ESTRUCTURA DE DATOS
ORIENTADA A OBJETOS

Algoritmos con G++

ESTRUGTURA DE DATOS

ORIENTADA A OBJETOS
Algoritmos con G++

ESTRUGTURA DE DATOS

ORIENTADA A DBJETOS
Algoritmos con G++

Silvia Guardati Buemo

Instituto Tecnolégico Auténomo de México

REVISION TECNICA:

Fabiola Ocampo Botello
Escuela Superior de Computo
Instituto Politécnico Nacional

José Luis Garcia Cerpas
Centro de Ensefianza Técnica Industrial, Jalisco

PEARSON
|

Educacion

®

México * Argentina * Brasil « Colombia * Costa Rica ¢ Chile * Ecuador
Espafia ¢ Guatemala ¢ Panama ¢ Perti * Puerto Rico * Uruguay * Venezuela

Datos de catalogacion bibliografica

GUARDATI BUEMO, SILVIA
Estructura de datos orientada a objetos:
Algoritmos con C++

PEARSON EDUCACION,
México, 2007

ISBN: 978-970-26-0792-2
Area: Computacién

Formato: 18.5 X 23.5 cm Péginas: 584

Editor: Luis Miguel Cruz Castillo

e-mail: luis.cruz@pearsoned.com
Editor de desarrollo: Bernardino Gutiérrez Hernandez
Supervisor de produccion: Rodrigo Romero Villalobos

PRIMERA EDICION, 2007

D.R. © 2007 por Pearson Educacién de México, S.A. de C.V.
Atlacomulco 500-5 piso
Industrial Atoto
53519, Naucalpan de Juarez, Edo. de México

Cédmara Nacional de la Industria Editorial Mexicana. Reg. Num. 1031

Prentice Hall es una marca registrada de Pearson Educacién de México, S.A. de C.V.

Reservados todos los derechos. Ni la totalidad ni parte de esta publicacién pueden reproducirse, registrarse o transmi-
tirse, por un sistema de recuperacion de informacién, en ninguna forma ni por ningin medio, sea electrénico, meca-

nico, fotoquimico, magnético o electrodptico, por fotocopia, grabacién o cualquier otro, sin permiso previo por escrito
del editor.

El préstamo, alquiler o cualquier otra forma de cesién de uso de este ejemplar requerird también la autorizacion del
editor o de sus representantes.

ISBN 10: 970-26-0792-2
ISBN 13: 978-970-26-0792-2

Impreso en México. Printed in Mexico.
1234567890- 100908 07

Educacion ®

CONTENIDO

Introduccién
Agradecimientos

Capitulo 1 Introduccion a la Programaciéon Orientada a Objetos

1.1 Caracteristicas de 1a POOccccooieiiniiniiieniiecceeeeee
1.2 Ventajas de 1a POO cccciiiiiiiiiiiiinieccecceeceee
1.3 Tipos abstractos de datoSccceevveervieeniieriierniienieeiee e
L4 CIASES oo
1.4.1 Clases abstractas y CONCIELASc..ceoereeruereerueneerueneennene
1.4.2 Definicion de una clase en CH++4ccoovviviiincnincnienenne
1.4.3 Los métodos constructor y destructorcc..cecceeeeeeeennene
1.4.4 Uso de constructores multiplesc.cccecevvevencnenenennennee
EJEICICIONS wiiiuiiiiiiiiiieiee ettt

Capitulo 2 Herencia y amistad

2.1 Herencia SIMPLecceeeeriieiiniieieeiieie e
2.2 Herencia MuUltiplecccoovierieiiinieieiiee e
2.3 Herencia de niveles mUltiplesccocceeveeviiiinienieenienieeieee
2.4 Herencia privadaccoceeeeeenienieeniie ettt
2.5 Clases amigas (fri€nd)cccocevververiimiieniieiieneenieneeneeeeneeenees
2.6 MEtOdOS AMIZOS ..evveveeuiieiieiieiienieeie sttt ettt
2.7 FUNCIONES AMIZAS ...veveentienietieiienieeie st eiesteeiesieeie et enee e ene
EJOICICIOS wuviiiiiiieieet ettt

Xi

Vi Contenido

Capitulo 3 Sobrecarga, plantillas y polimorfismo 77
3.1 SODIECATZA .eonviiiiiiiie et 77

3.1.1 Sobrecarga de operadoresc.ccevvereerierienienienieneenieeeeneeenee 78

3.1.2 Sobrecarga de funciones 0 métodoscccecevveiinieniieeennenne. 82

3.2 Plantillas ...cc.eeveeiirieniiiieniiieceeeeee e 87

3.2.1 Plantillas de funcionesccccoceevereerenienenienieeeese e 87

3.2.2 Plantillas de clasesc.cccceveerimieninienienieieneceeeee e 89

3.3 POIMOITISINO .ecutiiieiieiieieeiesi e 99

3.3.1 Funciones Virtualesc..cccccoceeverienienienienieiienieeeeeieeeeeeeeee 99

3.3.2 Clases abSIIaCtasccccereeruerienienieniietenieete sttt 107

EJOICICIOS wutiiiieiieieet ettt 111

Capitulo 4 Arreglos 115
4.1 INtrodUCCION ..oeviiiiiieiiieiieic ittt 115

4.2 La clase ArTeglo ...cc.oovuiiieiiiieieiieeeeeeeeee e 117

4.3 Métodos de acceso y modificacion a arregloscccoecevevieenieenee. 119

4.3.1 Lectura de arreglosc.cceoeveererienenienienicieeieiceeeeeeecene 119

4.3.2 Escritura de arregloscocoeeverienieieienieieieeeeeeee e 121

4.3.3 Eliminacion en arregloSccoeveevieenieniiieniieeieeiee e 122

4.3.4 Operaciones en arreglos desordenadoscccccceeceerueeeenncnne 123

4.3.5 Operaciones en arreglos ordenadoscoceevveeeveerieenieennnenn 131

4.4 Arreglos paralelosooceevireeniiiiniiieneeeeeee e 140

4.5 Arreglos de dos dimensionesccccceceeveeneeienienienieecieneeeeeeenes 149

4.6 Ar1eglos de ODJELOS ...ceeruieiiriiiiiriiiieeieeeteee e 160

4.7 Casos especiales de arregloscccceeeevirienenienieeeeeeeene 171

4.77.1 Matrices POCO AENSAS ..vveeveerrieriieriiieiienieeieeeteesieesreeseenaeees 171

4.77.2 Matrices trianularesc.ccooceeveererieneeienieeieneeeeieeee s 177

EJEICICIONS wiiiiiiiieiieeit ettt st 183

Capitulo 5 Pilas y colas 195
5.1 INtrOdUCCION .ottt 195

5.2 PIlAS e 196

5.3 C0LAS ettt 211

5.3.1 Colas CIrCUlArescceevueeuieriieiiniieie st 224

5.3.2 Colas dObIESc..cocueriieiiiiiiicieeee e 231

EJEICICIONS wouviiiiiiiiietecteett et 232

Capitulo 6 Listas 237
6.1 INtrOdUCCION ...eeiiiiiiiiieieeiee e 237

6.2 Listas simplemente 1igadasccoccvevveriiienieniiienieiieeiee e 238

Contenido

vii

Capitulo 7

Capitulo 8

6.2.1 Insercién de elementos en una listac...ccceceeveecienceceencenne. 241
6.2.2 Eliminacién de elementos de una listaccccccevveeneneencnnne. 247
6.2.3 Implementacién de pilas por medio de listascc.cceceeneennee. 264
6.3 Listas circulares simplemente ligadasc..cocooeveneiieiiiccevcnencnn. 268
6.4 Listas doblemente 1igadasccccccevveriieiniieniieniienieecesee e 269
6.4.1 Insercidn en listas doblemente ligadascccccecevveenceicncnnne. 272
6.4.2 Eliminacion en listas doblemente ligadasccccoceevencnne. 276
6.4.3 Busqueda de elementos en
listas doblemente 1igadasc..ccevieviinieiiinieiiniececceeeeees 281
6.5 Listas circulares doblemente ligadasccccoceevevviininvencnncncene. 293
6.6 MUILILISTAS ..oviviiiiiiiiciecceec e 293
EJEICICIOS wnvieiiieieie ettt ettt ettt 304
Arboles 313
7.1 INtrOdUCCION ..veiniiiiiiiiiiieictcet e 313
7.2 ArbOIes DINATIOS cveoveeceeceeseee e 315
7.2.1 Operaciones en drboles binarioscccceeeveevereeeeieeeennenne. 319
7.2.2 Arboles binarios de bisqUedac..ccooerveererrererreererieenn. 329
7.3 Arboles balanceadoscocooovveeeeeeevereeeeeeeeee e 345
T4 ArDOIES-B oo 367
7.5 ATDOLES-BY .oocceeerreeeicceiiie e 381
EJEICICIOS cuviiititiieectctet ettt 388
Graficas 393
8.1 INtrodUCCION ...c.veemiiiiiiiiiiiiieicee et 393
8.2 Graficas diri@idasccccoceviriiririiniiieeee e 397
8.2.1 Representacion de una digraficacocceeeevvevveveieicenennnn 397
8.2.2 La clase digrafiCa.......ccccecueviiriiniieiiiieiinicieeeee e 400
8.2.3 Recorrido de graficas dirigidascceeeveeverevieenienieenieeieenn 402
8.2.4 Aplicacién de graficas dirigidasccceceeverieniniiinicniiencnnens 417
8.3 Graficas N0 diriZIdasceevveeieriieieriieieecee e 421
8.3.1 Representacion de una grafica........co.coceeveevirieeniniencncienennns 422
8.3.2 La clase grafica no dirigida......c.cccoeeeveiieriienieenienieenieeieene 423
8.3.3 Recorrido de graficas no dirigidas.........ceccevereenerieneniencnnns 424
8.3.4 Aplicacién de graficas no dirigidasccceoeveeverieneniienennnne 432
84 BUSQUEAA ..ottt e 436
8.4.1 Busqueda en profundidad (Depth First)......ccoccerviieniienvuennn 436
8.4.2 Busqueda a lo ancho (Breadth First)....c..c.coeceemenienicnnens 441

EJEICICIOS ..ottt ettt 446

viii Contenido

Capitulo 9 Ordenacién 449
9.1 INtrOAUCCION......eetieiieiiee et 449
9.2 Ordenacion INtEINAcoceecvieeeruieeenienieneeie et seereeeesre e eene 450

9.2.1 Métodos de ordenacion por intercambioeecveeruverveeneeenns 452
9.2.2 Método de ordenacidn por selecCion..........ccoeveevuerevenieenenncene 466
9.2.3 Método de ordenacidn por inSercionccoceeververvenieevenneenn 469
9.3 Ordenacion EXLEIMNIAcc.eeueerueeeerteeienteeeeseeeeeeteentesseeteeaeenseeneeseeenes 488
9.3.1 MezZcla dir€CLa ..cveeueeeieiieiieie ettt 489
9.3.2 Mezcla equilibrada..........coceeviiiiiiniiiiiiienieeccee e 494
EJEICICION 1uvtiuiieiiiieiiecie ettt ettt ettt ettt e n 500

Capitulo 10 Busqueda 505
10.1 INtroduCCiONc.veeuieiieiiiiieieeeee et 505
10.2 BUSQUEdA INEETNAvveniieeiiieeiieeiee sttt ettt e n 506

10.2.1 Buisqueda secuencialc..coceverienirieniiniieneeiencenicneeneeeen 508
10.2.2 Blsqueda binariacoceeveeeerieenienienienieieeeeeeeeeee e 516
10.2.3 Busqueda por transformacion de claves (Hash) 519
10.2.4 Busqueda secuencial en listasc.ccceeveveeveiecieenencnennenne. 548
10.2.5 Blsqueda en 4rbolescoceevveriieerieeniienieeieeeie et 555
10.2.6 Blsqueda en Zraficasccceevveerieenieeniienieeniiesie e 555
10.3 BUSQUEA EXIEINA...c..eeueiruieniiriieieniieieeitenieetesteee et 555
10.3.1 Buisqueda externa secuencialc.ceceevereeieneniencnienennne. 556
10.3.2 Busqueda externa binaria..........cocceeevevvevienieieinninenencneneenen 559
EJEICICIOS vttt ettt e 561

indice 565

A mi familia

El mejor profeta del futuro es el pasado.

Lord Byron

INTRODUCCION

Las Estructuras de Datos son uno de los temas centrales de estudio en el area
de la computacion, las cuales permanecen vigentes y resisten al paso del tiempo
como los pilares de piedra de un antiguo puente romano. Seguramente ya no es-
tan los troncos que ayudaron a cruzar a guerreros y carruajes, a vencedores y
vencidos, pero las piedras, encargadas de sostener a todos, ahi estdn... resistiendo
al paso del tiempo y a la fuerza del agua.

Hoy, como en los origenes de la computacion, necesitamos conocer qué son y
como usar a las estructuras de datos, que serdn las piedras que nos ayudarédn a
construir y a sostener soluciones robustas y utiles para diversos tipos de proble-
mas.

El objetivo de este libro es presentar las principales estructuras de datos, basan-
donos en el paradigma orientado a objetos. Es decir, las estructuras se definirdn y
usardn siguiendo este método. Por lo tanto, cada estructura serd una clase, sus
caracteristicas quedardn representadas a través de atributos, y las operaciones por
medio de métodos. De cada una de las principales estructuras se presenta la ma-
nera en la que se almacena y, en consecuencia, se recupera la informacion. Se
explica la l6gica requerida para llevar a cabo las operaciones mds importantes y
se muestra la implementacién de estos algoritmos. También se incluyen ejemplos
de aplicacion de las estructuras. Para la programacion de algoritmos y ejemplos
se utiliza el lenguaje de programaciéon C++, por ser uno de los lenguajes orienta-

Xii

Introduccion

dos a objetos mds conocidos y usados, tanto en el 4mbito académico como en el
profesional.

El enfoque del libro esta orientado a:
» Todos los que quieran conocer y entender los principios de la programacién
orientada a objetos.
 Todos los que quieran conocer y entender las estructuras de datos.

 Todos los que quieran conocer y entender la implementacion de los princi-
pales algoritmos dedicados a manejar las estructuras de datos.

» Todos los que quieran aprender a usar las estructuras de datos en la solu-
cién de problemas, y la implementacién de estas soluciones.

Para un mejor aprovechamiento del libro es necesario tener conocimientos
sobre:

e Datos predefinidos: enteros, reales, carcter, cadenas y 16gicos.

e Estructuras selectivas y repetitivas: if, switch, while y for.

* Instrucciones para lectura y escritura.

Coémo esta organizado este libro

El material del libro estd organizado en diez capitulos. Los tres primeros ofrecen
una introduccion a la Programacion Orientada a Objetos (POO), la cual servird
de base para entender el resto del libro. Se presentan temas bésicos de la POO,
como abstraccién, herencia y polimorfismo; asimismo se explican conceptos
relacionados, como sobrecarga y plantillas. El capitulo 4 trata sobre los arreglos;
y dada la orientacién del libro, se ven como una clase, con sus atributos y métodos.
El capitulo 5 presenta las pilas y colas. Estas dos estructuras son naturalmente
tipos abstractos de datos, por lo que su representacion por medio de la POO re-
sulta inmediata. En el capitulo 6 se estudian las listas ligadas (o vinculadas) con
todas sus variantes: las simplemente ligadas, las doblemente ligadas, las circula-
res y las ortogonales. El capitulo 7 estd dedicado a los drboles: se estudian en
general, los binarios, los binarios de bisqueda, los balanceados y los drboles-B

y B™. El capitulo 8 explica las graficas, incluyendo las dirigidas y las no dirigidas.
Finalmente, los capitulos 9 y 10 presentan los principales algoritmos de ordenacion
y bisqueda; temas que, por su importancia en las estructuras de datos, se consi-
deran relevantes; razon por la que fueron incluidos.

Introduccion

Xiii

En cada uno de los capitulos se explican los principales conceptos, y se refuerzan
con ejemplos que ayudan a su comprensién. Ademads, se incluyen programas (en
algunos casos, solo las instrucciones requeridas) para mostrar la implementacion
de los algoritmos y de soluciones a problemas de aplicacién de las estructuras
estudiadas. Todos los capitulos cuentan también con una seccién de ejercicios
sugeridos para reafirmar los conceptos estudiados y desarrollar la capacidad de
andlisis y en la solucién de problemas, por medio de las estructuras de datos.

AGRADECIMIENTOS

Este libro es el resultado de muchos afios de experiencia como maestra. El enfo-
que dado a cada uno de los temas, los ejemplos y ejercicios presentados son el
reflejo de todo ese tiempo vivido en las aulas. Por lo tanto quiero agradecer muy
especialmente a los alumnos, quienes con sus comentarios, preguntas e incluso
con el “no entiendo” me estimulan a buscar siempre nuevos caminos para trans-
mitir el conocimiento y la experiencia.

También quiero agradecer a los profesores y funcionarios de la Divisién
Académica de Ingenieria del ITAM por su apoyo en la realizacién de esta obra.
Un reconocimiento especial al rector del instituto, doctor Arturo Fernandez, por
incentivar y promover la elaboracion de libros.

CAPIiTULO 1

Introduccién a la Programacion
Orientada a Objetos

La Programacién Orientada a Objetos (POO) es una técnica para es-
cribir programas. Es decir, es la aplicacién de un lenguaje orientado a
objetos para implementar una solucién previamente disefiada, usando
el paradigma orientado a objetos.

La POO tiene cuatro caracteristicas principales: abstraccion, encapsu-
lamiento, herencia y polimorfismo. La abstraccion consiste en ignorar
aquellos aspectos, del objeto a describir, que no son relevantes, para
de esta manera concentrarse en los que si lo son. El encapsulamiento
consiste en incluir dentro de una clase todos los atributos y métodos
que la definen, de tal manera que otros objetos puedan usarla sin
necesidad de conocer su estructura interna. La herencia permite com-
partir atributos y métodos entre clases y subclases. Finalmente, en el
polimorfismo una operacién puede tener el mismo nombre en diversas
clases, y funcionar de manera diferente en cada una. Estos temas se
tratardn en las siguientes secciones y capitulos.

| 2 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

1.1 Caracteristicas de la POO

En el disefo de la solucién computacional de problemas se distinguen los datos
(informacidén necesaria para llevar a cabo el procesamiento) y las operaciones
que podemos hacer sobre ellos. La POO ofrece mecanismos para representar, de
manera integrada, los datos y las operaciones.

Como ya se menciond, la POO tiene ciertas caracteristicas que la convierten en
una poderosa herramienta para solucionar diversos problemas computacionales.
A continuacién se presentan las caracteristicas mas importantes.

» Abstraccion. Es el principio que permite (al observar el objeto o concepto
que se quiere representar) ignorar aquellos aspectos que no son relevantes,
para de esta manera concentrarse en los que si lo son. Se trata de abstraer
los datos (llamados atributos) y las operaciones (llamadas métodos) comu-
nes a un conjunto de objetos y agruparlos bajo un mismo concepto clase.
Es decir, facilita la generalizacién conceptual de los atributos y propiedades
de un determinado conjunto de objetos. De esta forma, introducir o elimi-
nar un objeto en una determinada aplicacién requerird un trabajo minimo.

* Encapsulamiento (ocultamiento de informacidn). Se refiere a incluir den-
tro de la definicion de una clase todo lo que se necesita, de tal forma que
ningtlin otro objeto requiera conocer su estructura interna para poder usarla.
Es decir, se tomard cada clase y en consecuencia cada objeto como una uni-
dad bdésica de la cual desconocemos su estructura interna. En la figura 1.1
se grafica esta idea, sefialando a la clase (formada por atributos y métodos)
CcOmo una caja negra.

Caja negra

Clase

Atributos
Métodos

FIGURA 1.1 Encapsulamiento

1.2 Ventajas de la POO

3

* Herencia. Permite compartir atributos y métodos entre clases y clases deri-
vadas. Las clases derivadas, también llamadas subclases, heredan atributos
y métodos de las clases superiores, que reciben el nombre de superclases o
clases base.

Persona

Alumno Profesor

FIGURA 1.2 Herencia

Observe el ejemplo de la figura 1.2. La clase Persona es una superclase. Las
clases Alumno y Profesor son subclases o clases derivadas de la clase Per-
sona, por lo que heredan todos los atributos y métodos de ella. Esta relacién
expresa que un alumno y un profesor también son personas.

* Polimorfismo. Permite implementar multiples formas de un mismo método, de
tal manera que cada una de ellas se adapte a la clase sobre la cual se aplicard.

1.2 Ventajas de la POO

La POO resulta una herramienta muy poderosa para la implementacién de solu-
ciones. Cabe destacar que no se pretende, en esta seccidn, realizar un andlisis
comparativo con otros paradigmas de programacién; pero es muy importante
sefialar las ventajas que ofrece, siendo éstas:

1. Facilita el reuso del diseiio y codigo. Una vez que el disefio y cédigo co-
rrespondiente a una clase fueron probados y validados, resulta relativa-
mente sencillo utilizarlos nuevamente en la solucién de otra aplicacidn.

2. Abstraccion. Permite ver el concepto como un todo, sin tener que distraer la
atencion en los detalles. Esto representa una gran ventaja en el momento de
analizar y representar los objetos involucrados en un problema.

3. Ocultamiento o encapsulamiento de la informacion. La POO permite
ocultar informacién por medio del encapsulamiento, y de esta forma al-
canza mayor seguridad y transparencia en el manejo de la informacién
(se trata a la clase como un todo, no se requiere conocer los detalles).

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

4. Mayor legibilidad. 1.os programas escritos mediante la POO resultan mas
faciles de leer y entender ya que son mds compactos. Ademads, los compo-
nentes clave del programa son autocontenidos y se pueden comprender ra-
pidamente.

1.3 Tipos abstractos de datos

La abstraccién de datos es un concepto bdsico en la solucién de un problema.
Esta permite definir el dominio y la estructura de los datos, el conjunto de atri-
butos que caracterizan a esos datos, asi como las operaciones validas aplicables
sobre los mismos. Es decir, es el mecanismo por medio del cual se define un
concepto general a partir del conocimiento que se tenga de objetos particulares.

La abstraccion da origen a lo que se conoce como un Tipo Abstracto de Datos
(ADT, por sus siglas en inglés: Abstract Data Type), el cual es un tipo de dato
definido por el usuario, cuyas operaciones especifican como un cliente (el usuario)
puede manipular los datos. Por lo tanto el ADT constituye un modelo abstracto
que define una interfaz entre el usuario y el dato.

El ADT es independiente de la implementacion, lo cual permite al disefiador de
la solucién enfocarse en el modelo de datos y en sus operaciones, sin considerar
un lenguaje de programacion en particular. Posteriormente, el programador lo
traducird con el lenguaje elegido.

En el siguiente ejemplo se presenta el ADT correspondiente al modelo simplifi-
cado de un alumno universitario.

Dominio: alumno universitario.
Datos: representan las caracteristicas mas importantes de todo alumno universitario.

e Nombre: cadena de caracteres

e Direccion: cadena de caracteres
e Matricula: nimero entero

* Afio de ingreso: niimero entero
e Carrera: cadena de caracteres

¢ Promedio: numero real

Operaciones validas definidas para el ADT: representan aquellas operaciones
que se pueden realizar sobre o con los datos de un alumno universitario. Para

1.3 Tipos abstractos de datos 5 |

este ejemplo, se considera que un alumno puede cambiar de domicilio, de carrera,
que aprueba materias, etcétera.

¢ Actualizar Direccion
¢ Actualizar Promedio

e Actualizar Carrera

Retomando el ejemplo anterior, el ADT representa a los alumnos universitarios
en general (se estd describiendo un concepto general), mientras que una instancia
representa un alumno en particular (con nombre, direccidn, inscrito a una carre-
ra, etcétera).

Todo ADT tiene, generalmente, los siguientes elementos: un encabezado, la des-
cripcion de los datos y una lista de las operaciones vdlidas para ese ADT.

¢ Encabezado: nombre del ADT.

* Descripcién de los datos: se especifican los datos y las estructuras corres-
pondientes para representarlos. Los datos constituyen los atributos del con-
cepto u objeto definido por medio del ADT.

 Lista de operaciones: se forma por el conjunto de operaciones que se defi-
nen como vdlidas para el ADT. Para cada operacidn debera indicarse:

Entrada: generalmente proporcionada por el usuario.

Precondiciones: establecen la situacién en la cual se aplicard la operacion.
Proceso: es el conjunto de acciones que definen la operacion.

Salida: valores proporcionados, luego de la operacion, al usuario.

Postcondiciones: indican las condiciones que deberdn cumplirse una vez
ejecutada la operacion.

La lista de operaciones debe ser lo mas completa posible. En el momento de de-
finir el ADT debemos procurar realizar la abstraccion de manera que se contem-
plen todas las operaciones que, incluso a futuro, podrian requerirse sobre ese
ADT. El tipo abstracto de datos se debe ver como una caja negra que encierra
todo lo relacionado al concepto que esta describiendo.

La mayoria de los ADT tiene una operacion especial, llamada inicializador, que
asigna valores iniciales a los datos. Cuando el ADT se implementa por medio de
una clase en un lenguaje de programacion, esta operacion recibe un nombre se-
gtn el lenguaje empleado. En el lenguaje C++ recibe el nombre de constructor.
Al momento de declarar un objeto, esta operacion lo crea e inicializa.

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

Considerando lo anterior, un ADT tendré el siguiente formato:

ADT Nombre:
Datos
Describe los datos (y la estructura de los mismos) que caracterizan
al objeto.
Operaciones

Inicializador (constructor):
Valores Iniciales: Datos que se utilizaran para darle un valor
inicial al objeto (instancia del ADT).
Proceso: Inicializa el objeto al ser creado.

Operacion,:
Entrada: La proporciona el usuario.
Precondiciones: Estado del sistema antes de ejecutar la
operacion, .
Proceso: Acciones ejecutadas con los datos.
Salida: Valores generados por el proceso.
Postcondiciones: Estado del sistema luego de ejecutar la
operacion, .

Operacion,:
Entrada: La proporciona el usuario.
Precondiciones: Estado del sistema antes de ejecutar la
operacion,.
Proceso: Acciones ejecutadas con los datos.
Salida: Valores generados por el proceso.
Postcondiciones: Estado del sistema luego de ejecutar la
operacion,.

Operaciony:
Entrada: La proporciona el usuario.
Precondiciones: Estado del sistema antes de ejecutar la
operacion,.
Proceso: Acciones ejecutadas con los datos.
Salida: Valores generados por el proceso.
Postcondiciones: Estado del sistema luego de ejecutar la
operacion,.

Fin ADT Nombre

A continuacién se presenta el ADT correspondiente a la definicién de un
cuadrado.

1.4 Clases

7]

ADT Cuadrado:

Un cuadrado es una figura plana, cerrada por cuatro lineas rectas igua-
les que forman otros tantos angulos rectos. Para el calculo de la super-
ficie y del perimetro sélo se necesita conocer el tamafo del lado.

Datos:
Un nimero real positivo que indica el lado del cuadrado.
Operaciones:
Constructor:
Entrada: Un numero real positivo que representa el lado del cuadrado.
Proceso: Asignar el valor al lado.
Calcula-Superficie:
Entrada: E1 valor del lado.
Precondiciones: (en este caso no es necesario definir
precondiciones).
Proceso: Calcular la superficie del cuadrado.
Salida: E1l valor de la superficie.
Postcondiciones: (en este caso no es necesario definir
postcondiciones).
Calcula-Perimetro:
Entrada: E1 valor del lado.
Precondiciones: (en este caso no es necesario definir
precondiciones) .
Proceso: Calcular el perimetro del cuadrado.
Salida: El valor del perimetro.
Postcondiciones: (en este caso no es necesario definir
postcondiciones).
Fin ADT Cuadrado

En el ejemplo anterior, el ADT esta formado por un atributo Gnico que representa
el lado del cuadrado y por tres métodos: el constructor, encargado de dar un valor
inicial al lado del objeto cuadrado, y 1os métodos Calcula-Superficie y Calcula-
Perimetro creados para calcular la superficie y el perimetro respectivamente.

1.4 Clases

Un ADT se representa por medio de clases, utilizando las facilidades que ofrecen
los lenguajes orientados a objetos. Una clase estd formada por miembros: los
atributos y los métodos. Los atributos representan las caracteristicas relevantes
del objeto/concepto descrito, mientras que los métodos representan las operacio-
nes permitidas para almacenar/manipular los datos. Una variable de tipo clase

| 8 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

(o una instancia de una clase) se llama objeto. Un objeto tiene datos (atributos)
y comportamiento (métodos). Los objetos se crean durante la ejecucién del
programa.

Clases: ADT

Objetos: [tems o instancias de
una clase.

Al definir una clase se pueden establecer diferentes grados de seguridad para sus
miembros, determinando de esta manera los posibles usuarios de los mismos. Las
tres categorias de seguridad que maneja C++ son: privada, protegida y publica.

* Privada: Generalmente se utiliza para definir los atributos y, en casos
muy especiales, algunos de los métodos de la clase. Los miembros defi-
nidos en esta seccidn sélo se pueden acceder por miembros de la misma
clase. La privacidad permite garantizar la proteccién de los atributos y
métodos definidos en esta seccion.

* Protegida: En esta seccién se definen los atributos y métodos que se com-
parten con las clases derivadas (ver herencia, capitulo 2). Es decir, los
miembros de la clase definidos en una seccién protegida pueden ser accesa-
dos solamente por miembros de la misma clase y de sus clases derivadas.

* Piublica: En esta seccion se definen los atributos y métodos que estardn
disponibles para cualquier cliente. Ademads, se permite la interaccién con
el exterior y, que los clientes manipulen objetos del tipo de la clase, sin
tener por ello que conocer la estructura interna del objeto ni los detalles
de implementacion.

Retomando el ejemplo del ADT usado para definir el concepto cuadrado, la
seccion privada se podria usar para definir el atributo lado, mientras que en
la publica se definirian el constructor y los métodos usados para el cdlculo de la
superficie y del perimetro. De esta forma, el lado sélo se puede acceder a través
de los métodos definidos dentro de la clase cuadrado, mientras que los métodos
se pueden invocar desde el exterior.

1.4 Clases 9 |

1.4.1 Clases abstractas y concretas

Las clases, segtin el concepto que estén definiendo, se pueden clasificar en
abstractas o concretas. Las primeras se usan para definir conceptos generales
en los cuales no interesa mencionar detalles especificos, sdlo caracteristicas o
atributos generales y por lo tanto compartibles. Estas clases no se usan directa-
mente en la solucién del problema, sino que son importantes para abstraer y
generalizar la solucién. Es decir, son clases utiles para modelar los datos en la
etapa de disefio de las soluciones. A partir de las mismas se definen las clases
concretas.

Las clases concretas, por otra parte, se utilizan para indicar conceptos mas
especificos, que se podrdn emplear, tal vez directamente, en la solucidon de un
problema. A continuacién se presenta un ejemplo de una clase abstracta y de tres
clases concretas que se derivan de la primera.

Clase Abstracta: Medio de transporte

Esta clase tendra ciertas caracteristicas o atri-
butos que seran comunes a todos los medios
de transporte (por ejemplo: traccién, fuerza,
etcétera), aunque no sera lo suficientemente
especifica como para que pueda emplearse
para definir objetos.

Clases Concretas: Automoviles, Barcos, Aviones

Estas clases heredaran de la clase abstracta
Medio de transporte sus caracteristicas, y
ademas tendran un conjunto de atributos
propios que permitiran definir de manera mas
especifica los conceptos automoviles, barcos o
aviones segun sea el caso. En la aplicacion se
tendrén objetos de estas clases concretas para
emplearse en la solucién de los problemas.

|1O

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

1.4.2 Definicion de una clase en C++

La definicién de una clase en C++ comienza con la palabra reservada class' se-
guida del nombre de la clase. El nombre elegido debe hacer referencia al concep-
to representado. La clase puede tener tres tipos diferentes de secciones: privada,
protegida y ptblica. En cada una de estas secciones se podrdn definir atributos
y/o métodos de la clase, y la seccién determinaré el tipo de acceso que se podra
tener sobre los miembros ahi definidos. Asi, los atributos o métodos definidos en
la seccién privada (private) estardn disponibles s6lo para los miembros de la
misma clase; los que se definan en la seccién protegida (protected) sélo podran
ser utilizados por los miembros de la clase y por los de sus clases derivadas; y
por ultimo, los atributos o métodos definidos en la seccién puiblica (public) es-
tardn disponibles para los miembros de la clase, para los de sus clases derivadas
y para cualquier cliente. Una clase puede tener las tres secciones o cualquier
combinacién de las mismas.

A continuacion se presenta la sintaxis usada para la definicion de una clase.

class NombreClase
{
private:
atributos y/o métodos;
protected:
atributos y/o métodos;
public:
atributos y/o métodos;
}s

Para declarar un objeto del tipo de la clase previamente definida, se emplea la si-
guiente sintaxis:

NombreClase NombreObjeto;

! Para mayor claridad utilizamos negritas para indicar palabras reservadas, propias del lenguaje de
programacién utilizado.

1.4 Clases

11|

En el programa 1.1 se presenta un ejemplo de declaracion de una clase en C++.
La misma estd formada por una seccion Unica, en este caso publica, en la cual se
declaran los atributos y un método.

Programa 1.1

/* La clase Persona queda definida por los atributos: Nombre, Domicilio
wy Edad y un método ActualizaDomicilio que permite cambiar el domicilio
=de una persona. */

class Persona

{
public:
char Nombre[64], Domicilio[64];
int Edad;
void ActualizaDomicilio (char NuevoDom[]);
b

/* En la funcidén main se declaran dos objetos de la clase Persona. Estos
wobjetos son las variables que se usaran en la solucidén del problema. */
void main()

{
Persona ObjJefe, ObjGerente;

En los siguientes ejemplos se muestra la declaracion y el uso de clases a través
del lenguaje de programacion C++. Cabe aclarar que, por razones de espacio, no
se incluyeron programas completos. Estos no llevan a cabo la inicializacién de
los objetos (misma que se analizard en la seccion 1.4.3, y trata sobre el método
constructor) y no contienen las bibliotecas requeridas por C++ para: lecturas/
escrituras, funciones matemdticas, manejo de cadenas, ni la funcién main. Esta
aclaracion es valida para casi todos los ejemplos del libro.

Programa 1.2

/* La clase Punto contiene como atributos privados las coordenadas en
wel eje de las X's y de las Y's, lo cual garantiza mayor seguridad en el
=wmanejo de los mismos. Ademds, en la seccidn publica se han definido
wmétodos para accesar, modificar e imprimir los atributos privados. */
class Punto

|12

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

{
private:
float CoordenadaX, CoordenadaY;
public:
float ObtenerCoordX();
float ObtenerCoordY();
void ModificaX(float NuevaX);
void ModificaY(float NuevaY);
void ImprimeCoordenadas();
};

/* Método que permite, a los usuarios externos a la clase, conocer el
=valor de la coordenada X. */
float Punto::0ObtenerCoordX()

{
}

return CoordenadaX;

/* Método que permite, a los usuarios externos a la clase, conocer el
=valor de la coordenada Y. */
float Punto::ObtenerCoordY()

{
}

return CoordenadaY;

/* Método que permite actualizar el valor de la coordenada X. */
void Punto::ModificaX(float NuevaX)

{
}

CoordenadaX= NuevaX;

/* Método que permite actualizar el valor de la coordenada Y. */
void Punto::ModificaY(float NuevaY)

{
}

CoordenadaY= Nuevay;

/* Método que despliega los valores de las coordenadas X y Y. */
void Punto::ImprimeCoordenadas()
{

cout<< "Coordenada X: " << CoordenadaX << '\n';

cout<< "Coordenada Y: " << Coordenada¥Y << '\n';

}

/* Funcién que usa la clase Punto: se declara un objeto tipo Punto vy
w3 través de los métodos se modifican e imprimen las coordenadas del
wpunto. */

void UsaClasePunto()

1.4 Clases

13|

{
/* Declaracion de un objeto usando la clase Punto. */
Punto ObjPunto;
float Auxiliar;
Auxiliar= 2.4;
/* Modifica el valor de la coordenada X, asignandole el valor
walmacenado en Auxiliar. */
ObjPunto.ModificaX(Auxiliar);
Auxiliar= 5.8;
/* Modifica el valor de la coordenada Y, asignandole el valor
=almacenado en Auxiliar. */
ObjPunto.ModificaY (Auxiliar);
/* Imprime el valor de las coordenadas del punto. */
ObjPunto.ImprimeCoordenadas();
/* Obtiene e imprime el valor de las coordenadas X y Y del punto. */
Auxiliar= ObjPunto.ObtenerCoordX();
cout<< "\nLa coordenada X es: " << Auxiliar;
Auxiliar= ObjPunto.ObtenerCoordY();
cout<< "\nLa coordenada Y es: " << Auxiliar;
}

Observe que en el programa 1.2, en la declaracién de cada uno de los métodos,
se uso la siguiente sintaxis para el encabezado de los mismos:

NombreClase: :NombreMétodo

Los dobles dos puntos (: :) indican que el método pertenece a la clase. Por ejemplo:
Punto::ModificaY expresa que el método Modificay es de la clase Punto.

Por otra parte, cuando a través de un objeto se invoca a un método, la sintaxis
que debe seguirse es:

NombreObjeto.NombreMétodo

Se utiliza un punto (.) para indicar que un método o atributo pertenece a un objeto.

Por ejemplo: objPunto.ImprimeCoordenadas () expresa que el método Imprime-
Coordenadas () estd asociado al objeto objPunto. Por lo tanto:

| 14 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

NombreClase: :NombreMetodo
NombreClase::Atributo

NombreObjeto.NombreMetodo
NombreObjeto.Atributo

El programa 1.3 presenta la definicion de la clase Triangulo y su uso por medio
de una funcién sencilla.

Programa 1.3

/* La clase Triangulo define un triangulo por medio de la longitud de su
whase y de su altura. Ademas, contiene un método para calcular su area y
=otro para imprimir sus atributos. */

class Triangulo

{
public:
float Base, Altura;
float CalculaArea();
void ImprimeAtributos();
}s

/* Método que calcula el &rea de un triangulo y regresa un nUmero real
wcomo resultado. */

float Triangulo::CalculaArea()

{

return (Base * Altura / 2);

}

/* Método que imprime el valor de la base y de la altura de un
wtridngulo. */
void Triangulo::ImprimeAtributos()
{
cout<< "Base: " << Base << '\n'j;
cout<< "Altura: " << Altura << '\n'j;

}

/* Funcién que usa la clase Triangulo: declara un objeto tipo Triangulo
=y a través de los métodos imprime la base y la altura del tridngulo y
wcalcula e imprime su area. */

void UsaClaseTriangulo()

1.4 Clases 15|

{

/* Declaracién de un objeto de tipo Triangulo. */
Triangulo ObjTriang;
float Area;

ObjTriang.ImprimeAtributos();

Area= ObjTriang.CalculaArea();
cout<< "Area del triangulo: "<<Area;

En el siguiente ejemplo se define la clase Cliente con ciertos atributos y algunos
métodos. Asimismo, se incluye una funcién que hace uso de la clase.

Programa 1.4

/* La clase Cliente define a un cliente de banco. Se tienen los
watributos privados: Nombre, Direccion, Telefono, Saldo, TipoDeCuenta y
wNumDeCuenta. Ademas, en la seccién publica de la clase, se incluyeron
=]10s métodos necesarios para imprimir los atributos de un cliente,
=obtener su saldo, obtener el tipo de cuenta, hacer un retiro y un
wdepdsito a la cuenta. */
class Cliente
{
private:
char Nombre[64], Direccion[64], Telefono[8];
float Saldo;
int TipoDeCuenta, NumDeCuenta;
public:
void ImprimeDatos();
float ObtenerSaldo();
int ObtenerTipoCta();
int HacerRetiro(float);
void HacerDeposito(float);

b

/* Método que despliega los datos de un cliente. */
void Cliente::ImprimeDatos()
{
cout<< "Nombre: " << Nombre << '\n';
cout<< "Direccién: " << Direccion << '\n';
cout<< "Teléfono: " << Telefono << '\n';
cout<< "Saldo: " << Saldo << '"\n';

|16

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

cout<< "Tipo de Cuenta: " << TipoDeCuenta << '\n';
cout<< "NUmero de Cuenta: " << NumDeCuenta << '\n';

}

/* Método que permite, a usuarios externos a la clase, conocer el saldo
=de un cliente. */

float Cliente::ObtenerSaldo()

{

return Saldo;

}

/* Método que permite, a usuarios externos a la clase, conocer el tipo
w=de cuenta de un cliente. */

int Cliente::ObtenerTipoCta ()

{

return TipoDeCuenta;

}

/* Método que registra un retiro en la cuenta de un cliente. */
int Cliente::HacerRetiro (float Monto)

{
int Respuesta= 1;
/* Verifica que haya dinero suficiente en la cuenta. */
if ((Saldo-Monto) < 0)
Respuesta= 0;
else
Saldo= Saldo - Monto;
return Respuesta;
}

/* Método que registra un depdsito en la cuenta de un cliente. */
void Cliente::HacerDeposito (float Monto)
{

Saldo= Saldo + Monto;

}

/* Funcion que usa la clase Cliente: se declaran dos objetos tipo
wCliente y por medio de los métodos se registran retiros y depdsitos en
=sus cuentas. */
void UsaClaseCliente()
{

float SaldoCli;

/* Declaracién de dos objetos de la clase Cliente. */

Cliente ObjClien1, ObjClien2;

1.4 Clases

17|

/* Se obtiene el saldo del cliente, asumiendo que previamente le fue
=masignado un valor. */

SaldoCli= ObjClien2.0btenerSaldo();

cout<< "El saldo del cliente es: " << SaldoCli << '\n';

/* Se hace un retiro de la cuenta de cheques de un cliente: se
=wyverifica que tenga una cuenta de cheques (1), en cuyo caso se
wefectla el retiro. */
if (ObjClieni.ObtenerTipoCta() == 1)
if (ObjClieni.HacerRetiro(1500))
cout<<"\nRetiro realizado con éxito. Cuenta actualizada. \n";
else
cout<<"\nNo tiene saldo suficiente para realizar ese retiro. \n";
else
cout << "\n Para realizar un retiro debe ser una cuenta de
=cheques.\n";

/* Se hace un dep6sito en la cuenta de un cliente: se registra el
=nuevo saldo. */
ObjClien2.HacerDeposito(50000.00);

1.4.3 Los métodos constructor y destructor

El método constructor es una funcion que se ejecuta automaticamente al
declarar un objeto como instancia de una clase; se escribe generalmente en la
seccién publica de una clase, y su funcion es crear e iniciar un objeto del tipo
de la clase en la cual fue definido. De esta manera, los constructores permiten
asegurar que los objetos, al crearse, se inicialicen con valores vélidos. Un
constructor no se hereda ni puede retornar un valor, y tiene el mismo nombre
que la clase.

Por su parte, el método destructor es una funcion que se ejecuta automati-
camente al destruirse un objeto. Lleva el mismo nombre que la clase, va
precedido por el simbolo ~ y no lleva argumentos. Un objeto se destruye al
terminar el programa en el cual se cred y libera el espacio de memoria. En el
caso de objetos locales, éstos se destruyen al dejar la seccién en la cual se
crearon.

En el programa 1.5 se presenta la definicién de la clase persona en la cual se
incluyeron un método constructor y uno destructor.

| 18 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

Programa 1.5

/* Se define la clase Persona en la cual, ademds de los atributos, se
wincluyen tres métodos en la seccién pUblica: un constructor, un
=destructor y uno para imprimir los datos. */
class Persona
{
private:
char Nombre[64];
int Edad;
public:
/* Método constructor: se llama igual que la clase, no da ningun
wtipo de resultado. */
Persona(char *, int);
/* Método destructor: se llama igual que la clase, va precedido
=por ~ y no tiene argumentos. */
~Persona();
void ImprimeDatos();

}s

/* Declaracién del método constructor: tiene 2 parametros (Nom y Ed)
que se usaran para dar un valor inicial a los atributos (Nombre y Edad
respectivamente), al momento de crearse un objeto. */
Persona::Persona(char *Nom, int Ed)
{

strcpy (Nombre, Nom);

Edad= Ed;

1.4.4 Uso de constructores multiples

Los constructores multiples hacen referencia a que en una misma clase se puede
incluir més de un constructor. Esto permite dar mayor flexibilidad a la declaracién
de la clase. Existen tres tipos de constructores:

» Constructor por omision: es aquel que no tiene parametros y su cuerpo no
contiene instrucciones. Cuando se crea un objeto, si éste es global, el cons-
tructor inicializa con cero a aquellos atributos que son numéricos y con NULL
a los que son alfabéticos. Si el objeto creado es local, entonces los atribu-
tos se inicializan con valores indeterminados.

 Constructor con pardmetros: es aquel que tiene una lista de pardmetros, a los
cuales habra que darles un valor en el momento de declarar un objeto. Di-
chos valores se usardn para instanciar los atributos del objeto creado.

1.4 Clases 19|

* Constructor con pardmetros por omision: es aquel que tiene una lista de
pardmetros, a los cuales se les asigna un valor por omisién que se usard para
inicializar en caso de que no se den explicitamente otros valores.

Todos los constructores llevan el nombre de la clase a la cual pertenecen. La
existencia o no de pardmetros decide a qué tipo de constructor se estd llamando.
Es importante mencionar que los constructores por omisién y con parametros por
omisién no pueden convivir en una misma clase, ya que resultaria ambiguo a
cudl se estaria invocando en el caso de no proporcionar pardmetros.

A continuacién se presenta la declaracion de la clase Fecha que tiene dos cons-
tructores: uno por omisioén y otro con parametros.

Programa 1.6

/* Se define la clase Fecha con los atributos Dia, Mes y Anfo. Se incluye
=un constructor por omisién (sin paréametros) y uno con parametros. Este
=(1timo permite dar un valor inicial a los atributos cuando se crea un
=objeto. */

class Fecha

{
private:
int Dia, Mes, Anio;
public:
Fecha ();
Fecha (int, int, int);
b

/* Declaracién del método constructor por omisidn. */
Fecha::Fecha ()

{}

/* Declaraci6n del método constructor con parametros (tres enteros):
winicializa los atributos. */
Fecha::Fecha (int D, int M, int A)
{
Dia= D;
Mes= M;
Anio= A;

}

/* Funcién que utiliza la clase Fecha: se crean objetos usando los dos
wconstructores. */
void UsaConstructores ()

| 20 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

{
Fecha ObjFecha;
/* En este caso se invoca al constructor por omisién. E1 objeto
w(ObjFecha tendréa sus atributos (Dia, Mes y AAo) con valores
= indeterminados. */
Fecha Cumpleanios (18, 05, 2006);
/* En este caso se invoca al constructor con parametros. Al objeto
wCumpleanios se le asignaran los valores 18, 05 y 2006 para Sus
watributos Dia, Mes y Ano respectivamente. */

}

En el programa 1.7 se presenta la declaracion de la clase Fecha, incluyendo ahora
un constructor con pardmetros por omision.

Programa 1.7

/* Se define la clase Fecha con los atributos Dia, Mes y Ano. Se incluye
=un constructor con parametros por omisién. Estos valores se asignaran a
=]0s atributos en caso de que el usuario no proporcione otros valores. */

class Fecha

{
private:
int Dia, Mes, Anio;
public:
Fecha (int D= 0, int M= 0, int A= 0);
b

/* Declaracion del constructor con paréametros por omisidn. */
Fecha::Fecha (int D, int M, int A)
{

Dia= D;

Mes= M;

Anio= A;

Una manera equivalente de escribir las asignaciones que aparecen en el
constructor es:

Fecha::Fecha (int D, int M, int A): Dia(D), Mes(M), Anio(A)
{1

1.4 Clases 21 |

En el programa 1.8 se retoma el programa 1.3, pero ahora incluyendo, en la sec-
cidén publica dos constructores, uno por omisién y otro con parametros.

Programa 1.8

/* La clase Triangulo define un triangulo por medio de la longitud de
wsu base y de su altura. Ademds, contiene métodos para calcular su area,
=actualizar e imprimir sus atributos. Para la clase Triangulo se
wdefinieron dos constructores: uno por omisidén y otro con parametros. */
class Triangulo
{
private:
float Base, Altura;
public:
Triangulo();
Triangulo(float, float);
float CalculaArea();
void ImprimeAtributos();
void ActualizaAtributos(float, float);

|

/* Declaracién del método constructor por omisidén. */
Triangulo::Triangulo()

{}

/* Declaraciéon del método constructor con parametros. */
Triangulo::Triangulo(float B, float A)
{

Altura= A;

Base= B;

}

/* Método que calcula el area de un tridngulo. Regresa un nimero real. */
float Triangulo::CalculaArea()

{
}

/* Método que despliega los valores de los atributos. */
void Triangulo::ImprimeAtributos()

{

return (Base * Altura / 2);

cout<< "Base: " << Base << '\n';
cout<< "Altura: " << Altura << '\n';

}

/* Método que modifica los valores de la base y de la altura de un
wtriangulo. */
void Triangulo::ActualizaAtributos (float B, float A)

| 22 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

Altura= A;
Base= B;

}

/* Funci6n que usa la clase Triangulo: se declaran objetos utilizando
=10s dos tipos de constructores incluidos en la clase. */
void UsaClaseTriangulo()
{
float ValorAlt, ValorBase;
/* Se declara un objeto haciendo uso del constructor por omisién. En
weste caso la base y la altura permanecen con valores indefinidos. */
Triangulo ObjT1;
ValorBase= 2.6;
ValorAlt= 3.7;
/* Se le asignan valores a la base y a la altura del triangulo. */
ObjT1.ActualizaAtributos(ValorBase, ValorAlt);

/* Se declara un objeto haciendo uso del constructor con parametros. En
weste caso se le asigna a la base el valor 2.8 y a la altura 9.0. */
Triangulo ObjT2 (2.8, 9.0);

ObjT1.ImprimeAtributos();
ObjT2.ImprimeAtributos();

Por tltimo, en el programa 1.9 se presenta la clase Cliente (ver programa 1.4) en
la cual se definieron dos constructores.

Programa 1.9

/* La clase Cliente define un cliente por medio de los atributos:
wNombre, Direccioén, Teléfono, Saldo, Tipo de Cuenta y Numero de Cuenta,
wy de los métodos que permiten el manejo de ellos. Para la clase Cliente
wse definieron dos constructores: uno con parametros para algunos de los
watributos y otro con parametros por omisién. */
class Cliente
{
private:

char Nombre[64], Direccion[32], Telefono[10];

float Saldo;

int TipoDeCuenta, NumDeCuenta;

1.4 Clases

23|

public:
Cliente(char Nom[], char Tel[], float Sal);
Cliente(char Nom[], char Dir[], char Tel[], float Sal= 0,int
=»TC= 1,int NoC= 0);
float ObtenerSaldo();
void ImprimeDatos();
char ObtenerTipoCta();
void HacerRetiro(float Monto);
void HacerDeposito(float Monto);

b

/* Declaracidn del método constructor con parametros. Se asignan valores
=3 los atributos, tomando los que aparecen en el prototipo del construc-
=tor si el usuario no proporciona otros. */
Cliente::Cliente(char Nom[],char Dir[], char Tel[], float Sal, int TC,
=int NoC)
{

strcpy (Nombre, Nom);

strepy(Direccion, Dir);

strcpy(Telefono, Tel);

Saldo= Sal;

TipoDeCuenta= TC;

NumDeCuenta= NoC;

}

/* Declaracién del método constructor donde se asignan, por medio de
=10s parametros, valores a algunos de los atributos y a otros se les dan
wyvalores por omisidén. */
Cliente::Cliente(char Nom[], char Tel[], float Sal)
{

strcpy (Nombre, Nom);

strcpy(Telefono, Tel);

Saldo= Sal;

strcpy(Direccion, "Desconocida");

TipoDeCuenta= 0;

NumDeCuenta= -1;

}

/* Método que permite conocer el Saldo de un cliente. */
float Cliente::ObtenerSaldo()

{
}

return Saldo;

/* Método que despliega en pantalla los valores de los atributos de un
wcliente. */
void Cliente::ImprimeDatos()

| 24 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

cout<< "Nombre: " << Nombre << "\n';

cout<< "Direccidén: " << Direccion << '\n';

cout<< "Teléfono: " << Telefono << '\n';

cout<< "Saldo: " << Saldo << '\n';

cout<< "Tipo de Cuenta: " << TipoDeCuenta << '\n';
cout<< "NUmero de Cuenta: " << NumDeCuenta << '\n';

/* Funcidén que muestra el uso de los dos tipos de constructores. */
void UsaClaseCliente()

{
/* Se crean dos objetos de tipo Cliente usando los constructores
wdefinidos. */
Cliente ObjClit("Laura", "Insurgentes No. 2", "55559900", 28000, 2,
2);
Cliente ObjCli2("Juan", "55408881", 4000);
/* En el ultimo objeto creado se dan valores para 3 de sus atributos,
wpor 1lo tanto el constructor asigna a los restantes los dados por
womision. */
/* Se imprimen los datos de cada cliente. */
0bjClit1.ImprimeDatos();
0bjCli2.ImprimeDatos();
}

En los siguientes ejemplos se presentan métodos destructores. El programa 1.10
retoma la clase Fecha, del programa 1.7, pero ahora incluye un método destructor
para la misma.

Programa 1.10

/* Se define la clase Fecha en la cual se incluydé un método constructor
=y uno destructor. */
class Fecha

{
private:
int Dia, Mes, Anio;
public:
Fecha (int, int, int);
~Fecha();

b

1.4 Clases 25|

/* Declaraci6n del método constructor con parémetros. */
Fecha::Fecha(int D, int M, int A)

{
Dia= D;
Mes= M;
Anio= A;
}

/* Declaracidn del método destructor. EL cuerpo del método esta
wyacio. */
Fecha::~Fecha()

{1}

En el programa 1.11 se define la clase Texto que tiene un constructor y un des-
tructor.

Programa 1.11

/* Se define la clase Texto por medio de los atributos privados que
wrepresentan la longitud del texto y la estructura requerida para
walmacenar los caracteres. Asimismo, se incluyen algunos métodos. */
class Texto
{
private:
char *CadenaTexto;
int Longitud;
public:
Texto(char *);
~Texto();
void ImprimeTexto();

|

/* Declaracién del método constructor con parametros. */
Texto::Texto(char *Cad)
{
/* Genera dinamicamente el espacio de memoria necesario para almacenar
=1la cadena Cad mds un caracter adicional (caracter nulo). */
CadenaTexto= new char[strlen(Cad)+1];
/* Se verifica si se pudo generar el espacio requerido. */
if (CadenaTexto)
{
strcpy(CadenaTexto, Cad);
Longitud= strlen(CadenaTexto);

|26

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

else
Longitud= 0;
}

/* Declaracion del método destructor. Verifica que la longitud de la
=wcadena sea distinta de cero. Libera el espacio de memoria empleado
wpor CadenaTexto. */
Texto::~Texto()
{

if (Longitud)

delete[] CadenaTexto;

}

/* Método para imprimir el texto. */

void Texto::ImprimeTexto ()

{
cout<< "La cadena es: " << CadenaTexto << endl;
cout<< "Su longitud es: " << Longitud << endl;

/* Funcion que utiliza la clase Texto: se crea un objeto usando el
=constructor con parametros e imprime su valor. Al terminar la funcién
wel objeto se destruye liberando espacio de memoria. */
void UsaTexto ()
{
Texto ObjTexto("Cadena de longitud 41, incluyendo blancos");
ObjTexto.ImprimeTexto();

Ejercicios

1.

Analice cuidadosamente las siguientes declaraciones y diga si los enunciados
que aparecen después del codigo son verdaderos o falsos.

class Flor
{
private:
char Nombre[64], Epoca[64];
public:

void Flor();
Flor(char [], char []);
void Imprime();

}s

Ejercicios 27 |

a) La definicion de la clase es correcta.

b) En el prototipo del método constructor por omisién hay un error.
Justifique su respuesta.

c¢) Al prototipo del método Imprime le faltan pardmetros. Justifique su
respuesta.

2. Retome el problema anterior. Se definen los métodos de la clase Flor y la
funcién main. Analice cuidadosamente las siguientes declaraciones y diga si
los enunciados que aparecen después del cddigo son verdaderos o falsos.

Flor::Flor()
{}

Flor::Flor(char Nom[], char Epo[])
{
strcpy(Nombre, Nom);
strcpy(Epoca, Epo);
}

void Flor::Imprime()

{
cout<<"\n\nNombre de la flor: "<<Nombre;
cout<<"\nEpoca en la que se cosecha: "<<Epoca<<"\n\n";

}

void main()

{
Flor Rosa("Rosa aterciopelada", "verano"), Jazmin;
cout<<"\nIngrese época en la que se cosecha el jazmin";
cin>>Jazmin.Epoca;
Rosa.Imprime();

a) Al declarar el objeto yazmin se deben dar pardmetros. Justifique su
respuesta.

b) Es incorrecto leer el atributo Epoca en la funcidn principal. Justifique
su respuesta.

¢) El método Imprime se invoca correctamente desde la funcién principal.
Justifique su respuesta.

3. Analice cuidadosamente las siguientes declaraciones y diga si los enunciados
que aparecen después del cddigo son verdaderos o falsos.

| 28 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

class Gato
{
private:
char Nombre[64];
int Edad;
public:
char MarcaAlimento[64];
Gato(char [], int, char[]);
void Imprime();
char* RegresaNombre();
void CambiaEdad(int);

}s

a) El atributo MarcaAlimento no se puede declarar en la seccion publica.
Justifique su respuesta.

b) La clase Gato necesita un método constructor por omision. Justifique
su respuesta.

¢) La clase Gato estd correctamente definida.

4. Retome el problema anterior. Se definen los métodos de la clase Gato y la
funcién main. Analice cuidadosamente las siguientes declaraciones y diga si
los enunciados que aparecen después del cddigo son verdaderos o falsos.

Gato::Gato(char Nom[], int Ed, char MAlim[])
{

strcpy (Nombre, Nom);

Edad= Ed;

strcpy(MarcaAlimento, MAlim);
}

void Gato::Imprime()

{
cout<<"\n\nNombre del gato: "<<Nombre;
cout<<"\nEdad: "<<Edad;
cout<<"\nMarca del alimento que come: "<<MarcaAlimento<<"\n\n";

}

char* Gato::RegresaNombre()

{

return Nombre;
}

void Gato::CambiaEdad(int Nuevak)

Ejercicios 29 |

Edad= Nuevak;

}

void main()

{
Gato MiGato("Michifus", 3, "SaborYNutricion"), TuGato();
MiGato: :CambiaEdad(4);
cout<<"\n\nNombre del gato: "<<MiGato.RegresaNombre()<<"\n\n";
cout<<"\nAlimento que come: "<<MiGato.MarcaAlimento<<"\n\n";
cout<<"\nEdad: "<<MiGato.Edad;

}

a) La declaracion del objeto MiGato es correcta. Justifique su respuesta.
b) La declaracién del objeto TuGato es incorrecta. Justifique su respuesta.

¢) La impresion del valor del atributo Nombre del objeto MiGato es
correcta. Justifique su respuesta.

d) La impresion del valor del atributo MarcaAlimento del objeto MiGato es
correcta. Justifique su respuesta.

e) La impresion del valor del atributo Edad del objeto miGato es correcta.
Justifique su respuesta.

/) El método cambiaEdad estd incorrectamente asociado al objeto
MiGato.

5. Analice cuidadosamente las siguientes declaraciones y diga si los enunciados
que aparecen después del codigo son verdaderos o falsos. Las afirmaciones
tienen relacion con el segmento del programa al cual suceden.

class Trabajador
{
private:
char Nombre[64];
int ClaveTrab, Sindi;
float Sueldo;
public:
Trabajador(char [], int, int, float);
void Imprime();
void CambiaEstado();
void AumentaSueldo(float);

|

| 30 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

Trabajador::Trabajador(char Nom[],int Cla=1000,int Si=1,float Sue=1600)
{

strcpy (Nombre, Nom);

ClaveTrab= Cla;

Sindi= Si;

Sueldo= Sue;

a) En la declaracién de la clase no se pudo incluir un método constructor
por omisién. Justifique su respuesta.

b) En los pardmetros formales del método constructor falté darle un
valor por omision al pardmetro Nom. Justifique su respuesta.

¢) Los valores que aparecen en el encabezado del método siempre se
asignan. Justifique su respuesta.

6. Retome el problema anterior. Se definen tres métodos de la clase
Trabajador y la funcién main. Analice cuidadosamente las siguientes
declaraciones y diga si los enunciados que aparecen después del cédigo
son verdaderos o falsos.

void Trabajador::Imprime()
{
cout<<"\n\nNombre del trabajador: "<<Nombre;
cout<<"\nClave: "<<ClaveTrab;
if (Sindi)
cout<<"\nEstad sindicalizado.";
cout<<"\nSueldo: "<<Sueldo<<"\n\n";

}
void Trabajador::CambiaEstado()
{
Sindi= !Sindi;
}

void Trabajador::AumentaSueldo(float Aumento)

Trabajador::Sueldo= Trabajador::Sueldo * (1 + Aumento);

}

void main()

{

Trabajador Pepe("Jose Pérez");
Pepe.Imprime();

Ejercicios 31 |

Trabajador Carlos("Carlos Gonzalez", 1050, 0);
Carlos.Imprime();

Carlos.CambiaEstado();

Carlos.Imprime();

Trabajador Paco("Francisco Quiroz", 2200, 1, 5680.25);
Paco.Imprime();

Paco.AumentaSueldo(0.10);

Paco.Imprime();

a) Cuando se declara el objeto Pepe se deben dar valores para todos los
parametros. Justifique su respuesta.

b) Cuando se declara el objeto carlos se pudo dar valores sélo a los
atributos Nombre y Sueldo. Justifique su respuesta.

¢) Se dieron demasiados valores al declarar el objeto Paco. Justifique su
respuesta.

d) En el método AumentaSueldo es incorrecto usar Trabajador::Sueldo.
Justifique su respuesta.

7. Considerando los enunciados de la funcién main del problema anterior,
diga qué valores apareceran en la pantalla al ejecutarse las siguientes
instrucciones.

a) Pepe.Imprime();

b) Carlos.Imprime(); /Primera invocacién del método.
c) Carlos.Imprime(); /Segunda invocacién del método.
d) Paco.Imprime(); //Primera invocacién del método.

e) Paco.Imprime(); //Segunda invocacién del método.

8. Retome la clase del ejercicio 6, modifique el método que aumenta el sueldo
del trabajador. Ahora, el método debe recibir como pardmetro el porcentaje
de aumento, el nimero de horas extra trabajadas y el valor a pagar por cada
hora extra. Los dos dltimos pardmetros deben tener un valor por omision,
de tal manera que cuando un trabajador no haya laborado horas extra, el
usuario no tenga que asignarles 0.

9. Defina la clase Rectangulo. Determine los atributos y el conjunto de métodos
(lo més completos posible) que caracterizan al concepto rectdngulo.

|32

Capitulo 1. Introduccién a la Programacién Orientada a Objetos

10.

11.

12.

13.

14.

Utilice la clase definida en el ejercicio 9 para declarar objetos que repre-
sentan dos alfombras rectangulares a colocar en una oficina. Escriba un
programa que solicite las dimensiones de cada una de las alfombras y del
piso y utilice los métodos incluidos en la clase, para calcular e imprimir la
superficie del piso que va a quedar cubierta.

Defina la clase Persona. Determine los atributos y el conjunto de métodos
(lo més completos posible) que caracterizan al concepto persona. Luego
declare el objeto MimMaestra, de tipo Persona. Escriba un programa en C++
que utilice la clase previamente definida. El programa debe poder, por medio
de los métodos incluidos en la clase, realizar las siguientes operaciones:

a) Cambiar la direccion de mimaestra. El usuario dara la nueva direccion.

b) Cambiar el nimero de teléfono de mimaestra. El usuario dard el nuevo
nimero.

¢) Imprimir todos los datos de MmiMaestra.
d) Imprimir, si MiMaestra estd casada, el nombre de su conyuge.

Defina la clase mamifero que contenga los atributos que caracterizan a un
animal de este tipo, los métodos necesarios para el manejo de la informacion,
asi como diferentes constructores para crear e inicializar objetos de tipo
Mamifero. Se sugiere definir constructores por omision, con pardmetros y/o
con pardmetros por omisién. Escriba un programa en C++ que utilice la
clase previamente definida. El programa debe poder realizar, por medio de
los métodos incluidos en la clase, las siguientes operaciones:

a) Declarar los objetos Perro y Elefante. Utilice los métodos constructo-
res o algin método de lectura para darle valor a los atributos incluidos
en la clase.

b) Imprimir el tipo de alimentacién del objeto Elefante. Analice alterna-
tivas de solucidn considerando que el atributo en cuestién sea privado
o publico.

¢) Imprimir los valores de todos los atributos del objeto Perro.

Defina la clase cubo. Determine los atributos y el conjunto de métodos (lo mas
completos posible) que caracterizan al concepto cubo.

Retome el problema anterior y utilice la clase Cubo para definir cajas de car-
tén, en forma de cubo. Escriba un programa que calcule e imprima el

total de pliegos de cartén que serdn necesarios para fabricar un total de N

(1 = N = 20) cajas. Las cajas pueden ser de diferentes tamafos. El programa

Ejercicios

33|

15.

ademds de calcular el total de pliegos, deberd calcular el desperdicio de papel.
Datos: N, tamaiio de cada caja (considere 1/2 cm para pegar los diferentes
lados de cada cara del cubo) y tamaio del pliego de cartén.

Defina la clase Empleado, segun las especificaciones que se dan mas
abajo. Posteriormente, en un programa de aplicacion, declare los objetos
JefePlanta y JefePersonal usando la clase previamente definida. El programa
debe permitir al usuario, por medio de menus:

a) Cambiar el domicilio de uno de los dos empleados declarados. Los
datos ingresados por el usuario serdn la clave del empleado y su nuevo
domicilio.

b) Actualizar el sueldo de un empleado. Los datos ingresados por el
usuario serdn la clave del empleado y el porcentaje de incremento a
aplicar al sueldo.

¢) Imprimir los datos de un empleado. El usuario proporcionard la clave
del empleado elegido.

d) Cambiar el nombre de la persona a quien reporta uno de los empleados.

Empleado

ClaveEmpleado: int
Nombre: char[]
Domicilio: char[]
Sueldo: float

ReportaA: char[]

Constructor(es)

void Imprime()

void CambiaDomic(char[])
void CambiaReportaA(char[])

void ActualSueldo(float)

| 34 Capitulo 1. Introduccién a la Programacién Orientada a Objetos

16. Defina la clase Materia, segin las especificaciones que se dan. Posterior-
mente, en un programa de aplicacién declare los objetos Programacién y
BasesDatos usando la clase previamente definida. El programa debe permitir
al usuario, por medio de mends:

a) Cambiar la clave de la materia Programacién.
b) Cambiar el nombre del maestro que imparte la materia BasesDatos.

¢) Imprimir todos los datos de la materia BasesDatos.

Materia

Clave: int
Nombre: char[]
ProfesorTit: char[]

LibroTexto: char[]

Constructor(es)
void Imprime()
void CambiaClave(int)

void CambiaProfe(char[])

17. Retome la clase definida en el ejercicio anterior. ;Qué método(s) deberia
agregarle/quitarle para que se pudiera imprimir, desde algiin programa de
aplicacion, el nombre del libro de texto usado para la materia de BasesDatos?

CAPIiTULO 2

Herencia y amistad

La herencia es la capacidad de compartir atributos y métodos entre
clases. La relacion de herencia entre clases puede ser: privada, protegida
o publica; la relacion que se utiliza con mayor frecuencia es la piiblica,
por lo que la analizaremos detalladamente. Del tipo de herencia privada
s6lo se presentara una breve introduccion.

La clase de la cual se hereda se denomina clase base o superclase.
Mientras que la clase que hereda se denomina clase derivada o
subclase.

Dependiendo del nimero de clases y de como se relacionen, la
herencia puede ser: simple, miiltiple y de niveles miultiples. En las
siguientes secciones se explica cada una.

| 36 Capitulo 2. Herencia y amistad

2.1 Herencia simple

Cuando solo se tiene una clase base de la cual hereda la clase derivada, se dice
que hay herencia simple (figura 2.1a). Sin embargo, la herencia simple no exclu-
ye la posibilidad de que de una misma clase base se pueda derivar mas de una
subclase o clase derivada (figura 2.1b).

Clase Base Clase Base
A
Clase Derivada Clase Derivada 1 Clase Derivada 2
(a) (b)

FIGURA 2.1 Herencia simple

Cuando se necesita representar un concepto general y a partir de éste, conceptos
mads especificos, resulta conveniente organizar la informacién usando herencia.
Esto permite compartir atributos y métodos ya definidos, evita la duplicidad vy,
por otra parte, proporciona mayor claridad en la representacion que se haga de la
informacién. Es decir, se logra un mejor disefio de la solucién del problema.
Existen numerosos casos en los cuales se da este tipo de relacién. En la figura 2.2
se presentan algunos ejemplos de herencia simple.

Persona Mamifero
Empleado Vacuno Equino
(a) (b)

FIGURA 2.2 Ejemplos de herencia simple

2.1 Herencia simple

37|

En la figura 2.2a, la clase Persona es la clase base y Empleado es la clase derivada.
Un objeto de esta clase también es un objeto de la clase Persona, por lo tanto
tendrd los atributos y métodos de ambas clases. En la figura 2.2b, la clase
Mamifero es la clase base y vacuno y Equino son las clases derivadas. En este
caso, se dice que todo vacuno y todo Equino también son objetos de la clase
Mamifero y en consecuencia tendran todos los atributos y métodos que heredan
de la clase base.

La herencia publica permite que los miembros privados de la clase base se puedan
acceder s6lo por medio de los métodos de dicha clase. Los miembros protegidos
de la clase base podran ser usados por los métodos de las clases derivadas, pero
no por sus clientes. Los miembros publicos estardn disponibles para los métodos
de las clases derivadas y para todos sus clientes.

class Base

{
private:
/* Miembros declarados en la seccién privada: accesibles s6lo para
wniembros de esta clase. */

protected:
/* Miembros declarados en la seccién protegida: accesibles s6lo para
=miembros de esta clase y de sus derivadas. */

public:
/* Miembros declarados en la secci6n publica: accesibles para todos. */

|

Para declarar una clase derivada de una clase previamente definida, se utiliza la
siguiente sintaxis.

class Base

{

/* Declaracidn de atributos y métodos de la clase Base. */

b

| 38 Capitulo 2. Herencia y amistad

/* Relacidn de herencia publica entre las clases Base y Derivada. */
class Derivada: public Base

{

/* Declaracién de atributos y métodos de la clase Derivada. */

};

Con la palabra reservada public en el encabezado de la declaracion de la clase
Derivada se hace referencia a que dicha clase hereda los atributos y métodos de la
clase Base. La declaracion del constructor de la clase Derivada debe incluir un lla-
mado al constructor de la clase Base. Para ello se sigue la sintaxis que se presenta
a continuacion:

Derivada::Derivada (parametros): Base (parametros propios de la clase
Base)

{

/* Cuerpo del constructor de la clase Derivada. */

Cuando se declara un objeto del tipo de la clase derivada se invoca al constructor
de ésta. De este constructor lo primero que se ejecuta es la llamada al constructor de
la clase base, y posteriormente se ejecutan sus propias instrucciones. En cuanto a
los pardmetros, al invocar al constructor de la clase base se le deben proporcio-
nar los pardmetros que necesita para asignar valores a los atributos propios de la
clase base y que la clase derivada hereda. En el cuerpo de la clase derivada se
haran las asignaciones correspondientes a los atributos propios de esta clase.

El programa 2.1 presenta un ejemplo de herencia simple. Define la clase Persona
y la clase Empleado como una clase derivada de la primera.

Programa 2.1

/* Se define la clase Persona formada por atributos protegidos y
wplblicos, y se usa como clase base para definir la clase Empleado. Los
wobjetos que sean del tipo Empleado tendradn los atributos de esta clase
= (por ejemplo Salario), ademas de los atributos heredados de la clase
wpPersona. */

2.1 Herencia simple

39|

class Persona
{
protected:
char Nombre[30];
int Edad;
public:
Persona (char *Nom, int Ed);
void ImprimePersona();

|

/* Declaracion del método constructor con parametros. Da un valor inicial
=3 los atributos. */
Persona::Persona(char *Nom, int Ed)
{
strcpy (Nombre, Nom);
Edad = Ed;
}

/* Método que despliega los valores de los atributos de una persona. */
void Persona::ImprimePersona()
{

cout<< "Nombre: " << Nombre << endl;

cout<< "Edad: " << Edad << endl;

/* Definicion de la clase Empleado como clase derivada de la clase
=Persona. Se usa herencia publica. */
class Empleado: public Persona
{
protected:
float Salario;
public:
Empleado (char *Nom, int Ed, float Sal);
void ImprimeEmpleado();
~Empleado();

b

/* Declaracidn del método constructor. Invoca al constructor de la clase
whase. */

Empleado::Empleado(char *Nom, int Ed, float Sal): Persona(Nom, Ed)

{

}

Salario= Sal;

/* Declaracidn del método destructor. */
Empleado::~Empleado()

{}

|4O

Capitulo 2. Herencia y amistad

/* Método que imprime los valores de algunos de los atributos de un
=mempleado. */
void Empleado::ImprimeEmpleado()
{
cout<< "Empleado: " << Nombre << endl;
cout<< "Salario: " << Salario << endl;

/* Funcién que usa las clases Persona y Empleado: se declaran apuntadores
=3 objetos tipo Persona y Empleado. Por medio de los constructores
=wse les asignan valores a estos objetos, se imprimen y finalmente se
=destruyen liberando la memoria. */
void UsaHerencia(void)
{

Persona *ObjPersona= new Persona("Carlos", 22);

Empleado *ObjEmpleado= new Empleado("Adriana", 25, 20000);

ObjPersona->ImprimePersona();
ObjEmpleado->ImprimeEmpleado();

delete ObjPersona;
delete ObjEmpleado;

En el ejemplo anterior, el método ImprimeEmpleado de la clase Empleado puede
mostrar el atributo Nombre de la clase Persona, ya que el mismo es protegido. Por
otra parte, es importante destacar que al crear un objeto de tipo Empleado se dan
tres pardmetros, los dos primeros son necesarios para instanciar los atributos
heredados de la clase Persona.

2.2 Herencia multiple

En el tipo de herencia miiltiple se usan dos o mas clases base para derivar una
clase. Es decir, la clase derivada comparte los atributos y los métodos de mds de
una clase.

2.2 Herencia multiple

41|

Clase Base 1 Clase Base 2

Clase Derivada

FIGURA 2.3 Herencia miiltiple

Para definir una relacion de herencia multiple se utiliza la siguiente sintaxis.

b

b

b

};

class

/*

class

/*

class

/*

class

/*

Base,

Declaracidén de atributos y métodos de la clase Base, */

Base,

Declaracién de atributos y métodos de la clase Base, */

Base,

Declaracién de atributos y métodos de la clase Base, */

Derivada: public Base,, public Base,, .., public Base,

Declaracion de atributos y métodos de la clase Derivada. */

|42

Capitulo 2. Herencia y amistad

Cuando la palabra reservada public, precede el nombre de cada una de las clases
se hace referencia a que la clase Derivada hereda atributos y métodos de todas
ellas.

Para definir el constructor de la clase Derivada, se procede de la siguiente manera:

Derivada::Derivada (parametros): Base,(parametros clase Base,), Base,
= (parametros clase Base,), .., Base, (parametros clase Base,)

{

/* Cuerpo del constructor de la clase Derivada. */

Al llamar al constructor de la clase Derivada, primero se ejecuta el constructor de
la clase Base,, después el constructor de la clase Base,, y asi sucesivamente hasta
el constructor de la clase Base,. Por dltimo, se ejecutan las instrucciones que apa-
rezcan en el cuerpo del constructor de la clase Derivada.

A continuacién se presenta un ejemplo de herencia mdltiple. Se definen las clases
Boleto y Hotel que se utilizardn como base para definir la clase derivada planvacac.
Esta clase heredara todos los miembros de las clases bases, aunque sélo tendra
acceso a los miembros publicos de ellas.

Programa 2.2

/* Se definen las clases Boleto y Hotel, que serviran como base para
wdefinir la clase PlanVacac, representando un caso de herencia mdltiple.
=»Se presenta una aplicacién muy sencilla que utiliza las clases
wpreviamente definidas. */

/* Definicién de la clase Boleto. */
class Boleto
{
private:
float Precio;
char Numero[64], CdadOri[64], CdadDes[64];
public:
Boleto();
Boleto(float, char *, char*, char *);
void Imprime();

}s

2.2 Herencia multiple

43|

/* Declaracién del constructor por omisién. */
Boleto::Boleto()
{1

/* Declaracién del constructor con parametros. */
Boleto::Boleto(float Pre, char Num[], char CO[], char CD[])
{

Precio= Pre;

strcpy (Numero, Num);

strcpy(CdadOri, CO);

strcpy(CdadDes, CD);

}

/* Método que imprime los valores de los atributos de un boleto. */
void Boleto::Imprime()

{

cout<<"\n\nNUmero del boleto: "<<Numero;

cout<<"\nPrecio: "<<Precio;

cout<<"\nDe la ciudad: "<<CdadOri<<" a la ciudad: "<<CdadDes<<endl;
}

/* Definicion de la clase Hotel. */
class Hotel
{
private:
float PrecioHab;
int NumHab;
char TipoHab;
public:
Hotel();
Hotel(float, int, char);
void Imprime();

b

/* Declaraci6n del método constructor por omisidn. */
Hotel::Hotel()

{1}

/* Declaraci6n del método constructor con parémetros. */
Hotel::Hotel(float PreH, int NH, char TH)

{
PrecioHab= PreH;
NumHab= NH;
TipoHab= TH;

}

/* Método que despliega los valores de los atributos de un hotel. */
void Hotel::Imprime()

|44

Capitulo 2. Herencia y amistad

{
cout<<"\n\nNUmero de habitacion: "<<NumHab;
cout<<"\nPrecio: "<<PrecioHab;
cout<<"\nTipo de habitacioén: "<<TipoHab<<endl;
}

/* Definicidn de la clase PlanVacac como clase derivada de las clases
=Boleto y Hotel. Esta clase hereda los atributos de las otras dos.
wAdemds, tiene dos atributos propios. */
class PlanVacac: public Boleto, public Hotel
{
private:
char Descrip[64];
int TotalDias;
public:
PlanVacac();
PlanVacac(float, char *, char *, char*, float, int, char, char *,
wint);
void Imprime();

}s

/* Declaracion del método constructor por omisidén. */
PlanVacac::PlanVacac()

{1}

/* Declaracién del método constructor con parametros. */

PlanVacac::PlanVacac(float PB, char NB[], char CO[], char CD[],
wfloat PH, int NH, char TH, char Des[], int TD):
=Boleto(PB, NB, CO, CD), Hotel(PH, NH, TH)

strcpy(Descrip, Des);
TotalDias= TD;

}

/* Método que despliega los valores de los atributos de un plan
=myvacacional. */
void PlanVacac::Imprime()

{
cout<<"\nDescripcién: "<<Descrip;
cout<<"\nTotal de dias: "<<TotalDias;
cout<<"\nDatos del boleto\n ";
Boleto::Imprime();
cout<<"\nDatos del hotel\n ";
Hotel::Imprime();

}

/* Funcién que pide al usuario los datos relacionados a un viaje. Con
westos datos se crea un objeto tipo PlanVacac. Regresa como resultado
=dicho objeto. */

PlanVacac Lee ()

2.3 Herencia de niveles multiples

45|

char CO[64], CD[64], NumBol[64], TH, Des[64];
float Prec, PreHab;
int NumHab, TD;

cout<<"\n¢De dbénde sale? ";
cin>>C0;

cout<<"\n¢A donde llega? ";
cin>>CD;

cout<<"\nPrecio: ";
cin>>Prec;
cout<<"\nNUmero de boleto: ";
cin>>NumBol;

cout<<"\nTipo de habitacién: ";
cin>>TH;

cout<<"\nPrecio de la habitacién: ";
cin>>PreHab;

cout<<"\nNUmero de habitacién asignada: ";
cin>>NumHab;

cout<<"\nTipo de paquete: ";

cin>>Des;

cout<<"\nTotal de dias: ";
cin>>TD;

PlanVacac Paquete(Prec, NumBol,CO, CD, PreHab, NumHab, TH, Des, TD);
return Paquete;

}

/* Funcién que usa las clases previamente definidas entre las cuales
wexiste una relaci6on de herencia multiple. */
void UsaHerenciaMultiple()

PlanVacac Viaje;
Viaje= Lee();

cout<<"\n\nDatos del paquete seleccionado: ";
Viaje.Imprime();

2.3 Herencia de niveles multiples

La herencia de niveles miiltiples se presenta cuando una clase derivada se usa
como base para definir otra clase derivada. Es decir, existen diferentes niveles de
herencia: en el primero, la clase derivada hereda los miembros de una clase base,
mientras que en el segundo, la clase derivada funciona a su vez como una clase
base y de esta forma comparte con una tercera clase sus propios miembros y los

|46

Capitulo 2. Herencia y amistad

que heredd. Esta relacién puede extenderse a tantos niveles como lo requiera el
problema que se esté resolviendo.

Clase Base

Clase derivada de

Clase Derivada 1 Clase Base.A su
vez es la clase base de
A Clase Derivada 1.1

Clase Derivada 1.1

FIGURA 2.4 Herencia de niveles miiltiples

Este tipo de herencia es muy titil cuando es necesario representar, a partir de
conceptos generales, conceptos mds especificos. Cuantos mas niveles se deriven,
mds especificidad se definird. La figura 2.5 presenta un ejemplo de herencia de
niveles multiples. El nivel superior representa la clase mds general, la clase Arbol.
Luego, la clase Frutal es una clase derivada de la primera, lo cual indica que los
frutales son una clase més especifica de drboles. Por tltimo, se define la clase
citrico, como una subclase de la clase Frutal. Esta relacién también indica que
los citricos son una variante, una clase mas especifica, de los arboles frutales.

Citrico

FIGURA 2.5 Ejemplo de herencia de niveles miiltiples

2.3 Herencia de niveles multiples

47|

El programa 2.3 presenta parte del c6digo desarrollado para definir las
clases de la figura 2.5, ademds de un ejemplo sencillo de aplicacién de
las mismas.

Programa 2.3

/* Se declara la clase Arbol que sera superclase de la clase Frutal.
=De ésta, a su vez, se derivara la clase Citrico. Por lo tanto, esta
=(ltima hereda los miembros de las dos anteriores. Con esta relacidén de
=herencia, se expresa que un objeto tipo Citrico, es ademas del tipo
wFrutal y también un Arbol.*/

/* Definicién de la clase Arbol. */
class Arbol
{
protected:
int Edad;
double Altura;
char Nombre[64];
public:
Arbol(int Ed, double Alt, char *Nom);
void ImprimeArbol();

}s

/* Declaracién del método constructor con parametros. Asigna valores a
=]los atributos. */
Arbol::Arbol(int Ed, double Alt, char *Nom)

{

Edad= Ed;

Altura= Alt;

strcpy (Nombre, Nom);
}

/* Imprime los valores de los atributos de un arbol. */
void Arbol::ImprimeArbol()

{
cout<<"Nombre: " << Nombre << endl;
cout<<"Edad: " << Edad << endl;
cout<<"Altura: " << Altura << endl;

}

/* Primer nivel de herencia: declaracidén de la clase Frutal como clase
wderivada de la clase Arbol.*/
class Frutal: public Arbol

|48

Capitulo 2. Herencia y amistad

{
protected:
char EstacionFruto[64];
public:
Frutal(int Ed, double Alt, char *Nom, char *EstFr);
void ImprimeFrutal();
}s

/* Declaracién del método constructor. Invoca al método constructor de
=]la clase base. */
Frutal::Frutal (int Ed, double Alt, char *Nom, char *EstFr):

=Arbol (Ed, Alt, Nom)

{
strcpy (EstacionFruto, EstFr);

}

/* Método que despliega los valores de los atributos de un arbol frutal. */
void Frutal::ImprimeFrutal()
{

Arbol::ImprimeArbol();

cout<<"Estacion del ano en la que da frutos: " << EstacionFruto << endl;

/* Segundo nivel de herencia: definicion de la clase Citrico como derivada
=de la clase Frutal. */
class Citrico: public Frutal
{
private:
char NombreCitrico[64];
public:
Citrico (int Ed, double Alt, char *Nom, char *EstFr, char
=*NomCit);
void ImprimeCitrico();

}s

/* Declaracion del método constructor. Invoca al método constructor de

wla clase base. */

Citrico::Citrico(int Ed, double Alt, char *Nom, char *EstFr, char *NomCit):
wFrutal (Ed, Alt, Nom, EstFr)

{

strcpy (NombreCitrico, NomCit);

}

/* Método que despliega los valores de los atributos de un citrico. */
void Citrico::ImprimeCitrico()

2.3 Herencia de niveles multiples

49|

Frutal::ImprimeFrutal();
cout<<"Nombre del Citrico: " << NombreCitrico << endl;

}

/* Funcién que usa las clases definidas previamente en las cuales existe
wuna relacién de herencia de niveles mUltiples: crea objetos e imprime
=el valor de sus atributos. */

void UsaHerencia()

{
Arbol ObjArbol(2, 3.55, “Alamo“);
Frutal ObjFrutal(3, 2.56, "Manzano", "Otono");
Citrico ObjCitrico(1, 2.22, "Limonero", "Invierno", "Limén");
ObjArbol.ImprimeArbol();
ObjFrutal.ImprimeFrutal();
ObjCitrico.ImprimeCitrico();
}

La figura 2.6 presenta otro ejemplo de herencia de niveles multiples; tiene cuatro
niveles de clases: en la primera, Alumno, se define una clase que podria utilizarse
para describir el concepto alumno en general (podrian ser alumnos de primaria,
secundaria o de cualquier otro nivel). A partir de esta clase se deriva la clase
Universitario, con la cual se gana cierto grado de precisién. Ahora ya se des-
criben a los alumnos que asisten a alguna universidad. En el siguiente nivel, con
la clase Ingenieria, se indica una clase mds especifica que las anteriores. Se trata
de alumnos universitarios que estudian algin tipo de ingenieria (ya no cual-
quier carrera universitaria). Por dltimo, la clase Computacién describe a los estu-
diantes universitarios de ingenierias en computacién. Es decir, ya no son los
alumnos de cualquier ingenieria, sino especificamente los que estudian Ingenieria
en Computacion. Asi, la clase computacién hereda los miembros de Ingenieria, de
Universitario y de Alumno. Ademds, podrd tener un conjunto de atributos y
métodos propios.

|50

Capitulo 2. Herencia y amistad

Alumno

Universitario

Ingenieria

Computaciéon

FIGURA 2.6 Ejemplo de herencia de niveles miiltiples

El programa 2.4 presenta un segmento de cédigo basado en la relacién de herencia
que se muestra en la figura 2.6. El programa tiene un nivel mas de herencia, ya que
se define primero la clase Persona, y a partir de ella la clase Alumno.

Programa 2.4

/* Se define la clase Persona de la cual se deriva la clase Alumno. De
wésta se deriva la clase Universitario, que a su vez sirve como base
wpara definir la clase Ingenieria. Finalmente, a partir de ésta se
wdefine la clase Computacidn. */

class Persona
{
protected:
char *Nombre;
int Edad;
public:
Persona(char *Nom, int Ed);
void ImprimePersona();

}s

/* Declaracién del método constructor con parametros. */
Persona::Persona(char *Nom, int Ed)

2.3 Herencia de niveles multiples

51|

{
Nombre= new char[strlen(Nom)+1];
if (Nombre)
{
strcpy (Nombre, Nom);
Edad= Ed;
}
}

/* Método que despliega los valores de los atributos de una persona. */
void Persona::ImprimePersona()
{

cout<<"Nombre: " << Nombre << endl;

cout<<"Edad: " << Edad << endl;

/* Primer nivel de herencia: definiciéon de la clase Alumno como clase
wderivada de la clase Persona. */
class Alumno: public Persona

{
protected:
float Promedio;
public:
Alumno(char *Nom, int Ed, float Prom);
void ImprimeAlumno();
};

/* Declaracién del método constructor. Invoca al método constructor de
=]la clase base. */
Alumno::Alumno(char *Nom, int Ed, float Prom): Persona(Nom, Ed)

{
}

Promedio= Prom;

/* Método que despliega los valores de los atributos de un alumno. */
void Alumno::ImprimeAlumno()
{

Persona::ImprimePersona();

cout<< "Promedio: " << Promedio << endl;

/* Segundo nivel de herencia: definicidén de la clase Universitario como
=wclase derivada de la clase Alumno. */
class Universitario: public Alumno
{
protected:
char *NombreUniversidad;

|52

Capitulo 2. Herencia y amistad

public:
Universitario(char *Nom, int Ed, fleoat Prom, char *NomUniv);
void ImprimeUniversitario();

}s

/* Declaracién del método constructor. Invoca al método constructor de

=]a clase base. */

Universitario::Universitario(char *Nom, int Ed, float Prom, char *NomUniv):
=Alumno (Nom, Ed, Prom)

{
NombreUniversidad= new char[strlen(NomUniv)+1];
if (NombreUniversidad)
strcpy (NombreUniversidad, NomUniv);
}

/* Método que despliega los valores de los atributos de un alumno
wuniversitario. */
void Universitario::ImprimeUniversitario()
{
Alumno::ImprimeAlumno();
cout<<"Nombre de la Universidad: " << NombreUniversidad << endl;

/* Tercer nivel de herencia: definicidén de la clase Ingenieria como
=clase derivada de la clase Universitario. */
class Ingenieria: public Universitario

{
protected:
char *NombrelIngenieria;
public:
Ingenieria(char *Nom, int Ed, float Prom, char *NomUniv, char
=*NomIng);
void Imprimelngenieria();
};

/* Declaracion del método constructor. Invoca al método constructor de
=la clase base. */
Ingenieria::Ingenieria(char *Nom, int Ed, float Prom, char *NomUniv,
=char *NomIng):

Universitario(Nom, Ed, Prom, NomUniv)

{
NombreIngenieria= new char[strlen(NomIng)+1];
if (NombreIngenieria)
strcpy (NombreIngenieria, NomIng);
}

/* Método que despliega los valores de los atributos de un alumno de
walguna ingenieria. */
void Ingenieria::ImprimelIngenieria()

2.3 Herencia de niveles multiples

53|

Universitario::ImprimeUniversitario();
cout <<"Nombre de la Ingenieria: " << NombreIngenieria << endl;

/* Cuarto nivel de herencia: definicién de la clase Computacidén como
wclase derivada de la clase Ingenieria. */
class Computacion: public Ingenieria

{
protected:
char Plataformas[64];
public:
Computacion(char *Nom, int Ed, float Prom, char *NomUniv, char
=*NomIng, char *Pla);
void ImprimeComputacion();
b

/* Declaracién del método constructor. Invoca al método constructor de

=]la clase base. */

Computacion::Computacion(char *Nom, int Ed, float Prom, char *NomUniv,
=char *NomIng, char *Pla): Ingenieria (Nom, Ed, Prom,
=NomUniv, NomIng)

strcpy(Plataformas, Pla);
}

/* Método que despliega los valores de los atributos de un alumno de
wingenieria en computacién. */
void Computacion::ImprimeComputacion()
{
Ingenieria::ImprimeIngenieria();
cout<< "Plataformas usadas: " << Plataformas << endl;

/* Funcién que usa las clases previamente definidas en las cuales hay
wuna relacién de herencia de niveles mUltiples. */
void UsaHerencia()
{
Persona ObjPersona("Carlos", 23);
Alumno ObjAlumno("Adriana", 20, 9.75);
Universitario ObjUniversitario("Carolina", 19, 8.65, "ITAM");
Ingenieria ObjIngenieria("Pablo", 21, 8.25, "UNAM", "Mecanica");

Computacion ObjComputacion("Alfonso", 22, 9.8, "UPT", "Computacién",

= "Varias");

| 54 Capitulo 2. Herencia y amistad

ObjPersona.ImprimePersona();
ObjAlumno.ImprimeAlumno();.
ObjUniversitario.ImprimeUniversitario();
ObjIngenieria.Imprimelngenieria();

/* Imprime los datos del alumno de ingenieria en computacion. */
ObjComputacion.ImprimeComputacion();

/* Imprime s6lo los datos personales del alumno de ingenieria en
wcomputacion. */
ObjComputacion.ImprimePersona();

La figura 2.7 muestra un esquema que representa diferentes tipos de herencia en-
tre diversas clases. Se puede mencionar un caso de herencia simple entre la clase
vehiculo y la clase Motocicleta, y un caso de herencia de niveles miltiples entre
la clase vehiculo y la clase Deportivo.

Vehiculo

Motocicleta Automovil

Deportivo

FIGURA 2.7 Ejemplo de herencia

El programa 2.5 presenta codigo que incluye la definicién de las clases corres-
pondientes al esquema de la figura 2.7, asi como una funcién que hace uso de las
mismas.

2.3 Herencia de niveles multiples

55|

Programa 2.5

/* La clase Vehiculo se define por medio de los atributos privados
wllarca, Placas y el Numero de Motor, asi como por medio de un método
=para desplegar los valores de los atributos y un constructor. Esta
=clase sirve como clase base para definir las clases Motocicleta y
wAutomovil. De la clase Automovil se deriva la clase Deportivo. */

/* Definicion de la clase Vehiculo. */
class Vehiculo
{
private:
char Marca[32];
int Placas, NumMotor;
public:
Vehiculo(char *Mar, int Pla, int NM);
void ImprimeVehiculo();

|

/* Declaracién del método constructor con parametros. */
Vehiculo::Vehiculo(char *Mar, int Pla, int NM)

{
strcpy(Marca, Mar);
Placas= Pla;
NumMotor= NM;

}

/* Método que despliega los valores de los atributos de un vehiculo. */
void Vehiculo::ImprimeVehiculo()

{
cout<<"Marca: " << Marca << '\n';
cout<<"Placas: " << Placas << '\n';
cout<<"NUmero de Motor: " << NumMotor << '\n';
}

/* Se define la clase Motocicleta, derivada de Vehiculo, la cual tiene
wcomo atributos propios la Potencia del Motor y como método el que le
=permite desplegar sus atributos. */
class Motocicleta: public Vehiculo
{
private:
int PotMotor;
public:
Motocicleta(char *Mar, int Pla, int NM, int PM);
void ImprimeMotocicleta();

}s

|56

Capitulo 2. Herencia y amistad

/* Declaracién del método constructor. Invoca al método constructor de

wla clase Vehiculo. */

Motocicleta::Motocicleta (char *Mar, int Pla, int NM, int PM):
w=\ehiculo(Mar, Pla, NM)

{
}

PotMotor= PM;

/* Método que despliega los valores de los atributos de una motocicleta. */
void Motocicleta::ImprimeMotocicleta()
{

Vehiculo::ImprimeVehiculo();

cout<<"Potencia del Motor: " << PotMotor << '\n';

/* Se define la clase Automovil, derivada de Vehiculo, la cual tiene
wcomo atributos propios el Numero de Puertas y como método el que le
=permite desplegar sus atributos. */

class Automovil: public Vehiculo

{
private:
int NumPuertas;
public:
Automovil (char *Mar, int Pla, int NM, int NP);
void ImprimeAutomovil();
}s

/* Declaraci6on del método constructor. Invoca al método constructor de

=]la clase Vehiculo. */

Automovil::Automovil (char *Mar, int Pla, int NM, int NP):
w=\ehiculo(Mar, Pla, NM)

{
}

NumPuertas= NP;

/* Método que despliega los valores de los atributos de un automévil. */
void Automovil::ImprimeAutomovil()
{

Vehiculo::ImprimeVehiculo();

cout<<"NUmero de Puertas: " << NumPuertas << '\n';

/* Se define la clase Deportivo, derivada de Automovil, la cual tiene
wcomo atributo propio el Color y como método el que le permite desplegar
wsus atributos. */

class Deportivo: public Automovil

2.3 Herencia de niveles multiples

57|

{
private:
char Color([8];
public:
Deportivo (char *Mar, int Pla, int NM, int NP, char *Col);
void ImprimeDeportivo();
b

/* Declaracién del método constructor. Invoca al constructor de la clase
wAutomovil. */
Deportivo::Deportivo (char *Mar, int Pla, int NM, int NP, char *Col):
Automovil (Mar, Pla, NM, NP)
{
strcpy(Color, Col);

}

/* Método que despliega los valores de los atributos de un automévil
=deportivo. */
void Deportivo::ImprimeDeportivo()
{
Automovil::ImprimeAutomovil();
cout<<"Color: " << Color << '\n';

/* Funcion que hace uso de las clases previamente definidas. */
void UsaHerencia()
{
/* Declaraci6n de un objeto de tipo Motocicleta. */
Motocicleta Moto("Honda", 231, 2941, 225);

/* Declaracién de un objeto de tipo Automovil. */
Automovil Auto("BMW", 569, 7436, 4);

/* Declaracién de un objeto de tipo Deportivo. */
Deportivo AutoDep("Ferrari", 442, 52348, 2, "rojo");

/* Despliega las caracteristicas de la motocicleta. */
Moto.ImprimeMotocicleta();

/* Despliega las caracteristicas del automévil. */
Auto.ImprimeAutomovil();

/* Despliega las caracteristicas del automévil deportivo. */
AutoDep.ImprimeDeportivo();

| 58 Capitulo 2. Herencia y amistad

Todos los ejemplos presentados en esta seccion corresponden a herencia publica,
la cual es la mds utilizada. A continuacidn se presenta una breve introduccién a la
herencia de tipo privada.

2.4 Herencia privada

En el caso de la herencia privada, todos los miembros de la clase base, sin
importar si son privados, protegidos o publicos, serdn privados para la clase
derivada. Por lo tanto, s6lo se podran acceder por medio de los métodos de la
clase base.

/* Declaracidén de la clase Base.*/
class Base

{
b
/* Declaracién de la clase derivada D7 a partir de Base, usando la

relacion de herencia publica. */
class Di1: public Base (1)

{
b
/* Declaracién de la clase derivada D2 a partir de Base, usando la

relacion de herencia privada. */
class D2: private Base (2)

{
|

En (1) se declara herencia publica entre la clase Base y la clase derivada p1. Por
lo tanto, los miembros publicos y protegidos de Base estardan disponibles para D1,
mientras que los miembros privados de Base no podran usarse directamente desde
p1. En (2) se declara herencia privada entre la clase Base y la clase derivada D2.
Por lo tanto, los miembros publicos, protegidos y privados de Base serdn todos
privados para D2.

2.5 Clases amigas (friend) 59 |

2.5 Clases amigas (friend)

Existen casos en los cuales es necesario que una clase haga uso de los miembros
de otra clase, sin que exista relacion de herencia entre las mismas. Es decir, dos
clases que no comparten atributos pueden requerir algiin tipo de cooperacién en
algiin momento. Para permitir este tipo de relacion se declara una clase como
amiga de otra.

Cuando en la declaracién de una clase se dice que otra clase es su amiga, se estd
permitiendo que esta dltima tenga acceso a los miembros privados y protegidos
de la primera.

En el lenguaje C++ se usa la palabra reservada friend para indicar que una
clase es amiga de otra. La directiva friend class NombreClase se escribe en la
seccién publica de la clase, cuyos miembros podran ser utilizados por los de
la clase NombreClase. La palabra reservada class puede omitirse.

class Uno

{

public:

/* Los métodos de la clase Dos podran acceder a los atributos
=privados y protegidos de la clase Uno. */
friend class Dos;

b

/* La declaracion de la clase Dos no se modifica. */
class Dos

{

/* Declaracidén de atributos y métodos. */

|

En este caso, en la seccién publica de la declaracion de la clase uno se indica que la
clase Dos es su amiga. Por lo tanto, esta Gltima podra tener acceso a los miembros
privados y protegidos de la primera.

|60

Capitulo 2. Herencia y amistad

El acceso logrado a través del uso de la declaracion de clases amigas no se hereda
ni es transitivo. Es decir, si la clase Dos tuviera clases derivadas, éstas no podrian
tener acceso a los miembros de la clase uno. Por otra parte, si la clase Dos tuviera
otras clases amigas, éstas tampoco podrian tener acceso a los miembros de la
clase uno.

A continuacion, el programa 2.6 presenta un ejemplo de clases amigas. Define
las clases Medico y Paciente, y declara la tltima como clase amiga de la primera.
De esta manera, el método AsociarMedico, de la clase Paciente, podrd utilizar
directamente miembros privados de la clase medico.

Programa 2.6

/* Se definen las clases Medico y Paciente, siendo esta Ultima una clase
wamiga de la primera. Por lo tanto, la clase Paciente podra tener acceso
=3 todos los miembros de la clase Medico. */

/* Prototipo de la clase Paciente. La definicidén de la misma aparece mas
wadelante. */
class Paciente;

/* Definicidén de la clase Medico. */
class Medico

{
private:
char NombreCompleto[64], Especialidad[64];
public:
Medico();
Medico(char *NomCom, char *Esp);
char * ObtenerNombreCompleto();
char * ObtenerEspecialidad();
void ImprimeDatos();
/* Clase amiga que tiene acceso a los miembros privados de la
wclase Medico. */
friend class Paciente;
}s

/* Declaracién del método constructor por omision. */
Medico: :Medico()

{1}

/* Declaracién del método constructor con parametros. */
Medico::Medico(char *NomCom, char *Esp)
{

strcpy (NombreCompleto, NomCom);

strcpy (Especialidad, Esp);

2.5 Clases amigas (friend)

61|

/* Método que permite, a los usuarios externos a la clase, conocer el
wnombre del médico. */

char * Medico::0btenerNombreCompleto()

{

return NombreCompleto;

}

/* Método que permite, a los usuarios externos a la clase, conocer la
wespecialidad del médico. */

char * Medico::0btenerEspecialidad()

{

return Especialidad;

}

/* Método que despliega los valores de los atributos de un médico. */
void Medico::ImprimeDatos(void)
{
cout<<"Nombre completo del médico: " << NombreCompleto << endl;
cout<<"Especialidad: " << Especialidad << endl <<endl;

/* Definicién de la clase Paciente. */
class Paciente
{
private:
char NombreCompleto[64];
int Edad;
char Padecimiento[64];
Medico *MedicoEspecialista;
public:
Paciente();
Paciente(char *NomCom, int Ed, char *Pad);
char * ObtenerNombreCompleto();
int ObtenerEdad();
char * ObtenerPadecimiento();
void AsociarMedico();
void ImprimeDatos();

b

/* Declaracién del método constructor por omisidén. */
Paciente::Paciente()

{1}

/* Declaracién del método constructor con parametros. */
Paciente::Paciente(char *NomCom, int Ed, char *Pad)

|62

Capitulo 2. Herencia y amistad

}

{
}

{
}

{
}

{

}

{

strcpy (NombreCompleto, NomCom);
Edad= Ed;
strcpy(Padecimiento, Pad);

/* Método que permite, a los usuarios externos a la clase, conocer el
=nombre del paciente. */
char * Paciente::0ObtenerNombreCompleto()

return NombreCompleto;

/* Método que permite, a los usuarios externos a la clase, conocer la
=edad del paciente. */
int Paciente::ObtenerEdad()

return Edad;

/* Método que permite, a los usuarios externos a la clase, conocer el
=nombre del padecimiento. */
char * Paciente::ObtenerPadecimiento()

return Padecimiento;

/* Método que asocia un médico especialista a cada paciente. Note coémo
=wel miembro MedicoEspecialista (de tipo puntero a un objeto tipo Medico)
=tiene acceso a los miembros privados de la clase Medico. */

void Paciente::AsociarMedico()

MedicoEspecialista= new Medico();

cout<<"Ingrese el Nombre Completo del Médico: ";
cin>>MedicoEspecialista->NombreCompleto;
cout<<"Ingrese la especialidad: ";
cin>>MedicoEspecialista->Especialidad;

/* Método que despliega los valores de los atributos de un paciente. */
void Paciente::ImprimeDatos()

cout<<"\nNombre Completo: " << NombreCompleto << endl;
cout<<"Edad: " << Edad << endl;

cout<<"Padecimiento: " << Padecimiento << endl;
cout<<"'Datos del Médico Especialista:" << endl;
MedicoEspecialista->ImprimeDatos();

2.6 Métodos amigos 63 |

/* Funcién que usa las clases amigas previamente definidas. */
void UsaClaseAmiga()
{
Paciente ObjPacienteA ("Juan Carlos G.", 25, "Gripe"),
ObjPacienteB ("Adriana Z.", 38, "Gastritis");

ObjPacienteA.AsociarMedico();
ObjPacienteB.AsociarMedico();

ObjPacienteA.ImprimeDatos();
ObjPacienteB.ImprimeDatos();

2.6 Métodos amigos

Los métodos amigos de una clase son métodos que no pertenecen a ella, pero a
los cuales se les permite el acceso a sus miembros privados y protegidos. Es de-
cir, en la definicién de una clase se incluye la directiva de que cierto método de
otra clase es amigo de la que se estd declarando. De esta forma, dicho método
podra utilizar libremente todos los miembros de la clase. El programa 2.7 ilustra
este concepto.

Programa 2.7

/* Se definen las clases Ejemplol y Ejemplo2. En la clase Ejemplol se
windica que el método EsMayor de la clase Ejemplo2 es un método amigo de
=]la misma. */

/* Prototipo de la clase Ejemplo7. Su definicidén se muestra mas adelante. */
class Ejemplot;

class Ejemplo2
{
private:
int Valor2;
public:
Ejemplo2 (int);
void Imprime();
int EsMayor(Ejemplol);
};

|64

Capitulo 2. Herencia y amistad

/* Declaracién del método constructor. */
Ejemplo2:: Ejemplo2 (int Num)
{

}

Valor2= Num;

/* Método que despliega el valor del atributo de la clase Ejemplo2. */
void Ejemplo2::Imprime()

{
}

cout << "Valor del atributo: " << Valor2 << endl;

/* Método de la clase Ejemplo2. Este método es amigo de la clase Ejemplof,
wpor 1o que tendrd acceso a los miembros privados y/o protegidos de la
=misma. */

int Ejemplo2::EsMayor(Ejemploi Obj)

{
if (Valor2 > Obj.Valort)
return 1;
else
return 0;
}

/* Definicidén de la clase Ejemplol. En esta clase, en la seccién plblica,
wse incluye la declaracion de un método de la clase Ejemplo2 como método
wamigo, lo cual permite que este método tenga acceso a sus miembros
=wprivados y protegidos. */
class Ejemplot
{
private:
int Valori;
public:
Ejemplol (int);
void Imprime();
friend int Ejemplo2::EsMayor(Ejemplol);
}s
/* Declaracion del método constructor. */
Ejemploi::Ejemplol (int Num)
{

}

Valori= Num;

/* Método que despliega el valor del atributo de la clase Ejemplo?l. */
void Ejemplol::Imprime()

{
}

cout << "Valor del atributo: " << Valori << endl;

2.7 Funciones amigas 65 |

/* Funcién que usa el método amigo de la clase Ejemplol. */
void UsaMetodoAmigo()
{

Ejemplo1l Obj (10);

Ejemplo2 0bj2(12);

0bj1.Imprime();
Obj2.Imprime ();

if (Obj2.EsMayor(0bj1))

cout << "Obj2 es mayor que Obj1" << endl;
else

cout << "Obj2 no es mayor que Obj1" << endl;

En el ejemplo anterior, al indicar que el método EsMayor () de la clase Ejemplo2 es
un método amigo de la clase Ejemplo1, se permite que dicho método pueda com-
parar directamente el atributo valor2 con el atributo valor1 (miembro privado de
la clase Ejemplo1).

2.7 Funciones amigas

Otra variante de este tipo de relacion son las funciones amigas que se utilizan
para que funciones ajenas a una clase puedan tener acceso a los miembros priva-
dos y/o protegidos de éstas. A continuacidn se muestra la sintaxis que se utiliza
para representar esta relacion.

class Uno

{
public:

friend tipo NombreFuncién(parametros);

};
tipo NombreFuncién (parametros)

/* La funcién se declara normalmente. */

| 66 Capitulo 2. Herencia y amistad

El programa 2.8 presenta un ejemplo sencillo de funciones amigas.

Programa 2.8

/* Se define la clase Ejemplo en la cual se incluye la declaracioén de

wla funcién Suma como una funcién amiga de la misma. Esto permitira que
wdicha funcidén pueda tener acceso a todos los miembros de la clase.*/

class Ejemplo

{
private:
int Atribi1, Atrib2;
public:
Ejemplo();
Ejemplo(int, int);
void Imprime();
friend int Suma(int, Ejemplo);
};

/* Declaracion del método constructor por omision. */
Ejemplo::Ejemplo()
{}

/* Declaracién del método constructor con parametros. */
Ejemplo::Ejemplo(int Numi, int Num2)
{

Atrib1= Numi;

Atrib2= Num2;

}

/* Método que despliega los valores de los atributos de la clase. */
void Ejemplo::Imprime()
{

cout<<"Valor del primer atributo: "<<Atribi<<endl;

cout<<"Valor del segundo atributo: "<<Atrib2<<endl;

/* Funcion entera declarada como amiga de la clase Ejemplo, lo que
=wpermite que pueda sumar sus atributos a un entero de manera directa. En
weste caso, el parametro Valor es un objeto de tipo Ejemplo y la funcion
wobtiene como resultado la suma de sus atributos mas un nimero dado
wtambién como parametro.*/

int Suma(int Dato, Ejemplo Valor)

{
}

return (Dato + Valor.Atrib1 + Valor.Atrib2);

/* Funcion que hace uso de la funcidén amiga de la clase Ejemplo para
=obtener la suma de sus atributos. */

Ejercicios 67 |

void UsaFuncionesAmigas()
{
int Resultado;
Ejemplo ObjEjemplo(2, 5);
Resultado= Suma (10, ObjEjemplo);
cout<<"El resultado de la suma es: "<<Resultado<<endl;

El programa del ejemplo anterior imprimird el valor 17, ya que la funcién suma
los atributos del objeto, dando un valor de 7 y a eso le suma el nimero entero
(10) que recibe como pardmetro.

Ejercicios

1. Considere la siguiente relacion de herencia. Defina las clases mamifero,
Felino y GatoDoméstico. Decida qué atributos y métodos incluir de tal
manera que su programa pueda:

a) Declarar un objeto llamado Minino de tipo GatobDoméstico y otro llamado
EstrellaCirco de tipo Felino.

b) Imprimir la dieta de Minino y de EstrellaCirco.

¢) Imprimir el afo y lugar de nacimiento de Minino y de EstrellaCirco.
d) Cambiar el nombre del duefio de Minino.

e) Imprimir la raza de Minino y de EstrellaCirco.

f) Cambiar el nombre del circo en el que actia EstrellaCirco.

Mamifero

Felino

GatoDomestico

|68

Capitulo 2. Herencia y amistad

2. Considere la siguiente relacion de herencia. Defina las clases vehiculo,
Terrestre y Maritimo. Decida qué atributos y métodos incluir de tal manera
que su programa pueda:

a)

b)
c)

Declarar un objeto llamado MiAuto de tipo Terrestre y otro llamado
MiBarco de tipo Maritimo. La asignacion de valores a los atributos debe
hacerse a través de un método de lectura, definido para tal fin.

Imprimir los atributos de los objetos declarados en el inciso anterior.
Actualizar el precio de MiAuto.

Actualizar potencia de motores de MiBarco. ;A qué clase deberia perte-
necer el método que le permitird hacer esta actualizacion?

Imprimir un mensaje que indique si MiAuto tiene o no mas de 5 afios
de antigiiedad.

Imprimir el tipo de combustible que usa y la capacidad maxima del
tanque de MiBarco.

Vehiculo

Terrestre Maritimo

3. Definir la clase planta que contenga todos los atributos que caracterizan
a las plantas, y los métodos necesarios para manejarlos. Ademas, defina
las clases derivadas Arbol, Arbusto y Pino, en el nivel de herencia
adecuado.

4. Definir la clase FiguraGeometrica que contenga los atributos que caracterizan
a toda figura geométrica y los métodos necesarios para manejarlos. Ademads,
defina las clases derivadas Cuadrado y Triangulo. Escriba un programa en
C++ que haga uso de estas clases para calcular el total de metros cuadrados
de tela necesaria para fabricar N almohadones con forma cuadrada y M
almohadones con forma de tridngulo equilatero. Los datos que se ingresaran
al programa son:

Ejercicios 69 |

Datos:
¢ N: total de almohadones con forma cuadrada.

¢ LadoC: tamafio, en centimetros, de cada uno de los lados del almoha-
doén cuadrado.

e M: total de almohadones con forma triangular.

¢ LadoT: tamano, en centimetros, de cada uno de los lados del almoha-
don triangular.

Resultado esperado: Total de metros cuadrados requeridos para la fabricacién
de los N + M almohadones.

. Considere la relacion de herencia que se muestra en la siguiente figura, la
cual involucra tres clases: Alumno, Deportista y BecadoDeporte. Esta dltima
representa a aquellos alumnos que son deportistas y que por esa razén han
recibido una beca especial del gobierno para premiar sus esfuerzos. Decida
qué atributos y métodos incluir de tal manera que su programa pueda:

a) Declarar dos objetos llamados Alumnoduan y AlumnoPedro de tipo Alumno.
b) Declarar un objeto llamado DeporLuis de tipo Deportista.

¢) Declarar dos objetos llamados BDAna y BDCarmen de tipo BecadoDeporte.
d) Imprimir los datos de todos los objetos declarados.

e) Actualizar el nombre de la carrera que estdn estudiando AlumnoJuan y
BDAna. El dato dado por el usuario serd el nombre de la nueva carrera.

f) Actualizar el nombre del entrenador de DeporLuis y BDCarmen. El dato
dado por el usuario serd el nombre del nuevo entrenador.

g) Actualizar el monto de la beca de BDAna y BDCarmen. El dato dado por
el usuario serd el porcentaje de incremento de la beca actual.

Alumno Deportista

\/

BecadoDeporte

|7O

Capitulo 2. Herencia y amistad

6. Considere la relacién de herencia que se muestra en la siguiente figura. La
misma involucra tres clases: Alimvegetal, AlimAnimal y AlimPreparado. Esta
ultima representa a los alimentos preparados que pueden incluir como base
alimentos vegetales y/o animales.

AlimVegetal AlimAnimal

AlimPreparado

Se sugiere incluir los siguientes atributos y métodos:

AlimVegetal AlimAnimal
Nombre: char[] Nombre: char|]
EpocaDisponible: char[] Origen: char[]
Vitaminas: int Vitaminas: int
Minerales: int Minerales: int
ProteinasVeg: int ProteinasAnim: int

Grasa: int
e) Constructor(es)
ciee] MIpIFRIE () void Imprime()
void CambiaEpoca()

Ejercicios 71 |

AlimPreparado

Nombre: char[]

Cocido: int

Constructor(es)

void Imprime()

Escriba un programa en C++ que:

a) Declare y cree un objeto llamado Tallarines de tipo AlimPreparado.
Los tallarines se preparan con harina de trigo, huevo y agua. Se cue-
cen en agua hirviendo.

b) Declare y cree un objeto llamado Ensaladaverde de tipo AlimPreparado.
La ensalada verde se prepara con diferentes tipos de lechuga y se
condimenta con aceite de oliva, vinagre balsdmico y sal (esta dltima
no puede ser representada). No se cuece.

¢) Imprima los atributos de los Tallarines y de la EnsaladaVerde.

d) Declare y cree un objeto llamado LechugaFrancesa de tipo
AlimVegetal.

e) En el objeto LechugaFrancesa actualice el valor del atributo
EpocaDisponible a “todo el afio”.

f) Declare y cree un objeto llamado Salmon de tipo AlimAnimal.
g) Imprima los atributos de la LechugaFrancesa y del Salmon.

7. Considere las siguientes relaciones de herencia. Defina todas las clases
que aparecen en el esquema. Decida qué atributos y métodos incluir de tal
manera que su programa pueda:

a) Declarar y crear objetos de cualquiera de las clases sin utilizar métodos
de lectura para asignar valores a los atributos.

b) Imprimir los atributos de cualquiera de los objetos declarados.

| 72 Capitulo 2. Herencia y amistad

¢) Actualizar las dimensiones de un objeto tipo Casas. El usuario debera
proporcionar el nuevo nimero de metros cuadrados de la casa.

d) Actualizar el giro de una industria. Es decir, a un objeto tipo Industria
se le podra cambiar el valor de un atributo que representa el tipo de
actividad que desarrolla dicha industria.

e) Actualizar el nimero de teléfono de cualquiera de los objetos

declarados.
Vivienda
Residencial Comercial
Departamentos Casas Industrias Oficinas

8. Defina las clases DireccionEscolar y Alumno de acuerdo a las especifi-
caciones que se proporcionan mas adelante. Observe que la clase
DireccionEscolar incluye métodos para modificar valores de algunos
atributos de objetos tipo Alumno que, por razones de seguridad, deben ser
privados. Para permitir este acceso debe hacer uso de la relacidon de amistad
(friend) explicada en este capitulo. Una vez definidas las clases indicadas,
escriba un programa en C++ que permita:

a) Crear un objeto llamado AlumnoJduan de tipo Alumno y un objeto llamado
DirEsc de tipo DireccionEscolar.

b) Imprimir los datos del Alumnoduan y de la DirEsc.

Ejercicios

¢) Registrar un cambio de carrera para el AlumnoJuan. El usuario deberd

proporcionar el nombre de la carrera a la cual se cambiara.

d) Registrar una actualizacién del nimero de materias aprobadas por
el AlumnoJuan. El usuario debera proporcionar el total de materias
aprobadas en este tltimo semestre (el cual se sumard al total

anterior).

e) Registrar una actualizacién del promedio de calificaciones del
AlumnoJduan. El usuario debera proporcionar el nuevo promedio.

Direccion escolar

Alumno

Responsable: char[]

Telefono: char[]

Constructor(es)

void ActualizaMatAprob(Alumno,
void ActualizaMatProm(Alumno,

void Imprime()

void ActualizaCarre(Alumno, char[])

int)

float)

Nombre: char[]
AfRolngreso: int
NomCarrera: char[]
Nro.MatAprob: int

Promedio: float

Constructor(es)

void Imprime()

9. Defina las clases RecursosHumanos y Empleado de acuerdo a las
especificaciones proporcionadas més adelante. Observe que la clase
RecursosHumanos incluye métodos para modificar valores de algunos

atributos de objetos tipo Empleado que, por razones de seguridad, deben
ser privados. Para permitir este acceso debe hacer uso de la relacién de

amistad (friend). Una vez definidas las clases indicadas, escriba un

programa en C++ que permita:

a) Crear un objeto llamado EmpleadoPedro de tipo Empleado y un objeto
llamado Personal de tipo RecursosHumanos

b) Imprimir los datos del EmpleadoPedro y de Personal.

c) Registrar un cambio de domicilio del EmpleadoPedro. El usuario debera

proporcionar el nuevo domicilio.

|74

Capitulo 2. Herencia y amistad

10. Retome el problema 9 pero ahora utilice el concepto de métodos amigos.
Reescriba lo que considere necesario de tal manera que s6lo los métodos
ActualizaDomic, ActualizaRepA y ActualizaSueldo puedan tener acceso a los

11.

d) Registrar un cambio en el nombre de la persona a la cual reporta el Em-
pleadoPedro. El usuario deberd proporcionar el nombre de la persona a

la que reportard a partir de ahora.

e) Registrar una actualizacién del sueldo del EmpleadoPedro. El usuario
deberd proporcionar el nuevo sueldo.

f) Imprimir los datos del EmpleadoPedro si lleva mds de 10 afios trabajando

en la empresa.

RecursosHumanos

Empleado

Responsable: char[]

Telefono: char[]

Constructor(es)

void ActualizaDomic(Empleado, char[])
void ActualizaRepA(Empleado, char[])
void ActualizaSueldo(Empleado, float)

void Imprime()

Nombre: char[]
Anolngreso: int
Domicilio: char[]
Sueldo: float

ReportaA: char[]

Constructor(es)

void Imprime()

miembros privados de la clase Empleado.

Defina la clase Empleado segin las especificaciones que se proporcionan
mas adelante. Ademas, en la clase debe incluir una relacion de amistad con
una funcién que tenga como objetivo calcular el sueldo a pagar al emplea-

do, de acuerdo a la siguiente expresion:

SueldoBase + Incentivo*TotalAfosTrabajados + HorasExtra

Donde:

* SueldoBase se toma directamente del objeto tipo Empleado.

* Incentivo es una constante declarada en el programa.

Ejercicios 75 |

e TotalAfosTrabajados lo calcula la funcion como la diferencia entre el
afio actual y el AnoIngreso del empleado.

* HorasExtra es un valor que recibe la funcién como pardmetro.

Empleado

Nombre: char[]

Afnolngreso: int

Domicilio: char[]
SueldoBase: float

ReportaA: char[]

Constructor(es)
void Imprime()

CAPIiTULO 3

Sobrecarga, plantillas
y polimorfismo

En este capitulo se empleard el lenguaje C++ para tratar tres temas
relacionados con la programacién orientada a objetos. Estos temas no
aplican a todos los lenguajes de programacion orientados a objetos,
sin embargo, es importante estudiarlos debido a que constituyen pode-
rosas herramientas de programacion.

3.1 Sobrecarga

La sobrecarga es una caracteristica que ofrece el lenguaje C++ para
aplicar una misma operacion, a través de operadores o funciones, a di-
ferentes tipos de datos. Se pueden sobrecargar operadores, por ejem-
plo +, *, — etcétera y funciones definidas por el propio usuario. La
sobrecarga permite generalizar el uso de operadores y funciones.

A continuacién se analizaran estos temas detalladamente.

|78

Capitulo 3. Sobrecarga, plantillas y polimorfismo

3.1.1 Sobrecarga de operadores

La sobrecarga de operadores es el proceso de asignar dos o mas operaciones al
mismo operador. Es decir, permite asignar una o mds funciones adicionales a un
operador estdndar, con el fin de que ésta sea llamada segtin el contexto en el cual
se utilice el operador. Un operador sobrecargado no puede tener pardmetros pre-
determinados. La sintaxis para sobrecargar un operador es:

tipo operator operador (parametros)
{

/* Instrucciones que forman el cuerpo del operador. */

}

donde tipo indica el tipo de resultado que produce el operador, operator es una
palabra reservada y operador es el operador que se sobrecarga.

La siguiente tabla muestra algunos de los operadores que pueden sobrecargarse
en C++:

TaBLA 3.1 Operadores que pueden sobrecargarse en C++

+ ++ & =
* << - !
%0 >> / I

> < A ==

El programa 3.1 presenta un ejemplo de sobrecarga de operadores en el cual se
sobrecarga al operador + para permitir la suma de vectores.

Programa 3.1

/* Clase Vector en la cual se incluye un método para sumar vectores
=sobrecargando el operador +. */
class Vector
{
private:
float CoordX, CoordY;

3.1 Sobrecarga

79|

public:
Vector (float Vali= 0, float Val2= 0);
void ImprimeVector();
Vector operator+(Vector Vec);

};

/* Declaracién del método constructor con parametros predeterminados;
w3 los cuales, si no les especifican otros valores, se les asignara 0. */
Vector::Vector(float Vall, float Val2)
{

CoordX= Vali;

CoordY= Val2;

}

/* Método que imprime los valores de los atributos de un vector. */
void Vector::ImprimeVector()
{

cout << "X: " << X << " Y: " << Y <<endl;

}

/* Método en el cual se sobrecarga el operador +; por lo tanto, el
woperador + se podra usar tanto para la suma aritmética como para suma
=de vectores. Lo anterior da como resultado un objeto de tipo Vector. */
Vector Vector::operator+ (Vector Vec)

{

return Vector(CoordX+Vec.CoordX, CoordY + Vec.CoordY);

}

/* Funci6n que utiliza el operador + sobrecargado. Se declaran dos objetos
=de tipo Vector y, por medio del operador +, se obtiene su suma. */
void UsaSobrecarga(void)

{
Vector ObjVectorU(3, 1), ObjVectorV(1l, 2), ObjVectorR;

/* Se invoca al operador sobrecargado: se realiza la suma de
=wyvectores. */

ObjVectorR= ObjVectorU + ObjVectorV;

ObjVectorR.ImprimeVector();

La clase vector, del ejemplo anterior, define un método para sumar dos vectores.

Para ello se sobrecargé el operador +. Como consecuencia, si el operador + se
usa con operandos que sean objetos del tipo Vector, se estard invocando a este
método. En cambio, si los operandos son nimeros, se estard haciendo referencia
a la suma aritmética.

|80

Capitulo 3. Sobrecarga, plantillas y polimorfismo

Sobrecarga de los operadores de entrada >> y de salida <<

Un caso especial es la sobrecarga de los operadores << y >> utilizados en la salida
y entrada de datos respectivamente. Estos operadores se encuentran en la biblio-
teca <iostream.h> de C++.

En el caso de la entrada de datos del teclado a la aplicacidon, se establece una
relacién entre una referencia a un objeto de la clase istream y una referencia a
un objeto de la clase en la cual se estd incluyendo la sobrecarga. La sintaxis es
la que se muestra a continuacion:

friend istream &operator>> (istream &, TipoDefUsuario &);

donde TipoDefUsuario corresponde al nombre de la clase en la cual se esta defi-
niendo la sobrecarga del operador >>.

En el caso de la salida de datos de la aplicacién a la pantalla, se establece una
relacién entre una referencia a un objeto de la clase ostream y una referencia a
un objeto de la clase en la cual se estd incluyendo la sobrecarga. La sintaxis es:

friend ostream &operator<< (ostream &, TipoDefUsuario &);

donde TipoDefUsuario corresponde al nombre de la clase en la cual se esta defi-
niendo la sobrecarga del operador <<.

Observe que las funciones que se obtienen al sobrecargar los operadores se
declaran como amigas (friend) de la clase en la cual se insertaron. Esto es para
que dichas funciones, externas a la clase, puedan tener acceso a los miembros
privados de la misma.

El programa 3.2 presenta un ejemplo basado en el programa 2.3 del capitulo
anterior.

3.1 Sobrecarga

81|

Programa 3.2

/* Clase Arbol con algunos atributos y métodos; en la seccidn publica
=wse incluyen dos funciones amigas en las cuales se sobrecargan los
=operadores de salida y entrada, << y >>, */
class Arbol
{
protected:
int Edad;
double Altura;
char Nombre[64];
public:
Arbol();
void ModificaEdad(int);
void ModificaAltura(float);
friend istream &operator>> (istream &, Arbol &);
friend ostream &operator<< (ostream &, Arbol &);

b

/* Declaracién del método constructor por omisidén. */
Arbol::Arbol()

{1}

/* Método que modifica la edad de un arbol. */
void Arbol::ModificaEdad(int NuevaE)

{
}

Edad= Nuevak;

/* Método que modifica la altura de un arbol. */
void Arbol::ModificaAltura(float NuevaA)

{
}

Altura= NuevaA;

/* Declaracidn de la funcién amiga donde se usa el operador >>
=wsobrecargado. */
istream &operator>> (istream &Lee, Arbol &0bjArbol)

{

cout<<"\n\nIngrese nombre del arbol: 5
Lee>>0bjArbol.Nombre;
cout<<"\n\nIngrese altura del &rbol: ";
Lee>>0bjArbol.Altura;

cout<<"\n\nIngrese edad en numero de afos del arbol: ";
Lee>>0bjArbol.Edad;

return Lee;

| 82 Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaracion de la funcidén amiga donde se usa el operador <<
wsobrecargado. */
ostream &operator<< (ostream &Escribe, Arbol &0bjArbol)

{
cout<<"\n\nDatos del arbol: ";
Escribe<<"Nombre: "<<ObjArbol.Nombre<<endl;
Escribe<<"Altura: "<<ObjArbol.Altura<<endl;
Escribe<<"Edad: "<<0bjArbol.Edad<<endl;
return Escribe;

}

/* Funci6n que usa la clase previamente definida. En esta funcién puede
wapreciar como simplificar la entrada/salida de los datos de un objeto.
wla escritura de las funciones amigas implica mas cédigo, sin embargo,
wsu uso produce un cédigo mas legible. */

void UsaSobreCarga()

{
Arbol DeMiCampo;

/* Se usa el operador >> sobrecargado para leer un objeto tipo
wArbol como si fuera un dato simple. */
cin>>DeMiCampo;

DeMiCampo.ModificaAltura(12.5);
DeMiCampo.ModificaEdad(3);

/* Se usa el operador << sobrecargado para imprimir un objeto tipo
w=Arbol como si fuera un dato simple. */
cout<<DeMiCampo;

El ejemplo anterior contiene operadores sobrecargados, que leen e imprimen el
objeto DeMicampo como si fuera un dato simple. De esta manera se gana generali-
dad, ya que es posible usar las instrucciones cin y cout independientemente del
tipo de dato que se esté leyendo o escribiendo.

3.1.2 Sobrecarga de funciones o métodos

La sobrecarga de funciones es el proceso de definir dos o mds funciones, con el
mismo nombre, que difieren inicamente en los pardmetros que requieren y en
el tipo de resultado que generan. Este tipo de sobrecarga resulta ser una poderosa

3.1 Sobrecarga

83|

herramienta de programacion. Sin embargo, debe ser cuidadoso en su uso ya que
si se utiliza excesivamente el programa podria resultar poco legible. Ademads, es
importante considerar que no es posible definir dos funciones que difieran s6lo
en el tipo de resultado. Deben hacerlo también en la lista de pardmetros.

A continuacién se presenta un ejemplo sencillo para que pueda comprender mejor
el concepto explicado. En este caso se sobrecarga la funcion potencia, de tal forma
que se pueda aplicar a nimeros enteros o a nimeros de tipo double.

Programa 3.3

/* Versién de la funcién Potencia para trabajar con nimeros enteros. */
int Potencia (int Num, int Pot)

{
int Indice, Res= 1;
for (Indice= 1; Indice <= Pot; Indice++)
Res= Res * Num;
return Res;
}

/* Versién de la funcion Potencia para trabajar con numeros de doble
wprecisién. */
double Potencia (double Num, int Pot)

{
double Res= 1;
int Indice;
for (Indice= 1; Indice <= Pot; Indice++)
Res= Res * Num;
return Res;
}

/* Funcidén que utiliza las funciones sobrecargadas previamente definidas. */
void UsaFuncionesSobrecargadas()
{

int Basel, Expol, Expo2;

double Base2;

cout<< "Ingrese base y exponente - ambos numeros enteros - \n ";
cin>>Base1>>Expo1;

/* Se invoca a la funcién Potencia con un nudmero entero como primer
wparametro, por lo tanto se ejecutard la primera versién presentada y
wse obtendra un numero entero como resultado. */

cout<<"\n\nEl resultado es: "<<Potencia(Basel, Expo1l);

| 84 Capitulo 3. Sobrecarga, plantillas y polimorfismo

cout<< "Ingrese base y exponente - la base puede ser un valor de
wdoble precisién - \n ";
cin>>Base2>>Expo2;

/* Se invoca a la funci6n Potencia con un numero de doble precisioén
=como primer parametro, por lo tanto se ejecutara la segunda versidn
wpresentada y se obtendra un nudmero de doble precisidén como
=resultado. */

cout<<"\n\nEl resultado es: "<<Potencia(Base2, Expo2);

El programa 3.4 presenta un segmento de programa en el cual se incluyen dos
funciones sobrecargadas: Max, que permite encontrar el maximo entre dos nime-
ros que pueden ser del tipo int 0 double y Raiz2, que calcula la raiz cuadrada de
un nimero que puede ser del tipo int 0 double.

Programa 3.4

/* Se define la funcién Max de tipo int, con parametros también de tipo
wint. Esta funcidn compara dos valores enteros y regresa el valor mas
=grande. */

int Max (int Valil, int Val2)

{
if (Valtl > Val2)
return Vali;
else
return Val2;
}

/* Se define la funcién Max de tipo double, con paréametros también de
wtipo double. Esta funcién compara dos valores de tipo double y regresa
wel valor mas grande. */

double Max (double Valil, double Val2)

{
if (valil > Vval2)
return Vali;
else
return Val2;
}

/* Se define la funci6én Raiz2, con un parametro de tipo int. Regresa la
wraiz cuadrada del dato. */
double Raiz2 (int Num)

{
}

return sqrt (Num);

3.1 Sobrecarga

85|

/* Se define la funcién Raiz2, con un parametro de tipo double. Regresa
=la raiz cuadrada del dato. */
double Raiz2 (double Num)

{
}

return sqrt (Num);

/* Funcién que usa las funciones sobrecargadas definidas previamente. */
void UsaSobrecargaFunciones()

{

/* Se imprime el resultado de la funcién Max, primero invocandola con
wyvalores enteros y luego con valores de doble precisidn. */

cout<< "Max de 2 y 5 es: " << Max(2, 5) << endl;

cout<< "Max de 5.23 y 6.98 es: " << Max(5.23, 6.98) << endl;

/* Se imprime el resultado de la funcién Raiz2, primero invocandola
wcon valores enteros y luego con valores de doble precisién. */
cout << "Raiz cuadrada de 5 es: " << Raiz2(5) << endl;

cout << "Raiz cuadrada de 8.96 es: " << Raiz2(8.96) << endl;

Por tltimo, el programa 3.5 define la clase Complejo haciendo uso de sobrecarga
de operadores y de funciones o métodos.

Programa 3.5

/* Se define la clase Complejo en la cual, algunos de los métodos se defi-
=nieron sobrecargando operadores. Ademds, uno de esos métodos se sobre-
wcarg6. Es decir, usa un operador sobrecargado y tiene asociadas dos
wfunciones dependiendo de los parametros con los cuales se invoque. */

/* Definici6on de la clase Complejo. */
class Complejo
{
private:
double Real, Imaginario;
public:
Complejo (double R= 0, double I= 0);
Complejo operator+ (Complejo);
Complejo operator- (Complejo);
Complejo operator- ();
void MuestraComplejo();

}s

|86

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaracion del método constructor con parametros predeterminados: si
=3l crear un objeto no se dan valores al constructor, éste le asignarad 0
=a los dos atributos. */
Complejo::Complejo(double R, double I)
{

Real= R;

Imaginario= I;

}

/* Método que suma dos nUmeros complejos. Se sobrecarga el operador +. */
Complejo Complejo::operator+ (Complejo Com)
{

return Complejo(Real + Com.Real, Imaginario + Com.Imaginario);

}

/* Método que resta dos numeros complejos. Se sobrecarga el operador -. */
Complejo Complejo::operator- (Complejo Com)
{

return Complejo(Real - Com.Real, Imaginario - Com.Imaginario);

}

/* Método que cambia el signo de un numero complejo. Se sobrecarga el
woperador - y el método operator -. */
Complejo Complejo::operator- ()
{
return Complejo (-Real, -Imaginario);

}

/* Método que imprime los valores de los atributos de un complejo. */
void Complejo::MuestraComplejo()
{

cout<< "Parte Real: " << Real << endl;

cout<< "Parte Imaginaria: " << Imaginario << endl;

}

/* Funcion que usa sobrecarga de operadores y de métodos: se declaran
=objetos de tipo Complejo y se opera con ellos utilizando los operadores
=y el método sobrecargados. */

void UsaSobrecargaOpMetodo()

{
Complejo ObjComplejoi(5, 2), ObjComplejo2(2, 6), ObjComplejo3;

/* Se invoca al método que suma numeros complejos y luego al que
wimprime. */

ObjComplejo3= ObjComplejoi1 + ObjComplejo2;
ObjComplejo3.MuestraComplejo();

3.2 Plantillas 87 |

/* Se invoca al método que resta numeros complejos y luego al que
wimprime. */

ObjComplejo3= ObjComplejo1 - ObjComplejo2;
ObjComplejo3.MuestraComplejo();

/* Se invoca al método que cambia el signo de un nudmero complejo y
wluego al método que imprime. */

ObjComplejo3= -ObjComplejo1;

ObjComplejo3.MuestraComplejo();

En el ejemplo anterior, el operador — se utilizé en dos métodos: en el primero se so-
brecargd para realizar la resta de nimeros complejos y en el segundo se utilizé para
cambiar el signo de un niimero complejo. En este caso, ademds de sobrecargar al
operador, se sobrecargd el método operator — En el momento de usar los métodos,
es el nimero de parametros quien decide cudl de los dos se estd invocando.

3.2 Plantillas

El lenguaje de programacion C++ ofrece otro recurso para ganar generalidad en
la definicién de soluciones: las plantillas. Estas permiten declarar funciones o
clases dejando sin especificar el tipo de algunos de sus pardmetros y/o datos (en
el caso de las funciones) o el tipo de algunos de sus miembros (en el caso de las
clases). A continuacién se analizardn detalladamente las plantillas de funciones y
las plantillas de clases.

3.2.1 Plantillas de funciones

Una plantilla de funcién es un modelo de funcién que el compilador de C++
usard para construir diferentes versiones de una misma funcién, segin los tipos
de datos que se especifiquen al invocar a la misma. La plantilla permite escribir
funciones que difieren exclusivamente en el tipo de datos que manejan.

Para definir una plantilla de funcién se aplica la siguiente sintaxis:

template <class T1, class T2, ..., class Tn>

|88

Capitulo 3. Sobrecarga, plantillas y polimorfismo

donde template es una palabra reservada, lo mismo que class. Por su parte, Ti
indica el tipo del dato i.

El programa 3.6 presenta las funciones del programa 3.4, pero ahora utiliza
plantillas de funciones. Observe que cada funcién estd precedida por las palabras
reservadas template <class T>, que indican que la funcién que se define a conti-
nuacién es una plantilla. Por lo tanto algunos de sus datos pueden quedar con sus
tipos indefinidos, y los mismos tomardn valores al momento de invocar a la
funcién.

Programa 3.6

/* Se declaran plantillas de funciones para Max y Raiz2. De esta manera
wlas mismas podran trabajar sobre diferentes tipos de datos. Es decir,
wen el momento de invocar a las funciones y al darles paréametros
wespecificos, se estaran creando versiones diferentes de las mismas,
=de acuerdo a los tipos de los datos proporcionados. */

/* E1 objetivo de esta plantilla de funcion es encontrar el mayor de dos
=yvalores dados. */

template <class T>

T Max (T vValtl, T Val2)

{
if (Valil > Val2)
return Valt;
else
return Val2;
}

/* E1 objetivo de esta plantilla de funcion es calcular la raiz cuadrada
=de un valor dado. */

template <class T>

double Raiz2 (T Num)

{

}

return sqrt (Num);

/* Funcién que utiliza las plantillas de funciones previamente
wdefinidas. */
void UsaPlantilla()
{
/* En las siguientes dos lineas se invocan las versiones enteras y de
wpunto flotante de la funcién Max, respectivamente. */
cout<< "Max de 2 y 5 es: " << Max(2, 5) << endl;
cout<< "Max de 5.23 y 6.98 es: " << Max(5.23, 6.98) << endl;

3.2 Plantillas 89|

/* En las siguientes dos lineas se invocan a las versiones enteras
=y de punto flotante de la funcidn Raiz2, respectivamente. */
cout<< "Raiz2 de 5 es: " << Raiz2(5) << endl;

cout<< "Raiz2 de 8.96 es: " << Raiz2(8.96) << endl;

El uso de plantillas de funciones es generalizado a diferentes tipos de datos. La
sobrecarga de funciones obtiene el mismo efecto, pero usando mds c6digo.

3.2.2 Plantillas de clases

Las plantillas de clases permiten definir versiones de una misma clase que difieren
en el tipo de dato de alguno(s) de sus miembros. Es decir, se crea el modelo de
una clase el cual permitird definir distintas instancias de la misma para diferentes
tipos de datos.

Para declarar una plantilla de clase se usan las palabras reservadas template
<class T>. El tipo T se usa en aquellos miembros de la clase cuyos tipos tomaran
un valor en el momento de crear los objetos. A continuacidn se muestra la sintaxis
que se utiliza para definir una plantilla de clase.

template <class T>
class PlantillaClase
{
private:
T Atributo;

public:
PlantillaClase();
T Metodol ();
void Metodo2 (T Valor);

|

Para declarar un objeto, a partir de una plantilla de clase, se aplica la siguiente
sintaxis:

PlantillaClase <tipo> Objeto;

|9O

Capitulo 3. Sobrecarga, plantillas y polimorfismo

donde tipo indica el tipo de dato que reemplazara todas las ocurrencias de T
en la definicién de la clase. Por ejemplo, si quisiera declarar dos objetos de
tipo PlantillaClase, pero uno con el tipo int como tipo de dato, y otro con
float, entonces tendria que hacer lo siguiente:

PlantillaClase <int> Objetotl;

PlantillaClase <float> Objeto2;

Para objeto1 el Atributo, el resultado del Metodo1 y el pardmetro del Metodo2 se-
rén de tipo int, mientras que para el Objeto2 el Atributo, el resultado del Metodot
y el parametro del metodo2 serdn de tipo float.

En cuanto a la definicién de métodos, la sintaxis que se aplica es:

template <class T>
T PlantillaClase <T>:: Metodoi()

{ ...}

En este caso, el método de la clase da un resultado del tipo T. Por lo tanto, el tipo
de resultado se definird en el momento de crear un objeto de dicha clase.

template <class T>
void PlantillaClase <T>::Metodo2(T valor)

{...}

En este caso, el método recibe un pardmetro que serd del tipo T. Por lo tanto, el
tipo se especifica en el momento de declarar el objeto.

A continuacién se presenta un segmento de programa que define una plantilla de
clase. Esta plantilla maneja dos tipos de datos diferentes (T1 y T2) para declarar a
los miembros de la clase.

3.2 Plantillas 91 |

Programa 3.7

/* La clase EjemploPlantilla tiene dos miembros privados, cada uno de un
=tipo diferente, por lo que se usan los tipos T1 y T2 para indicarlo.
=wAsimismo, en los métodos definidos se utilizan T1 y T2 para dar
=wflexibilidad en cuanto a los tipos de datos. */

template <class T1, class T2>
class EjemploPlantilla
{
private:
T1 Datodl;
T2 Dato2;
public:
EjemploPlantilla ();
EjemploPlantilla (T1, T2);
void ModificaDatol(T1);
void ModificaDato2(T2);
T1 ObtieneDatol();
T2 ObtieneDato2();
void ImprimeDatos();

|

/* Declaracién del método constructor por omisidén. */
template <class T1, class T2>
EjemploPlantilla<T1,T2>::EjemploPlantilla()

{1

/* Declaraci6on del método constructor con parametros. */
template <class T1, class T2>
EjemploPlantilla<T1,T2>::EjemploPlantilla (T1 D1, T2 D2)
{

Dato1= D1;

Dato2= D2;
}

/* Plantilla del método que permite modificar el valor del atributo
=Datol. */

template <class T1, class T2>

void EjemploPlantilla<T1,T2>::ModificaDato1(T1 NuevoDato)

{
}

/* Plantilla del método que permite modificar el valor del atributo
wDato2. */

template <class T1, class T2>

void EjemploPlantilla <T1,T2>::ModificaDato2(T2 NuevoDato)

Dato1= NuevoDato;

|92

Capitulo 3. Sobrecarga, plantillas y polimorfismo

Dato2= NuevoDato;

/* Plantilla del método que permite, a usuarios externos a la clase,
=conocer el valor del atributo Datof. */

template <class T1, class T2>

T1 EjemploPlantilla <T1,T2>::0btieneDato1()

{

return Datoil;

/* Plantilla del método que permite, a usuarios externos a la clase,
=conocer el valor del atributo Dato2. */

template <class T1, class T2>

T2 EjemploPlantilla <T1,T2>::0btieneDato2()

{

return Dato2;

}

/* Plantilla del método que imprime los valores de los atributos. */
template <class T1, class T2>
void EjemploPlantilla <T1,T2>::ImprimeDatos()
{
cout<< "Dato 1: " << Datol << endl;
cout<< "Dato 2: " << Dato2 << endl;

/* Funcién que usa la plantilla de la clase EjemploPlantilla previamente
=wdefinida: se declara un objeto usando los tipos int y float para
=minstanciar los tipos T1 y T2 en la plantilla. Luego se modifican sus
=atributos y se imprimen. */

void UsaPlantilla()

{
EjemploPlantilla<int, float> ObjPlantilla(1, 6.0);

ObjPlantilla.ImprimeDatos();
ObjPlantilla.ModificaDato1(2);
ObjPlantilla.ModificaDato2(12.0);

cout<< "Dato 1 modificado : " << ObjPlantilla.ObtieneDatol1() << endl;
cout<< "Dato 2 modificado : " << ObjPlantilla.ObtieneDato2() << endl;

3.2 Plantillas 93 |

El programa 3.8 muestra otro caso de plantilla de clase y su uso.

Programa 3.8

/* Se define la plantilla de la clase Segmento. De esta forma cuando se
wdeclare un objeto de la clase Segmento se podrad decidir el tipo de dato
=para sus miembros.*/
template <class T>
class Segmento
{
private:
T Origen, Final;
public:
Segmento();
Segmento(T, T);
void ModificaOrigen(T);
void ModificaFinal(T);
T ObtieneOrigen();
T ObtieneFinal();
void ImprimeDatos();

b

/* Declaracién del método constructor por omisién. */
template <class T>
Segmento<T>::Segmento()

{1}

/* Declaracidn del método constructor con parametros. */
template <class T>
Segmento<T>::Segmento(T Or, T Fi)
{
Origen= Or;
Final= Fi;

}

/* Plantilla del método que permite modificar el valor del atributo
=0rigen. */

template <class T>

void Segmento<T>::ModificaOrigen(T NuevoPunto)

{
}

Origen= NuevoPunto;

/* Plantilla del método que permite modificar el valor del atributo
wFinal. */

template <class T>

void Segmento<T>::ModificaFinal(T NuevoPunto)

|94

Capitulo 3. Sobrecarga, plantillas y polimorfismo

{
}

{
}

{
}

{

}

{

Final= NuevoPunto;

/* Plantilla del método que permite, a usuarios externos a la clase,
=conocer el valor del atributo Origen. */

template <class T>

T Segmento<T>::0btieneOrigen()

return Origen;

/* Plantilla del método que permite, a usuarios externos a la clase,
=mconocer el valor del atributo Final. */

template <class T>

T Segmento<T>::ObtieneFinal()

return Final;

/* Plantilla del método que imprime los valores de los atributos de la
wclase. */

template <class T>

void Segmento<T>::ImprimeDatos()

cout<< "Origen: " << Origen << endl;
cout<< "Final: " << Final << endl;

/* Funcién que usa la plantilla de la clase Segmento: se crean dos objetos,
=uno con numeros enteros y otro con nimeros reales. Posteriormente se
wmnodifican y se imprimen los valores de los atributos de los objetos
=creados. */

void UsaPlantilla()

Segmento<int> SegmentoEntero(1, 6);
Segmento<float> SegmentoReal(2.0, 15.0);

cout<< "Datos del primer segmento: " << endl;
SegmentoEntero.ImprimeDatos();

cout<< "Datos del segundo segmento: " << endl;
SegmentoReal.ImprimeDatos();

SegmentoEntero.ModificaOrigen(SegmentoEntero.ObtenerOrigen() + 2);
SegmentoReal.ModificaFinal (SegmentoReal.ObtenerFinal() - 5.3);

3.2 Plantillas 95|

cout<< "Datos del primer segmento modificado: ";
SegmentoEntero.ImprimeDatos();

cout << "Datos del segundo segmento modificado: " << endl;
SegmentoReal.ImprimeDatos();

En el ejemplo anterior se crearon dos instancias de la clase segmento. Una de
ellas usando niimeros enteros, mientras que en la segunda se emplearon valores
reales. Al utilizar la plantilla, cada uno de los miembros de la clase se instancia
de acuerdo al tipo de dato que acompaiia la declaracién de los objetos.

El programa 3.9 presenta una plantilla de clase en la cual el tipo T se instancia
con una clase previamente definida. Se debe poner especial atencién en que todos
los operadores y funciones utilizados en la plantilla estén definidos para el tipo
usado. En el ejemplo fue necesario sobrecargar los operadores de lectura y escri-
tura >> y <<.

Programa 3.9

/* Se define la clase Fabricante. Luego se define la plantilla de la
wclase Producto que tiene un atributo, SeCompraA, que es un objeto de
=tipo T. En el ejemplo, primero toma el tipo Fabricante y luego el tipo
wint. Por lo tanto, en el primer caso se tendra que un atributo de la clase
wes, a su vez, un objeto, y en el segundo caso, el atributo representara
wuna clave numérica que identificarad a un proveedor. Para que los métodos
wde la segunda clase puedan utilizarse indistintamente con ndmeros o con
=objetos se deben sobrecargar los operadores >> y <<, */

#define MAX 64

class Fabricante

{
private:
char Nombre[MAX], Domicilio[MAX], Telefono[MAX];
public:
Fabricante();
Fabricante(char [], char [], char []);

void CambiaDomic(char []);
void CambiaTelef(char []);
friend istream &operator>>(istream &, Fabricante &);
friend ostream &operator<<(ostream &, Fabricante &);

|96

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Definicién del método constructor por omisién. */
Fabricante::Fabricante()

{}

/* Definicidén del método constructor con parametros. */
Fabricante::Fabricante(char Nom[], char Domic[], char Tel[])
{

strcpy (Nombre, Nom);

strcpy (Domicilio, Domic);

strepy(Telefono, Tel);
}

/* Declaracion del método que permite actualizar el domicilio de un
=fabricante. */

void Fabricante::CambiaDomic(char NuevoDom[])

{

strcpy (Domicilio, NuevoDom);

}

/* Declaracién del método que permite actualizar el teléfono de un
wfabricante. */

void Fabricante::CambiaTelef(char NuevoTel[])

{

strcpy(Telefono, NuevoTel);

}

/* Definicién de la sobrecarga del operador >>. */
istream &operator>>(istream &Lee, Fabricante &0bjFab)
{
cout<<"\n\nIngrese nombre del fabricante: ";
Lee>>0bjFab.Nombre;
cout<<"\n\nIngrese domicilio del fabricante: ";
Lee>>0ObjFab.Domicilio;
cout<<"\n\nIngrese teléfono del fabricante: ";
Lee>>0bjFab.Telefono;
return Lee;

}

/* Definicién de la sobrecarga del operador <<. */
ostream &operator<<(ostream &Escribe, Fabricante &ObjFab)
{
cout<<"\n\nDatos del fabricante\n ";
Escribe<<"Nombre: "<<ObjFab.Nombre<<endl;
Escribe<<"Domicilio: "<<ObjFab.Domicilio<<endl;
Escribe<<"Teléfono: "<<ObjFab.Telefono<<endl;
return Escribe;

3.2 Plantillas

97|

/* Definicién de la plantilla de la clase Producto. */
template <class T>
class Producto
{
private:
int Clave;
char Nombre[MAX];
float Precio;
T SeCompraA;
public:
Producto();
Producto(int, char [], float, T);
void Imprime();
void ActualizaPrecio(float);

|

/* Definicion de la plantilla del método constructor por omisidn. */
template <class T>
Producto<T>::Producto()

{}

/* Definicién de la plantilla del método constructor con parémetros. */
template <class T>
Producto<T>::Producto(int Cla, char Nom[], float Pre, T Provee)
{
Clave= Cla;
strcpy (Nombre, Nom);
Precio= Pre;
SeCompraA= Provee;

}

/* Definicion de la plantilla del método que despliega en pantalla los
=wvalores de los atributos. */

template <class T>

void Producto<T>::Imprime()

{
cout<<"\n\nDatos del producto\n\n";
cout<<"\nClave: "<<Clave;
cout<<"\nNombre: "<<Nombre;
cout<<"\nPrecio: "<<Precio;
cout<<"\nProvisto por: "<<SeCompraA<<endl;
}

/* Definicion de la plantilla del método que actualiza el valor del
wprecio de un producto. */

template <class T>

void Producto<T>::ActualizaPrecio(float NuevoPre)

| 98 Capitulo 3. Sobrecarga, plantillas y polimorfismo

{

Precio= NuevoPre;

}

/* Funci6n que utiliza la plantilla de la clase Producto, usando la
wclase Fabricante y el tipo int para darle valor a T. La aplicacion
=wes muy simple: se declaran y crean objetos del tipo Producto usando
=]10s tipos ya mencionados. */
void FuncionUsaPlantilla()
{

Fabricante CablesMexico;

int ClaProveedor;

/* Se lee un objeto de tipo Fabricante, usando el operador
=sobrecargado >>. */
cin>>CablesMexico;

/* Se crea un objeto de tipo Producto, reemplazando el tipo T por un
wobjeto de tipo Fabricante. */

Producto<Fabricante> CableTel (1050, "Cable telefénico", 100,
=CablesMexico);

CableTel.Imprime();
CableTel.ActualizaPrecio(105);

cout<<"\n\nIngrese la clave del proveedor de las cajas
wconcentradoras: ";
cin>>ClaProveedor;

/* Se crea un objeto de tipo Producto, reemplazando el tipo T por
wint. */

Producto<int> Cajas (2600, "Cajas concentradoras", 450,
=(ClaProveedor) ;

Cajas.Imprime();

En el ejemplo anterior se puede apreciar que el uso de plantillas de funciones
da mucha generalidad a las clases, en cuanto al manejo de los tipos de datos.
A partir de la misma plantilla de clase se crearon dos objetos, asigndndole a
cada uno un tipo de dato diferente para el atributo SeCompraA y en consecuencia
dandole a cada uno capacidades distintas para representar y almacenar
informacion.

3.3 Polimorfismo 99 |

3.3 Polimorfismo

El término polimorfismo hace referencia a la capacidad de adoptar diversas for-
mas. Por lo tanto, un objeto polimérfico es aquel que tiene diversos aspectos. El
polimorfismo permite que un mismo método adquiera distintos contenidos de-
clarando funciones o métodos virtuales en la clase base y otras formas de los
mismos en las clases derivadas.

Por medio del polimorfismo se puede definir un solo método para objetos diferen-
tes, es decir, objetos que son instancias de distintas clases. En C++ el polimorfismo
se define a través de funciones virtuales. Por lo tanto, antes de presentar un ejemplo
de polimorfismo se hard una breve introduccién a las funciones virtuales.

3.3.1 Funciones virtuales

Las funciones o métodos virtuales se usan en clases base para indicar que puede
haber multiples formas de ellas en las clases derivadas. Para indicar que un método
es virtual se antepone la palabra reservada virtual.

El programa 3.10 muestra el uso del polimorfismo. Crea una clase base que tiene
una funcién virtual, misma que sera redefinida en cada una de las clases derivadas.

Programa 3.10

/* Se define la clase Insecto que incluye un método virtual, el cual
wse redefinira en las clases derivadas: Mosca y Cucaracha. E1 método
wyvirtual Imprime adoptara diferentes formas segln la declaracién del
=wmismo en cada una de las clases derivadas. Ademas, en la clase se
wincluyd un destructor virtual. */

class Insecto
{
protected:
char Nombre[30];
int NumPatas;
float TamCabeza, TamTorax, TamAbdomen;
public:
Insecto(char *, int, float, float, float);
virtual void Imprime();
virtual ~Insecto() { }

b

|100

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaracién del método constructor con parametros. */
Insecto::Insecto(char *Nom, int NumP, float TamC, float TamT, float TamA)
{

strcpy (Nombre, Nom);

NumPatas= NumP;

TamCabeza= TamC;

TamTorax= TamT;

TamAbdomen= TamA;

}

/* Método que despliega los valores de los atributos de un insecto. */
void Insecto::Imprime()

{
cout<< "Nombre: " << Nombre << endl ;
cout<< "NUmero de Patas: " << NumPatas << endl;
cout<< "Tamano de Cabeza: " << TamCabeza << endl;
cout<< "Tamaio de Térax: " << TamTorax << endl;
cout<< "Tamano de Abdomen: " << TamAbdomen << endl;
}

/* Definicidén de la clase Mosca, derivada de la clase Insecto. En el
wprototipo del método Imprime se puede omitir el uso de la palabra
wyirtual. Se la incluy6é sélo para ofrecer mayor claridad. */
class Mosca: public Insecto
{
private:
int NumAlas;
public:
Mosca(char *, int, float, float, float, int);
virtual void Imprime();
~Mosca() { }

b

/* Declaracion del método constructor con parametros. Invoca al método

=mconstructor de la clase base. */

Mosca: :Mosca(char *Nom, int Pat, float Cab, float Tor, float Abd, int Alas):
w=Insecto(Nom, Pat, Cab, Tor, Abd)

{
}

NumAlas= Alas;

/* Método que despliega los valores de los atributos de una mosca. */
void Mosca::Imprime()
{

Insecto::Imprime();

cout<< "NUmero de Alas: " << NumAlas << endl;

3.3 Polimorfismo

101|

/* Definicién de la clase Cucaracha derivada de la clase Insecto. En el
wprototipo del método Imprime se puede omitir la palabra virtual, se la
wincluyd solo para ofrecer mayor claridad. */

class Cucaracha: public Insecto

{
private:
char CaractCuerpo[30];
public:
Cucaracha(char *, int, float, float, float, char *);
virtual void Imprime();
~Cucaracha() { }
}

/* Declaracién del método constructor con parametros. Invoca al método

=wconstructor de la clase base. */

Cucaracha::Cucaracha(char *Nom, int Pat, float Cab, float Tor, float
=Abd, char *Cuer): Insecto(Nom, Pat, Cab, Tor, Abd)

{

}

strcpy(CaractCuerpo, Cuer);

/* Método que despliega los valores de los atributos de una cucaracha. */
void Cucaracha::Imprime()
{

Insecto::Imprime();

cout<< "Caracteristicas del cuerpo: " << CaractCuerpo << endl;

/* Funcién que usa las clases previamente definidas: se declaran objetos
wpolimorficos y por medio de los métodos virtuales se trabaja con ellos. */
void UsaFuncionVirtual()
{

/* Se crean dos apuntadores a objetos polimérficos. */

Insecto *ObjInsectol, *ObjInsecto2;

Mosca ObjMosca("Mosca", 6, 3, 1, 2, 4);
Cucaracha ObjCucaracha("Cucaracha", 6, 2, 8, 4, "Cuerpo Aplanado");

/* Se asigna la direccién de los objetos de las clases derivadas a
=10s apuntadores a los objetos polimérficos. */

ObjInsectol= &0bjMosca;

ObjInsecto2= &0bjCucaracha;

/* Invoca al método correspondiente a la clase Mosca, a través del
wobjeto polimorfico. */
ObjInsectol -> Imprime();

|102

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Invoca al método correspondiente a la clase Mosca a través del
=wobjeto tipo Mosca. */
ObjMosca.Imprime();

/* Invoca al método correspondiente a la clase Cucaracha, a través
wdel objeto polimérfico. */

ObjInsecto2 -> Imprime();

/* Invoca al método correspondiente a la clase Cucaracha a través
=del objeto tipo Cucaracha. */

ObjCucaracha.Imprime();

En el ejemplo anterior se puede apreciar que al declarar los objetos polimérficos,
éstos pueden almacenar la direccién de diferentes tipos de objetos. Consecuente-
mente, cada uno de ellos tomard diferentes formas dependiendo de la clase a la
cual pertenezca. En el ejemplo, la variable objInsecto1 se declara como un
apuntador a un objeto de tipo Insecto. Sin embargo, posteriormente se le asigna
la direccién de uno tipo Mosca. Por lo tanto, la forma del objeto dependera de la
clase a la cual hace referencia en este caso. Lo mismo sucede con la variable
ObjInsecto2, se declara como un apuntador a un objeto de tipo Insecto y poste-
riormente hace referencia a uno tipo Cucaracha.

El programa 3.11 presenta otro caso de uso de funciones virtuales y polimorfis-
mo. En el ejemplo se usa un arreglo de objetos polimérficos, por lo que si ain
no estd familiarizado con esta estructura de datos se le recomienda consultar el
capitulo 4.

Programa 3.11

/* Se declara la clase Volumen que servira como base para las clases
wderivadas: Libro y Revista. La clase base tiene métodos virtuales que
wseran redefinidos en las clases derivadas. En la clase se define un
wnétodo destructor virtual. Observe que el método virtual Imprimir no se
wdefine en la clase base, s6lo se incluye su prototipo. Luego se define
=la clase Biblioteca que tiene como atributo un arreglo de objetos
wpolimorficos. */

class Volumen
{
protected:
char *NomVolumen;

3.3 Polimorfismo

103|

public:

Volumen();

Volumen(char *);

virtual void Imprimir() { }

virtual ~Volumen();
b
/* Declaracion del método constructor por omision. */
Volumen::Volumen()

{1}

/* Declaracidn del método constructor con parametros. */
Volumen::Volumen(char *Nom)

{
NomVolumen = new char[(strlen(Nom)+1)];
if (NomVolumen)
strcpy (NomVolumen, Nom);
}

/* Declaracidn del método destructor. */
Volumen:: ~Volumen()

{

delete[] NomVolumen;

}

/* Definicién de la clase Libro derivada de la clase Volumen. E1 método
w Imprimir se define en esta clase. */
class Libro: public Volumen
{
private:
int AnioEd;
public:
Libro();
Libro(char *Nom, int);
void Imprimir();

b

/* Declaracién del método constructor por omisién. */
Libro::Libro()
{1}

/* Declaracién del método constructor con parametros. Invoca al método
=constructor de la clase base*/
Libro::Libro(char *Nom, int Anio): Volumen(Nom)
{
AnioEd= Anio;

}

|104

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Método que despliega los valores de los atributos de un libro. Observe
=que se imprimen dos atributos uno de los cuales se hereda de la clase
= \olumen y el otro es propio de esta clase. */
void Libro::Imprimir()
{

cout<< "Nombre del Libro: " << NomVolumen << endl;

cout<< "Afo de Edicién del Libro: " << AnioEd << endl;

}

/* Definici6n de la clase Revista derivada de la clase Volumen. E1 método
= Imprimir se define en esta clase. */
class Revista: public Volumen
{
private:
int Numero;
public:
Revista();
Revista(char *, int);
void Imprimir();

}s

/* Declaracién del método constructor por omision. */
Revista::Revista()

{1}

/* Declaraci6on del método constructor con parametros. Invoca al método
=constructor de la clase base. */

Revista::Revista(char *Nom, int Num): Volumen(Nom)

{

Numero= Num;

}

/* Método que despliega los valores de los atributos de una revista.
=(0Observe que se imprimen dos atributos, uno de los cuales se hereda de
=la clase Volumen y el otro es propio de esta clase.*/
void Revista::Imprimir()
{

cout<< "Nombre de la Revista: " << NomVolumen << endl;

cout<< "NUmero de la Revista: " << Numero << endl;

}

/* Definicién de la clase Biblioteca. Uno de los atributos de la clase
wes un arreglo polimérfico, lo cual da mucha generalidad en el momento
wde almacenar informacién en él: se pueden guardar objetos de diferentes
wtipos. */

class Biblioteca

3.3 Polimorfismo

105|

private:
int MaxVolumen, NumVolumen;
char Nombre[64];
Volumen *Volumenes|[];

public:
Biblioteca();
Biblioteca(intl, char []);
void IngresarVolumen(Volumen *);
void Imprimir();
~Biblioteca();

b

/* Declaracién del método constructor por omisidn. */
Biblioteca::Biblioteca()

{1}

/* Declaracidn del método constructor con parametros. */
Biblioteca::Biblioteca(int MaxVol, char Nom[])

{
int Indice;
MaxVolumen= MaxVol;
NumVolumen= 0;
strcpy(Nombre, Nom);
*Volumenes= new Volumen[MaxVolumen];
/* Se inicializa el arreglo de objetos polimérficos como vacio. */
for (Indice= 0; Indice < MaxVolumen; Indice++)
Volumenes[Indice]= NULL;
}

/* Declaracidn del método destructor. */
Biblioteca::~Biblioteca()

{
}

delete[] *Volumenes;

/* Método que permite dar de alta un nuevo volumen en la coleccidn de
wyvolimenes de la biblioteca. Recibe como parametro la direccion de un
wobjeto de tipo Volumen. */
void Biblioteca::IngresarVolumen(Volumen *Vol)
{
if (NumVolumen < MaxVolumen)
Volumenes[NumVolumen++]= Vol;

}

/* Método que despliega los valores de los atributos de los volumenes
wregistrados en la biblioteca. */
void Biblioteca::Imprimir()

|106

Capitulo 3. Sobrecarga, plantillas y polimorfismo

{
int Indice;
cout<<" Acervo de la biblioteca: "<< Nombre<<endl;
if (NumVolumen > 0)
for (Indice= 0; Indice < NumVolumen; Indice++)
Volumenes[Indice]->Imprimir();
}

/* Funcion que usa las clases previamente definidas para crear objetos
wpolimérficos. */
void UsaPolimorfismo()
{
/* Se crea un objeto de tipo Biblioteca, el cual podrad almacenar 10
wyolimenes como maximo. */
Biblioteca ObjBiblioteca (10, "Refugio del Conocimiento");

/* Se crean objetos tipo Libro. */

Libro ObjLibro1 ("Estructuras de Datos", 2006),
ObjLibro2 ("Aprenda C++", 2005),
ObjLibro3 ("Estudie Ingenieria", 2000);

/* Se crean objetos tipo Revista. */

Revista ObjRevistail ("Ciencia", 12),
ObjRevista2 ("Computadoras y Accesorios", 110),
ObjRevista3 ("Avances de la Tecnologia", 205);

/* Se invoca al método que permite asignar las direcciones de los
objetos tipo Libro a uno de los miembros del objeto tipo Biblioteca. */
ObjBiblioteca.IngresarVolumen(&0bjLibro1);
ObjBiblioteca.IngresarVolumen(&0bjLibro2);
ObjBiblioteca.IngresarVolumen(&0bjLibro3);

/* Se invoca al método que permite asignar las direcciones de
=10s objetos tipo Revista a uno de los miembros del objeto tipo
wBiblioteca. */

ObjBiblioteca.IngresarVolumen(&0bjRevistal);
ObjBiblioteca.IngresarVolumen(&bjRevista2);
ObjBiblioteca.IngresarVolumen(&bjRevistald);

/* Se invoca el método que despliega los valores de los atributos de
=]la biblioteca. Imprime el nombre de la biblioteca y los valores del
watributo de cada objeto de acuerdo a la forma que éste tenga. */
ObjBiblioteca.Imprimir();

3.3 Polimorfismo 107 |

En el ejemplo anterior, un miembro de la clase Biblioteca se declara de tipo
Volumen como objeto polimoérfico. Por lo tanto podrd almacenar direcciones tanto
de objetos tipo Libro como de objetos tipo Revista. Consecuentemente, cuando
se invoque el método Imprimir de la clase Biblioteca, éste se aplicard segtn la
forma del objeto almacenado.

3.3.2 Clases abstractas

Una clase abstracta es una clase que se define con el propdsito de establecer
bases conceptuales sobre las cuales se definirdn otras clases, mismas que podran
ser clases concretas. Es decir, una clase abstracta no se usard directamente en
la solucién de un problema, sino que formara parte del disefio conceptual de la
solucion. Por lo tanto, en el programa no se creardn instancias (objetos) de las
clases abstractas. Sin embargo, cabe destacar que las clases derivadas si heredan
sus miembros.

En una clase abstracta pueden incluirse métodos virtuales que requieren ser espe-
cificados en las clases derivadas. Es decir, métodos a los que se les asignard el
contenido en cada clase derivada. Estos métodos reciben el nombre de métodos
virtuales puros y se inicializan con el valor de cero. Si las clases derivadas no los
especifican, entonces se producird un error. A continuacién se presenta un ejem-
plo de uso de clases abstractas.

Programa 3.12

/* Se define la clase Figura la cual se usara como base para declarar
wlas clases derivadas: Triangulo, Rectangulo y Cuadrado. La clase base es
wuna clase abstracta ya que no se crearan instancias de ella, sino que
wse utiliza para crear una abstracci6on de un nivel superior de todas las
wfiguras geométricas. La clase abstracta contiene un método virtual puro
w]lamado CalculaArea(). */

/* Definicion de la clase abstracta Figura. */
class Figura
{
public:
Figura();
virtual float CalculaArea()= 0;

|108

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaracién del método constructor por omision. */
Figura::Figura()

{}

/* Definicidn de la clase Triangulo, derivada de la clase abstracta
wFigura. Un triadngulo se representa por medio de la longitud de su base
wy de su altura. La clase incluye ademds, un método virtual llamado
w(CalculaArea(). */

class Triangulo: public Figura

{
private:
float Base, Altura;
public:
Triangulo(float, float);
virtual float CalculaArea();
}s

/* Declaracién del método constructor con parametros. */
Triangulo::Triangulo(float Ba, float Alt)

{
Base= Ba;
Altura= Alt;

}

/* Método que calcula el area de un triangulo. */
float Triangulo::CalculaArea()

{
}

return (Base * Altura / 2);

/* Definicidén de la clase Equilatero, derivada de la clase Triangulo. */
class TrianguloEquilatero: public Triangulo

{
public:
TrianguloEquilatero(float, float);
float CalculaArea();
}s

/* Declaracion del método constructor con parametros. Invoca al método
=wconstructor de la clase base. */
TrianguloEquilatero::TrianguloEquilatero(float Ba, float Alt): Triangulo
= (Ba, Alt)

{}

/* Método que calcula el area de un triangulo equilétero. */
float TrianguloEquilatero::CalculaArea()

{
}

return Triangulo::CalculaArea();

3.3 Polimorfismo

109|

/* Definicién de la clase TrianguloRectangulo, derivada de la clase
= Triangulo. */
class TrianguloRectangulo: public Triangulo

{
private:
float Catetol, Cateto2, Hipotenusa;
public:
TrianguloRectangulo (float, float);
float CalculaArea();
}s

/* Declaracién del método constructor con parametros. Invoca al método

=constructor de la clase base. */
TrianguloRectangulo::TrianguloRectangulo(float Cati1, float Cat2):
=Triangulo(Cat1, Cat2)

{

Catetol= Catil;

Cateto2= Cat2;

Hipotenusa= sqrt(Cati*Cati1 + Cat2*Cat2);
}

/* Método que calcula el area de un triangulo rectangulo. */
float TrianguloRectangulo::CalculaArea()

{
}

/* Definicion de la clase Rectangulo, derivada de la clase abstracta
wFigura. */
class Rectangulo: public Figura

return (Catetol*Cateto2);

{
private:
float Largo, Alto;
public:
Rectangulo(float, float);
float CalculaArea();
b

/* Declaraci6on del método constructor con parametros. */
Rectangulo::Rectangulo(float Lar, float Al)

{
Largo= Lar;
Alto= Al;

}

/* Método que calcula el area de un rectangulo. */
float Rectangulo::CalculaArea()

{
}

return (Largo*Alto);

|110

Capitulo 3. Sobrecarga, plantillas y polimorfismo

/* Definicidn de la clase Cuadrado, derivada de la clase Rectangulo. */
class Cuadrado: public Rectangulo

{
public:
Cuadrado(float);
float CalculaArea();
}s

/* Declaracién del método constructor con parametros. Invoca al método
=mconstructor de la clase base. */
Cuadrado::Cuadrado(float Lado): Rectangulo(Lado, Lado)

{}

/* Método que calcula el area de un cuadrado, haciendo uso del método
wheredado de la clase Rectangulo. */
float Cuadrado::CalculaArea()

{
}

return Rectangulo::CalculaArea();

/* Funcién que usa las clases definidas previamente. Observe que no se
=han creado objetos del tipo de la clase abstracta Figura. */
void UsaFiguras()

{
TrianguloEquilatero TriakEq(5,7);
TrianguloRectangulo TriaRec(3, 4);
Rectangulo Rectan(2, 3);
Cuadrado Cuadro(5);
cout<< "\nArea del triangulo equildtero: " << TriaEq.CalculaArea();
cout<< "\nArea del tridngulo rectangulo: " << TriaRec.CalculaArea();
cout<< "\nArea del rectangulo: " << Rectan.CalculaArea();
cout<< "\nArea del cuadrado: " << Cuadro.CalculaArea();
}

En el ejemplo anterior se defini6 la clase abstracta Figura la cual se utilizé como
base para definir otras clases que representan figuras geométricas concretas. En la
clase Figura, el método CalculaArea() se definié como un método virtual puro, ya
que no tiene un conjunto de operaciones asociado. Se sabe que a toda figura geo-
métrica se le puede calcular el 4rea, sin embargo, la manera de calcularla depen-
derd de la figura que sea. Por lo tanto, este método se redefinird en cada una de
las clases derivadas de acuerdo a la figura geométrica que represente.

Ejercicios 111 |

Ejercicios

1. Defina la clase cadenaCar segtin las especificaciones que se muestran a con-
tinuacion. Incluya la sobrecarga de los siguientes operadores: ==, !=, +, <
y >, de tal manera que dos objetos tipo CadenaCar se puedan comparar (==,
!=, <, >) o unir (+) usando los operadores indicados.

CadenaCar

Tam: int

Cadena: char[]

Constructor(es)

int operator==(CadenaCar)

int operator!=(CadenaCar)

int operator<(CadenaCar)

int operator>(CadenaCar)
CadenaCar operator+(CadenaCar)
void Imprime()

2. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Declare dos objetos tipo CadenaCar.

b) Le asigne una cadena de caracteres a cada uno de los objetos. La
asignacién puede ser a través de una lectura o por medio del método
constructor.

c) Compare los objetos e imprima un mensaje adecuado si los mismos
son iguales. Si no lo fueran, el mensaje, ademds de indicar este caso,
debe decir cudl de las cadenas es menor.

d) Enlace dos objetos tipo CadenaCar formando un tercer objeto del
mismo tipo. Imprima el objeto resultante.

3. Defina la clase Fruta segtin las especificaciones que se muestran mas
adelante. Incluya la sobrecarga del operador == para determinar si dos
objetos de tipo Fruta son iguales. Dos frutas se consideraran iguales si los
valores de todos sus atributos son iguales. Ademads, sobrecargue los opera-
dores de entrada (>>) y de salida (<<) para poder leer y escribir objetos de
tipo Fruta con las instrucciones cin y cout respectivamente.

| 112 Capitulo 3. Sobrecarga, plantillas y polimorfismo

Fruta

NombreFruta: char[]
Color: char[]

EstacionCosecha: char[]

Constructor(es)

int operator==(Fruta)
void Imprime()

friend istream..
friend ostream..

4. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Cree dos objetos tipo Fruta, asignandole valores a sus atributos por
medio del operador >> sobrecargado.

b) Compare los objetos e indique si son iguales. Imprima un mensaje
adecuado.

5. Defina una plantilla para la clase materia, de tal manera que el tipo de dato
del atributo calificacién sea del tipo T. Esto permitira crear objetos de tipo
Materia que tengan calificaciones que sean: (a) Numeros enteros, por ejem-
plo, 8 0 9, (b) Numeros con decimales, por ejemplo 8.5 o (c) Letras, por
ejemplo A.

Materia(T)

NombreMateria: char[]
Clave: int

Calificacion: T

Constructor(es)
void Imprime()

Ejercicios 113 |

6. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Cree un objeto de tipo Materia usando el tipo int. Imprima los valores
de los atributos del objeto creado.

b) Cree un objeto de tipo Materia usando el tipo float. Imprima los valo-
res de los atributos del objeto creado.

¢) Cree un objeto de tipo Materia usando el tipo char. Imprima los valo-
res de los atributos del objeto creado.

d) Incluya un método en la clase que permita modificar la calificacion de
una materia.

7. Defina la plantilla de la clase Profesor segtn las especificaciones que se
dan mas adelante. El atributo materiaAcargo es del tipo T, en este caso podria
ser un entero (si la materia se representa por medio de una clave), una cadena
de caracteres (si la materia se representa por su nombre) u otro objeto (si la
materia se representa usando una clase previamente definida).

Profesor

NombreProfesor: char[]
Departamento: char[]
Anolngreso: int

MateriaACargo: T

Constructor(es)

void CambiaDepto(char[])
void CambiaMat (T)

void Imprime()

8. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Cree el objeto Profeduan de tipo Profesor, usando int para instanciar T.
b) Imprima todos los datos del profeduan.
¢) Cambie el nombre del departamento al cual estd adscrito el ProfeJuan.

d) Cambie la materia que tiene a cargo el profeJuan.

|114

Capitulo 3. Sobrecarga, plantillas y polimorfismo

10.

11.

12.

. Retome el problema 8, pero ahora utilice una cadena de caracteres para ins-

tanciar T. ;Debe modificar la plantilla de la clase profesor?, o ;debe definir
alguna otra clase?

Retome el problema 8, pero ahora utilice una clase Materia para instanciar
T. Puede usar la del problema 5 o definir su propia clase. ;Debe modificar
la plantilla de la clase profesor?, o ;debe modificar la otra clase? Si usé la
plantilla del problema 5, ;cudntos valores para T debe dar al crear un objeto
de tipo Profesor?

Implemente la clase base Cuadrilatero, con atributos Base y Altura y un
método CalculaArea que calcule el drea del cuadrildtero. Implemente tam-
bién las clases derivadas Cuadrado, Rectangulo y Trapezoide. Use un objeto
polimérfico para calcular el drea de un objeto de cada una de estas clases.

Considere la siguiente relacion de herencia entre una clase abstracta y dos
clases concretas. Decida qué atributos y métodos incluir de tal manera que
su programa pueda:

Herramientas Clase Abstracta

HerramientrasPlomero HerramientasCarpintero Clases Concretas

a) Crear un objeto llamado Soldadora, de tipo HerramientasPlomero y otro
llamado serrucho, de tipo HerramientasCarpintero.

b) Cambiar el precio del objeto soldadora. El usuario dard como dato el
nuevo precio.

¢) Cambiar el color del objeto Serrucho.

d) Imprimir los datos de los objetos creados y modificados.

CAPIiTULO

Arreglos

4.1 Introduccion

Una estructura de datos hace referencia a una coleccion de ele-
mentos y a la manera en que ésta se almacena en la memoria de la
computadora y/o en algtn dispositivo de memoria secundaria. Esta
forma de almacenamiento determina la manera en que los datos se
pueden recuperar. En este capitulo se presenta la estructura de datos
tipo arreglo, que se utiliza para guardar informacién en la memoria
principal.

Un arreglo es una coleccion finita, ordenada y homogénea de datos.
Es finita porque todo arreglo tiene un tamaifio limite, es decir, se defi-
ne el nimero méaximo de elementos que puede almacenar. Es ordena-
da porque permite hacer referencia al primer elemento, al segundo y
asf hasta el enésimo elemento que forme el arreglo. Por ltimo, se di-

|116

Capitulo 4. Arreglos

ce que es homogénea porque todos los componentes del arreglo son del mismo ti-
po de datos.

Un arreglo también se puede ver como una coleccién lineal de elementos, ya
que cada uno de ellos sélo tiene un predecesor y un sucesor, con excepcion del
primero que s6lo tiene sucesor y del dltimo, que sélo tiene predecesor.

En todo arreglo se distinguen el nombre, los componentes y los indices. El nom-
bre hace referencia a la estructura como un todo. Los componentes son los valo-
res que forman el arreglo, es decir, cada uno de los datos que se almacenan en él.
Mientras que los indices se utilizan para recuperar a cada uno de los componen-
tes de manera individual. Graficamente un arreglo puede representarse como se
muestra en la figura 4.1.

Componentes
* t ¢ NombreArreglo

L4t t

FIGURA 4.1 Representacion grdfica de un arreglo

Indices

La figura 4.1 muestra que el nombre del arreglo es tnico e identifica a todo el
conjunto de datos almacenados en la estructura. Por su parte V|, V,, ..., V_indi-
can los valores almacenados en cada una de las casillas del arreglo. Los indices
0, 1, ..., n—1 referencian a cada una de las celdas y por lo tanto permiten el acce-
so a cada uno de los valores almacenados en ellas. En el caso de los lenguajes de
programacién C'y C++ los indices se enumeran a partir del 0. Es decir, si se de-
clara un arreglo de 20 elementos, las casillas se identificardn con los nimeros del
0 al 19. La figura 4.2 presenta un ejemplo de un arreglo con capacidad para al-
macenar maximo 20 valores.

Edades

18 | 15 | 34 41

0 1 19

FIGURA 4.2 Ejemplo de un arreglo

4.2 La clase Arreglo

117|

En este ejemplo, el nombre del arreglo es Edades, los indices son valores enteros
comprendidos entre el 0 y el 19, y los componentes también son nimeros enteros
que representan las edades de un grupo de personas.

4.2 La clase Arreglo

La clase Arreglo tiene como atributos la coleccién de elementos que forman la
estructura de datos y el ndmero actual de elementos, y como métodos el conjunto
de operaciones que son aplicables a un arreglo. La figura 4.3 presenta la clase
Arreglo. En este caso se define como plantilla para lograr mayor generalidad.

Arreglo

Tam: int

Datos [MAX]: T

Métodos de acceso y
modificacion a los
miembros de la clase.

FIGURA 4.3 Clase Arreglo

A continuacion se presenta la plantilla de la clase Arreglo, utilizando el lenguaje
de programacién C++.

template <class T>
class Arreglo
{
/* Miembros privados de la clase Arreglo. Datos representa una coleccién
wde MAX elementos y Tam es el numero actual de elementos que forman
wparte de dicha coleccién. */
private:
T Datos[MAX];
int Tam;
public:
Arreglo();

/* En la seccién publica, ademas del método constructor, se incluiran
w]10s métodos de acceso y modificacidén a los miembros de la clase. */

};

|118

Capitulo 4. Arreglos

En la seccidn privada de la clase se define el arreglo mediante la instruccion:

T Datos[MAX];

que significa que se tiene una coleccion de elementos, llamada Datos, que tiene
una capacidad maxima de mMAX (constante previamente definida) elementos y que
todos los elementos son del tipo T. Segtin lo presentado en el capitulo 3, T se
instanciara con el tipo de dato usado al declarar un objeto del tipo Arreglo. Ade-
mads, se define el atributo Tam que representa el nimero actual de elementos que
tiene el arreglo. Al declarar un objeto de este tipo se establece el maximo
nimero de elementos que puede almacenar, pero el nimero de valores que final-
mente se guardan depende de la aplicacion.

Los métodos de acceso y modificacion a los elementos del arreglo se estudiaran
en la siguiente seccidn, considerando si los elementos del arreglo se encuentran o
no ordenados, ya que esto condiciona la manera de llevar a cabo algunas de las
operaciones sobre los mismos.

Para declarar un objeto se utiliza la siguiente sintaxis:

Arreglo<tipo> ObjArreglo;

Por ejemplo, para declarar el arreglo Edades de la figura 4.2 se harfa:
Arreglo <int> Edades;

Antes de presentar las operaciones, resulta conveniente mencionar que el acceso
a cada uno de los elementos se hace a través de los indices. La sintaxis es Datos[i],
donde patos hace referencia a toda la coleccion y la i indica la casilla particular a
la que se tendra acceso. Por ejemplo, Datos[0] sefiala la primera casilla del arreglo
y Datos[1] la segunda.

Datos
0 1 n-1
Datos[0@] Datos[1] Datos[n-1]

FIGURA 4.4 Acceso a los componentes del arreglo

4.3 Métodos de acceso y modificacién a arreglos 119 |

4.3 Métodos de acceso y
modificacion a arreglos

En el primer capitulo se mencioné que es importante disefiar clases que tengan
todas las operaciones que son aplicables a los miembros de la misma. Por lo tan-
to, en el caso de la clase Arreglo se incluirdn las principales operaciones que pue-
den realizarse en esta estructura de datos. Las operaciones mds importantes en las
que intervienen objetos del tipo arreglo son:

e Lectura
 Escritura

« Eliminacién
 Insercion

» Busqueda

e Ordenacion

A continuacién se presentan las operaciones de lectura, escritura y eliminacién en
las cuales no afecta que el arreglo esté o no ordenado. La operacién de inserciéon
se analizard m4s adelante, tanto para los casos de arreglos desordenados como de
arreglos ordenados.

En este capitulo se presentan, de manera introductoria, los métodos de bisqueda
y ordenacién. Sin embargo, debido a su importancia, estas operaciones se tratardn
detalladamente en capitulos subsecuentes.

4.3.1 Lectura de arreglos

La lectura de un arreglo consiste en darle valores a los componentes del mismo
mediante el ingreso de datos desde medios externos. Las fuentes mds comunes
de donde se pueden ingresar los datos son el teclado de la computadora y los
archivos.

A continuacién se presenta la plantilla de un método que permite la lectura de los
valores de un arreglo desde el teclado. Observe que a medida que un dato se lee,
éste se asigna automdticamente a una de las casillas (la indicada por el valor del
indice).

| 120 Capitulo 4. Arreglos

template <class T>
Arreglo<T>::Lectura()
{
int Indice;
/* Lectura del ndmero de elementos a guardar en el arreglo. Se veri-
wfica que el valor dado por el usuario sea menor o igual que el ma-
wximo permitido y mayor o igual a 1. */
do {
cout<<"\n\n Ingrese el total de elementos: g
cin>> Tam;
} while (Tam < 1 Il Tam > MAX);
for (Indice= 0; Indice < Tam; Indice++)

{

cout<<"\n Ingrese un dato: ;
cin>> Datos[Indice];

En el método presentado se leen los primeros Tam (1= Tam =MAX) valores del
arreglo. También se pueden leer los miembros de la clase Arreglo usando la so-
brecarga del operador >> que se presento en el capitulo 3. En la seccién publica
de la clase se debe incluir la siguiente declaracion:

friend istream &operator>> (istream &, Arreglo &);

Luego se debe escribir el método de lectura (con la sobrecarga del operador >>)
correspondiente a los miembros del arreglo.

istream &operator>> (istream &Lee, Arreglo &0bjArre)
{
int Indice;
/* Lectura del nUmero de elementos a guardar en el arreglo. Se verifica
wque el valor dado por el usuario sea menor o igual que el maximo
wpermitido y mayor o igual a 1. */
do {
cout<<"\n\n Ingrese el total de elementos: "“;
cin>> Tam;
} while (Tam < 1 || Tam > MAX);
for (Indice= 0; Indice < Tam; Indice+t)
Lee>>0bjArre.Datos[Indice];
return Lee;

4.3 Métodos de acceso y modificacién a arreglos 121 |

En ambas soluciones la lectura del tamaiio se incluy6 junto a la lectura de los
elementos del arreglo. Otra posible solucién es que el nimero actual de elemen-
tos se lea desde la aplicacion (recuerde que uno de los objetivos de la Poo es que
el cédigo sea reutilizable) y que dicho valor se asigne al atributo Tam a través de
un constructor con pardmetros, como se muestra a continuacion.

template <class T>
Arreglo<T>::Arreglo(int Valor)
{

}

Tam= Valor;

En este caso, al declarar un objeto del tipo Arreglo se debe indicar el nimero de
elementos que contendrd el arreglo inicialmente. Por ejemplo, para declarar un
arreglo que almacene 10 niimeros enteros se usard la siguiente sintaxis:

Arreglo <int> ObjArre(10);

4.3.2 Escritura de arreglos

La escritura de un arreglo consiste en imprimir el contenido de las casillas. Es
decir, esta operacion presupone que el arreglo tiene algunos valores asignados y
éstos son los que se presentan a algin medio externo, como la pantalla de la
computadora o un archivo.

A continuacién se muestra la plantilla de un método que permite el despliegue en
pantalla de los valores almacenados en un arreglo.

template <class T>
Arreglo<T>::Escribe()
{
int Indice;
for (Indice= 0; Indice < Tam; Indice++)
cout<< Datos[Indice]<<" ";

|122

Capitulo 4. Arreglos

En el método presentado se despliega en pantalla el contenido de los primeros
Tam (1= Tam = mAX) valores del arreglo. También se pueden imprimir los miem-
bros de la clase Arreglo usando la sobrecarga del operador << que se presento

en el capitulo 3. En la seccidn puiblica de la clase se debe incluir la siguiente
declaracion:

friend ostream &operator<< (ostream &, Arreglo &);

Luego se debe codificar el método de escritura (con la sobrecarga del operador
<<) correspondiente a los miembros del arreglo.

ostream &operator<< (ostream &Escribe, Arreglo &0bjArre)
{
int Indice;
for (Indice= 0; Indice < Tam; Indice++)
Escribe<<ObjArre.Datos[Indice] <<" ";
return Escribe;

4.3.3 Eliminacién en arreglos

Para eliminar un elemento de un arreglo, primero se debe localizar el elemento.
Posteriormente, se deben recorrer todos los elementos que estdn a la derecha
una posicion hacia la izquierda. Es decir, el elemento no se puede quitar fisica-
mente, s6lo se ignora légicamente. Ademads, debe reducirse el nimero actual de
componentes. En esta operacion se verifica, como posibles casos de error, que el
arreglo esté vacio y que el valor a quitar no se encuentre en el arreglo.

A continuacién se presenta la plantilla de un método que lleva a cabo la elimina-
cién de un elemento del arreglo. Este método verifica que el elemento se encuen-
tre almacenado en el arreglo, para ello hace uso de un método (Busca) que se
analiza mds adelante.

/* Método que elimina el elemento Valor del arreglo. Para ello utiliza un
wnétodo auxiliar, Busca, el cual da como resultado la posicién en la cual
wencontrd el elemento. Si no lo encuentra da un nlmero negativo. Si la
weliminacion se lleva a cabo con éxito, se disminuye en uno a Tam. Este mé-
=todo da como resultado uno de tres posibles valores: 1 si se pudo eliminar
w\alor, @ si el arreglo estd vacio y -1 si Valor no esta en el arreglo. */

4.3 Métodos de acceso y modificacién a arreglos

123|

template <class T>
int Arreglo<T>::EliminaDesordenado(T Valor)
{
int Indice, Posic, Resultado= 1;
/* Se verifica si el arreglo tiene al menos un elemento almacenado. */
if (Tam > 0)
{
/* Método que busca el elemento Valor en el arreglo. Si lo encuen-
wtra regresa su posicién y si no un nUmero negativo. */
Posic= Busca(Valor);
if (Posic < 0)
Resultado= -1;
else
{
/* Considerando que el resultado de la bUsqueda fue exitoso,
wel elemento se podra eliminar del arreglo y por lo tanto el
=tamafio de éste se reducira en uno. */
Tam--;
/* Los elementos del arreglo se desplazan una posici6n hacia
=]la izquierda. */
for (Indice= Posic; Indice < Tam; Indice++)
Datos[Indice]= Datos[Indice+1];
}
}
else
/* E1 arreglo estd vacio. */
Resultado= 0;
return Resultado;
}

Verifica que el arreglo tenga elementos para dar mayor claridad al método. Este
caso se contempla en la operacién de bisqueda, ya que de estar vacio, el método
regresa un valor negativo indicando que el elemento no fue encontrado. Sin em-
bargo, evaluar explicitamente esta condicién permite que el usuario conozca la
razén por la cual la operacion de eliminacidn fracasé: el arreglo estd vacio o bien,
el elemento a eliminar no estd en el arreglo.

4.3.4 Operaciones en arreglos desordenados

Los arreglos desordenados son aquellos cuyos elementos no guardan ningin or-
den. Es decir, sus elementos no estan ordenados creciente (Datos[0] =< Datos[1]
= Datos[2] = ... = Datos[Tam-1]) o decrecientemente (Datos[@] = Datos[1]
= Datos[2] = ... = Datos[Tam-1]). Esta caracteristica influye en las operacio-
nes de busqueda e insercion.

|124

Capitulo 4. Arreglos

Busqueda en arreglos

La operacién de buisqueda se verd detalladamente en el capitulo 10, sin embargo,
dado que se utiliza como auxiliar en la operacion de insercion y en la de elimina-
cion, resulta necesario explicarla brevemente en esta seccion.

La busqueda permite determinar si un cierto elemento fue almacenado o no en el
arreglo. Existen diferentes formas para llevar a cabo esta operacion, pero para

el caso particular de los arreglos desordenados el inico método aplicable es el

que se conoce como bisqueda secuencial.

El método de bisqueda secuencial consiste en recorrer el arreglo, elemento por
elemento, comparando cada uno de ellos con el dato buscado. Si coinciden, la
biisqueda termina con éxito. Si el arreglo se recorre totalmente y el elemento no
se encuentra, entonces la biisqueda fracasa.

A continuacion se presenta la plantilla de un método que lleva a cabo la bisque-
da secuencial de un dato, en un arreglo desordenado.

/* Método que busca secuencialmente el elemento Valor en el arreglo. Re-
wcibe como parametro el dato buscado y, si lo encuentra, regresa la po-
wsicidn del mismo. En caso contrario, regresa un numero negativo. */
template <class T>
int Arreglo<T>::BuscaDesordenado (T Valor)
{
/* La variable Resultado se inicializa con -1. En caso de encontrar
wel dato buscado, se le asignara la posicidn donde se encontrd. */
int Indice= 0, Resultado= -1;
/* Se recorre el arreglo, elemento por elemento, comparando el conte-
wnido de cada casilla con el valor buscado. */
while ((Indice < Tam) && (Datos[Indice] != Valor))
Indice++;
/* Se verifica si se hallé el elemento buscado. En caso afirmativo se
wasigna como resultado el nimero de casilla en que se encontrd. */
if (Indice < Tam)
Resultado= Indice;
return Resultado;
}

El orden de las condiciones del ciclo while es muy importante. Si el elemento
buscado no estuviera en el arreglo, entonces Indice llegaria al valor Tam, y en ese
caso Datos[Indice] provocaria un error de desbordamiento del arreglo (se estaria

4.3 Métodos de acceso y modificacién a arreglos

125|

intentando tener acceso a un elemento que no existe). Al evaluarse primero la
condicién (Indice < Tam) y resultar falsa, ya no se evalia la segunda condicién y
por lo tanto ya no se produce el error arriba mencionado.

Insercion en arreglos

En el caso de los arreglos desordenados la insercién de un nuevo elemento al
arreglo se hace en la primera casilla disponible, que generalmente serd Tam, consi-
derando que en C++ los indices van de 0 a Tam-1.

La operacion de insercién implica verificar que haya espacio en el arreglo, es de-
cir que Tam < MAX y que el valor a insertar no se encuentre en el arreglo. Esta ulti-
ma condicién puede omitirse dependiendo de la aplicacién. Por ejemplo, si se
considera el caso de un arreglo que almacena las calificaciones de un grupo de
alumnos, entonces es valido tener valores repetidos.

A continuacién se presenta la plantilla de un método que lleva a cabo la insercién
de un nuevo elemento en el arreglo. Este método verifica que haya espacio en el
arreglo y que el elemento no se repita.

/* Método que inserta el elemento Valor en el arreglo. Para ello usa un
wmétodo auxiliar, BuscaDesordenado(), que busca si el dato estd en el
warreglo. Si lo encuentra, da su posicion y si no da un nudmero negativo.
=Como resultado de la insercién se obtiene uno de tres posibles valores: 1
=si se pudo insertar Valor, @ si el arreglo estd lleno y -1 si Valor ya
westa en el arreglo. Si la insercién se lleva a cabo, se incrementa el
=valor de Tam. */
template <class T>
int Arreglo<T>::InsertaDesordenado(T Valor)
{

int Posic, Resultado= 1;

/* Se verifica que haya, al menos, un espacio disponible en el

=arreglo. */

if (Tam < MAX)

{
Posic= BuscaDesordenado(Valor);
/* Si el elemento Valor no se encuentra en el arreglo, se inserta en
wla posicién Tam. Luego se incrementa Tam en una unidad. */
if (Posic < 0)
Datos[Tam++]= Valor;
else
Resultado= -1;
}
else

Resultado= 0;

|126

Capitulo 4. Arreglos

En el método presentado, considerando que el arreglo estd desordenado, el nuevo
elemento se inserta en la primera casilla disponible. Es decir, en la casilla nimero
Tam. Después de asignar el valor a dicha casilla, se incrementa Tam en uno.

El programa 4.1 presenta la plantilla de la clase Arreglo con las operaciones aso-
ciadas, considerando que los elementos del arreglo estdn desordenados.

Programa 4.1

/* Se define la plantilla de la clase Arreglo con todos sus atributos y
=wnétodos. Se asume que no existe orden entre los elementos del arreglo. */

/* Se define una constante que representa el numero maximo de elementos
=que puede almacenar el arreglo. */
#define MAX 100

template <class T>
class Arreglo

{
private:
T Datos[MAX];
int Tam;
public:
Arreglo();
void Lectura();
int InsertaDesordenado(T);
int EliminaDesordenado(T);
int BuscaDesordenado(T);
void Escribe();
b

/* Declaracion del método constructor. Inicializa el numero actual de
=eclementos en 0. */

template <class T>

Arreglo<T>::Arreglo()

{

}

Tam= 0;

/* Método para la lectura de los atributos del arreglo. */

template <class T>

void Arreglo<T>::Lectura()

{
int Indice;
/* Lectura del numero de elementos a guardar en el arreglo. Se
wyverifica que el valor dado por el usuario sea menor o igual que
wel maximo permitido y mayor o igual que 1. */

4.3 Métodos de acceso y modificacién a arreglos

127|

do {
cout<<"\n\n Ingrese total de elementos: ";
cin>>Tam;
} while (Tam < 1 || Tam > MAX);
/* Lectura de valores para cada una de las Tam casillas del arreglo. */
for (Indice= 0; Indice < Tam; Indice++)
{
cout<<"\nIngrese el "<<Indice + 1<<" dato: ";
cin>>Datos[Indice];

}

/* Método que inserta el elemento Valor en el arreglo. En esta imple-
wmnentacidén no se aceptan elementos repetidos. Se usa un método auxi-
wliar, BuscaDesordenado(), el cual da como resultado la posicidén en la
wcual encontrd el elemento, o un nUmero negativo en caso contrario. Si
wla insercion se lleva a cabo, se incrementa a Tam. Este método da
wcomo resultado uno de tres posibles valores: 1 si Valor se insertoé en
wel arreglo, @ si el arreglo esta lleno y -1 si Valor ya esta en el
warreglo. */

template <class T>

int Arreglo<T>::InsertaDesordenado(T Valor)

{
int Posic, Resultado= 1;
if (Tam < MAX)
{
Posic= BuscaDesordenado(Valor);
if (Posic < 0)
Datos[Tam++]= Valor;
else
Resultado= -1;
}
else
Resultado= 0;
return Resultado;
}

/* Método que elimina el elemento Valor del arreglo. Para ello usa un
wmétodo auxiliar, BuscaDesordenado(), el cual busca a Valor en el
warreglo y regresa su posicién, si lo encuentra. En caso contrario,
wregresa un numero negativo. Este método da como resultado uno de tres
=posibles valores: 1 si Valor se elimina del arreglo, @ si el arreglo
westd vacio y -1 si Valor no estad en el arreglo. Si la eliminacién se
=]leva a cabo, se decrementa a Tam. */
template <class T>
int Arreglo<T>::EliminaDesordenado(T Valor)
{

int Indice, Posic, Resultado= 1;

if (Tam > 0)

|128

Capitulo 4. Arreglos

{
Posic= BuscaDesordenado(Valor);
if (Posic < 0)
Resultado= -1;
else
{
Tam--;
for (Indice= Posic; Indice < Tam; Indice++)
Datos[Indice]= Datos[Indice+1];
}
}
else

Resultado= 0;
return Resultado;

}

/* Método que busca secuencialmente el elemento Valor en el arreglo.
wRecibe como parametro el dato buscado y da como resultado, si lo
wencuentra, el ndmero de casilla donde fue encontrado. En caso contrario
=da un nimero negativo.*/
template <class T>
int Arreglo<T>::BuscaDesordenado(T Valor)
{
int Indice= 0, Resultado= -1;
while ((Indice < Tam) && (Datos[Indice] != Valor))
Indice++;
if (Indice < Tam)
Resultado= Indice;
return Resultado;

}

/* Método que despliega los valores almacenados en las casillas del
warreglo. */

template <class T>

void Arreglo<T>::Escribe()

{
int Indice;
if (Tam > 0)
{

cout<<"\n\n";
for (Indice= 0; Indice < Tam; Indice++)
cout<< '\t' << Datos[Indice];
cout<<"\n\n";
}
else
cout<< "\n No hay elementos almacenados.";

4.3 Métodos de acceso y modificacién a arreglos 129 |

El programa anterior defini6 una plantilla para la clase Arreglo para tener mayor
generalidad al declarar objetos de este tipo.

El programa 4.2 presenta un ejemplo de aplicacién de la plantilla previamente
definida. Crea un objeto de tipo Arreglo, que almacena las claves de un grupo
de alumnos. Por medio de los métodos se podrén leer, imprimir, registrar nue-
vas claves y eliminar algunas de las ya almacenadas. Este es un caso de aplica-
cioén en el cual no se puede repetir informacién al ingresar un nuevo elemento
en el arreglo.

Programa 4.2

/* Se incluye una biblioteca que contiene la plantilla de la clase
=»Arreglo, de esta manera se evita repetir coédigo. En la biblioteca
w"PlanArreglo.h" se tiene todo el cdédigo del programa 4.1.*/

#include "PlanArreglo.h"

/* Funcién que despliega en pantalla las opciones de trabajo que tiene
=el usuario. */
int MenuOpciones()
{
char Opcion;
do {
cout<<"\n\n\nL: Leer la lista de claves: ";
cout<<"\nA: Dar de alta un nuevo alumno: ";
cout<<"\nB: Dar de baja un alumno: ";
cout<<"\nI: Imprimir la lista de claves: ";
cout<<"\nF: Finalizar el proceso. ";
cout<<"\n\n Ingrese opcién de trabajo: ";
cin>>0pcion;
} while (Opcion != 'A' && Opcion != 'B' &% Opcion != 'L' &&
=(Opcion != 'I' &&
Opcion = 'F');
return Opcion;

}

/* Funcidn principal desde la cual se tiene el control de todo el proceso:
=se despliegan las opciones de trabajo y de acuerdo a la seleccionada
=por el usuario se invoca el método que corresponda. */

void main()

{

|130

Capitulo 4. Arreglos

/* Se crea un objeto tipo Arreglo usando la plantilla de la biblioteca
= PlanArreglo. Se indica que los elementos a almacenar en el arreglo
=son de tipo entero. */

Arreglo<int> ClavAlum;

int Clave, Res;

char Opc;

/* Este ciclo permite al usuario realizar mas de una operacién con
w]las claves de los alumnos. */

do {
Opc= MenuOpciones();
switch(Opc)
{

/* Se invoca el método de lectura del arreglo, para que el
wysuario ingrese valores para cada uno de los atributos de la
wclase. Para esta aplicacion es el total de alumnos y la clave
=de cada uno de ellos. */
case 'L': {

ClavAlum.Lectura();

break;

}
/* Se invoca el método de impresion del arreglo para desplegar
=en pantalla la clave de cada uno de ellos. */
case 'I': {

ClavAlum.Escribe();

break;

}
/* Se invoca el método de insercidn en arreglos desordenados.
=S¢ debe dar como parametro un dato del mismo tipo que el usado
wpara crear el objeto, en este caso es un numero entero. */
case 'A': {

cout<<"\n\n Clave del nuevo alumno: ";

cin>>Clave;

Res= ClavAlum.InsertaDesordenado(Clave);

/* Se despliega un mensaje de acuerdo al resultado

wobtenido en el método. */

if (Res == 1)
cout<<"\n\n E1 nuevo alumno ya fue dado de alta. ";
else
if (Res == 0)

cout<<"\n\n No hay espacio para registrar el
=nuevo alumno. ";
else
cout<<"\n\n Esa clave ya fue registrada
wpreviamente. ";
break;
}
/* Se invoca el método de eliminacién en arreglos desordena-
=dos. Se debe dar como parametro un dato del mismo tipo que el

=wusado para crear el objeto, en este caso un ndmero entero. */

4.3 Métodos de acceso y modificacién a arreglos

131|

case 'B': {
cout<<"\n\n Clave del alumno a dar de baja: ";
cin>>Clave;
Res= ClavAlum.EliminaDesordenado(Clave);
/* Se despliega un mensaje de acuerdo al resultado
=obtenido en el método. */
if (Res == 1)
cout<<"\n\n E1 alumno ya fue dado de baja. ";
else
if (Res == 0)
cout<<"\n\n No hay alumnos registrados. "“;
else
cout<<"\n\n Esa clave no esta registrada. ";
break;
}
case 'F': cout<<"\n\n Termina el proceso.\n\n ";
break;

}

} while (Opc != 'F');

4.3.5 Operaciones en arreglos ordenados

Un arreglo ordenado es aquel cuyos elementos tienen cierto orden entre si, ya sea
ascendente (V[@] = V[1] = .. = V[Tam-1]) o descendente (V[0] = V[1] = .. =
v[Tam-1]). Por lo tanto, al operar con sus componentes serd necesario conservar
dicho orden. En el caso de la lectura, impresion y eliminacién son validos los
métodos presentados para arreglos desordenados. Sin embargo, las operaciones
de insercién y de busqueda deben ser modificadas para adaptarse a este tipo de
arreglos. En el caso de la insercidn se deberd insertar el nuevo valor en una posi-
cién que no altere el orden existente entre los elementos. Mientras que la buisque-
da resulta més eficiente al saber que el arreglo estd ordenado.

Busqueda en arreglos

La buisqueda secuencial en arreglos ordenados difiere muy poco de la bisqueda
secuencial en arreglos desordenados. Dado que los elementos estdn ordenados,
una de las condiciones del ciclo cambia para hacer més eficiente el proceso:
cuando se recorre el arreglo, si se encuentra un valor més grande (en el caso de

|132

Capitulo 4. Arreglos

orden ascendente) que el buscado, la bisqueda se interrumpe ya que a partir de
ese elemento no serd posible encontrarlo. A continuacion se presenta la plantilla
del método que realiza la busqueda secuencial de un elemento en un arreglo
ordenado ascendentemente. En el capitulo 10 se presentardn otros métodos de
bisqueda.

/* Método que busca un elemento en un arreglo ordenado ascendentemente.
wRecibe como parametro un dato de tipo T (Valor). Da como resultado la
wposicién del mismo (si lo encuentra) o el negativo de la posicién (+ 1)
wen la que Valor deberia estar. Note que el método regresa la posicidn
wmds uno para poder indicar con el negativo la posici6n en la que
wdeberia estar si ésta fuera 0. */

template <class T>
int Arreglo<T>::BuscaOrdenado(T Valor)

{
int Indice=0, Resultado;
/* La segunda condici6n del ciclo hace mas eficiente el proceso de
w=hlsqueda. */
while ((Indice < Tam) && (Datos[Indice] < Valor))
Indicet+;
/* Se verifica si se 1llegd al final del arreglo o bien, si se encontrd
=un valor mayor al buscado. En ambos casos se esta en presencia de un
=wfracaso en la operacién de blsqueda. */
if (Indice == Tam |l Datos[Indice] > Valor)
Resultado= -(Indice + 1);
else
Resultado= Indice;
return Resultado;
}

Considerando que en la insercion en arreglos ordenados se necesita conocer la
posicion en la que se debe asignar el nuevo valor para no alterar el orden, el mé-
todo presentado da como resultado (en caso de no encontrar el valor buscado) el
negativo de la posicion en la que deberia estar (posicién en la que se insertard).
Se agrega el signo para diferenciar si el elemento estd o no en el arreglo.

Para adaptar el método anterior a arreglos ordenados descendentemente, sélo se
debe cambiar el operador relacional de la segunda condicién: Datos|[Indice] >
valor. Lo mismo en la instruccién if, saliendo del ciclo.

4.3 Métodos de acceso y modificacién a arreglos

133|

Insercion en arreglos

Al insertar un nuevo elemento en un arreglo ordenado se debe cuidar que el or-
den no se altere. Por lo tanto, se debe buscar la posicion en la que se asignard, de
tal manera que se mantenga el orden existente: creciente o decreciente.

La operacion de insercion requiere verificar que haya espacio en el arreglo y que
el elemento a insertar no haya sido previamente almacenado. Esta tltima condi-
cién depende de cada aplicacion, ya que ciertos casos justifican tener elementos
repetidos. Por ejemplo, si lo que se almacena son las edades de un grupo de ni-
nos, puede haber mds de una ocurrencia de una misma edad.

Una vez que se han considerado los casos mencionados y ubicado el lugar en que
se debe insertar el nuevo valor, se procede a recorrer una posicién a la derecha a
todos los elementos que se encuentren a partir de esa posicion. El desplazamiento
se hace desde la casilla Tam-1 hasta la casilla correspondiente a la posicién en la
cual se hard la asignacién del nuevo valor. Finalmente, si la insercién se concluy6
con éxito, se debe incrementar el tamafo del arreglo.

A continuacion se presenta la plantilla del método que realiza la inserciéon de un
elemento en un arreglo ordenado de manera creciente.

/* Método que inserta un elemento en un arreglo ordenado crecientemente,
wsin alterar su orden. Se recibe como parametro un dato de tipo T (Valor).
wEste método da como resultado uno de tres posibles valores: 1 si Valor
wse insertd en el arreglo, @ si el arreglo esta lleno y -1 si Valor ya
westd almacenado en el arreglo. Si la insercién concluye con éxito, se
=incrementa a Tam en una unidad. */

template <class T>
int Arreglo<T>::InsertaOrdenado(T Valor)

{

int Indice, Posic, Resultado= 1;

/* Verifica si hay, al menos, un espacio disponible en el arreglo. */
if (Tam < MAX)
{

/* Se invoca al método que busca un elemento, Valor, en elarreglo. */

Posic= BuscaOrdenado(Valor);

if (Posic > 0)

Resultado= -1;
else

|134

Capitulo 4. Arreglos

{
/* Convierte la posici6n en positiva y le resta 1. */
Posic= (Posic * -1) -1;
/* Se recorre el contenido de cada casilla una posicidén hacia
=la derecha, a partir de la posici6on Tam-1 hasta la posicion
wen que se asignara el nuevo valor. */
for (Indice= Tam; Indice > Posic; Indice--)
Datos[Indice]= Datos[Indice - 1];
Datos[Posic]= Valor;
/* Se incrementa el valor de Tam en uno, ya que hay un nuevo
wyvalor en el arreglo. */
Tam++;
}
}
else
Resultado= 0;
return Resultado;
}

El programa 4.3 presenta la plantilla de la clase Arreglo con las operaciones aso-
ciadas, considerando que los elementos del arreglo estdn ordenados de manera
creciente.

Programa 4.3

/* Se define una constante para almacenar el numero maximo de elementos
=que puede guardar el arreglo. */
#define MAX 100

/* Se define la plantilla de la clase Arreglo con todos sus atributosy
wmétodos. Se asume que los elementos del arreglo estdn ordenados ascenden-
wtemente. Los atributos corresponden a los explicados en laseccién 4.2. */
template <class T>
class Arreglo
{
private:
T Datos[MAX];
int Tam;
public:
Arreglo();
void Lectura();
int InsertaOrdenado(T);
int EliminaOrdenado(T);
void Escribe();
int BuscaOrdenado(T);

b

4.3 Métodos de acceso y modificacién a arreglos

135|

/* Declaracién del método constructor. Inicializa el nlUmero actual de
welementos en 0. */

template <class T>

Arreglo<T>::Arreglo()

{

}

/* Método que permite leer el numero de elementos que se van a almacenar
=y el valor de cada uno de ellos. Verifica que el total de elementos sea
=al menos 1 y que no supere el maximo especificado. */

template <class T>

void Arreglo<T>::Lectura()

Tam= 0;

int Indice;

do {
cout<<"\n\n Ingrese numero de datos a guardar: ";
cin>> Tam;

} while (Tam < 1 || Tam > MAX);

for (Indice= 0; Indice < Tam; Indice++)

{
cout<<"\nIngrese el "<<Indice+1<<" dato: ";
cin>> Datos[Indice];

}

/* Método que inserta un elemento en un arreglo ordenado crecientemente,
=sin alterar su orden. Recibe como parametro un dato de tipo T (Valor).
=Da como resultado uno de tres posibles valores: 1 si Valor se inserta,
=@ si el arreglo esta lleno y -1 si Valor ya estd en el arreglo. Si la
winsercion concluye con éxito se incrementa a Tam en uno.*/

template <class T>

int Arreglo<T>::InsertaOrdenado(T Valor)

int Indice, Posic, Resultado= 1;
if (Tam < MAX)
{
Posic= BuscaOrdenado(Valor);
if (Posic > 0)
Resultado= -1;
else
{
Posic= (Posic * -1) - 1;
for (Indice= Tam; Indice > Posic; Indice--)
Datos[Indice]= Datos[Indice - 1];
Datos[Posic]= Valor;
Tam++;

|136

Capitulo 4. Arreglos

}

{

}

{

else
Resultado= 0;
return Resultado;

/* Método que elimina un elemento de un arreglo. Recibe como
wparametro, Valor, un dato de tipo T. Da como resultado uno de tres
wposibles valores: 1 si Valor se elimin6, @ si el arreglo esta vacio
wy -1 si Valor no esta en el arreglo. En caso de éxito, disminuye a Tam
=en uno. */

template <class T>

int Arreglo<T>::EliminaOrdenado(T Valor)

int Posic, Indice, Resultado= 1;
if (Tam > 0)
{
Posic= BuscaOrdenado(Valor);
if (Posic < 0)
Resultado= -1;
else
{
Tam--;
for (Indice= Posic; Indice < Tam; Indice++)
Datos[Indice]= Datos[Indice+1];

}
else

Resultado= 0;
return Resultado;

/* Método que despliega los valores almacenados en el arreglo.
template <class T>
void Arreglo<T>::Escribe()

int Indice;
if (Tam > 0)
{
cout<<"\n Impresién de datos\n";
for (Indice= 0; Indice < Tam; Indice++)
cout<< '\t' << Datos[Indice];
}
else
cout<< "\nNo hay elementos registrados.";

*/

4.3 Métodos de acceso y modificacién a arreglos

137|

/* Método que busca un elemento en un arreglo ordenado ascendentemente.
=wRecibe como parametro un dato de tipo T (Valor). Si lo encuentra,
wregresa la posicidén del mismo. En caso contrario, regresa el negativo
wde la posicion (+1) en la que deberia estar. Note que el método regresa
=la posicién mas uno para poder indicar con el negativo la posicién en la
wque deberia estar si ésta fuera 0. */
template <class T>
int Arreglo<T>::BuscaOrdenado(T Valor)
{
int 1Indice= 0, Resultado;
while ((Indice < Tam) && (Datos[Indice] < Valor))
Indice++;
if (Indice == Tam Il Datos[Indice] > Valor)
Resultado= -(Indice + 1);
else
Resultado= Indice;
return Resultado;

En la clase presentada en el programa 4.3 se incluyeron algunos métodos necesa-
rios para trabajar con un arreglo ordenado crecientemente. Estas operaciones pue-
den completarse posteriormente con las operaciones de ordenacion y busqueda,
mismas que se verdn en los capitulos 9 y 10.

El programa 4.4 presenta un ejemplo de aplicacion de la plantilla previamente
definida. Crea un objeto tipo arreglo de niimeros reales para almacenar los tiem-
pos hechos por un nadador durante su entrenamiento, ordenados de manera cre-
ciente. Utiliza los métodos definidos para leer los datos, imprimirlos, dar de alta
nuevos tiempos y eliminar algunos de los registrados.

Programa 4.4

/* Se incluye la biblioteca "PlantArreOrd.h" en la cual esta la
wplantilla de la clase Arreglo presentada en el programa 4.3, con el
wobjeto de no repetir coédigo. */

#include "PlantArreOrd.h"

/* Funcién que despliega en pantalla las opciones de trabajo relacionadas
w3 la aplicacién. Regresa un dato tipo caracter que representa la
wopcidn seleccionada por el usuario. */

char MenuOpciones()

| 138 Capitulo 4. Arreglos

{
char Opc;
do {
cout<<"\n\nL: Leer los tiempos hechos por el nadador. \n";
cout<<"\nI: Imprimir un listado con los tiempos del nadador. \n";
cout<<"\nA: Dar de alta un nuevo tiempo. \n";
cout<<"\nB: Dar de baja un tiempo ya registrado. \n";
cout<<"\nT: Terminar el proceso. \n";
cin>>0pc;
} while (Opc != 'L' && Opc != 'I' && Opc != 'A' && Opc != 'B' && Opc !I=
T
return Opc;
}

/* Funcién principal en la cual se tiene el control de toda la
waplicaci6n: se crea un objeto y otras variables de trabajo, se muestran
wlas posibles operaciones a realizar y de acuerdo a la opcidn elegida
wpor el usuario se invocan los métodos que correspondan. */
void main()
{
/* Se crea un objeto arreglo para almacenar numeros reales. */
Arreglo <float> TiemposNada;
char Opc;
float Tiempo;
int Res;

do {
Opc= MenuOpciones();
switch (Opc)
{
/* Se invoca el método que ingresa, del teclado, valores para
=]10s atributos del arreglo. En este caso el total de tiempos
wregistrados y cada uno de los mismos. */
case 'L': {
TiemposNada.Lectura();
break;
}
/* Se invoca el método que despliega en pantalla los valores
walmacenados en el objeto arreglo, en este caso los tiempos
wregistrados por el nadador durante su entrenamiento. */
case 'I': {
TiemposNada.Escribe();
break;

}

4.3 Métodos de acceso y modificacién a arreglos 139 |

/* Se invoca el método que inserta un nuevo elemento en el
=arreglo ordenado, en este caso es un nuevo tiempo del nadador.
w| uego de ejecutar el método se analiza el resultado obtenido y
=se despliega un mensaje adecuado. */

case 'A': {
cout<<"\n\n Nuevo tiempo registrado por el nadador: ";
cin>>Tiempo;
Res= TiemposNada.InsertaOrdenado(Tiempo);
if (Res == 1)
cout<<"\n\n E1 nuevo tiempo ya fue dado
wde alta. ";
else
if (Res == 0)
cout<<"\n\n No hay espacio para registrar el
=nuevo tiempo. ";
else
cout<<"\n\n Ese tiempo ya fue registrado. ";
break;
}

/* Se invoca el método que elimina un elemento del arreglo, en
=meste caso un tiempo que ya no interesa conservar. Luego de
wejecutar el método se analiza el resultado obtenido y se des-
=mpliega el mensaje adecuado. */
case 'B': {
cout<<"\n\n Tiempo a dar de baja: ";
cin>>Tiempo;
Res= TiemposNada.EliminaOrdenado(Tiempo);
if (Res == 1)
cout<<"\n\n E1 tiempo ya fue dado de baja. ";
else
if (Res == 0)
cout<<"\n\n No hay tiempos registrados. ";
else
cout<<"\n\n Ese tiempo no estd registrado. ";
break;

}

case 'T': cout<<"\n\n Termina el proceso.\n\n H
break;

}
} while (Opc != 'T');

| 140 Capitulo 4. Arreglos

4.4 Arreglos paralelos

Se dice que dos arreglos son arreglos paralelos cuando la casilla O del primero
estd relacionada con la casilla 0 del segundo, la casilla 1 del primero con la casi-
lla 1 del segundo y asi sucesivamente. La figura 4.5 representa, por medio de las
flechas, esta relacion; misma que puede darse entre dos o més arreglos.

0 > 0

1 |

2 o 2

MAX-1 MAX-1
—

FIGURA 4.5 Arreglos paralelos

Por ejemplo, considere que se conocen la clave y la calificacién de un grupo de
alumnos. Se requiere un arreglo para guardar cada una de las claves y otro para
las calificaciones. Sin embargo, para que se pueda conservar la relacién entre la
clave y la calificacién correspondiente, es necesario usar arreglos paralelos. De
esta forma, la primera casilla del arreglo de claves y la primera casilla del arreglo
de calificaciones hacen referencia al mismo alumno.

Cualquier cambio en el orden de los elementos de uno de los arreglos debe afec-
tar el orden de los otros. Por lo tanto, ciertas operaciones deben adaptarse para
que no se pierda la correspondencia entre la informacién de las celdas de los
arreglos involucrados. Las operaciones de lectura y escritura no cambian, se lee-
rdn de manera independiente cada uno de los arreglos. S6lo seria necesario modi-
ficar los métodos respectivos si se quisieran leer o escribir simultineamente los
mismos. Por su parte, la operacion de busqueda normalmente se hace s6lo sobre

4.4 Arreglos paralelos

141|

uno de los arreglos; y conocer la posicién del valor buscado implica también co-
nocer la posicion de los elementos correspondientes en los otros arreglos. En
cambio, las operaciones de insercién y eliminaciéon deben modificarse para res-
ponder a la caracteristica de este tipo de estructura.

Insercidon en arreglos paralelos

Para insertar un nuevo elemento en los arreglos, primero se debe considerar si
en alguno existe un orden (generalmente s6lo uno de ellos estd ordenado). Si
es asi, se debe buscar la posicién en la cual insertar el nuevo valor, recorrer los
elementos una posicién a la derecha, asignar el nuevo valor e incrementar el
tamafio. En los demds arreglos no se requiere realizar la bisqueda, el elemento
debe insertarse en la misma posicién hallada para el valor agregado en el arre-
glo ordenado.

Retomando el ejemplo de las claves y calificaciones, si las primeras estuvieran

ordenadas, s6lo se deberia realizar la bisqueda en este arreglo y la posicion en-
contrada seria la misma para insertar tanto la nueva clave como su calificacién

correspondiente.

Si ninguno de los arreglos estuviera ordenado, entonces el nuevo dato se inserta
en la primera casilla disponible y esto es aplicable a todos los arreglos. En este
caso, la operacién de insercion es igual a la que se estudi6 en la seccién de los
arreglos desordenados.

Eliminaciéon en arreglos paralelos

Para eliminar un elemento de los arreglos, primero se debe buscar el dato dado
como referencia en el arreglo correspondiente. Si se encuentra, se quita (reco-
rriendo todos los valores que estdn a su derecha una posicién hacia la izquier-
da) y de la misma manera se eliminan también los elementos que ocupan su
misma posicion en los otros arreglos. Normalmente se da s6lo uno de los datos
como referencia y al encontrarlo, los demds se eliminan usando la posicién de
éste.

Retomando el ejemplo de las claves y las calificaciones, si un alumno se diera de
baja, se buscarfa su clave y si se encontrara se quitaria este dato y la calificacién
asociada ocupando la posicién de la primera.

|142

Capitulo 4. Arreglos

Tanto en la insercién como en la eliminacién la operacién de bisqueda no se
aplica a todos los arreglos, por lo que la plantilla de la clase Arreglo previamente
definida no se modifica en su totalidad. Para tener una solucién mas general e in-
dependiente se define una nueva plantilla de clase para arreglos paralelos, con los
métodos modificados.

Programa 4.5

/* Se define una constante para almacenar el numero maximo de elementos
=que puede guardar el arreglo. */
#define MAX 100

/* Se define la plantilla de la clase ArreParal con todos sus atributos
=y métodos. Se incluyen diferentes versiones de algunos de los métodos
=de tal manera que la plantilla sirva tanto para arreglos ordenados como
wpara arreglos desordenados. */

template <class T>

class ArreParal

{
private:
T Datos[MAX];
int Tam;
public:
ArreParal();
int InsertaOrdenado(int , T);
int InsertaDesordenado(T);
void Elimina(int);
int BuscaOrdenado(T);
int BuscaDesordenado (T) ;
T RegresaValor(int);
int RegresaTamano();
friend istream &operator>>(istream &, ArreParal<T> &);
friend ostream &operator<<(ostream &, ArreParal<T> &);
}

/* Declaracién del método constructor. Inicializa el numero actual de
=welementos en 0. */
template <class T>
ArreParal<T>::ArreParal()
{
Tam= 0;
}

4.4 Arreglos paralelos

143|

/* Método que inserta un elemento en un arreglo ordenado crecientemente,
wsin alterar su orden. Recibe como paréametros: Posic, un entero que
windica la posicion en la que debe insertarse el nuevo elemento si hay
=wespacio y el elemento a insertar que es un dato de tipo T (Valor). Da
=como resultado uno de dos posibles valores: 1 si Valor se inserta o 0
wsi el arreglo esta lleno. Si la insercién concluye con éxito se incremen-
=ta a Tam en uno.*/

template <class T>

int ArreParal<T>::InsertaOrdenado(int Posic, T Valor)

{
int Indice, Resultado= 1;
if (Tam < MAX)
{
for (Indice= Tam; Indice > Posic; Indice--)
Datos[Indice]= Datos[Indice - 1];
Datos[Posic]= Valor;
Tam++;
}
else
Resultado= 0;
return Resultado;
}

/* Método que inserta un elemento en un arreglo desordenado. Recibe como
wparametro el elemento a insertar, que es un dato de tipo T (Valor). Da
=como resultado uno de dos posibles valores: 1 si Valor se inserta o 0
=si el arreglo estd lleno. Si la insercién concluye con éxito se incre-
=menta a Tam en uno.*/

template <class T>

int ArreParal<T>::InsertaDesordenado(T Valor)

{
int Indice, Resultado= 1;
if (Tam < MAX)
{
Datos[Tam]= Valor;
Tam++;
}
else
Resultado= 0;
return Resultado;
}

/* Método que elimina un elemento de un arreglo. Recibe como parametro
=un nimero entero, Posic, que indica la posicién del dato a eliminar.

wEste método se invoca s6lo si antes se ejecutd con éxito el método de
whlisqueda. Se disminuye el valor de Tam en uno. */

144

Capitulo 4. Arreglos

template <class T>
void ArreParal<T>::Elimina(int Posic)

{
int Indice;
Tam--;
for (Indice= Posic; Indice < Tam; Indice++)
Datos[Indice]= Datos[Indice+1];
}

/* Método que busca un elemento en un arreglo ordenado ascendentemente.
wRecibe como parametro un dato de tipo T (Valor). Si lo encuentra,
wregresa la posicién del mismo. En caso contrario, regresa el negativo
wde la posicion (+1) en la que deberia estar. */

template <class T>

int ArreParal<T>::BuscaOrdenado(T Valor)

{
int Indice= 0, Resultado;
while ((Indice < Tam) &% (Datos[Indice] < Valor))
Indice++;
if (Indice == Tam Il Datos[Indice] > Valor)
Resultado= -(Indice + 1);
else
Resultado= Indice;
return Resultado;
}

/* Método que busca un elemento en un arreglo desordenado. Recibe como
wparametro un dato de tipo T (Valor). Si lo encuentra, regresa la
wposicion del mismo. En caso contrario, regresa un nUmero negativo. */
template <class T>
int ArreParal<T>::BuscaDesordenado(T Valor)
{
int Indice= 0, Resultado= -1;
while ((Indice < Tam) && (Datos[Indice] != Valor))
Indice++;
if (Indice < Tam)
Resultado= Indice;
return Resultado;

}

/* Método que permite, a usuarios externos a la clase, conocer el
wcontenido de una casilla del arreglo. Recibe como parametro un entero,
= Indice, que indica el numero de celda de la cual se dara su contenido.
=E]l resultado es un valor de tipo T. */

4.4 Arreglos paralelos 145 |

template <class T>
T ArreParal<T>::RegresaValor(int Indice)
{

return Datos[Indice];

}

/* Método que regresa el total de elementos del arreglo. */
template <class T>
int ArreParal<T>::RegresaTamano()

{
}

return Tam;

/* Definicién de la sobrecarga del operador >>. Por medio de este
=operador sobrecargado y declarado como amigo de la clase ArreParal se
wpodra leer de manera directa a todos los miembros de la misma. */
template <class T>

istream &operator>> (istream &Lee, ArreParal<T> &0bjArre)

{
int Indice;
do {
Lee>>0bjArre.Tam;
} while (ObjArre.Tam < 1 [l ObjArre.Tam > MAX);
for (Indice= 0; Indice < ObjArre.Tam; Indice+t)
Lee>>0bjArre.Datos[Indice];
return Lee;
}

/* Definicion de la sobrecarga del operador <<. Por medio de este
=operador sobrecargado y declarado como amigo de la clase ArreParal se
wpodra desplegar de manera directa a todos los miembros de la misma. */
template <class T>

ostream &operator<< (ostream &Escribe, ArreParal<T> &0bjArre)

{
int Indice;
if (ObjArre.Tam > 0)
for (Indice= 0; Indice < ObjArre.Tam; Indice++)
Escribe<<ObjArre.Datos[Indice] <<" ";
else
cout<< "\nNo hay elementos registrados.";
return Escribe;
}

La figura 4.6 muestra graficamente un ejemplo de arreglos paralelos, que almace-
nan la clave y la calificacién de un grupo de alumnos. En el esquema presentado

|146

Capitulo 4. Arreglos

se observa que el alumno con clave 2500 obtuvo una calificacién de 9.5, el de
clave 3000, una de 7.3 y el de clave 4050, una de 8.6.

Clave Calificacion
0 2500 —— 5 0 9.5
1 3000 f—em —mo— 1 7.3
21 4050 }—mm—> 2 8.6
MAX-1 MAX-1

FIGURA 4.6 Ejemplo de arreglos paralelos

A continuacién se presenta un programa de aplicacién que utiliza la plantilla del
programa 4.5 para crear objetos que puedan guardar las claves y calificaciones de
los alumnos. Posteriormente, a través de los métodos, se daran de alta nuevos
alumnos, se eliminardn los ya registrados y se obtendrdn algunos reportes. En es-
te ejemplo se hace uso de los métodos para arreglos ordenados, ya que se asume
que los datos estdn ordenados ascendentemente segin las claves de los alumnos.

Programa 4.6

/* Ejemplo de aplicacién de arreglos paralelos. En la biblioteca
w"PlantArreParal.h" se incluye la plantilla de la clase definida
=en el programa 4.5. */

#include "PlantArreParal.h"

/* Funcién que despliega al usuario las posibles opciones de trabajo. */
int MenuOpciones()

int Opc;

do {
cout<<"\n\ni-Captura inicial de claves y calificaciones
=de alumnos. ";
cout<<"\n2-Ingresar un nuevo alumno y su calificacién. ";

4.4 Arreglos paralelos 147 |

cout<<"\n3-Eliminar un alumno y su calificacién. ";
cout<<"\n4-Obtener un listado de las claves de los alumnos. ";
cout<<"\n5-Obtener un listado de claves y calificaciones
wde todos los alumnos. ";
cout<<"\n6-Obtener la calificacidn de un alumno. ";
cout<<"\n7-Terminar el proceso. ";
cout<<"\n\nIngrese la opci6n seleccionada. ";
cin>>0pc;

} while (Opc < 1 |l Opc > 7);

return Opc;

/* Funcion principal: se despliega el menu de opciones y, de
wacuerdo a la opcién elegida por el usuario, se invoca el método
wcorrespondiente. */
void main ()
{
ArreParal<int> Claves;
ArreParal<float> Calific;
int ClaAlum, Opc, Posic, Indice, TotalAl;
float CalAlum;
do {
Opc= MenuOpciones();
switch (Opc)
{
/* Se leen los datos (clave y calificacidén) de cada uno de los
=alumnos del grupo. Por medio del operador sobrecargado >> se
=indica la lectura de los objetos Claves y Calific. */
case 1: {
cout<<"\n\nDé el numero de claves y cada una de
wlas claves\n";
cin>>Claves;
cout<<"\n\nDé el nUmero de calificaciones y cada
=wuna de ellas \n";
cin>>Calific;
break ;
}
/* Se registra un nuevo alumno, proporcionando para ello su
wclave y su calificacién. Las claves son Unicas y estan
=ordenadas de manera ascendente. Primero se verifica, por medio
=del método BuscaOrdenado(), que la clave dada no haya sido
=previamente almacenada. Si no se repite, entonces se agrega a
wla coleccién de claves sin alterar el orden de éstas. Para ello
wse usa el método InsertaOrdenado(). Si la insercién se lleva a
=cabo con éxito, entonces se procede a agregar la calificacion
wdel nuevo alumno en la posicién que le corresponde por el valor
=de su clave. */

|148

Capitulo 4. Arreglos

case 2: {
cout<<"\n\nDé la clave y calificaci6n del nuevo alumno: ";
cin>>ClaAlum;
cin>>CalAlum;
Posic= Claves.BuscaOrdenado(ClaAlum);
if (Posic > 0)
cout<<"\n\nEsa clave ya fue registrada previamente. \n";

else
{
Posic= (Posic * -1) -1;
if (Claves.InsertaOrdenado(Posic, ClaAlum) == 1)
Calific.InsertaOrdenado(Posic, CalAlum);
else

cout<<"\n\nYa no se pueden registrar nuevos
=alumnos. \n";
}
break ;
}
/* Se elimina un alumno dando su clave como dato de entrada. Si
=]la clave esta (existe un alumno con dicha clave) se procede a
weliminarla y a eliminar su correspondiente calificacion. */
case 3: {
cout<<"\n\nDé la clave del alumno que desea dar de baja: ";
cin>>ClaAlum;
Posic= Claves.BuscaOrdenado(ClaAlum);
if (Posic > 0)
{
Claves.Elimina(Posic);
Calific.Elimina(Posic);
}
else
cout<<"\n\nEsa clave no esta registrada. \n";
break ;
}
/* Se genera un reporte con todas las claves de los alumnos
wregistrados. Por medio del operador sobrecargado << se indica
=]la escritura del objeto Claves de manera directa. */
case 4: {
cout<<"\n\nListado de claves de alumnos registrados. \n";
cout<<Claves;
cout<<"\n\n";
break;
}
/* Se genera un reporte con la clave y la calificacion de todos
=10s alumnos registrados. Primero se obtiene el total de alumnos
wpor medio del método que regresa el tamaifo del arreglo. Luego
=se tiene acceso a cada uno de los valores almacenados, por
wnedio del método RegresaValor(), y se los imprime. */

4.5 Arreglos de dos dimensiones

149|

case 5: {

TotalAl= Claves.RegresaTamano();

cout<<"\n\nClave Calificacién \n";

for (Indice= 0; Indice < TotalAl; Indice ++)

{
cout<<Claves.RegresaValor(Indice)<<" o
cout<<Calific.RegresaValor(Indice) <<"\n";

}

break ;

}

/* Dada la clave de un alumno, se imprime la calificacidn del
=mismo. Se hace uso del método BuscaOrdenado(), para encontrar
w]la clave. Si se encuentra (ese alumno estad registrado), se
winvoca al método RegresaValor() para tener acceso a su
wcalificacién. */
case 6: {
cout<<"\n\nClave del alumno que desea conocer su
wcalificacién: ";
cin>>ClaAlum;
Posic= Claves.BuscaOrdenado(ClaAlum);
if (Posic > 0)

{
cout<<"\n\nCalificacién del alumno con clave:
= "<<ClaAlum;
cout<<" es: "<<Calific.RegresaValor(Posic);
}
else
cout<<"\n\nEsa clave no esta registrada. \n\n";
break ;
}
/* Termina el ciclo de procesamiento. */
case 7: {
cout<<"\n\nTermina el procesamiento de los datos. \n\n";
break;
}

}
} while (Opc = 7);

4.5 Arreglos de dos dimensiones

Los arreglos vistos permiten agrupar informacién relacionada sélo por un tema.
Por ejemplo, se pueden usar para almacenar las calificaciones de un grupo de N
alumnos obtenidas en un examen, o bien, para las calificaciones de un alumno
obtenidas en varios exdmenes.

| 150 Capitulo 4. Arreglos

Sin embargo, en ciertos casos se requiere almacenar datos que representen dife-
rentes dimensiones de la informacién. Retomando el ejemplo mencionado, puede
ser importante agrupar las calificaciones obtenidas por N alumnos en M exdme-
nes. En este caso, la informacion se relaciona por alumno y por examen. Es decir,
se reconocen dos dimensiones en la informacién: una para los alumnos y otra
para los examenes.

Para representar informacidn con estas caracteristicas es necesaria una estructura
de datos que permita manejar dos dimensiones. Esta estructura recibe el nombre de
arreglo bidimensional, arreglo de dos dimensiones o matriz. La representacion
gréifica de un arreglo bidimensional se puede observar en la figura 4.7.

NombreArreglo
R,)
Rl
Rz
> N Renglones
e o o
Rn—l }
Co Cl Cz Cm—l

M Columnas

FIGURA 4.7 Representacion grdfica de un arreglo bidimensional de N X M elementos

Como puede ver en la figura, cada elemento del arreglo se identifica por medio
de dos indices: uno que hace referencia al renglén y otro a la columna. En el
caso del lenguaje C++, el primer indice siempre hace referencia al renglén
mientras que el segundo indica columna.

4.5 Arreglos de dos dimensiones

151|

El nombre del arreglo hace referencia a toda la estructura de datos. Cada elemen-
to o casilla se especificard siguiendo la notacién: NombreArreglo[i][j], donde i
indica el ndmero del renglén y j el nimero de la columna donde esta el elemento.

El almacenamiento y recuperacion de informacién en un arreglo bidimensional
podra hacerse por renglones o por columnas. Si es por renglones, se completa un
renglén (para ello se recorrerdn todas las columnas de dicho renglén) para luego
pasar al siguiente renglon y asi sucesivamente hasta visitar los N renglones. Si el
acceso se hace por columnas, entonces se completa una columna (para ello se re-
correran todos los renglones de dicha columna) para luego pasar a la siguiente
hasta visitar las M columnas.

La clase que representa una estructura de datos tipo arreglo bidimensional ten-
dra como atributos la coleccién de elementos que se almacenardn, asi como el
nimero de renglones y columnas ocupadas por dichos datos. El nimero de
renglones y columnas estard acotado por un nimero maximo que se define ini-
cialmente. Ademads, la clase incluird un conjunto de operaciones o métodos
que permiten manipular los miembros de la misma. La figura 4.8 presenta a la
clase ArregloBidimensional.

ArregloBidimensional

Datos[MAX][MAX]: T

NumRen, NumCol: int

Métodos de acceso y
modificacion a los
miembros de la clase.

FIGURA 4.8 Clase ArregloBidimensional

A continuacion se presenta la plantilla de la clase ArregloBidimensional que in-
cluye dos operaciones bésicas para estas estructuras de datos (lectura y escritura)
y algunos métodos que se consideran utiles para el manejo de la informacién al-
macenada en el arreglo. Los mismos se explican en el comentario que acompaiia
la codificacién de cada uno de ellos.

| 152 Capitulo 4. Arreglos

Programa 4.7

/* Plantilla de la clase ArregloBidimensional. Se definen algunos méto-
=dos Utiles para el manejo del contenido de un arreglo de dos dimensio-
wnes. Los atributos son la coleccion de datos, Datos[MAX] [MAX], en la
wcual se establece un numero maximo de renglones y de columnas y el numero
wde renglones y de columnas que estan ocupadas, NumRen y NumCol. */

template <class T>
class ArregloBidimensional
{
private:
T Datos[MAX] [MAX];
int NumRen, NumCol;
public:
ArregloBidimensional(int, int);
void Lectura();
void Escritura();
SumaRenglon(int);
SumaColumna(int);
MaximoColumna(int)
MaximoRenglon(int);
MinimoColumna(int);
MinimoRenglon(int);
RegresaDato(int, int);

3

B

};

/* Declaracidn del método constructor por omisién. Inicializa el
=wnUmero actual de renglones y de columnas en 0. */
template <class T>
ArregloBidimensional<T>::ArregloBidimensional()
{

NumRen= 0;

NumCol= 0;
}

/* Declaracién del método constructor con parametros. */
template <class T>
ArregloBidimensional<T>::ArregloBidimensional(int NR, int NC)
{

NumRen= NR;

NumCol= NC;

4.5 Arreglos de dos dimensiones

153|

/* Método de lectura. Los datos leidos del teclado se almacenan por renglo-
wnes. Observe que el ciclo externo es el de los renglones (primer indice).
=Por lo tanto, para cada valor del mismo se recorren todas las columnas
= (ciclo interno). Para darle mayor informacion al usuario, se supone que la
wlectura y validacion del total de elementos se hace en el programa de
waplicacion y desde ahi también se invoca el constructor con parametros
=para asignarle valores a los atributos NumRen y NumCol.*/

template <class T>

void ArregloBidimensional<T>::Lectura()

{
int Ren, Col;
for (Ren= 0; Ren < NumRen; Ren++)
for (Col= 0; Col < NumCol; Col++)
{
cout<<"\nIngrese dato: ";
cin>>Datos[Ren][Col];
}
}

/* Método de escritura. Los datos almacenados se despliegan en la pantalla
=por renglones. Con respecto al orden de los indices aplica el mismo
wcomentario que en el método de lectura. */

template <class T>

void ArregloBidimensional<T>::Escritura()

{
int Ren, Col;
for (Ren= 0; Ren < NumRen; Ren++)
for (Col= 0; Col < NumCol; Col++)
cout<< Datos[Ren][Col]<<" ";
cout<<endl;
}
}

/* Método que suma todos los elementos de un rengldén. Para ello se deben
wrecorrer todas las columnas de dicho renglén. E1 numero de renglén a
wsumar se indica a través del parametro. Si el tipo T usado para crear
wel objeto ArregloBidimensional no fuera un numero, entonces se deberia
=sobrecargar el operador + . */
template <class T>
T ArregloBidimensional<T>::SumaRenglon(int Ren)
{

T Suma= 0;

int Col;

for (Col= 0; Col < NumCol; Col++)

Suma= Suma + Datos[Ren][Col];
return Suma;

| 154 Capitulo 4. Arreglos

/* Método que suma todos los elementos de una columna. Para ello se
wdeben recorrer todos los renglones de dicha columna. E1 numero de
wcolumna a sumar se indica a través del parametro. Si el tipo T usado
wpara crear el objeto ArregloBidimensional no fuera un numero, entonces
wse deberia sobrecargar el operador + . */

template <class T>

T ArregloBidimensional<T>::SumaColumna(int Col)

{
T Suma= 0;
int Ren;
for (Ren= @; Ren < NumRen; Ren+t)
Suma= Suma + Datos[Ren][Col];
return Suma;
}

/* Método que da como resultado el valor mas grande almacenado en una
=columna del arreglo, dada como dato. Para ello se deja fijo el valor de
=]la columna y se recorren todos los renglones. Si el tipo T usado para
wcrear el objeto ArregloBidimensional no fuera un numero, entonces se
wdeberia sobrecargar el operador > . */

template <class T>

T ArregloBidimensional<T>::MaximoColumna(int Col)

{
T Maximo= Datos[@][Col];
int Ren;
for (Ren= 1; Ren < NumRen; Ren+t)
if (Datos[Ren][Col] > Maximo)
Maximo= Datos[Ren][Col];
return Maximo;
}

/* Método que da como resultado el valor mas grande almacenado en un
wrenglon del arreglo, dado como dato. Para ello se deja fijo el valor
wdel renglon y se recorren todas las columnas. Si el tipo T usado para
wcrear el objeto ArregloBidimensional no fuera un nimero, entonces se
wdeberia sobrecargar el operador >. */
template <class T>
T ArregloBidimensional<T>::MaximoRenglon(int Ren)
{
T Maximo= Datos[Ren][0];
int Col;
for (Col= 1; Col < NumCol; Col+t)
if (Datos[Ren][Col] > Maximo)
Maximo= Datos[Ren][Col];
return Maximo;

4.5 Arreglos de dos dimensiones

155|

/* Método que da como resultado el valor mas pequeio almacenado en una
=columna del arreglo, dada como dato. Para ello se deja fijo el valor de
=]la columna y se recorren todos los renglones. Si el tipo T usado para
wcrear el objeto ArregloBidimensional no fuera un numero, entonces se
wdeberia sobrecargar el operador <. */

template <class T>

T ArregloBidimensional<T>::MinimoColumna(int Col)

{
T Minimo= Datos[@][Col];
int Ren;
for (Ren= 1; Ren < NumRen; Ren++)
if (Datos[Ren][Col] < Minimo)
Minimo= Datos[Ren][Col];
return Minimo;
}

/* Método que da como resultado el valor mas pequeio almacenado en un
wrenglon del arreglo, dado como dato. Para ello se deja fijo el valor
=del renglén y se recorren todas las columnas. Si el tipo T usado para
wcrear el objeto ArregloBidimensional no fuera un numero, entonces se
=wdeberia sobrecargar el operador <. */

template <class T>

T ArregloBidimensional<T>::MinimoRenglon(int Ren)

{
T Minimo= Datos[Ren][0];
int Col;
for (Col= 1; Col < NumCol; Col++)
if (Datos[Ren][Col] < Minimo)
Minimo= Datos[Ren][Col];
return Minimo;
}

/* Método que permite, a usuarios externos a la clase, conocer el
wcontenido de una de las casillas del arreglo. Recibe como paréametros
=dos enteros, Ren y Col, que indican la posicidén (renglén y columna
=respectivamente) del componente deseado del arreglo. E1 resultado es un
wyvalor de tipo T. */
template <class T>
T ArregloBidimensional<T>::RegresaDato(int Ren, int Col)
{

return Datos[Ren][Col];

}

|156

Capitulo 4. Arreglos

MAX

La plantilla incluye el miembro privado: T Datos[MAX] [MAX] que es propiamente
el arreglo; es decir, la coleccidn de MAx por MAX elementos en la cual se especifi-
can dos dimensiones. Los otros miembros privados representan el nimero actual
de renglones (NumRen) y de columnas (NumCol) respectivamente.

El programa 4.8 presenta una aplicacion de arreglos bidimensionales, usando la
plantilla de la clase ArregloBidimensional definida en el programa 4.7. A partir de
los datos de un grupo de alumnos (calificaciones obtenidas en varios exdmenes)
se calculan e imprimen algunos indicadores, como el promedio de calificacion
por alumno y el promedio de calificacion por examen. La figura 4.9 muestra la
representacion gréfica de la estructura que almacena las calificaciones, indicando,
en este ejemplo, que el primer alumno obtuvo 9 en el primer examen, 6 en el se-
gundo, ... que el segundo alumno obtuvo 7 en el primer examen, 10 en el segun-
do, ... que el tercer alumno obtuvo 8§ en el primer examen, 9 en el segundo, ...

ObjArreBidi
ol 9|6 \
1l 7 | 10
7| 8 9
> N Alumnos
e o o
Y,
0 1 2 MAX

M Examenes

FIGURA 4.9 Aplicacion de arreglos bidimensionales

4.5 Arreglos de dos dimensiones 157 |

Programa 4.8

/* Se tienen las calificaciones de un grupo de N alumnos obtenidas en M
wexamenes. Para almacenar esta informacion se usa un objeto de tipo
=ArregloBidimensional: los renglones representan a los alumnos y las
wcolumnas a los examenes. */

/* Se incluye la plantilla de la clase ArregloBidimensional correspon-
=diente al programa 4.7, en la biblioteca "ArreBidi.h". */
#include "ArreBidi.h"

/* Funcién que despliega al usuario las opciones de trabajo sobre los
=datos ingresados. */

int Menu()

{
int Opc;
do {

cout<<"\n\n
cout<<"\n\n
cout<<"\n\n
cout<<"\n\n
cout<<"\n\n

Listado de calificaciones de un alumno.";
Listado de calificaciones de un examen.";
Promedio de calificaciones de un alumno.";
Promedio de calificaciones de un examen.";
Calificacién de un alumno obtenida en un examen.";
cout<<"\n\n 6- Maxima calificacidén de un examen.";
cout<<"\n\n 7- Minima calificacidén de un examen.";
cout<<"\n\n 8- Maxima calificacion de un alumno.";
cout<<"\n\n 90- Minima calificaci6on de un alumno.";
cout<<"\n\n 10- Terminar. ";
cout<<"\n\n Ingrese opcién elegida:";
cin>>0pc;
} while (Opc < 1 Il Opc > 10);
return Opc;

NOoO o~ W =

/* Plantilla de funcién para imprimir las calificaciones obtenidas por
=un alumno (el usuario proporcionarad un numero para identificarlo) en
w=todos los examenes. */
template <class T>
void CalifAlum(ArregloBidimensional <T> ObjArreBidi, int NumExam)
{

int Alum, Exam;

cout<<"\n\n Ingrese el numero del alumno:";

cin>>Alum;

cout<<"\n\n Calificaciones obtenidas por el alumno en los examenes\n";

for (Exam = 0; Exam < NumExam; Exam+t+)

cout<<"\nExamen: "<<Exam+{1<<" -- "<<"Calif.: "
<<0bjArreBidi.RegresaDato(Alum-1, Exam);

|158

Capitulo 4. Arreglos

/* Plantilla de funci6n para imprimir las calificaciones obtenidas en un
wexamen (el usuario proporcionara un numero para identificarlo) por to-
=dos los alumnos. */
template <class T>
void CalifExam(ArregloBidimensional <T> ObjArreBidi, int NumAlum)
{

int Alum, Exam;

cout<<"\n\n Ingrese el nUmero del examen:";

cin>>Exam;

cout<<"\n\n Calificaciones obtenidas por los alumnos en el examen\n";

for (Alum= 0; Alum < NumAlum; Alum++)

cout<<"\nAlumno: "<<Alum+i1<<" -- "<<"Calificacién: "
<<0bjArreBidi.RegresabDato(Alum, Exam-1);

/* E1 promedio de calificaciones obtenido por un alumno se calcula como
=la suma de todos los elementos correspondientes al renglén del alumno
= (sus calificaciones), entre el nimero de columnas (examenes). */
template <class T>
float PromAlum(ArregloBidimensional <T> ObjArreBidi, int NumExam)
{

int Alum;

cout<<"\n\n Ingrese el numero del alumno:";

cin>>Alum;

return (float) (ObjArreBidi.SumaRenglon(Alum-1) / NumExam);

/* E1 promedio de calificaciones de un examen se calcula como la suma de
=10s elementos correspondientes a la columna del examen, entre el numero
=de renglones (alumnos). */
template <class T>
float PromExam(ArregloBidimensional <T> ObjArreBidi, int NumAlum)
{

int Exam;

cout<<"\n\n Ingrese el numero del examen:";

cin>>Exam;

return (float) (ObjArreBidi.SumaColumna(Exam-1) / NumAlum);

/* Funcion que usa un arreglo bidimensional. Se declara un objeto del
wtipo ArregloBidimensional para almacenar un conjunto de numeros enteros
=que representan las calificaciones obtenidas por varios alumnos en di-
=\Versos examenes. */

void UsaArregloBidimensional()

4.5 Arreglos de dos dimensiones

159|

int Alum, Exam,

NumAlum, NumExam, Opc;

cout<<"\n\nIngrese el total de alumnos y el nimero de examenes: ";
cin>>NumAlum>>NumExam;

ArregloBidimensional <int> ObjArreBidi(NumAlum, NumExam);
cout<<"\n\nIngrese por cada alumno todas las calificaciones obtenidas
=en los examenes.\n";

ObjArreBidi.Lectura();

Opc= Menu();

while (Opc >= 1 && Opc <= 9)

{
switch (Opc)
{

case 1: {
}
case 2: {
}
case 3: {

case 4: {

case 5: {

case 6: {

CalifAlum(ObjArreBidi, NumExam);
break;

CalifExam(ObjArreBidi, NumAlum);
break;

cout<<"\nEl Promedio del alumno es: "
<<PromAlum(ObjArreBidi, NumExam);
break;

cout<<"\nPromedio de los alumnos en el examen es:"
<<PromExam(ObjArreBidi, NumAlum);
break;

cout<<"\n\n Ingrese el numero del alumno:";
cin>>Alum;
cout<<"\n\n Ingrese el numero del examen:";
cin>>Exam;
cout<<"\nEl alumno "<<Alum<<" obtuvo en el examen
w "<<Exam<<":"

<<0bjArreBidi.RegresaDato(Alum-1, Exam-1);
break;

cout<<"\n\n Ingrese el numero del examen:";

cin>>Exam;

cout<<"\n\nMéxima calificacién del examen "<<Exam<<" "
<<0bjArreBidi.MaximoColumna (Exam-1);

break;

|160

Capitulo 4. Arreglos

case 7: {
cout<<"\n\n Ingrese el nUmero del examen:";
cin>>Exam;
cout<<"\n\nMinima calificacién del examen
w "<<Exam<<" "
<<ObjArreBidi.MinimoColumna (Exam-1);
break;

case 8: {
cout<<"\n\n Ingrese el nUmero del alumno:";
cin>>Alum;
cout<<"\n\nMaxima calificacién del alumno
w "<<Alum<<" "
<<0bjArreBidi.MaximoRenglon(Alum-1);
break;

case 9: {
cout<<"\n\n Ingrese el numero del alumno:";
cin>>Alum;
cout<<"\n\nMinima calificacién del alumno
- "<<Alum<<"

<<0bjArreBidi.MinimoRenglon(Alum-1);
break;
}

}
Opc= Menu();

El programa 4.7 present6 la plantilla de la clase y el programa 4.8, un ejemplo de
aplicacion donde se hace uso de un objeto, instancia de dicha clase. La plantilla
definida pretende ser una guia, sin embargo, podria incluir mds métodos que faci-
liten la operacién con los datos almacenados. Por ejemplo, se podrian definir
unos que permitan conocer el valor de los atributos privados NumRen y NumCol.

4.6 Arreglos de objetos

El tipo de dato usado para declarar un objeto de la clase arreglo, puede a su vez
ser una clase. Es decir, cada componente (o casilla) del arreglo serd un objeto, y
por lo tanto, el constructor se invoca para cada uno de ellos. Para que esto sea
posible, la clase debe contar con un constructor por omisién o con un cons-

4.6 Arreglos de objetos

161|

tructor con pardmetros predeterminados. Si s6lo tuviera un constructor con para-
metros, se le deben proveer los mismos para cada celda, o provocaria un error.
Por ejemplo, tomando la clase Fecha, definida anteriormente, si se quisiera decla-
rar un arreglo de objetos de este tipo, usando un constructor con pardmetros se
deberia hacer:

Fecha MesEnero[31] = { Fecha(1,1,2001), Fecha(2,1,2001),
.., Fecha(31,1,2001)};

En este caso serfa necesario darle los 31 valores, para que con cada uno se cree e
inicialice cada uno de los 31 objetos asignados a las respectivas casillas del arreglo.
Con la notacion MesEnero[Indice] se hace referencia al contenido de la casilla
indicada por el valor de la variable Indice. Dicha casilla es un objeto, por lo que
para manipularlo se tendrd en cuenta todo lo que se dijo acerca de los mismos.

A continuacién se presenta el segmento de un programa que hace uso de un arre-
glo de objetos. No se utilizan las plantillas previamente declaradas ya que exige
el uso de sobrecarga de operadores. Este tltimo caso, se ejemplifica en el progra-
ma 4.11.

Programa 4.9

/* La clase Fecha contiene los atributos privados Dia, Mes y Ano. Ademas
=wtiene dos constructores y un método para imprimir los valores de los
=atributos. */

class Fecha

{
private:
int Dia, Mes, Anio;
public:
Fecha(int, int , int);
Fecha();
void ImprimeFecha();
b

/* Definici6on del método constructor con parametros. */
Fecha::Fecha (int D, int M, int A): Dia(D),Mes(M), Anio(A)
{}

/* Definici6on del método constructor por omisién. */
Fecha::Fecha ()

{+

|162

Capitulo 4. Arreglos

/* Método que despliega los valores de los atributos de una fecha. */
void Fecha::ImprimeFecha ()

{
}

cout<< "\nDia: " << Dia << "\tMes: " << Mes << "\tAfo: " << Anio;

/* Funcidén que usa un arreglo de objetos tipo Fecha. */
void UsaArregloObjetos ()
{

int Indice;

/* Se declara un arreglo de 3 objetos de tipo Fecha, usando el
wconstructor por omisidén. */
Fecha Cumpleanios[3];

/* Se declaran 3 objetos de tipo Fecha, usando el constructor con
wparametros. */

Fecha Cumple_Franco(18, 9, 2005);

Fecha Cumple Monica(12, 4, 2005);

Fecha Cumple Rodrigo(25, 11, 2005);

/* Se declara e inicializa un arreglo de 2 objetos de tipo Fecha. */
Fecha DiasFestivos[2]= {Fecha (21, 3, 2005), Fecha (1, 5, 2005)};

/* Se asignan valores (objetos) a las casillas del arreglo. */
Cumpleanios[@]= Cumple Franco;

Cumpleanios[1]= Cumple_Monica;

Cumpleanios[2]= Cumple Rodrigo;

/* Impresion del contenido de los arreglos. */
for (Indice= 0; Indice < 3; Indice++)
Cumpleanios[Indice].ImprimeFecha();

for (Indice= 0; Indice < 2; Indice++)
DiasFestivos[Indice].ImprimeFecha();

En el ejemplo anterior, al declarar el arreglo cumpleanios, se utilizé el constructor
por omision de la clase Fecha. Por lo tanto, en cada una de las casillas del arreglo
se cred un objeto cuyos atributos quedaron indeterminados. Por su parte, en el
arreglo DiasFestivos, se usé (de la clase Fecha) el constructor con pardmetros.
Como consecuencia, cada una de sus casillas almacena un objeto cuyos atributos
estdn instanciados con los valores proporcionados al constructor. Las variables
Cumpleanio y DiasFestivos son arreglos, por lo tanto para tener acceso a cada uno
de sus elementos se usa un indice. Una vez que se hace referencia a uno de ellos,

4.6 Arreglos de objetos 163 |

como éste es un objeto, se deben usar los métodos propios de dicho objeto para
tener acceso a sus miembros.

A continuacion se presenta otro ejemplo de arreglo de objetos. Se define una cla-
se y posteriormente un arreglo de objetos de dicha clase para ejemplificar el uso
del concepto estudiado.

Programa 4.10

/* Se declara la clase Cliente la cual define un cliente por medio de
wlos atributos: Nombre, Direccidén, Teléfono, Saldo, Tipo de Cuenta y

= \Numero de Cuenta, y de algunos métodos que permiten el manejo de los
wmismos. Para la clase Cliente se definieron dos métodos constructores,
=»uno de los cuales es por omisién. Asimismo, se desarrolla una pequefia
waplicacidon que hace uso de la clase definida. */

class Cliente
{
private:
char Nombre[64], Direccion[32], Telefono[10];
float Saldo;
int TipoDeCuenta, NumDeCuenta;
public:
Cliente();
Cliente(char [],char [], char [], float, int , int);
float ObtenerSaldo();
void ImprimeDatos();
char ObtenerTipoCta();
void HacerRetiro(float);
void HacerDeposito(float);
b

/* Definicidén del método constructor por omisidén. */
Cliente::Cliente()
{1}

/* Definicion del método constructor con parametros. */
Cliente::Cliente(char Nom[],char Dir[], char Tel[], float Sal, int
=»TCta, int NoCta)
{

strcpy (Nombre, Nom);

strcpy(Direccion, Dir);

strcpy(Telefono, Tel);

Saldo= Sal;

TipoDeCuenta= TCta;

NumDeCuenta= NoCta;

|164

Capitulo 4. Arreglos

/* Método que permite tener acceso, a usuarios externos a la clase, al
=saldo de un cliente. */
float Cliente::ObtenerSaldo()

{
}

return Saldo;

/* Método que despliega en pantalla los atributos de un cliente. */
void Cliente::ImprimeDatos()
{

cout<< "Nombre: " << Nombre << '\n';

cout<< "Direccién: " << Direccion << '\n';

cout<< "Teléfono: " << Telefono << '\n';

cout<< "Saldo: " << Saldo << '\n';

cout<< "Tipo de Cuenta: " << TipoDeCuenta << '\n';

cout<< "NUmero de Cuenta: " << NumDeCuenta << '\n';

}

/* Método que permite tener acceso, a usuarios externos a la clase, al
=tipo de cuenta de un cliente. */
int Cliente::ObtenerTipoCta()

{
}

return TipoDeCuenta;

/* Método que permite tener acceso, a usuarios externos a la clase, al
wnimero de cuenta de un cliente. */

int Cliente::ObtenerNumCta()

{

}

return NumDeCuenta;

/* Método para registrar un retiro de una cuenta del cliente. E1 método
=wyverifica que el saldo de la cuenta sea mayor o igual al monto que va
w3 retirar. Si se cumple esta condicidn, actualiza el saldo. En caso
=wcontrario, imprime un mensaje. */

void Cliente::HacerRetiro(float Monto)

{
if ((Saldo - Monto) < 0)
cout<< "No se puede hacer el retiro.\n ";
else
Saldo= Saldo - Monto;
}

/* Método que registra un depdsito a la cuenta del cliente. Actualiza el
wsaldo. */
void Cliente::HacerDeposito(float Monto)

{
}

Saldo= Saldo + Monto;

4.6 Arreglos de objetos

165|

/* Funcién que usa un arreglo de objetos tipo Cliente. Se realizan
=algunas operaciones en las cuentas de los clientes de dos bancos. */
void UsaArregloObjetos ()
{

int Indice, TipoC, NumC;

float Saldo, Monto;

char Nom[64], Direc[64], Telef[64];

/* Declaraci6on de dos arreglos de 100 objetos de tipo Cliente. Se
whace uso del constructor por omisidn. */

Cliente ClientesBanco1[100];

Cliente ClientesBanco2[100];

/* Se crean tres objetos de tipo Cliente usando el constructor con
wparametros. */

Cliente ObjClit("Laura", "Insurgentes 2564", "55559900", 28000, 2, 2509);

Cliente ObjCli2("Juan", "Reforma 3600", "55408881", 4000, 1, 8324);

Cliente ObjCli3("Tomas", "Tlalpan 1005", "56703311", 20000, 2, 7604);

/* Asignacidén de objetos al arreglo correspondiente al primer banco. */

ClientesBanco1[0]= ObjClift;
ClientesBanco1[1]= 0bjCli2;
ClientesBanco1[2]= 0bjCli3;

/* Impresion de los datos correspondientes a los clientes del primer

wbanco. */
for (Indice= 0; Indice < 3; Indice++)
ClientesBancoi1[Indice].ImprimeDatos();

/* Lectura de los datos de los clientes del segundo banco. Primero se
wleeran valores para cada uno de los atributos definidos en la clase

w(Cliente. Posteriormente se creard un objeto usando el método cons-
wtructor con pardmetros y finalmente se asignara dicho objeto a una
=casilla del arreglo. Estos pasos se repiten para cada cliente. */
for (Indice= 0; Indice < 20; Indice+t+)

{
cout<<"\n\nIngrese datos del cliente: "<<Indice+1<<\n\n";
cin>>Nom>>Direc>>Telef>>Saldo>>TipoC>>NumC;
Cliente ObjCli (Nom, Direc, Telef, Saldo, TipoC, NumC) ;
ClientesBanco2[Indice]= 0bjCli;

}

/* Registro de un retiro de $1000 de la cuenta del tercer cliente del

=segundo banco. */
ClientesBanco2[2].HacerRetiro(1000);

/* Impresién de los datos de todos los clientes que tienen un saldo
wmayor a $10000. */

|166

Capitulo 4. Arreglos

cout<<"\nReporte de clientes con saldo superior a $10000\n";
for (Indice= 0; Indice < 20; Indice++)
if (ClientesBanco2[Indice].ObtenerSaldo() > 10000)
ClientesBanco2[Indice].ImprimeDatos();

/* Registro de un depésito a cierta cuenta. EL numero de cuenta y el
wmonto son dados por el usuario. */

cout<<"\n\nIngrese el numero de cuenta a la cual va a depositar y el
wmonto del depésito \n"

cin>>NumC>>Monto;

/* Se aplica bUsqueda secuencial para buscar el cliente con el nUmero

=wde cuenta dado. */

Indice= 0;

while (Indice < 20 && NumC != ClientesBanco2[Indice].ObtenerNumCta())
Indice++;

if (Indice < 20)
ClientesBanco2[Indice].HacerDeposito(Monto);

else
cout<<"\nNo estad registrado ningln cliente con el numero de
wcuenta dado. \n";

En los programas anteriores se presentaron algunas aplicaciones sencillas de arre-
glos de objetos. Es importante sefialar, que la captura de los datos de cada uno de los
clientes puede hacerse de manera directa usando sobrecarga en la operacién de lec-
tura (cin), tal como se vio en el capitulo anterior. Por otra parte, si se usa sobrecarga
en la operacion de escritura (cout) se podrd omitir el método ImprimeDatos.

El programa 4.11 presenta otro ejemplo de arreglos de objetos. En este caso se
us6 la plantilla de arreglos desordenados (ver el programa 4.1) para declarar un
arreglo de objetos de la clase Dinos. Para mayor claridad se incluye la definicién
de la clase Dinos.

Programa 4.11

/* Se define la clase Dinos la cual se usa como base para declarar el
=tipo de datos de un arreglo. En la biblioteca "ArreDesor.h" se incluye
=la plantilla de la clase de arreglos desordenados presentada en el
wprograma 4.1. La aplicacién permite leer los elementos del arreglo, dar
=de alta nuevos dinosaurios, dar de baja dinosaurios registrados e
wimprimir todos los datos de los mismos. */

4.6 Arreglos de objetos

167|

#define MAX 100
#include "ArreDesor.h"

/* Definicidén de la clase Dinos. Se sobrecargan operadores para que los
wobjetos de esta clase puedan utilizarse directamente en los métodos de
=1os arreglos. */

class Dinos

{
private:
int Clave;
char Nombre[MAX], Alimen[MAX], Periodo[MAX], Region[MAX];
public:
Dinos();
Dinos(int , char [], char [],char [],char []);
int operator!= (Dinos);
friend istream &operator>> (istream &, Dinos &);
friend ostream &operator<< (ostream &, Dinos &);
Y

/* Definicién del método constructor por omisién. */
Dinos::Dinos()

{}

/* Definici6on del método constructor con parametros. */
Dinos::Dinos(int Cla, char Nom[], char Ali[],char Per[],char Reg[])
{

Clave= Cla;

strcpy (Nombre, Nom);

strcpy (Alimen, Ali);

strcpy (Periodo, Per);

strcpy (Region, Reg);

—_——— —~

}

/* Sobrecarga del operador != para comparar objetos de tipo Dinos.
=»De esta forma el método de blUsqueda en arreglos puede aplicarse también
=3 objetos de este tipo. */
int Dinos::operator!= (Dinos ObjD)
{
if ((Clave != ObjD.Clave) Il (strcmp(Nombre, ObjD.Nombre) != @) Il
(strcmp(Alimen, ObjD.Alimen) != @) Il (strcmp(Periodo,
=0bjD.Periodo) != 0) Il
(strcmp(Region, ObjD.Region) != 0))
return 1;
else
return 0;

|168

Capitulo 4. Arreglos

/* Sobrecarga del operador >> para permitir la lectura directa de
wobjetos de tipo Dinos. De esta forma, el método Lectura de la clase
=Arreglo puede ser usado con objetos de este tipo. */

istream &operator>> (istream &Lee, Dinos &0bjDino)

{
cout<<"\n\nIngrese clave del dinosaurio: ";
Lee>> ObjDino.Clave;
cout<<"\n\nIngrese nombre del dinosaurio: ";
Lee>> ObjDino.Nombre;
cout<<"\n\nIngrese tipo de alimentaci6on del dinosaurio: ";
Lee>> ObjDino.Alimen;
cout<<"\n\nIngrese periodo en el que vividé el dinosaurio: ";
Lee>> ObjDino.Periodo;
cout<<"\n\nIngrese regién en la que vivi6 el dinosaurio: ";
Lee>> ObjDino.Region;
return Lee;
}

/* Sobrecarga del operador << para permitir la impresioén directa de
wobjetos de tipo Dinos. De esta forma, el método Escribe de la clase
=Arreglo puede ser usado con objetos de este tipo. */

ostream &operator<< (ostream &Escribe, Dinos &0bjDino)

{
Escribe<<"\n\nDatos del dinosaurio\n";
Escribe<<"\nClave: "<<ObjDino.Clave;
Escribe<<"\nNombre: "<<ObjDino.Nombre;
Escribe<<"\nAlimentacién: "<<ObjDino.Alimen;
Escribe<<"\nPeriodo: "<<0bjDino.Periodo;
Escribe<<"\nRegi6n: "<<0bjDino.Region;
return Escribe;

}

/* Se define la clase Menu que permite desplegar al usuario las opciones
wde trabajo de la aplicacidn. */
class Menu

{
public:
Menu () ;
int Despliega();
b

/* Definicidn del método constructor. */
Menu::Menu()

{}

4.6 Arreglos de objetos

169|

/* Definicion del método que muestra las opciones de trabajo. */
int Menu::Despliega()
{
int Opc;
do {
cout<<"\n\nBienvenido al sistema del Museo de los
=Dinosaurios\n\n";
cout<<"\nQué desea hacer?\n";
cout<<"\n 1-Registrar un nuevo dinosaurio. ";
cout<<"\n 2-Dar de baja un dinosaurio.";
cout<<"\n 3-Obtener un listado de todos los dinosaurios
wregistrados. ";
cout<<"\n 4-Terminar.\n";
cout<<"\n\nIngrese la opcidén elegida: ";
cin>>0pc;
} while (Opc < 1 Il Opc > 4);
return Opc;

/* Funcién principal que hace uso de la plantilla del arreglo y de las
wclases. La aplicaci6on permite al usuario almacenar los datos de varios
=dinosaurios, dar de alta/baja dinosaurios e imprimir los datos de los
=mismos. */
void main ()
{
Arreglo<Dinos> Parque;
Dinos ObjDino;
Menu Opciones;
int Opc, Res;
/* Se lee el total de dinosaurios a almacenar y los datos de cada uno
wde ellos por medio del método Lectura. Para que dicho método pueda
=ser usado es necesaria la sobrecarga del operador >> en la clase
=Dinos. */
Parque.Lectura();
Opc= Opciones.Despliega();

while (Opc>= 1 &&% Opc <= 3)
{
switch (Opc)
{
/* Se da de alta un dinosaurio si el arreglo tiene espacio y
=si no se repiten los datos del dinosaurio. Se usa la sobre-
=carga del operador >>. */

case 1: {
cin>>0bjDino;
Res= Parque.InsertaDesordenado(ObjDino);
if (Res == 1)

cout<<"\n\nDinosaurio registrado.\n";

| 170 Capitulo 4. Arreglos

else
if (Res == 0)
cout<<"\n\nNo se tiene espacio para
wregistrar nuevos dinos.\n"
else
cout<<"\n\nEse dinosaurio ya fue registrado
wpreviamente. \n";
break;
}

/* Se elimina un dinosaurio si el arreglo no esta vacio y si
wel dinosaurio dado como dato fue registrado previamente. Se
=wusa la sobrecarga del operador >>. */
case 2: {
cin>>0bjDino;
Res= Parque.EliminaDesordenado(ObjDino);
if (Res == 1)
cout<<"\n\nDinosaurio eliminado.\n";
else
if (Res == 0)
cout<<"\n\nNo se tiene registrado ningln
wdinosaurio.\n";
else
cout<<"\n\nEse dinosaurio no fue
wregistrado. \n";
break;
}
/* Se despliegan en pantalla todos los datos de los
wdinosaurios almacenados en el arreglo por medio del método
wFscribe. Para que dicho método pueda ser usado es necesaria
=]la sobrecarga del operador << en la clase Dinos. */
case 3: {
Parque.Escribe();
break;
}

}
Opc= Opciones.Despliega();

En el programa 4.11, para usar la plantilla de la clase arreglos fue necesario so-
brecargar algunos operadores para que los métodos definidos pudieran aplicarse a
objetos. Es decir, la sobrecarga debe hacerse en la clase que se usard como tipo
base. En el ejemplo, al sobrecargar el operador de desigualdad !=y los operado-
res <<y >> en la clase Dinos, se logré que los métodos Lectura, Escribe y Busca
de la clase Arreglo se pudieran usar indistintamente con ndmeros (programa 4.2)
y con objetos (programa 4.11).

4.7 Casos especiales de arreglos 171 |

4.7 Casos especiales de arreglos

Se tienen algunos casos especiales de arreglos segun la cantidad y distribucién de
sus componentes. L.os casos mas estudiados son: matrices poco densas y matrices
triangulares.

4.7.1 Matrices poco densas

Las matrices poco densas son aquellas en las cuales gran parte de sus elementos
son cero o vacio (cualquier representacién que indique la ausencia de datos), este
ultimo valor para arreglos que no sean numéricos. La figura 4.10 presenta un
ejemplo de este tipo de arreglos. Como se puede observar, en este arreglo, casi el
80% de sus elementos son ceros.

Matriz poco densa

9101010100]10(fO0]2

711010101103 0]1]01]O0

FIGURA 4.10 Ejemplo de matriz poco densa

Cuando se trata de arreglos muy grandes, resulta conveniente ahorrar espacio de
memoria almacenando en un arreglo unidimensional s6lo aquellos valores que no
sean ceros. Para cada uno de ellos se debe guardar, ademas del dato, la posicién
(renglén y columna) que le corresponde en la matriz original. Para ello se va a
definir una clase que represente cada uno de los elementos de la matriz que se
desea guardar. La figura 4.11 muestra la clase Componente en la cual se incluyeron
como atributos dos enteros y un dato de tipo T para almacenar el rengldn, la colum-
na y el valor distinto de cero respectivamente.

| 172 Capitulo 4. Arreglos

Componente(T)

Ren, Col: int

Dato: T

Métodos de acceso y
actualizacion.

FIGURA 4.11 Clase Componente

A continuacién se presenta la codificacion, usando el lenguaje C++, de la planti-
lla de la figura 4.11.

/* Prototipo de la clase MatPocoDen para poder declararla como amiga
=de la clase Componente, y de esta forma darle acceso a los miembros
wprivados de esta Gltima. */

template <class T>

class MatPocoDen;

/* Definicidén de la plantilla de clase que representa cada uno de los
welementos distintos de cero de la matriz poco densa. */
template <class T>
class Componente
{
private:
T Dato;
int Ren, Col;
public:
Componente();
Componente (T, int , int);
friend class MatPocoDen<T>;
friend istream &operator>>(istream &, Componente &);
friend ostream &operator<<(ostream &, Componente &);
Y

/* Declaracién del método constructor por omision. */
template <class T>
Componente<T>::Componente()

{}

/* Declaracién del método constructor con parametros. */

4.7 Casos especiales de arreglos

173|

template <class T>
Componente<T>::Componente(T Valor, int Re, int Co)

{
Dato= Valor;
Ren= Re;
Col= Co;

}

/* Declaracidén de la funci6én amiga que sobrecarga el operador >>. */
template <class T>
istream &operator>>(istream &Lee, Componente<T> &Com)
{
cout<<"\n\nIngrese el valor: ";
Lee>>Com.Dato;
cout<<"\n\nIngrese el ndmero del rengldén que le corresponde: ";
Lee>>Com.Ren;
cout<<"\n\nIngrese el ndmero de la columna que le corresponde: ";
Lee>>Com.Col;
return Lee;

}

/* Declaracidn de la funcién amiga que sobrecarga el operador <<. */
template <class T>
ostream &operator<<(ostream &Escribe, Componente<T> &Com)
{
Escribe<<Com.Dato<<" ";
return Escribe;

A partir de esta clase, se define la correspondiente a la matriz poco densa. Esta se
representa por medio de un arreglo unidimensional y por dos nimeros enteros, que
almacenan el total de renglones y de columnas de la matriz original. Como esta cla-
se fue declarada amiga de la anterior podra usar directamente sus miembros priva-
dos. El programa 4.12 presenta esta plantilla y una aplicacién de la misma.

Programa 4.12

/* Plantilla de la clase correspondiente a una matriz poco densa,
=almacenada por medio de un arreglo unidimensional de objetos. Los
watributos son la coleccion de componentes formados por el valor diferente
wde cero, el rengléon y la columna que le corresponden en la matriz
woriginal. Ademas, se guardan el total de renglones y de columnas que
=tiene la matriz original y el total de elementos diferentes de cero.*/

|174

Capitulo 4. Arreglos

template <class T>
class MatPocoDen

{
private:
Componente<T> Valores[MAX];
int TotRen, TotCol, TotVal;
public:
MatPocoDen() ;
void Lectura();
void Imprime();
e

/* Declaracién del método constructor por omision. */
template <class T>
MatPocoDen<T>::MatPocoDen ()
{
TotVal= 0;
}

/* Método que lee los datos de la matriz que son distintos de cero,
wjunto con el rengléon y la columna que le corresponde en la matriz
woriginal. Los valores leidos se van guardando en un arreglo
=unidimensional. */
template <class T>
void MatPocoDen<T>::Lectura()
{
int IndRen, IndCol, Resp;
T Dato;
Do {
cout<<"\n\nIngrese total de renglones y columnas de la matriz\n";
cin>>TotRen>>TotCol;
} while (TotRen <= 0@ Il TotCol <= 0);
cout<<"\n\nIngrese 1 si desea capturar datos, @ para terminar. \n";
cin>>Resp;
while (Resp)
{
cout<<"\n\nIngrese los datos diferentes de @ (o vacio).\n";
cin>>Dato;
do {
cout<<"\nQué rengléon le corresponde - de @ a "<<TotRen<<": ;
cin>>IndRen;
} while (IndRen < @ Il IndRen >= TotRen);
do {
cout<<"\nQué columna le corresponde - de @ a "<<TotCol<<": ;
cin>>IndCol;

4.7 Casos especiales de arreglos

175|

} while (IndCol < @ Il IndCol >= TotCol);

Componente<T> Elemento(Dato, IndRen, IndCol);
Valores[TotVal]= Elemento;

TotVal++;

cout<<"\n\nIngrese 1 si desea capturar mas datos, 0 para
=terminar. \n";

cin>>Resp;

}

/* Método que despliega en pantalla los valores diferentes de cero de la
wmatriz poco densa. */

template <class T>

void MatPocoDen<T>::Imprime()

{
int Indice;
cout<<"\n\nValores almacenados\n\n";
for (Indice= 0; Indice < TotVal; Indice++)
cout<<vValores[Indice]<<" ";
cout<<"\n\n\n";
}

/* Funcién principal en la que se hace uso de las clases definidas para
wla representacién de la matriz poco densa. */
void main()
{
MatPocoDen<int> Matrizi;
Matrizi.Lectura();
Matrizi.Imprime();
MatPocoDen<Arbol> Matriz2;
Matriz2.Lectura();
Matriz2.Imprime();

En la aplicacién, se muestra el uso de la plantilla. En la declaracién del objeto
Matriz2 se utilizé otra clase para darle valor a T. El uso de la clase Arbol pre-
supone que en la misma se sobrecargaron los operadores <<y >>, para que los
métodos de lectura e impresiéon puedan hacer uso de cin y de cout (ver en el
capitulo anterior el programa 3.2).

Sobre este arreglo se pueden realizar operaciones como las que se analizaron
en la seccién de arreglos bidimensionales, pero requieren ciertas adaptaciones.
A continuacion se presenta el método que suma los elementos de un renglon.

|176

Capitulo 4. Arreglos

/* Método que realiza la suma de los elementos de un rengldén de una
=mnatriz poco densa almacenada en un arreglo unidimensional. Recibe como
wparametro el renglén a sumar y da como resultado la suma del mismo. */
template <class T>

T MatPocoDen<T>::SumaRen(int Renglon)

{
T Suma= 0;
int Indice;
for (Indice= 0; Indice < TotVal; Indice++)
if (Vvalores[Indice].Ren == Renglon)
Suma= Suma + Valores[Indice].Dato;
return Suma;
}

En el método presentado se recorren todos los valores guardados en el arreglo
unidimensional y se suman aquellos que corresponden al renglén deseado.

El siguiente método encuentra el valor més grande de una cierta columna. Tanto
en el método anterior como en éste, si se estuviera trabajando con objetos, en lu-
gar de nimeros, se deberian sobrecargar los operadores >y + en la clase corres-
pondiente. Observe que las operaciones resultan ser menos claras que si se
trataran como arreglos bidimensionales.

/* Método que encuentra el valor mds grande de una columna de una matriz
wpoco densa almacenada en un arreglo unidimensional. Recibe el nlUmero de
=la columna que interesa y regresa el maximo elemento de dicha columna. */
template <class T>
T MatPocoDen<T>::MaxCol(int Colum)
{

T Maximo;

int Indice, Band=1;

for (Indice= @; Indice < TotVal; Indicett)

if (Valores[Indice].Col == Colum && Band)

{
Maximo= Valores[Indice].Dato;
Band= 0;

}

else

if (Valores[Indice].Col == Colum &&
=\Valores[Indice].Dato > Maximo)
Maximo= Valores[Indice].Dato;

return Maximo;

4.7 Casos especiales de arreglos

177|

4.7.2 Matrices triangulares

Las matrices triangulares son matrices cuadradas (N renglones X N columnas)
que guardan informacion sélo en las casillas que estan de la diagonal principal
hacia arriba o hacia abajo, incluyendo la diagonal. Segtn el caso, reciben el
nombre de matriz triangular superior o matriz triangular inferior.

La figura 4.12 presenta ejemplos de matrices triangulares superiores (a) e inferio-
res (b). Como se puede apreciar todos los elementos que estdn debajo o encima
de la diagonal principal son ceros (o vacios). Por lo tanto, en matrices de gran
tamafo resulta conveniente (para ahorrar espacio de memoria) almacenar sélo los
valores distintos de cero, usando arreglos unidimensionales.

0 1 2 0 1 2
0 10 45 9 0 11 0 0
o2 6 33| oo
2 0 0 2 2| 41 9 2
a) b)

FIGURA 4.12 Ejemplo de matrices triangulares
(a) Matriz triangular superior, (b) Matriz triangular inferior

Matriz triangular superior

Una matriz de este tipo tendrA N+ N -1+ N -2 + ... + 3 + 2 + 1 elementos
distintos de cero, lo cual puede expresarse como:

N * (N+1)
2

Por otra parte, habra 0 + 1 + 2 + ... + N — 1 ceros en la matriz, lo cual puede
generalizarse como:

(N=1)* N
2

| 178 Capitulo 4. Arreglos

Dado un cierto renglén Ren, se tendran:

(Ren — 1) * Ren
2

ceros correspondientes a los (Ren - 1) renglones previos y N * (Ren - 1) ele-
mentos en total (ceros y distintos de cero).

Para poder recuperar los valores guardados en el arreglo, se sugiere utilizar la
férmula que se presenta a continuacién. Considere que C++ enumera los renglo-
nes de 0 a (N — 1), el total de elementos guardados antes del renglon Ren, se
calcula como Ren * N.

Posicion (Dato[Ren][Col] = N * Ren — (Ren —1) * Ren + (Col — Ren)
2

El primer término hace referencia al total de elementos almacenados antes del
renglén Ren. A esta cantidad se le resta el total de ceros de dichos renglones y se
le suma el nimero que corresponde al desplazamiento dentro del mismo renglén.

Dado el arreglo de la figura 4.13, almacenado en un arreglo unidimensional como
el que aparece en la figura 4.14, se aplica la formula vista para recuperar sus ele-
mentos. Por ejemplo:

Posicién (pato[0][0])= 4 *0—-((0-1)*0)/2)+(0-0)=0

El 25 se guardé en la casilla 0.

Posicion (pato[1]1[3]1)= 4 *1—-((1 -1 *1)/2)+3-1)=6

El 63 se guardé en la casilla 6.

Posicion (Dato[2][2])= 4 *2—-(2-1)*2)/2)+ (2-2)="7

El 43 se guardé en la casilla 7.

4.7 Casos especiales de arreglos 179 |

FIGURA 4.13 Matriz triangular superior

25 67 87 43 41 29 63 43 15 16

FIGURA 4.14 Representacion lineal de la matriz triangular superior

El programa 4.13 presenta una plantilla para la clase MatrizTrianSup, que incluye
como atributos la coleccién de elementos y el orden del arreglo cuadrado. Se de-
finieron como métodos el calculo del total de elementos almacenados, asi como
el calculo de la posicién en la que se encuentra cierto valor.

Programa 4.13

/* Constante que define el mé&ximo numero de elementos que se pueden
=almacenar en el arreglo unidimensional. */
#define MAX 50

/* Definicion de la clase MatrizTrianSup. Sus atributos son un arreglo
wyunidimensional en el cual se guardaran los valores de la matriz
wtriangular superior y el orden de la misma. */

template <class T>

class MatrizTrianSup

| 180 Capitulo 4. Arreglos

private:
T Datos[MAX];
int Dim;

public:
MatrizTrianSup();
int RegresaPosic(int, int);
int TotalDatos();
void Lectura();
void ImprimeMatriz();
void ImprimeDatos();

b

/* Método constructor por omisién. */
template <class T>
MatrizTrianSup<T>::MatrizTrianSup()

{}

/* Método que calcula la posicidn que le corresponde a un elemento de la
wmatriz dentro del arreglo unidimensional en el cual fue guardado. */
template <class T>

int MatrizTrianSup<T>::RegresaPosic(int Ren, int Col)

{
}

/* Método que calcula el total de elementos guardados en el arreglo
wunidimensional, que son los que estaban de la diagonal principal hacia
=arriba. */

template <class T>

int MatrizTrianSup<T>::TotalDatos()

{
}

/* Método que lee del teclado los valores para los atributos de la
wclase. Al usuario s6lo se le piden los valores que estan en la diagonal
wy arriba de ella. */

template <class T>

void MatrizTrianSup<T>::Lectura()

return (Dim * Ren - ((Ren - 1) * Ren) / 2 + (Col - Ren));

return ((Dim * (Dim + 1)) / 2) ;

{
int Ren, Col, Indice= 0;
do {
cout<<"\n\nIngrese orden de la matriz triangular superior: ";
cin>>Dim;

} while (Dim > MAX Il Dim < 0);
for (Ren= 0; Ren < Dim; Ren++)
for (Col= Ren; Col < Dim; Col++)

4.7 Casos especiales de arreglos

181|

{
cout<<"\n\nIngrese el elemento "<<Rent+1<<" - "<<Col+1<<"
cin>>Datos[Indice];
Indice= Indice + 1;

}

}

/* Método que imprime los valores almacenados con forma de arreglo
=pidimensional. */

template <class T>

void MatrizTrianSup<T>::ImprimeMatriz()

{
int Ren, Col, Indice;
cout<<"\n\nMatriz triangular superior\n\n";
for (Ren= 0; Ren < Dim; Ren++)
for (Col= 0; Col < Dim; Col++)
if (Ren <= Col)
{
Indice= RegresaPosic(Ren, Col);
cout<<Datos[Indice]<<" - ";
}
else
cout<<"Q - ";
cout<<"\n";
}
cout<<"\n\n";
}

/* Método que imprime sélo los valores almacenados. */
template <class T>
void MatrizTrianSup<T>::ImprimeDatos()

{
int Indice, TotElem;
TotElem= TotalDatos();
cout<<"\n\nElementos de la matriz triangular superior\n\n";
for (Indice= @; Indice < TotElem; Indice++)
cout<<Datos[Indice]<<" ";
cout<<"\n\n";
}

H)

Matriz triangular inferior

Una matriz de este tipo tendra 1 + 2 + 3 + ... + N elementos distintos de cero, lo

cual puede expresarse como:

N * (N+1)
2

|182

Capitulo 4. Arreglos

Para recuperar los valores guardados en el arreglo, se sugiere utilizar la férmula
que se presenta a continuacién. Dado que C++ enumera las casillas de 0 a (N — 1),
para usar esta férmula, debe sumarle uno al renglén y a la columna. Por ejemplo,
si quiere recuperar el elemento (1, 1) debe darle a Ren y Col el valor de 2.

Posicién (Dato[Ren][Col])= (Ren —1) * Ren + (Col — 1)
2

Dado el arreglo de la figura 4.15, almacenado en un arreglo unidimensional como
el que aparece en la figura 4.16, se aplica la formula vista para recuperar sus ele-
mentos. Por ejemplo:

Posicion (pato[o][0])= (1-1)* 1) /2+(1-1)=0
EI 25 se guardé en la casilla 0.

Posicion (pato[2][1])= (B-1)*3)/2+(2-1)=4
EI 45 se guardé en la casilla 4.

Posicion (pato[3]1[3])= ((4—-1)*4)/2+ 4 -1)=9
El 16 se guardé en la casilla 9.

0 1 2 3
0 25 0 0 0
1] 18 | 41 0 0
2 39 | 45 | 43 0
3| 9 38) 16

FIGURA 4.15 Matriz triangular inferior

Ejercicios 183 |

25 18 41 39 45 43 9 38 22 16

FIGURA 4.16 Representacion lineal de la matriz triangular inferior

La plantilla para la clase matrizTrianInf es similar a la que se present6 en el pro-
grama 4.13, s6lo cambia la forma de calcular la posicién de un dato de la matriz
guardado en el arreglo unidimensional.

Ejercicios

1. Defina la clase ArregloEnteros. Determine los atributos y el conjunto de
métodos (lo mas completo posible) que caracterizan al concepto arreglo
unidimensional de nimeros enteros.

2. Utilice la clase definida en el ejercicio 1 para almacenar la edad de un gru-
po de N (1= N=30) alumnos. Una vez almacenados los datos, calcule e
imprima el promedio de edad del grupo, asi como el total de alumnos con
una edad mayor al promedio.

a) El cédlculo del promedio y el célculo del total de alumnos con edad
mayor al promedio debe hacerse con métodos de la clase.

b) El calculo del promedio y el calculo del total de alumnos con edad
mayor al promedio NO puede hacerse con métodos de la clase. Utilice
alguno(s) de los conceptos vistos en los capitulos anteriores.

3. Escriba un programa que invierta el orden de los elementos de un objeto ti-
po arreglo. Tome como ejemplo el siguiente esquema. Para la declaracion
del objeto puede usar alguna de las plantillas presentadas en este capitulo.
(Requiere definir nuevos métodos? ;Puede solucionar el problema de algu-
na otra forma?

| 184 Capitulo 4. Arreglos

Arreglo
12 23 45 . 98 104
0 1 N-1
Arreglo
104 98 0 . 23 12
0 1 N-1

4. Escriba un programa que, utilizando la plantilla vista para arreglos desorde-
nados, almacene las calificaciones de un grupo de N (1= N = 80) alumnos.
Las calificaciones seran nimeros reales comprendidos entre O y 10. A partir
de los datos guardados en el arreglo, su programa debe realizar las siguien-
tes operaciones. Puede agregar métodos a la plantilla de la clase arreglo, si
lo cree necesario.

a) Imprimir la calificaciéon mas alta, la mds baja y el promedio de las
mismas.

b) Obtener e imprimir el total de calificaciones menores a 6.
¢) Obtener e imprimir el total de calificaciones mayores a 8.5.

5. Utilice la plantilla de la clase Arreglo para definir un objeto arreglo de nu-
meros reales en el cual almacene los precios de N articulos. Escriba una
aplicacién que permita encontrar e imprimir el precio més alto.

6. Defina la clase Arreglo usando plantillas y sobrecarga de operadores para
representar las operaciones de insercion (operador +) y de eliminacién
(operador -).

7. Utilice la plantilla de la clase Arreraral definida en este capitulo para
declarar dos objetos: un arreglo de enteros y un arreglo de nimeros reales.
El primero permitird almacenar las claves de un grupo de N productos
(1= N = 30), ordenadas crecientemente, mientras que el segundo sera para

Ejercicios 185 |

guardar los precios de dichos productos. Escriba un programa en C++ que,
mediante un mend de opciones, permita al usuario:

a) Leer y validar el nimero de productos.

b) Leer la informacion correspondiente de cada uno de los N productos.
c) Dada la clave de un producto, poder actualizar su precio.

d) Dar de baja un producto.

e) Dar de alta un nuevo producto.

f) Imprimir las claves de todos los productos cuyos precios sean mayores
a uno dado como referencia por el usuario.

8. Se tienen 3 arreglos paralelos: el primero almacena las claves de 20 produc-
tos, ordenadas crecientemente; el segundo guarda la existencia de cada uno
de ellos, y el tercero almacena el precio de venta de los mismos. Escriba un
programa completo en C++ que permita:

a) Consultar: a.1) El producto con mayor existencia. a.2) El producto con
mayor precio de venta. En ambos casos el programa debe imprimir to-
dos los datos del producto que cumpla con la condicién buscada.

b) Actualizar: b.1) La existencia de un producto (si se venden algunas
unidades o se compran mas). Los datos de entrada son la clave del
producto, una clave de operacién (para indicar si es venta o compra)
y la cantidad vendida/comprada. b.2) El precio de venta de un
producto. Los datos de entrada son la clave del producto y el nuevo
precio de venta.

¢) Eliminar: un producto. El dato de entrada es la clave.

9. Se tienen 2 arreglos paralelos. El primero de ellos almacena las claves de N
(1= N=50) escuelas, ordenadas ascendentemente. En el segundo se alma-
cena, por escuela, el total de alumnos de preprimaria, primaria, secundaria y
preparatoria. Observe el siguiente esquema. La escuela, cuya clave estd en
la casilla O del primer arreglo, tiene 624 alumnos en preprimaria, 1600
en primaria, 1260 en secundaria y 893 en preparatoria. Los totales de
alumnos, por nivel, de la segunda escuela ocuparan las casillas 4, 5, 6 y 7
del segundo arreglo, y asi sucesivamente.

|186

Capitulo 4. Arreglos

Clave escuelas Total alumnos
0 —>(Preprimaria
1 1 Primaria
2 2 Secundaria
3 Preparatoria
MAX-1
MAX*4 -1

Teniendo en cuenta estas especificaciones para guardar los datos, escriba un pro-
grama en C++ que:

a)

b)

c)

Genere un reporte que imprima, de cada una de las escuelas, el total
de alumnos en cada una de las secciones y el total general de la escue-
la. El usuario podré dar la clave de una escuela o pedir un listado de
todas las escuelas.

Calcule e imprima el total de alumnos de cualquiera de las 4 secciones,
considerando todas las escuelas. El usuario indicard la seccidn elegida.

Calcule e imprima el total de alumnos en cada una de las 4 secciones,
considerando todas las escuelas. Es decir, el total de alumnos en pre-
primaria, primaria, etcétera, tenga en cuenta las N escuelas. ;Puede
reutilizar la solucién del inciso b)?

Registre una nueva escuela. Los datos proporcionados por el usuario seran
la clave de la escuela y el nimero de alumnos en cada una de las 4 seccio-
nes. Si la escuela no tiene alguna de las secciones se ingresard un 0.

Ejercicios

187|

10.

11.

12.

13.

14.

e) Elimine alguna de las escuelas. El dato proporcionado por el usuario
serd la clave de la escuela.

f) Actualice los totales de alumnos en alguna seccién (o en todas). El
dato proporcionado por el usuario serd la clave de la escuela, la clave
de la seccion (o secciones) y el nuevo ndimero de alumnos.

Escriba un programa que sume dos objetos de tipo arreglos bidimensionales
de enteros. Utilice la plantilla de la clase arreglo bidimensional para decla-
rar los objetos. Modifiquela si lo cree necesario. El programa debe imprimir
el arreglo resultante.

Escriba un programa que multiplique dos objetos de tipo arreglos bidimen-
sionales de nimeros reales. Utilice la plantilla de la clase arreglo bidimensio-
nal para declarar los objetos. Modifiquela si lo cree necesario.

= *
CM)(N AM)(N BM)(N

Escriba un programa que imprima los elementos de la diagonal principal de
un arreglo bidimensional. Utilice la plantilla de la clase arreglo bidimensio-
nal para declarar el objeto. Modifiquela si lo cree necesario.

Escriba un programa que sume los elementos de la diagonal principal de un
arreglo bidimensional de nimeros reales. Utilice la plantilla de la clase arre-
glo bidimensional para declarar el objeto. Modifiquela si lo cree necesario.

Escriba un programa que obtenga la traspuesta de una matriz cuadrada
(arreglo bidimensional de N por N elementos). Por ejemplo, si la matriz da-
da es a), su traspuesta es b).

0o 1 2 0 1 2
ol 10 |-12] 6 ol 10] 45| 9
1l 45] 20| 17 (l-12]1 2| 6
20 91 6 | 2 2 6 |17] 2

a) Matriz b) Traspuesta

|188

Capitulo 4. Arreglos

15. Considerando las especificaciones (que aparecen mds adelante) de las clases
Alumno y Arreglo escriba un programa completo en C++ que:

a)

b)

c)

e)

)

Lea el nimero de alumnos registrados en una cierta carrera y capture
los datos correspondientes a los mismos.

Obtenga e imprima el promedio de cada uno de los alumnos y el pro-
medio del grupo.

Dado un alumno y una nueva carrera registrar el cambio de carrera co-
rrespondiente. Se debe validar que dicho alumno haya sido almacena-
do previamente en el arreglo.

Imprimir todos los datos de aquellos alumnos que lleven més de 25
materias aprobadas.

Dar de baja de la carrera a aquellos alumnos que hayan completado
igual (o mayor) nimero de materias reprobadas que aprobadas.

Dar de alta un alumno nuevo.

Alumno

Nombre: cadena de caracteres
Carrera: cadena de caracteres
Numero de materias aprobadas: entero

Calificaciones obtenidas en materias aprobadas: arreglo de
enteros (de maximo 60 valores)

Total de materias reprobadas: entero

Constructor(es)

Lectura

Calcula promedio del alumno
Cambia de carrera

Imprime datos

Ejercicios 189 |

Arreglo

e Datos: tipo Alumno

e NUmero de elementos: entero

e Constructor
e Lectura
e Impresion

16. Defina la clase SocioClub segin las especificaciones que se dan mds adelan-
te. Utilice alguna de las plantillas previamente definidas para declarar un
arreglo de objetos de la clase SocioClub. Escriba un programa en C++, que
mediante menuds pueda:

a) Leer y validar N (1= N = 60).

b) Leer los N elementos del arreglo.

¢) Imprimir los datos de todos los socios con mas de 10 afios de antigiiedad.
d) Cambiar el domicilio de un socio.

¢) Dado el nimero de un socio, imprimir toda su informacion.

f) Dar de alta un nuevo socio.

g) Dar de baja un socio existente.

SocioClub

NUmeroSocio: int
NombreSocio: char[]
Domicilio: char[]

Afnolngreso: int

Métodos de acceso
y actualizacién

|190

Capitulo 4. Arreglos

17. Defina la clase Automévil teniendo en cuenta las especificaciones que se
dan mads adelante. Para decidir qué métodos incluir, lea cuidadosamente el
resto del problema. Declare un arreglo de N (1= N = 120) objetos tipo
Automévil, el cual almacenard la flotilla de automoviles de una empresa.
Asuma que los mismos serdn dados de manera ordenada, crecientemente,
por ClaveAuto. Escriba un programa en C++, que mediante ments pueda:

a)
b)
c)

)

g)
h)

Leer y validar N (1= N = 120).
Leer los N elementos del arreglo.

Imprimir los datos de todos los automdviles que hayan sido fabricados
en cierto afio. El usuario dard como dato el afio deseado.

Imprimir los datos de todos los automdviles que sean de cierta marca.
El usuario dard como dato la marca.

Imprimir los datos de todos los automdviles que sean de cierta marca
y de cierto modelo. El usuario dard como dato la marca y el modelo.

Cambiar el nombre de la persona a la cual se le ha asignado el auto-
movil. El usuario dard como dato la clave del automévil y el nombre
de la persona que ahora lo usara.

Dada la clave de un automévil, imprimir toda su informacién.

Dar de alta un nuevo automévil. El usuario ingresard como datos toda
la informacién relacionada al nuevo automévil.

Dar de baja un automdvil existente. El usuario dard como dato la clave
del automdvil que desea eliminar de la flotilla.

Automovil

ClaveAuto: int
MarcaAuto: char[]
Modelo: char[]
AnoFabricacion: int
PrecioCompra: float
AsignadoA: char[]

Métodos de acceso
y actualizacion

Ejercicios

191|

18.

19.

Considere la siguiente relacion de herencia entre clases. Defina las clases
Arbol, Frutal y Citrico de tal manera que pueda declarar un arreglo poli-
morfico, es decir, un arreglo que pueda almacenar objetos de diferentes ti-
pos, en este caso de las tres clases indicadas. Decida qué atributos y
métodos incluir, tenga en cuenta lo que se pide més a continuacién. Escriba
una programa de aplicacién en C++ que pueda, por medio de mendus:

a) Imprimir los atributos de objetos tipo Arbol, Frutal y Citrico.
b) Dar de alta nuevos objetos, de cualquiera de los 3 tipos mencionados.
c) Dar de baja un objeto previamente almacenado.

d) Imprimir todos los datos de los objetos que tengan una altura mayor a
los 2 metros.

Arbol

Frutal

Citrico

Considere la siguiente relacién de herencia entre clases. Defina las clases
Mamifero, Vacuno y Equino de tal manera que pueda declarar un arreglo poli-
moérfico, es decir, un arreglo que pueda almacenar objetos de diferentes ti-
pos, en este caso de las tres clases indicadas. Decida qué atributos y
métodos incluir, tenga en cuenta lo que se pide a continuacién. Escriba un
programa de aplicacién en C++ que pueda, por medio de mendus:

a) Imprimir todos los atributos de objetos tipo Mamifero, Vacuno Y Equino.
b) Dar de alta nuevos objetos, de cualquiera de los 3 tipos mencionados.

c) Dar de baja un objeto previamente almacenado.

|192

Capitulo 4. Arreglos

20.

21.

22.

23.

24.

25.

26.

27.

d) Actualizar el establecimiento donde habita alguno de los animales. El
dato que daré el usuario serd la clave del animal y el nombre del esta-
blecimiento al cual fue trasladado.

Mamifero

Vacuno Equino

Escriba un método para sumar los elementos de una columna de una matriz
poco densa, guardada en memoria por medio de un arreglo unidimensional.
El usuario dard como dato el nimero de la columna a sumar.

Escriba un método que imprima una matriz poco densa almacenada por me-
dio de un arreglo unidimensional, con formato de arreglo bidimensional. Es
decir, el usuario vera en la pantalla la matriz con su forma original.

Escriba una funcién que sume dos matrices poco densas almacenadas de
acuerdo a lo visto en este libro. ;Requiere modificar las plantillas definidas?

Defina la plantilla correspondiente a una matriz triangular inferior.

Retome el problema anterior. Incluya un método en la plantilla que permita
encontrar el valor mds grande de un renglén. El usuario dard como dato el
nimero del renglén que le interesa.

Escriba un programa que sume dos matrices triangulares superiores, alma-
cenadas en arreglos unidimensionales.

Escriba un programa que multiplique dos matrices triangulares inferiores,
almacenadas en arreglos unidimensionales.

Se llama matriz tridiagonal a aquella que tiene valores distintos de cero
solo en la diagonal principal y en las diagonales que estdn por encima y
por debajo de ésta. Observe la siguiente figura. Si la matriz es grande, con-
viene almacenar (para ahorrar espacio de memoria) s6lo los valores distin-
tos de cero en un arreglo unidimensional. Encuentre una férmula que
calcule la posicién en la que fueron guardados (en un arreglo unidimensio-
nal) los elementos de una matriz tridiagonal.

Ejercicios

193|

0 1 2 3
0 25 10 0 0
1 18 41 25 0
2 0 45 56 31
3 22 16

28. Retome el problema anterior. Defina una plantilla para una clase que repre-
sente este tipo de matrices.

29. Se llama matriz simétrica cuando se cumple la condicion:
Datos[Ren][Col] = Datos[Col][Ren]

para todo 1 = Ren, Col = orden del arreglo. Cuando se presenta un caso asi, re-
sulta conveniente guardar sélo la matriz triangular inferior o superior, ya que de
lo contrario se duplicaria la informacién. Defina una plantilla para una clase que
represente este tipo de matrices.

30. Considere que los siguientes datos representan los costos de boletos de
avion entre ciudades. Cuando no existe vuelo directo entre dos ciudades
aparece un cero, y los valores de la diagonal principal no se toman en cuen-
ta ya que no hay vuelos de una ciudad a s{ misma. Por ejemplo, en la si-
guiente figura, se represent que ir de la ciudad O a la ciudad 1 cuesta
$1,000 (lo mismo de la 1 ala 0) y que ir de la ciudad 2 a la 3 cuesta $2,050
(lo mismo de la 3 a la 2). Ademads, no hay vuelo de la ciudad 1 a la 3.

0 1 2 3
o - | 1000 890 | 720
1{1000]| - |125| o0
2| 890 [1250 | - | 2050
3 720 [o |2050]| -

|194

Capitulo 4. Arreglos

Escriba un programa en C++ que, por medio de mends, permita realizar las
siguientes operaciones. Utilice la plantilla del problema anterior.

a) Dado un nimero que identifica a una ciudad (proporcionado por el
usuario), genere un reporte de todas las ciudades destinos a las que se
puede llegar a partir de dicha ciudad.

b) Dado un nimero que identifica a una ciudad origen y otro que identifi-
ca a una ciudad destino (ambos proporcionados por el usuario) indique
si hay vuelo directo entre ambas ciudades, y si es asi, su costo.

¢) Genere un reporte de todas las ciudades entre las que no existen vue-
los directos.

CAPIiTULO 5

Pilas y colas

5.1 Introducciéon

En este capitulo se presentan las estructuras de datos pilas y colas, y
algunas variantes de estas ultimas: las colas circulares y las colas do-

bles. Ambas estructuras son lineales, es decir cada elemento tiene un

Unico sucesor y un unico predecesor, con excepcion del primero y del
ultimo. El primero carece de antecesor y el tltimo de sucesor.

Estas estructuras se caracterizan por la manera en que llevan a cabo la
insercion y eliminacién de elementos. En el caso de las pilas los ele-
mentos se pueden agregar o quitar por un tinico extremo, mientras que
en la estructura tipo cola los elementos se insertan por un extremo y
se quitan por otro. A continuacién se analizardn de manera m4s deta-
llada estas estructuras, las operaciones que pueden realizarse sobre
ellas y algunas aplicaciones.

| 196 Capitulo 5. Pilas y colas

5.2 Pilas

Una pila es una estructura de datos lineal en la cual los elementos pueden inser-

tarse y eliminarse sélo por uno de los extremos. Por lo tanto, el dltimo elemento

insertado serd el primero que podrd eliminarse; debido a esta caracteristica, también
se le conoce como estructura LIFO (por sus siglas del inglés: Last-In, First-Out:
dltimo en entrar, primero en salir).

El concepto de pila se utiliza en muchas actividades cotidianas, por ejemplo cuan-
do se exponen libros en una libreria o latas de un cierto producto en un supermer-
cado. En ambos casos se tienen pilas, de libros o de latas, y es de suponer que si
un cliente quiere, por ejemplo un libro, tomara el que estd mds arriba, que fue el
ultimo en colocarse.

El extremo en el cual se realizan las operaciones se denomina fope de la pila. El
tope apunta al dltimo valor almacenado y se modifica con cada operacién. Es de-
cir, se incrementa al insertar un nuevo valor o se decrementa al eliminar un valor.
La figura 5.1 muestra una representacion grafica de una pila, en la cual se han al-
macenado dos elementos. El tope apunta al dltimo valor insertado.

Tope
B 1111117777777

XXXXXXXXXXX

FIGURA 5.1 Estructura tipo pila

5.2 Pilas 197 |

La pila es una estructura abstracta. Para el almacenamiento de los datos en la
memoria de la computadora debe usarse otra estructura. Para los efectos de este
libro, se utilizardn arreglos unidimensionales. Teniendo en cuenta esta aclaracion,
la clase pila estard formada por dos atributos: la coleccién de elementos a guar-
dar (por medio de un arreglo unidimensional) y el apuntador al dltimo elemento
almacenado (Tope). Ademads, tendrd algunos métodos que se analizaran en la si-
guiente seccion. La figura 5.2 presenta una plantilla de la clase pila. Se usa una
plantilla para dar mayor generalidad a la solucién.

Pila(T)

Tope: int
EspacioPila[MAX]: T

Métodos de almacenamiento
y acceso a los miembros de la
clase.

FIGURA 5.2 Clase Pila

A continuacién se presenta la codificacion de la plantilla de la clase Pila, usando
el lenguaje C++.

/* Definici6n del nUmero maximo de elementos que puede contener la
westructura pila, restriccidén propia de los arreglos. */
#define MAX 10

/* Definicion de la plantilla de la clase Pila que tendra como atributos
=la coleccion de elementos (haciendo uso de un arreglo) y un apuntador
=3l primero de ellos. Es decir, al primer elemento al cual se podra
wtener acceso, que es el Ultimo elemento almacenado. En la plantilla
=también se hace referencia a algunos métodos, que se analizaran con
wdetalle en la siguiente seccion. */

|198

Capitulo 5. Pilas y colas

template <class T>
class Pila
{
private:
T EspacioPila[MAX];
int Tope;
public:
Pila();

/* Métodos de modificacion y acceso a los miembros de la pila. */
b

/* Declaraci6on del método constructor. Inicializa el Tope en -1,
windicando pila vacia. */
template <class T>
Pila<T>::Pila()
{
Tope= -1;
}

Operaciones

Las operaciones de insercién y eliminacién son las tnicas que pueden realizarse
en este tipo de estructuras. Las mismas, como ya se menciond, se llevan a cabo
s6lo por uno de los extremos de la pila, al que se conoce con el nombre de tope.

La operacion de insercion (Push) consiste en incrementar el tope de la pila y
agregar el nuevo valor en esa posicion. Antes de insertar el elemento es necesario
verificar que en la pila haya espacio disponible. La manera de evaluar esta condi-
cién depende del tipo de estructura elegida para almacenar la coleccién de elemen-
tos en la pila.

Considerando que en este libro se usara un arreglo unidimensional, la disponibili-
dad de espacio dependerd de que atin no se hayan ocupado todas las casillas del
mismo.

En la figura 5.3a, la pila tiene almacenados dos valores. La figura 5.3b muestra el
estado de la pila luego de insertar el valor 6. Observe que el Tope se modifica,
apuntando ahora al dltimo valor agregado. Finalmente, en la figura 5.3c se muestra
la pila luego de insertar el 9.

5.2 Pilas

199|

Tope —>

a)

Tope—>

Pop (6)

2

b)

Tope—>

Pop (9)

2

c)

FIGURA 5.3 Operacion de insercion en pilas

La operacion de eliminacién (Pop) consiste en quitar el valor que se encuentra al-
macenado en el tope de la pila y disminuir en uno el valor del tope. Previamente
se debe validar que la pila no esté vacia. La manera de evaluar esta condicion de-
pende del tipo de estructura elegida para almacenar la coleccién de elementos en
la pila. Considerando que en este libro se usard un arreglo unidimensional, la pila

estard vacia cuando el puntero tenga un valor de —1.

La figura 5.4a muestra el estado de la pila una vez eliminado el elemento almace-
nado en la posicion del tope (9) de la figura 5.3c. Observe que el valor del Tope
disminuy6 en uno, apuntando ahora al siguiente elemento de la pila (6). La figura
5.4b presenta la pila luego de quitar el 6, y finalmente la figura 5.4c el estado
de la pila luego de eliminar el 3.

Tope ——

Pop (9)

a)

>

Pop (6)

Tope—> 3
2
b)

Pop (3)

Tope—>

2

9

FIGURA 5.4 Operacion de eliminacion en pilas

| 200

Capitulo 5. Pilas y colas

Es importante destacar que el tnico elemento que se puede quitar es el que estd
en la posicién indicada por el tope. Por lo tanto, si debido a la aplicacién se requiere
eliminar un valor que ocupa una posicion intermedia, primero se deberan quitar
(al menos temporalmente) a partir del tope, todos los elementos que estén por en-
cima del elemento deseado.

A continuacién se presentan las plantillas de los métodos correspondientes a las
operaciones analizadas. Estos métodos requieren de operaciones auxiliares para
verificar el estado de la pila. En el caso de la insercion es necesario saber si la pi-
la tiene espacio disponible. Para ello se usa un método que comprueba si la pila
estd llena. En el caso de la eliminacién debe saber si hay elementos en la pila, para
lo cual se utiliza un método que determina si la pila estd vacia. La verificacion
del estado de la pila puede incorporarse a los métodos de insercion y eliminacion.
Sin embargo, para darle una mayor modularidad a los algoritmos se prefirié ma-
nejarlos como métodos auxiliares independientes.

/* Plantilla del método que introduce un dato a una estructura pila, si la
=misma tiene espacio disponible. En caso afirmativo, actualiza el valor
wdel tope. E1 método recibe como parametro el dato que va a insertar. */
template <class T>
void Pila<T>::Push(T Dato)
{
/* Verifica si hay espacio disponible en la pila. Si es asi,
wincrementa el valor de Tope y asigna el valor Dato a la casilla
windicada por éste. */
if (!Pila::Pilallena())
EspacioPila[++Tope]= Dato;
else
cout<<"\nError de desbordamiento. Pila llena.";

}

/* Plantilla del método que elimina el elemento que estd en el tope de
w]la pila (si no esta vacia), actualizando el valor del mismo. E1 método
wregresa el dato eliminado por medio de un parametro por referencia. */
template <class T>
void Pila<T>::Pop(T *Dato)
{
/* Verifica que haya al menos un elemento en la pila. Si es asi,
wasigna al parametro el valor que esta almacenado en la casilla
windicada por Tope y disminuye a éste en uno. */
if (!Pila::PilaVacia())
*Dato= EspacioPila[Tope--1];
else
cout<<"\nError de subdesbordamiento. Pila vacia.";

5.2 Pilas

201 |

/* Plantilla del método auxiliar que verifica si la pila esta llena,
wmes decir si ya no hay espacio disponible. Regresa 1 si todas las
wcasillas estan ocupadas y @ en caso contrario. */

template <class T>

int Pila<T>::Pilallena()

{
if (Tope == MAX-1)
return 1;
else
return 0;
}

/* Plantilla del método auxiliar que verifica si la pila estd vacia.
wRegresa 1 si no hay ningln elemento y @ en caso contrario. */
template <class T>

int Pila<T>::PilaVacia()

{
if (Tope == -1)
return 1;
else
return 0;
}

Los métodos Push y Pop imprimen un mensaje en caso de que las operaciones no
se puedan llevar a cabo. Sin embargo, los mismos podrian definirse como méto-
dos enteros, de tal forma que pudieran dar como resultado un ndimero que indi-
que si la operacion se realiz6 con éxito o no. Esto dltimo resulta més til a los
procesos usuarios de la clase, ya que podrian tomar decisiones de acuerdo al
resultado obtenido. Por su parte, los mensajes resultan mas claros en esta etapa
de aprendizaje. Como ejemplo, se presenta a continuacioén el método Push con la
modificacion sugerida.

/* Plantilla del método que, si hay espacio disponible, introduce un
wdato en la pila y actualiza el tope. Da como resultado un nimero entero
wque indica si la operacién de insercién pudo efectuarse (1) o no (0).
=E]l método recibe como parametro el dato a insertar. */
template <class T>
int Pila<T>::Push(T Dato)
{
/* La variable Res se inicializa en @ (fracaso). Si se realiza la
winsercion se le asignara 1. */
int Res= 0;

| 202 Capitulo 5. Pilas y colas

if (!Pila::Pilallena())

{
EspacioPila[++Tope]= Dato;
Res= 1;

}

return Res;

El programa 5.1 presenta la plantilla completa de la clase pila con todos sus méto-
dos y un ejemplo sencillo de aplicacion. En este programa, las operaciones de vali-
dacidn de existencia de espacio disponible y de existencia de al menos un elemento
en la pila (para las operaciones de insercion y eliminacidn) se hacen antes de invo-
car a los métodos a fin de mostrar otra manera de estructurarlos. En los métodos
previamente presentados, esta validacion se lleva a cabo dentro de los mismos.

Programa 5.1

/* Definicion del nUmero maximo de elementos que puede contener la pila,
wrestriccion que resulta del uso de un arreglo unidimensional. */
#define MAX 10

/ * Se define la plantilla de la clase Pila con todos sus atributos y mé-
wtodos. Ademds, se incluye una pequefia aplicacion de la misma. */
template <class T>
class Pila
{
private:
T EspacioPila[MAX];
int Tope;
public:
Pila();
void Push(T Dato);
void Pop(T *Dato);
int Pilallena();
int PilaVacia();

b

/* Declaracién del método constructor. Inicializa el Tope en -1,
windicando pila vacia. */

template <class T>

Pila<T>::Pila()

5.2 Pilas

203 |

{
}

Tope= -1;

/* Método que introduce un dato en la pila, actualizando el tope de la
wmisma. E1 uso de este método presupone que antes de invocarlo se debe
wyerificar que haya espacio disponible en la pila. */

template <class T>

void Pila<T>::Push(T Dato)

{

}

EspacioPila[++Tope]= Dato;

/* Método que quita al elemento que esta en el tope de la pila y lo
wasigna a un parametro por referencia. E1 uso de este método presupone
wque antes de invocarlo se debe verificar que la pila no esté vacia. */
template <class T>

void Pila<T>::Pop(T *Dato)

{

}

*Dato= EspacioPila[Tope--1];

/* Método auxiliar que verifica si la pila esta llena. Regresa 1 si
=»todos 1los espacios estan ocupados y @ en caso contrario. */
template <class T>

int Pila<T>::Pilallena()

{
if (Tope == MAX-1)
return 1;
else
return 0;
}

/* Método auxiliar que verifica si la pila esta vacia, regresando 1 si
=10 estd y @ en caso contrario. */

template <class T>

int Pila<T>::PilaVacia()

{
if (Tope == -1)
return 1;
else
return 0;
}

/* Funcién que usa la plantilla de la clase Pila. Se almacenan algunos
=nimeros enteros en un objeto tipo Pila y posteriormente se quita el
=(1timo guardado y lo imprime. */

void FuncionUsaPila ()

| 204

Capitulo 5. Pilas y colas

{
/* Declaracién de un objeto tipo Pila, usando el tipo int para
winstanciar la T. */
Pila<int> ObjPila;
int Valor = 0;
/* Mientras la pila no se llena inserta nUmeros en la misma. En este
wejemplo, es en la aplicacidén donde se evalla que haya espacio dispo-
wnible antes de llamar al método que inserta un valor en la pila. */
while (ObjPila.PilalLlena() != 1)
ObjPila.Push(Valor++);
/* Verifica si la pila no estd vacia. Si es asi, quita el elemento
walmacenado en el Tope (el Gltimo insertado) y lo imprime. */
if (objPila.PilaVacia() I= 1)
{
ObjPila.Pop(&Vvalor);
cout <<Valor<<"\n";
}
}

La estructuracién de los métodos presentada en el programa 5.1 tiene la ventaja
de independizar los métodos entre si. Sin embargo, tiene el inconveniente de

que deja a cargo del usuario de la clase las validaciones previas a las operaciones
de insercién y eliminacién, pudiendo ocasionar errores durante la ejecucion de
los métodos Push y Pop.

El programa 5.2 retoma la clase pila del programa 5.1, pero ahora utiliza la so-
brecarga de operadores. Al operador de suma aritmética se le asocia la operacién
de insercion de un elemento a la pila, y al operador de resta aritmética se le aso-
cia la operacién de eliminacion de un elemento de la pila.

Programa 5.2

/* Se define la plantilla de la clase Pila usando sobrecarga de
woperadores en los métodos de insercion y eliminacidén. */

#define MAX 10

template <class T>
class Pila

5.2 Pilas

205 |

private:
T EspacioPila[MAX];
int Tope;

public:

Pila();
void operator + (T);
void operator - (T *);
int Pilallena();
int PilaVacia();

b

/* Declaraci6n del método constructor por omisién. Asigna el valor -1
wal Tope, indicando que la pila estd vacia. */

template <class T>

Pila<T>::Pila():Tope(-1)

{1

/* Método que evalla si la pila esta llena. Regresa 1 si todos los
wespacios estan ocupados y @ en caso contrario. */

template <class T>

int Pila<T>::Pilallena()

{
if (Tope == MAX-1)
return 1;
else
return 0;
}

/* Método que evalla si la pila estd vacia, regresando 1 si lo estd y
=) en otro caso. */

template <class T>

int Pila<T>::PilaVacia()

{
if (Tope == -1)
return 1;
else
return 0;
}

/* E1 operador +, que normalmente indica la operacién aritmética de

=suma, se sobrecarga utilizandose para insertar un elemento en la pila.

=Por lo tanto, el operador +, en este programa, tendrd asociadas dos
woperaciones: suma de nUmeros e inserci6n de elementos en una pila. Se
wyerifica si la pila tiene espacio antes de invocar este método. Se
=wrecibe como parametro el dato a insertar. */

template <class T>

void Pila<T>::operator + (T Valor)

| 206

Capitulo 5. Pilas y colas

Tope++;
EspacioPila[Tope]= Valor;

}

/* E1 operador -, que normalmente indica la operaci6n aritmética de
wresta, se sobrecarga utilizandose para eliminar un elemento de la pila.
=»Por lo tanto, el operador -, en este programa, tendrd asociadas dos
woperaciones: resta de numeros y eliminacidén de elementos de una pila.
=S¢ verifica que la pila no esté vacia antes de invocar este método. E1
wyvalor eliminado se pasa como parametro por referencia. */

template <class T>

void Pila<T>::operator - (T *Valor)

*Valor= EspacioPila[Tope];
Tope--;

}

/* Funcién que usa la sobrecarga de operadores definida en la clase
=Pila. Se declara un objeto tipo Pila de enteros, luego se le insertan
=/AX elementos y por Ultimo, mientras la pila no esté vacia, se quitan y
=se imprimen cada uno de los valores almacenados en la misma. */
void UsaSobrecargaOperadores()
{

Pila <int> ObjPila;

int Indice;

/* Si la pila esta vacia se le agregan MAX elementos, usando el
woperador sobrecargado +. */
if (ObjPila.PilaVacia())
for (Indice= 0; Indice < MAX; Indice++)
ObjPila + Indice*2;

/* Mientras la pila no se vacie, se quita un elemento, usando el
=operador - sobrecargado, y se imprime. */
while (!ObjPila.PilaVacia())
{
ObjPila - &Indice;
cout << '\n' << Indice;

El programa 5.2 presentd la plantilla de la clase pila y utiliz6 sobrecarga de ope-
radores para implementar los métodos de insercién y eliminacion. Observe que
en la funcidn UsaSobrecargaOperadores () dichos métodos se invocan mediante
los operadores de suma y resta aritmética. Sin embargo, como se aplican a un
operando que es un objeto tipo Pila, hacen referencia a las operaciones de inser-
cién (y no a la suma aritmética de dos nimeros) y de eliminacién (y no a la resta

5.2 Pilas 207 |

aritmética entre nimeros) respectivamente. Es importante destacar, que en la apli-
cacion se evalian las condiciones de pila llena y de pila vacia, antes de invocar a
los métodos de insercion y eliminacidn.

A continuacién se presenta un programa de aplicacién de pilas. En el programa
se incluye una biblioteca con la plantilla de la clase pila correspondiente al
programa 5.2.

Programa 5.3

/* Se presenta un modelo simplificado de un banco el cual recibe
wcheques, los registra (almacenandolos temporalmente en pilas), y
=posteriormente los procesa. Se usan las clases Cheque, ChequeRechazado,
wBanco y Pila (esta ultima no se define sino que se incluye en la
wphiblioteca PlanPila.h). */

#include "PlanPila.h"

/* Definicidén de la clase Cheque. */
class Cheque

{
private:
int Numero, CuentaADepositar;
char Banco[10];
double Monto;
public:
Cheque () ;
Cheque (int, char[], int, double);
~Cheque();
void ImprimeDatos();
b

/* Declaracién del método constructor por omisién. */
Cheque::Cheque()
{}

/* Declaracién del método constructor con parametros. */
Cheque::Cheque(int NumCta, char *NomBco, int Cta, double Mon)
{

Numero= NumCta;

CuentaADepositar= Cta;

Monto= Mon;

strcpy (Banco, NomBco);

}

/* Declaracién del método destructor. */
Cheque::~Cheque()
{}

| 208

Capitulo 5. Pilas y colas

/* Método que despliega en pantalla los valores de todos los atributos
=de un cheque. */
void Cheque::ImprimeDatos()

{
cout<< "\nNumero de cheque: " << Numero;
cout<< "\nDel banco: " << Banco;
cout<< "\nDepositado en la cuenta: " << CuentaADepositar;
cout<< "\nMonto: " << Monto<<endl;
}

/* Definicion de la clase ChequeRechazado como clase derivada de la
wclase Cheque. */
class ChequeRechazado: public Cheque
{
private:
double Cargo;
public:
ChequeRechazado();
ChequeRechazado(int, char[], int, double);
~ChequeRechazado();
void ImprimeDatos();

b

/* Declaraciéon del método constructor por omision. */
ChequeRechazado: :ChequeRechazado ()

{}

/* Declaracion del método constructor con parametros. Invoca al

wconstructor de la clase base. */

ChequeRechazado::ChequeRechazado (int NumCta, char *NomBco, int Cta,
wdouble Mon): Cheque(NumCta, NomBco,
=(Cta, Mon)

/* Calcula el valor del atributo Cargo como el 10% del Monto del
=cheque. */
Cargo= Mon*0.10;

}

/* Declaracion del método destructor. */
ChequeRechazado: :~ChequeRechazado ()

{}

/* Método que despliega los valores de los atributos de un cheque
=rechazado. */
void ChequeRechazado::ImprimeDatos()
{
Cheque::ImprimeDatos();
cout<<"\nCargo por rechazo: " << Cargo<<endl;

}

5.2 Pilas

209 |

/* Definicién de la clase Banco, la cual tiene dos atributos: uno
=de ellos representa los cheques, que se almacenan en una pila hasta
=su procesamiento. El otro atributo son los cheques rechazados, que se
=almacenan en una pila diferente. Es decir, se usa la plantilla de la
=clase Pila con las clases Cheque y ChequeRechazado. */
class Banco
{
private:
Pila<Cheque> Cheques;
Pila<ChequeRechazado> ChequesRe;
public:
Banco();
~Banco();
void ProcesarCheque();
void ProcesarChequeR();
void RegistroCheque(Cheque);
void RegistroChequeR(ChequeRechazado);

b

/* Declaracién del método constructor por omisidn. */
Banco::Banco()

{}

/* Declaracién del método destructor. */
Banco::~Banco()

{}

/* Método que procesa un cheque: lo quita de la pila de cheques e
wimprime sus datos. Dado que se usa la plantilla de la clase Pila del
wprograma 5.2, se debe verificar que la pila no esté vacia antes de
wquitar un cheque. */
void Banco::ProcesarCheque()
{
Cheque ChequeCli;
if (!Cheques.PilaVacia())
{
Cheques - &ChequeCli;
cout<< "\n\n\nCheque procesado: ";
ChequeCli.ImprimeDatos();
}
else
cout<<"\n\nNo hay cheques por procesar.\n\n ";

}

/* Método que procesa un cheque rechazado: lo quita de la pila de
=cheques rechazados e imprime sus datos. Dado que se usa la plantilla
=de la clase Pila del programa 5.2, se debe verificar que la pila no
westé vacia antes de quitar un cheque rechazado. */

| 210 Capitulo 5. Pilas y colas

void Banco::ProcesarChequeR()
{
ChequeRechazado ChequeCli;
if (!ChequesRe.PilaVacia())
{
ChequesRe - &ChequeCli;
cout<< "\n\n\nCheque rechazado procesado: ";
ChequeCli.ImprimeDatos();
}
else
cout<<"\n\nNo hay cheques rechazados por procesar.\n\n ";

}

/* Método que registra un cheque: imprime sus datos y lo almacena en
=]la pila de cheques. Dado que se usa la plantilla de la clase Pila del
wprograma 5.2, se debe verificar que la pila no esté llena antes de
=insertar un nuevo cheque. */

void Banco::RegistroCheque(Cheque ChequeCli)

{
if (!Cheques.Pilallena())
{
cout<< "\n\n\nRegistrando el cheque: ";
ChequeCli.ImprimeDatos();
Cheques + ChequeCli;
}
else
cout<<"\n\nNo se pudo registrar el cheque por falta de
=mespacio. \n\n ";
}

/* Método que registra un cheque rechazado: imprime sus datos y lo
=almacena en la pila de cheques rechazados. Dado que se usa la plantilla
=de la clase Pila del programa 5.2, se debe verificar que la pila no
westé llena antes de insertar un nuevo cheque rechazado. */

void Banco::RegistroChequeR(ChequeRechazado ChequeCli)

{
if (!ChequesRe.Pilallena())

{

cout<< "\n\n\nRegistrando el cheque rechazado: ";
ChequeCli.ImprimeDatos();
ChequesRe + ChequeCli;

}

else
cout<<"\n\nNo se pudo registrar el cheque rechazado por falta

=de espacio. \n\n ";

5.3 Colas

211|

/* Funcién principal. En esta aplicacidén se crean algunos objetos y
=se usan para simular algunas operaciones de un banco de manera muy
wsimplificada. */
void main ()
{
/* Declaracién de objetos tipo Cheque y tipo ChequeRechazado, usando
=]10s constructores con parametros. */
Cheque Uno (1718, "Banamex", 14418, 18000.00);
Cheque Dos (1105, "Bancomer", 13200, 12319.62);
ChequeRechazado Tres (1816, "Banorte", 12850, 14000.00);
ChequeRechazado Cuatro (1905, "Bancomer", 13468, 50000.00) ;
/* Declaraci6n de un objeto tipo Banco. */
Banco MiBanco;
/* Se registran en MiBanco los cheques recibidos, usando la pila
wque les corresponde segun si el cheque fue aceptado o rechazado. */
MiBanco.RegistroCheque (Uno);
MiBanco.RegistroCheque (Dos) ;
MiBanco.RegistroChequeR(Tres);
MiBanco.RegistroChequeR(Cuatro);
/* Se procesan en MiBanco los cheques registrados. Debido a que se
=walmacenaron en una pila, se procesan en el orden inverso al que
=fueron registrados. */
MiBanco.ProcesarCheque() ;
MiBanco.ProcesarChequeR();
MiBanco.ProcesarCheque() ;
MiBanco.ProcesarChequeR();
/* Se intenta procesar otros cheques en MiBanco. Sin embargo ya no habra
welementos y los métodos desplegaran un mensaje indicando este caso. */
MiBanco.ProcesarCheque();
MiBanco.ProcesarChequeR();
}

5.3 Colas

Una cola es una estructura de datos lineal, es decir una coleccion de elementos

en la cual cada elemento tiene un sucesor y un predecesor Unicos, con excepcion
del primero y del dltimo. El primero no tiene predecesor y el dltimo no tiene su-
cesor. La estructura cola se caracteriza porque las operaciones de insercion y eli-

|212

Capitulo 5. Pilas y colas

minacién de elementos deben hacerse por extremos diferentes. Los elementos se
insertan por uno de los extremos y se eliminan por el otro extremo. Por lo tanto,
el primer elemento insertado serd el primero que podra eliminarse; a esta estruc-
tura también se le conoce con el nombre de estructura FIFO (por sus siglas del

inglés: First-In, First-Out: primero en entrar, primero en salir).

En una estructura tipo cola se identifican los dos extremos por donde se realiza-
ran las operaciones. El frente o principio de la cola sera el extremo en el cual se
eliminaran elementos, mientras que el final sera el extremo en el cual se haran las
inserciones. La figura 5.5 presenta un esquema de una estructura tipo cola, en la
que se insertaron 5 datos, estando el frente en la posicion O y el final en la 4.

0 1 2 3 4 5 MAX-1

Frente Final

FIGURA 5.5 Estructura tipo cola

El concepto de cola se usa en muchas actividades cotidianas, por ejemplo
cuando un grupo de personas se forma frente a la taquilla de un cine, la prime-
ra que lleg6 serd la primera en ser atendida. Otro ejemplo es la cola de auto-
movilistas frente a un seméforo en rojo, el primero en llegar al cruce de calle
serd el primero en pasar cuando la luz cambie a verde.

La cola es una estructura abstracta. Para el almacenamiento de los datos en la
memoria de la computadora debe usarse otra estructura. Para los efectos de este
libro, se utilizardn arreglos unidimensionales. Por lo tanto, la clase Cola tendra
como atributos la coleccién de elementos (por medio de un arreglo unidimensional)
y los apuntadores al primero y dltimo valores. Ademads, tendréd algunos métodos
que se analizardn en la siguiente seccion. La figura 5.6 presenta una plantilla de
la clase Cola. Se definié una plantilla para dar mayor generalidad a la solucion.

5.3 Colas 213 |

Cola (T)

Frente, Final: int

EspacioCola[MAX]: T

Métodos de almacenamiento
y acceso a los miembros de la
clase.

FIGURA 5.6 Clase Cola

A continuacién se presenta la codificacion de la plantilla de la clase cola, usando
el lenguaje C++.

/* Definicién del nUmero maximo de elementos que puede contener la cola,
wrestriccion propia de los arreglos. */
#define MAX 10

/* Definicion de la plantilla de la clase Cola. La misma tendra como
watributos la coleccién de elementos (haciendo uso de un arreglo) y
wapuntadores al primero y al Gltimo de ellos. En la plantilla también se
=hace referencia a algunos métodos, los cuales se analizaran con detalle
wen la siguiente seccién. */
template <class T>
class Cola
{ .
private:
T EspacioCola[MAX];
int Frente, Final;
public:
Cola();
/* En esta seccidn se declaran los métodos de modificacién y
=macceso a los miembros de la clase, los cuales se analizan en la
wsiguiente seccidn. */

b

/* Declaracién del método constructor. Inicializa el Frente y Final en
=-1, indicando cola vacia. */
template <class T>
Cola<T>::Cola()
{
Frente= -1;
Final= -1;

|214

Capitulo 5. Pilas y colas

Operaciones

Como ya se menciond, en una estructura tipo cola se insertan y eliminan elemen-
tos por extremos diferentes. Se agregan elementos por uno de los extremos, el
cual se conoce con el nombre de Final y se quitan por el otro extremo, llamado
Frente. Esta particularidad es lo que determina la manera en que se llevan a cabo
las operaciones de insercion y eliminacién.

La operacidn de insercion consiste en incrementar el puntero al final de la cola y
agregar el nuevo valor en dicha posicién. Antes de llevarse a cabo la operacién
resulta necesario verificar que en la cola haya espacio disponible. La manera de
evaluar esta condicién depende del tipo de estructura elegida para almacenar la
coleccion de elementos en la cola. Considerando que en este libro se usard un
arreglo unidimensional, la cola estard llena cuando el puntero al final tenga
un valor igual a MAX-1. La figura 5.7 presenta graficamente esta operacion.
Inicialmente, en la cola hay almacenados 5 elementos, que ocupan las casillas
de la 0 a la 4. Posteriormente se increment6 el Final (ahora estd apuntado a la
casilla 5) y se asignd en esa posicion el nuevo valor.

e o o
0 1 2 3 4 5 MAX-1
Frente Final
e o o
0 1 2 3 4 5 MAX-1
Frente Final

FIGURA 5.7 Operacion de Insercion en Colas

5.3 Colas

215|

A continuacién se presenta la plantilla del método correspondiente a la operacién
de insercion.

/* Método que inserta un valor en la cola. La insercidén se lleva a cabo
wpor el extremo identificado como Final. Antes de invocar el método se
=debe validar que la cola tenga espacio disponible. E1 valor a insertar
=se recibe como parametro. Cuando la cola estd vacia y se inserta un
=dato, entonces también se debe actualizar el puntero al frente de la
=cola. */
template <class T>
void Cola<T>::InsertaCola(T Dato)
{

EspacioCola[++Final]= Dato;

if (Final == 0)

Frente= 0;

En esta implementacion se asume que la aplicacion se encarga de verificar el es-
tado de la cola. Sin embargo, es posible realizar esta evaluacién dentro del método,
tal como se muestra en el programa 5.5.

La operacion de eliminacidn consiste en asignar a una variable de trabajo el valor
almacenado en la casilla indicada por el puntero Frente y desplazar a éste (incre-
mentar su valor) apuntando al siguiente elemento. Antes de llevarse a cabo la
operacion, resulta necesario verificar que la cola no esté vacia. La manera de eva-
luar esta condicidn depende del tipo de estructura elegida para almacenar la co-
leccién de elementos en la cola. Considerando que en este libro se usard un
arreglo unidimensional, la cola estard vacia cuando el puntero al frente tenga un
valor de —1. La figura 5.8 presenta de manera grafica esta operacion. Inicialmen-
te, en la cola hay almacenados 5 elementos, que ocupan las casillas de la 0 a la 4.
Después, se asigné el valor guardado en la casilla O (apuntada por el Frente) en
una variable auxiliar y se modific6 el valor de Frente, desplazandose hacia la
siguiente casilla.

|216

Capitulo 5. Pilas y colas

e o o
0 1 2 3 4 5 MAX-1
Frente Final
e o o
0 1 2 3 4 5 MAX-1
Frente Final

FIGURA 5.8 Operacion de eliminacion en colas

A continuacién se presenta la plantilla del método correspondiente a la operacion
de eliminacién de elementos de una cola.

/* Método que elimina un elemento de la cola. La eliminacién se lleva a
wcabo por el extremo identificado como Frente. Antes de invocar el método
wse debe validar que la cola no esté vacia. E1 valor eliminado se regresa
wComo un parametro por referencia. Si en la cola hubiera s6lo un elemento,
wentonces luego de quitarlo se deben poner los dos punteros en -1 para
windicar que la cola queddé vacia. */
template <class T>
void Cola<T>::EliminaCola(T *Dato)
{

*Dato= EspacioCola[Frente];

if (Frente == Final)

{
Frente= -1;
Final= -1;
}
else
Frente++;

5.3 Colas 217 |

Es importante destacar que al invocar el método de eliminacion, siempre se quita el
elemento que estd en el frente de la cola (fue el primero que se almacend en ella).

El programa 5.4 presenta la plantilla de la clase Cola, con todos sus atributos y
métodos. Ademds, incluye una aplicacién muy sencilla.

Programa 5.4

/* Se define la plantilla de la clase Cola. Ademas, se incluye un
wejemplo muy simple de aplicacidén de esta clase. */

/* Definicién del numero maximo de elementos que puede contener la cola,
wrestriccidon que surge de usar un arreglo unidimensional. */
#define MAX 10

/* Definicién de la plantilla de la clase Cola. */
template <class T>
class Cola
{
private:
T EspacioCola[MAX];
int Frente, Final;
public:
Cola();
void InsertaCola(T);
void EliminaCola(T*);
int Colallena();
int ColaVacia();
b

/* Declaracién del método constructor. Inicializa los punteros en -1,
=windicando que la cola esta vacia. */
template <class T>
Cola<T>::Cola()
{
Frente= -1;
Final= -1;

}

/* Método que inserta un valor en la cola. La insercién se lleva a cabo
wpor el extremo identificado como Final. Antes de invocar el método se
wdebe verificar que la cola tenga espacio disponible. E1 método recibe
=wcomo parametro el valor a insertar. */

template <class T>

void Cola<T>::InsertaCola(T Dato)

|218

Capitulo 5. Pilas y colas

{
EspacioCola[++Final]= Dato;
if (Final == 0)
Frente= 0;
}

/* Método que elimina un elemento de la cola. La eliminaci6n se lleva a
wcabo por el extremo identificado como Frente. Antes de invocar el método
wse debe verificar que la cola no esté vacia. E1 valor eliminado se
wregresa por medio de un parametro por referencia. */

template <class T>

void Cola<T>::EliminaCola(T *Dato)

{
*Dato= EspacioCola[Frente];
if (Frente == Final)
{
Frente= -1;
Final= -1;
}
else
Frente++;
}

/* Método auxiliar que verifica si la cola esta llena. Regresa 1 si la
=cola no tiene espacio disponible y @ en caso contrario. */

template <class T>

int Cola<T>::ColalLlena()

{
if (Final == MAX-1)
return 1;
else
return 0;
}

/* Método auxiliar que verifica si la cola esta vacia. Regresa 1 si la
=cola no tiene ningln elemento y @ en caso contrario. */

template <class T>

int Cola<T>::ColaVacia()

{
if (Frente == -1)
return 1;
else
return 0;
}

/* Funcién que hace uso de la plantilla de la clase Cola. Se declara un
wobjeto tipo Cola de numeros enteros. Se le inserta el nUmero 5 y luego
=se quita y se imprime. Este ejemplo sencillo muestra el uso de los
wmétodos de la clase. */

5.3 Colas

219|

void UsaClaseCola ()

{
Cola<int> ObjCola;
int Indice;
if (ObjCola.ColalLlena() != 1)
ObjCola.InsertaCola(5);
else
cout<<"\nError de desbordamiento. Cola llena. \n";
if (ObjCola.ColaVacia() != 1)
{
ObjCola.EliminaCola(&Vvalor);
cout<<Valor<<"\n";
}
else
cout<<"\nSubdesbordamiento. Cola vacia.\n";
}

Como puede observar, en la funcién de aplicacion se valida que haya espacio y
que la cola no esté vacia antes de invocar a los métodos de insercién y elimina-
cion respectivamente. Sin embargo, los métodos se pueden estructurar de manera
diferente, haciendo que ambos incluyan la validacién (invocacién de los métodos
auxiliares ColalLlena() y Colavacia()) dentro de su mismo cédigo. El programa
5.5 presenta la plantilla de la clase Cola, con los métodos estructurados de esta for-
ma. Ademds, utiliza sobrecarga de operadores.

Programa 5.5

/* Definici6on del nUmero maximo de elementos que puede contener la cola,
wrestriccidon que surge de usar un arreglo unidimensional. */
#define MAX 10

/* Definicién de la plantilla de la clase Cola. Se utiliza sobrecarga de
woperadores y se define a los métodos de insercién y eliminacién como
wmétodos enteros. */

| 220

Capitulo 5. Pilas y colas

template <class T>
class Cola
{
private:
T EspacioCola[MAX];
int Frente, Final;
public:
Cola();
int operator + (T)
int operator - (T*
int Colallena();
int Colavacia();

);

b

/* Declaracién del método constructor. Inicializa los punteros en -1,
windicando que la cola estad vacia. */
template <class T>
Cola<T>::Cola()
{
Frente= -1;
Final= -1;

}

/* Método que inserta un valor en la cola. La insercién se lleva a cabo por
=wel extremo identificado como Final. Antes de llevar a cabo la inser-
=cién se verifica que la cola tenga espacio disponible. Si la operacioén
wconcluye con éxito el método regresa un 1, en caso contrario un 0.*/
template <class T>

int Cola<T>::operator + (T Dato)

{
/* La variable Res se inicializa en @ (fracaso). Si la insercidn se
wlleva a cabo, entonces se le asignara el valor de 1 (éxito). */
int Res= 0;
if (ColalLlena() != 1)
{
EspacioCola[++Final]= Dato;
if (Final == 0)
Frente= 0;
Res= 1;
}
return Res;
}

/* Método que elimina un elemento de la cola. La eliminacién se lleva
=3 cabo por el extremo identificado como Frente. Antes de quitar el
=elemento se debe validar que la cola no esté vacia. E1 valor eliminado
wse regresa por medio de un paréametro por referencia. Si la operacidn
=concluye con éxito el método regresa un 1, en caso contrario un @. */

5.3 Colas

221 |

template <class T>
int Cola<T>::operator - (T *Dato)

{
/* La variable Res se inicializa en @ (fracaso). Si la eliminacidén se
wlleva a cabo, entonces se le asignara el valor de 1 (éxito). */
int Res= 0;
if (!Colavacia())
{
*Dato= EspacioCola[Frente];
if (Frente == Final)
{
Frente= -1;
Final= -1;
}
else
Frente++;
Res= 1;
}
return Res;
}

/* Método auxiliar que verifica si la cola esta llena. Regresa 1 si la
=cola no tiene espacio disponible y @ en caso contrario. */

template <class T>

int Cola<T>::Colallena()

{
if (Final == MAX-1)
return 1;
else
return 0;
}

/* Método auxiliar que verifica si la cola esta vacia. Regresa 1 si la
wcola no tiene ningln elemento y @ en caso contrario. */

template <class T>

int Cola<T>::ColaVacia()

{
if (Frente == -1)
return 1;
else
return 0;

| 222

Capitulo 5. Pilas y colas

La estructura que se le dio a los métodos tiene la ventaja de que cada método es
responsable de verificar los posibles casos de error, garantizando de esta manera
el buen uso de la estructura de datos. Los usuarios de la clase pueden analizar el
resultado que dan los métodos para tomar una decisién adecuada a cada caso.

El programa 5.6 presenta un ejemplo de aplicacion de la estructura cola. Se utili-
za una estructura de este tipo para almacenar los datos de algunos productos que
se tienen para la venta. La politica de ventas es que siempre se vende el producto
que tiene mds tiempo en el depoésito, es decir el primero que se comprd. Se usa
la plantilla definida en el programa 5.5, la cual estd en la biblioteca “Cola.h”.

Programa 5.6

/* Aplicacién de una estructura de datos tipo cola. Se define la clase
= Producto y una cola de objetos tipo Producto. Considerando que se
=quieren vender los productos de acuerdo al orden en el que fueron
wcomprados, se usé una cola para almacenarlos. La cola se actualiza a
=wmnedida que se compran o se venden productos. */

#include "Cola.h"

/* Definicién de la clase Producto. */
class Producto
{
private:
int Clave;
char NomProd[64];
double Precio;
public:
Producto();
Producto(int, char[], double);
double RegresaPrecio();
friend istream &operator>>(istream &, Producto &);
friend ostream &operator<<(ostream &, Producto &);
I+

/* Declaracién del método constructor por omision. */
Producto: :Producto()

{}

/* Declaracién del método constructor con parametros. */
Producto::Producto(int Cla, char NomP[], double Pe)

Clave= Cla;
strcpy (NomProd, NomP);
Precio= Pre;

}

5.3 Colas

223|

/* Método que permite, a usuarios externos a la clase, conocer el valor
=del atributo privado Precio. */
double Producto::RegresaPrecio()

{
}

return Precio;

/* Sobrecarga del operador >>. De esta forma se permite leer objetos de
=tipo Producto de manera directa . */
istream &operator>>(istream &Lee, Producto &0bjProd)

{

cout<<"\n\nIngrese clave del producto: ;
Lee>>0bjProd.Clave;

cout<<"\n\nIngrese nombre del producto: "“;
Lee>>0bjProd.NomProd;

cout<<"\n\nIngrese precio: ";
Lee>>0bjProd.Precio;

return Lee;

}

/* Sobrecarga del operador <<. De esta forma se permite imprimir objetos
=de tipo Producto de manera directa . */
ostream &operator<< (ostream &Escribe, Producto &0bjProd)
{
Escribe<<"\n\nDatos del producto\n";
Escribe<<"\nClave: "<<ObjProd.Clave;
Escribe<<"\nNombre: "<<ObjProd.NomProd;
Escribe<<"\nPrecio: "<<ObjProd.Precio;
return Escribe;

}

/* Funcién auxiliar que despliega al usuario las opciones de trabajo. En
weste caso registrar la compra o la venta de un producto. */
int Menu()
{
int Resp;
do {
cout<<"\n\nIngrese operacién a registrar: ";
cout<<"\n1- Compra de un producto ";
cout<<"\n2- Venta de un producto\n ";
cout<<"\n3- Termina el registro\n ";
cin>>Resp;
} while (Resp I= 1 && Resp l= 2 & Resp I= 3);
return Resp;

| 224

Capitulo 5. Pilas y colas

/* Funcioén principal que lleva a cabo la aplicacidén descrita. Se crea
=una cola de objetos tipo Producto y la misma se va modificando a medida
=que se compran o se venden productos. El uso de una cola para guardar
w1los productos facilita el cumplimiento de la condicidén impuesta para su
wyventa: el primero que se compre sera el primero que se venda. Al final
=de las transacciones se imprime el total de dinero recaudado con las
wyventas. */

void main()

{
Cola<Producto> Deposito;
Producto Prod;
int Opc;
double Total= 0;
Opc= Menu();
while (Opc == 1 |l Opc== 2)
switch (Opc)
{
case 1: cin>>Prod;
if (!(Deposito + Prod))
cout<<"\n\nNo hay lugar en el depésito para
wregistrar el producto.\n";
break;
case 2: if (Deposito - &Prod)
{
cout<<Prod;
Total= Total + Prod.RegresaPrecio();
}
else
cout<<"\n\n\nYa no hay productos en el
wdepoésito.\n\n";
break;
}
Opc= Menu();
}
cout<<"\n\n\nTotal vendido: "<<Total<<endl;
}

5.3.1 Colas circulares

Las estructuras tipo cola que se han estudiado hasta el momento resultan inefi-
cientes en cuanto al manejo del espacio de memoria, si se efectian sobre ellas
muchas actualizaciones. Es decir, si se realizan muchas inserciones y eliminacio-
nes puede darse el caso que el estado de la cola sea cola llena, no permitiendo
nuevas inserciones cuando en realidad se dispone de muchos espacios vacios. La

5.3 Colas 225|

figura 5.9 presenta el caso de que el puntero al final de la cola esta en la dltima
posicion del arreglo, lo cual producird que se detecte que no hay espacio disponi-
ble. Sin embargo, como se ilustra en la figura, el puntero al frente de la cola esta
desplazado hacia la derecha (consecuencia de haber hecho varias eliminaciones)
por lo que hay espacio fisico disponible en la estructura.

0 1 2 3 4 MAX-2 MAX-1

|]

Frente Final

FIGURA 5.9 Cola “llena”

Una cola circular es aquella en la cual el sucesor del tltimo elemento es el primero.
Por lo tanto, el manejo de las colas como estructuras circulares permite un mejor
uso del espacio de memoria reservado para la implementacién de las mismas. La
figura 5.10 corresponde a la representacion grafica de una cola circular. Observe
que el siguiente elemento del dltimo es el primero.

e o o
0 1 2 3 4 5 6 MAX-1
Frente Final

FIGURA 5.10 Estructura de una cola circular

La figura 5.11 presenta el esquema correspondiente a una cola circular, en la cual
el final se movio hacia el inicio de la cola, teniendo un valor menor al frente. En
este ejemplo, la cola tiene las posiciones 4 a MAX-1 y 0 a 1 ocupadas, siendo el
primer elemento a salir el que estd en la posicion 4 y el dltimo insertado el que
estd en la posicion 1.

| 226 Capitulo 5. Pilas y colas

0 1 2 3 4 5 6 MAX-1

Final Frente

FiIGUrRA 5.11 Cola circular

Los algoritmos correspondientes a las operaciones de inserciéon y eliminacién
varfan al tratarse de colas circulares, en lo referente a la actualizacién de los pun-
teros. Asimismo, la condicién para determinar si la cola estd llena debe considerar
todos los casos que puedan presentarse, que son:

1. el Frente en la posicion 0 y el Final en la posicién (MAX - 1), 0

2. el (Final+1) es igual al Frente
ambos se evalian por medio de la expresion: (Final+1) % MAX == Frente. A conti-
nuacion, el programa 5.7 presenta la plantilla completa de la estructura cola circular.

Programa 5.7

/* Definicidén del numero maximo de elementos que puede contener la cola
wcircular, por estar implementada con un arreglo unidimensional. */
#define MAX 10

/* Se define la plantilla de la clase ColaCircular. */
template <class T>
class ColaCircular
{
private:
T EspacioCola[MAX];
int Frente, Final;
public:
ColaCircular();
int InsertaCCircular(T);
int EliminaCCircular(T *);
int ColaCircularlLlena();
int ColaCircularVacia();

b

/* Declaracion del método constructor. Inicializa los punteros en -1
windicando que la cola circular esta vacia. */

5.3 Colas

227|

template <class T>
ColaCircular<T>::ColaCircular()
{

Frente= -1;

Final= -1;

}

/* Método entero que introduce un dato en la cola circular. E1 método
wrecibe como pardmetro el valor a insertar. E1 método da como resultado
wel valor 1 si la inserci6n se lleva a cabo y @ en caso contrario. */
template <class T>

int ColaCircular<T>::InsertaCCircular(T Dato)

{
int Resp= 0;
if (!ColaCircularLlena())
{
Resp= 1;
Final= (Final +1) % MAX;
EspacioCola[Final]= Dato;
if (Frente == -1)
Frente= 0;
}
return Resp;
}

/* Método entero que elimina un dato de la cola circular. E1 método
wregresa el valor eliminado por medio de un parametro por referencia.
=Da como resultado el valor 1 si realiza la eliminacién y @ en caso
=contrario. */

template <class T>

int ColaCircular<T>::EliminaCCircular(T *Dato)

{
int Resp= 0;
if (!ColaCircularVacia())
{
Resp= 1;

*Dato= EspacioCola[Frente];
if (Frente == Final)

{
Frente= -1;
Final= -1;
}
else

Frente= (Frente + 1) % MAX;
}

return Resp;

| 228 Capitulo 5. Pilas y colas

/* Método auxiliar que verifica si la cola circular estd llena. Regresa 1
=si la cola no tiene espacios disponibles y @ en caso contrario. */
template <class T>

int ColaCircular<T>::ColaCircularLlena()

{
if ((Final + 1) % MAX == Frente)
return 1;
else
return 0;
}

/* Método auxiliar que verifica si la cola circular estd vacia. Regresa 1
wsi la cola no tiene ningln elemento almacenado y @ en caso contrario. */
template <class T>

int ColaCircular<T>::ColaCircularVacia()

{
if (Frente == -1)
return 1;
else
return 0;
}

El programa 5.8 presenta un ejemplo de aplicacion de colas circulares. Observe
que para el usuario de la clase es totalmente indistinta la manera en la que esté
implementada la cola. La ventaja estd en el mejor aprovechamiento del espacio
de memoria. Sin embargo, el uso es igual al de las colas vistas al inicio de esta
seccion. Se utiliza la plantilla de la cola circular correspondiente al programa 5.7,
la cual se incluye en la biblioteca “ColaCircular.h’.

Programa 5.8

/* Aplicacién de una cola circular. Los datos de un grupo de pacientes
= (objetos de tipo Paciente) se registran en una cola a medida que los
wpacientes solicitan atencién de un médico. A su vez, cuando un médico
=se desocupa y estd en condiciones de recibir a otro paciente se obtienen
= (de la cola) los datos de un paciente y se le asigna a dicho médico.
=De esta manera se garantiza que los pacientes sean atendidos en el
=orden en el que fueron registrados. */

/* En la biblioteca “ColaCircular.h” se incluye la plantilla de la clase
ColaCircular presentada en el programa 5.7. */

5.3 Colas

229 |

#include "ColaCircular.h"

/* Definici6n de la clase Paciente. */
class Paciente
{
private:
char Nombre[64], Sexo, Padecim[64];
int AnioNac;
public:
Paciente();
Paciente(char[], char, char[], int);
friend istream &operator>>(istream &, Paciente &);
friend ostream &operator<<(ostream &, Paciente &);

b

/* Declaracién del método constructor por omisioén. */
Paciente::Paciente()

{}

/* Declaracién del método constructor con parametros. */
Paciente::Paciente(char Nom[], char S, char Padec[], int ANac)
{

strcpy (Nombre, Nom);

Sexo= S;

strcpy (Padecim, Padec);

AnioNac= ANac;

/* Sobrecarga del operador >> para poder leer objetos de tipo Paciente
=de manera directa. */
istream &operator>>(istream &Lee, Paciente &0bjPac)
{
cout<<"\n\nIngrese nombre del paciente: ";
Lee>>0bjPac.Nombre;
cout<<"\n\nSexo: ";
Lee>>0bjPac.Sexo;
cout<<"\n\nPadecimiento del paciente: ";
Lee>>0bjPac.Padecim;
cout<<"\n\nIAno de nacimiento: ";
Lee>>0bjPac.AnioNac;
return Lee;

/* Sobrecarga del operador << para poder desplegar en pantalla objetos
=de tipo Paciente de manera directa. */

| 230

Capitulo 5. Pilas y colas

ostream &operator<< (ostream &Escribe, Paciente &O0bjPac)
{
Escribe<<"\n\nDatos del paciente\n";
Escribe<<"\nNombre: "<<ObjPac.Nombre;
Escribe<<"\nSexo: "<<O0bjPac.Sexo;
Escribe<<"\nAno nacimiento: "<<ObjPac.AnioNac;
Escribe<<"\nPadecimiento: "<<ObjPac.Padecim;
return Escribe;

/* Funcién auxiliar que despliega al usuario las opciones de trabajo: regis-
wtrar un nuevo paciente o asignar médico a un paciente yaregistrado. */

int Menu()
{
int Opc;
do {

cout<<"\n\nBienvenido al sistema de registro de pacientes para
wconsulta. \n\n";
cout<<"\n¢Qué desea hacer?\n";
cout<<"\n 1-Registrar un nuevo paciente. ";
cout<<"\n 2-Asignar médico a un paciente.";
cout<<"\n 3-Terminar.\n";
cout<<"\n\nIngrese la opcidén elegida: ";
cin>>0pc;
} while (Opc < 1 Il Opc > 3);
return Opc;

}

/* Funcién que hace uso de la cola circular para almacenar los datos a
=procesar. Por medio de la cola se asegura que los datos se procesen en
=el orden en el que llegan: los pacientes se asignan a los médicos en el
=orden en el que llegaron a la consulta. */
void UsaColaCircular()
{

ColaCircular<Paciente> ListaEspera;

Paciente Pac;

int Opc= Menu();

while (Opc == 1 Il Opc== 2)
{
switch (Opc)
{
case 1: cin>>Pac;
if (!ListaEspera.InsertaCCircular(Pac))

5.3 Colas

231 |

cout<<"\nLa cuota de pacientes se agotd. Regrese
=manana.";
break;
case 2: if (ListaEspera.EliminaCCircular (&Pac))
cout<<"\n\nEl paciente que pasa a consulta es:
= "<<Pac;
else
cout<<"\n\n\nNo hay pacientes en espera de ser
=atendidos.\n\n";
break;
}
Opc= Menu();

5.3.2 Colas dobles

Otra variante de las estructuras tipo cola son las colas dobles. Como su nombre
lo indica, estas estructuras permiten realizar las operaciones de insercién y elimi-
nacioén por cualquiera de sus extremos. Graficamente una cola doble se representa
de la siguiente manera:

0 1 2 3 MAX-1

FIGURA 5.12 Cola doble

Debido a que este tipo de estructura es una generalizacién del tipo cola no se pre-
sentan aqui las operaciones. Al respecto, s6lo se menciona que serd necesario de-
finir métodos que permitan insertar por el frente y por el final, asi como métodos
que permitan eliminar por ambos extremos. Las condiciones para determinar el
estado de la cola no varian.

Por tltimo, es importante sefialar que una doble cola también puede ser circular.
En dicho caso, serd necesario que los métodos de insercion y eliminacién (sobre
cualquiera de los extremos) consideren el movimiento adecuado de los punteros.

| 232

Capitulo 5. Pilas y colas

Ejercicios

1. Escriba un programa en C++ que, apoyandose en un objeto tipo pila, tra-
duzca una expresion dada en notacién infija a notacion prefija. Por ejemplo,
si la expresion dada es a + b, su programa debe generar como salida + a b.

2. Escriba un programa en C++ que, apoyandose en un objeto tipo pila, evalie
una expresion dada en notacién prefija. Por ejemplo, si la expresion dada es
+ 8 4, su programa debe generar como salida el valor /2. Puede asumir que
se dardn nimeros de un solo digito.

3. Escriba un programa en C++ que elimine los elementos repetidos de una pi-
la. Suponga que si existen elementos repetidos, los mismos se encuentran
en posiciones consecutivas. Puede usar cualquier estructura de datos como
auxiliar. Observe la siguiente figura:

Tope —> 879
1285
1285
1285 Tope—> 879
1500 1285
450 1500
450 450
Pila dato Pila resultado

4. Escriba un programa en C++ que invierta los elementos almacenados en
una pila. Puede usar cualquier estructura de datos como auxiliar. Observe la
siguiente figura:

Ejercicios 233 |

Tope —> 623 Tope—> 928
1024 3209
3209 1024
928 623
Pila dato Pila resultado

. Defina la clase Cola y utilice sobrecarga de operadores en los métodos necesa-
rios para implementar las operaciones asociadas a este tipo de estructura. Se
sugiere usar la suma aritmética (+) para la insercion y la resta aritmética (-)
para la eliminacidn.

6. Escriba un programa en C++ que invierta iterativamente los elementos de
una cola. Puede usar cualquier estructura de datos como auxiliar.

. Escriba un programa en C++ que invierta recursivamente los elementos de
una cola. Puede usar cualquier estructura de datos como auxiliar.

. Escriba un programa en C++ que elimine los elementos repetidos de una
cola circular. Suponga que si existen elementos repetidos, los mismos se
encuentran en posiciones consecutivas (ver la figura). Puede usar cualquier
estructura de datos como auxiliar.

87 | 54 | 54 | 54 | 91 | 91

1 2 3 4 5 6 MAX-1

| |

Frente Final

| 234

Capitulo 5. Pilas y colas

9. Defina la plantilla de la clase DobleCola, de acuerdo a las especificaciones
que se dan a continuacion.

DobleCola(T)

Frente, Final: int

EspaDobleCola[MAX]: T

Constructor.

int Insertalzq(T)
int InsertaDer(T)
int Eliminalzq(T)
int EliminaDer(T)
int DobleColallena()

int DobleColaVacia()

10. Escriba un programa en C++, que mediante la plantilla de la cola circular pre-
sentada en este capitulo, simule el comportamiento de una cola de impresion.
La cola deberd almacenar objetos de la clase Impresion, cuyas especificaciones
se dan a continuacién. El programa leerd dos posibles opciones de trabajo so-
bre la cola de impresion: a) encolar un nuevo archivo a imprimir o b) imprimir
un archivo. Su programa debe verificar que las opciones dadas por el usuario
puedan realizarse, en caso contrario desplegard un mensaje adecuado.

Impresion

NombreArchivo: char[]
Autor: char[]

HoraDeEncolar: char[]

Constructor(es).

Métodos de acceso y modificacion a los
miembros de la clase.

Ejercicios 235 |

11. Escriba un programa en C++, que mediante la plantilla de la cola circular
presentada en este capitulo, simule el comportamiento de una cola de aten-
cion a clientes de un banco. La cola deberd almacenar objetos de la clase
clientes. Defina qué atributos y métodos debera incluir esta clase. El pro-
grama leerd, mientras el usuario asi lo requiera, dos posibles opciones de
trabajo sobre la cola de espera de los clientes:

a) Llega un nuevo cliente al banco, en cuyo caso debe ingresarse a la co-
la de espera. El usuario proporcionard los datos del cliente.

b) Un cliente pasa a la ventanilla donde serd atendido. El dato sera el nu-
mero de ventanilla a la que debe pasar.

Al finalizar el dia de trabajo, su programa debe imprimir el total de clientes
atendidos.

12. En la Direccién escolar de una escuela se reciben solicitudes de constan-
cias de estudio de los alumnos. Cada constancia lleva el nombre del alumno,
nombre de la carrera que cursa, total de materias aprobadas 'y promedio
general. Escriba un programa en C++ que, apoyandose en un objeto tipo
cola, pueda realizar las siguientes operaciones:

a) Dar de alta la solicitud de un alumno (la solicitud debe encolarse, ya
que se atenderd segtin el orden en el cual se recibid).

b) Elaborar una constancia. La misma debe tener todos los datos mencio-
nados. Esta operacién presupone que los datos del alumno cuya solici-
tud es atendida deben quitarse de la cola.

La cola almacenard objetos tipo Alumno y tomard los datos de dichos objetos para
la elaboracion de la constancia. Defina qué atributos y métodos tendra la clase
mencionada. Utilice alguna de las plantillas de la clase cola explicadas en este
capitulo.

13. Retome el problema anterior. Escriba un programa en C++ que permita eli-
minar de la cola de espera de la Direccién escolar a todos aquellos alumnos
cuya carrera sea igual a un cierto valor dado por el usuario.

CAPIiTULO 6

Listas

6.1 Introduccion

Este capitulo presenta la estructura de datos conocida como lista y
muestra las principales caracteristicas, como se relacionan sus compo-
nentes y analiza las operaciones que se le pueden aplicar.

En términos generales, una lista se define como una coleccion de ele-
mentos donde cada uno de ellos, ademas de almacenar informacion,
almacena la direccién del siguiente elemento. Una lista es una estruc-
tura lineal de datos. Es decir, cada uno de sus componentes tiene un
sucesor y predecesor Unicos, con excepcion del dltimo y del primero,
los cuales carecen de sucesor y de predecesor respectivamente.

Las listas pueden implementarse mediante arreglos resultando asi una
estructura estatica (el tamafio de la misma no varia durante la ejecucién
del programa). Otra alternativa para su implementacion es usar memoria

| 238 Capitulo 6. Listas

dindmica, lo que permite que dicha caracteristica se propague a la lista, obteniendo
una estructura dindmica (la cantidad de memoria ocupada puede modificarse durante
la ejecucion del programa). Las listas se analizardn como estructuras dindmicas.

6.2 Listas simplemente ligadas

Una lista simplemente ligada es una estructura de datos lineal, dindmica, formada
por una coleccién de elementos llamados rodos. Cada nodo estd formado por dos
partes: la primera de ellas se utiliza para almacenar la informacion (razén de ser de la
estructura de datos), y la segunda se usa para guardar la direccién del siguiente nodo.

La figura 6.1 presenta un esquema de un nodo. Cabe destacar, que cada nodo
solo conoce la direccién del nodo que le sucede.

Direccién del siguiente nodo
—

Informacion

FIGURA 6.1 Estructura de un nodo

La figura 6.2 muestra la representacion grafica de una lista simplemente ligada.
La lista estd formada por una coleccién de nodos, cada uno de los cuales apunta
al siguiente nodo, excepto el dltimo que en la posicién dedicada a la direccién de
su vecino tiene el valor NULL. Ademads, se puede observar que se requiere de un
puntero al primer elemento de la lista. Como éste no tiene predecesor, es indispensa-
ble que una variable tipo puntero almacene su direccién. A continuacion se puede
observar que el puntero al inicio de la lista se identifica con el nombre de Primero.

Primero

FIGURA 6.2 Lista simplemente ligada NULL

6.2 Listas simplemente ligadas

239 |

Las figuras 6.3 y 6.4 presentan las plantillas de la clase NodoLista y de la clase
Lista respectivamente. Se usan plantillas para dar mayor generalidad a la solucién.
La clase NodoLista tiene dos atributos, uno que representa la informacién a alma-
cenar por lo que se define de tipo T, y otro que representa la direccion de otro no-
do por lo que se define como un puntero a un objeto de la misma clase. Por su
parte, la clase Lista tiene un Unico atributo que representa la direccién del primer
elemento de la lista, por lo cual es de tipo puntero a un objeto de tipo NodoLista.

NodoLista(T)

Info: T

Liga: *NodoLista(T)

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 6.3 Clase NodoLista

Lista(T)

Primero: *NodoLista(T)

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 6.4 Clase Lista

A continuacion se presenta el cddigo en lenguaje C++ correspondiente a la defi-
nicién de las plantillas de las clases NodoLista y Lista.

/* Prototipo de la plantilla de la clase Lista. Asi, en la clase
wNodoLista se podra hacer referencia a ella. */

template <class T>

class Lista;

/* Definicion de la plantilla de la clase NodoLista. La clase Lista se
=declara como una clase amiga para que pueda tener acceso a los miembros
=wprivados de la clase NodoLista. */

| 240

Capitulo 6. Listas

template <class T>
class NodolLista
{
private:
NodoLista<T> * Liga;
T Info;
public:
NodoLista();
friend class Lista<T>;

b

/* Declaracién del método constructor por omisién. */
NodoLista::NodoLista()
{

}

Liga= NULL;

/* Definicién de la plantilla de la clase Lista. Esta clase tiene un
=s0lo atributo que es un puntero al primer elemento de la misma. */
template <class T>

class Lista

{
private:
NodoLista<T> * Primero;
public:
Lista();
/*En esta seccion se incluyen los métodos de acceso y
wmodificacion a los miembros de la clase. */
b

/* Declaracién del método constructor por omision. */
template <class T>

Lista:: Lista()

{

}

Primero= NULL;

La clase NodoLista se utiliza para representar un nodo, por lo tanto se incluyen
dos atributos: uno para almacenar informacioén de cualquier tipo (tipo T) y el otro
para almacenar la direccién de otro objeto del mismo tipo. La seccion publica
contiene el método constructor y la declaracion de amistad con la clase Lista,
esto ultimo para permitir que los miembros de ésta tengan acceso a sus propios
miembros. Ademds, se podrian definir otros métodos, por ejemplo uno para re-
gresar el atributo Info 0 uno para modificarlo.

6.2 Listas simplemente ligadas

241 |

A partir de la clase NodoLista se define la clase Lista, que estd formada por un
tinico atributo (tipo puntero a un objeto NodoLista) que representa el puntero al
primer elemento de la lista. Este atributo permite el acceso a todos los elementos
de la lista, debido a que el primero conoce la direccién del segundo, éste la del
tercero y asi sucesivamente hasta llegar al dltimo. En la seccion publica se decla-
ran los métodos para tener acceso y modificar sus miembros, asi como aquellos
que permiten la manipulacién de la informacién almacenada.

Las operaciones bdsicas a realizar en una lista previamente generada son: inser-
cidn, eliminacién y buisqueda. La creacién de la misma también se puede consi-
derar dentro de esta categoria. Es importante destacar que cualquiera que sea la
operacion a realizar en una lista simplemente ligada no debe perderse la direcciéon
del primer elemento de la misma. Teniendo este puntero se tiene acceso a

todos los elementos, mientras que si se pierde su valor no existe manera de recu-
perar la direccidén al primer nodo y de éste al segundo y asi a los demds elemen-
tos. A continuacién se analizan las principales operaciones. Las variantes de una
misma operacion se deben principalmente a la posicion dentro de la lista donde
se lleve a cabo ésta.

6.2.1 Insercion de elementos en una lista

La operacién de insercion de un nuevo nodo a una lista consiste en tomar un
espacio de memoria dindmicamente, asignarle la informacion correspondiente y
ligarlo a otro nodo de la lista. Los pasos varian dependiendo de la posicién del
nodo al cual se ligue el nuevo elemento. La operacién de crear un nodo, en el
lenguaje C++, se lleva a cabo por medio de la instruccion new. La misma asigna
un espacio de memoria y da como resultado la direccidn del bloque asignado. En
caso de que no sea posible asignar el espacio de memoria, el resultado serd el
valor NULL.

Insercion al principio de la lista

La figura 6.5 presenta un esquema de la insercién de un nuevo elemento al inicio
de la lista. Se crea un nodo, cuya direccion se guarda en una variable auxiliar 1la-
mada P, y se liga con el primero de la lista. Una vez realizado este paso, se rede-
fine el Primero con el valor de p.

| 242 Capitulo 6. Listas

Primero

Y

Primero > -T>

NULL

/

P
FIGURA 6.5 Lista simplemente ligada

El método para llevar a cabo esta operacion es el siguiente:

/* Plantilla del método que inserta un elemento al inicio de la lista,
wconvirtiéndose en el primero de la misma. Recibe como parametro el dato
=3 insertar. */
template <class T>
void Lista<T>::Insertalnicio(T Dato)
{

NodoLista<T> * P;

P= new NodoLista<T>();

P->Info= Dato;

P->Liga= Primero;

Primero= P;

Observe que se usa la notacién variable->Atributo debido a que variable es un
puntero a un objeto de la clase NodoLista.

El método presentado es valido para insertar un elemento al inicio de una lista vacia
o al inicio de una lista previamente creada. Por lo tanto, puede generalizarse para
crear una lista insertando los elementos siempre por el principio de la misma.

Insercion al final de la lista

Otro caso frecuente de insercidn es cuando interesa agregar un nuevo elemento al
final de la lista. La figura 6.6 presenta graficamente esta operacién. Se crea un
nuevo nodo, apuntado por P, y se establece una liga entre el tltimo nodo de la

6.2 Listas simplemente ligadas

243 |

lista y éste. Para llegar al dltimo elemento es necesario recorrer toda la lista, desde el
primero hasta dicho nodo. Si la lista es definida con un puntero al inicio y otro al
final, el recorrido hasta el dltimo nodo se omite. Sin embargo, segtn la definicién
previa de la clase Lista, se requiere hacer la operacion auxiliar mencionada.

Primero

lUltimo
)/P
. —> > 7)
% |
NULL NULL

FIGURA 6.6 Insercion al final de la lista

El conjunto de pasos necesarios para llevar a cabo esta operacion se presenta en
el siguiente método de la clase Lista.

/* Método que inserta un nodo al final de la lista, convirtiéndose en el
=(1timo elemento de la misma. Recibe como parametro el dato a almacenar
wen dicho nodo. */
template <class T>
void Lista<T>::InsertaFinal(T Dato)
{
NodoLista<T> * P, *Ultimo;
P= new NodoLista<T>();
P->Info= Dato;
if (Primero)
{
/* Si la lista tiene al menos un elemento, entonces se debe
wrecorrer hasta llegar al Ultimo nodo. */
Ultimo= Primero;
while (Ultimo->Liga)
Ultimo= Ultimo->Liga;
/* EL Gltimo nodo de la lista apunta al nuevo nodo, cuya
=direccién esta en P. */
Ultimo->Liga= P;

else
/* Si la lista no tiene elementos, entonces el nuevo elemento
wsera el primero de la misma. */
Primero= P;

244

Capitulo 6. Listas

El método presentado incluye el recorrido de la lista hasta encontrar el dltimo
elemento. También contempla si la lista estd vacia, ya que en este caso deber4 re-
definir el atributo Primero con el valor del puntero al nodo que inserté. Es impor-
tante mencionar que el constructor de la clase NodoLista se encargd de asignarle
la constante NULL al atributo Liga de P, y dado que serd el dltimo de la lista se
queda con ese valor.

Insercion antes de un nodo dado como referencia

La figura 6.7 presenta un esquema de la insercién de un nuevo elemento antes de
un nodo que almacena cierto dato dado como referencia. Este caso es titil para el
manejo de listas cuya informacion estd ordenada.

Para llevar a cabo este tipo de insercién, primero se busca el nodo dado como re-
ferencia guardando la direccion del anterior (apuntado por Ant). Si se encuentra
el nodo, entonces se crea otro (cuya direccién es almacenada en la variable p)
estableciéndose las ligas entre éste y el dado como referencia, y entre el anterior
y el nuevo.

Primero Ant

e

—+ > Ref >

NULL

PREE

FIGURA 6.7 Insercion antes de un nodo dado como referencia

El método que implementa esta variante de la operacién de insercion es el siguiente:

/* Método que inserta un nodo antes de un nodo dado como referencia.
wRecibe como parametros el dato a guardar en el nuevo nodo (Dato) y la
winformacién dada como referencia (Ref). E1 método regresa 1 si se pudo
wagregar el dato a la lista, @ si no se encontré el dato dado como
wreferencia y -1 si la lista estd vacia. */

6.2 Listas simplemente ligadas

245 |

template <class T>
int Lista<T>::InsertaAntes(T Dato, T Ref)
{
NodoLista<T> * P, *Ant, *Q;
int Resp= 1;
if (Primero)
{
Q= Primero;
while ((Q I= NULL) && (Q->Info I= Ref))
{
Ant= Q;
Q= Q->Liga;
}
if (@ != NULL)
{
P= new NodoLista<T>();
P->Info= Dato;
/* E1 dato de referencia es el primero de la lista. */
if (Primero == Q)
{
P->Liga= Primero;
Primero= P;
}
else
{
Ant->Liga= P;
P->Liga= Q;
1§
}
else
/* No se encontrd el dato dado como referencia. */
Resp= 0;
}
else
/* La lista esta vacia. */
Resp= -1;
return Resp;

El método presentado incluye la bisqueda del elemento dado como referencia.
Ademas, contempla los posibles casos de fracaso: si la lista esta vacia o si el
elemento dado como referencia no estd en la lista. También se toma en cuenta la
posicién del elemento de referencia dentro de la lista, ya que si es el primero de
la misma el puntero Primero se debe redefinir.

| 246 Capitulo 6. Listas

Inserciéon después de un nodo dado como referencia

La figura 6.8 presenta un esquema de la insercién de un nuevo elemento después
de un nodo que almacena cierto dato dado como referencia. Este caso, lo mismo que
el anterior, es usado cuando se trabaja con listas cuya informacion estd ordenada.

Se empieza buscando el nodo que guarda el dato dado como referencia. Si se en-
cuentra, entonces se crea un nodo cuya direccién queda en la variable p. Luego
se establecen las ligas requeridas para relacionar el nuevo elemento con el dado
como referencia y con el sucesor de este dltimo.

Primero Q

e

—> —> Ref N

Y
;

NULL

e

FIGURA 6.8 Insercion antes de un nodo dado como referencia

A continuacién se presenta el método que implementa este tipo de insercidn de
nodos en una lista simplemente ligada.

/* Método que inserta un nuevo elemento (Dato) como nodo sucesor de uno
wque almacena un dato dado como referencia (Ref). E1 método regresa 1 si
wse pudo insertar, @ si no se encontrd la referencia y -1 si la lista
westd vacia. */
template <class T>
int Lista<T>::InsertaDespues(T Dato, T Ref)
{

NodoLista<T> * Q, *P;

int Resp= 1;

if (Primero)

6.2 Listas simplemente ligadas

247 |

Q = Primero;
while ((Q != NULL) & & (Q->Info != Ref))
Q= Q->Liga;
if (Q != NULL)
{
P= new NodoLista<T>();
P->Info= Dato;
P->Liga= Q->Liga;
Q->Liga= P;
}
else
/* No se encontrd la referencia. */
Resp= 0;
}
else
/* La lista estéa vacia. */
Resp= -1;
return Resp;

El método presentado incluye la bisqueda del elemento dado como referencia.
Ademds, contempla los posibles casos de fracaso: si la lista estd vacia o si el ele-
mento dado como referencia no estd en la lista.

Los métodos presentados podrian modificarse incluyendo la evaluacién de si hu-
bo o no espacio de memoria disponible. Si el valor arrojado por la instruccién
new fue NULL, entonces el método deberia indicarlo de alguna manera al progra-
ma usuario.

6.2.2 Eliminacion de elementos de una lista

La operacion de eliminacion de un nodo de una lista consiste en encontrar el va-
lor a quitar, establecer la liga correspondiente entre el nodo que lo precede y su
sucesor y finalmente liberar la porcién de memoria ocupada por el nodo elimina-
do. Se pueden presentar algunas variantes segtin la posiciéon que el elemento ten-
ga en la lista. A continuacion se analizan los principales casos. La operacién de
liberar espacio de memoria, en el lenguaje C++, se lleva a cabo por medio de la
instruccion delete().

| 248

Capitulo 6. Listas

Eliminacion del primer elemento de la lista

La figura 6.9 presenta el esquema correspondiente a esta operacion. El nodo que
se va a eliminar debe ser apuntado por una variable auxiliar, en este caso llamada
P, luego se debe redefinir el Primero con la direccion de su sucesor y finalmente
se libera la porcién de memoria ocupada por el nodo.

Primero

T\

VAN ")

FIGURA 6.9 Eliminacion del primer nodo de la lista

El método para llevar a cabo esta operacion es el siguiente:

/* Método que elimina el primer elemento de la lista. E1 método redefine
wel puntero al inicio de la lista y libera el espacio de memoria del nodo
weliminado. Regresa 1 si se realiz6 la operaci6n y @ en caso contrario. */
template <class T>
int Lista<T>::EliminaPrimero()
{
NodoLista<T> * P;
int Resp= 1;
if (Primero)
{
P= Primero;
Primero= P->Liga;
delete (P);
}
else
/* La lista esta vacia. */
Resp= 0;
return Resp;

EI método presentado verifica si la lista tiene al menos un nodo, ya que en caso
contrario no existe un primer elemento que pueda quitarse.

6.2 Listas simplemente ligadas 249|

Eliminacion del ultimo elemento de la lista

La figura 6.10 presenta graficamente la secuencia de pasos necesarios para quitar
el ultimo nodo de una lista simplemente ligada. En este caso, se debe recorrer la
lista hasta llegar al elemento deseado, guardando la direccién de su predecesor.
Una vez encontrado se debe redefinir su predecesor como tltimo elemento de la
lista y liberar el espacio de la memoria correspondiente.

)/Ant \/%

Y / \y
NULL NULL
FIGURA 6.10 Eliminacion del ultimo nodo de la lista

Primero

A continuacién se presenta el método que implementa los pasos explicados ante-
riormente.

/* Método que elimina el Gltimo nodo de una lista. Primero lo localiza,
wguardando la direccion del nodo que le precede. Posteriormente redefine
wla liga de éste con el valor de NULL para indicar que ahora es el Ultimo
=y finalmente libera el espacio de memoria. E1 método regresa 1 si se
wpuede llevar a cabo la eliminacidén y @ en caso contrario. */
template <class T>
int Lista<T>::EliminaUltimo()
{
NodoLista<T> * Ant, *P;
int Resp= 1;
if (Primero)
{
/* Verifica si la lista esta formada por un Unico elemento,
=en tal caso redefine el puntero al inicio con el valor de NULL,
windicando lista vacia. */
if (!Primero->Liga)
{
delete (Primero);
Primero= NULL;

| 250

Capitulo 6. Listas

}
else
{
P= Primero;
while (P->Liga)
{
Ant= P;
P= P->Liga;
}
Ant->Liga= NULL;
delete (P);
}
}
else
/* La lista esta vacia. */
Resp= 0;
return Resp;
}

El método presentado considera el caso de una lista formada por un dnico ele-
mento (primero y ultimo) la cual, después de la eliminacién, queda vacia.

Eliminacion de un elemento de la lista

La figura 6.11 presenta graficamente los pasos necesarios para eliminar al nodo
que almacena cierta informacién, en una lista previamente formada. Se puede
observar que primero se recorre la lista hasta llegar al elemento buscado (valor de
referencia dado por el usuario, apuntado por P), guardando la direccién de

su predecesor (Ant). Una vez encontrado se debe establecer la liga entre su
predecesor y su sucesor y liberar el espacio de memoria ocupado por dicho nodo.

Primero

_/ Y

45 > %{ —> >
!

7 77\ !

NULL

FIGURA 6.11 Eliminacion de un elemento de la lista

6.2 Listas simplemente ligadas

251 |

El método para llevar a cabo esta operacion es el siguiente:

*/

/* Método que elimina un nodo que almacena cierta informacion. E1 método
=yverifica que la lista tenga elementos y que el elemento dado como
wreferencia se encuentre en la lista. Recibe como parametro el dato a
=weliminar y regresa como resultado 1 si lo elimina, @ si no lo encuentra
wy -1 si la lista esta vacia. */
template <class T>
int Lista<T>::EliminaUnNodo(T Ref)
{
NodoLista<T> * P, *Ant;
int Resp= 1;
if (Primero)
{
P= Primero;
while ((P->Liga) && (P->Info l= Ref))
{
Ant= P;
P= P->Liga;
}
if (P->Info != Ref)
/* E1 elemento no fue encontrado.
Resp= 0;
else
{
if (Primero == P)
Primero= P->Liga;
else
Ant->Liga= P->Liga;
delete (P);
}
}
else
Resp= -1;
return Resp;
}

El método presentado contempla el caso de que el elemento dado como referen-
cia no se encuentre en la lista, asi como el caso de que sea el primero. Por otra
parte, si la lista tiene un tnico elemento y éste fuera el nodo a quitar, al redefinir
Primero con el valor de P—>Liga, se le estarfa asignando la constante NULL.

A los métodos definidos para la operacion de eliminacién se los podria modificar
de tal manera que regresen, a través de un pardmetro, la direccién del nodo quita-
do de la lista. De esta forma, el nodo o su contenido podrian usarse en la aplica-
cion, luego de lo cual se liberaria el espacio de memoria.

| 252

Capitulo 6. Listas

A continuacion, el programa 6.1 presenta la plantilla de la clase Lista con todos
sus atributos y métodos. Ademads de las principales operaciones analizadas, se in-
cluyeron otras que pueden ser utiles para el manejo de la informacién almacena-
da en una lista simplemente ligada. Por razones de espacio, se incluy6 sélo el
prototipo y el encabezado de algunos de los métodos ya explicados.

Programa 6.1

/* Definicién de la plantilla de la clase NodoLista y de la clase Lista.
=Se incluyeron los métodos mas usados. Sin embargo, dependiendo de la
waplicacién se podrian definir otros. */

/* Prototipo de la plantilla de la clase Lista. Asi, en la clase
wNodoLista se podra hacer referencia a ella. */

template <class T>

class Lista;

/* Definicidén de la clase NodoLista. */
template <class T>
class NodolLista
{
private:
NodoLista<T> * Liga;
T Info;
public:
NodoLista();
T Regresalnfo();
friend class Lista<T>;

};

/* Declaracién del método constructor por omisién. Inicializa con el
wyvalor NULL al puntero al siguiente nodo. */

template <class T>

NodoLista<T>::NodoLista()

{
}

Liga= NULL;

/* Método que permite, a usuarios ajenos a la clase, conocer el valor
wdel atributo Info. */

template <class T>

T NodoLista<T>::Regresalnfo()

{

}

return Info;

6.2 Listas simplemente ligadas

253 |

/* Definicién de la clase Lista. */

template <class T>

class Lista

{

private:
NodoLista<T> * Primero;
public:

Lista ();
NodoLista<T> * RegresaPrimero();
void Crealnicio();
void CreaFinal();
void ImprimeIterativo();
void ImprimeRecursivo(NodoLista<T> *);
void ImprimeUnNodo(NodoLista<T> *);
void InsertalInicio(T);
void InsertaFinal(T);
void InsertaOrdenCrec(T);
int InsertaAntes(T, T);
int InsertaDespues(T, T);
int EliminaPrimero();
int EliminaUltimo();
int EliminaUnNodo(T);
int EliminaAnterior(T);
int EliminaDespues(T);
NodoLista<T> * BuscaDesordenada(T);
NodoLista<T> * BuscaOrdenada(T);
NodoLista<T> * BuscaRecursivo(T, NodoLista<T> *);

i

/* Declaracién del método constructor. Inicializa el puntero al primer
=nodo de la lista con el valor NULL: indica lista vacia. */

template <class T>

Lista<T>::Lista()

{
}

Primero= NULL;

/* Método que regresa la direccién del primer nodo de la lista. */
template <class T>
NodoLista<T> * Lista<T>::RegresaPrimero()

{
}

return Primero;

/* Método que crea una lista agregando el nuevo nodo al inicio de la
=misma. */

template <class T>

void Lista<T>::Crealnicio()

| 254

Capitulo 6. Listas

{
NodoLista<T> * P;
T Dato;
char Resp;
Primero= new NodoLista<T>();
cout<< "Ingrese la informacidén a almacenar: \n";
cin>>Dato;
Primero->Info= Dato;
cout<< "\niDesea ingresar otro elemento (S/N)? ";
cin>>Resp;
while (Resp == 'S' Il Resp == 's')
{
cout<< "Ingrese la informacidén: \n";
cin>> Dato;
P = new NodoLista<T>();
P->Info= Dato;
P->Liga= Primero;
Primero= P;
cout<< "\néDesea ingresar otro elemento (S/N)? ";
cin>>Resp;
}
}

/* Método que crea una lista agregando el nuevo nodo al final de la
wnisma. */
template <class T>
void Lista<T>::CreaFinal()
{
NodoLista<T> * P, *Ultimo;
T Dato;
char Resp;
Primero= new NodoLista<T>();
cout<<"Ingrese la informacién a almacenar: \n";
cin>>Dato;
Primero->Info= Dato;
/* Se mantiene un puntero al Ultimo nodo agregado a la lista para
wevitar tener que recorrerla con cada nuevo nodo. */
Ultimo= Primero;
cout<<"\niDesea ingresar otro elemento (S/N)? ";
cin>>Resp;
while (Resp == 'S' |l Resp == 's')

cout<< "\nIngrese la informacién \n";
cin>>Dato;

P= new NodoLista<T>();

P->Info= Dato;

Ultimo->Liga= P;

Ultimo= P;
cout<< "\niDesea ingresar otro elemento (S/N)? ";
cin>>Resp;

6.2 Listas simplemente ligadas

255|

/* Método que despliega el contenido de la lista iterativamente. */
template <class T>
void Lista<T>::ImprimeIterativo()
{
NodoLista<T> * P;
P= Primero;
while (P)
{
cout<< "\nInformacién: "<< P->Info;
P= P->Liga;
}
cout<< '\n';

}

/* Método que despliega el contenido de la lista recursivamente. Recibe
como parametro el nodo cuya informacién se va a imprimir. */

template <class T>

void Lista<T>::ImprimeRecursivo(NodoLista<T> * P)

{
if (P)
{
cout<<"\nInformacion: "<< P->Info;
ImprimeRecursivo(P->Liga);
}
cout<<'\n';
}

/* Método que imprime la informacién de un nodo dado como dato. */
template <class T>
void Lista<T>::ImprimeUnNodo(NodoLista<T> * P)
{
if (P)
cout<< P->Info;

}

/* Método que inserta un nodo al inicio de la lista. E1 método es valido
wtanto para listas ya creadas como para listas vacias. */

template <class T>

void Lista<T>::Insertalnicio(T Dato)

{

/* Presentado mas arriba. */

}

/* Método que inserta un nodo al final de la lista. E1 método es valido
wtanto para listas ya creadas como para listas vacias. */

template <class T>

void Lista<T>::InsertaFinal(T Dato)

/* Presentado mas arriba. */

| 256

Capitulo 6. Listas

/* Método que inserta un nodo en orden creciente. Luego de varias
winserciones, usando este método, se habra generado una lista ordenada
=de menor a mayor. */

template <class T>

void Lista<T>::InsertaOrdenCrec(T Dato)

{
NodoLista<T> * P, *Q, *Ant;
if (!Primero |l Primero->Info > Dato)
Insertalnicio(Dato);
else
{
Q= Primero;
while (Q &% Q->Info < Dato)
{
Ant= Q;
Q= Q->Liga;
}
P= new NodoLista<T>();
P->Info= Dato;
Ant->Liga= P;
P->Liga= Q;
}
}

/* Método que inserta un nodo antes de un nodo dado como referencia. Recibe
=como parametros la informacién a insertar y un dato dado como referencia.
wRegresa 1 si se pudo insertar, @ si no se encontrd la referencia y -1
w=si la lista esta vacia. */

template <class T>

int Lista<T>::InsertaAntes(T Dato, T Ref)

{

}

/* Presentado mas arriba. */

/* Método que inserta un nodo después de uno dado como referencia. Recibe
wcomo parametros la informacién a insertar y la referencia. Regresa 1 si
=se pudo insertar, @ si no se encontrd el dato dado y -1 si la lista
westd vacia. */

template <class T>

int Lista<T>::InsertaDespues(T Dato, T Ref)

{
}

/* Presentado mas arriba. */

/* Método que elimina el primer elemento de la lista. E1 método redefine
=el puntero al inicio de la lista y libera el espacio de memoria del nodo
weliminado. Regresa 1 si se pudo llevar a cabo la operacién y @ en caso
=wcontrario. */

template <class T>

int Lista<T>::EliminaPrimero()

6.2 Listas simplemente ligadas

257 |

{

/* Presentado mas arriba. */

}

/* Método que elimina el Ultimo elemento de una lista. Primero lo
=localiza, guardando la direccidén del nodo que le precede. Posterior-
wmente redefine la liga de éste con el valor de NULL para indicar que
wahora éste es el Ultimo y libera el espacio de memoria. Regresa 1 si se
wpudo llevar a cabo la eliminaci6on y @ en caso contrario. */

template <class T>

int Lista<T>::EliminaUltimo()

{
}

/* Presentado mas arriba. */

/* Método que elimina un nodo que almacena cierta informacidn. Recibe
wcomo parametro el dato a eliminar y regresa como resultado 1 si lo
welimina, @ si no lo encuentra y -1 si la lista estd vacia. */
template <class T>

int Lista<T>::EliminaUnNodo(T Ref)

/* Presentado mas arriba. */

}

/* Método que elimina el nodo anterior al nodo que almacena un dato dado
=como referencia. Regresa 1 si el nodo fue eliminado, 2 si la referencia
wes el primero, 3 si no fue encontrado y 4 si la lista esta vacia. */
template <class T>
int Lista<T>::EliminaAnterior(T Ref)
{
NodoLista<T> * Q, *Ant, *P;
int Resp= 1;
if (Primero)
{
if (Primero->Info == Ref)
/* No hay nodo que preceda al dado como referencia. */
Resp= 2;
else
{
Q= Primero;
Ant= Primero;
/* Ciclo que permite encontrar la informaci6n dada como
=referencia, guardando la direccion del nodo que le precede
= (nodo que se eliminard) y del anterior a éste para estable-
wcer las ligas correspondientes. */
while ((Q->Info I= Ref) &% (Q->Liga))

{
P= Ant;
Ant= Q;
Q= Q->Liga;

| 258

Capitulo 6. Listas

if (Q->Info != Ref)
/* E1 elemento dado como referencia no esta en la lista. */

Resp= 3;
else
if (Primero->Liga == Q)
{
delete (Primero);
Primero= Q;
}
else
{
P->Liga= Q;
delete (Ant);
}
}
}
else
/* La lista esta vacia. */

Resp= 4;
return Resp;

}

/* Método que busca un elemento dado referencia en una lista desordenada.
=Regresa la direccién del nodo si lo encuentra y NULL en caso contrario. */
template <class T>

NodoLista<T> * Lista<T>::BuscaDesordenada(T Ref)

{
NodoLista<T> * Q, *Resp= NULL;
if (Primero)
{
Q= Primero;
while ((Q->Info != Ref) && (Q->Liga))
Q= Q->Liga;
/* Se verifica si el elemento dado como referencia fue encontrado
wen la lista. */
if (Q->Info == Ref)
Resp= Q;
}
return Resp;
}

/* Método que busca un elemento dado como referencia, en una lista
wordenada de menor a mayor. Regresa la direccidn del nodo si lo
=encuentra y NULL en caso contrario. */
template <class T>
NodoLista<T> * Lista<T>::BuscaOrdenada(T Ref)
{

NodoLista<T> * Q, *Resp= NULL;

if (Primero)

6.2 Listas simplemente ligadas

259|

{
Q= Primero;
while ((Q->Info < Ref) && (Q->Liga))
Q= Q->Liga;
/* Se verifica si el elemento dado como referencia fue encontrado
wen la lista. */
if (Q->Info == Ref)
Resp= Q;
}

return Resp;

}

/* Método que busca un dato en la lista. La operacién se realiza
wrecursivamente. E1 método recibe como parametro el elemento a buscar
= (Dato) y una variable (Q) que almacena la direccién de un nodo (la
wprimera vez es la direccion del primero). Regresa como resultado la
wdireccion del nodo si lo encuentra y NULL en caso contrario. */
template <class T>

NodoLista<T> * Lista<T>::BuscaRecursivo(T Dato, NodoLista<T> * Q)

{
if (Q)
if (Q->Info == Dato)
return Q;
else
return BuscaRecursivo(Dato, Q->Liga);
else
return NULL;
}

El programa 6.1 presenta la plantilla de la clase Lista con los métodos mds usa-
dos para el tratamiento de objetos de esta clase. A pesar de que algunos de los
métodos pueden estar implicitos en otros, se decidié incluirlos de esta manera pa-
ra obtener mayor claridad. Un ejemplo de este caso es el método Crealnicio(), el
cual puede suprimirse y ser absorbido por el método Insertalnicio(), ya que éste
es aplicable a una lista vacia (en dicho caso se estarfa creando la lista).

El programa 6.3 presenta una aplicacion de las listas simplemente ligadas. El ob-
jetivo de este programa es permitir al usuario registrar informacién de diversos
productos, asi como eliminar productos ya registrados, conocer la informacién re-
lacionada con cierto producto y obtener un reporte con los datos de todos los pro-
ductos. Para la representacién de los productos se usard la clase Producto (ver
programa 6.2), mientras que para su almacenamiento se utilizara una lista. Esta
se creard a partir de la plantilla de la clase Lista correspondiente al programa 6.1,
la cual estd en la biblioteca “ListasSimLig.h”.

| 260 Capitulo 6. Listas

Programa 6.2

/* Definicidén de la clase Producto. Se sobrecargan algunos operadores
wpara que objetos de esta clase puedan ser usados de manera directa.
wEsta clase se guarda en la biblioteca "Productos.h". */

class Producto

{
private:
int Clave;
char NomProd[64];
double Precio;
public:
Producto();
Producto(int, char[], double);
double RegresaPrecio();
int operator == (Producto);
int operator != (Producto);
int operator > (Producto);
int operator < (Producto);
friend istream &operator>> (istream &, Producto &);
friend ostream &operator<< (ostream &, Producto &);
b

/* Declaracion del método constructor por omisidén. */
Producto::Producto()

{1}

/* Declaracion del método constructor con parametros. */
Producto::Producto(int Cla, char NomP[], double Pre)

{
Clave= Cla;
strcpy (NomProd, NomP);
Precio= Pre;

}

/* Método que regresa el valor del atributo Precio. */
double Producto::RegresaPrecio()
{

return Precio;

}

/* Método que permite comparar dos objetos de tipo Producto para
=determinar si son iguales. Regresa 1 si los productos son iguales

= (tienen la misma clave) y @ en caso contrario. Se usa sobrecarga del
woperador ==. */

int Producto::operator == (Producto Prod)

6.2 Listas simplemente ligadas

261 |

{
int Resp=0;
if (Clave == Prod.Clave)
Resp= 1;
return Resp;
}

/* Método que permite comparar dos objetos de tipo Producto para
=determinar si son distintos. Regresa 1 si los productos son distintos
= (tienen diferente clave) y @ en caso contrario. Se usa

=sobrecarga del operador l=. */
int Producto::operator != (Producto Prod)
{
int Resp=0;
if (Clave != Prod.Clave)
Resp= 1;

return Resp;

}

/* Método que permite comparar dos objetos de tipo Producto para
=determinar si el asociado al operador es mayor que el dado como
wparametro. Regresa 1 cuando es mayor (su clave es mayor que la clave
=del dado como parametro) y @ en caso contrario. Se usa sobrecarga del
woperador >. */

int Producto::operator > (Producto Prod)

{
int Resp=0;
if (Clave > Prod.Clave)
Resp= 1;
return Resp;
}

/* Método que permite comparar dos objetos de tipo Producto para
=determinar si el asociado al operador es menor que el dado como
wparametro. Regresa 1 cuando es menor (su clave es menor que la clave
=del dado como parametro) y @ en caso contrario. Se usa sobrecarga del
woperador <. */

int Producto::operator < (Producto Prod)

{
int Resp=0;
if (Clave < Prod.Clave)
Resp= 1;
return Resp;
}

/* Sobrecarga del operador >> para permitir la lectura de objetos de
wtipo Producto de manera directa con el cin. */

| 262

Capitulo 6. Listas

istream &operator>> (istream &Lee, Producto &0bjProd)
{

cout<<"\n\nIngrese clave del producto: "“;

Lee>> ObjProd.Clave;

cout<<"\n\nIngrese nombre del producto: "“;

Lee>> ObjProd.NomProd;

cout<<"\n\nIngrese precio: ";

Lee>> ObjProd.Precio;

return Lee;

}

/* Sobrecarga del operador << para permitir la impresién de objetos de
=tipo Producto de manera directa con el cout. */
ostream &operator<< (ostream &Escribe, Producto &0bjProd)
{
Escribe<<"\n\nDatos del producto\n";
Escribe<<"\nClave: "<<ObjProd.Clave;
Escribe<<"\nNombre: "<<ObjProd.NomProd;
Escribe<<"\nPrecio: "<<ObjProd.Precio<<"\n";
return Escribe;

Programa 6.3

/* Este programa muestra el uso de las listas para almacenar y recuperar
winformacion. En este caso se ofrecen opciones de trabajo al usuario para
wguardar, eliminar o consultar datos de un cierto producto, asi como
=generar un reporte con los datos de todos los productos almacenados
whasta el momento. Para evitar la repeticidn de cédigo se incluyen las
=wpibliotecas "ListasSimLig.h" y "Productos.h". La primera corresponde a
=]la plantilla de la clase Lista presentada en el programa 6.1 y la
wsegunda a la clase Producto presentada en el programa 6.2. */

#include "ListasSimLig.h"
#include "Productos.h"

/* Funcién auxiliar que presenta al usuario las diferentes opciones de
=trabajo. */
int Menu()
{
int Opc;
cout<<"\n\nBienvenido al sistema de registro de productos.\n\n";
cout<<"\n(1) Registrar un nuevo producto.\n";
cout<<"\n(2) Dar de baja un producto.\n";
cout<<"\n(3) Verificar si un producto ya fue registrado.\n";
cout<<"\n(4) Imprimir la lista de productos registrados.\n";

6.2 Listas simplemente ligadas 263 |

cout<<"\n(5) Salir.\n";
cout<<"\n\nIngrese opcidén de trabajo:\n";
cin>>0pc;

return Opc;

/* Funcion principal. Se declara un objeto de tipo Lista, el cual
wservira para llevar a cabo las operaciones de almacenamiento, consulta
wy eliminacién de informacién relacionada a productos. */
void main()
{

Lista<Producto> ListaProds;

Producto ObjProd;

NodoLista<Producto> *Apunt;

int Opc, Res, Clave;

Opc= Menu();
while (Opc >= 1 & Opc <= 4)
{

/* Seleccién de la operacién a realizar considerando la opcioén
welegida por el usuario. */
switch (Opc)
{
/* Los productos se guardan en la lista ordenados de manera
creciente, segun su clave. */
case 1: {
cout<<"\n\nIngrese datos del producto a registrar:\n";
cin>>0bjProd;
ListaProds.InsertaOrdenCrec(0ObjProd);
break;
}
case 2: {
cout<<"\n\nIngrese la clave del producto a eliminar:\n";
cin>>Clave;
/* Se solicita sélo la clave del producto, ya que la
whisqueda se hace tomando en cuenta este atributo que
wes el que lo identifica. */
Producto Produc(Clave,"", 0);
Res= ListaProds.EliminaUnNodo (Produc);
switch (Res)
{
case 1: cout<<"\n\nEl producto ya fue eliminado.\n";
break;
case 0: cout<<"\n\nEse producto no se
wmencuentra registrado.\n";
break;
case -1: cout<<"\n\nNo hay productos
wregistrados.\n";

| 264

Capitulo 6. Listas

break;
}
}
break;
case 3: {
cout<<"\n\nIngrese la clave del producto a buscar:\n";
cin>>Clave;

/* Se solicita sdlo la clave del producto, ya que la
whlsqueda se hace tomando en cuenta este atributo que
wes el que lo identifica. */
Producto Produc(Clave,"",0);
Apunt= ListaProds.BuscaOrdenada(Produc);
if (!Apunt)
cout<<"\n\nEse producto no estd registrado.\n\n";
else
{
cout<<"\n\nEse producto esta registrado.\n";
ListaProds.ImprimeUnNodo (Apunt);
y
}
break;
case 4:ListaProds.ImprimeRecursivo(ListaProds.RegresaPrimero());
break;
}

Opc= Menu();

6.2.3 Implementacion de pilas por medio de listas

La implementacidn de estructuras tipo pila por medio de listas constituye otro
ejemplo interesante de aplicacion de estas tltimas. Recordemos que las pilas son
estructuras abstractas que requieren de otras estructuras para su implementacion.

Las operaciones de insercion y eliminacién de elementos en una pila se realizan
por uno de los extremos de la estructura. Por lo tanto, el conjunto de operaciones
posibles vistas en la clase Lista se reduce a insertar y eliminar por el inicio. Se
reutilizan algunos de los métodos del programa 6.1 para implementar las pilas
por medio de listas. El método correspondiente a la eliminacion del primer ele-
mento se modifica considerando la observacién hecha anteriormente, es decir, si
se pudo eliminar el primer elemento, regresa como pardmetro el contenido del
nodo eliminado. Este método ya incluye la evaluacién de pila vacia. A su vez, el
método de insercién al inicio se modifica declardndolo entero. De esta forma, se
evalda la condicién de pila llena en el mismo método, y el resultado que arroje el

6.2 Listas simplemente ligadas 265|

método dependerd de la evaluacion del valor dado por la instruccion new. Es de-
cir, si se pudo asignar espacio de memoria entonces la pila no esté llena y por lo
tanto se llevard a cabo la insercion.

El programa 6.4 presenta un ejemplo sencillo de pilas implementadas por medio
de listas simplemente ligadas. El programa evalda expresiones aritméticas dadas
en notacion postfija (los operandos preceden a los operadores). Los operandos
sélo pueden ser nimeros enteros de un digito y los operadores reconocidos son:
+, - *yl

Programa 6.4

/* Prototipo de la plantilla de la clase Pila. De esta forma, la clase
= Nodo podra hacer referencia a ella. */

template <class T>

class Pila;

/* Definicion de la clase Nodo. */
template <class T>
class Nodo
{
private:
Nodo<T> * Liga;
T Info;
public:
Nodo () ;
friend class Pila<T>;

s

/* Declaracién del método constructor por omisién. Inicializa con el
wvalor NULL el puntero al siguiente nodo. */
template <class T>
Nodo<T>: :Nodo ()
{
Liga= NULL;

/* Definici6on de la clase Pila. Su Unico atributo es el Tope, que en
=meste caso es un puntero al primer elemento almacenado en la pila. */
template <class T>

class Pila

| 266

Capitulo 6. Listas

private:
Nodo<T> * Tope;
public:
Pila ();
int Push(T);
int Pop(T *);
b

/* Declaracion del método constructor. Inicializa el puntero al primer
elemento de la pila con el valor NULL. Indica pila vacia. */

template <class T>

Pila<T>::Pila()

{

}

/* Método que inserta un elemento en la pila. Recibe como paréametro el
wdato a insertar. E1 método verifica el caso de pila llena. Si se puede
wllevar a cabo la insercién regresa 1, en caso contrario regresa 0. */
template <class T>

int Pila<T>::Push(T Dato)

{

Tope= NULL;

Nodo<T> * Apunt;

int Resp= 1;

Apunt= new Nodo<T>();

/* Verifica si hay espacio de memoria disponible. */
if (Apunt)

Apunt->Info= Dato;
Apunt->Liga= Tope;
Tope= Apunt;

}

else
Resp= 0;

return Resp;

}

/* Método que elimina el elemento de la pila que esta en el Tope. El
wnétodo redefine el valor de Tope y libera el espacio de memoria del nodo
weliminado. Regresa 1 si se lleva a cabo la eliminacién y @ en caso con-
wtrario. Ademas, pasa como parametro el contenido del nodo eliminado. */
template <class T>
int Pila<T>::Pop(T *Dato)
{

Nodo<T> * Apunt;

int Resp= 1;

if (Tope)

6.2 Listas simplemente ligadas

267 |

{
*Dato= Tope->Info;
Apunt= Tope;
Tope= Apunt->Liga;
delete (Apunt);
}
else /* La Pila esta vacia. */
Resp= 0;

return Resp;

/* Funcién principal. Se lee una expresidén aritmética dada en notacidn
wpostfija. La evalla con ayuda de una pila. Se sugiere que siga el pro-
=wgrama con la expresion: "5 3 + 8 * 2 / " S
void main()
{

Pila<double> Operandos;

char Expresion[20];

int Indice, Resp= 1;

double Resultado, Opi1, O0p2;

cout<<"\n\nIngrese la expresidén en notacién postfija. \n";

cin>>Expresion;

for (Indice= 0; Indice < strlen(Expresion); Indice++)
if (Expresion[Indice] >= '1' && Expresion[Indice] <= '9')
Operandos.Push(Expresion[Indice]-'0");
/* Se le resta el ordinal correspondiente al caracter '0' del
wcodigo ASCII para obtener el valor decimal del caracter tomado
wde la cadena. Si, por ejemplo, el caracter fuera el '8', al
=restarle el ordinal del 'Q' queda el valor entero 8. */

else
if (Operandos.Pop(&0p1) && Operandos.Pop(&0p2))
{
switch (Expresion[Indice])
{
case '+': Resultado= Op2 + Opi;
break;
case '-': Resultado= Op2 - Opt;
break;
case '*': Resultado= Op2 * Opi;
break;
case '/': Resultado= Op2 / Opi;
break;
}

Operandos.Push(Resultado);

| 268 Capitulo 6. Listas

else
Resp= 0;
if (Resp)

{
Operandos.Pop(&Resultado);
cout<<"\n\nLa expresién en notacion postfija fue evaluada:
w "<<Resultado<<"\n\n";
}
else
cout<<"\n\nLa expresién dada es incorrecta.\n\n";

6.3 Listas circulares simplemente ligadas

Una lista circular simplemente ligada es una lista en la cual el nodo que sigue al
tltimo es el primero. Es decir, el dltimo nodo tiene como sucesor al primero de la
lista, logrando con ello tener acceso nuevamente a todos los miembros de la lista.
Esta caracteristica permite que desde cualquier nodo de esta estructura de datos
se tenga acceso a cualquiera de los otros nodos de la misma. La figura 6.12 pre-
senta un esquema de una lista circular simplemente ligada.

‘i

Primero

FIGURA 6.12 Lista circular simplemente ligada

La clase correspondiente a esta estructura es similar a la de la lista simplemente
ligada presentada antes, s6lo cambian algunos métodos debido a que con esta va-
riante se puede tener acceso a todos los nodos a partir de cualquiera de ellos. La
variable tipo puntero Primero deja de ser imprescindible para garantizar el recorrido
de toda la lista. Sin embargo, resulta necesaria para evitar caer en ciclos infinitos
(permite guardar una referencia del nodo desde el cual se empez6 a recorrer la lis-

6.4 Listas doblemente ligadas 269 |

ta). Por ejemplo, en la operacién de buisqueda, si el elemento buscado no estd en
la lista, se debe recordar a partir de qué nodo se inici6 el recorrido. Una manera
de hacer referencia al inicio de la lista (sin usar un puntero al primer nodo) es de-
finiendo un nodo especial, llamado nodo de cabecera. Un nodo de cabecera no
guarda informacién ttil, sino que se usa sélo para indicar el inicio de la lista.

Debido a que los métodos resultan similares a los presentados en la clase Lista,
su disefo e implementacién dependen de cada desarrollador.

6.4 Listas doblemente ligadas

Las listas doblemente ligadas son otra variante de las estructuras vistas en las
secciones previas. En las listas simplemente ligadas cada nodo conoce solamente
la direccion de su nodo sucesor. De ahi la importancia de no perder el puntero al
primer nodo de la misma. Por su parte, en las listas doblemente ligadas, cada no-
do conoce la direccién de su predecesor y de su sucesor. La excepcion es el pri-
mer nodo de la lista que no cuenta con predecesor, y el dltimo que no tiene
sucesor. Debido a esta caracteristica, se puede visitar a todos los componentes de
la lista a partir de cualquiera de ellos.

La figura 6.13 presenta el esquema del nodo de una lista doblemente ligada. Ob-
serve que el nodo tiene tres partes, dos de ellas dedicadas al almacenamiento de
direcciones (del nodo predecesor y del nodo sucesor) y la tercera para guardar la

informacion.
Direccion al Direccion al
nodo anterior siguiente nodo
—— —_——

Informacién

FIGURA 6.13 Estructura del nodo de una lista doblemente ligada

La figura 6.14 presenta, de manera gréfica, una lista doblemente ligada. Se tiene
un puntero al primer nodo de la lista (éste no tiene predecesor) y uno al dltimo

| 270 Capitulo 6. Listas

(éste no tiene sucesor). Sin embargo, es importante destacar que se pueden reco-
rrer todos los nodos de la lista a partir de cualquiera de ellos.

Primero Ultimo
T A T A T
NULL NULL

FIGURA 6.14 Lista doblemente ligada

Las figuras 6.15 y 6.16 presentan las plantillas de la clase NodoDobleLiga y de la
clase ListaDobLig respectivamente. Se usan plantillas para dar mayor generalidad
a la solucién. La clase NodoDobleLiga tiene tres atributos, uno representa la infor-
macién a almacenar por lo que se define de tipo T, y los otros dos representan la
direccién de otro nodo por lo que se definen como punteros a un objeto de la
misma clase. Por su parte, la clase ListaDobLig tiene dos atributos que represen-
tan la direccion del primero y del dltimo nodos de la misma, por lo cual son de
tipo puntero a un objeto de tipo NodoDobleLiga.

NodoDoblelLiga(T)

Info: T
Ligalzqg: *NodoDobleLiga(T)

LigaDer: *NodoDobleLiga(T)

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 6.15 Clase NodoDobleLiga

6.4 Listas doblemente ligadas

271 |

ListaDobLiga(T)

Primero: *NodoDobleLiga(T)

Ultimo: *NodoDobleLiga(T)

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 6.16 Clase ListaDobLiga

A continuacién se presenta el cddigo en lenguaje C++ correspondiente a las plan-
tillas de las clases NodoDoblelLiga y ListaDobLiga. La clase lista incluye dos punte-
ros, uno al primer nodo y otro al dltimo. Esto es con el fin de facilitar algunas
operaciones, lo cual se verd con mayor detalle en las siguientes secciones.

/* Prototipo de la plantilla de la clase ListaDobLiga. Asi, en la clase
= NodoDobleLiga se podra hacer referencia a ella. */

template <class T>

class ListaDoblLiga;

/* Definicion de la plantilla de la clase NodoDoblelLiga. La clase Lista-
=pobLiga se declara como una clase amiga para que pueda tener acceso a
=]10s miembros privados de esta clase. */
template <class T>
class NodoDobleliga
{
private:
NodoDoblelLiga<T> * Ligalzq;
NodoDobleLiga<T> * LigaDer;
T Info;
public:
NodoDobleliga();
friend class ListaDoblLiga<T>;

b

/* Método constructor. Inicializa los punteros con el valor NULL. */
template <class T>
NodoDoblelLiga<T>: :NodoDoblelLiga()

| 272

Capitulo 6. Listas

LigaIzg= NULL;
LigaDer= NULL;
}

/* Definicién de la plantilla de la clase ListaDobLiga. Esta clase
wtiene dos atributos que son punteros al primero y Gltimo elementos de la
wmisma. */

template <class T>

class ListaDoblLiga

{
private:
NodoDobleLiga<T> * Primero;
NodoDoblelLiga<T> * Ultimo;
public:
ListaDobLiga ();
/* En esta seccién se incluyen los métodos de modificacion y
acceso a los miembros de la clase. */
b

/* Declaracién del método constructor. Inicializa el apuntador al primero
wy al (ltimo elementos con el valor de NULL, indicando lista vacia. */
template <class T>
ListaDobLiga<T>::ListaDobLiga()
{

Primero= NULL;

Ultimo= NULL;
}

Las operaciones bdsicas que se pueden realizar en una lista previamente generada
son: insercidn, eliminacién y busqueda. Su creacién se puede considerar también
una operacion bdsica. Es importante sefialar que tener un puntero al final de la
lista permite el acceso a este elemento de manera directa evitando el recorrido de
los nodos previos. A continuacién se analizan las principales operaciones. Las
variantes de una misma operacién se deben principalmente a la posicidon dentro
de la lista donde se lleve a cabo ésta.

6.4.1 Insercion en listas doblemente ligadas

La operacion de insercion de un nuevo nodo a una lista consiste en tomar un
espacio de memoria dindmicamente, asignarle la informacién correspondiente y
ligarlo al o a los nodos que corresponda dentro de la lista. Los pasos varian
dependiendo de la posicién que ocupard el nuevo elemento.

6.4 Listas doblemente ligadas 273 |

Insercidn al principio de la lista

La figura 6.17 presenta un esquema de la insercién de un nuevo elemento al ini-
cio de la lista. Se crea un nodo, cuya direccion se guarda en una variable auxiliar
llamada Apunt, a su liga derecha se le asigna la direccién del primer nodo y a la
izquierda el valor de NULL. Ademads, se establece la liga entre el nodo que ocu-
paba la primera posicién de la lista con el nuevo nodo. Por dltimo, se redefine el
Primero con el valor de Apunt.

0 Ultimo
Apunt
Primero A P P
l y ~ ~ ~} \
NULL
|

NULL

FIGURA 6.17 Insercion al principio de la lista

El método para llevar a cabo esta operacion es el siguiente:

/* Método que inserta un nuevo nodo al inicio de la lista doblemente liga-
wda. Recibe como parametro la informacién a almacenar en el nodo. */
template <class T>
void ListaDobLiga<T>::Insertalnicio(T Dato)
{

NodoDobleLiga<T> * Apunt;

Apunt= new NodoDoblelLiga<T>();

Apunt->Info= Dato;

Apunt->LigaDer= Primero;

if (Primero)

Primero->Ligalzq= Apunt;

else

Ultimo= Apunt;

Primero= Apunt;

| 274 Capitulo 6. Listas

El método también considera si la lista estd vacia. En este caso, el puntero al ulti-
mo elemento (Ultimo) se redefine con el valor de la direccién del nuevo nodo.

Insercion al final de la lista

La figura 6.18 presenta graficamente la secuencia de pasos necesarios para insertar un
nuevo elemento al final de la lista. Para ello, se crea un nuevo nodo (cuya direccién
se guarda en Apunt) el cual se liga con el dltimo nodo de la lista. Por dltimo, se rede-
fine el valor del puntero al tiltimo elemento (Ultimo) con la direccién del nuevo nodo.

Primero M
Ultimo
Apunt

Z.

| A
1 >t >—1 Y

N

NULL

NULL
FIGURA 6.18 Insercion al final de la lista

A continuacién se presenta el método que implementa esta operacion.

/* Método que inserta un nuevo nodo al final de la lista doblemente ligada.
wRecibe como parametro (Dato) el valor a guardar en el nuevo nodo. */
template <class T>
void ListaDobLiga<T>::InsertaFinal(T Dato)
{
NodoDobleLiga<T> * Apunt;
Apunt= new NodoDoblelLiga<T>;
Apunt->Info= Dato;
Apunt->Ligalzg= Ultimo;
if (Ultimo)
Ultimo->LigaDer= Apunt;
else
Primero= Apunt;
Ultimo= Apunt;

6.4 Listas doblemente ligadas

275|

El método también considera si la lista estd vacia. En este caso, el puntero al pri-
mer elemento (Primero) se redefine con el valor de la direccién del nuevo nodo.

Insercion formando una lista ordenada

La figura 6.19 presenta un esquema de la insercién de un nuevo elemento en la
lista, de tal manera que la misma va quedando ordenada de manera creciente. La
posicioén para el nuevo dato puede ser la primera (si es més pequefio que el dato
almacenado en el primer nodo), la dltima (si es mas grande que el dato almacena-
do en el dltimo nodo) o una intermedia. Si fuera este dltimo caso, se debe encon-
trar la posicion del nodo cuya informacién es mayor que la del nodo a insertar.
Una vez encontrado (Apun2), y creado el nuevo nodo (Apunt), se establecen las
ligas correspondientes entre el nuevo nodo y los que se convertirdn en su antece-
sor y predecesor.

Primero Apzn3 Apun2 Ultimo
ZTA A T
L] o [RE] e T 2,
1
{) f) |
NULL NULL
Apunl ——0— —— 12

FIGURA 6.19 Insercion formando una lista ordenada

El método, codificado en C++, para llevar a cabo esta operacion es el siguiente:

/* Método que inserta un nuevo nodo en la lista, de tal manera que los
=welementos de la misma vayan quedando ordenados de menor a mayor. Recibe
wcomo parametro la informacién a guardar en el nuevo nodo. */

template <class T>

void ListaDoblLiga<T>::InsertaOrdenado(T Dato)

{
NodoDobleLiga<T> * Apuni, *Apun2, *Apun3;

| 276 Capitulo 6. Listas

/* Si la lista estd vacia o si el valor a insertar es mas pequefo que
wel contenido del primer nodo, entonces se invoca al método que
winserta al inicio de la lista. */
if (!Primero Il Dato < Primero->Info)
Insertalnicio(Dato);
else
/* Si el dato a insertar es mas grande que el contenido del
=(ltimo nodo, entonces se invoca al método que inserta al final
=de la lista. */
if (Dato > Ultimo->Info)
InsertaFinal(Dato);
else
{
Apuni= new NodoDoblelLiga<T>;
Apuni=>Info= Dato;
Apun2= Primero;
while (Apun2->Info < Apuni->Info)
Apun2= Apun2->LigaDer;
Apun3= Apun2->Ligalzq;
Apun3->LigaDer= Apuni;
Apuni=>LigaDer= Apun2;
Apuni->Ligalzgq= Apun3;
Apun2->Ligalzg= Apuni;

6.4.2 Eliminacién en listas doblemente ligadas

La operacion de eliminacion de un nodo de una lista consiste en encontrar el va-

lor a quitar, establecer las ligas correspondientes entre el nodo que le precede y el
que le sucede, y finalmente liberar la seccién de memoria ocupada por el nodo en
cuestion. Se pueden presentar algunas variantes segun la posiciéon que el elemen-

to tenga en la lista. A continuacion se explican los principales casos.

Eliminacion del primer elemento de la lista

La figura 6.20 presenta graficamente la secuencia de pasos correspondientes a
esta operacion. El nodo a eliminar debe ser apuntado por una variable auxiliar, en
este caso llamada Apunt, luego se debe redefinir el Primero con la direccién

de su sucesor y finalmente se libera la porcién de memoria ocupada por el dato
que se quit6 de la lista.

6.4 Listas doblemente ligadas 277 |

XPrimero Prinllero ‘}timo
Apunt /

‘\\\‘\ T A T A Ve

A I >~

/ NULL NULL NULL

FIGURA 6.20 Eliminacion del primer elemento de la lista

(\i

El método definido para implementar este tipo de eliminacién en una lista doble-
mente ligada es el siguiente.

/* Método que elimina el primer elemento de la lista doblemente ligada.
=Regresa 1 si la lista tiene al menos un elemento y @ en caso contrario. */
template <class T>
int ListaDoblLiga<T>::EliminaPrimero()
{

NodoDoblelLiga<T> * Apunt;

int Resp= 1;

/* Verifica si la lista tiene al menos un elemento.*/
if (Primero)
{
Apunt= Primero;
if (Apunt->LigaDer)
{
Primero= Apunt->LigaDer;
Primero->LigalIzq= NULL;
}
else
{
/* La lista tiene s6lo un elemento, por lo tanto luego de la
weliminacién queda vacia. */
Primero= NULL;
Ultimo= NULL;
}
delete (Apunt);
}
else
Resp= 0;
return Resp;

| 278

Capitulo 6. Listas

El método visto contempla el caso de que la lista tenga un solo elemento. Luego
de la eliminacidn, la lista queda vacfa.

Eliminacion del ultimo elemento de la lista

La figura 6.21 presenta el esquema correspondiente a esta operacion. El nodo a
eliminar debe ser apuntado por una variable auxiliar, en este caso llamada Apunt,
luego se debe redefinir el ultimo con la direccion de su predecesor y finalmente
se libera la porcién de memoria ocupada por el nodo.

Primero Ultimo Ultimo

TN />§
\ =

|
| N1~ A S g

BN
L RV

FIGURA 6.21 Eliminacion del iiltimo elemento de la lista

A‘kizgunt

|4

A continuacién se presenta el método que implementa los pasos requeridos para
quitar al dltimo nodo de una lista.

/* Método que elimina el Ultimo elemento de una lista doblemente ligada.
=Regresa 1 si la lista tiene al menos un elemento y @ en caso contrario. */
template <class T>
int ListaDoblLiga<T>::EliminaUltimo()
{

NodoDobleLiga<T> * Apunt;

int Resp= 1;

/* Verifica si la lista tiene al menos un elemento.*/
if (Ultimo)
{

Apunt= Ultimo;

if (Apunt->Ligalzq)

Ultimo= Apunt->Ligalzq;
Ultimo->LigaDer= NULL;

6.4 Listas doblemente ligadas 279 |

else
{
/* La lista tiene s6lo un elemento, por lo tanto luego de la
weliminacion queda vacia. */
Primero= NULL;
Ultimo= NULL;
}
delete (Apunt);
}
else
Resp= 0;
return Resp;

El método visto contempla el caso de que la lista tenga un solo elemento. Luego
de la eliminacidn, la lista queda vacia.

Eliminacion de un elemento de la lista

La figura 6.22 muestra de manera grafica cémo se lleva a cabo esta operacién.
Primero se debe buscar el nodo cuyo contenido sea igual al dato. Si se encuentra,
se guarda su direccion en una variable auxiliar (Apun1) y se establecen las ligas
correspondientes entre su nodo predecesor (Apun2) y su nodo sucesor (Apun3).
Finalmente se libera la memoria ocupada por el nodo. El nodo a eliminar puede
ocupar cualquier posicién en la lista, ser el primero, el ultimo o estar en una posi-
cién intermedia. El siguiente esquema representa el caso de un nodo intermedio.

Primero Apun2 Apuni Apun3 Ultimo
AT \ T P
| \=d " % =t |
l / N\
NULL NULL

FIGURA 6.22 Eliminacion de un elemento de la lista

| 280 Capitulo 6. Listas

El método para llevar a cabo esta operacion se implementa de la siguiente manera.

/* Método que elimina un nodo cuya informacidn es igual a Dato.
=Regresa 1 si la operacién se llevo a cabo, @ si el elemento no esta
wen la lista y -1 si la lista esta vacia. */
template <class T>
int ListaDoblLiga<T>::EliminaUnNodo(T Dato)
{

NodoDobleLiga<T> * Apuni,*Apun2,*Apun3;

int Resp= 1;

/* Verifica si la lista tiene al menos un elemento.*/
if (Primero)
{
Apuni= Primero;
while ((Apunil= NULL) && (Apuni->Info != Dato))
Apuni= Apuni->LigaDer;
if (Apuni == NULL)
Resp= 0;
else
{
/* Verifica si hay sd6lo un elemento en la lista. Si es asi,
wentonces la lista quedara vacia luego de la eliminacién. */
if (Primero == Ultimo)

{
Primero= NULL;
Ultimo= NULL;
}
else

/* Verifica si el elemento a eliminar es el primero de
=la lista. */
if (Apuni == Primero)
{
Primero= Apuni->LigaDer;
Primero->LigaIzq= NULL;
}
else
/* Verifica si el elemento a eliminar es el Gltimo
wde la lista. */
if (Apuni == Ultimo)
{
Ultimo= Apuni->Ligalzq;
Ultimo->LigaDer= NULL;

6.4 Listas doblemente ligadas

281 |

else

Apun2= Apuni->Ligalzq;
Apun3= Apuni->LigaDer;
Apun2->LigaDer= Apun3;
Apun3->Ligalzq= Apun2;
}
delete(Apunt);

}

else
Resp= -1;
return Resp;

El método presentado implementa los pasos de la eliminacion, contemplando
todos los casos que se pudieran presentar. Es importante destacar que para los
casos en los cuales se elimina el primero o el dltimo, se hubieran podido reutili-
zar los métodos ya analizados.

Otra consideracién que se debe hacer, es que al tener cada nodo la direccién de
su sucesor y su predecesor ya no es necesario guardar la direccién del anterior,
como se hace en las listas simplemente ligadas. Una vez encontrado el nodo a
eliminar, si éste ocupara una posicion intermedia, se establecerian las nuevas
ligas entre predecesor y sucesor de manera directa.

6.4.3 Busqueda de elementos en
listas doblemente ligadas

La operacion de bisqueda de un dato entre los elementos de una lista consiste en
recorrer la lista de izquierda a derecha (a partir del primer elemento) o de derecha
a izquierda (a partir del dltimo elemento) hasta encontrar el dato buscado o hasta
que ya no queden nodos por visitar. Si los elementos de la lista siguen algin or-
den, entonces habra que tenerlo en cuenta en el momento de hacer la compara-
cion entre el dato buscado y la informacién del nodo visitado. A continuacién se
presenta un método que permite buscar un valor dentro de una lista. Este método
realiza la bisqueda de izquierda a derecha y considera que la informacién de los
nodos estd desordenada.

| 282 Capitulo 6. Listas

/* Método que busca en la lista un dato dado. E1 método recibe como
wparametro el elemento a buscar (Dato) y una variable (Apunt) que
walmacena la direccion de un nodo (la primera vez es la direccidén del
wprimero). Regresa como resultado la direccién del nodo, si lo encuentra,
=0 NULL en caso contrario. */
template <class T>
NodoDoblelLiga<T> * ListaDobLiga<T>::Busca(T Dato, NodoDoblelLiga<T>
*Apunt)
{
if (Apunt)
if (Apunt->Info == Dato)
return Apunt;
else
return Busca (Dato, Apunt->LigaDer);
else
return NULL;

El programa 6.5 presenta la clase correspondiente a una estructura tipo lista
doblemente ligada con los métodos mds usados, algunos de los cuales ya fueron
analizados. En algunos casos, por razones de espacio, s6lo se incluyen los
prototipos y los encabezados. Se establecen dos punteros para el manejo de la
lista: un puntero al inicio y otro al final. Los métodos fueron definidos considerando
estos punteros. Si se quiere trabajar con un solo puntero (como en el programa
6.1) serd necesario adaptar la definicion de la clase y la de algunos métodos.

Es importante mencionar que los cambios a realizar son minimos.

Programa 6.5

/* Prototipo de la plantilla de la clase ListaDobLiga. Asi, en la clase
=NodoDobleLiga se podra hacer referencia a ella. */

template <class T>

class ListaDoblLiga;

/* Definicidén de la plantilla de la clase NodoDoblelLiga. La clase Lista-
=pDoblLiga se declara como una clase amiga para que pueda tener acceso a
=10s miembros privados de la clase NodoDoblelLiga. */

template <class T>

class NodoDoblelLiga

6.4 Listas doblemente ligadas

283 |

private:
NodoDoblelLiga<T> * Ligalzq;
NodoDoblelLiga<T> * LigaDer;
T Info;
public:
NodoDoblelLiga();
T Regresalnfo();
friend class ListaDoblLiga<T>;

b

/* Método constructor. Inicializa los punteros con el valor NULL. */
template <class T>
NodoDoblelLiga<T>: :NodoDoblelLiga()
{
LigalIzg= NULL;
LigaDer= NULL;
}

/* Método que regresa el valor de Info, permitiendo que usuarios
wexternos a la clase tengan acceso a é1 sin poder para modificarlo. */
template <class T>

T NodoDoblelLiga<T>::Regresalnfo()

{

}

return Info;

/* Definicién de la plantilla de la clase ListaDoblLiga. Esta clase tiene
=dos atributos que son los punteros al primero y Ultimo elementos de la
=mnisma. */
template <class T>
class ListaDobLiga
{
private:
NodoDobleLiga<T> * Primero;
NodoDoblelLiga<T> * Ultimo;
public:
ListaDobLiga ();
void ImprimeIzq_Der (NodoDoblelLiga<T>*);
void ImprimeDer Izq(NodoDoblelLiga<T>*);
void ImprimeNodo(NodoDoblelLiga<T>*);
void Insertalnicio(T);
void InsertaFinal(T);
void InsertaOrdenado(T);
int InsertaAntes(T,T);
int EliminaPrimero();
int EliminaUltimo();
int EliminaUnNodo(T);
int EliminaAnterior(T);

| 284 Capitulo 6. Listas

NodoDoblelLiga<T> * Busca(T, NodoDoblelLiga<T>*);
NodoDoblelLiga<T> * RegresaPrimero();

NodoDobleLiga<T> * RegresaUltimo();

NodoDobleLiga<T> * RegresaVecinoDer(NodoDoblelLiga<T> *);

h

/* Declaracién del método constructor. Inicializa el apuntador al primero
wy al (ltimo elementos con el valor de NULL, indicando lista vacia. */
template <class T>
ListaDobLiga<T>::ListaDobLiga()
{

Primero= NULL;

Ultimo= NULL;
}

/* Método que imprime la informacién almacenada en cada uno de los nodos
=de la lista, empezando por el primer nodo. La primera vez, recibe como
wparametro el valor almacenado en Primero. */

template <class T>

void ListaDobLiga<T>::ImprimeIzq_Der (NodoDoblelLiga<T>* Apunt)

{
if (Apunt)
{
cout<<Apunt->Info<< '\n';
ImprimelIzq_Der (Apunt—>LigaDer);
}
}

/* Método que imprime la informacidén almacenada en cada uno de los nodos
=de la lista, empezando por el Ultimo nodo. La primera vez, recibe como
wparametro el valor almacenado en Ultimo. */

template <class T>

void ListaDobLiga<T>::ImprimeDer_Izq(NodoDoblelLiga<T>* Apunt)

{
if (Apunt)
{
cout<< Apunt->Info<< '\n';
ImprimeDer_Izq(Apunt->Ligalzq);
}
}

/* Método que imprime la informacién almacenada en uno de los nodos de
wla lista, cuya direccidén se recibe como parametro. */

template <class T>

void ListaDoblLiga<T>::ImprimeNodo(NodoDoblelLiga<T>* Apunt)

{

}

cout<<Apunt->Info<< '\n';

6.4 Listas doblemente ligadas

285 |

/* Método que inserta un nuevo nodo con la informacién de Dato al inicio
=wde la lista doblemente ligada. */

template <class T>

void ListaDobLiga<T>::InsertaInicio(T Dato)

{
}

/* Método que inserta un nuevo nodo con la informacién de Dato al final
=de la lista doblemente ligada. */

template <class T>

void ListaDobLiga<T>::InsertaFinal(T Dato)

{
}

/* Método que inserta un nuevo nodo con la informacion de Dato, de
=manera que los elementos de la lista vayan quedando ordenados de menor
=3 mayor. */

template <class T>

void ListaDobLiga<T>::InsertaOrdenado(T Dato)

{
}

/* Presentado mas arriba. */

/* Presentado mas arriba. */

/* Presentado mas arriba. */

/* Método que inserta un nuevo nodo con la informacién de Dato antes de
=un nodo dado como referencia, cuya informacién estd en Ref. Regresa 1
=si encuentra la referencia y puede llevar a cabo la insercién, @ si no
wencuentra la referencia y -1 si la lista estd vacia. */
template <class T>
int ListaDoblLiga<T>::InsertaAntes(T Dato, T Ref)
{

NodoDobleLiga<T> * Apuni,*Apun2,*Apun3;

int Resp= 1;

if (Primero)
{
Apuni= Primero;
while ((Apuni != NULL) && (Apuni->Info = Ref))
Apuni= Apuni->LigaDer;
/*Verifica si encontr6 la informacién dada como referencia. */
if (Apuni != NULL)
{
Apun3= new NodoDoblelLiga<T>();
Apun3->Info= Dato;
Apun3->LigaDer= Apuni;
Apun2= Apuni->Ligalzq;
Apuni->Ligalzg= Apun3;
Apun3->Ligalzgq= Apun2;

| 286

Capitulo 6. Listas

if (Primero == Apuni)
Primero= Apun3;

else
Apun2->LigaDer= Apun3;

}
else
Resp= 0;
}
else
Resp= -1;

return Resp;

}

/* Método que elimina el primer elemento de la lista doblemente ligada.
wRegresa 1 si la lista tiene al menos un elemento y @ en caso contrario. */
template <class T>

int ListaDobLiga<T>::EliminaPrimero()

{
}

/* Presentado mas arriba. */

/* Método que elimina el Gltimo elemento de la lista doblemente ligada.
=Regresa 1 si la lista tiene al menos un elemento y @ en caso contrario. */
template <class T>

int ListaDobLiga<T>::EliminaUltimo()

{

/* Presentado mas arriba. */

}

/* Método que elimina un nodo cuya informacidén es igual a Dato. Regresa
w1 si la eliminacién se puede llevar a cabo, @ si el elemento no esta en
wla lista y -1 si la lista estad vacia. */

template <class T>

int ListaDobLiga<T>::EliminaUnNodo(T Dato)

{

}

/* Presentado mas arriba. */

/* Método que elimina el nodo anterior al nodo que contiene la infor-
wnacidn Dato. Regresa 1 si la eliminacion se puede llevar a cabo, 0 si
wel valor dado como referencia no esta en la lista, -1 si la referencia
wes el primer nodo y por lo tanto no hay anterior, y -2 si la lista
westd vacia. */

template <class T>

int ListaDobLiga<T>::EliminaAnterior(T Dato)

NodoDobleLiga<T> * Apuni, *Apun2, *Apun3;
int Resp= 1;
if (Primero)

6.4 Listas doblemente ligadas

287 |

{
Apuni= Primero;
while ((Apuni != NULL) &% (Apuni->Info != Dato))
Apuni= Apuni->LigaDer;
if (Apuni == NULL)
Resp= 0;
else
/* Verifica si la informacién dada como referencia esta en el
wprimer nodo. */
if (Primero == Apuni)
Resp= -1;
else
{
if (Primero == Apuni->Ligalzq)
{
Apun2= Primero;
Primero= Apuni;
Primero->Ligalzq= NULL;
}
else
{
Apun2= Apuni->Ligalzq;
Apun3= Apun2->Ligalzq;
Apun3->LigaDer= Apuni;
Apuni->Ligalzg= Apun3;
}
delete (Apun2);
}
}
else
Resp= -2;

return Resp;

}

/* Método que busca en la lista un nodo dado como referencia. E1 método
wrecibe como paréametro el elemento a buscar (Dato) y una variable

= (Apunt) que almacena la direcciéon de un nodo. La primera vez es la
wdireccion del primero. Regresa como resultado la direcci6on del nodo o
=NULL si no lo encuentra. */

template <class T>

NodoDoblelLiga<T> * ListaDobLiga<T>::Busca(T Dato, NodoDoblelLiga<T>
*Apunt)

{

}

/* Presentado mas arriba. */

/* Método que regresa el valor del apuntador al primer elemento de la
wlista. */

template <class T>

NodoDoblelLiga<T> * ListaDobLiga<T>::RegresaPrimero()

| 288

Capitulo 6. Listas

{
}

return Primero;

/* Método que regresa el valor del apuntador al Ultimo elemento de la
wlista. */

template <class T>

NodoDoblelLiga<T> * ListaDobLiga<T>::RegresaUltimo()

{

}

/* Método que, dada la direccion de un nodo, regresa la direccidn del
wsiguiente nodo a la derecha. Este método facilita el desplazamiento a
wtravés de la lista por parte de usuarios externos a la misma. */
template <class T>

NodoDoblelLiga<T> * ListaDobLiga<T>::RegresaVecinoDer (NodoDoblelLiga<T>
*Apunt)

{

}

return Ultimo;

return Apunt->LigaDer;

/* Método que, dada la direccién de un nodo, regresa la direccién del
wsiguiente nodo a la izquierda. Este método facilita el desplazamiento a
wtravés de la lista por parte de usuarios externos a la misma. */
template <class T>

NodoDobleLiga<T> * ListaDobLiga<T>::RegresaVecinoIzq(NodoDobleliga<T>
*Apunt)

{

}

return Apunt->Ligalzq;

Es importante destacar que al usar punteros al primero y dltimo nodos de la lista
se simplifican algunas operaciones. Por ejemplo, en el caso de insercién y elimi-
nacién en la dltima posicién, ya no es necesario recorrer toda la lista. Asimismo,
se puede imprimir la lista en cualquiera de las dos direcciones sin tener que recu-
rrir a operaciones auxiliares.

Dadas las caracteristicas de los nodos que forman estas listas, se pudieron utilizar
menos variables auxiliares en ciertas operaciones. En este libro se usaron con el
fin de dar mayor claridad al c6digo, sin embargo se pudo usar la notacién de tal
manera que se prescindiera de dichas variables. Se presenta un ejemplo a partir
del cédigo del método para eliminar un nodo cuya informacion se da como refe-
rencia. En el cédigo que aparece en la columna izquierda se utilizan las variables
auxiliares Apun2 y Apun3 para almacenar las direcciones del predecesor y del sucesor

6.4 Listas doblemente ligadas

289 |

del nodo a eliminar respectivamente. Posteriormente, al predecesor y al sucesor
se les asignan las nuevas ligas. En el cddigo de la columna derecha, la asignacion
de las nuevas ligas se hace de manera directa. Es decir, la primera linea indica
que a la liga derecha del nodo que estd siendo apuntado por la liga izquierda de
Apunt se le asigna el valor de la liga derecha de Apuni. En la segunda linea se esta
expresando que, a la liga izquierda del nodo que esta siendo apuntado por la liga
derecha de Apunt, se le asigna el valor de la liga izquierda de Apun1.

Apun2= Apuni->Ligalzq;
Apun3= Apuni->LigaDer; Apuni->Ligalzq->LigaDer= Apuni->LigaDer;
Apun2->LigaDer= Apun3; Apuni->LigaDer->Ligalzq= Apuni->Ligalzq;
Apun3->Ligalzqg= Apun2;

Se presenta un ejemplo de aplicacion de las listas doblemente ligadas. Se incluye
una biblioteca con la plantilla de la clase correspondiente al programa 6.5. Tam-
bién se incluye la biblioteca “Productos.h” presentada en el programa 6.2. En es-
ta aplicacion, se usa una lista doblemente ligada para almacenar y procesar datos
de varios productos. Las opciones de trabajo ofrecidas al usuario son:

a) Dar de alta un producto.
b) Dar de baja un producto ya registrado.

¢) Generar un reporte con los productos ordenados de menor a mayor, segin
la clave.

d) Generar un reporte con los productos ordenados de mayor a menor, seglin
la clave.

e) Generar un reporte con los productos cuyos precios se encuentren com-
prendidos en un rango dado por el usuario.

S Calcular e imprimir el promedio de los precios de todos los productos
registrados.

Programa 6.6

/* Ejemplo de programa de aplicacién de listas doblemente ligadas.
=Se incluyen las bibliotecas que almacenan la plantilla de la clase
=/ istaDobLiga y la clase Producto, esta Ultima usada como tipo de la
winformacidon guardada en los nodos de la lista.*/

| 290

Capitulo 6. Listas

#include "ListasDoblesLigas.h"
#include "Productos.h"

/* Funcién auxiliar que despliega las opciones de trabajo del usuario. */
int Menu()

{

int Opcion;

do {
cout<<"\n\nBienvenido al sistema de inventario.\n\n";
cout<<"Opciones de trabajo:";
cout<<"\n (1) Registrar un producto (se hara en orden segun la
=clave).";
cout<<"\n (2) Dar de baja un producto.";
cout<<"\n (3) Generar un reporte en orden creciente por claves.";
cout<<"\n (4) Generar un reporte en orden decreciente por
=claves.";
cout<<"\n (5) Generar un reporte de productos cuyos precios
estén en cierto rango.";
cout<<"\n (6) Promedio de precios de los productos
wregistrados.";
cout<<"\n (7) Salir.";
cout<<"\n\nIngrese opcidén elegida: ";
cin>>0pcion;
cout<<"\n\n\n";

} while (Opcion < 1 Il Opcion > 7);

return Opcion;

}

/* Funcién que genera un reporte con los datos de los productos en orden
wcreciente. Para ello, considerando el orden en el cual fue creada la
=lista, la misma se recorre de izquierda a derecha empezando con el
=primer nodo. */

void ReporteCrec(ListaDobLiga<Producto> Inventario)

{
cout<<"\n\nLista de productos ordenados por clave de menor a
=mayor.\n";
Inventario.ImprimeIzq_Der(Inventario.RegresaPrimero());
}

/* Funcién que genera un reporte con los datos de los productos en orden
wdecreciente. Para ello, considerando el orden en el cual fue creada la
=]ista, la misma se recorre de derecha a izquierda empezando con el
=(1ltimo nodo. */

void ReporteDec(ListaDobLiga<Producto> Inventario)

6.4 Listas doblemente ligadas

291 |

cout<<"\n\nLista de productos ordenados por clave de mayor a
=mnenor.\n";
Inventario.ImprimeDer_Izq(Inventario.Regresaultimo());

}

/* Funcién que genera un reporte con los datos de los productos cuyos
=precios se encuentran comprendidos en cierto rango. La funcién recibe
=wcomo parametro la lista de productos. */
void ReportePrecios(ListaDobLiga<Producto> Inventario)
{
NodoDobleLiga <Producto> *Apunt;
double PrecInf, PrecSup;
cout<<"\nIngrese el rango de precios que le interesa. \n";
cout<<"Limite Inferior: ";
cin>>PrecInf;
cout<<"\nLimite Superior: ";
cin>>PrecSup;
Apunt= Inventario.RegresaPrimero();
cout<<"\n\nLista de productos cuyos precios son >= "<<PrecInf<<" y
w<= "<<PrecSup<<"\n";
while (Apunt)

if (Apunt->Regresalnfo().RegresaPrecio() >= PrecInf &&
Apunt->Regresalnfo().RegresaPrecio() <= PrecSup)
Inventario.ImprimeNodo (Apunt);
Apunt= Inventario.RegresaVecinoDer (Apunt);

}
}

/* Funcién que calcula el promedio de los precios de todos los productos
wregistrados en el inventario. Recibe como parametro la lista y da como
wresultado el promedio calculado.*/
double Promedio(ListaDobLiga<Producto> Inventario)
{

NodoDobleLiga <Producto>*Apunt;

Apunt= Inventario.RegresaPrimero();

double Prom= 0;

int Total= 0;
while (Apunt)
{

Prom= Prom + Apunt->Regresalnfo().RegresaPrecio() ;
Apunt= Inventario.RegresaVecinoDer (Apunt);
Total= Total + 1;
}
if (Total)
Prom= Prom/Total;
return Prom;

| 292

Capitulo 6. Listas

/* Funcién principal. Invoca los diferentes métodos para que las
woperaciones elegidas por el usuario se puedan llevar a cabo. */
void main()
{
ListaDobLiga<Producto> Inventario;
Producto Produ;
int Opcion, Clave, Resp;
do {
Opcion= Menu();
/* Seleccidén de acuerdo a la opcién de trabajo elegida por el
wysuario. */
switch (Opcion)

)

{
case 1:{
cout<<"\nIngrese datos del producto a registrar. ";
cin>>Produ;
Inventario.InsertaOrdenado(Produ);
break;
}
case 2:{
cout<<"\nIngrese la clave del producto a eliminar. ";
cin>>Clave;
Producto Prod(Clave,"",0);
Resp= Inventario.EliminaUnNodo(Prod);
if (Resp == 1)
cout<<"\nBaja registrada.\n";
else
if (Resp == -1)
cout<<"\nNo hay productos registrados en
winventario. \n";
else
cout<<"\nNo hay producto registrado con la
wclave dada. \n";
break;
}
case 3: ReporteCrec(Inventario);
break;
case 4: ReporteDec(Inventario);
break;
case 5: ReportePrecios(Inventario);
break;

case 6: cout<<"\n\n\nPromedio de precios:
= "<<Promedio(Inventario);

break;

case 7: break;

} while (Opcion >= 1 &% Opcion < 7);

6.6 Multilistas 293 |

6.5 Listas circulares doblemente ligadas

Las listas circulares doblemente ligadas son una variante de las presentadas
en la seccidén anterior. En este tipo de listas, el primer nodo tiene como nodo
predecesor al dltimo y éste tiene como nodo sucesor al primero. Graficamente,
una lista circular doblemente ligada se representa como se muestra en la figura

6.23.
Primero [)
\ AT A AT T
(N1~ =t N>
4

Ultimo
FIGURA 6.23 Listas circulares doblemente ligadas

Los métodos para llevar a cabo las operaciones sobre datos almacenados en este
tipo de estructura son muy similares a los presentados en el programa 6.5. Se
sugiere que defina la clase ListaCirDobLig (Lista Circular Doblemente Ligada)
y adapte los métodos vistos para que se ajusten a las caracteristicas de esta
estructura de datos.

6.6 Multilistas

Las multilistas se pueden definir como listas de listas. Es decir, listas que tienen
una lista como parte de la informacién que almacenan. Gréficamente, una multi-
lista se representa como se muestra en la figura 6.24. En el caso de esta lista,
cada uno de sus nodos guarda cierta informacién, un apuntador a una segunda
lista y un apuntador al siguiente nodo.

| 294 Capitulo 6. Listas

iPrimero

X| >| A

\]
=
\
\]
\]
o]
\

o

S| = NULL

oo

NULL NULL NULL NULL

T
T
-

NULL NULL

L

:

N

FIGURA 6.24 Esquema de una multilista

La anidacion de listas puede hacerse en diferentes niveles. Retomando la lista de
la figura 6.24, cada nodo de la segunda lista podria tener un apuntador a otra y
asi tantos niveles como sea necesario. Es importante considerar, que la represen-
tacion del problema debe ser comprensible. Por lo tanto, se debe guardar un
equilibrio entre la cantidad de listas que utilice y la claridad de la solucién que
se esté alcanzando. La figura 6.25 tiene tres niveles de listas. En el primero, ca-
da nodo almacena cierta informacién y un apuntador a otro nodo del mismo ti-
po. Dentro de esa informacién, existe un apuntador a otra lista (la del segundo
nivel). Por lo tanto, a las listas del segundo nivel (hay tantas como nodos haya
en el primer nivel) se llega por medio de los nodos de la primera lista. A su vez,
los nodos de la segunda lista contienen informacién y un apuntador a otro nodo
de la misma lista. Dentro de su informacién hay un apuntador a una lista (la del
tercer nivel). Habra tantas listas en el tercer nivel, como nodos haya en cada una
de las listas del segundo nivel, y el acceso a las mismas se da a través de dichos
nodos.

6.6 Multilistas 295 |

=y

Itimo

iPrimero ¢

Primer
nivel F ’—»NULL
4>

Segundo
nivel T> NULL > +—>NULL 4> NULL

Y
Y

Tercer
nivel

D S
-
T

-

NULL NULL

R S

NULL NULL NULL

FIGURA 6.25 Anidacion de listas en tres niveles

Existen dos formas para definir una estructura de datos con las caracteristicas
planteadas. En primer lugar se puede incluir como parte de la clase que dara
valor a T en la clase NodoLista, un atributo que sea a su vez una lista (el pro-
grama 6.7 presenta un caso de este tipo). Otra manera de hacerlo es por medio
de un atributo adicional en el nodo de la lista del primer nivel. Es decir, el
nodo tendrd la informacion, el apuntador al siguiente nodo de la lista y un
apuntador a otro tipo de nodo, el cual seria el primer elemento de la lista del
segundo nivel.

La figura 6.26 presenta un ejemplo de multilista. Tiene una lista de autores y
en cada uno de los nodos de esta lista incluye una lista de libros. De esta for-
ma, define dos niveles de listas. El primero formado por todos los autores y el
segundo por los libros escritos por dichos autores. El programa 6.7 muestra
todas las clases involucradas y un ejemplo de aplicacién. En la préctica, se
sugiere el uso de bibliotecas para guardar las clases y de esta forma modulari-
zar mds la solucién.

| 296

Capitulo 6. Listas

Primer nivel:
Autor

Segundo nivel:
Libros

¢Primero

{ Amolrl 4 et — A‘m:rj —_— Aul:)r" —+>NULL

Y Y Y

{ Librol‘] Libro, , Libro, ,

Libroj.I > Libroj_2 Libron‘]

Y

Y ooy

NULL NULL NULL

FIGURA 6.26 Ejemplo de multilista

Programa 6.7

/*

cla

{

b

/*
Lib
{1}
/*
Lib
{

/* Ejemplo de una multilista. Se declara una lista de autores, donde
wcada nodo (como parte de la informacién) tiene una lista de libros. */

#define MAX 100

Declaracion de la clase Libro. Se usara como base para el tipo de

winformacion de las listas del segundo nivel. */

ss Libro
private:
char Nombre[MAX], ISBN[MAX];
int AnioEdic;
public:
Libro();
Libro(char [], char [], int);
int operator == (Libro);
int operator != (Libro);
friend istream &operator>>(istream &Lee, Libro &);
friend ostream &operator<< (ostream &Escribe, Libro &);
Declaraci6n del método constructor por omisidén. */

ro::Libro()

Declaraci6n del método constructor con paréametros. */
ro::Libro(char Nom[], char Clave[], int AEd)

strcpy (Nombre, Nom);
strcpy (ISBN, Clave);
AnioEdic= AEd;

6.6 Multilistas

297 |

/* Sobrecarga del operador == para comparar dos objetos de este tipo.
=Regresa 1 si los libros tienen el mismo nombre y cero en caso
=wcontrario. */

int Libro::operator == (Libro Lib)
{
if (strcmp(Nombre, Lib.Nombre) == 0)
return 1;
else
return 0;
}

/* Sobrecarga del operador != para comparar dos objetos de este tipo.
=Regresa 1 si los libros tienen nombres distintos y cero en caso
=contrario. */

int Libro::operator != (Libro Lib)

{
if (strcmp(Nombre, Lib.Nombre) != 0)
return 1;
else
return 0;
}

/* Declaracién de la funci6on amiga en la que se sobrecarga al operador
=de lectura >>, de tal manera que objetos de tipo Libro puedan ser
wleidos directamente. */
istream &operator>>(istream &Lee, Libro &Lib)
{

cout<<"\n\nIngrese nombre del libro:";

Lee>>Lib.Nombre;

cout<<"\n\nIngrese ISBN:";

Lee>>Lib.ISBN;

cout<<"\n\nIngrese afo de edicié6n:";

Lee>>Lib.AnioEdic;

return Lee;

}

/* Declaraci6on de la funcién amiga en la que se sobrecarga al operador
=de impresidén <<, de tal manera que objetos de tipo Libro puedan ser
wescritos directamente. */
ostream &operator<< (ostream &Escribe, Libro &Lib)
{

Escribe<<"\n\n\nDatos del libro\n";

Escribe<<"\nNombre: "<<Lib.Nombre;

Escribe<<"\nISBN: "<<Lib.ISBN;

Escribe<<"\nAfo de edicidén: "<<Lib.AnioEdic<<"\n";

return Escribe;

| 298

Capitulo 6. Listas

/* Declaraciéon de la clase Autor. Se usard como tipo base para darle
=yvalor a la T del atributo Info de los nodos de la lista del primer
wnivel. E1 atributo Obra es un objeto de tipo Lista, en este caso es
=yna lista de libros (usando la clase previamente definida). */
class Autor

{
private:
char Nombre[MAX], Nacional[MAX];
int AnioNac;
Lista<Libro> Obra;
public:
Autor();
Autor(char[]);
Lista<Libro> RegresalLisLibros();
int operator == (Autor);
int operator != (Autor);
friend istream &operator>>(istream &Lee, Autor &);
friend ostream &operator<< (ostream &Escribe, Autor &);
b

/* Declaracién del método constructor por omisioén. */
Autor::Autor()
{1}

/* Declaracién del método constructor con parametros. */
Autor::Autor(char Nom[])

{
}

strcpy (Nombre, Nom);

/* Método que regresa la lista de libros de un autor. */
Lista<Libro> Autor::RegresalLisLibros()

{
}

return Obra;

/* Sobrecarga del operador == para poder comparar dos objetos de tipo
wAutor. E1 método regresa 1 si los objetos tienen nombres iguales y @ en
=caso contrario.*/
int Autor::operator == (Autor Aut)
{
if (strcmp(Nombre, Aut.Nombre) == 0)
return 1;
else
return 0;

6.6 Multilistas

299 |

/* Sobrecarga del operador = para poder comparar dos objetos de tipo
wAutor. E1 método regresa 1 si los objetos tienen nombres distintos y 0
=en caso contrario.*/

int Autor::operator != (Autor Aut)

{
if (strcmp(Nombre, Aut.Nombre) != 0)
return 1;
else
return 0;
}

/* Declaracién de la funcién amiga en la que se sobrecarga al operador
=de lectura <<, de tal manera que objetos de tipo Autor puedan ser
wleidos directamente. */
istream &operator>>(istream &Lee, Autor &VarAut)
{
cout<<"\n\nIngrese nombre del autor:";
Lee>>VarAut.Nombre;
cout<<"\n\nIngrese nacionalidad del autor:";
Lee>>VarAut.Nacional;
cout<<"\n\nIngrese afo de nacimiento:";
Lee>>VarAut.AnioNac;
cout<<"\n\nIngrese los datos de su obra\n";
VarAut.Obra.Crealnicio();
return Lee;

/* Declaracién de la funcion amiga en la que se sobrecarga al operador
wde impresion <<, de tal manera que objetos de tipo Autor puedan ser
wescritos directamente. */

ostream &operator<< (ostream &Escribe, Autor &VarAut)

{
Escribe<<"\n\nDatos del autor\n\n";
Escribe<<"\nNombre: "<<VarAut.Nombre;
Escribe<<"\nNacionalidad: "<<VarAut.Nacional;
Escribe<<"\nAno de nacimiento: "<<VarAut.AnioNac<<"\n";
Escribe<<"\nDatos de su obra";
VarAut.Obra.Imprime(VarAut.Obra.RegresaPrimero());
return Escribe;

}

/* Clase Lista dependiente de la clase NodoLista. */
template <class T>
class Lista;

| 300

Capitulo 6. Listas

/* Definicién de la clase NodoLista. Se incluyeron s6lo algunos de los
wmétodos vistos.*/
template <class T>
class NodolLista
{
private:
NodoLista<T> *Liga;
T Info;
public:
NodoLista();
T Regresalnfo();
friend class Lista<T>;
b

/* Declaracién del método constructor por omisidén. */
template <class T>
NodoLista<T>: :NodoLista()

{
}

/* Regresa la informacién almacenada en el nodo. */
template <class T>
T NodoLista<T>::RegresaInfo()

{
}

Liga= NULL;

return Info;

/* Definicién de la clase Lista. Es una lista simplemente ligada. */
template <class T>
class Lista
{
private:
NodoLista<T> *Primero;
public:
Lista ();
NodoLista<T> *RegresaPrimero();
void Crealnicio();
void Imprime(NodoLista<T> *);
void InsertaInicio(T);
NodoLista<T> * Busca(T, NodoLista<T> *);

b

/* Declaracién del método constructor. */
template <class T>
Lista<T>::Lista()

{
}

Primero= NULL;

6.6 Multilistas

301|

/* Método que regresa la direccién del primer nodo de la lista. */
template <class T>
NodoLista<T> *Lista<T>::RegresaPrimero()

{
}

return Primero;

/* Método que crea una lista agregando el nuevo nodo al inicio de la
wmisma. */
template <class T>
void Lista<T>::Crealnicio()
{
NodoLista<T> *P;
T Dato;
char Resp;
Primero= new NodoLista<T>();
cout<<"Ingrese la informacién del primer elemento: \n";
cin>> Dato;
Primero->Info= Dato;
cout<< "\niDesea ingresar otro elemento (S/N)? ";
cin>>Resp;
while (Resp == 'S' Il Resp == 's')
{
cin>>Dato;
P= new NodoLista<T>();
P->Info= Dato;
P->Liga= Primero;
Primero= P;
cout<< "\n¢Desea ingresar otro elemento (S/N)? ";
cin>> Resp;

}

/* Método que despliega el contenido de la lista. */
template <class T>
void Lista<T>::Imprime(NodoLista<T> *P)

{
if (P)
{
cout<<P->Info;
Imprime (P->Liga);
}
cout<< '\n';
}

/* Método que inserta un nodo al inicio de la lista. */
template <class T>
void Lista<T>::Insertalnicio(T Dato)

| 302

Capitulo 6. Listas

{
NodoLista<T> *P;
P= new NodoLista<T>();
P->Info= Dato;
P->Liga= Primero;
Primero= P;

}

/* Método que busca un nodo dado como referencia en la lista. E1 método
wrecibe como parametro el elemento a buscar y una variable que almacena
wla direccidén de un nodo, inicialmente es la direccién del primero.
=Regresa como resultado la direccién del nodo si lo encuentra y NULL en
=caso contrario. */

template <class T>

NodoLista<T> * Lista<T>::Busca(T Dato, NodoLista<T> *Q)

{

if (Q)
if (Q->Info == Dato)
return Q;
else
return Busca(Dato, Q->Liga);
else

return NULL;

/* Funcidén auxiliar que despliega en pantalla las opciones de trabajo. */

int Menu()
{
int Opc;
do {

cout<<"\n\nIngrese opcidén de trabajo\n";

cout<<"\n(1) Agregar un nuevo autor. ";
cout<<"\n(2) Generar un reporte de todos los autores con sus

=obras. ";

cout<<"\n(3) Generar un reporte con todos los datos de un cierto
=autor. ";

cout<<"\n(4) Generar un reporte con la obra de un cierto
=autor. ";

cout<<"\n(5) Terminar el proceso.";
cout<<"\n\nIngrese la opcién seleccionada: ";
cin>>0pc;

} while (Opc < 1 Il Opc > 5);

return Opc;

6.6 Multilistas

303|

/* Funcién principal. De acuerdo a la opcidn de trabajo seleccionada por
wel usuario se invoca a los métodos que corresponda. */
void main()

{

int OpcTrab;

char NomAut[MAX];

NodoLista<Autor>

* RespBus;

Lista<Autor> Acervo;
Lista<Libro> ObraAutor;

Autor Escritor;

Acervo.Crealnicio();

do {

OpcTrab= Menu();
switch (OpcTrab)

{

case 1: {
}
case 2: {
}
case 3: {

}

case 4: {

/* Se inserta un nuevo elemento en la lista de
wautores. */

cin>>Escritor;

Acervo.Insertalnicio(Escritor);

break;

/* Se imprime toda la lista. */
Acervo.Imprime(Acervo.RegresaPrimero());
break;

/* Se imprimen todos los datos de un autor, cuyo
=nombre proporciona el usuario. */
cout<<"\nIngrese nombre del autor: ";
cin>>NomAut;
Autor AutorAux(NomAut);
RespBus= Acervo.Busca(AutorAux,
=Acervo.RegresaPrimero());
if (RespBus)
cout<<RespBus->Regresalnfo();
else
cout<<"\n\nEse autor no estd registrado. \n\n";
break;

/* Se imprimen los datos de todos los libros de un

=mautor, cuyo nombre da el usuario. Se recupera el

watributo que fue declarado como una lista, y a éste se

wle aplica el método de impresion de las listas. */

cout<<"\nIngrese nombre del autor: ";

cin>>NomAut;

Autor AutorAux(NomAut);

RespBus= Acervo.Busca(AutorAux,
=Acervo.RegresaPrimero());

if (RespBus)

| 304 Capitulo 6. Listas

ObraAutor= RespBus->
=wRegresalnfo().RegresalLisLibros();
ObraAutor.Imprime (ObraAutor.RegresaPrimero());
}
else
cout<<"\n\nEse autor no esta registrado. \n\n";
break;
}

case 5: cout<<"\n\nFin del proceso. \n\n";

}
} while (OpcTrab != 5);
}

En la clase Autor del ejemplo 6.7, se incluyé un atributo que es una lista de
objetos (Lista<Libro> oObra). Dado que el atributo obra es una lista simplemente
ligada, se le pueden aplicar todos los métodos definidos en la clase Lista.
También se pudo definir como un apuntador a un nodo que tuviera como
informacion base la clase libro. En este caso, se tendrian que haber adaptado
algunos de los métodos vistos. La declaracion del atributo obra hubiera quedado:
NodoLista<Libro> *Obra, siendo un dato tipo apuntador y no un dato tipo lista
como en el caso anterior.

Ejercicios

1. Defina una plantilla para la clase ListaSimLigada. Decida qué atributos y
métodos incluir. Se sugiere que declare un apuntador al primero y otro al dl-
timo nodo de la lista.

2. Escriba un programa en C++ que:

a) Use la plantilla del ejercicio anterior para declarar un objeto tipo lista
simplemente ligada de niimeros enteros.

b) Genere una lista con al menos 10 nodos que contengan 10 nimeros
enteros distintos entre si.

¢) Encuentre el mayor de los valores almacenados en la lista y lo elimine
(también debe quitar el nodo en el cual estd almacenado). Este proceso
se debe repetir hasta que la lista quede vacia.

Ejercicios 305 |

3. Escriba un programa que mezcle dos listas simplemente ligadas de nimeros
enteros, cuyos valores estdn ordenados crecientemente. El programa debe
generar una tercera lista, también ordenada, sin repetir elementos y no debe
afectar las listas dadas como datos. Observe la siguiente figura, las dos pri-
meras listas son los datos y la tercera es el resultado.

lPrimero

1 »>| 5 19

Y
o0
|

Primero NULL

L34 [l [0 [12][20]]

NULL

Primero

LU Ip-(3 [4 [S [8 [0 {12 [{19 [120 |

NULL

4. Escriba un programa que mezcle dos listas simplemente ligadas de nimeros
enteros, cuyos valores estdn ordenados crecientemente. El programa debe ir
generando una tnica lista con los nodos de las listas dadas como datos. Al
terminar el proceso, sélo debe quedar una lista ordenada, formada con la
union de las listas de entrada.

5. Escriba un programa que, dada una lista simplemente ligada de ntimeros en-
teros, elimine los elementos repetidos.

a) Considere el caso de una lista ordenada.
b) Considere el caso de una lista desordenada.

6. Escriba un programa que, dada una lista simplemente ligada de nimeros en-
teros ordenados crecientemente, agregue tantos nodos como sea necesario
de manera que la lista quede formada con los nodos requeridos para que
contengan todos los nimeros comprendidos entre el valor del primer nodo y
el valor del dltimo. Por ejemplo, si la lista dada por el usuario es la que apa-

| 306

Capitulo 6. Listas

b)

rece en la parte a) de la siguiente figura, luego de ejecutarse el programa
planteado, la lista deberia quedar como lo muestra la parte b).

E JEIE < EEE NN
E L EEE BN KIE KA E KEE I lil

NULL

. Defina la clase ListaCircularSimple correspondiente a una estructura tipo

lista circular simplemente ligada. No utilice nodo de cabecera. Por lo menos,
los métodos que debe incluir en la clase son: InsertaOrdenada() (este méto-
do debe ir insertando ordenadamente elementos a la lista), EliminaNodo ()
(este método debe poder eliminar un elemento dado como referencia si es-
tuviera en la lista), ImprimeLista() (este método imprime todos los elemen-
tos de la lista), BuscaNodo () (este método busca en la lista un valor dado
como referencia). En todos los métodos debe considerar posibles casos de
fracaso. Utilice plantillas para su definicion.

. Retome el problema anterior y defina una clase Alumnos con todos los atributos

y métodos que crea necesarios (puede usar la solucién al problema 8 del ca-
pitulo 2). La clase Alumnos servird como tipo para el atributo Informacion de
cada nodo de la lista. Con estas especificaciones desarrolle una aplicacién que:

a) Permita crear (alfabéticamente por nombre de alumno) una lista con
los alumnos que toman cierta materia.

b) Imprima los datos de todos los alumnos.

¢) Busque en la lista el nombre de un alumno. Si lo encuentra, debe im-
primir todos sus datos, en caso contrario debe imprimir un mensaje
adecuado.

d) Busque en la lista el nombre de un alumno que se dio de baja de la
materia, si su nombre no estd en la lista, la aplicacién debe eliminarlo
o enviar un mensaje adecuado.

Ejercicios 307 |

10.

11.

12.

13.

14.

. Implemente la estructura cola con una lista simplemente ligada. Utilice la

plantilla de la clase definida en el ejercicio 1 para definir una plantilla para
la clase cola.

Escriba un programa que invierta los elementos de una cola implementada
por medio de una lista. Utilice la plantilla definida en el ejercicio anterior.

Defina una lista que pueda almacenar, en cada nodo, un par (X,,Y,) de
nimeros reales. Haga los cambios en las clases que crea conveniente.

Retome el problema anterior. Escriba un programa que lea una serie de N
(1= N = 50) pares de numeros reales, los guarde en la lista y los use para
calcular e imprimir el resultado de las siguientes expresiones:

BO =Yprom — B1 Xprom

Retome los métodos de eliminacién de nodos de una lista simplemente liga-
da (que se explicaron anteriormente) y modifiquelos de tal manera que re-
gresen la direccion del nodo eliminado.

Escriba un programa, que usando una lista doblemente ligada, pueda alma-
cenar y manipular informacién relacionada a socios de un club deportivo.
La especificacion de los datos correspondientes a cada socio se presenta a
continuacién. El programa debe permitir a los usuarios, por medio de un
mend, llevar a cabo las siguientes operaciones:

a) Registrar un nuevo socio. Considere que no puede haber dos socios
con el mismo nimero (NumeroSocio). La lista de socios debe ir quedando
ordenada de menor a mayor, segtin el nimero de socio.

b) Dar de baja un socio del club.

¢) Generar un reporte con todos los socios que tengan una antigiiedad
mayor o igual a una proporcionada por el usuario.

| 308

Capitulo 6. Listas

15.

16.

d) Cambiar el domicilio de un socio registrado.
e) Generar un reporte con los datos de todos los socios.

f) Calcular e imprimir el total de socios registrados.

SocioClub

NumeroSocio: int
NombreSocio: char[]
Domicilio: char[]

Anolngreso: int

Métodos de acceso
y actualizacion

Defina la clase ListaCircularDoble correspondiente a una estructura tipo
lista circular doblemente ligada. No utilice nodo de cabecera. Los méto-
dos que, por lo menos, debe incluir en la clase son: InsertaOrdenada()
(este método debe ir insertando ordenadamente elementos a la lista),
EliminaNodo() (este método debe poder eliminar un elemento dado como
referencia si estuviera en la lista), ImprimeLista() (este método imprime
todos los elementos de la lista), ImprimeNodo () (este método imprime la
informacién de un nodo de la lista, cuya direccién se da como pardme-
tro), BuscaNodo () (este método busca en la lista un valor dado como refe-
rencia, si lo encuentra regresa la direccién del nodo y si no el valor
NULL). En todos los métodos debe considerar posibles casos de fracaso.
Utilice plantillas para su definicion.

En una empresa se necesita un sistema que permita manejar la informacién
de los automéviles que tienen para su personal. Para representar los datos de

los automdviles se debe tener en cuenta la clase Automovil dada mas abajo.
Escriba un programa que, usando una lista circular doblemente ligada, pueda:

a) Registrar un automdvil nuevo. Considere que no puede haber dos au-
tomoviles con la misma clave que los identifica y que la lista debe ir
quedando ordenada por clave.

b) Dar de baja un automdvil que ya no estd disponible para el personal.

Ejercicios

309 |

d)

e)

D

Generar un reporte de todos los automdviles que sean de un cierto

afio. El afo de interés serd un dato dado por el usuario.

Generar un reporte de todos los automdviles cuyo precio sea superior

a un monto dado por el usuario.

Dado el nombre de un empleado, imprimir los datos del automdévil que

tiene asignado.

Cambiar el nombre de la persona a la que estd asignado un automovil.

Automovil

ClaveAuto: int
MarcaAuto: char[]
Modelo: char[]
AnoFabricacion: int
PrecioCompra: float

AsigandoA: char[]

Métodos de acceso
y actualizacion

17. Observe el siguiente esquema. Disefie una estructura de datos que pueda re-
presentar los datos y las relaciones entre ellos de manera adecuada. Defina
una clase para las marcas y otra para los modelos.

Primer nivel:
Marcas

Segundo nivel: |

Modelos

{

L

¢Primero ll’ﬂtimo
Audi | oo »| oo | 4 NULL
A3 »| A4 SEANREE | [denuiL |-« | doonuiL

|310

Capitulo 6. Listas

18. Retome el problema anterior. Escriba un programa en C++, que mediante
mendus pueda:

a)
b)
c)

d)
e)

h
8)

Agregar una nueva marca.
Agregar un nuevo modelo a una marca registrada.

Eliminar una marca. En este caso se deben eliminar también todos los
modelos que tiene dicha marca.

Eliminar un modelo de una marca registrada.

Generar un reporte con todas las marcas y todos los modelos de las
mismas.

Dada una marca, imprimir todos los modelos que tiene.

Generar un reporte con el modelo mas caro de cada una de las
marcas.

19. Retome el problema anterior. Ahora considere que cada modelo tiene una

lista,

de tercer nivel, con todas las versiones del mismo: econémico, con

piel, equipados, con quemacocos, etcétera. Debera definir una clase para las
versiones. Desarrolle una aplicacion, escrita en C++, que mediante mendus,
pueda realizar lo siguiente:

a)
b)
c)
d)

e)

5
2)

h)

Agregar una nueva marca.
Incorporar un nuevo modelo a una marca registrada.
Agregar una version a un modelo de una cierta marca.

Eliminar una marca. En este caso se deben eliminar también todos los
modelos que tiene dicha marca, y de cada modelo se deben eliminar
todas las versiones.

Eliminar un modelo de una marca registrada. En este caso, también se
deben eliminar las versiones de dicho modelo.

Eliminar una version de un modelo de una cierta marca.

Generar un reporte con todas las marcas, sus modelos y las distintas
versiones de éstos.

Encuentre e imprima la marca que mas modelos tiene.

Encuentre e imprima el modelo que méas versiones tiene.

Ejercicios

311|

Primer nivel:
Marcas

Segundo nivel:

Modelos

Tercer nivel:
Versiones

*Primero

L

|__l_|]—>NULL
EEL' NULL

NULL

~m

>

|__l_|]->NULL
o e A e W

NULL

NULL NULL

V/Jltimo

[l

\j

NULL

CAPIiTULO 7

Arboles

7.1 Introducciéon

Este capitulo estudia la estructura de datos conocida con el nombre de
drbol. Presenta sus principales caracteristicas, como se relacionan sus
componentes y analiza las operaciones que pueden aplicarseles.

Los arboles son estructuras de datos no lineales. Cada elemento, co-
nocido con el nombre de nodo, puede tener varios sucesores. En tér-
minos generales, un arbol se define como una coleccién de nodos
donde cada uno, ademas de almacenar informacién, guarda la direc-
cion de sus sucesores. Se conoce la direccion de uno de los nodos,
llamado raiz, y a partir de él se tiene acceso a todos los otros miem-
bros de la estructura.

Existen diversas maneras de representar un arbol, las mas comunes
son: grafos, anidacion de paréntesis y diagramas de Venn. La figura

1314 Capitulo 7. Arboles

7.1 muestra un drbol representado por medio de un grafo, en el cual cada nodo
estd indicado por un circulo y la relacién entre ellos por un arco.

° Raiz
° ° ‘ (O Nodo: miembro o
elemento del arbol

FIGURA 7.1 Estructura Arbol representada con un grafo

Arco: relacion entre
nodos

Al observar la representacion del arbol por medio de una grafica puede observarse a
cada nodo como un arbol. Por consiguiente se dice que un drbol estd formado por 0 o
mds subdrboles, llegando asi a una definicién recursiva de esta estructura de datos.

En una estructura tipo drbol se definen relaciones entre sus miembros. A continua-
cién se presentan las relaciones mas importantes y se ejemplifican usando el arbol
de la figura 7.1.

* Hijo. Se dice que un nodo es hijo (o descendiente) de otro si este dltimo
apunta al primero. El nodo que almacena el valor 7 es hijo del nodo que al-
macena el valor e. Los nodos p y j son hijos de .

* Padre. Se dice que un nodo es padre de otro si este ultimo es apuntado por el
primero. El nodo que almacena el valor j es padre del nodo que almacena
el valor b. El nodo e es padre de x, f e i.

* El origen de cada arco estd en el nodo padre y la flecha llega al nodo hijo.

* Hermano. Dos nodos son hermanos si son apuntados por el mismo nodo, es
decir si tienen el mismo padre. Los nodos x, ¢ e i son hermanos.

Ademas, los nodos pertenecen a una de las siguientes categorias segin su ubica-
cién en la estructura.

7.2 Arboles binarios

315|

* Raiz. Se dice que un nodo es raiz si a partir de €l se relacionan todos los
otros nodos. Si un arbol no es vacio, entonces tiene un unico nodo raiz. En
la figura 7.1, el nodo raiz es el que almacena el valor e.

* Hoja o terminal. Se dice que un nodo es una hoja del arbol (o terminal) si
no tiene hijos. En la figura 7.1, los nodos que almacenan los valores m, p, b
e i son hojas o nodos terminales.

e Interior. Se dice que un nodo es interior si no es raiz ni hoja. En la figura
7.1, los nodos que almacenan los valores x, ¢, y j son nodos interiores.

Se define el nivel y grado de cada nodo y la altura y el grado del 4rbol de la siguien-
te manera:

* Nivel de un nodo. Se dice que el nivel de un nodo es el nimero de
arcos que deben ser recorridos, partiendo de la raiz, para llegar hasta
él. La raiz tiene nivel 1. En el arbol de la figura 7.1, el nivel de los
nodos que almacenan los valores x, r e i es 2 y el nivel del nodo b
es 4.

* Altura del darbol. Se dice que la altura de un arbol es el maximo de los nive-
les, considerando todos sus nodos. El arbol de la figura 7.1 tiene una altura
igual a 4.

* Grado de un nodo. Se dice que el grado de un nodo es el nimero de hijos
que tiene dicho nodo. En la figura 7.1, el grado del nodo que almacena el
valor ¢ es 2 y el grado del nodo x es 1.

* Grado del drbol. Se dice que el grado de un drbol es el maximo de
los grados, considerando todos sus nodos. El arbol de la figura 7.1,
es de grado 3.

7.2 Arboles binarios

Un drbol binario es un arbol de grado 2 en el cual sus hijos se identifican como
subarbol izquierdo y subarbol derecho. Por lo tanto, cada nodo almacena informa-
cion y las direcciones de sus descendientes (mdximo 2). Es un tipo de drbol muy
usado, ya que saber el nimero maximo de hijos que puede tener cada nodo facili-
ta las operaciones sobre ellos. La figura 7.2 presenta el esquema de un nodo de
un arbol binario.

Capitulo 7. Arboles

Direccion Direccion
Subarbol Informacion Subarbol
Izquierdo Derecho

FIGURA 7.2 Estructura de un nodo de un drbol binario

La figura 7.3 presenta un ejemplo de uso de un arbol binario. En este caso, la es-
tructura se emplea para almacenar el arbol genealdgico de Maria. En cada nodo se
guarda la informacién de los ancestros de Maria y los arcos indican la relacién

entre ellos.

CNCROND

La caracteristica de este tipo de arbol (cada nodo tiene maximo 2 hijos) se puede
aprovechar para organizar la informacion. Retomando el ejemplo de la figura 7.3,
se puede establecer que los hijos izquierdos representen los ascendientes femeni-
nos de Maria, mientras que los hijos derechos los ascendientes masculinos. Asf,
la mama de Maria es Juana y su abuela materna es Inés. El papa de Maria es Jo-
sé. A su vez, la mama de José es Felisa 'y su papa es Pedro.

FIGURA 7.3 Ejemplo de drbol binario

La implementaciéon mds efectiva de los drboles binarios es por medio de memo-
ria dindmica, obteniendo asi una estructura dindmica. Las figuras 7.4 y 7.5

7.2 Arboles binarios 317 |

presentan las plantillas de la clase NodoArbol y de la clase ArbolBinario res-
pectivamente. Se usan plantillas para dar mayor generalidad a la solucién.
La clase NodoArbol tiene tres atributos, uno que representa la informacion a
almacenar por lo que se define de tipo T, y otros dos que representan la di-
reccién del hijo izquierdo y del hijo derecho respectivamente, por lo que se
declaran como punteros a objetos de la misma clase. Por su parte, la clase
ArbolBinario tiene un Unico atributo que representa la direccion del primer
elemento del arbol (la raiz) por lo cual es de tipo puntero a un objeto de tipo
NodoArbol.

NodoArbol(T)

Info: T
Hijolzq: * NodoArbol(T)

HijoDer: * NodoArbol(T)

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 7.4 Clase NodoArbol

ArbolBinario(T)

Raiz: * NodoArbol(T)

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 7.5 Clase ArbolBinario

A continuacién se presenta el codigo en lenguaje C++ correspondiente a la defi-
nicion de las plantillas de las clases NodoArbol y ArbolBinario.

|318

Capitulo 7. Arboles

/* Prototipo de la plantilla de la clase ArbolBinario. De esta manera,
wen la clase NodoArbol se podréa hacer referencia a ella. */

template <class T>

class ArbolBinario;

/* Declaraciéon de la clase NodoArbol. Cada nodo almacena la informacioén
= (que es la razon de ser de la estructura tipo arbol) y las direcciones
wde sus hijos izquierdo y derecho. En la seccidn publica se establece la
wrelacion de amistad entre esta clase y la clase ArbolBinario para que 1os
wnétodos de esta Ultima puedan tener acceso a sus miembros privados. */
template <class T>
class NodoArbol
{
private:
T Info;
NodoArbol<T> *HijoIzq;
NodoArbol<T> *HijoDer;
public:
NodoArbol();
T Regresalnfo();
friend class ArbolBinario<T>;

h

/* Declaracién del método constructor por omisién. Inicializa las ligas
w=a 1os subarboles con el valor de NULL, indicando que estén vacias. */
template <class T>
NodoArbol<T>::NodoArbol()
{

HijoIzg= NULL;

HijoDer= NULL;
}

/* Método que permite conocer la informacidén almacenada en el nodo. */
template <class T>

T NodoArbol<T>::RegresaInfo()

{

return Info ;

}

/* Declaracion de la clase ArbolBinario. Su atributo es un puntero al
wnodo raiz. */
template <class T>
class ArbolBinario
{
private:
NodoArbol<T> *Raiz;

7.2 Arboles binarios

319|

public:
ArbolBinario ();
/* En esta seccidn se declaran los métodos de acceso y
wmodificacion a los miembros de la clase. */

b

/* Declaracién del método constructor. Inicializa el puntero a la raiz con
wel valor NULL, indicando que el arbol esta vacio (no tiene nodos). */
template <class T>
ArbolBinario<T>::ArbolBinario()
{

Raiz= NULL;
}

La clase NodoArbol se utiliza para representar un nodo de un arbol binario, por lo
tanto se incluyen tres atributos: uno para almacenar informacién de cualquier tipo
(tipo T) y los otros dos para almacenar la direccion de los subarboles izquierdo y
derecho respectivamente, los cuales son punteros a objetos de la misma clase. La
seccién publica contiene tres miembros (podria tener mas o menos), dependiendo
de la definicién de la clase que se haga. Estos elementos son: el método construc-
tor, un método que facilita (a usuarios externos a la clase) conocer la informacién
guardada, y la declaracién de amistad con la clase ArbolBinario. Esta tltima de-
claracion permite que los métodos de la clase amiga tengan acceso a sus miem-
bros privados y protegidos.

A partir de la clase NodoArbol se define la clase ArbolBinario, la cual estd forma-
da por un atributo tnico (tipo puntero a un objeto NodoArbol) que representa el
puntero al nodo raiz del drbol binario. Este puntero permite el acceso a todos los
elementos del arbol ya que la raiz tiene la direccién de sus dos hijos, éstos, la di-
reccion de sus respectivos hijos y asi hasta llegar a nodos terminales. En la seccién
publica se declaran los métodos necesarios para tener acceso a los atributos, y de es-
ta manera manipular la informacién almacenada.

7.2.1 Operaciones en arboles binarios

En esta seccién se estudian las operaciones de creacion y recorrido de un arbol
binario. La primera hace referencia a crear una estructura que responda a las ca-
racteristicas analizadas e ir almacenando informacién en cada uno de los nodos.

| 320

Capitulo 7. Arboles

La segunda permite visitar todos los nodos de un drbol sin repetir ninguno, apro-
vechando el conocimiento que se tiene acerca de la estructura.

La creacion de un arbol binario se lleva a cabo a partir de la raiz. Se crea un no-
do y se almacena su informacién. Posteriormente se pregunta si dicho nodo tiene
hijo izquierdo, si la respuesta es afirmativa, entonces se invoca nuevamente el
método pero ahora con el subdrbol izquierdo. El proceso se repite con cada nodo
hasta llegar a las hojas. Luego, se hace lo mismo para crear cada uno de los
subarboles derechos. Se utiliza la instruccién new() para asignar un espacio de
memoria de manera dindmica.

A continuacién se presenta el método para llevar a cabo la secuencia de pasos
descrita.

/* Plantilla del método que crea un arbol binario. Recibe como parametro
wun apuntador a un subarbol. La primera vez es la raiz del arbol la cual
wse inicializ6 con el valor NULL, indicando que el arbol estad vacio. */
template <class T>
void ArbolBinario<T>::CreaArbol(NodoArbol<T> *Apunt)
{
char Resp;
/* Se crea un nodo. */
Apunt= new NodoArbol<T>;
cout<<"\n\nIngrese la informaci6n a almacenar:";
cin>>Apunt->Info;
cout<<"\n\n"<<Apunt->Info<<" ¢(Tiene hijo izquierdo (S/N)? ";
cin>>Resp;
if (Resp == 's')
{
/* Se invoca al método con el subarbol izquierdo. Se usa la
wdefinicioén recursiva de un arbol. */
CreaArbol (Apunt->HijoIzq);
Apunt->HijoIzgq= Raiz;

}
cout<<"\n\n"<<Apunt->Info<<" ¢Tiene hijo derecho (S/N)? ";
cin>>Resp;
if (Resp == 's')
{
/* Se invoca al método con el subarbol derecho. Se usa la
wdefinicién recursiva de un arbol. */
CreaArbol (Apunt->HijoDer);
Apunt->HijoDer= Raiz;
}
Raiz= Apunt;

7.2 Arboles binarios

321 |

El recorrido de un arbol binario consiste en visitar todos sus nodos una sola vez.
Por lo tanto, podra hacerse (aprovechando las caracteristicas de la estructura del
arbol) de tres maneras diferentes: visitando la raiz, el hijo izquierdo y el hijo
derecho, o visitando el hijo izquierdo, la raiz y el hijo derecho, o bien, visitan-
do el hijo izquierdo, ¢l hijo derecho y la raiz. En los tres casos, la regla se apli-
ca hasta llegar a las hojas. Estos métodos se conocen con el nombre de preorden,
inorden y postorden respectivamente.

Preorden Inorden Postorden
1. Visita la raiz 1. Recorre el subarbol 1. Recorre el subarbol
izquierdo izquierdo
2. Recorre el subarbol 2. Visita la raiz 2. Recorre el subarbol
izquierdo derecho
3. Recorre el subarbol 3. Recorre el subarbol 3. Visita la raiz
derecho derecho

Considerando el arbol binario de la figura 7.6, el resultado de los tres recorridos
es el siguiente.

e Preorden: 304 — 550 — 143 — 2020 — 1995 — 876 — 609 — 300

e Inorden: 143 — 550 — 2020 — 304 — 876 — 1995 — 609 — 300

e Postorden: 143 — 2020 — 550 — 876 — 300 — 609 — 1995 — 304

FIGURA 7.6 Recorrido de drboles binarios

| 322

Capitulo 7. Arboles

Los métodos para llevar a cabo esta operacion se presentan a continuacién. En
los tres casos la operacion de visitar la raiz se consideré como la impresién de su
contenido, aunque podria ser cualquier operacion vdalida segtn el tipo de informa-
cién almacenada en el nodo.

/* Método que realiza el recorrido preorden de un arbol binario. Se usa
wel recorrido para imprimir la informacién almacenada en cada uno de sus
wnodos. Recibe como pardmetro el nodo a visitar. La primera vez es la
wraiz del arbol, luego serd la raiz del subarbol izquierdo y la raiz del
wsubarbol derecho y asi hasta llegar a las hojas. */

template <class T>

void ArbolBinario<T>::Preorden (NodoArbol<T> *Apunt)

{
if (Apunt)
{
cout<< Apunt->Info << " ";
Preorden(Apunt->Hijolzq);
Preorden(Apunt->HijoDer);
}
}

/* Método que realiza el recorrido inorden de un arbol binario. Se usa
wel recorrido para imprimir la informacién almacenada en cada uno de sus
wnodos. Recibe como paradmetro el nodo a visitar. La primera vez es la
wraiz del arbol, luego serd la raiz del subarbol izquierdo y la raiz del
wsubarbol derecho y asi hasta llegar a las hojas. */

template <class T>

void ArbolBinario<T>::Inorden (NodoArbol<T> *Apunt)

{
if (Apunt)
{
Inorden(Apunt->Hijolzq);
cout<< Apunt->Info << " ";
Inorden(Apunt->HijoDer);
}
}

/* Método que realiza el recorrido postorden de un arbol binario. Se usa
wel recorrido para imprimir la informacién almacenada en cada uno de sus
wnodos. Recibe como parametro el nodo a visitar. La primera vez es la
wraiz del arbol, luego serd la raiz del subarbol izquierdo y la raiz del
wsubarbol derecho y asi hasta llegar a las hojas. */

template <class T>

void ArbolBinario<T>::Postorden (NodoArbol<T> *Apunt)

7.2 Arboles binarios 323 |

{
if (Apunt)
{
Postorden(Apunt->HijoIzq);
Postorden (Apunt->HijoDer);
cout<< Apunt->Info << " ";
}
}

En los tres métodos, la instruccién de imprimir se da sobre el contenido de la
raiz. La naturaleza recursiva de los métodos permite lograr la impresion de todos
los nodos. Las instrucciones que forman cada uno de los métodos son las mis-
mas, lo Gnico que cambia es el orden en el cual se ejecutan.

Si se analiza el recorrido preorden con el arbol de la figura 7.6, se puede observar
que primero se imprime el nimero 304, luego se invoca el método con el subarbol
izquierdo, quedando pendiente el recorrido con el subdrbol derecho (internamente
se guardan en una pila las instrucciones pendientes de ejecutar). Lo mismo suce-
de cuando llega con el subarbol izquierdo, imprime el valor 550 e invoca el méto-
do con su subdrbol izquierdo y deja pendiente el recorrido con su subarbol
derecho. Una vez agotado el lado izquierdo, pasa al lado derecho del dltimo nodo
visitado. Se van tomando de la pila todos los subarboles derechos que quedaron
pendientes de visitar y se van recorriendo. Como consecuencia, el primer nimero
(correspondiente a un subarbol derecho) que se imprime es el 2020, luego el
1995 y como este ltimo tiene subdrbol izquierdo, entonces se invoca al método
con éste (876). Se repite el proceso hasta que ya no queden nodos a visitar.

En un 4rbol binario también pueden realizarse otras operaciones como buscar, inser-
tar o eliminar un dato en un arbol ya generado. Estas operaciones seran analizadas
en un tipo especial de drboles binarios, los cuales se tratan en la siguiente seccidn.

El programa 7.1 presenta una aplicacién de drboles binarios. El programa imprime
los datos de todos los ascendientes femeninos de un individuo, tanto de la rama
materna como de la paterna. Se utiliza un objeto tipo arbol binario para almace-
nar los datos de los ascendientes de una persona, es decir, su drbol genealdgico.
En la raiz de cada subarbol izquierdo se almacena la informacién de un ascen-
diente femenino, mientras que en la raiz de cada subdrbol derecho se guarda la
informacién de un ascendiente masculino. Considerando el arbol de la figura 7.7,
algunas de las relaciones familiares representadas son:

1324 Capitulo 7. Arboles

Anahi es mama de Juan
José es papa de Juan
Inés es mama de Anahi
Pedro es papa de Anahi
Ana es mama de José

Luis es papad de José

y el programa imprimira que los ascendientes femeninos de Juan son Anahi, Inés y
Ana. El programa 7.1 incluye las clases ArbolBinario y Personas s6lo con los mé-

todos requeridos para la aplicacion.

ONOECOEC

FIGURA 7.7 Arbol genealdgico de Juan

Programa 7.1

/* Programa que imprime los datos de los ascendientes femeninos de un
windividuo. Primero forma el arbol genealdgico y posteriormente genera
wel reporte. */

/* Definicién de la clase Persona. */
class Persona
{
private:
int AnioNac, Vive;
char NomPers[64], LugNac[64];

7.2 Arboles binarios

325|

public:
Persona();
Persona(int, int, char[], char[]);
friend istream & operator>> (istream & , Persona &);
friend ostream & operator<< (ostream & , Persona &);
}

/* Declaracion del método constructor por omision. */
Persona::Persona()

{}

/* Declaracién del método constructor con parametros. */
Persona::Persona(int ANac, int Vi, char NomP[], char LugN[])
{

AnioNac= ANac;

Vive= Vij;

strcpy (NomPers, NomP);

strcpy (LugNac, LugN);
}

/* Sobrecarga del operador >> para permitir la lectura de objetos tipo
=Persona de manera directa. */
istream & operator>>(istream & Lee, Persona & ObjPers)
{

cout<<"\n\nIngrese nombre de la Persona:";

Lee>> ObjPers.NomPers;

cout<<"\n\nIngrese afio de nacimiento:";

Lee>> ObjPers.AnioNac;

cout<<"\n\nIngrese lugar de nacimiento:";

Lee>> ObjPers.LugNac;

cout<<"\n\n¢Esta viva?:";

Lee>> ObjPers.Vive;

return Lee;

}

/* Sobrecarga del operador << para permitir la escritura de objetos tipo
=Persona de manera directa. */
ostream & operator<< (ostream & Escribe, Persona & ObjPers)
{
Escribe<<"\n\nDatos de la Persona\n";
Escribe<<"\nNombre: "<<ObjPers.NomPers;
Escribe<<"\nLugar de nacimiento: "<<ObjPers.LugNac;
Escribe<<"\nAho de nacimiento: "<<ObjPers.AnioNac;
if (ObjPers.Vive == 1)
Escribe<<"\nEsta viva.\n";
else
Escribe<<"\nNo esta viva.\n";
return Escribe;

| 326

Capitulo 7. Arboles

/* Prototipo de la plantilla de la clase ArbolBinario. Asi, en la clase
= NodoArbol se podréa hacer referencia a ella. */

template <class T>

class ArbolBinario;

/* Declaracion de la clase NodoArbol. Cada nodo almacena la informacioén
wque es la razoén de ser de la estructura tipo arbol y las direcciones de
=su hijo izquierdo y de su hijo derecho. */
template <class T>
class NodoArbol
{
private:
T Info;
NodoArbol<T> *Hijolzq;
NodoArbol<T> *HijoDer;
public:
NodoArbol();
T Regresalnfo();
void ActualizaInfo(T);
friend class ArbolBinario<T>;

b

/* Declaracidn del método constructor por omisidn. Inicializa
wlas ligas a los subarboles con el valor de NULL. Indica nodo sin
wdescendientes. */
template <class T>
NodoArbol<T>::NodoArbol()
{
HijoIzg= NULL;
HijoDer= NULL;
y

/* Método que regresa la informacion almacenada en el nodo. */
template <class T>

T NodoArbol<T>::Regresalnfo()

{

return Info;

}

/* Método para actualizar la informacion almacenada en el nodo. */
template <class T>
void NodoArbol<T>::ActualizalInfo(T Dato)

{
}

Info= Dato ;

7.2 Arboles binarios

327|

/* Declaraci6n de la clase ArbolBinario. Tiene un puntero al nodo
wraiz. */

template <class T>

class ArbolBinario

{
private:
NodoArbol<T> *Raiz;
public:
ArbolBinario ();
NodoArbol<T> *RegresaRaiz();
void CreaArbol(NodoArbol<T> *);
void ImprimeIzq(NodoArbol<T> *);
b

/* Declaraci6on del método constructor. Inicializa el puntero a la raiz
wcon el valor NULL. Indica que el arbol esta vacio. */

template <class T>

ArbolBinario<T>::ArbolBinario()

{
}

Raiz= NULL;

/* Método que regresa el valor del apuntador a la raiz del arbol. */
template <class T>
NodoArbol<T> *ArbolBinario<T>::RegresaRaiz()

{
}

return Raiz;

/* Método que crea un arbol binario. */
template <class T>
void ArbolBinario<T>::CreaArbol(NodoArbol<T> *Apunt)
{
char Resp;
Apunt= new NodoArbol<T>;
cout<<"\n\nIngrese la informacién a almacenar:";
cin>>Apunt->Info;
cout<<"\n\n"<<Apunt->Info<<" ¢(Tiene hijo izquierdo (S/N)? ";
cin>>Resp;
if (Resp == 's')
{
CreaArbol (Apunt->HijolIzq);
Apunt->HijolIzg= Raiz;
}
cout<<"\n\n"<<Apunt->Info<<" ¢(Tiene hijo derecho (S/N)? ";
cin>>Resp;
if (Resp == 's')

| 328

Capitulo 7. Arboles

}

CreaArbol (Apunt->HijoDer) ;
Apunt->HijoDer= Raiz;
}

Raiz= Apunt;

/* Método que imprime la informacidén almacenada en las raices de todos
w]10s subarboles izquierdos. La primera vez recibe como dato la raiz del
warbol. */

template <class T>

void ArbolBinario<T>::ImprimeIzq(NodoArbol<T> *Apunt)

{

}

if (Apunt)
{
if (Apunt->HijoIzq)
{
cout<<Apunt->HijoIzg->Info;
ImprimeIzq(Apunt->Hijolzq);
}

ImprimelIzq(Apunt->HijoDer);

/* Funcién principal. Crea el arbol genealdgico de un individuo y
wposteriormente imprime los datos de todos sus ascendientes femeninos. */
void main()

{

ArbolBinario<Persona> Genealogico;
Persona Individuo;
NodoArbol<Persona> *Ap;

Ap= Genealogico.RegresaRaiz();

/* Se invoca el método que crea el arbol genealégico. */
Genealogico.CreaArbol(Ap);

Ap= Genealogico.RegresaRaiz();

/* Se recupera la informacidén del individuo. */
Individuo= Ap->Regresalnfo();

cout<<"\n\n\n \n\n";
cout<<"Los ascendientes femeninos de: \n"<<Individuo;
cout<<"\n\n \n";

/* Se invoca el método que imprime los datos de los ascendientes
=femeninos. */
Genealogico.ImprimeIzq(Ap);

7.2 Arboles binarios 329|

7.2.2 Arboles binarios de busqueda

Un drbol binario de biusqueda se caracteriza porque la informacién de cada nodo
es mayor que la informacion de cada uno de los nodos que estdn en su subarbol
izquierdo y menor que la almacenada en los nodos que estdn en su subérbol dere-
cho. La figura 7.8 presenta un ejemplo de arbol binario de biisqueda. Observe
que todos los valores que estdn a la izquierda del 710 son menores que €l. A su
vez, los que estdn a su derecha son mayores. La misma regla se aplica en todos

los nodos.

D

@@
)

FIGURA 7.8 Ejemplo de drbol binario de biisqueda

El recorrido inorden de un drbol binario de bisqueda genera una lista ordenada
de manera creciente de todos sus elementos. Tomando el arbol de la figura 7.8,
este recorrido proporcionaria los elementos en el siguiente orden:

70 — 143 — 689 — 702 — 710 — 1040 — 2000 — 2099 — 3300

El orden que existe entre la informacion almacenada en el drbol facilita la opera-
cién de buisqueda de cualquiera de sus elementos. A continuacion se analizardn
las operaciones de buisqueda, insercion y eliminacién en arboles binarios de bus-
queda.

1330 Capitulo 7. Arboles

Operacion de busqueda

Para llevar a cabo la biisqueda de un elemento en un arbol binario de bisqueda
se procede de la siguiente manera:

1. Se evalua si el nodo visitado (la primera vez es la raiz) estd definido.

2. Si la respuesta es afirmativa, se pregunta si el dato buscado es menor que el
dato visitado.

2.1. Si la respuesta es afirmativa, se procede a buscar el dato en el subarbol
izquierdo.
2.2. Si la respuesta es negativa, se pregunta si el dato buscado es mayor que

el dato visitado.

2.2.1. Si la respuesta es afirmativa, se procede a buscar el dato en el
subdrbol derecho.

2.2.2. Si la respuesta es negativa, la biisqueda termina exitosamente. El
dato fue encontrado.

3. Si la respuesta a la pregunta 1 es negativa, entonces termina la bisqueda con
un fracaso.

A continuacién se presenta un ejemplo de aplicacién del algoritmo visto. En el arbol
de la figura 7.9 se desea encontrar el valor 705. Con las lineas punteadas se sefialan
los nodos que se van visitando hasta llegar al buscado. En la tabla 7.1 se muestra la
secuencia de pasos requeridos, usando el algoritmo, para realizar esta operacion.

TABLA 7.1 Operacion de busqueda en un drbol binario de busqueda

Operacion Descripcion
1 Se evalua si el nodo visitado (710) estd definido. En este caso si lo esta.
2 Se evalia si el dato buscado (705) es menor que la informacién almace-

nada (710) en el nodo visitado. En este caso si lo es.
3 Se invoca el método con el subdrbol izquierdo.
Se evalia si el nodo visitado (689) estd definido. En este caso si lo esta.

5 Se evalia si el dato buscado (705) es menor que la informacién almace-
nada (689) en el nodo visitado. En este caso no lo es.

continiia

7.2 Arboles binarios 331 |

TaBLA 7.1 Continuaciéon

Operacion Descripcion

6

10

11
12
13

14

15

Se evalda si el dato buscado (705) es mayor que la informacién almace-
nada (689) en el nodo visitado. En este caso si lo es.

Se invoca el método con el subarbol derecho.
Se evalua si el nodo visitado (702) estd definido. En este caso si lo esta.

Se evalia si el dato buscado (705) es menor que la informacién almace-
nada (702) en el nodo visitado. En este caso no lo es.

Se evalda si el dato buscado (705) es mayor que la informacién almace-
nada (702) en el nodo visitado. En este caso si lo es.

Se invoca el método con el subarbol derecho.
Se evalda si el nodo visitado (705) estd definido. En este caso si lo esta.

Se evalua si el dato buscado (705) es menor que la informacién almace-
nada (705) en el nodo visitado. En este caso no lo es.

Se evalda si el dato buscado (705) es mayor que la informacién almace-
nada (705) en el nodo visitado. En este caso no lo es.

La busqueda termina con éxito. El dato fue encontrado.

(705 <7107 @ Dato a buscar: 705
’
j (200

N Si.

0705 <702 N
No.

O ONIONCO

N S
\

(705 <7057
No.

(705 > 7057
No.

Termina: éxito.

(705 < 6897
No.
(705 > 6897

FIGURA 7.9 Ejemplo de operacion de busqueda

1332 Capitulo 7. Arboles

Como se puede deducir de los pasos presentados, el nimero de comparaciones se
reduce a la mitad en cada nodo visitado. No se requiere visitar todos los nodos.
El método que implementa esta operacion es el siguiente:

/* Método que busca un dato en un arbol binario de busqueda. Recibe como
wparametros un apuntador, que es la direccién del nodo a visitar (la
wprimera vez es el apuntador a la raiz) y el dato a buscar. Regresa como
wresultado la direccién del nodo encontrado o el valor NULL, si la bus-
wqueda termina con fracaso. */
template <class T>
NodoArbol<T> * ArbolBinBus<T>::Busqueda (NodoArbol<T> *Apunt, T Dato)
{
if (Apunt)
if (Dato < Apunt—>Info)
return Busqueda(Apunt->HijoIzq, Dato);
else
if (Dato > Apunt->Info)
return Busqueda(Apunt->HijoDer, Dato);
else
return Apunt;
else
return NULL;

Operacion de insercion

Insertar un nuevo elemento en un drbol binario de bisqueda requiere buscar la
posicion que debe ocupar el nuevo nodo de tal manera que no altere el orden del
arbol. En la solucién que aqui se propone no se aceptan elementos repetidos.
Pueden existir aplicaciones en las cuales si se permita. Sin embargo, en esta solu-
cidn, si se detecta que en el drbol ya estd almacenado un valor igual al que se
pretende insertar, la operacién se interrumpe. Los principales pasos para llevar a
cabo esta operacion son:

1. Se evalda si el nodo (la primera vez es la raiz) visitado esta definido.

2. Sila respuesta es afirmativa, se pregunta si el dato a insertar es menor que el
dato visitado.

2.1. Si la respuesta es afirmativa, se invoca el proceso de insercién con el
subdrbol izquierdo.

2.2. Si la respuesta es negativa, se pregunta si el dato a insertar es mayor que
el dato visitado.

7.2 Arboles binarios

333 |

2.2.1.

2.2.2.

Si la respuesta es afirmativa, entonces se invoca el proceso de in-
sercién con el subarbol derecho.

Si la respuesta es negativa, entonces el proceso de insercion termi-
na sin haberse realizado, ya que no se permiten elementos repetidos.

3. Si la respuesta al paso 1 es negativa, se crea el nuevo nodo, se almacena la in-
formacion y se establecen las ligas entre el nuevo nodo y su padre.

Suponga que en el drbol de la figura 7.10 se quiere insertar el valor 1500. Las lineas
punteadas indican los nodos visitados hasta encontrar el adecuado (1040) para pro-
ceder a la insercion. El nodo en negritas es el nuevo elemento agregado al arbol y la
linea (también en negritas) es la liga entre éste y su padre. Aplicando el algoritmo
dado, se realiza la secuencia de operaciones que se muestra en la tabla 7.2.

TABLA 7.2 Operacion de insercion en un drbol binario de busqueda

Operacion

Descripcion

1
2

10

11
12
13

Se evalia si el nodo visitado (710) esta definido. En este caso si lo esta.

Se evalia si el dato a insertar (1500) es menor que la informacién alma-
cenada (710) en el nodo visitado. En este caso no lo es.

Se evalda si el dato a insertar (1500) es mayor que la informacién alma-
cenada (710) en el nodo visitado. En este caso si lo es.

Se invoca el método con el subarbol derecho.
Se evalda si el nodo visitado (2000) esta definido. En este caso si lo esta.

Se evalia si el dato a insertar (1500) es menor que la informacién alma-
cenada (2000) en el nodo visitado. En este caso si lo es.

Se invoca el método con el subdrbol izquierdo.
Se evalda si el nodo visitado (1040) esta definido. En este caso si lo esta.

Se evalia si el dato a insertar (1500) es menor que la informacién alma-
cenada (1040) en el nodo visitado. En este caso no lo es.

Se evalua si el dato a insertar (1500) es mayor que la informacién alma-
cenada (1040) en el nodo visitado. En este caso si lo es.

Se invoca el método con el subédrbol derecho.
Se evalia si el nodo visitado (NULL) esta definido. En este caso no lo esta.

Se crea un nuevo nodo, se le asigna el valor 1500 y se establece la liga
entre él y su padre (el nodo que almacena el ntimero 1040). El proceso
termina.

| 334

Capitulo 7. Arboles

;1500 < 710?
No.
(1500 > 7107

Dato a insertar: 1500

1500 < 2000?

(1500 < 1040
No.
(1500 > 1040?

Si.

FIGURA 7.10 Ejemplo de operacion de insercion

A continuacién se presenta el método definido para insertar un nuevo nodo a un
arbol binario de busqueda.

/* Método que inserta un nodo en un arbol binario de busqueda. Recibe
wcomo parametros un apuntador (la primera vez es la raiz del arbol) y
wla informacién que se quiere almacenar en el nuevo nodo. En esta
wimplementacion no se permite que haya informacién duplicada en el
warbol. */
template <class T>
void ArbolBinBus<T>::InsertaNodoSinRep(NodoArbol<T> *Apunt, T Dato)
{
NodoArbol<T> *ApAux;
if (Apunt)
{
if (Dato < Apunt->Info)
{
InsertaNodoSinRep (Apunt->HijoIzq, Dato);
Apunt->HijolIzg= Raiz;

7.2 Arboles binarios

335|

else
if (Dato > Apunt->Info)
{
InsertaNodoSinRep (Apunt->HijoDer, Dato);
Apunt->HijoDer= Raiz;
}

Raiz= Apunt;
else

/* Se crea un nuevo nodo, se le asigna la informacién y se
=westablecen las ligas entre los nodos correspondientes. */
ApAux= new NodoArbol<T>();

ApAux—>Info= Dato;

Raiz= ApAux;

Operacion de eliminacion

Para eliminar un elemento en un arbol binario de buisqueda se requiere buscar el
valor deseado y quitar el nodo que lo contiene. Este dltimo paso se lleva a cabo
de maneras diferentes dependiendo si el nodo eliminado es terminal o no. Si se
trata de una hoja, entonces se quita directamente. En otro caso, para no perder las
ligas a sus descendientes, se debe reemplazar por el nodo que se encuentra mas a
la derecha del subarbol izquierdo o por el que se encuentra més a la izquierda del
subarbol derecho. En la solucién que se da en este libro se usa el elemento que
estd mds a la derecha del subdrbol izquierdo. Los principales pasos para llevar a
cabo esta operacion son:

1. Se evalda si el nodo visitado (la primera vez es la raiz) esta definido.

2. Si la respuesta es afirmativa, entonces se pregunta si el dato a eliminar es
menor que el dato visitado.

2.1. Si la respuesta es afirmativa, se invoca el proceso de eliminacién con el
subdrbol izquierdo.

2.2. Si la respuesta es negativa, se pregunta si el dato a eliminar es mayor que
el dato visitado.

1336 Capitulo 7. Arboles

2.2.1. Si la respuesta es afirmativa, se invoca el proceso de eliminacién
con el subarbol derecho.

2.2.2. Si la respuesta es negativa, se elimina el nodo. Si es hoja, la elimi-
nacion es directa. Si tiene s6lo un hijo se reemplaza por éste y si
tiene dos se reemplaza por el que estd mas a la derecha del subar-
bol izquierdo. En estos dos tltimos casos se libera el espacio de
memoria del hijo, mientras que en el primero el correspondiente al
nodo en cuestion.

3. Si la respuesta al paso 1 es negativa, entonces el dato no estd en el arbol. El
proceso de eliminacién termina con fracaso.

Suponga que en el 4rbol binario de bisqueda de la figura 7.11 se quiere eliminar
el valor 689. En (a) se muestra el camino que se sigue para llegar al nodo desea-
do y al nodo cuyo contenido reemplazard al 689. En (b) se presenta el arbol una
vez que el nodo fue eliminado. La tabla 7.3 presenta las operaciones realizadas,
siguiendo el algoritmo dado, para eliminar el 689.

TaBLA 7.3 Operaciéon de eliminacién en un drbol binario de busqueda

Operacion Descripcion
1 Se evalia si el nodo visitado (710) esta definido. En este caso si lo esta.
2 Se evalua si el dato a eliminar (689) es menor que la informacién alma-

cenada (710) en el nodo visitado. En este caso si lo es.
3 Se invoca el método con el subarbol izquierdo.
Se evalua si el nodo visitado (689) estd definido. En este caso si lo esta.

Se evalua si el dato a eliminar (689) es menor que la informacién alma-
cenada (689) en el nodo visitado. En este caso no lo es.

6 Se evalda si el dato a eliminar (689) es mayor que la informacién alma-
cenada (689) en el nodo visitado. En este caso no lo es.

7 Se lleg6 al nodo que se quiere quitar. Como tiene dos hijos se reempla-
za su contenido con el del nodo que estd mas a la derecha del subarbol
izquierdo y se libera el espacio de memoria correspondiente al hijo. El
proceso termina.

7.2 Arboles binarios

337 |

Dato a eliminar: 68
1689 < 7107 ?

si. o’

(689 < 6897
No.
(689 > 6897

= = = =» Biisqueda del elemento a eliminar

=3 Bisqueda del nodo que estd mds a la derecha del
subdrbol izquierdo.

----------- » Nodo que reemplazard al que se elimina
a)
HNORO

FIGURA 7.11 Ejemplo de la operacion de eliminacion a) Antes de eliminar el
valor 689, b) después de eliminarlo y reemplazarlo por el 620

1338 Capitulo 7. Arboles

A continuacién se presenta el método, escrito en C++, que permite eliminar un
nodo de un arbol binario de biisqueda.

/* Método que elimina un nodo de un arbol binario de busqueda. Recibe
wCcomo parametro un apuntador (la primera vez es la raiz) y el dato a
weliminar. */
template <class T>
void ArbolBinBus<T>::EliminaNodo(NodoArbol<T> *Apunt, T Dato)
{
if (Apunt)
if (Dato < Apunt->Info)
{
EliminaNodo (Apunt->HijoIzq, Dato);
Apunt->HijolIzg= Raiz;
}
else
if (Dato > Apunt->Info)
{
EliminaNodo (Apunt->HijoDer, Dato);
Apunt->HijoDer= Raiz;
}
else
{
NodoArbol<T> *ApAux1,*ApAux2,*ApAux3;
ApAux3= Apunt;
/* Encuentra el nodo que contiene el dato a eliminar.
=\erifica si tiene hijos. */
if (!ApAux3->HijoDer)
if (lApAux3->HijoIzq)
/* Si no tiene hijo derecho ni izquierdo, entonces
wse redefine como vacio. */
Apunt= NULL;
else
/* Si s6lo tiene hijo izquierdo, el nodo
weliminado se reemplaza con éste.*/
Apunt= ApAux3->Hijolzq;
else
if (!ApAux3->HijoIzq)
/* Si s6lo tiene hijo derecho, el nodo
eliminado se reemplaza con éste. */
Apunt= ApAux3->HijoDer;
else
{
/* Si tiene ambos hijos, entonces se reempla-
=za (en esta solucién) por el nodo que esta
=wnds a la derecha del subarbol izquierdo. */

7.2 Arboles binarios

339 |

ApAux1= ApAux3->HijoIzq;
ApAux2= ApAux3;
while (ApAux1->HijoDer)
{
ApAux2= ApAuxi;
ApAux1= ApAuxi->HijoDer;
}
ApAux3->Info= ApAuxi1->Info;
if (ApAux3 == ApAux2)
ApAux3->HijoIzgq= NULL;
else
if (!ApAuxi1->HijoIzq)
ApAux2->HijoDer= NULL;
else
ApAux2->HijoDer= ApAux1->Hijolzq;
ApAux3= ApAux1;

}
delete (ApAux3);
}
Raiz= Apunt;

El método dado, como el correspondiente a la insercién, se defini6 de tipo void.

Sin embargo, ambos pueden modificarse y declararse enteros de tal manera que
regresen un valor que indique si la operacidén se llevé a cabo o no con éxito.

El programa 7.2 presenta la plantilla de la clase arbol binario de bisqueda con
los métodos analizados. También incluye la plantilla correspondiente a la clase
que define al nodo del arbol. Por razones de espacio, de algunos métodos ya
explicados sélo se escribe el prototipo y el encabezado.

Programa 7.2

/* Prototipo de la plantilla de la clase ArbolBinBus. Asi, en la clase
= NodoArbol se podra hacer referencia a ella. */

template <class T>
class ArbolBinBus;

/* Declaracién de la clase NodoArbol. Cada nodo almacena la informacioén
= (razén de ser de la estructura tipo arbol) y las direcciones de sus hijos
wizquierdo y derecho. Se incluye una relacién de amistad con la clase
wArbolBinBus para que éste pueda tener acceso a sus miembros privados. */

340 Capitulo 7. Arboles

template <class T>
class NodoArbol
{
private:
T Info;
NodoArbol<T> *Hijolzq;
NodoArbol<T> *HijoDer;
public:
NodoArbol();
T Regresalnfo() ;
void ActualizaInfo(T);
friend class ArbolBinBus<T>;

I

/* Declaracidén del método constructor por omisidén. Inicializa
las ligas a los subarboles con el valor NULL, indicando que no tiene
=hijos. */
template <class T>
NodoArbol<T>::NodoArbol ()
{
HijoIzg= NULL;
HijoDer= NULL;
}

/* Método que regresa la informacién almacenada en el nodo. */
template <class T>

NodoArbol<T>::RegresalInfo()

{

return Info ;

}

/* Método para actualizar la informacién almacenada en el nodo. */
template <class T>
void NodoArbol<T>::ActualizalInfo(T Dato)
{
Info= Dato ;
}

/* Declaracién de la clase ArbolBinBus. Su atributo es un puntero al
wnodo raiz. */
template <class T>
class ArbolBinBus
{
private:
NodoArbol<T> *Raiz;

7.2 Arboles binarios

341|

public:
ArbolBinBus ();
NodoArbol<T> *RegresaRaiz();
void Preorden (NodoArbol<T> *);
void Inorden (NodoArbol<T> *);
void Postorden (NodoArbol<T> *);
NodoArbol<T> * Busqueda (NodoArbol<T> *, T);
void InsertaNodoSinRep (NodoArbol<T> *, T);
void EliminaNodo (NodoArbol<T> *, T);

I H

/* Declaracién del método constructor. Inicializa el puntero a la raiz
=con el valor NULL, indicando arbol vacio (no tiene nodos). */
template <class T>

ArbolBinBus<T>::ArbolBinBus()

{
}

Raiz= NULL;

/* Método que regresa el valor del apuntador a la raiz del arbol. */
template <class T>
NodoArbol<T> *ArbolBinBus<T>::RegresaRaiz()

{
}

return Raiz;

/* Método que realiza el recorrido preorden de un arbol binario de bus-
=queda. Recibe como parametro el nodo a visitar (la primera vez es la
wraiz). */

template <class T>

void ArbolBinBus<T>::Preorden (NodoArbol<T> *Apunt)

{
}

/* Ya analizado, razén por la que se omite. */

/* Método que realiza el recorrido inorden de un arbol binario de bus-
=queda. Recibe como parametro el nodo a visitar (la primera vez es la
wraiz). */

template <class T>

void ArbolBinBus<T>::Inorden (NodoArbol<T> *Apunt)

{
}

/* Ya analizado, razén por la que se omite. */

/* Método que realiza el recorrido postorden de un arbol binario de bus-

=queda. Recibe como parametro el nodo a visitar (la primera vez es la
wraiz). */

template <class T>

void ArbolBinBus<T>::Postorden (NodoArbol<T> *Apunt)

| 342

Capitulo 7. Arboles

{
}

/* Método que busca un dato en un arbol binario de busqueda. Recibe como
wparametros la direccién del nodo a visitar (la primera vez es la raiz)
wy el dato a buscar. Regresa como resultado la direccién del nodo
wencontrado o el valor NULL, si la busqueda termina con fracaso. */
template <class T>

NodoArbol<T> * ArbolBinBus<T>::Busqueda (NodoArbol<T> *Apunt, T Dato)

{

/* Ya analizado, razén por la que se omite. */

if (Apunt)
if (Dato < Apunt->Info)
return Busqueda(Apunt->HijoIzq, Dato);
else
if (Dato > Apunt->Info)
return Busqueda(Apunt->HijoDer, Dato);
else
return Apunt;
else
return NULL;
}

/* Método que inserta un nodo en un arbol binario de busqueda. Recibe como
=parametros la direccién del nodo a visitar (la primera vez es la raiz) y
=la informacién que se quiere almacenar en el nuevo nodo. En esta imple-
wmentacién no se permite que haya informacién duplicada en el &rbol. */
template <class T>

void ArbolBinBus<T>::InsertaNodoSinRep(NodoArbol<T> *Apunt, T Dato)

{
}

/* Ya analizado, razén por la que se omite. */

/* Método que elimina un nodo del arbol binario de busqueda. Recibe
wcomo parametro la direccidén del nodo a visitar (la primera vez es la
=raiz) y el dato a eliminar. */
template <class T>
void ArbolBinBus<T>::EliminaNodo(NodoArbol<T> *Apunt, T Dato)

/* Ya analizado, razén por la que se omite. */

El programa 7.3 presenta un ejemplo de aplicacion de la estructura drbol binario
de bisqueda. Utiliza la clase Producto definida en el programa 6.2 del capitulo
anterior y la clase ArbolBinBus del programa 7.2. Ambas se incluyen por medio
de bibliotecas. El programa permite crear un arbol cuyos nodos guardaran la in-
formacion de los productos; esta informacion se almacena ordenadamente segin
su clave. Ademds, ofrece la opcién de dar de baja o buscar un producto y generar
un reporte de todos los productos ordenados por claves.

7.2 Arboles binarios

343 |

Programa 7.3

/* Este programa es para almacenar un conjunto de productos (ordenados
=por clave), utilizando un &rbol binario de buUsqueda. Ademas, se pueden
=weliminar y buscar productos ya registrados y generar un reporte con la
winformacién de todos los productos. La biblioteca "Productos.h" tiene
=la clase Producto utilizada en el programa 6.2. Por su parte, la
wphiblioteca "ArbolBinBusqueda.h" contiene la plantilla de la clase
=ArbolBinBus del programa 7.2. */

#include "Productos.h"
#include "ArbolBinBusqueda.h"

/* Funcién que despliega al usuario las opciones de trabajo. Regresa la
wopcidn seleccionada. */

int Menu()

{
int Opcion;
do {

cout<<"\n\n\n\tOpciones de trabajo:\n";
cout<<"\t1.Ingresar nuevo producto.\n";
cout<<"\t2.Dar de baja un producto.\n";
cout<<"\t3.Reporte de todos los productos ordenados por
=clave.\n";
cout<<"\t4.Buscar un producto por clave.\n";
cout<<"\t5.Terminar el proceso.\n\n";
cout<<"\tIngrese opci6n seleccionada: ";
cin>>0Opcion;

} while (Opcion <1 Il Opcion > 5);

return Opcion;

/* Funcidén principal desde la cual se controla la ejecucién de las
=operaciones seleccionadas por el usuario. */
void main()
{
ArbolBinBus<Producto> Inventario;
NodoArbol<Producto> *Ap1, *Ap2;
Producto Prod;

int Opc, Cla;

do {
Opc= Menu();
switch (Opc)
{

/* Se registra un nuevo producto. No se aceptan productos con
=claves repetidas. */

344

Capitulo 7. Arboles

}

case 1:{
cin>>Prod;
Ap1= Inventario.RegresaRaiz();
Inventario.InsertaNodoSinRep(Ap1, Prod);
break;

/* Se elimina un producto ya registrado. */

case 2:{
cout<<"\n\nIngrese la clave del producto a eliminar:";
cin>>Cla;
Producto Prod(Cla, "", 0);

Ap1= Inventario.RegresaRaiz();
Inventario.EliminaNodo (Ap1, Prod);
break;

/* Con el método Inorden se genera un reporte de todos los
wproductos ordenados por clave. */

case 3:{
Ap1= Inventario.RegresaRaiz();
EER" DN = = \n\n";
cout<<"PRODUCTOS EN INVENTARIO\n\n";
coutss"— — — — — — ——— ——— \n\n";
Inventario.Inorden(Ap1);
break;

/* Se busca un elemento por su clave. Si ya esta registrado
wentonces se despliegan todos sus datos. En caso contrario,
wsdlo un mensaje informativo. */

case 4: {

cout<<"\n\nIngrese la clave del producto a buscar:";
cin>>Cla;

Producto Prod(Cla, "", 0);

Ap1= Inventario.RegresaRaiz();

Ap2= Inventario.Busqueda(Ap1, Prod);

if (Ap2)

{

cout<<"\n\n\nExiste un producto registrado con esa

wclave.\n";
cout<<Ap2->Regresalnfo();

}

else
cout<<"\n\nNo se ha registrado ningin producto con
=esa clave. \n";

break;

}
case 5: cout<<"\n\n\nFIN DEL PROCESO.\n\n\n";
break;

}
} while (Opc >=1 & & Opc < 5);

7.3 Arboles balanceados 345 |

7.3 Arboles balanceados

Un drbol balanceado es un arbol binario de bisqueda en el cual la diferencia en-
tre la altura de su subdrbol derecho y la altura de su subarbol izquierdo es menor
o igual a 1. De esta manera se controla el crecimiento del arbol y se garantiza
mantener la eficiencia en la operacién de busqueda. La diferencia entre las altu-
ras de los subdrboles se conoce como factor de equilibrio (FE), el cual se expresa
como se muestra a continuacion:

FE = altura hijo derecho — altura hijo izquierdo

La figura 7.12 muestra un arbol binario de buisqueda en el que cada nodo tiene un
factor de equilibrio asociado. La raiz tiene un FE igual a 1 ya que el subarbol de-
recho tiene una altura de 3 y el izquierdo de 2. El nodo que almacena el valor 99
tiene un FE igual a —1 porque su subarbol derecho tiene altura O y el izquierdo 1.
En cambio, el nodo que guarda el 508 tiene un FE igual a 0 porque sus dos su-
barboles tienen la misma altura. Al observar los FE de todos los nodos se puede
afirmar que dicho arbol estd balanceado, porque €stos son, en valor absoluto, me-
nores o iguales a uno.

FE= 1

FE= —1

FE= 1

FE= 0 .ﬂ .@

FIGURA 7.12 Arbol binario de biisqueda con factores de equilibrio

FE= 0

| 346

Capitulo 7. Arboles

Considere que los elementos: 24 — 31 — 87 — 99 — 105 y 126 se almacenan, en ese
orden, en un drbol binario de buisqueda. Luego de insertar los 6 valores, se obtie-
ne un arbol como el de la figura 7.13. Si se tuviera que buscar un dato en este
arbol se tendrian que hacer tantas comparaciones como nodos haya antes de llegar al
deseado. En estructuras semejantes se pierden todas las ventajas que ofrecen los
arboles. Para evitar que esto suceda surgen los arboles balanceados en los que se
realizan balanceos o ajustes de los nodos luego de efectuar inserciones o elimina-
ciones que hayan provocado la pérdida del equilibrio.

Raiz

FIGURA 7.13 Insercion provocando desequilibrio en un drbol binario de biisqueda

Reacomodo del arbol

Para lograr que un 4rbol siga estando balanceado, luego de cada insercién o eli-
minacion, se debe determinar si su factor de equilibrio es mayor a 1. En caso
afirmativo, se deben reacomodar los nodos de tal manera que se vuelva a tener un
valor menor o igual a 1. Este movimiento se denomina rotacién. La rotacion
puede ser simple o compuesta dependiendo del nimero de nodos que participen.

7.3 Arboles balanceados 347 |

La rotacion simple se presenta cuando estan involucrados dos hijos derechos
(HD-HD) o dos hijos izquierdos (HI-HI), y afecta s6lo las ligas de dos nodos. La
figura 7.14 presenta graficamente las dos variantes de este tipo de rotacion.

FE= 0 FE= 0

FIGURA 7.14 Rotacion simple

Analizando el caso de la rotacion HD-HD se observa que el nodo con informa-
cién 24 tiene un FE igual a 2, lo cual indica que se ha perdido el equilibrio en su
rama derecha. A su vez, en el nodo que guarda el 31 se tiene un FE igual a 1, con
lo cual se puede determinar que la rotacién debe involucrar también a la rama de-
recha de éste. Luego de efectuar la rotacion, este nodo tiene como hijo izquierdo
a su padre recuperando asi el equilibrio.

348 Capitulo 7. Arboles

En el caso de la rotacion HI-HI, se tiene el nodo que almacena el valor 99 con
un FE igual a -2, lo cual indica que se ha perdido el equilibrio en su rama
izquierda. Ademas, el nodo con informacién 85 tiene un FE igual a —1, con lo
cual se puede determinar que la rotaciéon también debe involucrar a la rama
izquierda de éste. Luego de efectuar la rotacion, este tltimo nodo tiene como
hijo derecho a su padre.

Mas adelante se explica como deben actualizarse los punteros a los nodos afecta-
dos durante la rotacién simple.

La rotaciéon compuesta se presenta cuando estan involucrados un hijo derecho y
un hijo izquierdo (HD-HI) o un hijo izquierdo y uno derecho (HI-HD), y afecta
las ligas de tres nodos. La figura 7.15 presenta graficamente las dos variantes de
este tipo de rotacion.

HD-HI

FIGURA 7.15 Rotacion compuesta

7.3 Arboles balanceados 349 |

Analizando el caso de la rotacion HD-HI se observa que el nodo con informacién
24 tiene un FE igual a 2, lo cual indica que se ha perdido el equilibrio en su rama
derecha. A su vez, en el nodo que guarda el 31 se tiene un FE igual a —1, lo que
implica que su rama izquierda tiene mayor altura que su rama derecha. Por tanto,
la rotacién que se debe aplicar es la de hijo derecho-hijo izquierdo. Luego de
efectuar la rotacion, el nodo 27 queda como padre del 24 (antes su abuelo) y del
31 (antes su padre).

En el caso de la rotacion HI-HD se observa que el nodo con informacién 99 tiene
un FE igual a -2, lo cual indica que se ha perdido el equilibrio en su rama iz-
quierda. Por otra parte, su hijo izquierdo (el nodo que guarda el 85) tiene un FE
igual a 1, lo que implica que su rama derecha tiene mayor altura que su rama iz-
quierda. Por lo tanto, la rotacién que se debe aplicar es la de hijo izquierdo-hijo
derecho. Luego de efectuar la rotacidn, el nodo que almacena el 90 queda como
padre del 99 (antes su abuelo) y del 85 (antes su padre).

Mas adelante se explica como deben actualizarse los punteros a los nodos afecta-
dos durante la rotacién compuesta.

En los arboles balanceados, cada nodo debe almacenar (ademés de los elementos ya
vistos) su factor de equilibrio. Luego de insertar o eliminar un nodo se calculan los
factores de equilibrio de todos los nodos involucrados en la operacién y, dependien-
do del valor resultante, se procede a realizar la rotacién que corresponda y a hacer la
reasignacion. La plantilla de la clase nodo se define como se muestra a continuacion.

/* Plantilla de la clase nodo de un arbol balanceado. Se incluye un
=nuevo atributo, llamado FE, para almacenar el factor de equilibrio del
=nodo. Se establece una relacién de amistad con la clase ArbolBalanceado
wpara que ésta pueda tener acceso a sus miembros privados. */
template <class T>
class NodoArbolBal
{
private:
NodoArbolBal<T> *HijolIzq;
NodoArbolBal<T> *HijoDer;
T Info;
int FE;
public:
NodoArbolBal();
T Regresalnfo();
void ActualizaInfo(T) ;
friend class ArbolBalanceado<T>;

I

| 350

Capitulo 7. Arboles

Insercion en arboles balanceados

La insercién de un nuevo nodo se lleva a cabo atendiendo las caracteristicas de
los drboles binarios de buisqueda, pero teniendo en cuenta ademads la altura de los
subdrboles, de tal manera que no se viole lo mencionado sobre el factor de equili-
brio. Los casos que pueden presentarse son:

1. La altura del subdrbol derecho es igual a la altura del subarbol izquierdo, por
lo tanto, sin importar donde se realice la insercion, el equilibrio no se pierde.

2. La altura del subérbol derecho es mayor que la altura del subarbol izquier-
do, por lo tanto, si la insercién no afecta la altura del subarbol derecho no
se requiere rotacion, en caso contrario si.

3. La altura del subarbol izquierdo es mayor que la altura del subérbol dere-
cho, por lo tanto, si la insercién no afecta la altura del subarbol izquierdo no
se requiere rotacion, en caso contrario si.

Cualquiera que sea la situacion, se procede a insertar el nuevo nodo y luego se
actualizan los factores de equilibrio procediendo a la rotacién de los nodos si co-
rrespondiera. El método para realizar esta operacion se presenta a continuacion.
Las rotaciones simples y compuestas se escribieron como métodos independientes.

/* Método que realiza la rotacién simple HI-HI en un &rbol balanceado.

wAdemds, reasigna el FE del nodo involucrado en la rotacidn. */

template <class T>

NodoArbolBal<T> * ArbolBalanceado<T>::RotacionHI_HI(NodoArbolBal<T>
w*Apunt, NodoArbolBal<T> *ApAux1)

{
Apunt->HijoIzg= ApAuxi->HijoDer;
ApAux1->HijoDer= Apunt;
Apunt->FE= 0;
return ApAuxi;

}

/* Método que realiza la rotacién simple HD-HD en un arbol balanceado.
wAdemds, reasigna el FE del nodo involucrado en la rotacidn. */
template <class T>
NodoArbolBal<T> * ArbolBalanceado<T>::RotacionHD_HD(NodoArbolBal<T>
=*Apunt, NodoArbolBal<T> *ApAux1)

{

Apunt->HijoDer= ApAuxi->HijoIzq;

ApAux1->HijoIzqg= Apunt;

Apunt->FE= 0;

return ApAuxi;

7.3 Arboles balanceados

351 |

/* Método que realiza la rotacidén compuesta HI-HD en un arbol balanceado.

=Ademds, reasigna los FE de los nodos involucrados en la rotacion. */
template <class T>
NodoArbolBal<T> * ArbolBalanceado<T>::RotacionHI_HD(NodoArbolBal<T>

= *Apunt, NodoArbolBal<T> *ApAux1)

{
NodoArbolBal<T> *ApAux2;
ApAux2= ApAux1->HijoDer;
Apunt->HijoIzgq= ApAux2->HijoDer;
ApAux2->HijoDer= Apunt;
ApAux1->HijoDer= ApAux2->HijoIzq;
ApAux2->HijoIzg= ApAux1;
if (ApAux2->FE == -1)
Apunt->FE= 1;
else
Apunt->FE= 0;
if (ApAux2->FE == 1)
ApAux1->FE= -1;
else
ApAux1->FE= 0;
return ApAux2;
}

/* Método que realiza la rotacidn compuesta HD-HI en un arbol balanceado.

=Ademds, reasigna los FE de los nodos involucrados en la rotacion. */

template <class T>

NodoArbolBal<T> * ArbolBalanceado<T>::RotacionHD_HI(NodoArbolBal<T>
=*Apunt, NodoArbolBal<T> *ApAux1)

{
NodoArbolBal<T> *ApAux2;
ApAux2= ApAux1->HijoIzq;
Apunt->HijoDer= ApAux2->HijoIzq;
ApAux2->HijoIzqg= Apunt;
ApAux1->HijoIzq= ApAux2->HijoDer;
ApAux2->HijoDer= ApAuxi;
if (ApAux2->FE == 1)
Apunt->FE= -1;
else
Apunt->FE= 0;
if (ApAux2->FE == -1)
ApAux1->FE= 1;
else
ApAux1->FE= 0;
return ApAux2;
}

/* Método que inserta un nuevo elemento en un arbol balanceado. Recibe
=como parametros el dato a insertar, un puntero al nodo a visitar (la
wprimera vez es la raiz) y un entero (Band) que la primera vez trae el
wyvalor 0.*/

| 352

Capitulo 7. Arboles

template <class T>
void ArbolBalanceado<T>::InsertaBalanceado(T Dato,NodoArbolBal<T>
=*Apunt,int *Band)

{

NodoArbolBal<T> *ApAuxi, *ApAux2;
if (Apunt != NULL)

{
if (Dato < Apunt->Info)
{
/* Se invoca el método con el subarbol izquierdo. */
InsertaBalanceado(Dato, Apunt->HijoIzq, Band);
Apunt->HijoIzg= Raiz;
if (0 < *Band) /* Verifica si creci6 el subarbol
wizquierdo. */
switch (Apunt->FE)
{
case 1: {
Apunt->FE = 0;
*Band= 0;
break;
}
case 0: {
Apunt->FE = -1;
break;
}
case -1: {
ApAux1 = Apunt->HijolIzq;
if (ApAux1->FE <= 0)
Apunt= RotacionHI HI (Apunt, ApAuxi);
else
Apunt= RotacionHI_HD(Apunt, ApAuxi);
Apunt->FE = 0;
*Band = 0;
}
}
}
else

if (Dato > Apunt->Info)
{
/* Invoca el método con el subarbol derecho. */
InsertaBalanceado(Dato, Apunt->HijoDer,Band);
Apunt->HijoDer= Raiz;
if (0 < *Band) /* Verifica si creci6 el
w=subarbol derecho. */
switch (Apunt->FE)
{
case -1: {
Apunt->FE = 0;
*Band= 0;
break;

}

7.3 Arboles balanceados 353 |

case 0: {

Apunt->FE = 1;

break;

}
case 1: {

ApAuxi= Apunt->HijoDer;

if (ApAux1->FE >= 0)
Apunt= RotacionHD_HD(Apunt,

=ApAux1) ;
else
Apunt= RotacionHD_HI (Apunt,
=ApAux1) ;
Apunt->FE = 0;
*Band= 0;
}
}
}
Raiz= Apunt;
}
else
{
/* Inserta un nuevo nodo y actualiza el valor de Band indicando
wque el arbol creci6. */
ApAux2= new NodoArbolBal<T>();
ApAux2->Info= Dato;
ApAux2->FE= 0;
*Band = 1;
Raiz= ApAux2;
}

Eliminacion en arboles balanceados

La eliminacion de un nodo se lleva a cabo atendiendo las caracteristicas de los
arboles binarios de biisqueda, pero teniendo en cuenta ademas la altura de los su-
barboles, de tal manera que no se viole lo mencionado sobre el factor de equili-
brio. Los casos que pueden presentarse son:

1. La altura del subdrbol derecho es igual a la altura del subarbol izquierdo,
por lo tanto, sin importar dénde se realice la eliminacidn, el equilibrio no
se pierde.

2. La altura del subarbol derecho es mayor que la altura del subdrbol izquier-
do, por lo tanto, si la eliminacién no afecta la altura del subdrbol izquierdo
no se requiere rotacion, en caso contrario si.

| 354

Capitulo 7. Arboles

3. La altura del subdrbol izquierdo es mayor que la altura del subarbol dere-
cho, por lo tanto, si la eliminacién no afecta la altura del subarbol derecho
no se requiere rotacion, en caso contrario si.

Cualquiera que sea la situacion, se elimina el nodo y luego se actualizan los fac-
tores de equilibrio de todos los nodos involucrados, procediendo a su rotacion, si
correspondiera. Este proceso termina cuando se llega a la raiz.

A continuacién se presenta el método para realizar esta operacion. Se reutilizan
los métodos vistos para las rotaciones compuestas (los cuales no se vuelven a
presentar). En el caso de los correspondientes a las rotaciones simples, dado que
no se ajustan totalmente a la eliminacidn, se dan con los cambios requeridos. Se
definieron dos métodos auxiliares que ayudan a la reestructuracién del arbol si
éste pierde el equilibrio.

/* Método auxiliar del método EliminaBalanceado que reestructura el
warbol cuando la altura de la rama izquierda ha disminuido. */
template <class T>
NodoArbolBal<T>* ArbolBalanceado<T>::Restructural(NodoArbolBal<T> *Nodo,
int *Aviso)
{
NodoArbolBal<T> *ApAux;
if (*Aviso > 0)

{
switch (Nodo->FE)
{
case -1: Nodo->FE= 0;
break;
case 0: Nodo—>FE= 1;
*Aviso= 0;
break;

case 1: ApAux= Nodo->HijoDer;
if (ApAux->FE >= 0) //Rotaci6on HD-HD
{
Nodo->HijoDer= ApAux->HijoIzq;
ApAux->HijoIzg= Nodo;
switch (ApAux->FE)
{
case 0: Nodo->FE= 1;
ApAux->FE= -1;
*Aviso= 0;
break;
case 1: Nodo->FE= 0;
ApAux->FE= 0;
break;

7.3 Arboles balanceados

}
Nodo= ApAux;
}
else / /Rotacién HD-HI
{
Nodo= RotacionHD HI(Nodo, ApAux);
Nodo—>FE= 0;
}
break;

}

return Nodo;

}

/* Método auxiliar del método EliminaBalanceado que reestructura el

=3arbol cuando la altura de la rama derecha ha disminuido. */

template <class T>

NodoArbolBal<T>* ArbolBalanceado<T>::RestructuraD(NodoArbolBal<T> *Nodo,
int *Aviso)

{

NodoArbolBal<T> *ApAux;
if (*Aviso > 0)

{
switch (Nodo->FE)
{
case 1: Nodo->FE= 0;
break;
case 0: Nodo->FE= -1;
*Aviso= 0;
break;

case -1: ApAux= Nodo->HijolIzq;
if (ApAux->FE <= @) //Rotacién HI-HI
{
Nodo->HijoIzq= ApAux->HijoDer;
ApAux->HijoDer= Nodo;
switch (ApAux->FE)
{
case 0: Nodo->FE= -1;
ApAux->FE= 1;
*Aviso= 0;
break;
case -1: Nodo->FE= 0;
ApAux->FE= 0;
break;
}
Nodo= ApAux;

| 356

Capitulo 7. Arboles

else //Rotacién HI-HD

{
Nodo= RotacionHI_HD(Nodo, ApAux);
Nodo->FE= 0;

}

break;

}
}

return Nodo;

}

/* Método auxiliar del método EliminaBalanceado que sustituye el

welemento que se desea eliminar por el que se encuentra mas a la derecha

wdel subarbol izquierdo. */

template <class T>

void ArbolBalanceado<T>::Sustituye(NodoArbolBal<T> *Nodo,
=NodoArbolBal<T> *ApAux, int *Avisa)

{
if (Nodo->HijoDer != NULL)
{
Sustituye (Nodo->HijoDer, ApAux, Avisa);
if (ApAux->HijoIzq == NULL)
Nodo->HijoDer= NULL;
else
Nodo->HijoDer= ApAux->HijoIzq;
Nodo= RestructuraD(Nodo, Avisa);
}
else
{
ApAux->Info= Nodo->Info;
Nodo= Nodo->Hijolzq;
*Avisa= 1;
}
ApAux->HijoIzg= Nodo;
}

/* Método que elimina un elemento en un arbol balanceado. Luego de la
weliminacién se actualizan los factores de equilibrio de cada nodo hasta
=la raiz y se reestructura el arbol si fuera necesario. */
template <class T>
void ArbolBalanceado<T>::EliminaBalanceado(NodoArbolBal<T> *Apunt,
=wNodoArbolBal<T> *ApAnt, int *Avisa, T Dato)

{

NodoArbolBal<T> *ApAux;

int Bandera;

if (Apunt != NULL)

if (Dato < Apunt->Info)

7.3 Arboles balanceados

357 |

{
if (*Avisa > 0)
Bandera= 1;
else
if (*Avisa != 0)
Bandera= -1;
*Avisa= -1;
EliminaBalanceado (Apunt->HijoIzq, Apunt, Avisa, Dato);
Apunt= Restructural (Apunt, Avisa);
if (ApAnt != NULL)
switch (Bandera)
{
case -1: ApAnt->HijoIzq= Apunt;
break;
case 1: ApAnt->HijoDer= Apunt;
break;
default: break;
}
else
Raiz= Apunt;
}
else
{
if (Dato > Apunt->Info)
{
if (*Avisa < 0)
Bandera= -1;
else
if (*Avisa != 0)
Bandera=1;
*Avisa= 1;
EliminaBalanceado (Apunt->HijoDer, Apunt, Avisa, Dato);
Apunt= RestructuraD(Apunt,Avisa);
if (ApAnt != NULL)
switch (Bandera)
{
case -1: ApAnt->HijolIzg= Apunt;
break;
case 1: ApAnt->HijoDer= Apunt;
break;
default: break;
}
else
Raiz= Apunt;
}
else
{

ApAux= Apunt;
if (ApAux->HijoDer == NULL)

| 358

Capitulo 7. Arboles

else

{
Apunt= ApAux->HijolIzq;
if (*Avisa != 0)
if (*Avisa < 0)
ApAnt->HijoIzg= Apunt;
else
ApAnt->HijoDer= Apunt;
else
if (Apunt == NULL)
Raiz= NULL;
else
Raiz= Apunt;
*Avisa= 1;
}
else
if (ApAux->HijoIzq == NULL)
{
Apunt= ApAux->HijoDer;
if (*Avisa != 0)
if (*Avisa < 0)
ApAnt->HijoIzg= Apunt;
else
ApAnt->HijoDer= Apunt;
else
if (Apunt == NULL)
Raiz= NULL;
else
Raiz= Apunt;
*Avisa= 1;
}
else
{
Sustituye (ApAux->HijoIzq, ApAux, Avisa);
Apunt= Restructural(Apunt, Avisa);
if (ApAnt != NULL)
if (*Avisa <= 0)
ApAnt->HijoIzg= Apunt;
else
ApAnt->HijoDer= Apunt;
else
Raiz= Apunt;
}

}

cout<<"\n\nEl dato a eliminar no se encuentra registrado.\n\n";

7.3 Arboles balanceados 359|

El programa 7.4 presenta la plantilla de la clase ArbolBalanceado con los encabe-
zados de los métodos analizados, los cuales no se repiten. Se incluye un método
para la impresion de todos los nodos junto con su factor de equilibrio.

Programa 7.4

/* Prototipo de la plantilla de la clase ArbolBalanceado. De esta
wmanera, en la clase NodoArbolBal se podra hacer referencia a ella. */

template <class T>
class ArbolBalanceado;

/* Declaracidn de la clase de un nodo de un arbol balanceado. Ademas de
walmacenar la informacién, las direcciones de los hijos izquierdo y
=derecho, guarda el factor de equilibrio. */
template <class T>
class NodoArbolBal
{
private:
NodoArbolBal<T> *HijoIzq;
NodoArbolBal<T> *HijoDer;
T Info;
int FE;
public:
NodoArbolBal();
T Regresalnfo();
void ActualizaInfo(T);
friend class ArbolBalanceado<T>;

b

/* Declaracién del método constructor. Inicializa los apuntadores a
=ambos hijos con el valor de NULL, indicando vacio. */
template <class T>
NodoArbolBal<T>::NodoArbolBal()
{
HijoIzq= NULL;
HijoDer= NULL;
}

/* Método que regresa la informacién almacenada en el nodo. */
template <class T>
T NodoArbolBal<T>::Regresalnfo()

{
}

return Info;

| 360

Capitulo 7. Arboles

/* Método que permite actualizar la informacién almacenada en el nodo. */
template <class T>
void NodoArbolBal<T>::ActualizaInfo(T Dato)

{
}

Info= Dato;

/* Declaracion de la clase ArbolBalanceado. Se incluyen s6lo los proto-
wtipos de los métodos presentados mas arriba. */
template <class T>
class ArbolBalanceado
{
private:
NodoArbolBal<T> *Raiz;
public:
ArbolBalanceado ();
NodoArbolBal<T> * RegresaRaiz();
NodoArbolBal<T> * Busca (NodoArbolBal<T> *, T) ;
void InsertaBalanceado (T, NodoArbolBal<T> *, int *);
NodoArbolBal<T> * RotacionHI_HD (NodoArbolBal<T> *,
=NodoArbolBal<T> *);
NodoArbolBal<T> * RotacionHD HI (NodoArbolBal<T> *,
=NodoArbolBal<T> *);
NodoArbolBal<T> * RotacionHI_HI (NodoArbolBal<T> *,
=NodoArbolBal<T> *);
NodoArbolBal<T> * RotacionHD _HD (NodoArbolBal<T> *,
=NodoArbolBal<T> *);
NodoArbolBal<T> * Restructural (NodoArbolBal<T> *, int *);
NodoArbolBal<T> * RestructuraD (NodoArbolBal<T> *, int *);
void EliminaBalanceado (NodoArbolBal<T> *, NodoArbolBal<T> *,
wint *, T);
void Sustituye (NodoArbolBal<T> *,NodoArbolBal<T> *, int *);
void Imprime (NodoArbolBal<T> *);
b

/* Declaracién del método constructor. Inicializa el puntero a la raiz
wcon el valor NULL, indicando que el arbol esta vacio. */

template <class T>

ArbolBalanceado<T>::ArbolBalanceado()

{
}

Raiz= NULL;

/* Método que regresa el apuntador a la raiz del arbol.*/
template <class T>
NodoArbolBal<T> * ArbolBalanceado<T>::RegresaRaiz()

{
}

return Raiz;

7.3 Arboles balanceados

361 |

/* Método que busca un valor dado como parametro en el arbol. Recibe
=como parametros el puntero del nodo a visitar (la primera vez es la
wraiz) y el dato a buscar. Regresa el puntero al nodo donde lo encontré
=0 NULL si no estd en el arbol. */
template <class T>
NodoArbolBal<T> * ArbolBalanceado<T>::Busca (NodoArbolBal<T> *Apunt, T
Dato)
{
if (Apunt != NULL)
if (Apunt->Info == Dato)
return Apunt;
else
if (Apunt->Info > Dato)
return Busca(Apunt->HijoIzq, Dato);
else
return Busca(Apunt->HijoDer, Dato);
else
return NULL;
}

/* Método que imprime el contenido del arbol. Recibe como parametro el
wapuntador al nodo a visitar (la primera vez es la raiz del arbol).
=Utiliza recorrido inorden para que el contenido se imprima en orden
=wcreciente. */

template <class T>

void ArbolBalanceado<T>::Imprime(NodoArbolBal<T> *Apunt)

{
if (Apunt != NULL)
{
Imprime (Apunt->Hijolzq);
cout<<Apunt->Info <<"\n\n";
Imprime (Apunt->HijoDer);
}
}

A continuacién se presenta una aplicacion de arboles balanceados. Se define
una clase Fabrica para almacenar los datos mds importantes de una fabrica y las
operaciones que pueden realizarse sobre ellos. Esta clase se almacena en la
biblioteca “Fabricas.h”. El programa 7.5 muestra esta clase y el programa 7.6,
la aplicacién de drboles en la cual se incluyen la biblioteca mencionada y
“ArbolBalanceado.h” que corresponde a la plantilla de drboles balanceados

del programa 7.4.

362 Capitulo 7. Arboles

Programa 7.5

/* Definicidén de la clase Fabrica. Se incluyen varios operadores
wsobrecargados para que puedan ser utilizados por los métodos de la
wclase ArbolBalanceado. Asimismo, se declaran como amigos los operadores
=de entrada (>>) y de salida (<<) para que objetos de este tipo puedan
wleerse e imprimirse directamente con cin y cout respectivamente. */
class Fabrica
{
private:
int Clave;
char Nombre[MAX], Domicilio[MAX], Telefono[MAX];
public:

Fabrica();

Fabrica(int, char [], char[], char[]);

void CambiaDomic(char[]);

void CambiaTelef(char[]);

int operator > (Fabrica);

int operator < (Fabrica);

int operator == (Fabrica);

friend istream & operator>> (istream & , Fabrica &);

friend ostream & operator<< (ostream & , Fabrica &);
b

/* Declaracién del método constructor por omisién. */
Fabrica::Fabrica()

{}

/* Declaracién del método constructor con parametros. */
Fabrica::Fabrica(int Cla, char Nom[], char Domic[], char Tel[])

{
Clave= Cla;
strcpy (Nombre, Nom);
strcpy (Domicilio, Domic);
strcpy(Telefono, Tel);

}

/* Método que actualiza el domicilio de una fabrica. */
void Fabrica::CambiaDomic (char NuevoDom[])

{
}

strcpy (Domicilio, NuevoDom);

/* Método que actualiza el teléfono de una fabrica. */
void Fabrica::CambiaTelef (char NuevoTel[])

{
}

strcpy(Telefono, NuevoTel);

7.3 Arboles balanceados

363 |

/* Sobrecarga del operador > lo cual permite comparar dos objetos tipo
wFabrica. La comparacién se hace teniendo en cuenta solamente la clave. */
int Fabrica::operator > (Fabrica ObjFab)

{
if (Clave > ObjFab.Clave)
return 1;
else
return 0;
}

/* Sobrecarga del operador < lo cual permite comparar dos objetos tipo
= Fabrica. La comparacién se hace teniendo en cuenta solamente la clave. */
int Fabrica::operator < (Fabrica ObjFab)

{
if (Clave < ObjFab.Clave)
return 1;
else
return 0;
}

/* Sobrecarga del operador == lo cual permite comparar dos objetos tipo
wFabrica. La comparacion se hace teniendo en cuenta solamente la clave. */
int Fabrica::operator == (Fabrica ObjFab)

{
if (Clave == ObjFab.Clave)
return 1;
else
return 0;
}

/* Sobrecarga del operador >> para permitir la lectura de objetos de
wtipo Fabrica de manera directa con el cin. */
istream & operator>> (istream & Lee, Fabrica & ObjFab)
{
cout<<"\n\nIngrese nombre de la fabrica:";
Lee>>0bjFab.Nombre;
cout<<"\n\nIngrese clave de la fabrica:";
Lee>>0ObjFab.Clave;
cout<<"\n\nIngrese domicilio de la fabrica:";
Lee>>0bjFab.Domicilio;
cout<<"\n\nIngrese teléfono de la fabrica:";
Lee>>0bjFab.Telefono;
return Lee;

}

/* Sobrecarga del operador << para permitir la impresiéon de objetos de
wtipo Fabrica de manera directa con el cout. */
ostream & operator<<(ostream & Escribe, Fabrica & ObjFab)

| 364 Capitulo 7. Arboles

{
cout<<"\n\nDatos de la fabrica\n";
Escribe<<"Nombre: "<<ObjFab.Nombre<<endl;
Escribe<<"Clave: "<<ObjFab.Clave<<endl;
Escribe<<"Domicilio: "<<ObjFab.Domicilio<<endl;
Escribe<<"Teléfono: "<<ObjFab.Telefono<<endl;
return Escribe;

}

Programa 7.6

/* Programa que utiliza un arbol balanceado para almacenar ordenadamente
w]los datos de ciertas fabricas. E1 usuario puede dar de alta nuevas
wfabricas, eliminar alguna ya registrada, obtener un reporte de todas

= (ordenadas segun su clave) y actualizar sus direcciones y teléfonos. Se
=incluyen dos bibliotecas, una con la plantilla de la clase ArbolBalan-
= ceado presentada en el programa 7.4 y la otra con la clase Fabrica del
=programa 7.5. */

#include "ArbolBalanceado.h"
#include "Fabricas.h"

/* Funcion que despliega en pantalla las opciones de trabajo para el
=ysuario. */

int Menu()
{
int Opc;
do {

cout<<"\n\n\t\tOpciones de trabajo.\n\n\n";
cout<<"(1) Capturar los datos de una fabrica.\n";
cout<<"(2) Dar de baja una fabrica.\n";
cout<<"(3) Imprimir los datos de todas las fabricas, ordenadas
=por clave.\n";
cout<<"(4) Cambiar el domicilio de una fabrica.\n";
cout<<"(5) Cambiar el teléfono de una fabrica.\n";
cout<<"(6) Terminar la sesi6n de trabajo.\n\n";
cout<<"Ingrese la opcién seleccionada:";
cin>>0pc;

} while (Opc > 6 |l Opc < 1);

return Opc;

7.3 Arboles balanceados 365 |

/* Funcién principal. De acuerdo a la opcidn de trabajo seleccionada por
wel usuario invoca los métodos que correspondan. */
void main()
{
ArbolBalanceado<Fabrica> Proveedores;
NodoArbolBal<Fabrica> *Apunt1, *Apunt2;
Fabrica Prov;
int Operac, Band, Clave;
char NuevoDom[MAX], NuevoTel[MAX];

do {
Operac= Menu();
switch (Operac)
{
/* Se registra una nueva fabrica siempre que la clave dada por
wel usuario no se encuentre en el arbol. */
case 1: {
cin>>Prov;
Band= 0;
Apunti= Proveedores.RegresaRaiz();
Proveedores.InsertaBalanceado(Prov, Apunti, &Band);
break;
}
/* En caso de dar de baja una fabrica registrada, se solicita sélo
=]la clave ya que es el dato que identifica a cada elemento. */

case 2: {
cout<<"\n\nIngrese la clave de la fabrica a eliminar:";
cin>>Clave;
Fabrica Prov(Clave, "","","");
Band= 0;

Apunti= Proveedores.RegresaRaiz();

Proveedores.EliminaBalanceado (Apunt1, NULL,

w&Band, Prov);

break;

}
/* Se imprimen los datos de todas las fabricas, ordenadas de
=wmenor a mayor por clave. */
case 3: {

Apunti= Proveedores.RegresaRaiz();

Proveedores.Imprime (Apunti);

break;

}
/* Se actualiza la direccion de una fabrica. Para llevar a cabo
westa operacion, primero se debe encontrar la fabrica de interés,
=]luego recuperar todo el objeto, actualizar el domicilio y pos-
wteriormente redefinir el contenido del nodo con el objeto ya
=wmnodificado. */

366 Capitulo 7. Arboles

case 4: {
cout<<"\n\nIngrese la clave de la fabrica:";
cin>>Clave;
cout<<"\n\nIngrese nuevo domicilio:";
cin>>NuevoDom;
Fabrica Prov(Clave, "","","");
Apunti= Proveedores.RegresaRaiz();
Apunt2= Proveedores.Busca(Apunt1, Prov);
if (Apunt2)
{

Prov= Apunt2->Regresalnfo();

Prov.CambiaDomic (NuevoDom) ;

Apunt2->ActualizalInfo(Prov);

}
else

cout<<"\n\nEsa fabrica no esta registrada. \n";

break;

}
/* Se actualiza el teléfono de una fabrica. Para llevar a cabo
westa operacion, primero se debe encontrar la fabrica de interés,
=luego recuperar todo el objeto, actualizar el teléfono y poste-
wriormente redefinir el contenido del nodo con el objeto ya
wmodificado. */
case 5: {

cout<<"\n\nIngrese la clave de la fabrica: ";

cin>>Clave;

cout<<"\n\nIngrese nuevo teléfono: ";

cin>>NuevoTel;

Fabrica Prov(Clave, "", "", "");

Apunti= Proveedores.RegresaRaiz();

Apunt2= Proveedores.Busca(Apuntl, Prov);

if (Apunt2)

{

Prov= Apunt2->Regresalnfo();
Prov.CambiaTelef (NuevoTel);
Apunt2->ActualizaInfo(Prov);

}
else
cout<<"\n\nkEsa fabrica no esta registrada. \n";
break;
}
}
} while (Operac < 6);

7.4 Arboles-B

367 |

7.4 Arboles-B

Las estructuras tipo arboles estudiadas hasta aqui son utilizadas para almacenar
informacién en la memoria principal de la computadora. Sin embargo, en practi-
camente todas las aplicaciones se requiere que los datos a procesar se guarden en
dispositivos secundarios, de tal manera que permanezcan ain después de terminado
el procesamiento. Ademds, el volumen de informacién manejado exige el uso
de medios externos de almacenamiento. Por lo tanto, resulta necesario contar con
estructuras que permitan organizar la informacién guardada en archivos. Los
drboles-B son una variante de los arboles balanceados y cubren esa necesidad.
En estas estructuras, a cada nodo se le conoce con el nombre de pagina y las
paginas se guardan en algun dispositivo de almacenamiento secundario.

Las principales caracteristicas de un arbol-B de grado n son:

* La pédgina raiz almacena como minimo 1 dato y como madximo 2n datos.

* La pdgina raiz tiene como minimo 2 descendientes.

* Las paginas intermedias y hojas almacenan entre n y 2n datos.

* Las pdginas intermedias tienen entre (n+1) y (2n+1) pdginas descendientes.
* Todas las pdginas hojas tienen la misma altura.

* La informacion guardada en las paginas se encuentra ordenada.

La figura 7.16 presenta un ejemplo de un arbol-B, de grado 2. En la raiz se alma-
cenan dos datos, lo que origina que tenga tres descendientes. La pagina hoja que
estd mds a la izquierda guarda todos los datos que son menores al primer dato
(105) de la pagina raiz, la segunda hoja contiene los datos mayores a 105 y me-
nores a 320, mientras que la tercera hoja almacena los datos mayores al segundo
dato de la pagina raiz (320). Cada una de las paginas hojas tiene entre 2 y 4 ele-
mentos. Si no fueran hojas, tendrian: la primera 3, la segunda 5 y la tercera 4 pé-
ginas descendientes respectivamente.

Raiz——>
1054320 fl_|
/ \\ 1 \
33 || 89 1341|222 (1261|301 34511400(] 601

FIGURA 7.16 Ejemplo de un drbol-B

| 368

Capitulo 7. Arboles

Las operaciones que pueden realizarse sobre la informacién almacenada en
arboles-B son: busqueda, insercién y eliminacién. Estas operaciones estdn imple-
mentadas en herramientas disefiadas especialmente para el manejo de archivos,
por lo que generalmente no se requiere su programacion. En esta seccién se
analizan para que usted pueda entenderlas y cuando haga uso de algtin manejador
de archivos sepa qué estd pasando internamente con los datos.

Busqueda en arboles-B

La operacion de bisqueda es similar a la estudiada en los drboles binarios

de busqueda, por ser los drboles-B una generalizacién de los primeros. En este
tipo de 4rboles se recuperan del medio secundario de almacenamiento paginas
completas de informacidn y se procede a buscar en ellas el dato deseado. Si

se encuentra, termina la bisqueda; en caso contrario se procede con la pdgina
que corresponda segun el dato con el cual se compara, ya sea menor 0 mayor.
Si se requiere recuperar una nueva pagina pero no existe, entonces se tiene un
caso de fracaso. Los pasos para llevar a cabo esta operacion son los siguientes:

1. Se recupera una pagina (la primera vez es la pdgina raiz) y se la lleva a
memoria.

2. Se evalua si la pagina esta vacia.
2.1. Si la respuesta es afirmativa, entonces la busqueda termina con fracaso.
2.2. Si la respuesta es negativa, entonces ir al paso 3.

3. Se compara el dato buscado con cada elemento almacenado en la pagina.
3.1. Si es igual, la bisqueda termina con éxito.

3.2. Si es menor se toma la direccidn de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma péagina.

3.3.1. Si es el dltimo, se toma la direccién de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Sino es el dltimo, se regresa al paso 3.

Considere el arbol-B de la figura 7.17. Si se quisiera encontrar el valor 319 se
procederia, siguiendo el algoritmo dado, tal como se muestra en la tabla 7.4.

7.4 Arboles-B 369 |

TABLA 7.4 Operacion de busqueda en un drbol-B

Operacion

Descripcion

1
2
3

10

11
12
13

14

Se recupera la pagina con los datos: 105 — 320
Se evalua si estd vacia. En este caso la respuesta es negativa.

Se compara el dato buscado (319) con el primer elemento de la pdgina
(105). Es mayor y hay més elementos en la misma pagina, entonces se
avanza al siguiente valor (320).

Se compara el dato buscado (319) con el valor 320. Es menor, entonces
se toma la direccion de la pagina que estd a la izquierda del 320.

Se recupera la pdgina con los datos: 134 — 222 — 261 — 301.

Se evalua si estd vacia. En este caso la respuesta es negativa.

Se compara el dato buscado (319) con el primer elemento de la pagina

(134). Es mayor y hay mds elementos en la misma pagina, entonces se
avanza al siguiente valor (222).

Se compara el dato buscado (319) con el valor 222. Es mayor y hay
mas elementos en la misma pégina, entonces se avanza al siguiente
valor (261).

Se compara el dato buscado (319) con el 261. Es mayor y hay mas ele-
mentos en la misma pagina, entonces se avanza al siguiente valor (301).

Se compara el dato buscado (319) con el valor 301. Es mayor y ya no
hay mds elementos en la misma pégina, entonces se toma la direccién
de la pagina que estd a la derecha del 301.

Se recupera la pdgina con los datos: 310 — 319.
Se evalia si estd vacia. En este caso la respuesta es negativa.

Se compara el dato buscado (319) con el primer elemento de la pdgina
(310). Es mayor y hay mds elementos en la misma pagina, entonces se
avanza al siguiente valor (319).

Se compara el dato buscado (319) con el valor 319. Es igual, por lo
tanto la bisqueda termina con éxito.

| 370

Capitulo 7. Arboles

Raiz

33

89

601“

2711 ... 35

140 143]] ... 26211279

FIGURA 7.17 Biisqueda en drboles-B

En la figura 7.17 las lineas punteadas indican las paginas que se van visitando
hasta llegar al dato buscado. Por su parte, las padginas sombreadas son las que se
recuperan para hacer la comparacién del elemento buscado con los elementos al-
macenados en el drbol.

Insercion en arboles-B

La operacion de insercion se caracteriza porque los nuevos elementos siempre se
guardan a nivel de las hojas, y puede originar la reestructuracién del arbol incluso
hasta la raiz provocando esto tltimo que la altura aumente en uno. Los pasos para
llevar a cabo esta operacién son los siguientes:

1. Se recupera una pagina (la primera vez es la pagina raiz).
2. Se evalua si es una pagina hoja.

2.1. Sila respuesta es afirmativa, se evalia si la cantidad de elementos alma-
cenados en ella es menor a 2n, siendo n el grado del arbol.

2.1.1. Si la respuesta es afirmativa, entonces se procede a insertar el
nuevo valor en el lugar correspondiente.

7.4 Arboles-B 371

2.1.2. Si la respuesta es negativa, entonces se divide la pagina en dos

y los (2n + 1) datos se distribuyen entre las paginas resultantes
(n en cada pagina) y el valor del medio sube a la pagina padre.
Si la pagina padre no tuviera espacio para este valor, entonces
se procede de la misma manera, se divide en dos y el elemento
del medio sube a la siguiente pigina, pudiendo repetirse este
proceso hasta llegar a la raiz, en cuyo caso se aumenta la altura
del arbol.

2.2. Sino es una hoja, se compara el elemento a insertar con cada uno de los
valores almacenados para encontrar la pagina descendiente donde prose-
guir la busqueda. Se sigue con el paso 1.

Considere el arbol-B, de grado 2, de la figura 7.18 en el cual se quiere insertar el

valor 60. La linea punteada sefiala la pagina que se recupera y donde se agrega el
60. En la tabla 7.5 se presenta la secuencia de pasos necesarios para realizar esta

operacion.

TaBLA 7.5 Operaciéon de inserciéon en un drbol-B

Operacion Descripcion

1 Se recupera la pagina con los valores: 105 — 320.

2 Se evalua si es una pagina hoja. No lo es.

3 Se compara el dato a insertar (60) con el valor 105. Es menor,
entonces se toma la direccién de la pagina que estd a la izquierda
del 105.

4 Se recupera la pdgina con los valores: 33 — 89.

5 Se evalia si es una pagina hoja. Si lo es.

6 Se evalia si el total de elementos almacenados (2) es menor a 2n.
Silo es.

7 Se inserta el valor 60 entre el 33 y 89 de tal manera que no altere el orden.

| 372

Capitulo 7. Arboles

1054 320
J \\ ~.

33 1| 89 13411222 261|301 345(1400((60

Luego de insertar el valor 60
en la pagina de la izquierda

105§ 320
\\ ~|

-
-
-
-
-
-
-
-
-

3311 60 || 8 13411222 261|301 345”400 60

FIGURA 7.18 Insercion del valor 60

En el ejemplo anterior no hubo cambios en la estructura del arbol. Considere
ahora el 4rbol-B, de grado 2, de la figura 7.19 en el cual se quiere insertar el
valor 120. En la tabla 7.6 se presenta la secuencia de operaciones realizadas al
aplicar el algoritmo visto.

TABLA 7.6 Operacion de insercién en un drbol-B

Operacion Descripcion

1 Se recupera la pagina con los valores: 105 — 320.

2 Se evalua si es pagina hoja. No lo es.

3 Se compara el dato a insertar (120) con el valor 105. Es mayor y hay
mas elementos en la misma pdgina, entonces se avanza al siguiente
valor (320).

continiia

7.4 Arboles-B 373 |

TaBLA 7.6 Continuacidon

Operacion Descripcion

4 Se compara el dato a insertar (120) con el valor 320. Es menor, enton-
ces se toma la direccion de la pagina que estd a la izquierda del 320.

5 Se recupera la pagina con los valores: 134 — 222 — 261 — 301.
Se evalua si es pagina hoja. Si lo es.

7 Se evalua si el total de elementos almacenados (4) es menor a 2n.
No lo es.

8 Se divide la pagina en dos y el valor del medio (222) sube a la pagina

padre, en la cual hay espacio. Los demds valores se distribuyen entre
las dos nuevas paginas.

Raiz \
105320 |

N\ {
222 \
0 || 89 01 34511400

1341122212613

33| 6 601

120m -7 Luego de la divisién de la
pagina en dos y de subir el
elemento del medio (222) a

Raiz \ la pagina padre

105§ 222 &20 T~
34511400}{60

33 (] 60]| 89 120[(134 261((301 1

FIGURA 7.19 Insercidn del valor 120

| 374

Capitulo 7. Arboles

Como se puede apreciar en la figura 7.19, luego de insertar el valor 120 se modi-
fica la estructura del arbol-B. La pdgina en la que debia insertarse el nuevo dato
estaba completa, por lo que se dividié en dos y subi6 el dato central a la pagina
padre. Finalmente la pigina padre quedd con tres elementos y por lo tanto con
cuatro descendientes.

A continuacién se presenta un ejemplo en el cual la estructura del arbol se modi-
fica en cuanto al nimero de pdginas y a la altura. En el 4rbol-B, de grado 2, de la
figura 7.20 se quiere insertar el valor 850. La tabla 7.7 muestra las operaciones
que se realizaron al aplicar el algoritmo de insercion.

TaBLA 7.7 Operacion de insercién en un drbol-B

Operacion Descripcion

1 Se recupera la pagina con los valores: 105 — 320 — 505 — 720

2 Se evalua si es pagina hoja. No lo es.

3 Se compara el dato a insertar (850) con el valor 105. Es mayor y hay
mds elementos en la misma pdgina, entonces se avanza al siguiente
valor (320).

4 Se compara el dato a insertar (850) con el valor 320. Es mayor y hay
mds elementos en la misma pdgina, entonces se avanza al siguiente
valor (505).

5 Se compara el dato a insertar (850) con el valor 505. Es mayor y hay
mds elementos en la misma pdgina, entonces se avanza al siguiente
valor (720).

6 Se compara el dato a insertar (850) con el valor 720. Es mayor y ya no
hay mds elementos en la misma pagina, entonces se toma la direccién
de la pagina que estd a la derecha del 720.

7 Se recupera la pagina con los valores: 765 — 800 — 801 — 976.
Se evalda si es pagina hoja. Si lo es.

9 Se evalia si el total de elementos almacenados (4) es menor a 2n.
No lo es.

10 Se divide la pagina en dos y el valor del medio (801) sube a la pagina
padre. Los demads valores se distribuyen entre las dos nuevas paginas.

11 En la pdgina padre no hay espacio, el nimero de elementos almacena-

dos es igual a 2n. Por lo tanto, se debe dividir en dos y el dato del me-
dio (505) debe guardarse en una pagina que serd la nueva raiz del arbol.
La altura del arbol crece en una unidad.

7.4 Arboles-B 375

Raiz\ 1 505
1

1051|320
/

33 || 60 [| 89 134]1222]]261||301

Luego de la division de la pagina en dos y de *|
subir el elemento del medio (801) a la pdgina 545|620 3
padre y de dividir a ésta y de subir el 505 dando

lugar a una nueva pagina raiz.

%—

Rai
alz \ 505

—

”105 320 ’720“801.
33 (] 60]| 89 -+« ||545](620 765((800 850]1976

FIGURA 7.20 Insercion del valor 850

Eliminacion en arboles-B

La operacion de eliminacién consiste en quitar un elemento del arbol-B cuidan-
do que mantenga las propiedades vistas. Es decir, el nimero de datos en cada

pégina debe ser mayor o igual a n y menor o igual a 2n. Los pasos para llevar a
cabo esta operacion son los siguientes:

1. Se recupera una pagina (la primera vez es la pagina raiz) y se la lleva a
memoria.

2. Se evalua si la pagina esta vacia.

| 376

Capitulo 7. Arboles

2.1. Si la respuesta es afirmativa, entonces la operacién de eliminacién termi-

na con fracaso.

2.2. Si la respuesta es negativa, entonces ir al paso 3.

3. Se compara el dato a eliminar con cada elemento almacenado en la pagina.

3.1. Si es igual, entonces se elimina y se procede de la siguiente manera:

3.1.1.

Si el dato estaba en una pagina hoja y el nimero de elementos de
ésta sigue siendo un valor comprendido entre n y 2n, entonces la
operacién de eliminacién termina.

. Si el dato estaba en una pégina y el nimero de elementos de ésta

queda menor que n, entonces se debe bajar el dato mas cercano de
la pagina padre y sustituirlo por el que se encuentre mas a la iz-
quierda del subérbol derecho o por el que se encuentre més a la
derecha del subarbol izquierdo, siempre que esta pdgina no pierda
la condicién y se fusionan.

. Si el dato estaba en la pagina raiz o en una pagina intermedia,

entonces se debe sustituir por el que se encuentre més a la
izquierda del subdrbol derecho o por el que se encuentre mds a
la derecha del subarbol izquierdo, siempre que esta pdgina no
pierda la condicidn. Si es asi, termina la eliminacién con éxito.
En caso contrario, se debe bajar el dato mds cercano de la piagina
padre y fusionar las pdginas que son hijas de éste.

3.2. Si es menor se toma la direccidn de sus descendientes por el lado iz-

quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma pagina.

3.3.1.

Si es el ultimo, se toma la direccién de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Sino es el dltimo, se regresa al paso 3.

El proceso de fusion de paginas puede llegar hasta la raiz, en cuyo caso la altura
del arbol disminuye en uno.

Analice el siguiente ejemplo. Se tiene un arbol-B, de grado 2 (ver figura 7.21) en
el cual se quiere eliminar el valor 222. Aplicando el algoritmo dado, se realizan
las operaciones que aparecen en la tabla 7.8.

7.4 Arboles-B 377 |

TABLA 7.8 Operacion de eliminacién en un drbol-B

Operacion Descripcion

1 Se recupera la pagina con los valores: 105 — 320.

2 Se evalia si la pagina estd vacia. No lo esta.

3 Se compara el dato a eliminar (222) con el valor 105. Es mayor y hay
mds elementos en la misma pégina, entonces se avanza al siguiente
valor (320).

4 Se compara el dato a eliminar (222) con el valor 320. Es menor, enton-
ces se toma la direccién de la pdgina que estd a la izquierda del 320.
Se recupera la pagina con los valores: 134 — 222 — 261 — 301.

6 Se compara el dato a eliminar (222) con el valor 134. Es mayor y hay
mas elementos en la misma pégina, entonces se avanza al siguiente
valor (222).

7 Se compara el dato a eliminar (222) con el valor 222. Es igual, entonces
se elimina.
Se evalia si el dato eliminado estaba en una pagina hoja. Si lo estaba.
Se evalua si el nimero de elementos (3) es = ny = 2n. Siloes. La
operacion termina con éxito.

Ra{z ———
105 \?20 ~
v\\
N
A
33 || 89 134 (|2 261 (]| 301 3451400 || 601

Y

Luego de eliminar el 222.

Raiz

105 4320 [f—

L =

33

89

13411261]| 301 345(1400|| 601

FIGURA 7.21 Eliminacion del valor 222

| 378

Capitulo 7. Arboles

En el ejemplo anterior se present6 el caso mds simple de eliminacion. El dato

buscado estaba en una pagina hoja que a su vez tenia mas de n elementos. Obser-

ve ahora el siguiente caso. En la figura 7.22 se tiene un arbol-B, de grado 2, del

cual se quiere eliminar el valor 89. Aplicando el algoritmo dado, se llevan a cabo
las operaciones mostradas en la tabla 7.9.

TABLA 7.9 Operacion de eliminacién en un drbol-B

Operacion Descripcion

1 Se recupera la pagina con los valores: 105 — 320.

2 Se evalua si la pagina estd vacia. No lo estd.

3 Se compara el dato a eliminar (89) con el valor 105. Es menor,
entonces se toma la direccién de la pagina que estd a la izquierda
del 105.

4 Se recupera la pdgina con los valores: 33 — 89.
Se compara el dato a eliminar (89) con el valor 33. Es mayor y hay
mds elementos en la misma pdgina, entonces se avanza al siguiente
valor (89).

6 Se compara el dato a eliminar (89) con el valor 89. Es igual, entonces
se elimina.

7 Se evalua si el dato eliminado estaba en una pédgina hoja. Si lo estaba.
Se evalia si el nimero de elementos (1) es = n y = 2n. No lo es, en-
tonces se debe bajar el dato mds cercano de la pdgina padre (105) y
sustituir a éste por el que se encuentre mas a la izquierda del subarbol
derecho (134).

9 Se evalua si el niimero de elementos de la pagina del subdrbol derecho

(de la cual se quit6 el 134) cumple con la condicién. En este caso (2)
es = ny = 2n. La operacién termina con éxito.

7.4 Arboles-B 379 |

Raiz

\320 ~

33

2611|301 345(1400|| 601

Luego de eliminar el 89, de bajar
el 105 de la pagina padre y de
reemplazar a éste por el 134.

Raiz

1344320 f—|
N

33

105 2611|301 345(1400|| 601

FIGURA 7.22 Eliminacion del valor 89

Por dltimo, analice el siguiente ejemplo. En el arbol-B, de grado 2, de la
figura 7.23 se quiere eliminar el valor 48. En este caso la altura del arbol, luego
de efectuar todas las reestructuraciones que corresponden, disminuye en uno
La tabla 7.10 presenta las operaciones que se realizan al aplicar el algoritmo.

TABLA 7.10 Operacion de eliminacién en un drbol-B

Operacion Descripcion

1 Se recupera la pagina con los valores: 48.

2 Se evalua si la pagina esta vacia. No lo esta.

3 Se compara el dato a eliminar (48) con el valor 48. Es igual, entonces
se elimina.

4 Se evalua si el dato eliminado estaba en una pagina hoja. No lo estaba.

Se debe sustituir el elemento eliminado por el que se encuentre mds a la
derecha del subdrbol izquierdo (44).

continiia

| 380

Capitulo 7. Arboles

TasLA 7.10 Continuacién
Operacion Descripcion
6 Se evalua si el niimero de elementos (1) de esa pidginaes =ny = 2n.
No lo es, entonces se debe bajar el dato mds cercano (41) de la pagina
padre y fusionar las paginas que son hijas de éste (22 — 30 — 41 — 42).
7 Se evalua si el nimero de elementos de la pagina de la que se bajé el

valor 41 es = ny = 2n. Es (1), por lo tanto se debe bajar el dato mds
cercano (44) de la pagina padre y fusionar las paginas que son hijas de
éste (20 — 44 — 59 — 72). La fusion afect6 la raiz, disminuyendo en 1 la

altura del arbol. La operacion termina con éxito

Raiz—

’1/

Fusién de paginas

\ 59 K72 |

FIGURA 7.23 Eliminacion del valor 48

 ——— \‘ \ ~
N N SOS
811117 42 || 44 50 |f 52 8111 90
/
22 (] 30 63]] 65
Luego de
Fusién de paginas eliminar
el 48
20 (] 44 N.59 {72 1
8|11 |17 22 (| 30]| 41 || 42 63 || 65 8111 90
501] 52

7.5 Arboles-B+

381 |

7.5 Arboles-B*

Los drboles-B* son una variante de los arboles-B, diferencidandose de estos ulti-
mos por el hecho de que toda la informacién se encuentra almacenada en las
hojas. En la raiz y en los nodos intermedios se guardan solamente las claves o
indices que permiten llegar a un cierto dato.

Las principales caracteristicas de un drbol-B* de grado n son:

* La pagina raiz almacena como minimo 1 dato y como médximo 2n datos.

* La pédgina raiz tiene como minimo 2 descendientes.

* Las pdginas intermedias y hojas almacenan entre n y 2n datos.

* Las pdginas intermedias tienen entre (n+1) y (2n+1) pdginas descendientes.
* Todas las pdginas hojas tienen la misma altura.

* La informacion se encuentra ordenada.

* Toda la informacién se encuentra en las paginas hojas, por lo que la clave
guardada en la raiz o piginas intermedias se duplica.

* La informacion guardada en la raiz o en paginas intermedias cumple la
funcion de indices que facilitan el acceso a un cierto dato.

La figura 7.24 presenta un ejemplo de un arbol-B*, de grado 2. En la raiz se al-
macenan valores que funcionan como indices para llegar a los datos que estén en
las hojas (es de suponer que el arbol almacena datos mas complejos que simples
ndmeros enteros).

Raiz—m—m 5
105 \320 ~|
33 || 89 105 || 134 || 261 || 301 3201|345({400

FIGURA 7.24 Ejemplo de un drbol-B*

Las operaciones que pueden realizarse sobre la informacién almacenada en
arboles-B* son: blisqueda, insercidn y eliminacién. Estas operaciones estdn im-
plementadas en herramientas disefladas especialmente para el manejo de archi-
vos, por lo que generalmente no se requiere su programacién en las aplicaciones.

| 382 Capitulo 7. Arboles

Como en el caso de los drboles-B, se explican para que pueda entenderlas y
cuando haga uso de algiin manejador de archivos sepa qué estd pasando interna-
mente con los datos.

Busqueda en arboles-B*

La operacion de busqueda es similar a la estudiada en los arboles-B. La diferen-
cia es que en estos drboles la busqueda termina siempre en las paginas hojas
(donde estd la informacién completa). Los pasos para llevar a cabo esta operacién
son los siguientes:

1. Se recupera una pégina (la primera vez es la pagina raiz) y se la lleva a
memoria.

2. Se evalua si la pagina esté vacia.
2.1. Si la respuesta es afirmativa, entonces la bisqueda termina con fracaso.
2.2. Si la respuesta es negativa, entonces ir al paso 3.
3. Se compara el dato buscado con cada elemento almacenado en la pagina.
3.1. Si es igual, entonces se evalda si es una pagina hoja.
3.1.1. Si la respuesta es afirmativa, entonces la busqueda termina con
éxito.
3.1.2. Si la respuesta es negativa, entonces se debe recuperar la pagina
descendiente por el lado derecho y se regresa al paso 1.

3.2. Si es menor se toma la direccién de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma pagina.

3.3.1. Si es el dltimo, se toma la direccion de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Sino es el dltimo, se regresa al paso 3.

La tabla 7.11 presenta los pasos requeridos para buscar el valor 320 en el drbol-B*
de la figura 7.24.

7.5 Arboles-B+

383 |

TABLA 7.11 Operacién de busqueda en un drbol-B*

Operacion

Descripcion

1
2
3

Se recupera la pagina con los datos: 105 — 320.
Se evalia si estd vacia. En este caso la respuesta es negativa.

Se compara el dato buscado (320) con el primer elemento de la pdgina
(105). Es mayor y hay mds elementos en la misma pagina, entonces se
avanza al siguiente valor (320).

Se compara el dato buscado (320) con el valor 320. Es igual.

Se evalua si la pagina donde fue encontrado el 320 es una pédgina hoja.
No lo es. Se debe revisar la pagina descendiente por el lado derecho.

Se recupera la pdgina con los datos: 320 — 345 — 400.

Se compara el dato buscado (320) con el primer elemento de la pdgina
(320). Es igual.

Se evalda si la pdgina donde fue encontrado el 320 es una pagina hoja.
Si lo es. La bisqueda termina con éxito.

Insercion en arboles-B+

La operacién de insercion es similar a la estudiada en los drboles-B. La dife-
rencia consiste en que cuando se produce la divisién de una pagina en dos
(por dejar de cumplir la condicién de que el niimero de elementos debe ser
= ny = 2n) se debe subir una copia de la clave (o indice) del elemento del
medio. Sélo se duplica informacién cuando la clave que sube es de una pagina
hoja. Los pasos para llevar a cabo esta operacién son los siguientes:

1. Se recupera una pégina (la primera vez es la pagina raiz).

2. Se evalda si es una pédgina hoja.

2.1. Si la respuesta es afirmativa, se evalda si la cantidad de elementos alma-
cenados en ella es menor a 2n.

2.1.1. Si la respuesta es afirmativa, entonces se procede a insertar el nue-

vo valor en el lugar correspondiente.

2.1.2. Si la respuesta es negativa, se divide la pagina en dos y los (2n +

1) datos se distribuyen entre las paginas resultantes y una copia
del valor del medio (o de una clave del mismo) sube a la pagina

| 384

Capitulo 7. Arboles

padre. Si la pdgina padre no tuviera espacio para este valor, enton-
ces se procede de la misma manera, se divide en dos y el elemen-
to del medio sube a la siguiente pdgina, pudiendo repetirse este
proceso hasta llegar a la raiz, en cuyo caso se aumenta la altura
del arbol.

2.2. Sino es una hoja, se compara el elemento a insertar con cada uno de los
valores almacenados para encontrar la padgina descendiente donde prose-
guir la bisqueda. Se regresa al paso 1.

Considere el siguiente ejemplo. En el arbol-B*, de grado 2, de la figura 7.25 se
quiere insertar el valor 287. Aplicando el algoritmo dado, se realizan las opera-
ciones que se muestran en la tabla 7.12.

TaBLA 7.12 Operacién de insercién en un drbol-B*

Operacion

Descripcion

1
2
3

Se recupera la pagina con los valores: 105 — 320.
Se evalua si es una pagina hoja. No lo es.

Se compara el dato a insertar (287) con el valor 105. Es mayor y hay
mas elementos en la misma pdgina, entonces se avanza al siguiente
valor (320).

Se compara el dato a insertar (287) con el valor 320. Es menor, enton-
ces se toma la direccion de la pagina que estd a la izquierda del 320.

Se recupera la pagina con los valores: 105 — 222 — 261 — 301.
Se evalda si es una pagina hoja. Si lo es.

Se evalia si el total de elementos almacenados (4) es menor a 2n.
No lo es.

Se divide la pagina en dos y los elementos se distribuyen entre ellas,
subiendo una copia del valor del medio (261) a la pagina padre.

Se evalda (antes de la insercién) si el nimero de elementos en la pagina
padre (2) es menor a 2n. Si lo es. La operacidn termina con éxito.

7.5 Arboles-B+

385 |

Raiz \

1051 320 (e _
A 3

\
\\ Copia de
1261.

33

89 105 (1222|261 || 301 3201400 || 601

w287

Después de insertar el 287,
de dividir la pagina hoja en
dos y de subir una copia del

Raiz \ 261.

1051261 iZO~

33

89 105((222 261((287(|301 320]|400}{601

FIGURA 7.25 Insercidn del valor 287

Eliminacion en arboles-B*

La operacion de eliminacién consiste en quitar un elemento del drbol-B* cuidan-
do que mantenga las propiedades vistas. Es decir, el nimero de datos en cada pa-
gina debe ser mayor o igual a n y menor o igual a 2n. Como los datos siempre
estdn en las paginas hojas, cuando se encuentran se quitan (sélo de la hoja, sin
importar si ademas estan en un nodo intermedio o raiz) y sélo se reestructura el
arbol si la pdgina quedé con menos de n elementos. Los pasos para llevar a cabo
esta operacién son los siguientes:

1. Se recupera una pédgina (la primera vez es la pagina raiz) y se la lleva a me-
moria.

386 Capitulo 7. Arboles

2. Se evalia si la pagina estd vacia.

2.1. Si la respuesta es afirmativa, entonces la operacion de eliminacién termi-
na con fracaso.

2.2. Si la respuesta es negativa, entonces ir al paso 3.
3. Se compara el dato a eliminar con cada elemento almacenado en la pagina.
3.1. Si es igual, se evalia si estd en una pagina hoja.

3.1.1. Si la respuesta es negativa entonces se toma la direccién de sus
descendientes por el lado derecho y se regresa al paso 1.

3.1.2. Si la respuesta es afirmativa, entonces se elimina y se evalta si el
nimero de elementos que quedo sigue siendo mayor o igual a n.

3.1.2.1 Si la respuesta es afirmativa, entonces la operacion termi-
na con éxito. Las paginas intermedias no se modifican
aunque almacenen una copia del elemento eliminado.

3.1.2.2 Si la respuesta es negativa, entonces se debe bajar el da-
to mds cercano de la pagina padre y sustituir a éste
por el que se encuentre mds a la izquierda del subarbol
derecho o por el que se encuentre mas a la derecha del
subdrbol izquierdo, siempre que esta pagina no pierda
la condicién. En caso contrario, se debe bajar el dato
mads cercano de la pagina padre y fusionar las pdginas que
son hijas de éste.

3.2. Si es menor se toma la direccién de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma pagina.

3.3.1. Sies el dltimo, se toma la direccién de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Sino es el dltimo, se regresa al paso 3.

El proceso de fusién puede llegar hasta la raiz, en cuyo caso la altura del arbol
disminuye en uno. Cuando se llevan a cabo las fusiones, se deben quitar todas
aquellas claves copias de elementos eliminados en las paginas hojas.

La tabla 7.13 presenta la secuencia de operaciones requeridas para llevar a cabo
la eliminacion del valor 261 del arbol-B*, de grado 2, de la figura 7.26.

7.5 Arboles-B+ 387 |

TABLA 7.13 Operacion de eliminacién en un drbol-B

Operacion

Descripcion

1
2
3

Se recupera la pagina con el valor: 105.
Se evalua si la pagina estd vacia. No lo esta.

Se compara el dato a eliminar (261) con el valor 105. Es mayor y no
hay mds elementos en la misma pagina, entonces se toma la direccién
de la pagina que estd a la derecha del 105.

Se recupera la pdgina con los valores: 105 — 261.

Se compara el dato a eliminar (261) con el valor 105. Es mayor y hay
mds elementos en la misma pédgina, entonces se avanza al siguiente
valor (261).

Se compara el dato a eliminar (261) con el valor 261. Es igual.
Se evalia si estd en una pagina hoja. Si lo estd, entonces se elimina.

Se evalda si el nimero de elementos que quedé en la pagina (1) es = n
y = 2n. No lo es.

Se baja el dato mas cercano de la pagina padre (105) y éste no se puede
sustituir, ya que el nimero de elementos de su otro hijo es 2. Por lo
tanto, se baja y se fusionan sus paginas descendientes. En este caso, la
altura del arbol disminuye en uno. El proceso termina con éxito.

Raiz \

105]

L

33

89 105 %

4

Luego de eliminar el 261 y
de fusionar las pdginas

33 1] 89 || 105

FIGURA 7.26 Eliminacion del valor 261

| 388

Capitulo 7. Arboles

Ejercicios

1.

Defina una plantilla para la clase ArbolMultiple. Decida qué atributos y
métodos incluir. ;Puede implementar esta clase en C++7? Justifique su
respuesta.

. Escriba un método que cuente el niimero de hojas de un 4rbol binario.

(Podria resolverlo por medio de una funcién? Justifique su respuesta.

. Escriba un método que cuente el nimero de nodos intermedios de un arbol bi-

nario. ; Podria resolverlo por medio de una funcién? Justifique su respuesta.

. Escriba un método que calcule la altura de un arbol binario. ;Podria resol-

verlo por medio de una funcién? Justifique su respuesta.

. Escriba un método que imprima todos los ascendientes masculinos de un in-

dividuo cuyos datos genealdgicos fueron almacenados en un arbol binario.

. Escriba un método que imprima todos los datos de los ascendientes que es-

tén vivos de un individuo cuyos datos genealdgicos fueron almacenados en
un 4arbol binario.

. Se dice que dos drboles son similares cuando sus estructuras son iguales.

Escriba una funcién en C++ que determine si dos drboles (dados como pa-
rdmetros) son similares. En la siguiente figura se presenta un ejemplo de
dos drboles que tienen esta caracteristica.

) (a)
(@ © OJO

. Se dice que dos drboles son equivalentes cuando sus estructuras son iguales

y ademads tienen el mismo contenido. Escriba una funcién en C++ que de-
termine si dos arboles (dados como pardmetros) son equivalentes. En la si-
guiente figura se presenta un ejemplo de dos drboles que tienen esta
caracteristica.

Ejercicios

389 |

(4) ()
OJO OO

9. Se dice que un 4rbol binario es completo si todos sus nodos, excepto las ho-
jas, tienen dos hijos. Escriba una funcién en C++ que determine si un drbol
(dado como pardametro) es completo. En la siguiente figura se presenta un
ejemplo de un arbol que tiene esta caracteristica.

W@ ©C

10. Retome la plantilla de la clase ArbolBinario presentada en este libro, e in-
cluya un método que imprima por niveles toda la informacién de un objeto
tipo arbol. Si el arbol fuera el que aparece en el problema 8, la impresion
serfa:

X-Z-A-M-K-P

11. Considere que no puede manejar memoria dindmica para representar una
estructura tipo 4rbol binario. Sin embargo, dadas las caracteristicas de la in-
formacion, usted decide que la mejor estructura para su almacenamiento y
posterior uso es un arbol. Utilice un arreglo unidimensional, guardando en
cada casilla la informacién correspondiente a un nodo, de tal manera que se
mantengan las relaciones (padre-de y/o hijo-de) entre ellos. Disefie e imple-
mente las operaciones de busqueda, insercién y eliminacion que se ajuste a
esta nueva representacion.

| 390

Capitulo 7. Arboles

12. Utilice un arbol binario de busqueda para almacenar datos de tipo clientes ban-
carios. Para ello defina una clase clienteBanco, con los atributos y los métodos
que considere necesarios, atendiendo lo que se pide mas abajo. El nimero de
cliente serd el atributo segtin el que se ordenara la informacién en el arbol. Es-
criba un programa en C++, que mediante un menu de opciones, permita:

a)

b)

)

2)

Generar un reporte de todos los clientes de un banco, ordenados por su
ndmero de cliente.

Generar un reporte de todos los clientes que tengan una antigiiedad
mayor a los 5 afios. Puede darle generalidad a su solucién, dejando el
nimero de aflos como un dato a ingresar por el usuario.

Generar un reporte de todos los clientes que tengan como minimo dos
cuentas diferentes en el banco.

Dar de alta un nuevo cliente. El usuario proporcionard todos los datos
del cliente a registrar.

Dar de baja un cliente registrado. El usuario dard como dato el nimero
del cliente.

Actualizar el saldo de alguna de las cuentas de un cliente. El usuario
dara como datos el namero del cliente, el numero de la cuenta a actua-
lizar y el nuevo saldo.

Actualizar los datos personales (por ejemplo domicilio, teléfono casa, te-
1éfono oficina, etcétera) de un cliente. Su programa debe permitir que en
la misma opcidn se pueda modificar uno o todos los datos personales.

13. Utilice un arbol binario balanceado para almacenar datos relacionados a in-
sectos. Para ello defina una clase Insecto, con los atributos y los métodos
que considere necesarios, atendiendo lo que se pide mds abajo. Cada insecto
tendrd una clave, que serd el atributo que permita que la informacién esté
ordenada en el drbol. Escriba un programa en C++, que mediante un menu
de opciones, pueda:

a)
b)

c)
d)

Registrar un nuevo insecto. El usuario dara todos los datos necesarios.

Dar de baja un insecto registrado. El usuario dard la clave del insec-
to a eliminar.

Generar un reporte de todos los insectos, ordenados por clave.

Generar un reporte de todos los insectos que viven en el area del Me-
diterrdneo europeo.

Ejercicios

391 |

14.

15.

16.

17.

18.

19.

e) Generar un reporte de todos los insectos que viven sélo en el desierto
de Rub al-Jali.

f) Generar un reporte de todos los insectos que se alimentan de made-
ra en estado de descomposicion.

Inserte los siguientes datos en un arbol-B, de grado 2. Los nimeros que se dan
como datos pueden representar datos mas complejos (objetos). Dibuje el arbol a
medida que sufra cambios en su estructura como consecuencia de la insercion.

Insertar: 95 — 10 — 34 — 87 - 56 - 99 — 12 - 23 - 50 - 40 - 60 — 54 — 33 —
20-91- 17-18-94

En el drbol-B generado en el problema anterior elimine los datos que se
sefialan a continuacién. Dibuje el arbol a medida que sufra cambios en su
estructura como consecuencia de la eliminacién.

Eliminar: 99 — 60 — 23 - 12 - 95 - 40

Inserte los siguientes datos en un arbol-B, de grado 2. Los nimeros que se
dan como datos pueden representar datos mds complejos (objetos). Dibuje
el arbol a medida que sufra cambios en su estructura como consecuencia de
la insercion.

Insertar: 105-99-104-80-16-74—-112-230-71 -33 - 86 — 399 —
33-120-51-67-90 -84 —45-405-257-110

En el 4arbol-B generado en el problema anterior elimine los datos que se
seflalan a continuacién. Dibuje el drbol a medida que sufra cambios en su
estructura como consecuencia de la eliminacion.

Eliminar: 399 — 80 — 105 -84 - 86 -51 - 67 -33 - 112 - 104

Inserte los siguientes datos en un arbol-B*, de grado 2. Los nimeros que se
dan como datos pueden representar a datos mds complejos (objetos). Dibuje
el arbol a medida que sufra cambios en su estructura como consecuencia de
la insercién.

Insertar: 120 — 100 — 240 — 817 — 356 — 199 — 249 — 326 — 500 — 170 — 360 —
257 — 358 — 104 — 921 — 590 — 328 — 140

En el 4rbol-B*, de grado 2, generado en el problema anterior elimine los da-
tos que se sefialan a continuacién. Dibuje el drbol a medida que sufra cam-
bios en su estructura como consecuencia de la eliminacion.

Eliminar: 328 — 356 — 100 — 817 — 921 — 500 — 358 — 328 — 590 — 104 — 249

| 392

Capitulo 7. Arboles

20. Inserte los siguientes datos en un arbol-B*, de grado 2. Los niimeros que se

21.

dan como datos pueden representar a datos mds complejos (objetos). Dibuje
el arbol a medida que sufra cambios en su estructura como consecuencia de
la insercion.

Insertar: 350 — 180 — 420 — 700 — 390 — 200 — 150 — 400 — 300 — 100 — 500 —
310 — 660 — 580 — 880 — 670 — 370 — 140 — 230 — 490 — 510

En el arbol-B*, de grado 2, generado en el problema anterior elimine los da-
tos que se sefialan a continuacién. Dibuje el 4drbol a medida que sufra cam-
bios en su estructura como consecuencia de la eliminacion.

Eliminar: 880 — 420 — 100 — 580 — 180 — 230 — 400 — 700 — 660 — 670 —
490 — 140 — 350 - 370

CAPIiTULO

Graficas

8.1 Introduccion

Este capitulo presenta la estructura de datos conocida como grdfica. Se
estudian sus principales caracteristicas, cdmo se relacionan sus compo-
nentes y se analizan las operaciones que pueden aplicarse sobre ellos.

Las gréficas son estructuras de datos no lineales, en las cuales cada
elemento puede tener cero o mas sucesores y cero o mas predece-
sores. Estan formadas por nodos, llamados generalmente vértices, y
por arcos, conocidos también con el nombre de aristas. Los vértices
representan informacién y las aristas relaciones entre dicha informa-
cion. La figura 8.1 presenta un ejemplo de una grafica. En ella, los
vértices almacenan los datos de un grupo de ciudades y las aristas
indican que existe una carretera entre las ciudades que estdn uniendo.
El valor asociado a cada arista representa el total de kilémetros entre

| 394

Capitulo 8. Graficas

las ciudades que estan en los extremos. Segtn esta figura, entre las ciudades de
Puebla y Tlaxcala existe una carretera que cubre una distancia de 33 kms. Por su
parte, entre las ciudades de Puebla y de Xalapa hay una carretera de 194 kms.
También se observa que entre las ciudades de Toluca y Xalapa no existe una
carretera directa que las una.

FIGURA 8.1 Ejemplo de una grdfica

Formalmente, una gréfica estd integrada por los conjuntos V(G) y A(G), donde el
primero representa a todos los vértices o nodos y el segundo a las aristas o arcos.
Por lo general, estos conjuntos son finitos. Una arista se define por medio de un
par tnico de vértices del conjunto V, que puede o no estar ordenado. Tomando
como referencia la grafica de la figura 8.2, se tiene que:

V={v, v, Vv, Vv, Vs, Vg, v, }

G=(V,A)
La arista entre los nodos v, y v, se expresa como a= (v,, v,), indicando que los

vértices v, y v, son adyacentes y extremos de a. Ademds, se dice que a es inci-
denteen v, yv,.

8.1 Introduccion 395 |

FIGURA 8.2 Ejemplo de grdfica

El grado de un vértice, identificado como grado (v), es el total de aristas que tienen
como extremo a v. Cuando el grado de un vértice es 0, éste recibe el nombre de
vértice aislado. El vértice v, de la figura 8.2 es de grado 3, mientras que el vér-
tice v, es de grado 2.

Dependiendo de la ubicacién y combinacion de una o varias aristas, se definen
distintas figuras. Las mds comunes son:

Un lazo o bucle es una arista que tiene en ambos extremos al mismo vér-
tice. Se expresa como a= (v, V).

Un camino del vértice origen v, al vértice destino v_estd formado por todas
las aristas que deben recorrerse para llegar del origen al destino. Si se
recorren n aristas, se dice que el camino es de longitud n.

Un camino es cerrado si el vértice origen es igual al vértice destino.

Un camino es simple si todos sus vértices, con excepcion del origen y
destino, son distintos. El primero y dltimo vértices de un camino simple
pueden ser iguales.

Un ciclo es un camino simple cerrado de longitud mayor o igual a tres.

De acuerdo a sus caracteristicas, las graficas reciben distintos nombres. Los mds
comunes son:

Una grdfica conexa es aquella en la cual existe un camino simple entre
cualesquiera de sus nodos.

| 396 Capitulo 8. Gréaficas

» Una grdfica drbol o drbol libre es una grafica conexa sin ciclos.

* Una grdfica es completa si cada uno de sus vértices son adyacentes a todos
los vértices de la gréfica.

* Una grdfica es etiquetada si sus aristas tienen asociado un valor. Si éste es
un nimero no negativo, se le conoce con el nombre de peso, distancia o
longitud.

* Una grafica es una multigrdfica si al menos dos de sus vértices estan
unidos entre si por dos aristas, llamadas aristas paralelas o mdltiples.

* Una subgrdfica esta formada por un subconjunto de vértices y de aristas
de una gréfica dada. Por lo tanto la subgrafica G'de G, se define como
G'=(V',A"),donde V' C VyA' CA.

= ® cdi

(O
0 5~ K

(a)
FIGURA 8.3 Ejemplos de grdficas

Al observar las graficas presentadas en la figura 8.3 se pueden hacer las siguien-
tes afirmaciones:
 Hay un bucle o lazo en el vértice v, de la grafica del inciso (a).

» La grifica (a) es una multigrafica, ya que existen aristas paralelas o multiples
entre los vértices v, y v..

* En la gréfica (a) hay un camino de v, a v,, definido por la secuencia de aristas:
Vs, Vis V3, V.

* En la gréfica (b) hay un camino cerrado definido por la secuencia de aristas:
Vi, Vi Vy, Vi

8.2 Graficas dirigidas 397 |

* En la gréfica (a) hay un camino simple definido por la secuencia de aristas:
Vi, Vi Ve

* Ambas gréficas son conexas, ya que todos sus vértices estdn unidos al
menos a otro vértice.

» La grafica (b) es completa, ya que cada uno de sus vértices son adyacentes
a todos los demads.

8.2 Graficas dirigidas

Las grdficas dirigidas o digrdficas son aquellas cuyas aristas siguen cierta direc-
cion. En este caso, cada arista a = (v, v,) recibe el nombre de arco y se representa
con la notacion v, —>v,. Se dice que v, es el vértice origen o punto inicial y que
v, es el vértice destino o punto terminal del arco a. La figura 8.4 presenta un ejem-
plo de una gréfica dirigida.

FIGURA 8.4 Ejemplo de grdfica dirigida

8.2.1 Representacion de una digrafica

Las digraficas son estructuras de datos abstractas (como las pilas y colas), por lo tanto
los lenguajes de programacion no cuentan con elementos disefiados exclusivamente
para su representacion y manejo. En consecuencia, se requiere utilizar alguna de las

| 398 Capitulo 8. Graficas

estructuras de datos ya estudiadas para su representacion y almacenamiento en memo-
ria. Las mds usadas son las listas de adyacencia y las matrices de adyacencia.

La lista de adyacencia esta formada por una lista de listas. Es decir, cada nodo de la
lista representa a un vértice y almacena, ademds de la informacion propia del vértice,
una lista de vértices adyacentes. La figura 8.5 muestra un ejemplo de una digrafica
y su correspondiente lista de adyacencia.

R

\2 > v, > V.| 4—— NULL

v, > \A > V, | 94— NULL
Vs = \& = Vi | +— NULL

Vv, = Vi | 4—— NULL

Vs —t— v, > V, | =— NULL

FIGURA 8.5 Grdfica dirigida y su representacion por medio de una
lista de adyacencia

La matriz de adyacencia es una matriz de ntimeros enteros, donde los renglones y
columnas representan a los vértices de la digréifica. En la posicion i, j se asigna un

8.2 Graficas dirigidas

399 |

1 si existe un arco del vértice i al vértice j. En caso contrario y en las posiciones
correspondientes a la diagonal principal se asigna un 0. Si la digrafica tiene N vér-
tices, la matriz de adyacencia tendrd NxN elementos. La figura 8.6 muestra la
matriz de adyacencia correspondiente a la digrafica de la figura 8.5. En este libro
se emplea este tipo de representacion para las digréficas.

Si la digrafica a almacenar estd etiquetada, entonces se necesita una matriz de ad-
yacencia etiquetada. La diferencia es que en lugar del 1 se asigna la etiqueta o
costo del arco correspondiente. Esta matriz también recibe el nombre de matriz de
costos o matriz de distancias. La figura 8.7 muestra un ejemplo de una gréfica
dirigida etiquetada con su correspondiente matriz de adyacencia etiquetada.

FIGURA 8.6 Representacion de una grdfica dirigida por medio
de una matriz de adyacencia

Vel 11 0 0 0 0 0

FIGURA 8.7 Grdfica dirigida etiquetada y su representacion por medio de una
matriz de adyacencia etiquetada

| 400

Capitulo 8. Graficas

8.2.2 La clase digrafica

Considerando que se usard una matriz de adyacencia para almacenar la informacién
de una digréfica, la clase DiGrafica tendra como atributos un arreglo de dos dimen-
siones para almacenar dicha matriz, un entero que representa el nimero de vértices
y un arreglo con sus nombres (en este caso enteros). Ademds de los atributos, la cla-
se tendrd algunos métodos que permiten la manipulacién de los datos guardados.

DiGrafica

NumVer: int
Vertices[]: int

MatAdy[][]: int

Métodos de acceso y
modificacion a los
miembros de la clase

FIGURA 8.8 Clase DiGrafica

A continuacion se presenta el cddigo en lenguaje C++ correspondiente a la defi-
nicién de la clase DiGrafica del esquema de la figura 8.8. Se incluyen sélo los
prototipos de los métodos, ya que éstos se analizan mds adelante. Ademads de los
atributos ya mencionados, la clase contiene otros elementos que son necesarios
en los métodos que utiliza. Se decidi6 tratarlos como atributos para simplificar su
codificacion y para que la clase estuviera autocontenida.

/* Constante usada para establecer el numero maximo de vértices de la
wdigrafica. */
#define MAX 20

/* Definicién de la plantilla de la clase DiGrafica. Se incluyen como
watributos: la matriz de costos/distancias (MatAdy), el numero de vértices
w (NumVer), el nombre de cada uno de los vértices (Vertices), un arreglo

8.2 Graficas dirigidas

401|

wpara las distancias minimas entre los vértices (DistMin), un arreglo para
=la cerradura transitiva de la matriz de adyacencia (CerTran), y un
warreglo para vértices intermedios (VerInt). Los tres Ultimos se usan
=wcomo auxiliares en métodos que se estudian mas adelante. */
template <class T>
class DiGrafica
{
private:
/* Declaraci6n del arreglo donde se almacenan las distancias en-
tre los vértices. */
T MatAdy[MAX] [MAX];

int NumVer, Vertices[MAX], DistMin[MAX], CerTran[MAX][MAX],
VerInt[MAX][MAX];
public:
/* Método constructor y métodos auxiliares para leer la informa-
cién relacionada a la grafica e imprimir los resultados obtenidos
al aplicar los demas métodos. */
DiGrafica();
void Lee();
void Imprime(int);

/* Métodos que recorren una grafica dirigida, determinando cami-
nos de distancias minimas. */

void Warshall();

void Floyd();

void FloydVerInt();

void Dijkstra();

ks

/* Declaraci6on del método constructor. Inicializa la matriz de adyacen-
cias MatAdy con un valor arbitrario muy grande (999), indicando que no
existe camino entre los nodos correspondientes. Ademds, asigna ceros a
los arreglos que se usaran en otros métodos. */
template <class T>
DiGrafica<T>::DiGrafica()
{
int Ind1, Ind2;
for (Indi= 0; Indi < MAX; Indi++)
{
DistMin[Ind1]= 0;
for (Ind2= 0; Ind2 < MAX; Ind2++)
{
if (Ind1 != Ind2)
MatAdy[Ind1][Ind2]= 999;

| 402

Capitulo 8. Gréaficas

else
MatAdy[Ind1][Ind2]= O;
CerTran[Ind1][Ind2]= 0;
VerInt[Ind1][Ind2]= 0;
}
}

NumVer= 0;

Como ya se menciond, en la plantilla se incluyeron algunos arreglos que se usan
en los métodos con el fin de que la clase contenga todos los elementos necesa-
rios. Sin embargo, dichos arreglos pueden declararse como locales a los métodos
y pasarse como resultados o pardmetros a los usuarios de la clase.

8.2.3 Recorrido de graficas dirigidas

En esta seccidn se presentan los métodos mds usados para determinar la existen-
cia o0 no existencia de caminos entre los vértices de la gréfica, asi como los méto-
dos que obtienen los caminos de menor longitud entre ellos.

Método Warshall

Este método determina si existe o no un camino de longitud mayor o igual a
uno entre los vértices de una grafica dirigida. Es decir, el método s6lo encuen-
tra si hay un camino directo o indirecto (por medio de otros vértices intermedios)
entre los nodos, sin importar el costo. Para aplicar este método se requiere
generar la cerradura transitiva de la matriz de adyacencia de la digrédfica. La
cerradura transitiva es una matriz (CerTran) de NumVer por Numver elementos,
donde CerTran[i][j]= 1 si existe un camino de i a j, y O en caso contrario.

A continuacién se presenta el método warsall de la clase DiGrafica.

/* Método que determina si existe un camino entre cada uno de los
wyértices de la grafica dirigida. CerTran es una matriz que representa
=]la cerradura transitiva de la matriz de adyacencia. */

template <class T>

void DiGrafica<T>::Warshall()

8.2 Graficas dirigidas

403 |

int Ind1, Ind2, Ind3;

/* En la posici6n i,j de la matriz de adyacencia se asigné el valor 999
=si no existe un camino directo del vértice i al vértice j. La cerradura
=transitiva se forma inicialmente a partir de la matriz de adyacencia. */

for (Indi= 0; Ind1 < NumVer; Indi++)
for (Ind2= 0; Ind2 < NumVer; Ind2++)
if (MatAdy[Ind1][Ind2] != 999)
CerTran[Ind1][Ind2]= 1;

/* Se recorren todos los vértices para determinar si existe un camino
wentre é1 y los demas, usando otros vértices como intermedios. */
for (Ind3= 0; Ind3 < NumVer; Ind3+t+)
for (Ind1= 0; Ind1 < NumVer; Indi+t+)
for (Ind2= 0; Ind2 < NumVer; Ind2++)
CerTran[Ind1][Ind2] I=
CerTran[Ind1][Ind3] &&
CerTran[Ind3][Ind2];

Si se aplica este método a la matriz de distancias de la figura 8.9, el resultado que
se obtiene es el que se presenta en la figura 8.10.

11

FIGURA 8.9 Grdfica dirigida

| 404 Capitulo 8. Graficas

Matriz de adyacencia
etiquetada V3 0 0 0 6 0 0

Cerradura transitiva v;| 0 1 1 1 1 0

FIGURA 8.10 Ejemplo de aplicacion del método Warshall

La figura 8.10 presenta la matriz de adyacencia etiquetada correspondiente a la
grafica dirigida de la figura 8.9. En la parte inferior se muestra la cerradura tran-
sitiva obtenida luego de aplicar el método warshall. El valor 1 en la posicién i, j
indica que existe un camino (directo o no) entre el vértice i y el vértice j, mien-
tras que un 0 representa que no hay camino entre ellos. En la diagonal principal
quedan 1's, aunque en estos casos no tenga utilidad saber que se cuenta con un
camino. Se puede observar que en la posicion correspondiente a los vértices (V, V)
hay un 1, a pesar de que no hay un camino directo entre ellos. Como resultado de
la aplicacion de este método se encontré que es posible ir de V, a V , usando vér-
tices intermedios. En este caso se puede ir a través de V, o de V..

8.2 Gréficas dirigidas 405 |

A continuacién se muestra la forma como va generandose la cerradura transitiva
a medida que se ejecuta el método. Cada uno de los incisos corresponde a un
cambio en la matriz. La tabla 8.1(a) presenta la cerradura transitiva en su estado
inicial (con 17s en las posiciones donde hay un camino), incluyendo la diagonal
(si quisiéramos excluirla deberiamos agregar una condicién antes de la asigna-
ci6n). La tabla 8.1(b) muestra que del vértice V, se puede llegar a los vértices
V, y Vs, através de los vértices intermedios V, y V, respectivamente. En (c) se
identific6 un camino de V, a V, por medio de V,. En (d) se presenta un camino
deV,aV,yaV, usando a V, para llegar a V. y a este ultimo para llegar a V,.
En (e) se sefiala un camino de V, a V, por medio del vértice V.. Finalmente, en
(f) se indica un camino de Vo a V, y aV,, a través del vértice V..

TaBLA 8.1 Obtencion de la cerradura transitiva usando Warshall

Vo[Vo | Vil Vu| Vs |V, \ARARARAR RS
Vi1t |1t 1]ofo]fo Vil 1|1ttt f1o
v, o[t]o[1]o]lo v, o[1ol 1]o]o
viiofo| 1] 1]o0]o0 viio| o] 1] 1][o0]o0
viiolofol 1]1]o v,iolofol 1]1]o
Vool 1o 1 |1]o Voot |o] 1 |1]o0
viioloJolol| 1|1 viloloJolol] 1|1
(a) (b)

Vo[Vo | Vil Vu| Vs |V, \ARARARAR RS
Vit |ttt 1fo Vil 1|1ttt f1o
v, o[t [ol[1]1]o v, o[1ol 1]1]o
viiofo| 1] 1]o0]o vVilo| 1|11 [1]o
viiolofol 1]1]o v,iolofol 1]1]o
Vool 1o 1 |1]o Voot |of 1 |1]o0
viioloJolol| 11 viloloJolol] 1|1

(c) (d)

continia

| 406 Capitulo 8. Graficas

TaBLA 8.1 Continuacién

V, [V, | V|V, | V.|V, V, |V, | V|V, | Ve |V,
Vit |ttt 1fo Vil 1|ttt [1fo
v, o[t [ol[1]1]o v, o[t [o[1]1]o
vilo|l [t 1]1]o viiof[1]t 1]1]o
v,iol1t]ol1]1]o v,lof[1ol 1]1]o
Volo[1o 1[1]o0 volo| 1o 1[1]o
viloJo[ofol]1 1 vilo[1o 1] 11

(e) ®

Método Floyd

Este método encuentra el camino mas corto entre todos los vértices de la gra-
fica dirigida. Es decir, si hay mas de un camino posible (directo o a través de no-
dos intermedios) entre los vértices V, y Vj, este método encuentra el de menor
costo.

A continuacién se presenta el método Floyd de la clase DiGrafica.

/* Método que encuentra el camino de costo minimo entre todos los
wyvértices de la grafica dirigida. Va modificando la matriz de adyacencia
=3 medida que encuentra un camino mas corto entre dos vértices. */
template <class T>
void DiGrafica<T>::Floyd()
{
int Ind1, Ind2, Ind3;
for (Ind3= 0; Ind3 < NumVer; Ind3++)
for (Ind1= 0; Ind1 < NumVer; Indi+t+)
for (Ind2= 0; Ind2 < NumVer; Ind2++)
if ((MatAdy[Ind1][Ind3] + MatAdy[Ind3][Ind2])
< MatAdy[Ind1][Ind2])
MatAdy[Ind1][Ind2]=
MatAdy[Ind1][Ind3] +
MatAdy[Ind3][Ind2];

8.2 Graficas dirigidas 407 |

La tabla 8.2 presenta el resultado de aplicar el método Floyd a la digrafica de la
figura 8.9. En (a) se muestra la matriz de adyacencia original (el valor 999 es un
valor arbitrario que indica que no existe un camino entre los vértices involucra-
dos) y en (b) la matriz con las distancias minimas. La diagonal principal quedd
con ceros (no hay distancia desde un vértice cualquiera hasta el mismo vértice).
En las posiciones correspondientes a vértices que no tienen caminos que los unan
quedo el valor 999. Se sombrean las casillas en las que hubo cambio.

TaBLA 8.2 Ejemplo de aplicacion del método Fioyd

Vo[V| Vo | Va| Ve |V, Vo[V, | Vo | Vy| Ve |V,
V.| 0 | 10| 15 [999|999 {999 V.| 0 [10]15] 21 |26 |999
V,[999] 0 [999] 12 1999 {999 V,[999] 0 [999] 12 | 17 [999
V, 19990999 0 | 6 |999 {999 Vo999 22 0| 6 |11 [999
V, 19991999999 0 | 5 {999 V, 99| 16 {999 0 | 5 [999
V. [999| 11 (99| 5 | 0 {999 Vo999 11 [99] 5 | 0 [999
V, [999]999]999 999 | 9 [999 V,[999] 20 [999] 14| 9 | 0

(a) (b)

Al observar la digréfica de la figura 8.9, se puede apreciar que para ir del vértice
V, al V,, existen dos caminos: V, -V, —V con una distancia de 22 (10 + 12) y
V, =V, -V, con una distancia de 21 (15 + 6). En la matriz queda la segunda por
ser la menor. En el caso del vértice V, al V,, s6lo existe una opcion a través del
vértice V, con una distancia de 16 (5 + 11).

Ahora se presenta la manera en que va generandose la matriz con las distancias
minimas, a medida que se ejecuta el método. Cada uno de los incisos corresponde a
un cambio en la matriz. La tabla 8.3 (a) presenta la matriz después de haber encon-
trado un camino de longitud 22 entre los vértices V,y V, (a través de V,). En (b)
la matriz se modifica al encontrar un camino mds corto entre los vértices mencio-
nados. En (c) se sefiala que se encontré un camino entre los vértices V,y V,, con
una distancia de 26. En (d) aparece un camino de longitud 17 entre V,y V.. En (e)
se indica que hay un camino de V, a V,, usando el vértice intermedio V,, con una
distancia de 11. En (f) aparece un camino de V, a V,, ahora usando a V (vértice con
el cual se estableci6 un camino en el paso previo). En (g) se sefiala un camino de V,
aV,, por medio de V.. En (h) se indica un camino de V a V,, a través de V. Final-

| 408 Capitulo 8. Graficas

mente, en (i) aparece un camino de V a V, también usando a V, como intermedio.
Se sombrean las casillas que almacenan los valores minimos encontrados.

TaBLA 8.3 Obtencion de la matriz de distancias minimas usando Floyd

V, | V, | V, | V, | V.|V, V, [V, | V, |V, | V.|V,
V,| 0| 10] 15| 22 [999 [999 V,| 0] 10| 15| 21 {999 [999
V,[999] 0 [999] 12 [999 [999 V,[999] 0 [999] 12 [999 [999
V,[999(999| 0 | 6 |999 [999 V, 1999999 0 | 6 |999 [999
V,[1999(999[999| 0 | 5 [999 V,[999[999(999| 0 | 5 [999
Vo[999| 11 [999] 5 | 0 [999 V. [999] 11 {999] 5 | 0 [999
V, | 999]999[999]999] 9 | 0 V, | 999]999[999[999] 9 | 0
(a) (b)

Vo |V, | V| V, | Vg |V, V, [V, | V|V, | V.|V,
V,| 0| 10] 15| 21 | 26 {999 V,| 0] 10]15] 21|26 [999
V,[999] 0 [999] 12 [999 [999 V,[999] 0 [999] 12 [17 [999
V,[999(999| 0 | 6 |999 [999 V,[999[999(0 | 6 |999 999
V,[999(999[999| 0 | 5 [999 V,[999[999(999| 0 | 5 [999
Vo[999| 11 [999] 5 | 0 [999 V. [999] 11 {999] 5 | 0 [999
V, | 999]999[999999 9 | 0 V, 999999999999 9 | 0

(c) (d)

V|V, | V|V, | Vg |V, V, [V, | V| V, | V.|V,
V,| 0| 10] 15| 21 |26 [999 V,| 0] 10]15] 21 |26 [999
V,[999] 0 [999] 12 [17 [999 V,[999] 0 [999] 12 [17 [999
V,[999(999] 0 | 6 | 11 [999 V.99 22 0 | 6 | 11 [999
V,[999(999[999| 0 | 5 [999 V,[999[999(999| 0 | 5 [999
Vo[999 | 11 [999] 5 | 0 [999 V. [999 11 {999] 5 | 0 [999
V, | 999]999[999 999 9 | 0 V, 999999999999 9 | 0

(e) (H

continiia

8.2 Gréficas dirigidas 409 |

TaBLA 8.3 Continuaciéon

V| Yy | Vil Va| Vs |V, (AR AR AR R AR
v,| o |10]15] 2126 |999 v, o |10]15] 2126|999
V,[999] 0 [999] 12 [17 [999 V,[999] 0 [999] 12| 17 [999
vV, |99 22 0 [6 |11 [999 V,[99] 22 0| 6 | 11|99
V, |99 16 [999] 0 [5 [999 V, 199 16 [999] 0 | 5 [999
V. [999| 11 [999] 5 [0 [999 V. [999| 11 [999] 5 | 0 [999
V, 999999999999 9 | 0 V,[999] 20 (999999 9 | 0
(2 (h)

V[V, | Vo | V| V.|V,
v, o |10]15] 2126 |999
V,[999] 0 [999] 12 [17 [999
V,[999 22 0 [6 |11 [999
V, 1999 16 [999] 0 | 5 {999
V. [999| 11 [999] 5 [0 [999
vV, [999] 20 [999[14| 9 | 0

®

Si ademas de obtener la matriz de distancias minimas, se necesitara conocer los
vértices intermedios que permitieron establecer esas distancias, se deberd modifi-
car el método de la siguiente manera.

/* Método Floyd modificado para que, ademas de encontrar las distancias
wminimas entre todos los vértices de una digrafica, genere una matriz

= (VerInt) con los vértices intermedios utilizados para minimizar las
=wdistancias. Este método usa los atributos Vertices (arreglo que
=malmacena los nombres de todos los vértices de la digrafica) y VerInt

= (arreglo donde se van guardando los vértices intermedios. Fue inicia-
wlizado en 0 en el método constructor). */

template <class T>

void DiGrafica<T>::FloydVerInt()

| 410 Capitulo 8. Graficas

{
int Ind1, Ind2, Ind3;
for (Ind3= 0; Ind3 < NumVer; Ind3+t)
for (Ind1= 0; Ind1 < NumVer; Indi+t+)
for (Ind2= 0; Ind2 < NumVer; Ind2++)
if ((MatAdy[Ind1][Ind3] + MatAdy[Ind3][Ind2])
< MatAdy[Ind1][Ind2])
{
MatAdy[Ind1][Ind2]=
MatAdy[Ind1][Ind3] +
MatAdy[Ind3][Ind2];
VerInt[Ind1][Ind2]= Vertices[Ind3];
}
}

La tabla 8.4 presenta el resultado de aplicar el método Floydverint a la gréfica
dirigida de la figura 8.9. En (a) aparece la matriz de distancias minimas y en (b)
la matriz que almacena los vértices intermedios. Esta matriz se interpreta de la si-
guiente manera: de V, se puede llegar a V, por medio del vértice 3, de V, a 'V, a
través del vértice 4 y de V, se llega a V, pasando por el vértice 4. A su vez, de V,
se llega a V, a través del vértice 4 y a V, por medio del vértice 5. En este tltimo
caso hay dos nodos intermedios entre V, y V, (V, -V, -V, - V,). Del vértice 4
se puede ir a V, utilizando a V, como vértice intermedio. Finalmente, de V se
llegaaV,yaV, através del vértice 5.

TaBLA 8.4 Obtencidn de la matriz de vértices intermedios
usando FloydverInt

V[V, V|V, | V.|V, Vo | V| V|V, | V.|V,
V,| o] 10]15] 21|26 [999 vilof[of[o]3]4]o0
V,[999] 0 [999] 12 [17 [999 v, o[o[o] ol4T]o
V,[99] 22 0 | 6 | 11 [999 V,lo|5]0]0]4]o0
V,[999] 16 {999 0 | 5 [999 vV, o[5]0]o0o]o0]o0
V. [999] 11 {999] 5 | 0 [999 vV.lo[o[o] o]o0]o0
V,[999] 20 [999] 14 9 | 0 vio|ls]o[s5]o]o

(a) (b)

8.2 Graficas dirigidas

411|

Método pijkstra

Este método encuentra el camino mas corto desde un vértice a todos los de-
mas vértices de la grafica dirigida. La longitud del camino, si se usara un vérti-
ce intermedio, es la suma de las distancias entre cada uno de los nodos
involucrados.

A continuacion se presenta el método Dijkstra de la clase DiGrafica.

/* Método que encuentra la distancia minima entre un vértice dado y los
wdemas vértices de una grafica dirigida. En el arreglo DistMin se
walmacenan las distancias minimas desde el vértice origen a cada uno
wde 1los otros nodos. Es decir DistMin[i] almacena la menor distancia
wentre el vértice origen y el vértice i. */
template <class T>
void DiGrafica<T>::Dijkstra()
{

int Aux[MAX], VertInc[MAX], Veri, Ver2, Indi, Ind2, Menor, Band,

Origen;

/* E1 arreglo VertInc se utiliza para guardar los vértices elegidos
wpor ser los de la distancia minima. E1 arreglo Aux es un arreglo
w16gico que indica si el nodo de la posicién i ya fue incluido en
= \ertInc y de esta manera evitar ciclos. */

for (Indi= 0; Ind1 < NumVer; Indi++)

{
Aux[Ind1]= 0;
VertInc[Ind1]= 0;
}
cout<<"\n\n Ingrese vértice origen: ";
cin>>0rigen;

Aux[Origen - 1]= 1;

/* E1 arreglo donde se guardan las distancias minimas del Origen a
w]10os demds vértices se inicializa con los valores de la matriz de
=adyacencia. */
for (Indi= 0; Ind1 < NumVer; Indi++)

DistMin[Ind1]= MatAdy[Origen][Ind1];

for (Indi= 0; Indi<NumVer; Indi++)

{
/* Se busca el vértice Vert en (Vertices - VertInc) tal que
wDistMin[Veri1] sea el minimo valor. Se usa el 999 como valor
=winicial ya que es el elegido para indicar que no existe camino
wentre dos vértices. */
Menor= 999;

|412 Capitulo 8. Gréaficas

for (Ind2= 1; Ind2 < NumVer; Ind2++)
if (DistMin[Ind2] < Menor && IlAux[Ind2])
{
Veri= Ind2;
Menor= DistMin[Ind2];
}

/* Se incluye Veri a VertInc y se actualiza el arreglo Aux. */
VertInc[Ind1]= Vert;
Aux[Veri]= 1;

/* Se busca la distancia minima para cada vértice Ver2 en
w (Vertices - VertInc). */
Ver2= 1;
while (Ver2 < NumVer)
{
Band=0;
Ind2= 1;
while (Ind2 < NumVer && !Band)
if (VertInc[Ind2] == Ver2)
Band= 1;
else
Ind2++;
if (!Band)
DistMin[Ver2]=
Minimo (DistMin[Ver2],
wDistMin[Ver1] + MatAdy[Veri][Ver2]);
Ver2++;

La tabla 8.5 presenta el resultado de aplicar el método Dijkstra a la gréafica diri-
gida de la figura 8.9. En (a) el vértice origen es V| y en (b) es V,. Con el método
se encontrd que para ir de V| a 'V, la distancia minima es 10 (que corresponde a
un camino directo entre ambos vértices), V, es 15 (que también es un camino di-
recto), V, es 21 (a través de V;, ya que si fuera a través de V, seria 22), V es 26
(através de V,y de V,). La tabla muestra también que no es posible ir de V, a
V. Con respecto al vértice 4, aplicando el método, se encontr6 que no se puede
llegar a los vértices 1y 6. Las distancias minimas entre V, y V, es 16 (a través de
V,) yentre V,y Vg es 5 (camino directo).

8.2 Graficas dirigidas

413|

TaBLA 8.5 Obtencion de la distancia minima entre vértices usando bijkstra

V, |V, | Vi | V,| V.|V,

Origen: V,| 0 | 10 [15 [21 | 26 [999
(a)

V, |V, | Vo | V| V|V,

Origen: V,[999 [16 [999] 0 [5 [999
(b)

El programa 8.1 presenta la plantilla completa de la clase piGrafica. En el caso
de los métodos Warshall, Floyd, FloydVerInt y Dijkstra (ya analizados), se inclu-
yeron sélo los prototipos y los encabezados.

Programa 8.1

#define MAX 10

/* Funcioén auxiliar que obtiene el valor mads pequefo de dos dados como
wparametros. La utiliza el método de Dijkstra. */
int Minimo(int Vali, int Val2)
{

int Min= Valf;

if (Val2 < Min)

Min= Val2;
return Min;

/* Definicién de la plantilla de la clase DiGrafica. Se incluyen como
watributos, ademds de la matriz de adyacencia, el nUmero de vértices y
wsu nombre, otros elementos que son utilizados en los métodos. */
template <class T>
class DiGrafica
{
private:
/* Declaracién del arreglo donde se almacenan las distancias
wentre los vértices. */
T MatAdy[MAX] [MAX];

int NumVer, Vertices[MAX], DistMin[MAX], CerTran[MAX][MAX],
VerInt[MAX][MAX];

|414 Capitulo 8. Gréaficas

public:
/* Método constructor y métodos auxiliares para leer la informacidn
=wrelacionada a la grafica e imprimir los resultados obtenidos al
aplicar los demas métodos. */
DiGrafica();
void Lee();
void Imprime(int);

/* Métodos que recorren una grafica dirigida, encontrando caminos
=de distancias minimas. */
void Warshall();
void Floyd();
void FloydVerInt();
void Dijkstra();
b

/* Método constructor. Inicializa el nUmero de vértices en cero y a la

wmnatriz de adyacencias MatAdy con un valor arbitrario muy grande (999),
windicando que no existe camino entre los nodos correspondientes. Ademas,
wasigna ceros a los arreglos auxiliares que se usan en los métodos. */

template <class T>

DiGrafica<T>::DiGrafica()

{
int Ind1, Ind2;
for (Ind1= 0; Ind1 < MAX; Indi++)
{
DistMin[Ind1]= 0;
for (Ind2= 0; Ind2 < MAX; Ind2++)
{
if (Ind1 != Ind2)
MatAdy[Ind1][Ind2]= 999;
else
MatAdy[Ind1][Ind2]= 0;
CerTran[Indi1][Ind2]= 0;
VerInt[Ind1][Ind2]= 0;
}
}
NumVer= 0;
}

/* Método que lee los datos de la grafica dirigida directamente del
wteclado. */

template <class T>

void DiGrafica<T>::Lee()

{

int NumArcos, Indice, Origen, Destino;

cout<<"\n\n Ingrese nimero de vértices de la grafica dirigida: ";
cin>>NumVer;
cout<<"\n\n Ingrese los nombres de los vértices

wde la grafica dirigida: ";

8.2 Graficas dirigidas

415|

for (Indice= @; Indice < NumVer; Indicet+)
cin>>Vertices[Indice];
cout<<"\n\n Total de aristas de la grafica dirigida: ";

cin>>NumArcos;

Indice= 0;

while (Indice < NumArcos)

{
cout<<"\n\n Ingrese vértice origen: ";
cin>>0rigen;
cout<<"\n\n Ingrese vértice destino: ";
cin>>Destino;

cout<<"\n\n Distancia de origen a destino: ";
cin>>MatAdy[Origen - 1][Destino - 1];
Indice++;

}

/* Método que imprime informacién relacionada a una gréafica dirigida.
=Por medio de un nudmero entero se selecciona lo que se va a imprimir, lo
wcual depende del método aplicado para recorrer la digrafica. */
template <class T>

void DiGrafica<T>::Imprime(int Opc)

{
int Ind1, Ind2;
switch (Opc)
{

/* Impresién de la matriz de adyacencia o de costos. */
case 0: cout<<"\n\n Matriz de Adyacencia o de Costos: \n\n";
for (Indi= 0; Ind1 < NumVer; Indi++)

{
cout<<Vertices[Indi]<< ": ";
for (Ind2= 0; Ind2 < NumVer; Ind2++)
cout<<MatAdy[Ind1][Ind2] << "\t";
cout<<endl;
}
break;

/* Impresién de la cerradura transitiva correspondiente a la
wnatriz de adyacencia. Se obtiene cuando se aplica el método de
w=|Jarshall. */
case 1: cout<<"\n\n Cerradura Transitiva de la Matriz de
wAdyacencia: "<<endl;
for (Indi= 0; Ind1 < NumVer; Indi++)
{
cout<<Vertices[Ind1] <<": ";
for (Ind2= 0; Ind2 < NumVer; Ind2++)
cout<<CerTran[Ind1][Ind2]<<"\t";

|416 Capitulo 8. Gréaficas

cout << endl;
}
break;
/* Impresidén de la matriz de distancias minimas entre todos los
wyértices de la grafica. Se obtiene por medio del método de Floyd. */
case 2: cout<<"\n\n Matriz de Distancias Minimas: "<<endl;
for (Indi= 0; Ind1 < NumVer; Indi++)

{
cout<<Vertices[Indi]<< ": ";
for (Ind2= 0; Ind2 < NumVer; Ind2++)
cout<<MatAdy[Ind1][Ind2] << "\t";
cout << endl;
}
break;

/* Impresién de la matriz con los vértices intermedios usados
wpara establecer los caminos de distancias minimas. Esta
wimpresién complementa la de la opcidén 2 cuando se aplica el
wnétodo FloydVerInt. */
case 3: cout<<"\n\n Vértices Intermedios para lograr distancias
wminimas: "<<endl;
for (Ind1= 0; Ind1 < NumVer; Indi++)

{
for (Ind2= 0; Ind2 < NumVer; Ind2++)
cout<<VerInt[Ind1][Ind2]<<"\t";
cout<<endl;
}
break;

/* Impresidén de las distancias minimas entre un vértice y los
wdemds. Se obtiene con el método de Dijkstra. */
case 4: cout<<"\n\n Distancias minimas a partir del vértice:
w"<<Vertices[0]<<"\n\n";
for (Ind1= 0; Ind1 < NumVer; Indi++)
cout<<" "<<DistMin[Indi]<<"\t"<<endl;
break;

default: break;

cout<<endl;

}

/* Este método corresponde al que se presenté anteriormente por lo que
=s0lo se deja indicado. */

template <class T>

void DiGrafica<T>::Warshall()

{+

/* Este método corresponde al que se presentd anteriormente por lo que
ws0lo se deja indicado. */

template <class T>

void DiGrafica<T>::Floyd()

{+

8.2 Graficas dirigidas

417|

/* Este método corresponde al que se presentd anteriormente por lo que
=»s0lo se deja indicado. */

template <class T>

void DiGrafica<T>::FloydVerInt()

{

/* Este método corresponde al que se presentd anteriormente por lo que
=s0lo se deja indicado. */

template <class T>

void DiGrafica<T>::Dijkstra()

{}

8.2.4 Aplicacion de graficas dirigidas

Considere la gréfica de la figura 8.11 que representa un subconjunto de la red
ferroviaria de un determinado pais, asumiendo que las vias pueden usarse en una
sola direccion. Los vértices representan ciudades, los arcos tramos de vias y las
etiquetas de los arcos costos de los pasajes entre los vértices (ciudades) adyacen-
tes. Cada una de las ciudades se identifica por un niimero, segtin se muestra en la
tabla 8.6. El programa 8.2 es una aplicacién muy simple en la que se ilustra el
uso de los métodos vistos para determinar si existe o0 no comunicacién entre las
ciudades, asi como para encontrar las rutas de menor costo entre ellas.

$110
_______ > C. Aguila
~ -
V4 ~
4 , 1
1

~
I RN
$95 / ~ ~7
/7 | 7S <
1 L7 ~J $100
I , 1
P ! C. Paloma
! $120 2 $80,
I ’
N\ 4
$60 N\ 7/ P
7 $45

FIGURA 8.11 Aplicacion de grdficas dirigidas

|418 Capitulo 8. Gréaficas

TaBLA 8.6 Lista de ciudades de la red ferroviaria

Ciudad Numero asociado
Céndor 1
Zorzal 2
Aguila 3
Paloma 4
Ruisefior 5
Colibri 6

La plantilla presentada en el programa 8.1 se guard6 en la biblioteca “DiGrafica.h”
y se utilizé en el programa 8.2 para encontrar las rutas de menor costo entre los
vértices de la gréfica de la figura 8.11.

Programa 8.2

/* Aplicacién de graficas dirigidas para encontrar ciudades comunicadas
wentre si por el sistema ferroviario, asi como los costos minimos para
=ir de una ciudad a las otras o entre todas las ciudades. */

#include "DiGrafica.h"

int Menu()
{
int Opc;
do {

cout<<"\n\nOpciones\n";
cout<<"\n(1) Ciudades que estan comunicadas entre si.";
cout<<"\n(2) Minimo costo entre todas las ciudades. ";
cout<<"\n(3) Minimo costo entre todas las ciudades y ciudades
=intermedias. ";

cout<<"\n(4) Minimo costo entre una ciudad y las otras. ";
cout<<"\n(5) Finalizar el proceso.";
cout<<"\n\nIngrese opcidén elegida:";
cin>>0pc;

} while (Opc < 1 Il Opc > 5);

return Opc;

}

void main()

{

DiGrafica<int> RedFerrov;
int Opc;

8.2 Graficas dirigidas 419|

cout<<"\n\n\nIngrese datos de ciudades y costos de pasajes\n";
RedFerrov.Lee();

do {
Opc= Menu();
switch (Opc)
{

/* E1 método Warshall permite encontrar todas las ciudades que
westan comunicadas entre si por medio de la red ferroviaria. */
case 1: {

RedFerrov.Warshall();

RedFerrov.Imprime(1);

break;

}
/* E1 método Floyd permite encontrar los costos minimos para
wyisitar a todas las ciudades que estan comunicadas entre si
wpor medio de la red ferroviaria. */
case 2: {

RedFerrov.Floyd();

RedFerrov.Imprime(2);

break;

}
/* EL método FloydVerInt permite encontrar los costos minimos
wpara visitar todas las ciudades que estan comunicadas entre
=si por medio de la red ferroviaria y las ciudades intermedias
= (cuando no existe camino directo, o si éste no fuera el de
wcosto minimo). */
case 3: {

RedFerrov.FloydVerInt();

RedFerrov.Imprime(3);

break;

/* E1 método Dijkstra permite encontrar los costos minimos
wpara ir de una ciudad a todas las otras ciudades con las que
westa comunicada por medio de la red ferroviaria. */
case 4: {
RedFerrov.Dijkstra()
RedFerrov.Imprime(4)
break;
}

}
} while (Opc < 5 && Opc > 0);

H
3

}

La tabla 8.7 presenta el resultado de aplicar el método warshall a la gréfica de la
figura 8.11. Recuerde que en esta implementacion, en la diagonal queda 1. La ta-
bla indica que se puede llegar desde cualquier ciudad a cualquiera de las otras,
con excepcién de la primera (Ciudad Céndor).

| 420 Capitulo 8. Graficas

TaBLA 8.7 Resultado de aplicar warshall

—
—_ = = = =N
e e e B)
e e e e e B~
e e e e e Y]
—_— = = = = QN

A Ui A W N =
S O O O O

La tabla 8.8 presenta el resultado de aplicar el método Floyd a la gréfica de la
figura 8.11. La tabla muestra el minimo que debera pagarse en pasajes para tras-
ladarse entre las ciudades. En la implementacién del método se usé el valor 999
para indicar que no hay vias entre las ciudades correspondientes a la posicién
ocupada por dicho valor.

TaBLA 8.8 Resultado de aplicar Fioyd

1 2 3 4 5 6

0 95 180 155 110 60
999 0 110 170 125 75
999 225 0 125 80 300
999 100 210 O 225 175
999 145 255 45 O 220
999 195 120 95 50 O

A Ui A W N =

La tabla 8.9 presenta el resultado de aplicar el método FloydveriInt a la grifica de
la figura 8.11. La tabla muestra las ciudades intermedias que deben visitarse para
llegar a aquellas con las cuales no hay un camino directo o cuando se encuentre
un costo menor. Por ejemplo, en la posicion (3,2) estd el 5 que indica que para ir
de la ciudad 3 a la ciudad 2 se requiere pasar por la 5. A su vez, en la posicién
(5,2) estd el 4 que es la ciudad por la que se pasa para ir de la 5 a la 2. Por lo tan-
to, la trayectoria completa parairdela3 ala2es:3-5-4 - 2.

8.3 Graficas no dirigidas 421 |

TaBLA 8.9 Resultado de aplicar Floydverint

1 2 3 4 5 6
1 0 0 6 6 6 0
2 0 0 0 6 6 0
3 0 5 0 5 0 5
4 0 0 2 0 6 2
5 0 4 4 0 0 4
6 0 5 0 5 0 0

La tabla 8.10 presenta el resultado de aplicar el método Dijkstra a la gréafica de
la figura 8.11, tomando como ciudad (vértice) origen a la 1 (Céndor). Se puede
observar que el importe minimo a pagar para ir a la ciudad 2 (zorzal) es de $95,
mientras que para llegar a la ciudad 3 (Aguila) es de $180, y segtin 1o mostrado
en la tabla anterior es a través de la ciudad 6 (Colibri). Por su parte, para ir a la
ciudad 4 (Paloma) se necesita pagar minimo $155 y se usan dos ciudades interme-
dias, segun la informacién desplegada en la tabla 8.9. Por tltimo, para ir a las
ciudades 5 (Ruisefor) y 6 (Colibri) se requiere pagar $110 y $60 respectivamente.

TaBLA 8.10 Resultado de aplicar pijkstra

1 2 3 4 5 6
Origen: 1| 0O 95 | 180 | 155 | 110 | 60

8.3 Graficas no dirigidas

Una grdfica no dirigida o grdfica se caracteriza porque sus aristas son pares no
ordenados de vértices. Por lo tanto, si existe una arista o arco de V, a V,, ésta se-
rd la misma que de V, a V, se grafica sin flecha al final y se expresa como:

a=(V,V,)=(V,V)

Debido a esta caracteristica, las graficas son muy ttiles cuando se tienen datos y
relaciones simétricas entre ellos. Suponga que se quiere representar una red de
comunicacién entre servidores, ubicados en diferentes edificios de una misma
empresa. Cada uno de los vértices se corresponderd con cada uno de los servido-

| 422

Capitulo 8. Graficas

res, mientras que los arcos representardn al medio elegido para llevar a cabo la
comunicacién. Usando una grafica para modelar esta situacion se estard indican-
do que si existe comunicacién de un nodo a otro, entonces también es posible
comunicarse de este ultimo al primero. Por otra parte, si la arista estuviera eti-
quetada con la velocidad de comunicacién del medio empleado, dicha velocidad
seria la misma en cualquiera de los sentidos.

8.3.1 Representacion de una grafica

Este tipo de graficas, igual que las digraficas, se representan por medio de una
matriz o de una lista de adyacencias. En este libro se empleard la matriz. Si las
aristas tienen asociado un costo o distancia, la matriz recibe el nombre de matriz
de adyacencia etiquetada o matriz de distancias o costos.

Como ya se menciond, las grificas se utilizan para representar relaciones simétri-
cas entre objetos, es decir cuando sea exactamente la misma relacion de V, a 'V,
que de V, a V. Por lo tanto la matriz de adyacencia resulta una matriz simétrica.

La figura 8.12 presenta un ejemplo de una gréfica con costos en las aristas y
su correspondiente matriz de adyacencia etiquetada. Observe que el valor al-
macenado en cada posicion (i, j) de la matriz es igual al valor de la posicién
(j, 1). Aprovechando esta caracteristica, y con el objeto de ahorrar espacio de
almacenamiento, se puede usar un arreglo unidimensional para guardar sélo
los elementos de la matriz triangular inferior o superior.

FIGURA 8.12 Ejemplo de grdfica no dirigida y su representacion por medio
de una matriz de costos

8.3 Graficas no dirigidas

423 |

8.3.2 La clase grafica no dirigida

Se define la clase Grafica para representar este tipo de estructura de datos. Consi-
derando que se usa una matriz de adyacencia para almacenar la informacion rela-
cionada con la gréfica, la plantilla correspondiente resulta similar a la vista para
las gréficas dirigidas. Los atributos son el nimero de vértices y sus nombres (en
esta implementacion se declararon como enteros) y la matriz de adyacencias. Los
métodos se presentan y explican en la siguiente seccion.

Grafica

NumVer: int
Vertices[]: int
MatAdy[][]: int

Métodos de acceso y
modificaciéon a los
miembros de la clase

FIGURA 8.13 Clase Grafica

A continuacién se presenta el cddigo en lenguaje C++ correspondiente a la defi-
nicién de la clase Grafica de la figura 8.13. Se incluyen sdlo los prototipos de los
métodos; su descripcién se da més adelante.

/* Definicidén de la plantilla de la clase Grafica. Se incluyen como
atributos el total de vértices (NumVer), los costos/distancias entre los
vértices (MatAdy) y sus nombres (Vertices). */
template <class T>
class Grafica
{
private:
T MatAdy[MAX][MAX];
int NumVer, Vertices[MAX];

| 424 Capitulo 8. Gréaficas

public:
/* Método constructor y métodos auxiliares para leer la informacidn
wrelacionada a la grafica e imprimir los resultados obtenidos al
waplicar los demds métodos. */
Grafica();

void Lee();
void Imprime();

/* Métodos que permiten el calculo del arbol abarcador de costo
wminimo. */

void Prim();

void Kruskal();

I

/* Declaracidn del método constructor. Inicializa el nUmero de vértices
wen cero y la matriz de distancias con un valor arbitrario muy grande
=(999), excepto en la diagonal principal, donde el costo es cero. */
template <class T>

Grafica<T>::Grafica()

{
int Ind1, Ind2;
for (Indi= 0; Indi1<MAX; Indi++)
for (Ind2= 0; Ind2<MAX; Ind2++)
if (Ind1 != Ind2)
MatAdy[Ind1][Ind2]= 999;
else
MatAdy[Ind1][Ind2]= 0;
NumVer= 0;
}

8.3.3 Recorrido de graficas no dirigidas

Las operaciones que se aplican sobre una gréfica estdn orientadas a encontrar los
caminos de costos minimos entre sus vértices. Antes de presentar estos métodos,
resulta necesario explicar algunos conceptos.

* Arbol libre es una grafica conexa aciclica.

« Arbol abarcador es un érbol libre que conecta todos los vértices de la
gréfica. El costo del drbol se calcula como la suma de los costos de las
aristas. Por lo tanto, un drbol abarcador de costo minimo es el formado
por las aristas de menor costo.

8.3 Graficas no dirigidas 425|

Método de prim

Este método encuentra el arbol abarcador de costo minimo de una grafica.
Trabaja con dos conjuntos de vértices, uno de los cuales es vertices (el con-
junto de todos los vértices de G) y el otro es VerAux (que es un subconjunto de
vertices). Inicialmente verAux tiene asignado el valor del primer indice. Los
pasos principales de este método son:

1. Buscar la arista (ver1, ver2) de costo minimo de tal forma que conecte a
verAux con la subgréfica correspondiente a (Vertices - VerAux).

2. Agregar el vértice ver2 al conjunto VerAux.

3. Repetir los pasos 1y 2 hasta que se alcance la condicién (verAux = Vertices).

A continuacién se presenta el método prim de la clase Grafica.

/* Este método encuentra el arbol abarcador de costo minimo de una
wgrafica. En el arreglo VerAux se almacenan los vértices con menor costo
wque van formando el arbol abarcador. */

template <class T>

void Grafica<T>::Prim()

{
int MCosto[MAX], VerAux[MAX], Indi, Ind2, VerMen, MenCos;

/* Inicializa el subconjunto de vértices VerAux con el valor del
wprimer vértice. */
for (Indi= 0; Indi<NumVer; Indi++)

MCosto[Ind1]= MatAdy[@][Ind1];
VerAux[Ind1]= 0;

}

cout<<"\n\n\nArcos y costos del arbol abarcador de costo minimo\n\n";
cout<<"\nVértice Vértice Costo \n";

/* Encuentra el vértice VerMen en (Vertices - VerAux) tal que el
wcosto de ir de dicho vértice a uno de VerAux sea minimo. */
for (Ind1i= 0; Ind1 < NumVer - 1; Indi++)
{
MenCos= MCosto[1];
VerMen= 1;
for (Ind2= 2; Ind2 < NumVer; Ind2++)
if (MCosto[Ind2] < MenCos)
{
MenCos= MCosto[Ind2];
VerMen= Ind2;

| 426 Capitulo 8. Graficas

cout<<"\n "<<Vertices[VerMen]<<" - !
w<<\Vertices[VerAux|[VerMen]]
<<" "<<MatAdy[VerMen][VerAux[VerMen]];

/* Se agrega el vértice VerMen a VerAux y se redefinen los
=costos asociados. */
MCosto[VerMen]= 1000;
for (Ind2= 1; Ind2 < NumVer; Ind2++)
if ((MatAdy[VerMen][Ind2] < MCosto[Ind2]) &&
=|ICosto[Ind2] < 1000)

MCosto[Ind2]= MatAdy[VerMen][Ind2];
VerAux|[Ind2]= VerMen;
}
}
cout<<"\n\n";

}

La figura 8.14 presenta el resultado de aplicar el método de prim a la gréfica de la
figura 8.12 para obtener el drbol abarcador de costo minimo.

Y 5 3 999 | 4 2

. . Y 5 0 4 4 1999 [999
Matriz de adyacencia

etiquetada vi| 3 4 0 2 999 7

vy 999 | 4 2 0 3 999

s| 4 [999 999 | 3 0 | 999

Vol 2 1999 | 7 999 1999 | O

Vértice | Vértice | Costo
6 1 2
) 3 1 3
Arbol al?a.rcador de 4 3 5
COSto minimo
5 4 3
2 3 4

FIGURA 8.14 Obtencion del drbol abarcador de costo minimo utilizando Prim

8.3 Graficas no dirigidas 427 |

La primera tabla muestra la matriz de costos, y la segunda el conjunto de vértices
y arcos que forman el drbol abarcador de costo minimo. Se puede observar que el
método obtuvo las aristas necesarias para comunicar a todos los vértices con el
menor costo.

Método de Kruskal

Este método, lo mismo que el de Prim, genera el arbol abarcador de costo mi-
nimo de una grafica. Basicamente consiste en seleccionar las aristas de menor
costo y formar el drbol con sus vértices. Los pasos principales de este método
son:
1. Generar una particion del conjunto de vértices. Inicialmente la particion es
de longitud uno (una por cada vértice): Partic= {{1}, {2},..., {NumVer}}.

2. Seleccionar la arista de menor costo. Si ésta une vértices que se encuentran
en particiones distintas, éstas se reemplazan por su unién.

3. Repetir el paso 2 hasta que el conjunto de particiones quede formado
por una sola particién igual al conjunto de vértices: Partic= {1, 2,...,
NumVer} = Vertices.

A continuacién se presenta el método Kruskal de la clase Grafica.

/* Este método encuentra el arbol abarcador de costo minimo de una

wgrafica. */

template <class T>

void Grafica<T>::Kruskal()

{
/* E1l arreglo auxiliar ArisCosto[][] almacena en cada rengldén los
wdatos de una arista: vértices adyacentes y costo. El arreglo
wPartic[] almacena particiones de Vertices. Inicialmente
wpPartic= {{1},{2},...,{NumVer}}. */
int ArisCosto[2*MAX]1[3], Partic[MAX], Indi, Ind2, Veri, Ver2,
=TotAris, Menor, Mayor, Band;

/* Inicializa Partic[]. */
for (Ind1= 0; Ind1 < NumVer; Indi++)
Partic[Ind1]= Ind1;

/* Inicializa ArisCosto[][]. */
Veri= 0;

Ver2= 0;

TotAris= 0;

| 428

Capitulo 8. Gréaficas

{

for (Indi= 0; Ind1 < NumVer; Indi++)

for (Ind2= Ind1; Ind2 < NumVer; Ind2++)
if (MatAdy[Ind1][Ind2] != 0 &% MatAdy[Ind1][Ind2] != 999)

{
ArisCosto[Ver1][Ver2++]= Indi;
ArisCosto[Veri][Ver2++]= Ind2;
ArisCosto[Veri++][Ver2]= MatAdy[Ind1][Ind2];
Ver2= 0;
TotAris+t;

}

/* Ciclo en el cual se seleccionan aristas y se agregan los vértices
wnientras existan vértices en Partic que se encuentren en distintas
wparticiones. */

Band= 0;

while (Band != 1)

/* Se selecciona la arista de menor costo. */
Menor= 999;
for (Indi= 0; Ind1 < TotAris; Indi++)

if (ArisCosto[Ind1][2] < Menor)

{
Veri= ArisCosto[Ind1][0];
Ver2= ArisCosto[Ind1][1];
Menor= ArisCosto[Ind1][2];
Ind2= Ind1;

}

/* Se elimina la arista de menor costo de la matriz ArisCosto. */
ArisCosto[Ind2][2]= 999;

/* Se verifica que la arista (Veri?, Ver2) una dos vértices que
wpertenecen a particiones diferentes. */

if (Partic[Ver1] != Partic[Ver2])

{
cout<<"\nVértice: "<<Vertices[Veri]<<" Vértice: "
w<<Vertices[Ver2] <<" Costo: "<<MatAdy[Veri][Ver2]<<"\n\n";
Mayor= Maximo(Partic[Ver1], Partic[Ver2]);
for (Ind1= 0; Ind1 < NumVer; Indi++)
if (Ind1 == Ver1 Il Indl == Ver2 ||
wPartic[Ind1] == Mayor)
Partic[Ind1]= Minimo(Partic[Ver1], Partic[Ver2]);
}

/* Ciclo para determinar si quedan vértices en particiones
=wdiferentes. */
Indi= 0;

8.3 Graficas no dirigidas

429 |

while (Ind1 < NumVer && !Band)
{

if (Partic[Ind1] != 0)

Band= 1;

Ind1++;
}
/* Si existen particiones en Partic se debe seguir con el
proceso. */
Band= !Band;

La figura 8.15 presenta el resultado de aplicar el método de Kruskal a la grafica
de la figura 8.12 para obtener su drbol abarcador de costo minimo. El arbol gene-
rado es el mismo que con el método de prim, lo que cambia es el proceso y el or-
den en el cual se van eligiendo las aristas

v, v, v, v, v Ve
v O 5 3 999 4 2
. 2) 0 4 4 999 | 999
Matriz de adyacencia
etiquetada V3 3 4 0 2 999 7
v, 999 4 2 0 3 999
vs[4 999 | 999 3 0 999
Vel 2 999 7 999 | 999 0
Vértice | Vértice | Costo
1 6 2
. 3 4 2
Arbol abarcador de 1 3 3
costo minimo
4 5 3
2 3 4

FIGURA 8.15 Obtencion del drbol abarcador de costo minimo utilizando Kruskal

| 430

Capitulo 8. Gréaficas

En la figura estdn la matriz de costos y las aristas seleccionadas para formar el
arbol abarcador de costo minimo. En este caso, la primera arista seleccionada por
el método es la (1, 6), con un costo de 2. Luego se obtiene la (3, 4) también con
un costo de 2. Se continda asi hasta completar el arbol.

El programa 8.3 presenta la plantilla completa de la clase Grafica.

Programa 8.3

/* Maximo numero de vértices que maneja la clase Grdafica. */
#define MAX 20

/* Funcioén auxiliar que obtiene el valor mas pequeno de dos dados como
wparametros. La utiliza el método de Kruskal. */
int Minimo (int Vali, int Val2)

{
int Min= Valf;
if (val2 < Min)
Min= Val2;
return Min;
}

/* Funcién auxiliar que obtiene el valor mas grande de dos dados como
wparametros. La utiliza el método de Kruskal. */
int Maximo (int Vali, int Val2)

{
int Max= Vali;
if (val2 > Max)
Max= Val2;
return Max;
}

/* Definicién de la plantilla de la clase Grafica. Se incluyen como
watributos la matriz de adyacencia (MatAdy), el total de vértices
= (NumVer) y sus nombres (Vertices). */
template <class T>
class Grafica
{
private:
T MatAdy[MAX] [MAX];
int NumVer, Vertices[MAX];

8.3 Graficas no dirigidas

431 |

public:

/* Método constructor y métodos auxiliares para leer la informa-
cién relacionada a la grafica e imprimir los resultados obtenidos

al aplicar los demas métodos. */
Grafica();

void Lee();

void Imprime();

/* Métodos que calculan el arbol abarcador de costo minimo. */

void Prim();
void Kruskal();

s

/* Declaracién del método constructor. Inicializa el nudmero de vértices

=men cero y la matriz de distancias con un valor arbitrario muy grande

= (999), excepto en la diagonal principal, donde el costo es cero. */
template <class T>
Grafica<T>::Grafica()

{
int Ind1, Ind2;
for (Indi= 0; Ind1 < MAX; Indi++)
for (Ind2= 0; Ind2 < MAX; Ind2++)
if (Ind1 = Ind2)
MatAdy[Ind1][Ind2]= 999;
else
MatAdy[Ind1][Ind2]= 0;
NumVer= 0;
}

/* Método que lee del teclado la informacidén de la grafica. En esta

=solucidn el nombre de los veértices s6lo pueden ser valores enteros.

template <class T>
void Grafica<T>::Lee()

{

int Aristas, Costo, Ind1, Origen, Destino;

cout<<"\n\nIngrese total de vértices de la grafica: ";
cin>>NumVer;

for (Indi= 0; Ind1 < NumVer; Indi++)

{

cout<<"\nIngrese el nombre del vértice: o
cin>>Vertices[Ind1];

*/

| 432

Capitulo 8. Gréaficas

cout<<"\n\nIngrese total de aristas de la grafica: £
cin>>Aristas;
Indi1= 0;
while (Ind1 < Aristas)
{
cout<<"\nVértice origen: ";
cin>>0rigen;
cout<<"\nVértice destino: ";
cin>>Destino;
cout<<"\nCosto de ir de "<<Origen<<" a "<<Destino<<": ";
cin>>Costo;
MatAdy[Origen - 1][Destino - 1]= Costo;
MatAdy[Destino - 1][Origen - 1]= Costo;
Ind1++;

}

/* Este método corresponde al presentado mas arriba por lo que sdélo se
wdeja indicado. */

template <class T>

void Grafica<T>::Prim()

{
}

/* Este método corresponde al presentado mas arriba por lo que sdélo se
wdeja indicado.*/

template <class T>

void Grafica<T>::Kruskal()

{
}

8.3.4 Aplicacion de graficas no dirigidas

Considere la gréfica de la figura 8.16 que representa un subconjunto de la red ca-
minera de México. Los vértices representan ciudades; los arcos, carreteras y las
etiquetas de los arcos, distancias entre las ciudades. Cada una de las ciudades se
identificard por un nimero, segin se muestra en la tabla 8.11. El programa 8.4 es
una aplicacién muy simple en la que se ilustra el uso de los métodos para obtener
el 4rbol abarcador de costo minimo, el cual en este caso estd formado por las ca-
rreteras de menor distancia que unen a todas las ciudades involucradas.

8.3 Graficas no dirigidas 433 |

66
89

215

Cuernavaca
263
199
327
Chilpancingo

Querétaro

Guadalajara 113
388

Acapulco

FIGURA 8.16 Red caminera (parcial) de México

434

Capitulo 8. Graficas

TaBLA 8.11 Lista de ciudades de la red caminera

Ciudad Numero asociado

Xalapa
Tlaxcala
Puebla
México, D.F.
Cuernavaca
Chilpancingo
Acapulco

Querétaro

O 0 9 N U B WD =

Guadalajara

—
=)

Morelia

p—
—

Toluca

La plantilla presentada en el programa 8.3 se guardé en la biblioteca “Grafica.h”
y se utilizé en el programa 8.4 para encontrar el arbol abarcador de costo minimo.

Programa 8.4

/* Aplicacion del concepto de graficas para encontrar el conjunto minimo de
wcarreteras, con el menor costo asociado, que una un grupo de ciudades. */
#include "Grafica.h"

void main()
{
Grafica<int> Caminos;
cout<<"\n\nIngrese datos de las ciudades (vértices) y de las
wcarreteras (aristas)\n\n";
Caminos.Lee();
Caminos.Imprime();
cout<<"\n\nLa red minima de carreteras requerida para unir todas
wlas ciudades es:\n";
Caminos.Kruskal();
Caminos.Prim();

La tabla 8.12 muestra la matriz de adyacencia (en este caso de distancias entre
ciudades); la 8.13, el resultado generado por el método Kruskal; y finalmente, la
8.14, el correspondiente al método prim. Es importante sefalar que los arboles

8.3 Graficas no dirigidas

435|

abarcadores obtenidos por ambos métodos son los mismos, s6lo cambia el orden
en el cual se seleccionan las aristas de menor costo.

TaBLA 8.12 Matriz de adyacencia/costos de la red caminera

1 2 3 4 5 6 7 8 9 10 11
1 0 999 194 999 999 999 999 999 999 999 999
2 999 0 33 118 999 999 999 999 999 999 999
3 194 33 0 125 999 999 999 999 999 999 999
4 999 118 125 0 89 999 999 215 999 999 66
5 999 999 999 &9 0 199 999 999 999 999 999
6 999 999 999 999 199 0 113999 999 999 999
7 999 999 999 999 999 113 O 999 999 999 999
8 999 999 999 215 999 999 999 O 388 999 999
9 999 999 999 999 999 999 999 388 O 327 999
10 | 999 999 999 999 999 999 999 999 327 O 263
11 999 999 999 66 999 999 999 999 999 263 O

Se presenta la red minima de carreteras requerida para unir todas las ciudades.
Las dos primeras columnas almacenan los vértices adyacentes (vértices extremos
de la arista) y la tercera el costo asociado a la arista (la distancia entre las ciuda-
des representadas por los vértices involucrados).

TaBLA 8.13 Resultado obtenido aplicando kruskal

Del vérticelciudad Al vérticelciudad Costo/distancia
2 3 33
4 11 66
4 5 89
6 7 113
2 4 118
1 3 194
5 6 199
4 8 215
10 11 263

9 10 327

| 436 Capitulo 8. Gréaficas

TaBLA 8.14 Resultado obtenido aplicando prim

Del vérticelciudad Al vérticelciudad Costol/distancia
3 1 194
2 3 33
4 2 118
11 4 66
5 4 89
6 5 199
7 6 113
8 4 215
10 11 263
9 10 327

Como ya se menciond, el contenido de las tablas 8.13 y 8.14 es el mismo; es decir,
los dos métodos obtuvieron el arbol abarcador de costo minimo formado por el
mismo conjunto de aristas. La diferencia es el proceso aplicado y el orden en

el cual se seleccionan las aristas que formarén el arbol.

8.4 Busqueda

En las secciones anteriores se analizaron operaciones de bisqueda de trayectorias
0 caminos entre los distintos vértices de una grifica. En esta seccidn se analizan
dos estilos de buisqueda aplicadas en la resolucién de problemas. Los estados del
problema se representan por medio de los vértices y los pasos necesarios para pasar
de un estado a otro por medio de las aristas.

De acuerdo al orden en el cual se generan (operacion llamada expansion) los
vértices sucesores de uno dado, los métodos de busqueda se clasifican en biis-
queda en profundidad (conocida también por su nombre en inglés Depth First) y
busqueda a lo ancho (Breadth First).

8.4.1 Busqueda en profundidad (Depth First)

Este tipo de busqueda se lleva a cabo generando todos los estados posibles a par-
tir del vértice inicial, pero sélo considerando una de sus ramas o vértices adya-
centes. Es decir, en cada nodo descendiente se elige s6lo uno de sus hijos para
proseguir con la busqueda del estado solucién. De ahi el nombre en profundidad.

8.4 Busqueda

437 |

Se empieza con el estado (nodo) inicial y se expande s6lo uno de sus vértices ad-
yacentes, y sobre éste se aplica el mismo criterio. La operacién de bisqueda ter-
mina cuando se llega al estado final o bien, cuando se alcanza el nivel de
profundidad establecido como limite. Cuando se presenta esta tltima condicion
se puede retomar la bisqueda a partir de alguno de los vértices no expandidos.

La figura 8.17 presenta un ejemplo de una grafica en la cual se aplica busqueda
en profundidad para llegar al estado final. Cada uno de los vértices representa po-
sibles estados de un problema. El nodo con valor A es el estado inicial y el que
almacena la NV es el final. Las aristas mds gruesas indican el camino seguido para
llegar al estado solucion. Como se puede observar, del vértice A se puede llegar
aTyaY. Considerando el tipo de biisqueda se expande (visita) sélo uno de los
nodos, en este caso T. A partir de T se puede ir a X, Y o D. Se expande sé6lo X.
De X se genera el estado L. Desde éste se puede ir a K o E. Se elige K, de éste
se pasa a Z, luego a S y finalmente se llega al estado meta: N.

FIGURA 8.17 Ejemplo de biisqueda en profundidad

| 438

Capitulo 8. Graficas

Al implementar este método se requiere usar dos listas para ir almacenando los
vértices visitados y aquellos pendientes por visitar. Los primeros se guardan en
una lista llamada visitado y los otros en Novisitado. Los principales pasos de es-
te método son:

1. Guardar el vértice inicial en la lista Novisitado.
2. Sacar el primer elemento (vértice vertiX) de la lista Novisitado.

3. Evaluar si vertix estd en la lista visitado y si el nivel alcanzado (profundi-
dad) es menor o igual al permitido.

3.1. Si la respuesta es negativa entonces obtener todos los vértices adyacentes
de vertix y guardar a éste en visitado.

3.1.1. Si tiene vértices adyacentes y no son el estado final entonces guar-
darlos al inicio de la lista Novisitado.

3.1.2. Si tiene vértices adyacentes y alguno de ellos es el estado final en-
tonces el proceso termina con éxito.

3.1.3. Si no tiene vértices adyacentes, ir al paso 4.

3.2. Si la respuesta es afirmativa (el vértice estd en visitado o se llego al
nivel de profundidad permitido) entonces ir al paso 4.

4. Repetir los pasos 2 y 3 hasta que se llegue al estado final o bien hasta que la
lista Novisitado quede vacia.

A continuacién se presenta el método Depth-First de la clase DiGrafica. Este
método usa la clase Lista (ver capitulo 6) para definir los objetos visitado y
Novisitado. Ademds, con el objeto de reutilizar cédigo en la implementacién del
método Breadth First, se desarrollaron dos métodos auxiliares: BuscaVertice()
y VerticesAdyacentes(). El primero de ellos determina si un vértice dado como
pardmetro es o no un vértice de la digrifica. Mientras que el segundo genera una
lista con los vértices adyacentes de un vértice dado como pardmetro. Estos se
explican con mayor detalle mas adelante.

/* Este método busca una solucidén (estado final) de un problema
wrepresentado por medio de una grafica. Recibe como parametro el nivel
wmaximo de profundidad permitido. En esta implementaci6on se considera
wel estado final como el Gltimo vértice de la digrafica. Regresa uno si
wllega al estado meta y cero en caso contrario.En el método se usan los
=matributos definidos en la clase DiGrafica. Se declaran tres objetos

8.4 Busqueda

439 |

wde la clase Lista para almacenar los vértices que se van visitando
wy los pendientes de visitar, asi como una lista auxiliar para guardar
=]0s vértices adyacentes de uno dado. */
template <class T>
int DiGrafica<T>::DepthFirst(int NivelProf)
{

int Indice, EstadoFinal= @, VisitaAux[MAX], Resp= 1;

Lista<T> Visitado, NoVisitado, ListaAux;

T VertiX;

for (Indice= 0; Indice < NumVer; Indice+t)
VisitaAux[Indice]= 0;

/* Se guarda el primer vértice (representa el estado inicial) de la
wdigrafica en la lista NoVisitado. */
NoVisitado.InsertaFinal(Vertices[0]);

/* En el arreglo auxiliar VisitaAux se indica que el primer vértice
=ya fue visitado, para evitar caer en ciclos. */
VisitaAux[0Q]= 1;

/* Se repiten los pasos del algoritmo de bUsqueda mientras no se llegue
=3l estado final y mientras queden elementos en la lista NoVisitado. */
Indice= 0;
while (!NoVisitado.ListaVacia() && !EstadoFinal)
{

/* Se saca el primer elemento de NoVisitado. */

VertiX= NoVisitado.Elimina();

/* Se evalla si el vértice no esta en Visitado y si no se alcanzé
wla profundidad limite. */
if (!Visitado.BuscaDesordenada(VertiX) && Indice < NivelProf)
{
Visitado.InsertaFinal(VertiX);
/* Se obtienen sus vértices adyacentes. */
ListaAux= VerticesAdyacentes(BuscaVertice(VertiX));
while (!ListaAux.ListaVacia() && !EstadoFinal)
{
VertiX= ListaAux.Elimina();
if (BuscaVertice(VertiX) != NumVer-1 &&
= |VisitaAux[BuscaVertice(VertiX)])
{
NoVisitado.InsertalInicio(VertiX);
VisitaAux[BuscaVertice(VertiX)]= 1;
}
/* Se evalla si se 1llegé al Ultimo vértice (representa el
westado final). */
else
if (BuscaVertice(VertiX) == NumVer-1)

| 440

Capitulo 8. Gréaficas

{
Visitado.InsertaFinal(VertiX);
EstadoFinal= 1;
}
}
Indicet+;

}
}
/* Si se 1lleg6d al estado final se imprime la secuencia de vértices
visitados. */
if (EstadoFinal)
Visitado.ImprimeIterativo();
else
Resp= 0;
return Resp;

Al aplicar este método a la figura 8.17, la secuencia de vértices visitados para lle-
gar al estado finales: A —-T—-X-L—-K—-Z - S — N. El vértice inicial es A, por
lo tanto es el primero del que se obtienen los vértices adyacentes (7, Y) los cuales
se guardan en la lista NoVisitado y el vértice A se almacena en visitado. Como
se guardan al inicio de la lista, ahora se quita T, se obtienen sus adyacentes (X,
D, Y)y se agregan al inicio de la lista Novisitado, y T se almacena en Visitado.
Se quita X y se generan sus adyacentes (L). Se continda asi hasta que se obtiene
el vértice NV, que es el estado final. Cada vez que se quita un vértice de Novisita-
do (luego de obtener sus adyacentes), se guarda en visitado. Es importante sefia-
lar que cuando se generan los adyacentes de un vértice se evalda si alguno de
ellos es o no el estado final. Si lo es, la bisqueda termina con éxito, en caso con-
trario se agrega a la lista Novisitado para ser expandido posteriormente.

Se presentan los dos métodos auxiliares usados por los algoritmos Depth Firsty
Breadth First.

/* Método entero que determina si un vértice dado como parametro es o
=no un vértice de la digrafica. Regresa la posicién en la que lo encuentra
=0 un negativo. */

template <class T>

int DiGrafica<T>::BuscaVertice(T VertiDato)

8.4 Busqueda

441

int Indice= 0, Resp= -1;

/* Busca el nombre del vértice dado en el arreglo que guarda los
wnombres de todos los vértices de la grafica. */
while (Indice < NumVer && Vertices[Indice] != VertiDato)
Indice++;
if (Indice < NumVer)
Resp= Indice;
return Resp;

}

/* Método que genera una lista con los vértices adyacentes de un vértice
=dado como parametro. Recibe como parametro el nombre de un vértice y da
wcomo resultado una lista con sus vértices adyacentes. */
template <class T>
Lista<T> DiGrafica<T>::VerticesAdyacentes(int VertiDato)
{

int Indice;

Lista <T> Adyacentes;

for (Indice= 0; Indice < NumVer; Indice+t)
if (MatAdy[VertiDato][Indice] != 0)
Adyacentes.InsertaFinal (Vertices[Indice]);
return Adyacentes;

8.4.2 Busqueda a lo ancho (Breadth First)

Este tipo de bisqueda consiste en visitar, en cada nivel, todos los vértices. Se em-
pieza con el estado (nodo) inicial y se expanden todos sus vértices adyacentes,
luego en cada uno de ellos se aplica el mismo criterio. Por lo tanto, en cada nivel
se tienen todos los estados que pueden ser generados a partir de los nodos del
nivel anterior. Luego de cada expansion se debe verificar si ya se alcanzé el esta-
do final. Se continda as{ hasta llegar al estado meta o hasta haber expandido
todos los nodos. Debido al orden en el cual se van obteniendo los nodos recibe

el nombre de biisqueda a lo ancho.

La figura 8.18 presenta un ejemplo de una grafica en la cual se aplica este tipo
de busqueda para llegar al estado final. Las aristas gruesas indican todos los
vértices expandidos durante la bisqueda de la solucion. Las lineas punteadas

| 442 Capitulo 8. Gréaficas

sefialan la trayectoria desde el estado inicial al final. Como puede observarse,
desde el estado inicial A se expanden todos sus nodos sucesores (7, Y), lo
mismo se hace en estos vértices, generando J, M, D y X. A partir de éstos se
obtienen los vértices S, L y E. En el siguiente paso, de S se llega a N que es

el estado meta.

FIGURA 8.18 Ejemplo de bisqueda a lo ancho

8.4 Busqueda

443 |

Para implementar este método se requiere usar dos listas para ir almacenando los

vértices visitados y aquellos pendientes por visitar. Los primeros se guardan en
una lista llamada visitado y los otros en Novisitado. Los pasos principales de
este método son:

1. Guardar el vértice inicial en la lista Novisitado.
2. Sacar el primer elemento (vértice vertix) de la lista Novisitado.

3. Evaluar si vertix esta en la lista visitado.

3.1. Sila respuesta es negativa entonces obtener todos los vértices adyacentes

de vertix y guardarlos en visitado.

3.1.1. Si tiene vértices adyacentes y no son el estado final entonces guar-

darlos al final de la lista Novisitado.
3.1.2. Si no tiene vértices adyacentes, ir al paso 4.
3.2. Si la respuesta es afirmativa, ir al paso 4.

4. Repetir los pasos 2 y 3 hasta que se llegue al estado final o hasta que la lista
Novisitado quede vacia.

A continuacién se presenta el método Breadth-First de la clase DiGrafica. Este
método se auxilia de la clase Lista (ver capitulo 6) para definir los objetos
Visitado y Novisitado. Como en el caso de la bisqueda en profundidad, se
utilizan los métodos auxiliares ya estudiados para determinar si un vértice

pertenece o no a una digrafica y para generar los vértices adyacentes de uno
dado.

/* Este método busca una solucidén (estado final) de un problema
wrepresentado por medio de una grafica. Visita todos los vértices de un
=wmnismo nivel antes de pasar al siguiente. Regresa uno si llega al estado
=meta 0 cero en caso contrario. Se usan atributos de la clase como el
wnlmero y nombre de los vértices. Ademds, se declaran tres objetos de
wla clase Lista para almacenar los vértices visitados, los pendientes de
wyisitar y los adyacentes de un nodo dado. */
template <class T>
int DiGrafica<T>::BreadthFirst()
{

int Indice, EstadoFinal= 0@, VisitaAux[MAX], Resp= 1;

Lista<T> NoVisitado, Visitado, ListaAux;

T VertiX;

| 444

Capitulo 8. Gréaficas

/* E1 arreglo VisitaAux es un arreglo en el cual se indica si un nodo
=ya fue expandido. */
for (Indice= 0; Indice < NumVer; Indice++)

VisitaAux[Indice]= 0;

/* Se guarda el primer vértice de la grafica en la lista NoVisitado. */
NoVisitado.InsertaFinal(Vertices[0]);
VisitaAux[0]= 1;

/* Ciclo que se ejecuta mientras no se llegue al estado final y
wqueden vértices por visitar. */
while (!NoVisitado.ListaVacia() && !EstadoFinal)
{
/* Saca el primer vértice de la lista NoVisitado. */
VertiX= NoVisitado.Elimina();
/* Se evalla que el vértice no esté en la lista Visitado para
wevitar ciclos. */
if (!Vvisitado.BuscaDesordenada(VertiX))
{
Visitado.InsertaFinal(VertiX);
/* Se obtienen los vértices adyacentes del vértice visitado. */
ListaAux= VerticesAdyacentes(BuscaVertice(VertiX));

while (!ListaAux.ListaVacia() &% !EstadoFinal)
{
VertiX= ListaAux.Elimina();
/* Si el sucesor no es el estado final y no estéd en
= |/isitado entonces se guarda en la lista NoVisitado para
=wque posteriormente se revise. */
if (BuscaVertice(VertiX) != NumVer-1 &&
= |VisitaAux[BuscaVertice(VertiX)])
{
NoVisitado.InsertaFinal (VertiX);
VisitaAux[BuscaVertice (VertiX)]

1;
}
else
if (BuscaVertice(VertiX) == NumVer - 1)
{
Visitado.InsertaFinal(VertiX);
EstadoFinal= 1;

8.4 Busqueda

445 |

/* Si se 1llegd al estado final se imprime la secuencia de vértices
wyisitados. */
if (EstadoFinal)

{
Visitado.ImprimeIterativo();
return 1;

}

else
Resp= 0;

return Resp;

Al aplicar este método a la figura 8.18, la secuencia de vértices visitados para
llegar al estado finales:A - Y —-T—-J—-M —-D — X - S — N. El vértice inicial
es A, por lo tanto es el primero al cual se le obtienen los vértices adyacentes
(Y, T) los cuales se guardan al final de Novisitado y el vértice A se almacena
en Visitado. Luego se quita Y y se obtienen sus adyacentes (J, M) los cuales
se agregan al final de la lista Novisitado y Y en la lista visitado. Se quita T

y se generan sus adyacentes (Y, D, X), éstos se guardan en Novisitado y T en
visitado. El siguiente vértice que se extrae de Novisitado es J y se obtiene su
vértice adyacente que es S. Luego se quita M cuyo vértice adyacente es J.
Después se quita D de la lista Novisitado y se obtienen sus adyacentes (M, E)
los cuales se guardan al final de Novisitado y D en Visitado. Asi se continda
hasta que se quita S, a partir del cual se obtiene N que es el estado final. Es
importante mencionar que cuando se extrae de Novisitado un vértice que ya
estd en Visitado no se vuelve a agregar a esta lista. Ademads, cuando se expan-
de un nodo, si alguno de sus adyacentes ya fue generado, entonces no se agrega a
la lista de Novisitado.

Los métodos presentados son muy parecidos. Conceptualmente la diferencia esté
en que el primero desarrolla una rama de la grafica hasta llegar al final o a un
nivel limite, mientras que el segundo va desarrollando todas las ramas hasta
alcanzar el estado meta. En cuanto a la implementacion, la diferencia menciona-
da se logra guardando los siguientes vértices que deben ser expandidos al inicio o
al final respectivamente de la lista de vértices Novisitado.

| 446

Capitulo 8. Graficas

Ejercicios
1. Dada la siguiente grafica, sefiale:
(2) Un camino entre los vértices V, y V., si es posible.
(b) Un camino simple entre cada par de vértices, si es posible.
(c) El grado de cada vértice.

(d) Lazos o bucles, si existen.

2. Dada la siguiente matriz de adyacencias etiquetada, dibuje la grafica dirigi-
da correspondiente. El 0 en la posicién (i, j) indica que no existe un arco
entre los vértices V, y Vj, incluyendo a la diagonal principal.

1 2 3 4 5 6
1 0 15 0 12 6 0
2 0 0 8 7 0 0
3 18 0 0 21 0 16
4 0 11 0 10 12
5 13 7 0 0 9
6 14 0 18 0 0

Ejercicios 447 |

. Retome el problema anterior. Aplique el método que crea adecuado para ob-
tener e imprimir los caminos de minimos costos entre el vértice 3 y los de-
mas vértices de la digréfica.

. Aplique el método que crea conveniente a la grafica del problema 2, para
generar una matriz que indique si existe o no un camino entre cada uno de
los vértices de la gréifica dirigida.

. Dada la siguiente matriz de adyacencias etiquetada, dibuje la gréfica no di-
rigida correspondiente. El 0 en la posicién (i, j) indica que no existe un arco
entre los vértices V, y Vi, incluyendo a la diagonal principal.

3 4 5 6

53 67 88 21

29 0 0 84 19
53 29 O 28 62 O
67 O 28 0 41 55
8 0 62 41 O 18 34
21 84 O 55 18 0 87
0 19 0 0 34 87 0

N QN B W N =

. Retome la gréfica del problema anterior. Aplique el método que crea conve-
niente para encontrar e imprimir el arbol abarcador de costo minimo corres-
pondiente a dicha grafica.

. Modifique la plantilla de la clase Grafica usando un arreglo unidimensional
para almacenar sélo la matriz triangular superior de la matriz de adyacencia
—recuerde que la matriz de adyacencia de una grafica es una matriz simé-
trica—. Puede utilizar las férmulas vistas en el capitulo 4 para recuperar los
elementos. ;Requiere adaptar los métodos de la clase?

. Modifique la plantilla de la clase biGrafica de tal manera que use una lista
de adyacencia en lugar de una matriz de adyacencia para almacenar la in-
formacion de la grafica dirigida. Realice los ajustes necesarios en los méto-
dos estudiados para que puedan aplicarse a esta nueva estructura.

. Modifique la plantilla de la clase Grafica de tal manera que use una lista de
adyacencia en lugar de una matriz de adyacencia para almacenar la informa-
cion de la gréfica no dirigida. Realice los ajustes necesarios en los métodos
estudiados para que puedan aplicarse a esta nueva estructura.

| 448

Capitulo 8. Graficas

10.

11.

12.

13.

Escriba un método que determine si una grafica es una grdfica completa,
para ello deberd verificar si cada uno de sus vértices es adyacente a los de-
mas.

Escriba un método que determine si una gréfica es una grdfica conexa, para
ello deberd verificar si existe un camino simple entre cada uno de sus vérti-
ces. ¢Le sirve alguno de los métodos analizados en este capitulo?

Escriba un método que encuentre e imprima todos los caminos simples que
existan en una grafica dirigida. El método debe imprimir el identificador de
cada uno de los vértices involucrados en los caminos.

En la orilla de un rio estan tres misioneros y tres canibales con intencion de
cruzar a la otra orilla. Cuentan con un bote que tiene una capacidad limite
de dos personas. Los misioneros, para poder protegerse de los canibales,
quieren estar siempre en un nimero mayor o igual al de canibales. Usando
algunos de los métodos vistos, resuelva el problema de trasladar a los seis
individuos de una orilla a la otra sin poner en riesgo a los misioneros.

CAPIiTULO 9

Ordenacion

9.1 Introduccion

La ordenacion es la operacion que permite establecer un orden
(creciente o decreciente) entre un conjunto de valores. Dependiendo
donde estén almacenados los datos, la ordenacion recibe diferentes
nombres. Si se realiza sobre datos guardados en un arreglo se le llama
ordenacion interna. Por otra parte, si se aplica a un conjunto de valo-
res almacenados en un archivo, se le denomina ordenacion externa.

Si bien la ordenacién no es una estructura de datos, se presenta en es-
te libro porque es una de las operaciones mas importantes a realizar
sobre los datos guardados en una estructura. Ordenar la informacién
almacenada en la estructura permite recuperarla en menos tiempo. Es
decir, la biisqueda (tema que se verd con mayor detalle en el siguiente
capitulo) resulta mds eficiente cuando los datos estdn ordenados.

| 450

Capitulo 9. Ordenacién

Normalmente esta operacion se encuentra implementada como un método de
otras clases, como la clase Arreglo o la clase Lista. Sin embargo, dado que es
el tema central de este capitulo, se tratard como una clase que representa a las
variantes mds conocidas del proceso de ordenacion.

9.2 Ordenacioén interna

La ordenacion interna se refiere a ordenar un conjunto de datos que se encuen-
tran almacenados en una estructura, en memoria principal. Considerando las ca-
racteristicas que determinan la manera en la que se tiene acceso a los elementos

de una estructura, en este libro se estudiardn los métodos para ordenar a los arre-
glos unidimensionales. El resultado de aplicar esta operacion a un arreglo es que
todos sus elementos quedan ordenados de manera creciente o decreciente.

* Creciente: dato, = dato, = ... = dato_(el primer dato es menor o igual que
el segundo, éste es menor o igual que el tercero y asi sucesivamente hasta
el ultimo dato).

* Decreciente: dato, = dato, = ... = dato, (el primer dato es mayor o igual
que el segundo, éste es mayor o igual que el tercero y asi sucesivamente
hasta el dltimo dato).

Existen numerosos métodos que ordenan a los elementos de un arreglo. Los
métodos pueden agruparse segln la caracteristica principal (intercambio, insercién
o seleccion) de la operacion que realizan para ordenar los valores. L.os mds conoci-
dos y utilizados son:

TaBLA 9.1 Métodos de ordenacion

Métodos de ordenacion Meétodos de ordenacion Métodos de ordenacion
por intercambio por seleccion por insercion

Directo con desplazamiento Directa Directa
hacia la izquierda

Directo con desplazamiento Binaria
hacia la derecha

Shaker (sacudida) Shell
Con senal

QuickSort

9.2 Ordenacién interna

451 |

Para programar los métodos de ordenacion en el lenguaje C++ se definié una cla-
se base abstracta y un conjunto de clases derivadas. Cada una de las clases deri-
vadas representa uno de los métodos que se estudiardn en este capitulo. La figura
9.1 presenta un esquema de las clases mencionadas.

Todos los métodos utilizan dos operaciones bésicas para llevar a cabo la ordena-
cién de los elementos de un arreglo: la comparacién y el movimiento o intercam-
bio de los mismos. Por esta razén, en la clase abstracta se incluyé el método
Intercambia() que serd comun a todas las clases derivadas y que tendrd por obje-
tivo intercambiar los valores de dos posiciones del arreglo.

Ordenador(T)

void Intercambia()

virtual void Ordena ()

AN

IntercDirectolzq(T Sheker(T InsercionDirecta(T QuickSort(T)

void Ordena() void Ordena() void Ordena() void Ordena()

FIGURA 9.1 Esquema de clases

A continuacion se muestra la manera de programar la clase base abstracta, la cual
tiene un método virtual puro que se redefinird en cada subclase dependiendo del mé-
todo de ordenacién que se esté implementando. Ademads, tiene un método auxiliar
—Intercambia()— para generalizar la operacion de intercambio que serd usada por
las subclases.

| 452

Capitulo 9. Ordenacién

/* Clase abstracta que se utiliza para definir clases derivadas que re-
wpresentan cada uno de los métodos de ordenacidén interna. */

template <class T>

class Ordenador

{
public:
void Intercambia (int, int, Arreglo<T> *);
virtual void Ordena (Arreglo<T> *) = 0;
b

/* Método auxiliar que intercambia los contenidos de dos elementos del
=arreglo que se esta ordenando. */
template <class T>
void Ordenador<T>::Intercambia(int Ind1, int Ind2, Arreglo<T> *Arre)
{
T Auxiliar;
Auxiliar= Arre->RegresaValor(Ind1);
Arre->AsignaValor(Indi, Arre->RegresaValor(Ind2));
Arre->AsignaValor(Ind2, Auxiliar);

Como ya se menciond, todos los métodos utilizan dos operaciones bésicas para lle-
var a cabo la ordenacién de los elementos: la comparacion y el movimiento de los
mismos. Por lo tanto, si lo que se quiere ordenar son objetos hay que tener en cuenta
que se deben sobrecargar los operadores de comparacién en las clases correspon-
dientes, para hacer uso de los métodos que se presentan en las siguientes secciones.

9.2.1 Métodos de ordenacion por intercambio

Estos métodos son de los méds sencillos y por lo tanto mds usados para ordenar
un conjunto pequefio de datos. Se caracterizan porque se intercambian los valores
como resultado de la comparacion de los mismos. Existen varios métodos que se
basan en esta idea. Los mas conocidos son:
* Intercambio directo:
© Con desplazamiento hacia la izquierda

o Con desplazamiento hacia derecha

e Intercambio con sefial
e Sheker

e Quicksort

9.2 Ordenacién interna

453 |

Intercambio directo con desplazamiento hacia la izquierda

El método de intercambio directo consiste en recorrer el arreglo comparando
pares de datos e intercambidndolos de tal manera que los valores pequefios se
vayan desplazando hacia la izquierda o bien, los valores mds grandes se vayan
desplazando hacia la derecha. Esta caracteristica genera dos versiones de este
algoritmo, dando origen a sendas clases, las cuales, en este libro, se denominan
IntercDirectolzq € IntercDirectoDer respectivamente.

Para ordenar Tam elementos (donde Tam es el nimero de elementos del arreglo) se
realizan Tam-1 recorridos por el arreglo comparando pares de datos. Luego de ca-
da comparacién puede o no realizarse un intercambio del contenido entre dos
casillas del arreglo.

A continuacion se presenta la clase IntercDirectoIzq, en la cual el método orde-
na corresponde al algoritmo de ordenacién por intercambio directo con desplaza-
miento del valor mds pequefio hacia la izquierda.

/* Clase para el método de intercambio directo con desplazamiento hacia
=]la izquierda. Clase derivada de la clase abstracta Ordenador. */

template <class T>
class IntercDirectoIzq: public Ordenador<T>
{
public:
void Ordena (Arreglo<T> *);
Y

/* Método que ordena los elementos de un arreglo. Por medio de
wcomparaciones e intercambios de elementos lleva el elemento mas
=pequeno hacia el extremo izquierdo del arreglo. Este proceso se
wrepite hasta que todo el arreglo queda ordenado.*/

template <class T>

void IntercDirectolIzq<T>::0Ordena(Arreglo<T> *Arre)

int Ind1, Ind2, Tam= Arre->RegresaTam();
for (Indi= 1; Ind1 < Tam; Indi++)
for (Ind2= Tam-1; Ind2 >= Indi1; Ind2--)
if (Arre->RegresaValor(Ind2-1) > Arre->RegresaValor(Ind2))
Intercambia(Ind2-1, Ind2, Arre);

Considere un arreglo de 6 elementos (Tam = 6) como el que se muestra en la fi-
gura 9.2. Aplicando el método visto para ordenar este arreglo, se tendria la se-
cuencia de pasos presentada en la tabla 9.2. Las casillas que se recuadran son

| 454 Capitulo 9. Ordenacién

aquellas cuyos elementos se intercambian y las casillas que se van sombreando
son las que luego del ciclo interno (1nd2) quedan ordenadas. Observe que como
este método desplaza el valor mas pequefio hacia la izquierda, es el extremo iz-
quierdo del arreglo el que va quedando ordenado. La primera vez se coloca el 4
en la posicion 0, la segunda vez el 9 en la posicion 1 y asi sucesivamente hasta el
ultimo valor. Como consecuencia, en cada iteracion el intervalo en el cual se or-
denan valores se reduce. Es decir, como la posicién 0 queda ocupada por el valor
mas pequeio, en el siguiente ciclo la ordenacion llega hasta la posicién 1, y en la
siguiente hasta la posicidn 2 y asi hasta la posicién tamaio del arreglo menos 1.

Arre
19 9 76 17 4 18
0 1 2 3 4 5

FIGURA 9.2 Arreglo a ordenar

TABLA 9.2 Seguimiento del método de ordenacién por intercambio directo
con desplazamiento hacia la izquierda

Ind1 Ind2 Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]
1 5 19 9 76 17 4 18
4 19 9 76 4 17 18
3 19 9 4 76 17 18
2 19 4 9 76 17 18
1 4 19 9 76 17 18
2 5 4 19 9 76 17 18
4 4 19 9 17 76 18
3 4 19 9 17 76 18
2 4 9 19 17 76 18
3 5 4 9 19 17 18 76
4 4 9 19 17 18 76
3 4 9 17 19 18 76
4 5 4 9 17 19 18 76
4 4 9 17 18 19 76
5 5 4 9 17 18 19 76

9.2 Ordenacién interna

455 |

Intercambio directo con desplazamiento hacia la derecha

A continuacién se presenta la clase IntercDirectoDer, en la cual el método orde-
na corresponde al algoritmo de ordenacién por intercambio directo con desplaza-
miento del valor mds grande hacia la derecha.

/* Clase para el método de intercambio directo con desplazamiento hacia
la =wderecha. Clase derivada de la clase Ordenador. */
template <class T>
class IntercDirectoDer: public Ordenador<T>
{
public:
void Ordena (Arreglo<T> *);

I

/* Método que ordena los elementos de un arreglo. Por medio de compa-
=wraciones e intercambios de elementos lleva el elemento mas grande hacia
wel extremo derecho del arreglo. Este proceso se repite hasta que todo el
=arreglo queda ordenado. */
template <class T>
void IntercDirectoDer<T>::0Ordena(Arreglo<T> *Arre)
{
int Ind1, Ind2, Tam= Arre->RegresaTam();
for (Indi= 0; Ind1 < Tam-1; Ind1++)
for (Ind2= 0; Ind2 < Tam-1-Ind1; Ind2++)
if (Arre->RegresaValor(Ind2) > Arre->RegresaValor(Ind2+1))
Intercambia(Ind2, Ind2+1, Arre);

Se retoma el arreglo de la figura 9.2 y se utiliza el dltimo método visto para orde-
narlo. La tabla 9.3 presenta la secuencia de operaciones aplicadas. Las casillas
que se recuadran son aquellas cuyos elementos se intercambian y las casillas que
se van sombreando son las que luego del ciclo interno (1nd2) quedan ordenadas.
Observe que como este método desplaza el valor mds grande hacia la derecha, es
el extremo derecho del arreglo el que va quedando ordenado. La primera vez se
coloca el 76 en la posicidn 5, la segunda el 19 en la posicion 4 y asi sucesiva-
mente hasta el dltimo valor. Como consecuencia, en cada iteracion el intervalo en
el cual se ordenan valores se reduce (en el algoritmo esto se logra restando Ind1
al limite superior del segundo ciclo). Es decir, como la posicién Tam-1 queda ocu-
pada por el valor mas grande, en el siguiente ciclo la ordenacién llega hasta la
posicion Tam-2, y en la siguiente hasta la posicion Tam-3 y asi hasta que la dltima
vez se ordenan sélo dos casillas, la 0 y la 1.

| 456 Capitulo 9. Ordenacién

TaBLA 9.3 Seguimiento del método de ordenacién por intercambio directo
con desplazamiento hacia la derecha

Ind1 Ind2 Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]

0 0 9 19 76 17 4 18
1 9 19 76 17 4 18

2 9 19 17 76 4 18

3 9 19 17 4 76 18

4 9 19 17 4 18 76

1 0 9 19 17 4 18 76
1 9 17 19 4 18 76

2 9 17 4 19 18 76

3 9 17 4 18 19 76

2 0 9 17 4 18 19 76
1 9 4 17 18 19 76

2 9 4 17 18 19 76

3 0 4 9 17 18 19 76
1 4 9 17 18 19 76

4 0 4 9 17 18 19 76

Las dos variantes vistas del método de ordenacién por intercambio directo tienen la
misma eficiencia. Esta se mide por el nimero de comparaciones y de intercambios
realizados. En cuanto al nimero de comparaciones, en el primer recorrido se reali-
zan (Tam -1), en el segundo (Tam - 2) comparaciones y asi sucesivamente hasta ha-
cer una comparacion (cuando sea el dltimo par de datos a ordenar). Por lo tanto,
el total de comparaciones se puede expresar como:

Total comparaciones = (Tam -1) + (Tam - 2) + (Tam - 3) + ...+ 1 = Tam * (Tam-1)
2

lo cual puede escribirse como:

. Tam?® - Tam
Total comparaciones =
2

FOormuLA 9.1

9.2 Ordenacién interna

457 |

Con respecto al nimero de intercambios, los mismos dependen del estado del
arreglo, es decir, si ya estd ordenado, si estd ordenado en orden inverso o si estd
desordenado. El total de intercambios se expresa de la siguiente manera:

Intercambio minimo = 0 si el arreglo ya estd ordenado
Intercambio maximo = (Tam? - Tam) * 1.5 si el arreglo estd en orden inverso

Intercambio medio = (Tam2 - Tam) * .75 si el arreglo estd desordenado

ForMuULA 9.2

Algoritmo de sheker 0 de sacudida

El algoritmo conocido con el nombre de sheker o de sacudida es una combina-
cién de los dos anteriores. Cada recorrido del arreglo se divide en dos etapas, en
la primera se mueven los elementos mds pequefios hacia la izquierda y en la se-
gunda, los elementos mds grandes hacia la derecha. En cada etapa se guarda la
posicién donde se realizé el intercambio, y de esta manera en el siguiente recorri-
do del arreglo el intervalo se reduce entre estas dos posiciones. El proceso termi-
na cuando no se producen intercambios o bien, cuando la posicién del extremo
izquierdo es mayor que la del extremo derecho.

A continuacién se presenta la clase Sheker, en la cual el método Ordena corres-
ponde al algoritmo de sheker o de sacudida.

/* Clase para el método de Sheker o de sacudida. Clase derivada de la
wclase abstracta Ordenador. */
template <class T>
class Sheker: public Ordenador<T>
{
public:
void Ordena (Arreglo<T> *);
Y

/* Este método ordena los elementos de un arreglo utilizando el
=algoritmo de Sheker. */

template <class T>

void Sheker<T>::Ordena(Arreglo<T> *Arre)

| 458

Capitulo 9. Ordenacién

{
int Indice, Izg= 1, Tam= Arre->RegresaTam(), Der= Tam-1,
wExtremo= Tam-1;
while (Izq <= Der)
{
for (Indice= Der; Indice >= Izq; Indice--)
if (Arre->RegresaValor(Indice-1) > Arre->RegresaValor(Indice))
{
Intercambia(Indice-1, Indice, Arre);
Extremo= Indice;
}
Izq= Extremo+i;
for (Indice= Izq; Indice <= Der; Indice++)
if (Arre->RegresaValor(Indice-1) > Arre->RegresaValor(Indice))
{
Intercambia(Indice-1, Indice, Arre);
Extremo= Indice;
}
Der= Extremo-1;
}
}

Se retoma el arreglo de la figura 9.2 y se utiliza el dltimo método visto para
ordenarlo. La tabla 9.4 presenta la secuencia de operaciones aplicadas. Las
casillas que se recuadran son aquellas cuyos elementos se intercambian y

las casillas que se sombrean son aquellas que quedan ordenadas. Observe que
el intervalo donde se lleva a cabo la ordenacién comprende del 1 al 5 (consi-
derando que usa la posicién (Indice-1)). Con cada intercambio se guarda la
posicion de la casilla correspondiente y al terminar el primer ciclo se redefine
el extremo izquierdo con la posicién més 1. Al ejecutar el segundo ciclo, el
intervalo es menor. Nuevamente con cada intercambio se guarda la posicién

y al terminar el ciclo se redefine el extremo derecho como la posicién menos
1. En el ejemplo presentado, al terminar la segunda ejecucién del segundo
ciclo el extremo derecho queda en 3 siendo menor que el extremo izquierdo
(que tiene el valor de 4) y de esta forma se interrumpe el ciclo while y conclu-
ye la ordenacion.

9.2 Ordenacién interna

459 |

TABLA 9.4 Seguimiento del método de ordenacién sheker

Indice | Extremo Izq | Der | Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5S]
5 1 5 19 9 76 17 4 18
5 19 9 76 17 18
4 4 19 9 76 4 17 18
3 3 19 9 76 17 18
2 2 19 4 76 17 18
1 1 4 19 76 17 18
2
2 2 4 9 19 76 17 18
3 4 9 19 76 17 18
4 4 4 9 19 17 76 18
5 5 4 9 19 17 18 76
4
4 4 9 19 17 18 76
3 3 4 9 17 19 18 76
2 4 17 19 18 76
4
4 4 4 9 17 18 19 76
3

Intercambio directo con senal

Este algoritmo es otra variante de la ordenacién por intercambio directo y busca
ganar eficiencia en cuanto al nimero de comparaciones realizadas. Para ello se

apoya en una variable auxiliar (la sefial) que permite determinar en cada recorri-
do si se produjo algin intercambio. Si lo hubo, entonces se sigue recorriendo el
arreglo; mientras que, en caso contrario, la ordenacién termina, habiendo queda-
do ordenado todo el arreglo. Es decir, cuando en un recorrido no se hacen inter-

cambios esta situacion se detecta por medio de la variable auxiliar o bandera y se

evitan todas las comparaciones pendientes de acuerdo a los limites de los ciclos.

A continuacién se presenta la clase IntercConSenial, en la cual el método ordena

corresponde al algoritmo de ordenacién por intercambio directo con sefial.

| 460 Capitulo 9. Ordenacién

/* Clase para el método de intercambio directo con sefal. Clase derivada
wde la clase abstracta Ordenador. */
template <class T>
class IntercConSenial: public Ordenador<T>
{
public:
void Ordena (Arreglo<T> *);

1§

/* Este método ordena los elementos del arreglo utilizando el algoritmo
wde intercambio directo con senal. */

template <class T>

void IntercConSenial<T>::0rdena(Arreglo<T> *Arre)

{
int Ind1= @, Ind2, Bandera= @, Tam= Arre->RegresaTam();
while ((Ind1 < Tam-1) && (!Bandera))
{
Bandera= 1;
for (Ind2= 0; Ind2 < Tam-1; Ind2++)
if (Arre->RegresaValor(Ind2) > Arre->RegresaValor(Ind2+1))
{
Intercambia(Ind2, Ind2+1, Arre);
Bandera= 0;
}
Indi++;
}
}

Considere el arreglo de la figura 9.3, se utiliza el algoritmo de intercambio con
seflal para ordenarlo. La tabla 9.5 presenta la secuencia de operaciones aplicadas.
Las casillas que se recuadran son aquellas cuyos elementos se intercambian y las
casillas que se sombrean son aquellas que quedan ordenadas. Cuando 1nd1 igual
a 2 el arreglo queda ordenado, sin embargo como Bandera estd en O (por el inter-
cambio entre el 20 y el 24) se ejecuta el ciclo para Ind1 igual 3.

Arre
15 4 59 24 51 20
0 1 2 3 4 5

FIGURA 9.3 Arreglo a ordenar

9.2 Ordenacion interna 461 |

TaBLA 9.5 Seguimiento del método de ordenacion por
intercambio con senal

Bandera | Ind1 | Ind2 | Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]
0 0 15 4 59 24 51 20
1 0 4 15 59 24 51 20
0 1 4 15 59 24 51 20

2 4 15 24 59 51 20

0 3 4 15 24 51 59 20

0 4 4 15 24 51 20 59
1

1 0 4 15 24 51 20 59

1 4 15 24 51 20 59

2 4 15 24 51 20 59

3 4 15 24 20 51 59

0 4 4 15 24 20 51 59
2

1 0 4 15 24 20 51 59

1 4 15 24 20 51 59

2 4 15 20 24 51 59

0 3 4 15 20 24 51 59

4 4 15 20 24 51 59
3

1 0 4 15 20 24 51 59

1 4 15 20 24 51 59

2 4 15 20 24 51 59

3 4 15 20 24 51 59

4 4 15 20 24 51 59

Método rapido o auicksort

Este método es otra de las variantes del método de intercambio directo, que se
caracteriza por ser la mds rdpida en memoria interna. Fue propuesto por C. Hoare
en 1962. Basicamente consiste en encontrar la posicion de un cierto elemento del

| 462

Capitulo 9. Ordenacién

arreglo, al que llamaremos Pivote, de tal manera que todos los valores que se en-
cuentren a su izquierda sean menores o iguales a él y los que se encuentren a su
derecha sean mayores o iguales a él. Este proceso se repite para cada uno de los
valores que queden a la izquierda y a la derecha del pivote.

A continuacién se presenta la clase QuickSort, en la cual el método ordena corres-
ponde al algoritmo de ordenacién conocido como Quick Sort o rdpido. En este
caso, el método ordena utiliza un método auxiliar recursivo, Reduce (), que es el
que lleva a cabo la ordenacién del arreglo. Este método recibe los extremos del
intervalo en el cual se colocard a un elemento en la posicidn que le corresponda.
La primera vez dichos extremos coinciden con los del arreglo. Luego de colocar
el primer elemento en la posicién que le corresponde por su tamafio, se tienen
dos intervalos, uno a la izquierda y otro a la derecha del mismo, cada uno de
ellos con un tamafio menor al anterior. De ahi el nombre de Reduce (). Este proce-
so se repite hasta que ya no queden elementos a ordenar.

/* Clase para el algoritmo de ordenacién llamado QuickSort. Clase
=wderivada de la clase abstracta Ordenador. */

template <class T>

class QuickSort: public Ordenador<T>

{
public:
void Ordena (Arreglo<T> *);
void Reduce (int, int, Arreglo<T> *);
b

/* Este método ordena los elementos del arreglo utilizando el algoritmo
=QuickSort. */

template <class T>

void QuickSort<T>::Ordena(Arreglo<T> *Arre)

{
int Tam;
Tam= Arre->RegresaTam();
if (Tam > 0)
Reduce (@, Tam - 1, Arre);
}

/* Método auxiliar de la clase QuickSort. Los parametros Inicio y Fin
wrepresentan los extremos del intervalo (dentro del arreglo) en el cual
wse esta ordenando. La primera vez son el primero y Ultimo indice del
=arreglo a ordenar. */

template <class T>

void QuickSort<T>::Reduce(int Inicio, int Fin, Arreglo<T> *Arre)

9.2 Ordenacién interna

463 |

{
int Izq, Der, Pivote, Bandera;
Izg= Inicio;
Der= Fin;
Pivote= Inicio;
Bandera= 1;
while (Bandera)
{
Bandera= 0;
while ((Arre->RegresaValor(Pivote) <= Arre->RegresaValor(Der))
&& (Pivote != Der))
Der--;
if (Pivote != Der)
{
Intercambia(Pivote, Der, Arre);
Pivote= Der;
while ((Arre->RegresaValor(Pivote)w>= Arre->RegresaValor
(Izq)) && (Pivote. != Izq))
Izq++;
if (Pivote l= Izq)
{
Bandera= 1;
Intercambia(Pivote, Izq, Arre);
Pivote= Izq;
}
}
}
if ((Pivote - 1) > Inicio)
Reduce(Inicio, Pivote - 1, Arre);
if (Fin > (Pivote + 1))
Reduce (Pivote + 1, Fin, Arre);
}

El arreglo de la figura 9.4 se ordenard utilizando la clase quicksort. La tabla 9.6
presenta la secuencia de operaciones aplicadas. Se sombrean las casillas cuyos
contenidos se intercambian, y se recuadra al pivote una vez guardado en la posi-
cién que le corresponde.

Arre

23 41 63 17 8 50 12

0 1 2 3 4 5 6

FIGURA 9.4 Arreglo a ordenar

| 464 Capitulo 9. Ordenacién

TABLA 9.6 Seguimiento del método de ordenacidn auicksort

Inicio | Fin | Izq | Der | Band | Pivote | Arre[0] | Arre[1]| Arre[2] | Arre[3] | Arre[4] | Arre[5] | Arre[6]
0 6 0] 6 1 0 23 41 63 17 8 50 12
0 6 12 41 63 17 8 50 23
1 1 1 12 23 63 17 8 50 41
4 4 12 8 63 17 23 50 41
2 1 2 12 8 23 17 63 50 41
313 0 3 12 8 17 23 63 50 41
0 2 0] 2 1 0 12 8 17 23 63 50 41
1 1 0 1 8 12 17 23 63 50 41
4 6 4 |16 1 4 8 12 17 23 63 50 41
5 0 6 8 12 17 23 41 50 63
6
4 5 4 1 4 8 12 17 23 41 50 63
4 0

En la tabla se puede observar que, la primera vez, el pivote tiene valor 23 y queda
almacenado en la posicién 3. Esto origina que queden dos intervalos a ordenar, uno
a su izquierda comprendido entre las posiciones 0 y 2, y otro a su derecha entre las
posiciones 4 y 6. El método se invoca con el primer par de datos y queda
pendiente la ejecucién con el segundo par (queda en la pila interna que maneja

la recursion). La segunda vez se acomoda el valor 12 en la posicién 1. Como no
existen intervalos a ordenar a partir de este valor, se sacan de la pila los valores 4
y 6 y se usan como extremos del nuevo intervalo a ordenar. La tercera vez se aco-
moda el 63 en la posicion 6. A la derecha del mismo no quedan elementos a or-
denar, sin embargo, a su izquierda si. Por lo tanto se invoca al método con los
valores 4 y 5, aunque en este caso no hay cambios.

La figura 9.5 (a) muestra como queda dividido el intervalo original [0,6] una vez que
se coloca el pivote 23 en la posicion correcta, en dos subintervalos: de 0 a 2, a la iz-
quierda del pivote y de 4 a 6 a su derecha. Por otro lado, en la figura 9.5 (b), luego
de colocar al pivote /2 en la posicién que le corresponde, el primer subintervalo
vuelve a reducirse, esta vez de tal manera que ya no requiere ordenacion.

9.2 Ordenacién interna

12 1 2 41
(a) 8 7 3 63 50
0 1 2 3 4 5 6
1
1
1
Posicién correcta
del pivote
(b) 8 12 17 23 63 50 41
0 2 3 4 5 6
[——

|

Posicién correcta
del pivote

FIGURA 9.5 Acomodo del pivote
(a) Pivote = 23 y (b) Pivote = 12

Es posible plantear algunas variantes de este método, aplicando distintos criterios
para elegir el pivote. Intente buscar y probar otras alternativas para la seleccién

de este elemento.

Este algoritmo es el mas rdpido de los conocidos hasta el momento. Sin embargo,
si el arreglo ya estuviera ordenado o estuviera ordenado en orden inverso se per-

derfa gran parte de la eficiencia del mismo.

En cuanto al tiempo de ejecucion, en el mejor o en la mayoria de los casos,

queda determinado por la expresion presentada en la férmula 9.3. En el peor

de los casos (por ejemplo si el arreglo ya estd ordenado), con la expresion de la

férmula 9.4.

O(Tam * log Tam)

FOrRMULA 9.3

0(Tam?)

FOrRMULA 9.4

| 466 Capitulo 9. Ordenacién

Con respecto al espacio ocupado por la pila de recursion, en el mejor o en el
promedio de los casos, se representa por medio de la expresion presentada en la
férmula 9.5. En el peor de los casos, con la expresion de la formula 9.6.

O(log Tam)

FormuLA 9.5

0(Tam)

FORMULA 9.6

9.2.2 Método de ordenacién por seleccion

Otra manera de ordenar un conjunto de datos es seleccionar el mas pequefio y
guardarlo en la primera casilla, luego el siguiente mas pequefio y guardarlo en la
segunda casilla y asi sucesivamente hasta el peniltimo elemento (el dltimo ya no
requiere ordenarse).

A continuacién se presenta la clase SeleccionDirecta, en la cual el método orde -
na corresponde al algoritmo de ordenacion por seleccion directa.

/* Clase que implementa el algoritmo de seleccién directa. Es una clase
wderivada de la clase abstracta Ordenador. */
template <class T>
class SeleccionDirecta: public Ordenador<T>
{

public:

void Ordena (Arreglo<T> *);

s

/* Este método ordena los elementos del arreglo buscando el elemento mas
wpequefio e intercambiandolo con el que ocupa la primera posicién del
warreglo. Luego busca el siguiente mas pequefio y lo almacena en la
wsegunda posicidn, y asi hasta que el arreglo queda completamente
=ordenado. */

template <class T>

void SeleccionDirecta<T>::0rdena(Arreglo<T> *Arre)

9.2 Ordenacién interna

467 |

{

int Menor, Ind1, Ind2, Ind3, Tam= Arre->RegresaTam();
for (Ind1= 0; Ind1 < Tam-1; Indi++)

{

Menor= Arre->RegresaValor(Ind1);
Ind2= Ind1;
for (Ind3= Indi1+1; Ind3 < Tam; Ind3++)

if (Arre->RegresaValor(Ind3) < Menor)

Arre->AsignaValor(Ind2, Arre->RegresaValor(Indi));

{

}

Arre->AsignaValor(Ind1, Menor);

Menor= Arre->RegresaValor(Ind3);
Ind2= Ind3;

Considere el arreglo de la figura 9.6, se aplica el método visto para ordenarlo. En
la tabla 9.7 se presentan los cambios que se van realizando en el arreglo a medida
que sus elementos van quedando ordenados. Las casillas que se recuadran son

aquellas cuyos elementos se intercambian y las que se sombrean son aquellas que
quedan ordenadas.

Arre

29

35

18

43

21

16

1

2

3

FIGURA 9.6 Ejemplo de arreglo a ordenar

TABLA 9.7 Seguimiento del método de ordenacién por seleccion directa

Menor | Indl | Ind2 | Ind3 | Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5S]
29 0 0 29 35 18 43 21 16
1
18 2 2
3
4
16 5 5

continiia

| 468

Capitulo 9. Ordenacién

TaBLA 9.7 Continuacién

Menor | Indl | Ind2 | Ind3 | Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]
16 35 18 43 21 29
35 1 1
18 2 2
3
4
5
16 18 35 43 21 29
35 2 2
3
21 4 4
16 18 21 43 35 29
43 3 3
35 4 4
29 5 5
16 18 21 29 35 43
35 4 4
5 5
16 18 21 29 35 43

El nimero de intercambios que se llevan a cabo es igual al nimero de elementos
menos uno, lo cual queda expresado en la férmula 9.7.

Total Intercambios = Tam -1

FormuLA 9.7

Este método realiza el mismo nimero de comparaciones que el de intercambio
directo, es decir Tam * (Tam - 1)/2, por lo tanto se puede decir que el tiempo de
ejecucion del algoritmo es:

9.2 Ordenacién interna

469 |

0(Tam?)

FOrRMULA 9.8

9.2.3 Método de ordenacion por insercion

La ordenacion por insercion consiste en tomar un elemento ¢ insertarlo en el
lado izquierdo del arreglo que ya se encuentra ordenado. El proceso empieza a
partir de la segunda casilla y se aplica hasta el dltimo elemento. Existen algunos
métodos que se basan en esta idea:

¢ Insercion directa
¢ Insercién binaria
e Shell

Método de insercion directa

Este método ordena el arreglo a partir del segundo elemento, insertandolo en el
lado izquierdo que ya estd ordenado (la primera vez s6lo se ordena con respecto
al primer elemento). Luego de la primera iteracion se tienen dos elementos orde-
nados y por lo tanto el tercer valor se inserta en la posicidon que le corresponda,
de tal manera que el orden de los dos primeros elementos no se altere. Se repite
el proceso hasta el valor Tam-1.

A continuacion se presenta la clase InsercionDirecta, en la cual el método ordena
corresponde al algoritmo de ordenacién por insercion directa.

/* Clase para implementar el algoritmo de insercidén directa. Es una cla-
=se derivada de la clase abstracta Ordenador. */

template <class T>

class InsercionDirecta: public Ordenador<T>

public:
void Ordena (Arreglo<T> *);

b

/* Este método ordena los elementos del arreglo insertando cada elemento
wen la parte izquierda del arreglo, asumiendo que la misma ya esta
=ordenada y por lo tanto sin alterar dicho orden. */

template <class T>

void InsercionDirecta<T>::0Ordena(Arreglo<T> *Arre)

| 470 Capitulo 9. Ordenacién

{
int Auxiliar, Indice, IndAux, Tam= Arre->RegresaTam();
for (Indice= 1; Indice < Tam; Indice++)
{
Auxiliar= Arre->RegresaValor(Indice);
IndAux= Indice - 1;
while ((IndAux >= 0) &% (Auxiliar < Arre->RegresaValor(IndAux)))
{
Arre->AsignaValor(IndAux+1, Arre->RegresaValor(IndAux));
IndAux--;
}

Arre->AsignaValor (IndAux+1, Auxiliar);

Considere el arreglo de la figura 9.6, se aplica el algoritmo de insercion directa
para ordenarlo. La tabla 9.8 presenta los cambios que se van realizando en el
arreglo a medida que sus elementos van quedando ordenados. Las casillas que se
recuadran son las que se modifican, y se sombrean las que quedan ordenadas. En
la primera iteracion quedan ordenadas las casillas O y la 1, en la segunda, las tres
primeras y asi sucesivamente hasta que en la iteracién Tam-1 quedan las Tam casi-
llas ordenadas.

TaBLA 9.8 Seguimiento del método de ordenacién por insercion directa

Indice |Auxiliar | IndAux Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]

35 0 29 35 18 43 21 16

2 18 1 29 35 35 43 21 16
0 29 29 35 43 21 16

-1 18 29 35 43 21 16

3 43 2 18 29 35 43 21 16
4 21 3 18 29 35 43 43 16
2 18 29 35 35 43 16

1 18 29 29 35 43 16

0 18 21 29 35 43 16

5 16 4 18 21 29 35 43 43

continiia

9.2 Ordenacién interna

471 |

TaBLA 9.8 Continuacion

Indice |Auxiliar| IndAux Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]
3 18 21 29 35 35 43
2 18 21 29 29 35 43
1 18 21 21 29 35 43
0 18 18 21 29 35 43
-1 16 18 21 29 35 43

Este método, en el peor de los casos, realiza una comparacién en la primera itera-

cidn, en la segunda lleva a cabo dos y asi hasta hacer (Tam -1) comparaciones en

la dltima pasada. Por lo tanto se tienen 1+ 2 + ... + (Tam -1) comparaciones que

es igual a:

Total comparaciones = Tam * (Tam -1) /2

FormMuLA 9.9

Si se considera que en cada pasada, en promedio, se compara la mitad de los
nimeros antes de encontrar el lugar de insercidn, se debe dividir a la expresion
anterior entre 2 para obtener el nimero promedio de comparaciones, quedando:

Total comparaciones = Tam * (Tam -1) /4

FOorMuLA 9.10

Con respecto al tiempo promedio de ejecucion, puede representarse por medio de

la expresion:

0(Tam?)

FormuLA 9.11

| 472

Capitulo 9. Ordenacién

Método de insercion binaria

El método de insercién binaria es una mejora del anterior. En este caso se reali-

za buisqueda binaria para encontrar la posicion que le corresponde al elemento a
ordenar en la parte izquierda del arreglo. Es decir, cuando se toma el elemento i y
se busca la posicion correcta en la que debe insertarse, se usa la biisqueda binaria
en lugar de la secuencial (ambos métodos de buisqueda se estudian en el préximo
capitulo). De esta manera se aprovecha que los elementos que se encuentran a la

izquierda del analizado ya estdn ordenados.

A continuacién se presenta la clase InsercionBinaria, en la cual el método orde-
na corresponde al algoritmo de ordenacion por insercion binaria.

/* Clase para implementar el algoritmo de ordenacién por insercidn
=pinaria. Es una clase derivada de la clase abstracta Ordenador. */
template <class T>
class InsercionBinaria: public Ordenador<T>
{
public:
void Ordena (Arreglo<T> *);

h

/* Este método ordena los elementos del arreglo, insertando a cada uno
=de ellos en la parte izquierda del mismo, asumiendo que se encuentra
wordenado. Utiliza blUsqueda binaria para encontrar la posicién que le
=corresponde dentro de la parte ya ordenada del arreglo. */
template <class T>
void InsercionBinaria<T>::0Ordena(Arreglo<T> *Arre)
{
int Auxiliar, Ind1, Ind2, Izq, Der, Medio, Tam= Arre->RegresaTam();
for (Ind1= 1; Ind1 < Tam; Indi++)

{
Auxiliar= Arre->RegresaValor(Ind1);
Izg= 0;
Der= Ind1-1;
while (Izq <= Der)
{

Medio= int((Izq + Der)/2);

if (Auxiliar <= Arre->RegresaValor(Medio))
Der= Medio - 1;

else
Izgq= Medio + 1;

9.2 Ordenacién interna

473 |

Ind2= Ind1-1;
while (Ind2 >= Izq)

{

Arre->AsignaValor(Ind2+1, Arre->RegresaValor(Ind2));
Ind2--;

}

Arre->AsignaValor(Izq, Auxiliar);

Considere el arreglo de la figura 9.7, se aplica el ultimo algoritmo visto para or-
denarlo. La tabla 9.9 presenta los cambios que se van realizando en el arreglo a
medida que sus elementos van quedando ordenados. Se recuadran las celdas cu-
yos contenidos van actualizdndose y, al final de cada iteracién, se sombrea la
porcién del arreglo que queda ordenada. Los valores que va tomando la variable
Medio son las posiciones de los elementos contra los que se compara el dato a
ordenar. Como se puede apreciar en la tabla, no se compara con todos los que
estdn a su izquierda, lo cual es resultado de usar la buisqueda binaria.

Arre

29

35

18

43

21

16

1

2

3

FIGURA 9.7 Ejemplo de arreglo a ordenar

TaBLA 9.9 Seguimiento del método de ordenacién por insercion binaria

Indl | Auxiliar | Izq | Der | Medio |Ind2|Arre[0]|Arre[1]|Arre[2] | Arre[3]|Arre[4] | Arre[5]
1 35 0 0 0 29 35 18 43 21 16
1 0 29 35 18 43 21 16
2 18 0 1 0
-1 1 29 35 35 43 21 16
0 29 29 35 43 21 16
-1 18 29 35 43 21 16
3 43 0 2 1 18 29 35 43 21 16

continiia

| 474 Capitulo 9. Ordenacién

TaBLA 9.9 Continuacién

Indl| Auxiliar | Izq | Der | Medio |Ind2|Arre[0]| Arre[1]|Arre[2]|Arre[3]|Arre[4]| Arre[5]

2 2 18 29 35 43 21 16

3 2 18 29 35 43 21 16

4 21 0 3 1 18 29 35 43 21 16
1 0 0 18 29 35 43 21 16

3 18 29 35 43 43 16

2 18 29 35 35 43 16

1 18 29 29 35 43 16

0 18 21 29 35 43 16

5 16 0 4 2 18 21 29 35 43 16
1 0 18 21 29 35 43 16

-1 4 18 21 29 35 43 43

3 18 21 29 35 35 43

2 18 21 29 29 35 43

1 18 21 21 29 35 43

0 18 18 21 29 35 43

-1 16 18 21 29 35 43

En esta variante del método de insercion, el nimero de intercambios no se al-
tera, por lo tanto el tiempo promedio de ejecucién es igual al presentado en la
féormula 9.11. Con respecto al nimero de comparaciones, realiza la mitad por
usar busqueda binaria. Por lo tanto, el total de comparaciones resulta igual

al caso promedio del método de insercién analizado en la seccidn anterior
(formula 9.10).

Método de shell

Este método es otra variante mejorada del método de insercion directa. La idea
de insertar un elemento en una posicioén de tal forma que el arreglo vaya quedan-
do ordenado se mantiene, sin embargo, en este método los elementos a comparar
se seleccionan con un intervalo que se reduce en cada iteracion. Por ejemplo, la

9.2 Ordenacién interna 475 |

primera vez el rango es de Tam/2 posiciones, luego Tam/4, después Tam/8 y asi
hasta obtener un valor de 1. Observe cémo en el siguiente ejemplo se va redu-
ciendo el intervalo de los elementos a comparar. La primera vez, como Tam es 18
se compara el valor de la posicién O con el de la posicién 9, el de la 1 con el de
la 10 y asi hasta el final. En cada caso, dependiendo de la comparacion, se hace
el intercambio correspondiente. Si hubo al menos un intercambio entonces se
comparan nuevamente los contenidos de dichas casillas para asegurar que dichos
elementos queden ordenados. La segunda vez, luego de reducir el tamafio del in-
tervalo en 2, se compara el valor de la casilla 0 con el de la 4, el de la 1 con el de
la 5 y asf hasta el final. El proceso se repite hasta que los elementos a comparar
(e intercambiar si correspondiera) ocupan posiciones consecutivas.

Considere el arreglo de 18 elementos que se muestra a continuacién. Sobre el
mismo se aplicara el algoritmo de Shell para ilustrar graficamente su funciona-
miento. Se sombrean las casillas en las cuales se realiz6 algtn intercambio de
contenido.

|23 a{si|o]3]a|17]oo]2|4]67]55]30]s7]70]30]2s]se]
0O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17

Inicialmente se define un intervalo de tamafio igual a 9 (Tam/2). El siguiente arre-
glo muestra el resultado luego de la comparacién e intercambio de los valores 81
con 55y 90 con 28.

|23|14|55|9|32|41|17|28|21|49|67|81|39|87|70|30|90|56|
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

En el siguiente paso, el intervalo se define de tamafio igual a 4 (el valor anterior
se reduce a la mitad). Por lo tanto, se van a comparar (y, si corresponde, inter-
cambiar) los contenidos de las posiciones 0 y 4, 1y 5,2y 6, y asf hasta el final.

| 476 Capitulo 9. Ordenacién

|23|14|55|9|32|41|17|28|21|49|67|81|39|87|70|30|90|56|
0 1 2 3 4 5 6 7 0 11 12 13 14 15 16 17

| ;;T | %T

El siguiente arreglo muestra el resultado luego de la comparacién e intercambio
de los valores 55 con 17, 32 con 21, 81 con 30 y 87 con 56.

|23 |14 |17 | 9 |21 |41 |55 |28 |32 |49 |67 |30 |39 |56 |70 |81 |90| 87|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

En el siguiente paso, el intervalo se define de tamaio igual a 2 (el valor anterior
se reduce a la mitad). Ahora se van a comparar (y, si corresponde, intercambiar)
los contenidos de las posiciones 0y 2, 1y 3,2y 5, y as{ hasta el final.

\ Y Y Y A Y
|23|14|17|9|21|41|55|28|32|49|67|30|39|56|70|81|90|87|

RS A R R e A

El siguiente arreglo muestra el resultado luego de la comparacion e intercambio
de los valores 23 con 17, 14 con 9, 41 con 28, 55 con 32, 49 con 30 y 67 con 39.

[17] 9 [21[14]23]|28[32[30[39]41|55[49][67][56]70]381]9 |87]
0 1 2 3 4 5 6 7 8 9 10 1l 12 13 14 15 16 17

En el siguiente paso, el intervalo se define de tamafio igual a 1 (el valor anterior
se reduce a la mitad). Por lo tanto, se comparan (y, si corresponde, intercambian)
elementos consecutivos.

9.2 Ordenacién interna

477 |

Y

Y

4 ((\ A
| 17 | 9 | 21 | 14 | 23 | 28 | 32 | 30 | 39 | 41 | 55 | 49 | 67 | 56 | 70 | 81 | 90 | 87 |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I O A O OO

15 16 17

!

El siguiente arreglo muestra el resultado luego de la comparacidn e intercambio
de los valores 17 con 9, 21 con 14, 32 con 30, 55 con 49, 67 con 56, 90 con 87 y

17 con 14.

|9|14|17|21|23|28|30|32|39|41|49|55|56|67|70|81|87|90|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17

A continuacion se presenta la clase shell, en la cual el método ordena correspon-

de al algoritmo de ordenacién con el mismo nombre.

=w(Clase derivada de la clase abstracta Ordenador. */
template <class T>
class Shell: public Ordenador<T>
{
public:
void Ordena (Arreglo<T> *);

I

/* Este método ordena los elementos del arreglo. */
template <class T>
void Shell<T>::0rdena(Arreglo<T> *Arre)
{
int Intervalo, Indice, Bandera, Tam= Arre->RegresaTam();
Intervalo= Tam;
while (Intervalo > 1)
{
Intervalo= int(Intervalo/2);
Bandera= 1;
while (Bandera)
{
Bandera= 0;
Indice= 0;
while ((Indice + Intervalo) < Tam)
{
if (Arre->RegresaValor(Indice) >
=Arre->RegresaValor(Indice + Intervalo))

/* Clase para implementar el algoritmo de ordenaci6n llamado Shell.

| 478 Capitulo 9. Ordenacién

{
Intercambia(Indice, Indice + Intervalo, Arre);
Bandera= 1;

}

Indice++;

}

La eficiencia de este método resulta dificil de analizar teéricamente. Algunos au-
tores sefialan rangos desde 0(Tam®/2) hasta 0(Tam 7/6) y otros una eficiencia del or-
den de o(Tam * (log Tam)2).

Considere el arreglo de la figura 9.8, se aplica el algoritmo de Shell para ordenarlo.
La tabla 9.10 presenta los cambios que se van realizando en el mismo a medida
que sus elementos van quedando ordenados. Se sombrean las casillas cuyos conteni-
dos se modifican.

Arre

29 35 18 43 21 16

0 1 2 3 4 5

FIGURA 9.8 Ejemplo de arreglo a ordenar

TaBLA 9.10 Seguimiento del método de ordenacion Shell

Intervalo | Bandera | Indice Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]
29 35 18 43 21 16
3 1 29 35 18 43 21 16
0 0
1 29 21 18 43 35 16
1 2 29 21 16 43 35 18
3
0 0 29 21 16 43 35 18
1 29 21 16 43 35 18

continiia

9.2 Ordenacion interna

479 |

TaBLA 9.10 Continuacion

Intervalo | Bandera | Indice Arre[0] | Arre[1] | Arre[2] | Arre[3] | Arre[4] | Arre[5]
2 29 21 16 43 35 18
3
1 1

0 0 21 29 16 43 35 18

1 1 21 16 29 43 35 18

1 2 21 16 29 43 35 18
3 21 16 29 35 43 18
4 21 16 29 35 18 43
5

0 0 16 21 29 35 18 43

1 1 16 21 29 35 18 43
2 16 21 29 35 18 43
3 16 21 29 18 35 43

1 4 16 21 29 18 35 43
5 16 21 29 18 35 43

0 0 16 21 29 18 35 43
1 16 21 29 18 35 43
2 16 21 18 29 35 43

1 3 16 21 18 29 35 43
4 16 21 18 29 35 43
5 16 21 18 29 35 43

0 0 16 18 21 29 35 43

1 1 16 18 21 29 35 43
2 16 18 21 29 35 43
3 16 18 21 29 35 43
4 16 18 21 29 35 43
5 16 18 21 29 35 43

0 0 16 18 21 29 35 43

| 480

Capitulo 9. Ordenacién

A continuacidn se presenta la plantilla de la clase arreglo que se utiliz6 en todos los
métodos de ordenacién estudiados en este capitulo. Si el tipo T utilizado para darle
valor a la plantilla fuera una clase, entonces en dicha clase se deberia sobrecargar el
operador <<y el operador >> para que los objetos pudieran leerse y escribirse direc-
tamente. Asimismo, deberian sobrecargarse los operadores relacionales <, > y == para
que los objetos pudieran compararse tal como lo establecen los métodos vistos.

Programa 9.1

/* Se define una constante que representa el numero maximo de elementos
wque puede almacenar el arreglo. */
#define MAX 100

/* Se define la plantilla de la clase Arreglo con todos sus atributos y
wnétodos. Se asume que no existe orden entre los elementos del arreglo. */
template <class T>
class Arreglo
{
private:
T Datos[MAX];
int Tam;
public:
Arreglo();
int RegresaTam();
T RegresaValor(int);
void AsignaValor(int, T);
void Lectura();
void Escribe();

b

/* Declaracién del método constructor. Inicializa el nlUmero actual de
welementos en 0. */

template <class T>

Arreglo<T>::Arreglo()

{

}

/* Método que regresa el total de elementos almacenados en el arreglo. */
template <class T>
int Arreglo<T>::RegresaTam()

{

Tam= 0;

return Tam;

/* Método que regresa el contenido de la casilla identificada con el
=wvalor de Indice. */

template <class T>

T Arreglo<T>::RegresaValor(int Indice)

9.2 Ordenacién interna

481 |

{
}

return Datos[Indice];

/* Método que asigna el contenido de Valor a la casilla indicada por
wIndice. */

template <class T>

void Arreglo<T>::AsignaValor(int Indice, T Valor)

Datos[Indice]= Valor;

}

/* Método que lee del teclado y almacena en el arreglo un conjunto de
=valores. */
template <class T>
void Arreglo<T>::Lectura()
{
int Indice;
/* Lectura del nimero de elementos a guardar en el arreglo. Se valida
wque el valor dado por el usuario sea menor o igual que el maximo
wpermitido. */
do {
cout<<"\n\n Ingrese total de elementos: ";
cin>> Tam;
} while (Tam < 1 || Tam > MAX);

/* Lectura de valores para cada una de las Tam casillas del arreglo. */
for (Indice= 0; Indice < Tam; Indice+t)

{

cout<<"\nIngrese el "<<Indice + 1<<" dato: 3
cin>> Datos[Indice];

}

/* Método que despliega los valores almacenados en las casillas del
warreglo. */

template <class T>

void Arreglo<T>::Escribe()

{
int Indice;
if (Tam > 0)
{

cout<<"\n\n";
for (Indice= 0; Indice < Tam; Indice++)
cout<< '\t' << Datos[Indice];
cout<<"\n\n";
}
else
cout<< "\n No hay elementos almacenados.";

| 482

Capitulo 9. Ordenacién

El programa 9.3 presenta parte de un programa de aplicacion de los métodos de
ordenacion estudiados hasta el momento, el cual, utiliza tres librerias, una de
ellas es MetOrdena.h en la cual se guard6 la clase abstracta ordenador y todas sus
clases derivadas, otra es Arreglo.h que corresponde al programa 9.1 y la dltima
Alumno.h en la cual se almacend la clase Alumno que sirve como tipo base para
declarar los elementos del arreglo. Por razones de espacio sélo se incluye la clase
Alumno en el programa 9.2, quedando a cargo de usted la reconstruccion de la li-
breria MetOrdena.h a partir del cédigo de todos los métodos analizados.

Programa 9.2

/* Declaracién de la clase Alumno. Se incluyeron sdélo dos atributos, la
=clave y el nombre del alumno. Se sugiere que usted los complemente. */
class Alumno {
private:

int Clave;

char Nombre[64];
public:

Alumno();

Alumno(int, char *);

int operator > (Alumno);

friend istream &operator >> (istream &, Alumno &);

friend ostream &operator << (ostream &, Alumno &);
s

/* Método constructor por omisidén. */
Alumno: :Alumno()

{}

/* Método constructor con parametros. */
Alumno::Alumno(int Cla, char Nom[])
{
Clave= Cla;
strcpy (Nombre, Nom);
}

/* Sobrecarga del operador > para que un objeto tipo Alumno pueda ser
wcomparado directamente. La comparacioén se realiza s6lo sobre el
=atributo Clave. */
int Alumno::operator > (Alumno ObjAl)
{
if (Clave > ObjAl.Clave)
return 1;
else
return 0;

9.2 Ordenacién interna 483 |

/* Sobrecarga del operador >> para que un objeto tipo Alumno pueda ser
wleido directamente. */
istream &operator >> (istream &Lee, Alumno &0bjAl)

{
cout<<"\n\nIngrese clave del alumno: ";
Lee>>0bjAl.Clave;
cout<<"\n\nIngrese nombre del alumno: ";
Lee>>0bjAl.Nombre;
return Lee;

}

/* Sobrecarga del operador << para que un objeto tipo Alumno pueda ser
=impreso directamente. */
ostream &operator << (ostream &Escribe, Alumno &0bjAl)

{
Escribe<<"\n\nDatos del alumno\n";
Escribe<<"\nClave: "<<ObjAl.Clave;
Escribe<<"\nNombre: "<<ObjAl.Nombre<<"\n";
return Escribe;

}

Programa 9.3

/* Aplicaci6n de los métodos de ordenacidén interna para ordenar un
=arreglo de objetos tipo Alumno. Se leen varios objetos tipo Alumno y
=se almacenan en un arreglo en el orden que se dan, posteriormente se
=ordenan e imprimen. */

/* Libreria que almacena la clase Alumno presentada en el programa 9.2 */
#include "Alumno.h"

/* Libreria que almacena la clase Arreglo presentada en el programa 9.1 */
#include "Arreglo.h"

/* Libreria que almacena la clase abstracta Ordenador y todas sus
wclases derivadas que representan cada uno de los métodos de ordenacion
=estudiados. */

#include "MetOrdena.h"

/* Funcién principal. En este cédigo (parte de una aplicacidn) se
=declara el objeto Orden, de la clase IntercDirectolzq, que representa
wel método de ordenacién por intercambio directo con desplazamiento del
welemento mas pequeio hacia la izquierda. Ademds, se declara un objeto
=de la clase Arreglo usando la clase Alumno. Posteriormente se usa el
wobjeto Orden para ordenar crecientemente el arreglo de alumnos segun
=la clave de los mismos. Por Gltimo, se imprimen los datos del alumno
=con clave mas pequefia. */

| 484 Capitulo 9. Ordenacién

void main()
{
/* Declaracién y lectura del arreglo que almacena objetos tipo
wAlumno. */
Arreglo<Alumno> Escuela;
Escuela.Lectura();
/* Creacion de un objeto de la clase IntercDirectolIzq, el cual se
wysara para ordenar el arreglo de alumnos. */
IntercDirectoIzg<Alumno> Orden;
/* Se aplica el algoritmo de ordenacién sobre el arreglo de alumnos. */
Orden.Ordena(&Escuela);
/* Se imprime el contenido del arreglo una vez ordenado. */
Escuela.Escribe();
/* Impresion de los datos del alumno con clave mas pequefa, por lo
wtanto quedd (luego de la ordenacién) en el primer lugar del arreglo. */
if (Escuela.RegresaTam() != 0)
cout<<"Los datos del primer alumno son:
= "<<Escuela.RegresaValor(0)<<"\n";
}

En este libro se presentaron a cada uno de los algoritmos de ordenacién como
subclases de una clase abstracta. Sin embargo, es posible definirlos como méto-
dos dentro de la clase Arreglo. El programa 9.4 presenta parte de esta clase con
algunos de los métodos estudiados. Por razones de espacio, se incluyen sélo los
prototipos de los métodos de la clase Arreglo, mismos que fueron presentados en
el programa 9.1.

Programa 9.4

/* Se define la plantilla de la clase Arreglo con todos sus atributos y
wnétodos. Se asume que no existe orden entre los elementos del arreglo.
=Se incluyen algunos de los algoritmos de ordenacion estudiados como
wmétodos de esta clase. */

/* Se define una constante que representa el numero maximo de elementos
=que puede almacenar el arreglo. */

#define MAX 100

9.2 Ordenacién interna

485 |

template <class T>

class Arreglo

{

private:
T Datos[MAX];
int Tam;
public:

Arreglo();
int RegresaTam();
T RegresaValor(int);
void AsignaValor(int, T);
void Intercambia(int, int);
void IntercDirectoIzq();
void InsercionDirecta();
void SeleccionDirecta();
void QuickSort();
void Reduce(int, int);
void Lectura();
void Escribe();

s

/* Declaracién del método constructor. Inicializa el numero actual de
welementos en 0. */
template <class T>
Arreglo<T>::Arreglo()
{
Tam=0;

}

/* Método auxiliar que intercambia los contenidos de dos elementos del
warreglo. */

template <class T>

void Arreglo<T>::Intercambia(int Ind1, int 1Ind2)

{
T Auxiliar;
Auxiliar= Datos[Ind1];
Datos[Ind1]= Datos[Ind2];
Datos[Ind2]= Auxiliar;

}

/* Método que ordena los elementos del arreglo usando el algoritmo de
wintercambio directo con desplazamiento del elemento mas pequefio hacia
wel extremo izquierdo. */

template <class T>

void Arreglo<T>::IntercDirectoIzq()

| 486

Capitulo 9. Ordenacién

{
int Ind1, Ind2;
for (Indi= 1; Indi1< Tam; Indi++)
for (Ind2= Tam-1; Ind2 >= Indi; Ind2--)
if (Datos[Ind2-1] > Datos[Ind2])
Intercambia(Ind2-1, Ind2);
}

/* Método que ordena los elementos del arreglo usando el algoritmo de
winsercién directa. */

template <class T>

void Arreglo<T>::InsercionDirecta()

{
int Auxiliar, Indice, IndAux;
for (Indice= 1; Indice < Tam; Indice++)
{
Auxiliar= Datos[Indice];
IndAux= Indice - 1;
while ((IndAux >= 0) &% (Auxiliar < Datos[IndAux]))
{
Datos[IndAux+1]= Datos[IndAux];
IndAux--;
}
Datos[IndAux+1]= Auxiliar;
I3
I3

/* Este método ordena los elementos del arreglo utilizando el algoritmo
wde seleccién directa. */
template <class T>
void Arreglo<T>::SeleccionDirecta()
{
int Menor, Indi1, Ind2, Ind3;
for (Indi= @; Ind1 < Tam-1; Indi++)

{
Menor= Datos[Ind1];
Ind2= Ind1;
for (Ind3= Indi1+1; Ind3 < Tam; Ind3++)
if (Datos[Ind3] < Menor)
{
Menor= Datos[Ind3];
Ind2= Ind3;
I3
Datos[Ind2]= Datos[Ind1];
Datos[Ind1]= Menor;
I3

9.2 Ordenacién interna

487 |

/* Este método ordena los elementos del arreglo utilizando el algoritmo
= QuickSort. */
template <class T>
void Arreglo<T>::QuickSort()
{
Reduce (0, Tam-1);
}

/* Método auxiliar del algoritmo QuickSort. Las parametros Inicio y Fin
wrepresentan los extremos del intervalo en el cual se estd ordenando. */
template <class T>

void Arreglo<T>::Reduce(int 1Inicio, int Fin)

{
if (Tam > 0)
{
int 1Izq, Der, Posic, Bandera;
Izg= Inicio;
Der= Fin;
Posic= Inicio;
Bandera= 1;
while (Bandera)
{
Bandera= 0;
while ((Datos[Posic] <= Datos[Der]) && (Posic != Der))
Der--;
if (Posic != Der)
{
Intercambia(Posic, Der);
Posic= Der;
while ((Datos[Posic] >= Datos[Izq]) && (Posic != Izq))
Izq++;
if (Posic != Izq)
{
Bandera=1;
Intercambia(Posic, Izq);
Posic= Izq;
I3

}
}
if ((Posic-1) > Inicio)
Reduce(Inicio, Posic-1);
if (Fin > (Posic+1))
Reduce (Posic+1, Fin);

| 488 Capitulo 9. Ordenacién

9.3 Ordenacion externa

La ordenacion externa hace referencia a ordenar un conjunto de datos que se
encuentran almacenados en algin dispositivo en memoria secundaria o auxiliar.
En este libro nos enfocaremos a ordenar datos que se encuentran almacenados en
archivos. El resultado de aplicar un método de ordenacién a un archivo es que to-
dos sus elementos quedan ordenados de manera creciente o de manera decreciente.

¢ Creciente: dato, = dato, = ... = dato, (el primer dato es menor o igual que el
segundo, éste es menor o igual que el tercero y asi sucesivamente hasta
el ultimo dato).

* Decreciente: dato, = dato, = ... = dato_ (el primer dato es mayor o igual
que el segundo, éste es mayor o igual que el tercero y asi sucesivamente
hasta el dltimo dato).

Los métodos utilizados para ordenar a los elementos de un archivo son:

TaBLA 9.11 Métodos de ordenaciéon

Métodos de ordenacion externa

Mezcla directa

Mezcla equilibrada

Para programar los métodos de ordenacion externa en el lenguaje C++ se defini6
una clase base abstracta y dos clases derivadas. Cada una de las clases derivadas
representa uno de los métodos que se estudiardn en este capitulo. La figura 9.9
presenta un esquema de las clases mencionadas.

Ordenador(T)

virtual void Ordena()

N

MezclaDirecta(T) MezclaEquilibrada(T)

void Ordena() void Ordena()

FIGURA 9.9 Esquema de clases

9.3 Ordenacién externa

489 |

La clase Base abstracta se programa como se muestra a continuacion. La misma
tiene un método virtual puro el cual se redefinird en cada subclase dependiendo
del método de ordenacién que se esté implementando.

/* Clase abstracta Ordenador, se utiliza para generar clases derivadas
=wque representan cada uno de los métodos de ordenacidén externa
westudiados. */
template <class T>
class Ordenador
{

public:

virtual void Ordena (char *) = 0;

b

9.3.1 Mezcla directa

Este método es muy sencillo y consiste en dividir el archivo en particiones y lue-
go volver a generar el archivo a partir de estas particiones pero logrando que los
elementos que componen a cada una de ellas queden ordenados. Este proceso se
repite, pero ahora con particiones de mayor tamafo. De esta manera, el archivo
va quedando ordenado por tramos hasta llegar a que todos sus elementos queden
ordenados entre si.

Para ayudar a entender mds claramente como funciona este método se presenta el
siguiente ejemplo. Suponga que se tiene un archivo Arch que almacena las claves:

Arch: 18,23, 12, 45, 56, 33, 20, 16, 89, 34, 75, 44, 31, 14, 67, 28

1. Se elige un tamaio de particion igual a 1, formando dos archivos a partir de
Arch de la siguiente manera:

Arch 1: 18,12, 56, 20, 89, 75, 31, 67
Arch 2: 23, 45,33, 16, 34, 44, 14, 28

Luego de la particion, se vuelve a formar el archivo pero logrando que se
tenga una secuencia de dos elementos ordenados entre si:

arch: [18, 23, [12, 45|, B3, 56| [16, 20|34, 89] 44, 75|14, 31|28, 67|

> >

2. En la segunda iteracion se elige un tamafio de particién igual a 2, formando
dos archivos a partir de Arch de la siguiente manera:

| 490

Capitulo 9. Ordenacién

Arch 1: |18, 23133, 56| 34, 89| |14, 31|
Arch 2: [12, 45,16, 20| 44, 75|28, 67|

Luego de la particidn, se vuelve a formar el archivo pero logrando que se
tenga una secuencia de cuatro elementos ordenados entre si:

Arch: (12, 18, 23, 45],[16, 20, 33, 56|,/34, 44, 75, 89|, [14, 28, 31, 67|

3. En la siguiente iteracion se elige un tamafio de particién igual a 4, formando
dos archivos a partir de Arch de la siguiente manera:

Arch 1: |12, 18, 23, 45],|34, 44, 75, 89|
Arch 2: |16, 20, 33, 56/,/14, 28, 31, 67|

’

’

Nuevamente se vuelven a unir los dos archivos resultantes para formar el ar-
chivo original pero ahora con una secuencia de ocho elementos ordenados
entre si:

Arch: (12, 16, 18, 20, 23, 33, 45, 56/, |14, 28, 31, 34, 44, 67, 75, 89

4. En la siguiente iteracion se elige un tamafo de particién igual a 8, formando
dos archivos a partir de Arch de la siguiente manera:

Arch 1: [12, 16, 18, 20, 23, 33, 45, 56 |
Arch 2: (14,28, 31, 34, 44, 67, 75, 89|

Por dltimo se unen los dos archivos resultantes para formar el archivo origi-
nal con todos sus elementos ordenados:

Arch: |12, 14, 16, 18, 20, 23, 28, 31, 33, 34, 44, 45, 56, 67, 75, 89|

Seguramente, en la préctica, el archivo almacenard datos mas complejos que nu-
meros enteros, sin embargo por razones de simplicidad se mostré el ejemplo sélo
con nimeros. A continuacién se presenta, utilizando el lenguaje C++, la clase
MezclaDirecta, que es una clase derivada de la clase abstracta Ordenador, que im-
plementa este método.

/* Declaracién de la clase derivada MezclaDirecta, en la cual el método
= 0rdena se define con el algoritmo correspondiente al método de
wordenacién externa llamado mezcla directa. */

template <class T>

class MezclaDirecta: public Ordenador <T>

9.3 Ordenacién externa

491 |

{
public:
void Ordena (char *);
void Divide (fstream , fstream *, fstream *, int);
void Mezcla (fstream *, fstream , fstream , int);
b

/* Método de ordenaciéon de la clase MezclaDirecta. Este método se apoya
wen otros dos: Divide y Mezcla, los cuales implementan las dos
woperaciones analizadas en el ejemplo anterior. Recibe como parametro
=ecl nombre del archivo a ordenar. */

template <class T>

void MezclaDirecta <T>::0Ordena (char *NomArch)

{
fstream Arch, Archil, Arch2;
int Partic, Maximo;
Arch.open(NomArch, ios::in |ios::out);
Arch.seekg (0, ios::end);
/* Calcula el total de datos guardados en el archivo. */
Maximo= (int) (Arch.tellg())/sizeof(int);
Partic= 1;
while (Partic < Maximo)
{
Divide(Arch, &Archi, &Arch2, Partic);
Mezcla(&Arch, Archi1, Arch2, Partic);
Partic= Partic * 2;
}
Arch.close();
}

/* Método auxiliar que parte el archivo a ordenar en dos archivos, de

wacuerdo a un tamano de particién que recibe como parametro, junto con

wel archivo original y los dos que formara. */

template <class T>

void MezclaDirecta <T>::Divide (fstream Arch, fstream *Archi,
fstream *Arch2, int Partic)

{

int Cont, Dato;
Arch.seekg (0, ios::beg);

Arch1->open("MezclaDirAux1.dat", ios::out);
Arch2->open("MezclaDirAux2.dat", ios::out);

while (!Arch.eof())

| 492

Capitulo 9. Ordenacién

{
Cont= 0;
while ((Cont < Partic) && (!Arch.eof()))
{
Arch.read((char *) &Dato,sizeof (Dato));
if (!Arch.eof())
Arch1->write((char *)&Dato, sizeof(Dato));
cont++;
}
Cont= 0;
while ((Cont < Partic) && (!Arch.eof()))
{
Arch.read((char *) &Dato, sizeof(Dato));
if (!Arch.eof())
Arch2->write((char *)&Dato, sizeof(Dato));
cont++;
}
}

Arch1->close();
Arch2->close();

}

/* Método auxiliar que mezcla dos archivos que recibe como parametro y
=genera otro el cual va quedando ordenado. */
template <class T>
void MezclaDirecta <T>::Mezcla (fstream *Arch, fstream Archi, fstream
Arch2, int Partic)
{

int Datol, Dato2, Parti1, Part2, Bandi, Band2;

Arch->seekp (0, ios::beg);
Arch1.open("MezclaDirAux1.dat", ios::in);
Arch2.open("MezclaDirAux2.dat", ios::in);
Bandi= 1;
Band2= 1;
Archi.read((char *)&Datol, sizeof(Datol));
if (!Archi.eof())
Bandi= 0;
Arch2.read((char *)&Dato2,sizeof (Dato2));
if (!Arch2.eof())
Band2= 0;
while (((!Archi.eof()) Il (!Band1)) &k ((!Arch2.eof()) Il (!Band2)))
{
Parti= 0;
Part2= 0;
while (((Parti1 < Partic) && (!Band1)) &% ((Part2 < Partic)
=g&& (!Band2)))

9.3 Ordenacién externa

493 |

{
if (Datol <= Dato2)
{
Arch->write((char *)&Datol, sizeof (Datol));
Bandi= 1;
Parti++;
Archi.read((char *)&ato1, sizeof(Datol));
if (!Archi.eof())
Bandi= 0;
y
else
{
Arch->write((char *)&Dato2, sizeof(Dato2));
Band2= 1;
Part2+t;
Arch2.read((char *)&Dato2, sizeof(Dato2));
if (!Arch2.eof())
Band2= 0;
}
}
while ((Part1 < Partic) && (!Bandil))
{
Arch->write((char *)&Dato1, sizeof (Datol));
Bandi= 1;
Parti++;

Arch1.read((char *)&Dato1, sizeof(Datol));
if (!Archi.eof())

Bandi= 0;
}
while ((Part2 < Partic) &&% (!Band2))
{
Arch->write((char *) &Dato2, sizeof(Dato2));
Band2= 1;
Part2++;

Arch2.read((char *) &Dato2, sizeof(Dato2));
if (!Arch2.eof())
Band2= 0;
}
}
if (!Band1)
Arch->write((char *)&Dato1, sizeof(Datol));
if (!Band2)
Arch->write((char *)&Dato2, sizeof(Dato2));

Archi.read((char *)&Dato1, sizeof(Datol));
while (!Archi.eof())

| 494 Capitulo 9. Ordenacién

Arch->write((char *)&Dato1, sizeof(Datol));
Archi.read((char *)&Datol, sizeof (Datol));
}

Arch2.read((char *)&Dato2, sizeof(Dato2));
while (!Arch2.eof())
{
Arch->write((char *)&Dato2, sizeof (Dato2));
Arch2.read((char *)&Dato2, sizeof(Dato2));
}

Archi.close();
Arch2.close();

Si los elementos a ordenar son objetos, se requiere sobrecargar los operadores re-
lacionales usados en este algoritmo. La sobrecarga debe incluirse en la clase que
se usard como tipo para los elementos del archivo.

9.3.2 Mezcla equilibrada

Este método es una version mejorada del anterior. La mejora consiste en que el
archivo se divide teniendo en cuenta las secuencias ordenadas de elementos que
tuviera, y no un tamafio establecido por niimero de elementos. Una vez realizada
una particion inicial de los datos en dos archivos auxiliares, se comienza a unir
las particiones y a guardarlas en otros dos archivos formando secuencias cada vez
mas grandes de elementos ordenados. El proceso termina cuando todos los ele-
mentos a ordenar quedan en un mismo archivo, luego de efectuar una particién y
unién de elementos. A continuacién se muestra un ejemplo para que pueda enten-
der mas facilmente la 16gica del mismo. Se tiene el archivo:

Arch: 18, 23, 12, 45, 56, 33, 20, 16, 89, 34, 75, 44, 31, 14, 67, 28
Y se tienen tres archivos auxiliares: Arch1, Arch2 y Arch3.

1. Se realiza una particién inicial de los elementos del archivo que se quiere
ordenar, de tal manera que los mismos se distribuyan en dos archivos auxi-
liares de acuerdo al orden que exista entre ellos. Los archivos Arch2 y Arch3
quedan asf:

9.3 Ordenacién externa 495 |

arch2: [18, 23],[33],[16, 89],[44],[14, 67|
arch3: [12, 45, 56],[20], 34, 75).[31],[28]

Luego se unen las particiones y se van formando otros dos archivos con el
resultado de esta operacion. En estos archivos van quedando secuencias més
grandes de elementos ordenados.

Arch: |12, 18, 23, 45, 56|, |16, 34, 75, 89

arent: 20, 33][31, 44]

2. Se realiza la mezcla de dos particiones (una de cada archivo) y se van gene-
rando dos archivos auxiliares con secuencias mas grandes de elementos or-
denados. Los archivos Arch2 y Arch3 quedan asi:

arch2: [12, 18, 20, 23, 33, 45, 56,14, 28, 67|
archa: [16, 31, 34, 44,75, 89 |

14, 28, 67|

> B

B

3. Nuevamente las particiones de cada uno de los archivos se mezclan y se re-
definen los primeros dos archivos: Arch y Archt.

arch: [12, 16, 18, 20, 23, 31, 33, 34, 44, 45, 56, 75, 89|

Archi:

4. Se lleva a cabo la mezcla de las particiones existentes dando como resultado
los archivos Arch2 y Arch3 con la informacién distribuida entre ellos de la
siguiente manera:

archz: [12, 14, 16, 18, 20, 23, 28, 31, 33, 34, 44, 45, 56, 67, 75, 89|

Arch3:

Como Arch3 queda vacio, el proceso concluye con éxito: el archivo quedé orde-
nado. A continuacion se presenta la codificacion de la clase MezclaEquilibrada,
derivada de la clase abstracta ordenador, la cual implementa el algoritmo descrito.

/* Declaracidén de la clase derivada MezclaEquilibrada, en la cual el
wmnétodo Ordena se define con el algoritmo correspondiente al método de
wordenacion externa llamado mezcla equilibrada. En la clase se incluyen
=algunos métodos auxiliares que permiten realizar las particiones y
=agrupamientos de los elementos del archivo. */

| 496

Capitulo 9. Ordenacién

{

b

{

template <class T>
class MezclaEquilibrada: public Ordenador <T>

public:

void Ordena (char *);

void DividePrim (char *, fstream *, fstream *);

int DivideMezcla (fstream *, fstream *, fstream *, fstream *);
void Escribel (int *, int, fstream *, fstream *, int);

void Escribe2 (int *, int, fstream *, fstream *, int *);

void Escribe3 (int, int, fstream *, fstream *, fstream *, int);

/* Método de ordenacién de la clase MezclaEqulibrada. Este método se
wapoya en otros auxiliares. Recibe como parametro el nombre del archivo
=3 ordenar. */

template <class T>

void MezclaEquilibrada <T>::Ordena(char *NomArch)

int Bandi, Band2;
fstream Arch, Arch1, Arch2, Arch3;

DividePrim(NomArch, &Arch2, &Arch3);

Bandi= 1;
Band2= 1;
do {
if (Band1)
{

Arch.open(NomArch, ios::out);
Archi.open("MezEquili.dat", ios::out);
Arch2.open("MezEquil2.dat", ios::in);
Arch3.open("MezEquil3.dat", ios::in);

Band2= DivideMezcla(&Arch2, &Arch3, &Arch, &Archi);

Bandi= 0;

}

else

{
Arch.open(NomArch, ios::in);
Archi1.open("MezEquill.dat", ios::in);
Arch2.open("MezEquil2.dat", ios::out);
Arch3.open("MezEquil3.dat", ios::out);
Band2= DivideMezcla(&Arch, &Archi, &Arch2, &Arch3);
Bandi= 1;

}

Arch.close();
Archi.close();
Arch2.close();
Arch3.close();

} while (Band2 != 0);

9.3 Ordenacién externa

497 |

/* Método auxiliar que realiza la division inicial del archivo a

=ordenar. */

template <class T>

void MezclaEquilibrada <T>::DividePrim(char *NomArch, fstream *Arch2,
fstream *Arch3)

{
int Dato, DatoAux, Band;
fstream Arch;
Arch.open(NomArch, ios::in);
Arch2->open("MezEquil2.dat", ios::out);
Arch3->open("MezEquil3.dat", ios::out);
Arch.read((char *)&Dato, sizeof(Dato));
Arch2->write ((char *)&Dato, sizeof(Dato));
Band= 1;
DatoAux= Dato;
Arch.read((char *)&ato, sizeof (Dato));
while (!Arch.eof())
{
if (Dato >= DatoAux)
if (Band)
Arch2->write((char *)&Dato, sizeof(Dato));
else
Arch3->write((char *)&Dato, sizeof(Dato));
else
if (Band)
{
Arch3->write((char *)&Dato, sizeof(Dato));
Band= 0;
}
else
Arch2->write ((char *)&Dato, sizeof(Dato));
Band= 1;
}
DatoAux= Dato;
Arch.read((char *)&Dato, sizeof(Dato));
}
Arch.close();
Arch2->close();
Arch3->close();
}

/* Método auxiliar que mezcla dos archivos generando otros dos, que
wtienen un mayor nudmero de elementos ordenados. */
template <class T>
int MezclaEquilibrada <T>::DivideMezcla(fstream *ArchX, fstream
= *ArchY, fstream *Archz,
=fstream *ArchW)

| 498

Capitulo 9. Ordenacién

int Dato1, Dato2, DatoAux, Band= 1, Leel, Lee2;

ArchX->read((char *)&Datol, sizeof (Datol));
ArchY->read((char *)&Dato2, sizeof (Dato2));
if (Datol < Dato2)

DatoAux= Datofl;

else

DatoAux= Dato2;

Leel= 0;
Lee2= 0;
while (((!ArchX->eof()) Il (!Leel)) && (!ArchY->eof()) Il (!Lee2))

{

if (Dato1 < Dato2)
if ((!Leel) && (Dato1 >= DatoAux))

Escribet (&DatoAux, Datol, ArchZ, ArchW, Band);

Lee@l= 13
}
else
if ((!Lee2) && (Dato2 >= DatoAux))
{
Escribel(&DatoAux, Dato2, ArchZ, ArchW, Band);
Lee2= 1;
}
else
{
if (!Leel)
{
Escribe2(&DatoAux, Datol, ArchZ, ArchW, &Band);
Leel= 1;
}
}
else
if ((!Lee2) && (Dato2 >= DatoAux))
{
Escribei (&DatoAux, Dato2, ArchZ, ArchW, Band);
Lee2= 1;
}
else
if ((!Leel) &% (Dato1 >= DatoAux))
{
Escribel (&DatoAux, Datol, ArchZ, ArchW, Band);
Le@i= i}
}
else
if (!Lee2)

{
Escribe2(&DatoAux, Dato2, ArchZ, ArchW, &Band);

Lee2= 1;

9.3 Ordenacién externa

499 |

if (Leet)

{
ArchX->read ((char *)&Datoi1, sizeof(Datol));
if (!ArchX->eof())

Leel= 0;
}
if (Lee2)
{
ArchY->read((char *)&Dato2, sizeof(Dato2));
if (!ArchY->eof())
Lee2= 0;
}

}
if ((Leel) &% (ArchX->eof()))

Escribe3(DatoAux, Dato2, ArchY, ArchZ, ArchW, Band);
if ((Lee2) &% (ArchY->eof()))

Escribe3(DatoAux, Datoi1, ArchX, ArchZ, ArchW, Band);
if (ArchW->tellp() == 0)

return 0;
else

return 1;

}

/* Método auxiliar para guardar la informacién en los archivos de

wsalida. */

template <class T>

void MezclaEquilibrada <T>::Escribei(int *DatoAux, int Dato, fstream
w*ArchZ, fstream *ArchW, int Band)

{
*DatoAux= Dato;
if (Band)
Archz->write ((char *)&Dato, sizeof(Dato));
else
ArchW->write ((char *)&Dato, sizeof(Dato));
}

/* Método auxiliar para guardar la informacidén en los archivos de
=salida. */
template <class T>
void MezclaEquilibrada <T>::Escribe2(int *DatoAux, int Dato, fstream
= *ArchZ, fstream *ArchW, int *Band)
{
*DatoAux= Dato;
if (*Band)
{
ArchW->write ((char *)&Dato, sizeof(Dato));
*Band= 0;

| 500

Capitulo 9. Ordenacién

else

{
Archz->write((char *)&Dato, sizeof (Dato));
*Band= 1;

}

/* Método auxiliar para guardar la informacién en los archivos de
wsalida. */
template <class T>
void MezclaEquilibrada <T>::Escribe3(int DatoAux, int Dato, fstream
w*Arch, fstream *Archz, fstream
= *ArchW, int Band)
{
if (Dato >= DatoAux)
Escribel (&DatoAux, Dato, ArchZ, ArchW, Band);
else
Escribe2(&DatoAux, Dato, ArchZ, ArchW, &Band);
Arch->read((char *)&Dato, sizeof (Dato));
while (!Arch->eof())
{
if (Dato >= DatoAux)
Escribe1 (&DatoAux, Dato, ArchZ, ArchW, Band);
else
Escribe2(&DatoAux, Dato, Archz, ArchW, &Band);

Arch->read ((char *)&Dato, sizeof(Dato));

Si los elementos a ordenar son objetos, se requiere sobrecargar los operadores re-
lacionales usados en este algoritmo. La sobrecarga debe incluirse en la clase que
se usard como tipo para los elementos del archivo.

Ejercicios

1. Probar todas las variantes del método de ordenacidn interna por intercambio
en los siguientes casos:

a) Con un arreglo ordenado.

Ejercicios

501 |

b) Con un arreglo en orden inverso.
¢) Con un arreglo desordenado.
d) Con un arreglo vacio.
e) Con un arreglo desordenado que tiene elementos duplicados.
2. Probar el método de ordenacién interna por seleccién en los siguientes casos:
a) Con un arreglo ordenado.
b) Con un arreglo en orden inverso.
¢) Con un arreglo desordenado.
d) Con un arreglo vacio.
¢) Con un arreglo desordenado que tiene elementos duplicados.

3. Probar todas las variantes del método de ordenacién interna por insercion
en los siguientes casos:

a) Con un arreglo ordenado.

b) Con un arreglo en orden inverso.

¢) Con un arreglo desordenado.

d) Con un arreglo vacio.

e) Con un arreglo desordenado que tiene elementos duplicados.

4. Retome el método de ordenacion interna QuickSort. Reescribalo sin usar re-
cursion. Se sugiere el uso de pilas para ir guardando los extremos de los in-
tervalos pendientes de ordenacion.

5. Retome el método de ordenacién interna QuickSort. Reescribalo utilizando
otras variantes para la eleccion del pivote. Se sugiere probar con el elemen-
to medio. Compare el desempefio de su solucién con la que se dio en este
libro para diferentes tamafios de arreglos.

6. Complete la siguiente tabla con la evaluacién del desempefio (tiempo de
ejecucion y/o nimero de comparaciones y/o nimero de intercambios) de los
métodos de ordenacién para distintos tamafios de arreglos.

| 502 Capitulo 9. Ordenacién

Tam 10 Tam 100 Tam 1000 Tam 10, 000

Intercambio directo con
desplazamiento hacia la
izquierda

Intercambio directo con
desplazamiento hacia la
derecha

Sheker

Intercambio con sefial

QuickSort

Seleccidn directa

Insercién directa

Insercion binaria

Shell

7. Retome la clase Arreglo del programa 9.4. Complétela con los otros algorit-
mos de ordenacién interna estudiados en este capitulo.

8. En el capitulo 4 se defini6 la clase Dinos para representar dinosaurios. Utili-
ce esta clase como tipo base para la plantilla de la clase Arreglo del progra-
ma 9.4. Realice todos los ajustes necesarios para que el arreglo de
dinosaurios quede ordenado segun la clave que los identifica, aplicando
cualquiera de los métodos vistos.

9. Resuelva el problema anterior, pero considerando que la clase Arreglo no
incluye los métodos de ordenacion, sino que los mismos son clases tal como se
presentaron en este capitulo. Por lo tanto, en su solucién tendrd un objeto de
la clase Arreglo que es el que quiere ordenar y otro de alguna de las clases
(IntercDirectolzq, IntercDirectoDer, Sheker, Shell, ...) que representa al
método de ordenacion interna elegido para llevar a cabo la operacién.

10. Considere un archivo de nimeros enteros que representan las claves de cier-
tos productos. Utilice el algoritmo de mezcla directa para ordenarlo.

Ejercicios 503 |

11. Retome el problema anterior, pero ahora utilice el algoritmo de mezcla
equilibrada. ;Noté6 alguna diferencia en el desempeno de los mismos?
(Y si cambia el tamaiio del archivo?

12. Considere la clase Alumno cuya especificacion aparece mas adelante.

a) Desarrolle un programa de captura que lea los atributos de varios
alumnos, y los guarde en un archivo, en el mismo orden que los lee.

b) Utilice el algoritmo de mezcla directa para ordenar el archivo, segtn el
nombre del alumno.

¢) Utilice el algoritmo de mezcla equilibrada para ordenar el archivo,
segtin el nombre del alumno.

d) Compare el desempeiio de los algoritmos utilizados en los incisos
anteriores.

Alumno

Nombre: cadena de caracteres
Carrera: cadena de caracteres
Numero de materias aprobadas: entero

Calificaciones obtenidas en materias
aprobadas: arreglo de enteros (de maximo
60 valores)

Total de materias reprobadas: entero

Constructor(es)

Lectura

Calcula promedio del alumno
Cambia de carrera

Imprime datos

13. Retome el archivo de objetos tipo Alumno creado en el problema anterior y
asuma que ya fue ordenado segtn lo solicitado en los incisos (b) y (c¢). De-
sarrolle un programa que permita al usuario las siguientes opciones:

| 504

Capitulo 9. Ordenacién

a)

b)

Generar un reporte con los datos de todos los alumnos, ordenados por
el nombre.

Generar un reporte con los datos de todos aquellos alumnos que ten-
gan un promedio mayor o igual a 9.

14. Defina la clase Empleado segun las especificaciones que se dan mds adelan-
te. Desarrolle un programa, utilizando subprogramas y/u otras clases, para:

a)

b)

c)

d)

e)

Capturar los datos de un grupo de empleados y guardarlos en un archivo,
siguiendo el orden dado.

Ordenar el archivo de manera descendente segun la clave del empleado.
Decida qué método de ordenacién externa utilizar.

Genere un reporte con los datos de todos los empleados que hayan in-
gresado antes de 1990 y que ganen mds de cierta cantidad, la cual serd
dada por el usuario.

Actualice los datos de todos los empleados, ddndoles un aumento
del 10%.

Forme un archivo auxiliar sélo con los empleados del departamento
de finanzas. Posteriormente, ordene alfabéticamente este archivo de
manera creciente, segin el nombre del empleado.

Empleado

Clave: char[]
NombreEmp: char[]
Departamento: char[]
Anolngreso: int

Sueldo: float

Constructor(es)
void CambiaDepto(char[])
void CambiaSueldo(float)

void Imprime()

Busqueda

10.1 Introduccion

La bisqueda es la operacion que permite localizar un elemento en
una estructura de datos. Es decir, ayuda a determinar si el dato busca-
do estd o0 no en dicha estructura. Si la misma se realiza sobre datos
almacenados en un arreglo, lista, drbol o grafica se dice que es biis-
queda interna. Por otra parte, si se aplica a un conjunto de valores
guardados en un archivo, se dice que es bisqueda externa.

Si bien la bisqueda no es una estructura de datos, la misma se pre-
senta en este libro porque es una de las operaciones mds importantes
que complementa el uso de cualquier estructura de datos. Almacenar
informacidn en una estructura de datos tiene sentido si después se
puede tener acceso a ella, y para tener acceso se requiere el uso de

| 506

Capitulo 10. Busqueda

algoritmos de busqueda. Es decir, es esta operacion la que permite
recuperar la informacion previamente almacenada en una estructura.

Normalmente esta operacion se encuentra implementada como un método de
otras clases, como la clase Arreglo, la clase Lista o la clase Arbol. Sin embargo,
dado que es el tema central de estudio de este capitulo, se la tratard como una
clase que representa a las variantes mas conocidas del proceso de busqueda.

10.2 Busqueda interna

La bisqueda interna es aquella que se aplica a una estructura de datos previa-
mente generada en la memoria de la computadora. En toda operacién de este tipo
se distinguen dos elementos, la estructura de datos (que representa donde se reali-
zara la busqueda) y el elemento a buscar. Dependiendo de la estructura usada
para almacenar los datos, se podran aplicar diferentes algoritmos para intentar en-
contrar un elemento. La tabla 10.1 presenta las principales estructuras de datos
internas con los posibles métodos de buisqueda a emplear.

TaBLA 10.1 Estructuras de datos y métodos de busqueda

Estructura de datos Tipo de busqueda

Arreglos Secuencial (para cualquier tipo de arreglo). Binaria
(s6lo para arreglos ordenados). Transformacién de
claves (Hash).

Listas Secuencial.

Arboles Depende de la estructura interna del arbol. Se
analizaron en el capitulo 7.

Graficas Depende de la estructura interna de la grafica y del
tipo de informacién que se quiera obtener. Se
analizaron en el capitulo 8.

La figura 10.1 presenta un esquema de clases para los algoritmos de busqueda
que pueden aplicarse a arreglos. Se define la plantilla de una clase abstracta,
Busqueda, en la cual se incluye un método virtual que se especificard en cada
una de las clases derivadas de acuerdo al algoritmo que representen. Por lo tanto,
se definen tres subclases: SecuencialDesord, SecuencialOrdenado Yy Binaria, la

10.2 Busqueda interna

507 |

primera para la bisqueda secuencial en arreglos desordenados, la segunda para la
buisqueda secuencial en arreglos ordenados y la dltima para bisqueda binaria, la
cual siempre se realiza en arreglos ordenados. Al tercer tipo de busqueda en arre-
glos (Hash) se le dedica la seccién 10.2.3.

A continuacién se presenta la codificacion, usando el lenguaje C++, de la planti-
lla de la clase abstracta. Observe que el método virtual Busca() recibe como pa-
rémetro el arreglo donde se llevard a cabo la bisqueda y un elemento de tipo T
que es el dato a buscar. Si la operacién se definiera como un método de la clase
arreglo (como se vio en el capitulo 4), entonces sélo se recibiria como pardmetro
el dato a buscar.

/* Clase abstracta que servira como base para declarar cada una de las
wclases derivadas que representan los distintos métodos de bUsqueda en
w=arreglos. */

template <class T>

class Busqueda

{
public:
virtual int Busca (Arreglo<T>, T)= 0;
b
Busqueda(T)
virtual int Busca() = 0
A
SecuencialDesord(T) SecuencialOrdenado(T) Binaria(T)
int Busca() int Busca() int Busca()

FIGURA 10.1 Esquema de clases

| 508

Capitulo 10. Busqueda

10.2.1 Busqueda secuencial

La busqueda secuencial consiste en recorrer el arreglo, elemento por elemento,
empezando con el primero, hasta llegar al dato buscado o hasta que se hayan eva-
luado todos los componentes del arreglo. Esta tltima condicién se modifica si el
arreglo estd ordenado.

Por ejemplo, considere que se han almacenado diez nimeros enteros en el arreglo
de la figura 10.2 y que el dato a buscar es 78. La busqueda comienza a partir de
la primera posicion (indice 0) y se compara el 78 con el dato guardado en dicha
posicion. En este caso no son iguales por lo que se contintia con la siguiente casi-
lla que tiene el valor 14. Nuevamente al comparar se determina que no son igua-
les, lo que requiere continuar con el siguiente elemento. La biisqueda termina
cuando se compara con el nimero almacenado en la casilla 4, ya que son iguales
y por lo tanto la operacién termina con éxito. Ahora suponga que el dato buscado
es el 28, en este caso se compara con todos los nimeros guardados en el arreglo
y como no es igual a ninguno de ellos, la operacion fracasa cuando se llega al
dltimo valor.

18 14 23 12 78 56 8 10 21 45

0 1 2 3 4 5 6 7 8 9

FIGURA 10.2 Biisqueda secuencial

Se define la clase SecuencialDesord, derivada de Busqueda, para representar la
bisqueda secuencial en arreglos desordenados. Esta clase tiene s6lo un miem-
bro, que es el método Busca(), el cual se especifica de acuerdo al algoritmo des-
crito. Es importante sefialar que, si el dato a buscar fuera un objeto, se necesitaria
que el operador != estuviera sobrecargado en la clase correspondiente.

/* Definicidén de la clase encargada de realizar la busqueda secuencial
wen un arreglo cuyos elementos estan desordenados. Es una clase derivada
=de Busqueda y en ella se especifica el método Busca(). */
template <class T>
class SecuencialDesord: public Busqueda<T>
{

public:

int Busca (Arreglo<T>, T);

b

10.2 Busqueda interna 509 |

/* Método que realiza la busqueda, elemento por elemento, de un dato
wdado en un arreglo desordenado. Recibe como paréametros el dato a buscar
=y el arreglo en el cual se llevard a cabo la operacidn. Si lo encuentra
w=da como resultado la posicién, en caso contrario regresa un -1. */
template <class T>

int SecuencialDesord<T>::Busca(Arreglo<T> Arre, T Dato)

{
int Indice= @, Posic = -1;
while (Indice < Arre.RegresaTam() && Dato != Arre.RegresaValor(Indice))
Indice++;
if (Indice < Arre.RegresaTam())
Posic= Indice;
return Posic;
}

Si el arreglo estd ordenado, se modifica la tltima condicién del ciclo, de manera
que la bisqueda se interrumpa (antes de llegar al dltimo elemento) si se detecta
que, por el orden que tienen los valores del arreglo, ya no es posible encontrar el
dato buscado. En consecuencia se gana eficiencia en cuanto al nimero de compa-
raciones. Si el arreglo estd ordenado de manera creciente, la condicién permitird
concluir que, al evaluar el dato buscado con respecto al elemento i, si este dltimo
es mayor, no serd posible encontrar el dato dentro del arreglo; y al revés, si el
arreglo estd ordenado en forma decreciente, en cuanto se encuentre un elemento
que sea menor que el dato buscado, se puede concluir que éste no se encontrard
entre los elementos restantes.

Se define la clase SecuencialOrdenado, derivada de Busqueda, para representar la
busqueda secuencial en arreglos ordenados. Esta clase tiene un s6lo miembro,

que es el método Busca(), el cual se especifica de acuerdo al algoritmo descrito.
Es importante sefialar que, si el dato a buscar fuera un objeto, se necesitaria que
el operador > (para orden creciente o el < para orden decreciente) estuviera so-

brecargado en la clase correspondiente.

/* Definicion de la clase encargada de realizar la busqueda secuencial
=en un arreglo ordenado. Es una clase derivada de Busqueda y en ella se
wespecifica el método Busca(). */
template <class T>
class SecuencialOrdenado: public Busqueda<T>
{

public:

int Busca (Arreglo<T>, T);

b

| 510 Capitulo 10. Busqueda

/* Método que realiza la busqueda de un dato en un arreglo cuyos valores
westan ordenados de manera creciente. Esta operacidn se interrumpe
wcuando se encuentra el valor buscado o cuando se compara a éste con un
wyvalor mayor. Recibe como parametros el dato a buscar y el arreglo en el
wcual se llevara a cabo la operaciéon. Si lo encuentra da como resultado
wla posicién, en caso contrario regresa el negativo de la posicién en la
wque deberia estar, mas 1. */

template <class T>

int SecuencialOrdenado<T>::Busca(Arreglo<T> Arre, T Dato)

{
int Indice= 0, Posic;
while (Indice < Arre.RegresaTam() &&% Dato > Arre.RegresaValor(Indice))
Indice++;
if (Indice == Arre.RegresaTam() Il Dato < Arre.RegresaValor(Indice))
Posic= -(Indice + 1);
else
Posic= Indice;
return Posic;
}

Considerando que la bisqueda puede funcionar como una operacién auxiliar a la
insercién y eliminacién en arreglos (ver capitulo 4), es conveniente que el méto-
do regrese la posicion en la que encuentra al elemento o la posicién en la que de-
beria estar. Para poder distinguir estos dos casos es necesario regresar un valor
positivo (si estd) o uno negativo (si no estd). Si la posicién es cero, entonces no
se le puede asociar el signo, razén por la cual se le suma uno. Los usuarios de es-
te método deben tener en cuenta esto, y en caso de requerir la posicién (por
ejemplo para un desplazamiento en la operacién de insercién) deberan convertirla
pasdndola a positiva y restdndole uno.

La eficiencia de la bisqueda secuencial se mide por el nimero de comparaciones
requeridas hasta encontrar el elemento buscado o hasta que se determine que el
mismo no estd en el arreglo. Por lo tanto, si el dato fue almacenado en el arreglo,
éste puede estar en la primera posicion, en alguna intermedia o en la dltima, lo
cual implica realizar una, algunas 0 Tam comparaciones, respectivamente. Cuando
el dato no estd en el arreglo, se compara a éste con todos los elementos del arre-
glo, hasta llegar al final del mismo; es decir se realizan Tam comparaciones. Por lo
tanto, en este tipo de bisqueda se distinguen tres casos: (1) el mas favorable, con
el nimero minimo de comparaciones; (2) el intermedio, con un nimero medio de
comparaciones; y (3) el mds desfavorable, con el nimero méximo de compara-
ciones. Estas tres posibles situaciones se expresan de la siguiente manera:

10.2 Busqueda interna

511|

Comparaciones minimas = 1
Comparaciones medias = (1 + Tam) /2

Comparaciones maximas = Tam

FOormuLASs 10.1

Si el arreglo estd ordenado, se tiene mayor eficiencia cuando el dato buscado no
esta pero por su tamafio deberia ocupar alguna posicién intermedia. En este caso,
la bisqueda se interrumpe sin necesidad de revisar todo el arreglo.

En el capitulo cuatro, dedicado a los arreglos, se hizo uso de este tipo de bisque-
da como apoyo a las operaciones de insercion y eliminacién en esas estructuras
de datos. Esta operacion se implementé como un método de la clase Arreglo. A
continuacién se presenta un ejemplo utilizando un objeto de la clase derivada
SecuencialOrdenado, para ordenar un objeto de la clase Arreglo. Ademads, se em-
plea la clase Persona como tipo base para la plantilla de esta dltima clase.

El programa 10.1 presenta la clase Persona y la plantilla de la clase Arreglo. En
ambas s6lo se incluyen los métodos requeridos para esta aplicacion.

Programa 10.1

/* Definicion de la clase Persona. Se incluyen sobrecarga de operadores
=para que objetos de este tipo puedan ser usados directamente en la
woperacion de busqueda. */
class Persona
{
private:

int AnioNac;

char NomPers[64], LugNac[64];

public:

Persona();

Persona(int, char[], char[]);

int operator > (Persona);

int operator < (Persona);

friend istream &operator >> (istream &, Persona &);

friend ostream &operator << (ostream &, Persona &);
s

|512 Capitulo 10. Busqueda

/* Constructor por omisidn. */
Persona::Persona()

{}

/* Constructor con parametros. */
Persona::Persona(int ANac, char NomP[], char LugN[])

{
AnioNac= ANac;
strcpy (NomPers, NomP);
strcpy (LugNac, LugN);
}

/* Sobrecarga del operador > para comparar dos objetos de la clase
=Persona. Una persona es "mayor que" otra si su nombre lo es. Este
woperador permitird buscar a una persona, por su nombre, en un arreglo
=de personas ordenado alfabéticamente. */

int Persona::operator > (Persona Pers)

{
int Resp=0;
if (strcmp(NomPers, Pers.NomPers) > 0)
Resp= 1;
return Resp;
}

/* Sobrecarga del operador < para comparar dos objetos de la clase
=Persona. Una persona es "menor que" otra si su nombre lo es. Este
woperador permitird buscar a una persona, por su nombre, en un arreglo
=de personas ordenado alfabéticamente. */

int Persona::operator < (Persona Pers)

{
int Resp=0;
if (strcmp(NomPers, Pers.NomPers) < 0)
Resp= 1;
return Resp;
}

/* Sobrecarga del operador >> para que un objeto tipo Persona pueda ser
wleido directamente. */
istream &operator >> (istream &Lee, Persona &ObjPers)
{

cout <<"\n\nIngrese nombre de la Persona: ";

Lee>> ObjPers.NomPers;

cout <<"\n\nIngrese ano de nacimiento: ";

Lee>> ObjPers.AnioNac;

cout <<"\n\nIngrese lugar de nacimiento: ";

Lee>> ObjPers.LugNac;

return Lee;

10.2 Busqueda interna

513|

/* Sobrecarga del operador << para que un objeto tipo Persona pueda ser
=impreso directamente. */
ostream &operator << (ostream &Escribe, Persona &0bjPers)
{
Escribe<<"\n\nDatos de la Persona\n";
Escribe<<"\nNombre: "<<ObjPers.NomPers;
Escribe<<"\nLugar de nacimiento: "<<ObjPers.LugNac;
Escribe<<"\nAno de nacimiento: "<<ObjPers.AnioNac;
return Escribe;

/* La constante MAX se usa para definir el tamafno maximo del arreglo. */
#define MAX 100

/* Plantilla de la clase Arreglo. Se incluyen sélo los métodos
wrequeridos para la aplicaci6on de la operacidn de blsqueda. */
template <class T>
class Arreglo
{
private:
T Datos[MAX];
int Tam;
public:
Arreglo();
void Lectura()
void Escribe();
int RegresaTam();
T RegresaValor(int);

b

/* Declaracion del método constructor. Inicializa el numero actual de
welementos en 0. */
template <class T>
Arreglo<T>::Arreglo()
{
Tam= 0;
I3

/* Método que permite leer el nimero de elementos que se van a almacenar
=y el valor de cada uno de ellos. Valida que el total de elementos sea
=al menos 1 y que no supere el maximo especificado. */

template <class T>

void Arreglo<T>::Lectura()

{

int Indice;

|514

Capitulo 10. Busqueda

do {
cout<<"\n\n Ingrese numero de datos a guardar: ";
cin>> Tam;

} while (Tam < 1 Il Tam > MAX);

for (Indice= 0; Indice < Tam; Indice+t)

{
cout<<"\nIngrese el "<<Indicet+1<<" dato: ";
cin>>Datos[Indice];

}

/* Método que despliega en pantalla los valores almacenados en el
warreglo. */

template <class T>

void Arreglo<T>::Escribe()

{
int Indice;
if (Tam > 0)
{
cout <<"\n Impresion de datos\n";
for (Indice= 0; Indice < Tam; Indice++)
cout << '\t' << Datos[Indice];
}
else
cout << "\nNo hay elementos registrados.";
}

/* Método que permite a usuarios externos a la clase conocer el total de
welementos guardados en el arreglo. */
template <class T>
int Arreglo<T>::RegresaTam()
{

return Tam;

}

/* Método que permite a usuarios externos a la clase conocer el dato
=almacenado en cierta casilla del arreglo. Recibe como parametro un
wentero y regresa como resultado el valor almacenado en la posicidn
windicada por dicho numero. */
template <class T>
T Arreglo<T>::RegresaValor(int Indice)
{

return Datos[Indice];
}

10.2 Busqueda interna 515 |

El programa 10.2 presenta la aplicacion. Se declara un objeto de la clase
SecuencialOrdenado y un objeto de la clase Arreglo, ddndole la clase Persona
como tipo para cada uno de sus elementos. Es decir, se tiene un arreglo de perso-
nas. Ademads, se asume que dicho arreglo estd ordenado y por lo tanto se puede
usar la bisqueda secuencial en arreglos ordenados para buscar una persona. El
usuario da como dato el nombre de la persona a buscar y, si se encuentra, se im-
primen todos los datos de dicha persona. En caso contrario, se imprime un men-
saje adecuado.

Programa 10.2

/* Se incluyen las bibliotecas Arreglos.h y Persona.h donde fueron
=wguardadas las clases Arreglo y Persona respectivamente. En la biblio-
wteca Busquedalnterna.h se tiene la clase Busqueda y su derivada
wSecuencialOrdenado. */

#include "Arreglos.h"

#include "Persona.h"

#include "BusquedalInterna.h"

/* Funcién principal. Se declaran las variables de trabajo, se crea el
=arreglo de personas (asumiendo que los datos se dan ordenados), se pide
=ecl nombre de la persona a buscar y se usa un objeto de la clase
= SecuencialOrdenado para realizar la blsqueda de la misma en el arreglo. */
void main()
{

/* Declaracién de un objeto de la clase SecuencialOrdenado, con

= Persona como tipo base. */

SecuencialOrdenado<Persona> Buscador;

/* Declaracién de un objeto de la clase Arreglo, con Persona como
wtipo base. */

Arreglo<Persona> Asistentes;

int Resp;

char Nom[64];

/* Lectura del arreglo. Se leen los datos de varias personas y se
=almacenan en el arreglo. Se asume que los datos se dan ordenados
walfabéticamente de acuerdo al nombre de la persona. */
Asistentes.Lectura();

cout<<"\nIngresa el nombre de la persona a buscar: ";
cin>>Nom;

|516

Capitulo 10. Busqueda

/* Objeto auxiliar de tipo Persona, empleado para realizar la
whisqueda en el arreglo. S6lo se busca por el nombre. */
Persona Alguien(@,0,Nom,"");
/* Se invoca al método Busca() del objeto creado para buscar un
=elemento en un arreglo ordenado, aplicando busqueda secuencial. */
Resp= Buscador.Busca(Asistentes, Alguien);
if (Resp >= 0)

cout<<"\n\nSe encontrdé a la persona y sus datos completos

son\n"<<Asistentes.RegresaValor(Resp)<<"\n";

else

cout<<"\n\nNO se encontré a la persona\n\n";

10.2.2 Busqueda binaria

La busqueda binaria se puede aplicar sélo a arreglos ordenados. Este método
se basa en una idea muy simple con la cual se trata de aprovechar el hecho de
saber que el arreglo estd ordenado. Inicialmente se considera todo el arreglo
como el espacio de bisqueda, por lo tanto se establece el indice 0 como extremo
izquierdo y el indice Tam-1 como el extremo derecho. Se calcula la posicién
central del arreglo y se compara el elemento que estd en esa posicién con el dato
buscado. Si son iguales, la operacién se interrumpe ya que se encontro el valor
deseado. En caso contrario puede suceder que sea menor o mayor. Si es el primer
caso, entonces se redefine el espacio de biisqueda con el extremo izquierdo igual
a la posicion central mas uno (se descartan todos los valores comprendidos entre
la posicién central y el indice 0). Si el elemento de la posicion central resulta ma-
yor que el dato buscado, entonces es el extremo derecho el que se reasigna con el
valor de la posicion central menos 1 (se descartan todos los valores comprendi-
dos entre la posicién central y el indice Tam-1). Se calcula nuevamente la posicién
central y se repiten estos pasos hasta encontrar el elemento o hasta que el extre-
mo izquierdo quede mayor que el extremo derecho. Esta tltima condicién indica
que el elemento no se halla en el arreglo.

Se define la clase Binaria, derivada de Busqueda, para representar la busqueda
binaria en arreglos ordenados. Esta clase tiene un s6lo miembro, que es el méto-
do Busca(), el cual se especifica de acuerdo al algoritmo descrito. Es importante
sefalar que, si el dato a buscar fuera un objeto, se necesitaria que el operador !=
estuviera sobrecargado en la clase correspondiente.

10.2 Busqueda interna 517 |

/* Definicion de la clase encargada de realizar la busqueda binaria en
=un arreglo ordenado. Es una clase derivada de Busqueda y en ella se
wespecifica el método Busca(). */
template <class T>
class Binaria: public Busqueda<T>
{

public:

int Busca (Arreglo<T>, T);

}s

/* Método que realiza la busqueda de un elemento en un arreglo cuyos
=yvalores estan ordenados de manera creciente. Se parte el espacio de
whlsqueda a la mitad y se compara el dato buscado con el valor que ocupa
=la posicién central. Si son iguales, la bUsqueda termina con éxito. En
=caso contrario se evalla si es menor o mayor y segln sea el caso se re-
=define el extremo derecho o izquierdo respectivamente y se vuelve a
wcalcular el elemento central. Recibe como parametros el dato a buscar y
=el arreglo en el cual se llevarad a cabo la operacién. Si lo encuentra
w=da como resultado la posici6n, en caso contrario regresa el negativo de
=la posicién en la que deberia estar, mas 1. */

template <class T>

int Binaria<T>::Busca(Arreglo<T> Arre, T Dato)

{
int Izg= 0, Der= Arre.RegresaTam(), Cen, Posic;
Cen= (Izq + Der) / 2;
while (Izq <= Der && Dato != Arre.RegresaValor(Cen))
{
if (Dato < Arre.RegresaValor(Cen))
Der= Cen - 1;
else
Izq= Cen + 1;
Cen= (Izq + Der) / 2;
}
if (Izq <= Der)
Posic= Cen;
else
Posic= -(Izq + 1);
return Posic;
}

La figura 10.3 muestra cémo se va dividiendo el espacio de bisqueda en dos, en
cada iteracion. La primera vez es todo el arreglo, luego de comparar el dato bus-
cado con el elemento que ocupa la posicion central serd el espacio que estd a la

| 518 Capitulo 10. Busqueda

izquierda del central (si éste es mayor que el dato buscado) o el que estd a la de-
recha (si fuera menor). El proceso se repite haciendo que el intervalo donde se

buscard sea cada vez mds pequeio.

Si el central es mayor que el
buscado:
Der =Cen -1

1
1
Y

Izq Cen

Y

Izq Cen Der Izq

Si el central es menor que el
buscado:
Izqg=Cen + 1

Der

1

1
Y

C

en Der

FIGURA 10.3 Division del espacio en la biisqueda binaria

La eficiencia de este algoritmo también queda determinada por el nimero de

comparaciones que se realizan antes de encontrar el elemento buscado o decidir

que el mismo no fue almacenado. El caso mds favorable se presenta cuando el
dato estd en la posicién central del arreglo, lo cual requiere una sola compara-

cion. El caso mas desfavorable es cuando el dato se encuentra durante la tltima

comparacién o cuando no estd en el arreglo, ya que se determina luego de reali-

zar log,(Tam) comparaciones. El log, se debe a que luego de cada comparacion,

el espacio de bisqueda (el nimero total de elementos a revisar) se reduce a la
mitad. El recuadro de férmulas 10.2 presenta las expresiones para el calculo del

nimero de comparaciones en las tres situaciones posibles.

Comparaciones minimas = 1

Comparaciones medias = (1 + log,(Tam)) / 2

Comparaciones maximas = log,(Tam)

FormMmuLAS 10.2

10.2 Busqueda interna

519|

La aplicacion presentada en el programa 10.2 puede modificarse para que en lu-
gar de usar buisqueda secuencial en el arreglo ordenado, se use bisqueda binaria.
En ese caso, s6lo se requiere cambiar la clase con la cual se declara el objeto
buscador de la siguiente manera:

Binaria<Persona> Buscador;

10.2.3 Busqueda por transformacion de claves (Hash)

Este método de buisqueda, asi como los ya estudiados, estd asociado a una es-
tructura de datos. En este caso es un arreglo y generalmente se le conoce con el
nombre de tabla Hash. Una tabla Hash permite el acceso a la informacion al-
macenada en ella de manera muy rdpida. Idealmente, se espera que el tiempo de
busqueda sea independiente del nimero de elementos que se tengan. Sin embar-
g0, si la misma se llena, se pierde gran parte de esta ventaja (puede requerir
pasar los datos a una tabla mds grande para recuperar la ventaja mencionada).
Por otra parte, la desventaja es que los datos no tienen ningtn orden entre si
dentro de ella.

La idea principal sobre la que se basa la insercién de elementos en esta estruc-
tura de datos y en consecuencia la operacién de busqueda en ella, consiste en
transformar las claves (parte de los datos a almacenar) en direcciones dentro
del arreglo. De ahi que a este método se le conozca, en el mundo de habla
hispana, como método por transformacion de claves. Por lo tanto, ademas
de la tabla Hash se requiere tener una funcién (llamada funcién Hash) que
transforme cada clave en una direccidn.

El caso mds simple es cuando se puede asociar cada dato directamente a una
posicién del arreglo. Por ejemplo, suponga que se tiene un arreglo en el cual se
guardan los datos de 300 empleados y el nimero que identifica al empleado (su
clave) es un numero entero del O al 299. Esta situacidn se ilustra en la figura
10.4. En este caso, la asignacion de cada clave a una posicién diferente del arre-
glo es inmediata. Es decir, la funcién Hash obtiene como direccién la misma
clave que es un entero comprendido entre 0 y 299.

direccion = ®(Clave) = Clave;

En este ejemplo, si se quisiera aumentar el sueldo al empleado Eduardo Vargas,
sOlo se requiere hacer:

| 520 Capitulo 10. Busqueda

Empleados[1] = Empleados[1].NuevoSueldo(Cantidad);

asumiendo que el arreglo almacena objetos de la clase Empleado y que en dicha
clase hay un método que permite actualizar el atributo Sueldo.

Empleados
Alvarez, Juan Carlos Vargas, Eduardo Espindola, Isabel
Gerente de finanzas Vendedor Administrativa
2000 1998 Tt 2004
10000 7800 4000
0 1 500

FIGURA 10.4 Ejemplo de tabla Hash

Para realizar otras operaciones se tendria la misma rapidez, ya que el acceso a los
datos es directo. Sin embargo, hay muchas aplicaciones en las que esta manera
de usar la tabla Hash no es posible, ya sea por el volumen de informacién que

se maneja o por las caracteristicas de la misma. Por lo tanto, en estos casos si se
requiere usar una funcién que transforme la clave en una direccion.

La funcién debe definirse de tal manera que sea facil de calcular y que distribuya
uniformemente los diferentes elementos en el arreglo. Cuando una funcién gene-
ra la misma direccion para dos datos distintos, se produce lo que se conoce como
colision. Es decir, se intenta guardar un dato en una posicién que ya fue ocupada
previamente por otro elemento.

direccionl = ®(Clavel);
direccion2 = ®(Clave2);

en donde: Clavel # Clave2 y direcciénl = direccion2.

En consecuencia, resulta necesario definir junto a la funcién una manera

de tratar las colisiones. La figura 10.5 contiene todos los elementos que inter-
vienen: la tabla Hash, el dato que se va a almacenar, la funcién Hash y la
solucién de colisiones.

10.2 Busqueda interna 521 |

Tabla Hash
0 1 2 3 4 5 6 7 ... MAX-1
Dato
int Clave
//Otros atributos ..
Colisiones

// Métodos

direccion = ¢ (Clave);
Donde:

® es una funcién Hash que se aplica a la clave del dato que se quiere guardar en el arreglo.
direccion es la direccion obtenida a partir de la clave y serd un valor comprendido entre
0yel MAX (0 = d < MAX).

FIGURA 10.5 Elementos que intervienen en el método Hash

Antes de presentar algunas funciones y procesos para el manejo de las mismas,
se ofrece una forma de tratar las claves no numéricas.

Claves no numéricas

Cuando se tienen claves alfabéticas o alfanuméricas se deben convertir primero

a numéricas para luego ser transformadas por la funcién Hash en una direccién
dentro del arreglo. Generalmente se le asigna a cada letra un valor numérico con-
secutivo, de acuerdo al alfabeto que se esté usando. Asi, se genera la siguiente
tabla de equivalencias para las letras del castellano.

TaBLA 10.2 Equivalencia entre letras y numeros

Letra Valor numérico
1

b 2

c 3

continiia

| 522 Capitulo 10. Busqueda

TaBLA 10.2 Continuacion

Letra Valor numérico
d 4

e 5

f 6

g 7

h 8

i 9

zZ 27

Si, por ejemplo, la clave fuera el registro de contribuyentes de una persona, for-
mado por letras y digitos, por ejemplo: feac701123di5, quedaria como:
6513701123495 al hacer uso de las equivalencias entre letras y digitos ya sefialadas.

f=6
e=5
a=1
c=3
d=4
i=9

A continuacion se presentan las funciones Hash mds usadas y posteriormente
algunas alternativas para el manejo de colisiones.

Funciones Hash

Una funcion Hash es una funcién que dado un dato (o parte de él) genera una di-
recciéon. Como se trabaja en memoria principal y con arreglos, la direccién es una
posicion del mismo. En esta seccién se estudiardn algunos ejemplos de las fun-
ciones Hash:

* Residuo o médulo

* Plegamiento

¢ Truncamiento

10.2 Busqueda interna 523 |

1. Funcion residuo o médulo

Se debe tomar el residuo que se obtiene de la division de la clave (debe ser nu-
mérica) entre el tamafo del arreglo, el cual serd un valor comprendido entre 0 y
el maximo menos uno. Observe los siguientes ejemplos:

MAXIMO: 300 (el arreglo tiene una capacidad méxima de 300 elementos).

Clave: 6513701123495
direccién = ®(6513701123495) = 6513701123495 % 300 = 95

El dato cuya clave es 6513701123495 se almacenard en la casilla del arreglo
identificada por el indice 95.

Clave: 2318212217655
direccion = ®(2318212217655) = 2318212217655 % 300 = 255

El dato cuya clave es 2318212217655 se almacenard en la casilla del arreglo
identificada por el indice 255.

En este capitulo se usa esta funcion para todos los ejemplos y para la implemen-
tacion en C++ que aparece méas adelante.

2. Plegamiento

Se deben generar dos o mas nimeros a partir de los digitos de la clave (debe ser
numérica) sumarlos para obtener un tinico nimero del cual se toman los digitos
menos significativos como direccién. Observe los siguientes ejemplos:

MAXIMO: 300 (el arreglo tiene una capacidad médxima de 300 elementos).

Clave: 6513701123495

direccién = ®(6513701123495)

direccién = digitos menos significativos de la suma de los nimeros formados con Clave
direccién = digitos menos significativos de (651 + 370 + 112 + 349 + 5)

direccién = digitos menos significativos de (1487) = 87

| 524 Capitulo 10. Busqueda

El dato cuya clave es 6513701123495 se almacenard en la casilla del arreglo
identificada por el indice 87.

Clave: 2318212217655

direccion = ®(2318212217655)

direccién = digitos menos significativos de la suma de los niimeros formados con Clave
direccién = digitos menos significativos de (231 + 821 + 221 + 765 + 5)

direccién = digitos menos significativos de (2043) = 43

El dato cuya clave es 2318212217655 se almacenara en la casilla del arreglo
identificada por el indice 43.

3. Truncamiento

Se deben elegir algunos digitos de la clave (debe ser numérica) y formar con
ellos la direccién. El criterio de eleccién se determina en cada aplicacién. Por
ejemplo, se pueden elegir los primeros ene digitos o los tltimos ene digitos, los
que ocupan posiciones pares o los que ocupan posiciones impares. Dependiendo
del tamafio de la clave se deben sumar los digitos y tomar los menos significativos.
Para los ejemplos que se presentan a continuacidn, se eligen los digitos que estdn
en las posiciones pares del nimero, empezando a contar de izquierda a derecha.

MAXIMO: 300 (el arreglo tiene una capacidad maxima de 300 elementos).

Clave: 6513701123495
direccion = ®(6513701123495)
direccién = suma de digitos que ocupan posiciones pares

direccion=5+3+0+1+3+9= 21

El dato cuya clave es 6513701123495 se almacenard en la casilla del arreglo
identificada por el indice 21.

10.2 Busqueda interna 525 |

Clave: 2318212217655
direccion = ®(2318212217655)
direccién = suma de digitos que ocupan posiciones pares

direccion= 3+8+1+2+7+5=26

El dato cuya clave es 2318212217655 se almacenard en la casilla del arreglo
identificada por el indice 26.

En todos los ejemplos analizados, a claves diferentes se le asignaron direcciones
diferentes. Sin embargo, no siempre resulta asi. Cuando la funcién Hash elegida
transforma dos claves distintas en una misma direccién se genera una colisién y se
debe proveer algin mecanismo para resolver esta situacion, de tal manera que

se pueda almacenar el nuevo dato aunque la direccion asignada ya esté ocupada.

Solucién de colisiones

Se llama colision a la situacion generada cuando una funcién Hash asigna una
misma direccidn a dos claves distintas. Es decir, al intentar almacenar un dato en
la direccion correspondiente se detecta que la misma ya fue previamente ocupada
por otro elemento. Observe el ejemplo que se muestra mds adelante. En este
caso, si se diera el dato 6513701123495, la funcién Hash le asignaria la posicién
95 del arreglo. Si posteriormente se tuviera un empleado con registro de con-
tribuyentes igual a 6513701123195 (luego de la conversién a numérico), la
funcion Hash también daria la posicion 95 del arreglo.

Clave: 6513701123495
direccion = ®(6513701123495) = 6513701123495 % 300 = 95

Clave: 6513701123195
direccion = ®(6513701123195) = 6513701123195 % 300 = 95

| 526

Capitulo 10. Busqueda

La manera de generar las direcciones y en su caso resolver las colisiones al mo-
mento de insertar, determina la manera de generar las direcciones y resolver las

colisiones al momento de buscar un dato dentro de la tabla Hash. Las cuatro ma-
neras mds utilizadas para resolver colisiones:

* Prueba lineal,

* Prueba cuadrética
e Doble direccién
* Encadenamiento

Primero se analizaran las tres primeras porque comparten ciertas caracteristicas,
mientras que la cuarta serd tratada de manera independiente porque requiere el
uso de listas ligadas junto con la tabla Hash.

Prueba lineal

La prueba lineal consiste en que una vez detectada la colision se busca secuen-
cialmente en el arreglo hasta encontrar un espacio disponible (en caso de una
insercidn) o encontrar el dato (en caso de una bisqueda) o bien hasta que se
detecta que el arreglo estd lleno o que ya fue recorrido totalmente. Por lo tanto, si
la direccién generada por la funciéon Hash es d y ésta ya fue ocupada, entonces

se buscard en la d+1, luego en la d+2, y asf hasta encontrar un lugar disponible

o hasta llegar nuevamente a d. En este tltimo caso, el proceso se detiene para

no caer en ciclos infinitos.

La figura 10.6 presenta un esquema de cémo quedaria la tabla Hash al resolver

la colisién que se presentd al insertar el valor 6513701123195; dicha colision se
presenté debido a que la direccion asignada (d=95) ya habia sido ocupada
previamente. En este caso, asumiendo que la posicion 96 (d+1) estuviera libre,
ésta es la elegida para almacenar el nuevo valor. Si posteriormente se busca el da-
to cuya clave es 6513701123195, la funciéon Hash dara la direccién 95. Al

buscar en dicha posicidn, el dato no se encontrard, por lo que se aplicard prueba
lineal hasta encontrarlo o hasta haber recorrido todo el arreglo. Para nuestro
ejemplo, se encontrard en la siguiente posicion, es decir en la 96.

6513701123495 | 6513701123195 2318212217655
01 ... 9% 95 96 255 .. 299

FIGURA 10.6 Solucion de colisiones por prueba lineal

10.2 Busqueda interna

527 |

Prueba cuadratica

La prueba cuadratica consiste en que una vez detectada la colision se redefine
la direccion incrementdndola con el cuadrado de un valor, el cual inicia en uno y
se aumenta en uno en cada nuevo intento. El proceso se repite hasta encontrar un
espacio disponible (en caso de una insercion) o encontrar el dato (en caso de una
bisqueda) o bien hasta que se detecta que el arreglo estd lleno o que el dato no
estd en el arreglo. Por lo tanto, si la direccién generada por la funcién Hash es d
y ésta ya fue ocupada, entonces se buscara en la d+12, luego en la d+22, y asi has-
ta encontrar un lugar disponible o hasta cumplir alguna condicién establecida pa-
ra evitar caer en ciclos infinitos.

La figura 10.7 presenta un esquema de como quedarfa la tabla Hash al resolver
la colision que se presentd al insertar el valor 6513701123195; dicha colisién
se presentd debido a que la direccién asignada (d=95) ya habia sido ocupada
previamente. En este caso, asumiendo que la posicién 96 (d+1?) esta también
ocupada, se vuelve a calcular una nueva direccion por medio de la prueba cua-
drética, resultando igual a 99 (d+2?). Considerando que estd disponible, es la
elegida para almacenar el dato. Si posteriormente se busca el dato cuya clave es
6513701123195, la funcién Hash dard la direccion 95. Al buscar en dicha posi-
cidn, el dato no se encontrard, por lo que se aplicard la prueba cuadratica hasta
encontrarlo o hasta que se cumpla la condicién establecida. Para nuestro ejemplo,
se encontrard en el segundo intento, es decir en la 99.

6513701123495 | 6513701123496 6513701123195 2318212217655

95 96 99 255 .. 299

FIGURA 10.7 Solucion de colisiones por prueba cuadrdtica

Doble direccion

La doble direccién consiste en que una vez detectada la colision se redefine la
direccion incrementdndola en uno y aplicindole nuevamente la funcién Hash. Es
decir, la direccién que se obtuvo con la funcién se convierte en entrada de la mis-
ma funcién. Por lo tanto, con la doble direccién se obtiene una direccién de una
direccion. El proceso se repite hasta encontrar un espacio disponible (en caso de
una insercién) o encontrar el dato (en caso de una bisqueda), o bien hasta que se
detecta que el arreglo estd lleno o que el dato no estd en el arreglo. Por lo tanto,
si la direccion generada por la funcion Hash es d y ésta ya fue ocupada, entonces

| 528

Capitulo 10. Busqueda

se buscard en la d = ®(d+1), luego en la d,= ®(d,+1), y asi hasta encontrar un lu-
gar disponible o hasta cumplir alguna condicion establecida para evitar caer en
ciclos infinitos.

La figura 10.8 presenta un esquema de cdmo quedaria la tabla Hash al resolver
la colisidén que se presentd al insertar el valor 6513701123195, dado que

la direccién asignada (d=95) ya habia sido ocupada previamente. En este caso,
asumiendo que la posicién 96 (d,= (d+1) % 300) estd también ocupada, se
vuelve a calcular una nueva direccidon por medio de la doble direccidn, resul-
tando igual a 97 (d,= (d,+1) % 300). Considerando que estd disponible, es la
elegida para almacenar el dato. Si posteriormente se busca el dato cuya clave
es 6513701123195, la funcién Hash dara la direccién 95. Al buscar en dicha
posicién, el dato no se encontrard, por lo que se aplicard doble direccidn hasta
encontrarlo o hasta que se cumpla la condicién establecida. Para nuestro ejem-
plo, se encontrard en el segundo intento, es decir en la 97.

6513701123495 | 6513701123496 | 6513701123195 2318212217655

95 96 97 255 c. 299

FIGURA 10.8 Solucion de colisiones por doble direccion

Implementacion del algoritmo de busqueda por
transformacion de claves

La figura 10.9 presenta un esquema de las clases definidas para representar estas
variantes de la solucién de colisiones. Se defini6 una plantilla de una clase abs-
tracta, la clase Hash, que tiene como atributos la tabla Hash y el total de elemen-
tos almacenados. Ademas, tiene como miembros cuatro métodos, dos de los
cuales son virtuales puros y se redefinirdn en las clases derivadas. Los otros dos
son auxiliares para determinar si la tabla estd vacia y para imprimir el contenido
de la misma respectivamente.

A partir de la clase abstracta se derivan tres clases concretas para implementar la
solucién de colisiones por prueba lineal (clase PruebaLineal), por prueba cuadra-
tica (clase PruebaCuadratica) y por doble direccion Hash (clase DobleDireccion).
Las tres clases redefinen los métodos Inserta() y Busca() heredados de la clase
base, de acuerdo a sus propias caracteristicas. La funcién Hash utilizada en todas
las clases es la del médulo o residuo, la cual por su simplicidad se codifica tanto

10.2 Busqueda interna 529 |

en Inserta() como en Busca(). Sin embargo, la misma podria definirse como un
método de la clase abstracta que se heredaria por todas las derivadas.

Hash(T)

int Tam
T Datos|[]

bool HashVacio()
void Imprime()
virtual bool Inserta(T) = 0

virtual void Busca(T) = 0

A

PruebalLineal(T) PruebaCuadratica(T) DobleDireccion(T)
bool Inserta(T) bool Inserta(T) bool Inserta(T)
void Busca(T) void Busca(T) void Busca(T)

FIGURA 10.9 Esquema de clases

A continuacién se muestra la codificacion de estas clases usando el lenguaje
C++.

// Definicidén del numero maximo de elementos que puede contener el
=arreglo.
#define MAXIMO 20

/* Definicidén de la plantilla de la clase Hash. La clase tiene como
=mniembros protegidos un arreglo de tipo T para darle mayor generalidad
wa la solucion y el total de elementos almacenados. Ademds, tiene dos
wmétodos que implementan operaciones comunes a todas las clases
wderivadas y dos métodos virtuales puros que seran implementados de
wmanera especifica en cada una de las subclases. */

| 530

Capitulo 10. Busqueda

template <class T>
class Hash
{
protected:
int Tam;
T Datos[MAXIMO];
public:
Hash();
bool HashVacio();
void Imprime();
virtual bool Inserta(T) = 0;
virtual void Busca(T) = 0;

b

/* Método constructor. Inicializa los atributos Datos y Tam para indicar
wque el arreglo estd vacio. */

template <class T>

Hash<T>::Hash()

{
int Indice;
for (Indice= 0; Indice < MAXIMO; Indice++)
Datos[Indice]= NULL;
Tam= 0;
}

/* Método auxiliar para determinar el estado del arreglo. Regresa true
wsi el arreglo esta vacio, y false en caso contrario. */

template <class T>

bool Hash<T>::HashVacio()

{
if (Tam == 0)
return true;
else
return false;
}

/* Imprime los elementos almacenados en cada una de las posiciones del
warreglo. */

template <class T>

void Hash<T>::Imprime()

{

int Indice;

/* Verifica que el arreglo tenga al menos un elemento. */
if (!HashVacio())
{
cout<<"\n\n Datos almacenados\n\n ";
for (Indice= 0; Indice < MAXIMO; Indice++)
if (Datos[Indice] != NULL)

10.2 Busqueda interna

531 |

cout<<"Posicién "<<(Indice+1)<<":
<<Datos[Indice]<<endl;
cout<<"\n\n";
}
else

cout<<"\nNo hay elementos almacenados en el arreglo. \n";

/* Clase PruebalLineal, derivada de la clase Hash. Implementa el método
=Hash resolviendo las colisiones por medio de la prueba lineal. Utiliza

wla funcion Hash médulo o residuo. */
template <class T>
class PruebalLineal: public Hash<T>

{
public:
bool Inserta(T);
void Busca(T);
b

/* Método para insertar un nuevo elemento en un arreglo.

=colisiones por medio de la prueba lineal. */
template <class T>
bool Pruebalineal<T>::Inserta(T Valor)
{
int Ind1, Ind2;
bool Resp= true;

Ind1= Valor % MAXIMO;

if (Datos[Ind1] == NULL)
Datos[Ind1]= Valor;

else

{
Ind2= Ind1 + 1;

Resuelve las

while (Ind2 < MAXIMO && Datos[Ind2]!= NULL && Ind2 != Ind1)

{
Ind2++;

if (Ind2 == MAXIMO)
Ind2= 0;
}
if (Ind2 == Ind1)
Resp= false;
else
Datos[Ind2]= Valor;
}
if (Resp)
Tam++;
return Resp;

|532 Capitulo 10. Busqueda

/* Método para buscar el elemento Valor en el arreglo. Resuelve las
wcolisiones por medio de la prueba lineal. */

template <class T>

void Pruebalineal<T>::Busca(T Valor)

{
int Ind1, Ind2;
/* Verifica que el arreglo tenga al menos un elemento. */
if (!HashVacio())
{
Ind1= (Valor % MAXIMO);
if (Datos[Ind1] == Valor)
cout<<"\nEl elemento esta en la posicidn: "<<(Ind1+1)<<endl;
else
{
Ind2= Ind1 + 1;
while (Ind2 < MAXIMO && Datos[Ind2] != Valor
=88 Datos[Ind2]!= NULL &% Ind2 != Ind1)
{
Ind2++;
if (Ind2 == MAXIMO)
Ind2= 0;
}
if (Datos[Ind2] == Valor)
cout<<"\nEl elemento estd en la posici6n: "
=<<(Ind2+1)<<endl;
else
cout<<"\nEl elemento no estd en el arreglo. \n"<<endl;
}
}
else
cout<<"\nNo hay elementos almacenados en el arreglo. \n";
}

/* Clase PruebaCuadratica, derivada de la clase Hash. Implementa el
wmnétodo Hash resolviendo las colisiones por medio de la prueba
wcuadratica. Utiliza la funcidén Hash médulo o residuo. */
template <class T>
class PruebaCuadratica: public Hash<T>
{
public:
bool Inserta(T);
void Busca(T);
b

10.2 Busqueda interna

533 |

/* Método para insertar un nuevo elemento en un arreglo. Resuelve las
wcolisiones por medio de la prueba cuadratica. */
template <class T>
bool PruebaCuadratica<T>::Inserta(T Valor)
{
bool Resp= true;
int Base, Ind1, Ind2, Bandera= 1;
/* Bandera: establece la condici6n necesaria para evitar ciclos
winfinitos.
Puede tomar tres posibles valores:
w1 indica el primer intento de insercidn
=2 indica el segundo intento de insercion
=3 indica el tercer intento de insercidén. En este caso se
winterrumpe el proceso. */

Ind1 = Valor % MAXIMO;
if (Datos[Ind1] == NULL)
Datos[Ind1]= Valor;

else

{
Base= 1;
Ind2= int (Ind1 + pow(Base,2));
Base++;

while (Ind2 < MAXIMO && Datos[Ind2] != NULL &% Bandera != 3)

{
if (Bandera == 2)
{
Ind2= int (Ind2 + pow(Base,2));
Base++;
}
else
{
Ind2= int (Ind1 + pow(Base,2));
Base++;
}
if (Ind2 >= MAXIMO)
if (Bandera == 2)
Bandera= 3;
else
{
Base= 1;
Ind2= 0;
Bandera= 2;
}

|534

Capitulo 10. Busqueda

if (Bandera == 3)
Resp= false;
else
Datos[Ind2]= Valor;
I3
if (Resp)

Tam++;
return Resp;

/* Método para buscar el elemento Valor. Resuelve el problema de las
wcolisiones por medio de la prueba cuadratica. */

template <class T>

void PruebaCuadratica<T>::Busca(T Valor)

int Base, Ind1, Ind2;

/* Verifica que el arreglo almacene al menos un elemento. */
if (!HashVacio())
{
Ind1= (Valor % MAXIMO);
if (Datos[Ind1] == Valor)
cout<<"\nEl elemento estda en la posicidn: "<<(Ind1+1)<<endl;
else
{
Base= 1;
Ind2= int (Ind1 + pow(Base,2));
while (Datos[Ind2] != Valor && Datos[Ind2] != NULL)
{
Base++;
Ind2= int (Ind1 + pow(Base,2));
if (Ind2 >= MAXIMO)
{
Base= 0;
Ind1= 0;
Ind2= 0;
}
}
if (Datos[Ind2] == Valor)
cout<<"\nEl elemento estad en la posicion:
= "<<(Ind2+1)<<endl;
else
cout<<"\nEl elemento no estd en el arreglo. \n";

}
else
cout<<"\nNo hay elementos almacenados en el arreglo. \n";

10.2 Busqueda interna

535|

/* Clase DobleDireccion, derivada de la clase Hash. Implementa el método
=Hash resolviendo las colisiones por medio de dobles direcciones.
wUtiliza la funcién Hash médulo o residuo. */

template <class T>

class DobleDireccion: public Hash<T>

{
public:
bool Inserta(T);
void Busca(T);
b

/* Método para insertar un nuevo elemento en un arreglo. Resuelve las
wcolisiones por medio de la doble direccién Hash. */
template <class T>
bool DobleDireccion<T>::Inserta(T Valor)
{
bool Resp= true;
int Ind1, Ind2, Bandera= 1;
/* Bandera: establece la condicion necesaria para evitar ciclos
winfinitos. Puede tomar tres posibles valores:
=1 indica el primer intento de insercidn
=2 indica el segundo intento de insercién
=3 indica el tercer intento de insercidn. En este caso se
=interrumpe el proceso. */

Ind1= Valor % MAXIMO;
if (Datos[Ind1] == NULL)
Datos[Ind1]= Valor;
else
{
Ind2 = ((Ind1+1) % MAXIMO) + 1;
while (Ind2 < MAXIMO && Datos[Ind2] != NULL && Bandera != 3)

{
Ind2= ((Ind2+1) % MAXIMO) + 1;
if (Ind2 >= MAXIMO)
if (Bandera == 2)
Bandera= 3;
else
{
Ind2= 0;
Bandera= 2;
}
I3
if (Bandera == 3)
Resp= false;
else

Datos[Ind2]= Valor;

| 536 Capitulo 10. Busqueda

if (Resp)
Tam++;
return Resp;
I3
/* Método para buscar el elemento Valor. Resuelve el problema de las
wcolisiones por medio de la doble direcci6n Hash. */
template <class T>
void DobleDireccion<T>::Busca(T Valor)
{
int Ind1, Ind2;
/* Verifica que el arreglo almacene al menos un elemento. */
if (!HashVacio())
{
Ind1= (Valor % MAXIMO);
if (Datos[Ind1] == Valor)
cout<<"\nEl elemento estd en la posicidn: "<<(Ind1+1)<<endl;
else
{
Ind2= ((Ind1+1) % MAXIMO) + 1;
while (Ind2 < MAXIMO && Datos[Ind2] != Valor &&
wDatos[Ind2]!= NULL &% Ind2 != Ind1)
Ind2= ((Ind2 + 1) % MAXIMO) + 1;
if (Datos[Ind2] == Valor)
cout<<"\nEl elemento estd en la posicidn:
= "<<(Ind2+1)<<endl;
else
cout<<"\nEl elemento no estd en el arreglo. \n";
}
}
else
cout<<"\nNo hay elementos almacenados en el arreglo. \n"<<endl;
}

El método Busca() se defini6 del tipo veid (en las implementaciones), de tal mane-
ra que el método imprime si encuentra o no al elemento buscado. También se pudo
definir de tipo entero y, en este caso, regresar la posiciéon donde estd, o un valor
negativo si no lo encuentra en el arreglo. Otra posible variante es definirlo de tipo
Bool, como Inserta(), dando el valor True si estd y False en caso contrario.

Es importante aclarar que si el tipo usado para darle valor a T fuera una clase, en-
tonces en dicha clase deberian estar sobrecargados los operadores ==y != para
que los métodos pudieran usarse tal como estan implementados.

El programa 10.3 presenta una aplicacién para mostrar el uso del algoritmo por
transformacion de claves, usando la prueba lineal para el manejo de colisiones. El

10.2 Busqueda interna 537 |

uso de las clases derivadas que implementan las otras variantes es similar al presen-
tado en este programa.

Programa 10.3

/* Aplicacién. Se incluye la biblioteca en la cual se guardd la clase
=Hash y su derivada Pruebalineal. */
#include "Hash.h"

void main()

{
int Total, I, Cod;
/* Se declara un objeto de la clase Pruebalineal, usando el tipo int
wpara definir el tipo de datos que se almacenaran en la tabla Hash. */
PruebalLineal<int> HashLin;

do {
cout<<"\nCuantos coédigos de productos quieres guardar: ";
cin>>Total;

} while (Total <= 0);

/* Lectura de los datos y almacenamiento de los mismos en la tabla
wHash por medio del método Inserta(). Si se presenta alguna colisidn en
w=el momento de insertar, se resuelve por medio de la prueba lineal. */
for (I= 1; I <= Total; I++)

{
cout<<"\n\nIngresa un cédigo: ";
cin>>Cod;
HashLin.Inserta(Cod);

}

/* Por medio de este ciclo se permite que el usuario verifique qué
=codigos fueron dados de alta en el arreglo. Se ingresa un codigo y
=se invoca al método que busca un elemento en la tabla Hash. Segln
wel resultado obtenido se da un mensaje adecuado. */
cout<<"\n\nCédigo a buscar (para terminar -1): ";
cin>>Cod;

while (Cod != -1)

HashLin.Busca(Cod);
cout<<"\n\nCdédigo a buscar (para terminar -1): ";
cin>>Cod;

}

/* Se imprime la informacién de todos los codigos guardados en la
=tabla Hash. */

cout<<"\n\n\nReporte de todos los codigos almacenados\n ";
HashLin.Imprime();

| 538

Capitulo 10. Busqueda

Encadenamiento

Ademas de las tres formas ya estudiadas para el manejo de las colisiones, existe otra
que es muy util y fécil de usar, pero que requiere utilizar listas ligadas ademads del
arreglo. Es decir, en este caso la tabla Hash se ve como un arreglo de listas. De ahi
el nombre que recibe esta manera de solucionar las colisiones: por encadenamiento.

El encadenamiento se da por la misma naturaleza de la estructura de datos elegida
para almacenar la informacién. Dado que cada elemento del arreglo es una lista,
si se tiene una colision el dato colisionado también se guarda en la lista de la
casilla asignada. Es decir, la direccién que se obtuvo con la funcién Hash sigue
siendo la misma; sin embargo, los datos se van guardando en la lista ligada, la
cual por ser implementada en memoria dindmica no tiene (en principio) limite
establecido. Por lo tanto, si la direccién generada por la funcién Hash es d, sin
importar si la misma ya fue ocupada o no se almacena el dato en la lista que esta
en la posicion d del arreglo.

La figura 10.10 presenta un esquema de cémo se va generando la tabla Hash,
usando encadenamiento, al insertar el valor 6513701123195 en la direccion
obtenida por la funcién (d=95), la cual fue previamente asignada a otro dato
(6513701123495). En este caso, como en cada posicién de la tabla se tiene una
lista no existe problema de espacio para insertarlo en la misma. Es decir, una vez
generada la direccidn se invoca el método que inserta elementos a la lista almace-
nada en dicha posicién. Cuando se busca un elemento se procede de manera
similar. Se calcula la direccién Hash y luego se realiza la bisqueda en la lista
guardada en dicha posicién.

95 :> 6513701123495 >(6513701123195

96 ¢

97

299

FIGURA 10.10 Manejo de colisiones por encadenamiento

10.2 Busqueda interna 539 |

La figura 10.11 presenta el esquema de clases para implementar este algoritmo.
Se modificé la clase Hash de la figura 10.9, declarando el atributo Datos[] del
tipo de la plantilla Lista. Ademads, el método Busca() de defini6 de tipo Bool.

Hash(T)

int Tam

Lista<T> Datos][]

bool HashVacio()
void Imprime()
virtual bool Inserta(T) = 0@

virtual void Busca(T) = 0

A

Encadenamiento(T)

bool Inserta(T)

void Busca(T)

FIGURA 10.11 Esquema de clases

A continuacion se presenta la implementacion de estas clases, usando el lenguaje
C++. Es importante sefialar, que si en lugar de usar la plantilla de la clase Lista
se hubiera usado una lista con un tipo ya asociado, se hubiera podido derivar de
la clase Hash previamente estudiada.

// Definicidn del numero maximo de elementos que puede contener el arreglo.
#define MAXIMO 20

/] Se incluye la biblioteca con la plantilla de la clase Lista.
#include "Lista.h"

| 540

Capitulo 10. Busqueda

/* Definicién de la clase Hash, en la cual el manejo de las colisiones se
whard por medio del encadenamiento. La funcidén Hash es el médulo o residuo.
=Se apoya en la clase Lista, la cual esta en la biblioteca Lista.h */
template <class T>
class Hash
{
protected:
int Tam;
Lista<T> Datos[MAXIMO];
public:
Hash();
bool HashVacio();
void Imprime();
virtual bool Inserta(T) = 0;
virtual bool Busca(T) = 0;
b

/* Método constructor. Inicializa los atributos Datos y Tam para
windicar que el arreglo esta vacio. En este caso se tiene un arreglo
wde listas. */

template <class T>

Hash<T>::Hash()

{
int Indice;
for(Indice= 0; Indice < MAXIMO; Indice++)
Datos[Indice]= NULL;
Tam= 0;
I3

/* Método auxiliar para determinar el estado del arreglo. Regresa true
wsi el arreglo esta vacio, y false en caso contrario. */

template <class T>

bool Hash<T>::HashVacio()

{
if (Tam == 0)
return true;
else
return false;
}

/* Imprime los elementos almacenados en el arreglo. Para que este
wnétodo pueda imprimir el contenido del arreglo, teniendo en cuenta que
=cada uno de ellos es una lista, se requiere que en la clase Lista se
=haya sobrecargado el operador <<. */
template <class T>
void Hash<T>::Imprime()
{

int Ind;

10.2 Busqueda interna

541 |

}

/* Clase Encadenamiento, derivada de la clase Hash. Implementa el método
=Hash resolviendo las colisiones por medio de encadenamiento. Utiliza

/* Verifica que el arreglo tenga al menos un elemento.

if (!Hashvacio())

{
cout<<"\n\n Datos almacenados\n\n ";
for (Ind= 0; Ind < MAXIMO; Ind++)
if (Datos[Ind] != NULL)
cout<<"Posicién "<<(Ind+1)<<":
"<<Datos[Ind]<<endl;
cout<<"\n\n";
}
else

*/

cout<<"\nNo hay elementos almacenados en el arreglo. \n";

=la funci6én Hash médulo o residuo. Se apoya en una lista simplemente
ligada. */

template <class T>

class Encadenamiento: public Hash<T>

{

b

public:
bool Inserta(T);
bool Busca(T);

/* Método para insertar un nuevo elemento en un arreglo.
colisiones por medio de encadenamiento. */

template <class T>

bool Encadenamiento<T>::Inserta(T Valor)

{

}

int Ind1;
bool InserLis;

Ind1= Valor % MAXIMO;
InserLis= Datos[Ind1].InsertaFinal(Valor);
if (InserLis)
Tam++;
return InserLis;

Resuelve las

/* Método para buscar el elemento Valor. Resuelve el problema de las
=colisiones por medio de encadenamiento, haciendo uso de una lista
=wsimplemente ligada. */

template <class T>

bool Encadenamiento<T>::Busca(T Valor)

{

int Ind1;
bool Resp= false;

| 542

Capitulo 10. Busqueda

if (!HashVacio())

{
Ind1= (Valor % MAXIMO);
if (Datos[Ind1].BuscaDesordenada(Valor) != NULL)
Resp= true;
}

return Resp;

A continuacién se presenta la plantilla de la clase Lista con los operadores sobre-
cargados requeridos por la clase Encadenamiento.

// Clase Lista dependiente de la clase NodoLista.
template <class T>
class Lista;

/* Definicién de la clase NodoLista. */
template <class T>
class NodoLista
{
public:
NodoLista<T> *Liga;
T Info;
NodoLista();
friend class Lista<T>;
/] Otros métodos presentados en el capitulo 6, dedicado a listas
=]igadas.

H

/* Declaracién del método constructor por omisidén. Inicializa con el
=valor NULL al puntero al siguiente nodo. */

template <class T>

NodoLista<T>::NodoLista()

{

}

Liga = NULL;

/* Definicidén de la clase Lista. */
template <class T>
class Lista
{
private:
NodoLista<T> *Primero;

10.2 Busqueda interna

543 |

public:
Lista ();
bool InsertaFinal(T);
NodoLista<T> * BuscaDesordenada(T);
void operator = (const);
bool operator != (const);
friend ostream &operator << (ostream &, Lista &);
// Otros métodos estudiados en el capitulo 6, dedicado a las
=]listas ligadas.

b

/* Declaraci6on del método constructor. Inicializa el puntero al primer
=nodo de la lista con el valor NULL: indica lista vacia. */

template <class T>

Lista<T>::Lista()

{
}

Primero = NULL;

/* Sobrecarga del operador = para que a un objeto de la clase Lista se
=le pueda asignar la constante NULL, operacidn necesaria cuando se
winicializa el arreglo de listas. */

template <class T>

void Lista<T>::operator = (const)

{
}

Primero = NULL;

/* Sobrecarga del operador = para que un objeto de la clase Lista pueda
wser comparado con la constante NULL, operaci6n necesaria cuando se
wintenta determinar si una casilla del arreglo esta disponible. */
template <class T>

bool Lista<T>::operator != (const)

{

}

return (Primero != NULL);

/* Sobrecarga del operador << para que un objeto tipo Lista pueda ser
wimpreso directamente. De esta manera, el método Imprime() de la clase
=Hash se generaliza a cualquiera de las formas vistas para tratar las
=colisiones. */
template <class T>
ostream &operator << (ostream &Escribe, Lista<T> &ObjLis)
{
NodoLista<T> *P = ObjLis.Primero;
while (P)
{
Escribe<<"\n"<<P->Info;
P= P->Liga;

| 544

Capitulo 10. Busqueda

Escribe<<"\n\n";
return Escribe;
}

/* Método que inserta un nodo al final de la lista. E1l método es valido
wtanto para listas ya creadas como para listas vacias. */

template <class T>

bool Lista<T>::InsertaFinal(T Dato)

{
NodoLista<T> *P, *Ultimo;
P = new NodoLista<T>();
if (P)
{
P->Info= Dato;
if (Primero)
{
Ultimo = Primero;
while (Ultimo->Liga)
Ultimo = Ultimo->Liga;
Ultimo->Liga = P;
}
else
Primero = P;
return true;
}
else
return false;
}

/* Método que busca un elemento dado como referencia en una lista
wdesordenada. Regresa la direccion del nodo si lo encuentra o NULL en
=caso contrario. */
template <class T>
NodoLista<T> * Lista<T>::BuscaDesordenada(T Ref)
{

NodoLista<T> *Q, *Resp= NULL;

if (Primero)

{
Q = Primero;
while ((Q->Info != Ref) && (Q->Liga))
Q = Q->Liga;
if (Q->Info == Ref)
Resp= Q;
}

return Resp;

10.2 Busqueda interna 545 |

La eficiencia de este método se determina por el nivel de llenado de la estructura.
Cuanto més llena esté mas comparaciones adicionales requerird para llegar al
dato buscado. El primer intento siempre es directo, es decir se compara el dato
con el que estd en la direccidn que le corresponde. Sin embargo, si el dato no esta
en esa posicion entonces se debe proceder segtin el algoritmo usado para resolver
colisiones. Por lo tanto, el comportamiento final de este método depende, ademas
del nivel de llenado, del manejo de colisiones que se implemente.

El programa 10.5 presenta una aplicacion de este algoritmo para ilustrar su uso.
Los datos con los que se trabaja son objetos de la clase Producto y a los mismos
se les asigna una direccion de acuerdo a su clave. Es decir, la funcién Hash se
aplica sélo a su clave, por lo que en la clase Producto se sobrecarga el operador
del residuo (%). En el programa se capturan algunos productos y se almacenan
en una tabla Hash con encadenamiento. Posteriormente, se realizan algunas
buisquedas sobre la tabla Hash, y finalmente se imprime un reporte de todos los
productos almacenados en el arreglo. Para dar mayor claridad al ejemplo, se
incluye en el programa 10.4 la clase Producto con todos los métodos requeridos
para esta aplicacion. Las clases Lista y Hash son las que se presentaron anterior-
mente y estdn en las bibliotecas Lista.h y Hash.h respectivamente.

Programa 10.4

/* Definicion de la clase Producto. Se incluyen algunos atributos y los
=wmétodos requeridos para esta aplicacidén, destacando la sobrecarga de
=algunos operadores para que el algoritmo de Hash con encadenamiento
=pueda usarse. */
class Producto
{
private:
int Clave;
char NomProd[64];
double Precio;
public:
Producto();
Producto(int, char[], double);
int operator == (Producto);
int operator != (Producto);
int operator % (int);
friend istream &operator>>(istream &, Producto &);
friend ostream &operator<<(ostream &, Producto &);
b

| 546

Capitulo 10. Busqueda

/* Constructor por omisidn. */
Producto::Producto()
{}

/* Constructor con parametros. */
Producto::Producto(int Cla, char NomP[], double Pre)

{
Clave= Cla;
strcpy (NomProd, NomP);
Precio= Pre;

}

/* Sobrecarga del operador == para comparar dos objetos tipo Producto.
=Para que dos productos sean iguales sus claves deben ser iguales. */
int Producto::operator == (Producto Prod)

{
int Resp=0;
if (Clave == Prod.Clave)
Resp= 1;
return Resp;
I3

/* Sobrecarga del operador != para comparar dos objetos tipo Producto.
Para que dos productos sean distintos sus claves deben ser diferentes.
*/

int Producto::operator != (Producto Prod)

{
int Resp=0;
if (Clave != Prod.Clave)
Resp= 1;
return Resp;
}

/* Sobrecarga del operador % para ser aplicado en la funcién Hash
wnodulo o residuo. Recibe como parametro el tamafo de la tabla Hash, y
=regresa como resultado el residuo entre la clave del producto y dicho
=wyvalor. */

int Producto::operator % (int num)

{

}

return Clave % num;

/* Sobrecarga del operador >> para que un objeto de la clase Producto
pueda ser leido directamente. */
istream &operator >> (istream &Lee, Producto &0bjProd)
{
cout <<"\n\nIngrese clave del producto: ";
Lee>> ObjProd.Clave;
cout <<"\n\nIngrese nombre del producto: ";

10.2 Busqueda interna 547 |

Lee>> ObjProd.NomProd;

cout <<"\n\nIngrese precio: ";
Lee>> ObjProd.Precio;

return Lee;

}

/* Sobrecarga del operador << para que un objeto de la clase Producto
pueda ser escrito directamente. */
ostream &operator << (ostream &Escribe, Producto &0bjProd)

{
Escribe<<"\n\nProducto\n";
Escribe<<"\nClave: "<<ObjProd.Clave;
Escribe<<"\nNombre: "<<ObjProd.NomProd;
Escribe<<"\nPrecio: "<<ObjProd.Precio<<"\n";
return Escribe;

}

El programa 10.5 presenta una aplicacion del algoritmo por transformacién de
claves con encadenamiento. Se crea una tabla Hash de objetos tipo Producto,
luego permite hacer bisquedas sobre la tabla y finaliza con un reporte de todos
los elementos almacenados.

Programa 10.5

/* Aplicacidén. Se incluyen las bibliotecas con el coédigo de las
wplantillas de la clase Lista y Hash, mismos que corresponden a lo pre-
=sentado anteriormente. La clase Producto se incluye en la biblioteca
=Producto.h */

#include "Lista.h"
#include "Hash.h"
#include "Producto.h"

void main()

{

int Total, i, Clave;

/* Se declara un objeto de la clase derivada Encadenamiento con el
=tipo Producto como base para T. */

Encadenamiento<Producto> HashEnc;

Producto Prod;

/* Se pide al usuario el total de productos que se almacenaran en la
=tabla Hash. */

| 548

Capitulo 10. Busqueda

do {
cout<<"\nCuantos productos quiere insertar: ";
cin>>Total;

} while (Total <= 0);

/* Se lee cada uno de los productos y se inserta en la tabla Hash
wyusando el método Inserta() el cual invoca a un método de insercion
wde la clase Lista. Es importante recordar que la tabla Hash es un
warreglo de listas. */

for (i= 1; i <= Total; it++)

{
cout<<"\n\nIngresa producto a insertar\n ";
cin>>Prod;
HashEnc.Inserta(Prod);

}

/* Por medio de este ciclo se permite que el usuario verifique qué
wproductos fueron dados de alta en el arreglo. Se ingresa la clave de
=un producto, con la que se crea un objeto de ese tipo y se invoca
w3l método que busca un elemento en la tabla Hash. Se da un mensaje
=de acuerdo al resultado obtenido. */

cout<<"\n\nClave del producto que busca (para terminar 0@): ";

cin>>Clave;
while (Clave l= 0)
{
Producto Prod(Clave, "", 0);

if (HashEnc.Busca(Prod))

cout<<"\nEse producto ya fue registrado\n";
else

cout<<"\nEse producto NO estd registrado ";
cout<<"\n\nClave del producto que buscas (para terminar 0): ";
cin>>Clave;

}

/* Se imprime la informacion de todos los productos guardados en la
=tabla Hash. */

cout<<"\n\n\nReporte de todos los productos almacenados\n ";
HashEnc.Imprime();

10.2.4 Busqueda secuencial en listas

Debido a la naturaleza de las listas simplemente ligadas, la bisqueda secuencial
es el unico tipo de bisqueda que se puede aplicar sobre esta estructura de datos.
La variante que se puede introducir depende de si se sabe si los elementos de la

10.2 Busqueda interna

549 |

misma estdn o no ordenados. Por lo tanto, para las listas se definird una clase
abstracta: Busqueda y dos clases derivadas: SecuenciallListasDesordenadas y
SecuenciallistasOrdenadas para poder implementar las dos variantes de esta

operacion.

Busqueda(T)

virtual NodoLista<T> Busca() = 0

SecuenciallistaDesordenada(T)

SecuenciallistaOrdenada(T)

NodoLista<T> Busca()

NodoLista<T> Busca()

FIGURA 10.12 Esquema de clases

A continuacién se presenta la codificacién, usando el lenguaje C++, de la planti-
lla de la clase abstracta. Observe que el método virtual Busca() recibe como pa-
rametro la lista donde se llevard a cabo la bisqueda y un elemento de tipo T que

es el dato a buscar. Si la operacién se definiera como un método de la clase lista,
entonces sélo se recibiria como parametro el dato a buscar.

template <class T>
class Busqueda

{
public:

h

/* Definici6n de la clase abstracta Busqueda. A partir de ella se derivan
=otras dos clases para implementar los correspondientes algoritmos de
whlsqueda secuencial para listas desordenadas y para listas ordenadas. */

virtual NodoLista<T> * Busca (Lista<T>, T) = 0;

| 550 Capitulo 10. Busqueda

La implementacién de la clase derivada para realizar la busqueda de un elemento
en una lista simplemente ligada, cuyos elementos estin desordenados queda:

/* Declaracion de la clase SecuenciallistaDesordenada, derivada de la
wclase abstracta Busqueda. Se especifica el método Busca() de acuerdo al
walgoritmo de busqueda secuencial en una lista desordenada. */
template <class T>
class SecuenciallistaDesordenada: public Busqueda<T>
{

public:

NodoLista<T> * Busca (Lista<T>, T);

s

/* Método que busca un elemento dado como referencia en una lista
wdesordenada. Regresa la direccion del nodo si lo encuentra o NULL en
=Ccaso contrario. Recibe como parametro la lista en la cual se realizara
wla blUsqueda y el dato a buscar. */

template <class T>

NodoLista<T> * SecuenciallistaDesordenada<T>::Busca(Lista<T> ListaDato,
=T Valor)

{
NodoLista<T> *Q, *Resp= NULL;

/* Verifica si la lista tiene al menos un elemento. */
if (ListaDato.RegresaPrimero())

{

Q = ListaDato.RegresaPrimero();

while ((Q->Regresalnfo() != Valor) && (Q->Regresaliga()))

Q = Q->Regresaliga();
if (Q->Regresalnfo() == Valor)
Resp= Q;

}
return Resp;

Es importante sefialar que si el dato a buscar fuera un objeto se deberia sobrecar-
gar el operador != en la clase a la cual pertenece dicho objeto.

La implementacién de la clase derivada para realizar la busqueda de un elemento
en una lista simplemente ligada, cuyos elementos estin ordenados queda:

10.2 Busqueda interna

551 |

/* Declaracidn de la clase SecuenciallistaOrdenada, derivada de la clase
wabstracta Busqueda. Se especifica el método Busca() de acuerdo al
walgoritmo de blUsqueda secuencial en una lista ordenada de manera
creciente. */
template <class T>
class SecuenciallistaOrdenada: public Busqueda<T>
{

public:

NodoLista<T> * Busca (Lista<T>, T);

s

/* Método que busca un elemento dado como referencia en una lista
wordenada de forma creciente. Regresa la direccidén del nodo si lo
wmencuentra y NULL en caso contrario. */

template <class T>

NodoLista<T> * SecuenciallistaOrdenada<T>::Busca(Lista<T> ListaDato, T
=\alor)

{
NodoLista<T> *Q, *Resp= NULL;

/* Verifica que la lista tenga al menos un elemento. */
if (ListaDato.RegresaPrimero())

{
Q = ListaDato.RegresaPrimero();
while ((Q->Regresalnfo() < Valor) && (Q->RegresalLiga()))
Q= Q->RegresalLiga();
if (Q->Regresalnfo() == Valor)
Resp= Q;
}

return Resp;

Es importante sefialar que si el dato a buscar fuera un objeto se deberia sobrecar-
gar el operador < en la clase a la cual pertenece dicho objeto.

Con respecto a la eficiencia de esta operacion es igual a la presentada para los arre-
glos. Dada la caracteristica de la bisqueda, es independiente a si se implementa con
arreglos o con listas. En consecuencia, aplican las férmulas dadas en 10.1.

El programa 10.6 muestra una aplicacién de la bisqueda secuencial en listas. Se
crea una lista con los datos de las personas que asistieron a un congreso. Luego

se permite consultar (realizando buisquedas) la lista para verificar si una determi-
nada persona asisti6 o no al evento. Como no se sabe si la lista estd ordenada, se

| 552

Capitulo 10. Busqueda

utiliza la buisqueda secuencial en listas desordenadas. Finalmente se imprimen los
datos de todos los asistentes.

Programa 10.6

/* Se incluyen las bibliotecas en las que se guardaron las
=plantillas de la clase Lista y de la clase Busqueda y su derivada
wSecuenciallistaDesordenada y ademds la biblioteca en la que esta
=la clase Persona. */

#include "Lista.h"

#include "Busqueda.h"

#include "Persona.h"

/* Funcion principal. Se crea la lista de personas y luego, por medio de
=]la clase ya definida, se buscan a personas de acuerdo a su nombre que
=es un dato proporcionado por el usuario. */
void main()
{
/* Se crean los objetos de la clase SecuenciallistaDesordenada y de
=la clase Lista, usando la clase Persona como tipo base. Ademas se
=declaran algunas otras variables de trabajo. */
Lista<Persona> LisDesord, LisOrd;
SecuenciallistaDesordenada<Persona> Buscador;
NodoLista<Persona> *Apunt;
char NomPers[64];

/* Se capturan los datos de los asistentes al congreso sin ningun
=orden entre los mismos. */

cout<<"\n\nIngrese la lista de asistentes al congreso.\n\n";
LisDesord.CreaFinal();

/* Se realiza la busqueda secuencial de personas, por su nombre, en
wla lista previamente creada. Si dicha persona asistié al congreso,
wentonces se imprimen todos sus datos. En caso contrario s6lo se
windica que no participé en el evento. */
cout<<"\n\nIngrese nombre de la persona que desea verificar si
wasistid al congreso.n";

cout<<"Para terminar capture una X\n\n";
cin>>NomPers;
while (strcmp(NomPers, "X") != 0)
{

Persona Asistente(@, NomPers, "");

Apunt = Buscador.Busca(LisDesord, Asistente);

if (Apunt != NULL)

cout<<"\n\nEsa persona asisti6 al congreso y sus datos
=son:\n" <<Apunt->Regresalnfo()<<"\n";

10.2 Busqueda interna

553 |

else

cout<<"\n\nEsa persona NO asistid al congreso\n\n";
cout<<"\n\nIngrese el nombre de la persona que desea verificar si
wasistid al congreso\n\n";

cout<<"Para terminar capture una X\n\n";

cin>>NomPers;

}

/* Imprime todos los datos de los asistentes al congreso. */
LisDesord.Imprime(LisDesord.RegresaPrimero());

La busqueda secuencial en listas puede tratarse como una operacién de la clase
Lista en vez de considerarse como una clase. A continuacién se presenta parte de
esta clase en la cual se incorporaron los métodos de biisqueda ya estudiados, con

la variante de que fueron escritos de manera recursiva.

/| Clase Lista dependiente de la clase NodoLista.
template <class T>
class Lista;

/* Definicion de la clase NodoLista. */
template <class T>
class NodolLista

{
private:
NodoLista<T> *Liga;
T Info;
public:
NodoLista();
friend class Lista<T>;
/| Otros métodos estudiados en el capitulo 6, dedicado a las
=]istas ligadas.
b

/* Declaracidén del método constructor por omisién. Inicializa con el
=valor NULL al puntero al siguiente nodo. */
template <class T>
NodoLista<T>::NodoLista()
{
Liga = NULL;
}

|554

Capitulo 10. Busqueda

/* Definicidn de la clase Lista. Se incluyen s6lo los métodos de blsqueda,
wtema de estudio de este capitulo. */
template <class T>
class Lista
{
private:
NodoLista<T> *Primero;
public:
Lista ();
NodoLista<T> *BuscaSecuencialOrd (NodoLista<T> *, T);
NodoLista<T> *BuscaSecuencialDesord (NodoLista<T> *, T);
/] Otros métodos estudiados en el capitulo 6, dedicado a las
=]listas ligadas.

s

/* Declaracién del método constructor. Inicializa el puntero al primer
wnodo de la lista con el valor NULL: indica lista vacia. */
template <class T>
Lista<T>::Lista()
{
Primero = NULL;

}

/* Método de la clase Lista que busca un elemento en una lista ordenada
=de manera creciente. Regresa la direccidén del nodo si lo encuentra o
=NULL en caso contrario. */
template <class T>
NodoLista<T> * Lista<T>::BuscaSecuencialOrd(NodoLista<T> * Ap, T Dato)
{
if (Ap)
if (Ap->Info < Dato)
return BuscaSecuencialOrd(Ap->Liga, Dato);
else
if (Ap->Info == Dato)
return Ap;
else
return NULL;
else
return NULL;

}

/* Método de la clase Lista que busca un elemento en una lista
wdesordenada. Regresa la direccion del nodo si lo encuentra o NULL
=en caso contrario. */
template <class T>
NodoLista<T> * Lista<T>::BuscaSecuencialDesord (NodoLista<T>

=* Ap, T Dato)

10.3 Busqueda externa 555 |

{
if (Ap)
if (Ap->Info != Dato)
return BuscaSecuencialDesord(Ap->Liga, Dato);
else
return Ap;
else
return NULL;
}

10.2.5 Busqueda en arboles

La operacion de busqueda en drboles depende de la estructura de los mismos. Las
mds usadas fueron presentadas en el capitulo 7, dedicado al estudio de estas estruc-
turas de datos.

10.2.6 Busqueda en graficas

La operacién de buisqueda en graficas depende de la estructura de las mismas. Las
mas usadas fueron presentadas en el capitulo 8. Ademads, en el caso de estas estruc-
turas, la busqueda también queda determinada por la informacién que se pretende
extraer de las mismas.

10.3 Busqueda externa

La bisqueda externa es aquella que se realiza sobre un archivo previamente
creado y guardado en algun dispositivo de almacenamiento secundario. La mane-
ra en la que se podré tener acceso a los datos del archivo depende de la forma en
que el archivo fue creado. En esta seccién se estudiara la biisqueda secuencial y
binaria en archivos de objetos.

La implementacion de cualquiera de los tipos de bisqueda en archivo estd estre-
chamente determinada por el lenguaje de programacién utilizado.

| 556

Capitulo 10. Busqueda

10.3.1 Busqueda externa secuencial

La busqueda secuencial en archivos de objetos consiste en leer del archivo un
objeto (el primero) y compararlo con el dato buscado. Si son iguales termina la
biisqueda con éxito. En caso contrario se debe leer el siguiente elemento del
archivo y se compara nuevamente con el dato que interesa. El proceso se repite
hasta encontrar la informacién buscada o hasta llegar al final del archivo, caso en
el que la bisqueda termina con fracaso.

Si la informacién del archivo estuviera ordenada, entonces se puede modificar la
condicién durante la cual se realiza la lectura y comparacién de objetos para ga-

nar eficiencia. Si estuviesen ordenados crecientemente, se busca mientras no sea
el fin de archivo y mientas el dato leido sea menor que el elemento buscado. En

cambio si el orden fuera decreciente, se busca mientras no sea el fin de archivo y
mientas el dato leido sea mayor que el elemento buscado.

Como se puede apreciar, el algoritmo (tanto para archivos desordenados como
para ordenados) es el mismo que el aplicado a estructuras de almacenamiento
interno. La diferencia estd en la implementacion debido a las caracteristicas
propias de los archivos.

El programa 10.7 presenta la clase vehiculo que serd usada en la implementacion
de estos algoritmos.

Programa 10.7

/* Definicidn de la clase Vehiculo. Se incluyen s6lo algunos atributos y
wnétodos, mismos que se utilizardn para ilustrar la blsqueda secuencial
=en archivos de objetos. */

class Vehiculo

{
private:
char Placa[8], NumMotor[16], Color[8];
int Cilindros;
public:
Vehiculo();
Vehiculo(char *, char *, char *, int);
char * RegresaPlaca();
friend istream &operator >> (istream &, Vehiculo &);
friend ostream &operator << (ostream &, Vehiculo &);
s

/* Constructor por omisién. */
Vehiculo::Vehiculo()

{}

10.3 Busqueda externa 557 |

/* Constructor con parametros. */
Vehiculo::Vehiculo(char Pla[], char NumM[], char Col[], int Cil)

{
strcpy(Placa, Pla);
strcpy (NumMotor, NumM);
strcpy (Color, Col);
Cilindros= Cil;
}
/* Método que permite a usuarios externos a la clase conocer el atributo
wpPlaca. */
char * Vehiculo::RegresaPlaca()
{

return Placa;

}

/* Sobrecarga del operador >> para que un objeto tipo Vehiculo pueda
wser leido directamente. */
istream &operator >> (istream &Lee, Vehiculo &0bjV)
{
cout <<"\n\nIngrese placa del vehiculo: ";
Lee>> ObjV.Placa;
cout <<"\n\nIngrese numero de motor: ";
Lee>> 0ObjV.NumMotor;
cout <<"\n\nIngrese color: ";
Lee>> 0ObjV.Color;
cout <<"\n\nIngrese total de cilindros: ";
Lee>> 0ObjV.Cilindros;
return Lee;

/* Sobrecarga del operador << para que un objeto tipo Vehiculo pueda
=ser impreso directamente. */
ostream &operator << (ostream &Escribe, Vehiculo &0bjV)

{
Escribe<<"\n\nDatos del vehiculo\n";
Escribe<<"\nPlacas: "<<ObjV.Placa;
Escribe<<"\nNUmero de motor: "<<ObjV.NumMotor;
Escribe<<"\nColor: "<<0bjV.Color;
Escribe<<"\nTotal de cilindros: "<<ObjV.Cilindros;
return Escribe;

}

El programa 10.8 presenta una aplicacion de la bisqueda secuencial en un archi-

vo cuya informacion estd desordenada. Se crea un archivo con objetos de la clase
Vehiculo y posteriormente se realiza la bisqueda de algin vehiculo por medio del
nimero de placas. Si lo encuentra despliega toda la informacién del mismo, y en

caso contrario sélo indica que no se encontro.

| 558

Capitulo 10. Busqueda

Programa 10.8

/* Se incluye la biblioteca donde se guardé la clase Vehiculo. */
#include "Vehiculo.h"

/* Funcién auxiliar para crear un archivo de objetos tipo Vehiculo. */
void CreaArch()

{
char NomArch[64];
int Total, Indice;
Vehiculo Auto;
/* Se declara un objeto de la clase fstream, provista por C++ para el
wmanejo de archivos. */
fstream Arch;
cout<<"\n\nNombre del archivo que quiere crear: ";
cin>>NomArch;
/* Se crea un archivo para escritura. */
Arch.open(NomArch, ios::out);
cout<<"\n\nTotal de vehiculos a registrar: ";
cin>>Total;
/* Se leen y se almacenan en el archivo objetos de la clase Vehiculo. */
for (Indice= 1; Indice <= Total; Indice++)
{
cin>>Auto;
Arch.write((char *) &Auto, sizeof (Auto));
}
Arch.close();
I3

/* Funcién principal. Permite crear un nuevo archivo o usar uno ya
wexistente. Sobre el archivo elegido realiza busqueda secuencial para
wencontrar un objeto tipo Vehiculo. Se asume que la informacion esta
=desordenada. */
void main ()
{

char Nom[64], Placa[64], Resp;

fstream Arch;

Vehiculo Auto;

cout<<"\nQuieres crear un nuevo archivo s/n: ";

cin>>Resp;

if (Resp == 's')

CreaArch();

10.3 Busqueda externa

559|

cout<<"\n\nIngresa el nombre del archivo que quieres consultar: ";
cin>>Nom;

/* Se abre el archivo para lectura. */
Arch.open(Nom, ios::in);

cout<<"\n\nIngrese el ndmero de placas del vehiculo: ";
cin>>Placa;

/* Se lee un objeto del archivo mientras no se llegue al fin del

=mismo y mientras no se encuentre el elemento buscado. */

Arch.read((char *) &Auto, sizeof (Auto));

while (!Arch.eof() && (strcmp(Auto.RegresaPlaca(), Placa) != 0))
Arch.read((char *) &Auto, sizeof (Auto));

/* Se verifica si se encontrd el auto en el archivo. */
if (strcmp(Auto.RegresaPlaca(), Placa) == 0)
cout<<"\n"<<Auto;
else
cout<<"\n\nEse auto no esta registrado\n\n";

Arch.close();

Este algoritmo se puede adaptar para buisqueda secuencial en archivos ordenados.
Sélo se requiere cambiar la segunda condicién del ciclo, quedando

(stremp(Auto.RegresaPlaca(), Placa) < 0) para arreglos ordenados crecientemente, o

(stremp(Auto.RegresaPlaca(), Placa) > 0) para arreglos ordenados decreciente-
mente.

10.3.2 Busqueda externa binaria

La buisqueda binaria se aplica sélo a archivos de objetos que estan ordenados.
El espacio de busqueda (que es todo el archivo) se divide a la mitad, luego se lee
el dato que ocupa esa posicién y se compara con el elemento que interesa. Si son
iguales, la bisqueda termina con éxito. En caso contrario, se evalda si el dato leido
es menor o mayor que el dato buscado. En el primer caso se redefine el espacio de
bisqueda limitdndolo desde la posicién central mds uno hasta el final del archivo.
En el segundo, desde la posicién inicial hasta la central menos uno. El proceso se

| 560

Capitulo 10. Busqueda

repite hasta encontrar el dato buscado o hasta que el extremo izquierdo del espa-
cio quede mayor al extremo derecho, lo cual implica terminar con fracaso.

Para poder aplicar este algoritmo a un archivo ya ordenado se requiere calcular
la posicién del dltimo elemento almacenado en el archivo. Para ello se usan
facilidades que ofrecen los lenguajes de programacion, como se verd en el
programa 10.9.

El algoritmo (en esencia) es el mismo que el analizado para estructuras de alma-
cenamiento interno. La diferencia esta en la implementacién debido a las caracte-
risticas propias de los archivos.

El programa 10.9 presenta la implementacion de este algoritmo. Se vuelve a usar
la clase vehiculo definida en el programa 10.7. Si se requiere crear un archivo se
puede usar la funcién del programa 10.8 creada para tal efecto.

Programa 10.9

/* Funcion principal. Utiliza busqueda binaria para encontrar un
wyvehiculo en un archivo previamente creado, cuya informacién esta
wordenada por numero de placas. */
void main ()
{
char Nom[64], Placa[64];
int Izq, Der, Cen;
fstream Arch;
Vehiculo Auto;
cout<<"\n\nIngrese el nombre del archivo que quiere consultar: ";
cin>>Nom;

cout<<"\n\nIngrese el ndmero de placas del vehiculo: ";
cin>>Placa;

/* Se abre el archivo para lectura. */
Arch.open(Nom, ios::in);

/* Se posiciona al final del archivo. */
Arch.seekg (@, ios::end);

/* Se calcula el extremo derecho, el izquierdo y el central del
wespacio de busqueda. */

Der = (int) Arch.tellg()/sizeof (Auto) -1;

Izg= 0;

Cen= (int) (Izq + Der) /2;

Ejercicios

561 |

/* Se posiciona el puntero del archivo en la posicién central del
wnismo y se lee el objeto que haya sido almacenado en esa posicién. */
Arch.seekg(Cen*sizeof (Auto), i0s::beg);

Arch.read((char *) &Auto, sizeof (Auto));

/* Se busca mientras el extremo izquierdo sea menor o igual al
wextremo derecho y mientras no se encuentre el elemento buscado. */
while (Izq <= Der && strcmp(Auto.RegresaPlaca(), Placa) != 0)

{
if (strcmp(Auto.RegresaPlaca(), Placa) < 0)
Izqg= Cen +1;
else
Der = Cen -1;
Cen= (int) (Izq + Der) /2;
Arch.seekg(Cen*sizeof (Auto), ios::beg);
Arch.read((char *) &Auto, sizeof (Auto));
}
/* Se comprueba si se encontrd al vehiculo buscado. */
if (strcmp(Auto.RegresaPlaca(), Placa) == 0)
cout<<"\n"<<Auto;
else

cout<<"\n\nEse auto no esta registrado\n\n";

Arch.close();

En el programa 10.9 se usaron métodos (Seekg() y tellg()) de la clase fstream
para tener acceso a ciertas funcionalidades necesarias para realizar la bisqueda
binaria. Con la ayuda de estos métodos se calcul6 el total de elementos almace-
nados en el arreglo y se pudo, en cada iteracion, colocar el puntero del archivo
en la posicion central del mismo.

Ejercicios

1. Considere las férmulas presentadas en Férmulas 10.1, para bisqueda
secuencial. Complete la siguiente tabla con el nimero minimo, medio y
maximo de comparaciones para distintos tamafios de arreglos.

| 562

Capitulo 10. Busqueda

Numero de comparaciones

Tam Minimo Medio Maximo
10
100
1000
5000
10000

2. Considere las férmulas presentadas en Férmulas 10.2, para biisqueda bina-
ria. Complete la siguiente tabla con el nimero minimo, medio y méiximo de
comparaciones para distintos tamafios de arreglos.

Nuimero de comparaciones

Tam Minimo Medio Maximo
10
100
1000
5000
10000

3. Se tiene un arreglo que almacena los datos de productos (puede usar la
clase Producto del programa 10.4). Utilice la clase SecuencialDesord para
declarar un objeto, el cual debe buscar un producto en el arreglo mencionado.
El usuario proporcionard la clave del producto de interés.

4. Escriba un programa en C++ que realice las siguientes operaciones (modu-
larice su solucién):

(a) Lea la informacién de varios productos (utilice la clase Producto ya
mencionada) y almacénela en un arreglo.

(b) Ordene el arreglo por medio de algunos de los algoritmos estudiados
en el capitulo 9.

(c) Usando la clase Binaria busque algtin producto en el arreglo ya orde-
nado. Si lo encuentra debe imprimir toda la informacién del mismo, y
en caso contrario debe indicar que ese producto no estd registrado. El
usuario proporcionara la clave del producto de interés.

Ejercicios 563 |

. Retome la clase Arreglo usada en el programa 10.1. Escriba un método, lla-
mado BusgBinaria(T), que implemente la bisqueda binaria como miembro
de esa clase.

. Modifique las clases correspondientes al método por transformacién de cla-
ves, de tal manera que la funcién Hash se implemente como un método de la
clase abstracta Hash y pueda ser usada por todas las clases derivadas.

. Retome el problema anterior. Utilice alguna forma distinta para la funcién
Hash (truncamiento, plegamiento o alguna disefiada por usted). Compare
los resultados obtenidos para el mismo conjunto de datos. (Cudl distribuy6
mds uniformemente los elementos en la tabla Hash?

. Modifique el método Busca() de la clase abstracta Hash y de sus clases deri-
vadas para que su resultado sea un entero que indique la direccién donde
encontrd el elemento buscado o un negativo en caso de fracaso.

. Se define la clase CuentaBancaria segun se especifica mas abajo. Utilice
Hash con encadenamiento para almacenar en memoria principal un conjun-
to de objetos declarados a partir de dicha clase. Generalice la clase Hash vista
en este capitulo y, si corresponde, su clase derivada, para que ademds de
insertar y buscar, se pueda eliminar un elemento de la tabla Hash. Considere
casos de error.

CuentaBancaria

NumeroCta: int
Saldo: double
Titular: char[]

FechaApertura: char[]

Constructor(es)
RegresaCta(): int

Otros métodos que crea necesarios
para resolver el problema.

| 564 Capitulo 10. Busqueda

10. Escriba un programa en C++ que realice las siguientes operaciones (organi-
ce su solucién modularmente):

a) Capture objetos de tipo Persona (puede usar la clase definida en el pro-
grama 10.1) y almacénelos en un archivo. Los datos son proporcionados
sin orden.

b) Busque, por su nombre, una persona previamente guardada en el
archivo. Si la encuentra debe imprimir toda la informacién de dicha
persona. En caso contrario sélo indicard que no estd registrada. El
usuario proporciona como entrada el nombre de la persona a buscar.

11. Escriba un programa en C++ que realice las siguientes operaciones (organi-
ce su solucién modularmente):

a) Capture objetos de tipo CuentaBancaria (puede usar la clase definida
en el problema 9) y almacénelos en un archivo.

b) Utilice alguno de los algoritmos de ordenacién vistos en el capitulo 9
para ordenar el archivo, de acuerdo al nimero que identifica a cada
cuenta bancaria.

¢) Busque, por nimero de cuenta, una cuenta previamente guardada en
el archivo. Si la encuentra debe imprimir toda la informacién de dicha
cuenta. En caso contrario s6lo indicard que no estd registrada. El usua-
rio proporciona como entrada el nimero de la cuenta a buscar. Para
realizar la busqueda utilice el algoritmo de biisqueda binaria, ya que
como resultado del inciso b) el archivo debe estar ordenado segin el
atributo NumeroCta.

INDICE

A

Abstraccion, 1, 2, 4
Abstract Data Type, 4
Abstracta, clase, 107
Adyacencia
lista, 398
matriz, 398
etiquetada, 399
Adyacentes, vértices, 394
Aislado, vértice, 395
Algoritmo de Sheker, 457
Amigas(os)
clases, 59
funciones, 65
métodos, 63
Arbol, 313
abarcador, 424
altura, 315
balanceado, 345
eliminacién, 353
insercion, 350
binario, 315
busqueda en, 330
creacion, 320
de busqueda, 329
eliminacién de un
elemento, 335

insercion de un nuevo

elemento, 332
operaciones, 319
recorrido, 321

grado, 315

hermano, 314
hijo, 314

hoja, 315
interior, 315
libre, 396, 424
nodo, 313
padre, 314

raiz, 313, 315
reacomodo, 346
terminal, 315

Arboles B, 367

busqueda en, 368, 382

eliminacién en, 375,
385

insercion en, 370, 383

pagina, 367

pagina raiz, 367, 381

paginas hojas, 367, 381

paginas intermedias,
367, 381

Arreglo(s), 115

bidimensional, 150

clase, 117

de dos dimensiones, 150

de objetos, 160

desordenados, 123, 508

eliminacién de un
elemento, 122

escritura, 121

lectura, 119

ordenado(s), 131, 509,
516

paralelos, 140

Atributos, 7

Balanceado, arbol, 345
Bidimensional, arreglo, 150
Binaria, bisqueda, 516
Binario, arbol, 315
busqueda de un
elemento, 330
creacion, 320
de busqueda, 329
eliminacién de un
elemento, 335
insercién de un
elemento, 332
operaciones en, 318
recorrido, 321
Breadth First (bisqueda a
lo ancho), 436
Busqueda, 505
a lo ancho (Breadth
First), 436
binaria, 516
de elementos en listas,
281
eficiencia, 510, 518
en arboles, 555
en gréficas, 555
en profundidad (Depth
First), 436
externa, 505, 555
binaria, 559
secuencial, 556
interna, 505, 506

| 566

indice

secuencial, 124, 131, 508
eficiencia, 510
en listas, 548

C

Camino, 395
cerrado, 395
ciclo, 395
simple, 395
Clase(s), 7, 9
abstracta(s), 9, 107
amigas (friend), 59
arreglo, 117
base, 35
concretas, 9
derivada, 35
Cola(s), 195, 211
Circular(es), 224, 225
dobles, 231
Colisioén, 520
solucién, 525
Constructor
con parametros por
omisién, 19
con pardmetros, 18
por omisién, 18

D

Depth First (bisqueda en
profundidad), 436

Desordenados, arreglos,
123, 508

Dijkstra, método, 411

Doblemente ligadas, listas,
269, 272, 276, 281

bisqueda de elementos,
281

Dos dimensiones, arreglo,
150

E

Elemento
eliminacién, 122, 141
insercion, 125, 133,
141
Eliminacién
de elementos en una
lista, 247
de un elemento de la
lista, 250, 279
de un elemento de un
arreglo, 122, 141
del primer elemento de
la lista, 248, 276
del ultimo elemento de
la lista, 249, 278
en arboles balanceados,
353
en listas doblemente
ligadas, 276
operacion, 215
(Pop), 199
Encadenamiento, 538
Encapsulamiento, 1, 2
Escritura de un arreglo, 121
Estructura
abstracta, 197, 212
de datos, 115

F

Factor de equilibrio, 345
FIFO, 212
Final, 212

Floyd, método, 406
Frente, 212
Friend
clases, 59
Funciones, 99
amigas, 65

G

Grado
de un arbol, 315
de un nodo, 315
de un vértice, 395

Grafica, 421
arbol, 396
conexa, 395
digrafica, 397
dirigida, 397
etiquetada, 396
multigréfica, 396
no dirigida, 421
subgrafica, 396

H

hash
funciones, 522
tabla, 519

Herencia, 1, 3, 35
clase base, 35
clase derivada, 35
de niveles multiples, 45
muiltiple, 40
privada, 58
simple, 36
subclase, 35
superclase, 35

Hermano, 314

indice

567 |

Hijo, 314
Hoja, 315

Incidente, vértice, 394
Insercién, 272
al final de la lista, 242,
274
al principio de la lista,
241, 272
antes de un nodo,
244
binaria, método, 472
de elementos en una
lista, 241
de un nuevo elemento,
125, 133, 141
después de un nodo,
246
en arboles balanceados,
350
formando una lista
ordenada, 275
operacion de, 214
(Push), 198
Intercambio directo
con desplazamiento
hacia la derecha,
455
con desplazamiento
hacia la izquierda,
453
con senal, 459

K

Kruskal, método, 427

L

Lazo o bucle, 395
Lectura de un arreglo, 119
LIFO, 196
Lista(s), 237
bisqueda
de elementos en listas
doblemente ligadas,
281
secuencial, 548
circular simplemente
ligada, 238
circulares doblemente
ligadas, 293
de adyacencia, 398
doblemente ligadas, 269,
272
eliminacién
de elementos, 247
de un elemento, 250
del primer elemento,
248
del ultimo elemento,
249
insercion
al final, 242
al principio, 241
de elementos, 241
multilistas, 293
simplemente ligada, 238

M

Matrices
poco densas, 171
triangulares, 177
Matriz, 422, 150
de adyacencia, 398, 422
etiquetada, 399, 422

de costos, 399, 422
de distancias, 399, 422
triangular inferior, 177,
181
triangular superior,
177
Método
constructor, 17
de insercion binaria,
472
destructor, 17
Dijkstra, 411
Floyd, 406
Kruskal, 427
por transformacién de
claves, 519
Prim, 425
Quicksort, 461
rapido, 461
Shell, 469, 474
Warshall, 402
Meétodos, 7
amigos, 63
virtuales, 99
puros, 107
Mezcla
directa, 488, 489
equilibrada, 488, 494
Multilistas, 293

N

Nivel de un nodo, 315
Nodo, 313
grado, 315
nivel, 315
Nodos, 238
insercion antes de, 244
insercion después de,
246

| 568

indice

O

Objeto, 7
Ocultamiento, 3
Operacién de eliminacion,
215
Operacién de insercion,
214
Operadores, sobrecarga, 204
operator, 78
Ordenacion, 449
creciente, 450, 488
decreciente, 450, 488
externa, 449, 488
mezcla directa, 488,
489
mezcla equilibrada,
488, 494
interna, 449, 450
por insercién 469
binaria, 469
directa, 469
por intercambio, 452
con sefal, 452
directo, 452
Quicksort, 452
Sheker, 452
por seleccidn, 466
Ordenados, arreglos, 131,
508, 516

P

Padre, 314
Paralelos, arreglos, 140
Pila(s), 195, 196

tope, 196

Plantillas, 87

de clases, 89

de funciones, 87
Polimorfismo, 1, 3, 99
Pop (eliminacién), 199
Prim, método, 426
private, 10
Programacion orientada a

objetos, 1

protected, 10
public, 10
Push (insercién), 198

Q

Quicksort, método, 461

R

Raiz, 313, 315
Reacomodo del arbol, 346
Rotacioén, 346
compuesta, 348
simple, 347

S

Simplemente ligada, lista
circular, 268
Sobrecarga, 77
de funciones, 82
de los operadores <<, 80
de los operadores >>, 80
de operadores, 78, 204
Subclase, 35
Superclase, 35

T

template, 88
Tipo Abstracto de Datos, 4

\'

Vértice(s)
adyacentes, 394
aislado, 395
grado de, 395
incidente, 394
Virtual, 99
Virtuales, métodos, 99

W

Seccién
privada (private), 10
protegida (protected), 10
publica (public), 10
Shekel, algoritmo, 457
Shell, método, 469, 474

Warshall, método, 402

	Estructura de datos orientada a objetos: Algoritmos con C++
	Contenido
	Capítulo 1 Introducción a la Programación Orientada a Objetos
	Capítulo 2 Herencia y amistad
	Capítulo 3 Sobrecarga, plantillas y polimorfismo
	Capítulo 4 Arreglos
	Capítulo 5 Pilas y colas
	Capítulo 6 Listas
	Capítulo 7 Árboles
	Capítulo 8 Gráficas
	Capítulo 9 Ordenación
	Capítulo 10 Búsqueda
	Índice

