex: real() e imag(). Aqui se muestran:

T real() const

T imag() constructores

La funcién real() devuelve el componente real del objeto que invoca, e imag() devuelve el compo-
nente imaginario.

El encabezado <complex> también define versiones de complex de las funciones matematicas
estdndar, como abs(), sin(), cos() y pow().

Ejemplo

He aqui un programa de ejemplo que demuestra complex:

// Demuestra la clase complex.

#include <iostream>
#include <complexs>

using namespace std;

int main()

{
complex<double> cmpxl(1l, 0);
complex<double> cmpx2 (1, 1);

cout << "cmpxl: " << cmpxl << endl << "cmpx2: " << cmpx2 << endl;
// Suma dos nUmeros complejos.

cout << "cmpxl + cmpx2: " << cmpxl + cmpx2 << endl;

// Multiplica dos numeros complejos.
cout << "cmpxl * cmpx2: " << cmpxl * cmpx2 << endl;

Capitulo 7: Popurri 487

// Suma un nimero escalar a uno complejo.
cmpxl += 2.0;
cout << "cmpxl += 2.0: " << cmpxl << endl;

// Encuentra el seno de cmpx2.
cout << "sin(cmpx2): " << sin(cmpx2) << endl;

return 0;

}
Aqui se muestra la salida:

cmpxl: (1,0)

cmpx2: (1,1)

cmpxl + cmpx2: (2,1)

cmpxl * cmpx2: (1,1)

cmpxl += 2.0: (3,0)
sin(cmpx2) : (1.29846,0.634964)

Opciones

Para el caso de programadores que se concentran en calculos numéricos, C++ provee mas soporte
del que se podria imaginar. Ademds de complex, C++ incluye la clase valarray que da soporte a
operaciones de matrices numéricas. También proporciona dos clases de utileria llamadas slice y
gslice, que encapsulan una parte (es decir, una porcién o "rebanada") de una matriz. Estas clases
requieren el encabezado <valarray>. En el encabezado <numeric> estan definidos cuatro algorit-
mos numéricos llamados accumulate(), adjacent_difference(), inner_product() y partial_sum().
Todos tienen algtn interés para el programador.

Use auto_ptr

Componentes clave

Encabezados Clases Funciones

<memory> auto_ptr T *get() const throw()
T*release() throw()
Void reset(X *ptr = 0) throw ()

C++ incluye una clase llamada auto_ptr que se disefi¢ para simplificar la administracién de me-
moria asignada dinamicamente. Como muchos lectores sabran, uno de los aspectos del uso de la
asignacion dindmica que provoca mas problemas es la prevencién de las fugas de memoria. Una
manera en que ocurre una fuga de memoria es cuando se asigna ésta, pero nunca se libera. La cla-
se auto_ptr representa un intento por prevenir esta situacién. En esta solucién se describe su uso.

488

C++ Soluciones de programacion

Paso a paso
Para usar auto_ptr se necesitan estos pasos:

1. Cree un auto_ptr, especificando el tipo de base del apuntador.

2. Asigne memoria usando new, y asigne un apt a la memoria al auto_ptr creado en el paso 1.

3. Use el auto_ptr como un apuntador normal. Sin embargo, no libere la memoria a la que
apunta auto_ptr. En otras palabras, no use delete para liberar la memoria.

4. Cuando se destruye el auto_ptr, como cuando sale del &mbito, se libera automaticamente
la memoria a la que sefiala auto_ptr.

5. Puede obtener el apuntador contenido por un auto_ptr al llamar a get().

6. Puede establecer el apuntador de auto_ptr al llamar a reset().

7. Puede liberar la propiedad de auto_ptr del apuntador al llamar a release().

Anlisis
Un auto_ptr es un apuntador que posee el objeto al que sefiala. La propiedad de este objeto puede
transferirse a otro auto_ptr, pero algtin auto_ptr siempre posee el objeto. Por ejemplo, cuando un
objeto de auto_ptr se asigna a otro, s6lo el destino de la asignacién serd su propietario. Cuando
se destruye un auto_ptr, como cuando sale del &mbito, el objeto al que sefiala auto_ptr se libera
automaticamente. Debido a que s6lo un auto_ptr poseerd (contendrd un apuntador a) cualquier
objeto determinado en cualquier momento dado, el objeto sdlo se liberara una vez, cuando se
destruye el auto_ptr que tiene la propiedad. Cualquier otro auto_ptr que previamente haya tenido
la propiedad no entrara en accién. El mecanismo asegura que los objetos asignados dindmicamen-
te se liberen apropiadamente en todas las circunstancias. Entre otros beneficios de este método se
encuentra el de que los objetos asignados dindmicamente pueden liberarse de manera automaética
sin que ocurra una excepcion.

La especificacién de plantilla para auto_ptr se muestra a continuacién:

template <class T> class auto_ptr

Aqui, T especifica el tipo de apuntador almacenado por auto_ptr.
He aqui el constructor para auto_ptr:
explicit auto_ptr(T *apt = 0) throw()
auto_ptr(auto_ptr &ob) throw()
template <class T2> auto_ptr(auto_ptr<T2> &ob) throw()
El primer constructor crea un auto_ptr al objeto especificado por apt. El segundo crea una copia

de auto_ptr especificada por ob y trasfiere la propiedad al nuevo objeto. El tercero convierte &ob al
tipo T * (si es posible) y transfiere la propiedad.

Capitulo 7: Popurri 489

La clase auto_ptr define los operadores =, * y —>. También define estas tres funciones:

T *get() const throw()
T *release() throw()
void reset(X *apt = 0) throw()

La funcién get() devuelve un apuntador al objeto almacenado. La funcién release() elimina la
propiedad del objeto almacenado del auto_ptr que invoca y devuelve un apuntador al objeto.
Después de una llamada a release(), el objeto al que se apunta no se destruye automaticamente
cuando el objeto auto_ptr sale del &mbito. La funcién reset() llama a delete en el apuntador con-
tenido por auto_ptr (a menos que sea igual a apt) y luego establece el apuntador a apt.

Ejemplo

He aqui un programa corto que demuestra el uso de auto_ptr. Crea una clase llamada X que al-
macena un valor entero. Dentro de main(), se crea un objeto X y se asigna a un auto_ptr. Observe
como se tiene acceso a los miembros de X mediante el auto_ptr, usando el operador de apuntador
normal —>. Ademads, observe cémo uno y sélo uno de los auto_ptr posee el apuntador al objeto de
X en un momento determinado. Esta es la razén por la que s6lo un objeto de X se destruye cuando
termina el programa.

// Demuestra un auto ptr.

#include <iostream>
#include <memory>

using namespace std;

class X {
public:
int v;

X(int j) {
v o= 3J;
cout << "Construyendo X (" << v <<")\n";

}

~X() { cout << "Destruyendo X (" << v <<")\n"; }
void f£() { cout << "Dentro de £ ()\n"; }

}i

int main()

{
auto_ptr<X> al(new X(3)), a2;

cout << "al apunta a un X con el valor " << al->v
<< "\n\n";

// Transfiere la propiedad a a2.
cout << "Asignando al a a2.\n";

490 c++ Soluciones de programacidon

az2 = al;
cout << "Ahora, a2 apunta a un X con el valor " << a2->v
<< endl;
if(lal.get()) cout << "El apuntador de al ahora es null.\n\n";

// Puede llamar a una funcidén mediante un auto ptr.
cout << "Llama a f() mediante a2: ";

az2->f();

cout << endl;

// Asigna al apuntador encapsulado por un auto ptr a

// un apuntador normal.

cout << "Obtiene el apuntador almacenado en a2 y lo asigna al \n"
<< "apuntador normal llamado apt.\n";

X *apt = a2.get();

cout << "apt apunta a un X con el valor " << apt->v
<< "\n\n";
return 0;

// En este momento, el objeto asignado se libera y
// se llama a su destructor. Aunque hay dos objetos
// de auto ptr, sbélo uno posee el apuntador. Por

// tanto, sdlo se destruye un objeto de X.

}

Aqui se muestra la salida producida por este programa:

Construyendo X(3)
al apunta a un X con el valor 3

Asignando al a a2.
Ahora, a2 apunta a un X con el valor 3
El apuntador de al ahora es null.

Llama a f() mediante a2: Dentro de f ()

Obtiene el apuntador almacenado en a2 y lo asigna al
apuntador normal llamado apt.
apt apunta a un X con el valor 3

Destruyendo X(3)

Opciones
Aunque auto_ptr es ttil, no evita todos los problemas relacionados con los apuntadores. Por ejem-
plo, atin es posible operar por accidente sobre un apuntador nulo. Sin embargo, puede usar un
auto_ptr como base para su propio tipo personalizado de "apuntador seguro". Para experimentar
con este concepto, pruebe el uso de auto_ptr para el miembro apt de la clase apt_seguro mostrada
en el Ejemplo adicional de Sobrecargue el operador —>.

Otra cosa que auto_ptr no proporciona es recoleccién de basura. Como casi todos los lectores
saben, la recoleccién de basura es el esquema de administracién de memoria en que la memoria
se recicla automaticamente cuando ya no se usa en algtin objeto. Aunque aspectos de auto_ptr

Capitulo 7: Popurri 491

parecen relacionados con la recoleccién de basura, como el hecho de que la memoria asignada
se libera automaticamente cuando el auto_ptr sale del &mbito, la recoleccién de basura depende
de un mecanismo fundamentalmente diferente. En la actualidad, el C++ estdndar no define una
biblioteca de recoleccién de basura, pero es probable que la siguiente version de C++ si la incluya.
Un tema adicional: para pasar un auto_ptr a una funcion, recomiendo el uso de un pardmetro
de referencia. En el transcurso de los afios, se han visto cambios importantes en la manera en que
diferentes compiladores manejan el paso de un valor de auto_ptr. El paso de una referencia evita
el problema.

Cree un constructor explicito

Componentes clave

Encabezados Clases Funciones

cualquier clase explicit constructor(tipo param)

Para concluir este libro de C++, se ha elegido una de sus caracteristicas mas esotéricas: el cons-
tructor explicito. Con los afios, el autor se ha preguntado varias veces acerca de esta caracteristica,
porque se usa con frecuencia en la biblioteca estdndar de C++. Aunque no es dificil, resulta una
caracteristica especializada cuyo significado no se comprende universalmente. En esta solucién se
describe el objetivo de un constructor explicito y se muestra como crear uno.

Paso a paso
Para crear un constructor explicito se necesitan estos pasos:

1. Cree un constructor que tome un argumento.
2. Modifique el constructor con la palabra clave explicit.

Analisis

C++ define la palabra clave explicit para que maneje una condicion especial de caso que ocurre con
un constructor que requiere s6lo un argumento. Para comprender el propédsito de explicit, considere
la siguiente clase:

class miclase ({
int val;
public:
miclase (int x) { val = x; }
int getval() { return val; }
}i

492

C++ Soluciones de programacion

Observe que el constructor de miclase tiene un parametro. Esto significa que puede crear un
objeto de miclase como éste:

miclase ob(4) ;

En esta declaracion, el valor 4, que se especifica entre paréntesis después de ob, es un argumento
pasado al parametro x de miclase(). Este valor se usa después para inicializar val. Se trata de una
forma comun de inicializacién, y se usa ampliamente en este libro. Sin embargo, hay una opcién,
como se muestra en la siguiente instruccion, que también inicializa val en 4:

miclase ob = 4; // se convierte automdticamente en miclase (4)

Como lo sugiere el comentario, esta forma de inicializacién se convierte autométicamente en una
llamada al constructor de miclase, y 4 es el argumento. Es decir, el compilador maneja la instruc-
cién anterior como si fuera ésta:

miclase ob(4) ;

En general, en cualquier momento en que tenga un constructor que requiera sélo un argu-
mento, puede usar ob(x) u ob = x para inicializar un objeto. La razén es que cada vez que cree un
constructor que requiera un argumento, estd creando implicitamente una conversién del tipo de
ese argumento al de la clase.

Sino quiere que ocurran conversiones implicitas, puede evitarlas al usar explicit. Este espe-
cificador sélo se aplica a constructores. Un constructor especificado como explicito s6lo se usara
cuando una inicializacién use la sintaxis del constructor normal. No realizara ninguna conversién
automédticamente. Por ejemplo, al declarar explicit el constructor de miclase, como se muestra
aqui:

explicit miclase(int x) { val = x; }

no se proporcionara la conversion automatica. Ahora, sélo se permitirdn constructores de la forma
miclase ob(27) ;

Ya no se permitira esta forma

miclase ob = 27; // iAhora es un error!

Ejemplo

En el siguiente ejemplo se integran las piezas y se ilustra un constructor explicit. En primer lugar,

he aqui un programa que ilustra la conversién automatica que ocurre cuando un constructor no se
modifica con explicit:

#include <iostream>
using namespace std;

class miclase ({
int val;

public:
// El1 siguiente constructor NO es explicito.
miclase (int x) { val = x; }

Capitulo 7: Popurri 493

int getval() { return val; }

}i

int main()

{

miclase ob(4); // Correcto
cout << "val en ob: " << ob.getval() << endl;

// La siguiente instruccidén es correcta debido a la
// conversidén implicita de int a miclase.

miclase ob2 = 19;

cout << "val en ob2: " << ob2.getval() << endl;

return 0;

}
Aqui se muestra la salida:

val en ob: 4
val en ob2: 19

Como puede ver, ambas formas de inicializacién son permitidas, y ambas inicializan una instancia
de miclase, como se esperaba.
La siguiente version del programa agrega el modificador explicit al constructor de miclase:

#include <iostreams>
using namespace std;

class miclase {
int val;

public:
// BAhora miclase(int) es explicito.
explicit miclase (int x) { val = x; }

int getval() { return val; }

}i

int main()
{
miclase ob(4); // AGn es correcto
cout << "val en ob: " << ob.getval() << endl;

// La siguiente instruccidén es un error porque ya no esta
// permitida la conversidén implicita de int a miclase.
miclase ob2 = 19; // iError!

cout << "val en ob2: " << ob.getval() << endl;

return O;

494

C++ Soluciones de programacion

Después de hacer miclase(int) explicita, la instruccion
miclase ob2 = 19; //iError!

es ahora un error y no se compilara.

Opciones

El modificador explicit s6lo se aplica a constructores que requieren un argumento. Sin embargo,
esto no significa que el constructor deba tener un solo parametro. Simplemente significa que cual-
quier parametro después del primero debe tener argumentos predeterminados. Por ejemplo:

class miclase f{
int val;
int otro_valor;
public:
explicit miclase(int x, int y = 0) { val = x; otro val = y; }

//
}i
Debido a que el valor predeterminado de y es 0, el uso de explicit atin es valido. Su uso evita la

siguiente declaracion:

miclase contador = 19; // no valida.

Si el constructor no ha sido declarado como explicit, la instruccién anterior se permitiria; y tendria
el valor predeterminado de 0. Debido a explicit, es necesario invocar explicitamente al constructor,
como en el ejemplo siguiente:

miclase contador (19) ;
Por supuesto, también puede especificar un segundo argumento:

miclase contador (19, 99);

Simbolos

-
sobrecarga, 445-451
usado con iteradores, 154

e iteradores, 71, 109
e iteradores de flujo, 267, 268, 269
y flujos, 284
[l
cémo sobrecargar, 441-445
usado con deque, 119, 120
usado con map, 158-159
usado con objetos de cadena, 15, 52, 54
usado con vector, 111, 112, 114, 117

sobrecarga, 468, 478
usado con objetos de cadena, 15, 52, 53
y contenedores, 98

sobrecargado con type_info, 479

usado con objetos de cadena, 15, 52, 54

y contenedores, 98, 109, 141, 154-155, 172

!'y flujos, 284, 289, 292, 294, 297, 300, 302,
304-305, 306, 309, 315

sobrecargado con type_info, 479
usado con objetos de cadena, 15
y contenedores, 98
—, sobrecarga para uso con objetos de cadena, 86-91
—=, sobrecarga para uso con objetos de cadena,
86-91
- —, cOmo sobrecargar, 457-462
(), cémo sobrecargar, 437-440
+ usado con objetos de cadena, 15, 52, 53, 86

Indice

+= usado con objetos de cadena, 15

++
cOdmo sobrecargar, 457-462
usado con istream_iterator, 267
usado con istreambuf_iterator, 268

usado con objetos de cadena, 15
y contenedores, 98, 109, 141, 154-155, 172
<<
usado con objetos de cadena, 15
usado para formar salida numérica, 397, 398
<< operador de insercién para flujos, 284, 293, 294
creacion de uno personalizado, 341-344
para manipuladores con pardmetros, sobre-
carga de, 348, 349-350
y manipuladores, 346, 348

usado con objetos de cadena, 15, 54
y contenedores, 98

usado con objetos de cadena, 15, 52, 54
y contenedores, 98, 154-155
>>, usado con objetos de cadena, 15
>>, operador de extraccion para flujos, 284, 298,
299-300
creacién de uno personalizado, 341-344
para manipuladores con parametros, sobre-
carga de, 349
y formacién de salida numérica, 397
y manipuladores, 346, 348

usado con objetos de cadena, 15
y contenedores, 98

495

496

C++ Soluciones de programacion

A
accumulate(), algoritmo, 487
Adaptadores, 96
adjacent_difference(), algoritmo, 487
adjacent_find(), algoritmo, 184, 187, 199
adjustfield, 369, 388, 389
apuntador a funcién, usando, 262-265
contenedor, 96-97, 132-140
de funcion, 262
de funciéon miembro, 265
iterador de insercion, 274-277
Adhesivos, 96, 188
cémo usar, 255-259
cOmo usar funciones con, 262
<algorithm>, encabezado, 66, 71, 73, 77, 182
Algoritmo, creacién de uno personalizado, 238-244
con un predicado, 239, 242-244
Algoritmos de STL, 94
de orden y relacionados, tabla de, 186
e iteradores, 182-183, 200, 225
naturaleza de las funciones de plantilla de,
182-183
organizada por agrupaciones funcionales,
tabla de, 187
para flujos, aplicacion, 265-266, 272-273
revision general, 182-184, 185-187
secuencia que no se modifica, tabla de, 184
secuencia que se modifica, tabla de, 185
ventajas de, 66, 182
y objetos de cadena, 66, 70, 71, 73, 76
Algoritmos numéricos, 487
allocator, clase, 95
Allocator, nombre de tipo genérico, 12, 96
allocator_type, 97
Ancho de campo, establecimiento del, 385-388, 393
para alinear columnas de ntimeros, 387-388
uso de printf(), 421-422
app, 290
append(), 13, 58
version de iterador de, 77
Apuntadores
a archivos en C, 356, 357, 358
a archivos en C++, 326
a funcién, 95-96, 184, 190, 245, 248
adaptacion en un objeto de funcién, 262-265
auto_ptr. Véase auto_ptr

clase base, 478, 480
comparacién entre apuntadores y objetos de
funcién, 249, 255
de funcién. Véase Funcién, apuntadores
de funcién y manipuladores, 346, 348
get, 327
put, 327
similitud con los iteradores, 109, 154
uso de la sobrecarga de —> para crear un
apuntador seguro, 446, 447-450
uso de sintaxis de indizacién de matriz con,
24
Archivos
binarios, 290-291
binarios y E/S de acceso aleatorio, 327
cambio de nombre y eliminacién, 362-365
comparacién entre archivos de texto y bina-
rios, 290-291
creacion de un filtro basado en la STL, 272-
273
de texto y E/S de acceso aleatorio, 329
definicién, 280, 281
escritura de datos binarios sin formato para,
300-305
escritura de datos formados en un archivo de
texto, 293-296
flujos de, 290-291
lectura de datos binarios sin formar de uno,
305-309
lectura de datos formados de un archivo de
texto, 296-300
lectura y escritura de, 314-317
receta para comparacién de, 320-322
revision de uno, 332-337
traducciones de caracteres en, 290-291
uso de get() y getline() para leer de, 310-314
ventajas del cierre explicito de, 289, 293, 326
y E/S de acceso aleatorio, 326-332
argument_type, 250
Asignacién, sobrecarga del operador de, 468, 478
Asignadores de STL, 95
Asociativos, contenedores, 94, 97
requisitos de, 100-101
técnicas bésicas, 145-156
assign(), 13, 58, 118, 124
version de iterador de, 76, 112, 113, 119

at(), 14, 58, 99, 111, 112-113, 119
ate, 290
Aumento, cémo sobrecargar el operador de, 457-
162
auto_ptr, clase, 451
para crear un apuntador seguro, 490
uso de, 487-491

B
back(), 99, 112, 113, 119, 120, 126, 133, 134
back_insert_iterator, clase, 275
back_inserter(), adaptador de iterador de inser-

cién, 274-275

bad(), 283, 288, 296, 300, 304, 318, 322
bad_alloc, excepcion, 38, 452
badbit, marca de error, 288, 318, 336
bad_cast, excepcién, 399, 402, 408
basefield, 369, 379, 380
basic_filebuf, clase, 281, 282, 286
basic_fstream, clase, 281, 282, 285, 286
basic_ifstream, clase, 281, 282, 285, 286
basic_ios, clase, 281, 282, 283-284, 286, 332, 369
basic_iostream, clase, 281, 282, 285, 286
basic_istream, clase, 281, 282, 283, 285, 286
basic_istringstream, clase, 281, 282, 286, 337
basic_ofstream, clase, 281, 282, 284, 285, 286
basic_ostream, clase, 281, 282, 284, 285, 286, 400, 409
basic_ostringstream, clase, 281, 282, 286, 337
basic_streambuf, clase, 281, 282, 286
basic_string, clase, 7, 12

ventajas del uso de cadenas, 51-52, 57, 70
basic_stringbuf, clase, 281, 282, 286
basic_stringstream, clase, 281, 282, 286, 337
before(), 479
beg, 327
begin(), 14, 71, 72, 98, 103, 104, 113, 120, 126, 146,

149, 159, 190

Biblioteca de localizacion, 31, 372

formacion de datos mediante la, 367, 370-371
Biblioteca de plantillas estandar (STL), 93

revision general, 94-96

y la clase string, 15, 58
Bilter, 95, 183
binario, 290-291, 301, 306
binary_function, estructura, 249, 250
binary_negate, clase, 260

497

indice

binary_search(), algoritmo, 186, 187, 197-198
bind1st(), adhesivo, 188, 256, 258-259
bind2nd(), adhesivo, 188, 256, 257, 258, 260, 263-
264,
binderlst, clase, 256,
binder2nd, clase, 256
BinPred, nombre de tipo genérico, 96, 183
bitset, clase, 179
<bitset>, encabezado, 179
boolalpha
marca de formato, 368, 369
manipulador, 370, 392

C
c_str(), 14, 83, 85
C++
estdndar internacional para, 4
biblioteca estandar, 5
Cadenas
caracteres extendidos, 7, 12
como matrices, 7, 8, 9
comparacién entre Cy C++, 7, 8
flujos. Véase Flujos de cadena, C++
literales, 8, 16
Cadenas terminadas en un caracter nulo, 7
bisqueda de, 20-23
combinacién de objetos de cadena con, 15, 58
comparacion ignorando diferencias entre
maytusculas y mintsculas, 27-31
conversién de un objeto de cadena en una,
83-85
conversién en fichas de, 44-50
creacion de una funcién de bisqueda y reem-
plazo, 31-38
divisién en categorias de caracteres dentro de
una, 39-43
inversion de, 23-27
limitaciones de, 11-12
operadores y, 11
programa para el recuento de palabras, 41-43
realizacién de operaciones basicas en, 16-20
revision general de, 8-11
tabla de funciones de uso comitin, 9-10
ventajas de, 16
Calculadora de sufijo, uso de una pila para su
creacion, 137-140

498 Cc++ Soluciones de programacion

capacity(), 14, 52, 54, 112, 114
Caracteres de relleno, establecimiento, 385, 386-
388, 393
catch, instruccién, 323
<cctype>, encabezado, 28, 39, 40
cerr, 287
char*, cadena, 8
char, 7, 302, 304, 307, 368
flujos basados en, 285-286
char_traits, clase, 282
char_type, 283, 403, 404
Cierre, operacién de, 280
cin, 287, 298
e istream_iterator, 267, 269
clear(), 13,59, 99, 100, 103, 104, 126, 146, 148
definido por basic_ios, 283, 290, 318
<clocale>, encabezado, 417
clog, 287
close(), 285, 292-293, 294, 298, 302, 306, 307
Comp, nombre de tipo genérico, 96, 183
compare(), 14, 59
Complex numbers, using, 484-487
complex, clase, 485
<complex>, encabezado, 486
Conjuntos, rendimiento de operaciones, 217-222
const_iterator, 72,97, 113
const_reference, 97, 112
const_reverse_iterator, 72, 97, 113
Constante, categoria de rendimiento de tiempo, 101
amortizado, 101
Constructor
de copias. Véase Copias, constructor
explicit, creaciéon de uno, 491-494
constructores, 294, 301
Contenedor de secuencias, 94, 97
constructores, 170
especificacion de plantilla, 170
establecimiento del contenedor, 97, 146, 147,
156
iteradores, 171
receta en que se usa, 169-174, 178-179
requisitos para, 99-100
reversible, 105
técnicas béasicas, 102-110
Contenedores, 94
adaptadores, 97-98, 132-140
almacenamiento de objetos definidos por el

usuario en uno, 140-144
asociativos. Véase Asociativos, contenedores
busqueda de un elemento en uno, 192-199
clase de cadena como uno, 15, 58, 66, 70, 76
clases de plantilla usadas para implementar,
9%
de orden, 189-192
declaracién de un iterador para uno, 104
definido por la STL, tabla de, 97
eleccién de, 103, 110
garantias de rendimiento, 101
insercién de elementos en uno, 274-277
requisitos para todos, 98
reversibles, 98, 105
secuencia. Véase Secuencias, contenedores
Conversioén en fichas
de una cadena terminada en un caracter
nulo, 44-50
de un objeto de cadena, 63-65
Copias, constructor
creacién de uno, 466-478
para implementar una matriz segura, usando
uno, 471-478
copy()
algoritmo, 185, 187, 225-227
funcién, 13
copy_backward(), algoritmo, 185, 187, 227
count(), 100, 155
cout, 287, 294
y ostream_iterator, 267, 269
y printf(), 419
<cstdio>, encabezado, 356, 357, 362, 363, 371
<cstring>, encabezado, 9, 11, 17
<ctime>, encabezado, 409, 415
cur, 327
cur_symbol(), 402, 404

D
data(), 14, 85
dec
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 393
decimal_point(), 402, 403, 404
delete, operador, 488
sobrecarga de, 451-456
deque, contenedor, 94, 96, 97, 103, 118, 133, 134
caracteristicas de rendimiento, 120

constructores, 119

especificacion de plantilla, 119

garantia de rendimiento, 110

iteradores, 120

receta para uso de, 118-124
<deque>, encabezado, 97
Desbordamiento de bifer, 12, 17, 18, 311
divides, objeto de funcién, 95, 184, 246

E
E/S, archivo de C
cambio de nombre y eliminacién de un archi-
vo usando, 363-365
uso de, 355-362
y C++, 355-356, 362
E/S, archivo de C++, 282
de acceso aleatorio, uso de, 326-332
E/S, C++
buferes, 316
e iteradores de flujo, 265-273, 280
flujos. Véase Flujos, C++
manipuladores. Véase Manipuladores
revision general, 280-287
uso de flujos de cadena, 282, 337-341
y E/S de archivo de C, 355-356, 362
empty(), 14, 98, 103, 104, 133, 134, 135, 146, 149
end, 327
end(), 14, 71,72, 98, 103, 104-105, 113, 120, 126, 146,
149, 155, 159, 190
endl, manipulador, 370, 392, 393
ends, manipulador, 370, 392, 393
EOF
deteccion, 317-322
macro del sistema de E/S de C, 357, 358, 359,
362
eof(), 283, 288, 300, 309, 326
recetas que usan, 317-322
eofbit, marca de error, 288, 318, 333, 336
equal()
algoritmo, 184, 187, 203
funcién, 269
equal_range()
algoritmo, 186, 187, 198
funcién, 100, 141, 155, 168-169, 178
equal_to, objeto de funcién, 184, 246, 260
erase(), 13, 52, 54, 58, 86, 87, 100, 146, 148, 162, 163,
165, 167-168, 170, 171

499

indice

versiones de iterador, 71, 73, 99, 100, 103, 104,
110, 120, 126, 127, 156, 168, 178
Excepciones, 289, 296, 300, 304, 309, 322-326, 336
exception, clase, 323
exceptions(), 283, 296, 300, 304, 323
explicit, uso de la palabra clave, 491-494
Extensibilidad de tipos, 426
Extractores, 341
creacion de extractores personalizados, 341-
344

F
Facetas, 355, 371, 372-373, 418
fail(), 283, 284, 288, 289, 292, 294, 296, 297, 300, 302,
304, 306, 309, 315, 322, 326
failbit, marca de error, 288, 292, 307, 318, 323
failed(), 266, 269
failure, 323
falsename(), 405-406
fclose(), 356, 358
Fecha y hora
especificaciones de formato, 410
uso de strftime() para formacion, 414-418, 424
uso de time_put para formacién, 407-411, 424
feof(), 356, 359
ferror(), 356, 359
fflush(), 362
fgetc(), 356, 359
Ficha, definicién, 44
FILE, tipo, 357
filebuf, clase, 286
fill(), 283, 382, 385, 386, 388, 393, 412
find(), algoritmo, 66, 71, 73, 141, 184, 187, 193-195
garantia de rendimiento, 101
find(), funcidn, 13, 60, 65-66, 67, 86, 87
versiones de iterador de, 100, 146, 148-149,
155,159, 163, 164, 170, 171
y el operador <, 141
find_endJ(), algoritmo, 184, 187, 202-203
find_first_not_of(), 13, 60, 63
find_first_of()
algoritmo, 66, 184, 187, 198
funcién, 13, 60, 61, 63
find_if(), algoritmo, 184, 187, 193-195, 257
find_last_not_of(), 13, 60, 61
find_last_of(), 13, 60, 61
first_argument_type, 250

500

fixed
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 383
flags(), 283, 370, 374, 375, 378
flip(), 118
floatfield, 369, 379, 380
Flujo de iteradores, 265-273, 280
de bajo nivel, 268-269
formado, 267-268
programa de demostracién, 269-271
uso de, para crear un filtro de archivos basa-
do en STL, 272-273
Flujos, C++, 280-281
archivo, 290-291
atributo de ancho de campo, 369, 385-388
atributo de caracter de relleno, 369, 370, 385,
386-388
atributo de precisién, 369, 370, 383-385
clases, 281-285
configuracién regional y de idioma, obten-
cién y establecimiento, 352-355, 371
especializaciones de clases, 285-287
predefinidos, 287
Flujos de cadena, C++
formacion de datos en, 412-414
uso de, 282, 337-341
flush, manipulador, 370, 392, 393
flush(), 284, 315, 316
fmtflags, enumeracién de mascara de bits, 283, 287,
368
fopen(), 356, 357-358
for_each(), algoritmo, 184, 187, 208-210, 215, 244
Forlter, 95, 183
Formacion, 367-424
datos en una cadena, 412-414
fecha y hora. Véase Fecha y hora
revision general, 368-371
valores monetarios. Véase Monetarios, valores
valores numéricos. Véase Numéricos, valores
y facetas, 372-373
y justificacién de salida. Véase Justificacion de
salida
y manipuladores de E/S. Véase, manipula-
dores
y marcas de formato. Véase Marcas de for-
mato
y printf(). Véase printf()

C++ Soluciones de programacion

fpos_t, tipo, 357
fprintf(), 362, 371, 419, 424
fputc(), 356, 358
frac_digits(), 403, 404
fread(), 361
free(), 453
front(), 99, 111, 113, 119, 120, 126, 133, 134, 135
front_insert_inserter, clase, 275
front_inserter(), adaptador de iterador de inser-
cién, 274-275
fscanf(), 362
fseek(), 361-362
fstream, clase, 286, 290, 291, 314, 315, 317, 327
constructores, 315
<fstream>, encabezado, 282, 285, 294, 297, 298, 301,
306, 315
Fugas de memoria, 488
Func, nombre de tipo genérico, 183
Funcion
como sobrecargar el operador de llamada a
funcién, 437-440
creacion de una funcién de conversion, 463-
466
de operador. Véase operator, funciones
definicién de una funcién de comparacién,
188
Funcién de comparacion, definicién de, 188
Funcion de conversion, creacion, 463-466
<functional>, encabezado, 188, 246, 250, 256, 262
fwrite(), 361

G
geount(), 284, 309, 337
generate(), algoritmo, 185, 187, 215-216
generate_n(), algoritmo, 185, 187, 215
Generator, nombre de tipo genérico, 183
get(), 284, 309, 314, 315
definido por auto_ptr, 488, 489
para detectar el final del archivo, 322
receta usada para leer un archivo, 310-313,
318-320
y la faceta money_get, 402
Get, apuntador, 327
getc(), 361
definido por num_get, 398
getline(), 284, 300, 309
receta usada para leer un archivo, 310-314

getloc(), 283, 353, 399-400

good(), 283, 288, 289, 293, 294, 298, 302, 306, 307,
315, 318, 322, 326

goodbit, marca de error, 288

greater, objeto de funcion, 95, 184, 188, 190, 246,
255, 257, 258-259

greater_equal, objeto de funcion, 184, 246

grouping(), 402, 403, 404

gslice, clase, 487

H
has_facet(), 373, 402
Heap, creacién y administracién de un montén,
235-238
hex
manipulador, 370, 392, 393
marca de formato, 368, 369, 379, 380, 393

|
ifstream, clase, 286, 290, 291, 297, 298, 305, 306, 314,
315, 318, 327
constructores, 297, 306
ifstream::traits_type::eof(), 322
ignore(), 284, 333, 334-336
imagy(), 485, 486
imbue(), 283, 353, 372, 373, 396, 399, 408
in, 290
includes(), algoritmo, 186, 187, 217, 218, 219, 222
Informacién de tipo en tiempo de ejecucion (RTTI),
478
Inlter, 72, 73, 95, 183
inner_product(), algoritmo, 487
inplace_merge(), algoritmo, 186, 187, 231, 232
versién de funciéon de comparacién, 234
insert(), 13, 53, 58
version de iterador de, 71, 73, 99, 100, 103,
104, 109-110, 111, 113, 117, 120, 125, 126,
146, 148, 156, 158, 159, 162, 163, 164, 170,
171,178
insert_iterator, clase, 275
Insertadores, 341
personalizados, creacion de, 341-344
inserter(), adaptador de iterador de insercion,
274-275
int_type, 283, 333
internal
manipulador, 370, 387, 391

501

indice

marca de formato, 368, 369, 386, 388, 389
<iomanip>, encabezado, 352, 370, 392, 393
ios, clase, 286, 290, 291, 327, 369
ios::app, 296, 304
ios::ate, 296, 304
ios::badbit, 323
ios::binary, 301, 302, 306, 315
ios::eofbit, 318, 322, 323
ios::failbit, 288, 318, 323
ios::goodbit, 323
ios::in, 306, 315
ios::out, 294, 296, 301, 302, 315
ios_base, clase, 281, 282-283, 287, 288, 290, 291, 323,

327,369, 370, 372, 374, 375, 383
ios_base::badbit, 323
ios_base::eofbit, 323
ios_base::failbit, 323
ios_base::failure, 296, 300, 304, 323
ios_base::goodbit, 323
<ios>, encabezado, 282, 283, 370, 392, 393
iostate, tipo, 283, 288, 323
iostream, clase, 286, 315
<jostream>, encabezado, 287, 370, 392, 393
is_open(), 285, 292
isalpha(), 39, 40, 41
isalum(), 39, 40
isentrl(), 39, 40
isdigit(), 39, 40
isgraph(), 39, 40
islower(), 39, 40, 248
isprint(), 39, 40
ispunct(), 39, 40, 41
isspace(), 39, 40
istream, clase, 286, 287, 298, 315, 318, 327, 341, 342,
345, 349
istream_iterator, clase, 266-267
istream_type, 267, 268
<istream>, encabezado, 284, 298
istreambuf_iterator, clase, 266-267, 268-269
istringstream, clase, 286, 337, 338

constructor, 337, 340
isupper(), 39, 40
isxdigit(), 39, 40
iter_type, 398, 400, 409
Iteradores, 94-95, 103

adaptadores con el uso de insercién, 274-

277

502 cCc++ Soluciones de programacidn

beneficios del uso de, 70, 73
declaracion, 104, 108
inversos, beneficios de su uso, 117
operaciones con soporte mediante, tabla de,
95
similitud con los apuntadores, 109, 154
y adaptadores de contenedor, 132
y algoritmos, 182-183, 200, 225
y mapas, 154
y objetos de cadena, 15, 70-76
iterator, 14, 71,72, 97, 108, 113, 148
<iterator>, encabezado, 266, 272

J

Justificaciéon de salida
uso de marcas de formato, 388-391
uso de printf(), 422

K
key_comp(), 100

key_type(), 97

L
LC_ALL, macro, 417
LC_COLLATE, macro, 417
LC_CTYPE, macro, 417
LC_MONETARY, macro, 417
LC_NUMERIC, macro, 417
LC_TIME, macro, 417
left
manipulador, 370, 392
marca de formato, 368, 369, 388, 389
length_error, excepcién, 16, 58
less, objeto de funcion, 95, 184, 246, 259, 260
less_equal, objeto de funcién, 184, 246
Lineal, categoria de rendimiento de tiempo, 101
list, contenedor, 94, 97, 103, 133, 134, 140
caracteristicas de rendimiento, 127
combinacién de, 126, 130, 232
constructores, 125
eliminacién de elementos, 127, 130-131, 228
especificacion de plantilla, 125
garantia de rendimiento, 101, 110
iteradores, 125, 131
ordenamiento de, 126, 130, 183
recetas para uso de, 124-131

<list>, encabezado, 97
locale, clase, 352, 353, 355, 371, 372, 396, 399, 408
locale::facet, 371, 372, 403
<locale>, encabezado, 31, 43, 353, 355, 371, 372,
373,399, 402
localtime(), 408, 409, 415
Logaritmica, categoria de rendimiento de tiempo,
101
logical_and, objeto de funcién, 184, 246
logical_not, objeto de funcién, 188, 246
logical_or, objeto de funcién, 184, 246
longitud(), 14, 58
lower_bound()
algoritmo, 186, 187, 198
funcién, 100, 141, 155

M
main(), devolucién de un valor de, 4
make_heap(), algoritmo, 186, 187, 235
version de funcién de comparacién, 238
make_pair(), 148
malloc(), 453
Manejo de errores
en los ejemplos de la receta, 3, 289
excepciones para, uso de, 289, 296, 300, 304,
309, 322-326, 336
funciones para informe de errores, uso de,
288-289, 322, 326, 336
Manipuladores, 287, 344-345, 370
creacién de manipuladores con parametros,
348-352
creaciéon de manipuladores sin parametros,
344-347
en comparacién con funciones miembro de
flujo, 393
estandares, lista, 370
para formar datos mediante, 391-398
y <iomanip>, 352, 370
y flujos de cadena, 347, 412
map, contenedor, 94, 97
caracteristicas de rendimiento, 159
constructores, 147, 157-158
especificacién de plantilla, 147, 157
iteradores, 149-150, 154, 158, 159
receta en que se usa, 156-162
técnicas basicas para el uso de uno, 145-156

ventajas del uso de, 179
<map>, encabezado, 97, 147, 148, 158, 164
Marcas de error, 288-289

Marcas de formato, 287, 368-369
cémo desplegarlas para su establecimiento,
376-378
uso de funciones miembro de flujo para acce-
der a, 374-378
uso de manipuladores para establecerlas, 382
y formacién de valores numéricos, 379-383
Matrices
comprobacién de limites, 12, 441
constructor de copias para implementar una
matriz segura, uso, 471-78
desbordamiento, 12, 16, 19-20, 37, 51, 57-58
dindmicas y vector, 111
sobrecarga de [] para crear matrices seguras,
441, 442-445
Véase también Desbordamiento de bufer
max_size(), 14, 16, 52, 53, 98, 110
mem_fun(), adaptador de funcién de apuntador a
miembro, 265
mem_fun_ref(), adaptador de funcién de apunta-
dor a miembro, 265
memchr(), 11
memcmp(), 11
memcpy(), 11
memmove(), 11, 32
memset(), 11
merge(), algoritmo, 182, 186, 187, 231-232
version de funcién de comparacién de, 234
merge(), funcién, 125, 126
version de funcién de comparacién de, 130
minus, objeto de funcién, 95, 184, 246
mismatch(), algoritmo, 184, 187, 199, 203
modulus, objeto de funcién, 184, 246
Monetarios, valores
uso de money_put para formarlos, 398-401
uso de moneypunct con, 402-407
money_base, clase, 403, 406
money_get facet, 402
money_put, faceta, 371, 372, 373, 397, 408
declaracién de plantilla, 399
uso de la, 398-401
moneypunct, faceta, 355, 373

503

indice

declaracién de plantilla, 403
uso de la, 402-407
multimap, contenedor, 97, 146, 156, 162
caracteristicas de rendimiento, 165
constructores, 164
especificacion de plantilla, 163-164
iteradores, 164
receta en que se usa, 163-169
ventajas del uso de uno, 179
multiplies, objeto de funcién, 95, 184, 246
multiset, contenedor, 97, 156
constructores, 171
especificacion de plantilla, 171
iteradores, 99
receta en que se usa, 169-172, 174-179

N
name(), 353
definida por type_info, 479
neg_format(), 406-407
Negadores, 96, 188
cOmo usar funciones con, 262
cémo usarlos, 259-261
negate, objeto de funcién, 188, 246
negative_sign(), 406
new, operador, 488
sobrecarga de, 451-456
<new>, encabezado, 456
next_permutation(), algoritmo, 186, 187, 207, 222-224
noboolalpha, manipulador, 370, 392
noshowbase, manipulador, 370, 392
noshowpoint, manipulador, 370, 392, 393
noshowpos, manipulador, 370, 392
not_equal_to, objeto de funcién, 184, 246
not1(), negador, 188, 259, 260
not2(), negador, 188, 259, 260
nothrow, 456
nothrow_t, 456
nounitbuf, manipulador, 370, 392
nouppercase, manipulador, 370, 392
npos, variable, 12, 14-15, 61
NULL, macro, 357, 358
num_get, faceta, 355, 398
num_put, faceta, 355, 372, 373, 395, 397-398
<numeric>, encabezado, 487
Numéricos, valores

504

C++ Soluciones de programacion

establecimiento de la posicién del punto
flotante. Véase Punto flotante, valores

formacioén de, de acuerdo con una configura-
cién regional y de idioma, 395-398

uso de marcas de formato para formar, 379-
383

y numpunct, 402-406

numpunct, faceta, 355, 373
declaracién de plantilla, 403
uso de, 402-406

0
Objetos de funcién, 95-96
adaptacion de un apuntador a funcién en
uno, 262-265
integrados, uso de, 245-248
para mantener informacién de estado usan-
do, 253-255
personalizados, creaciéon de uno, 248-255
revision general, 184, 188
uso de un adhesivo para unir un valor con
uno, 255-259
ventajas de, 249
oct
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 393
off_type, 283, 327
ofstream, clase, 286, 290, 291, 293, 314, 315, 327
constructores, 294, 301
Opcién de funcién miembro de clase —>, cdmo
sobrecargarlo, 445-451
open(), 285, 290-291, 292, 293, 294, 297, 301, 302,
304, 305, 315
openmode, enumeracién, 283, 290
Operacién de apertura, 280
operador, funciones
forma general de una, 427
miembro, 426-427, 428-430
que no son miembro, 427-428, 431-432
y herencia, 436
Operadores
con soporte mediante contenedores, 98
de insercién y extraccién, 341
y cadena terminada en un caracter nulo, 11
y objetos de cadena, 15, 52, 53-54, 58-59
operator delete[](), 452, 453
operator delete(), 451, 452

operator new(), 451, 452
versién sin lanzamiento de excepciones de,
456
operator new[](), 451, 453
version sin lanzamiento de excepciones de,
456
operator!=(), versién de type_info de, 479
operator—()
forma miembro de, 458
forma no miembro de, 462
operator(), 95, 184, 188, 245, 248, 249, 250, 263, 265
operator()(), 437
operator—(int)
forma miembro de, 458
forma no miembro de, 462
operator, palabra clave, 427, 463
operator[](), 99, 112, 120
uso de, 441-445
version de map de, 158-159
operator++()
forma miembro de, 458
forma no miembro de, 462
operator++(int)
forma miembro de, 458
forma no miembro de, 462
operator<(), 141, 172,175, 179
operator=(), 468, 478
operator==(), 141, 172
version de type_info de, 479
operator—>(), 445-451
ostream, clase, 286, 287, 294, 315, 316, 327, 341, 342,
345, 348
ostream_iterator, clase, 266-268
ostream_type, 268, 269
<ostream>, encabezado, 284, 294, 370, 393
ostreambuf_iterator, clase, 266-267, 269, 398, 399,
400, 408, 409
ostringstream, clase, 286, 337, 338, 412
constructor, 337, 340
out, 290
out_of_range, excepcion, 16, 113
Outlter, 72, 73,95, 183

P
pair, clase, 101, 147-148, 158, 159, 164, 199
pair<const Key, T>, 148, 158, 164
pair<Key, T>, 148

Palabras, programa para el recuento de, 41-43
partial_sort(), algoritmo, 186, 187, 191-192
partial_sort_copy(), algoritmo, 186, 187, 192
partial_sumy(), algoritmo, 487
patrén, estructura, 406
peek(), 284, 333, 334-336
plus, objeto de funcién, 95, 184, 246
pointer_to_binary_function, clase, 263
pointer_to_unary_function, clase, 263
Polimorfismo, 478
pop(), 124, 133,134, 135
pop_back(), 99, 111, 113, 119, 120, 125, 126, 133, 135
pop_front(), 99, 112, 119, 120, 124, 125, 126, 134
pop_heap(), algoritmo, 186, 187, 235, 236, 237
version de funcién de comparacién, 238
pos_format(), 406
pos_type, 283, 332
Posicién actual, 281
positive_sign(), 406
precision(), 283, 370, 382, 383-385, 393, 412
Predicado binario, 77-78, 96
Predicado
binario, 77-78, 96, 188
unario, 96, 188
prev_permutation(), algoritmo, 186, 187, 207, 222-224
printf (), 355, 362, 368, 371
especificadores de formato, tabla de, 420
uso de, 418-424
priority_queue, adaptador de contenedor, 97-98,
110, 119
constructores, 135
especificacion de plantilla, 134
receta para su uso, 132-137
ptr_fun(), adaptador de apuntador a funcién, 262-
263, 265
Punto flotante, valores
uso de precision() para establecer la precision
de, 383-385
uso de printf() para formar, 420-421
uso de setprecision para establecer la preci-
sion de, 385, 393
push(), 124, 133, 134, 135
push_back(), 13, 52, 54-55, 99, 111, 113, 114, 117,
119, 120, 125, 126, 133, 134, 135, 275
push_front(), 99, 112, 119, 120, 124, 125, 126, 275
push_heap(), algoritmo, 186, 187, 235-236
versiéon de funcién de comparacion, 238

505

indice

Put, apuntador, 327

put(), 284, 304, 314, 315
definido por money_put, 400, 402
definido por num_put, 397-398
definido por time_put, 408, 409, 410, 411
usado con facetas, 373

putback(), 284, 336

putc(), 361

Q

queue, adaptador de contenedor, 96, 97-98, 110,
119,124
constructor, 134
especificacion de plantilla, 133-134
receta en que se usa, 132-137
y list, 140
<queue>, encabezado, 97

R
Randlter, 95, 183
random_shuffle(), algoritmo, 185, 187, 203-204,
224-225
rbegin(), 14, 71, 72, 98, 103, 105, 113, 120, 126, 146,
149-150, 159
rdstate(), 283, 288-289, 296, 300, 304, 322, 326
para detectar el final del archivo, 322
read(), 284, 306, 307, 309, 310, 315
readsome(), 336
real(), 485, 486
Recoleccién de basura, 490-491
Recursién para invertir una cadena, 26
Reduccién, cémo sobrecargar el operador de,
457-462
referencia
a clase definida por vector<bool>, 118
a tipo, 97, 112
release(), 488, 489
remove()
algoritmo, 185, 187, 228
funcién de C, 362, 363-365
funcién de contenedor list, 125, 126, 127, 130
remove_copy(), algoritmo, 185, 187, 230
y adaptador de iterador de inserciones, 277
remove_copy_if(), algoritmo, 185, 187, 230
remove_if()
algoritmo, 185, 187, 230, 248, 257, 258

506

C++ Soluciones de programacion

funcién, 126, 130-131
rename(), 362, 363-365
rend(), 14, 71, 72, 98, 103, 105, 113, 120, 126, 146,
149-150, 159
replace(), algoritmo, 185, 187, 188
replace(), funcién, 13, 66, 67, 68, 69
version de iterador, 71, 73, 77,78
replace_copy(), algoritmo, 185, 187, 230
con iteradores de flujo, 272-273
y adaptadores de iterador de insercién, 277
replace_copy_if(), algoritmo, 185, 187, 230
replace_if(), algoritmo, 185, 187, 230
reserve(), 14, 52, 54, 58, 112, 114
reset(), 488, 489
resetiosflags(), manipulador, 370, 393
resize(), 13, 112, 114, 119
Result, tipo genérico, 263
result_type, 250
reverse()
algoritmo, 185, 187, 203-204
funcién, 125, 126, 127
reverse_copy(), algoritmo, 185, 187, 207
y adaptadores de iterador de insercién, 277
reverse_iterator, 14, 71, 72,97, 113
rewind(), 362
rfind(), 13, 60
right
manipulador, 370, 392
marca de formato, 368, 369, 388, 389
rotate(), algoritmo, 185, 187, 203-204
uso de iteradores inversos para realizar un
giro a la derecha con, 206-207
rotate_copy(), algoritmo, 185, 187, 207
runtime_error, excepcion, 353, 372, 396

S
scanf(), 355, 362
scientific

manipulador, 370, 392

marca de formato, 368, 369, 379, 380, 383
search(), algoritmo, 66, 69, 77, 78, 81, 82, 184, 187,

197
para encontrar una secuencia coincidente,
199-203

search_n(), algoritmo, 184, 187, 203
second_argument_type, 250
Secuencias de contenedor

busqueda de una coincidencia, 199-203
cambio de una, usando transform() para,
211-215
ordenadas, combinacion de dos, 231-234
de un contenedor a otro, copia de, 225-227
definicion de una, 94
establecimiento de operacién en una, 217-222
generacion de una, 215-216
inversion, giro y barajeado de una, 203-207
permutacién de una, 222-225
recorrer en ciclo mediante una, 208-210
reemplazo y eliminacién de elementos en
una, 227-230
SEEK_CUR, macro, 362
SEEK_END, macro, 362
SEEK_SET, macro, 362
seekdir, enumeracion, 283, 327
seekg(), 284, 315, 327, 332
para acceder a registros de tamafio fijo, 329-
332
seekp(), 284, 315, 327, 332
para acceder a registros de tamafio fijo, 331-
332
<set>, encabezado, 97, 170, 171
set_difference(), algoritmo, 186, 187, 217, 218, 221-
222
set_intersection(), algoritmo, 186, 187, 217, 218-219,
221-222
set_symmetric_difference(), algoritmo, 186, 187,
217,218,221-222
set_union(), algoritmo, 186, 187, 217, 218, 221-222
setbase(), manipulador, 370, 393
setf(), 283, 370, 374, 375, 380, 393
forma de dos argumentos de, 378, 380, 389,
393
y flujos de cadena, 412
setfill(), manipulador, 370, 393
setiosflags(), manipulador, 370, 393
setlocale(), 373, 417
setprecision(), manipulador, 370, 393
setstate(), 283
setw(), manipulador, 370, 393
showbase
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 400
showpoint
manipulador, 370, 392, 393

marca de formato, 368, 369, 379, 380, 393
showpos
manipulador, 370, 392
marca de formato, 368, 369, 379, 380, 386, 389
size(), 14, 52, 54, 58, 98, 103, 104, 114, 134, 135, 146,
149
Size, nombre de tipo genérico, 183
size_t, tipo, 11, 17, 357, 452
size_type, 14, 54, 97
sizeof, 17,19
skipws
manipulador, 370
marca de formato, 368, 369
slice, clase, 487
Sobrecarga de operadores
restricciones, 436
técnicas bésicas para, 426-436
y comparacién entre el paso de operandos
por valor y por referencia, 435-436
y el operador de acceso a miembros de la
clase —>, 445-451
y el operador de llamada a funcion (), 437-440
y el operador de subindice [], 441-445
y los operadores de aumento y reduccién,
457-462
y new y delete, 451-456
sort(), algoritmo, 118, 124, 141, 183, 186, 187, 189-190
garantia de rendimiento, 101
sort(), funcidén, 125, 126
versién de funcién de comparacién, 130
sort_heap(), algoritmo, 186, 187, 235, 236, 237
version de funcién de comparacién, 238
splice(), 125, 126-127
sprintf(), 362, 371, 414, 419, 424
problemas con, 424
sscanf(), 362
stable_sort(), algoritmo, 186, 187, 192
Stack
uso de deque como tipo primero en entrar
primero en salir, 124
uso de deque como tipo primero en entrar
ultimo en salir, 124
stack, adaptador de contenedor, 97-98, 110, 119, 124
constructor, 133
especificacion de plantilla, 133
para crear una calculadora que usa sufijo,
137-140

507

indice

receta en que se usa, 132-137
<stack>, encabezado, 97, 133
std, uso del espacio de nombres, 4-5
<stdexcept>, encabezado, 16
STL. Véase Biblioteca de plantillas estandar (STL)
str(), 337, 338, 341
strcat(), 9, 12, 17-18
strchr(), 9, 21
stremp(), 9, 17, 18, 263
naturaleza sensible a diferencias entre ma-
ytsculas y mintsculas de, 27
strepy(), 9, 10, 11, 12, 17
strepy_s(), 11
strespn(), 10, 22
streambulf, clase, 286
streambuf_type, 268, 269
<streambuf>, encabezado, 282
streamsize, 302, 307, 333, 383, 385
strftime(), 367, 368, 371, 408, 410, 411, 424
especificadores de formato, tabla de, 416
uso de, 414-416
string, clase, 7
aspecto compatible con, de, 15, 58, 66, 76
como un contenedor para caracteres, 70
constructores, 12-13, 52-53, 72-73
excepciones, 16
lista de algunas funciones, 13-14
revision general, 11-16
y E/S, 282
<string>, encabezado, 12, 52
string, objetos
bisqueda, 59-66
conversién de un objeto de cadena en una ca-
dena terminada en un caricter nulo, 83-85
conversion en fichas, 63-65
creacion de funciones de base de datos y
busqueda y reemplazo sensibles a diferen-
cias entre mayusculas y mindsculas para,
76-82
creacion de una funcion de bisqueda y reem-
plazo para, 66-69
implementacién de una resta para, 85-91
mezcla de cadenas terminadas en un caracter
nulo con, 15, 58
para E/S, uso de, 282, 337-341
realizaciéon de operaciones bésicas con, 51-59
uso de iteradores con, 70-76

508 C++ Soluciones de programacidn

uso de operadores con, 15
y el especificador de precisién printf(), 422
string_type, 404
stringbulf, clase, 286
stringstream, clase, 286, 337, 338
constructor, 337, 340
strlen(), 10, 17, 23, 24
strncat(), 10, 20
strncmp(), 10, 20
strncpy(), 10, 20, 32, 33
strpbrk(), 10, 21
strrchr(), 10, 22-23
strspny(), 10, 22
strstr(), 10, 21, 32
strtok(), 10, 23, 44-45, 50, 63
limitaciones de, 47
struct, 246
comparacién entre el uso de clases y, 43
Subindice, cémo sobrecargar el operador de,
441-445
substr(), 14, 52, 55
swap(), 13, 98, 103, 105, 147
versién de map de, 150
version de vector<bool> de, 118
swap_ranges(), algoritmo, 185, 187, 227

T
T, nombre de tipo genérico, 183
tellg(), 284, 332
tellp(), 284, 332
this, apuntador, 426, 428, 429, 430, 431
thousands_sep(), 402, 403, 404
time(), 409-410, 415
time_get, faceta, 355, 372
time_put, faceta, 355, 371, 373, 414, 418, 424
declaracién de plantilla, 408
uso de, 407-411
ventajas del uso de, 408
time_t, valor, 409-410
Tipo de objeto en tiempo de ejecucién, determina-
cién, 478-484
tm, estructura, 409, 414, 415
tolower(), 28, 78, 355
version de <locale> de, 31, 82
top(), 133, 135
toupper(), 31, 82

traits_type, 283, 322

traits_type::eof(), 333

transform(), algoritmo, 71, 73, 185, 187, 210, 211-
215,244

truename(), 405-406

trunc, 290, 291

try, bloque, 323-324

type_info, clase, 479

typeid, operador, 478, 479-484

<typeinfo>, encabezado, 479

U

Ubicacién actual, 281
unary_function, estructura, 249-250
unary_negate, clase, 260
unget(), 284, 333, 334-336
unique(), algoritmo, 185, 187, 230
unique(), funcién, 125, 126, 127

forma de predicado binario, 131
unique_copy(), algoritmo, 185, 187, 230
unitbuf

manipulador, 370, 392

marca de formato, 368, 369
UnPred, nombre de tipo genérico, 96, 183
unsetf(), 283, 370, 374, 375, 380, 393
upper_bound()

algoritmo, 186, 187, 198

funcién, 101, 141, 155, 163, 165, 170, 171, 172
uppercase

manipulador, 370, 392

marca de formato, 368, 369, 380
use_facet(), 372, 373, 397, 399, 402, 403, 408-409
uso del espacio de nombres std, 4-5
<utility>, encabezado, 148

vV

valarray, clase, 487

<valarray>, encabezado, 487

value_comp(), 101

value_type, 14, 97, 101, 148, 158, 164

vector, contenedor, 15, 94, 119, 124, 133
constructores, 104, 112
de caracteres, receta para extraer frases de

uno, 194-197

efectos de la eliminacién de uno, 114
efectos de las inserciones, 114

ejemplo para ilustrar las operaciones basicas
con contenedores de secuencias, 105-109

especializacion de vector<bool>, 118

especificacion de plantilla, 103-104, 112

garantia de rendimiento y caracteristicas,
101, 110, 114

iteradores, 113

receta en que se usa, 111-118

receta para el almacenamiento de objetos
definidos por el usuario en, 141-144

<vector>, encabezado, 97, 104, 112

indice 509

W
wchar_t, 7,12, 368
desbordamiento de matrices de cadenay,
20
flujos basados en, 285-286
width(), 283, 370, 382, 385-386, 388, 393, 412
write(), 284, 301, 302, 304-305, 315
ws, manipulador, 370
wstring, clase, 7, 12, 52

	Soluciones de programación C++

	contenido

	Introducción

	Capítulo 1. Revisión general

	Capítulo 2. Manejo de cadenas

	Capítulo 3. Trabajo con contenedores STL

	Capítulo 4. Algoritmos, objetos de función y otros componentes de STL

	Capítulo 5. Trabajo con E/S

	Capítulo 6. Formación de datos

	Capítulo 7. Popurrí

	Índice

