
Visítenos en:
www.pearsoneducacion.net

G
U

A
R

D
A

T
I

El objetivo de este libro es mostrar las principales estructuras de datos con
base en el paradigma orientado a objetos. Se presenta cada una de las princi-
pales estructuras y la manera en la que se almacena y recupera la información.
El texto explica la lógica requerida para llevar a cabo las operaciones más
importantes y muestra la implementación de estos algoritmos. Para la progra-
mación de algoritmos y ejemplos se utiliza el lenguaje de programación C++,
uno de los lenguajes orientados a objetos más conocidos y utilizados, tanto en
el ámbito académico como a nivel profesional.

El libro está orientado a todos aquellos que:

• Quieran conocer y entender los principios de la programación orientada
a objetos.

• Necesiten saber cómo funcionan las estructuras de datos.

• Deseen conocer y dominar la implementación de los principales algo-
ritmos dedicados al manejo de las estructuras de datos.

• Les interese aprender a usar las estructuras de datos en la solución de
problemas y en la implementación de estas soluciones.

En cada uno de los capítulos se explican los principales conceptos y se
refuerzan con ejemplos que ayudan a su comprensión. Además, se incluyen
programas, o las instrucciones requeridas, para mostrar la implementación de
los algoritmos y las soluciones a los problemas de aplicación de las estructuras
estudiadas.

Para mayor información sobre este tema visite:
www.pearsoneducacion.net/guardati

Silvia Guardati

ESTRUCTURA DE DATOS
ORIENTADA A OBJETOS

Algoritmos con C++

Silvia Guardati Buemo
Instituto Tecnológico Autónomo de México

ESTRUCTURA DE DATOS
ORIENTADA A OBJETOS

Algoritmos con C++

REVISIÓN TÉCNICA:

Fabiola Ocampo Botello
Escuela Superior de Cómputo
Instituto Politécnico Nacional

José Luis García Cerpas
Centro de Enseñanza Técnica Industrial, Jalisco

Datos de catalogación bibliográfica

GUARDATI BUEMO, SILVIA
Estructura de datos orientada a objetos:
Algoritmos con C++

��������� PEARSON EDUCACIÓN,
 México, 2007

ISBN: 978-970-26-0792-2
Área: Computación

Formato: 18.5 × 23.5 cm Páginas: 584

Editor: Luis Miguel Cruz Castillo
e-mail: luis.cruz@pearsoned.com

Editor de desarrollo: Bernardino Gutiérrez Hernández
Supervisor de producción: Rodrigo Romero Villalobos

PRIMERA EDICIÓN, 2007

D.R. © 2007 por Pearson Educación de México, S.A. de C.V.
Atlacomulco 500-5 piso
Industrial Atoto
53519, Naucalpan de Juárez, Edo. de México

Cámara Nacional de la Industria Editorial Mexicana. Reg. Núm. 1031

Prentice Hall es una marca registrada de Pearson Educación de México, S.A. de C.V.

Reservados todos los derechos. Ni la totalidad ni parte de esta publicación pueden reproducirse, registrarse o transmi-
tirse, por un sistema de recuperación de información, en ninguna forma ni por ningún medio, sea electrónico, mecá-
nico, fotoquímico, magnético o electroóptico, por fotocopia, grabación o cualquier otro, sin permiso previo por escrito
del editor.

El préstamo, alquiler o cualquier otra forma de cesión de uso de este ejemplar requerirá también la autorización del
editor o de sus representantes.

ISBN 10: 970-26-0792-2
ISBN 13: 978-970-26-0792-2

Impreso en México. Printed in Mexico.
1 2 3 4 5 6 7 8 9 0 - 10 09 08 07

CONTENIDO

Introducción xi

Agradecimientos xv

Capítulo 1 Introducción a la Programación Orientada a Objetos 1

1.1 Características de la POO ..2
1.2 Ventajas de la POO ..3
1.3 Tipos abstractos de datos ..4
1.4 Clases ..7

1.4.1 Clases abstractas y concretas ..9
1.4.2 Definición de una clase en C++ ..10
1.4.3 Los métodos constructor y destructor17
1.4.4 Uso de constructores múltiples ..18

Ejercicios ..26

Capítulo 2 Herencia y amistad 35

2.1 Herencia simple ..36
2.2 Herencia múltiple ..40
2.3 Herencia de niveles múltiples ..45
2.4 Herencia privada ..58
2.5 Clases amigas (friend) ..59
2.6 Métodos amigos ..63
2.7 Funciones amigas ..65
Ejercicios ..67

Capítulo 3 Sobrecarga, plantillas y polimorfismo 77

3.1 Sobrecarga ..77
3.1.1 Sobrecarga de operadores ..78
3.1.2 Sobrecarga de funciones o métodos ..82

3.2 Plantillas ..87
3.2.1 Plantillas de funciones ..87
3.2.2 Plantillas de clases ..89

3.3 Polimorfismo ..99
3.3.1 Funciones virtuales ..99
3.3.2 Clases abstractas ..107

Ejercicios ..111

Capítulo 4 Arreglos 115

4.1 Introducción ..115
4.2 La clase Arreglo ..117
4.3 Métodos de acceso y modificación a arreglos 119

4.3.1 Lectura de arreglos ..119
4.3.2 Escritura de arreglos ..121
4.3.3 Eliminación en arreglos ..122
4.3.4 Operaciones en arreglos desordenados123
4.3.5 Operaciones en arreglos ordenados ..131

4.4 Arreglos paralelos ..140
4.5 Arreglos de dos dimensiones ..149
4.6 Arreglos de objetos ..160
4.7 Casos especiales de arreglos ..171

4.7.1 Matrices poco densas ..171
4.7.2 Matrices triangulares ..177

Ejercicios ..183

Capítulo 5 Pilas y colas 195

5.1 Introducción ..195
5.2 Pilas ..196
5.3 Colas ..211

5.3.1 Colas circulares ..224
5.3.2 Colas dobles ..231

Ejercicios ..232

Capítulo 6 Listas 237

6.1 Introducción ..237
6.2 Listas simplemente ligadas ..238

vi Contenido

6.2.1 Inserción de elementos en una lista ..241
6.2.2 Eliminación de elementos de una lista 247
6.2.3 Implementación de pilas por medio de listas264

6.3 Listas circulares simplemente ligadas ..268
6.4 Listas doblemente ligadas ..269

6.4.1 Inserción en listas doblemente ligadas272
6.4.2 Eliminación en listas doblemente ligadas276
6.4.3 Búsqueda de elementos en

listas doblemente ligadas ..281
6.5 Listas circulares doblemente ligadas ..293
6.6 Multilistas ..293
Ejercicios ..304

Capítulo 7 Árboles 313

7.1 Introducción ..313
7.2 Árboles binarios ..315

7.2.1 Operaciones en árboles binarios ..319
7.2.2 Árboles binarios de búsqueda ..329

7.3 Árboles balanceados ..345
7.4 Árboles-B ..367
7.5 Árboles-B+ ..381
Ejercicios ..388

Capítulo 8 Gráficas 393

8.1 Introducción ..393
8.2 Gráficas dirigidas ..397

8.2.1 Representación de una digráfica ..397
8.2.2 La clase digráfica..400
8.2.3 Recorrido de gráficas dirigidas ..402
8.2.4 Aplicación de gráficas dirigidas ..417

8.3 Gráficas no dirigidas ..421
8.3.1 Representación de una gráfica..422
8.3.2 La clase gráfica no dirigida..423
8.3.3 Recorrido de gráficas no dirigidas..424
8.3.4 Aplicación de gráficas no dirigidas ..432

8.4 Búsqueda ..436
8.4.1 Búsqueda en profundidad (Depth First)436
8.4.2 Búsqueda a lo ancho (Breadth First)441

Ejercicios ..446

Contenido vii

Capítulo 9 Ordenación 449

9.1 Introducción..449
9.2 Ordenación interna ..450

9.2.1 Métodos de ordenación por intercambio452
9.2.2 Método de ordenación por selección..466
9.2.3 Método de ordenación por inserción ..469

9.3 Ordenación externa ..488
9.3.1 Mezcla directa ..489
9.3.2 Mezcla equilibrada..494

Ejercicios ..500

Capítulo 10 Búsqueda 505

10.1 Introducción..505
10.2 Búsqueda interna ..506

10.2.1 Búsqueda secuencial ..508
10.2.2 Búsqueda binaria ..516
10.2.3 Búsqueda por transformación de claves (Hash)519
10.2.4 Búsqueda secuencial en listas ..548
10.2.5 Búsqueda en árboles ..555
10.2.6 Búsqueda en gráficas ..555

10.3 Búsqueda externa..555
10.3.1 Búsqueda externa secuencial ..556
10.3.2 Búsqueda externa binaria..559

Ejercicios ..561

Índice 565

viii Contenido

A mi familia

El mejor profeta del futuro es el pasado.

Lord Byron

Las Estructuras de Datos son uno de los temas centrales de estudio en el área
de la computación, las cuales permanecen vigentes y resisten al paso del tiempo
como los pilares de piedra de un antiguo puente romano. Seguramente ya no es-
tán los troncos que ayudaron a cruzar a guerreros y carruajes, a vencedores y
vencidos, pero las piedras, encargadas de sostener a todos, ahí están… resistiendo
al paso del tiempo y a la fuerza del agua.

Hoy, como en los orígenes de la computación, necesitamos conocer qué son y
cómo usar a las estructuras de datos, que serán las piedras que nos ayudarán a
construir y a sostener soluciones robustas y útiles para diversos tipos de proble-
mas.

El objetivo de este libro es presentar las principales estructuras de datos, basán-
donos en el paradigma orientado a objetos. Es decir, las estructuras se definirán y
usarán siguiendo este método. Por lo tanto, cada estructura será una clase, sus
características quedarán representadas a través de atributos, y las operaciones por
medio de métodos. De cada una de las principales estructuras se presenta la ma-
nera en la que se almacena y, en consecuencia, se recupera la información. Se
explica la lógica requerida para llevar a cabo las operaciones más importantes y
se muestra la implementación de estos algoritmos. También se incluyen ejemplos
de aplicación de las estructuras. Para la programación de algoritmos y ejemplos
se utiliza el lenguaje de programación C++, por ser uno de los lenguajes orienta-

INTRODUCCIÓN

dos a objetos más conocidos y usados, tanto en el ámbito académico como en el
profesional.

El enfoque del libro está orientado a:

• Todos los que quieran conocer y entender los principios de la programación
orientada a objetos.

• Todos los que quieran conocer y entender las estructuras de datos.

• Todos los que quieran conocer y entender la implementación de los princi-
pales algoritmos dedicados a manejar las estructuras de datos.

• Todos los que quieran aprender a usar las estructuras de datos en la solu-
ción de problemas, y la implementación de estas soluciones.

Para un mejor aprovechamiento del libro es necesario tener conocimientos
sobre:

• Datos predefinidos: enteros, reales, carácter, cadenas y lógicos.

• Estructuras selectivas y repetitivas: if, switch, while y for.

• Instrucciones para lectura y escritura.

Cómo está organizado este libro
El material del libro está organizado en diez capítulos. Los tres primeros ofrecen
una introducción a la Programación Orientada a Objetos (POO), la cual servirá
de base para entender el resto del libro. Se presentan temas básicos de la POO,
como abstracción, herencia y polimorfismo; asimismo se explican conceptos
relacionados, como sobrecarga y plantillas. El capítulo 4 trata sobre los arreglos;
y dada la orientación del libro, se ven como una clase, con sus atributos y métodos.
El capítulo 5 presenta las pilas y colas. Estas dos estructuras son naturalmente
tipos abstractos de datos, por lo que su representación por medio de la POO re-
sulta inmediata. En el capítulo 6 se estudian las listas ligadas (o vinculadas) con
todas sus variantes: las simplemente ligadas, las doblemente ligadas, las circula-
res y las ortogonales. El capítulo 7 está dedicado a los árboles: se estudian en
general, los binarios, los binarios de búsqueda, los balanceados y los árboles-B
y B+. El capítulo 8 explica las gráficas, incluyendo las dirigidas y las no dirigidas.
Finalmente, los capítulos 9 y 10 presentan los principales algoritmos de ordenación
y búsqueda; temas que, por su importancia en las estructuras de datos, se consi-
deran relevantes; razón por la que fueron incluidos.

xii Introducción

En cada uno de los capítulos se explican los principales conceptos, y se refuerzan
con ejemplos que ayudan a su comprensión. Además, se incluyen programas (en
algunos casos, sólo las instrucciones requeridas) para mostrar la implementación
de los algoritmos y de soluciones a problemas de aplicación de las estructuras
estudiadas. Todos los capítulos cuentan también con una sección de ejercicios
sugeridos para reafirmar los conceptos estudiados y desarrollar la capacidad de
análisis y en la solución de problemas, por medio de las estructuras de datos.

Introducción xiii

Este libro es el resultado de muchos años de experiencia como maestra. El enfo-
que dado a cada uno de los temas, los ejemplos y ejercicios presentados son el
reflejo de todo ese tiempo vivido en las aulas. Por lo tanto quiero agradecer muy
especialmente a los alumnos, quienes con sus comentarios, preguntas e incluso
con el “no entiendo” me estimulan a buscar siempre nuevos caminos para trans-
mitir el conocimiento y la experiencia.

También quiero agradecer a los profesores y funcionarios de la División
Académica de Ingeniería del ITAM por su apoyo en la realización de esta obra.
Un reconocimiento especial al rector del instituto, doctor Arturo Fernández, por
incentivar y promover la elaboración de libros.

AGRADECIMIENTOS

CAPÍTULO 1

La Programación Orientada a Objetos (POO) es una técnica para es-
cribir programas. Es decir, es la aplicación de un lenguaje orientado a
objetos para implementar una solución previamente diseñada, usando
el paradigma orientado a objetos.

La POO tiene cuatro características principales: abstracción, encapsu-
lamiento, herencia y polimorfismo. La abstracción consiste en ignorar
aquellos aspectos, del objeto a describir, que no son relevantes, para
de esta manera concentrarse en los que sí lo son. El encapsulamiento
consiste en incluir dentro de una clase todos los atributos y métodos
que la definen, de tal manera que otros objetos puedan usarla sin
necesidad de conocer su estructura interna. La herencia permite com-
partir atributos y métodos entre clases y subclases. Finalmente, en el
polimorfismo una operación puede tener el mismo nombre en diversas
clases, y funcionar de manera diferente en cada una. Estos temas se
tratarán en las siguientes secciones y capítulos.

Introducción a la Programación
Orientada a Objetos

1.1 Características de la POO
En el diseño de la solución computacional de problemas se distinguen los datos
(información necesaria para llevar a cabo el procesamiento) y las operaciones
que podemos hacer sobre ellos. La POO ofrece mecanismos para representar, de
manera integrada, los datos y las operaciones.

Como ya se mencionó, la POO tiene ciertas características que la convierten en
una poderosa herramienta para solucionar diversos problemas computacionales.
A continuación se presentan las características más importantes.

• Abstracción. Es el principio que permite (al observar el objeto o concepto
que se quiere representar) ignorar aquellos aspectos que no son relevantes,
para de esta manera concentrarse en los que sí lo son. Se trata de abstraer
los datos (llamados atributos) y las operaciones (llamadas métodos) comu-
nes a un conjunto de objetos y agruparlos bajo un mismo concepto clase.
Es decir, facilita la generalización conceptual de los atributos y propiedades
de un determinado conjunto de objetos. De esta forma, introducir o elimi-
nar un objeto en una determinada aplicación requerirá un trabajo mínimo.

• Encapsulamiento (ocultamiento de información). Se refiere a incluir den-
tro de la definición de una clase todo lo que se necesita, de tal forma que
ningún otro objeto requiera conocer su estructura interna para poder usarla.
Es decir, se tomará cada clase y en consecuencia cada objeto como una uni-
dad básica de la cual desconocemos su estructura interna. En la figura 1.1
se grafica esta idea, señalando a la clase (formada por atributos y métodos)
como una caja negra.

2 Capítulo 1. Introducción a la Programación Orientada a Objetos

FIGURA 1.1 Encapsulamiento

Clase

Atributos

Métodos

Caja negra

• Herencia. Permite compartir atributos y métodos entre clases y clases deri-
vadas. Las clases derivadas, también llamadas subclases, heredan atributos
y métodos de las clases superiores, que reciben el nombre de superclases o
clases base.

1.2 Ventajas de la POO 3

1

Persona

Alumno Profesor

FIGURA 1.2 Herencia

Observe el ejemplo de la figura 1.2. La clase Persona es una superclase. Las
clases Alumno y Profesor son subclases o clases derivadas de la clase Per-
sona, por lo que heredan todos los atributos y métodos de ella. Esta relación
expresa que un alumno y un profesor también son personas.

• Polimorfismo. Permite implementar múltiples formas de un mismo método, de
tal manera que cada una de ellas se adapte a la clase sobre la cual se aplicará.

1.2 Ventajas de la POO
La POO resulta una herramienta muy poderosa para la implementación de solu-
ciones. Cabe destacar que no se pretende, en esta sección, realizar un análisis
comparativo con otros paradigmas de programación; pero es muy importante
señalar las ventajas que ofrece, siendo éstas:

1. Facilita el reuso del diseño y código. Una vez que el diseño y código co-
rrespondiente a una clase fueron probados y validados, resulta relativa-
mente sencillo utilizarlos nuevamente en la solución de otra aplicación.

2. Abstracción. Permite ver el concepto como un todo, sin tener que distraer la
atención en los detalles. Esto representa una gran ventaja en el momento de
analizar y representar los objetos involucrados en un problema.

3. Ocultamiento o encapsulamiento de la información. La POO permite
ocultar información por medio del encapsulamiento, y de esta forma al-
canza mayor seguridad y transparencia en el manejo de la información
(se trata a la clase como un todo, no se requiere conocer los detalles).

4. Mayor legibilidad. Los programas escritos mediante la POO resultan más
fáciles de leer y entender ya que son más compactos. Además, los compo-
nentes clave del programa son autocontenidos y se pueden comprender rá-
pidamente.

1.3 Tipos abstractos de datos
La abstracción de datos es un concepto básico en la solución de un problema.
Ésta permite definir el dominio y la estructura de los datos, el conjunto de atri-
butos que caracterizan a esos datos, así como las operaciones válidas aplicables
sobre los mismos. Es decir, es el mecanismo por medio del cual se define un
concepto general a partir del conocimiento que se tenga de objetos particulares.

La abstracción da origen a lo que se conoce como un Tipo Abstracto de Datos
(ADT, por sus siglas en inglés: Abstract Data Type), el cual es un tipo de dato
definido por el usuario, cuyas operaciones especifican cómo un cliente (el usuario)
puede manipular los datos. Por lo tanto el ADT constituye un modelo abstracto
que define una interfaz entre el usuario y el dato.

El ADT es independiente de la implementación, lo cual permite al diseñador de
la solución enfocarse en el modelo de datos y en sus operaciones, sin considerar
un lenguaje de programación en particular. Posteriormente, el programador lo
traducirá con el lenguaje elegido.

En el siguiente ejemplo se presenta el ADT correspondiente al modelo simplifi-
cado de un alumno universitario.

Dominio: alumno universitario.

Datos: representan las características más importantes de todo alumno universitario.

• Nombre: cadena de caracteres

• Dirección: cadena de caracteres

• Matrícula: número entero

• Año de ingreso: número entero

• Carrera: cadena de caracteres

• Promedio: número real

Operaciones válidas definidas para el ADT: representan aquellas operaciones
que se pueden realizar sobre o con los datos de un alumno universitario. Para

4 Capítulo 1. Introducción a la Programación Orientada a Objetos

este ejemplo, se considera que un alumno puede cambiar de domicilio, de carrera,
que aprueba materias, etcétera.

• Actualizar Dirección

• Actualizar Promedio

• Actualizar Carrera

• …

Retomando el ejemplo anterior, el ADT representa a los alumnos universitarios
en general (se está describiendo un concepto general), mientras que una instancia
representa un alumno en particular (con nombre, dirección, inscrito a una carre-
ra, etcétera).

Todo ADT tiene, generalmente, los siguientes elementos: un encabezado, la des-
cripción de los datos y una lista de las operaciones válidas para ese ADT.

• Encabezado: nombre del ADT.

• Descripción de los datos: se especifican los datos y las estructuras corres-
pondientes para representarlos. Los datos constituyen los atributos del con-
cepto u objeto definido por medio del ADT.

• Lista de operaciones: se forma por el conjunto de operaciones que se defi-
nen como válidas para el ADT. Para cada operación deberá indicarse:

Entrada: generalmente proporcionada por el usuario.

Precondiciones: establecen la situación en la cual se aplicará la operación.

Proceso: es el conjunto de acciones que definen la operación.

Salida: valores proporcionados, luego de la operación, al usuario.

Postcondiciones: indican las condiciones que deberán cumplirse una vez
ejecutada la operación.

La lista de operaciones debe ser lo más completa posible. En el momento de de-
finir el ADT debemos procurar realizar la abstracción de manera que se contem-
plen todas las operaciones que, incluso a futuro, podrían requerirse sobre ese
ADT. El tipo abstracto de datos se debe ver como una caja negra que encierra
todo lo relacionado al concepto que está describiendo.

La mayoría de los ADT tiene una operación especial, llamada inicializador, que
asigna valores iniciales a los datos. Cuando el ADT se implementa por medio de
una clase en un lenguaje de programación, esta operación recibe un nombre se-
gún el lenguaje empleado. En el lenguaje C++ recibe el nombre de constructor.
Al momento de declarar un objeto, esta operación lo crea e inicializa.

1.3 Tipos abstractos de datos 5

1

Considerando lo anterior, un ADT tendrá el siguiente formato:

6 Capítulo 1. Introducción a la Programación Orientada a Objetos

ADT Nombre:

Datos

Describe los datos (y la estructura de los mismos) que caracterizan

al objeto.

Operaciones

Inicializador (constructor):

Valores Iniciales: Datos que se utilizarán para darle un valor

inicial al objeto (instancia del ADT).

Proceso: Inicializa el objeto al ser creado.

Operación
1
:

Entrada: La proporciona el usuario.

Precondiciones: Estado del sistema antes de ejecutar la

operación
1
.

Proceso: Acciones ejecutadas con los datos.

Salida: Valores generados por el proceso.

Postcondiciones: Estado del sistema luego de ejecutar la

operación
1
.

Operación
2
:

Entrada: La proporciona el usuario.

Precondiciones: Estado del sistema antes de ejecutar la

operación
2
.

Proceso: Acciones ejecutadas con los datos.

Salida: Valores generados por el proceso.

Postcondiciones: Estado del sistema luego de ejecutar la

operación
2
.

…

Operación
N
:

Entrada: La proporciona el usuario.

Precondiciones: Estado del sistema antes de ejecutar la

operación
N
.

Proceso: Acciones ejecutadas con los datos.

Salida: Valores generados por el proceso.

Postcondiciones: Estado del sistema luego de ejecutar la

operación
N
.

Fin ADT Nombre

A continuación se presenta el ADT correspondiente a la definición de un
cuadrado.

En el ejemplo anterior, el ADT está formado por un atributo único que representa
el lado del cuadrado y por tres métodos: el constructor, encargado de dar un valor
inicial al lado del objeto cuadrado, y los métodos Calcula-Superficie y Calcula-
Perímetro creados para calcular la superficie y el perímetro respectivamente.

1.4 Clases
Un ADT se representa por medio de clases, utilizando las facilidades que ofrecen
los lenguajes orientados a objetos. Una clase está formada por miembros: los
atributos y los métodos. Los atributos representan las características relevantes
del objeto/concepto descrito, mientras que los métodos representan las operacio-
nes permitidas para almacenar/manipular los datos. Una variable de tipo clase

1.4 Clases 7

1ADT Cuadrado:

Un cuadrado es una figura plana, cerrada por cuatro líneas rectas igua-

les que forman otros tantos ángulos rectos. Para el cálculo de la super-

ficie y del perímetro sólo se necesita conocer el tamaño del lado.

Datos:

Un número real positivo que indica el lado del cuadrado.

Operaciones:

Constructor:

Entrada: Un número real positivo que representa el lado del cuadrado.

Proceso: Asignar el valor al lado.

Calcula-Superficie:

Entrada: El valor del lado.

Precondiciones: (en este caso no es necesario definir

precondiciones).

Proceso: Calcular la superficie del cuadrado.

Salida: El valor de la superficie.

Postcondiciones: (en este caso no es necesario definir

postcondiciones).

Calcula-Perímetro:

Entrada: El valor del lado.

Precondiciones: (en este caso no es necesario definir

precondiciones).

Proceso: Calcular el perímetro del cuadrado.

Salida: El valor del perímetro.

Postcondiciones: (en este caso no es necesario definir

postcondiciones).

Fin ADT Cuadrado

(o una instancia de una clase) se llama objeto. Un objeto tiene datos (atributos)
y comportamiento (métodos). Los objetos se crean durante la ejecución del
programa.

8 Capítulo 1. Introducción a la Programación Orientada a Objetos

Clases: ADT

Objetos: Ítems o instancias de
una clase.

Al definir una clase se pueden establecer diferentes grados de seguridad para sus
miembros, determinando de esta manera los posibles usuarios de los mismos. Las
tres categorías de seguridad que maneja C++ son: privada, protegida y pública.

• Privada: Generalmente se utiliza para definir los atributos y, en casos
muy especiales, algunos de los métodos de la clase. Los miembros defi-
nidos en esta sección sólo se pueden acceder por miembros de la misma
clase. La privacidad permite garantizar la protección de los atributos y
métodos definidos en esta sección.

• Protegida: En esta sección se definen los atributos y métodos que se com-
parten con las clases derivadas (ver herencia, capítulo 2). Es decir, los
miembros de la clase definidos en una sección protegida pueden ser accesa-
dos solamente por miembros de la misma clase y de sus clases derivadas.

• Pública: En esta sección se definen los atributos y métodos que estarán
disponibles para cualquier cliente. Además, se permite la interacción con
el exterior y, que los clientes manipulen objetos del tipo de la clase, sin
tener por ello que conocer la estructura interna del objeto ni los detalles
de implementación.

Retomando el ejemplo del ADT usado para definir el concepto cuadrado, la
sección privada se podría usar para definir el atributo lado, mientras que en
la pública se definirían el constructor y los métodos usados para el cálculo de la
superficie y del perímetro. De esta forma, el lado sólo se puede acceder a través
de los métodos definidos dentro de la clase cuadrado, mientras que los métodos
se pueden invocar desde el exterior.

1.4.1 Clases abstractas y concretas

Las clases, según el concepto que estén definiendo, se pueden clasificar en
abstractas o concretas. Las primeras se usan para definir conceptos generales
en los cuales no interesa mencionar detalles específicos, sólo características o
atributos generales y por lo tanto compartibles. Estas clases no se usan directa-
mente en la solución del problema, sino que son importantes para abstraer y
generalizar la solución. Es decir, son clases útiles para modelar los datos en la
etapa de diseño de las soluciones. A partir de las mismas se definen las clases
concretas.

Las clases concretas, por otra parte, se utilizan para indicar conceptos más
específicos, que se podrán emplear, tal vez directamente, en la solución de un
problema. A continuación se presenta un ejemplo de una clase abstracta y de tres
clases concretas que se derivan de la primera.

1.4 Clases 9

1

Clase Abstracta: Medio de transporte

Esta clase tendrá ciertas características o atri-
butos que serán comunes a todos los medios
de transporte (por ejemplo: tracción, fuerza,
etcétera), aunque no será lo suficientemente
específica como para que pueda emplearse
para definir objetos.

Clases Concretas: Automóviles, Barcos, Aviones

Estas clases heredarán de la clase abstracta
Medio de transporte sus características, y
además tendrán un conjunto de atributos
propios que permitirán definir de manera más
específica los conceptos automóviles, barcos o
aviones según sea el caso. En la aplicación se
tendrán objetos de estas clases concretas para
emplearse en la solución de los problemas.

1.4.2 Definición de una clase en C++

La definición de una clase en C++ comienza con la palabra reservada class1 se-
guida del nombre de la clase. El nombre elegido debe hacer referencia al concep-
to representado. La clase puede tener tres tipos diferentes de secciones: privada,
protegida y pública. En cada una de estas secciones se podrán definir atributos
y/o métodos de la clase, y la sección determinará el tipo de acceso que se podrá
tener sobre los miembros ahí definidos. Así, los atributos o métodos definidos en
la sección privada (private) estarán disponibles sólo para los miembros de la
misma clase; los que se definan en la sección protegida (protected) sólo podrán
ser utilizados por los miembros de la clase y por los de sus clases derivadas; y
por último, los atributos o métodos definidos en la sección pública (public) es-
tarán disponibles para los miembros de la clase, para los de sus clases derivadas
y para cualquier cliente. Una clase puede tener las tres secciones o cualquier
combinación de las mismas.

A continuación se presenta la sintaxis usada para la definición de una clase.

10 Capítulo 1. Introducción a la Programación Orientada a Objetos

class NombreClase

{

private:

atributos y/o métodos;

protected:

atributos y/o métodos;

public:

atributos y/o métodos;

};

Para declarar un objeto del tipo de la clase previamente definida, se emplea la si-
guiente sintaxis:

NombreClase NombreObjeto;

1 Para mayor claridad utilizamos negritas para indicar palabras reservadas, propias del lenguaje de
programación utilizado.

En el programa 1.1 se presenta un ejemplo de declaración de una clase en C++.
La misma está formada por una sección única, en este caso pública, en la cual se
declaran los atributos y un método.

Programa 1.1

1.4 Clases 11

1

/* La clase Persona queda definida por los atributos: Nombre, Domicilio

➥y Edad y un método ActualizaDomicilio que permite cambiar el domicilio

➥de una persona. */

class Persona

{

public:

char Nombre[64], Domicilio[64];

int Edad;

void ActualizaDomicilio (char NuevoDom[]);

};

/* En la función main se declaran dos objetos de la clase Persona. Estos

➥objetos son las variables que se usarán en la solución del problema. */

void main()

{

Persona ObjJefe, ObjGerente;

...

}

En los siguientes ejemplos se muestra la declaración y el uso de clases a través
del lenguaje de programación C++. Cabe aclarar que, por razones de espacio, no
se incluyeron programas completos. Éstos no llevan a cabo la inicialización de
los objetos (misma que se analizará en la sección 1.4.3, y trata sobre el método
constructor) y no contienen las bibliotecas requeridas por C++ para: lecturas/
escrituras, funciones matemáticas, manejo de cadenas, ni la función main. Esta
aclaración es válida para casi todos los ejemplos del libro.

Programa 1.2

/* La clase Punto contiene como atributos privados las coordenadas en

➥el eje de las X’s y de las Y’s, lo cual garantiza mayor seguridad en el

➥manejo de los mismos. Además, en la sección pública se han definido

➥métodos para accesar, modificar e imprimir los atributos privados. */

class Punto

12 Capítulo 1. Introducción a la Programación Orientada a Objetos

{

private:

float CoordenadaX, CoordenadaY;

public:

float ObtenerCoordX();

float ObtenerCoordY();

void ModificaX(float NuevaX);

void ModificaY(float NuevaY);

void ImprimeCoordenadas();

};

/* Método que permite, a los usuarios externos a la clase, conocer el

➥valor de la coordenada X. */

float Punto::ObtenerCoordX()

{

return CoordenadaX;

}

/* Método que permite, a los usuarios externos a la clase, conocer el

➥valor de la coordenada Y. */

float Punto::ObtenerCoordY()

{

return CoordenadaY;

}

/* Método que permite actualizar el valor de la coordenada X. */

void Punto::ModificaX(float NuevaX)

{

CoordenadaX= NuevaX;

}

/* Método que permite actualizar el valor de la coordenada Y. */

void Punto::ModificaY(float NuevaY)

{

CoordenadaY= NuevaY;

}

/* Método que despliega los valores de las coordenadas X y Y. */

void Punto::ImprimeCoordenadas()

{

cout<< “Coordenada X: “ << CoordenadaX << ‘\n’;

cout<< “Coordenada Y: “ << CoordenadaY << ‘\n’;

}

/* Función que usa la clase Punto: se declara un objeto tipo Punto y

➥a través de los métodos se modifican e imprimen las coordenadas del

➥punto. */

void UsaClasePunto()

Observe que en el programa 1.2, en la declaración de cada uno de los métodos,
se usó la siguiente sintaxis para el encabezado de los mismos:

1.4 Clases 13

1{

/* Declaración de un objeto usando la clase Punto. */

Punto ObjPunto;

float Auxiliar;

…

Auxiliar= 2.4;

/* Modifica el valor de la coordenada X, asignándole el valor

➥almacenado en Auxiliar. */

ObjPunto.ModificaX(Auxiliar);

Auxiliar= 5.8;

/* Modifica el valor de la coordenada Y, asignándole el valor

➥almacenado en Auxiliar. */

ObjPunto.ModificaY(Auxiliar);

/* Imprime el valor de las coordenadas del punto. */

ObjPunto.ImprimeCoordenadas();

…

/* Obtiene e imprime el valor de las coordenadas X y Y del punto. */

Auxiliar= ObjPunto.ObtenerCoordX();

cout<< “\nLa coordenada X es: “ << Auxiliar;

Auxiliar= ObjPunto.ObtenerCoordY();

cout<< “\nLa coordenada Y es: “ << Auxiliar;

}

NombreClase::NombreMétodo

Los dobles dos puntos (::) indican que el método pertenece a la clase. Por ejemplo:
Punto::ModificaY expresa que el método ModificaY es de la clase Punto.

Por otra parte, cuando a través de un objeto se invoca a un método, la sintaxis
que debe seguirse es:

NombreObjeto.NombreMétodo

Se utiliza un punto (.) para indicar que un método o atributo pertenece a un objeto.
Por ejemplo: ObjPunto.ImprimeCoordenadas() expresa que el método Imprime-
Coordenadas() está asociado al objeto ObjPunto. Por lo tanto:

14 Capítulo 1. Introducción a la Programación Orientada a Objetos

NombreClase::NombreMetodo

NombreClase::Atributo

NombreObjeto.NombreMetodo

NombreObjeto.Atributo

El programa 1.3 presenta la definición de la clase Triangulo y su uso por medio
de una función sencilla.

Programa 1.3

/* La clase Triangulo define un triángulo por medio de la longitud de su

➥base y de su altura. Además, contiene un método para calcular su área y

➥otro para imprimir sus atributos. */

class Triangulo

{

public:

float Base, Altura;

float CalculaArea();

void ImprimeAtributos();

};

/* Método que calcula el área de un triángulo y regresa un número real

➥como resultado. */

float Triangulo::CalculaArea()

{

return (Base * Altura / 2);

}

/* Método que imprime el valor de la base y de la altura de un

➥triángulo. */

void Triangulo::ImprimeAtributos()

{

cout<< “Base: “ << Base << ‘\n’;

cout<< “Altura: “ << Altura << ‘\n’;

}

/* Función que usa la clase Triangulo: declara un objeto tipo Triangulo

➥y a través de los métodos imprime la base y la altura del triángulo y

➥calcula e imprime su área. */

void UsaClaseTriangulo()

En el siguiente ejemplo se define la clase Cliente con ciertos atributos y algunos
métodos. Asimismo, se incluye una función que hace uso de la clase.

Programa 1.4

1.4 Clases 15

1{

/* Declaración de un objeto de tipo Triangulo. */

Triangulo ObjTriang;

float Area;

…

ObjTriang.ImprimeAtributos();

…

Area= ObjTriang.CalculaArea();

cout<< “Área del triángulo: “<<Area;

…

}

/* La clase Cliente define a un cliente de banco. Se tienen los

➥atributos privados: Nombre, Direccion, Telefono, Saldo, TipoDeCuenta y

➥NumDeCuenta. Además, en la sección pública de la clase, se incluyeron

➥los métodos necesarios para imprimir los atributos de un cliente,

➥obtener su saldo, obtener el tipo de cuenta, hacer un retiro y un

➥depósito a la cuenta. */

class Cliente

{

private:

char Nombre[64], Direccion[64], Telefono[8];

float Saldo;

int TipoDeCuenta, NumDeCuenta;

public:

void ImprimeDatos();

float ObtenerSaldo();

int ObtenerTipoCta();

int HacerRetiro(float);

void HacerDeposito(float);

};

/* Método que despliega los datos de un cliente. */

void Cliente::ImprimeDatos()

{

cout<< “Nombre: “ << Nombre << ‘\n’;

cout<< “Dirección: “ << Direccion << ‘\n’;

cout<< “Teléfono: “ << Telefono << ‘\n’;

cout<< “Saldo: “ << Saldo << ‘\n’;

16 Capítulo 1. Introducción a la Programación Orientada a Objetos

cout<< “Tipo de Cuenta: “ << TipoDeCuenta << ‘\n’;

cout<< “Número de Cuenta: “ << NumDeCuenta << ‘\n’;

}

/* Método que permite, a usuarios externos a la clase, conocer el saldo

➥de un cliente. */

float Cliente::ObtenerSaldo()

{

return Saldo;

}

/* Método que permite, a usuarios externos a la clase, conocer el tipo

➥de cuenta de un cliente. */

int Cliente::ObtenerTipoCta ()

{

return TipoDeCuenta;

}

/* Método que registra un retiro en la cuenta de un cliente. */

int Cliente::HacerRetiro (float Monto)

{

int Respuesta= 1;

/* Verifica que haya dinero suficiente en la cuenta. */

if ((Saldo-Monto) < 0)

Respuesta= 0;

else

Saldo= Saldo - Monto;

return Respuesta;

}

/* Método que registra un depósito en la cuenta de un cliente. */

void Cliente::HacerDeposito (float Monto)

{

Saldo= Saldo + Monto;

}

/* Función que usa la clase Cliente: se declaran dos objetos tipo

➥Cliente y por medio de los métodos se registran retiros y depósitos en

➥sus cuentas. */

void UsaClaseCliente()

{

float SaldoCli;

/* Declaración de dos objetos de la clase Cliente. */

Cliente ObjClien1, ObjClien2;

…

1.4.3 Los métodos constructor y destructor

El método constructor es una función que se ejecuta automáticamente al
declarar un objeto como instancia de una clase; se escribe generalmente en la
sección pública de una clase, y su función es crear e iniciar un objeto del tipo
de la clase en la cual fue definido. De esta manera, los constructores permiten
asegurar que los objetos, al crearse, se inicialicen con valores válidos. Un
constructor no se hereda ni puede retornar un valor, y tiene el mismo nombre
que la clase.

Por su parte, el método destructor es una función que se ejecuta automáti-
camente al destruirse un objeto. Lleva el mismo nombre que la clase, va
precedido por el símbolo ~ y no lleva argumentos. Un objeto se destruye al
terminar el programa en el cual se creó y libera el espacio de memoria. En el
caso de objetos locales, éstos se destruyen al dejar la sección en la cual se
crearon.

En el programa 1.5 se presenta la definición de la clase Persona en la cual se
incluyeron un método constructor y uno destructor.

1.4 Clases 17

1/* Se obtiene el saldo del cliente, asumiendo que previamente le fue

➥asignado un valor. */

SaldoCli= ObjClien2.ObtenerSaldo();

cout<< “El saldo del cliente es: “ << SaldoCli << ‘\n’;

/* Se hace un retiro de la cuenta de cheques de un cliente: se

➥verifica que tenga una cuenta de cheques (1), en cuyo caso se

➥efectúa el retiro. */

if (ObjClien1.ObtenerTipoCta() == 1)

if (ObjClien1.HacerRetiro(1500))

cout<<”\nRetiro realizado con éxito. Cuenta actualizada. \n”;

else

cout<<”\nNo tiene saldo suficiente para realizar ese retiro. \n”;

else

cout << “\n Para realizar un retiro debe ser una cuenta de

➥cheques.\n”;

/* Se hace un depósito en la cuenta de un cliente: se registra el

➥nuevo saldo. */

ObjClien2.HacerDeposito(50000.00);

}

Programa 1.5

18 Capítulo 1. Introducción a la Programación Orientada a Objetos

/* Se define la clase Persona en la cual, además de los atributos, se

➥incluyen tres métodos en la sección pública: un constructor, un

➥destructor y uno para imprimir los datos. */

class Persona

{

private:

char Nombre[64];

int Edad;

public:

/* Método constructor: se llama igual que la clase, no da ningún

➥tipo de resultado. */

Persona(char *, int);

/* Método destructor: se llama igual que la clase, va precedido

➥por ~ y no tiene argumentos. */

~Persona();

void ImprimeDatos();

};

/* Declaración del método constructor: tiene 2 parámetros (Nom y Ed)

que se usarán para dar un valor inicial a los atributos (Nombre y Edad

respectivamente), al momento de crearse un objeto. */

Persona::Persona(char *Nom, int Ed)

{

strcpy (Nombre, Nom);

Edad= Ed;

}

1.4.4 Uso de constructores múltiples

Los constructores múltiples hacen referencia a que en una misma clase se puede
incluir más de un constructor. Esto permite dar mayor flexibilidad a la declaración
de la clase. Existen tres tipos de constructores:

• Constructor por omisión: es aquel que no tiene parámetros y su cuerpo no
contiene instrucciones. Cuando se crea un objeto, si éste es global, el cons-
tructor inicializa con cero a aquellos atributos que son numéricos y con NULL
a los que son alfabéticos. Si el objeto creado es local, entonces los atribu-
tos se inicializan con valores indeterminados.

• Constructor con parámetros: es aquel que tiene una lista de parámetros, a los
cuales habrá que darles un valor en el momento de declarar un objeto. Di-
chos valores se usarán para instanciar los atributos del objeto creado.

• Constructor con parámetros por omisión: es aquel que tiene una lista de
parámetros, a los cuales se les asigna un valor por omisión que se usará para
inicializar en caso de que no se den explícitamente otros valores.

Todos los constructores llevan el nombre de la clase a la cual pertenecen. La
existencia o no de parámetros decide a qué tipo de constructor se está llamando.
Es importante mencionar que los constructores por omisión y con parámetros por
omisión no pueden convivir en una misma clase, ya que resultaría ambiguo a
cuál se estaría invocando en el caso de no proporcionar parámetros.

A continuación se presenta la declaración de la clase Fecha que tiene dos cons-
tructores: uno por omisión y otro con parámetros.

Programa 1.6

1.4 Clases 19

1

/* Se define la clase Fecha con los atributos Día, Mes y Año. Se incluye

➥un constructor por omisión (sin parámetros) y uno con parámetros. Este

➥último permite dar un valor inicial a los atributos cuando se crea un

➥objeto. */

class Fecha

{

private:

int Dia, Mes, Anio;

public:

Fecha ();

Fecha (int, int, int);

…

};

/* Declaración del método constructor por omisión. */

Fecha::Fecha ()

{}

/* Declaración del método constructor con parámetros (tres enteros):

➥inicializa los atributos. */

Fecha::Fecha (int D, int M, int A)

{

Dia= D;

Mes= M;

Anio= A;

}

/* Función que utiliza la clase Fecha: se crean objetos usando los dos

➥constructores. */

void UsaConstructores ()

En el programa 1.7 se presenta la declaración de la clase Fecha, incluyendo ahora
un constructor con parámetros por omisión.

Programa 1.7

20 Capítulo 1. Introducción a la Programación Orientada a Objetos

{

Fecha ObjFecha;

/* En este caso se invoca al constructor por omisión. El objeto

➥ObjFecha tendrá sus atributos (Día, Mes y Año) con valores

➥indeterminados. */

…

Fecha Cumpleanios (18, 05, 2006);

/* En este caso se invoca al constructor con parámetros. Al objeto

➥Cumpleanios se le asignarán los valores 18, 05 y 2006 para sus

➥atributos Día, Mes y Año respectivamente. */

...

}

/* Se define la clase Fecha con los atributos Día, Mes y Año. Se incluye

➥un constructor con parámetros por omisión. Estos valores se asignarán a

➥los atributos en caso de que el usuario no proporcione otros valores. */

class Fecha

{

private:

int Dia, Mes, Anio;

public:

Fecha (int D= 0, int M= 0, int A= 0);

…

};

/* Declaración del constructor con parámetros por omisión. */

Fecha::Fecha (int D, int M, int A)

{

Dia= D;

Mes= M;

Anio= A;

}

Una manera equivalente de escribir las asignaciones que aparecen en el
constructor es:

Fecha::Fecha (int D, int M, int A): Dia(D), Mes(M), Anio(A)

{}

En el programa 1.8 se retoma el programa 1.3, pero ahora incluyendo, en la sec-
ción pública dos constructores, uno por omisión y otro con parámetros.

Programa 1.8

1.4 Clases 21

1

/* La clase Triangulo define un triángulo por medio de la longitud de

➥su base y de su altura. Además, contiene métodos para calcular su área,

➥actualizar e imprimir sus atributos. Para la clase Triangulo se

➥definieron dos constructores: uno por omisión y otro con parámetros. */

class Triangulo

{

private:

float Base, Altura;

public:

Triangulo();

Triangulo(float, float);

float CalculaArea();

void ImprimeAtributos();

void ActualizaAtributos(float, float);

};

/* Declaración del método constructor por omisión. */

Triangulo::Triangulo()

{}

/* Declaración del método constructor con parámetros. */

Triangulo::Triangulo(float B, float A)

{

Altura= A;

Base= B;

}

/* Método que calcula el área de un triángulo. Regresa un número real. */

float Triangulo::CalculaArea()

{

return (Base * Altura / 2);

}

/* Método que despliega los valores de los atributos. */

void Triangulo::ImprimeAtributos()

{

cout<< “Base: “ << Base << ‘\n’;

cout<< “Altura: “ << Altura << ‘\n’;

}

/* Método que modifica los valores de la base y de la altura de un

➥triángulo. */

void Triangulo::ActualizaAtributos (float B, float A)

Por último, en el programa 1.9 se presenta la clase Cliente (ver programa 1.4) en
la cual se definieron dos constructores.

Programa 1.9

22 Capítulo 1. Introducción a la Programación Orientada a Objetos

{

Altura= A;

Base= B;

}

/* Función que usa la clase Triangulo: se declaran objetos utilizando

➥los dos tipos de constructores incluidos en la clase. */

void UsaClaseTriangulo()

{

float ValorAlt, ValorBase;

/* Se declara un objeto haciendo uso del constructor por omisión. En

➥este caso la base y la altura permanecen con valores indefinidos. */

Triangulo ObjT1;

ValorBase= 2.6;

ValorAlt= 3.7;

/* Se le asignan valores a la base y a la altura del triángulo. */

ObjT1.ActualizaAtributos(ValorBase, ValorAlt);

...

/* Se declara un objeto haciendo uso del constructor con parámetros. En

➥este caso se le asigna a la base el valor 2.8 y a la altura 9.0. */

Triangulo ObjT2 (2.8, 9.0);

...

ObjT1.ImprimeAtributos();

ObjT2.ImprimeAtributos();

...

}

/* La clase Cliente define un cliente por medio de los atributos:

➥Nombre, Dirección, Teléfono, Saldo, Tipo de Cuenta y Número de Cuenta,

➥y de los métodos que permiten el manejo de ellos. Para la clase Cliente

➥se definieron dos constructores: uno con parámetros para algunos de los

➥atributos y otro con parámetros por omisión. */

class Cliente

{

private:

char Nombre[64], Direccion[32], Telefono[10];

float Saldo;

int TipoDeCuenta, NumDeCuenta;

1.4 Clases 23

1public:

Cliente(char Nom[], char Tel[], float Sal);

Cliente(char Nom[], char Dir[], char Tel[], float Sal= 0,int

➥TC= 1,int NoC= 0);

float ObtenerSaldo();

void ImprimeDatos();

char ObtenerTipoCta();

void HacerRetiro(float Monto);

void HacerDeposito(float Monto);

};

/* Declaración del método constructor con parámetros. Se asignan valores

➥a los atributos, tomando los que aparecen en el prototipo del construc-

➥tor si el usuario no proporciona otros. */

Cliente::Cliente(char Nom[],char Dir[], char Tel[], float Sal, int TC,

➥int NoC)

{

strcpy(Nombre, Nom);

strcpy(Direccion, Dir);

strcpy(Telefono, Tel);

Saldo= Sal;

TipoDeCuenta= TC;

NumDeCuenta= NoC;

}

/* Declaración del método constructor donde se asignan, por medio de

➥los parámetros, valores a algunos de los atributos y a otros se les dan

➥valores por omisión. */

Cliente::Cliente(char Nom[], char Tel[], float Sal)

{

strcpy(Nombre, Nom);

strcpy(Telefono, Tel);

Saldo= Sal;

strcpy(Direccion, “Desconocida”);

TipoDeCuenta= 0;

NumDeCuenta= –1;

}

/* Método que permite conocer el Saldo de un cliente. */

float Cliente::ObtenerSaldo()

{

return Saldo;

}

/* Método que despliega en pantalla los valores de los atributos de un

➥cliente. */

void Cliente::ImprimeDatos()

En los siguientes ejemplos se presentan métodos destructores. El programa 1.10
retoma la clase Fecha, del programa 1.7, pero ahora incluye un método destructor
para la misma.

Programa 1.10

24 Capítulo 1. Introducción a la Programación Orientada a Objetos

{

cout<< “Nombre: “ << Nombre << ‘\n’;

cout<< “Dirección: “ << Direccion << ‘\n’;

cout<< “Teléfono: “ << Telefono << ‘\n’;

cout<< “Saldo: “ << Saldo << ‘\n’;

cout<< “Tipo de Cuenta: “ << TipoDeCuenta << ‘\n’;

cout<< “Número de Cuenta: “ << NumDeCuenta << ‘\n’;

}

...

/* Función que muestra el uso de los dos tipos de constructores. */

void UsaClaseCliente()

{

/* Se crean dos objetos de tipo Cliente usando los constructores

➥definidos. */

Cliente ObjCli1(“Laura”, “Insurgentes No. 2”, “55559900”, 28000, 2,

2);

Cliente ObjCli2(“Juan”, “55408881”, 4000);

/* En el último objeto creado se dan valores para 3 de sus atributos,

➥por lo tanto el constructor asigna a los restantes los dados por

➥omisión. */

/* Se imprimen los datos de cada cliente. */

ObjCli1.ImprimeDatos();

ObjCli2.ImprimeDatos();

}

/* Se define la clase Fecha en la cual se incluyó un método constructor

➥y uno destructor. */

class Fecha

{{

private:

int Dia, Mes, Anio;

public:

Fecha (int, int, int);

~Fecha();

}};;

En el programa 1.11 se define la clase Texto que tiene un constructor y un des-
tructor.

Programa 1.11

1.4 Clases 25

1
/* Declaración del método constructor con parámetros. */

Fecha::Fecha(int D, int M, int A)

{{

Dia= D;

Mes= M;

Anio= A;

}}

/* Declaración del método destructor. El cuerpo del método está

➥vacío. */

Fecha::~Fecha()

{ }

/* Se define la clase Texto por medio de los atributos privados que

➥representan la longitud del texto y la estructura requerida para

➥almacenar los caracteres. Asimismo, se incluyen algunos métodos. */

class Texto

{

private:

char *CadenaTexto;

int Longitud;

public:

Texto(char *);

~Texto();

void ImprimeTexto();

};

/* Declaración del método constructor con parámetros. */

Texto::Texto(char *Cad)

{

/* Genera dinámicamente el espacio de memoria necesario para almacenar

➥la cadena Cad más un carácter adicional (carácter nulo). */

CadenaTexto= new char[strlen(Cad)+1];

/* Se verifica si se pudo generar el espacio requerido. */

if (CadenaTexto)

{

strcpy(CadenaTexto, Cad);

Longitud= strlen(CadenaTexto);

}

Ejercicios
1. Analice cuidadosamente las siguientes declaraciones y diga si los enunciados

que aparecen después del código son verdaderos o falsos.

26 Capítulo 1. Introducción a la Programación Orientada a Objetos

else

Longitud= 0;

}

/* Declaración del método destructor. Verifica que la longitud de la

➥cadena sea distinta de cero. Libera el espacio de memoria empleado

➥por CadenaTexto. */

Texto::~Texto()

{

if (Longitud)

delete[] CadenaTexto;

}

/* Método para imprimir el texto. */

void Texto::ImprimeTexto ()

{

cout<< “La cadena es: “ << CadenaTexto << endl;

cout<< “Su longitud es: “ << Longitud << endl;

}

/* Función que utiliza la clase Texto: se crea un objeto usando el

➥constructor con parámetros e imprime su valor. Al terminar la función

➥el objeto se destruye liberando espacio de memoria. */

void UsaTexto ()

{

Texto ObjTexto(“Cadena de longitud 41, incluyendo blancos”);

ObjTexto.ImprimeTexto();

}

class Flor

{

private:

char Nombre[64], Epoca[64];

public:

void Flor();

Flor(char [], char []);

void Imprime();

};

a) La definición de la clase es correcta.

b) En el prototipo del método constructor por omisión hay un error.
Justifique su respuesta.

c) Al prototipo del método Imprime le faltan parámetros. Justifique su
respuesta.

2. Retome el problema anterior. Se definen los métodos de la clase Flor y la
función main. Analice cuidadosamente las siguientes declaraciones y diga si
los enunciados que aparecen después del código son verdaderos o falsos.

Ejercicios 27

1

Flor::Flor()

{}

Flor::Flor(char Nom[], char Epo[])

{

strcpy(Nombre, Nom);

strcpy(Epoca, Epo);

}

void Flor::Imprime()

{

cout<<”\n\nNombre de la flor: “<<Nombre;

cout<<”\nEpoca en la que se cosecha: “<<Epoca<<”\n\n”;

}

void main()

{

Flor Rosa(“Rosa aterciopelada”, “verano”), Jazmin;

cout<<”\nIngrese época en la que se cosecha el jazmín”;

cin>>Jazmin.Epoca;

Rosa.Imprime();

}

a) Al declarar el objeto Jazmin se deben dar parámetros. Justifique su
respuesta.

b) Es incorrecto leer el atributo Epoca en la función principal. Justifique
su respuesta.

c) El método Imprime se invoca correctamente desde la función principal.
Justifique su respuesta.

3. Analice cuidadosamente las siguientes declaraciones y diga si los enunciados
que aparecen después del código son verdaderos o falsos.

a) El atributo MarcaAlimento no se puede declarar en la sección pública.
Justifique su respuesta.

b) La clase Gato necesita un método constructor por omisión. Justifique
su respuesta.

c) La clase Gato está correctamente definida.

4. Retome el problema anterior. Se definen los métodos de la clase Gato y la
función main. Analice cuidadosamente las siguientes declaraciones y diga si
los enunciados que aparecen después del código son verdaderos o falsos.

28 Capítulo 1. Introducción a la Programación Orientada a Objetos

class Gato

{

private:

char Nombre[64];

int Edad;

public:

char MarcaAlimento[64];

Gato(char [], int, char[]);

void Imprime();

char* RegresaNombre();

void CambiaEdad(int);

};

Gato::Gato(char Nom[], int Ed, char MAlim[])

{

strcpy(Nombre, Nom);

Edad= Ed;

strcpy(MarcaAlimento, MAlim);

}

void Gato::Imprime()

{

cout<<”\n\nNombre del gato: “<<Nombre;

cout<<”\nEdad: “<<Edad;

cout<<”\nMarca del alimento que come: “<<MarcaAlimento<<”\n\n”;

}

char* Gato::RegresaNombre()

{

return Nombre;

}

void Gato::CambiaEdad(int NuevaE)

a) La declaración del objeto MiGato es correcta. Justifique su respuesta.

b) La declaración del objeto TuGato es incorrecta. Justifique su respuesta.

c) La impresión del valor del atributo Nombre del objeto MiGato es
correcta. Justifique su respuesta.

d) La impresión del valor del atributo MarcaAlimento del objeto MiGato es
correcta. Justifique su respuesta.

e) La impresión del valor del atributo Edad del objeto MiGato es correcta.
Justifique su respuesta.

f) El método CambiaEdad está incorrectamente asociado al objeto
MiGato.

5. Analice cuidadosamente las siguientes declaraciones y diga si los enunciados
que aparecen después del código son verdaderos o falsos. Las afirmaciones
tienen relación con el segmento del programa al cual suceden.

Ejercicios 29

1
{

Edad= NuevaE;

}

void main()

{

Gato MiGato(“Michifus”, 3, “SaborYNutricion”), TuGato();

MiGato::CambiaEdad(4);

cout<<”\n\nNombre del gato: “<<MiGato.RegresaNombre()<<”\n\n”;

cout<<”\nAlimento que come: “<<MiGato.MarcaAlimento<<”\n\n”;

cout<<”\nEdad: “<<MiGato.Edad;

}

class Trabajador

{

private:

char Nombre[64];

int ClaveTrab, Sindi;

float Sueldo;

public:

Trabajador(char [], int, int, float);

void Imprime();

void CambiaEstado();

void AumentaSueldo(float);

};

a) En la declaración de la clase no se pudo incluir un método constructor
por omisión. Justifique su respuesta.

b) En los parámetros formales del método constructor faltó darle un
valor por omisión al parámetro Nom. Justifique su respuesta.

c) Los valores que aparecen en el encabezado del método siempre se
asignan. Justifique su respuesta.

6. Retome el problema anterior. Se definen tres métodos de la clase
Trabajador y la función main. Analice cuidadosamente las siguientes
declaraciones y diga si los enunciados que aparecen después del código
son verdaderos o falsos.

30 Capítulo 1. Introducción a la Programación Orientada a Objetos

Trabajador::Trabajador(char Nom[],int Cla=1000,int Si=1,float Sue=1600)

{

strcpy(Nombre, Nom);

ClaveTrab= Cla;

Sindi= Si;

Sueldo= Sue;

}

void Trabajador::Imprime()

{

cout<<”\n\nNombre del trabajador: “<<Nombre;

cout<<”\nClave: “<<ClaveTrab;

if (Sindi)

cout<<”\nEstá sindicalizado.”;

cout<<”\nSueldo: “<<Sueldo<<”\n\n”;

}

void Trabajador::CambiaEstado()

{

Sindi= !Sindi;

}

void Trabajador::AumentaSueldo(float Aumento)

{

Trabajador::Sueldo= Trabajador::Sueldo * (1 + Aumento);

}

void main()

{

Trabajador Pepe(“Jose Pérez”);

Pepe.Imprime();

a) Cuando se declara el objeto Pepe se deben dar valores para todos los
parámetros. Justifique su respuesta.

b) Cuando se declara el objeto Carlos se pudo dar valores sólo a los
atributos Nombre y Sueldo. Justifique su respuesta.

c) Se dieron demasiados valores al declarar el objeto Paco. Justifique su
respuesta.

d) En el método AumentaSueldo es incorrecto usar Trabajador::Sueldo.
Justifique su respuesta.

7. Considerando los enunciados de la función main del problema anterior,
diga qué valores aparecerán en la pantalla al ejecutarse las siguientes
instrucciones.

a) Pepe.Imprime();

b) Carlos.Imprime(); //Primera invocación del método.

c) Carlos.Imprime(); //Segunda invocación del método.

d) Paco.Imprime(); //Primera invocación del método.

e) Paco.Imprime(); //Segunda invocación del método.

8. Retome la clase del ejercicio 6, modifique el método que aumenta el sueldo
del trabajador. Ahora, el método debe recibir como parámetro el porcentaje
de aumento, el número de horas extra trabajadas y el valor a pagar por cada
hora extra. Los dos últimos parámetros deben tener un valor por omisión,
de tal manera que cuando un trabajador no haya laborado horas extra, el
usuario no tenga que asignarles 0.

9. Defina la clase Rectangulo. Determine los atributos y el conjunto de métodos
(lo más completos posible) que caracterizan al concepto rectángulo.

Ejercicios 31

1
Trabajador Carlos(“Carlos González”, 1050, 0);

Carlos.Imprime();

Carlos.CambiaEstado();

Carlos.Imprime();

Trabajador Paco(“Francisco Quiroz”, 2200, 1, 5680.25);

Paco.Imprime();

Paco.AumentaSueldo(0.10);

Paco.Imprime();

}

10. Utilice la clase definida en el ejercicio 9 para declarar objetos que repre-
sentan dos alfombras rectangulares a colocar en una oficina. Escriba un
programa que solicite las dimensiones de cada una de las alfombras y del
piso y utilice los métodos incluidos en la clase, para calcular e imprimir la
superficie del piso que va a quedar cubierta.

11. Defina la clase Persona. Determine los atributos y el conjunto de métodos
(lo más completos posible) que caracterizan al concepto persona. Luego
declare el objeto MiMaestra, de tipo Persona. Escriba un programa en C++
que utilice la clase previamente definida. El programa debe poder, por medio
de los métodos incluidos en la clase, realizar las siguientes operaciones:

a) Cambiar la dirección de MiMaestra. El usuario dará la nueva dirección.

b) Cambiar el número de teléfono de MiMaestra. El usuario dará el nuevo
número.

c) Imprimir todos los datos de MiMaestra.

d) Imprimir, si MiMaestra está casada, el nombre de su cónyuge.

12. Defina la clase Mamífero que contenga los atributos que caracterizan a un
animal de este tipo, los métodos necesarios para el manejo de la información,
así como diferentes constructores para crear e inicializar objetos de tipo
Mamífero. Se sugiere definir constructores por omisión, con parámetros y/o
con parámetros por omisión. Escriba un programa en C++ que utilice la
clase previamente definida. El programa debe poder realizar, por medio de
los métodos incluidos en la clase, las siguientes operaciones:

a) Declarar los objetos Perro y Elefante. Utilice los métodos constructo-
res o algún método de lectura para darle valor a los atributos incluidos
en la clase.

b) Imprimir el tipo de alimentación del objeto Elefante. Analice alterna-
tivas de solución considerando que el atributo en cuestión sea privado
o público.

c) Imprimir los valores de todos los atributos del objeto Perro.

13. Defina la clase Cubo. Determine los atributos y el conjunto de métodos (lo más
completos posible) que caracterizan al concepto cubo.

14. Retome el problema anterior y utilice la clase Cubo para definir cajas de car-
tón, en forma de cubo. Escriba un programa que calcule e imprima el
total de pliegos de cartón que serán necesarios para fabricar un total de N
(1 � N � 20) cajas. Las cajas pueden ser de diferentes tamaños. El programa

32 Capítulo 1. Introducción a la Programación Orientada a Objetos

además de calcular el total de pliegos, deberá calcular el desperdicio de papel.
Datos: N, tamaño de cada caja (considere 1/2 cm para pegar los diferentes
lados de cada cara del cubo) y tamaño del pliego de cartón.

15. Defina la clase Empleado, según las especificaciones que se dan más
abajo. Posteriormente, en un programa de aplicación, declare los objetos
JefePlanta y JefePersonal usando la clase previamente definida. El programa
debe permitir al usuario, por medio de menús:

a) Cambiar el domicilio de uno de los dos empleados declarados. Los
datos ingresados por el usuario serán la clave del empleado y su nuevo
domicilio.

b) Actualizar el sueldo de un empleado. Los datos ingresados por el
usuario serán la clave del empleado y el porcentaje de incremento a
aplicar al sueldo.

c) Imprimir los datos de un empleado. El usuario proporcionará la clave
del empleado elegido.

d) Cambiar el nombre de la persona a quien reporta uno de los empleados.

Ejercicios 33

1

Empleado

ClaveEmpleado: int

Nombre: char[]

Domicilio: char[]

Sueldo: float

ReportaA: char[]

Constructor(es)

void Imprime()

void CambiaDomic(char[])

void CambiaReportaA(char[])

void ActualSueldo(float)

16. Defina la clase Materia, según las especificaciones que se dan. Posterior-
mente, en un programa de aplicación declare los objetos Programación y
BasesDatos usando la clase previamente definida. El programa debe permitir
al usuario, por medio de menús:

a) Cambiar la clave de la materia Programación.

b) Cambiar el nombre del maestro que imparte la materia BasesDatos.

c) Imprimir todos los datos de la materia BasesDatos.

34 Capítulo 1. Introducción a la Programación Orientada a Objetos

Materia

Clave: int

Nombre: char[]

ProfesorTit: char[]

LibroTexto: char[]

Constructor(es)

void Imprime()

void CambiaClave(int)

void CambiaProfe(char[])

17. Retome la clase definida en el ejercicio anterior. ¿Qué método(s) debería
agregarle/quitarle para que se pudiera imprimir, desde algún programa de
aplicación, el nombre del libro de texto usado para la materia de BasesDatos?

CAPÍTULO 2

La herencia es la capacidad de compartir atributos y métodos entre
clases. La relación de herencia entre clases puede ser: privada, protegida
o pública; la relación que se utiliza con mayor frecuencia es la pública,
por lo que la analizaremos detalladamente. Del tipo de herencia privada
sólo se presentará una breve introducción.

La clase de la cual se hereda se denomina clase base o superclase.
Mientras que la clase que hereda se denomina clase derivada o
subclase.

Dependiendo del número de clases y de cómo se relacionen, la
herencia puede ser: simple, múltiple y de niveles múltiples. En las
siguientes secciones se explica cada una.

Herencia y amistad

2.1 Herencia simple
Cuando sólo se tiene una clase base de la cual hereda la clase derivada, se dice
que hay herencia simple (figura 2.1a). Sin embargo, la herencia simple no exclu-
ye la posibilidad de que de una misma clase base se pueda derivar más de una
subclase o clase derivada (figura 2.1b).

36 Capítulo 2. Herencia y amistad

Clase Base Clase Base

Cuando se necesita representar un concepto general y a partir de éste, conceptos
más específicos, resulta conveniente organizar la información usando herencia.
Esto permite compartir atributos y métodos ya definidos, evita la duplicidad y,
por otra parte, proporciona mayor claridad en la representación que se haga de la
información. Es decir, se logra un mejor diseño de la solución del problema.
Existen numerosos casos en los cuales se da este tipo de relación. En la figura 2.2
se presentan algunos ejemplos de herencia simple.

Vacuno

Persona

Empleado

(a) (b)

Mamífero

Equino

FIGURA 2.2 Ejemplos de herencia simple

Clase Derivada 1Clase Derivada

(a) (b)

Clase Derivada 2

FIGURA 2.1 Herencia simple

En la figura 2.2a, la clase Persona es la clase base y Empleado es la clase derivada.
Un objeto de esta clase también es un objeto de la clase Persona, por lo tanto
tendrá los atributos y métodos de ambas clases. En la figura 2.2b, la clase
Mamífero es la clase base y Vacuno y Equino son las clases derivadas. En este
caso, se dice que todo Vacuno y todo Equino también son objetos de la clase
Mamífero y en consecuencia tendrán todos los atributos y métodos que heredan
de la clase base.

La herencia pública permite que los miembros privados de la clase base se puedan
acceder sólo por medio de los métodos de dicha clase. Los miembros protegidos
de la clase base podrán ser usados por los métodos de las clases derivadas, pero
no por sus clientes. Los miembros públicos estarán disponibles para los métodos
de las clases derivadas y para todos sus clientes.

2.1 Herencia simple 37

2

class Base

{

private:

/* Miembros declarados en la sección privada: accesibles sólo para

➥miembros de esta clase. */

protected:

/* Miembros declarados en la sección protegida: accesibles sólo para

➥miembros de esta clase y de sus derivadas. */

public:

/* Miembros declarados en la sección pública: accesibles para todos. */

};

Para declarar una clase derivada de una clase previamente definida, se utiliza la
siguiente sintaxis.

class Base

{

/* Declaración de atributos y métodos de la clase Base. */

};

Con la palabra reservada public en el encabezado de la declaración de la clase
Derivada se hace referencia a que dicha clase hereda los atributos y métodos de la
clase Base. La declaración del constructor de la clase Derivada debe incluir un lla-
mado al constructor de la clase Base. Para ello se sigue la sintaxis que se presenta
a continuación:

38 Capítulo 2. Herencia y amistad

/* Relación de herencia pública entre las clases Base y Derivada. */

class Derivada: public Base

{

/* Declaración de atributos y métodos de la clase Derivada. */

};

Derivada::Derivada (parámetros): Base (parámetros propios de la clase

Base)

{

/* Cuerpo del constructor de la clase Derivada. */

}

Cuando se declara un objeto del tipo de la clase derivada se invoca al constructor
de ésta. De este constructor lo primero que se ejecuta es la llamada al constructor de
la clase base, y posteriormente se ejecutan sus propias instrucciones. En cuanto a
los parámetros, al invocar al constructor de la clase base se le deben proporcio-
nar los parámetros que necesita para asignar valores a los atributos propios de la
clase base y que la clase derivada hereda. En el cuerpo de la clase derivada se
harán las asignaciones correspondientes a los atributos propios de esta clase.

El programa 2.1 presenta un ejemplo de herencia simple. Define la clase Persona
y la clase Empleado como una clase derivada de la primera.

Programa 2.1

/* Se define la clase Persona formada por atributos protegidos y

➥públicos, y se usa como clase base para definir la clase Empleado. Los

➥objetos que sean del tipo Empleado tendrán los atributos de esta clase

➥(por ejemplo Salario), además de los atributos heredados de la clase

➥Persona. */

2.1 Herencia simple 39

2

class Persona

{

protected:

char Nombre[30];

int Edad;

public:

Persona (char *Nom, int Ed);

void ImprimePersona();

};

/* Declaración del método constructor con parámetros. Da un valor inicial

➥a los atributos. */

Persona::Persona(char *Nom, int Ed)

{

strcpy(Nombre, Nom);

Edad = Ed;

}

/* Método que despliega los valores de los atributos de una persona. */

void Persona::ImprimePersona()

{

cout<< “Nombre: “ << Nombre << endl;

cout<< “Edad: “ << Edad << endl;

}

/* Definición de la clase Empleado como clase derivada de la clase

➥Persona. Se usa herencia pública. */

class Empleado: public Persona

{

protected:

float Salario;

public:

Empleado (char *Nom, int Ed, float Sal);

void ImprimeEmpleado();

~Empleado();

};

/* Declaración del método constructor. Invoca al constructor de la clase

➥base. */

Empleado::Empleado(char *Nom, int Ed, float Sal): Persona(Nom, Ed)

{

Salario= Sal;

}

/* Declaración del método destructor. */

Empleado::~Empleado()

{}

En el ejemplo anterior, el método ImprimeEmpleado de la clase Empleado puede
mostrar el atributo Nombre de la clase Persona, ya que el mismo es protegido. Por
otra parte, es importante destacar que al crear un objeto de tipo Empleado se dan
tres parámetros, los dos primeros son necesarios para instanciar los atributos
heredados de la clase Persona.

2.2 Herencia múltiple
En el tipo de herencia múltiple se usan dos o más clases base para derivar una
clase. Es decir, la clase derivada comparte los atributos y los métodos de más de
una clase.

40 Capítulo 2. Herencia y amistad

/* Método que imprime los valores de algunos de los atributos de un

➥empleado. */

void Empleado::ImprimeEmpleado()

{

cout<< “Empleado: “ << Nombre << endl;

cout<< “Salario: “ << Salario << endl;

}

/* Función que usa las clases Persona y Empleado: se declaran apuntadores

➥a objetos tipo Persona y Empleado. Por medio de los constructores

➥se les asignan valores a estos objetos, se imprimen y finalmente se

➥destruyen liberando la memoria. */

void UsaHerencia(void)

{

Persona *ObjPersona= new Persona(“Carlos”, 22);

Empleado *ObjEmpleado= new Empleado(“Adriana”, 25, 20000);

ObjPersona–>ImprimePersona();

ObjEmpleado–>ImprimeEmpleado();

delete ObjPersona;

delete ObjEmpleado;

}

Para definir una relación de herencia múltiple se utiliza la siguiente sintaxis.

2.2 Herencia múltiple 41

2

Clase Base 1

Clase Derivada

Clase Base 2

FIGURA 2.3 Herencia múltiple

class Base
1

{

/* Declaración de atributos y métodos de la clase Base
1.
*/

};

class Base
2

{

/* Declaración de atributos y métodos de la clase Base
2.

*/

};

…

class Base
n

{

/* Declaración de atributos y métodos de la clase Base
n.

*/

};

class Derivada: public Base
1
, public Base

2
, …, public Base

n

{

/* Declaración de atributos y métodos de la clase Derivada. */

};

Cuando la palabra reservada public, precede el nombre de cada una de las clases
se hace referencia a que la clase Derivada hereda atributos y métodos de todas
ellas.

Para definir el constructor de la clase Derivada, se procede de la siguiente manera:

42 Capítulo 2. Herencia y amistad

Derivada::Derivada (parámetros): Base
1
(parámetros clase Base

1
), Base

2

➥(parámetros clase Base
2
), …, Base

n
(parámetros clase Base

n
)

{

/* Cuerpo del constructor de la clase Derivada. */

}

Al llamar al constructor de la clase Derivada, primero se ejecuta el constructor de
la clase Base

1
, después el constructor de la clase Base

2
, y así sucesivamente hasta

el constructor de la clase Base
n
. Por último, se ejecutan las instrucciones que apa-

rezcan en el cuerpo del constructor de la clase Derivada.

A continuación se presenta un ejemplo de herencia múltiple. Se definen las clases
Boleto y Hotel que se utilizarán como base para definir la clase derivada PlanVacac.
Esta clase heredará todos los miembros de las clases bases, aunque sólo tendrá
acceso a los miembros públicos de ellas.

Programa 2.2

/* Se definen las clases Boleto y Hotel, que servirán como base para

➥definir la clase PlanVacac, representando un caso de herencia múltiple.

➥Se presenta una aplicación muy sencilla que utiliza las clases

➥previamente definidas. */

/* Definición de la clase Boleto. */

class Boleto

{

private:

float Precio;

char Numero[64], CdadOri[64], CdadDes[64];

public:

Boleto();

Boleto(float, char *, char*, char *);

void Imprime();

};

2.2 Herencia múltiple 43

2

/* Declaración del constructor por omisión. */

Boleto::Boleto()

{ }

/* Declaración del constructor con parámetros. */

Boleto::Boleto(float Pre, char Num[], char CO[], char CD[])

{

Precio= Pre;

strcpy(Numero, Num);

strcpy(CdadOri, CO);

strcpy(CdadDes, CD);

}

/* Método que imprime los valores de los atributos de un boleto. */

void Boleto::Imprime()

{

cout<<”\n\nNúmero del boleto: “<<Numero;

cout<<”\nPrecio: “<<Precio;

cout<<”\nDe la ciudad: “<<CdadOri<<” a la ciudad: “<<CdadDes<<endl;

}

/* Definición de la clase Hotel. */

class Hotel

{

private:

float PrecioHab;

int NumHab;

char TipoHab;

public:

Hotel();

Hotel(float, int, char);

void Imprime();

};

/* Declaración del método constructor por omisión. */

Hotel::Hotel()

{ }

/* Declaración del método constructor con parámetros. */

Hotel::Hotel(float PreH, int NH, char TH)

{

PrecioHab= PreH;

NumHab= NH;

TipoHab= TH;

}

/* Método que despliega los valores de los atributos de un hotel. */

void Hotel::Imprime()

44 Capítulo 2. Herencia y amistad

{

cout<<”\n\nNúmero de habitación: “<<NumHab;

cout<<”\nPrecio: “<<PrecioHab;

cout<<”\nTipo de habitación: “<<TipoHab<<endl;

}

/* Definición de la clase PlanVacac como clase derivada de las clases

➥Boleto y Hotel. Esta clase hereda los atributos de las otras dos.

➥Además, tiene dos atributos propios. */

class PlanVacac: public Boleto, public Hotel

{

private:

char Descrip[64];

int TotalDias;

public:

PlanVacac();

PlanVacac(float, char *, char *, char*, float, int, char, char *,

➥int);

void Imprime();

};

/* Declaración del método constructor por omisión. */

PlanVacac::PlanVacac()

{ }

/* Declaración del método constructor con parámetros. */

PlanVacac::PlanVacac(float PB, char NB[], char CO[], char CD[],

➥float PH, int NH, char TH, char Des[], int TD):

➥Boleto(PB, NB, CO, CD), Hotel(PH, NH, TH)

{

strcpy(Descrip, Des);

TotalDias= TD;

}

/* Método que despliega los valores de los atributos de un plan

➥vacacional. */

void PlanVacac::Imprime()

{

cout<<”\nDescripción: “<<Descrip;

cout<<”\nTotal de días: “<<TotalDias;

cout<<”\nDatos del boleto\n “;

Boleto::Imprime();

cout<<”\nDatos del hotel\n “;

Hotel::Imprime();

}

/* Función que pide al usuario los datos relacionados a un viaje. Con

➥estos datos se crea un objeto tipo PlanVacac. Regresa como resultado

➥dicho objeto. */

PlanVacac Lee ()

2.3 Herencia de niveles múltiples
La herencia de niveles múltiples se presenta cuando una clase derivada se usa
como base para definir otra clase derivada. Es decir, existen diferentes niveles de
herencia: en el primero, la clase derivada hereda los miembros de una clase base,
mientras que en el segundo, la clase derivada funciona a su vez como una clase
base y de esta forma comparte con una tercera clase sus propios miembros y los

2.3 Herencia de niveles múltiples 45

2

{

char CO[64], CD[64], NumBol[64], TH, Des[64];

float Prec, PreHab;

int NumHab, TD;

cout<<”\n¿De dónde sale? “;

cin>>CO;

cout<<”\n¿A dónde llega? “;

cin>>CD;

cout<<”\nPrecio: “;

cin>>Prec;

cout<<”\nNúmero de boleto: “;

cin>>NumBol;

cout<<”\nTipo de habitación: “;

cin>>TH;

cout<<”\nPrecio de la habitación: “;

cin>>PreHab;

cout<<”\nNúmero de habitación asignada: “;

cin>>NumHab;

cout<<”\nTipo de paquete: “;

cin>>Des;

cout<<”\nTotal de días: “;

cin>>TD;

PlanVacac Paquete(Prec, NumBol,CO, CD, PreHab, NumHab, TH, Des, TD);

return Paquete;

}

/* Función que usa las clases previamente definidas entre las cuales

➥existe una relación de herencia múltiple. */

void UsaHerenciaMultiple()

{

PlanVacac Viaje;

Viaje= Lee();

cout<<”\n\nDatos del paquete seleccionado: “;

Viaje.Imprime();

}

que heredó. Esta relación puede extenderse a tantos niveles como lo requiera el
problema que se esté resolviendo.

46 Capítulo 2. Herencia y amistad

Clase Base

Clase Derivada 1

Clase Derivada 1.1

Árbol

Este tipo de herencia es muy útil cuando es necesario representar, a partir de
conceptos generales, conceptos más específicos. Cuantos más niveles se deriven,
más especificidad se definirá. La figura 2.5 presenta un ejemplo de herencia de
niveles múltiples. El nivel superior representa la clase más general, la clase Árbol.
Luego, la clase Frutal es una clase derivada de la primera, lo cual indica que los
frutales son una clase más específica de árboles. Por último, se define la clase
Cítrico, como una subclase de la clase Frutal. Esta relación también indica que
los cítricos son una variante, una clase más específica, de los árboles frutales.

FIGURA 2.4 Herencia de niveles múltiples

FIGURA 2.5 Ejemplo de herencia de niveles múltiples

Clase derivada de
Clase Base. A su
vez es la clase base de
Clase Derivada 1.1

Frutal

Cítrico

El programa 2.3 presenta parte del código desarrollado para definir las
clases de la figura 2.5, además de un ejemplo sencillo de aplicación de
las mismas.

Programa 2.3

2.3 Herencia de niveles múltiples 47

2/* Se declara la clase Árbol que será superclase de la clase Frutal.

➥De ésta, a su vez, se derivará la clase Cítrico. Por lo tanto, esta

➥última hereda los miembros de las dos anteriores. Con esta relación de

➥herencia, se expresa que un objeto tipo Cítrico, es además del tipo

➥Frutal y también un Árbol.*/

/* Definición de la clase Arbol. */

class Arbol

{

protected:

int Edad;

double Altura;

char Nombre[64];

public:

Arbol(int Ed, double Alt, char *Nom);

void ImprimeArbol();

};

/* Declaración del método constructor con parámetros. Asigna valores a

➥los atributos. */

Arbol::Arbol(int Ed, double Alt, char *Nom)

{

Edad= Ed;

Altura= Alt;

strcpy(Nombre, Nom);

}

/* Imprime los valores de los atributos de un árbol. */

void Arbol::ImprimeArbol()

{

cout<<”Nombre: “ << Nombre << endl;

cout<<”Edad: “ << Edad << endl;

cout<<”Altura: “ << Altura << endl;

}

/* Primer nivel de herencia: declaración de la clase Frutal como clase

➥derivada de la clase Arbol.*/

class Frutal: public Arbol

48 Capítulo 2. Herencia y amistad

{

protected:

char EstacionFruto[64];

public:

Frutal(int Ed, double Alt, char *Nom, char *EstFr);

void ImprimeFrutal();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase base. */

Frutal::Frutal (int Ed, double Alt, char *Nom, char *EstFr):

➥Arbol (Ed, Alt, Nom)

{

strcpy(EstacionFruto, EstFr);

}

/* Método que despliega los valores de los atributos de un árbol frutal. */

void Frutal::ImprimeFrutal()

{

Arbol::ImprimeArbol();

cout<<”Estación del año en la que da frutos: “ << EstacionFruto << endl;

}

/* Segundo nivel de herencia: definición de la clase Citrico como derivada

➥de la clase Frutal. */

class Citrico: public Frutal

{

private:

char NombreCitrico[64];

public:

Cítrico (int Ed, double Alt, char *Nom, char *EstFr, char

➥*NomCit);

void ImprimeCitrico();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase base. */

Citrico::Citrico(int Ed, double Alt, char *Nom, char *EstFr, char *NomCit):

➥Frutal (Ed, Alt, Nom, EstFr)

{

strcpy(NombreCitrico, NomCit);

}

/* Método que despliega los valores de los atributos de un cítrico. */

void Citrico::ImprimeCitrico()

La figura 2.6 presenta otro ejemplo de herencia de niveles múltiples; tiene cuatro
niveles de clases: en la primera, Alumno, se define una clase que podría utilizarse
para describir el concepto alumno en general (podrían ser alumnos de primaria,
secundaria o de cualquier otro nivel). A partir de esta clase se deriva la clase
Universitario, con la cual se gana cierto grado de precisión. Ahora ya se des-
criben a los alumnos que asisten a alguna universidad. En el siguiente nivel, con
la clase Ingeniería, se indica una clase más específica que las anteriores. Se trata
de alumnos universitarios que estudian algún tipo de ingeniería (ya no cual-
quier carrera universitaria). Por último, la clase Computación describe a los estu-
diantes universitarios de ingenierías en computación. Es decir, ya no son los
alumnos de cualquier ingeniería, sino específicamente los que estudian Ingeniería
en Computación. Así, la clase Computación hereda los miembros de Ingeniería, de
Universitario y de Alumno. Además, podrá tener un conjunto de atributos y
métodos propios.

2.3 Herencia de niveles múltiples 49

2

{

Frutal::ImprimeFrutal();

cout<<”Nombre del Cítrico: “ << NombreCitrico << endl;

}

/* Función que usa las clases definidas previamente en las cuales existe

➥una relación de herencia de niveles múltiples: crea objetos e imprime

➥el valor de sus atributos. */

void UsaHerencia()

{

Arbol ObjArbol(2, 3.55, “Álamo”);

Frutal ObjFrutal(3, 2.56, “Manzano”, “Otoño”);

Citrico ObjCitrico(1, 2.22, “Limonero”, “Invierno”, “Limón”);

ObjArbol.ImprimeArbol();

ObjFrutal.ImprimeFrutal();

ObjCitrico.ImprimeCitrico();

}

El programa 2.4 presenta un segmento de código basado en la relación de herencia
que se muestra en la figura 2.6. El programa tiene un nivel más de herencia, ya que
se define primero la clase Persona, y a partir de ella la clase Alumno.

Programa 2.4

50 Capítulo 2. Herencia y amistad

Alumno

FIGURA 2.6 Ejemplo de herencia de niveles múltiples

Universitario

Ingeniería

Computación

/* Se define la clase Persona de la cual se deriva la clase Alumno. De

➥ésta se deriva la clase Universitario, que a su vez sirve como base

➥para definir la clase Ingeniería. Finalmente, a partir de ésta se

➥define la clase Computación. */

class Persona

{

protected:

char *Nombre;

int Edad;

public:

Persona(char *Nom, int Ed);

void ImprimePersona();

};

/* Declaración del método constructor con parámetros. */

Persona::Persona(char *Nom, int Ed)

2.3 Herencia de niveles múltiples 51

2

{

Nombre= new char[strlen(Nom)+1];

if (Nombre)

{

strcpy(Nombre, Nom);

Edad= Ed;

}

}

/* Método que despliega los valores de los atributos de una persona. */

void Persona::ImprimePersona()

{

cout<<”Nombre: “ << Nombre << endl;

cout<<”Edad: “ << Edad << endl;

}

/* Primer nivel de herencia: definición de la clase Alumno como clase

➥derivada de la clase Persona. */

class Alumno: public Persona

{

protected:

float Promedio;

public:

Alumno(char *Nom, int Ed, float Prom);

void ImprimeAlumno();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase base. */

Alumno::Alumno(char *Nom, int Ed, float Prom): Persona(Nom, Ed)

{

Promedio= Prom;

}

/* Método que despliega los valores de los atributos de un alumno. */

void Alumno::ImprimeAlumno()

{

Persona::ImprimePersona();

cout<< “Promedio: “ << Promedio << endl;

}

/* Segundo nivel de herencia: definición de la clase Universitario como

➥clase derivada de la clase Alumno. */

class Universitario: public Alumno

{

protected:

char *NombreUniversidad;

52 Capítulo 2. Herencia y amistad

public:

Universitario(char *Nom, int Ed, float Prom, char *NomUniv);

void ImprimeUniversitario();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase base. */

Universitario::Universitario(char *Nom, int Ed, float Prom, char *NomUniv):

➥Alumno(Nom, Ed, Prom)

{

NombreUniversidad= new char[strlen(NomUniv)+1];

if (NombreUniversidad)

strcpy(NombreUniversidad, NomUniv);

}

/* Método que despliega los valores de los atributos de un alumno

➥universitario. */

void Universitario::ImprimeUniversitario()

{

Alumno::ImprimeAlumno();

cout<<”Nombre de la Universidad: “ << NombreUniversidad << endl;

}

/* Tercer nivel de herencia: definición de la clase Ingeniería como

➥clase derivada de la clase Universitario. */

class Ingenieria: public Universitario

{

protected:

char *NombreIngenieria;

public:

Ingenieria(char *Nom, int Ed, float Prom, char *NomUniv, char

➥*NomIng);

void ImprimeIngenieria();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase base. */

Ingenieria::Ingenieria(char *Nom, int Ed, float Prom, char *NomUniv,

➥char *NomIng):

Universitario(Nom, Ed, Prom, NomUniv)

{

NombreIngenieria= new char[strlen(NomIng)+1];

if (NombreIngenieria)

strcpy(NombreIngenieria, NomIng);

}

/* Método que despliega los valores de los atributos de un alumno de

➥alguna ingeniería. */

void Ingenieria::ImprimeIngenieria()

2.3 Herencia de niveles múltiples 53

2

{

Universitario::ImprimeUniversitario();

cout <<”Nombre de la Ingeniería: “ << NombreIngenieria << endl;

}

/* Cuarto nivel de herencia: definición de la clase Computación como

➥clase derivada de la clase Ingeniería. */

class Computacion: public Ingenieria

{

protected:

char Plataformas[64];

public:

Computacion(char *Nom, int Ed, float Prom, char *NomUniv, char

➥*NomIng, char *Pla);

void ImprimeComputacion();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase base. */

Computacion::Computacion(char *Nom, int Ed, float Prom, char *NomUniv,

➥char *NomIng, char *Pla): Ingenieria (Nom, Ed, Prom,

➥NomUniv, NomIng)

{

strcpy(Plataformas, Pla);

}

/* Método que despliega los valores de los atributos de un alumno de

➥ingeniería en computación. */

void Computacion::ImprimeComputacion()

{

Ingenieria::ImprimeIngenieria();

cout<< “Plataformas usadas: “ << Plataformas << endl;

}

/* Función que usa las clases previamente definidas en las cuales hay

➥una relación de herencia de niveles múltiples. */

void UsaHerencia()

{

Persona ObjPersona(“Carlos”, 23);

Alumno ObjAlumno(“Adriana”, 20, 9.75);

Universitario ObjUniversitario(“Carolina”, 19, 8.65, “ITAM”);

Ingenieria ObjIngenieria(“Pablo”, 21, 8.25, “UNAM”, “Mecánica”);

Computacion ObjComputacion(“Alfonso”, 22, 9.8, “UPT”, “Computación”,

➥“Varias”);

La figura 2.7 muestra un esquema que representa diferentes tipos de herencia en-
tre diversas clases. Se puede mencionar un caso de herencia simple entre la clase
Vehiculo y la clase Motocicleta, y un caso de herencia de niveles múltiples entre
la clase Vehiculo y la clase Deportivo.

54 Capítulo 2. Herencia y amistad

ObjPersona.ImprimePersona();

ObjAlumno.ImprimeAlumno();.

ObjUniversitario.ImprimeUniversitario();

ObjIngenieria.ImprimeIngenieria();

/* Imprime los datos del alumno de ingeniería en computación. */

ObjComputacion.ImprimeComputacion();

/* Imprime sólo los datos personales del alumno de ingeniería en

➥computación. */

ObjComputacion.ImprimePersona();

}

Motocicleta Automovil

Vehiculo

Deportivo
FIGURA 2.7 Ejemplo de herencia

El programa 2.5 presenta código que incluye la definición de las clases corres-
pondientes al esquema de la figura 2.7, así como una función que hace uso de las
mismas.

Programa 2.5

2.3 Herencia de niveles múltiples 55

2

/* La clase Vehiculo se define por medio de los atributos privados

➥Marca, Placas y el Número de Motor, así como por medio de un método

➥para desplegar los valores de los atributos y un constructor. Esta

➥clase sirve como clase base para definir las clases Motocicleta y

➥Automovil. De la clase Automovil se deriva la clase Deportivo. */

/* Definición de la clase Vehiculo. */

class Vehiculo

{

private:

char Marca[32];

int Placas, NumMotor;

public:

Vehiculo(char *Mar, int Pla, int NM);

void ImprimeVehiculo();

};

/* Declaración del método constructor con parámetros. */

Vehiculo::Vehiculo(char *Mar, int Pla, int NM)

{

strcpy(Marca, Mar);

Placas= Pla;

NumMotor= NM;

}

/* Método que despliega los valores de los atributos de un vehículo. */

void Vehiculo::ImprimeVehiculo()

{

cout<<”Marca: “ << Marca << ‘\n’;

cout<<”Placas: “ << Placas << ‘\n’;

cout<<”Número de Motor: “ << NumMotor << ‘\n’;

}

/* Se define la clase Motocicleta, derivada de Vehiculo, la cual tiene

➥como atributos propios la Potencia del Motor y como método el que le

➥permite desplegar sus atributos. */

class Motocicleta: public Vehiculo

{

private:

int PotMotor;

public:

Motocicleta(char *Mar, int Pla, int NM, int PM);

void ImprimeMotocicleta();

};

56 Capítulo 2. Herencia y amistad

/* Declaración del método constructor. Invoca al método constructor de

➥la clase Vehiculo. */

Motocicleta::Motocicleta (char *Mar, int Pla, int NM, int PM):

➥Vehiculo(Mar, Pla, NM)

{

PotMotor= PM;

}

/* Método que despliega los valores de los atributos de una motocicleta. */

void Motocicleta::ImprimeMotocicleta()

{

Vehiculo::ImprimeVehiculo();

cout<<”Potencia del Motor: “ << PotMotor << ‘\n’;

}

/* Se define la clase Automovil, derivada de Vehiculo, la cual tiene

➥como atributos propios el Número de Puertas y como método el que le

➥permite desplegar sus atributos. */

class Automovil: public Vehiculo

{

private:

int NumPuertas;

public:

Automovil(char *Mar, int Pla, int NM, int NP);

void ImprimeAutomovil();

};

/* Declaración del método constructor. Invoca al método constructor de

➥la clase Vehiculo. */

Automovil::Automovil(char *Mar, int Pla, int NM, int NP):

➥Vehiculo(Mar, Pla, NM)

{

NumPuertas= NP;

}

/* Método que despliega los valores de los atributos de un automóvil. */

void Automovil::ImprimeAutomovil()

{

Vehiculo::ImprimeVehiculo();

cout<<”Número de Puertas: “ << NumPuertas << ‘\n’;

}

/* Se define la clase Deportivo, derivada de Automovil, la cual tiene

➥como atributo propio el Color y como método el que le permite desplegar

➥sus atributos. */

class Deportivo: public Automovil

2.3 Herencia de niveles múltiples 57

2

{

private:

char Color[8];

public:

Deportivo (char *Mar, int Pla, int NM, int NP, char *Col);

void ImprimeDeportivo();

};

/* Declaración del método constructor. Invoca al constructor de la clase

➥Automovil. */

Deportivo::Deportivo (char *Mar, int Pla, int NM, int NP, char *Col):

Automovil (Mar, Pla, NM, NP)

{

strcpy(Color, Col);

}

/* Método que despliega los valores de los atributos de un automóvil

➥deportivo. */

void Deportivo::ImprimeDeportivo()

{

Automovil::ImprimeAutomovil();

cout<<”Color: “ << Color << ‘\n’;

}

/* Función que hace uso de las clases previamente definidas. */

void UsaHerencia()

{

/* Declaración de un objeto de tipo Motocicleta. */

Motocicleta Moto(“Honda”, 231, 2941, 225);

/* Declaración de un objeto de tipo Automovil. */

Automovil Auto(“BMW”, 569, 7436, 4);

/* Declaración de un objeto de tipo Deportivo. */

Deportivo AutoDep(“Ferrari”, 442, 52348, 2, “rojo”);

/* Despliega las características de la motocicleta. */

Moto.ImprimeMotocicleta();

/* Despliega las características del automóvil. */

Auto.ImprimeAutomovil();

/* Despliega las características del automóvil deportivo. */

AutoDep.ImprimeDeportivo();

}

Todos los ejemplos presentados en esta sección corresponden a herencia pública,
la cual es la más utilizada. A continuación se presenta una breve introducción a la
herencia de tipo privada.

2.4 Herencia privada
En el caso de la herencia privada, todos los miembros de la clase base, sin
importar si son privados, protegidos o públicos, serán privados para la clase
derivada. Por lo tanto, sólo se podrán acceder por medio de los métodos de la
clase base.

58 Capítulo 2. Herencia y amistad

/* Declaración de la clase Base.*/

class Base

{

…

};

/* Declaración de la clase derivada D1 a partir de Base, usando la

relación de herencia pública. */

class D1: public Base (1)

{

…

};

/* Declaración de la clase derivada D2 a partir de Base, usando la

relación de herencia privada. */

class D2: private Base (2)

{

…

};

En (1) se declara herencia pública entre la clase Base y la clase derivada D1. Por
lo tanto, los miembros públicos y protegidos de Base estarán disponibles para D1,
mientras que los miembros privados de Base no podrán usarse directamente desde
D1. En (2) se declara herencia privada entre la clase Base y la clase derivada D2.
Por lo tanto, los miembros públicos, protegidos y privados de Base serán todos
privados para D2.

2.5 Clases amigas (friend)
Existen casos en los cuales es necesario que una clase haga uso de los miembros
de otra clase, sin que exista relación de herencia entre las mismas. Es decir, dos
clases que no comparten atributos pueden requerir algún tipo de cooperación en
algún momento. Para permitir este tipo de relación se declara una clase como
amiga de otra.

Cuando en la declaración de una clase se dice que otra clase es su amiga, se está
permitiendo que esta última tenga acceso a los miembros privados y protegidos
de la primera.

En el lenguaje C++ se usa la palabra reservada friend para indicar que una
clase es amiga de otra. La directiva friend class NombreClase se escribe en la
sección pública de la clase, cuyos miembros podrán ser utilizados por los de
la clase NombreClase. La palabra reservada class puede omitirse.

2.5 Clases amigas (friend) 59

2

class Uno

{

…

public:

…

/* Los métodos de la clase Dos podrán acceder a los atributos

➥privados y protegidos de la clase Uno. */

friend class Dos;

…

};

/* La declaración de la clase Dos no se modifica. */

class Dos

{

/* Declaración de atributos y métodos. */

};

En este caso, en la sección pública de la declaración de la clase Uno se indica que la
clase Dos es su amiga. Por lo tanto, esta última podrá tener acceso a los miembros
privados y protegidos de la primera.

El acceso logrado a través del uso de la declaración de clases amigas no se hereda
ni es transitivo. Es decir, si la clase Dos tuviera clases derivadas, éstas no podrían
tener acceso a los miembros de la clase Uno. Por otra parte, si la clase Dos tuviera
otras clases amigas, éstas tampoco podrían tener acceso a los miembros de la
clase Uno.

A continuación, el programa 2.6 presenta un ejemplo de clases amigas. Define
las clases Medico y Paciente, y declara la última como clase amiga de la primera.
De esta manera, el método AsociarMedico, de la clase Paciente, podrá utilizar
directamente miembros privados de la clase Medico.

Programa 2.6

60 Capítulo 2. Herencia y amistad

/* Se definen las clases Medico y Paciente, siendo esta última una clase

➥amiga de la primera. Por lo tanto, la clase Paciente podrá tener acceso

➥a todos los miembros de la clase Medico. */

/* Prototipo de la clase Paciente. La definición de la misma aparece más

➥adelante. */

class Paciente;

/* Definición de la clase Medico. */

class Medico

{

private:

char NombreCompleto[64], Especialidad[64];

public:

Medico();

Medico(char *NomCom, char *Esp);

char * ObtenerNombreCompleto();

char * ObtenerEspecialidad();

void ImprimeDatos();

/* Clase amiga que tiene acceso a los miembros privados de la

➥clase Medico. */

friend class Paciente;

};

/* Declaración del método constructor por omisión. */

Medico::Medico()

{ }

/* Declaración del método constructor con parámetros. */

Medico::Medico(char *NomCom, char *Esp)

{

strcpy(NombreCompleto, NomCom);

strcpy(Especialidad, Esp);

}

2.5 Clases amigas (friend) 61

2

/* Método que permite, a los usuarios externos a la clase, conocer el

➥nombre del médico. */

char * Medico::ObtenerNombreCompleto()

{

return NombreCompleto;

}

/* Método que permite, a los usuarios externos a la clase, conocer la

➥especialidad del médico. */

char * Medico::ObtenerEspecialidad()

{

return Especialidad;

}

/* Método que despliega los valores de los atributos de un médico. */

void Medico::ImprimeDatos(void)

{

cout<<”Nombre completo del médico: “ << NombreCompleto << endl;

cout<<”Especialidad: “ << Especialidad << endl <<endl;

}

/* Definición de la clase Paciente. */

class Paciente

{

private:

char NombreCompleto[64];

int Edad;

char Padecimiento[64];

Medico *MedicoEspecialista;

public:

Paciente();

Paciente(char *NomCom, int Ed, char *Pad);

char * ObtenerNombreCompleto();

int ObtenerEdad();

char * ObtenerPadecimiento();

void AsociarMedico();

void ImprimeDatos();

};

/* Declaración del método constructor por omisión. */

Paciente::Paciente()

{ }

/* Declaración del método constructor con parámetros. */

Paciente::Paciente(char *NomCom, int Ed, char *Pad)

62 Capítulo 2. Herencia y amistad

{

strcpy(NombreCompleto, NomCom);

Edad= Ed;

strcpy(Padecimiento, Pad);

}

/* Método que permite, a los usuarios externos a la clase, conocer el

➥nombre del paciente. */

char * Paciente::ObtenerNombreCompleto()

{

return NombreCompleto;

}

/* Método que permite, a los usuarios externos a la clase, conocer la

➥edad del paciente. */

int Paciente::ObtenerEdad()

{

return Edad;

}

/* Método que permite, a los usuarios externos a la clase, conocer el

➥nombre del padecimiento. */

char * Paciente::ObtenerPadecimiento()

{

return Padecimiento;

}

/* Método que asocia un médico especialista a cada paciente. Note cómo

➥el miembro MedicoEspecialista (de tipo puntero a un objeto tipo Medico)

➥tiene acceso a los miembros privados de la clase Medico. */

void Paciente::AsociarMedico()

{

MedicoEspecialista= new Medico();

cout<<”Ingrese el Nombre Completo del Médico: “;

cin>>MedicoEspecialista–>NombreCompleto;

cout<<”Ingrese la especialidad: “;

cin>>MedicoEspecialista–>Especialidad;

}

/* Método que despliega los valores de los atributos de un paciente. */

void Paciente::ImprimeDatos()

{

cout<<”\nNombre Completo: “ << NombreCompleto << endl;

cout<<”Edad: “ << Edad << endl;

cout<<”Padecimiento: “ << Padecimiento << endl;

cout<<”Datos del Médico Especialista:” << endl;

MedicoEspecialista–>ImprimeDatos();

}

2.6 Métodos amigos
Los métodos amigos de una clase son métodos que no pertenecen a ella, pero a
los cuales se les permite el acceso a sus miembros privados y protegidos. Es de-
cir, en la definición de una clase se incluye la directiva de que cierto método de
otra clase es amigo de la que se está declarando. De esta forma, dicho método
podrá utilizar libremente todos los miembros de la clase. El programa 2.7 ilustra
este concepto.

Programa 2.7

2.6 Métodos amigos 63

2

/* Función que usa las clases amigas previamente definidas. */

void UsaClaseAmiga()

{

Paciente ObjPacienteA (“Juan Carlos G.”, 25, “Gripe”),

ObjPacienteB (“Adriana Z.”, 38, “Gastritis”);

ObjPacienteA.AsociarMedico();

ObjPacienteB.AsociarMedico();

ObjPacienteA.ImprimeDatos();

ObjPacienteB.ImprimeDatos();

}

/* Se definen las clases Ejemplo1 y Ejemplo2. En la clase Ejemplo1 se

➥indica que el método EsMayor de la clase Ejemplo2 es un método amigo de

➥la misma. */

/* Prototipo de la clase Ejemplo1. Su definición se muestra más adelante. */

class Ejemplo1;

class Ejemplo2

{

private:

int Valor2;

public:

Ejemplo2 (int);

void Imprime();

int EsMayor(Ejemplo1);

};

64 Capítulo 2. Herencia y amistad

/* Declaración del método constructor. */

Ejemplo2:: Ejemplo2 (int Num)

{

Valor2= Num;

}

/* Método que despliega el valor del atributo de la clase Ejemplo2. */

void Ejemplo2::Imprime()

{

cout << “Valor del atributo: “ << Valor2 << endl;

}

/* Método de la clase Ejemplo2. Este método es amigo de la clase Ejemplo1,

➥por lo que tendrá acceso a los miembros privados y/o protegidos de la

➥misma. */

int Ejemplo2::EsMayor(Ejemplo1 Obj)

{

if (Valor2 > Obj.Valor1)

return 1;

else

return 0;

}

/* Definición de la clase Ejemplo1. En esta clase, en la sección pública,

➥se incluye la declaración de un método de la clase Ejemplo2 como método

➥amigo, lo cual permite que este método tenga acceso a sus miembros

➥privados y protegidos. */

class Ejemplo1

{

private:

int Valor1;

public:

Ejemplo1 (int);

void Imprime();

friend int Ejemplo2::EsMayor(Ejemplo1);

};

/* Declaración del método constructor. */

Ejemplo1::Ejemplo1(int Num)

{

Valor1= Num;

}

/* Método que despliega el valor del atributo de la clase Ejemplo1. */

void Ejemplo1::Imprime()

{

cout << “Valor del atributo: “ << Valor1 << endl;

}

En el ejemplo anterior, al indicar que el método EsMayor() de la clase Ejemplo2 es
un método amigo de la clase Ejemplo1, se permite que dicho método pueda com-
parar directamente el atributo Valor2 con el atributo Valor1 (miembro privado de
la clase Ejemplo1).

2.7 Funciones amigas
Otra variante de este tipo de relación son las funciones amigas que se utilizan
para que funciones ajenas a una clase puedan tener acceso a los miembros priva-
dos y/o protegidos de éstas. A continuación se muestra la sintaxis que se utiliza
para representar esta relación.

2.7 Funciones amigas 65

2

/* Función que usa el método amigo de la clase Ejemplo1. */

void UsaMetodoAmigo()

{

Ejemplo1 Obj (10);

Ejemplo2 Obj2(12);

Obj1.Imprime();

Obj2.Imprime ();

if (Obj2.EsMayor(Obj1))

cout << “Obj2 es mayor que Obj1” << endl;

else

cout << “Obj2 no es mayor que Obj1” << endl;

}

class Uno

{

...

public:

...

friend tipo NombreFunción(parámetros);

};

tipo NombreFunción (parámetros)

{

/* La función se declara normalmente. */

...

}

El programa 2.8 presenta un ejemplo sencillo de funciones amigas.

Programa 2.8

66 Capítulo 2. Herencia y amistad

/* Se define la clase Ejemplo en la cual se incluye la declaración de

➥la función Suma como una función amiga de la misma. Esto permitirá que

➥dicha función pueda tener acceso a todos los miembros de la clase.*/

class Ejemplo

{

private:

int Atrib1, Atrib2;

public:

Ejemplo();

Ejemplo(int, int);

void Imprime();

friend int Suma(int, Ejemplo);

};

/* Declaración del método constructor por omisión. */

Ejemplo::Ejemplo()

{}

/* Declaración del método constructor con parámetros. */

Ejemplo::Ejemplo(int Num1, int Num2)

{

Atrib1= Num1;

Atrib2= Num2;

}

/* Método que despliega los valores de los atributos de la clase. */

void Ejemplo::Imprime()

{

cout<<”Valor del primer atributo: “<<Atrib1<<endl;

cout<<”Valor del segundo atributo: “<<Atrib2<<endl;

}

/* Función entera declarada como amiga de la clase Ejemplo, lo que

➥permite que pueda sumar sus atributos a un entero de manera directa. En

➥este caso, el parámetro Valor es un objeto de tipo Ejemplo y la función

➥obtiene como resultado la suma de sus atributos más un número dado

➥también como parámetro.*/

int Suma(int Dato, Ejemplo Valor)

{

return (Dato + Valor.Atrib1 + Valor.Atrib2);

}

/* Función que hace uso de la función amiga de la clase Ejemplo para

➥obtener la suma de sus atributos. */

Ejercicios 67

2

void UsaFuncionesAmigas()

{

int Resultado;

Ejemplo ObjEjemplo(2, 5);

Resultado= Suma (10, ObjEjemplo);

cout<<”El resultado de la suma es: “<<Resultado<<endl;

}

El programa del ejemplo anterior imprimirá el valor 17, ya que la función suma
los atributos del objeto, dando un valor de 7 y a eso le suma el número entero
(10) que recibe como parámetro.

Ejercicios
1. Considere la siguiente relación de herencia. Defina las clases Mamífero,

Felino y GatoDoméstico. Decida qué atributos y métodos incluir de tal
manera que su programa pueda:

a) Declarar un objeto llamado Minino de tipo GatoDoméstico y otro llamado
EstrellaCirco de tipo Felino.

b) Imprimir la dieta de Minino y de EstrellaCirco.

c) Imprimir el año y lugar de nacimiento de Minino y de EstrellaCirco.

d) Cambiar el nombre del dueño de Minino.

e) Imprimir la raza de Minino y de EstrellaCirco.

f) Cambiar el nombre del circo en el que actúa EstrellaCirco.

Mamifero

Felino

GatoDomestico

2. Considere la siguiente relación de herencia. Defina las clases Vehiculo,
Terrestre y Maritimo. Decida qué atributos y métodos incluir de tal manera
que su programa pueda:

a) Declarar un objeto llamado MiAuto de tipo Terrestre y otro llamado
MiBarco de tipo Maritimo. La asignación de valores a los atributos debe
hacerse a través de un método de lectura, definido para tal fin.

b) Imprimir los atributos de los objetos declarados en el inciso anterior.

c) Actualizar el precio de MiAuto.

d) Actualizar potencia de motores de MiBarco. ¿A qué clase debería perte-
necer el método que le permitirá hacer esta actualización?

e) Imprimir un mensaje que indique si MiAuto tiene o no más de 5 años
de antigüedad.

f) Imprimir el tipo de combustible que usa y la capacidad máxima del
tanque de MiBarco.

68 Capítulo 2. Herencia y amistad

Terrestre

Vehiculo

Maritimo

3. Definir la clase Planta que contenga todos los atributos que caracterizan
a las plantas, y los métodos necesarios para manejarlos. Además, defina
las clases derivadas Arbol, Arbusto y Pino, en el nivel de herencia
adecuado.

4. Definir la clase FiguraGeometrica que contenga los atributos que caracterizan
a toda figura geométrica y los métodos necesarios para manejarlos. Además,
defina las clases derivadas Cuadrado y Triangulo. Escriba un programa en
C++ que haga uso de estas clases para calcular el total de metros cuadrados
de tela necesaria para fabricar N almohadones con forma cuadrada y M
almohadones con forma de triángulo equilátero. Los datos que se ingresarán
al programa son:

Datos:

• N: total de almohadones con forma cuadrada.

• LadoC: tamaño, en centímetros, de cada uno de los lados del almoha-
dón cuadrado.

• M: total de almohadones con forma triangular.

• LadoT: tamaño, en centímetros, de cada uno de los lados del almoha-
dón triangular.

Resultado esperado: Total de metros cuadrados requeridos para la fabricación
de los N + M almohadones.

5. Considere la relación de herencia que se muestra en la siguiente figura, la
cual involucra tres clases: Alumno, Deportista y BecadoDeporte. Esta última
representa a aquellos alumnos que son deportistas y que por esa razón han
recibido una beca especial del gobierno para premiar sus esfuerzos. Decida
qué atributos y métodos incluir de tal manera que su programa pueda:

a) Declarar dos objetos llamados AlumnoJuan y AlumnoPedro de tipo Alumno.

b) Declarar un objeto llamado DeporLuis de tipo Deportista.

c) Declarar dos objetos llamados BDAna y BDCarmen de tipo BecadoDeporte.

d) Imprimir los datos de todos los objetos declarados.

e) Actualizar el nombre de la carrera que están estudiando AlumnoJuan y
BDAna. El dato dado por el usuario será el nombre de la nueva carrera.

f) Actualizar el nombre del entrenador de DeporLuis y BDCarmen. El dato
dado por el usuario será el nombre del nuevo entrenador.

g) Actualizar el monto de la beca de BDAna y BDCarmen. El dato dado por
el usuario será el porcentaje de incremento de la beca actual.

Ejercicios 69

2

Alumno

BecadoDeporte

Deportista

6. Considere la relación de herencia que se muestra en la siguiente figura. La
misma involucra tres clases: AlimVegetal, AlimAnimal y AlimPreparado. Esta
última representa a los alimentos preparados que pueden incluir como base
alimentos vegetales y/o animales.

70 Capítulo 2. Herencia y amistad

AlimVegetal

AlimPreparado

AlimAnimal

Se sugiere incluir los siguientes atributos y métodos:

AlimVegetal

Nombre: char[]

EpocaDisponible: char[]

Vitaminas: int

Minerales: int

ProteinasVeg: int

Constructor(es)

void Imprime()

void CambiaEpoca()

AlimAnimal

Nombre: char[]

Origen: char[]

Vitaminas: int

Minerales: int

ProteinasAnim: int

Grasa: int

Constructor(es)

void Imprime()

Escriba un programa en C++ que:

a) Declare y cree un objeto llamado Tallarines de tipo AlimPreparado.
Los tallarines se preparan con harina de trigo, huevo y agua. Se cue-
cen en agua hirviendo.

b) Declare y cree un objeto llamado EnsaladaVerde de tipo AlimPreparado.
La ensalada verde se prepara con diferentes tipos de lechuga y se
condimenta con aceite de oliva, vinagre balsámico y sal (esta última
no puede ser representada). No se cuece.

c) Imprima los atributos de los Tallarines y de la EnsaladaVerde.

d) Declare y cree un objeto llamado LechugaFrancesa de tipo
AlimVegetal.

e) En el objeto LechugaFrancesa actualice el valor del atributo
EpocaDisponible a “todo el año”.

f) Declare y cree un objeto llamado Salmon de tipo AlimAnimal.

g) Imprima los atributos de la LechugaFrancesa y del Salmon.

7. Considere las siguientes relaciones de herencia. Defina todas las clases
que aparecen en el esquema. Decida qué atributos y métodos incluir de tal
manera que su programa pueda:

a) Declarar y crear objetos de cualquiera de las clases sin utilizar métodos
de lectura para asignar valores a los atributos.

b) Imprimir los atributos de cualquiera de los objetos declarados.

Ejercicios 71

2

AlimPreparado

Nombre: char[]

Cocido: int

Constructor(es)

void Imprime()

8. Defina las clases DireccionEscolar y Alumno de acuerdo a las especifi-
caciones que se proporcionan más adelante. Observe que la clase
DireccionEscolar incluye métodos para modificar valores de algunos
atributos de objetos tipo Alumno que, por razones de seguridad, deben ser
privados. Para permitir este acceso debe hacer uso de la relación de amistad
(friend) explicada en este capítulo. Una vez definidas las clases indicadas,
escriba un programa en C++ que permita:

a) Crear un objeto llamado AlumnoJuan de tipo Alumno y un objeto llamado
DirEsc de tipo DireccionEscolar.

b) Imprimir los datos del AlumnoJuan y de la DirEsc.

72 Capítulo 2. Herencia y amistad

Industrias

Comercial

OficinasDepartamentos

Residencial

Vivienda

Casas

c) Actualizar las dimensiones de un objeto tipo Casas. El usuario deberá
proporcionar el nuevo número de metros cuadrados de la casa.

d) Actualizar el giro de una industria. Es decir, a un objeto tipo Industria
se le podrá cambiar el valor de un atributo que representa el tipo de
actividad que desarrolla dicha industria.

e) Actualizar el número de teléfono de cualquiera de los objetos
declarados.

9. Defina las clases RecursosHumanos y Empleado de acuerdo a las
especificaciones proporcionadas más adelante. Observe que la clase
RecursosHumanos incluye métodos para modificar valores de algunos
atributos de objetos tipo Empleado que, por razones de seguridad, deben
ser privados. Para permitir este acceso debe hacer uso de la relación de
amistad (friend). Una vez definidas las clases indicadas, escriba un
programa en C++ que permita:

a) Crear un objeto llamado EmpleadoPedro de tipo Empleado y un objeto
llamado Personal de tipo RecursosHumanos.

b) Imprimir los datos del EmpleadoPedro y de Personal.

c) Registrar un cambio de domicilio del EmpleadoPedro. El usuario deberá
proporcionar el nuevo domicilio.

Ejercicios 73

2

Dirección escolar

Responsable: char[]

Telefono: char[]

Constructor(es)

void ActualizaCarre(Alumno, char[])

void ActualizaMatAprob(Alumno, int)

void ActualizaMatProm(Alumno, float)

void Imprime()

Alumno

Nombre: char[]

AñoIngreso: int

NomCarrera: char[]

Nro.MatAprob: int

Promedio: float

Constructor(es)

void Imprime()

c) Registrar un cambio de carrera para el AlumnoJuan. El usuario deberá
proporcionar el nombre de la carrera a la cual se cambiará.

d) Registrar una actualización del número de materias aprobadas por
el AlumnoJuan. El usuario deberá proporcionar el total de materias
aprobadas en este último semestre (el cual se sumará al total
anterior).

e) Registrar una actualización del promedio de calificaciones del
AlumnoJuan. El usuario deberá proporcionar el nuevo promedio.

d) Registrar un cambio en el nombre de la persona a la cual reporta el Em-
pleadoPedro. El usuario deberá proporcionar el nombre de la persona a
la que reportará a partir de ahora.

e) Registrar una actualización del sueldo del EmpleadoPedro. El usuario
deberá proporcionar el nuevo sueldo.

f) Imprimir los datos del EmpleadoPedro si lleva más de 10 años trabajando
en la empresa.

74 Capítulo 2. Herencia y amistad

RecursosHumanos

Responsable: char[]

Telefono: char[]

Constructor(es)

void ActualizaDomic(Empleado, char[])

void ActualizaRepA(Empleado, char[])

void ActualizaSueldo(Empleado, float)

void Imprime()

Empleado

Nombre: char[]

AñoIngreso: int

Domicilio: char[]

Sueldo: float

ReportaA: char[]

Constructor(es)

void Imprime()

10. Retome el problema 9 pero ahora utilice el concepto de métodos amigos.
Reescriba lo que considere necesario de tal manera que sólo los métodos
ActualizaDomic, ActualizaRepA y ActualizaSueldo puedan tener acceso a los
miembros privados de la clase Empleado.

11. Defina la clase Empleado según las especificaciones que se proporcionan
más adelante. Además, en la clase debe incluir una relación de amistad con
una función que tenga como objetivo calcular el sueldo a pagar al emplea-
do, de acuerdo a la siguiente expresión:

SueldoBase + Incentivo*TotalAñosTrabajados + HorasExtra

Donde:

• SueldoBase se toma directamente del objeto tipo Empleado.

• Incentivo es una constante declarada en el programa.

• TotalAñosTrabajados lo calcula la función como la diferencia entre el
año actual y el AñoIngreso del empleado.

• HorasExtra es un valor que recibe la función como parámetro.

Ejercicios 75

2Empleado

Nombre: char[]

AñoIngreso: int

Domicilio: char[]

SueldoBase: float

ReportaA: char[]

Constructor(es)

void Imprime()

CAPÍTULO 3

En este capítulo se empleará el lenguaje C++ para tratar tres temas
relacionados con la programación orientada a objetos. Estos temas no
aplican a todos los lenguajes de programación orientados a objetos,
sin embargo, es importante estudiarlos debido a que constituyen pode-
rosas herramientas de programación.

3.1 Sobrecarga
La sobrecarga es una característica que ofrece el lenguaje C++ para
aplicar una misma operación, a través de operadores o funciones, a di-
ferentes tipos de datos. Se pueden sobrecargar operadores, por ejem-
plo +, *, –, etcétera y funciones definidas por el propio usuario. La
sobrecarga permite generalizar el uso de operadores y funciones.
A continuación se analizarán estos temas detalladamente.

Sobrecarga, plantillas
y polimorfismo

3.1.1 Sobrecarga de operadores

La sobrecarga de operadores es el proceso de asignar dos o más operaciones al
mismo operador. Es decir, permite asignar una o más funciones adicionales a un
operador estándar, con el fin de que ésta sea llamada según el contexto en el cual
se utilice el operador. Un operador sobrecargado no puede tener parámetros pre-
determinados. La sintaxis para sobrecargar un operador es:

78 Capítulo 3. Sobrecarga, plantillas y polimorfismo

tipo operator operador (parámetros)

{

/* Instrucciones que forman el cuerpo del operador. */

}

donde tipo indica el tipo de resultado que produce el operador, operator es una
palabra reservada y operador es el operador que se sobrecarga.

La siguiente tabla muestra algunos de los operadores que pueden sobrecargarse
en C++:

TABLA 3.1 Operadores que pueden sobrecargarse en C++
+ ++ & =

* << - !

% >> / |

> < ^ ==

El programa 3.1 presenta un ejemplo de sobrecarga de operadores en el cual se
sobrecarga al operador + para permitir la suma de vectores.

Programa 3.1

/* Clase Vector en la cual se incluye un método para sumar vectores

➥sobrecargando el operador +. */

class Vector

{

private:

float CoordX, CoordY;

La clase Vector, del ejemplo anterior, define un método para sumar dos vectores.
Para ello se sobrecargó el operador +. Como consecuencia, si el operador + se
usa con operandos que sean objetos del tipo Vector, se estará invocando a este
método. En cambio, si los operandos son números, se estará haciendo referencia
a la suma aritmética.

3.1 Sobrecarga 79

3

public:

Vector (float Val1= 0, float Val2= 0);

void ImprimeVector();

Vector operator+(Vector Vec);

};

/* Declaración del método constructor con parámetros predeterminados;

➥a los cuales, si no les especifican otros valores, se les asignará 0. */

Vector::Vector(float Val1, float Val2)

{

CoordX= Val1;

CoordY= Val2;

}

/* Método que imprime los valores de los atributos de un vector. */

void Vector::ImprimeVector()

{

cout << “X: “ << X << “ Y: “ << Y <<endl;

}

/* Método en el cual se sobrecarga el operador +; por lo tanto, el

➥operador + se podrá usar tanto para la suma aritmética como para suma

➥de vectores. Lo anterior da como resultado un objeto de tipo Vector. */

Vector Vector::operator+ (Vector Vec)

{

return Vector(CoordX+Vec.CoordX, CoordY + Vec.CoordY);

}

/* Función que utiliza el operador + sobrecargado. Se declaran dos objetos

➥de tipo Vector y, por medio del operador +, se obtiene su suma. */

void UsaSobrecarga(void)

{

Vector ObjVectorU(3, 1), ObjVectorV(1, 2), ObjVectorR;

/* Se invoca al operador sobrecargado: se realiza la suma de

➥vectores. */

ObjVectorR= ObjVectorU + ObjVectorV;

ObjVectorR.ImprimeVector();

}

Sobrecarga de los operadores de entrada >> y de salida <<

Un caso especial es la sobrecarga de los operadores << y >> utilizados en la salida
y entrada de datos respectivamente. Estos operadores se encuentran en la biblio-
teca <iostream.h> de C++.

En el caso de la entrada de datos del teclado a la aplicación, se establece una
relación entre una referencia a un objeto de la clase istream y una referencia a
un objeto de la clase en la cual se está incluyendo la sobrecarga. La sintaxis es
la que se muestra a continuación:

80 Capítulo 3. Sobrecarga, plantillas y polimorfismo

friend istream &operator>> (istream &, TipoDefUsuario &);

friend ostream &operator<< (ostream &, TipoDefUsuario &);

donde TipoDefUsuario corresponde al nombre de la clase en la cual se está defi-
niendo la sobrecarga del operador >>.

En el caso de la salida de datos de la aplicación a la pantalla, se establece una
relación entre una referencia a un objeto de la clase ostream y una referencia a
un objeto de la clase en la cual se está incluyendo la sobrecarga. La sintaxis es:

donde TipoDefUsuario corresponde al nombre de la clase en la cual se está defi-
niendo la sobrecarga del operador <<.

Observe que las funciones que se obtienen al sobrecargar los operadores se
declaran como amigas (friend) de la clase en la cual se insertaron. Esto es para
que dichas funciones, externas a la clase, puedan tener acceso a los miembros
privados de la misma.

El programa 3.2 presenta un ejemplo basado en el programa 2.3 del capítulo
anterior.

Programa 3.2

3.1 Sobrecarga 81

3

/* Clase Arbol con algunos atributos y métodos; en la sección pública

➥se incluyen dos funciones amigas en las cuales se sobrecargan los

➥operadores de salida y entrada, << y >>. */

class Arbol

{

protected:

int Edad;

double Altura;

char Nombre[64];

public:

Arbol();

void ModificaEdad(int);

void ModificaAltura(float);

friend istream &operator>> (istream &, Arbol &);

friend ostream &operator<< (ostream &, Arbol &);

};

/* Declaración del método constructor por omisión. */

Arbol::Arbol()

{ }

/* Método que modifica la edad de un árbol. */

void Arbol::ModificaEdad(int NuevaE)

{

Edad= NuevaE;

}

/* Método que modifica la altura de un árbol. */

void Arbol::ModificaAltura(float NuevaA)

{

Altura= NuevaA;

}

/* Declaración de la función amiga donde se usa el operador >>

➥sobrecargado. */

istream &operator>> (istream &Lee, Arbol &ObjArbol)

{

cout<<”\n\nIngrese nombre del árbol: “;

Lee>>ObjArbol.Nombre;

cout<<”\n\nIngrese altura del árbol: “;

Lee>>ObjArbol.Altura;

cout<<”\n\nIngrese edad en número de años del árbol: “;

Lee>>ObjArbol.Edad;

return Lee;

}

El ejemplo anterior contiene operadores sobrecargados, que leen e imprimen el
objeto DeMiCampo como si fuera un dato simple. De esta manera se gana generali-
dad, ya que es posible usar las instrucciones cin y cout independientemente del
tipo de dato que se esté leyendo o escribiendo.

3.1.2 Sobrecarga de funciones o métodos

La sobrecarga de funciones es el proceso de definir dos o más funciones, con el
mismo nombre, que difieren únicamente en los parámetros que requieren y en
el tipo de resultado que generan. Este tipo de sobrecarga resulta ser una poderosa

82 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaración de la función amiga donde se usa el operador <<

➥sobrecargado. */

ostream &operator<< (ostream &Escribe, Arbol &ObjArbol)

{

cout<<”\n\nDatos del árbol: “;

Escribe<<”Nombre: “<<ObjArbol.Nombre<<endl;

Escribe<<”Altura: “<<ObjArbol.Altura<<endl;

Escribe<<”Edad: “<<ObjArbol.Edad<<endl;

return Escribe;

}

/* Función que usa la clase previamente definida. En esta función puede

➥apreciar cómo simplificar la entrada/salida de los datos de un objeto.

➥La escritura de las funciones amigas implica más código, sin embargo,

➥su uso produce un código más legible. */

void UsaSobreCarga()

{

Arbol DeMiCampo;

/* Se usa el operador >> sobrecargado para leer un objeto tipo

➥Arbol como si fuera un dato simple. */

cin>>DeMiCampo;

DeMiCampo.ModificaAltura(12.5);

DeMiCampo.ModificaEdad(3);

/* Se usa el operador << sobrecargado para imprimir un objeto tipo

➥Arbol como si fuera un dato simple. */

cout<<DeMiCampo;

}

herramienta de programación. Sin embargo, debe ser cuidadoso en su uso ya que
si se utiliza excesivamente el programa podría resultar poco legible. Además, es
importante considerar que no es posible definir dos funciones que difieran sólo
en el tipo de resultado. Deben hacerlo también en la lista de parámetros.

A continuación se presenta un ejemplo sencillo para que pueda comprender mejor
el concepto explicado. En este caso se sobrecarga la función potencia, de tal forma
que se pueda aplicar a números enteros o a números de tipo double.

Programa 3.3

3.1 Sobrecarga 83

3
/* Versión de la función Potencia para trabajar con números enteros. */

int Potencia (int Num, int Pot)

{

int Indice, Res= 1;

for (Indice= 1; Indice <= Pot; Indice++)

Res= Res * Num;

return Res;

}

/* Versión de la función Potencia para trabajar con números de doble

➥precisión. */

double Potencia (double Num, int Pot)

{

double Res= 1;

int Indice;

for (Indice= 1; Indice <= Pot; Indice++)

Res= Res * Num;

return Res;

}

/* Función que utiliza las funciones sobrecargadas previamente definidas. */

void UsaFuncionesSobrecargadas()

{

int Base1, Expo1, Expo2;

double Base2;

cout<< “Ingrese base y exponente – ambos números enteros – \n “;

cin>>Base1>>Expo1;

/* Se invoca a la función Potencia con un número entero como primer

➥parámetro, por lo tanto se ejecutará la primera versión presentada y

➥se obtendrá un número entero como resultado. */

cout<<”\n\nEl resultado es: “<<Potencia(Base1, Expo1);

El programa 3.4 presenta un segmento de programa en el cual se incluyen dos
funciones sobrecargadas: Max, que permite encontrar el máximo entre dos núme-
ros que pueden ser del tipo int o double y Raiz2, que calcula la raíz cuadrada de
un número que puede ser del tipo int o double.

Programa 3.4

84 Capítulo 3. Sobrecarga, plantillas y polimorfismo

cout<< “Ingrese base y exponente – la base puede ser un valor de

➥doble precisión – \n “;

cin>>Base2>>Expo2;

/* Se invoca a la función Potencia con un número de doble precisión

➥como primer parámetro, por lo tanto se ejecutará la segunda versión

➥presentada y se obtendrá un número de doble precisión como

➥resultado. */

cout<<”\n\nEl resultado es: “<<Potencia(Base2, Expo2);

}

/* Se define la función Max de tipo int, con parámetros también de tipo

➥int. Esta función compara dos valores enteros y regresa el valor más

➥grande. */

int Max (int Val1, int Val2)

{

if (Val1 > Val2)

return Val1;

else

return Val2;

}

/* Se define la función Max de tipo double, con parámetros también de

➥tipo double. Esta función compara dos valores de tipo double y regresa

➥el valor más grande. */

double Max (double Val1, double Val2)

{

if (Val1 > Val2)

return Val1;

else

return Val2;

}

/* Se define la función Raiz2, con un parámetro de tipo int. Regresa la

➥raíz cuadrada del dato. */

double Raiz2 (int Num)

{

return sqrt (Num);

}

Por último, el programa 3.5 define la clase Complejo haciendo uso de sobrecarga
de operadores y de funciones o métodos.

Programa 3.5

3.1 Sobrecarga 85

3

/* Se define la función Raiz2, con un parámetro de tipo double. Regresa

➥la raíz cuadrada del dato. */

double Raiz2 (double Num)

{

return sqrt (Num);

}

/* Función que usa las funciones sobrecargadas definidas previamente. */

void UsaSobrecargaFunciones()

{

/* Se imprime el resultado de la función Max, primero invocándola con

➥valores enteros y luego con valores de doble precisión. */

cout<< “Max de 2 y 5 es: “ << Max(2, 5) << endl;

cout<< “Max de 5.23 y 6.98 es: “ << Max(5.23, 6.98) << endl;

/* Se imprime el resultado de la función Raiz2, primero invocándola

➥con valores enteros y luego con valores de doble precisión. */

cout << “Raíz cuadrada de 5 es: “ << Raiz2(5) << endl;

cout << “Raíz cuadrada de 8.96 es: “ << Raiz2(8.96) << endl;

}

/* Se define la clase Complejo en la cual, algunos de los métodos se defi-

➥nieron sobrecargando operadores. Además, uno de esos métodos se sobre-

➥cargó. Es decir, usa un operador sobrecargado y tiene asociadas dos

➥funciones dependiendo de los parámetros con los cuales se invoque. */

/* Definición de la clase Complejo. */

class Complejo

{

private:

double Real, Imaginario;

public:

Complejo (double R= 0, double I= 0);

Complejo operator+ (Complejo);

Complejo operator– (Complejo);

Complejo operator– ();

void MuestraComplejo();

};

86 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaración del método constructor con parámetros predeterminados: si

➥al crear un objeto no se dan valores al constructor, éste le asignará 0

➥a los dos atributos. */

Complejo::Complejo(double R, double I)

{

Real= R;

Imaginario= I;

}

/* Método que suma dos números complejos. Se sobrecarga el operador +. */

Complejo Complejo::operator+ (Complejo Com)

{

return Complejo(Real + Com.Real, Imaginario + Com.Imaginario);

}

/* Método que resta dos números complejos. Se sobrecarga el operador –. */

Complejo Complejo::operator– (Complejo Com)

{

return Complejo(Real – Com.Real, Imaginario – Com.Imaginario);

}

/* Método que cambia el signo de un número complejo. Se sobrecarga el

➥operador – y el método operator –. */

Complejo Complejo::operator– ()

{

return Complejo (–Real, –Imaginario);

}

/* Método que imprime los valores de los atributos de un complejo. */

void Complejo::MuestraComplejo()

{

cout<< “Parte Real: “ << Real << endl;

cout<< “Parte Imaginaria: “ << Imaginario << endl;

}

/* Función que usa sobrecarga de operadores y de métodos: se declaran

➥objetos de tipo Complejo y se opera con ellos utilizando los operadores

➥y el método sobrecargados. */

void UsaSobrecargaOpMetodo()

{

Complejo ObjComplejo1(5, 2), ObjComplejo2(2, 6), ObjComplejo3;

/* Se invoca al método que suma números complejos y luego al que

➥imprime. */

ObjComplejo3= ObjComplejo1 + ObjComplejo2;

ObjComplejo3.MuestraComplejo();

En el ejemplo anterior, el operador – se utilizó en dos métodos: en el primero se so-
brecargó para realizar la resta de números complejos y en el segundo se utilizó para
cambiar el signo de un número complejo. En este caso, además de sobrecargar al
operador, se sobrecargó el método operator –. En el momento de usar los métodos,
es el número de parámetros quien decide cuál de los dos se está invocando.

3.2 Plantillas
El lenguaje de programación C++ ofrece otro recurso para ganar generalidad en
la definición de soluciones: las plantillas. Éstas permiten declarar funciones o
clases dejando sin especificar el tipo de algunos de sus parámetros y/o datos (en
el caso de las funciones) o el tipo de algunos de sus miembros (en el caso de las
clases). A continuación se analizarán detalladamente las plantillas de funciones y
las plantillas de clases.

3.2.1 Plantillas de funciones

Una plantilla de función es un modelo de función que el compilador de C++
usará para construir diferentes versiones de una misma función, según los tipos
de datos que se especifiquen al invocar a la misma. La plantilla permite escribir
funciones que difieren exclusivamente en el tipo de datos que manejan.

Para definir una plantilla de función se aplica la siguiente sintaxis:

3.2 Plantillas 87

3

/* Se invoca al método que resta números complejos y luego al que

➥imprime. */

ObjComplejo3= ObjComplejo1 – ObjComplejo2;

ObjComplejo3.MuestraComplejo();

/* Se invoca al método que cambia el signo de un número complejo y

➥luego al método que imprime. */

ObjComplejo3= –ObjComplejo1;

ObjComplejo3.MuestraComplejo();

}

template <class T1, class T2, ..., class Tn>

donde template es una palabra reservada, lo mismo que class. Por su parte, Ti
indica el tipo del dato i.

El programa 3.6 presenta las funciones del programa 3.4, pero ahora utiliza
plantillas de funciones. Observe que cada función está precedida por las palabras
reservadas template <class T>, que indican que la función que se define a conti-
nuación es una plantilla. Por lo tanto algunos de sus datos pueden quedar con sus
tipos indefinidos, y los mismos tomarán valores al momento de invocar a la
función.

Programa 3.6

88 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Se declaran plantillas de funciones para Max y Raiz2. De esta manera

➥las mismas podrán trabajar sobre diferentes tipos de datos. Es decir,

➥en el momento de invocar a las funciones y al darles parámetros

➥específicos, se estarán creando versiones diferentes de las mismas,

➥de acuerdo a los tipos de los datos proporcionados. */

/* El objetivo de esta plantilla de función es encontrar el mayor de dos

➥valores dados. */

template <class T>

T Max (T Val1, T Val2)

{

if (Val1 > Val2)

return Val1;

else

return Val2;

}

/* El objetivo de esta plantilla de función es calcular la raíz cuadrada

➥de un valor dado. */

template <class T>

double Raiz2 (T Num)

{

return sqrt (Num);

}

/* Función que utiliza las plantillas de funciones previamente

➥definidas. */

void UsaPlantilla()

{

/* En las siguientes dos líneas se invocan las versiones enteras y de

➥punto flotante de la función Max, respectivamente. */

cout<< “Max de 2 y 5 es: “ << Max(2, 5) << endl;

cout<< “Max de 5.23 y 6.98 es: “ << Max(5.23, 6.98) << endl;

El uso de plantillas de funciones es generalizado a diferentes tipos de datos. La
sobrecarga de funciones obtiene el mismo efecto, pero usando más código.

3.2.2 Plantillas de clases

Las plantillas de clases permiten definir versiones de una misma clase que difieren
en el tipo de dato de alguno(s) de sus miembros. Es decir, se crea el modelo de
una clase el cual permitirá definir distintas instancias de la misma para diferentes
tipos de datos.

Para declarar una plantilla de clase se usan las palabras reservadas template
<class T>. El tipo T se usa en aquellos miembros de la clase cuyos tipos tomarán
un valor en el momento de crear los objetos. A continuación se muestra la sintaxis
que se utiliza para definir una plantilla de clase.

3.2 Plantillas 89

3

/* En las siguientes dos líneas se invocan a las versiones enteras

➥y de punto flotante de la función Raiz2, respectivamente. */

cout<< “Raiz2 de 5 es: “ << Raiz2(5) << endl;

cout<< “Raiz2 de 8.96 es: “ << Raiz2(8.96) << endl;

}

template <class T>

class PlantillaClase

{

private:

T Atributo;

...

public:

PlantillaClase();

T Metodo1 ();

void Metodo2 (T Valor);

...

};

Para declarar un objeto, a partir de una plantilla de clase, se aplica la siguiente
sintaxis:

PlantillaClase <tipo> Objeto;

donde tipo indica el tipo de dato que reemplazará todas las ocurrencias de T
en la definición de la clase. Por ejemplo, si quisiera declarar dos objetos de
tipo PlantillaClase, pero uno con el tipo int como tipo de dato, y otro con
float, entonces tendría que hacer lo siguiente:

90 Capítulo 3. Sobrecarga, plantillas y polimorfismo

PlantillaClase <int> Objeto1;

PlantillaClase <float> Objeto2;

Para Objeto1 el Atributo, el resultado del Metodo1 y el parámetro del Metodo2 se-
rán de tipo int, mientras que para el Objeto2 el Atributo, el resultado del Metodo1
y el parámetro del Metodo2 serán de tipo float.

En cuanto a la definición de métodos, la sintaxis que se aplica es:

template <class T>

T PlantillaClase <T>:: Metodo1()

{ ...}

En este caso, el método de la clase da un resultado del tipo T. Por lo tanto, el tipo
de resultado se definirá en el momento de crear un objeto de dicha clase.

template <class T>

void PlantillaClase <T>::Metodo2(T valor)

{...}

En este caso, el método recibe un parámetro que será del tipo T. Por lo tanto, el
tipo se especifica en el momento de declarar el objeto.

A continuación se presenta un segmento de programa que define una plantilla de
clase. Esta plantilla maneja dos tipos de datos diferentes (T1 y T2) para declarar a
los miembros de la clase.

Programa 3.7

3.2 Plantillas 91

3

/* La clase EjemploPlantilla tiene dos miembros privados, cada uno de un

➥tipo diferente, por lo que se usan los tipos T1 y T2 para indicarlo.

➥Asimismo, en los métodos definidos se utilizan T1 y T2 para dar

➥flexibilidad en cuanto a los tipos de datos. */

template <class T1, class T2>

class EjemploPlantilla

{

private:

T1 Dato1;

T2 Dato2;

public:

EjemploPlantilla ();

EjemploPlantilla (T1, T2);

void ModificaDato1(T1);

void ModificaDato2(T2);

T1 ObtieneDato1();

T2 ObtieneDato2();

void ImprimeDatos();

};

/* Declaración del método constructor por omisión. */

template <class T1, class T2>

EjemploPlantilla<T1,T2>::EjemploPlantilla()

{ }

/* Declaración del método constructor con parámetros. */

template <class T1, class T2>

EjemploPlantilla<T1,T2>::EjemploPlantilla (T1 D1, T2 D2)

{

Dato1= D1;

Dato2= D2;

}

/* Plantilla del método que permite modificar el valor del atributo

➥Dato1. */

template <class T1, class T2>

void EjemploPlantilla<T1,T2>::ModificaDato1(T1 NuevoDato)

{

Dato1= NuevoDato;

}

/* Plantilla del método que permite modificar el valor del atributo

➥Dato2. */

template <class T1, class T2>

void EjemploPlantilla <T1,T2>::ModificaDato2(T2 NuevoDato)

92 Capítulo 3. Sobrecarga, plantillas y polimorfismo

{

Dato2= NuevoDato;

}

/* Plantilla del método que permite, a usuarios externos a la clase,

➥conocer el valor del atributo Dato1. */

template <class T1, class T2>

T1 EjemploPlantilla <T1,T2>::ObtieneDato1()

{

return Dato1;

}

/* Plantilla del método que permite, a usuarios externos a la clase,

➥conocer el valor del atributo Dato2. */

template <class T1, class T2>

T2 EjemploPlantilla <T1,T2>::ObtieneDato2()

{

return Dato2;

}

/* Plantilla del método que imprime los valores de los atributos. */

template <class T1, class T2>

void EjemploPlantilla <T1,T2>::ImprimeDatos()

{

cout<< “Dato 1: “ << Dato1 << endl;

cout<< “Dato 2: “ << Dato2 << endl;

}

/* Función que usa la plantilla de la clase EjemploPlantilla previamente

➥definida: se declara un objeto usando los tipos int y float para

➥instanciar los tipos T1 y T2 en la plantilla. Luego se modifican sus

➥atributos y se imprimen. */

void UsaPlantilla()

{

EjemploPlantilla<int, float> ObjPlantilla(1, 6.0);

ObjPlantilla.ImprimeDatos();

ObjPlantilla.ModificaDato1(2);

ObjPlantilla.ModificaDato2(12.0);

cout<< “Dato 1 modificado : “ << ObjPlantilla.ObtieneDato1() << endl;

cout<< “Dato 2 modificado : “ << ObjPlantilla.ObtieneDato2() << endl;

}

El programa 3.8 muestra otro caso de plantilla de clase y su uso.

Programa 3.8

3.2 Plantillas 93

3

/* Se define la plantilla de la clase Segmento. De esta forma cuando se

➥declare un objeto de la clase Segmento se podrá decidir el tipo de dato

➥para sus miembros.*/

template <class T>

class Segmento

{

private:

T Origen, Final;

public:

Segmento();

Segmento(T, T);

void ModificaOrigen(T);

void ModificaFinal(T);

T ObtieneOrigen();

T ObtieneFinal();

void ImprimeDatos();

};

/* Declaración del método constructor por omisión. */

template <class T>

Segmento<T>::Segmento()

{ }

/* Declaración del método constructor con parámetros. */

template <class T>

Segmento<T>::Segmento(T Or, T Fi)

{

Origen= Or;

Final= Fi;

}

/* Plantilla del método que permite modificar el valor del atributo

➥Origen. */

template <class T>

void Segmento<T>::ModificaOrigen(T NuevoPunto)

{

Origen= NuevoPunto;

}

/* Plantilla del método que permite modificar el valor del atributo

➥Final. */

template <class T>

void Segmento<T>::ModificaFinal(T NuevoPunto)

94 Capítulo 3. Sobrecarga, plantillas y polimorfismo

{

Final= NuevoPunto;

}

/* Plantilla del método que permite, a usuarios externos a la clase,

➥conocer el valor del atributo Origen. */

template <class T>

T Segmento<T>::ObtieneOrigen()

{

return Origen;

}

/* Plantilla del método que permite, a usuarios externos a la clase,

➥conocer el valor del atributo Final. */

template <class T>

T Segmento<T>::ObtieneFinal()

{

return Final;

}

/* Plantilla del método que imprime los valores de los atributos de la

➥clase. */

template <class T>

void Segmento<T>::ImprimeDatos()

{

cout<< “Origen: “ << Origen << endl;

cout<< “Final: “ << Final << endl;

}

/* Función que usa la plantilla de la clase Segmento: se crean dos objetos,

➥uno con números enteros y otro con números reales. Posteriormente se

➥modifican y se imprimen los valores de los atributos de los objetos

➥creados. */

void UsaPlantilla()

{

Segmento<int> SegmentoEntero(1, 6);

Segmento<float> SegmentoReal(2.0, 15.0);

cout<< “Datos del primer segmento: “ << endl;

SegmentoEntero.ImprimeDatos();

cout<< “Datos del segundo segmento: “ << endl;

SegmentoReal.ImprimeDatos();

SegmentoEntero.ModificaOrigen(SegmentoEntero.ObtenerOrigen() + 2);

SegmentoReal.ModificaFinal(SegmentoReal.ObtenerFinal() – 5.3);

En el ejemplo anterior se crearon dos instancias de la clase Segmento. Una de
ellas usando números enteros, mientras que en la segunda se emplearon valores
reales. Al utilizar la plantilla, cada uno de los miembros de la clase se instancia
de acuerdo al tipo de dato que acompaña la declaración de los objetos.

El programa 3.9 presenta una plantilla de clase en la cual el tipo T se instancia
con una clase previamente definida. Se debe poner especial atención en que todos
los operadores y funciones utilizados en la plantilla estén definidos para el tipo
usado. En el ejemplo fue necesario sobrecargar los operadores de lectura y escri-
tura >> y <<.

Programa 3.9

3.2 Plantillas 95

3

cout<< “Datos del primer segmento modificado: “;

SegmentoEntero.ImprimeDatos();

cout << “Datos del segundo segmento modificado: “ << endl;

SegmentoReal.ImprimeDatos();

}

/* Se define la clase Fabricante. Luego se define la plantilla de la

➥clase Producto que tiene un atributo, SeCompraA, que es un objeto de

➥tipo T. En el ejemplo, primero toma el tipo Fabricante y luego el tipo

➥int. Por lo tanto, en el primer caso se tendrá que un atributo de la clase

➥es, a su vez, un objeto, y en el segundo caso, el atributo representará

➥una clave numérica que identificará a un proveedor. Para que los métodos

➥de la segunda clase puedan utilizarse indistintamente con números o con

➥objetos se deben sobrecargar los operadores >> y <<. */

#define MAX 64

class Fabricante

{

private:

char Nombre[MAX], Domicilio[MAX], Telefono[MAX];

public:

Fabricante();

Fabricante(char [], char [], char []);

void CambiaDomic(char []);

void CambiaTelef(char []);

friend istream &operator>>(istream &, Fabricante &);

friend ostream &operator<<(ostream &, Fabricante &);

};

96 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Definición del método constructor por omisión. */

Fabricante::Fabricante()

{}

/* Definición del método constructor con parámetros. */

Fabricante::Fabricante(char Nom[], char Domic[], char Tel[])

{

strcpy(Nombre, Nom);

strcpy(Domicilio, Domic);

strcpy(Telefono, Tel);

}

/* Declaración del método que permite actualizar el domicilio de un

➥fabricante. */

void Fabricante::CambiaDomic(char NuevoDom[])

{

strcpy(Domicilio, NuevoDom);

}

/* Declaración del método que permite actualizar el teléfono de un

➥fabricante. */

void Fabricante::CambiaTelef(char NuevoTel[])

{

strcpy(Telefono, NuevoTel);

}

/* Definición de la sobrecarga del operador >>. */

istream &operator>>(istream &Lee, Fabricante &ObjFab)

{

cout<<”\n\nIngrese nombre del fabricante: “;

Lee>>ObjFab.Nombre;

cout<<”\n\nIngrese domicilio del fabricante: “;

Lee>>ObjFab.Domicilio;

cout<<”\n\nIngrese teléfono del fabricante: “;

Lee>>ObjFab.Telefono;

return Lee;

}

/* Definición de la sobrecarga del operador <<. */

ostream &operator<<(ostream &Escribe, Fabricante &ObjFab)

{

cout<<”\n\nDatos del fabricante\n “;

Escribe<<”Nombre: “<<ObjFab.Nombre<<endl;

Escribe<<”Domicilio: “<<ObjFab.Domicilio<<endl;

Escribe<<”Teléfono: “<<ObjFab.Telefono<<endl;

return Escribe;

}

3.2 Plantillas 97

3

/* Definición de la plantilla de la clase Producto. */

template <class T>

class Producto

{

private:

int Clave;

char Nombre[MAX];

float Precio;

T SeCompraA;

public:

Producto();

Producto(int, char [], float, T);

void Imprime();

void ActualizaPrecio(float);

};

/* Definición de la plantilla del método constructor por omisión. */

template <class T>

Producto<T>::Producto()

{}

/* Definición de la plantilla del método constructor con parámetros. */

template <class T>

Producto<T>::Producto(int Cla, char Nom[], float Pre, T Provee)

{

Clave= Cla;

strcpy(Nombre, Nom);

Precio= Pre;

SeCompraA= Provee;

}

/* Definición de la plantilla del método que despliega en pantalla los

➥valores de los atributos. */

template <class T>

void Producto<T>::Imprime()

{

cout<<”\n\nDatos del producto\n\n”;

cout<<”\nClave: “<<Clave;

cout<<”\nNombre: “<<Nombre;

cout<<”\nPrecio: “<<Precio;

cout<<”\nProvisto por: “<<SeCompraA<<endl;

}

/* Definición de la plantilla del método que actualiza el valor del

➥precio de un producto. */

template <class T>

void Producto<T>::ActualizaPrecio(float NuevoPre)

En el ejemplo anterior se puede apreciar que el uso de plantillas de funciones
da mucha generalidad a las clases, en cuanto al manejo de los tipos de datos.
A partir de la misma plantilla de clase se crearon dos objetos, asignándole a
cada uno un tipo de dato diferente para el atributo SeCompraA y en consecuencia
dándole a cada uno capacidades distintas para representar y almacenar
información.

98 Capítulo 3. Sobrecarga, plantillas y polimorfismo

{

Precio= NuevoPre;

}

/* Función que utiliza la plantilla de la clase Producto, usando la

➥clase Fabricante y el tipo int para darle valor a T. La aplicación

➥es muy simple: se declaran y crean objetos del tipo Producto usando

➥los tipos ya mencionados. */

void FuncionUsaPlantilla()

{

Fabricante CablesMexico;

int ClaProveedor;

/* Se lee un objeto de tipo Fabricante, usando el operador

➥sobrecargado >>. */

cin>>CablesMexico;

/* Se crea un objeto de tipo Producto, reemplazando el tipo T por un

➥objeto de tipo Fabricante. */

Producto<Fabricante> CableTel (1050, “Cable telefónico”, 100,

➥CablesMexico);

CableTel.Imprime();

CableTel.ActualizaPrecio(105);

cout<<”\n\nIngrese la clave del proveedor de las cajas

➥concentradoras: “;

cin>>ClaProveedor;

/* Se crea un objeto de tipo Producto, reemplazando el tipo T por

➥int. */

Producto<int> Cajas (2600, “Cajas concentradoras”, 450,

➥ClaProveedor);

Cajas.Imprime();

}

3.3 Polimorfismo
El término polimorfismo hace referencia a la capacidad de adoptar diversas for-
mas. Por lo tanto, un objeto polimórfico es aquel que tiene diversos aspectos. El
polimorfismo permite que un mismo método adquiera distintos contenidos de-
clarando funciones o métodos virtuales en la clase base y otras formas de los
mismos en las clases derivadas.

Por medio del polimorfismo se puede definir un solo método para objetos diferen-
tes, es decir, objetos que son instancias de distintas clases. En C++ el polimorfismo
se define a través de funciones virtuales. Por lo tanto, antes de presentar un ejemplo
de polimorfismo se hará una breve introducción a las funciones virtuales.

3.3.1 Funciones virtuales

Las funciones o métodos virtuales se usan en clases base para indicar que puede
haber múltiples formas de ellas en las clases derivadas. Para indicar que un método
es virtual se antepone la palabra reservada virtual.

El programa 3.10 muestra el uso del polimorfismo. Crea una clase base que tiene
una función virtual, misma que será redefinida en cada una de las clases derivadas.

Programa 3.10

3.3 Polimorfismo 99

3

/* Se define la clase Insecto que incluye un método virtual, el cual

➥se redefinirá en las clases derivadas: Mosca y Cucaracha. El método

➥virtual Imprime adoptará diferentes formas según la declaración del

➥mismo en cada una de las clases derivadas. Además, en la clase se

➥incluyó un destructor virtual. */

class Insecto

{

protected:

char Nombre[30];

int NumPatas;

float TamCabeza, TamTorax, TamAbdomen;

public:

Insecto(char *, int, float, float, float);

virtual void Imprime();

virtual ~Insecto() { }

};

100 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaración del método constructor con parámetros. */

Insecto::Insecto(char *Nom, int NumP, float TamC, float TamT, float TamA)

{

strcpy(Nombre, Nom);

NumPatas= NumP;

TamCabeza= TamC;

TamTorax= TamT;

TamAbdomen= TamA;

}

/* Método que despliega los valores de los atributos de un insecto. */

void Insecto::Imprime()

{

cout<< “Nombre: “ << Nombre << endl ;

cout<< “Número de Patas: “ << NumPatas << endl;

cout<< “Tamaño de Cabeza: “ << TamCabeza << endl;

cout<< “Tamaño de Tórax: “ << TamTorax << endl;

cout<< “Tamaño de Abdomen: “ << TamAbdomen << endl;

}

/* Definición de la clase Mosca, derivada de la clase Insecto. En el

➥prototipo del método Imprime se puede omitir el uso de la palabra

➥virtual. Se la incluyó sólo para ofrecer mayor claridad. */

class Mosca: public Insecto

{

private:

int NumAlas;

public:

Mosca(char *, int, float, float, float, int);

virtual void Imprime();

~Mosca() { }

};

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base. */

Mosca::Mosca(char *Nom, int Pat, float Cab, float Tor, float Abd, int Alas):

➥Insecto(Nom, Pat, Cab, Tor, Abd)

{

NumAlas= Alas;

}

/* Método que despliega los valores de los atributos de una mosca. */

void Mosca::Imprime()

{

Insecto::Imprime();

cout<< “Número de Alas: “ << NumAlas << endl;

}

3.3 Polimorfismo 101

3

/* Definición de la clase Cucaracha derivada de la clase Insecto. En el

➥prototipo del método Imprime se puede omitir la palabra virtual, se la

➥incluyó sólo para ofrecer mayor claridad. */

class Cucaracha: public Insecto

{

private:

char CaractCuerpo[30];

public:

Cucaracha(char *, int, float, float, float, char *);

virtual void Imprime();

~Cucaracha() { }

};

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base. */

Cucaracha::Cucaracha(char *Nom, int Pat, float Cab, float Tor, float

➥Abd, char *Cuer): Insecto(Nom, Pat, Cab, Tor, Abd)

{

strcpy(CaractCuerpo, Cuer);

}

/* Método que despliega los valores de los atributos de una cucaracha. */

void Cucaracha::Imprime()

{

Insecto::Imprime();

cout<< “Características del cuerpo: “ << CaractCuerpo << endl;

}

/* Función que usa las clases previamente definidas: se declaran objetos

➥polimórficos y por medio de los métodos virtuales se trabaja con ellos. */

void UsaFuncionVirtual()

{

/* Se crean dos apuntadores a objetos polimórficos. */

Insecto *ObjInsecto1, *ObjInsecto2;

Mosca ObjMosca(“Mosca”, 6, 3, 1, 2, 4);

Cucaracha ObjCucaracha(“Cucaracha”, 6, 2, 8, 4, “Cuerpo Aplanado”);

/* Se asigna la dirección de los objetos de las clases derivadas a

➥los apuntadores a los objetos polimórficos. */

ObjInsecto1= &ObjMosca;

ObjInsecto2= &ObjCucaracha;

/* Invoca al método correspondiente a la clase Mosca, a través del

➥objeto polimórfico. */

ObjInsecto1 –> Imprime();

En el ejemplo anterior se puede apreciar que al declarar los objetos polimórficos,
éstos pueden almacenar la dirección de diferentes tipos de objetos. Consecuente-
mente, cada uno de ellos tomará diferentes formas dependiendo de la clase a la
cual pertenezca. En el ejemplo, la variable ObjInsecto1 se declara como un
apuntador a un objeto de tipo Insecto. Sin embargo, posteriormente se le asigna
la dirección de uno tipo Mosca. Por lo tanto, la forma del objeto dependerá de la
clase a la cual hace referencia en este caso. Lo mismo sucede con la variable
ObjInsecto2, se declara como un apuntador a un objeto de tipo Insecto y poste-
riormente hace referencia a uno tipo Cucaracha.

El programa 3.11 presenta otro caso de uso de funciones virtuales y polimorfis-
mo. En el ejemplo se usa un arreglo de objetos polimórficos, por lo que si aún
no está familiarizado con esta estructura de datos se le recomienda consultar el
capítulo 4.

Programa 3.11

102 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Invoca al método correspondiente a la clase Mosca a través del

➥objeto tipo Mosca. */

ObjMosca.Imprime();

/* Invoca al método correspondiente a la clase Cucaracha, a través

➥del objeto polimórfico. */

ObjInsecto2 –> Imprime();

/* Invoca al método correspondiente a la clase Cucaracha a través

➥del objeto tipo Cucaracha. */

ObjCucaracha.Imprime();

}

/* Se declara la clase Volumen que servirá como base para las clases

➥derivadas: Libro y Revista. La clase base tiene métodos virtuales que

➥serán redefinidos en las clases derivadas. En la clase se define un

➥método destructor virtual. Observe que el método virtual Imprimir no se

➥define en la clase base, sólo se incluye su prototipo. Luego se define

➥la clase Biblioteca que tiene como atributo un arreglo de objetos

➥polimórficos. */

class Volumen

{

protected:

char *NomVolumen;

3.3 Polimorfismo 103

3

public:

Volumen();

Volumen(char *);

virtual void Imprimir() { }

virtual ~Volumen();

};

/* Declaración del método constructor por omisión. */

Volumen::Volumen()

{ }

/* Declaración del método constructor con parámetros. */

Volumen::Volumen(char *Nom)

{

NomVolumen = new char[(strlen(Nom)+1)];

if (NomVolumen)

strcpy(NomVolumen, Nom);

}

/* Declaración del método destructor. */

Volumen:: ~Volumen()

{

delete[] NomVolumen;

}

/* Definición de la clase Libro derivada de la clase Volumen. El método

➥Imprimir se define en esta clase. */

class Libro: public Volumen

{

private:

int AnioEd;

public:

Libro();

Libro(char *Nom, int);

void Imprimir();

};

/* Declaración del método constructor por omisión. */

Libro::Libro()

{ }

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base*/

Libro::Libro(char *Nom, int Anio): Volumen(Nom)

{

AnioEd= Anio;

}

104 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Método que despliega los valores de los atributos de un libro. Observe

➥que se imprimen dos atributos uno de los cuales se hereda de la clase

➥Volumen y el otro es propio de esta clase. */

void Libro::Imprimir()

{

cout<< “Nombre del Libro: “ << NomVolumen << endl;

cout<< “Año de Edición del Libro: “ << AnioEd << endl;

}

/* Definición de la clase Revista derivada de la clase Volumen. El método

➥Imprimir se define en esta clase. */

class Revista: public Volumen

{

private:

int Numero;

public:

Revista();

Revista(char *, int);

void Imprimir();

};

/* Declaración del método constructor por omisión. */

Revista::Revista()

{ }

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base. */

Revista::Revista(char *Nom, int Num): Volumen(Nom)

{

Numero= Num;

}

/* Método que despliega los valores de los atributos de una revista.

➥Observe que se imprimen dos atributos, uno de los cuales se hereda de

➥la clase Volumen y el otro es propio de esta clase.*/

void Revista::Imprimir()

{

cout<< “Nombre de la Revista: “ << NomVolumen << endl;

cout<< “Número de la Revista: “ << Numero << endl;

}

/* Definición de la clase Biblioteca. Uno de los atributos de la clase

➥es un arreglo polimórfico, lo cual da mucha generalidad en el momento

➥de almacenar información en él: se pueden guardar objetos de diferentes

➥tipos. */

class Biblioteca

3.3 Polimorfismo 105

3

{

private:

int MaxVolumen, NumVolumen;

char Nombre[64];

Volumen *Volumenes[];

public:

Biblioteca();

Biblioteca(intl, char []);

void IngresarVolumen(Volumen *);

void Imprimir();

~Biblioteca();

};

/* Declaración del método constructor por omisión. */

Biblioteca::Biblioteca()

{ }

/* Declaración del método constructor con parámetros. */

Biblioteca::Biblioteca(int MaxVol, char Nom[])

{

int Indice;

MaxVolumen= MaxVol;

NumVolumen= 0;

strcpy(Nombre, Nom);

*Volumenes= new Volumen[MaxVolumen];

/* Se inicializa el arreglo de objetos polimórficos como vacío. */

for (Indice= 0; Indice < MaxVolumen; Indice++)

Volumenes[Indice]= NULL;

}

/* Declaración del método destructor. */

Biblioteca::~Biblioteca()

{

delete[] *Volumenes;

}

/* Método que permite dar de alta un nuevo volumen en la colección de

➥volúmenes de la biblioteca. Recibe como parámetro la dirección de un

➥objeto de tipo Volumen. */

void Biblioteca::IngresarVolumen(Volumen *Vol)

{

if (NumVolumen < MaxVolumen)

Volumenes[NumVolumen++]= Vol;

}

/* Método que despliega los valores de los atributos de los volúmenes

➥registrados en la biblioteca. */

void Biblioteca::Imprimir()

106 Capítulo 3. Sobrecarga, plantillas y polimorfismo

{

int Indice;

cout<<” Acervo de la biblioteca: “<< Nombre<<endl;

if (NumVolumen > 0)

for (Indice= 0; Indice < NumVolumen; Indice++)

Volumenes[Indice]–>Imprimir();

}

/* Función que usa las clases previamente definidas para crear objetos

➥polimórficos. */

void UsaPolimorfismo()

{

/* Se crea un objeto de tipo Biblioteca, el cual podrá almacenar 10

➥volúmenes como máximo. */

Biblioteca ObjBiblioteca (10, “Refugio del Conocimiento”);

/* Se crean objetos tipo Libro. */

Libro ObjLibro1 (“Estructuras de Datos”, 2006),

ObjLibro2 (“Aprenda CC++++”, 2005),

ObjLibro3 (“Estudie Ingeniería”, 2000);

/* Se crean objetos tipo Revista. */

Revista ObjRevista1 (“Ciencia”, 12),

ObjRevista2 (“Computadoras y Accesorios”, 110),

ObjRevista3 (“Avances de la Tecnología”, 205);

/* Se invoca al método que permite asignar las direcciones de los

objetos tipo Libro a uno de los miembros del objeto tipo Biblioteca. */

ObjBiblioteca.IngresarVolumen(&ObjLibro1);

ObjBiblioteca.IngresarVolumen(&ObjLibro2);

ObjBiblioteca.IngresarVolumen(&ObjLibro3);

/* Se invoca al método que permite asignar las direcciones de

➥los objetos tipo Revista a uno de los miembros del objeto tipo

➥Biblioteca. */

ObjBiblioteca.IngresarVolumen(&ObjRevista1);

ObjBiblioteca.IngresarVolumen(&ObjRevista2);

ObjBiblioteca.IngresarVolumen(&ObjRevista3);

/* Se invoca el método que despliega los valores de los atributos de

➥la biblioteca. Imprime el nombre de la biblioteca y los valores del

➥atributo de cada objeto de acuerdo a la forma que éste tenga. */

ObjBiblioteca.Imprimir();

}

En el ejemplo anterior, un miembro de la clase Biblioteca se declara de tipo
Volumen como objeto polimórfico. Por lo tanto podrá almacenar direcciones tanto
de objetos tipo Libro como de objetos tipo Revista. Consecuentemente, cuando
se invoque el método Imprimir de la clase Biblioteca, éste se aplicará según la
forma del objeto almacenado.

3.3.2 Clases abstractas

Una clase abstracta es una clase que se define con el propósito de establecer
bases conceptuales sobre las cuales se definirán otras clases, mismas que podrán
ser clases concretas. Es decir, una clase abstracta no se usará directamente en
la solución de un problema, sino que formará parte del diseño conceptual de la
solución. Por lo tanto, en el programa no se crearán instancias (objetos) de las
clases abstractas. Sin embargo, cabe destacar que las clases derivadas sí heredan
sus miembros.

En una clase abstracta pueden incluirse métodos virtuales que requieren ser espe-
cificados en las clases derivadas. Es decir, métodos a los que se les asignará el
contenido en cada clase derivada. Estos métodos reciben el nombre de métodos
virtuales puros y se inicializan con el valor de cero. Si las clases derivadas no los
especifican, entonces se producirá un error. A continuación se presenta un ejem-
plo de uso de clases abstractas.

Programa 3.12

3.3 Polimorfismo 107

3

/* Se define la clase Figura la cual se usará como base para declarar

➥las clases derivadas: Triangulo, Rectangulo y Cuadrado. La clase base es

➥una clase abstracta ya que no se crearán instancias de ella, sino que

➥se utiliza para crear una abstracción de un nivel superior de todas las

➥figuras geométricas. La clase abstracta contiene un método virtual puro

➥llamado CalculaArea(). */

/* Definición de la clase abstracta Figura. */

class Figura

{

public:

Figura();

virtual float CalculaArea()= 0;

};

108 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Declaración del método constructor por omisión. */

Figura::Figura()

{}

/* Definición de la clase Triangulo, derivada de la clase abstracta

➥Figura. Un triángulo se representa por medio de la longitud de su base

➥y de su altura. La clase incluye además, un método virtual llamado

➥CalculaArea(). */

class Triangulo: public Figura

{

private:

float Base, Altura;

public:

Triangulo(float, float);

virtual float CalculaArea();

};

/* Declaración del método constructor con parámetros. */

Triangulo::Triangulo(float Ba, float Alt)

{

Base= Ba;

Altura= Alt;

}

/* Método que calcula el área de un triángulo. */

float Triangulo::CalculaArea()

{

return (Base * Altura / 2);

}

/* Definición de la clase Equilatero, derivada de la clase Triangulo. */

class TrianguloEquilatero: public Triangulo

{

public:

TrianguloEquilatero(float, float);

float CalculaArea();

};

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base. */

TrianguloEquilatero::TrianguloEquilatero(float Ba, float Alt): Triangulo

➥(Ba, Alt)

{}

/* Método que calcula el área de un triángulo equilátero. */

float TrianguloEquilatero::CalculaArea()

{

return Triangulo::CalculaArea();

}

3.3 Polimorfismo 109

3

/* Definición de la clase TrianguloRectangulo, derivada de la clase

➥Triangulo. */

class TrianguloRectangulo: public Triangulo

{

private:

float Cateto1, Cateto2, Hipotenusa;

public:

TrianguloRectangulo (float, float);

float CalculaArea();

};

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base. */

TrianguloRectangulo::TrianguloRectangulo(float Cat1, float Cat2):

➥Triangulo(Cat1, Cat2)

{

Cateto1= Cat1;

Cateto2= Cat2;

Hipotenusa= sqrt(Cat1*Cat1 + Cat2*Cat2);

}

/* Método que calcula el área de un triángulo rectángulo. */

float TrianguloRectangulo::CalculaArea()

{

return (Cateto1*Cateto2);

}

/* Definición de la clase Rectangulo, derivada de la clase abstracta

➥Figura. */

class Rectangulo: public Figura

{

private:

float Largo, Alto;

public:

Rectangulo(float, float);

float CalculaArea();

};

/* Declaración del método constructor con parámetros. */

Rectangulo::Rectangulo(float Lar, float Al)

{

Largo= Lar;

Alto= Al;

}

/* Método que calcula el área de un rectángulo. */

float Rectangulo::CalculaArea()

{

return (Largo*Alto);

}

110 Capítulo 3. Sobrecarga, plantillas y polimorfismo

/* Definición de la clase Cuadrado, derivada de la clase Rectangulo. */

class Cuadrado: public Rectangulo

{

public:

Cuadrado(float);

float CalculaArea();

};

/* Declaración del método constructor con parámetros. Invoca al método

➥constructor de la clase base. */

Cuadrado::Cuadrado(float Lado): Rectangulo(Lado, Lado)

{}

/* Método que calcula el área de un cuadrado, haciendo uso del método

➥heredado de la clase Rectangulo. */

float Cuadrado::CalculaArea()

{

return Rectangulo::CalculaArea();

}

/* Función que usa las clases definidas previamente. Observe que no se

➥han creado objetos del tipo de la clase abstracta Figura. */

void UsaFiguras()

{

TrianguloEquilatero TriaEq(5,7);

TrianguloRectangulo TriaRec(3, 4);

Rectangulo Rectan(2, 3);

Cuadrado Cuadro(5);

cout<< “\nÁrea del triángulo equilátero: “ << TriaEq.CalculaArea();

cout<< “\nÁrea del triángulo rectángulo: “ << TriaRec.CalculaArea();

cout<< “\nÁrea del rectángulo: “ << Rectan.CalculaArea();

cout<< “\nÁrea del cuadrado: “ << Cuadro.CalculaArea();

}

En el ejemplo anterior se definió la clase abstracta Figura la cual se utilizó como
base para definir otras clases que representan figuras geométricas concretas. En la
clase Figura, el método CalculaArea() se definió como un método virtual puro, ya
que no tiene un conjunto de operaciones asociado. Se sabe que a toda figura geo-
métrica se le puede calcular el área, sin embargo, la manera de calcularla depen-
derá de la figura que sea. Por lo tanto, este método se redefinirá en cada una de
las clases derivadas de acuerdo a la figura geométrica que represente.

Ejercicios
1. Defina la clase CadenaCar según las especificaciones que se muestran a con-

tinuación. Incluya la sobrecarga de los siguientes operadores: ==, !=, +, <
y >, de tal manera que dos objetos tipo CadenaCar se puedan comparar (==,
!=, <, >) o unir (+) usando los operadores indicados.

Ejercicios 111

3

CadenaCar

Tam: int

Cadena: char[]

Constructor(es)

int operator==(CadenaCar)

int operator!=(CadenaCar)

int operator<(CadenaCar)

int operator>(CadenaCar)

CadenaCar operator+(CadenaCar)

void Imprime()

2. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Declare dos objetos tipo CadenaCar.

b) Le asigne una cadena de caracteres a cada uno de los objetos. La
asignación puede ser a través de una lectura o por medio del método
constructor.

c) Compare los objetos e imprima un mensaje adecuado si los mismos
son iguales. Si no lo fueran, el mensaje, además de indicar este caso,
debe decir cuál de las cadenas es menor.

d) Enlace dos objetos tipo CadenaCar formando un tercer objeto del
mismo tipo. Imprima el objeto resultante.

3. Defina la clase Fruta según las especificaciones que se muestran más
adelante. Incluya la sobrecarga del operador == para determinar si dos
objetos de tipo Fruta son iguales. Dos frutas se considerarán iguales si los
valores de todos sus atributos son iguales. Además, sobrecargue los opera-
dores de entrada (>>) y de salida (<<) para poder leer y escribir objetos de
tipo Fruta con las instrucciones cin y cout respectivamente.

4. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Cree dos objetos tipo Fruta, asignándole valores a sus atributos por
medio del operador >> sobrecargado.

b) Compare los objetos e indique si son iguales. Imprima un mensaje
adecuado.

5. Defina una plantilla para la clase Materia, de tal manera que el tipo de dato
del atributo Calificación sea del tipo T. Esto permitirá crear objetos de tipo
Materia que tengan calificaciones que sean: (a) Números enteros, por ejem-
plo, 8 o 9, (b) Números con decimales, por ejemplo 8.5 o (c) Letras, por
ejemplo A.

112 Capítulo 3. Sobrecarga, plantillas y polimorfismo

Fruta

NombreFruta: char[]

Color: char[]

EstaciónCosecha: char[]

Constructor(es)

int operator==(Fruta)

void Imprime()

friend istream…

friend ostream…

Materia(T)

NombreMateria: char[]

Clave: int

Calificacion: T

Constructor(es)

void Imprime()

6. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Cree un objeto de tipo Materia usando el tipo int. Imprima los valores
de los atributos del objeto creado.

b) Cree un objeto de tipo Materia usando el tipo float. Imprima los valo-
res de los atributos del objeto creado.

c) Cree un objeto de tipo Materia usando el tipo char. Imprima los valo-
res de los atributos del objeto creado.

d) Incluya un método en la clase que permita modificar la calificación de
una materia.

7. Defina la plantilla de la clase Profesor según las especificaciones que se
dan más adelante. El atributo MateriaACargo es del tipo T, en este caso podría
ser un entero (si la materia se representa por medio de una clave), una cadena
de caracteres (si la materia se representa por su nombre) u otro objeto (si la
materia se representa usando una clase previamente definida).

Ejercicios 113

3

Profesor

NombreProfesor: char[]

Departamento: char[]

AñoIngreso: int

MateriaACargo: T

Constructor(es)

void CambiaDepto(char[])

void CambiaMat(T)

void Imprime()

8. Retome la clase definida en el ejercicio anterior. Escriba un programa en
C++ que:

a) Cree el objeto ProfeJuan de tipo Profesor, usando int para instanciar T.

b) Imprima todos los datos del ProfeJuan.

c) Cambie el nombre del departamento al cual está adscrito el ProfeJuan.

d) Cambie la materia que tiene a cargo el ProfeJuan.

9. Retome el problema 8, pero ahora utilice una cadena de caracteres para ins-
tanciar T. ¿Debe modificar la plantilla de la clase Profesor?, o ¿debe definir
alguna otra clase?

10. Retome el problema 8, pero ahora utilice una clase Materia para instanciar
T. Puede usar la del problema 5 o definir su propia clase. ¿Debe modificar
la plantilla de la clase Profesor?, o ¿debe modificar la otra clase? Si usó la
plantilla del problema 5, ¿cuántos valores para T debe dar al crear un objeto
de tipo Profesor?

11. Implemente la clase base Cuadrilatero, con atributos Base y Altura y un
método CalculaArea que calcule el área del cuadrilátero. Implemente tam-
bién las clases derivadas Cuadrado, Rectangulo y Trapezoide. Use un objeto
polimórfico para calcular el área de un objeto de cada una de estas clases.

12. Considere la siguiente relación de herencia entre una clase abstracta y dos
clases concretas. Decida qué atributos y métodos incluir de tal manera que
su programa pueda:

114 Capítulo 3. Sobrecarga, plantillas y polimorfismo

HerramientrasPlomero

Herramientas

HerramientasCarpintero

Clase Abstracta

Clases Concretas

a) Crear un objeto llamado Soldadora, de tipo HerramientasPlomero y otro
llamado Serrucho, de tipo HerramientasCarpintero.

b) Cambiar el precio del objeto Soldadora. El usuario dará como dato el
nuevo precio.

c) Cambiar el color del objeto Serrucho.

d) Imprimir los datos de los objetos creados y modificados.

CAPÍTULO 4

4.1 Introducción
Una estructura de datos hace referencia a una colección de ele-
mentos y a la manera en que ésta se almacena en la memoria de la
computadora y/o en algún dispositivo de memoria secundaria. Esta
forma de almacenamiento determina la manera en que los datos se
pueden recuperar. En este capítulo se presenta la estructura de datos
tipo arreglo, que se utiliza para guardar información en la memoria
principal.

Un arreglo es una colección finita, ordenada y homogénea de datos.
Es finita porque todo arreglo tiene un tamaño límite, es decir, se defi-
ne el número máximo de elementos que puede almacenar. Es ordena-
da porque permite hacer referencia al primer elemento, al segundo y
así hasta el enésimo elemento que forme el arreglo. Por último, se di-

Arreglos

ce que es homogénea porque todos los componentes del arreglo son del mismo ti-
po de datos.

Un arreglo también se puede ver como una colección lineal de elementos, ya
que cada uno de ellos sólo tiene un predecesor y un sucesor, con excepción del
primero que sólo tiene sucesor y del último, que sólo tiene predecesor.

En todo arreglo se distinguen el nombre, los componentes y los índices. El nom-
bre hace referencia a la estructura como un todo. Los componentes son los valo-
res que forman el arreglo, es decir, cada uno de los datos que se almacenan en él.
Mientras que los índices se utilizan para recuperar a cada uno de los componen-
tes de manera individual. Gráficamente un arreglo puede representarse como se
muestra en la figura 4.1.

116 Capítulo 4. Arreglos

FIGURA 4.1 Representación gráfica de un arreglo

FIGURA 4.2 Ejemplo de un arreglo

La figura 4.1 muestra que el nombre del arreglo es único e identifica a todo el
conjunto de datos almacenados en la estructura. Por su parte V1, V2, …, Vn indi-
can los valores almacenados en cada una de las casillas del arreglo. Los índices
0, 1, …, n–1 referencian a cada una de las celdas y por lo tanto permiten el acce-
so a cada uno de los valores almacenados en ellas. En el caso de los lenguajes de
programación C y C++ los índices se enumeran a partir del 0. Es decir, si se de-
clara un arreglo de 20 elementos, las casillas se identificarán con los números del
0 al 19. La figura 4.2 presenta un ejemplo de un arreglo con capacidad para al-
macenar máximo 20 valores.

V
1

V
2

V
3

V
n

NombreArreglo

0 1 2 n – 1

Índices

Componentes

18 15 34 … 41

Edades

0 1 19

En este ejemplo, el nombre del arreglo es Edades, los índices son valores enteros
comprendidos entre el 0 y el 19, y los componentes también son números enteros
que representan las edades de un grupo de personas.

4.2 La clase Arreglo
La clase Arreglo tiene como atributos la colección de elementos que forman la
estructura de datos y el número actual de elementos, y como métodos el conjunto
de operaciones que son aplicables a un arreglo. La figura 4.3 presenta la clase
Arreglo. En este caso se define como plantilla para lograr mayor generalidad.

4.2 La clase Arreglo 117

4

FIGURA 4.3 Clase Arreglo

Arreglo

Tam: int

Datos [MAX]: T

Métodos de acceso y
modificación a los
miembros de la clase.

A continuación se presenta la plantilla de la clase Arreglo, utilizando el lenguaje
de programación C++.

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Arreglo

{{

/* Miembros privados de la clase Arreglo. Datos representa una colección

➥de MAX elementos y Tam es el número actual de elementos que forman

➥parte de dicha colección. */

pprriivvaattee::

TT Datos[MAX];

iinntt Tam;

ppuubblliicc::

Arreglo();

/* En la sección pública, además del método constructor, se incluirán

➥los métodos de acceso y modificación a los miembros de la clase. */

}};;

En la sección privada de la clase se define el arreglo mediante la instrucción:

TT Datos[MAX];

que significa que se tiene una colección de elementos, llamada Datos, que tiene
una capacidad máxima de MAX (constante previamente definida) elementos y que
todos los elementos son del tipo T. Según lo presentado en el capítulo 3, T se
instanciará con el tipo de dato usado al declarar un objeto del tipo Arreglo. Ade-
más, se define el atributo Tam que representa el número actual de elementos que
tiene el arreglo. Al declarar un objeto de este tipo se establece el máximo
número de elementos que puede almacenar, pero el número de valores que final-
mente se guardan depende de la aplicación.

Los métodos de acceso y modificación a los elementos del arreglo se estudiarán
en la siguiente sección, considerando si los elementos del arreglo se encuentran o
no ordenados, ya que esto condiciona la manera de llevar a cabo algunas de las
operaciones sobre los mismos.

Para declarar un objeto se utiliza la siguiente sintaxis:

118 Capítulo 4. Arreglos

Arreglo<<tipo>> ObjArreglo;

Por ejemplo, para declarar el arreglo Edades de la figura 4.2 se haría:

Arreglo <iinntt> Edades;

Antes de presentar las operaciones, resulta conveniente mencionar que el acceso
a cada uno de los elementos se hace a través de los índices. La sintaxis es Datos[i],
donde Datos hace referencia a toda la colección y la i indica la casilla particular a
la que se tendrá acceso. Por ejemplo, Datos[0] señala la primera casilla del arreglo
y Datos[1] la segunda.

FIGURA 4.4 Acceso a los componentes del arreglo

…

Datos

0 1 n–1

Datos[0] Datos[1] Datos[n–1]

4.3 Métodos de acceso y
modificación a arreglos

En el primer capítulo se mencionó que es importante diseñar clases que tengan
todas las operaciones que son aplicables a los miembros de la misma. Por lo tan-
to, en el caso de la clase Arreglo se incluirán las principales operaciones que pue-
den realizarse en esta estructura de datos. Las operaciones más importantes en las
que intervienen objetos del tipo arreglo son:

• Lectura

• Escritura

• Eliminación

• Inserción

• Búsqueda

• Ordenación

A continuación se presentan las operaciones de lectura, escritura y eliminación en
las cuales no afecta que el arreglo esté o no ordenado. La operación de inserción
se analizará más adelante, tanto para los casos de arreglos desordenados como de
arreglos ordenados.

En este capítulo se presentan, de manera introductoria, los métodos de búsqueda
y ordenación. Sin embargo, debido a su importancia, estas operaciones se tratarán
detalladamente en capítulos subsecuentes.

4.3.1 Lectura de arreglos

La lectura de un arreglo consiste en darle valores a los componentes del mismo
mediante el ingreso de datos desde medios externos. Las fuentes más comunes
de donde se pueden ingresar los datos son el teclado de la computadora y los
archivos.

A continuación se presenta la plantilla de un método que permite la lectura de los
valores de un arreglo desde el teclado. Observe que a medida que un dato se lee,
éste se asigna automáticamente a una de las casillas (la indicada por el valor del
índice).

4.3 Métodos de acceso y modificación a arreglos 119

4

En el método presentado se leen los primeros Tam (1� Tam �MAX) valores del
arreglo. También se pueden leer los miembros de la clase Arreglo usando la so-
brecarga del operador >> que se presentó en el capítulo 3. En la sección pública
de la clase se debe incluir la siguiente declaración:

120 Capítulo 4. Arreglos

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Lectura()

{{

iinntt Indice;

/* Lectura del número de elementos a guardar en el arreglo. Se veri-

➥fica que el valor dado por el usuario sea menor o igual que el má-

➥ximo permitido y mayor o igual a 1. */

ddoo {{

ccoouutt<<<<”\n\n Ingrese el total de elementos: “;

cciinn>>>> Tam;

}} wwhhiillee (Tam << 1 | | Tam >> MAX);

ffoorr (Indice= 0; Indice << Tam; Indice++++)

{{

ccoouutt<<<<”\n Ingrese un dato: “;

cciinn>>>> Datos[Indice];

}}

}}

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>> ((iissttrreeaamm &&,, AArrrreegglloo &&));;

Luego se debe escribir el método de lectura (con la sobrecarga del operador >>)
correspondiente a los miembros del arreglo.

iissttrreeaamm &&ooppeerraattoorr>>>> ((iissttrreeaamm &&Lee,, AArrrreegglloo &&ObjArre))

{{

iinntt Indice;

/* Lectura del número de elementos a guardar en el arreglo. Se verifica

➥que el valor dado por el usuario sea menor o igual que el máximo

➥permitido y mayor o igual a 1. */

ddoo {{

ccoouutt<<<<”\n\n Ingrese el total de elementos: “;

cciinn>>>> Tam;

}} wwhhiillee (Tam << 1 | | Tam >> MAX);

ffoorr (Indice= 0; Indice << Tam; Indice++++)

Lee>>>>ObjArre.Datos[Indice];

rreettuurrnn Lee;

}}

En ambas soluciones la lectura del tamaño se incluyó junto a la lectura de los
elementos del arreglo. Otra posible solución es que el número actual de elemen-
tos se lea desde la aplicación (recuerde que uno de los objetivos de la POO es que
el código sea reutilizable) y que dicho valor se asigne al atributo Tam a través de
un constructor con parámetros, como se muestra a continuación.

4.3 Métodos de acceso y modificación a arreglos 121

4

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Arreglo(iinntt Valor)

{{

Tam= Valor;

}}

En este caso, al declarar un objeto del tipo Arreglo se debe indicar el número de
elementos que contendrá el arreglo inicialmente. Por ejemplo, para declarar un
arreglo que almacene 10 números enteros se usará la siguiente sintaxis:

Arreglo <<iinntt>> ObjArre(10);

4.3.2 Escritura de arreglos

La escritura de un arreglo consiste en imprimir el contenido de las casillas. Es
decir, esta operación presupone que el arreglo tiene algunos valores asignados y
éstos son los que se presentan a algún medio externo, como la pantalla de la
computadora o un archivo.

A continuación se muestra la plantilla de un método que permite el despliegue en
pantalla de los valores almacenados en un arreglo.

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Escribe()

{{

iinntt Indice;

ffoorr (Indice= 0; Indice << Tam; Indice++++)

ccoouutt<<<< Datos[Indice]<<<<” “;

}}

En el método presentado se despliega en pantalla el contenido de los primeros
Tam (1� Tam � MAX) valores del arreglo. También se pueden imprimir los miem-
bros de la clase Arreglo usando la sobrecarga del operador << que se presentó
en el capítulo 3. En la sección pública de la clase se debe incluir la siguiente
declaración:

122 Capítulo 4. Arreglos

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<< ((oossttrreeaamm &&,, AArrrreegglloo &&));;

Luego se debe codificar el método de escritura (con la sobrecarga del operador
<<) correspondiente a los miembros del arreglo.

oossttrreeaamm &&ooppeerraattoorr<<<< ((oossttrreeaamm &&EEssccrriibbee,, AArrrreegglloo &&OObbjjAArrrree))

{{

iinntt Indice;

ffoorr (Indice= 0; Indice << Tam; Indice++++)

Escribe<<<<ObjArre.Datos[Indice] <<<<” “;

rreettuurrnn Escribe;

}}

4.3.3 Eliminación en arreglos

Para eliminar un elemento de un arreglo, primero se debe localizar el elemento.
Posteriormente, se deben recorrer todos los elementos que están a la derecha
una posición hacia la izquierda. Es decir, el elemento no se puede quitar física-
mente, sólo se ignora lógicamente. Además, debe reducirse el número actual de
componentes. En esta operación se verifica, como posibles casos de error, que el
arreglo esté vacío y que el valor a quitar no se encuentre en el arreglo.

A continuación se presenta la plantilla de un método que lleva a cabo la elimina-
ción de un elemento del arreglo. Este método verifica que el elemento se encuen-
tre almacenado en el arreglo, para ello hace uso de un método (Busca) que se
analiza más adelante.

/* Método que elimina el elemento Valor del arreglo. Para ello utiliza un

➥método auxiliar, Busca, el cual da como resultado la posición en la cual

➥encontró el elemento. Si no lo encuentra da un número negativo. Si la

➥eliminación se lleva a cabo con éxito, se disminuye en uno a Tam. Este mé-

➥todo da como resultado uno de tres posibles valores: 1 si se pudo eliminar

➥Valor, 0 si el arreglo está vacío y –1 si Valor no está en el arreglo. */

Verifica que el arreglo tenga elementos para dar mayor claridad al método. Este
caso se contempla en la operación de búsqueda, ya que de estar vacío, el método
regresa un valor negativo indicando que el elemento no fue encontrado. Sin em-
bargo, evaluar explícitamente esta condición permite que el usuario conozca la
razón por la cual la operación de eliminación fracasó: el arreglo está vacío o bien,
el elemento a eliminar no está en el arreglo.

4.3.4 Operaciones en arreglos desordenados

Los arreglos desordenados son aquellos cuyos elementos no guardan ningún or-
den. Es decir, sus elementos no están ordenados creciente (Datos[0] � Datos[1]

� Datos[2] � ... � Datos[Tam–1]) o decrecientemente (Datos[0] � Datos[1]

� Datos[2] � ... � Datos[Tam–1]). Esta característica influye en las operacio-
nes de búsqueda e inserción.

4.3 Métodos de acceso y modificación a arreglos 123

4

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::EliminaDesordenado((TT Valor)

{{

iinntt Indice, Posic, Resultado= 1;

/* Se verifica si el arreglo tiene al menos un elemento almacenado. */

iiff (Tam >> 0)

{{

/* Método que busca el elemento Valor en el arreglo. Si lo encuen-

➥tra regresa su posición y si no un número negativo. */

Posic= Busca(Valor);

iiff (Posic << 0)

Resultado= –1;

eellssee

{{

/* Considerando que el resultado de la búsqueda fue exitoso,

➥el elemento se podrá eliminar del arreglo y por lo tanto el

➥tamaño de éste se reducirá en uno. */

Tam––;

/* Los elementos del arreglo se desplazan una posición hacia

➥la izquierda. */

ffoorr (Indice= Posic; Indice << Tam; Indice++++)

Datos[Indice]= Datos[Indice+1];

}}

}}

eellssee

/* El arreglo está vacío. */

Resultado= 0;

rreettuurrnn Resultado;

}}

Búsqueda en arreglos

La operación de búsqueda se verá detalladamente en el capítulo 10, sin embargo,
dado que se utiliza como auxiliar en la operación de inserción y en la de elimina-
ción, resulta necesario explicarla brevemente en esta sección.

La búsqueda permite determinar si un cierto elemento fue almacenado o no en el
arreglo. Existen diferentes formas para llevar a cabo esta operación, pero para
el caso particular de los arreglos desordenados el único método aplicable es el
que se conoce como búsqueda secuencial.

El método de búsqueda secuencial consiste en recorrer el arreglo, elemento por
elemento, comparando cada uno de ellos con el dato buscado. Si coinciden, la
búsqueda termina con éxito. Si el arreglo se recorre totalmente y el elemento no
se encuentra, entonces la búsqueda fracasa.

A continuación se presenta la plantilla de un método que lleva a cabo la búsque-
da secuencial de un dato, en un arreglo desordenado.

124 Capítulo 4. Arreglos

/* Método que busca secuencialmente el elemento Valor en el arreglo. Re-

➥cibe como parámetro el dato buscado y, si lo encuentra, regresa la po-

➥sición del mismo. En caso contrario, regresa un número negativo. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::BuscaDesordenado ((TT Valor)

{{

/* La variable Resultado se inicializa con –1. En caso de encontrar

➥el dato buscado, se le asignará la posición donde se encontró. */

iinntt Indice= 0, Resultado= –1;

/* Se recorre el arreglo, elemento por elemento, comparando el conte-

➥nido de cada casilla con el valor buscado. */

wwhhiillee ((Indice << Tam) &&&& (Datos[Indice] !!== Valor))

Indice++++;

/* Se verifica si se halló el elemento buscado. En caso afirmativo se

➥asigna como resultado el número de casilla en que se encontró. */

iiff (Indice << Tam)

Resultado= Indice;

rreettuurrnn Resultado;

}}

El orden de las condiciones del ciclo while es muy importante. Si el elemento
buscado no estuviera en el arreglo, entonces Indice llegaría al valor Tam, y en ese
caso Datos[Indice] provocaría un error de desbordamiento del arreglo (se estaría

intentando tener acceso a un elemento que no existe). Al evaluarse primero la
condición (Indice < Tam) y resultar falsa, ya no se evalúa la segunda condición y
por lo tanto ya no se produce el error arriba mencionado.

Inserción en arreglos

En el caso de los arreglos desordenados la inserción de un nuevo elemento al
arreglo se hace en la primera casilla disponible, que generalmente será Tam, consi-
derando que en C++ los índices van de 0 a Tam–1.

La operación de inserción implica verificar que haya espacio en el arreglo, es de-
cir que Tam << MAX y que el valor a insertar no se encuentre en el arreglo. Esta últi-
ma condición puede omitirse dependiendo de la aplicación. Por ejemplo, si se
considera el caso de un arreglo que almacena las calificaciones de un grupo de
alumnos, entonces es válido tener valores repetidos.

A continuación se presenta la plantilla de un método que lleva a cabo la inserción
de un nuevo elemento en el arreglo. Este método verifica que haya espacio en el
arreglo y que el elemento no se repita.

4.3 Métodos de acceso y modificación a arreglos 125

4

/* Método que inserta el elemento Valor en el arreglo. Para ello usa un

➥método auxiliar, BuscaDesordenado(), que busca si el dato está en el

➥arreglo. Si lo encuentra, da su posición y si no da un número negativo.

➥Como resultado de la inserción se obtiene uno de tres posibles valores: 1

➥si se pudo insertar Valor, 0 si el arreglo está lleno y –1 si Valor ya

➥está en el arreglo. Si la inserción se lleva a cabo, se incrementa el

➥valor de Tam. */
tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::InsertaDesordenado((TT Valor)

{{

iinntt Posic, Resultado= 1;

/* Se verifica que haya, al menos, un espacio disponible en el

➥arreglo. */

iiff (Tam << MAX)

{{

Posic= BuscaDesordenado(Valor);

/* Si el elemento Valor no se encuentra en el arreglo, se inserta en

➥la posición Tam. Luego se incrementa Tam en una unidad. */
iiff (Posic << 0)

Datos[Tam++++]= Valor;

eellssee

Resultado= –1;

}}

eellssee

Resultado= 0;

}}

En el método presentado, considerando que el arreglo está desordenado, el nuevo
elemento se inserta en la primera casilla disponible. Es decir, en la casilla número
Tam. Después de asignar el valor a dicha casilla, se incrementa Tam en uno.

El programa 4.1 presenta la plantilla de la clase Arreglo con las operaciones aso-
ciadas, considerando que los elementos del arreglo están desordenados.

Programa 4.1

126 Capítulo 4. Arreglos

/* Se define la plantilla de la clase Arreglo con todos sus atributos y

➥métodos. Se asume que no existe orden entre los elementos del arreglo. */

/* Se define una constante que representa el número máximo de elementos

➥que puede almacenar el arreglo. */

##ddeeffiinnee MAX 100

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Arreglo

{{

pprriivvaattee::

TT Datos[MAX];

iinntt Tam;

ppuubblliicc::

Arreglo();

vvooiidd Lectura();

iinntt InsertaDesordenado((TT);

iinntt EliminaDesordenado((TT);

iinntt BuscaDesordenado((TT);

vvooiidd Escribe();

}};;

/* Declaración del método constructor. Inicializa el número actual de

➥elementos en 0. */

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Arreglo()

{{

Tam= 0;

}}

/* Método para la lectura de los atributos del arreglo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Lectura(())

{{

iinntt Indice;

/* Lectura del número de elementos a guardar en el arreglo. Se

➥verifica que el valor dado por el usuario sea menor o igual que

➥el máximo permitido y mayor o igual que 1. */

4.3 Métodos de acceso y modificación a arreglos 127

4

ddoo {{

ccoouutt<<<<”\n\n Ingrese total de elementos: “;

cciinn>>>>Tam;

}} wwhhiillee (Tam << 1 | | Tam >> MAX);

/* Lectura de valores para cada una de las Tam casillas del arreglo. */

ffoorr (Indice= 0; Indice << Tam; Indice++++)

{{

ccoouutt<<<<”\nIngrese el “<<<<Indice + 1<<<<” dato: “;

cciinn>>>>Datos[Indice];

}}

}}

/* Método que inserta el elemento Valor en el arreglo. En esta imple-

➥mentación no se aceptan elementos repetidos. Se usa un método auxi-

➥liar, BuscaDesordenado(), el cual da como resultado la posición en la

➥cual encontró el elemento, o un número negativo en caso contrario. Si

➥la inserción se lleva a cabo, se incrementa a Tam. Este método da

➥como resultado uno de tres posibles valores: 1 si Valor se insertó en

➥el arreglo, 0 si el arreglo está lleno y –1 si Valor ya está en el

➥arreglo. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::InsertaDesordenado((TT Valor)

{{

iinntt Posic, Resultado= 1;

iiff (Tam << MAX)

{{

Posic= BuscaDesordenado(Valor);

iiff (Posic << 0)

Datos[Tam++++]= Valor;

eellssee

Resultado= –1;

}}

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

/* Método que elimina el elemento Valor del arreglo. Para ello usa un

➥método auxiliar, BuscaDesordenado(), el cual busca a Valor en el

➥arreglo y regresa su posición, si lo encuentra. En caso contrario,

➥regresa un número negativo. Este método da como resultado uno de tres

➥posibles valores: 1 si Valor se elimina del arreglo, 0 si el arreglo

➥está vacío y –1 si Valor no está en el arreglo. Si la eliminación se

➥lleva a cabo, se decrementa a Tam. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::EliminaDesordenado((TT Valor)

{{

iinntt Indice, Posic, Resultado= 1;

iiff (Tam >> 0)

128 Capítulo 4. Arreglos

{{

Posic= BuscaDesordenado(Valor);

iiff (Posic << 0)

Resultado= –1;

eellssee

{{

Tam––––;

ffoorr (Indice= Posic; Indice << Tam; Indice++++)

Datos[Indice]= Datos[Indice+1];

}}

}}

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

/* Método que busca secuencialmente el elemento Valor en el arreglo.

➥Recibe como parámetro el dato buscado y da como resultado, si lo

➥encuentra, el número de casilla donde fue encontrado. En caso contrario

➥da un número negativo.*/

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::BuscaDesordenado((TT Valor)

{{

iinntt Indice= 0, Resultado= –1;

wwhhiillee ((Indice << Tam) &&&& (Datos[Indice] !!== Valor))

Indice++++;

iiff (Indice << Tam)

Resultado= Indice;

rreettuurrnn Resultado;

}}

/* Método que despliega los valores almacenados en las casillas del

➥arreglo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Escribe()

{{

iinntt Indice;

iiff (Tam >> 0)

{{

ccoouutt<<<<”\n\n”;

ffoorr (Indice= 0; Indice << Tam; Indice++++)

ccoouutt<<<< ‘\t’ <<<< Datos[Indice];

ccoouutt<<<<”\n\n”;

}}

eellssee

ccoouutt<<<< ”\n No hay elementos almacenados.”;

}}

El programa anterior definió una plantilla para la clase Arreglo para tener mayor
generalidad al declarar objetos de este tipo.

El programa 4.2 presenta un ejemplo de aplicación de la plantilla previamente
definida. Crea un objeto de tipo Arreglo, que almacena las claves de un grupo
de alumnos. Por medio de los métodos se podrán leer, imprimir, registrar nue-
vas claves y eliminar algunas de las ya almacenadas. Éste es un caso de aplica-
ción en el cual no se puede repetir información al ingresar un nuevo elemento
en el arreglo.

Programa 4.2

4.3 Métodos de acceso y modificación a arreglos 129

4

/* Se incluye una biblioteca que contiene la plantilla de la clase

➥Arreglo, de esta manera se evita repetir código. En la biblioteca

➥“PlanArreglo.h“ se tiene todo el código del programa 4.1.*/

##iinncclluuddee ”PlanArreglo.h”

/* Función que despliega en pantalla las opciones de trabajo que tiene

➥el usuario. */

iinntt MenuOpciones()

{{

cchhaarr Opcion;

ddoo {{

ccoouutt<<<<”\n\n\nL: Leer la lista de claves: ”;

ccoouutt<<<<”\nA: Dar de alta un nuevo alumno: ”;

ccoouutt<<<<”\nB: Dar de baja un alumno: ”;

ccoouutt<<<<”\nI: Imprimir la lista de claves: ”;

ccoouutt<<<<”\nF: Finalizar el proceso. ”;

ccoouutt<<<<”\n\n Ingrese opción de trabajo: ”;

cciinn>>>>Opcion;

}} wwhhiillee (Opcion !!== ‘A’ &&&& Opcion !!== ‘B’ &&&& Opcion !!== ‘L’ &&&&

➥Opcion !!== ‘I’ &&&&

Opcion !!== ‘F’);

rreettuurrnn Opcion;

}}

/* Función principal desde la cual se tiene el control de todo el proceso:

➥se despliegan las opciones de trabajo y de acuerdo a la seleccionada

➥por el usuario se invoca el método que corresponda. */

vvooiidd mmaaiinn(())

{{

130 Capítulo 4. Arreglos

/* Se crea un objeto tipo Arreglo usando la plantilla de la biblioteca

➥PlanArreglo. Se indica que los elementos a almacenar en el arreglo

➥son de tipo entero. */

Arreglo<<iinntt>> ClavAlum;

iinntt Clave, Res;

cchhaarr Opc;

/* Este ciclo permite al usuario realizar más de una operación con

➥las claves de los alumnos. */

ddoo {{

Opc= MenuOpciones();

sswwiittcchh(Opc)

{{

/* Se invoca el método de lectura del arreglo, para que el

➥usuario ingrese valores para cada uno de los atributos de la

➥clase. Para esta aplicación es el total de alumnos y la clave

➥de cada uno de ellos. */

ccaassee ‘L’: {{

ClavAlum.Lectura();

bbrreeaakk;

}}

/* Se invoca el método de impresión del arreglo para desplegar

➥en pantalla la clave de cada uno de ellos. */

ccaassee ‘I’: {{

ClavAlum.Escribe();

bbrreeaakk;

}}

/* Se invoca el método de inserción en arreglos desordenados.

➥Se debe dar como parámetro un dato del mismo tipo que el usado

➥para crear el objeto, en este caso es un número entero. */

ccaassee ‘A’: {{

ccoouutt<<<<”\n\n Clave del nuevo alumno: ”;

cciinn>>>>Clave;

Res= ClavAlum.InsertaDesordenado(Clave);

/* Se despliega un mensaje de acuerdo al resultado

➥obtenido en el método. */

iiff (Res ==== 1)

ccoouutt<<<<”\n\n El nuevo alumno ya fue dado de alta. ”;

eellssee

iiff (Res ==== 0)

ccoouutt<<<<”\n\n No hay espacio para registrar el

➥nuevo alumno. ”;

eellssee

ccoouutt<<<<”\n\n Esa clave ya fue registrada

➥previamente. ”;

bbrreeaakk;;

}}

/* Se invoca el método de eliminación en arreglos desordena-

➥dos. Se debe dar como parámetro un dato del mismo tipo que el

➥usado para crear el objeto, en este caso un número entero. */

4.3.5 Operaciones en arreglos ordenados

Un arreglo ordenado es aquel cuyos elementos tienen cierto orden entre sí, ya sea
ascendente (V[0] � V[1] � … � V[Tam–1]) o descendente (V[0] � V[1] � … �

V[Tam–1]). Por lo tanto, al operar con sus componentes será necesario conservar
dicho orden. En el caso de la lectura, impresión y eliminación son válidos los
métodos presentados para arreglos desordenados. Sin embargo, las operaciones
de inserción y de búsqueda deben ser modificadas para adaptarse a este tipo de
arreglos. En el caso de la inserción se deberá insertar el nuevo valor en una posi-
ción que no altere el orden existente entre los elementos. Mientras que la búsque-
da resulta más eficiente al saber que el arreglo está ordenado.

Búsqueda en arreglos

La búsqueda secuencial en arreglos ordenados difiere muy poco de la búsqueda
secuencial en arreglos desordenados. Dado que los elementos están ordenados,
una de las condiciones del ciclo cambia para hacer más eficiente el proceso:
cuando se recorre el arreglo, si se encuentra un valor más grande (en el caso de

4.3 Métodos de acceso y modificación a arreglos 131

4

ccaassee ‘B’: {{

ccoouutt<<<<”\n\n Clave del alumno a dar de baja: ”;

cciinn>>>>Clave;

Res= ClavAlum.EliminaDesordenado(Clave);

/* Se despliega un mensaje de acuerdo al resultado

➥obtenido en el método. */

iiff (Res ==== 1)

ccoouutt<<<<”\n\n El alumno ya fue dado de baja. ”;

eellssee

iiff (Res ==== 0)

ccoouutt<<<<”\n\n No hay alumnos registrados. ”;

eellssee

ccoouutt<<<<”\n\n Esa clave no está registrada. ”;

bbrreeaakk;;

}}

ccaassee ‘F’: ccoouutt<<<<”\n\n Termina el proceso.\n\n ”;

bbrreeaakk;;

}}

}} wwhhiillee (Opc !!== ‘F’);

}}

orden ascendente) que el buscado, la búsqueda se interrumpe ya que a partir de
ese elemento no será posible encontrarlo. A continuación se presenta la plantilla
del método que realiza la búsqueda secuencial de un elemento en un arreglo
ordenado ascendentemente. En el capítulo 10 se presentarán otros métodos de
búsqueda.

132 Capítulo 4. Arreglos

/* Método que busca un elemento en un arreglo ordenado ascendentemente.

➥Recibe como parámetro un dato de tipo TT (Valor). Da como resultado la

➥posición del mismo (si lo encuentra) o el negativo de la posición (+ 1)

➥en la que Valor debería estar. Note que el método regresa la posición

➥más uno para poder indicar con el negativo la posición en la que

➥debería estar si ésta fuera 0. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::BuscaOrdenado((TT Valor)

{{

iinntt Indice=0, Resultado;

/* La segunda condición del ciclo hace más eficiente el proceso de

➥búsqueda. */

wwhhiillee ((Indice << Tam) &&&& (Datos[Indice] << Valor))

Indice++++;

/* Se verifica si se llegó al final del arreglo o bien, si se encontró

➥un valor mayor al buscado. En ambos casos se está en presencia de un

➥fracaso en la operación de búsqueda. */

iiff (Indice ==== Tam | | Datos[Indice] >> Valor)

Resultado= –(Indice + 1);

eellssee

Resultado= Indice;

rreettuurrnn Resultado;

}}

Considerando que en la inserción en arreglos ordenados se necesita conocer la
posición en la que se debe asignar el nuevo valor para no alterar el orden, el mé-
todo presentado da como resultado (en caso de no encontrar el valor buscado) el
negativo de la posición en la que debería estar (posición en la que se insertará).
Se agrega el signo para diferenciar si el elemento está o no en el arreglo.

Para adaptar el método anterior a arreglos ordenados descendentemente, sólo se
debe cambiar el operador relacional de la segunda condición: Datos[Indice] >
Valor. Lo mismo en la instrucción if, saliendo del ciclo.

Inserción en arreglos

Al insertar un nuevo elemento en un arreglo ordenado se debe cuidar que el or-
den no se altere. Por lo tanto, se debe buscar la posición en la que se asignará, de
tal manera que se mantenga el orden existente: creciente o decreciente.

La operación de inserción requiere verificar que haya espacio en el arreglo y que
el elemento a insertar no haya sido previamente almacenado. Esta última condi-
ción depende de cada aplicación, ya que ciertos casos justifican tener elementos
repetidos. Por ejemplo, si lo que se almacena son las edades de un grupo de ni-
ños, puede haber más de una ocurrencia de una misma edad.

Una vez que se han considerado los casos mencionados y ubicado el lugar en que
se debe insertar el nuevo valor, se procede a recorrer una posición a la derecha a
todos los elementos que se encuentren a partir de esa posición. El desplazamiento
se hace desde la casilla Tam–1 hasta la casilla correspondiente a la posición en la
cual se hará la asignación del nuevo valor. Finalmente, si la inserción se concluyó
con éxito, se debe incrementar el tamaño del arreglo.

A continuación se presenta la plantilla del método que realiza la inserción de un
elemento en un arreglo ordenado de manera creciente.

4.3 Métodos de acceso y modificación a arreglos 133

4

/* Método que inserta un elemento en un arreglo ordenado crecientemente,

➥sin alterar su orden. Se recibe como parámetro un dato de tipo TT (Valor).

➥Este método da como resultado uno de tres posibles valores: 1 si Valor

➥se insertó en el arreglo, 0 si el arreglo está lleno y –1 si Valor ya

➥está almacenado en el arreglo. Si la inserción concluye con éxito, se

➥incrementa a Tam en una unidad. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::InsertaOrdenado((TT Valor)

{{

iinntt Indice, Posic, Resultado= 1;

/* Verifica si hay, al menos, un espacio disponible en el arreglo. */

iiff (Tam << MAX)

{{

/* Se invoca al método que busca un elemento, Valor, en el arreglo. */

Posic= BuscaOrdenado(Valor);

iiff (Posic >> 0)

Resultado= –1;

eellssee

134 Capítulo 4. Arreglos

{{

/* Convierte la posición en positiva y le resta 1. */

Posic= (Posic * –1) –1;

/* Se recorre el contenido de cada casilla una posición hacia

➥la derecha, a partir de la posición Tam-1 hasta la posición

➥en que se asignará el nuevo valor. */

ffoorr (Indice= Tam; Indice >> Posic; Indice––––)

Datos[Indice]= Datos[Indice – 1];

Datos[Posic]= Valor;

/* Se incrementa el valor de Tam en uno, ya que hay un nuevo

➥valor en el arreglo. */

Tam++++;

}}

}}

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

El programa 4.3 presenta la plantilla de la clase Arreglo con las operaciones aso-
ciadas, considerando que los elementos del arreglo están ordenados de manera
creciente.

Programa 4.3

/* Se define una constante para almacenar el número máximo de elementos

➥que puede guardar el arreglo. */

##ddeeffiinnee MAX 100

/* Se define la plantilla de la clase Arreglo con todos sus atributos y

➥métodos. Se asume que los elementos del arreglo están ordenados ascenden-

➥temente. Los atributos corresponden a los explicados en la sección 4.2. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Arreglo

{{

pprriivvaattee::

TT Datos[MAX];

iinntt Tam;

ppuubblliicc::

Arreglo();

vvooiidd Lectura();

iinntt InsertaOrdenado((TT);

iinntt EliminaOrdenado((TT);

vvooiidd Escribe();

iinntt BuscaOrdenado(TT);

}};;

4.3 Métodos de acceso y modificación a arreglos 135

4

/* Declaración del método constructor. Inicializa el número actual de

➥elementos en 0. */

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Arreglo()

{{

Tam= 0;

}}

/* Método que permite leer el número de elementos que se van a almacenar

➥y el valor de cada uno de ellos. Verifica que el total de elementos sea

➥al menos 1 y que no supere el máximo especificado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Lectura()

{{

iinntt Indice;

ddoo {{

ccoouutt<<<<”\n\n Ingrese número de datos a guardar: “;

cciinn>>>> Tam;

}} wwhhiillee (Tam << 1 | | Tam >> MAX);

ffoorr (Indice= 0; Indice << Tam; Indice++++)

{{

ccoouutt<<<<”\nIngrese el ”<<<<Indice+1<<<<” dato: “;

cciinn>>>> Datos[Indice];

}}

}}

/* Método que inserta un elemento en un arreglo ordenado crecientemente,

➥sin alterar su orden. Recibe como parámetro un dato de tipo TT (Valor).

➥Da como resultado uno de tres posibles valores: 1 si Valor se inserta,

➥0 si el arreglo está lleno y –1 si Valor ya está en el arreglo. Si la

➥inserción concluye con éxito se incrementa a Tam en uno.*/

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::InsertaOrdenado((TT Valor)

{{

iinntt Indice, Posic, Resultado= 1;

iiff (Tam << MAX)

{{

Posic= BuscaOrdenado(Valor);

iiff (Posic >> 0)

Resultado= –1;

eellssee

{{

Posic= (Posic * –1) – 1;

ffoorr (Indice= Tam; Indice >> Posic; Indice––––)

Datos[Indice]= Datos[Indice – 1];

Datos[Posic]= Valor;

Tam++++;

}}

}}

136 Capítulo 4. Arreglos

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

/* Método que elimina un elemento de un arreglo. Recibe como

➥parámetro, Valor, un dato de tipo TT. Da como resultado uno de tres

➥posibles valores: 1 si Valor se eliminó, 0 si el arreglo está vacío

➥y –1 si Valor no está en el arreglo. En caso de éxito, disminuye a Tam

➥en uno. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::EliminaOrdenado((TT Valor)

{{

iinntt Posic, Indice, Resultado= 1;

iiff (Tam >> 0)

{{

Posic= BuscaOrdenado(Valor);

iiff (Posic << 0)

Resultado= –1;

eellssee

{{

Tam––––;

ffoorr (Indice= Posic; Indice << Tam; Indice++++)

Datos[Indice]= Datos[Indice+1];

}}

}}

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

/* Método que despliega los valores almacenados en el arreglo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Escribe()

{{

iinntt Indice;

iiff (Tam >> 0)

{{

ccoouutt<<<<”\n Impresión de datos\n”;

ffoorr (Indice= 0; Indice << Tam; Indice++++)

ccoouutt<<<< ‘\t’ <<<< Datos[Indice];

}}

eellssee

ccoouutt<<<< ”\nNo hay elementos registrados.”;

}}

En la clase presentada en el programa 4.3 se incluyeron algunos métodos necesa-
rios para trabajar con un arreglo ordenado crecientemente. Estas operaciones pue-
den completarse posteriormente con las operaciones de ordenación y búsqueda,
mismas que se verán en los capítulos 9 y 10.

El programa 4.4 presenta un ejemplo de aplicación de la plantilla previamente
definida. Crea un objeto tipo arreglo de números reales para almacenar los tiem-
pos hechos por un nadador durante su entrenamiento, ordenados de manera cre-
ciente. Utiliza los métodos definidos para leer los datos, imprimirlos, dar de alta
nuevos tiempos y eliminar algunos de los registrados.

Programa 4.4

4.3 Métodos de acceso y modificación a arreglos 137

4

/* Método que busca un elemento en un arreglo ordenado ascendentemente.

➥Recibe como parámetro un dato de tipo TT (Valor). Si lo encuentra,

➥regresa la posición del mismo. En caso contrario, regresa el negativo

➥de la posición (+1) en la que debería estar. Note que el método regresa

➥la posición más uno para poder indicar con el negativo la posición en la

➥que debería estar si ésta fuera 0. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::BuscaOrdenado((TT Valor)

{{

iinntt Indice= 0, Resultado;

wwhhiillee ((Indice << Tam) &&&& (Datos[Indice] << Valor))

Indice++++;

iiff (Indice ==== Tam | | Datos[Indice] >> Valor)

Resultado= –(Indice + 1);

eellssee

Resultado= Indice;

rreettuurrnn Resultado;

}}

/* Se incluye la biblioteca “PlantArreOrd.h“ en la cual está la

➥plantilla de la clase Arreglo presentada en el programa 4.3, con el

➥objeto de no repetir código. */

##iinncclluuddee ”PlantArreOrd.h”

/* Función que despliega en pantalla las opciones de trabajo relacionadas

➥a la aplicación. Regresa un dato tipo carácter que representa la

➥opción seleccionada por el usuario. */

cchhaarr MenuOpciones()

138 Capítulo 4. Arreglos

{{

cchhaarr Opc;

ddoo {{

ccoouutt<<<<”\n\nL: Leer los tiempos hechos por el nadador. \n”;

ccoouutt<<<<”\nI: Imprimir un listado con los tiempos del nadador. \n”;

ccoouutt<<<<”\nA: Dar de alta un nuevo tiempo. \n”;

ccoouutt<<<<”\nB: Dar de baja un tiempo ya registrado. \n”;

ccoouutt<<<<”\nT: Terminar el proceso. \n”;

cciinn>>>>Opc;

}} wwhhiillee (Opc !!== ‘L’ &&&& Opc !!== ‘I’ &&&& Opc !!== ‘A’ &&&& Opc !!== ‘B’ &&&& Opc !!==

‘T’);

rreettuurrnn Opc;

}}

/* Función principal en la cual se tiene el control de toda la

➥aplicación: se crea un objeto y otras variables de trabajo, se muestran

➥las posibles operaciones a realizar y de acuerdo a la opción elegida

➥por el usuario se invocan los métodos que correspondan. */

vvooiidd mmaaiinn(())

{{

/* Se crea un objeto arreglo para almacenar números reales. */

Arreglo <<ffllooaatt>> TiemposNada;

cchhaarr Opc;

ffllooaatt Tiempo;

iinntt Res;

ddoo {{

Opc= MenuOpciones();

sswwiittcchh (Opc)

{{

/* Se invoca el método que ingresa, del teclado, valores para

➥los atributos del arreglo. En este caso el total de tiempos

➥registrados y cada uno de los mismos. */

ccaassee ‘L’: {{

TiemposNada.Lectura();

bbrreeaakk;;

}}

/* Se invoca el método que despliega en pantalla los valores

➥almacenados en el objeto arreglo, en este caso los tiempos

➥registrados por el nadador durante su entrenamiento. */

ccaassee ‘I’: {{

TiemposNada.Escribe();

bbrreeaakk;;

}}

4.3 Métodos de acceso y modificación a arreglos 139

4

/* Se invoca el método que inserta un nuevo elemento en el

➥arreglo ordenado, en este caso es un nuevo tiempo del nadador.

➥Luego de ejecutar el método se analiza el resultado obtenido y

➥se despliega un mensaje adecuado. */

ccaassee ‘A’: {{

ccoouutt<<<<”\n\n Nuevo tiempo registrado por el nadador: ”;

cciinn>>>>Tiempo;

Res= TiemposNada.InsertaOrdenado(Tiempo);

iiff (Res ==== 1)

ccoouutt<<<<”\n\n El nuevo tiempo ya fue dado

➥de alta. ”;

eellssee

iiff (Res ==== 0)

ccoouutt<<<<”\n\n No hay espacio para registrar el

➥nuevo tiempo. ”;

eellssee

ccoouutt<<<<”\n\n Ese tiempo ya fue registrado. ”;

bbrreeaakk;

}}

/* Se invoca el método que elimina un elemento del arreglo, en

➥este caso un tiempo que ya no interesa conservar. Luego de

➥ejecutar el método se analiza el resultado obtenido y se des-

➥pliega el mensaje adecuado. */

ccaassee ‘B’: {{

ccoouutt<<<<”\n\n Tiempo a dar de baja: ”;

cciinn>>>>Tiempo;

Res= TiemposNada.EliminaOrdenado(Tiempo);

iiff (Res ==== 1)

ccoouutt<<<<”\n\n El tiempo ya fue dado de baja. ”;

eellssee

iiff (Res ==== 0)

ccoouutt<<<<”\n\n No hay tiempos registrados. ”;

eellssee

ccoouutt<<<<”\n\n Ese tiempo no está registrado. ”;

bbrreeaakk;

}}

ccaassee ‘T’: ccoouutt<<<<”\n\n Termina el proceso.\n\n ”;

bbrreeaakk;;

}}

}} wwhhiillee (Opc !!== ‘T’);

}}

4.4 Arreglos paralelos
Se dice que dos arreglos son arreglos paralelos cuando la casilla 0 del primero
está relacionada con la casilla 0 del segundo, la casilla 1 del primero con la casi-
lla 1 del segundo y así sucesivamente. La figura 4.5 representa, por medio de las
flechas, esta relación; misma que puede darse entre dos o más arreglos.

140 Capítulo 4. Arreglos

0

1

2

0

1

2

MAX-1 MAX-1

Por ejemplo, considere que se conocen la clave y la calificación de un grupo de
alumnos. Se requiere un arreglo para guardar cada una de las claves y otro para
las calificaciones. Sin embargo, para que se pueda conservar la relación entre la
clave y la calificación correspondiente, es necesario usar arreglos paralelos. De
esta forma, la primera casilla del arreglo de claves y la primera casilla del arreglo
de calificaciones hacen referencia al mismo alumno.

Cualquier cambio en el orden de los elementos de uno de los arreglos debe afec-
tar el orden de los otros. Por lo tanto, ciertas operaciones deben adaptarse para
que no se pierda la correspondencia entre la información de las celdas de los
arreglos involucrados. Las operaciones de lectura y escritura no cambian, se lee-
rán de manera independiente cada uno de los arreglos. Sólo sería necesario modi-
ficar los métodos respectivos si se quisieran leer o escribir simultáneamente los
mismos. Por su parte, la operación de búsqueda normalmente se hace sólo sobre

FIGURA 4.5 Arreglos paralelos

uno de los arreglos; y conocer la posición del valor buscado implica también co-
nocer la posición de los elementos correspondientes en los otros arreglos. En
cambio, las operaciones de inserción y eliminación deben modificarse para res-
ponder a la característica de este tipo de estructura.

Inserción en arreglos paralelos

Para insertar un nuevo elemento en los arreglos, primero se debe considerar si
en alguno existe un orden (generalmente sólo uno de ellos está ordenado). Si
es así, se debe buscar la posición en la cual insertar el nuevo valor, recorrer los
elementos una posición a la derecha, asignar el nuevo valor e incrementar el
tamaño. En los demás arreglos no se requiere realizar la búsqueda, el elemento
debe insertarse en la misma posición hallada para el valor agregado en el arre-
glo ordenado.

Retomando el ejemplo de las claves y calificaciones, si las primeras estuvieran
ordenadas, sólo se debería realizar la búsqueda en este arreglo y la posición en-
contrada sería la misma para insertar tanto la nueva clave como su calificación
correspondiente.

Si ninguno de los arreglos estuviera ordenado, entonces el nuevo dato se inserta
en la primera casilla disponible y esto es aplicable a todos los arreglos. En este
caso, la operación de inserción es igual a la que se estudió en la sección de los
arreglos desordenados.

Eliminación en arreglos paralelos

Para eliminar un elemento de los arreglos, primero se debe buscar el dato dado
como referencia en el arreglo correspondiente. Si se encuentra, se quita (reco-
rriendo todos los valores que están a su derecha una posición hacia la izquier-
da) y de la misma manera se eliminan también los elementos que ocupan su
misma posición en los otros arreglos. Normalmente se da sólo uno de los datos
como referencia y al encontrarlo, los demás se eliminan usando la posición de
éste.

Retomando el ejemplo de las claves y las calificaciones, si un alumno se diera de
baja, se buscaría su clave y si se encontrara se quitaría este dato y la calificación
asociada ocupando la posición de la primera.

4.4 Arreglos paralelos 141

4

Tanto en la inserción como en la eliminación la operación de búsqueda no se
aplica a todos los arreglos, por lo que la plantilla de la clase Arreglo previamente
definida no se modifica en su totalidad. Para tener una solución más general e in-
dependiente se define una nueva plantilla de clase para arreglos paralelos, con los
métodos modificados.

Programa 4.5

142 Capítulo 4. Arreglos

/* Se define una constante para almacenar el número máximo de elementos

➥que puede guardar el arreglo. */

##ddeeffiinnee MAX 100

/* Se define la plantilla de la clase ArreParal con todos sus atributos

➥y métodos. Se incluyen diferentes versiones de algunos de los métodos

➥de tal manera que la plantilla sirva tanto para arreglos ordenados como

➥para arreglos desordenados. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArreParal

{{

pprriivvaattee::

T Datos[MAX];

iinntt Tam;

ppuubblliicc::

ArreParal();

iinntt InsertaOrdenado(iinntt , TT);

iinntt InsertaDesordenado(TT);

vvooiidd Elimina(iinntt);

iinntt BuscaOrdenado(TT);

iinntt BuscaDesordenado(TT));

TT RegresaValor(iinntt);

iinntt RegresaTamano();

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&, ArreParal<<TT>> &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<<(oossttrreeaamm &&, ArreParal<<TT>> &&);

}};;

/* Declaración del método constructor. Inicializa el número actual de

➥elementos en 0. */

tteemmppllaattee <<ccllaassss TT>>

ArreParal<<TT>>::::ArreParal()

{{

Tam= 0;

}}

4.4 Arreglos paralelos 143

4

/* Método que inserta un elemento en un arreglo ordenado crecientemente,

➥sin alterar su orden. Recibe como parámetros: Posic, un entero que

➥indica la posición en la que debe insertarse el nuevo elemento si hay

➥espacio y el elemento a insertar que es un dato de tipo TT (Valor). Da

➥como resultado uno de dos posibles valores: 1 si Valor se inserta o 0

➥si el arreglo está lleno. Si la inserción concluye con éxito se incremen-

➥ta a Tam en uno.*/

tteemmppllaattee <<ccllaassss TT>>

iinntt ArreParal<<TT>>::::InsertaOrdenado(iinntt Posic, TT Valor)

{{

iinntt Indice, Resultado= 1;

iiff (Tam << MAX)

{{

ffoorr (Indice= Tam; Indice >> Posic; Indice––––)

Datos[Indice]= Datos[Indice – 1];

Datos[Posic]= Valor;

Tam++++;

}}

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

/* Método que inserta un elemento en un arreglo desordenado. Recibe como

➥parámetro el elemento a insertar, que es un dato de tipo TT (Valor). Da

➥como resultado uno de dos posibles valores: 1 si Valor se inserta o 0

➥si el arreglo está lleno. Si la inserción concluye con éxito se incre-

➥menta a Tam en uno.*/

tteemmppllaattee <<ccllaassss TT>>

iinntt ArreParal<<TT>>::::InsertaDesordenado(TT Valor)

{{

iinntt Indice, Resultado= 1;

iiff (Tam << MAX)

{{

Datos[Tam]= Valor;

Tam++++;

}}

eellssee

Resultado= 0;

rreettuurrnn Resultado;

}}

/* Método que elimina un elemento de un arreglo. Recibe como parámetro

➥un número entero, Posic, que indica la posición del dato a eliminar.

➥Este método se invoca sólo si antes se ejecutó con éxito el método de

➥búsqueda. Se disminuye el valor de Tam en uno. */

144 Capítulo 4. Arreglos

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArreParal<<TT>>::::Elimina(iinntt Posic)

{{

iinntt Indice;

Tam––––;

ffoorr (Indice= Posic; Indice << Tam; Indice++++)

Datos[Indice]= Datos[Indice+1];

}}

/* Método que busca un elemento en un arreglo ordenado ascendentemente.

➥Recibe como parámetro un dato de tipo TT (Valor). Si lo encuentra,

➥regresa la posición del mismo. En caso contrario, regresa el negativo

➥de la posición (+1) en la que debería estar. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ArreParal<<TT>>::::BuscaOrdenado(TT Valor)

{{

iinntt Indice= 0, Resultado;

wwhhiillee ((Indice << Tam) &&&& (Datos[Indice] << Valor))

Indice++++;;

iiff (Indice ==== Tam | | Datos[Indice] >> Valor)

Resultado= –(Indice + 1);

eellssee

Resultado= Indice;

rreettuurrnn Resultado;

}}

/* Método que busca un elemento en un arreglo desordenado. Recibe como

➥parámetro un dato de tipo TT (Valor). Si lo encuentra, regresa la

➥posición del mismo. En caso contrario, regresa un número negativo. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ArreParal<<TT>>::::BuscaDesordenado(TT Valor)

{{

iinntt Indice= 0, Resultado= –1;

wwhhiillee ((Indice << Tam) &&&& (Datos[Indice] !!== Valor))

Indice++++;

iiff (Indice << Tam)

Resultado= Indice;

rreettuurrnn Resultado;

}}

/* Método que permite, a usuarios externos a la clase, conocer el

➥contenido de una casilla del arreglo. Recibe como parámetro un entero,

➥Indice, que indica el número de celda de la cual se dará su contenido.

➥El resultado es un valor de tipo TT. */

4.4 Arreglos paralelos 145

4

tteemmppllaattee <<ccllaassss TT>>

TT ArreParal<<TT>>::::RegresaValor(iinntt Indice)

{{

rreettuurrnn Datos[Indice];

}}

/* Método que regresa el total de elementos del arreglo. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ArreParal<<TT>>::::RegresaTamano()

{{

rreettuurrnn Tam;

}}

/* Definición de la sobrecarga del operador >>>>. Por medio de este

➥operador sobrecargado y declarado como amigo de la clase ArreParal se

➥podrá leer de manera directa a todos los miembros de la misma. */

tteemmppllaattee <<ccllaassss TT>>

iissttrreeaamm &&ooppeerraattoorr>>>> (iissttrreeaamm &&Lee, ArreParal<<TT>> &&ObjArre)

{{

iinntt Indice;

ddoo {{

Lee>>>>ObjArre.Tam;

}} wwhhiillee (ObjArre.Tam << 1 | | ObjArre.Tam >> MAX);

ffoorr (Indice= 0; Indice << ObjArre.Tam; Indice++++)

Lee>>>>ObjArre.Datos[Indice];

rreettuurrnn Lee;

}}

/* Definición de la sobrecarga del operador <<<<. Por medio de este

➥operador sobrecargado y declarado como amigo de la clase ArreParal se

➥podrá desplegar de manera directa a todos los miembros de la misma. */

tteemmppllaattee <<ccllaassss TT>>

oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, ArreParal<<TT>> &&ObjArre)

{{

iinntt Indice;

iiff (ObjArre.Tam >> 0)

ffoorr (Indice= 0; Indice << ObjArre.Tam; Indice++++)

Escribe<<<<ObjArre.Datos[Indice] <<<<” ”;

eellssee

ccoouutt<<<< ”\nNo hay elementos registrados.”;

rreettuurrnn Escribe;

}}

La figura 4.6 muestra gráficamente un ejemplo de arreglos paralelos, que almace-
nan la clave y la calificación de un grupo de alumnos. En el esquema presentado

se observa que el alumno con clave 2500 obtuvo una calificación de 9.5, el de
clave 3000, una de 7.3 y el de clave 4050, una de 8.6.

146 Capítulo 4. Arreglos

2500

3000

4050

9.5

7.3

8.6

0

1

2

0

1

2

MAX-1 MAX-1

FIGURA 4.6 Ejemplo de arreglos paralelos

Clave Calificación

A continuación se presenta un programa de aplicación que utiliza la plantilla del
programa 4.5 para crear objetos que puedan guardar las claves y calificaciones de
los alumnos. Posteriormente, a través de los métodos, se darán de alta nuevos
alumnos, se eliminarán los ya registrados y se obtendrán algunos reportes. En es-
te ejemplo se hace uso de los métodos para arreglos ordenados, ya que se asume
que los datos están ordenados ascendentemente según las claves de los alumnos.

Programa 4.6

/* Ejemplo de aplicación de arreglos paralelos. En la biblioteca
➥”PlantArreParal.h” se incluye la plantilla de la clase definida
➥en el programa 4.5. */
##iinncclluuddee ”PlantArreParal.h”

/* Función que despliega al usuario las posibles opciones de trabajo. */
iinntt MenuOpciones()
{{

iinntt Opc;
ddoo {{

ccoouutt<<<<”\n\n1-Captura inicial de claves y calificaciones
➥de alumnos. ”;
ccoouutt<<<<”\n2-Ingresar un nuevo alumno y su calificación. ”;

4.4 Arreglos paralelos 147

4

ccoouutt<<<<”\n3-Eliminar un alumno y su calificación. ”;

ccoouutt<<<<”\n4-Obtener un listado de las claves de los alumnos. ”;

ccoouutt<<<<”\n5-Obtener un listado de claves y calificaciones

➥de todos los alumnos. ”;

ccoouutt<<<<”\n6-Obtener la calificación de un alumno. ”;

ccoouutt<<<<”\n7-Terminar el proceso. ”;

ccoouutt<<<<”\n\nIngrese la opción seleccionada. ”;

cciinn>>>>Opc;

}} wwhhiillee (Opc << 1 | | Opc >> 7);

rreettuurrnn Opc;

}}

/* Función principal: se despliega el menú de opciones y, de

➥acuerdo a la opción elegida por el usuario, se invoca el método

➥correspondiente. */

vvooiidd mmaaiinn (())

{{

ArreParal<<iinntt>> Claves;

ArreParal<<ffllooaatt>> Calific;

iinntt ClaAlum, Opc, Posic, Indice, TotalAl;

ffllooaatt CalAlum;

ddoo {{

Opc= MenuOpciones();

sswwiittcchh (Opc)

{{

/* Se leen los datos (clave y calificación) de cada uno de los

➥alumnos del grupo. Por medio del operador sobrecargado >>>> se

➥indica la lectura de los objetos Claves y Calific. */

ccaassee 1: {{

ccoouutt<<<<”\n\nDé el número de claves y cada una de

➥las claves\n”;

cciinn>>>>Claves;

ccoouutt<<<<”\n\nDé el número de calificaciones y cada

➥una de ellas \n”;

cciinn>>>>Calific;

bbrreeaakk ;

}}

/* Se registra un nuevo alumno, proporcionando para ello su

➥clave y su calificación. Las claves son únicas y están

➥ordenadas de manera ascendente. Primero se verifica, por medio

➥del método BuscaOrdenado(), que la clave dada no haya sido

➥previamente almacenada. Si no se repite, entonces se agrega a

➥la colección de claves sin alterar el orden de éstas. Para ello

➥se usa el método InsertaOrdenado(). Si la inserción se lleva a

➥cabo con éxito, entonces se procede a agregar la calificación

➥del nuevo alumno en la posición que le corresponde por el valor

➥de su clave. */

148 Capítulo 4. Arreglos

ccaassee 2: {{

ccoouutt<<<<”\n\nDé la clave y calificación del nuevo alumno: ”;

cciinn>>>>ClaAlum;

cciinn>>>>CalAlum;

Posic= Claves.BuscaOrdenado(ClaAlum);

iiff (Posic >> 0)

ccoouutt<<<<”\n\nEsa clave ya fue registrada previamente. \n”;

eellssee

{{

Posic= (Posic * –1) –1;

iiff (Claves.InsertaOrdenado(Posic, ClaAlum) ==== 1)

Calific.InsertaOrdenado(Posic, CalAlum);

eellssee

ccoouutt<<<<”\n\nYa no se pueden registrar nuevos

➥alumnos. \n”;

}}

bbrreeaakk ;

}}

/* Se elimina un alumno dando su clave como dato de entrada. Si

➥la clave está (existe un alumno con dicha clave) se procede a

➥eliminarla y a eliminar su correspondiente calificación. */

ccaassee 3: {{

ccoouutt<<<<”\n\nDé la clave del alumno que desea dar de baja: ”;

cciinn>>>>ClaAlum;

Posic= Claves.BuscaOrdenado(ClaAlum);

iiff (Posic >> 0)

{{

Claves.Elimina(Posic);

Calific.Elimina(Posic);

}}

eellssee

ccoouutt<<<<”\n\nEsa clave no está registrada. \n”;

bbrreeaakk ;

}}

/* Se genera un reporte con todas las claves de los alumnos

➥registrados. Por medio del operador sobrecargado <<<< se indica

➥la escritura del objeto Claves de manera directa. */

ccaassee 4: {{

ccoouutt<<<<”\n\nListado de claves de alumnos registrados. \n”;

ccoouutt<<<<Claves;

ccoouutt<<<<”\n\n”;

bbrreeaakk;

}}

/* Se genera un reporte con la clave y la calificación de todos

➥los alumnos registrados. Primero se obtiene el total de alumnos

➥por medio del método que regresa el tamaño del arreglo. Luego

➥se tiene acceso a cada uno de los valores almacenados, por

➥medio del método RegresaValor(), y se los imprime. */

4.5 Arreglos de dos dimensiones 149

4

ccaassee 5: {{

TotalAl= Claves.RegresaTamano();

ccoouutt<<<<”\n\nClave Calificación \n”;

ffoorr (Indice= 0; Indice << TotalAl; Indice ++++)

{{

ccoouutt<<<<Claves.RegresaValor(Indice)<<<<” ”;

ccoouutt<<<<Calific.RegresaValor(Indice) <<<<”\n”;

}}

bbrreeaakk ;

}}

/* Dada la clave de un alumno, se imprime la calificación del

➥mismo. Se hace uso del método BuscaOrdenado(), para encontrar

➥la clave. Si se encuentra (ese alumno está registrado), se

➥invoca al método RegresaValor() para tener acceso a su

➥calificación. */

ccaassee 6: {{

ccoouutt<<<<”\n\nClave del alumno que desea conocer su

➥calificación: ”;

cciinn>>>>ClaAlum;

Posic= Claves.BuscaOrdenado(ClaAlum);

iiff (Posic >> 0)

{{

ccoouutt<<<<”\n\nCalificación del alumno con clave:

➥”<<<<ClaAlum;

ccoouutt<<<<” es: “<<<<Calific.RegresaValor(Posic);

}}

eellssee

ccoouutt<<<<”\n\nEsa clave no está registrada. \n\n”;

bbrreeaakk ;

}}

/* Termina el ciclo de procesamiento. */

ccaassee 7: {{

ccoouutt<<<<”\n\nTermina el procesamiento de los datos. \n\n”;

bbrreeaakk;;

}}

}}

}} wwhhiillee (Opc !!== 7);

}}

4.5 Arreglos de dos dimensiones
Los arreglos vistos permiten agrupar información relacionada sólo por un tema.
Por ejemplo, se pueden usar para almacenar las calificaciones de un grupo de N
alumnos obtenidas en un examen, o bien, para las calificaciones de un alumno
obtenidas en varios exámenes.

Sin embargo, en ciertos casos se requiere almacenar datos que representen dife-
rentes dimensiones de la información. Retomando el ejemplo mencionado, puede
ser importante agrupar las calificaciones obtenidas por N alumnos en M exáme-
nes. En este caso, la información se relaciona por alumno y por examen. Es decir,
se reconocen dos dimensiones en la información: una para los alumnos y otra
para los exámenes.

Para representar información con estas características es necesaria una estructura
de datos que permita manejar dos dimensiones. Esta estructura recibe el nombre de
arreglo bidimensional, arreglo de dos dimensiones o matriz. La representación
gráfica de un arreglo bidimensional se puede observar en la figura 4.7.

150 Capítulo 4. Arreglos

NombreArreglo

C0 C1 C2 Cm–1

R0

R1

R2

Rn–1

M Columnas

N Renglones

…

FIGURA 4.7 Representación gráfica de un arreglo bidimensional de N × M elementos

Como puede ver en la figura, cada elemento del arreglo se identifica por medio
de dos índices: uno que hace referencia al renglón y otro a la columna. En el
caso del lenguaje C++, el primer índice siempre hace referencia al renglón
mientras que el segundo indica columna.

El nombre del arreglo hace referencia a toda la estructura de datos. Cada elemen-
to o casilla se especificará siguiendo la notación: NombreArreglo[i][j], donde i
indica el número del renglón y j el número de la columna donde está el elemento.

El almacenamiento y recuperación de información en un arreglo bidimensional
podrá hacerse por renglones o por columnas. Si es por renglones, se completa un
renglón (para ello se recorrerán todas las columnas de dicho renglón) para luego
pasar al siguiente renglón y así sucesivamente hasta visitar los N renglones. Si el
acceso se hace por columnas, entonces se completa una columna (para ello se re-
correrán todos los renglones de dicha columna) para luego pasar a la siguiente
hasta visitar las M columnas.

La clase que representa una estructura de datos tipo arreglo bidimensional ten-
drá como atributos la colección de elementos que se almacenarán, así como el
número de renglones y columnas ocupadas por dichos datos. El número de
renglones y columnas estará acotado por un número máximo que se define ini-
cialmente. Además, la clase incluirá un conjunto de operaciones o métodos
que permiten manipular los miembros de la misma. La figura 4.8 presenta a la
clase ArregloBidimensional.

4.5 Arreglos de dos dimensiones 151

4

FIGURA 4.8 Clase ArregloBidimensional

ArregloBidimensional

Datos[MAX][MAX]: T

NumRen, NumCol: int

Métodos de acceso y
modificación a los
miembros de la clase.

A continuación se presenta la plantilla de la clase ArregloBidimensional que in-
cluye dos operaciones básicas para estas estructuras de datos (lectura y escritura)
y algunos métodos que se consideran útiles para el manejo de la información al-
macenada en el arreglo. Los mismos se explican en el comentario que acompaña
la codificación de cada uno de ellos.

Programa 4.7

152 Capítulo 4. Arreglos

/* Plantilla de la clase ArregloBidimensional. Se definen algunos méto-

➥dos útiles para el manejo del contenido de un arreglo de dos dimensio-

➥nes. Los atributos son la colección de datos, Datos[MAX] [MAX], en la

➥cual se establece un número máximo de renglones y de columnas y el número

➥de renglones y de columnas que están ocupadas, NumRen y NumCol. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArregloBidimensional

{{

pprriivvaattee::

TT Datos[MAX] [MAX];

iinntt NumRen, NumCol;

ppuubblliicc::

ArregloBidimensional(iinntt,, iinntt);

vvooiidd Lectura();

vvooiidd Escritura();

TT SumaRenglon(iinntt);

TT SumaColumna(iinntt);

TT MaximoColumna(iinntt) ;

TT MaximoRenglon(iinntt);

TT MinimoColumna(iinntt);

TT MinimoRenglon(iinntt);

TT RegresaDato(iinntt, iinntt);

}};;

/* Declaración del método constructor por omisión. Inicializa el

➥número actual de renglones y de columnas en 0. */

tteemmppllaattee <<ccllaassss TT>>

ArregloBidimensional<<TT>>::::ArregloBidimensional()

{{

NumRen= 0;

NumCol= 0;

}}

/* Declaración del método constructor con parámetros. */

tteemmppllaattee <<ccllaassss TT>>

ArregloBidimensional<<TT>>::::ArregloBidimensional(iinntt NR, iinntt NC)

{{

NumRen= NR;

NumCol= NC;

}}

4.5 Arreglos de dos dimensiones 153

4

/* Método de lectura. Los datos leídos del teclado se almacenan por renglo-

➥nes. Observe que el ciclo externo es el de los renglones (primer índice).

➥Por lo tanto, para cada valor del mismo se recorren todas las columnas

➥(ciclo interno). Para darle mayor información al usuario, se supone que la

➥lectura y validación del total de elementos se hace en el programa de

➥aplicación y desde ahí también se invoca el constructor con parámetros

➥para asignarle valores a los atributos NumRen y NumCol.*/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArregloBidimensional<<TT>>::::Lectura()

{{

iinntt Ren, Col;

ffoorr (Ren= 0; Ren << NumRen; Ren++++)

ffoorr (Col= 0; Col << NumCol; Col++++)

{{

ccoouutt<<<<”\nIngrese dato: “;

cciinn>>>>Datos[Ren][Col];

}}

}}

/* Método de escritura. Los datos almacenados se despliegan en la pantalla

➥por renglones. Con respecto al orden de los índices aplica el mismo

➥comentario que en el método de lectura. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArregloBidimensional<<TT>>::::Escritura()

{{

iinntt Ren, Col;

ffoorr (Ren= 0; Ren << NumRen; Ren++++)

{{

ffoorr (Col= 0; Col << NumCol; Col++++)

ccoouutt<<<< Datos[Ren][Col]<<<<” “;

ccoouutt<<<<eennddll;;

}}

}}

/* Método que suma todos los elementos de un renglón. Para ello se deben

➥recorrer todas las columnas de dicho renglón. El número de renglón a

➥sumar se indica a través del parámetro. Si el tipo TT usado para crear

➥el objeto ArregloBidimensional no fuera un número, entonces se debería

➥sobrecargar el operador ++ . */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::SumaRenglon(iinntt Ren)

{{

TT Suma= 0;

iinntt Col;

ffoorr (Col= 0; Col << NumCol; Col++++)

Suma= Suma + Datos[Ren][Col];

rreettuurrnn Suma;

}}

154 Capítulo 4. Arreglos

/* Método que suma todos los elementos de una columna. Para ello se

➥deben recorrer todos los renglones de dicha columna. El número de

➥columna a sumar se indica a través del parámetro. Si el tipo TT usado

➥para crear el objeto ArregloBidimensional no fuera un número, entonces

➥se debería sobrecargar el operador ++ . */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::SumaColumna(iinntt Col)

{{

TT Suma= 0;

iinntt Ren;

ffoorr (Ren= 0; Ren << NumRen; Ren++++)

Suma= Suma + Datos[Ren][Col];

rreettuurrnn Suma;

}}

/* Método que da como resultado el valor más grande almacenado en una

➥columna del arreglo, dada como dato. Para ello se deja fijo el valor de

➥la columna y se recorren todos los renglones. Si el tipo TT usado para

➥crear el objeto ArregloBidimensional no fuera un número, entonces se

➥debería sobrecargar el operador >> . */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::MaximoColumna(iinntt Col)

{{

TT Maximo= Datos[0][Col];

iinntt Ren;

ffoorr (Ren= 1; Ren << NumRen; Ren++++)

iiff (Datos[Ren][Col] >> Maximo)

Maximo= Datos[Ren][Col];

rreettuurrnn Maximo;

}}

/* Método que da como resultado el valor más grande almacenado en un

➥renglón del arreglo, dado como dato. Para ello se deja fijo el valor

➥del renglón y se recorren todas las columnas. Si el tipo TT usado para

➥crear el objeto ArregloBidimensional no fuera un número, entonces se

➥debería sobrecargar el operador >>. */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::MaximoRenglon(iinntt Ren)

{{

TT Maximo= Datos[Ren][0];

iinntt Col;

ffoorr (Col= 1; Col << NumCol; Col++++)

iiff (Datos[Ren][Col] >> Maximo)

Maximo= Datos[Ren][Col];

rreettuurrnn Maximo;

}}

4.5 Arreglos de dos dimensiones 155

4

/* Método que da como resultado el valor más pequeño almacenado en una

➥columna del arreglo, dada como dato. Para ello se deja fijo el valor de

➥la columna y se recorren todos los renglones. Si el tipo TT usado para

➥crear el objeto ArregloBidimensional no fuera un número, entonces se

➥debería sobrecargar el operador <<. */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::MinimoColumna(iinntt Col)

{{

TT Minimo= Datos[0][Col];

iinntt Ren;

ffoorr (Ren= 1; Ren << NumRen; Ren++++)

iiff (Datos[Ren][Col] << Minimo)

Minimo= Datos[Ren][Col];

rreettuurrnn Minimo;

}}

/* Método que da como resultado el valor más pequeño almacenado en un

➥renglón del arreglo, dado como dato. Para ello se deja fijo el valor

➥del renglón y se recorren todas las columnas. Si el tipo TT usado para

➥crear el objeto ArregloBidimensional no fuera un número, entonces se

➥debería sobrecargar el operador <<. */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::MinimoRenglon(iinntt Ren)

{{

TT Minimo= Datos[Ren][0];

iinntt Col;

ffoorr (Col= 1; Col << NumCol; Col++++)

iiff (Datos[Ren][Col] << Minimo)

Minimo= Datos[Ren][Col];

rreettuurrnn Minimo;

}}

/* Método que permite, a usuarios externos a la clase, conocer el

➥contenido de una de las casillas del arreglo. Recibe como parámetros

➥dos enteros, Ren y Col, que indican la posición (renglón y columna

➥respectivamente) del componente deseado del arreglo. El resultado es un

➥valor de tipo TT. */

tteemmppllaattee <<ccllaassss TT>>

TT ArregloBidimensional<<TT>>::::RegresaDato(iinntt Ren, iinntt Col)

{{

rreettuurrnn Datos[Ren][Col];

}}

La plantilla incluye el miembro privado: TT Datos[MAX] [MAX] que es propiamente
el arreglo; es decir, la colección de MAX por MAX elementos en la cual se especifi-
can dos dimensiones. Los otros miembros privados representan el número actual
de renglones (NumRen) y de columnas (NumCol) respectivamente.

El programa 4.8 presenta una aplicación de arreglos bidimensionales, usando la
plantilla de la clase ArregloBidimensional definida en el programa 4.7. A partir de
los datos de un grupo de alumnos (calificaciones obtenidas en varios exámenes)
se calculan e imprimen algunos indicadores, como el promedio de calificación
por alumno y el promedio de calificación por examen. La figura 4.9 muestra la
representación gráfica de la estructura que almacena las calificaciones, indicando,
en este ejemplo, que el primer alumno obtuvo 9 en el primer examen, 6 en el se-
gundo, … que el segundo alumno obtuvo 7 en el primer examen, 10 en el segun-
do, … que el tercer alumno obtuvo 8 en el primer examen, 9 en el segundo, ...

156 Capítulo 4. Arreglos

ObjArreBidi

0 1 2 MAX

0

1

2

MAX

M Exámenes

N Alumnos

…

FIGURA 4.9 Aplicación de arreglos bidimensionales

9

7

8 9

6

10

Programa 4.8

4.5 Arreglos de dos dimensiones 157

4

/* Se tienen las calificaciones de un grupo de N alumnos obtenidas en M

➥exámenes. Para almacenar esta información se usa un objeto de tipo

➥ArregloBidimensional: los renglones representan a los alumnos y las

➥columnas a los exámenes. */

/* Se incluye la plantilla de la clase ArregloBidimensional correspon-

➥diente al programa 4.7, en la biblioteca ”ArreBidi.h”. */

##iinncclluuddee ”ArreBidi.h”

/* Función que despliega al usuario las opciones de trabajo sobre los

➥datos ingresados. */

iinntt Menu()

{{

iinntt Opc;

ddoo {{

ccoouutt<<<<”\n\n 1- Listado de calificaciones de un alumno.”;

ccoouutt<<<<”\n\n 2- Listado de calificaciones de un examen.”;

ccoouutt<<<<”\n\n 3- Promedio de calificaciones de un alumno.”;

ccoouutt<<<<”\n\n 4- Promedio de calificaciones de un examen.”;

ccoouutt<<<<”\n\n 5- Calificación de un alumno obtenida en un examen.”;

ccoouutt<<<<”\n\n 6- Máxima calificación de un examen.”;

ccoouutt<<<<”\n\n 7- Mínima calificación de un examen.”;

ccoouutt<<<<”\n\n 8- Máxima calificación de un alumno.”;

ccoouutt<<<<”\n\n 90- Mínima calificación de un alumno.”;

ccoouutt<<<<”\n\n 10- Terminar. ”;

ccoouutt<<<<”\n\n Ingrese opción elegida:”;

cciinn>>>>Opc;

}} wwhhiillee (Opc << 1 | | Opc >> 10);

rreettuurrnn Opc;

}}

/* Plantilla de función para imprimir las calificaciones obtenidas por

➥un alumno (el usuario proporcionará un número para identificarlo) en

➥todos los exámenes. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd CalifAlum(ArregloBidimensional <<TT>> ObjArreBidi, iinntt NumExam)

{{

iinntt Alum, Exam;

ccoouutt<<<<”\n\n Ingrese el número del alumno:”;

cciinn>>>>Alum;

ccoouutt<<<<”\n\n Calificaciones obtenidas por el alumno en los exámenes\n”;

ffoorr (Exam = 0; Exam << NumExam; Exam++++)

ccoouutt<<<<”\nExamen: ”<<<<Exam+1<<<<” –––– ”<<<<”Calif.: ”

<<<<ObjArreBidi.RegresaDato(Alum–1, Exam);

}}

158 Capítulo 4. Arreglos

/* Plantilla de función para imprimir las calificaciones obtenidas en un

➥examen (el usuario proporcionará un número para identificarlo) por to-

➥dos los alumnos. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd CalifExam(ArregloBidimensional <<TT>> ObjArreBidi, iinntt NumAlum)

{{

iinntt Alum, Exam;

ccoouutt<<<<”\n\n Ingrese el número del examen:”;

cciinn>>>>Exam;

ccoouutt<<<<”\n\n Calificaciones obtenidas por los alumnos en el examen\n”;

ffoorr (Alum= 0; Alum << NumAlum; Alum++++)

ccoouutt<<<<”\nAlumno: ”<<<<Alum+1<<<<” –––– ”<<<<”Calificación: ”

<<<<ObjArreBidi.RegresaDato(Alum, Exam–1);

}}

/* El promedio de calificaciones obtenido por un alumno se calcula como

➥la suma de todos los elementos correspondientes al renglón del alumno

➥(sus calificaciones), entre el número de columnas (exámenes). */

tteemmppllaattee <<ccllaassss TT>>

ffllooaatt PromAlum(ArregloBidimensional <<TT>> ObjArreBidi, iinntt NumExam)

{{

iinntt Alum;

ccoouutt<<<<”\n\n Ingrese el número del alumno:”;

cciinn>>>>Alum;

rreettuurrnn ((ffllooaatt)) (ObjArreBidi.SumaRenglon(Alum–1) / NumExam);

}}

/* El promedio de calificaciones de un examen se calcula como la suma de

➥los elementos correspondientes a la columna del examen, entre el número

➥de renglones (alumnos). */

tteemmppllaattee <<ccllaassss TT>>

ffllooaatt PromExam(ArregloBidimensional <<TT>> ObjArreBidi, iinntt NumAlum)

{{

iinntt Exam;

ccoouutt<<<<”\n\n Ingrese el número del examen:”;

cciinn>>>>Exam;

rreettuurrnn ((ffllooaatt)) (ObjArreBidi.SumaColumna(Exam–1) / NumAlum);

}}

/* Función que usa un arreglo bidimensional. Se declara un objeto del

➥tipo ArregloBidimensional para almacenar un conjunto de números enteros

➥que representan las calificaciones obtenidas por varios alumnos en di-

➥versos exámenes. */

vvooiidd UsaArregloBidimensional()

4.5 Arreglos de dos dimensiones 159

4

{{

iinntt Alum, Exam, NumAlum, NumExam, Opc;

ccoouutt<<<<”\n\nIngrese el total de alumnos y el número de exámenes: ”;

cciinn>>>>NumAlum>>>>NumExam;

ArregloBidimensional <<iinntt>> ObjArreBidi(NumAlum, NumExam);

ccoouutt<<<<”\n\nIngrese por cada alumno todas las calificaciones obtenidas

➥en los exámenes.\n”;

ObjArreBidi.Lectura();

Opc= Menu();

wwhhiillee (Opc >>== 1 &&&& Opc <<== 9)

{{

sswwiittcchh (Opc)

{{

ccaassee 1: {{

CalifAlum(ObjArreBidi, NumExam);

bbrreeaakk;;

}}

ccaassee 2: {{

CalifExam(ObjArreBidi, NumAlum);

bbrreeaakk;;

}}

ccaassee 3: {{

ccoouutt<<<<”\nEl Promedio del alumno es: ”

<<<<PromAlum(ObjArreBidi, NumExam);

bbrreeaakk;;

}}

ccaassee 4: {{

ccoouutt<<<<”\nPromedio de los alumnos en el examen es:”

<<<<PromExam(ObjArreBidi, NumAlum);

bbrreeaakk;;

}}

ccaassee 5: {{

ccoouutt<<<<”\n\n Ingrese el número del alumno:”;

cciinn>>>>Alum;

ccoouutt<<<<”\n\n Ingrese el número del examen:”;

cciinn>>>>Exam;

ccoouutt<<<<”\nEl alumno ”<<<<Alum<<<<” obtuvo en el examen

➥”<<<<Exam<<<<”:”

<<<<ObjArreBidi.RegresaDato(Alum–1, Exam–1);

bbrreeaakk;;

}}

ccaassee 6: {{

ccoouutt<<<<”\n\n Ingrese el número del examen:”;

cciinn>>>>Exam;

ccoouutt<<<<”\n\nMáxima calificación del examen ”<<<<Exam<<<<” ”

<<<<ObjArreBidi.MaximoColumna(Exam–1);

bbrreeaakk;;

}}

160 Capítulo 4. Arreglos

ccaassee 7: {{

ccoouutt<<<<”\n\n Ingrese el número del examen:”;

cciinn>>>>Exam;

ccoouutt<<<<”\n\nMínima calificación del examen

➥”<<<<Exam<<<<” ”

<<<<ObjArreBidi.MinimoColumna(Exam–1);

bbrreeaakk;;

}}

ccaassee 8: {{

ccoouutt<<<<”\n\n Ingrese el número del alumno:”;

cciinn>>>>Alum;

ccoouutt<<<<”\n\nMáxima calificación del alumno

➥”<<<<Alum<<<<” ”

<<<<ObjArreBidi.MaximoRenglon(Alum–1);

bbrreeaakk;;

}}

ccaassee 9: {{

ccoouutt<<<<”\n\n Ingrese el número del alumno:”;

cciinn>>>>Alum;

ccoouutt<<<<”\n\nMínima calificación del alumno

➥”<<<<Alum<<<<” ”

<<<<ObjArreBidi.MinimoRenglon(Alum–1);

bbrreeaakk;;

}}

}}

Opc= Menu();

}}

}}

El programa 4.7 presentó la plantilla de la clase y el programa 4.8, un ejemplo de
aplicación donde se hace uso de un objeto, instancia de dicha clase. La plantilla
definida pretende ser una guía, sin embargo, podría incluir más métodos que faci-
liten la operación con los datos almacenados. Por ejemplo, se podrían definir
unos que permitan conocer el valor de los atributos privados NumRen y NumCol.

4.6 Arreglos de objetos
El tipo de dato usado para declarar un objeto de la clase arreglo, puede a su vez
ser una clase. Es decir, cada componente (o casilla) del arreglo será un objeto, y
por lo tanto, el constructor se invoca para cada uno de ellos. Para que esto sea
posible, la clase debe contar con un constructor por omisión o con un cons-

4.6 Arreglos de objetos 161

4

tructor con parámetros predeterminados. Si sólo tuviera un constructor con pará-
metros, se le deben proveer los mismos para cada celda, o provocaría un error.
Por ejemplo, tomando la clase Fecha, definida anteriormente, si se quisiera decla-
rar un arreglo de objetos de este tipo, usando un constructor con parámetros se
debería hacer:

Fecha MesEnero[31] = {{ Fecha(1,1,2001), Fecha(2,1,2001),

…, Fecha(31,1,2001)}};

En este caso sería necesario darle los 31 valores, para que con cada uno se cree e
inicialice cada uno de los 31 objetos asignados a las respectivas casillas del arreglo.
Con la notación MesEnero[Indice] se hace referencia al contenido de la casilla
indicada por el valor de la variable Indice. Dicha casilla es un objeto, por lo que
para manipularlo se tendrá en cuenta todo lo que se dijo acerca de los mismos.

A continuación se presenta el segmento de un programa que hace uso de un arre-
glo de objetos. No se utilizan las plantillas previamente declaradas ya que exige
el uso de sobrecarga de operadores. Este último caso, se ejemplifica en el progra-
ma 4.11.

Programa 4.9

/* La clase Fecha contiene los atributos privados Día, Mes y Año. Además

➥tiene dos constructores y un método para imprimir los valores de los

➥atributos. */

ccllaassss Fecha

{{

pprriivvaattee::

iinntt Dia, Mes, Anio;

ppuubblliicc::

Fecha(iinntt, iinntt , iinntt);

Fecha();

vvooiidd ImprimeFecha();

}};

/* Definición del método constructor con parámetros. */

Fecha::::Fecha (iinntt D, iinntt M, iinntt A):: Dia(D),Mes(M), Anio(A)

{{}}

/* Definición del método constructor por omisión. */

Fecha::::Fecha ()

{{}}

162 Capítulo 4. Arreglos

/* Método que despliega los valores de los atributos de una fecha. */

vvooiidd Fecha::::ImprimeFecha ()

{{

ccoouutt<<<< ”\nDía: ” <<<< Dia <<<< ”\tMes: ” <<<< Mes <<<< ”\tAño: ” <<<< Anio;

}}

/* Función que usa un arreglo de objetos tipo Fecha. */

vvooiidd UsaArregloObjetos ()

{{

iinntt Indice;

/* Se declara un arreglo de 3 objetos de tipo Fecha, usando el

➥constructor por omisión. */

Fecha Cumpleanios[3];

/* Se declaran 3 objetos de tipo Fecha, usando el constructor con

➥parámetros. */

Fecha Cumple_Franco(18, 9, 2005);

Fecha Cumple_Monica(12, 4, 2005);

Fecha Cumple_Rodrigo(25, 11, 2005);

/* Se declara e inicializa un arreglo de 2 objetos de tipo Fecha. */

Fecha DiasFestivos[2]= {{Fecha (21, 3, 2005), Fecha (1, 5, 2005)}};

/* Se asignan valores (objetos) a las casillas del arreglo. */

Cumpleanios[0]= Cumple_Franco;

Cumpleanios[1]= Cumple_Monica;

Cumpleanios[2]= Cumple_Rodrigo;

/* Impresión del contenido de los arreglos. */

ffoorr (Indice= 0; Indice << 3; Indice++++)

Cumpleanios[Indice].ImprimeFecha();

ffoorr (Indice= 0; Indice << 2; Indice++++)

DiasFestivos[Indice].ImprimeFecha();

}}

En el ejemplo anterior, al declarar el arreglo Cumpleanios, se utilizó el constructor
por omisión de la clase Fecha. Por lo tanto, en cada una de las casillas del arreglo
se creó un objeto cuyos atributos quedaron indeterminados. Por su parte, en el
arreglo DiasFestivos, se usó (de la clase Fecha) el constructor con parámetros.
Como consecuencia, cada una de sus casillas almacena un objeto cuyos atributos
están instanciados con los valores proporcionados al constructor. Las variables
Cumpleanio y DiasFestivos son arreglos, por lo tanto para tener acceso a cada uno
de sus elementos se usa un índice. Una vez que se hace referencia a uno de ellos,

4.6 Arreglos de objetos 163

4

/* Se declara la clase Cliente la cual define un cliente por medio de

➥los atributos: Nombre, Dirección, Teléfono, Saldo, Tipo de Cuenta y

➥Número de Cuenta, y de algunos métodos que permiten el manejo de los

➥mismos. Para la clase Cliente se definieron dos métodos constructores,

➥uno de los cuales es por omisión. Asimismo, se desarrolla una pequeña

➥aplicación que hace uso de la clase definida. */

ccllaassss Cliente

{{

pprriivvaattee::

cchhaarr Nombre[64], Direccion[32], Telefono[10];

ffllooaatt Saldo;

iinntt TipoDeCuenta, NumDeCuenta;

ppuubblliicc::

Cliente();

Cliente(cchhaarr [],cchhaarr [], cchhaarr [], ffllooaatt, iinntt , iinntt);

ffllooaatt ObtenerSaldo();

vvooiidd ImprimeDatos();

cchhaarr ObtenerTipoCta();

vvooiidd HacerRetiro(ffllooaatt);

vvooiidd HacerDeposito(ffllooaatt);

}};

/* Definición del método constructor por omisión. */

Cliente::::Cliente()

{{ }}

/* Definición del método constructor con parámetros. */

Cliente::::Cliente(cchhaarr Nom[],cchhaarr Dir[], cchhaarr Tel[], ffllooaatt Sal, iinntt

➥TCta, iinntt NoCta)

{{

ssttrrccppyy(Nombre, Nom);

ssttrrccppyy(Direccion, Dir);

ssttrrccppyy(Telefono, Tel);

Saldo= Sal;

TipoDeCuenta= TCta;

NumDeCuenta= NoCta;

}}

como éste es un objeto, se deben usar los métodos propios de dicho objeto para
tener acceso a sus miembros.

A continuación se presenta otro ejemplo de arreglo de objetos. Se define una cla-
se y posteriormente un arreglo de objetos de dicha clase para ejemplificar el uso
del concepto estudiado.

Programa 4.10

164 Capítulo 4. Arreglos

/* Método que permite tener acceso, a usuarios externos a la clase, al

➥saldo de un cliente. */

ffllooaatt Cliente::::ObtenerSaldo()

{{

rreettuurrnn Saldo;

}}

/* Método que despliega en pantalla los atributos de un cliente. */

vvooiidd Cliente::::ImprimeDatos()

{{

ccoouutt<<<< ”Nombre: ” <<<< Nombre <<<< ‘\\nn’;

ccoouutt<<<< ”Dirección: ” <<<< Direccion <<<< ‘\\nn’’;

ccoouutt<<<< ”Teléfono: ” <<<< Telefono <<<< ‘‘\\nn’’;

ccoouutt<<<< ”Saldo: ” <<<< Saldo <<<< ‘‘\\nn’’;

ccoouutt<<<< ”Tipo de Cuenta: ” <<<< TipoDeCuenta <<<< ‘‘\\nn’’;

ccoouutt<<<< ”Número de Cuenta: ” <<<< NumDeCuenta <<<< ‘‘\\nn’’;

}}

/* Método que permite tener acceso, a usuarios externos a la clase, al

➥tipo de cuenta de un cliente. */

iinntt Cliente::::ObtenerTipoCta()

{{

rreettuurrnn TipoDeCuenta;

}}

/* Método que permite tener acceso, a usuarios externos a la clase, al

➥número de cuenta de un cliente. */

iinntt Cliente::::ObtenerNumCta()

{{

rreettuurrnn NumDeCuenta;

}}

/* Método para registrar un retiro de una cuenta del cliente. El método

➥verifica que el saldo de la cuenta sea mayor o igual al monto que va

➥a retirar. Si se cumple esta condición, actualiza el saldo. En caso

➥contrario, imprime un mensaje. */

vvooiidd Cliente::::HacerRetiro(ffllooaatt Monto)

{{

iiff ((Saldo – Monto) << 0)

ccoouutt<<<< ”No se puede hacer el retiro.\n ”;

eellssee

Saldo= Saldo – Monto;

}}

/* Método que registra un depósito a la cuenta del cliente. Actualiza el

➥saldo. */

vvooiidd Cliente::::HacerDeposito(ffllooaatt Monto)

{{

Saldo= Saldo + Monto;

}}

4.6 Arreglos de objetos 165

4

/* Función que usa un arreglo de objetos tipo Cliente. Se realizan

➥algunas operaciones en las cuentas de los clientes de dos bancos. */

vvooiidd UsaArregloObjetos ()

{{

iinntt Indice, TipoC, NumC;

ffllooaatt Saldo, Monto;

cchhaarr Nom[64], Direc[64], Telef[64];

/* Declaración de dos arreglos de 100 objetos de tipo Cliente. Se

➥hace uso del constructor por omisión. */

Cliente ClientesBanco1[100];

Cliente ClientesBanco2[100];

/* Se crean tres objetos de tipo Cliente usando el constructor con

➥parámetros. */

Cliente ObjCli1(”Laura”, ”Insurgentes 2564”, ”55559900”, 28000, 2, 2509);

Cliente ObjCli2(”Juan”, ”Reforma 3600”, ”55408881”, 4000, 1, 8324);

Cliente ObjCli3(”Tomas”, ”Tlalpan 1005”, ”56703311”, 20000, 2, 7604);

/* Asignación de objetos al arreglo correspondiente al primer banco. */

ClientesBanco1[0]= ObjCli1;

ClientesBanco1[1]= ObjCli2;

ClientesBanco1[2]= ObjCli3;

/* Impresión de los datos correspondientes a los clientes del primer

➥banco. */

ffoorr (Indice= 0; Indice << 3; Indice++++)

ClientesBanco1[Indice].ImprimeDatos();

/* Lectura de los datos de los clientes del segundo banco. Primero se

➥leerán valores para cada uno de los atributos definidos en la clase

➥Cliente. Posteriormente se creará un objeto usando el método cons-

➥tructor con parámetros y finalmente se asignará dicho objeto a una

➥casilla del arreglo. Estos pasos se repiten para cada cliente. */

ffoorr (Indice= 0; Indice << 20; Indice++++)

{{

ccoouutt<<<<”\n\nIngrese datos del cliente: ”<<<<Indice+1<<<<\n\n”;

cciinn>>>>Nom>>>>Direc>>>>Telef>>>>Saldo>>>>TipoC>>>>NumC;

Cliente ObjCli (Nom, Direc, Telef, Saldo, TipoC, NumC) ;

ClientesBanco2[Indice]= ObjCli;

}}

/* Registro de un retiro de $1000 de la cuenta del tercer cliente del

➥segundo banco. */

ClientesBanco2[2].HacerRetiro(1000);

/* Impresión de los datos de todos los clientes que tienen un saldo

➥mayor a $10000. */

166 Capítulo 4. Arreglos

ccoouutt<<<<”\nReporte de clientes con saldo superior a $10000\n”;

ffoorr (Indice= 0; Indice << 20; Indice++++)

iiff (ClientesBanco2[Indice].ObtenerSaldo() >> 10000)

ClientesBanco2[Indice].ImprimeDatos();

/* Registro de un depósito a cierta cuenta. El número de cuenta y el

➥monto son dados por el usuario. */

ccoouutt<<<<”\n\nIngrese el número de cuenta a la cual va a depositar y el

➥monto del depósito \n”;

cciinn>>>>NumC>>>>Monto;

/* Se aplica búsqueda secuencial para buscar el cliente con el número

➥de cuenta dado. */

Indice= 0;

wwhhiillee (Indice << 20 &&&& NumC !!== ClientesBanco2[Indice].ObtenerNumCta())

Indice++++;

iiff (Indice << 20)

ClientesBanco2[Indice].HacerDeposito(Monto);

eellssee

ccoouutt<<<<”\nNo está registrado ningún cliente con el número de

➥cuenta dado. \n”;

}}

En los programas anteriores se presentaron algunas aplicaciones sencillas de arre-
glos de objetos. Es importante señalar, que la captura de los datos de cada uno de los
clientes puede hacerse de manera directa usando sobrecarga en la operación de lec-
tura (cin), tal como se vio en el capítulo anterior. Por otra parte, si se usa sobrecarga
en la operación de escritura (cout) se podrá omitir el método ImprimeDatos.

El programa 4.11 presenta otro ejemplo de arreglos de objetos. En este caso se
usó la plantilla de arreglos desordenados (ver el programa 4.1) para declarar un
arreglo de objetos de la clase Dinos. Para mayor claridad se incluye la definición
de la clase Dinos.

Programa 4.11

/* Se define la clase Dinos la cual se usa como base para declarar el

➥tipo de datos de un arreglo. En la biblioteca “ArreDesor.h” se incluye

➥la plantilla de la clase de arreglos desordenados presentada en el

➥programa 4.1. La aplicación permite leer los elementos del arreglo, dar

➥de alta nuevos dinosaurios, dar de baja dinosaurios registrados e

➥imprimir todos los datos de los mismos. */

4.6 Arreglos de objetos 167

4

##ddeeffiinnee MAX 100

##iinncclluuddee ”ArreDesor.h”

/* Definición de la clase Dinos. Se sobrecargan operadores para que los

➥objetos de esta clase puedan utilizarse directamente en los métodos de

➥los arreglos. */

ccllaassss Dinos

{{

pprriivvaattee::

iinntt Clave;

cchhaarr Nombre[MAX], Alimen[MAX], Periodo[MAX], Region[MAX];

ppuubblliicc::

Dinos();

Dinos(iinntt , cchhaarr [], cchhaarr [],cchhaarr [],cchhaarr []);

iinntt ooppeerraattoorr!!== (Dinos);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>> ((iissttrreeaamm &&,, Dinos &&));

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<< ((oossttrreeaamm &&,, Dinos &&));

}};

/* Definición del método constructor por omisión. */

Dinos::::Dinos()

{{}}

/* Definición del método constructor con parámetros. */

Dinos::::Dinos(iinntt Cla, cchhaarr Nom[], cchhaarr Ali[],cchhaarr Per[],cchhaarr Reg[])

{{

Clave= Cla;

ssttrrccppyy(Nombre, Nom);

ssttrrccppyy(Alimen, Ali);

ssttrrccppyy(Periodo, Per);

ssttrrccppyy(Region, Reg);

}}

/* Sobrecarga del operador !!== para comparar objetos de tipo Dinos.

➥De esta forma el método de búsqueda en arreglos puede aplicarse también

➥a objetos de este tipo. */

iinntt Dinos::::ooppeerraattoorr!!== (Dinos ObjD)

{{

iiff ((Clave !!== ObjD.Clave) | | (ssttrrccmmpp(Nombre, ObjD.Nombre) !!== 0) | |
(ssttrrccmmpp(Alimen, ObjD.Alimen) !!== 0) | | (ssttrrccmmpp(Periodo,

➥ObjD.Periodo) !!== 0) | |
(ssttrrccmmpp(Region, ObjD.Region) !!== 0))

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

168 Capítulo 4. Arreglos

/* Sobrecarga del operador >>>> para permitir la lectura directa de

➥objetos de tipo Dinos. De esta forma, el método Lectura de la clase

➥Arreglo puede ser usado con objetos de este tipo. */

iissttrreeaamm &&ooppeerraattoorr>>>> ((iissttrreeaamm &&Lee, Dinos &&ObjDino))

{{

ccoouutt<<<<”\n\nIngrese clave del dinosaurio: ”;

Lee>>>> ObjDino.Clave;

ccoouutt<<<<”\n\nIngrese nombre del dinosaurio: ”;

Lee>>>> ObjDino.Nombre;

ccoouutt<<<<”\n\nIngrese tipo de alimentación del dinosaurio: ”;

Lee>>>> ObjDino.Alimen;

ccoouutt<<<<”\n\nIngrese periodo en el que vivió el dinosaurio: ”;

Lee>>>> ObjDino.Periodo;

ccoouutt<<<<”\n\nIngrese región en la que vivió el dinosaurio: ”;

Lee>>>> ObjDino.Region;

rreettuurrnn Lee;

}}

/* Sobrecarga del operador <<<< para permitir la impresión directa de

➥objetos de tipo Dinos. De esta forma, el método Escribe de la clase

➥Arreglo puede ser usado con objetos de este tipo. */

oossttrreeaamm &&ooppeerraattoorr<<<< ((oossttrreeaamm &&Escribe, Dinos &&ObjDino))

{{

Escribe<<<<”\n\nDatos del dinosaurio\n”;

Escribe<<<<”\nClave: ”<<<<ObjDino.Clave;

Escribe<<<<”\nNombre: ”<<<<ObjDino.Nombre;

Escribe<<<<”\nAlimentación: ”<<<<ObjDino.Alimen;

Escribe<<<<”\nPeriodo: ”<<<<ObjDino.Periodo;

Escribe<<<<”\nRegión: ”<<<<ObjDino.Region;

rreettuurrnn Escribe;

}}

/* Se define la clase Menu que permite desplegar al usuario las opciones

➥de trabajo de la aplicación. */

ccllaassss Menu

{{

ppuubblliicc::

Menu();

iinntt Despliega();

}};

/* Definición del método constructor. */

Menu::::Menu()

{{}}

4.6 Arreglos de objetos 169

4

/* Definición del método que muestra las opciones de trabajo. */

iinntt Menu::::Despliega()

{{

iinntt Opc;

ddoo {{

ccoouutt<<<<”\n\nBienvenido al sistema del Museo de los

➥Dinosaurios\n\n”;

ccoouutt<<<<”\nQué desea hacer?\n”;

ccoouutt<<<<”\n 1-Registrar un nuevo dinosaurio. ”;

ccoouutt<<<<”\n 2-Dar de baja un dinosaurio.”;

ccoouutt<<<<”\n 3-Obtener un listado de todos los dinosaurios

➥registrados. ”;

ccoouutt<<<<”\n 4-Terminar.\n”;

ccoouutt<<<<”\n\nIngrese la opción elegida: ”;

cciinn>>>>Opc;

}} wwhhiillee (Opc << 1 | | Opc >> 4);

rreettuurrnn Opc;

}}

/* Función principal que hace uso de la plantilla del arreglo y de las

➥clases. La aplicación permite al usuario almacenar los datos de varios

➥dinosaurios, dar de alta/baja dinosaurios e imprimir los datos de los

➥mismos. */

vvooiidd mmaaiinn (())

{{

Arreglo<<Dinos>> Parque;

Dinos ObjDino;

Menu Opciones;

iinntt Opc, Res;

/* Se lee el total de dinosaurios a almacenar y los datos de cada uno

➥de ellos por medio del método Lectura. Para que dicho método pueda

➥ser usado es necesaria la sobrecarga del operador >>>> en la clase

➥Dinos. */

Parque.Lectura();

Opc= Opciones.Despliega();

wwhhiillee (Opc>>== 1 &&&& Opc <<== 3)

{{

sswwiittcchh (Opc)

{{

/* Se da de alta un dinosaurio si el arreglo tiene espacio y

➥si no se repiten los datos del dinosaurio. Se usa la sobre-

➥carga del operador >>>>. */

ccaassee 1: {{

cciinn>>>>ObjDino;

Res= Parque.InsertaDesordenado(ObjDino);

iiff (Res ==== 1)

ccoouutt<<<<”\n\nDinosaurio registrado.\n”;

En el programa 4.11, para usar la plantilla de la clase arreglos fue necesario so-
brecargar algunos operadores para que los métodos definidos pudieran aplicarse a
objetos. Es decir, la sobrecarga debe hacerse en la clase que se usará como tipo
base. En el ejemplo, al sobrecargar el operador de desigualdad != y los operado-
res << y >> en la clase Dinos, se logró que los métodos Lectura, Escribe y Busca
de la clase Arreglo se pudieran usar indistintamente con números (programa 4.2)
y con objetos (programa 4.11).

170 Capítulo 4. Arreglos

eellssee

iiff (Res ==== 0)

ccoouutt<<<<”\n\nNo se tiene espacio para

➥registrar nuevos dinos.\n”;

eellssee

ccoouutt<<<<”\n\nEse dinosaurio ya fue registrado

➥previamente. \n”;

bbrreeaakk;;

}}

/* Se elimina un dinosaurio si el arreglo no está vacío y si

➥el dinosaurio dado como dato fue registrado previamente. Se

➥usa la sobrecarga del operador >>>>. */

ccaassee 2: {{

cciinn>>>>ObjDino;

Res= Parque.EliminaDesordenado(ObjDino);

iiff (Res ==== 1)

ccoouutt<<<<”\n\nDinosaurio eliminado.\n”;

eellssee

iiff (Res ==== 0)

ccoouutt<<<<”\n\nNo se tiene registrado ningún

➥dinosaurio.\n”;

eellssee

ccoouutt<<<<”\n\nEse dinosaurio no fue

➥registrado. \n”;

bbrreeaakk;;

}}

/* Se despliegan en pantalla todos los datos de los

➥dinosaurios almacenados en el arreglo por medio del método

➥Escribe. Para que dicho método pueda ser usado es necesaria

➥la sobrecarga del operador <<<< en la clase Dinos. */

ccaassee 3: {{

Parque.Escribe();

bbrreeaakk;;

}}

}}

Opc= Opciones.Despliega();

}}

}}

4.7 Casos especiales de arreglos
Se tienen algunos casos especiales de arreglos según la cantidad y distribución de
sus componentes. Los casos más estudiados son: matrices poco densas y matrices
triangulares.

4.7.1 Matrices poco densas

Las matrices poco densas son aquellas en las cuales gran parte de sus elementos
son cero o vacío (cualquier representación que indique la ausencia de datos), este
último valor para arreglos que no sean numéricos. La figura 4.10 presenta un
ejemplo de este tipo de arreglos. Como se puede observar, en este arreglo, casi el
80% de sus elementos son ceros.

4.7 Casos especiales de arreglos 171

4
9

7

0

0

0

0

0

0

10

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

8

0

0

0

0

5

0

0

0

1

0

3

0

0

9

0

0

0

0

0

3

0

0

0

0

0

7

0

0

0

0

2

0

0

0

0

0

8

Matriz poco densa

FIGURA 4.10 Ejemplo de matriz poco densa

Cuando se trata de arreglos muy grandes, resulta conveniente ahorrar espacio de
memoria almacenando en un arreglo unidimensional sólo aquellos valores que no
sean ceros. Para cada uno de ellos se debe guardar, además del dato, la posición
(renglón y columna) que le corresponde en la matriz original. Para ello se va a
definir una clase que represente cada uno de los elementos de la matriz que se
desea guardar. La figura 4.11 muestra la clase Componente en la cual se incluyeron
como atributos dos enteros y un dato de tipo T para almacenar el renglón, la colum-
na y el valor distinto de cero respectivamente.

A continuación se presenta la codificación, usando el lenguaje C++, de la planti-
lla de la figura 4.11.

172 Capítulo 4. Arreglos

FIGURA 4.11 Clase Componente

Componente(T)

Ren, Col: int

Dato: T

Métodos de acceso y
actualización.

/* Prototipo de la clase MatPocoDen para poder declararla como amiga

➥de la clase Componente, y de esta forma darle acceso a los miembros

➥privados de esta última. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss MatPocoDen;

/* Definición de la plantilla de clase que representa cada uno de los

➥elementos distintos de cero de la matriz poco densa. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Componente

{{

pprriivvaattee::

TT Dato;

iinntt Ren, Col;

ppuubblliicc::

Componente();

Componente(TT, iinntt , iinntt);

ffrriieenndd ccllaassss MatPocoDen<<TT>>;

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&, Componente &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<<(oossttrreeaamm &&, Componente &&);

}};

/* Declaración del método constructor por omisión. */

tteemmppllaattee <<ccllaassss TT>>

Componente<<TT>>::::Componente()

{{}}

/* Declaración del método constructor con parámetros. */

4.7 Casos especiales de arreglos 173

4

tteemmppllaattee <<ccllaassss TT>>

Componente<<TT>>::::Componente(TT Valor, iinntt Re, iinntt Co)

{{

Dato= Valor;

Ren= Re;

Col= Co;

}}

/* Declaración de la función amiga que sobrecarga el operador >>>>. */

tteemmppllaattee <<ccllaassss TT>>

iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Componente<<TT>> &&Com)

{{

ccoouutt<<<<”\n\nIngrese el valor: ”;

Lee>>>>Com.Dato;

ccoouutt<<<<”\n\nIngrese el número del renglón que le corresponde: ”;

Lee>>>>Com.Ren;

ccoouutt<<<<”\n\nIngrese el número de la columna que le corresponde: ”;

Lee>>>>Com.Col;

rreettuurrnn Lee;

}}

/* Declaración de la función amiga que sobrecarga el operador <<<<. */

tteemmppllaattee <<ccllaassss TT>>

oossttrreeaamm &&ooppeerraattoorr<<<<(oossttrreeaamm &&Escribe, Componente<<TT>> &&Com)

{{

Escribe<<<<Com.Dato<<<<” ”;

rreettuurrnn Escribe;

}}

A partir de esta clase, se define la correspondiente a la matriz poco densa. Ésta se
representa por medio de un arreglo unidimensional y por dos números enteros, que
almacenan el total de renglones y de columnas de la matriz original. Como esta cla-
se fue declarada amiga de la anterior podrá usar directamente sus miembros priva-
dos. El programa 4.12 presenta esta plantilla y una aplicación de la misma.

Programa 4.12

/* Plantilla de la clase correspondiente a una matriz poco densa,

➥almacenada por medio de un arreglo unidimensional de objetos. Los

➥atributos son la colección de componentes formados por el valor diferente

➥de cero, el renglón y la columna que le corresponden en la matriz

➥original. Además, se guardan el total de renglones y de columnas que

➥tiene la matriz original y el total de elementos diferentes de cero.*/

174 Capítulo 4. Arreglos

tteemmppllaattee <<ccllaassss TT>>

ccllaassss MatPocoDen

{{

pprriivvaattee::

Componente<<TT>> Valores[MAX];

iinntt TotRen, TotCol, TotVal;

ppuubblliicc::

MatPocoDen();

vvooiidd Lectura();

vvooiidd Imprime();

}};

/* Declaración del método constructor por omisión. */

tteemmppllaattee <<ccllaassss TT>>

MatPocoDen<<TT>>::::MatPocoDen()

{{

TotVal= 0;

}}

/* Método que lee los datos de la matriz que son distintos de cero,

➥junto con el renglón y la columna que le corresponde en la matriz

➥original. Los valores leídos se van guardando en un arreglo

➥unidimensional. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MatPocoDen<<TT>>::::Lectura()

{{

iinntt IndRen, IndCol, Resp;

TT Dato;

DDoo {{

ccoouutt<<<<”\n\nIngrese total de renglones y columnas de la matriz\n”;

cciinn>>>>TotRen>>>>TotCol;

}} wwhhiillee (TotRen <<== 0 | | TotCol <<== 0);

ccoouutt<<<<”\n\nIngrese 1 si desea capturar datos, 0 para terminar. \n”;

cciinn>>>>Resp;

wwhhiillee (Resp)

{{

ccoouutt<<<<”\n\nIngrese los datos diferentes de 0 (o vacío).\n”;

cciinn>>>>Dato;

ddoo {{

ccoouutt<<<<”\nQué renglón le corresponde – de 0 a ”<<<<TotRen<<<<”: ”;

cciinn>>>>IndRen;

}} wwhhiillee (IndRen << 0 | | IndRen >>== TotRen);

ddoo {{

ccoouutt<<<<”\nQué columna le corresponde – de 0 a ”<<<<TotCol<<<<”: ”;

cciinn>>>>IndCol;

4.7 Casos especiales de arreglos 175

4

}} wwhhiillee (IndCol << 0 | | IndCol >>== TotCol);

Componente<<TT>> Elemento(Dato, IndRen, IndCol);

Valores[TotVal]= Elemento;

TotVal++++;

ccoouutt<<<<”\n\nIngrese 1 si desea capturar más datos, 0 para

➥terminar. \n”;

cciinn>>>>Resp;

}}

}}

/* Método que despliega en pantalla los valores diferentes de cero de la

➥matriz poco densa. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MatPocoDen<<TT>>::::Imprime()

{{

iinntt Indice;

ccoouutt<<<<”\n\nValores almacenados\n\n”;

ffoorr (Indice= 0; Indice << TotVal; Indice++++)

ccoouutt<<<<Valores[Indice]<<<<” ”;

ccoouutt<<<<”\n\n\n”;

}}

/* Función principal en la que se hace uso de las clases definidas para

➥la representación de la matriz poco densa. */

vvooiidd main()

{{

MatPocoDen<iinntt>> Matriz1;

Matriz1.Lectura();

Matriz1.Imprime();

MatPocoDen<<Arbol>> Matriz2;

Matriz2.Lectura();

Matriz2.Imprime();

}}

En la aplicación, se muestra el uso de la plantilla. En la declaración del objeto
Matriz2 se utilizó otra clase para darle valor a T. El uso de la clase Arbol pre-
supone que en la misma se sobrecargaron los operadores << y >>, para que los
métodos de lectura e impresión puedan hacer uso de cin y de cout (ver en el
capítulo anterior el programa 3.2).

Sobre este arreglo se pueden realizar operaciones como las que se analizaron
en la sección de arreglos bidimensionales, pero requieren ciertas adaptaciones.
A continuación se presenta el método que suma los elementos de un renglón.

En el método presentado se recorren todos los valores guardados en el arreglo
unidimensional y se suman aquellos que corresponden al renglón deseado.

El siguiente método encuentra el valor más grande de una cierta columna. Tanto
en el método anterior como en éste, si se estuviera trabajando con objetos, en lu-
gar de números, se deberían sobrecargar los operadores > y + en la clase corres-
pondiente. Observe que las operaciones resultan ser menos claras que si se
trataran como arreglos bidimensionales.

176 Capítulo 4. Arreglos

/* Método que realiza la suma de los elementos de un renglón de una

➥matriz poco densa almacenada en un arreglo unidimensional. Recibe como

➥parámetro el renglón a sumar y da como resultado la suma del mismo. */

tteemmppllaattee <<ccllaassss TT>>

TT MatPocoDen<<TT>>::::SumaRen(iinntt Renglon)

{{

TT Suma= 0;

iinntt Indice;

ffoorr (Indice= 0; Indice << TotVal; Indice++++)

iiff (Valores[Indice].Ren ==== Renglon)

Suma= Suma + Valores[Indice].Dato;

rreettuurrnn Suma;

}}

/* Método que encuentra el valor más grande de una columna de una matriz

➥poco densa almacenada en un arreglo unidimensional. Recibe el número de

➥la columna que interesa y regresa el máximo elemento de dicha columna. */

tteemmppllaattee <<ccllaassss TT>>

TT MatPocoDen<<TT>>::::MaxCol(iinntt Colum)

{{

TT Maximo;

iinntt Indice, Band=1;

ffoorr (Indice= 0; Indice << TotVal; Indice++++)

iiff (Valores[Indice].Col ==== Colum &&&& Band)

{{

Maximo= Valores[Indice].Dato;

Band= 0;

}}

eellssee

iiff (Valores[Indice].Col ==== Colum &&&&

➥Valores[Indice].Dato >> Maximo)

Maximo= Valores[Indice].Dato;

rreettuurrnn Maximo;

}}

4.7.2 Matrices triangulares

Las matrices triangulares son matrices cuadradas (N renglones × N columnas)
que guardan información sólo en las casillas que están de la diagonal principal
hacia arriba o hacia abajo, incluyendo la diagonal. Según el caso, reciben el
nombre de matriz triangular superior o matriz triangular inferior.

La figura 4.12 presenta ejemplos de matrices triangulares superiores (a) e inferio-
res (b). Como se puede apreciar todos los elementos que están debajo o encima
de la diagonal principal son ceros (o vacíos). Por lo tanto, en matrices de gran
tamaño resulta conveniente (para ahorrar espacio de memoria) almacenar sólo los
valores distintos de cero, usando arreglos unidimensionales.

4.7 Casos especiales de arreglos 177

4

10 45 9

0 20 6

0 0 2

FIGURA 4.12 Ejemplo de matrices triangulares
(a) Matriz triangular superior, (b) Matriz triangular inferior

0

1

2

0 1 2

a)

11 0 0

33 18 0

41 9 2

0

1

2

0 1 2

b)

Matriz triangular superior

Una matriz de este tipo tendrá N + N – 1 + N – 2 + ... + 3 + 2 + 1 elementos
distintos de cero, lo cual puede expresarse como:

N * (N + 1)
––––––––––––––

2

(N—1) * N
–––––––––––––––

2

Por otra parte, habrá 0 + 1 + 2 + ... + N – 1 ceros en la matriz, lo cual puede
generalizarse como:

Dado un cierto renglón Ren, se tendrán:

178 Capítulo 4. Arreglos

ceros correspondientes a los (Ren – 1) renglones previos y N * (Ren – 1) ele-
mentos en total (ceros y distintos de cero).

Para poder recuperar los valores guardados en el arreglo, se sugiere utilizar la
fórmula que se presenta a continuación. Considere que C++ enumera los renglo-
nes de 0 a (N – 1), el total de elementos guardados antes del renglón Ren, se
calcula como Ren * N.

(Ren—1) * Ren
––––––––––––––––––––

2

Posición (Dato[Ren][Col] = N * Ren—(Ren—1) * Ren + (Col—Ren)

2

El primer término hace referencia al total de elementos almacenados antes del
renglón Ren. A esta cantidad se le resta el total de ceros de dichos renglones y se
le suma el número que corresponde al desplazamiento dentro del mismo renglón.

Dado el arreglo de la figura 4.13, almacenado en un arreglo unidimensional como
el que aparece en la figura 4.14, se aplica la fórmula vista para recuperar sus ele-
mentos. Por ejemplo:

Posición (Dato[0][0])= 4 * 0 – ((0 – 1) * 0) / 2) + (0 – 0)= 0

El 25 se guardó en la casilla 0.

Posición (Dato[1][3])= 4 * 1 – ((1 – 1) * 1) / 2)+ (3 – 1)= 6

El 63 se guardó en la casilla 6.

Posición (Dato[2][2])= 4 * 2 – ((2 – 1) * 2) / 2) + (2 – 2)= 7

El 43 se guardó en la casilla 7.

El programa 4.13 presenta una plantilla para la clase MatrizTrianSup, que incluye
como atributos la colección de elementos y el orden del arreglo cuadrado. Se de-
finieron como métodos el cálculo del total de elementos almacenados, así como
el cálculo de la posición en la que se encuentra cierto valor.

Programa 4.13

4.7 Casos especiales de arreglos 179

4

25 67 87 43

0 41 29 63

0 0 43 15

0 0 0 16

FIGURA 4.13 Matriz triangular superior

FIGURA 4.14 Representación lineal de la matriz triangular superior

0

1

2

3

0 1 2 3

25 67 87 43 41 29 63 43 15 16

0 1 2 3 4 5 6 7 8 9

/* Constante que define el máximo número de elementos que se pueden

➥almacenar en el arreglo unidimensional. */

##ddeeffiinnee MAX 50

/* Definición de la clase MatrizTrianSup. Sus atributos son un arreglo

➥unidimensional en el cual se guardarán los valores de la matriz

➥triangular superior y el orden de la misma. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss MatrizTrianSup

180 Capítulo 4. Arreglos

{{

pprriivvaattee::

TT Datos[MAX];

iinntt Dim;

ppuubblliicc::

MatrizTrianSup();

iinntt RegresaPosic(iinntt, iinntt);

iinntt TotalDatos();

vvooiidd Lectura();

vvooiidd ImprimeMatriz();

vvooiidd ImprimeDatos();

}};

/* Método constructor por omisión. */

tteemmppllaattee <<ccllaassss TT>>

MatrizTrianSup<<TT>>::::MatrizTrianSup()

{{}}

/* Método que calcula la posición que le corresponde a un elemento de la

➥matriz dentro del arreglo unidimensional en el cual fue guardado. */

tteemmppllaattee <<ccllaassss TT>>

iinntt MatrizTrianSup<<TT>>::::RegresaPosic(iinntt Ren, iinntt Col)

{{

rreettuurrnn (Dim * Ren – ((Ren – 1) * Ren) / 2 + (Col – Ren));

}}

/* Método que calcula el total de elementos guardados en el arreglo

➥unidimensional, que son los que estaban de la diagonal principal hacia

➥arriba. */

tteemmppllaattee <<ccllaassss TT>>

iinntt MatrizTrianSup<<TT>>::::TotalDatos()

{{

rreettuurrnn ((Dim * (Dim + 1)) / 2) ;

}}

/* Método que lee del teclado los valores para los atributos de la

➥clase. Al usuario sólo se le piden los valores que están en la diagonal

➥y arriba de ella. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MatrizTrianSup<<TT>>::::Lectura()

{{

iinntt Ren, Col, Indice= 0;

ddoo {{

ccoouutt<<<<”\n\nIngrese orden de la matriz triangular superior: ”;

cciinn>>>>Dim;

}} wwhhiillee (Dim >> MAX | | Dim << 0);

ffoorr (Ren= 0; Ren << Dim; Ren++++)

ffoorr (Col= Ren; Col << Dim; Col++++)

4.7 Casos especiales de arreglos 181

4

{{

ccoouutt<<<<”\n\nIngrese el elemento ”<<<<Ren+1<<<<” – ”<<<<Col+1<<<<” ”;

cciinn>>>>Datos[Indice];

Indice= Indice + 1;

}}

}}

/* Método que imprime los valores almacenados con forma de arreglo

➥bidimensional. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MatrizTrianSup<<TT>>::::ImprimeMatriz()

{{

iinntt Ren, Col, Indice;

ccoouutt<<<<”\n\nMatriz triangular superior\n\n”;

ffoorr (Ren= 0; Ren << Dim; Ren++++)

{{

ffoorr (Col= 0; Col << Dim; Col++++)

iiff (Ren <<== Col)

{{

Indice= RegresaPosic(Ren, Col);

ccoouutt<<<<Datos[Indice]<<<<” – ”;

}}

eellssee

ccoouutt<<<<”0 – ”;

ccoouutt<<<<”\n”;

}}

ccoouutt<<<<”\n\n”;

}}

/* Método que imprime sólo los valores almacenados. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MatrizTrianSup<<TT>>::::ImprimeDatos()

{{

iinntt Indice, TotElem;

TotElem= TotalDatos();

ccoouutt<<<<”\n\nElementos de la matriz triangular superior\n\n”;

ffoorr (Indice= 0; Indice << TotElem; Indice++++)

ccoouutt<<<<Datos[Indice]<<<<” ”;

ccoouutt<<<<”\n\n”;

}}

Matriz triangular inferior

Una matriz de este tipo tendrá 1 + 2 + 3 + ... + N elementos distintos de cero, lo
cual puede expresarse como:

N * (N + 1)
––––––––––––––––––

2

Para recuperar los valores guardados en el arreglo, se sugiere utilizar la fórmula
que se presenta a continuación. Dado que C++ enumera las casillas de 0 a (N – 1),
para usar esta fórmula, debe sumarle uno al renglón y a la columna. Por ejemplo,
si quiere recuperar el elemento (1, 1) debe darle a Ren y Col el valor de 2.

182 Capítulo 4. Arreglos

Posición (Dato[Ren][Col])= (Ren—1) * Ren + (Col—1)

2

Dado el arreglo de la figura 4.15, almacenado en un arreglo unidimensional como
el que aparece en la figura 4.16, se aplica la fórmula vista para recuperar sus ele-
mentos. Por ejemplo:

Posición (Dato[0][0])= ((1 – 1) * 1) / 2 + (1 – 1)= 0

El 25 se guardó en la casilla 0.

Posición (Dato[2][1])= ((3 – 1) * 3) / 2 + (2 – 1)= 4

El 45 se guardó en la casilla 4.

Posición (Dato[3][3])= ((4 – 1) * 4) / 2 + (4 – 1)= 9

El 16 se guardó en la casilla 9.

25 0 0 0

18 41 0 0

39 45 43 0

9 38 22 16

FIGURA 4.15 Matriz triangular inferior

0

1

2

3

0 1 2 3

La plantilla para la clase MatrizTrianInf es similar a la que se presentó en el pro-
grama 4.13, sólo cambia la forma de calcular la posición de un dato de la matriz
guardado en el arreglo unidimensional.

Ejercicios
1. Defina la clase ArregloEnteros. Determine los atributos y el conjunto de

métodos (lo más completo posible) que caracterizan al concepto arreglo
unidimensional de números enteros.

2. Utilice la clase definida en el ejercicio 1 para almacenar la edad de un gru-
po de N (1� N�30) alumnos. Una vez almacenados los datos, calcule e
imprima el promedio de edad del grupo, así como el total de alumnos con
una edad mayor al promedio.

a) El cálculo del promedio y el cálculo del total de alumnos con edad
mayor al promedio debe hacerse con métodos de la clase.

b) El cálculo del promedio y el cálculo del total de alumnos con edad
mayor al promedio NO puede hacerse con métodos de la clase. Utilice
alguno(s) de los conceptos vistos en los capítulos anteriores.

3. Escriba un programa que invierta el orden de los elementos de un objeto ti-
po arreglo. Tome como ejemplo el siguiente esquema. Para la declaración
del objeto puede usar alguna de las plantillas presentadas en este capítulo.
¿Requiere definir nuevos métodos? ¿Puede solucionar el problema de algu-
na otra forma?

Ejercicios 183

4

FIGURA 4.16 Representación lineal de la matriz triangular inferior

25 18 41 39 45 43 9 38 22 16

0 1 2 3 4 5 6 7 8 9

4. Escriba un programa que, utilizando la plantilla vista para arreglos desorde-
nados, almacene las calificaciones de un grupo de N (1� N � 80) alumnos.
Las calificaciones serán números reales comprendidos entre 0 y 10. A partir
de los datos guardados en el arreglo, su programa debe realizar las siguien-
tes operaciones. Puede agregar métodos a la plantilla de la clase arreglo, si
lo cree necesario.

a) Imprimir la calificación más alta, la más baja y el promedio de las
mismas.

b) Obtener e imprimir el total de calificaciones menores a 6.

c) Obtener e imprimir el total de calificaciones mayores a 8.5.

5. Utilice la plantilla de la clase Arreglo para definir un objeto arreglo de nú-
meros reales en el cual almacene los precios de N artículos. Escriba una
aplicación que permita encontrar e imprimir el precio más alto.

6. Defina la clase Arreglo usando plantillas y sobrecarga de operadores para
representar las operaciones de inserción (operador +) y de eliminación
(operador –).

7. Utilice la plantilla de la clase ArreParal definida en este capítulo para
declarar dos objetos: un arreglo de enteros y un arreglo de números reales.
El primero permitirá almacenar las claves de un grupo de N productos
(1� N � 30), ordenadas crecientemente, mientras que el segundo será para

184 Capítulo 4. Arreglos

12 23 45 … 98 104

0 1 N–1

Arreglo

104 98 0 … 23 12

0 1 N–1

Arreglo

guardar los precios de dichos productos. Escriba un programa en C++ que,
mediante un menú de opciones, permita al usuario:

a) Leer y validar el número de productos.

b) Leer la información correspondiente de cada uno de los N productos.

c) Dada la clave de un producto, poder actualizar su precio.

d) Dar de baja un producto.

e) Dar de alta un nuevo producto.

f) Imprimir las claves de todos los productos cuyos precios sean mayores
a uno dado como referencia por el usuario.

8. Se tienen 3 arreglos paralelos: el primero almacena las claves de 20 produc-
tos, ordenadas crecientemente; el segundo guarda la existencia de cada uno
de ellos, y el tercero almacena el precio de venta de los mismos. Escriba un
programa completo en C++ que permita:

a) Consultar: a.1) El producto con mayor existencia. a.2) El producto con
mayor precio de venta. En ambos casos el programa debe imprimir to-
dos los datos del producto que cumpla con la condición buscada.

b) Actualizar: b.1) La existencia de un producto (si se venden algunas
unidades o se compran más). Los datos de entrada son la clave del
producto, una clave de operación (para indicar si es venta o compra)
y la cantidad vendida/comprada. b.2) El precio de venta de un
producto. Los datos de entrada son la clave del producto y el nuevo
precio de venta.

c) Eliminar: un producto. El dato de entrada es la clave.

9. Se tienen 2 arreglos paralelos. El primero de ellos almacena las claves de N
(1� N�50) escuelas, ordenadas ascendentemente. En el segundo se alma-
cena, por escuela, el total de alumnos de preprimaria, primaria, secundaria y
preparatoria. Observe el siguiente esquema. La escuela, cuya clave está en
la casilla 0 del primer arreglo, tiene 624 alumnos en preprimaria, 1600
en primaria, 1260 en secundaria y 893 en preparatoria. Los totales de
alumnos, por nivel, de la segunda escuela ocuparán las casillas 4, 5, 6 y 7
del segundo arreglo, y así sucesivamente.

Ejercicios 185

4

Teniendo en cuenta estas especificaciones para guardar los datos, escriba un pro-
grama en C++ que:

a) Genere un reporte que imprima, de cada una de las escuelas, el total
de alumnos en cada una de las secciones y el total general de la escue-
la. El usuario podrá dar la clave de una escuela o pedir un listado de
todas las escuelas.

b) Calcule e imprima el total de alumnos de cualquiera de las 4 secciones,
considerando todas las escuelas. El usuario indicará la sección elegida.

c) Calcule e imprima el total de alumnos en cada una de las 4 secciones,
considerando todas las escuelas. Es decir, el total de alumnos en pre-
primaria, primaria, etcétera, tenga en cuenta las N escuelas. ¿Puede
reutilizar la solución del inciso b)?

d) Registre una nueva escuela. Los datos proporcionados por el usuario serán
la clave de la escuela y el número de alumnos en cada una de las 4 seccio-
nes. Si la escuela no tiene alguna de las secciones se ingresará un 0.

186 Capítulo 4. Arreglos

0

1

2

MAX–1

0

1

2

3

MAX*4 –1

Preprimaria

Primaria

Secundaria

Preparatoria

Clave escuelas Total alumnos

e) Elimine alguna de las escuelas. El dato proporcionado por el usuario
será la clave de la escuela.

f) Actualice los totales de alumnos en alguna sección (o en todas). El
dato proporcionado por el usuario será la clave de la escuela, la clave
de la sección (o secciones) y el nuevo número de alumnos.

10. Escriba un programa que sume dos objetos de tipo arreglos bidimensionales
de enteros. Utilice la plantilla de la clase arreglo bidimensional para decla-
rar los objetos. Modifíquela si lo cree necesario. El programa debe imprimir
el arreglo resultante.

C
MxN
= A

MxN
+ B

MxN

11. Escriba un programa que multiplique dos objetos de tipo arreglos bidimen-
sionales de números reales. Utilice la plantilla de la clase arreglo bidimensio-
nal para declarar los objetos. Modifíquela si lo cree necesario.

C
MxN
= A

MxN
* B

MxN

12. Escriba un programa que imprima los elementos de la diagonal principal de
un arreglo bidimensional. Utilice la plantilla de la clase arreglo bidimensio-
nal para declarar el objeto. Modifíquela si lo cree necesario.

13. Escriba un programa que sume los elementos de la diagonal principal de un
arreglo bidimensional de números reales. Utilice la plantilla de la clase arre-
glo bidimensional para declarar el objeto. Modifíquela si lo cree necesario.

14. Escriba un programa que obtenga la traspuesta de una matriz cuadrada
(arreglo bidimensional de N por N elementos). Por ejemplo, si la matriz da-
da es a), su traspuesta es b).

Ejercicios 187

4

10 –12 6

45 20 17

9 6 2

0

1

2

0 1 2

a) Matriz

10 45 9

–12 20 6

6 17 2

0

1

2

0 1 2

b) Traspuesta

15. Considerando las especificaciones (que aparecen más adelante) de las clases
Alumno y Arreglo escriba un programa completo en C++ que:

a) Lea el número de alumnos registrados en una cierta carrera y capture
los datos correspondientes a los mismos.

b) Obtenga e imprima el promedio de cada uno de los alumnos y el pro-
medio del grupo.

c) Dado un alumno y una nueva carrera registrar el cambio de carrera co-
rrespondiente. Se debe validar que dicho alumno haya sido almacena-
do previamente en el arreglo.

d) Imprimir todos los datos de aquellos alumnos que lleven más de 25
materias aprobadas.

e) Dar de baja de la carrera a aquellos alumnos que hayan completado
igual (o mayor) número de materias reprobadas que aprobadas.

f) Dar de alta un alumno nuevo.

188 Capítulo 4. Arreglos

Alumno

Nombre: cadena de caracteres

Carrera: cadena de caracteres

Número de materias aprobadas: entero

Calificaciones obtenidas en materias aprobadas: arreglo de
enteros (de máximo 60 valores)

Total de materias reprobadas: entero

Constructor(es)

Lectura

Calcula promedio del alumno

Cambia de carrera

Imprime datos

16. Defina la clase SocioClub según las especificaciones que se dan más adelan-
te. Utilice alguna de las plantillas previamente definidas para declarar un
arreglo de objetos de la clase SocioClub. Escriba un programa en C++, que
mediante menús pueda:

a) Leer y validar N (1� N � 60).

b) Leer los N elementos del arreglo.

c) Imprimir los datos de todos los socios con más de 10 años de antigüedad.

d) Cambiar el domicilio de un socio.

e) Dado el número de un socio, imprimir toda su información.

f) Dar de alta un nuevo socio.

g) Dar de baja un socio existente.

Ejercicios 189

4

Arreglo

• Datos: tipo Alumno

• Número de elementos: entero

• Constructor

• Lectura

• Impresión

• …

SocioClub

NúmeroSocio: int

NombreSocio: char[]

Domicilio: char[]

AñoIngreso: int

Métodos de acceso
y actualización

17. Defina la clase Automóvil teniendo en cuenta las especificaciones que se
dan más adelante. Para decidir qué métodos incluir, lea cuidadosamente el
resto del problema. Declare un arreglo de N (1� N � 120) objetos tipo
Automóvil, el cual almacenará la flotilla de automóviles de una empresa.
Asuma que los mismos serán dados de manera ordenada, crecientemente,
por ClaveAuto. Escriba un programa en C++, que mediante menús pueda:

a) Leer y validar N (1� N � 120).

b) Leer los N elementos del arreglo.

c) Imprimir los datos de todos los automóviles que hayan sido fabricados
en cierto año. El usuario dará como dato el año deseado.

d) Imprimir los datos de todos los automóviles que sean de cierta marca.
El usuario dará como dato la marca.

e) Imprimir los datos de todos los automóviles que sean de cierta marca
y de cierto modelo. El usuario dará como dato la marca y el modelo.

f) Cambiar el nombre de la persona a la cual se le ha asignado el auto-
móvil. El usuario dará como dato la clave del automóvil y el nombre
de la persona que ahora lo usará.

g) Dada la clave de un automóvil, imprimir toda su información.

h) Dar de alta un nuevo automóvil. El usuario ingresará como datos toda
la información relacionada al nuevo automóvil.

i) Dar de baja un automóvil existente. El usuario dará como dato la clave
del automóvil que desea eliminar de la flotilla.

190 Capítulo 4. Arreglos

Automovil

ClaveAuto: int

MarcaAuto: char[]

Modelo: char[]

AñoFabricacion: int

PrecioCompra: float

AsignadoA: char[]

Métodos de acceso
y actualización

18. Considere la siguiente relación de herencia entre clases. Defina las clases
Arbol, Frutal y Citrico de tal manera que pueda declarar un arreglo poli-
mórfico, es decir, un arreglo que pueda almacenar objetos de diferentes ti-
pos, en este caso de las tres clases indicadas. Decida qué atributos y
métodos incluir, tenga en cuenta lo que se pide más a continuación. Escriba
una programa de aplicación en C++ que pueda, por medio de menús:

a) Imprimir los atributos de objetos tipo Arbol, Frutal y Citrico.

b) Dar de alta nuevos objetos, de cualquiera de los 3 tipos mencionados.

c) Dar de baja un objeto previamente almacenado.

d) Imprimir todos los datos de los objetos que tengan una altura mayor a
los 2 metros.

Ejercicios 191

4

Arbol

Frutal

Citrico

19. Considere la siguiente relación de herencia entre clases. Defina las clases
Mamifero, Vacuno y Equino de tal manera que pueda declarar un arreglo poli-
mórfico, es decir, un arreglo que pueda almacenar objetos de diferentes ti-
pos, en este caso de las tres clases indicadas. Decida qué atributos y
métodos incluir, tenga en cuenta lo que se pide a continuación. Escriba un
programa de aplicación en C++ que pueda, por medio de menús:

a) Imprimir todos los atributos de objetos tipo Mamifero, Vacuno y Equino.

b) Dar de alta nuevos objetos, de cualquiera de los 3 tipos mencionados.

c) Dar de baja un objeto previamente almacenado.

20. Escriba un método para sumar los elementos de una columna de una matriz
poco densa, guardada en memoria por medio de un arreglo unidimensional.
El usuario dará como dato el número de la columna a sumar.

21. Escriba un método que imprima una matriz poco densa almacenada por me-
dio de un arreglo unidimensional, con formato de arreglo bidimensional. Es
decir, el usuario verá en la pantalla la matriz con su forma original.

22. Escriba una función que sume dos matrices poco densas almacenadas de
acuerdo a lo visto en este libro. ¿Requiere modificar las plantillas definidas?

23. Defina la plantilla correspondiente a una matriz triangular inferior.

24. Retome el problema anterior. Incluya un método en la plantilla que permita
encontrar el valor más grande de un renglón. El usuario dará como dato el
número del renglón que le interesa.

25. Escriba un programa que sume dos matrices triangulares superiores, alma-
cenadas en arreglos unidimensionales.

26. Escriba un programa que multiplique dos matrices triangulares inferiores,
almacenadas en arreglos unidimensionales.

27. Se llama matriz tridiagonal a aquella que tiene valores distintos de cero
sólo en la diagonal principal y en las diagonales que están por encima y
por debajo de ésta. Observe la siguiente figura. Si la matriz es grande, con-
viene almacenar (para ahorrar espacio de memoria) sólo los valores distin-
tos de cero en un arreglo unidimensional. Encuentre una fórmula que
calcule la posición en la que fueron guardados (en un arreglo unidimensio-
nal) los elementos de una matriz tridiagonal.

192 Capítulo 4. Arreglos

Mamifero

Vacuno Equino

d) Actualizar el establecimiento donde habita alguno de los animales. El
dato que dará el usuario será la clave del animal y el nombre del esta-
blecimiento al cual fue trasladado.

28. Retome el problema anterior. Defina una plantilla para una clase que repre-
sente este tipo de matrices.

29. Se llama matriz simétrica cuando se cumple la condición:

Datos[Ren][Col] = Datos[Col][Ren]

para todo 1 � Ren, Col � orden del arreglo. Cuando se presenta un caso así, re-
sulta conveniente guardar sólo la matriz triangular inferior o superior, ya que de
lo contrario se duplicaría la información. Defina una plantilla para una clase que
represente este tipo de matrices.

30. Considere que los siguientes datos representan los costos de boletos de
avión entre ciudades. Cuando no existe vuelo directo entre dos ciudades
aparece un cero, y los valores de la diagonal principal no se toman en cuen-
ta ya que no hay vuelos de una ciudad a sí misma. Por ejemplo, en la si-
guiente figura, se representó que ir de la ciudad 0 a la ciudad 1 cuesta
$1,000 (lo mismo de la 1 a la 0) y que ir de la ciudad 2 a la 3 cuesta $2,050
(lo mismo de la 3 a la 2). Además, no hay vuelo de la ciudad 1 a la 3.

Ejercicios 193

4

25

0 1 2 3

10 0 0

18 41 25 0

0 45 56 31

22 16

0
1
2
3

– 1000 890 720

1000 – 1250 0

890 1250 – 2050

720 0 2050 –

0

1

2

3

0 1 2 3

Escriba un programa en C++ que, por medio de menús, permita realizar las
siguientes operaciones. Utilice la plantilla del problema anterior.

a) Dado un número que identifica a una ciudad (proporcionado por el
usuario), genere un reporte de todas las ciudades destinos a las que se
puede llegar a partir de dicha ciudad.

b) Dado un número que identifica a una ciudad origen y otro que identifi-
ca a una ciudad destino (ambos proporcionados por el usuario) indique
si hay vuelo directo entre ambas ciudades, y si es así, su costo.

c) Genere un reporte de todas las ciudades entre las que no existen vue-
los directos.

194 Capítulo 4. Arreglos

CAPÍTULO 5

5.1 Introducción
En este capítulo se presentan las estructuras de datos pilas y colas, y
algunas variantes de estas últimas: las colas circulares y las colas do-
bles. Ambas estructuras son lineales, es decir cada elemento tiene un
único sucesor y un único predecesor, con excepción del primero y del
último. El primero carece de antecesor y el último de sucesor.

Estas estructuras se caracterizan por la manera en que llevan a cabo la
inserción y eliminación de elementos. En el caso de las pilas los ele-
mentos se pueden agregar o quitar por un único extremo, mientras que
en la estructura tipo cola los elementos se insertan por un extremo y
se quitan por otro. A continuación se analizarán de manera más deta-
llada estas estructuras, las operaciones que pueden realizarse sobre
ellas y algunas aplicaciones.

Pilas y colas

5.2 Pilas
Una pila es una estructura de datos lineal en la cual los elementos pueden inser-
tarse y eliminarse sólo por uno de los extremos. Por lo tanto, el último elemento
insertado será el primero que podrá eliminarse; debido a esta característica, también
se le conoce como estructura LIFO (por sus siglas del inglés: Last-In, First-Out:
último en entrar, primero en salir).

El concepto de pila se utiliza en muchas actividades cotidianas, por ejemplo cuan-
do se exponen libros en una librería o latas de un cierto producto en un supermer-
cado. En ambos casos se tienen pilas, de libros o de latas, y es de suponer que si
un cliente quiere, por ejemplo un libro, tomará el que está más arriba, que fue el
último en colocarse.

El extremo en el cual se realizan las operaciones se denomina tope de la pila. El
tope apunta al último valor almacenado y se modifica con cada operación. Es de-
cir, se incrementa al insertar un nuevo valor o se decrementa al eliminar un valor.
La figura 5.1 muestra una representación gráfica de una pila, en la cual se han al-
macenado dos elementos. El tope apunta al último valor insertado.

196 Capítulo 5. Pilas y colas

FIGURA 5.1 Estructura tipo pila

Tope
ZZZZZZZZZZZZZ

XXXXXXXXXXX

La pila es una estructura abstracta. Para el almacenamiento de los datos en la
memoria de la computadora debe usarse otra estructura. Para los efectos de este
libro, se utilizarán arreglos unidimensionales. Teniendo en cuenta esta aclaración,
la clase Pila estará formada por dos atributos: la colección de elementos a guar-
dar (por medio de un arreglo unidimensional) y el apuntador al último elemento
almacenado (Tope). Además, tendrá algunos métodos que se analizarán en la si-
guiente sección. La figura 5.2 presenta una plantilla de la clase Pila. Se usa una
plantilla para dar mayor generalidad a la solución.

5.2 Pilas 197

5

Pila(T)

Tope: int

EspacioPila[MAX]: T

Métodos de almacenamiento
y acceso a los miembros de la
clase.

FIGURA 5.2 Clase Pila

A continuación se presenta la codificación de la plantilla de la clase Pila, usando
el lenguaje C++.

/* Definición del número máximo de elementos que puede contener la

➥estructura pila, restricción propia de los arreglos. */

##ddeeffiinnee MAX 10

/* Definición de la plantilla de la clase Pila que tendrá como atributos

➥la colección de elementos (haciendo uso de un arreglo) y un apuntador

➥al primero de ellos. Es decir, al primer elemento al cual se podrá

➥tener acceso, que es el último elemento almacenado. En la plantilla

➥también se hace referencia a algunos métodos, que se analizarán con

➥detalle en la siguiente sección. */

Operaciones

Las operaciones de inserción y eliminación son las únicas que pueden realizarse
en este tipo de estructuras. Las mismas, como ya se mencionó, se llevan a cabo
sólo por uno de los extremos de la pila, al que se conoce con el nombre de tope.

La operación de inserción (Push) consiste en incrementar el tope de la pila y
agregar el nuevo valor en esa posición. Antes de insertar el elemento es necesario
verificar que en la pila haya espacio disponible. La manera de evaluar esta condi-
ción depende del tipo de estructura elegida para almacenar la colección de elemen-
tos en la pila.

Considerando que en este libro se usará un arreglo unidimensional, la disponibili-
dad de espacio dependerá de que aún no se hayan ocupado todas las casillas del
mismo.

En la figura 5.3a, la pila tiene almacenados dos valores. La figura 5.3b muestra el
estado de la pila luego de insertar el valor 6. Observe que el Tope se modifica,
apuntando ahora al último valor agregado. Finalmente, en la figura 5.3c se muestra
la pila luego de insertar el 9.

198 Capítulo 5. Pilas y colas

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Pila

{{

pprriivvaattee::

TT EspacioPila[MAX];

iinntt Tope;

ppuubblliicc::

Pila();

/* Métodos de modificación y acceso a los miembros de la pila. */

}};;

/* Declaración del método constructor. Inicializa el Tope en –1,

➥indicando pila vacía. */

tteemmppllaattee <<ccllaassss TT>>

Pila<<TT>>::::Pila()

{{

Tope= –1;

}}

La operación de eliminación (Pop) consiste en quitar el valor que se encuentra al-
macenado en el tope de la pila y disminuir en uno el valor del tope. Previamente
se debe validar que la pila no esté vacía. La manera de evaluar esta condición de-
pende del tipo de estructura elegida para almacenar la colección de elementos en
la pila. Considerando que en este libro se usará un arreglo unidimensional, la pila
estará vacía cuando el puntero tenga un valor de –1.

La figura 5.4a muestra el estado de la pila una vez eliminado el elemento almace-
nado en la posición del tope (9) de la figura 5.3c. Observe que el valor del Tope
disminuyó en uno, apuntando ahora al siguiente elemento de la pila (6). La figura
5.4b presenta la pila luego de quitar el 6, y finalmente la figura 5.4c el estado
de la pila luego de eliminar el 3.

5.2 Pilas 199

5

FIGURA 5.3 Operación de inserción en pilas

Tope 3

2

3

6

2

Tope

Pop (6)

3

6

9

2

Tope

Pop (9)

FIGURA 5.4 Operación de eliminación en pilas

Tope

3

6

2

3

2

Tope

Pop (6)

Pop (9) 2Tope

Pop (3)

a) b) c)

a) b) c)

Es importante destacar que el único elemento que se puede quitar es el que está
en la posición indicada por el tope. Por lo tanto, si debido a la aplicación se requiere
eliminar un valor que ocupa una posición intermedia, primero se deberán quitar
(al menos temporalmente) a partir del tope, todos los elementos que estén por en-
cima del elemento deseado.

A continuación se presentan las plantillas de los métodos correspondientes a las
operaciones analizadas. Estos métodos requieren de operaciones auxiliares para
verificar el estado de la pila. En el caso de la inserción es necesario saber si la pi-
la tiene espacio disponible. Para ello se usa un método que comprueba si la pila
está llena. En el caso de la eliminación debe saber si hay elementos en la pila, para
lo cual se utiliza un método que determina si la pila está vacía. La verificación
del estado de la pila puede incorporarse a los métodos de inserción y eliminación.
Sin embargo, para darle una mayor modularidad a los algoritmos se prefirió ma-
nejarlos como métodos auxiliares independientes.

200 Capítulo 5. Pilas y colas

/* Plantilla del método que introduce un dato a una estructura pila, si la

➥misma tiene espacio disponible. En caso afirmativo, actualiza el valor

➥del tope. El método recibe como parámetro el dato que va a insertar. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Pila<<TT>>::::Push(TT Dato)

{{

//** Verifica si hay espacio disponible en la pila. Si es así,

➥incrementa el valor de Tope y asigna el valor Dato a la casilla

➥indicada por éste. */

iiff (!!Pila::::PilaLlena())

EspacioPila[++++Tope]= Dato;

eellssee

coouutt<<<<”\nError de desbordamiento. Pila llena.”;

}}

/* Plantilla del método que elimina el elemento que está en el tope de

➥la pila (si no está vacía), actualizando el valor del mismo. El método

➥regresa el dato eliminado por medio de un parámetro por referencia. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Pila<<TT>>::::Pop(TT **Dato)

{{

/* Verifica que haya al menos un elemento en la pila. Si es así,

➥asigna al parámetro el valor que está almacenado en la casilla

➥indicada por Tope y disminuye a éste en uno. */

iiff (!!Pila::::PilaVacia())

**Dato= EspacioPila[Tope––––];

eellssee

ccoouutt<<<<”\nError de subdesbordamiento. Pila vacía.”;

}}

Los métodos Push y Pop imprimen un mensaje en caso de que las operaciones no
se puedan llevar a cabo. Sin embargo, los mismos podrían definirse como méto-
dos enteros, de tal forma que pudieran dar como resultado un número que indi-
que si la operación se realizó con éxito o no. Esto último resulta más útil a los
procesos usuarios de la clase, ya que podrían tomar decisiones de acuerdo al
resultado obtenido. Por su parte, los mensajes resultan más claros en esta etapa
de aprendizaje. Como ejemplo, se presenta a continuación el método Push con la
modificación sugerida.

5.2 Pilas 201

5

/* Plantilla del método auxiliar que verifica si la pila está llena,

➥es decir si ya no hay espacio disponible. Regresa 1 si todas las

➥casillas están ocupadas y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::PilaLlena(())

{{

iiff (Tope == MAX-1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Plantilla del método auxiliar que verifica si la pila está vacía.

➥Regresa 1 si no hay ningún elemento y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::PilaVacia(())

{{

iiff (Tope == –1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Plantilla del método que, si hay espacio disponible, introduce un

➥dato en la pila y actualiza el tope. Da como resultado un número entero

➥que indica si la operación de inserción pudo efectuarse (1) o no (0).

➥El método recibe como parámetro el dato a insertar. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::Push(TT Dato)

{{

/* La variable Res se inicializa en 0 (fracaso). Si se realiza la

➥inserción se le asignará 1. */

iinntt Res= 0;

El programa 5.1 presenta la plantilla completa de la clase pila con todos sus méto-
dos y un ejemplo sencillo de aplicación. En este programa, las operaciones de vali-
dación de existencia de espacio disponible y de existencia de al menos un elemento
en la pila (para las operaciones de inserción y eliminación) se hacen antes de invo-
car a los métodos a fin de mostrar otra manera de estructurarlos. En los métodos
previamente presentados, esta validación se lleva a cabo dentro de los mismos.

Programa 5.1

202 Capítulo 5. Pilas y colas

iiff (!!Pila::::PilaLlena())

{{

EspacioPila[++++Tope]= Dato;

Res= 1;

}}

rreettuurrnn Res;

}}

/* Definición del número máximo de elementos que puede contener la pila,

➥restricción que resulta del uso de un arreglo unidimensional. */

##ddeeffiinnee MAX 10

/ * Se define la plantilla de la clase Pila con todos sus atributos y mé-

➥todos. Además, se incluye una pequeña aplicación de la misma. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Pila

{{

pprriivvaattee::

TT EspacioPila[MAX];

iinntt Tope;

ppuubblliicc::

Pila();

vvooiidd Push(TT Dato);

vvooiidd Pop(TT **Dato);

iinntt PilaLlena();;

iinntt PilaVacia();;

}};;

/* Declaración del método constructor. Inicializa el Tope en –1,

➥indicando pila vacía. */

tteemmppllaattee <<ccllaassss TT>>

Pila<<TT>>::::Pila()

5.2 Pilas 203

5

{{

Tope= –1;

}}

/* Método que introduce un dato en la pila, actualizando el tope de la

➥misma. El uso de este método presupone que antes de invocarlo se debe

➥verificar que haya espacio disponible en la pila. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Pila<<TT>>::::Push(TT Dato)

{{

EspacioPila[++++Tope]= Dato;

}}

/* Método que quita al elemento que está en el tope de la pila y lo

➥asigna a un parámetro por referencia. El uso de este método presupone

➥que antes de invocarlo se debe verificar que la pila no esté vacía. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Pila<<TT>>::::Pop(TT **Dato)

{{

*Dato= EspacioPila[Tope––––];

}}

/* Método auxiliar que verifica si la pila está llena. Regresa 1 si

➥todos los espacios están ocupados y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::PilaLlena()

{{

iiff (Tope == MAX-1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Método auxiliar que verifica si la pila está vacía, regresando 1 si

➥lo está y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::PilaVacia()

{{

iiff (Tope == –1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Función que usa la plantilla de la clase Pila. Se almacenan algunos

➥números enteros en un objeto tipo Pila y posteriormente se quita el

➥último guardado y lo imprime. */

vvooiidd FuncionUsaPila (())

204 Capítulo 5. Pilas y colas

{{

/* Declaración de un objeto tipo Pila, usando el tipo iinntt para

➥instanciar la TT. */

Pila<<iinntt>> ObjPila;

iinntt Valor = 0;

/* Mientras la pila no se llena inserta números en la misma. En este

➥ejemplo, es en la aplicación donde se evalúa que haya espacio dispo-

➥nible antes de llamar al método que inserta un valor en la pila. */

wwhhiillee (ObjPila.PilaLlena() !!== 1)

ObjPila.Push(Valor++++);

/* Verifica si la pila no está vacía. Si es así, quita el elemento

➥almacenado en el Tope (el último insertado) y lo imprime. */

iiff (objPila.PilaVacia() !!== 1)

{{

ObjPila.Pop(&&Valor);

ccoouutt <<<<Valor<<<<”\n”;

}}

}}

La estructuración de los métodos presentada en el programa 5.1 tiene la ventaja
de independizar los métodos entre sí. Sin embargo, tiene el inconveniente de
que deja a cargo del usuario de la clase las validaciones previas a las operaciones
de inserción y eliminación, pudiendo ocasionar errores durante la ejecución de
los métodos Push y Pop.

El programa 5.2 retoma la clase Pila del programa 5.1, pero ahora utiliza la so-
brecarga de operadores. Al operador de suma aritmética se le asocia la operación
de inserción de un elemento a la pila, y al operador de resta aritmética se le aso-
cia la operación de eliminación de un elemento de la pila.

Programa 5.2

/* Se define la plantilla de la clase Pila usando sobrecarga de

➥operadores en los métodos de inserción y eliminación. */

##ddeeffiinnee MAX 10

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Pila

5.2 Pilas 205

5

{{

pprriivvaattee::

TT EspacioPila[MAX];

iinntt Tope;

ppuubblliicc::

Pila();

vvooiidd ooppeerraattoorr + (TT);

vvooiidd ooppeerraattoorr – (TT **);

iinntt PilaLlena();

iinntt PilaVacia();

}};;

/* Declaración del método constructor por omisión. Asigna el valor –1

➥al Tope, indicando que la pila está vacía. */

tteemmppllaattee <<ccllaassss TT>>

Pila<T>::::Pila():Tope(–1)

{{}}

/* Método que evalúa si la pila está llena. Regresa 1 si todos los

➥espacios están ocupados y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<T>::::PilaLlena()

{{

iiff (Tope == MAX–1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Método que evalúa si la pila está vacía, regresando 1 si lo está y

➥0 en otro caso. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<T>::::PilaVacia()

{{

iiff (Tope == –1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* El operador ++, que normalmente indica la operación aritmética de

➥suma, se sobrecarga utilizándose para insertar un elemento en la pila.

➥Por lo tanto, el operador ++, en este programa, tendrá asociadas dos

➥operaciones: suma de números e inserción de elementos en una pila. Se

➥verifica si la pila tiene espacio antes de invocar este método. Se

➥recibe como parámetro el dato a insertar. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Pila<T>::::ooppeerraattoorr + (TT Valor)

206 Capítulo 5. Pilas y colas

{{

Tope++++;

EspacioPila[Tope]= Valor;

}}

/* El operador ––, que normalmente indica la operación aritmética de

➥resta, se sobrecarga utilizándose para eliminar un elemento de la pila.

➥Por lo tanto, el operador ––, en este programa, tendrá asociadas dos

➥operaciones: resta de números y eliminación de elementos de una pila.

➥Se verifica que la pila no esté vacía antes de invocar este método. El

➥valor eliminado se pasa como parámetro por referencia. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Pila<T>::::ooppeerraattoorr – (TT **Valor)

{{

*Valor= EspacioPila[Tope];

Tope––––;

}}

/* Función que usa la sobrecarga de operadores definida en la clase

➥Pila. Se declara un objeto tipo Pila de enteros, luego se le insertan

➥MAX elementos y por último, mientras la pila no esté vacía, se quitan y

➥se imprimen cada uno de los valores almacenados en la misma. */

vvooiidd UsaSobrecargaOperadores()

{{

Pila <<iinntt>> ObjPila;

iinntt Indice;

/* Si la pila está vacía se le agregan MAX elementos, usando el

➥operador sobrecargado ++. */

iiff (ObjPila.PilaVacia())

ffoorr (Indice= 0; Indice < MAX; Indice++++)

ObjPila ++ Indice*2;

/* Mientras la pila no se vacíe, se quita un elemento, usando el

➥operador –– sobrecargado, y se imprime. */

wwhhiillee (!!ObjPila.PilaVacia())

{{

ObjPila –– &&Indice;

ccoouutt <<<< ‘\n’ <<<< Indice;

}}

}}

El programa 5.2 presentó la plantilla de la clase Pila y utilizó sobrecarga de ope-
radores para implementar los métodos de inserción y eliminación. Observe que
en la función UsaSobrecargaOperadores() dichos métodos se invocan mediante
los operadores de suma y resta aritmética. Sin embargo, como se aplican a un
operando que es un objeto tipo Pila, hacen referencia a las operaciones de inser-
ción (y no a la suma aritmética de dos números) y de eliminación (y no a la resta

aritmética entre números) respectivamente. Es importante destacar, que en la apli-
cación se evalúan las condiciones de pila llena y de pila vacía, antes de invocar a
los métodos de inserción y eliminación.

A continuación se presenta un programa de aplicación de pilas. En el programa
se incluye una biblioteca con la plantilla de la clase Pila correspondiente al
programa 5.2.

Programa 5.3

5.2 Pilas 207

5

/* Se presenta un modelo simplificado de un banco el cual recibe

➥cheques, los registra (almacenándolos temporalmente en pilas), y

➥posteriormente los procesa. Se usan las clases Cheque, ChequeRechazado,

➥Banco y Pila (esta última no se define sino que se incluye en la

➥biblioteca PlanPila.h). */

##iinncclluuddee ”PlanPila.h”

/* Definición de la clase Cheque. */

ccllaassss Cheque

{{

pprriivvaattee::

iinntt Numero, CuentaADepositar;

cchhaarr Banco[10];

ddoouubbllee Monto;

ppuubblliicc::

Cheque();

Cheque(iinntt, cchhaarr[[]], iinntt, ddoouubbllee);

~~Cheque();

vvooiidd ImprimeDatos();

}};;

/* Declaración del método constructor por omisión. */

Cheque::::Cheque()

{{}}

/* Declaración del método constructor con parámetros. */

Cheque::::Cheque(iinntt NumCta, cchhaarr *NomBco, iinntt Cta, ddoouubbllee Mon)

{{

Numero= NumCta;

CuentaADepositar= Cta;

Monto= Mon;

ssttrrccppyy(Banco, NomBco);

}}

/* Declaración del método destructor. */

Cheque::::~~Cheque()

{{}}

208 Capítulo 5. Pilas y colas

/* Método que despliega en pantalla los valores de todos los atributos

➥de un cheque. */

vvooiidd Cheque::::ImprimeDatos()

{{

ccoouutt<<<< ”\nNúmero de cheque: ” <<<< Numero;

ccoouutt<<<< ”\nDel banco: ” <<<< Banco;

ccoouutt<<<< ”\nDepositado en la cuenta: ” <<<< CuentaADepositar;

ccoouutt<<<< ”\nMonto: ” <<<< Monto<<<<eennddll;

}}

/* Definición de la clase ChequeRechazado como clase derivada de la

➥clase Cheque. */

ccllaassss ChequeRechazado:: ppuubblliicc Cheque

{{

pprriivvaattee::

ddoouubbllee Cargo;

ppuubblliicc::

ChequeRechazado();

ChequeRechazado(iinntt, cchhaarr[[]], iinntt, ddoouubbllee);

~~ChequeRechazado();

vvooiidd ImprimeDatos();

}};;

/* Declaración del método constructor por omisión. */

ChequeRechazado::::ChequeRechazado()

{{}}

/* Declaración del método constructor con parámetros. Invoca al

➥constructor de la clase base. */

ChequeRechazado::::ChequeRechazado (iinntt NumCta, cchhaarr *NomBco, iinntt Cta,

➥ddoouubbllee Mon):: Cheque(NumCta, NomBco,

➥Cta, Mon)

{{

/* Calcula el valor del atributo Cargo como el 10% del Monto del

➥cheque. */

Cargo= Mon*0.10;

}}

/* Declaración del método destructor. */

ChequeRechazado::::~~ChequeRechazado()

{{}}

/* Método que despliega los valores de los atributos de un cheque

➥rechazado. */

vvooiidd ChequeRechazado::::ImprimeDatos()

{{

Cheque::::ImprimeDatos();

ccoouutt<<<<”\nCargo por rechazo: ” <<<< Cargo<<<<eennddll;

}}

5.2 Pilas 209

5

/* Definición de la clase Banco, la cual tiene dos atributos: uno

➥de ellos representa los cheques, que se almacenan en una pila hasta

➥su procesamiento. El otro atributo son los cheques rechazados, que se

➥almacenan en una pila diferente. Es decir, se usa la plantilla de la

➥clase Pila con las clases Cheque y ChequeRechazado. */

ccllaassss Banco

{{

pprriivvaattee::

Pila<Cheque> Cheques;

Pila<ChequeRechazado> ChequesRe;

ppuubblliicc::

Banco();

~~Banco();

vvooiidd ProcesarCheque();

vvooiidd ProcesarChequeR();

vvooiidd RegistroCheque(Cheque);

vvooiidd RegistroChequeR(ChequeRechazado);

}};;

/* Declaración del método constructor por omisión. */

Banco::::Banco()

{{}}

/* Declaración del método destructor. */

Banco::::~~Banco()

{{}}

/* Método que procesa un cheque: lo quita de la pila de cheques e

➥imprime sus datos. Dado que se usa la plantilla de la clase Pila del

➥programa 5.2, se debe verificar que la pila no esté vacía antes de

➥quitar un cheque. */

vvooiidd Banco::::ProcesarCheque()

{{

Cheque ChequeCli;

iiff (!!Cheques.PilaVacia())

{{

Cheques –– &&ChequeCli;

ccoouutt<<<< ”\n\n\nCheque procesado: ”;

ChequeCli.ImprimeDatos();

}}

eellssee

ccoouutt<<<<”\n\nNo hay cheques por procesar.\n\n ”;

}}

/* Método que procesa un cheque rechazado: lo quita de la pila de

➥cheques rechazados e imprime sus datos. Dado que se usa la plantilla

➥de la clase Pila del programa 5.2, se debe verificar que la pila no

➥esté vacía antes de quitar un cheque rechazado. */

210 Capítulo 5. Pilas y colas

vvooiidd Banco::::ProcesarChequeR()

{{

ChequeRechazado ChequeCli;

iiff (!!ChequesRe.PilaVacia())

{{

ChequesRe –– &&ChequeCli;

ccoouutt<<<< ”\n\n\nCheque rechazado procesado: ”;

ChequeCli.ImprimeDatos();

}}

eellssee

ccoouutt<<<<”\n\nNo hay cheques rechazados por procesar.\n\n ”;

}}

/* Método que registra un cheque: imprime sus datos y lo almacena en

➥la pila de cheques. Dado que se usa la plantilla de la clase Pila del

➥programa 5.2, se debe verificar que la pila no esté llena antes de

➥insertar un nuevo cheque. */

vvooiidd Banco::::RegistroCheque(Cheque ChequeCli)

{{

iiff (!!Cheques.PilaLlena())

{{

ccoouutt<<<< ”\n\n\nRegistrando el cheque: ”;

ChequeCli.ImprimeDatos();

Cheques ++ ChequeCli;

}}

eellssee

ccoouutt<<<<”\n\nNo se pudo registrar el cheque por falta de

➥espacio. \n\n ”;

}}

/* Método que registra un cheque rechazado: imprime sus datos y lo

➥almacena en la pila de cheques rechazados. Dado que se usa la plantilla

➥de la clase Pila del programa 5.2, se debe verificar que la pila no

➥esté llena antes de insertar un nuevo cheque rechazado. */

vvooiidd Banco::::RegistroChequeR(ChequeRechazado ChequeCli)

{{

iiff (!!ChequesRe.PilaLlena())

{{

ccoouutt<<<< ”\n\n\nRegistrando el cheque rechazado: ”;

ChequeCli.ImprimeDatos();

ChequesRe ++ ChequeCli;

}}

eellssee

ccoouutt<<<<”\n\nNo se pudo registrar el cheque rechazado por falta

➥de espacio. \n\n ”;

}}

5.3 Colas
Una cola es una estructura de datos lineal, es decir una colección de elementos
en la cual cada elemento tiene un sucesor y un predecesor únicos, con excepción
del primero y del último. El primero no tiene predecesor y el último no tiene su-
cesor. La estructura cola se caracteriza porque las operaciones de inserción y eli-

5.3 Colas 211

5

/* Función principal. En esta aplicación se crean algunos objetos y

➥se usan para simular algunas operaciones de un banco de manera muy

➥simplificada. */

vvooiidd main ()

{{

/* Declaración de objetos tipo Cheque y tipo ChequeRechazado, usando

➥los constructores con parámetros. */

Cheque Uno (1718, ”Banamex”, 14418, 18000.00);

Cheque Dos (1105, ”Bancomer”, 13200, 12319.62);

ChequeRechazado Tres (1816, ”Banorte”, 12850, 14000.00);

ChequeRechazado Cuatro (1905, ”Bancomer”, 13468, 50000.00);

/* Declaración de un objeto tipo Banco. */

Banco MiBanco;

/* Se registran en MiBanco los cheques recibidos, usando la pila

➥que les corresponde según si el cheque fue aceptado o rechazado. */

MiBanco.RegistroCheque(Uno);

MiBanco.RegistroCheque(Dos);

MiBanco.RegistroChequeR(Tres);

MiBanco.RegistroChequeR(Cuatro);

/* Se procesan en MiBanco los cheques registrados. Debido a que se

➥almacenaron en una pila, se procesan en el orden inverso al que

➥fueron registrados. */

MiBanco.ProcesarCheque();

MiBanco.ProcesarChequeR();

MiBanco.ProcesarCheque();

MiBanco.ProcesarChequeR();

/* Se intenta procesar otros cheques en MiBanco. Sin embargo ya no habrá

➥elementos y los métodos desplegarán un mensaje indicando este caso. */

MiBanco.ProcesarCheque();

MiBanco.ProcesarChequeR();

}}

minación de elementos deben hacerse por extremos diferentes. Los elementos se
insertan por uno de los extremos y se eliminan por el otro extremo. Por lo tanto,
el primer elemento insertado será el primero que podrá eliminarse; a esta estruc-
tura también se le conoce con el nombre de estructura FIFO (por sus siglas del
inglés: First-In, First-Out: primero en entrar, primero en salir).

En una estructura tipo cola se identifican los dos extremos por donde se realiza-
rán las operaciones. El frente o principio de la cola será el extremo en el cual se
eliminarán elementos, mientras que el final será el extremo en el cual se harán las
inserciones. La figura 5.5 presenta un esquema de una estructura tipo cola, en la
que se insertaron 5 datos, estando el frente en la posición 0 y el final en la 4.

212 Capítulo 5. Pilas y colas

…
0 1 2 3 4 5 MAX-1

Frente Final

El concepto de cola se usa en muchas actividades cotidianas, por ejemplo
cuando un grupo de personas se forma frente a la taquilla de un cine, la prime-
ra que llegó será la primera en ser atendida. Otro ejemplo es la cola de auto-
movilistas frente a un semáforo en rojo, el primero en llegar al cruce de calle
será el primero en pasar cuando la luz cambie a verde.

La cola es una estructura abstracta. Para el almacenamiento de los datos en la
memoria de la computadora debe usarse otra estructura. Para los efectos de este
libro, se utilizarán arreglos unidimensionales. Por lo tanto, la clase Cola tendrá
como atributos la colección de elementos (por medio de un arreglo unidimensional)
y los apuntadores al primero y último valores. Además, tendrá algunos métodos
que se analizarán en la siguiente sección. La figura 5.6 presenta una plantilla de
la clase Cola. Se definió una plantilla para dar mayor generalidad a la solución.

FIGURA 5.5 Estructura tipo cola

A continuación se presenta la codificación de la plantilla de la clase Cola, usando
el lenguaje C++.

5.3 Colas 213

5

Cola (T)

Frente, Final: int

EspacioCola[MAX]: T

Métodos de almacenamiento
y acceso a los miembros de la
clase.

FIGURA 5.6 Clase Cola

/* Definición del número máximo de elementos que puede contener la cola,

➥restricción propia de los arreglos. */

##ddeeffiinnee MAX 10

/* Definición de la plantilla de la clase Cola. La misma tendrá como

➥atributos la colección de elementos (haciendo uso de un arreglo) y

➥apuntadores al primero y al último de ellos. En la plantilla también se

➥hace referencia a algunos métodos, los cuales se analizarán con detalle

➥en la siguiente sección. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Cola

{{

pprriivvaattee::

TT EspacioCola[MAX];

iinntt Frente, Final;

ppuubblliicc::

Cola();

/* En esta sección se declaran los métodos de modificación y

➥acceso a los miembros de la clase, los cuales se analizan en la

➥siguiente sección. */

}};;

/* Declaración del método constructor. Inicializa el Frente y Final en

➥–1, indicando cola vacía. */

tteemmppllaattee <<ccllaassss TT>>

Cola<<TT>>::::Cola()

{{

Frente= –1;

Final= –1;

}}

Operaciones

Como ya se mencionó, en una estructura tipo cola se insertan y eliminan elemen-
tos por extremos diferentes. Se agregan elementos por uno de los extremos, el
cual se conoce con el nombre de Final y se quitan por el otro extremo, llamado
Frente. Esta particularidad es lo que determina la manera en que se llevan a cabo
las operaciones de inserción y eliminación.

La operación de inserción consiste en incrementar el puntero al final de la cola y
agregar el nuevo valor en dicha posición. Antes de llevarse a cabo la operación
resulta necesario verificar que en la cola haya espacio disponible. La manera de
evaluar esta condición depende del tipo de estructura elegida para almacenar la
colección de elementos en la cola. Considerando que en este libro se usará un
arreglo unidimensional, la cola estará llena cuando el puntero al final tenga
un valor igual a MAX-1. La figura 5.7 presenta gráficamente esta operación.
Inicialmente, en la cola hay almacenados 5 elementos, que ocupan las casillas
de la 0 a la 4. Posteriormente se incrementó el Final (ahora está apuntado a la
casilla 5) y se asignó en esa posición el nuevo valor.

214 Capítulo 5. Pilas y colas

0 1 2 3 4 5 MAX-1

Frente Final

0 1 2 3 4 5 MAX-1

Frente Final

FIGURA 5.7 Operación de Inserción en Colas

…

…

A continuación se presenta la plantilla del método correspondiente a la operación
de inserción.

5.3 Colas 215

5

/* Método que inserta un valor en la cola. La inserción se lleva a cabo

➥por el extremo identificado como Final. Antes de invocar el método se

➥debe validar que la cola tenga espacio disponible. El valor a insertar

➥se recibe como parámetro. Cuando la cola está vacía y se inserta un

➥dato, entonces también se debe actualizar el puntero al frente de la

➥cola. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Cola<<TT>>::::InsertaCola(TT Dato)

{{

EspacioCola[++++Final]= Dato;

iiff (Final == 0)

Frente= 0;

}}

En esta implementación se asume que la aplicación se encarga de verificar el es-
tado de la cola. Sin embargo, es posible realizar esta evaluación dentro del método,
tal como se muestra en el programa 5.5.

La operación de eliminación consiste en asignar a una variable de trabajo el valor
almacenado en la casilla indicada por el puntero Frente y desplazar a éste (incre-
mentar su valor) apuntando al siguiente elemento. Antes de llevarse a cabo la
operación, resulta necesario verificar que la cola no esté vacía. La manera de eva-
luar esta condición depende del tipo de estructura elegida para almacenar la co-
lección de elementos en la cola. Considerando que en este libro se usará un
arreglo unidimensional, la cola estará vacía cuando el puntero al frente tenga un
valor de –1. La figura 5.8 presenta de manera gráfica esta operación. Inicialmen-
te, en la cola hay almacenados 5 elementos, que ocupan las casillas de la 0 a la 4.
Después, se asignó el valor guardado en la casilla 0 (apuntada por el Frente) en
una variable auxiliar y se modificó el valor de Frente, desplazándose hacia la
siguiente casilla.

A continuación se presenta la plantilla del método correspondiente a la operación
de eliminación de elementos de una cola.

216 Capítulo 5. Pilas y colas

0 1 2 3 4 5 MAX-1

Frente Final

0 1 2 3 4 5 MAX-1

Frente Final

FIGURA 5.8 Operación de eliminación en colas

/* Método que elimina un elemento de la cola. La eliminación se lleva a

➥cabo por el extremo identificado como Frente. Antes de invocar el método

➥se debe validar que la cola no esté vacía. El valor eliminado se regresa

➥como un parámetro por referencia. Si en la cola hubiera sólo un elemento,

➥entonces luego de quitarlo se deben poner los dos punteros en –1 para

➥indicar que la cola quedó vacía. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Cola<<TT>>::::EliminaCola(TT **Dato)

{{

**Dato= EspacioCola[Frente];

iiff (Frente == Final)

{{

Frente= –1;

Final= –1;

}}

eellssee

Frente++++;

}}

…

…

Es importante destacar que al invocar el método de eliminación, siempre se quita el
elemento que está en el frente de la cola (fue el primero que se almacenó en ella).

El programa 5.4 presenta la plantilla de la clase Cola, con todos sus atributos y
métodos. Además, incluye una aplicación muy sencilla.

Programa 5.4

5.3 Colas 217

5

/* Se define la plantilla de la clase Cola. Además, se incluye un

➥ejemplo muy simple de aplicación de esta clase. */

/* Definición del número máximo de elementos que puede contener la cola,

➥restricción que surge de usar un arreglo unidimensional. */

##ddeeffiinnee MAX 10

/* Definición de la plantilla de la clase Cola. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Cola

{{

pprriivvaattee::

TT EspacioCola[MAX];

iinntt Frente, Final;

ppuubblliicc::

Cola();

vvooiidd InsertaCola(TT);

vvooiidd EliminaCola(TT**);

iinntt ColaLlena();

iinntt ColaVacia();

}};;

/* Declaración del método constructor. Inicializa los punteros en –1,

➥indicando que la cola está vacía. */

tteemmppllaattee <<ccllaassss TT>>

Cola<<TT>>::::Cola()

{{

Frente= –1;

Final= –1;

}}

/* Método que inserta un valor en la cola. La inserción se lleva a cabo

➥por el extremo identificado como Final. Antes de invocar el método se

➥debe verificar que la cola tenga espacio disponible. El método recibe

➥como parámetro el valor a insertar. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Cola<<TT>>::::InsertaCola(TT Dato)

218 Capítulo 5. Pilas y colas

{{

EspacioCola[++++Final]= Dato;

iiff (Final == 0)

Frente= 0;

}}

/* Método que elimina un elemento de la cola. La eliminación se lleva a

➥cabo por el extremo identificado como Frente. Antes de invocar el método

➥se debe verificar que la cola no esté vacía. El valor eliminado se

➥regresa por medio de un parámetro por referencia. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Cola<<TT>>::::EliminaCola(TT **Dato)

{{

**Dato= EspacioCola[Frente];

iiff (Frente == Final)

{{

Frente= –1;

Final= –1;

}}

eellssee

Frente++++;

}}

/* Método auxiliar que verifica si la cola está llena. Regresa 1 si la

➥cola no tiene espacio disponible y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Cola<<TT>>::::ColaLlena()

{{

iiff (Final == MAX–1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Método auxiliar que verifica si la cola está vacía. Regresa 1 si la

➥cola no tiene ningún elemento y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Cola<<TT>>::::ColaVacia()

{{

iiff (Frente == –1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Función que hace uso de la plantilla de la clase Cola. Se declara un

➥objeto tipo Cola de números enteros. Se le inserta el número 5 y luego

➥se quita y se imprime. Este ejemplo sencillo muestra el uso de los

➥métodos de la clase. */

Como puede observar, en la función de aplicación se valida que haya espacio y
que la cola no esté vacía antes de invocar a los métodos de inserción y elimina-
ción respectivamente. Sin embargo, los métodos se pueden estructurar de manera
diferente, haciendo que ambos incluyan la validación (invocación de los métodos
auxiliares ColaLlena() y ColaVacia()) dentro de su mismo código. El programa
5.5 presenta la plantilla de la clase Cola, con los métodos estructurados de esta for-
ma. Además, utiliza sobrecarga de operadores.

Programa 5.5

5.3 Colas 219

5

vvooiidd UsaClaseCola ()

{{

Cola<<iinntt>> ObjCola;

iinntt Indice;

iiff (ObjCola.ColaLlena() !!== 1)

ObjCola.InsertaCola(5);

eellssee

ccoouutt<<<<””\\nError de desbordamiento. Cola llena. \n”;

iiff (ObjCola.ColaVacia() !!== 1)

{{

ObjCola.EliminaCola(&&Valor);

ccoouutt<<<<Valor<<<<””\\nn””;;

}}

eellssee

ccoouutt<<<<””\\nSubdesbordamiento. Cola vacía.\n”;

}}

/* Definición del número máximo de elementos que puede contener la cola,

➥restricción que surge de usar un arreglo unidimensional. */

##ddeeffiinnee MAX 10

/* Definición de la plantilla de la clase Cola. Se utiliza sobrecarga de

➥operadores y se define a los métodos de inserción y eliminación como

➥métodos enteros. */

220 Capítulo 5. Pilas y colas

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Cola

{{

pprriivvaattee::

TT EspacioCola[MAX];

iinntt Frente, Final;

ppuubblliicc::

Cola();

iinntt ooppeerraattoorr ++ (TT);

iinntt ooppeerraattoorr –– (TT**);

iinntt ColaLlena();

iinntt ColaVacia();

}};;

/* Declaración del método constructor. Inicializa los punteros en –1,

➥indicando que la cola está vacía. */

tteemmppllaattee <<ccllaassss TT>>

Cola<T>::::Cola()

{{

Frente= –1;

Final= –1;

}}

/* Método que inserta un valor en la cola. La inserción se lleva a cabo por

➥el extremo identificado como Final. Antes de llevar a cabo la inser-

➥ción se verifica que la cola tenga espacio disponible. Si la operación

➥concluye con éxito el método regresa un 1, en caso contrario un 0.*/

tteemmppllaattee <<ccllaassss TT>>

iinntt Cola<T>::::ooppeerraattoorr ++ (TT Dato)

{{

/* La variable Res se inicializa en 0 (fracaso). Si la inserción se

➥lleva a cabo, entonces se le asignará el valor de 1 (éxito). */

iinntt Res= 0;

iiff (ColaLlena() !!== 1)

{{

EspacioCola[++Final]= Dato;

iiff (Final == 0)

Frente= 0;

Res= 1;

}}

rreettuurrnn Res;

}}

/* Método que elimina un elemento de la cola. La eliminación se lleva

➥a cabo por el extremo identificado como Frente. Antes de quitar el

➥elemento se debe validar que la cola no esté vacía. El valor eliminado

➥se regresa por medio de un parámetro por referencia. Si la operación

➥concluye con éxito el método regresa un 1, en caso contrario un 0. */

5.3 Colas 221

5

tteemmppllaattee <<ccllaassss TT>>

iinntt Cola<T>::::ooppeerraattoorr –– (TT **Dato)

{{

/* La variable Res se inicializa en 0 (fracaso). Si la eliminación se

➥lleva a cabo, entonces se le asignará el valor de 1 (éxito). */

iinntt Res= 0;

iiff (!!ColaVacia())

{{

**Dato= EspacioCola[Frente];

iiff (Frente == Final)

{{

Frente= –1;

Final= –1;

}}

eellssee

Frente++++;

Res= 1;

}}

rreettuurrnn Res;

}}

/* Método auxiliar que verifica si la cola está llena. Regresa 1 si la

➥cola no tiene espacio disponible y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Cola<T>::::ColaLlena()

{{

iiff (Final == MAX-1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Método auxiliar que verifica si la cola está vacía. Regresa 1 si la

➥cola no tiene ningún elemento y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Cola<T>::::ColaVacia()

{{

iiff (Frente == –1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

La estructura que se le dio a los métodos tiene la ventaja de que cada método es
responsable de verificar los posibles casos de error, garantizando de esta manera
el buen uso de la estructura de datos. Los usuarios de la clase pueden analizar el
resultado que dan los métodos para tomar una decisión adecuada a cada caso.

El programa 5.6 presenta un ejemplo de aplicación de la estructura cola. Se utili-
za una estructura de este tipo para almacenar los datos de algunos productos que
se tienen para la venta. La política de ventas es que siempre se vende el producto
que tiene más tiempo en el depósito, es decir el primero que se compró. Se usa
la plantilla definida en el programa 5.5, la cual está en la biblioteca “Cola.h”.

Programa 5.6

222 Capítulo 5. Pilas y colas

/* Aplicación de una estructura de datos tipo cola. Se define la clase

➥Producto y una cola de objetos tipo Producto. Considerando que se

➥quieren vender los productos de acuerdo al orden en el que fueron

➥comprados, se usó una cola para almacenarlos. La cola se actualiza a

➥medida que se compran o se venden productos. */

##iinncclluuddee ”Cola.h”

/* Definición de la clase Producto. */
ccllaassss Producto

{{

pprriivvaattee::

iinntt Clave;

cchhaarr NomProd[64];

ddoouubbllee Precio;

ppuubblliicc::

Producto();

Producto(iinntt, cchhaarr[[]], ddoouubbllee);

ddoouubbllee RegresaPrecio();

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&, Producto &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<<(oossttrreeaamm &&,, Producto &&);

}};;

/* Declaración del método constructor por omisión. */

Producto::::Producto()

{{}}

/* Declaración del método constructor con parámetros. */

Producto::::Producto(iinntt Cla, cchhaarr NomP[], ddoouubbllee Pe)

{{

Clave= Cla;

ssttrrccppyy(NomProd, NomP);

Precio= Pre;

}}

5.3 Colas 223

5

/* Método que permite, a usuarios externos a la clase, conocer el valor

➥del atributo privado Precio. */

ddoouubbllee Producto::::RegresaPrecio()

{{

rreettuurrnn Precio;

}}

/* Sobrecarga del operador >>>>. De esta forma se permite leer objetos de

➥tipo Producto de manera directa . */

iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Producto &&ObjProd)

{{

ccoouutt<<<<”\n\nIngrese clave del producto: ”;

Lee>>>>ObjProd.Clave;

ccoouutt<<<<”\n\nIngrese nombre del producto: ”;

Lee>>>>ObjProd.NomProd;

ccoouutt<<<<”\n\nIngrese precio: ”;

Lee>>>>ObjProd.Precio;

rreettuurrnn Lee;

}}

/* Sobrecarga del operador <<<<. De esta forma se permite imprimir objetos

➥de tipo Producto de manera directa . */

oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Producto &&ObjProd)

{{

Escribe<<<<”\n\nDatos del producto\n”;

Escribe<<<<”\nClave: ”<<<<ObjProd.Clave;

Escribe<<<<”\nNombre: ”<<<<ObjProd.NomProd;

Escribe<<<<”\nPrecio: ”<<<<ObjProd.Precio;

rreettuurrnn Escribe;

}}

/* Función auxiliar que despliega al usuario las opciones de trabajo. En

➥este caso registrar la compra o la venta de un producto. */

iinntt Menu()

{{

iinntt Resp;

ddoo {{

ccoouutt<<<<”\n\nIngrese operación a registrar: ”;

ccoouutt<<<<”\n1– Compra de un producto ”;

ccoouutt<<<<”\n2– Venta de un producto\n ”;

ccoouutt<<<<”\n3– Termina el registro\n ”;

cciinn>>>>Resp;

}} wwhhiillee (Resp !!== 1 &&&& Resp !!== 2 &&&& Resp !!== 3);

rreettuurrnn Resp;

}}

224 Capítulo 5. Pilas y colas

/* Función principal que lleva a cabo la aplicación descrita. Se crea

➥una cola de objetos tipo Producto y la misma se va modificando a medida

➥que se compran o se venden productos. El uso de una cola para guardar

➥los productos facilita el cumplimiento de la condición impuesta para su

➥venta: el primero que se compre será el primero que se venda. Al final

➥de las transacciones se imprime el total de dinero recaudado con las

➥ventas. */

vvooiidd mmaaiinn(())

{{

Cola<Producto> Deposito;

Producto Prod;

iinntt Opc;

ddoouubbllee Total= 0;

Opc= Menu();

wwhhiillee (Opc ==== 1 | | Opc==== 2)

{{

sswwiittcchh (Opc)

{{

ccaassee 1: cciinn>>>>Prod;

iiff (!!(Deposito ++ Prod))

ccoouutt<<<<”\n\nNo hay lugar en el depósito para

➥registrar el producto.\n”;

bbrreeaakk;;

ccaassee 2: iiff (Deposito –– &&Prod)

{{

ccoouutt<<<<Prod;

Total= Total + Prod.RegresaPrecio();

}}

eellssee

ccoouutt<<<<”\n\n\nYa no hay productos en el

➥depósito.\n\n”;

bbrreeaakk;;

}}

Opc= Menu();

}}

ccoouutt<<<<”\n\n\nTotal vendido: ”<<<<Total<<<<eennddll;

}}

5.3.1 Colas circulares

Las estructuras tipo cola que se han estudiado hasta el momento resultan inefi-
cientes en cuanto al manejo del espacio de memoria, si se efectúan sobre ellas
muchas actualizaciones. Es decir, si se realizan muchas inserciones y eliminacio-
nes puede darse el caso que el estado de la cola sea cola llena, no permitiendo
nuevas inserciones cuando en realidad se dispone de muchos espacios vacíos. La

figura 5.9 presenta el caso de que el puntero al final de la cola está en la última
posición del arreglo, lo cual producirá que se detecte que no hay espacio disponi-
ble. Sin embargo, como se ilustra en la figura, el puntero al frente de la cola está
desplazado hacia la derecha (consecuencia de haber hecho varias eliminaciones)
por lo que hay espacio físico disponible en la estructura.

5.3 Colas 225

5

…
0 1 2 3 4 MAX-2 MAX-1

Frente Final

FIGURA 5.9 Cola “llena”

…
0 1 2 3 4 5 6 MAX-1

Frente Final

FIGURA 5.10 Estructura de una cola circular

Una cola circular es aquella en la cual el sucesor del último elemento es el primero.
Por lo tanto, el manejo de las colas como estructuras circulares permite un mejor
uso del espacio de memoria reservado para la implementación de las mismas. La
figura 5.10 corresponde a la representación gráfica de una cola circular. Observe
que el siguiente elemento del último es el primero.

La figura 5.11 presenta el esquema correspondiente a una cola circular, en la cual
el final se movió hacia el inicio de la cola, teniendo un valor menor al frente. En
este ejemplo, la cola tiene las posiciones 4 a MAX-1 y 0 a 1 ocupadas, siendo el
primer elemento a salir el que está en la posición 4 y el último insertado el que
está en la posición 1.

Los algoritmos correspondientes a las operaciones de inserción y eliminación
varían al tratarse de colas circulares, en lo referente a la actualización de los pun-
teros. Asimismo, la condición para determinar si la cola está llena debe considerar
todos los casos que puedan presentarse, que son:

1. el Frente en la posición 0 y el Final en la posición (MAX - 1), o

2. el (Final + 1) es igual al Frente

ambos se evalúan por medio de la expresión: (Final+1) % MAX == Frente. A conti-
nuación, el programa 5.7 presenta la plantilla completa de la estructura cola circular.

Programa 5.7

226 Capítulo 5. Pilas y colas

…
0 1 2 3 4 5 6 MAX-1

Final Frente

FIGURA 5.11 Cola circular

/* Definición del número máximo de elementos que puede contener la cola

➥circular, por estar implementada con un arreglo unidimensional. */

##ddeeffiinnee MAX 10

/* Se define la plantilla de la clase ColaCircular. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ColaCircular

{{

pprriivvaattee::

TT EspacioCola[MAX];

iinntt Frente, Final;

ppuubblliicc::

ColaCircular();

iinntt InsertaCCircular(TT);

iinntt EliminaCCircular(TT *);

iinntt ColaCircularLlena();

iinntt ColaCircularVacia();

}};;

/* Declaración del método constructor. Inicializa los punteros en –1

➥indicando que la cola circular está vacía. */

5.3 Colas 227

5

tteemmppllaattee <<ccllaassss TT>>

ColaCircular<T>::::ColaCircular()

{{

Frente= –1;

Final= –1;

}}

/* Método entero que introduce un dato en la cola circular. El método

➥recibe como parámetro el valor a insertar. El método da como resultado

➥el valor 1 si la inserción se lleva a cabo y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ColaCircular<T>::::InsertaCCircular(TT Dato)

{{

iinntt Resp= 0;

iiff (!!ColaCircularLlena())

{{

Resp= 1;

Final= (Final +1) %% MAX;

EspacioCola[Final]= Dato;

iiff (Frente == –1)

Frente= 0;

}}

rreettuurrnn Resp;

}}

/* Método entero que elimina un dato de la cola circular. El método

➥regresa el valor eliminado por medio de un parámetro por referencia.

➥Da como resultado el valor 1 si realiza la eliminación y 0 en caso

➥contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ColaCircular<T>::::EliminaCCircular(TT **Dato)

{{

iinntt Resp= 0;

iiff (!!ColaCircularVacia())

{{

Resp= 1;

**Dato= EspacioCola[Frente];

iiff (Frente == Final)

{{

Frente= –1;

Final= –1;

}}

eellssee

Frente= (Frente + 1) %% MAX;

}}

rreettuurrnn Resp;

}}

El programa 5.8 presenta un ejemplo de aplicación de colas circulares. Observe
que para el usuario de la clase es totalmente indistinta la manera en la que esté
implementada la cola. La ventaja está en el mejor aprovechamiento del espacio
de memoria. Sin embargo, el uso es igual al de las colas vistas al inicio de esta
sección. Se utiliza la plantilla de la cola circular correspondiente al programa 5.7,
la cual se incluye en la biblioteca “ColaCircular.h”.

Programa 5.8

228 Capítulo 5. Pilas y colas

/* Método auxiliar que verifica si la cola circular está llena. Regresa 1

➥si la cola no tiene espacios disponibles y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ColaCircular<T>::::ColaCircularLlena()

{{

iiff ((Final + 1) %% MAX == Frente)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Método auxiliar que verifica si la cola circular está vacía. Regresa 1

➥si la cola no tiene ningún elemento almacenado y 0 en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

iinntt ColaCircular<T>::::ColaCircularVacia()

{{

iiff (Frente == –1)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Aplicación de una cola circular. Los datos de un grupo de pacientes

➥(objetos de tipo Paciente) se registran en una cola a medida que los

➥pacientes solicitan atención de un médico. A su vez, cuando un médico

➥se desocupa y está en condiciones de recibir a otro paciente se obtienen

➥(de la cola) los datos de un paciente y se le asigna a dicho médico.

➥De esta manera se garantiza que los pacientes sean atendidos en el

➥orden en el que fueron registrados. */

/* En la biblioteca ”ColaCircular.h” se incluye la plantilla de la clase

ColaCircular presentada en el programa 5.7. */

5.3 Colas 229

5

##iinncclluuddee ”ColaCircular.h”

/* Definición de la clase Paciente. */

ccllaassss Paciente

{{

pprriivvaattee::

cchhaarr Nombre[64], Sexo, Padecim[64];

iinntt AnioNac;

ppuubblliicc::

Paciente();

Paciente(cchhaarr[[]], cchhaarr, cchhaarr[[]], iinntt);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&, Paciente &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<<(oossttrreeaamm &&, Paciente &&);

}};;

/* Declaración del método constructor por omisión. */

Paciente::::Paciente()

{{}}

/* Declaración del método constructor con parámetros. */

Paciente::::Paciente(cchhaarr Nom[], cchhaarr S, cchhaarr Padec[], iinntt ANac)

{{

ssttrrccppyy(Nombre, Nom);

Sexo= S;

ssttrrccppyy(Padecim, Padec);

AnioNac= ANac;

}}

/* Sobrecarga del operador >>>> para poder leer objetos de tipo Paciente

➥de manera directa. */

iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Paciente &&ObjPac)

{{

ccoouutt<<<<”\n\nIngrese nombre del paciente: ”;

Lee>>>>ObjPac.Nombre;

ccoouutt<<<<”\n\nSexo: ”;

Lee>>>>ObjPac.Sexo;

ccoouutt<<<<”\n\nPadecimiento del paciente: ”;

Lee>>>>ObjPac.Padecim;

ccoouutt<<<<”\n\nIAño de nacimiento: ”;

Lee>>>>ObjPac.AnioNac;

rreettuurrnn Lee;

}}

/* Sobrecarga del operador <<<< para poder desplegar en pantalla objetos

➥de tipo Paciente de manera directa. */

230 Capítulo 5. Pilas y colas

oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Paciente &&ObjPac)

{{

Escribe<<<<”\n\nDatos del paciente\n”;

Escribe<<<<”\nNombre: ”<<<<ObjPac.Nombre;

Escribe<<<<”\nSexo: ”<<<<ObjPac.Sexo;

Escribe<<<<”\nAño nacimiento: ”<<<<ObjPac.AnioNac;

Escribe<<<<”\nPadecimiento: ”<<<<ObjPac.Padecim;

rreettuurrnn Escribe;

}}

/* Función auxiliar que despliega al usuario las opciones de trabajo: regis-

➥trar un nuevo paciente o asignar médico a un paciente ya registrado. */

iinntt Menu()

{{

iinntt Opc;

ddoo {{

ccoouutt<<<<”\n\nBienvenido al sistema de registro de pacientes para

➥consulta. \n\n”;

ccoouutt<<<<”\n¿Qué desea hacer?\n”;

ccoouutt<<<<”\n 1-Registrar un nuevo paciente. ”;

ccoouutt<<<<”\n 2-Asignar médico a un paciente.”;

ccoouutt<<<<”\n 3-Terminar.\n”;

ccoouutt<<<<”\n\nIngrese la opción elegida: ”;

cciinn>>>>Opc;

}} wwhhiillee (Opc < 1 | | Opc > 3);

rreettuurrnn Opc;

}}

/* Función que hace uso de la cola circular para almacenar los datos a

➥procesar. Por medio de la cola se asegura que los datos se procesen en

➥el orden en el que llegan: los pacientes se asignan a los médicos en el

➥orden en el que llegaron a la consulta. */

vvooiidd UsaColaCircular(())

{{

ColaCircular<Paciente> ListaEspera;

Paciente Pac;

iinntt Opc= Menu();

wwhhiillee (Opc == 1 | | Opc== 2)

{{

sswwiittcchh (Opc)

{{

ccaassee 1: cciinn>>>>Pac;

iiff (!!ListaEspera.InsertaCCircular(Pac))

5.3 Colas 231

5

ccoouutt<<<<”\nLa cuota de pacientes se agotó. Regrese

➥mañana.”;

bbrreeaakk;;

ccaassee 2: iiff (ListaEspera.EliminaCCircular(&&Pac))

ccoouutt<<<<”\n\nEl paciente que pasa a consulta es:

➥”<<<<Pac;

eellssee

ccoouutt<<<<”\n\n\nNo hay pacientes en espera de ser

➥atendidos.\n\n”;

bbrreeaakk;;

}}

Opc= Menu();

}}

}}

5.3.2 Colas dobles

Otra variante de las estructuras tipo cola son las colas dobles. Como su nombre
lo indica, estas estructuras permiten realizar las operaciones de inserción y elimi-
nación por cualquiera de sus extremos. Gráficamente una cola doble se representa
de la siguiente manera:

…
0 1 2 3 MAX-1

FIGURA 5.12 Cola doble

Debido a que este tipo de estructura es una generalización del tipo cola no se pre-
sentan aquí las operaciones. Al respecto, sólo se menciona que será necesario de-
finir métodos que permitan insertar por el frente y por el final, así como métodos
que permitan eliminar por ambos extremos. Las condiciones para determinar el
estado de la cola no varían.

Por último, es importante señalar que una doble cola también puede ser circular.
En dicho caso, será necesario que los métodos de inserción y eliminación (sobre
cualquiera de los extremos) consideren el movimiento adecuado de los punteros.

Ejercicios
1. Escriba un programa en C++ que, apoyándose en un objeto tipo pila, tra-

duzca una expresión dada en notación infija a notación prefija. Por ejemplo,
si la expresión dada es a + b, su programa debe generar como salida + a b.

2. Escriba un programa en C++ que, apoyándose en un objeto tipo pila, evalúe
una expresión dada en notación prefija. Por ejemplo, si la expresión dada es
+ 8 4, su programa debe generar como salida el valor 12. Puede asumir que
se darán números de un solo dígito.

3. Escriba un programa en C++ que elimine los elementos repetidos de una pi-
la. Suponga que si existen elementos repetidos, los mismos se encuentran
en posiciones consecutivas. Puede usar cualquier estructura de datos como
auxiliar. Observe la siguiente figura:

232 Capítulo 5. Pilas y colas

Tope

450

1500

1285

1285

1285

879

450

1500

1285

879

450

Tope

Pila dato Pila resultado

4. Escriba un programa en C++ que invierta los elementos almacenados en
una pila. Puede usar cualquier estructura de datos como auxiliar. Observe la
siguiente figura:

5. Defina la clase Cola y utilice sobrecarga de operadores en los métodos necesa-
rios para implementar las operaciones asociadas a este tipo de estructura. Se
sugiere usar la suma aritmética (+) para la inserción y la resta aritmética (–)
para la eliminación.

6. Escriba un programa en C++ que invierta iterativamente los elementos de
una cola. Puede usar cualquier estructura de datos como auxiliar.

7. Escriba un programa en C++ que invierta recursivamente los elementos de
una cola. Puede usar cualquier estructura de datos como auxiliar.

8. Escriba un programa en C++ que elimine los elementos repetidos de una
cola circular. Suponga que si existen elementos repetidos, los mismos se
encuentran en posiciones consecutivas (ver la figura). Puede usar cualquier
estructura de datos como auxiliar.

Ejercicios 233

5

Tope

3209

1024

623

928

1024

3209

928

623

Tope

Pila dato Pila resultado

87 54 54 54 91 91 …
0 1 2 3 4 5 6 MAX-1

Frente Final

9. Defina la plantilla de la clase DobleCola, de acuerdo a las especificaciones
que se dan a continuación.

234 Capítulo 5. Pilas y colas

DobleCola(T)

Frente, Final: int

EspaDobleCola[MAX]: T

Constructor.

int InsertaIzq(T)

int InsertaDer(T)

int EliminaIzq(T)

int EliminaDer(T)

int DobleColaLlena()

int DobleColaVacia()

Impresion

NombreArchivo: char[]

Autor: char[]

HoraDeEncolar: char[]

Constructor(es).

Métodos de acceso y modificación a los
miembros de la clase.

10. Escriba un programa en C++, que mediante la plantilla de la cola circular pre-
sentada en este capítulo, simule el comportamiento de una cola de impresión.
La cola deberá almacenar objetos de la clase Impresión, cuyas especificaciones
se dan a continuación. El programa leerá dos posibles opciones de trabajo so-
bre la cola de impresión: a) encolar un nuevo archivo a imprimir o b) imprimir
un archivo. Su programa debe verificar que las opciones dadas por el usuario
puedan realizarse, en caso contrario desplegará un mensaje adecuado.

11. Escriba un programa en C++, que mediante la plantilla de la cola circular
presentada en este capítulo, simule el comportamiento de una cola de aten-
ción a clientes de un banco. La cola deberá almacenar objetos de la clase
Clientes. Defina qué atributos y métodos deberá incluir esta clase. El pro-
grama leerá, mientras el usuario así lo requiera, dos posibles opciones de
trabajo sobre la cola de espera de los clientes:

a) Llega un nuevo cliente al banco, en cuyo caso debe ingresarse a la co-
la de espera. El usuario proporcionará los datos del cliente.

b) Un cliente pasa a la ventanilla donde será atendido. El dato será el nú-
mero de ventanilla a la que debe pasar.

Al finalizar el día de trabajo, su programa debe imprimir el total de clientes
atendidos.

12. En la Dirección escolar de una escuela se reciben solicitudes de constan-
cias de estudio de los alumnos. Cada constancia lleva el nombre del alumno,
nombre de la carrera que cursa, total de materias aprobadas y promedio
general. Escriba un programa en C++ que, apoyándose en un objeto tipo
cola, pueda realizar las siguientes operaciones:

a) Dar de alta la solicitud de un alumno (la solicitud debe encolarse, ya
que se atenderá según el orden en el cual se recibió).

b) Elaborar una constancia. La misma debe tener todos los datos mencio-
nados. Esta operación presupone que los datos del alumno cuya solici-
tud es atendida deben quitarse de la cola.

La cola almacenará objetos tipo Alumno y tomará los datos de dichos objetos para
la elaboración de la constancia. Defina qué atributos y métodos tendrá la clase
mencionada. Utilice alguna de las plantillas de la clase Cola explicadas en este
capítulo.

13. Retome el problema anterior. Escriba un programa en C++ que permita eli-
minar de la cola de espera de la Dirección escolar a todos aquellos alumnos
cuya carrera sea igual a un cierto valor dado por el usuario.

Ejercicios 235

5

CAPÍTULO 6

6.1 Introducción
Este capítulo presenta la estructura de datos conocida como lista y
muestra las principales características, cómo se relacionan sus compo-
nentes y analiza las operaciones que se le pueden aplicar.

En términos generales, una lista se define como una colección de ele-
mentos donde cada uno de ellos, además de almacenar información,
almacena la dirección del siguiente elemento. Una lista es una estruc-
tura lineal de datos. Es decir, cada uno de sus componentes tiene un
sucesor y predecesor únicos, con excepción del último y del primero,
los cuales carecen de sucesor y de predecesor respectivamente.

Las listas pueden implementarse mediante arreglos resultando así una
estructura estática (el tamaño de la misma no varía durante la ejecución
del programa). Otra alternativa para su implementación es usar memoria

Listas

dinámica, lo que permite que dicha característica se propague a la lista, obteniendo
una estructura dinámica (la cantidad de memoria ocupada puede modificarse durante
la ejecución del programa). Las listas se analizarán como estructuras dinámicas.

6.2 Listas simplemente ligadas
Una lista simplemente ligada es una estructura de datos lineal, dinámica, formada
por una colección de elementos llamados nodos. Cada nodo está formado por dos
partes: la primera de ellas se utiliza para almacenar la información (razón de ser de la
estructura de datos), y la segunda se usa para guardar la dirección del siguiente nodo.

La figura 6.1 presenta un esquema de un nodo. Cabe destacar, que cada nodo
sólo conoce la dirección del nodo que le sucede.

238 Capítulo 6. Listas

Dirección del siguiente nodo

Información

FIGURA 6.1 Estructura de un nodo

La figura 6.2 muestra la representación gráfica de una lista simplemente ligada.
La lista está formada por una colección de nodos, cada uno de los cuales apunta
al siguiente nodo, excepto el último que en la posición dedicada a la dirección de
su vecino tiene el valor NULL. Además, se puede observar que se requiere de un
puntero al primer elemento de la lista. Como éste no tiene predecesor, es indispensa-
ble que una variable tipo puntero almacene su dirección. A continuación se puede
observar que el puntero al inicio de la lista se identifica con el nombre de Primero.

FIGURA 6.2 Lista simplemente ligada NULL

Primero

Las figuras 6.3 y 6.4 presentan las plantillas de la clase NodoLista y de la clase
Lista respectivamente. Se usan plantillas para dar mayor generalidad a la solución.
La clase NodoLista tiene dos atributos, uno que representa la información a alma-
cenar por lo que se define de tipo T, y otro que representa la dirección de otro no-
do por lo que se define como un puntero a un objeto de la misma clase. Por su
parte, la clase Lista tiene un único atributo que representa la dirección del primer
elemento de la lista, por lo cual es de tipo puntero a un objeto de tipo NodoLista.

6.2 Listas simplemente ligadas 239

6

NodoLista(T)

Info: T

Liga: *NodoLista(T)

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 6.3 Clase NodoLista

Lista(T)

Primero: *NodoLista(T)

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 6.4 Clase Lista

A continuación se presenta el código en lenguaje C++ correspondiente a la defi-
nición de las plantillas de las clases NodoLista y Lista.

/** Prototipo de la plantilla de la clase Lista. Así, en la clase

➥NodoLista se podrá hacer referencia a ella. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista;

/** Definición de la plantilla de la clase NodoLista. La clase Lista se

➥declara como una clase amiga para que pueda tener acceso a los miembros

➥privados de la clase NodoLista. **/

La clase NodoLista se utiliza para representar un nodo, por lo tanto se incluyen
dos atributos: uno para almacenar información de cualquier tipo (tipo T) y el otro
para almacenar la dirección de otro objeto del mismo tipo. La sección pública
contiene el método constructor y la declaración de amistad con la clase Lista,
esto último para permitir que los miembros de ésta tengan acceso a sus propios
miembros. Además, se podrían definir otros métodos, por ejemplo uno para re-
gresar el atributo Info o uno para modificarlo.

240 Capítulo 6. Listas

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoLista

{{

pprriivvaattee::

NodoLista<<TT>> ** Liga;

TT Info;

ppuubblliicc::

NodoLista();

ffrriieenndd ccllaassss Lista<<TT>>;

}};;

/** Declaración del método constructor por omisión. **/

NodoLista::::NodoLista()

{{

Liga= NNUULLLL;;

}}

/** Definición de la plantilla de la clase Lista. Esta clase tiene un

➥solo atributo que es un puntero al primer elemento de la misma. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista

{{

pprriivvaattee::

NodoLista<<TT>> ** Primero;

ppuubblliicc::

Lista();

/**En esta sección se incluyen los métodos de acceso y

➥modificación a los miembros de la clase. **/

}};;

/** Declaración del método constructor por omisión. **/

tteemmppllaattee <<ccllaassss TT>>

Lista:::: Lista()

{{

Primero= NNUULLLL;

}}

A partir de la clase NodoLista se define la clase Lista, que está formada por un
único atributo (tipo puntero a un objeto NodoLista) que representa el puntero al
primer elemento de la lista. Este atributo permite el acceso a todos los elementos
de la lista, debido a que el primero conoce la dirección del segundo, éste la del
tercero y así sucesivamente hasta llegar al último. En la sección pública se decla-
ran los métodos para tener acceso y modificar sus miembros, así como aquellos
que permiten la manipulación de la información almacenada.

Las operaciones básicas a realizar en una lista previamente generada son: inser-
ción, eliminación y búsqueda. La creación de la misma también se puede consi-
derar dentro de esta categoría. Es importante destacar que cualquiera que sea la
operación a realizar en una lista simplemente ligada no debe perderse la dirección
del primer elemento de la misma. Teniendo este puntero se tiene acceso a
todos los elementos, mientras que si se pierde su valor no existe manera de recu-
perar la dirección al primer nodo y de éste al segundo y así a los demás elemen-
tos. A continuación se analizan las principales operaciones. Las variantes de una
misma operación se deben principalmente a la posición dentro de la lista donde
se lleve a cabo ésta.

6.2.1 Inserción de elementos en una lista

La operación de inserción de un nuevo nodo a una lista consiste en tomar un
espacio de memoria dinámicamente, asignarle la información correspondiente y
ligarlo a otro nodo de la lista. Los pasos varían dependiendo de la posición del
nodo al cual se ligue el nuevo elemento. La operación de crear un nodo, en el
lenguaje C++, se lleva a cabo por medio de la instrucción new. La misma asigna
un espacio de memoria y da como resultado la dirección del bloque asignado. En
caso de que no sea posible asignar el espacio de memoria, el resultado será el
valor NULL.

Inserción al principio de la lista

La figura 6.5 presenta un esquema de la inserción de un nuevo elemento al inicio
de la lista. Se crea un nodo, cuya dirección se guarda en una variable auxiliar lla-
mada P, y se liga con el primero de la lista. Una vez realizado este paso, se rede-
fine el Primero con el valor de P.

6.2 Listas simplemente ligadas 241

6

El método para llevar a cabo esta operación es el siguiente:

242 Capítulo 6. Listas

FIGURA 6.5 Lista simplemente ligada

NULL

Primero

Primero

P

/** Plantilla del método que inserta un elemento al inicio de la lista,

➥convirtiéndose en el primero de la misma. Recibe como parámetro el dato

➥a insertar. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::InsertaInicio((TT Dato)

{{

NodoLista<<TT>> ** P;

P= nneeww NodoLista<<TT>>();

P––>>Info= Dato;

P––>>Liga= Primero;

Primero= P;

}}

Observe que se usa la notación Variable–>Atributo debido a que Variable es un
puntero a un objeto de la clase NodoLista.

El método presentado es válido para insertar un elemento al inicio de una lista vacía
o al inicio de una lista previamente creada. Por lo tanto, puede generalizarse para
crear una lista insertando los elementos siempre por el principio de la misma.

Inserción al final de la lista

Otro caso frecuente de inserción es cuando interesa agregar un nuevo elemento al
final de la lista. La figura 6.6 presenta gráficamente esta operación. Se crea un
nuevo nodo, apuntado por P, y se establece una liga entre el último nodo de la

lista y éste. Para llegar al último elemento es necesario recorrer toda la lista, desde el
primero hasta dicho nodo. Si la lista es definida con un puntero al inicio y otro al
final, el recorrido hasta el último nodo se omite. Sin embargo, según la definición
previa de la clase Lista, se requiere hacer la operación auxiliar mencionada.

6.2 Listas simplemente ligadas 243

6

FIGURA 6.6 Inserción al final de la lista

NULL NULL

Primero

P

Último

El conjunto de pasos necesarios para llevar a cabo esta operación se presenta en
el siguiente método de la clase Lista.

/** Método que inserta un nodo al final de la lista, convirtiéndose en el

➥último elemento de la misma. Recibe como parámetro el dato a almacenar

➥en dicho nodo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::InsertaFinal((TT Dato)

{{

NodoLista<<TT>> ** P, **Ultimo;

P= nneeww NodoLista<<TT>>();

P––>>Info= Dato;

iiff (Primero)

{{

/** Si la lista tiene al menos un elemento, entonces se debe

➥recorrer hasta llegar al último nodo. **/

Ultimo= Primero;

wwhhiillee (Ultimo––>>Liga)

Ultimo= Ultimo––>>Liga;

/** El último nodo de la lista apunta al nuevo nodo, cuya

➥dirección está en P. **/

Ultimo––>>Liga= P;

}}

eellssee

/** Si la lista no tiene elementos, entonces el nuevo elemento

➥será el primero de la misma. **/

Primero= P;

}}

El método presentado incluye el recorrido de la lista hasta encontrar el último
elemento. También contempla si la lista está vacía, ya que en este caso deberá re-
definir el atributo Primero con el valor del puntero al nodo que insertó. Es impor-
tante mencionar que el constructor de la clase NodoLista se encargó de asignarle
la constante NULL al atributo Liga de P, y dado que será el último de la lista se
queda con ese valor.

Inserción antes de un nodo dado como referencia

La figura 6.7 presenta un esquema de la inserción de un nuevo elemento antes de
un nodo que almacena cierto dato dado como referencia. Este caso es útil para el
manejo de listas cuya información está ordenada.

Para llevar a cabo este tipo de inserción, primero se busca el nodo dado como re-
ferencia guardando la dirección del anterior (apuntado por Ant). Si se encuentra
el nodo, entonces se crea otro (cuya dirección es almacenada en la variable P)
estableciéndose las ligas entre éste y el dado como referencia, y entre el anterior
y el nuevo.

244 Capítulo 6. Listas

FIGURA 6.7 Inserción antes de un nodo dado como referencia

Ref

NULL

Primero Ant

P

El método que implementa esta variante de la operación de inserción es el siguiente:

/** Método que inserta un nodo antes de un nodo dado como referencia.

➥Recibe como parámetros el dato a guardar en el nuevo nodo (Dato) y la

➥información dada como referencia (Ref). El método regresa 1 si se pudo

➥agregar el dato a la lista, 0 si no se encontró el dato dado como

➥referencia y –1 si la lista está vacía. **/

El método presentado incluye la búsqueda del elemento dado como referencia.
Además, contempla los posibles casos de fracaso: si la lista está vacía o si el
elemento dado como referencia no está en la lista. También se toma en cuenta la
posición del elemento de referencia dentro de la lista, ya que si es el primero de
la misma el puntero Primero se debe redefinir.

6.2 Listas simplemente ligadas 245

6

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::InsertaAntes(TT Dato, TT Ref)

{{

NodoLista<<TT>> ** P, **Ant, **Q;

iinntt Resp= 1;

iiff (Primero)

{{

Q= Primero;

wwhhiillee ((Q !!== NNUULLLL) &&&& (Q––>>Info !!== Ref))

{{

Ant= Q;

Q= Q––>>Liga;

}}

iiff (Q !!== NNUULLLL)

{{

P= nneeww NodoLista<<TT>>();

P––>>Info= Dato;

/** El dato de referencia es el primero de la lista. **/

iiff (Primero ==== Q)

{{

P––>>Liga= Primero;

Primero= P;

}}

eellssee

{{

Ant––>>Liga= P;

P––>>Liga= Q;

}}

}}

eellssee

/** No se encontró el dato dado como referencia. **/

Resp= 0;

}}

eellssee

/** La lista está vacía. **/

Resp= –1;

rreettuurrnn Resp;

}}

Inserción después de un nodo dado como referencia

La figura 6.8 presenta un esquema de la inserción de un nuevo elemento después
de un nodo que almacena cierto dato dado como referencia. Este caso, lo mismo que
el anterior, es usado cuando se trabaja con listas cuya información está ordenada.

Se empieza buscando el nodo que guarda el dato dado como referencia. Si se en-
cuentra, entonces se crea un nodo cuya dirección queda en la variable P. Luego
se establecen las ligas requeridas para relacionar el nuevo elemento con el dado
como referencia y con el sucesor de este último.

246 Capítulo 6. Listas

FIGURA 6.8 Inserción antes de un nodo dado como referencia

Ref

NULL

Primero Q

P

A continuación se presenta el método que implementa este tipo de inserción de
nodos en una lista simplemente ligada.

/** Método que inserta un nuevo elemento (Dato) como nodo sucesor de uno

➥que almacena un dato dado como referencia (Ref). El método regresa 1 si

➥se pudo insertar, 0 si no se encontró la referencia y –1 si la lista

➥está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::InsertaDespues(TT Dato, TT Ref)

{{

NodoLista<<TT>> ** Q, **P;

iinntt Resp= 1;

iiff (Primero)

El método presentado incluye la búsqueda del elemento dado como referencia.
Además, contempla los posibles casos de fracaso: si la lista está vacía o si el ele-
mento dado como referencia no está en la lista.

Los métodos presentados podrían modificarse incluyendo la evaluación de si hu-
bo o no espacio de memoria disponible. Si el valor arrojado por la instrucción
new fue NULL, entonces el método debería indicarlo de alguna manera al progra-
ma usuario.

6.2.2 Eliminación de elementos de una lista

La operación de eliminación de un nodo de una lista consiste en encontrar el va-
lor a quitar, establecer la liga correspondiente entre el nodo que lo precede y su
sucesor y finalmente liberar la porción de memoria ocupada por el nodo elimina-
do. Se pueden presentar algunas variantes según la posición que el elemento ten-
ga en la lista. A continuación se analizan los principales casos. La operación de
liberar espacio de memoria, en el lenguaje C++, se lleva a cabo por medio de la
instrucción delete().

6.2 Listas simplemente ligadas 247

6

{{

Q = Primero;

wwhhiillee ((Q !!== NNUULLLL) &&&& (Q––>>Info !!== Ref))

Q= Q––>>Liga;

iiff (Q !!== NNUULLLL)

{{

P= nneeww NodoLista<<TT>>();

P––>>Info= Dato;

P––>>Liga= Q––>>Liga;

Q––>>Liga= P;

}}

eellssee

/** No se encontró la referencia. **/

Resp= 0;

}}

eellssee

/** La lista está vacía. **/

Resp= –1;

rreettuurrnn Resp;

}}

Eliminación del primer elemento de la lista

La figura 6.9 presenta el esquema correspondiente a esta operación. El nodo que
se va a eliminar debe ser apuntado por una variable auxiliar, en este caso llamada
P, luego se debe redefinir el Primero con la dirección de su sucesor y finalmente
se libera la porción de memoria ocupada por el nodo.

248 Capítulo 6. Listas

FIGURA 6.9 Eliminación del primer nodo de la lista

NULL

Primero

P

El método para llevar a cabo esta operación es el siguiente:

/** Método que elimina el primer elemento de la lista. El método redefine

➥el puntero al inicio de la lista y libera el espacio de memoria del nodo

➥eliminado. Regresa 1 si se realizó la operación y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaPrimero()

{{

NodoLista<<TT>> ** P;

iinntt Resp= 1;

iiff (Primero)

{{

P= Primero;

Primero= P––>>Liga;

ddeelleettee (P);

}}

eellssee

/** La lista está vacía. **/

Resp= 0;

rreettuurrnn Resp;

}}

El método presentado verifica si la lista tiene al menos un nodo, ya que en caso
contrario no existe un primer elemento que pueda quitarse.

Eliminación del último elemento de la lista

La figura 6.10 presenta gráficamente la secuencia de pasos necesarios para quitar
el último nodo de una lista simplemente ligada. En este caso, se debe recorrer la
lista hasta llegar al elemento deseado, guardando la dirección de su predecesor.
Una vez encontrado se debe redefinir su predecesor como último elemento de la
lista y liberar el espacio de la memoria correspondiente.

6.2 Listas simplemente ligadas 249

6

FIGURA 6.10 Eliminación del último nodo de la lista
NULLNULL

Primero

P

Ant

A continuación se presenta el método que implementa los pasos explicados ante-
riormente.

/** Método que elimina el último nodo de una lista. Primero lo localiza,

➥guardando la dirección del nodo que le precede. Posteriormente redefine

➥la liga de éste con el valor de NNUULLLL para indicar que ahora es el último

➥y finalmente libera el espacio de memoria. El método regresa 1 si se

➥puede llevar a cabo la eliminación y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaUltimo()

{{

NodoLista<<TT>> ** Ant, **P;

iinntt Resp= 1;

iiff (Primero)

{{

/* Verifica si la lista está formada por un único elemento,

➥en tal caso redefine el puntero al inicio con el valor de NNUULLLL,

➥indicando lista vacía. */

iiff (!!Primero––>>Liga)

{{

ddeelleettee (Primero);

Primero= NNUULLLL;

El método presentado considera el caso de una lista formada por un único ele-
mento (primero y último) la cual, después de la eliminación, queda vacía.

Eliminación de un elemento de la lista

La figura 6.11 presenta gráficamente los pasos necesarios para eliminar al nodo
que almacena cierta información, en una lista previamente formada. Se puede
observar que primero se recorre la lista hasta llegar al elemento buscado (valor de
referencia dado por el usuario, apuntado por P), guardando la dirección de
su predecesor (Ant). Una vez encontrado se debe establecer la liga entre su
predecesor y su sucesor y liberar el espacio de memoria ocupado por dicho nodo.

250 Capítulo 6. Listas

}}

eellssee

{{

P= Primero;

wwhhiillee (P––>>Liga)

{{

Ant= P;

P= P––>>Liga;

}}

Ant––>>Liga= NNUULLLL;

ddeelleettee (P);

}}

}}

eellssee

/** La lista está vacía. **/

Resp= 0;

rreettuurrnn Resp;

}}

Ref

FIGURA 6.11 Eliminación de un elemento de la lista

NULL

Primero

PAnt

El método para llevar a cabo esta operación es el siguiente:

6.2 Listas simplemente ligadas 251

6

/** Método que elimina un nodo que almacena cierta información. El método

➥verifica que la lista tenga elementos y que el elemento dado como

➥referencia se encuentre en la lista. Recibe como parámetro el dato a

➥eliminar y regresa como resultado 1 si lo elimina, 0 si no lo encuentra

➥y –1 si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaUnNodo(TT Ref)

{{

NodoLista<<TT>> ** P, **Ant;

iinntt Resp= 1;

iiff (Primero)

{{

P= Primero;

wwhhiillee ((P––>>Liga) &&&& (P––>>Info !!== Ref))

{{

Ant= P;

P= P––>>Liga;

}}

iiff (P––>>Info !!== Ref)

/** El elemento no fue encontrado. **/

Resp= 0;

eellssee

{{

iiff (Primero ==== P)

Primero= P––>>Liga;

eellssee

Ant––>>Liga= P––>>Liga;

ddeelleettee (P);

}}

}}

eellssee

Resp= –1;

rreettuurrnn Resp;

}}

El método presentado contempla el caso de que el elemento dado como referen-
cia no se encuentre en la lista, así como el caso de que sea el primero. Por otra
parte, si la lista tiene un único elemento y éste fuera el nodo a quitar, al redefinir
Primero con el valor de P–>Liga, se le estaría asignando la constante NULL.

A los métodos definidos para la operación de eliminación se los podría modificar
de tal manera que regresen, a través de un parámetro, la dirección del nodo quita-
do de la lista. De esta forma, el nodo o su contenido podrían usarse en la aplica-
ción, luego de lo cual se liberaría el espacio de memoria.

A continuación, el programa 6.1 presenta la plantilla de la clase Lista con todos
sus atributos y métodos. Además de las principales operaciones analizadas, se in-
cluyeron otras que pueden ser útiles para el manejo de la información almacena-
da en una lista simplemente ligada. Por razones de espacio, se incluyó sólo el
prototipo y el encabezado de algunos de los métodos ya explicados.

Programa 6.1

252 Capítulo 6. Listas

/** Definición de la plantilla de la clase NodoLista y de la clase Lista.

➥Se incluyeron los métodos más usados. Sin embargo, dependiendo de la

➥aplicación se podrían definir otros. **/

/** Prototipo de la plantilla de la clase Lista. Así, en la clase

➥NodoLista se podrá hacer referencia a ella. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista;

/** Definición de la clase NodoLista. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoLista

{{

pprriivvaattee::

NodoLista<<TT>> ** Liga;

TT Info;

ppuubblliicc::

NodoLista();

TT RegresaInfo();

ffrriieenndd ccllaassss Lista<<TT>>;

}};;

/** Declaración del método constructor por omisión. Inicializa con el

➥valor NNUULLLL al puntero al siguiente nodo. **/

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>>::::NodoLista()

{{

Liga= NNUULLLL;

}}

/* Método que permite, a usuarios ajenos a la clase, conocer el valor

➥del atributo Info. */

tteemmppllaattee <<ccllaassss TT>>

TT NodoLista<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info;;

}}

6.2 Listas simplemente ligadas 253

6

/** Definición de la clase Lista. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista

{{

pprriivvaattee::

NodoLista<<TT>> ** Primero;

ppuubblliicc::

Lista ();

NodoLista<<TT>> ** RegresaPrimero();

vvooiidd CreaInicio();

vvooiidd CreaFinal();

vvooiidd ImprimeIterativo();

vvooiidd ImprimeRecursivo(NodoLista<<TT>> **);

vvooiidd ImprimeUnNodo(NodoLista<<TT>> **);

vvooiidd InsertaInicio(TT);

vvooiidd InsertaFinal(TT);

vvooiidd InsertaOrdenCrec(TT);

iinntt InsertaAntes(TT, TT);

iinntt InsertaDespues(TT, TT);

iinntt EliminaPrimero();

iinntt EliminaUltimo();

iinntt EliminaUnNodo(TT);

iinntt EliminaAnterior(TT);

iinntt EliminaDespues(TT);

NodoLista<<TT>> ** BuscaDesordenada(TT);

NodoLista<<TT>> ** BuscaOrdenada(TT);

NodoLista<<TT>> ** BuscaRecursivo(TT, NodoLista<<TT>> **);

}};;

/** Declaración del método constructor. Inicializa el puntero al primer

➥nodo de la lista con el valor NNUULLLL: indica lista vacía. **/

tteemmppllaattee <<ccllaassss TT>>

Lista<<TT>>::::Lista()

{{

Primero= NNUULLLL;

}}

/** Método que regresa la dirección del primer nodo de la lista. **/

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> ** Lista<<TT>>::::RegresaPrimero()

{{

rreettuurrnn Primero;

}}

/** Método que crea una lista agregando el nuevo nodo al inicio de la

➥misma. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::CreaInicio()

254 Capítulo 6. Listas

{{

NodoLista<<TT>> ** P;

TT Dato;

cchhaarr Resp;

Primero= nneeww NodoLista<<TT>>();

ccoouutt<<<< ”Ingrese la información a almacenar: \n”;

cciinn>>>>Dato;

Primero––>>Info= Dato;

ccoouutt<<<< ”\n¿Desea ingresar otro elemento (S/N)? ”;

cciinn>>>>Resp;

wwhhiillee (Resp ==== ‘S’ | | Resp ==== ‘s’)

{{

ccoouutt<<<< ”Ingrese la información: \n”;

cciinn>>>> Dato;

P = nneeww NodoLista<<TT>>();

P––>>Info= Dato;

P––>>Liga= Primero;

Primero= P;

ccoouutt<<<< ”\n¿Desea ingresar otro elemento (S/N)? ”;

cciinn>>>>Resp;

}}

}}

/** Método que crea una lista agregando el nuevo nodo al final de la

➥misma. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::CreaFinal()

{{

NodoLista<<TT>> ** P, **Ultimo;

TT Dato;

cchhaarr Resp;

Primero= nneeww NodoLista<<TT>>();

ccoouutt<<<<”Ingrese la información a almacenar: \n”;

cciinn>>>>Dato;

Primero––>>Info= Dato;

/** Se mantiene un puntero al último nodo agregado a la lista para

➥evitar tener que recorrerla con cada nuevo nodo. **/

Ultimo= Primero;

ccoouutt<<<<”\n¿Desea ingresar otro elemento (S/N)? ”;

cciinn>>>>Resp;

wwhhiillee (Resp ==== ‘S’ | | Resp ==== ‘s’)

{{

ccoouutt<<<< ”\nIngrese la información \n”;

cciinn>>>>Dato;

P= nneeww NodoLista<<TT>>();

P––>>Info= Dato;

Ultimo––>>Liga= P;

Ultimo= P;

ccoouutt<<<< ”\n¿Desea ingresar otro elemento (S/N)? ”;

cciinn>>>>Resp;

}}

}}

6.2 Listas simplemente ligadas 255

6

/** Método que despliega el contenido de la lista iterativamente. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::ImprimeIterativo()

{{

NodoLista<<TT>> ** P;

P= Primero;

wwhhiillee (P)

{{

ccoouutt<<<< ”\\nInformación: ”<<<< P––>>Info;

P= P––>>Liga;

}}

ccoouutt<<<< ‘‘\n’’;;

}}

/** Método que despliega el contenido de la lista recursivamente. Recibe

como parámetro el nodo cuya información se va a imprimir. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::ImprimeRecursivo(NodoLista<<TT>> ** P)

{{

iiff (P)

{{

ccoouutt<<<<”\nInformación: ”<<<< P––>>Info;

ImprimeRecursivo(P––>>Liga);

}}

ccoouutt<<<<’’\n’’;;

}}

/** Método que imprime la información de un nodo dado como dato. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::ImprimeUnNodo(NodoLista<<TT>> ** P)

{{

iiff (P)

ccoouutt<<<< P––>>Info;

}}

/** Método que inserta un nodo al inicio de la lista. El método es válido

➥tanto para listas ya creadas como para listas vacías. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::InsertaInicio(TT Dato)

{{

/* Presentado más arriba. */

}}

/** Método que inserta un nodo al final de la lista. El método es válido

➥tanto para listas ya creadas como para listas vacías. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::InsertaFinal(TT Dato)

{{

/* Presentado más arriba. */

}}

256 Capítulo 6. Listas

/** Método que inserta un nodo en orden creciente. Luego de varias

➥inserciones, usando este método, se habrá generado una lista ordenada

➥de menor a mayor. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::InsertaOrdenCrec(TT Dato)

{{

NodoLista<<TT>> ** P, **Q, **Ant;

iiff (!!Primero | | Primero––>>Info >> Dato)

InsertaInicio(Dato);

eellssee

{{

Q= Primero;

wwhhiillee (Q &&&& Q––>>Info << Dato)

{{

Ant= Q;

Q= Q––>>Liga;

}}

P= nneeww NodoLista<<TT>>();

P––>>Info= Dato;

Ant––>>Liga= P;

P––>>Liga= Q;

}}

}}

/** Método que inserta un nodo antes de un nodo dado como referencia. Recibe

➥como parámetros la información a insertar y un dato dado como referencia.

➥Regresa 1 si se pudo insertar, 0 si no se encontró la referencia y –1

➥si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::InsertaAntes(TT Dato, TT Ref)

{{

/* Presentado más arriba. */

}}

/** Método que inserta un nodo después de uno dado como referencia. Recibe

➥como parámetros la información a insertar y la referencia. Regresa 1 si

➥se pudo insertar, 0 si no se encontró el dato dado y –1 si la lista

➥está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::InsertaDespues(TT Dato, TT Ref)

{{

/* Presentado más arriba. */

}}

/** Método que elimina el primer elemento de la lista. El método redefine

➥el puntero al inicio de la lista y libera el espacio de memoria del nodo

➥eliminado. Regresa 1 si se pudo llevar a cabo la operación y 0 en caso

➥contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaPrimero()

6.2 Listas simplemente ligadas 257

6

{{

/* Presentado más arriba. */

}}

/** Método que elimina el último elemento de una lista. Primero lo

➥localiza, guardando la dirección del nodo que le precede. Posterior-

➥mente redefine la liga de éste con el valor de NNUULLLL para indicar que

➥ahora éste es el último y libera el espacio de memoria. Regresa 1 si se

➥pudo llevar a cabo la eliminación y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaUltimo()

{{

/* Presentado más arriba. */

}}

/** Método que elimina un nodo que almacena cierta información. Recibe

➥como parámetro el dato a eliminar y regresa como resultado 1 si lo

➥elimina, 0 si no lo encuentra y –1 si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaUnNodo(TT Ref)

{{

/* Presentado más arriba. */

}}

/** Método que elimina el nodo anterior al nodo que almacena un dato dado

➥como referencia. Regresa 1 si el nodo fue eliminado, 2 si la referencia

➥es el primero, 3 si no fue encontrado y 4 si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Lista<<TT>>::::EliminaAnterior(TT Ref)

{{

NodoLista<<TT>> ** Q, **Ant, **P;

iinntt Resp= 1;

iiff (Primero)

{{

iiff (Primero––>>Info ==== Ref)

/** No hay nodo que preceda al dado como referencia. **/

Resp= 2;

eellssee

{{

Q= Primero;

Ant= Primero;

/** Ciclo que permite encontrar la información dada como

➥referencia, guardando la dirección del nodo que le precede

➥(nodo que se eliminará) y del anterior a éste para estable-

➥cer las ligas correspondientes. **/

wwhhiillee ((Q––>>Info !!== Ref) &&&& (Q––>>Liga))

{{

P= Ant;

Ant= Q;

Q= Q––>>Liga;

}}

258 Capítulo 6. Listas

iiff (Q––>>Info !!== Ref)

/** El elemento dado como referencia no está en la lista. **/

Resp= 3;

eellssee

iiff (Primero––>>Liga ==== Q)

{{

ddeelleettee (Primero);

Primero= Q;

}}

eellssee

{{

P––>>Liga= Q;

ddeelleettee (Ant);

}}

}}

}}

eellssee

/** La lista está vacía. **/

Resp= 4;

rreettuurrnn Resp;

}}

/** Método que busca un elemento dado referencia en una lista desordenada.

➥Regresa la dirección del nodo si lo encuentra y NNUULLLL en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> ** Lista<<TT>>::::BuscaDesordenada(TT Ref)

{{

NodoLista<<TT>> ** Q, **Resp= NNUULLLL;

iiff (Primero)

{{

Q= Primero;

wwhhiillee ((Q––>>Info !!== Ref) &&&& (Q––>>Liga))

Q= Q––>>Liga;

/** Se verifica si el elemento dado como referencia fue encontrado

➥en la lista. **/

iiff (Q––>>Info ==== Ref)

Resp= Q;

}}

rreettuurrnn Resp;

}}

/** Método que busca un elemento dado como referencia, en una lista

➥ordenada de menor a mayor. Regresa la dirección del nodo si lo

➥encuentra y NNUULLLL en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> ** Lista<<TT>>::::BuscaOrdenada(TT Ref)

{{

NodoLista<<TT>> ** Q, **Resp= NNUULLLL;

iiff (Primero)

El programa 6.1 presenta la plantilla de la clase Lista con los métodos más usa-
dos para el tratamiento de objetos de esta clase. A pesar de que algunos de los
métodos pueden estar implícitos en otros, se decidió incluirlos de esta manera pa-
ra obtener mayor claridad. Un ejemplo de este caso es el método CreaInicio(), el
cual puede suprimirse y ser absorbido por el método InsertaInicio(), ya que éste
es aplicable a una lista vacía (en dicho caso se estaría creando la lista).

El programa 6.3 presenta una aplicación de las listas simplemente ligadas. El ob-
jetivo de este programa es permitir al usuario registrar información de diversos
productos, así como eliminar productos ya registrados, conocer la información re-
lacionada con cierto producto y obtener un reporte con los datos de todos los pro-
ductos. Para la representación de los productos se usará la clase Producto (ver
programa 6.2), mientras que para su almacenamiento se utilizará una lista. Ésta
se creará a partir de la plantilla de la clase Lista correspondiente al programa 6.1,
la cual está en la biblioteca “ListasSimLig.h”.

6.2 Listas simplemente ligadas 259

6

{{

Q= Primero;

wwhhiillee ((Q––>>Info << Ref) &&&& (Q––>>Liga))

Q= Q––>>Liga;

/** Se verifica si el elemento dado como referencia fue encontrado

➥en la lista. **/

iiff (Q––>>Info ==== Ref)

Resp= Q;

}}

rreettuurrnn Resp;

}}

/** Método que busca un dato en la lista. La operación se realiza

➥recursivamente. El método recibe como parámetro el elemento a buscar

➥(Dato) y una variable (Q) que almacena la dirección de un nodo (la

➥primera vez es la dirección del primero). Regresa como resultado la

➥dirección del nodo si lo encuentra y NNUULLLL en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> ** Lista<<TT>>::::BuscaRecursivo(TT Dato, NodoLista<<TT>> ** Q)

{{

iiff (Q)

iiff (Q––>>Info ==== Dato)

rreettuurrnn Q;

eellssee

rreettuurrnn BuscaRecursivo(Dato, Q––>>Liga);

eellssee

rreettuurrnn NNUULLLL;

}}

Programa 6.2

260 Capítulo 6. Listas

/** Definición de la clase Producto. Se sobrecargan algunos operadores

➥para que objetos de esta clase puedan ser usados de manera directa.

➥Esta clase se guarda en la biblioteca ”Productos.h”. **/

ccllaassss Producto

{{

pprriivvaattee::

iinntt Clave;

cchhaarr NomProd[64];

ddoouubbllee Precio;

ppuubblliicc::

Producto();

Producto(iinntt, cchhaarr[[]], ddoouubbllee);

ddoouubbllee RegresaPrecio();

iinntt ooppeerraattoorr ==== (Producto);

iinntt ooppeerraattoorr !!== (Producto);

iinntt ooppeerraattoorr >> (Producto);

iinntt ooppeerraattoorr << (Producto);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>> (iissttrreeaamm &&, Producto &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&, Producto &&);

}};;

/** Declaración del método constructor por omisión. **/

Producto::::Producto()

{{ }}

/** Declaración del método constructor con parámetros. **/

Producto::::Producto(iinntt Cla, cchhaarr NomP[], ddoouubbllee Pre)

{{

Clave= Cla;

ssttrrccppyy(NomProd, NomP);

Precio= Pre;

}}

/** Método que regresa el valor del atributo Precio. **/

ddoouubbllee Producto::::RegresaPrecio()

{{

rreettuurrnn Precio;

}}

/** Método que permite comparar dos objetos de tipo Producto para

➥determinar si son iguales. Regresa 1 si los productos son iguales

➥(tienen la misma clave) y 0 en caso contrario. Se usa sobrecarga del

➥operador ====. **/

iinntt Producto::::ooppeerraattoorr ==== (Producto Prod)

6.2 Listas simplemente ligadas 261

6

{{

iinntt Resp=0;

iiff (Clave ==== Prod.Clave)

Resp= 1;

rreettuurrnn Resp;

}}

/** Método que permite comparar dos objetos de tipo Producto para

➥determinar si son distintos. Regresa 1 si los productos son distintos

➥(tienen diferente clave) y 0 en caso contrario. Se usa

➥sobrecarga del operador !!==. **/

iinntt Producto::::ooppeerraattoorr !!== (Producto Prod)

{{

iinntt Resp=0;

iiff (Clave !!== Prod.Clave)

Resp= 1;

rreettuurrnn Resp;

}}

/** Método que permite comparar dos objetos de tipo Producto para

➥determinar si el asociado al operador es mayor que el dado como

➥parámetro. Regresa 1 cuando es mayor (su clave es mayor que la clave

➥del dado como parámetro) y 0 en caso contrario. Se usa sobrecarga del

➥operador >>. **/

iinntt Producto::::ooppeerraattoorr >> (Producto Prod)

{{

iinntt Resp=0;

iiff (Clave >> Prod.Clave)

Resp= 1;

rreettuurrnn Resp;

}}

/** Método que permite comparar dos objetos de tipo Producto para

➥determinar si el asociado al operador es menor que el dado como

➥parámetro. Regresa 1 cuando es menor (su clave es menor que la clave

➥del dado como parámetro) y 0 en caso contrario. Se usa sobrecarga del

➥operador <<. **/

iinntt Producto::::ooppeerraattoorr << (Producto Prod)

{{

iinntt Resp=0;

iiff (Clave << Prod.Clave)

Resp= 1;

rreettuurrnn Resp;

}}

/** Sobrecarga del operador >>>> para permitir la lectura de objetos de

➥tipo Producto de manera directa con el cciinn. **/

Programa 6.3

262 Capítulo 6. Listas

iissttrreeaamm &&ooppeerraattoorr>>>> (iissttrreeaamm &&Lee, Producto &&ObjProd)

{{

ccoouutt<<<<”\n\nIngrese clave del producto: ”;

Lee>>>> ObjProd.Clave;

ccoouutt<<<<”\n\nIngrese nombre del producto: ”;

Lee>>>> ObjProd.NomProd;

ccoouutt<<<<”\n\nIngrese precio: ”;

Lee>>>> ObjProd.Precio;

rreettuurrnn Lee;

}}

/** Sobrecarga del operador <<<< para permitir la impresión de objetos de

➥tipo Producto de manera directa con el ccoouutt. **/

oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Producto &&ObjProd)

{{

Escribe<<<<”\n\nDatos del producto\n”;

Escribe<<<<”\nClave: ”<<<<ObjProd.Clave;

Escribe<<<<”\nNombre: ”<<<<ObjProd.NomProd;

Escribe<<<<”\nPrecio: ”<<<<ObjProd.Precio<<<<”\n”;

rreettuurrnn Escribe;

}}

/** Este programa muestra el uso de las listas para almacenar y recuperar

➥información. En este caso se ofrecen opciones de trabajo al usuario para

➥guardar, eliminar o consultar datos de un cierto producto, así como

➥generar un reporte con los datos de todos los productos almacenados

➥hasta el momento. Para evitar la repetición de código se incluyen las

➥bibliotecas ”ListasSimLig.h” y ”Productos.h”. La primera corresponde a

➥la plantilla de la clase Lista presentada en el programa 6.1 y la

➥segunda a la clase Producto presentada en el programa 6.2. **/

##iinncclluuddee ”ListasSimLig.h”

##iinncclluuddee ”Productos.h”

/** Función auxiliar que presenta al usuario las diferentes opciones de

➥trabajo. **/

iinntt Menu()

{{

iinntt Opc;

ccoouutt<<<<”\n\nBienvenido al sistema de registro de productos.\n\n”;

ccoouutt<<<<”\n(1) Registrar un nuevo producto.\n”;

ccoouutt<<<<”\n(2) Dar de baja un producto.\n”;

ccoouutt<<<<”\n(3) Verificar si un producto ya fue registrado.\n”;

ccoouutt<<<<”\n(4) Imprimir la lista de productos registrados.\n”;

6.2 Listas simplemente ligadas 263

6

ccoouutt<<<<”\n(5) Salir.\n”;

ccoouutt<<<<”\n\nIngrese opción de trabajo:\n”;

cciinn>>>>Opc;

rreettuurrnn Opc;

}}

/** Función principal. Se declara un objeto de tipo Lista, el cual

➥servirá para llevar a cabo las operaciones de almacenamiento, consulta

➥y eliminación de información relacionada a productos. **/

vvooiidd mmaaiinn(())

{{

Lista<<Producto>> ListaProds;

Producto ObjProd;

NodoLista<<Producto>> **Apunt;

iinntt Opc, Res, Clave;

Opc= Menu();

wwhhiillee (Opc >>== 1 &&&& Opc <<== 4)

{{

/** Selección de la operación a realizar considerando la opción

➥elegida por el usuario. **/

sswwiittcchh (Opc)

{{

/** Los productos se guardan en la lista ordenados de manera

creciente, según su clave. **/

ccaassee 1: {{

ccoouutt<<<<”\n\nIngrese datos del producto a registrar:\n”;

cciinn>>>>ObjProd;

ListaProds.InsertaOrdenCrec(ObjProd);

bbrreeaakk;;

}}

ccaassee 2: {{

ccoouutt<<<<”\n\nIngrese la clave del producto a eliminar:\n”;

cciinn>>>>Clave;

/** Se solicita sólo la clave del producto, ya que la

➥búsqueda se hace tomando en cuenta este atributo que

➥es el que lo identifica. **/

Producto Produc(Clave,””, 0);

Res= ListaProds.EliminaUnNodo(Produc);

sswwiittcchh (Res)

{{

ccaassee 1: ccoouutt<<<<”\n\nEl producto ya fue eliminado.\n”;

bbrreeaakk;;

ccaassee 0: ccoouutt<<<<”\n\nEse producto no se

➥encuentra registrado.\n”;

bbrreeaakk;;

ccaassee –1: ccoouutt<<<<”\n\nNo hay productos

➥registrados.\n”;

264 Capítulo 6. Listas

bbrreeaakk;;

}}

}}

bbrreeaakk;;

ccaassee 3: {{

ccoouutt<<<<”\n\nIngrese la clave del producto a buscar:\n”;

cciinn>>>>Clave;

/** Se solicita sólo la clave del producto, ya que la

➥búsqueda se hace tomando en cuenta este atributo que

➥es el que lo identifica. **/

Producto Produc(Clave,””,0);

Apunt= ListaProds.BuscaOrdenada(Produc);

iiff (!!Apunt)

ccoouutt<<<<”\n\nEse producto no está registrado.\n\n”;

eellssee

{{

ccoouutt<<<<”\n\nEse producto está registrado.\n”;

ListaProds.ImprimeUnNodo(Apunt);

}}

}}

bbrreeaakk;;

ccaassee 4:ListaProds.ImprimeRecursivo(ListaProds.RegresaPrimero());

bbrreeaakk;;

}}

Opc= Menu();

}}

}}

6.2.3 Implementación de pilas por medio de listas

La implementación de estructuras tipo pila por medio de listas constituye otro
ejemplo interesante de aplicación de estas últimas. Recordemos que las pilas son
estructuras abstractas que requieren de otras estructuras para su implementación.

Las operaciones de inserción y eliminación de elementos en una pila se realizan
por uno de los extremos de la estructura. Por lo tanto, el conjunto de operaciones
posibles vistas en la clase Lista se reduce a insertar y eliminar por el inicio. Se
reutilizan algunos de los métodos del programa 6.1 para implementar las pilas
por medio de listas. El método correspondiente a la eliminación del primer ele-
mento se modifica considerando la observación hecha anteriormente, es decir, si
se pudo eliminar el primer elemento, regresa como parámetro el contenido del
nodo eliminado. Este método ya incluye la evaluación de pila vacía. A su vez, el
método de inserción al inicio se modifica declarándolo entero. De esta forma, se
evalúa la condición de pila llena en el mismo método, y el resultado que arroje el

6.2 Listas simplemente ligadas 265

6

método dependerá de la evaluación del valor dado por la instrucción new. Es de-
cir, si se pudo asignar espacio de memoria entonces la pila no está llena y por lo
tanto se llevará a cabo la inserción.

El programa 6.4 presenta un ejemplo sencillo de pilas implementadas por medio
de listas simplemente ligadas. El programa evalúa expresiones aritméticas dadas
en notación postfija (los operandos preceden a los operadores). Los operandos
sólo pueden ser números enteros de un dígito y los operadores reconocidos son:
+, –, * y /.

Programa 6.4

/** Prototipo de la plantilla de la clase Pila. De esta forma, la clase

➥Nodo podrá hacer referencia a ella. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Pila;

/** Definición de la clase Nodo. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Nodo

{{

pprriivvaattee::

Nodo<<TT>> ** Liga;

TT Info;

ppuubblliicc::

Nodo();

ffrriieenndd ccllaassss Pila<<TT>>;

}};

/** Declaración del método constructor por omisión. Inicializa con el

➥valor NNUULLLL el puntero al siguiente nodo. **/

tteemmppllaattee <<ccllaassss TT>>

Nodo<<TT>>::::Nodo()

{{

Liga= NNUULLLL;

}}

/** Definición de la clase Pila. Su único atributo es el Tope, que en

➥este caso es un puntero al primer elemento almacenado en la pila. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Pila

266 Capítulo 6. Listas

{{

pprriivvaattee::

Nodo<<TT>> ** Tope;

ppuubblliicc::

Pila ();

iinntt Push(TT);

iinntt Pop(TT **);

}};

/** Declaración del método constructor. Inicializa el puntero al primer

elemento de la pila con el valor NNUULLLL. Indica pila vacía. **/

tteemmppllaattee <<ccllaassss TT>>

Pila<<TT>>::::Pila()

{{

Tope= NNUULLLL;

}}

/** Método que inserta un elemento en la pila. Recibe como parámetro el

➥dato a insertar. El método verifica el caso de pila llena. Si se puede

➥llevar a cabo la inserción regresa 1, en caso contrario regresa 0. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::Push(TT Dato)

{{

Nodo<<TT>> ** Apunt;

iinntt Resp= 1;

Apunt= nneeww Nodo<<TT>>();

/** Verifica si hay espacio de memoria disponible. **/

iiff (Apunt)

{{

Apunt––>>Info= Dato;

Apunt––>>Liga= Tope;

Tope= Apunt;

}}

eellssee

Resp= 0;

rreettuurrnn Resp;

}}

/** Método que elimina el elemento de la pila que está en el Tope. El

➥método redefine el valor de Tope y libera el espacio de memoria del nodo

➥eliminado. Regresa 1 si se lleva a cabo la eliminación y 0 en caso con-

➥trario. Además, pasa como parámetro el contenido del nodo eliminado. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Pila<<TT>>::::Pop(T **Dato)

{{

Nodo<<TT>> ** Apunt;

iinntt Resp= 1;

iiff (Tope)

6.2 Listas simplemente ligadas 267

6

{{

**Dato= Tope––>>Info;

Apunt= Tope;

Tope= Apunt––>>Liga;

ddeelleettee(Apunt);

}}

eellssee /** La Pila está vacía. **/

Resp= 0;

rreettuurrnn Resp;

}}

/** Función principal. Se lee una expresión aritmética dada en notación

➥postfija. La evalúa con ayuda de una pila. Se sugiere que siga el pro-

➥grama con la expresión: “5 3 + 8 ** 2 / “ **/

vvooiidd mmaaiinn(())

{{

Pila<<ddoouubbllee>> Operandos;

cchhaarr Expresion[20];

iinntt Indice, Resp= 1;

ddoouubbllee Resultado, Op1, Op2;

ccoouutt<<<<”\n\nIngrese la expresión en notación postfija. \n”;

cciinn>>>>Expresion;

ffoorr (Indice= 0; Indice << ssttrrlleenn(Expresion); Indice++++)

iiff (Expresion[Indice] >>== ‘1’ &&&& Expresion[Indice] <<== ‘9’)

Operandos.Push(Expresion[Indice]–’0’);

/** Se le resta el ordinal correspondiente al carácter ‘0’ del

➥código ASCII para obtener el valor decimal del carácter tomado

➥de la cadena. Si, por ejemplo, el carácter fuera el ‘8’, al

➥restarle el ordinal del ‘0’ queda el valor entero 8. **/

eellssee

iiff (Operandos.Pop(&&Op1) &&&& Operandos.Pop(&&Op2))

{{

sswwiittcchh (Expresion[Indice])

{{

ccaassee ‘+’: Resultado= Op2 + Op1;

bbrreeaakk;

ccaassee ‘–’: Resultado= Op2 – Op1;

bbrreeaakk;

ccaassee ‘**’: Resultado= Op2 ** Op1;

bbrreeaakk;

ccaassee ‘/’: Resultado= Op2 / Op1;

bbrreeaakk;

}}

Operandos.Push(Resultado);

}}

6.3 Listas circulares simplemente ligadas
Una lista circular simplemente ligada es una lista en la cual el nodo que sigue al
último es el primero. Es decir, el último nodo tiene como sucesor al primero de la
lista, logrando con ello tener acceso nuevamente a todos los miembros de la lista.
Esta característica permite que desde cualquier nodo de esta estructura de datos
se tenga acceso a cualquiera de los otros nodos de la misma. La figura 6.12 pre-
senta un esquema de una lista circular simplemente ligada.

268 Capítulo 6. Listas

eellssee

Resp= 0;

iiff (Resp)

{{

Operandos.Pop(&&Resultado);

ccoouutt<<<<”\n\nLa expresión en notación postfija fue evaluada:

➥”<<<<Resultado<<<<”\n\n”;

}}

eellssee

ccoouutt<<<<”\n\nLa expresión dada es incorrecta.\n\n”;

}}

FIGURA 6.12 Lista circular simplemente ligada

Primero

La clase correspondiente a esta estructura es similar a la de la lista simplemente
ligada presentada antes, sólo cambian algunos métodos debido a que con esta va-
riante se puede tener acceso a todos los nodos a partir de cualquiera de ellos. La
variable tipo puntero Primero deja de ser imprescindible para garantizar el recorrido
de toda la lista. Sin embargo, resulta necesaria para evitar caer en ciclos infinitos
(permite guardar una referencia del nodo desde el cual se empezó a recorrer la lis-

ta). Por ejemplo, en la operación de búsqueda, si el elemento buscado no está en
la lista, se debe recordar a partir de qué nodo se inició el recorrido. Una manera
de hacer referencia al inicio de la lista (sin usar un puntero al primer nodo) es de-
finiendo un nodo especial, llamado nodo de cabecera. Un nodo de cabecera no
guarda información útil, sino que se usa sólo para indicar el inicio de la lista.

Debido a que los métodos resultan similares a los presentados en la clase Lista,
su diseño e implementación dependen de cada desarrollador.

6.4 Listas doblemente ligadas
Las listas doblemente ligadas son otra variante de las estructuras vistas en las
secciones previas. En las listas simplemente ligadas cada nodo conoce solamente
la dirección de su nodo sucesor. De ahí la importancia de no perder el puntero al
primer nodo de la misma. Por su parte, en las listas doblemente ligadas, cada no-
do conoce la dirección de su predecesor y de su sucesor. La excepción es el pri-
mer nodo de la lista que no cuenta con predecesor, y el último que no tiene
sucesor. Debido a esta característica, se puede visitar a todos los componentes de
la lista a partir de cualquiera de ellos.

La figura 6.13 presenta el esquema del nodo de una lista doblemente ligada. Ob-
serve que el nodo tiene tres partes, dos de ellas dedicadas al almacenamiento de
direcciones (del nodo predecesor y del nodo sucesor) y la tercera para guardar la
información.

6.4 Listas doblemente ligadas 269

6
Dirección al
nodo anterior

Dirección al
siguiente nodo

Información

FIGURA 6.13 Estructura del nodo de una lista doblemente ligada

La figura 6.14 presenta, de manera gráfica, una lista doblemente ligada. Se tiene
un puntero al primer nodo de la lista (éste no tiene predecesor) y uno al último

(éste no tiene sucesor). Sin embargo, es importante destacar que se pueden reco-
rrer todos los nodos de la lista a partir de cualquiera de ellos.

270 Capítulo 6. Listas

Primero Último

NULLNULL

FIGURA 6.14 Lista doblemente ligada

Las figuras 6.15 y 6.16 presentan las plantillas de la clase NodoDobleLiga y de la
clase ListaDobLig respectivamente. Se usan plantillas para dar mayor generalidad
a la solución. La clase NodoDobleLiga tiene tres atributos, uno representa la infor-
mación a almacenar por lo que se define de tipo T, y los otros dos representan la
dirección de otro nodo por lo que se definen como punteros a un objeto de la
misma clase. Por su parte, la clase ListaDobLig tiene dos atributos que represen-
tan la dirección del primero y del último nodos de la misma, por lo cual son de
tipo puntero a un objeto de tipo NodoDobleLiga.

NodoDobleLiga(T)

Info: T

LigaIzq: *NodoDobleLiga(T)

LigaDer: *NodoDobleLiga(T)

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 6.15 Clase NodoDobleLiga

A continuación se presenta el código en lenguaje C++ correspondiente a las plan-
tillas de las clases NodoDobleLiga y ListaDobLiga. La clase lista incluye dos punte-
ros, uno al primer nodo y otro al último. Esto es con el fin de facilitar algunas
operaciones, lo cual se verá con mayor detalle en las siguientes secciones.

6.4 Listas doblemente ligadas 271

6

ListaDobLiga(T)

Primero: *NodoDobleLiga(T)

Ultimo: *NodoDobleLiga(T)

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 6.16 Clase ListaDobLiga

/** Prototipo de la plantilla de la clase ListaDobLiga. Así, en la clase

➥NodoDobleLiga se podrá hacer referencia a ella. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ListaDobLiga;

/** Definición de la plantilla de la clase NodoDobleLiga. La clase Lista-

➥DobLiga se declara como una clase amiga para que pueda tener acceso a

➥los miembros privados de esta clase. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoDobleLiga

{{

pprriivvaattee::

NodoDobleLiga<<TT>> ** LigaIzq;

NodoDobleLiga<<TT>> ** LigaDer;

TT Info;

ppuubblliicc::

NodoDobleLiga();

ffrriieenndd ccllaassss ListaDobLiga<<TT>>;

}};

/** Método constructor. Inicializa los punteros con el valor NNUULLLL. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>>::::NodoDobleLiga()

Las operaciones básicas que se pueden realizar en una lista previamente generada
son: inserción, eliminación y búsqueda. Su creación se puede considerar también
una operación básica. Es importante señalar que tener un puntero al final de la
lista permite el acceso a este elemento de manera directa evitando el recorrido de
los nodos previos. A continuación se analizan las principales operaciones. Las
variantes de una misma operación se deben principalmente a la posición dentro
de la lista donde se lleve a cabo ésta.

6.4.1 Inserción en listas doblemente ligadas

La operación de inserción de un nuevo nodo a una lista consiste en tomar un
espacio de memoria dinámicamente, asignarle la información correspondiente y
ligarlo al o a los nodos que corresponda dentro de la lista. Los pasos varían
dependiendo de la posición que ocupará el nuevo elemento.

272 Capítulo 6. Listas

{{

LigaIzq= NNUULLLL;

LigaDer= NNUULLLL;

}}

/** Definición de la plantilla de la clase ListaDobLiga. Esta clase

➥tiene dos atributos que son punteros al primero y último elementos de la

➥misma. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ListaDobLiga

{{

pprriivvaattee::

NodoDobleLiga<<TT>> ** Primero;

NodoDobleLiga<<TT>> ** Ultimo;

ppuubblliicc::

ListaDobLiga ();

/** En esta sección se incluyen los métodos de modificación y

acceso a los miembros de la clase. **/

}};

/** Declaración del método constructor. Inicializa el apuntador al primero

➥y al último elementos con el valor de NNUULLLL, indicando lista vacía. **/

tteemmppllaattee <<ccllaassss TT>>

ListaDobLiga<<TT>>::::ListaDobLiga()

{{

Primero= NNUULLLL;

Ultimo= NNUULLLL;

}}

Inserción al principio de la lista

La figura 6.17 presenta un esquema de la inserción de un nuevo elemento al ini-
cio de la lista. Se crea un nodo, cuya dirección se guarda en una variable auxiliar
llamada Apunt, a su liga derecha se le asigna la dirección del primer nodo y a la
izquierda el valor de NULL. Además, se establece la liga entre el nodo que ocu-
paba la primera posición de la lista con el nuevo nodo. Por último, se redefine el
Primero con el valor de Apunt.

6.4 Listas doblemente ligadas 273

6

Primero

Apunt

Primero

Último

NULL

NULL

FIGURA 6.17 Inserción al principio de la lista

El método para llevar a cabo esta operación es el siguiente:

/** Método que inserta un nuevo nodo al inicio de la lista doblemente liga-

➥da. Recibe como parámetro la información a almacenar en el nodo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::InsertaInicio(TT Dato)

{{

NodoDobleLiga<<TT>> ** Apunt;

Apunt= nneeww NodoDobleLiga<<TT>>();

Apunt––>>Info= Dato;

Apunt––>>LigaDer= Primero;

iiff (Primero)

Primero––>>LigaIzq= Apunt;

eellssee

Ultimo= Apunt;

Primero= Apunt;

}}

El método también considera si la lista está vacía. En este caso, el puntero al últi-
mo elemento (Ultimo) se redefine con el valor de la dirección del nuevo nodo.

Inserción al final de la lista

La figura 6.18 presenta gráficamente la secuencia de pasos necesarios para insertar un
nuevo elemento al final de la lista. Para ello, se crea un nuevo nodo (cuya dirección
se guarda en Apunt) el cual se liga con el último nodo de la lista. Por último, se rede-
fine el valor del puntero al último elemento (Ultimo) con la dirección del nuevo nodo.

274 Capítulo 6. Listas

Último

Primero

NULL

Último

Apunt

NULL
FIGURA 6.18 Inserción al final de la lista

A continuación se presenta el método que implementa esta operación.

/** Método que inserta un nuevo nodo al final de la lista doblemente ligada.

➥Recibe como parámetro (Dato) el valor a guardar en el nuevo nodo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::InsertaFinal(TT Dato)

{{

NodoDobleLiga<<TT>> ** Apunt;

Apunt= nneeww NodoDobleLiga<<TT>>;

Apunt––>>Info= Dato;

Apunt––>>LigaIzq= Ultimo;

iiff (Ultimo)

Ultimo––>>LigaDer= Apunt;

eellssee

Primero= Apunt;

Ultimo= Apunt;

}}

El método también considera si la lista está vacía. En este caso, el puntero al pri-
mer elemento (Primero) se redefine con el valor de la dirección del nuevo nodo.

Inserción formando una lista ordenada

La figura 6.19 presenta un esquema de la inserción de un nuevo elemento en la
lista, de tal manera que la misma va quedando ordenada de manera creciente. La
posición para el nuevo dato puede ser la primera (si es más pequeño que el dato
almacenado en el primer nodo), la última (si es más grande que el dato almacena-
do en el último nodo) o una intermedia. Si fuera este último caso, se debe encon-
trar la posición del nodo cuya información es mayor que la del nodo a insertar.
Una vez encontrado (Apun2), y creado el nuevo nodo (Apun1), se establecen las
ligas correspondientes entre el nuevo nodo y los que se convertirán en su antece-
sor y predecesor.

6.4 Listas doblemente ligadas 275

6

/** Método que inserta un nuevo nodo en la lista, de tal manera que los

➥elementos de la misma vayan quedando ordenados de menor a mayor. Recibe

➥como parámetro la información a guardar en el nuevo nodo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::InsertaOrdenado(TT Dato)

{{

NodoDobleLiga<<TT>> ** Apun1, **Apun2, **Apun3;

Primero Apun3 Apun2

Apun1

NULL

Último

NULL

FIGURA 6.19 Inserción formando una lista ordenada

El método, codificado en C++, para llevar a cabo esta operación es el siguiente:

12

15 2294

6.4.2 Eliminación en listas doblemente ligadas

La operación de eliminación de un nodo de una lista consiste en encontrar el va-
lor a quitar, establecer las ligas correspondientes entre el nodo que le precede y el
que le sucede, y finalmente liberar la sección de memoria ocupada por el nodo en
cuestión. Se pueden presentar algunas variantes según la posición que el elemen-
to tenga en la lista. A continuación se explican los principales casos.

Eliminación del primer elemento de la lista

La figura 6.20 presenta gráficamente la secuencia de pasos correspondientes a
esta operación. El nodo a eliminar debe ser apuntado por una variable auxiliar, en
este caso llamada Apunt, luego se debe redefinir el Primero con la dirección
de su sucesor y finalmente se libera la porción de memoria ocupada por el dato
que se quitó de la lista.

276 Capítulo 6. Listas

/** Si la lista está vacía o si el valor a insertar es más pequeño que

➥el contenido del primer nodo, entonces se invoca al método que

➥inserta al inicio de la lista. **/

iiff (!!Primero | | Dato << Primero––>>Info)

InsertaInicio(Dato);

eellssee

/** Si el dato a insertar es más grande que el contenido del

➥último nodo, entonces se invoca al método que inserta al final

➥de la lista. **/

iiff (Dato >> Ultimo––>>Info)

InsertaFinal(Dato);

eellssee

{{

Apun1= nneeww NodoDobleLiga<<TT>>;

Apun1––>>Info= Dato;

Apun2= Primero;

wwhhiillee (Apun2––>>Info << Apun1––>>Info)

Apun2= Apun2––>>LigaDer;

Apun3= Apun2––>>LigaIzq;

Apun3––>>LigaDer= Apun1;

Apun1––>>LigaDer= Apun2;

Apun1––>>LigaIzq= Apun3;

Apun2––>>LigaIzq= Apun1;

}}

}}

El método definido para implementar este tipo de eliminación en una lista doble-
mente ligada es el siguiente.

6.4 Listas doblemente ligadas 277

6

/** Método que elimina el primer elemento de la lista doblemente ligada.

➥Regresa 1 si la lista tiene al menos un elemento y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaPrimero()

{{

NodoDobleLiga<<TT>> ** Apunt;

iinntt Resp= 1;

/** Verifica si la lista tiene al menos un elemento.**/

iiff (Primero)

{{

Apunt= Primero;

iiff (Apunt––>>LigaDer)

{{

Primero= Apunt––>>LigaDer;

Primero––>>LigaIzq= NNUULLLL;

}}

eellssee

{{

/** La lista tiene sólo un elemento, por lo tanto luego de la

➥eliminación queda vacía. **/

Primero= NNUULLLL;

Ultimo= NNUULLLL;

}}

ddeelleettee(Apunt);

}}

eellssee

Resp= 0;

rreettuurrnn Resp;

}}

Primero Primero

NULL NULL

Apunt

Último

NULL

FIGURA 6.20 Eliminación del primer elemento de la lista

El método visto contempla el caso de que la lista tenga un solo elemento. Luego
de la eliminación, la lista queda vacía.

Eliminación del último elemento de la lista

La figura 6.21 presenta el esquema correspondiente a esta operación. El nodo a
eliminar debe ser apuntado por una variable auxiliar, en este caso llamada Apunt,
luego se debe redefinir el Ultimo con la dirección de su predecesor y finalmente
se libera la porción de memoria ocupada por el nodo.

278 Capítulo 6. Listas

ÚltimoPrimero

NULL

Último

Apunt

NULL

FIGURA 6.21 Eliminación del último elemento de la lista

NULL

A continuación se presenta el método que implementa los pasos requeridos para
quitar al último nodo de una lista.

/** Método que elimina el último elemento de una lista doblemente ligada.

➥Regresa 1 si la lista tiene al menos un elemento y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaUltimo()

{{

NodoDobleLiga<<TT>> ** Apunt;

iinntt Resp= 1;

/** Verifica si la lista tiene al menos un elemento.**/

iiff (Ultimo)

{{

Apunt= Ultimo;

iiff (Apunt––>>LigaIzq)

{{

Ultimo= Apunt––>>LigaIzq;

Ultimo––>>LigaDer= NNUULLLL;

}}

El método visto contempla el caso de que la lista tenga un solo elemento. Luego
de la eliminación, la lista queda vacía.

Eliminación de un elemento de la lista

La figura 6.22 muestra de manera gráfica cómo se lleva a cabo esta operación.
Primero se debe buscar el nodo cuyo contenido sea igual al dato. Si se encuentra,
se guarda su dirección en una variable auxiliar (Apun1) y se establecen las ligas
correspondientes entre su nodo predecesor (Apun2) y su nodo sucesor (Apun3).
Finalmente se libera la memoria ocupada por el nodo. El nodo a eliminar puede
ocupar cualquier posición en la lista, ser el primero, el último o estar en una posi-
ción intermedia. El siguiente esquema representa el caso de un nodo intermedio.

6.4 Listas doblemente ligadas 279

6

eellssee

{{

/** La lista tiene sólo un elemento, por lo tanto luego de la

➥eliminación queda vacía. **/

Primero= NNUULLLL;

Ultimo= NNUULLLL;

}}

ddeelleettee(Apunt);

}}

eellssee

Resp= 0;

rreettuurrnn Resp;

}}

Primero Apun2 Apun1 Apun3 Último

NULL NULL

FIGURA 6.22 Eliminación de un elemento de la lista

El método para llevar a cabo esta operación se implementa de la siguiente manera.

280 Capítulo 6. Listas

/** Método que elimina un nodo cuya información es igual a Dato.

➥Regresa 1 si la operación se llevó a cabo, 0 si el elemento no está

➥en la lista y –1 si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaUnNodo(TT Dato)

{{

NodoDobleLiga<<TT>> ** Apun1,**Apun2,**Apun3;

iinntt Resp= 1;

/** Verifica si la lista tiene al menos un elemento.**/

iiff (Primero)

{{

Apun1= Primero;

wwhhiillee ((Apun1!!== NNUULLLL) &&&& (Apun1––>>Info !!== Dato))

Apun1= Apun1––>>LigaDer;

iiff (Apun1 ==== NNUULLLL)

Resp= 0;

eellssee

{{

/** Verifica si hay sólo un elemento en la lista. Si es así,

➥entonces la lista quedará vacía luego de la eliminación. **/

iiff (Primero ==== Ultimo)

{{

Primero= NNUULLLL;

Ultimo= NNUULLLL;

}}

eellssee

/** Verifica si el elemento a eliminar es el primero de

➥la lista. **/

iiff (Apun1 ==== Primero)

{{

Primero= Apun1––>>LigaDer;

Primero––>>LigaIzq= NNUULLLL;

}}

eellssee

/** Verifica si el elemento a eliminar es el último

➥de la lista. **/

iiff (Apun1 ==== Ultimo)

{{

Ultimo= Apun1––>>LigaIzq;

Ultimo––>>LigaDer= NNUULLLL;

}}

El método presentado implementa los pasos de la eliminación, contemplando
todos los casos que se pudieran presentar. Es importante destacar que para los
casos en los cuales se elimina el primero o el último, se hubieran podido reutili-
zar los métodos ya analizados.

Otra consideración que se debe hacer, es que al tener cada nodo la dirección de
su sucesor y su predecesor ya no es necesario guardar la dirección del anterior,
como se hace en las listas simplemente ligadas. Una vez encontrado el nodo a
eliminar, si éste ocupara una posición intermedia, se establecerían las nuevas
ligas entre predecesor y sucesor de manera directa.

6.4.3 Búsqueda de elementos en
listas doblemente ligadas

La operación de búsqueda de un dato entre los elementos de una lista consiste en
recorrer la lista de izquierda a derecha (a partir del primer elemento) o de derecha
a izquierda (a partir del último elemento) hasta encontrar el dato buscado o hasta
que ya no queden nodos por visitar. Si los elementos de la lista siguen algún or-
den, entonces habrá que tenerlo en cuenta en el momento de hacer la compara-
ción entre el dato buscado y la información del nodo visitado. A continuación se
presenta un método que permite buscar un valor dentro de una lista. Este método
realiza la búsqueda de izquierda a derecha y considera que la información de los
nodos está desordenada.

6.4 Listas doblemente ligadas 281

6

eellssee

{{

Apun2= Apun1––>>LigaIzq;

Apun3= Apun1––>>LigaDer;

Apun2––>>LigaDer= Apun3;

Apun3––>>LigaIzq= Apun2;

}}

ddeelleettee(Apun1);

}}

}}

eellssee

Resp= –1;

rreettuurrnn Resp;

}}

El programa 6.5 presenta la clase correspondiente a una estructura tipo lista
doblemente ligada con los métodos más usados, algunos de los cuales ya fueron
analizados. En algunos casos, por razones de espacio, sólo se incluyen los
prototipos y los encabezados. Se establecen dos punteros para el manejo de la
lista: un puntero al inicio y otro al final. Los métodos fueron definidos considerando
estos punteros. Si se quiere trabajar con un solo puntero (como en el programa
6.1) será necesario adaptar la definición de la clase y la de algunos métodos.
Es importante mencionar que los cambios a realizar son mínimos.

Programa 6.5

282 Capítulo 6. Listas

/** Método que busca en la lista un dato dado. El método recibe como

➥parámetro el elemento a buscar (Dato) y una variable (Apunt) que

➥almacena la dirección de un nodo (la primera vez es la dirección del

➥primero). Regresa como resultado la dirección del nodo, si lo encuentra,

➥o NNUULLLL en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>> ** ListaDobLiga<<TT>>::::Busca(TT Dato, NodoDobleLiga<<TT>>

**Apunt)

{{

iiff (Apunt)

iiff (Apunt––>>Info ==== Dato)

rreettuurrnn Apunt;

eellssee

rreettuurrnn Busca (Dato, Apunt––>>LigaDer);

eellssee

rreettuurrnn NNUULLLL;

}}

/** Prototipo de la plantilla de la clase ListaDobLiga. Así, en la clase

➥NodoDobleLiga se podrá hacer referencia a ella. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ListaDobLiga;

/** Definición de la plantilla de la clase NodoDobleLiga. La clase Lista-

➥DobLiga se declara como una clase amiga para que pueda tener acceso a

➥los miembros privados de la clase NodoDobleLiga. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoDobleLiga

6.4 Listas doblemente ligadas 283

6

{{

pprriivvaattee::

NodoDobleLiga<<TT>> ** LigaIzq;

NodoDobleLiga<<TT>> ** LigaDer;

TT Info;

ppuubblliicc::

NodoDobleLiga();

TT RegresaInfo();

ffrriieenndd ccllaassss ListaDobLiga<<TT>>;

}};

/** Método constructor. Inicializa los punteros con el valor NNUULLLL. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>>::::NodoDobleLiga()

{{

LigaIzq= NNUULLLL;

LigaDer= NNUULLLL;

}}

/** Método que regresa el valor de Info, permitiendo que usuarios

➥externos a la clase tengan acceso a él sin poder para modificarlo. **/

tteemmppllaattee <<ccllaassss TT>>

TT NodoDobleLiga<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info;

}}

/** Definición de la plantilla de la clase ListaDobLiga. Esta clase tiene

➥dos atributos que son los punteros al primero y último elementos de la

➥misma. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ListaDobLiga

{{

pprriivvaattee::

NodoDobleLiga<<TT>> ** Primero;

NodoDobleLiga<<TT>> ** Ultimo;

ppuubblliicc::

ListaDobLiga ();

vvooiidd ImprimeIzq_Der(NodoDobleLiga<<TT>>**);

vvooiidd ImprimeDer_Izq(NodoDobleLiga<<TT>>**);

vvooiidd ImprimeNodo(NodoDobleLiga<<TT>>**);

vvooiidd InsertaInicio(TT);

vvooiidd InsertaFinal(TT);

vvooiidd InsertaOrdenado(TT);

iinntt InsertaAntes(TT,TT);

iinntt EliminaPrimero();

iinntt EliminaUltimo();

iinntt EliminaUnNodo(TT);

iinntt EliminaAnterior(TT);

284 Capítulo 6. Listas

NodoDobleLiga<<TT>> ** Busca(T, NodoDobleLiga<<TT>>**);

NodoDobleLiga<<TT>> ** RegresaPrimero();

NodoDobleLiga<<TT>> ** RegresaUltimo();

NodoDobleLiga<<TT>> ** RegresaVecinoDer(NodoDobleLiga<<TT>> **);

}};

/** Declaración del método constructor. Inicializa el apuntador al primero

➥y al último elementos con el valor de NNUULLLL, indicando lista vacía. **/

tteemmppllaattee <<ccllaassss TT>>

ListaDobLiga<<TT>>::::ListaDobLiga()

{{

Primero= NNUULLLL;

Ultimo= NNUULLLL;

}}

/** Método que imprime la información almacenada en cada uno de los nodos

➥de la lista, empezando por el primer nodo. La primera vez, recibe como

➥parámetro el valor almacenado en Primero. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::ImprimeIzq_Der(NodoDobleLiga<<TT>>** Apunt)

{{

iiff (Apunt)

{{

ccoouutt<<<<Apunt––>>Info<<<< ‘\n’;

ImprimeIzq_Der(Apunt––>>LigaDer);

}}

}}

/** Método que imprime la información almacenada en cada uno de los nodos

➥de la lista, empezando por el último nodo. La primera vez, recibe como

➥parámetro el valor almacenado en Ultimo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::ImprimeDer_Izq(NodoDobleLiga<<TT>>** Apunt)

{{

iiff (Apunt)

{{

ccoouutt<<<< Apunt––>>Info<<<< ‘\n’;

ImprimeDer_Izq(Apunt––>>LigaIzq);

}}

}}

/** Método que imprime la información almacenada en uno de los nodos de

➥la lista, cuya dirección se recibe como parámetro. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::ImprimeNodo(NodoDobleLiga<<TT>>** Apunt)

{{

ccoouutt<<<<Apunt––>>Info<<<< ‘\n’;

}}

6.4 Listas doblemente ligadas 285

6

/** Método que inserta un nuevo nodo con la información de Dato al inicio

➥de la lista doblemente ligada. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::InsertaInicio(TT Dato)

{{

/* Presentado más arriba. */

}}

/** Método que inserta un nuevo nodo con la información de Dato al final

➥de la lista doblemente ligada. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::InsertaFinal(TT Dato)

{{

/* Presentado más arriba. */

}}

/** Método que inserta un nuevo nodo con la información de Dato, de

➥manera que los elementos de la lista vayan quedando ordenados de menor

➥a mayor. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ListaDobLiga<<TT>>::::InsertaOrdenado(TT Dato)

{{

/* Presentado más arriba. */

}}

/** Método que inserta un nuevo nodo con la información de Dato antes de

➥un nodo dado como referencia, cuya información está en Ref. Regresa 1

➥si encuentra la referencia y puede llevar a cabo la inserción, 0 si no

➥encuentra la referencia y –1 si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::InsertaAntes(TT Dato, TT Ref)

{{

NodoDobleLiga<<TT>> ** Apun1,**Apun2,**Apun3;

iinntt Resp= 1;

iiff (Primero)

{{

Apun1= Primero;

wwhhiillee ((Apun1 !!== NNUULLLL) &&&& (Apun1––>>Info !!== Ref))

Apun1= Apun1––>>LigaDer;

/**Verifica si encontró la información dada como referencia. **/

iiff (Apun1 !!== NNUULLLL)

{{

Apun3= nneeww NodoDobleLiga<<TT>>();

Apun3––>>Info= Dato;

Apun3––>>LigaDer= Apun1;

Apun2= Apun1––>>LigaIzq;

Apun1––>>LigaIzq= Apun3;

Apun3––>>LigaIzq= Apun2;

286 Capítulo 6. Listas

iiff (Primero ==== Apun1)

Primero= Apun3;

eellssee

Apun2––>>LigaDer= Apun3;

}}

eellssee

Resp= 0;

}}

eellssee

Resp= –1;

rreettuurrnn Resp;

}}

/** Método que elimina el primer elemento de la lista doblemente ligada.

➥Regresa 1 si la lista tiene al menos un elemento y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaPrimero()

{{

/* Presentado más arriba. */

}}

/** Método que elimina el último elemento de la lista doblemente ligada.

➥Regresa 1 si la lista tiene al menos un elemento y 0 en caso contrario. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaUltimo()

{{

/* Presentado más arriba. */

}}

/** Método que elimina un nodo cuya información es igual a Dato. Regresa

➥1 si la eliminación se puede llevar a cabo, 0 si el elemento no está en

➥la lista y –1 si la lista está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaUnNodo(TT Dato)

{{

/* Presentado más arriba. */

}}

/** Método que elimina el nodo anterior al nodo que contiene la infor-

➥mación Dato. Regresa 1 si la eliminación se puede llevar a cabo, 0 si

➥el valor dado como referencia no está en la lista, –1 si la referencia

➥es el primer nodo y por lo tanto no hay anterior, y –2 si la lista

➥está vacía. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt ListaDobLiga<<TT>>::::EliminaAnterior(TT Dato)

{{

NodoDobleLiga<<TT>> ** Apun1, **Apun2, **Apun3;

iinntt Resp= 1;

iiff (Primero)

6.4 Listas doblemente ligadas 287

6

{{

Apun1= Primero;

wwhhiillee ((Apun1 !!== NNUULLLL) &&&& (Apun1––>>Info !!== Dato))

Apun1= Apun1––>>LigaDer;

iiff (Apun1 ==== NNUULLLL)

Resp= 0;

eellssee

/** Verifica si la información dada como referencia está en el

➥primer nodo. **/

iiff (Primero ==== Apun1)

Resp= –1;

eellssee

{{

iiff (Primero ==== Apun1––>>LigaIzq)

{{

Apun2= Primero;

Primero= Apun1;

Primero––>>LigaIzq= NNUULLLL;

}}

eellssee

{{

Apun2= Apun1––>>LigaIzq;

Apun3= Apun2––>>LigaIzq;

Apun3––>>LigaDer= Apun1;

Apun1––>>LigaIzq= Apun3;

}}

ddeelleettee(Apun2);

}}

}}

eellssee

Resp= –2;

rreettuurrnn Resp;

}}

/** Método que busca en la lista un nodo dado como referencia. El método

➥recibe como parámetro el elemento a buscar (Dato) y una variable

➥(Apunt) que almacena la dirección de un nodo. La primera vez es la

➥dirección del primero. Regresa como resultado la dirección del nodo o

➥NNUULLLL si no lo encuentra. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>> ** ListaDobLiga<<TT>>::::Busca(TT Dato, NodoDobleLiga<<TT>>

**Apunt)

{{

/* Presentado más arriba. */

}}

/** Método que regresa el valor del apuntador al primer elemento de la

➥lista. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>> ** ListaDobLiga<<TT>>::::RegresaPrimero()

Es importante destacar que al usar punteros al primero y último nodos de la lista
se simplifican algunas operaciones. Por ejemplo, en el caso de inserción y elimi-
nación en la última posición, ya no es necesario recorrer toda la lista. Asimismo,
se puede imprimir la lista en cualquiera de las dos direcciones sin tener que recu-
rrir a operaciones auxiliares.

Dadas las características de los nodos que forman estas listas, se pudieron utilizar
menos variables auxiliares en ciertas operaciones. En este libro se usaron con el
fin de dar mayor claridad al código, sin embargo se pudo usar la notación de tal
manera que se prescindiera de dichas variables. Se presenta un ejemplo a partir
del código del método para eliminar un nodo cuya información se da como refe-
rencia. En el código que aparece en la columna izquierda se utilizan las variables
auxiliares Apun2 y Apun3 para almacenar las direcciones del predecesor y del sucesor

288 Capítulo 6. Listas

{{

rreettuurrnn Primero;

}}

/** Método que regresa el valor del apuntador al último elemento de la

➥lista. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>> ** ListaDobLiga<<TT>>::::RegresaUltimo()

{{

rreettuurrnn Ultimo;

}}

/** Método que, dada la dirección de un nodo, regresa la dirección del

➥siguiente nodo a la derecha. Este método facilita el desplazamiento a

➥través de la lista por parte de usuarios externos a la misma. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>> ** ListaDobLiga<<TT>>::::RegresaVecinoDer(NodoDobleLiga<<TT>>

**Apunt)

{{

rreettuurrnn Apunt––>>LigaDer;

}}

/** Método que, dada la dirección de un nodo, regresa la dirección del

➥siguiente nodo a la izquierda. Este método facilita el desplazamiento a

➥través de la lista por parte de usuarios externos a la misma. **/

tteemmppllaattee <<ccllaassss TT>>

NodoDobleLiga<<TT>> ** ListaDobLiga<<TT>>::::RegresaVecinoIzq(NodoDobleLiga<<TT>>

**Apunt)

{{

rreettuurrnn Apunt––>>LigaIzq;

}}

del nodo a eliminar respectivamente. Posteriormente, al predecesor y al sucesor
se les asignan las nuevas ligas. En el código de la columna derecha, la asignación
de las nuevas ligas se hace de manera directa. Es decir, la primera línea indica
que a la liga derecha del nodo que está siendo apuntado por la liga izquierda de
Apun1 se le asigna el valor de la liga derecha de Apun1. En la segunda línea se está
expresando que, a la liga izquierda del nodo que está siendo apuntado por la liga
derecha de Apun1, se le asigna el valor de la liga izquierda de Apun1.

6.4 Listas doblemente ligadas 289

6

Apun2= Apun1-->>LigaIzq;

Apun3= Apun1-->>LigaDer;

Apun2-->>LigaDer= Apun3;

Apun3-->>LigaIzq= Apun2;

Apun1-->>LigaIzq-->>LigaDer= Apun1-->>LigaDer;

Apun1-->>LigaDer-->>LigaIzq= Apun1-->>LigaIzq;

Se presenta un ejemplo de aplicación de las listas doblemente ligadas. Se incluye
una biblioteca con la plantilla de la clase correspondiente al programa 6.5. Tam-
bién se incluye la biblioteca “Productos.h” presentada en el programa 6.2. En es-
ta aplicación, se usa una lista doblemente ligada para almacenar y procesar datos
de varios productos. Las opciones de trabajo ofrecidas al usuario son:

a) Dar de alta un producto.

b) Dar de baja un producto ya registrado.

c) Generar un reporte con los productos ordenados de menor a mayor, según
la clave.

d) Generar un reporte con los productos ordenados de mayor a menor, según
la clave.

e) Generar un reporte con los productos cuyos precios se encuentren com-
prendidos en un rango dado por el usuario.

f) Calcular e imprimir el promedio de los precios de todos los productos
registrados.

Programa 6.6

/** Ejemplo de programa de aplicación de listas doblemente ligadas.

➥Se incluyen las bibliotecas que almacenan la plantilla de la clase

➥ListaDobLiga y la clase Producto, esta última usada como tipo de la

➥información guardada en los nodos de la lista.**/

290 Capítulo 6. Listas

##iinncclluuddee ”ListasDoblesLigas.h”

##iinncclluuddee ”Productos.h”

/** Función auxiliar que despliega las opciones de trabajo del usuario. **/

iinntt Menu()

{{

iinntt Opcion;

ddoo {{

ccoouutt<<<<”\n\nBienvenido al sistema de inventario.\n\n”;

ccoouutt<<<<”Opciones de trabajo:”;

ccoouutt<<<<”\n (1) Registrar un producto (se hará en orden según la

➥clave).”;

ccoouutt<<<<”\n (2) Dar de baja un producto.”;

ccoouutt<<<<”\n (3) Generar un reporte en orden creciente por claves.”;

ccoouutt<<<<”\n (4) Generar un reporte en orden decreciente por

➥claves.”;

ccoouutt<<<<”\n (5) Generar un reporte de productos cuyos precios

estén en cierto rango.”;

ccoouutt<<<<”\n (6) Promedio de precios de los productos

➥registrados.”;

ccoouutt<<<<”\n (7) Salir.”;

ccoouutt<<<<”\n\nIngrese opción elegida: ”;

cciinn>>>>Opcion;

ccoouutt<<<<”\n\n\n”;

}} wwhhiillee (Opcion << 1 | | Opcion >> 7);

rreettuurrnn Opcion;

}}

/** Función que genera un reporte con los datos de los productos en orden

➥creciente. Para ello, considerando el orden en el cual fue creada la

➥lista, la misma se recorre de izquierda a derecha empezando con el

➥primer nodo. **/

vvooiidd ReporteCrec(ListaDobLiga<<Producto>> Inventario)

{{

ccoouutt<<<<”\n\nLista de productos ordenados por clave de menor a

➥mayor.\n”;

Inventario.ImprimeIzq_Der(Inventario.RegresaPrimero());

}}

/** Función que genera un reporte con los datos de los productos en orden

➥decreciente. Para ello, considerando el orden en el cual fue creada la

➥lista, la misma se recorre de derecha a izquierda empezando con el

➥último nodo. **/

vvooiidd ReporteDec(ListaDobLiga<<Producto>> Inventario)

6.4 Listas doblemente ligadas 291

6

{{

ccoouutt<<<<”\n\nLista de productos ordenados por clave de mayor a

➥menor.\n”;

Inventario.ImprimeDer_Izq(Inventario.RegresaUltimo());

}}

/** Función que genera un reporte con los datos de los productos cuyos

➥precios se encuentran comprendidos en cierto rango. La función recibe

➥como parámetro la lista de productos. **/

vvooiidd ReportePrecios(ListaDobLiga<<Producto>> Inventario)

{{

NodoDobleLiga <<Producto>> **Apunt;

ddoouubbllee PrecInf, PrecSup;

ccoouutt<<<<”\nIngrese el rango de precios que le interesa. \n”;

ccoouutt<<<<”Límite Inferior: ”;

cciinn>>>>PrecInf;

ccoouutt<<<<”\nLímite Superior: ”;

cciinn>>>>PrecSup;

Apunt= Inventario.RegresaPrimero();

ccoouutt<<<<”\n\nLista de productos cuyos precios son >>== ”<<<<PrecInf<<<<” y

➥<<== ”<<<<PrecSup<<<<”\n”;

wwhhiillee (Apunt)

{{

iiff (Apunt––>>RegresaInfo().RegresaPrecio() >>== PrecInf &&&&

Apunt––>>RegresaInfo().RegresaPrecio() <<== PrecSup)

Inventario.ImprimeNodo(Apunt);

Apunt= Inventario.RegresaVecinoDer(Apunt);

}}

}}

/** Función que calcula el promedio de los precios de todos los productos

➥registrados en el inventario. Recibe como parámetro la lista y da como

➥resultado el promedio calculado.**/

ddoouubbllee Promedio(ListaDobLiga<<Producto>> Inventario)

{{

NodoDobleLiga <<Producto>>**Apunt;

Apunt= Inventario.RegresaPrimero();

ddoouubbllee Prom= 0;

iinntt Total= 0;

wwhhiillee (Apunt)

{{

Prom= Prom + Apunt––>>RegresaInfo().RegresaPrecio() ;

Apunt= Inventario.RegresaVecinoDer(Apunt);

Total= Total + 1;

}}

iiff (Total)

Prom= Prom/Total;

rreettuurrnn Prom;

}}

292 Capítulo 6. Listas

/** Función principal. Invoca los diferentes métodos para que las

➥operaciones elegidas por el usuario se puedan llevar a cabo. **/

vvooiidd mmaaiinn(())

{{

ListaDobLiga<<Producto>> Inventario;

Producto Produ;

iinntt Opcion, Clave, Resp;

ddoo {{

Opcion= Menu();

/** Selección de acuerdo a la opción de trabajo elegida por el

➥usuario. **/

sswwiittcchh (Opcion)

{{

ccaassee 1:{{

ccoouutt<<<<”\nIngrese datos del producto a registrar. ”;

cciinn>>>>Produ;

Inventario.InsertaOrdenado(Produ);

bbrreeaakk;

}}

ccaassee 2:{{

ccoouutt<<<<”\nIngrese la clave del producto a eliminar. ”;

cciinn>>>>Clave;

Producto Prod(Clave,””,0);

Resp= Inventario.EliminaUnNodo(Prod);

iiff (Resp ==== 1)

ccoouutt<<<<”\nBaja registrada.\n”;

eellssee

iiff (Resp ==== –1)

ccoouutt<<<<”\nNo hay productos registrados en

➥inventario. \n”;

eellssee

ccoouutt<<<<”\nNo hay producto registrado con la

➥clave dada. \n”;

bbrreeaakk;

}}

ccaassee 3: ReporteCrec(Inventario);

bbrreeaakk;

ccaassee 4: ReporteDec(Inventario);

bbrreeaakk;

ccaassee 5: ReportePrecios(Inventario);

bbrreeaakk;

ccaassee 6: ccoouutt<<<<”\n\n\nPromedio de precios:

➥”<<<<Promedio(Inventario);

bbrreeaakk;

ccaassee 7: bbrreeaakk;

}}

}} wwhhiillee (Opcion >>== 1 &&&& Opcion << 7);

}}

6.5 Listas circulares doblemente ligadas
Las listas circulares doblemente ligadas son una variante de las presentadas
en la sección anterior. En este tipo de listas, el primer nodo tiene como nodo
predecesor al último y éste tiene como nodo sucesor al primero. Gráficamente,
una lista circular doblemente ligada se representa como se muestra en la figura
6.23.

6.6 Multilistas 293

6

Primero

Último
FIGURA 6.23 Listas circulares doblemente ligadas

Los métodos para llevar a cabo las operaciones sobre datos almacenados en este
tipo de estructura son muy similares a los presentados en el programa 6.5. Se
sugiere que defina la clase ListaCirDobLig (Lista Circular Doblemente Ligada)
y adapte los métodos vistos para que se ajusten a las características de esta
estructura de datos.

6.6 Multilistas
Las multilistas se pueden definir como listas de listas. Es decir, listas que tienen
una lista como parte de la información que almacenan. Gráficamente, una multi-
lista se representa como se muestra en la figura 6.24. En el caso de esta lista,
cada uno de sus nodos guarda cierta información, un apuntador a una segunda
lista y un apuntador al siguiente nodo.

La anidación de listas puede hacerse en diferentes niveles. Retomando la lista de
la figura 6.24, cada nodo de la segunda lista podría tener un apuntador a otra y
así tantos niveles como sea necesario. Es importante considerar, que la represen-
tación del problema debe ser comprensible. Por lo tanto, se debe guardar un
equilibrio entre la cantidad de listas que utilice y la claridad de la solución que
se esté alcanzando. La figura 6.25 tiene tres niveles de listas. En el primero, ca-
da nodo almacena cierta información y un apuntador a otro nodo del mismo ti-
po. Dentro de esa información, existe un apuntador a otra lista (la del segundo
nivel). Por lo tanto, a las listas del segundo nivel (hay tantas como nodos haya
en el primer nivel) se llega por medio de los nodos de la primera lista. A su vez,
los nodos de la segunda lista contienen información y un apuntador a otro nodo
de la misma lista. Dentro de su información hay un apuntador a una lista (la del
tercer nivel). Habrá tantas listas en el tercer nivel, como nodos haya en cada una
de las listas del segundo nivel, y el acceso a las mismas se da a través de dichos
nodos.

294 Capítulo 6. Listas

X A T J I B S

Primero

NULL

NULL

NULL NULL

NULLNULL

NULL NULL

FIGURA 6.24 Esquema de una multilista

Existen dos formas para definir una estructura de datos con las características
planteadas. En primer lugar se puede incluir como parte de la clase que dará
valor a T en la clase NodoLista, un atributo que sea a su vez una lista (el pro-
grama 6.7 presenta un caso de este tipo). Otra manera de hacerlo es por medio
de un atributo adicional en el nodo de la lista del primer nivel. Es decir, el
nodo tendrá la información, el apuntador al siguiente nodo de la lista y un
apuntador a otro tipo de nodo, el cual sería el primer elemento de la lista del
segundo nivel.

La figura 6.26 presenta un ejemplo de multilista. Tiene una lista de autores y
en cada uno de los nodos de esta lista incluye una lista de libros. De esta for-
ma, define dos niveles de listas. El primero formado por todos los autores y el
segundo por los libros escritos por dichos autores. El programa 6.7 muestra
todas las clases involucradas y un ejemplo de aplicación. En la práctica, se
sugiere el uso de bibliotecas para guardar las clases y de esta forma modulari-
zar más la solución.

6.6 Multilistas 295

6

Primero

Primer
nivel

Segundo
nivel

Tercer
nivel

NULL

NULL

NULL

NULL

NULL

NULL

NULL NULLNULL

Último

FIGURA 6.25 Anidación de listas en tres niveles

Programa 6.7

296 Capítulo 6. Listas

Autor1 Autorj Autorn

Libro1,1 Libro1,2 Libro1,3 Libroj,1 Libroj,2 Libron,1

Primero

Primer nivel:
Autor

Segundo nivel:
Libros

NULL

NULLNULLNULL

FIGURA 6.26 Ejemplo de multilista

/* Ejemplo de una multilista. Se declara una lista de autores, donde

➥cada nodo (como parte de la información) tiene una lista de libros. */

##ddeeffiinnee MAX 100

/* Declaración de la clase Libro. Se usará como base para el tipo de

➥información de las listas del segundo nivel. */

ccllaassss Libro

{{

pprriivvaattee::

cchhaarr Nombre[MAX], ISBN[MAX];

iinntt AnioEdic;

ppuubblliicc::

Libro();

Libro(cchhaarr [], cchhaarr [], iinntt);

iinntt ooppeerraattoorr ==== (Libro);

iinntt ooppeerraattoorr !!== (Libro);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Libro &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Libro &&);

}};

/* Declaración del método constructor por omisión. */

Libro::::Libro()

{{ }}

/* Declaración del método constructor con parámetros. */

Libro::::Libro(char Nom[], cchhaarr Clave[], iinntt AEd)

{{

ssttrrccppyy(Nombre, Nom);

ssttrrccppyy(ISBN, Clave);

AnioEdic= AEd;

}}

6.6 Multilistas 297

6

/* Sobrecarga del operador ==== para comparar dos objetos de este tipo.

➥Regresa 1 si los libros tienen el mismo nombre y cero en caso

➥contrario. */

iinntt Libro::::ooppeerraattoorr ==== (Libro Lib)

{{

iiff (ssttrrccmmpp(Nombre, Lib.Nombre) ==== 0)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Sobrecarga del operador !!== para comparar dos objetos de este tipo.

➥Regresa 1 si los libros tienen nombres distintos y cero en caso

➥contrario. */

iinntt Libro::::ooppeerraattoorr !!== (Libro Lib)

{{

iiff (ssttrrccmmpp(Nombre, Lib.Nombre) !!== 0)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Declaración de la función amiga en la que se sobrecarga al operador

➥de lectura >>>>, de tal manera que objetos de tipo Libro puedan ser

➥leídos directamente. */

iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Libro &&Lib)

{{

ccoouutt<<<<”\n\nIngrese nombre del libro:”;

Lee>>>>Lib.Nombre;

ccoouutt<<<<”\n\nIngrese ISBN:”;

Lee>>>>Lib.ISBN;

ccoouutt<<<<”\n\nIngrese año de edición:”;

Lee>>>>Lib.AnioEdic;

rreettuurrnn Lee;

}}

/* Declaración de la función amiga en la que se sobrecarga al operador

➥de impresión <<<<, de tal manera que objetos de tipo Libro puedan ser

➥escritos directamente. */

oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Libro &&Lib)

{{

Escribe<<<<”\n\n\nDatos del libro\n”;

Escribe<<<<”\nNombre: ”<<<<Lib.Nombre;

Escribe<<<<”\nISBN: ”<<<<Lib.ISBN;

Escribe<<<<”\nAño de edición: ”<<<<Lib.AnioEdic<<<<”\n”;

rreettuurrnn Escribe;

}}

298 Capítulo 6. Listas

/* Declaración de la clase Autor. Se usará como tipo base para darle

➥valor a la TT del atributo Info de los nodos de la lista del primer

➥nivel. El atributo Obra es un objeto de tipo Lista, en este caso es

➥una lista de libros (usando la clase previamente definida). */

ccllaassss Autor

{{

pprriivvaattee::

cchhaarr Nombre[MAX], Nacional[MAX];

iinntt AnioNac;

Lista<<Libro>> Obra;

ppuubblliicc::

Autor();

Autor(char[]);

Lista<<Libro>> RegresaLisLibros();

iinntt ooppeerraattoorr ==== (Autor);

iinntt ooppeerraattoorr !!== (Autor);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Autor &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Autor &&);

}};

/* Declaración del método constructor por omisión. */

Autor::::Autor()

{{ }}

/* Declaración del método constructor con parámetros. */

Autor::::Autor(cchhaarr Nom[])

{{

ssttrrccppyy(Nombre, Nom);

}}

/* Método que regresa la lista de libros de un autor. */

Lista<<Libro>> Autor::::RegresaLisLibros()

{{

rreettuurrnn Obra;

}}

/* Sobrecarga del operador ==== para poder comparar dos objetos de tipo

➥Autor. El método regresa 1 si los objetos tienen nombres iguales y 0 en

➥caso contrario.*/

iinntt Autor::::ooppeerraattoorr ==== (Autor Aut)

{{

iiff (ssttrrccmmpp(Nombre, Aut.Nombre) ==== 0)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

6.6 Multilistas 299

6

/* Sobrecarga del operador !!== para poder comparar dos objetos de tipo

➥Autor. El método regresa 1 si los objetos tienen nombres distintos y 0

➥en caso contrario.*/

iinntt Autor::::ooppeerraattoorr !!== (Autor Aut)

{{

if (ssttrrccmmpp(Nombre, Aut.Nombre) !!== 0)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Declaración de la función amiga en la que se sobrecarga al operador

➥de lectura <<<<, de tal manera que objetos de tipo Autor puedan ser

➥leídos directamente. */

iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&Lee, Autor &&VarAut)

{{

ccoouutt<<<<”\n\nIngrese nombre del autor:”;

Lee>>>>VarAut.Nombre;

ccoouutt<<<<”\n\nIngrese nacionalidad del autor:”;

Lee>>>>VarAut.Nacional;

ccoouutt<<<<”\n\nIngrese año de nacimiento:”;

Lee>>>>VarAut.AnioNac;

ccoouutt<<<<”\n\nIngrese los datos de su obra\n”;

VarAut.Obra.CreaInicio();

rreettuurrnn Lee;

}}

/* Declaración de la función amiga en la que se sobrecarga al operador

➥de impresión <<<<, de tal manera que objetos de tipo Autor puedan ser

➥escritos directamente. */

oossttrreeaamm &&ooppeerraattoorr<<<< (oossttrreeaamm &&Escribe, Autor &&VarAut)

{{

Escribe<<<<”\n\nDatos del autor\n\n”;

Escribe<<<<”\nNombre: ”<<<<VarAut.Nombre;

Escribe<<<<”\nNacionalidad: ”<<<<VarAut.Nacional;

Escribe<<<<”\nAño de nacimiento: ”<<<<VarAut.AnioNac<<<<”\n”;

Escribe<<<<”\nDatos de su obra”;

VarAut.Obra.Imprime(VarAut.Obra.RegresaPrimero());

rreettuurrnn Escribe;

}}

/* Clase Lista dependiente de la clase NodoLista. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista;

300 Capítulo 6. Listas

/* Definición de la clase NodoLista. Se incluyeron sólo algunos de los

➥métodos vistos.*/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoLista

{{

pprriivvaattee::

NodoLista<<TT>> *Liga;

TT Info;

ppuubblliicc::

NodoLista();

TT RegresaInfo();

ffrriieenndd ccllaassss Lista<<TT>>;

}};

/* Declaración del método constructor por omisión. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>>::::NodoLista()

{{

Liga= NNUULLLL;

}}

/* Regresa la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

TT NodoLista<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info;

}}

/* Definición de la clase Lista. Es una lista simplemente ligada. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista

{{

pprriivvaattee::

NodoLista<<TT>> *Primero;

ppuubblliicc::

Lista ();

NodoLista<<TT>> *RegresaPrimero();

vvooiidd CreaInicio();

vvooiidd Imprime(NodoLista<<TT>> *);

vvooiidd InsertaInicio(TT);

NodoLista<<TT>> * Busca(TT, NodoLista<<TT>> *);

}};

/* Declaración del método constructor. */

tteemmppllaattee <<ccllaassss TT>>

Lista<<TT>>::::Lista()

{{

Primero= NNUULLLL;

}}

6.6 Multilistas 301

6

/* Método que regresa la dirección del primer nodo de la lista. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> *Lista<<TT>>::::RegresaPrimero()

{{

rreettuurrnn Primero;

}}

/* Método que crea una lista agregando el nuevo nodo al inicio de la

➥misma. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::CreaInicio()

{{

NodoLista<<TT>> *P;

TT Dato;

cchhaarr Resp;

Primero= nneeww NodoLista<<TT>>();

ccoouutt<<<<”Ingrese la información del primer elemento: \n”;

cciinn>>>> Dato;

Primero–>>Info= Dato;

ccoouutt<<<< ”\n¿Desea ingresar otro elemento (S/N)? ”;

cciinn>>>>Resp;

wwhhiillee (Resp ==== ‘S’ | | Resp ==== ‘s’)

{{

cciinn>>>>Dato;

P= nneeww NodoLista<<TT>>();

P–>>Info= Dato;

P–>>Liga= Primero;

Primero= P;

ccoouutt<<<< ”\n¿Desea ingresar otro elemento (S/N)? ”;

cciinn>>>> Resp;

}}

}}

/* Método que despliega el contenido de la lista. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::Imprime(NodoLista<<TT>> *P)

{{

iiff (P)

{{

ccoouutt<<<<P–>>Info;

Imprime(P–>>Liga);

}}

ccoouutt<<<< ‘\n’;

}}

/* Método que inserta un nodo al inicio de la lista. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::InsertaInicio(TT Dato)

302 Capítulo 6. Listas

{{

NodoLista<<TT>> *P;

P= nneeww NodoLista<<TT>>();

P–>>Info= Dato;

P–>>Liga= Primero;

Primero= P;

}}

/* Método que busca un nodo dado como referencia en la lista. El método

➥recibe como parámetro el elemento a buscar y una variable que almacena

➥la dirección de un nodo, inicialmente es la dirección del primero.

➥Regresa como resultado la dirección del nodo si lo encuentra y NNUULLLL en

➥caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> * Lista<<TT>>::::Busca(TT Dato, NodoLista<<TT>> *Q)

{{

iiff (Q)

iiff (Q–>>Info ==== Dato)

rreettuurrnn Q;

eellssee

rreettuurrnn Busca(Dato, Q–>>Liga);

eellssee

rreettuurrnn NNUULLLL;

}}

/* Función auxiliar que despliega en pantalla las opciones de trabajo. */

iinntt Menu()

{{

iinntt Opc;

ddoo {{

ccoouutt<<<<”\n\nIngrese opción de trabajo\n”;

ccoouutt<<<<”\n(1) Agregar un nuevo autor. ”;

ccoouutt<<<<”\n(2) Generar un reporte de todos los autores con sus

➥obras. ”;

ccoouutt<<<<”\n(3) Generar un reporte con todos los datos de un cierto

➥autor. ”;

ccoouutt<<<<”\n(4) Generar un reporte con la obra de un cierto

➥autor. ”;

ccoouutt<<<<”\n(5) Terminar el proceso.”;

ccoouutt<<<<”\n\nIngrese la opción seleccionada: ”;

cciinn>>>>Opc;

}} wwhhiillee (Opc << 1 | | Opc >> 5);

rreettuurrnn Opc;

}}

6.6 Multilistas 303

6

/* Función principal. De acuerdo a la opción de trabajo seleccionada por

➥el usuario se invoca a los métodos que corresponda. */

vvooiidd mmaaiinn(())

{{

iinntt OpcTrab;

cchhaarr NomAut[MAX];

NodoLista<<Autor>> * RespBus;

Lista<<Autor>> Acervo;

Lista<<Libro>> ObraAutor;

Autor Escritor;

Acervo.CreaInicio();

ddoo {{

OpcTrab= Menu();

sswwiittcchh (OpcTrab)

{{

ccaassee 1: {{ /* Se inserta un nuevo elemento en la lista de

➥autores. */

cciinn>>>>Escritor;

Acervo.InsertaInicio(Escritor);

bbrreeaakk;

}}

ccaassee 2: {{ /* Se imprime toda la lista. */

Acervo.Imprime(Acervo.RegresaPrimero());

bbrreeaakk;

}}

ccaassee 3: {{ //* Se imprimen todos los datos de un autor, cuyo

➥nombre proporciona el usuario. */

ccoouutt<<<<”\nIngrese nombre del autor: ”;

cciinn>>>>NomAut;

Autor AutorAux(NomAut);

RespBus= Acervo.Busca(AutorAux,

➥Acervo.RegresaPrimero());

iiff (RespBus)

ccoouutt<<<<RespBus–>>RegresaInfo();

eellssee

ccoouutt<<<<”\n\nEse autor no está registrado. \n\n”;

bbrreeaakk;

}}

ccaassee 4: {{ /* Se imprimen los datos de todos los libros de un

➥autor, cuyo nombre da el usuario. Se recupera el

➥atributo que fue declarado como una lista, y a éste se

➥le aplica el método de impresión de las listas. */

ccoouutt<<<<”\nIngrese nombre del autor: ”;

cciinn>>>>NomAut;

Autor AutorAux(NomAut);

RespBus= Acervo.Busca(AutorAux,

➥Acervo.RegresaPrimero());

iiff (RespBus)

En la clase Autor del ejemplo 6.7, se incluyó un atributo que es una lista de
objetos (Lista<Libro> Obra). Dado que el atributo Obra es una lista simplemente
ligada, se le pueden aplicar todos los métodos definidos en la clase Lista.
También se pudo definir como un apuntador a un nodo que tuviera como
información base la clase libro. En este caso, se tendrían que haber adaptado
algunos de los métodos vistos. La declaración del atributo Obra hubiera quedado:
NodoLista<Libro> *Obra, siendo un dato tipo apuntador y no un dato tipo lista
como en el caso anterior.

Ejercicios
1. Defina una plantilla para la clase ListaSimLigada. Decida qué atributos y

métodos incluir. Se sugiere que declare un apuntador al primero y otro al úl-
timo nodo de la lista.

2. Escriba un programa en C++ que:

a) Use la plantilla del ejercicio anterior para declarar un objeto tipo lista
simplemente ligada de números enteros.

b) Genere una lista con al menos 10 nodos que contengan 10 números
enteros distintos entre sí.

c) Encuentre el mayor de los valores almacenados en la lista y lo elimine
(también debe quitar el nodo en el cual está almacenado). Este proceso
se debe repetir hasta que la lista quede vacía.

304 Capítulo 6. Listas

{{

ObraAutor= RespBus–>>

➥RegresaInfo().RegresaLisLibros();

ObraAutor.Imprime(ObraAutor.RegresaPrimero());

}}

eellssee

ccoouutt<<<<”\n\nEse autor no está registrado. \n\n”;

bbrreeaakk;

}}

ccaassee 5: ccoouutt<<<<”\n\nFin del proceso. \n\n”;

}}

}} wwhhiillee (OpcTrab !!== 5);

}}

3. Escriba un programa que mezcle dos listas simplemente ligadas de números
enteros, cuyos valores están ordenados crecientemente. El programa debe
generar una tercera lista, también ordenada, sin repetir elementos y no debe
afectar las listas dadas como datos. Observe la siguiente figura, las dos pri-
meras listas son los datos y la tercera es el resultado.

Ejercicios 305

6

1

Primero

NULL

Primero

3 4 5 8 10 12 19 20

3

Primero

4

1 5 8 19

5 10 12 20

NULL

NULL

4. Escriba un programa que mezcle dos listas simplemente ligadas de números
enteros, cuyos valores están ordenados crecientemente. El programa debe ir
generando una única lista con los nodos de las listas dadas como datos. Al
terminar el proceso, sólo debe quedar una lista ordenada, formada con la
unión de las listas de entrada.

5. Escriba un programa que, dada una lista simplemente ligada de números en-
teros, elimine los elementos repetidos.

a) Considere el caso de una lista ordenada.

b) Considere el caso de una lista desordenada.

6. Escriba un programa que, dada una lista simplemente ligada de números en-
teros ordenados crecientemente, agregue tantos nodos como sea necesario
de manera que la lista quede formada con los nodos requeridos para que
contengan todos los números comprendidos entre el valor del primer nodo y
el valor del último. Por ejemplo, si la lista dada por el usuario es la que apa-

306 Capítulo 6. Listas

Primero

3

Primero

4 5 6

3 5 8 9

7 8 9

NULL

NULL

a)

b)

rece en la parte a) de la siguiente figura, luego de ejecutarse el programa
planteado, la lista debería quedar como lo muestra la parte b).

7. Defina la clase ListaCircularSimple correspondiente a una estructura tipo
lista circular simplemente ligada. No utilice nodo de cabecera. Por lo menos,
los métodos que debe incluir en la clase son: InsertaOrdenada() (este méto-
do debe ir insertando ordenadamente elementos a la lista), EliminaNodo()
(este método debe poder eliminar un elemento dado como referencia si es-
tuviera en la lista), ImprimeLista() (este método imprime todos los elemen-
tos de la lista), BuscaNodo() (este método busca en la lista un valor dado
como referencia). En todos los métodos debe considerar posibles casos de
fracaso. Utilice plantillas para su definición.

8. Retome el problema anterior y defina una clase Alumnos con todos los atributos
y métodos que crea necesarios (puede usar la solución al problema 8 del ca-
pítulo 2). La clase Alumnos servirá como tipo para el atributo Información de
cada nodo de la lista. Con estas especificaciones desarrolle una aplicación que:

a) Permita crear (alfabéticamente por nombre de alumno) una lista con
los alumnos que toman cierta materia.

b) Imprima los datos de todos los alumnos.

c) Busque en la lista el nombre de un alumno. Si lo encuentra, debe im-
primir todos sus datos, en caso contrario debe imprimir un mensaje
adecuado.

d) Busque en la lista el nombre de un alumno que se dio de baja de la
materia, si su nombre no está en la lista, la aplicación debe eliminarlo
o enviar un mensaje adecuado.

Ejercicios 307

6

9. Implemente la estructura cola con una lista simplemente ligada. Utilice la
plantilla de la clase definida en el ejercicio 1 para definir una plantilla para
la clase cola.

10. Escriba un programa que invierta los elementos de una cola implementada
por medio de una lista. Utilice la plantilla definida en el ejercicio anterior.

11. Defina una lista que pueda almacenar, en cada nodo, un par (Xi, Yi) de
números reales. Haga los cambios en las clases que crea conveniente.

12. Retome el problema anterior. Escriba un programa que lea una serie de N
(1� N � 50) pares de números reales, los guarde en la lista y los use para
calcular e imprimir el resultado de las siguientes expresiones:

B0 = Yprom – B1 Xprom

13. Retome los métodos de eliminación de nodos de una lista simplemente liga-
da (que se explicaron anteriormente) y modifíquelos de tal manera que re-
gresen la dirección del nodo eliminado.

14. Escriba un programa, que usando una lista doblemente ligada, pueda alma-
cenar y manipular información relacionada a socios de un club deportivo.
La especificación de los datos correspondientes a cada socio se presenta a
continuación. El programa debe permitir a los usuarios, por medio de un
menú, llevar a cabo las siguientes operaciones:

a) Registrar un nuevo socio. Considere que no puede haber dos socios
con el mismo número (NumeroSocio). La lista de socios debe ir quedando
ordenada de menor a mayor, según el número de socio.

b) Dar de baja un socio del club.

c) Generar un reporte con todos los socios que tengan una antigüedad
mayor o igual a una proporcionada por el usuario.

d) Cambiar el domicilio de un socio registrado.

e) Generar un reporte con los datos de todos los socios.

f) Calcular e imprimir el total de socios registrados.

308 Capítulo 6. Listas

15. Defina la clase ListaCircularDoble correspondiente a una estructura tipo
lista circular doblemente ligada. No utilice nodo de cabecera. Los méto-
dos que, por lo menos, debe incluir en la clase son: InsertaOrdenada()
(este método debe ir insertando ordenadamente elementos a la lista),
EliminaNodo() (este método debe poder eliminar un elemento dado como
referencia si estuviera en la lista), ImprimeLista() (este método imprime
todos los elementos de la lista), ImprimeNodo() (este método imprime la
información de un nodo de la lista, cuya dirección se da como paráme-
tro), BuscaNodo() (este método busca en la lista un valor dado como refe-
rencia, si lo encuentra regresa la dirección del nodo y si no el valor
NULL). En todos los métodos debe considerar posibles casos de fracaso.
Utilice plantillas para su definición.

16. En una empresa se necesita un sistema que permita manejar la información
de los automóviles que tienen para su personal. Para representar los datos de
los automóviles se debe tener en cuenta la clase Automovil dada más abajo.
Escriba un programa que, usando una lista circular doblemente ligada, pueda:

a) Registrar un automóvil nuevo. Considere que no puede haber dos au-
tomóviles con la misma clave que los identifica y que la lista debe ir
quedando ordenada por clave.

b) Dar de baja un automóvil que ya no está disponible para el personal.

SocioClub

NumeroSocio: int

NombreSocio: char[]

Domicilio: char[]

AñoIngreso: int

Métodos de acceso
y actualización

c) Generar un reporte de todos los automóviles que sean de un cierto
año. El año de interés será un dato dado por el usuario.

d) Generar un reporte de todos los automóviles cuyo precio sea superior
a un monto dado por el usuario.

e) Dado el nombre de un empleado, imprimir los datos del automóvil que
tiene asignado.

f) Cambiar el nombre de la persona a la que está asignado un automóvil.

Ejercicios 309

6

Automovil

ClaveAuto: int

MarcaAuto: char[]

Modelo: char[]

AñoFabricacion: int

PrecioCompra: float

AsigandoA: char[]

Métodos de acceso
y actualización

17. Observe el siguiente esquema. Diseñe una estructura de datos que pueda re-
presentar los datos y las relaciones entre ellos de manera adecuada. Defina
una clase para las marcas y otra para los modelos.

Audi … …

A3 A4 A6 … … …

Primero

Primer nivel:
Marcas

Segundo nivel:
Modelos

NULL

NULLNULL

NULL

Último

18. Retome el problema anterior. Escriba un programa en C++, que mediante
menús pueda:

a) Agregar una nueva marca.

b) Agregar un nuevo modelo a una marca registrada.

c) Eliminar una marca. En este caso se deben eliminar también todos los
modelos que tiene dicha marca.

d) Eliminar un modelo de una marca registrada.

e) Generar un reporte con todas las marcas y todos los modelos de las
mismas.

f) Dada una marca, imprimir todos los modelos que tiene.

g) Generar un reporte con el modelo más caro de cada una de las
marcas.

19. Retome el problema anterior. Ahora considere que cada modelo tiene una
lista, de tercer nivel, con todas las versiones del mismo: económico, con
piel, equipados, con quemacocos, etcétera. Deberá definir una clase para las
versiones. Desarrolle una aplicación, escrita en C++, que mediante menús,
pueda realizar lo siguiente:

a) Agregar una nueva marca.

b) Incorporar un nuevo modelo a una marca registrada.

c) Agregar una versión a un modelo de una cierta marca.

d) Eliminar una marca. En este caso se deben eliminar también todos los
modelos que tiene dicha marca, y de cada modelo se deben eliminar
todas las versiones.

e) Eliminar un modelo de una marca registrada. En este caso, también se
deben eliminar las versiones de dicho modelo.

f) Eliminar una versión de un modelo de una cierta marca.

g) Generar un reporte con todas las marcas, sus modelos y las distintas
versiones de éstos.

h) Encuentre e imprima la marca que más modelos tiene.

i) Encuentre e imprima el modelo que más versiones tiene.

310 Capítulo 6. Listas

Ejercicios 311

6

Primero

NULL

NULL

NULL NULL

Primer nivel:
Marcas

Segundo nivel:
Modelos

Tercer nivel:
Versiones

Último

NULL NULL

NULL

NULL

NULL

CAPÍTULO 7

7.1 Introducción

Este capítulo estudia la estructura de datos conocida con el nombre de
árbol. Presenta sus principales características, cómo se relacionan sus
componentes y analiza las operaciones que pueden aplicárseles.

Los árboles son estructuras de datos no lineales. Cada elemento, co-
nocido con el nombre de nodo, puede tener varios sucesores. En tér-
minos generales, un árbol se define como una colección de nodos
donde cada uno, además de almacenar información, guarda la direc-
ción de sus sucesores. Se conoce la dirección de uno de los nodos,
llamado raíz, y a partir de él se tiene acceso a todos los otros miem-
bros de la estructura.

Existen diversas maneras de representar un árbol, las más comunes
son: grafos, anidación de paréntesis y diagramas de Venn. La figura

Árboles

7.1 muestra un árbol representado por medio de un grafo, en el cual cada nodo
está indicado por un círculo y la relación entre ellos por un arco.

314 Capítulo 7. Árboles

e

m p j

b

x t i

Raíz

Nodo: miembro o
elemento del árbol

Arco: relación entre
nodos

FIGURA 7.1 Estructura Árbol representada con un grafo

Al observar la representación del árbol por medio de una gráfica puede observarse a
cada nodo como un árbol. Por consiguiente se dice que un árbol está formado por 0 o
más subárboles, llegando así a una definición recursiva de esta estructura de datos.

En una estructura tipo árbol se definen relaciones entre sus miembros. A continua-
ción se presentan las relaciones más importantes y se ejemplifican usando el árbol
de la figura 7.1.

• Hijo. Se dice que un nodo es hijo (o descendiente) de otro si este último
apunta al primero. El nodo que almacena el valor t es hijo del nodo que al-
macena el valor e. Los nodos p y j son hijos de t.

• Padre. Se dice que un nodo es padre de otro si este último es apuntado por el
primero. El nodo que almacena el valor j es padre del nodo que almacena
el valor b. El nodo e es padre de x, t e i.

• El origen de cada arco está en el nodo padre y la flecha llega al nodo hijo.

• Hermano. Dos nodos son hermanos si son apuntados por el mismo nodo, es
decir si tienen el mismo padre. Los nodos x, t e i son hermanos.

Además, los nodos pertenecen a una de las siguientes categorías según su ubica-
ción en la estructura.

• Raíz. Se dice que un nodo es raíz si a partir de él se relacionan todos los
otros nodos. Si un árbol no es vacío, entonces tiene un único nodo raíz. En
la figura 7.1, el nodo raíz es el que almacena el valor e.

• Hoja o terminal. Se dice que un nodo es una hoja del árbol (o terminal) si
no tiene hijos. En la figura 7.1, los nodos que almacenan los valores m, p, b
e i son hojas o nodos terminales.

• Interior. Se dice que un nodo es interior si no es raíz ni hoja. En la figura
7.1, los nodos que almacenan los valores x, t, y j son nodos interiores.

Se define el nivel y grado de cada nodo y la altura y el grado del árbol de la siguien-
te manera:

• Nivel de un nodo. Se dice que el nivel de un nodo es el número de
arcos que deben ser recorridos, partiendo de la raíz, para llegar hasta
él. La raíz tiene nivel 1. En el árbol de la figura 7.1, el nivel de los
nodos que almacenan los valores x, t e i es 2 y el nivel del nodo b
es 4.

• Altura del árbol. Se dice que la altura de un árbol es el máximo de los nive-
les, considerando todos sus nodos. El árbol de la figura 7.1 tiene una altura
igual a 4.

• Grado de un nodo. Se dice que el grado de un nodo es el número de hijos
que tiene dicho nodo. En la figura 7.1, el grado del nodo que almacena el
valor t es 2 y el grado del nodo x es 1.

• Grado del árbol. Se dice que el grado de un árbol es el máximo de
los grados, considerando todos sus nodos. El árbol de la figura 7.1,
es de grado 3.

7.2 Árboles binarios

Un árbol binario es un árbol de grado 2 en el cual sus hijos se identifican como
subárbol izquierdo y subárbol derecho. Por lo tanto, cada nodo almacena informa-
ción y las direcciones de sus descendientes (máximo 2). Es un tipo de árbol muy
usado, ya que saber el número máximo de hijos que puede tener cada nodo facili-
ta las operaciones sobre ellos. La figura 7.2 presenta el esquema de un nodo de
un árbol binario.

7.2 Árboles binarios 315

7

La figura 7.3 presenta un ejemplo de uso de un árbol binario. En este caso, la es-
tructura se emplea para almacenar el árbol genealógico de María. En cada nodo se
guarda la información de los ancestros de María y los arcos indican la relación
entre ellos.

316 Capítulo 7. Árboles

FIGURA 7.3 Ejemplo de árbol binario

María

JoséJuana

Inés Carlos Felisa Pedro

Sofía Tomás

La característica de este tipo de árbol (cada nodo tiene máximo 2 hijos) se puede
aprovechar para organizar la información. Retomando el ejemplo de la figura 7.3,
se puede establecer que los hijos izquierdos representen los ascendientes femeni-
nos de María, mientras que los hijos derechos los ascendientes masculinos. Así,
la mamá de María es Juana y su abuela materna es Inés. El papá de María es Jo-
sé. A su vez, la mamá de José es Felisa y su papá es Pedro.

La implementación más efectiva de los árboles binarios es por medio de memo-
ria dinámica, obteniendo así una estructura dinámica. Las figuras 7.4 y 7.5

Dirección

Subárbol

Izquierdo

Dirección

Subárbol

Derecho

Información

FIGURA 7.2 Estructura de un nodo de un árbol binario

7.2 Árboles binarios 317

7

NodoArbol(T)

Info: T

HijoIzq: * NodoArbol(T)

HijoDer: * NodoArbol(T)

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 7.4 Clase NodoArbol

ArbolBinario(T)

Raiz: * NodoArbol(T)

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 7.5 Clase ArbolBinario

presentan las plantillas de la clase NodoArbol y de la clase ArbolBinario res-
pectivamente. Se usan plantillas para dar mayor generalidad a la solución.
La clase NodoArbol tiene tres atributos, uno que representa la información a
almacenar por lo que se define de tipo T, y otros dos que representan la di-
rección del hijo izquierdo y del hijo derecho respectivamente, por lo que se
declaran como punteros a objetos de la misma clase. Por su parte, la clase
ArbolBinario tiene un único atributo que representa la dirección del primer
elemento del árbol (la raíz) por lo cual es de tipo puntero a un objeto de tipo
NodoArbol.

A continuación se presenta el código en lenguaje C++ correspondiente a la defi-
nición de las plantillas de las clases NodoArbol y ArbolBinario.

318 Capítulo 7. Árboles

/* Prototipo de la plantilla de la clase ArbolBinario. De esta manera,

➥en la clase NodoArbol se podrá hacer referencia a ella. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBinario;

/* Declaración de la clase NodoArbol. Cada nodo almacena la información

➥(que es la razón de ser de la estructura tipo árbol) y las direcciones

➥de sus hijos izquierdo y derecho. En la sección pública se establece la

➥relación de amistad entre esta clase y la clase ArbolBinario para que los

➥métodos de esta última puedan tener acceso a sus miembros privados. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoArbol

{{

pprriivvaattee::

TT Info;

NodoArbol<<TT>> *HijoIzq;

NodoArbol<<TT>> *HijoDer;

ppuubblliicc::

NodoArbol();

TT RegresaInfo();

ffrriieenndd ccllaassss ArbolBinario<<TT>>;

}};

/* Declaración del método constructor por omisión. Inicializa las ligas

➥a los subárboles con el valor de NNUULLLL, indicando que están vacías. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>>::::NodoArbol()

{{

HijoIzq= NNUULLLL;

HijoDer= NNUULLLL;

}}

/* Método que permite conocer la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

TT NodoArbol<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info ;

}}

/* Declaración de la clase ArbolBinario. Su atributo es un puntero al

➥nodo raíz. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBinario

{{

pprriivvaattee::

NodoArbol<<TT>> *Raiz;

7.2 Árboles binarios 319

7

La clase NodoArbol se utiliza para representar un nodo de un árbol binario, por lo
tanto se incluyen tres atributos: uno para almacenar información de cualquier tipo
(tipo T) y los otros dos para almacenar la dirección de los subárboles izquierdo y
derecho respectivamente, los cuales son punteros a objetos de la misma clase. La
sección pública contiene tres miembros (podría tener más o menos), dependiendo
de la definición de la clase que se haga. Estos elementos son: el método construc-
tor, un método que facilita (a usuarios externos a la clase) conocer la información
guardada, y la declaración de amistad con la clase ArbolBinario. Esta última de-
claración permite que los métodos de la clase amiga tengan acceso a sus miem-
bros privados y protegidos.

A partir de la clase NodoArbol se define la clase ArbolBinario, la cual está forma-
da por un atributo único (tipo puntero a un objeto NodoArbol) que representa el
puntero al nodo raíz del árbol binario. Este puntero permite el acceso a todos los
elementos del árbol ya que la raíz tiene la dirección de sus dos hijos, éstos, la di-
rección de sus respectivos hijos y así hasta llegar a nodos terminales. En la sección
pública se declaran los métodos necesarios para tener acceso a los atributos, y de es-
ta manera manipular la información almacenada.

7.2.1 Operaciones en árboles binarios

En esta sección se estudian las operaciones de creación y recorrido de un árbol
binario. La primera hace referencia a crear una estructura que responda a las ca-
racterísticas analizadas e ir almacenando información en cada uno de los nodos.

ppuubblliicc::

ArbolBinario ();

/** En esta sección se declaran los métodos de acceso y

➥modificación a los miembros de la clase. **/

}};

/* Declaración del método constructor. Inicializa el puntero a la raíz con

➥el valor NNUULLLL, indicando que el árbol está vacío (no tiene nodos). */

tteemmppllaattee <<ccllaassss TT>>

ArbolBinario<<TT>>::::ArbolBinario()

{{

Raiz= NNUULLLL;

}}

La segunda permite visitar todos los nodos de un árbol sin repetir ninguno, apro-
vechando el conocimiento que se tiene acerca de la estructura.

La creación de un árbol binario se lleva a cabo a partir de la raíz. Se crea un no-
do y se almacena su información. Posteriormente se pregunta si dicho nodo tiene
hijo izquierdo, si la respuesta es afirmativa, entonces se invoca nuevamente el
método pero ahora con el subárbol izquierdo. El proceso se repite con cada nodo
hasta llegar a las hojas. Luego, se hace lo mismo para crear cada uno de los
subárboles derechos. Se utiliza la instrucción new() para asignar un espacio de
memoria de manera dinámica.

A continuación se presenta el método para llevar a cabo la secuencia de pasos
descrita.

320 Capítulo 7. Árboles

/* Plantilla del método que crea un árbol binario. Recibe como parámetro

➥un apuntador a un subárbol. La primera vez es la raíz del árbol la cual

➥se inicializó con el valor NULL, indicando que el árbol está vacío. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinario<<TT>>::::CreaArbol(NodoArbol<<TT>> *Apunt)

{{

cchhaarr Resp;

/* Se crea un nodo. */

Apunt= nneeww NodoArbol<<TT>>;

ccoouutt<<<<”\n\nIngrese la información a almacenar:”;

cciinn>>>>Apunt––>>Info;

ccoouutt<<<<”\n\n”<<<<Apunt––>>Info<<<<” ¿Tiene hijo izquierdo (S/N)? ”;

cciinn>>>>Resp;

iiff (Resp ==== ‘s’)

{{

/* Se invoca al método con el subárbol izquierdo. Se usa la

➥definición recursiva de un árbol. */

CreaArbol(Apunt––>>HijoIzq);

Apunt––>>HijoIzq= Raiz;

}}

ccoouutt<<<<”\n\n”<<<<Apunt––>>Info<<<<” ¿Tiene hijo derecho (S/N)? ”;

cciinn>>>>Resp;

iiff (Resp ==== ‘s’)

{{

/* Se invoca al método con el subárbol derecho. Se usa la

➥definición recursiva de un árbol. */

CreaArbol(Apunt––>>HijoDer);

Apunt––>>HijoDer= Raiz;

}}

Raiz= Apunt;

}}

El recorrido de un árbol binario consiste en visitar todos sus nodos una sola vez.
Por lo tanto, podrá hacerse (aprovechando las características de la estructura del
árbol) de tres maneras diferentes: visitando la raíz, el hijo izquierdo y el hijo
derecho, o visitando el hijo izquierdo, la raíz y el hijo derecho, o bien, visitan-
do el hijo izquierdo, el hijo derecho y la raíz. En los tres casos, la regla se apli-
ca hasta llegar a las hojas. Estos métodos se conocen con el nombre de preorden,
inorden y postorden respectivamente.

7.2 Árboles binarios 321

7

Preorden Inorden Postorden

1. Visita la raíz 1. Recorre el subárbol 1. Recorre el subárbol
izquierdo izquierdo

2. Recorre el subárbol 2. Visita la raíz 2. Recorre el subárbol
izquierdo derecho

3. Recorre el subárbol 3. Recorre el subárbol 3. Visita la raíz
derecho derecho

Considerando el árbol binario de la figura 7.6, el resultado de los tres recorridos
es el siguiente.

• Preorden: 304 – 550 – 143 – 2020 – 1995 – 876 – 609 – 300

• Inorden: 143 – 550 – 2020 – 304 – 876 – 1995 – 609 – 300

• Postorden: 143 – 2020 – 550 – 876 – 300 – 609 – 1995 – 304

FIGURA 7.6 Recorrido de árboles binarios

304

1995550

143 2020 876 609

300

Los métodos para llevar a cabo esta operación se presentan a continuación. En
los tres casos la operación de visitar la raíz se consideró como la impresión de su
contenido, aunque podría ser cualquier operación válida según el tipo de informa-
ción almacenada en el nodo.

322 Capítulo 7. Árboles

/* Método que realiza el recorrido preorden de un árbol binario. Se usa

➥el recorrido para imprimir la información almacenada en cada uno de sus

➥nodos. Recibe como parámetro el nodo a visitar. La primera vez es la

➥raíz del árbol, luego será la raíz del subárbol izquierdo y la raíz del

➥subárbol derecho y así hasta llegar a las hojas. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinario<<TT>>::::Preorden (NodoArbol<<TT>> *Apunt)

{{

iiff (Apunt)

{{

ccoouutt<<<< Apunt––>>Info <<<< ” ”;

Preorden(Apunt––>>HijoIzq);

Preorden(Apunt––>>HijoDer);

}}

}}

/* Método que realiza el recorrido inorden de un árbol binario. Se usa

➥el recorrido para imprimir la información almacenada en cada uno de sus

➥nodos. Recibe como parámetro el nodo a visitar. La primera vez es la

➥raíz del árbol, luego será la raíz del subárbol izquierdo y la raíz del

➥subárbol derecho y así hasta llegar a las hojas. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinario<<TT>>::::Inorden (NodoArbol<<TT>> *Apunt)

{{

iiff (Apunt)

{{

Inorden(Apunt––>>HijoIzq);

ccoouutt<<<< Apunt––>>Info <<<< ” ”;

Inorden(Apunt––>>HijoDer);

}}

}}

/* Método que realiza el recorrido postorden de un árbol binario. Se usa

➥el recorrido para imprimir la información almacenada en cada uno de sus

➥nodos. Recibe como parámetro el nodo a visitar. La primera vez es la

➥raíz del árbol, luego será la raíz del subárbol izquierdo y la raíz del

➥subárbol derecho y así hasta llegar a las hojas. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinario<<TT>>::::Postorden (NodoArbol<<TT>> *Apunt)

En los tres métodos, la instrucción de imprimir se da sobre el contenido de la
raíz. La naturaleza recursiva de los métodos permite lograr la impresión de todos
los nodos. Las instrucciones que forman cada uno de los métodos son las mis-
mas, lo único que cambia es el orden en el cual se ejecutan.

Si se analiza el recorrido preorden con el árbol de la figura 7.6, se puede observar
que primero se imprime el número 304, luego se invoca el método con el subárbol
izquierdo, quedando pendiente el recorrido con el subárbol derecho (internamente
se guardan en una pila las instrucciones pendientes de ejecutar). Lo mismo suce-
de cuando llega con el subárbol izquierdo, imprime el valor 550 e invoca el méto-
do con su subárbol izquierdo y deja pendiente el recorrido con su subárbol
derecho. Una vez agotado el lado izquierdo, pasa al lado derecho del último nodo
visitado. Se van tomando de la pila todos los subárboles derechos que quedaron
pendientes de visitar y se van recorriendo. Como consecuencia, el primer número
(correspondiente a un subárbol derecho) que se imprime es el 2020, luego el
1995 y como este último tiene subárbol izquierdo, entonces se invoca al método
con éste (876). Se repite el proceso hasta que ya no queden nodos a visitar.

En un árbol binario también pueden realizarse otras operaciones como buscar, inser-
tar o eliminar un dato en un árbol ya generado. Estas operaciones serán analizadas
en un tipo especial de árboles binarios, los cuales se tratan en la siguiente sección.

El programa 7.1 presenta una aplicación de árboles binarios. El programa imprime
los datos de todos los ascendientes femeninos de un individuo, tanto de la rama
materna como de la paterna. Se utiliza un objeto tipo árbol binario para almace-
nar los datos de los ascendientes de una persona, es decir, su árbol genealógico.
En la raíz de cada subárbol izquierdo se almacena la información de un ascen-
diente femenino, mientras que en la raíz de cada subárbol derecho se guarda la
información de un ascendiente masculino. Considerando el árbol de la figura 7.7,
algunas de las relaciones familiares representadas son:

7.2 Árboles binarios 323

7

{{

iiff (Apunt)

{{

Postorden(Apunt––>>HijoIzq);

Postorden(Apunt––>>HijoDer);

ccoouutt<<<< Apunt––>>Info <<<< ” ”;

}}

}}

y el programa imprimirá que los ascendientes femeninos de Juan son Anahí, Inés y
Ana. El programa 7.1 incluye las clases ArbolBinario y Personas sólo con los mé-
todos requeridos para la aplicación.

324 Capítulo 7. Árboles

Anahí es mamá de Juan

José es papá de Juan

Inés es mamá de Anahí

Pedro es papá de Anahí

Ana es mamá de José

Luis es papá de José

FIGURA 7.7 Árbol genealógico de Juan

Juan

JoséAnahí

Inés Pedro Ana Luis

Programa 7.1

/* Programa que imprime los datos de los ascendientes femeninos de un

➥individuo. Primero forma el árbol genealógico y posteriormente genera

➥el reporte. */

/* Definición de la clase Persona. */

ccllaassss Persona

{{

pprriivvaattee::

iinntt AnioNac, Vive;

cchhaarr NomPers[64], LugNac[64];

7.2 Árboles binarios 325

7

ppuubblliicc::

Persona();

Persona(iinntt, iinntt, cchhaarr[[]], cchhaarr[[]]);

ffrriieenndd iissttrreeaamm && ooppeerraattoorr>>>> (iissttrreeaamm && , Persona &&);

ffrriieenndd oossttrreeaamm && ooppeerraattoorr<<<< (oossttrreeaamm && , Persona &&);

}};

/* Declaración del método constructor por omisión. */

Persona::::Persona()

{{}}

/* Declaración del método constructor con parámetros. */

Persona::::Persona(iinntt ANac, iinntt Vi, cchhaarr NomP[], cchhaarr LugN[])

{{

AnioNac= ANac;

Vive= Vi;

ssttrrccppyy(NomPers, NomP);

ssttrrccppyy(LugNac, LugN);

}}

/* Sobrecarga del operador >>>> para permitir la lectura de objetos tipo

➥Persona de manera directa. */

iissttrreeaamm && ooppeerraattoorr>>>>(iissttrreeaamm && Lee, Persona && ObjPers)

{{

ccoouutt<<<<”\n\nIngrese nombre de la Persona:”;

Lee>>>> ObjPers.NomPers;

ccoouutt<<<<”\n\nIngrese año de nacimiento:”;

Lee>>>> ObjPers.AnioNac;

ccoouutt<<<<”\n\nIngrese lugar de nacimiento:”;

Lee>>>> ObjPers.LugNac;

ccoouutt<<<<”\n\n¿Está viva?:”;

Lee>>>> ObjPers.Vive;

rreettuurrnn Lee;

}}

/* Sobrecarga del operador <<<< para permitir la escritura de objetos tipo

➥Persona de manera directa. */

oossttrreeaamm && ooppeerraattoorr<<<< (oossttrreeaamm && Escribe, Persona && ObjPers)

{{

Escribe<<<<”\n\nDatos de la Persona\n”;

Escribe<<<<”\nNombre: ”<<<<ObjPers.NomPers;

Escribe<<<<”\nLugar de nacimiento: ”<<<<ObjPers.LugNac;

Escribe<<<<”\nAño de nacimiento: ”<<<<ObjPers.AnioNac;

iiff (ObjPers.Vive ==== 1)

Escribe<<<<”\nEstá viva.\n”;

eellssee

Escribe<<<<”\nNo está viva.\n”;

rreettuurrnn Escribe;

}}

326 Capítulo 7. Árboles

/* Prototipo de la plantilla de la clase ArbolBinario. Así, en la clase

➥NodoArbol se podrá hacer referencia a ella. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBinario;

/* Declaración de la clase NodoArbol. Cada nodo almacena la información

➥que es la razón de ser de la estructura tipo árbol y las direcciones de

➥su hijo izquierdo y de su hijo derecho. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoArbol

{{

pprriivvaattee::

TT Info;

NodoArbol<<TT>> *HijoIzq;

NodoArbol<<TT>> *HijoDer;

ppuubblliicc::

NodoArbol();

TT RegresaInfo();

vvooiidd ActualizaInfo(TT);

ffrriieenndd ccllaassss ArbolBinario<<TT>>;

}};

/* Declaración del método constructor por omisión. Inicializa

➥las ligas a los subárboles con el valor de NNUULLLL. Indica nodo sin

➥descendientes. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>>::::NodoArbol()

{{

HijoIzq= NNUULLLL;

HijoDer= NNUULLLL;

}}

/* Método que regresa la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

TT NodoArbol<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info;

}}

/* Método para actualizar la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd NodoArbol<<TT>>::::ActualizaInfo(TT Dato)

{{

Info= Dato ;

}}

7.2 Árboles binarios 327

7

/* Declaración de la clase ArbolBinario. Tiene un puntero al nodo

➥raíz. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBinario

{{

pprriivvaattee::

NodoArbol<<TT>> *Raiz;

ppuubblliicc::

ArbolBinario ();

NodoArbol<<TT>> *RegresaRaiz();

vvooiidd CreaArbol(NodoArbol<<TT>> *);

vvooiidd ImprimeIzq(NodoArbol<<TT>> *);

}};

/* Declaración del método constructor. Inicializa el puntero a la raíz

➥con el valor NNUULLLL. Indica que el árbol está vacío. */

tteemmppllaattee <<ccllaassss TT>>

ArbolBinario<<TT>>::::ArbolBinario()

{{

Raiz= NNUULLLL;

}}

/* Método que regresa el valor del apuntador a la raíz del árbol. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>> *ArbolBinario<<TT>>::::RegresaRaiz()

{{

rreettuurrnn Raiz;

}}

/* Método que crea un árbol binario. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinario<<TT>>::::CreaArbol(NodoArbol<<TT>> *Apunt)

{{

cchhaarr Resp;

Apunt= nneeww NodoArbol<<TT>>;

ccoouutt<<<<”\n\nIngrese la información a almacenar:”;

cciinn>>>>Apunt––>>Info;

ccoouutt<<<<”\n\n”<<<<Apunt––>>Info<<<<” ¿Tiene hijo izquierdo (S/N)? ”;

cciinn>>>>Resp;

iiff (Resp ==== ‘s’)

{{

CreaArbol(Apunt––>>HijoIzq);

Apunt––>>HijoIzq= Raiz;

}}

ccoouutt<<<<”\n\n”<<<<Apunt––>>Info<<<<” ¿Tiene hijo derecho (S/N)? ”;

cciinn>>>>Resp;

iiff (Resp ==== ‘s’)

328 Capítulo 7. Árboles

{{

CreaArbol(Apunt––>>HijoDer);

Apunt––>>HijoDer= Raiz;

}}

Raiz= Apunt;

}}

/* Método que imprime la información almacenada en las raíces de todos

➥los subárboles izquierdos. La primera vez recibe como dato la raíz del

➥árbol. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinario<<TT>>::::ImprimeIzq(NodoArbol<<TT>> *Apunt)

{{

iiff (Apunt)

{{

iiff (Apunt––>>HijoIzq)

{{

ccoouutt<<<<Apunt––>>HijoIzq––>>Info;

ImprimeIzq(Apunt––>>HijoIzq);

}}

ImprimeIzq(Apunt––>>HijoDer);

}}

}}

/* Función principal. Crea el árbol genealógico de un individuo y

➥posteriormente imprime los datos de todos sus ascendientes femeninos. */

vvooiidd mmaaiinn(())

{{

ArbolBinario<<Persona>> Genealogico;

Persona Individuo;

NodoArbol<<Persona>> *Ap;

Ap= Genealogico.RegresaRaiz();

/* Se invoca el método que crea el árbol genealógico. */

Genealogico.CreaArbol(Ap);

Ap= Genealogico.RegresaRaiz();

/* Se recupera la información del individuo. */

Individuo= Ap––>>RegresaInfo();

ccoouutt<<<<”\n\n\n \n\n”;

ccoouutt<<<<”Los ascendientes femeninos de: \n”<<<<Individuo;

ccoouutt<<<<”\n\n \n”;

/* Se invoca el método que imprime los datos de los ascendientes

➥femeninos. */

Genealogico.ImprimeIzq(Ap);

}}

7.2.2 Árboles binarios de búsqueda

Un árbol binario de búsqueda se caracteriza porque la información de cada nodo
es mayor que la información de cada uno de los nodos que están en su subárbol
izquierdo y menor que la almacenada en los nodos que están en su subárbol dere-
cho. La figura 7.8 presenta un ejemplo de árbol binario de búsqueda. Observe
que todos los valores que están a la izquierda del 710 son menores que él. A su
vez, los que están a su derecha son mayores. La misma regla se aplica en todos
los nodos.

7.2 Árboles binarios 329

7

FIGURA 7.8 Ejemplo de árbol binario de búsqueda

710

2000689

143

70

702 1040 2099

3300

El recorrido inorden de un árbol binario de búsqueda genera una lista ordenada
de manera creciente de todos sus elementos. Tomando el árbol de la figura 7.8,
este recorrido proporcionaría los elementos en el siguiente orden:

70 – 143 – 689 – 702 – 710 – 1040 – 2000 – 2099 – 3300

El orden que existe entre la información almacenada en el árbol facilita la opera-
ción de búsqueda de cualquiera de sus elementos. A continuación se analizarán
las operaciones de búsqueda, inserción y eliminación en árboles binarios de bús-
queda.

Operación de búsqueda

Para llevar a cabo la búsqueda de un elemento en un árbol binario de búsqueda
se procede de la siguiente manera:

1. Se evalúa si el nodo visitado (la primera vez es la raíz) está definido.

2. Si la respuesta es afirmativa, se pregunta si el dato buscado es menor que el
dato visitado.

2.1. Si la respuesta es afirmativa, se procede a buscar el dato en el subárbol
izquierdo.

2.2. Si la respuesta es negativa, se pregunta si el dato buscado es mayor que
el dato visitado.

2.2.1. Si la respuesta es afirmativa, se procede a buscar el dato en el
subárbol derecho.

2.2.2. Si la respuesta es negativa, la búsqueda termina exitosamente. El
dato fue encontrado.

3. Si la respuesta a la pregunta 1 es negativa, entonces termina la búsqueda con
un fracaso.

A continuación se presenta un ejemplo de aplicación del algoritmo visto. En el árbol
de la figura 7.9 se desea encontrar el valor 705. Con las líneas punteadas se señalan
los nodos que se van visitando hasta llegar al buscado. En la tabla 7.1 se muestra la
secuencia de pasos requeridos, usando el algoritmo, para realizar esta operación.

330 Capítulo 7. Árboles

TABLA 7.1 Operación de búsqueda en un árbol binario de búsqueda
Operación Descripción

1 Se evalúa si el nodo visitado (710) está definido. En este caso sí lo está.

2 Se evalúa si el dato buscado (705) es menor que la información almace-
nada (710) en el nodo visitado. En este caso sí lo es.

3 Se invoca el método con el subárbol izquierdo.

4 Se evalúa si el nodo visitado (689) está definido. En este caso sí lo está.

5 Se evalúa si el dato buscado (705) es menor que la información almace-
nada (689) en el nodo visitado. En este caso no lo es.

continúa

7.2 Árboles binarios 331

7

6 Se evalúa si el dato buscado (705) es mayor que la información almace-
nada (689) en el nodo visitado. En este caso sí lo es.

7 Se invoca el método con el subárbol derecho.

8 Se evalúa si el nodo visitado (702) está definido. En este caso sí lo está.

9 Se evalúa si el dato buscado (705) es menor que la información almace-
nada (702) en el nodo visitado. En este caso no lo es.

10 Se evalúa si el dato buscado (705) es mayor que la información almace-
nada (702) en el nodo visitado. En este caso sí lo es.

11 Se invoca el método con el subárbol derecho.

12 Se evalúa si el nodo visitado (705) está definido. En este caso sí lo está.

13 Se evalúa si el dato buscado (705) es menor que la información almace-
nada (705) en el nodo visitado. En este caso no lo es.

14 Se evalúa si el dato buscado (705) es mayor que la información almace-
nada (705) en el nodo visitado. En este caso no lo es.

15 La búsqueda termina con éxito. El dato fue encontrado.

TABLA 7.1 Continuación
Operación Descripción

FIGURA 7.9 Ejemplo de operación de búsqueda

710

2000689

143

70

702 1040 2099

700 705 3300

¿705 < 710?

¿705 < 689?
No.
¿705 > 689?

¿705 < 705?
No.
¿705 > 705?
No.
Termina: éxito.

¿705 < 702
No.
¿705 > 702?

Dato a buscar: 705

Sí.

Sí.

Sí.

Como se puede deducir de los pasos presentados, el número de comparaciones se
reduce a la mitad en cada nodo visitado. No se requiere visitar todos los nodos.
El método que implementa esta operación es el siguiente:

332 Capítulo 7. Árboles

/* Método que busca un dato en un árbol binario de búsqueda. Recibe como

➥parámetros un apuntador, que es la dirección del nodo a visitar (la

➥primera vez es el apuntador a la raíz) y el dato a buscar. Regresa como

➥resultado la dirección del nodo encontrado o el valor NNUULLLL, si la bús-

➥queda termina con fracaso. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>> * ArbolBinBus<<TT>>::::Busqueda (NodoArbol<<TT>> *Apunt, TT Dato)

{{

iiff (Apunt)

iiff (Dato << Apunt––>>Info)

rreettuurrnn Busqueda(Apunt––>>HijoIzq, Dato);

eellssee

iiff (Dato >> Apunt––>>Info)

rreettuurrnn Busqueda(Apunt––>>HijoDer, Dato);

eellssee

rreettuurrnn Apunt;

eellssee

rreettuurrnn NNUULLLL;

}}

Operación de inserción

Insertar un nuevo elemento en un árbol binario de búsqueda requiere buscar la
posición que debe ocupar el nuevo nodo de tal manera que no altere el orden del
árbol. En la solución que aquí se propone no se aceptan elementos repetidos.
Pueden existir aplicaciones en las cuales sí se permita. Sin embargo, en esta solu-
ción, si se detecta que en el árbol ya está almacenado un valor igual al que se
pretende insertar, la operación se interrumpe. Los principales pasos para llevar a
cabo esta operación son:

1. Se evalúa si el nodo (la primera vez es la raíz) visitado está definido.

2. Si la respuesta es afirmativa, se pregunta si el dato a insertar es menor que el
dato visitado.

2.1. Si la respuesta es afirmativa, se invoca el proceso de inserción con el
subárbol izquierdo.

2.2. Si la respuesta es negativa, se pregunta si el dato a insertar es mayor que
el dato visitado.

2.2.1. Si la respuesta es afirmativa, entonces se invoca el proceso de in-
serción con el subárbol derecho.

2.2.2. Si la respuesta es negativa, entonces el proceso de inserción termi-
na sin haberse realizado, ya que no se permiten elementos repetidos.

3. Si la respuesta al paso 1 es negativa, se crea el nuevo nodo, se almacena la in-
formación y se establecen las ligas entre el nuevo nodo y su padre.

Suponga que en el árbol de la figura 7.10 se quiere insertar el valor 1500. Las líneas
punteadas indican los nodos visitados hasta encontrar el adecuado (1040) para pro-
ceder a la inserción. El nodo en negritas es el nuevo elemento agregado al árbol y la
línea (también en negritas) es la liga entre éste y su padre. Aplicando el algoritmo
dado, se realiza la secuencia de operaciones que se muestra en la tabla 7.2.

7.2 Árboles binarios 333

7

TABLA 7.2 Operación de inserción en un árbol binario de búsqueda
Operación Descripción

1 Se evalúa si el nodo visitado (710) está definido. En este caso sí lo está.

2 Se evalúa si el dato a insertar (1500) es menor que la información alma-
cenada (710) en el nodo visitado. En este caso no lo es.

3 Se evalúa si el dato a insertar (1500) es mayor que la información alma-
cenada (710) en el nodo visitado. En este caso sí lo es.

4 Se invoca el método con el subárbol derecho.

5 Se evalúa si el nodo visitado (2000) está definido. En este caso sí lo está.

6 Se evalúa si el dato a insertar (1500) es menor que la información alma-
cenada (2000) en el nodo visitado. En este caso sí lo es.

7 Se invoca el método con el subárbol izquierdo.

8 Se evalúa si el nodo visitado (1040) está definido. En este caso sí lo está.

9 Se evalúa si el dato a insertar (1500) es menor que la información alma-
cenada (1040) en el nodo visitado. En este caso no lo es.

10 Se evalúa si el dato a insertar (1500) es mayor que la información alma-
cenada (1040) en el nodo visitado. En este caso sí lo es.

11 Se invoca el método con el subárbol derecho.

12 Se evalúa si el nodo visitado (NULL) está definido. En este caso no lo está.

13 Se crea un nuevo nodo, se le asigna el valor 1500 y se establece la liga
entre él y su padre (el nodo que almacena el número 1040). El proceso
termina.

A continuación se presenta el método definido para insertar un nuevo nodo a un
árbol binario de búsqueda.

334 Capítulo 7. Árboles

FIGURA 7.10 Ejemplo de operación de inserción

710

2000689

143

70

702 1040 2099

700 705 1500 3300

¿1500 < 710?
No.
¿1500 > 710?

¿1500 < 2000?

¿1500 < 1040
No.
¿1500 > 1040?

Dato a insertar: 1500

Sí.

Sí.

Sí.

/* Método que inserta un nodo en un árbol binario de búsqueda. Recibe

➥como parámetros un apuntador (la primera vez es la raíz del árbol) y

➥la información que se quiere almacenar en el nuevo nodo. En esta

➥implementación no se permite que haya información duplicada en el

➥árbol. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::InsertaNodoSinRep(NodoArbol<<TT>> *Apunt, TT Dato)

{{

NodoArbol<<TT>> *ApAux;

iiff (Apunt)

{{

iiff (Dato << Apunt––>>Info)

{{

InsertaNodoSinRep(Apunt––>>HijoIzq, Dato);

Apunt––>>HijoIzq= Raiz;

}}

Operación de eliminación

Para eliminar un elemento en un árbol binario de búsqueda se requiere buscar el
valor deseado y quitar el nodo que lo contiene. Este último paso se lleva a cabo
de maneras diferentes dependiendo si el nodo eliminado es terminal o no. Si se
trata de una hoja, entonces se quita directamente. En otro caso, para no perder las
ligas a sus descendientes, se debe reemplazar por el nodo que se encuentra más a
la derecha del subárbol izquierdo o por el que se encuentra más a la izquierda del
subárbol derecho. En la solución que se da en este libro se usa el elemento que
está más a la derecha del subárbol izquierdo. Los principales pasos para llevar a
cabo esta operación son:

1. Se evalúa si el nodo visitado (la primera vez es la raíz) está definido.

2. Si la respuesta es afirmativa, entonces se pregunta si el dato a eliminar es
menor que el dato visitado.

2.1. Si la respuesta es afirmativa, se invoca el proceso de eliminación con el
subárbol izquierdo.

2.2. Si la respuesta es negativa, se pregunta si el dato a eliminar es mayor que
el dato visitado.

7.2 Árboles binarios 335

7

eellssee

iiff (Dato >> Apunt––>>Info)

{{

InsertaNodoSinRep(Apunt––>>HijoDer, Dato);

Apunt––>>HijoDer= Raiz;

}}

Raiz= Apunt;

}}

eellssee

{{

/* Se crea un nuevo nodo, se le asigna la información y se

➥establecen las ligas entre los nodos correspondientes. */

ApAux= nneeww NodoArbol<<TT>>();

ApAux––>>Info= Dato;

Raiz= ApAux;

}}

}}

2.2.1. Si la respuesta es afirmativa, se invoca el proceso de eliminación
con el subárbol derecho.

2.2.2. Si la respuesta es negativa, se elimina el nodo. Si es hoja, la elimi-
nación es directa. Si tiene sólo un hijo se reemplaza por éste y si
tiene dos se reemplaza por el que está más a la derecha del subár-
bol izquierdo. En estos dos últimos casos se libera el espacio de
memoria del hijo, mientras que en el primero el correspondiente al
nodo en cuestión.

3. Si la respuesta al paso 1 es negativa, entonces el dato no está en el árbol. El
proceso de eliminación termina con fracaso.

Suponga que en el árbol binario de búsqueda de la figura 7.11 se quiere eliminar
el valor 689. En (a) se muestra el camino que se sigue para llegar al nodo desea-
do y al nodo cuyo contenido reemplazará al 689. En (b) se presenta el árbol una
vez que el nodo fue eliminado. La tabla 7.3 presenta las operaciones realizadas,
siguiendo el algoritmo dado, para eliminar el 689.

336 Capítulo 7. Árboles

TABLA 7.3 Operación de eliminación en un árbol binario de búsqueda
Operación Descripción

1 Se evalúa si el nodo visitado (710) está definido. En este caso sí lo está.

2 Se evalúa si el dato a eliminar (689) es menor que la información alma-
cenada (710) en el nodo visitado. En este caso sí lo es.

3 Se invoca el método con el subárbol izquierdo.

4 Se evalúa si el nodo visitado (689) está definido. En este caso sí lo está.

5 Se evalúa si el dato a eliminar (689) es menor que la información alma-
cenada (689) en el nodo visitado. En este caso no lo es.

6 Se evalúa si el dato a eliminar (689) es mayor que la información alma-
cenada (689) en el nodo visitado. En este caso no lo es.

7 Se llegó al nodo que se quiere quitar. Como tiene dos hijos se reempla-
za su contenido con el del nodo que está más a la derecha del subárbol
izquierdo y se libera el espacio de memoria correspondiente al hijo. El
proceso termina.

7.2 Árboles binarios 337

7

FIGURA 7.11 Ejemplo de la operación de eliminación a) Antes de eliminar el
valor 689, b) después de eliminarlo y reemplazarlo por el 620

710

2000689

143

70

702 1040 2099

705500

620

3300

¿689 < 710?

¿689 < 689?
No.
¿689 > 689?
No.

Dato a eliminar: 689

Sí.

710

2000620

143

70

702 1040 2099

500 705 3300

b)

a)

Búsqueda del elemento a eliminar

Búsqueda del nodo que está más a la derecha del
subárbol izquierdo.

Nodo que reemplazará al que se elimina

A continuación se presenta el método, escrito en C++, que permite eliminar un
nodo de un árbol binario de búsqueda.

338 Capítulo 7. Árboles

/* Método que elimina un nodo de un árbol binario de búsqueda. Recibe

➥como parámetro un apuntador (la primera vez es la raíz) y el dato a

➥eliminar. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::EliminaNodo(NodoArbol<<TT>> *Apunt, TT Dato)

{{

iiff (Apunt)

iiff (Dato << Apunt––>>Info)

{{

EliminaNodo(Apunt––>>HijoIzq, Dato);

Apunt––>>HijoIzq= Raiz;

}}

eellssee

iiff (Dato >> Apunt––>>Info)

{{

EliminaNodo(Apunt––>>HijoDer, Dato);

Apunt––>>HijoDer= Raiz;

}}

eellssee

{{

NodoArbol<<TT>> *ApAux1,*ApAux2,*ApAux3;

ApAux3= Apunt;

/* Encuentra el nodo que contiene el dato a eliminar.

➥Verifica si tiene hijos. */

iiff (!!ApAux3––>>HijoDer)

iiff (!!ApAux3––>>HijoIzq)

/* Si no tiene hijo derecho ni izquierdo, entonces

➥se redefine como vacío. */

Apunt= NNUULLLL;

eellssee

/* Si sólo tiene hijo izquierdo, el nodo

➥eliminado se reemplaza con éste.*/

Apunt= ApAux3––>>HijoIzq;

eellssee

iiff (!!ApAux3––>>HijoIzq)

/* Si sólo tiene hijo derecho, el nodo

eliminado se reemplaza con éste. */

Apunt= ApAux3––>>HijoDer;

eellssee

{{

/* Si tiene ambos hijos, entonces se reempla-

➥za (en esta solución) por el nodo que está

➥más a la derecha del subárbol izquierdo. */

El método dado, como el correspondiente a la inserción, se definió de tipo void.
Sin embargo, ambos pueden modificarse y declararse enteros de tal manera que
regresen un valor que indique si la operación se llevó a cabo o no con éxito.

El programa 7.2 presenta la plantilla de la clase árbol binario de búsqueda con
los métodos analizados. También incluye la plantilla correspondiente a la clase
que define al nodo del árbol. Por razones de espacio, de algunos métodos ya
explicados sólo se escribe el prototipo y el encabezado.

Programa 7.2

7.2 Árboles binarios 339

7

ApAux1= ApAux3––>>HijoIzq;

ApAux2= ApAux3;

wwhhiillee (ApAux1––>>HijoDer)

{{

ApAux2= ApAux1;

ApAux1= ApAux1––>>HijoDer;

}}

ApAux3––>>Info= ApAux1––>>Info;

iiff (ApAux3 ==== ApAux2)

ApAux3––>>HijoIzq= NNUULLLL;

eellssee

iiff (!!ApAux1––>>HijoIzq)

ApAux2––>>HijoDer= NNUULLLL;

eellssee

ApAux2––>>HijoDer= ApAux1––>>HijoIzq;

ApAux3= ApAux1;

}}

ddeelleettee(ApAux3);

}}

Raiz= Apunt;

}}

/* Prototipo de la plantilla de la clase ArbolBinBus. Así, en la clase

➥NodoArbol se podrá hacer referencia a ella. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBinBus;

/* Declaración de la clase NodoArbol. Cada nodo almacena la información

➥(razón de ser de la estructura tipo árbol) y las direcciones de sus hijos

➥izquierdo y derecho. Se incluye una relación de amistad con la clase

➥ArbolBinBus para que éste pueda tener acceso a sus miembros privados. */

340 Capítulo 7. Árboles

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoArbol

{{

pprriivvaattee::

TT Info;

NodoArbol<<TT>> *HijoIzq;

NodoArbol<<TT>> *HijoDer;

ppuubblliicc::

NodoArbol();

TT RegresaInfo() ;

vvooiidd ActualizaInfo(TT);

ffrriieenndd ccllaassss ArbolBinBus<<TT>>;

}};

/* Declaración del método constructor por omisión. Inicializa

las ligas a los subárboles con el valor NNUULLLL, indicando que no tiene

➥hijos. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>>::::NodoArbol()

{{

HijoIzq= NNUULLLL;

HijoDer= NNUULLLL;

}}

/* Método que regresa la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info ;

}}

/* Método para actualizar la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd NodoArbol<<TT>>::::ActualizaInfo(TT Dato)

{{

Info= Dato ;

}}

/* Declaración de la clase ArbolBinBus. Su atributo es un puntero al

➥nodo raíz. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBinBus

{{

pprriivvaattee::

NodoArbol<<TT>> *Raiz;

7.2 Árboles binarios 341

7

ppuubblliicc::

ArbolBinBus ();

NodoArbol<<TT>> *RegresaRaiz();

vvooiidd Preorden (NodoArbol<<TT>> *);

vvooiidd Inorden (NodoArbol<<TT>> *);

vvooiidd Postorden (NodoArbol<<TT>> *);

NodoArbol<<TT>> * Busqueda (NodoArbol<<TT>> *, TT);

vvooiidd InsertaNodoSinRep (NodoArbol<<TT>> *, TT);

vvooiidd EliminaNodo (NodoArbol<<TT>> *, TT);

}};

/* Declaración del método constructor. Inicializa el puntero a la raíz

➥con el valor NNUULLLL, indicando árbol vacío (no tiene nodos). */

tteemmppllaattee <<ccllaassss TT>>

ArbolBinBus<<TT>>::::ArbolBinBus()

{{

Raiz= NNUULLLL;

}}

/* Método que regresa el valor del apuntador a la raíz del árbol. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>> *ArbolBinBus<<TT>>::::RegresaRaiz()

{{

rreettuurrnn Raiz;

}}

/* Método que realiza el recorrido preorden de un árbol binario de bús-

➥queda. Recibe como parámetro el nodo a visitar (la primera vez es la

➥raíz). */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::Preorden (NodoArbol<<TT>> *Apunt)

{{

/* Ya analizado, razón por la que se omite. */

}}

/* Método que realiza el recorrido inorden de un árbol binario de bús-

➥queda. Recibe como parámetro el nodo a visitar (la primera vez es la

➥raíz). */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::Inorden (NodoArbol<<TT>> *Apunt)

{{

/* Ya analizado, razón por la que se omite. */

}}

/* Método que realiza el recorrido postorden de un árbol binario de bús-

➥queda. Recibe como parámetro el nodo a visitar (la primera vez es la

➥raíz). */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::Postorden (NodoArbol<<TT>> *Apunt)

El programa 7.3 presenta un ejemplo de aplicación de la estructura árbol binario
de búsqueda. Utiliza la clase Producto definida en el programa 6.2 del capítulo
anterior y la clase ArbolBinBus del programa 7.2. Ambas se incluyen por medio
de bibliotecas. El programa permite crear un árbol cuyos nodos guardarán la in-
formación de los productos; esta información se almacena ordenadamente según
su clave. Además, ofrece la opción de dar de baja o buscar un producto y generar
un reporte de todos los productos ordenados por claves.

342 Capítulo 7. Árboles

{{

/* Ya analizado, razón por la que se omite. */

}}

/* Método que busca un dato en un árbol binario de búsqueda. Recibe como

➥parámetros la dirección del nodo a visitar (la primera vez es la raíz)

➥y el dato a buscar. Regresa como resultado la dirección del nodo

➥encontrado o el valor NNUULLLL, si la búsqueda termina con fracaso. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbol<<TT>> * ArbolBinBus<<TT>>::::Busqueda (NodoArbol<<TT>> *Apunt, TT Dato)

{{

iiff (Apunt)

iiff (Dato << Apunt––>>Info)

rreettuurrnn Busqueda(Apunt––>>HijoIzq, Dato);

eellssee

iiff (Dato >> Apunt––>>Info)

rreettuurrnn Busqueda(Apunt––>>HijoDer, Dato);

eellssee

rreettuurrnn Apunt;

eellssee

rreettuurrnn NNUULLLL;

}}

/* Método que inserta un nodo en un árbol binario de búsqueda. Recibe como

➥parámetros la dirección del nodo a visitar (la primera vez es la raíz) y

➥la información que se quiere almacenar en el nuevo nodo. En esta imple-

➥mentación no se permite que haya información duplicada en el árbol. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::InsertaNodoSinRep(NodoArbol<<TT>> *Apunt, TT Dato)

{{

/* Ya analizado, razón por la que se omite. */

}}

/* Método que elimina un nodo del árbol binario de búsqueda. Recibe

➥como parámetro la dirección del nodo a visitar (la primera vez es la

➥raíz) y el dato a eliminar. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBinBus<<TT>>::::EliminaNodo(NodoArbol<<TT>> *Apunt, TT Dato)

{{

/* Ya analizado, razón por la que se omite. */

}}

Programa 7.3

7.2 Árboles binarios 343

7

/* Este programa es para almacenar un conjunto de productos (ordenados

➥por clave), utilizando un árbol binario de búsqueda. Además, se pueden

➥eliminar y buscar productos ya registrados y generar un reporte con la

➥información de todos los productos. La biblioteca “Productos.h” tiene

➥la clase Producto utilizada en el programa 6.2. Por su parte, la

➥biblioteca “ArbolBinBusqueda.h” contiene la plantilla de la clase

➥ArbolBinBus del programa 7.2. */

##iinncclluuddee ”Productos.h”

##iinncclluuddee ”ArbolBinBusqueda.h”

/* Función que despliega al usuario las opciones de trabajo. Regresa la

➥opción seleccionada. */

iinntt Menu()

{{

iinntt Opcion;

ddoo {{

ccoouutt<<<<”\n\n\n\tOpciones de trabajo:\n”;

ccoouutt<<<<”\t1.Ingresar nuevo producto.\n”;

ccoouutt<<<<”\t2.Dar de baja un producto.\n”;

ccoouutt<<<<”\t3.Reporte de todos los productos ordenados por

➥clave.\n”;

ccoouutt<<<<”\t4.Buscar un producto por clave.\n”;

ccoouutt<<<<”\t5.Terminar el proceso.\n\n”;

ccoouutt<<<<”\tIngrese opción seleccionada: ”;

cciinn>>>>Opcion;

}} wwhhiillee (Opcion <<1 | | Opcion >> 5);

rreettuurrnn Opcion;

}}

/* Función principal desde la cual se controla la ejecución de las

➥operaciones seleccionadas por el usuario. */

vvooiidd mmaaiinn(())

{{

ArbolBinBus<<Producto>> Inventario;

NodoArbol<<Producto>> *Ap1, *Ap2;

Producto Prod;

iinntt Opc, Cla;

ddoo {{

Opc= Menu();

sswwiittcchh (Opc)

{{

/* Se registra un nuevo producto. No se aceptan productos con

➥claves repetidas. */

344 Capítulo 7. Árboles

ccaassee 1:{{

cciinn>>>>Prod;

Ap1= Inventario.RegresaRaiz();

Inventario.InsertaNodoSinRep(Ap1, Prod);

bbrreeaakk;

}}

/* Se elimina un producto ya registrado. */

ccaassee 2:{{

ccoouutt<<<<”\n\nIngrese la clave del producto a eliminar:”;

cciinn>>>>Cla;

Producto Prod(Cla, ””, 0);

Ap1= Inventario.RegresaRaiz();

Inventario.EliminaNodo(Ap1, Prod);

bbrreeaakk;

}}

/* Con el método Inorden se genera un reporte de todos los

➥productos ordenados por clave. */

ccaassee 3:{{

Ap1= Inventario.RegresaRaiz();

ccoouutt<<<<”\n\n\n—————————————————\n\n”;

ccoouutt<<<<”PRODUCTOS EN INVENTARIO\n\n”;

ccoouutt<<<<”————————————————————\n\n”;

Inventario.Inorden(Ap1);

bbrreeaakk;

}}

/* Se busca un elemento por su clave. Si ya está registrado

➥entonces se despliegan todos sus datos. En caso contrario,

➥sólo un mensaje informativo. */

ccaassee 4: {{

ccoouutt<<<<”\n\nIngrese la clave del producto a buscar:”;

cciinn>>>>Cla;

Producto Prod(Cla, ””, 0);

Ap1= Inventario.RegresaRaiz();

Ap2= Inventario.Busqueda(Ap1, Prod);

iiff (Ap2)

{{

ccoouutt<<<<”\n\n\nExiste un producto registrado con esa

➥clave.\n”;

ccoouutt<<<<Ap2––>>RegresaInfo();

}}

eellssee

ccoouutt<<<<”\n\nNo se ha registrado ningún producto con

➥esa clave. \n”;

bbrreeaakk;

}}

ccaassee 5: ccoouutt<<<<”\n\n\nFIN DEL PROCESO.\n\n\n”;

bbrreeaakk;

}}

}} wwhhiillee (Opc >>==1 && && Opc << 5);

}}

7.3 Árboles balanceados
Un árbol balanceado es un árbol binario de búsqueda en el cual la diferencia en-
tre la altura de su subárbol derecho y la altura de su subárbol izquierdo es menor
o igual a 1. De esta manera se controla el crecimiento del árbol y se garantiza
mantener la eficiencia en la operación de búsqueda. La diferencia entre las altu-
ras de los subárboles se conoce como factor de equilibrio (FE), el cual se expresa
como se muestra a continuación:

7.3 Árboles balanceados 345

7

FE = altura hijo derecho – altura hijo izquierdo

La figura 7.12 muestra un árbol binario de búsqueda en el que cada nodo tiene un
factor de equilibrio asociado. La raíz tiene un FE igual a 1 ya que el subárbol de-
recho tiene una altura de 3 y el izquierdo de 2. El nodo que almacena el valor 99
tiene un FE igual a –1 porque su subárbol derecho tiene altura 0 y el izquierdo 1.
En cambio, el nodo que guarda el 508 tiene un FE igual a 0 porque sus dos su-
bárboles tienen la misma altura. Al observar los FE de todos los nodos se puede
afirmar que dicho árbol está balanceado, porque éstos son, en valor absoluto, me-
nores o iguales a uno.

FIGURA 7.12 Árbol binario de búsqueda con factores de equilibrio

156

99 360

25867

301

508

FE� 1

FE� 1

FE� �1 FE� �1

FE� 0 FE� 0

FE� 0

Considere que los elementos: 24 – 31 – 87 – 99 – 105 y 126 se almacenan, en ese
orden, en un árbol binario de búsqueda. Luego de insertar los 6 valores, se obtie-
ne un árbol como el de la figura 7.13. Si se tuviera que buscar un dato en este
árbol se tendrían que hacer tantas comparaciones como nodos haya antes de llegar al
deseado. En estructuras semejantes se pierden todas las ventajas que ofrecen los
árboles. Para evitar que esto suceda surgen los árboles balanceados en los que se
realizan balanceos o ajustes de los nodos luego de efectuar inserciones o elimina-
ciones que hayan provocado la pérdida del equilibrio.

346 Capítulo 7. Árboles

24

31

87

99

105

126

NULL

Raíz

NULL

NULL

NULL

NULL

FIGURA 7.13 Inserción provocando desequilibrio en un árbol binario de búsqueda

Reacomodo del árbol

Para lograr que un árbol siga estando balanceado, luego de cada inserción o eli-
minación, se debe determinar si su factor de equilibrio es mayor a 1. En caso
afirmativo, se deben reacomodar los nodos de tal manera que se vuelva a tener un
valor menor o igual a 1. Este movimiento se denomina rotación. La rotación
puede ser simple o compuesta dependiendo del número de nodos que participen.

La rotación simple se presenta cuando están involucrados dos hijos derechos
(HD-HD) o dos hijos izquierdos (HI-HI), y afecta sólo las ligas de dos nodos. La
figura 7.14 presenta gráficamente las dos variantes de este tipo de rotación.

7.3 Árboles balanceados 347

7

24 99FE� 2 FE� �2

85FE� �1

67FE� 0

31 FE� 1

87 FE� 0

HD-HD HI-HI

24 99FE� 2 FE� �2

85FE� �1

67FE� 0

31 FE � 1

87

31

24 87

FE� 0

FE� 0

FE� 0 FE� 0

85

67 99

FE� 0

FE� 0 FE� 0

FIGURA 7.14 Rotación simple

Analizando el caso de la rotación HD-HD se observa que el nodo con informa-
ción 24 tiene un FE igual a 2, lo cual indica que se ha perdido el equilibrio en su
rama derecha. A su vez, en el nodo que guarda el 31 se tiene un FE igual a 1, con
lo cual se puede determinar que la rotación debe involucrar también a la rama de-
recha de éste. Luego de efectuar la rotación, este nodo tiene como hijo izquierdo
a su padre recuperando así el equilibrio.

En el caso de la rotación HI-HI, se tiene el nodo que almacena el valor 99 con
un FE igual a –2, lo cual indica que se ha perdido el equilibrio en su rama
izquierda. Además, el nodo con información 85 tiene un FE igual a –1, con lo
cual se puede determinar que la rotación también debe involucrar a la rama
izquierda de éste. Luego de efectuar la rotación, este último nodo tiene como
hijo derecho a su padre.

Más adelante se explica cómo deben actualizarse los punteros a los nodos afecta-
dos durante la rotación simple.

La rotación compuesta se presenta cuando están involucrados un hijo derecho y
un hijo izquierdo (HD-HI) o un hijo izquierdo y uno derecho (HI-HD), y afecta
las ligas de tres nodos. La figura 7.15 presenta gráficamente las dos variantes de
este tipo de rotación.

348 Capítulo 7. Árboles

FE� 2

FE� 0

FE� �1

FE� �2

FE� �1

FE� 0

24 99

85

9027

31

HI-HDHD-HI

FE� 2

FE� 0

FE� �1

FE� �2

FE� 1

FE� 0

FE� 0

FE� 0

FE� 0

24 99

85

90

27

24 31

27

31

FE� 0

FE� 0

FE� 0

90

85 99

FIGURA 7.15 Rotación compuesta

Analizando el caso de la rotación HD-HI se observa que el nodo con información
24 tiene un FE igual a 2, lo cual indica que se ha perdido el equilibrio en su rama
derecha. A su vez, en el nodo que guarda el 31 se tiene un FE igual a –1, lo que
implica que su rama izquierda tiene mayor altura que su rama derecha. Por tanto,
la rotación que se debe aplicar es la de hijo derecho-hijo izquierdo. Luego de
efectuar la rotación, el nodo 27 queda como padre del 24 (antes su abuelo) y del
31 (antes su padre).

En el caso de la rotación HI-HD se observa que el nodo con información 99 tiene
un FE igual a –2, lo cual indica que se ha perdido el equilibrio en su rama iz-
quierda. Por otra parte, su hijo izquierdo (el nodo que guarda el 85) tiene un FE
igual a 1, lo que implica que su rama derecha tiene mayor altura que su rama iz-
quierda. Por lo tanto, la rotación que se debe aplicar es la de hijo izquierdo-hijo
derecho. Luego de efectuar la rotación, el nodo que almacena el 90 queda como
padre del 99 (antes su abuelo) y del 85 (antes su padre).

Más adelante se explica cómo deben actualizarse los punteros a los nodos afecta-
dos durante la rotación compuesta.

En los árboles balanceados, cada nodo debe almacenar (además de los elementos ya
vistos) su factor de equilibrio. Luego de insertar o eliminar un nodo se calculan los
factores de equilibrio de todos los nodos involucrados en la operación y, dependien-
do del valor resultante, se procede a realizar la rotación que corresponda y a hacer la
reasignación. La plantilla de la clase nodo se define como se muestra a continuación.

7.3 Árboles balanceados 349

7

/* Plantilla de la clase nodo de un árbol balanceado. Se incluye un

➥nuevo atributo, llamado FE, para almacenar el factor de equilibrio del

➥nodo. Se establece una relación de amistad con la clase ArbolBalanceado

➥para que ésta pueda tener acceso a sus miembros privados. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoArbolBal

{{

pprriivvaattee::

NodoArbolBal<<TT>> *HijoIzq;

NodoArbolBal<<TT>> *HijoDer;

TT Info;

iinntt FE;

ppuubblliicc::

NodoArbolBal();

TT RegresaInfo();

vvooiidd ActualizaInfo(TT) ;

ffrriieenndd ccllaassss ArbolBalanceado<<TT>>;

}};

Inserción en árboles balanceados

La inserción de un nuevo nodo se lleva a cabo atendiendo las características de
los árboles binarios de búsqueda, pero teniendo en cuenta además la altura de los
subárboles, de tal manera que no se viole lo mencionado sobre el factor de equili-
brio. Los casos que pueden presentarse son:

1. La altura del subárbol derecho es igual a la altura del subárbol izquierdo, por
lo tanto, sin importar dónde se realice la inserción, el equilibrio no se pierde.

2. La altura del subárbol derecho es mayor que la altura del subárbol izquier-
do, por lo tanto, si la inserción no afecta la altura del subárbol derecho no
se requiere rotación, en caso contrario sí.

3. La altura del subárbol izquierdo es mayor que la altura del subárbol dere-
cho, por lo tanto, si la inserción no afecta la altura del subárbol izquierdo no
se requiere rotación, en caso contrario sí.

Cualquiera que sea la situación, se procede a insertar el nuevo nodo y luego se
actualizan los factores de equilibrio procediendo a la rotación de los nodos si co-
rrespondiera. El método para realizar esta operación se presenta a continuación.
Las rotaciones simples y compuestas se escribieron como métodos independientes.

350 Capítulo 7. Árboles

/* Método que realiza la rotación simple HI-HI en un árbol balanceado.

➥Además, reasigna el FE del nodo involucrado en la rotación. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>> * ArbolBalanceado<<TT>>::::RotacionHI_HI(NodoArbolBal<<TT>>

➥*Apunt, NodoArbolBal<<TT>> *ApAux1)

{{

Apunt––>>HijoIzq= ApAux1––>>HijoDer;

ApAux1––>>HijoDer= Apunt;

Apunt––>>FE= 0;

rreettuurrnn ApAux1;

}}

/* Método que realiza la rotación simple HD-HD en un árbol balanceado.

➥Además, reasigna el FE del nodo involucrado en la rotación. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>> * ArbolBalanceado<<TT>>::::RotacionHD_HD(NodoArbolBal<<TT>>

➥*Apunt, NodoArbolBal<<TT>> *ApAux1)

{{

Apunt––>>HijoDer= ApAux1––>>HijoIzq;

ApAux1––>>HijoIzq= Apunt;

Apunt––>>FE= 0;

rreettuurrnn ApAux1;

}}

7.3 Árboles balanceados 351

7

/* Método que realiza la rotación compuesta HI-HD en un árbol balanceado.

➥Además, reasigna los FE de los nodos involucrados en la rotación. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>> * ArbolBalanceado<<TT>>::::RotacionHI_HD(NodoArbolBal<<TT>>

➥*Apunt, NodoArbolBal<<TT>> *ApAux1)

{{

NodoArbolBal<<TT>> *ApAux2;

ApAux2= ApAux1––>>HijoDer;

Apunt––>>HijoIzq= ApAux2––>>HijoDer;

ApAux2––>>HijoDer= Apunt;

ApAux1––>>HijoDer= ApAux2––>>HijoIzq;

ApAux2––>>HijoIzq= ApAux1;

iiff (ApAux2––>>FE ==== –1)

Apunt––>>FE= 1;

eellssee

Apunt––>>FE= 0;

iiff (ApAux2––>>FE ==== 1)

ApAux1––>>FE= –1;

eellssee

ApAux1––>>FE= 0;

rreettuurrnn ApAux2;

}}

/* Método que realiza la rotación compuesta HD-HI en un árbol balanceado.

➥Además, reasigna los FE de los nodos involucrados en la rotación. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>> * ArbolBalanceado<<TT>>::::RotacionHD_HI(NodoArbolBal<<TT>>

➥*Apunt, NodoArbolBal<<TT>> *ApAux1)

{{

NodoArbolBal<<TT>> *ApAux2;

ApAux2= ApAux1––>>HijoIzq;

Apunt––>>HijoDer= ApAux2––>>HijoIzq;

ApAux2––>>HijoIzq= Apunt;

ApAux1––>>HijoIzq= ApAux2––>>HijoDer;

ApAux2––>>HijoDer= ApAux1;

iiff (ApAux2––>>FE ==== 1)

Apunt––>>FE= –1;

eellssee

Apunt––>>FE= 0;

iiff (ApAux2––>>FE ==== –1)

ApAux1––>>FE= 1;

eellssee

ApAux1––>>FE= 0;

rreettuurrnn ApAux2;

}}

/* Método que inserta un nuevo elemento en un árbol balanceado. Recibe

➥como parámetros el dato a insertar, un puntero al nodo a visitar (la

➥primera vez es la raíz) y un entero (Band) que la primera vez trae el

➥valor 0.*/

352 Capítulo 7. Árboles

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBalanceado<<TT>>::::InsertaBalanceado(T Dato,NodoArbolBal<<TT>>

➥*Apunt,int *Band)

{{

NodoArbolBal<<TT>> *ApAux1, *ApAux2;

iiff (Apunt !!== NNUULLLL)

{{

iiff (Dato << Apunt––>>Info)

{{

/* Se invoca el método con el subárbol izquierdo. */

InsertaBalanceado(Dato, Apunt––>>HijoIzq, Band);

Apunt––>>HijoIzq= Raiz;

iiff (0 << *Band) /* Verifica si creció el subárbol

➥izquierdo. */

sswwiittcchh (Apunt––>>FE)

{{

ccaassee 1: {{

Apunt––>>FE = 0;

*Band= 0;

bbrreeaakk;

}}

ccaassee 0: {{

Apunt––>>FE = –1;

bbrreeaakk;

}}

ccaassee –1: {{

ApAux1 = Apunt––>>HijoIzq;

iiff (ApAux1––>>FE <<== 0)

Apunt= RotacionHI_HI(Apunt, ApAux1);

eellssee

Apunt= RotacionHI_HD(Apunt, ApAux1);

Apunt––>>FE = 0;

*Band = 0;

}}

}}

}}

eellssee

iiff (Dato >> Apunt––>>Info)

{{

/* Invoca el método con el subárbol derecho. */

InsertaBalanceado(Dato, Apunt––>>HijoDer,Band);

Apunt––>>HijoDer= Raiz;

iiff (0 << *Band) /* Verifica si creció el

➥subárbol derecho. */

sswwiittcchh (Apunt––>>FE)

{{

ccaassee –1: {{

Apunt––>>FE = 0;

*Band= 0;

bbrreeaakk;

}}

Eliminación en árboles balanceados

La eliminación de un nodo se lleva a cabo atendiendo las características de los
árboles binarios de búsqueda, pero teniendo en cuenta además la altura de los su-
bárboles, de tal manera que no se viole lo mencionado sobre el factor de equili-
brio. Los casos que pueden presentarse son:

1. La altura del subárbol derecho es igual a la altura del subárbol izquierdo,
por lo tanto, sin importar dónde se realice la eliminación, el equilibrio no
se pierde.

2. La altura del subárbol derecho es mayor que la altura del subárbol izquier-
do, por lo tanto, si la eliminación no afecta la altura del subárbol izquierdo
no se requiere rotación, en caso contrario sí.

7.3 Árboles balanceados 353

7

ccaassee 0: {{

Apunt––>>FE = 1;

bbrreeaakk;

}}

ccaassee 1: {{

ApAux1= Apunt––>>HijoDer;

if (ApAux1––>>FE >>== 0)

Apunt= RotacionHD_HD(Apunt,

➥ApAux1);

else

Apunt= RotacionHD_HI(Apunt,

➥ApAux1);

Apunt––>>FE = 0;

*Band= 0;

}}

}}

}}

Raiz= Apunt;

}}

eellssee

{{

/* Inserta un nuevo nodo y actualiza el valor de Band indicando

➥que el árbol creció. */

ApAux2= nneeww NodoArbolBal<<TT>>();

ApAux2––>>Info= Dato;

ApAux2––>>FE= 0;

*Band = 1;

Raiz= ApAux2;

}}

}}

3. La altura del subárbol izquierdo es mayor que la altura del subárbol dere-
cho, por lo tanto, si la eliminación no afecta la altura del subárbol derecho
no se requiere rotación, en caso contrario sí.

Cualquiera que sea la situación, se elimina el nodo y luego se actualizan los fac-
tores de equilibrio de todos los nodos involucrados, procediendo a su rotación, si
correspondiera. Este proceso termina cuando se llega a la raíz.

A continuación se presenta el método para realizar esta operación. Se reutilizan
los métodos vistos para las rotaciones compuestas (los cuales no se vuelven a
presentar). En el caso de los correspondientes a las rotaciones simples, dado que
no se ajustan totalmente a la eliminación, se dan con los cambios requeridos. Se
definieron dos métodos auxiliares que ayudan a la reestructuración del árbol si
éste pierde el equilibrio.

354 Capítulo 7. Árboles

/* Método auxiliar del método EliminaBalanceado que reestructura el

➥árbol cuando la altura de la rama izquierda ha disminuido. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>>* ArbolBalanceado<<TT>>::::RestructuraI(NodoArbolBal<<TT>> *Nodo,

iinntt *Aviso)

{{

NodoArbolBal<<TT>> *ApAux;

iiff (*Aviso > 0)

{{

sswwiittcchh (Nodo––>>FE)

{{

ccaassee –1: Nodo––>>FE= 0;

bbrreeaakk;

ccaassee 0: Nodo––>>FE= 1;

*Aviso= 0;

bbrreeaakk;

ccaassee 1: ApAux= Nodo––>>HijoDer;

iiff (ApAux––>>FE >>== 0) //Rotación HD-HD

{{

Nodo––>>HijoDer= ApAux––>>HijoIzq;

ApAux––>>HijoIzq= Nodo;

sswwiittcchh (ApAux––>>FE)

{{

ccaassee 0: Nodo––>>FE= 1;

ApAux––>>FE= –1;

*Aviso= 0;

bbrreeaakk;

ccaassee 1: Nodo––>>FE= 0;

ApAux––>>FE= 0;

bbrreeaakk;

7.3 Árboles balanceados 355

7

}}

Nodo= ApAux;

}}

eellssee //Rotación HD-HI

{{

Nodo= RotacionHD_HI(Nodo, ApAux);

Nodo––>>FE= 0;

}}

bbrreeaakk;

}}

}}

rreettuurrnn Nodo;

}}

/* Método auxiliar del método EliminaBalanceado que reestructura el

➥árbol cuando la altura de la rama derecha ha disminuido. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>>* ArbolBalanceado<<TT>>::::RestructuraD(NodoArbolBal<<TT>> *Nodo,

iinntt *Aviso)

{{

NodoArbolBal<<TT>> *ApAux;

iiff (*Aviso > 0)

{{

sswwiittcchh (Nodo––>>FE)

{{

ccaassee 1: Nodo––>>FE= 0;

bbrreeaakk;

ccaassee 0: Nodo––>>FE= –1;

*Aviso= 0;

bbrreeaakk;

ccaassee –1: ApAux= Nodo––>>HijoIzq;

iiff (ApAux––>>FE <<== 0) //Rotación HI-HI

{{

Nodo––>>HijoIzq= ApAux––>>HijoDer;

ApAux––>>HijoDer= Nodo;

sswwiittcchh (ApAux––>>FE)

{{

ccaassee 0: Nodo––>>FE= –1;

ApAux––>>FE= 1;

*Aviso= 0;

bbrreeaakk;

ccaassee –1: Nodo––>>FE= 0;

ApAux––>>FE= 0;

bbrreeaakk;

}}

Nodo= ApAux;

}}

356 Capítulo 7. Árboles

eellssee //Rotación HI-HD

{{

Nodo= RotacionHI_HD(Nodo, ApAux);

Nodo––>>FE= 0;

}}

bbrreeaakk;

}}

}}

rreettuurrnn Nodo;

}}

/* Método auxiliar del método EliminaBalanceado que sustituye el

➥elemento que se desea eliminar por el que se encuentra más a la derecha

➥del subárbol izquierdo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBalanceado<<TT>>::::Sustituye(NodoArbolBal<<TT>> *Nodo,

➥NodoArbolBal<<TT>> *ApAux, iinntt *Avisa)

{{

iiff (Nodo––>>HijoDer !!== NNUULLLL)

{{

Sustituye (Nodo––>>HijoDer, ApAux, Avisa);

iiff (ApAux––>>HijoIzq ==== NNUULLLL)

Nodo––>>HijoDer= NNUULLLL;

eellssee

Nodo––>>HijoDer= ApAux––>>HijoIzq;

Nodo= RestructuraD(Nodo, Avisa);

}}

eellssee

{{

ApAux––>>Info= Nodo––>>Info;

Nodo= Nodo––>>HijoIzq;

*Avisa= 1;

}}

ApAux––>>HijoIzq= Nodo;

}}

/* Método que elimina un elemento en un árbol balanceado. Luego de la

➥eliminación se actualizan los factores de equilibrio de cada nodo hasta

➥la raíz y se reestructura el árbol si fuera necesario. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBalanceado<<TT>>::::EliminaBalanceado(NodoArbolBal<<TT>> *Apunt,

➥NodoArbolBal<<TT>> *ApAnt, iinntt *Avisa, TT Dato)

{{

NodoArbolBal<<TT>> *ApAux;

iinntt Bandera;

iiff (Apunt !!== NNUULLLL)

iiff (Dato << Apunt––>>Info)

7.3 Árboles balanceados 357

7

{{

iiff (*Avisa >> 0)

Bandera= 1;

eellssee

iiff (*Avisa !!== 0)

Bandera= –1;

*Avisa= –1;

EliminaBalanceado(Apunt––>>HijoIzq, Apunt, Avisa, Dato);

Apunt= RestructuraI(Apunt, Avisa);

iiff (ApAnt !!== NNUULLLL)

sswwiittcchh (Bandera)

{{

ccaassee –1: ApAnt––>>HijoIzq= Apunt;

bbrreeaakk;

ccaassee 1: ApAnt––>>HijoDer= Apunt;

bbrreeaakk;

ddeeffaauulltt: bbrreeaakk;

}}

eellssee

Raiz= Apunt;

}}

eellssee

{{

iiff (Dato >> Apunt––>>Info)

{{

iiff (*Avisa << 0)

Bandera= –1;

eellssee

iiff (*Avisa !!== 0)

Bandera=1;

*Avisa= 1;

EliminaBalanceado(Apunt––>>HijoDer, Apunt, Avisa, Dato);

Apunt= RestructuraD(Apunt,Avisa);

iiff (ApAnt !!== NNUULLLL)

sswwiittcchh (Bandera)

{{

ccaassee –1: ApAnt––>>HijoIzq= Apunt;

bbrreeaakk;

ccaassee 1: ApAnt––>>HijoDer= Apunt;

bbrreeaakk;

ddeeffaauulltt: bbrreeaakk;

}}

eellssee

Raiz= Apunt;

}}

eellssee

{{

ApAux= Apunt;

iiff (ApAux––>>HijoDer ==== NNUULLLL)

358 Capítulo 7. Árboles

{{

Apunt= ApAux––>>HijoIzq;

iiff (*Avisa !!== 0)

iiff (*Avisa << 0)

ApAnt––>>HijoIzq= Apunt;

eellssee

ApAnt––>>HijoDer= Apunt;

eellssee

iiff (Apunt ==== NNUULLLL)

Raiz= NNUULLLL;

eellssee

Raiz= Apunt;

*Avisa= 1;

}}

eellssee

iiff (ApAux––>>HijoIzq ==== NNUULLLL)

{{

Apunt= ApAux––>>HijoDer;

iiff (*Avisa !!== 0)

iiff (*Avisa << 0)

ApAnt––>>HijoIzq= Apunt;

eellssee

ApAnt––>>HijoDer= Apunt;

eellssee

iiff (Apunt ==== NNUULLLL)

Raiz= NNUULLLL;

eellssee

Raiz= Apunt;

*Avisa= 1;

}}

eellssee

{{

Sustituye (ApAux––>>HijoIzq, ApAux, Avisa);

Apunt= RestructuraI(Apunt, Avisa);

iiff (ApAnt !!== NNUULLLL)

iiff (*Avisa <<== 0)

ApAnt––>>HijoIzq= Apunt;

eellssee

ApAnt––>>HijoDer= Apunt;

eellssee

Raiz= Apunt;

}}

}}

eellssee

ccoouutt<<<<”\n\nEl dato a eliminar no se encuentra registrado.\n\n”;

}}

El programa 7.4 presenta la plantilla de la clase ArbolBalanceado con los encabe-
zados de los métodos analizados, los cuales no se repiten. Se incluye un método
para la impresión de todos los nodos junto con su factor de equilibrio.

Programa 7.4

7.3 Árboles balanceados 359

7

/* Prototipo de la plantilla de la clase ArbolBalanceado. De esta

➥manera, en la clase NodoArbolBal se podrá hacer referencia a ella. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBalanceado;

/* Declaración de la clase de un nodo de un árbol balanceado. Además de

➥almacenar la información, las direcciones de los hijos izquierdo y

➥derecho, guarda el factor de equilibrio. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoArbolBal

{{

pprriivvaattee::

NodoArbolBal<<TT>> *HijoIzq;

NodoArbolBal<<TT>> *HijoDer;

TT Info;

iinntt FE;

ppuubblliicc::

NodoArbolBal();

TT RegresaInfo();

vvooiidd ActualizaInfo(TT);

ffrriieenndd ccllaassss ArbolBalanceado<<TT>>;

}};

/* Declaración del método constructor. Inicializa los apuntadores a

➥ambos hijos con el valor de NNUULLLL, indicando vacío. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>>::::NodoArbolBal()

{{

HijoIzq= NNUULLLL;

HijoDer= NNUULLLL;

}}

/* Método que regresa la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

TT NodoArbolBal<<TT>>::::RegresaInfo()

{{

rreettuurrnn Info;

}}

360 Capítulo 7. Árboles

/* Método que permite actualizar la información almacenada en el nodo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd NodoArbolBal<<TT>>::::ActualizaInfo(TT Dato)

{{

Info= Dato;

}}

/* Declaración de la clase ArbolBalanceado. Se incluyen sólo los proto-

➥tipos de los métodos presentados más arriba. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss ArbolBalanceado

{{

pprriivvaattee::

NodoArbolBal<<TT>> *Raiz;

ppuubblliicc::

ArbolBalanceado ();

NodoArbolBal<<TT>> * RegresaRaiz();

NodoArbolBal<<TT>> * Busca (NodoArbolBal<<TT>> *, TT) ;

vvooiidd InsertaBalanceado (TT, NodoArbolBal<<TT>> *, iinntt *);

NodoArbolBal<<TT>> * RotacionHI_HD (NodoArbolBal<<TT>> *,

➥NodoArbolBal<<TT>> *);

NodoArbolBal<<TT>> * RotacionHD_HI (NodoArbolBal<<TT>> *,

➥NodoArbolBal<<TT>> *);

NodoArbolBal<<TT>> * RotacionHI_HI (NodoArbolBal<<TT>> *,

➥NodoArbolBal<<TT>> *);

NodoArbolBal<<TT>> * RotacionHD_HD (NodoArbolBal<<TT>> *,

➥NodoArbolBal<<TT>> *);

NodoArbolBal<<TT>> * RestructuraI (NodoArbolBal<<TT>> *, iinntt *);

NodoArbolBal<<TT>> * RestructuraD (NodoArbolBal<<TT>> *, iinntt *);

vvooiidd EliminaBalanceado (NodoArbolBal<<TT>> *, NodoArbolBal<<TT>> *,

➥iinntt *, TT);

vvooiidd Sustituye (NodoArbolBal<<TT>> *,NodoArbolBal<<TT>> *, iinntt *);

vvooiidd Imprime (NodoArbolBal<<TT>> *);

}};

/* Declaración del método constructor. Inicializa el puntero a la raíz

➥con el valor NNUULLLL, indicando que el árbol está vacío. */

tteemmppllaattee <<ccllaassss TT>>

ArbolBalanceado<<TT>>::::ArbolBalanceado()

{{

Raiz= NNUULLLL;

}}

/* Método que regresa el apuntador a la raíz del árbol.*/

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>> * ArbolBalanceado<<TT>>::::RegresaRaiz()

{{

rreettuurrnn Raiz;

}}

7.3 Árboles balanceados 361

7

/* Método que busca un valor dado como parámetro en el árbol. Recibe

➥como parámetros el puntero del nodo a visitar (la primera vez es la

➥raíz) y el dato a buscar. Regresa el puntero al nodo donde lo encontró

➥o NNUULLLL si no está en el árbol. */

tteemmppllaattee <<ccllaassss TT>>

NodoArbolBal<<TT>> * ArbolBalanceado<<TT>>::::Busca (NodoArbolBal<<TT>> *Apunt, TT

Dato)

{{

iiff (Apunt !!== NNUULLLL)

iiff (Apunt––>>Info ==== Dato)

rreettuurrnn Apunt;

eellssee

iiff (Apunt––>>Info >> Dato)

rreettuurrnn Busca(Apunt––>>HijoIzq, Dato);

eellssee

rreettuurrnn Busca(Apunt––>>HijoDer, Dato);

eellssee

rreettuurrnn NNUULLLL;

}}

/* Método que imprime el contenido del árbol. Recibe como parámetro el

➥apuntador al nodo a visitar (la primera vez es la raíz del árbol).

➥Utiliza recorrido inorden para que el contenido se imprima en orden

➥creciente. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd ArbolBalanceado<<TT>>::::Imprime(NodoArbolBal<<TT>> *Apunt)

{{

iiff (Apunt !!== NNUULLLL)

{{

Imprime(Apunt––>>HijoIzq);

ccoouutt<<<<Apunt––>>Info <<<<”\n\n”;

Imprime(Apunt––>>HijoDer);

}}

}}

A continuación se presenta una aplicación de árboles balanceados. Se define
una clase Fabrica para almacenar los datos más importantes de una fábrica y las
operaciones que pueden realizarse sobre ellos. Esta clase se almacena en la
biblioteca “Fabricas.h”. El programa 7.5 muestra esta clase y el programa 7.6,
la aplicación de árboles en la cual se incluyen la biblioteca mencionada y
“ArbolBalanceado.h” que corresponde a la plantilla de árboles balanceados
del programa 7.4.

Programa 7.5

362 Capítulo 7. Árboles

/* Definición de la clase Fabrica. Se incluyen varios operadores

➥sobrecargados para que puedan ser utilizados por los métodos de la

➥clase ArbolBalanceado. Asimismo, se declaran como amigos los operadores

➥de entrada (>>>>) y de salida (<<<<) para que objetos de este tipo puedan

➥leerse e imprimirse directamente con cciinn y ccoouutt respectivamente. */

ccllaassss Fabrica

{{

pprriivvaattee::

iinntt Clave;

cchhaarr Nombre[MAX], Domicilio[MAX], Telefono[MAX];

ppuubblliicc::

Fabrica();

Fabrica(iinntt, cchhaarr [[]], cchhaarr[[]], cchhaarr[[]]);

vvooiidd CambiaDomic(cchhaarr[[]]);

vvooiidd CambiaTelef(cchhaarr[[]]);

iinntt ooppeerraattoorr >> (Fabrica);

iinntt ooppeerraattoorr << (Fabrica);

iinntt ooppeerraattoorr ==== (Fabrica);

ffrriieenndd iissttrreeaamm && ooppeerraattoorr>>>> (iissttrreeaamm && , Fabrica &&);

ffrriieenndd oossttrreeaamm && ooppeerraattoorr<<<< (oossttrreeaamm && , Fabrica &&);

}};

/* Declaración del método constructor por omisión. */

Fabrica::::Fabrica()

{{}}

/* Declaración del método constructor con parámetros. */

Fabrica::::Fabrica(iinntt Cla, cchhaarr Nom[], cchhaarr Domic[], cchhaarr Tel[])

{{

Clave= Cla;

ssttrrccppyy(Nombre, Nom);

ssttrrccppyy(Domicilio, Domic);

ssttrrccppyy(Telefono, Tel);

}}

/* Método que actualiza el domicilio de una fábrica. */

vvooiidd Fabrica::::CambiaDomic(cchhaarr NuevoDom[])

{{

ssttrrccppyy(Domicilio, NuevoDom);

}}

/* Método que actualiza el teléfono de una fábrica. */

vvooiidd Fabrica::::CambiaTelef(cchhaarr NuevoTel[])

{{

ssttrrccppyy(Telefono, NuevoTel);

}}

7.3 Árboles balanceados 363

7

/* Sobrecarga del operador >> lo cual permite comparar dos objetos tipo

➥Fabrica. La comparación se hace teniendo en cuenta solamente la clave. */

iinntt Fabrica::::ooppeerraattoorr >> (Fabrica ObjFab)

{{

iiff (Clave >> ObjFab.Clave)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Sobrecarga del operador << lo cual permite comparar dos objetos tipo

➥Fabrica. La comparación se hace teniendo en cuenta solamente la clave. */

iinntt Fabrica::::ooppeerraattoorr << (Fabrica ObjFab)

{{

iiff (Clave << ObjFab.Clave)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/* Sobrecarga del operador ==== lo cual permite comparar dos objetos tipo

➥Fabrica. La comparación se hace teniendo en cuenta solamente la clave. */

iinntt Fabrica::::ooppeerraattoorr ==== (Fabrica ObjFab)

{{

iiff (Clave ==== ObjFab.Clave)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}}

/** Sobrecarga del operador >>>> para permitir la lectura de objetos de

➥tipo Fabrica de manera directa con el cciinn. **/

iissttrreeaamm && ooppeerraattoorr>>>> (iissttrreeaamm && Lee, Fabrica && ObjFab)

{{

ccoouutt<<<<”\n\nIngrese nombre de la fábrica:”;

Lee>>>>ObjFab.Nombre;

ccoouutt<<<<”\n\nIngrese clave de la fábrica:”;

Lee>>>>ObjFab.Clave;

ccoouutt<<<<”\n\nIngrese domicilio de la fábrica:”;

Lee>>>>ObjFab.Domicilio;

ccoouutt<<<<”\n\nIngrese teléfono de la fábrica:”;

Lee>>>>ObjFab.Telefono;

rreettuurrnn Lee;

}}

/** Sobrecarga del operador <<<< para permitir la impresión de objetos de

➥tipo Fabrica de manera directa con el ccoouutt. **/

oossttrreeaamm && ooppeerraattoorr<<<<(oossttrreeaamm && Escribe, Fabrica && ObjFab)

Programa 7.6

364 Capítulo 7. Árboles

{{

ccoouutt<<<<”\n\nDatos de la fábrica\n”;

Escribe<<<<”Nombre: ”<<<<ObjFab.Nombre<<<<endl;

Escribe<<<<”Clave: ”<<<<ObjFab.Clave<<<<endl;

Escribe<<<<”Domicilio: ”<<<<ObjFab.Domicilio<<<<endl;

Escribe<<<<”Teléfono: ”<<<<ObjFab.Telefono<<<<endl;

rreettuurrnn Escribe;

}}

/* Programa que utiliza un árbol balanceado para almacenar ordenadamente

➥los datos de ciertas fábricas. El usuario puede dar de alta nuevas

➥fábricas, eliminar alguna ya registrada, obtener un reporte de todas

➥(ordenadas según su clave) y actualizar sus direcciones y teléfonos. Se

➥incluyen dos bibliotecas, una con la plantilla de la clase ArbolBalan-

➥ceado presentada en el programa 7.4 y la otra con la clase Fabrica del

➥programa 7.5. */

##iinncclluuddee ”ArbolBalanceado.h”

##iinncclluuddee ”Fabricas.h”

/* Función que despliega en pantalla las opciones de trabajo para el

➥usuario. */

iinntt Menu()

{{

iinntt Opc;

ddoo {{

ccoouutt<<<<”\n\n\t\tOpciones de trabajo.\n\n\n”;

ccoouutt<<<<”(1) Capturar los datos de una fábrica.\n”;

ccoouutt<<<<”(2) Dar de baja una fábrica.\n”;

ccoouutt<<<<”(3) Imprimir los datos de todas las fábricas, ordenadas

➥por clave.\n”;

ccoouutt<<<<”(4) Cambiar el domicilio de una fábrica.\n”;

ccoouutt<<<<”(5) Cambiar el teléfono de una fábrica.\n”;

ccoouutt<<<<”(6) Terminar la sesión de trabajo.\n\n”;

ccoouutt<<<<”Ingrese la opción seleccionada:”;

cciinn>>>>Opc;

}} wwhhiillee (Opc >> 6 | | Opc << 1);

rreettuurrnn Opc;

}}

7.3 Árboles balanceados 365

7

/* Función principal. De acuerdo a la opción de trabajo seleccionada por

➥el usuario invoca los métodos que correspondan. */

vvooiidd mmaaiinn(())

{{

ArbolBalanceado<<Fabrica>> Proveedores;

NodoArbolBal<<Fabrica>> *Apunt1, *Apunt2;

Fabrica Prov;

iinntt Operac, Band, Clave;

cchhaarr NuevoDom[MAX], NuevoTel[MAX];

ddoo {{

Operac= Menu();

sswwiittcchh (Operac)

{{

/* Se registra una nueva fábrica siempre que la clave dada por

➥el usuario no se encuentre en el árbol. */

ccaassee 1: {{

cciinn>>>>Prov;

Band= 0;

Apunt1= Proveedores.RegresaRaiz();

Proveedores.InsertaBalanceado(Prov, Apunt1, &&Band);

bbrreeaakk;

}}

/* En caso de dar de baja una fábrica registrada, se solicita sólo

➥la clave ya que es el dato que identifica a cada elemento. */

ccaassee 2: {{

ccoouutt<<<<”\n\nIngrese la clave de la fábrica a eliminar:”;

cciinn>>>>Clave;

Fabrica Prov(Clave, ””,””,””);

Band= 0;

Apunt1= Proveedores.RegresaRaiz();

Proveedores.EliminaBalanceado(Apunt1, NNUULLLL,

➥&&Band, Prov);

bbrreeaakk;

}}

/* Se imprimen los datos de todas las fábricas, ordenadas de

➥menor a mayor por clave. */

ccaassee 3: {{

Apunt1= Proveedores.RegresaRaiz();

Proveedores.Imprime(Apunt1);

bbrreeaakk;

}}

/* Se actualiza la dirección de una fábrica. Para llevar a cabo

➥esta operación, primero se debe encontrar la fábrica de interés,

➥luego recuperar todo el objeto, actualizar el domicilio y pos-

➥teriormente redefinir el contenido del nodo con el objeto ya

➥modificado. */

366 Capítulo 7. Árboles

ccaassee 4: {{

ccoouutt<<<<”\n\nIngrese la clave de la fábrica:”;

cciinn>>>>Clave;

ccoouutt<<<<”\n\nIngrese nuevo domicilio:”;

cciinn>>>>NuevoDom;

Fabrica Prov(Clave, ””,””,””);

Apunt1= Proveedores.RegresaRaiz();

Apunt2= Proveedores.Busca(Apunt1, Prov);

iiff (Apunt2)

{{

Prov= Apunt2––>>RegresaInfo();

Prov.CambiaDomic(NuevoDom);

Apunt2––>>ActualizaInfo(Prov);

}}

eellssee

ccoouutt<<<<”\n\nEsa fábrica no está registrada. \n”;

bbrreeaakk;

}}

/* Se actualiza el teléfono de una fábrica. Para llevar a cabo

➥esta operación, primero se debe encontrar la fábrica de interés,

➥luego recuperar todo el objeto, actualizar el teléfono y poste-

➥riormente redefinir el contenido del nodo con el objeto ya

➥modificado. */

ccaassee 5: {{

ccoouutt<<<<”\n\nIngrese la clave de la fábrica: ”;

cciinn>>>>Clave;

ccoouutt<<<<”\n\nIngrese nuevo teléfono: ”;

cciinn>>>>NuevoTel;

Fabrica Prov(Clave, ””, ””, ””);

Apunt1= Proveedores.RegresaRaiz();

Apunt2= Proveedores.Busca(Apunt1, Prov);

iiff (Apunt2)

{{

Prov= Apunt2––>>RegresaInfo();

Prov.CambiaTelef(NuevoTel);

Apunt2––>>ActualizaInfo(Prov);

}}

eellssee

ccoouutt<<<<”\n\nEsa fábrica no está registrada. \n”;

bbrreeaakk;

}}

}}

}} wwhhiillee (Operac << 6);

}}

7.4 Árboles-B
Las estructuras tipo árboles estudiadas hasta aquí son utilizadas para almacenar
información en la memoria principal de la computadora. Sin embargo, en prácti-
camente todas las aplicaciones se requiere que los datos a procesar se guarden en
dispositivos secundarios, de tal manera que permanezcan aún después de terminado
el procesamiento. Además, el volumen de información manejado exige el uso
de medios externos de almacenamiento. Por lo tanto, resulta necesario contar con
estructuras que permitan organizar la información guardada en archivos. Los
árboles-B son una variante de los árboles balanceados y cubren esa necesidad.
En estas estructuras, a cada nodo se le conoce con el nombre de página y las
páginas se guardan en algún dispositivo de almacenamiento secundario.

Las principales características de un árbol-B de grado n son:

• La página raíz almacena como mínimo 1 dato y como máximo 2n datos.

• La página raíz tiene como mínimo 2 descendientes.

• Las páginas intermedias y hojas almacenan entre n y 2n datos.

• Las páginas intermedias tienen entre (n+1) y (2n+1) páginas descendientes.

• Todas las páginas hojas tienen la misma altura.

• La información guardada en las páginas se encuentra ordenada.

La figura 7.16 presenta un ejemplo de un árbol-B, de grado 2. En la raíz se alma-
cenan dos datos, lo que origina que tenga tres descendientes. La página hoja que
está más a la izquierda guarda todos los datos que son menores al primer dato
(105) de la página raíz, la segunda hoja contiene los datos mayores a 105 y me-
nores a 320, mientras que la tercera hoja almacena los datos mayores al segundo
dato de la página raíz (320). Cada una de las páginas hojas tiene entre 2 y 4 ele-
mentos. Si no fueran hojas, tendrían: la primera 3, la segunda 5 y la tercera 4 pá-
ginas descendientes respectivamente.

7.4 Árboles-B 367

7

105 320

33 89 134 222 261 301 345 400 601

Raíz

FIGURA 7.16 Ejemplo de un árbol-B

Las operaciones que pueden realizarse sobre la información almacenada en
árboles-B son: búsqueda, inserción y eliminación. Estas operaciones están imple-
mentadas en herramientas diseñadas especialmente para el manejo de archivos,
por lo que generalmente no se requiere su programación. En esta sección se
analizan para que usted pueda entenderlas y cuando haga uso de algún manejador
de archivos sepa qué está pasando internamente con los datos.

Búsqueda en árboles-B

La operación de búsqueda es similar a la estudiada en los árboles binarios
de búsqueda, por ser los árboles-B una generalización de los primeros. En este
tipo de árboles se recuperan del medio secundario de almacenamiento páginas
completas de información y se procede a buscar en ellas el dato deseado. Si
se encuentra, termina la búsqueda; en caso contrario se procede con la página
que corresponda según el dato con el cual se compara, ya sea menor o mayor.
Si se requiere recuperar una nueva página pero no existe, entonces se tiene un
caso de fracaso. Los pasos para llevar a cabo esta operación son los siguientes:

1. Se recupera una página (la primera vez es la página raíz) y se la lleva a
memoria.

2. Se evalúa si la página está vacía.

2.1. Si la respuesta es afirmativa, entonces la búsqueda termina con fracaso.

2.2. Si la respuesta es negativa, entonces ir al paso 3.

3. Se compara el dato buscado con cada elemento almacenado en la página.

3.1. Si es igual, la búsqueda termina con éxito.

3.2. Si es menor se toma la dirección de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma página.

3.3.1. Si es el último, se toma la dirección de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Si no es el último, se regresa al paso 3.

Considere el árbol-B de la figura 7.17. Si se quisiera encontrar el valor 319 se
procedería, siguiendo el algoritmo dado, tal como se muestra en la tabla 7.4.

368 Capítulo 7. Árboles

7.4 Árboles-B 369

7

TABLA 7.4 Operación de búsqueda en un árbol-B
Operación Descripción

1 Se recupera la página con los datos: 105 – 320

2 Se evalúa si está vacía. En este caso la respuesta es negativa.

3 Se compara el dato buscado (319) con el primer elemento de la página

(105). Es mayor y hay más elementos en la misma página, entonces se

avanza al siguiente valor (320).

4 Se compara el dato buscado (319) con el valor 320. Es menor, entonces

se toma la dirección de la página que está a la izquierda del 320.

5 Se recupera la página con los datos: 134 – 222 – 261 – 301.

6 Se evalúa si está vacía. En este caso la respuesta es negativa.

7 Se compara el dato buscado (319) con el primer elemento de la página

(134). Es mayor y hay más elementos en la misma página, entonces se

avanza al siguiente valor (222).

8 Se compara el dato buscado (319) con el valor 222. Es mayor y hay

más elementos en la misma página, entonces se avanza al siguiente

valor (261).

9 Se compara el dato buscado (319) con el 261. Es mayor y hay más ele-

mentos en la misma página, entonces se avanza al siguiente valor (301).

10 Se compara el dato buscado (319) con el valor 301. Es mayor y ya no

hay más elementos en la misma página, entonces se toma la dirección

de la página que está a la derecha del 301.

11 Se recupera la página con los datos: 310 – 319.

12 Se evalúa si está vacía. En este caso la respuesta es negativa.

13 Se compara el dato buscado (319) con el primer elemento de la página

(310). Es mayor y hay más elementos en la misma página, entonces se

avanza al siguiente valor (319).

14 Se compara el dato buscado (319) con el valor 319. Es igual, por lo

tanto la búsqueda termina con éxito.

En la figura 7.17 las líneas punteadas indican las páginas que se van visitando
hasta llegar al dato buscado. Por su parte, las páginas sombreadas son las que se
recuperan para hacer la comparación del elemento buscado con los elementos al-
macenados en el árbol.

Inserción en árboles-B

La operación de inserción se caracteriza porque los nuevos elementos siempre se
guardan a nivel de las hojas, y puede originar la reestructuración del árbol incluso
hasta la raíz provocando esto último que la altura aumente en uno. Los pasos para
llevar a cabo esta operación son los siguientes:

1. Se recupera una página (la primera vez es la página raíz).

2. Se evalúa si es una página hoja.

2.1. Si la respuesta es afirmativa, se evalúa si la cantidad de elementos alma-
cenados en ella es menor a 2n, siendo n el grado del árbol.

2.1.1. Si la respuesta es afirmativa, entonces se procede a insertar el
nuevo valor en el lugar correspondiente.

370 Capítulo 7. Árboles

105 320

11 27 … 35 59 … 90 93 … 119 121 … 230 254 … 310 319 …

140 143 … 262 279 …

33 89 134 222 261 301 345 400 601

Raíz

FIGURA 7.17 Búsqueda en árboles-B

…

2.1.2. Si la respuesta es negativa, entonces se divide la página en dos
y los (2n + 1) datos se distribuyen entre las páginas resultantes
(n en cada página) y el valor del medio sube a la página padre.
Si la página padre no tuviera espacio para este valor, entonces
se procede de la misma manera, se divide en dos y el elemento
del medio sube a la siguiente página, pudiendo repetirse este
proceso hasta llegar a la raíz, en cuyo caso se aumenta la altura
del árbol.

2.2. Si no es una hoja, se compara el elemento a insertar con cada uno de los
valores almacenados para encontrar la página descendiente donde prose-
guir la búsqueda. Se sigue con el paso 1.

Considere el árbol-B, de grado 2, de la figura 7.18 en el cual se quiere insertar el
valor 60. La línea punteada señala la página que se recupera y donde se agrega el
60. En la tabla 7.5 se presenta la secuencia de pasos necesarios para realizar esta
operación.

7.4 Árboles-B 371

7

TABLA 7.5 Operación de inserción en un árbol-B
Operación Descripción

1 Se recupera la página con los valores: 105 – 320.

2 Se evalúa si es una página hoja. No lo es.

3 Se compara el dato a insertar (60) con el valor 105. Es menor,
entonces se toma la dirección de la página que está a la izquierda
del 105.

4 Se recupera la página con los valores: 33 – 89.

5 Se evalúa si es una página hoja. Sí lo es.

6 Se evalúa si el total de elementos almacenados (2) es menor a 2n.
Sí lo es.

7 Se inserta el valor 60 entre el 33 y 89 de tal manera que no altere el orden.

372 Capítulo 7. Árboles

105 320

33 89 134 222 261 301 345 400 60

Raíz

Luego de insertar el valor 60
en la página de la izquierda

60

105 320

33 60 8 134 222 261 301 345 400 60

Raíz

FIGURA 7.18 Inserción del valor 60

En el ejemplo anterior no hubo cambios en la estructura del árbol. Considere
ahora el árbol-B, de grado 2, de la figura 7.19 en el cual se quiere insertar el
valor 120. En la tabla 7.6 se presenta la secuencia de operaciones realizadas al
aplicar el algoritmo visto.

TABLA 7.6 Operación de inserción en un árbol-B
Operación Descripción

1 Se recupera la página con los valores: 105 – 320.

2 Se evalúa si es página hoja. No lo es.

3 Se compara el dato a insertar (120) con el valor 105. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (320).

continúa

7.4 Árboles-B 373

7

TABLA 7.6 Continuación
Operación Descripción

4 Se compara el dato a insertar (120) con el valor 320. Es menor, enton-
ces se toma la dirección de la página que está a la izquierda del 320.

5 Se recupera la página con los valores: 134 – 222 – 261 – 301.

6 Se evalúa si es página hoja. Sí lo es.

7 Se evalúa si el total de elementos almacenados (4) es menor a 2n.
No lo es.

8 Se divide la página en dos y el valor del medio (222) sube a la página
padre, en la cual hay espacio. Los demás valores se distribuyen entre
las dos nuevas páginas.

105 320

33 60 89 134 222 261 301 345 400 601

Raíz

222

Luego de la división de la
página en dos y de subir el
elemento del medio (222) a
la página padre

105 222 320

33 60 89 120 134 261 301 345 400 601

Raíz

FIGURA 7.19 Inserción del valor 120

120

Como se puede apreciar en la figura 7.19, luego de insertar el valor 120 se modi-
fica la estructura del árbol-B. La página en la que debía insertarse el nuevo dato
estaba completa, por lo que se dividió en dos y subió el dato central a la página
padre. Finalmente la página padre quedó con tres elementos y por lo tanto con
cuatro descendientes.

A continuación se presenta un ejemplo en el cual la estructura del árbol se modi-
fica en cuanto al número de páginas y a la altura. En el árbol-B, de grado 2, de la
figura 7.20 se quiere insertar el valor 850. La tabla 7.7 muestra las operaciones
que se realizaron al aplicar el algoritmo de inserción.

374 Capítulo 7. Árboles

TABLA 7.7 Operación de inserción en un árbol-B
Operación Descripción

1 Se recupera la página con los valores: 105 – 320 – 505 – 720

2 Se evalúa si es página hoja. No lo es.

3 Se compara el dato a insertar (850) con el valor 105. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (320).

4 Se compara el dato a insertar (850) con el valor 320. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (505).

5 Se compara el dato a insertar (850) con el valor 505. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (720).

6 Se compara el dato a insertar (850) con el valor 720. Es mayor y ya no
hay más elementos en la misma página, entonces se toma la dirección
de la página que está a la derecha del 720.

7 Se recupera la página con los valores: 765 – 800 – 801 – 976.

8 Se evalúa si es página hoja. Sí lo es.

9 Se evalúa si el total de elementos almacenados (4) es menor a 2n.
No lo es.

10 Se divide la página en dos y el valor del medio (801) sube a la página
padre. Los demás valores se distribuyen entre las dos nuevas páginas.

11 En la página padre no hay espacio, el número de elementos almacena-
dos es igual a 2n. Por lo tanto, se debe dividir en dos y el dato del me-
dio (505) debe guardarse en una página que será la nueva raíz del árbol.
La altura del árbol crece en una unidad.

Eliminación en árboles-B

La operación de eliminación consiste en quitar un elemento del árbol-B cuidan-
do que mantenga las propiedades vistas. Es decir, el número de datos en cada
página debe ser mayor o igual a n y menor o igual a 2n. Los pasos para llevar a
cabo esta operación son los siguientes:

1. Se recupera una página (la primera vez es la página raíz) y se la lleva a
memoria.

2. Se evalúa si la página está vacía.

7.4 Árboles-B 375

7

Luego de la división de la página en dos y de
subir el elemento del medio (801) a la página
padre y de dividir a ésta y de subir el 505 dando
lugar a una nueva página raíz.

505

105 320 720 801

33 60 89 545 620 765 800 850 976

Raíz

FIGURA 7.20 Inserción del valor 850

Raíz 505

850

801

105 320 505 720

33 60 89 134 222 261 301 345 350 765 800 801 976

545 620

…

2.1. Si la respuesta es afirmativa, entonces la operación de eliminación termi-
na con fracaso.

2.2. Si la respuesta es negativa, entonces ir al paso 3.

3. Se compara el dato a eliminar con cada elemento almacenado en la página.

3.1. Si es igual, entonces se elimina y se procede de la siguiente manera:

3.1.1. Si el dato estaba en una página hoja y el número de elementos de
ésta sigue siendo un valor comprendido entre n y 2n, entonces la
operación de eliminación termina.

3.1.2. Si el dato estaba en una página y el número de elementos de ésta
queda menor que n, entonces se debe bajar el dato más cercano de
la página padre y sustituirlo por el que se encuentre más a la iz-
quierda del subárbol derecho o por el que se encuentre más a la
derecha del subárbol izquierdo, siempre que esta página no pierda
la condición y se fusionan.

3.1.3. Si el dato estaba en la página raíz o en una página intermedia,
entonces se debe sustituir por el que se encuentre más a la
izquierda del subárbol derecho o por el que se encuentre más a
la derecha del subárbol izquierdo, siempre que esta página no
pierda la condición. Si es así, termina la eliminación con éxito.
En caso contrario, se debe bajar el dato más cercano de la página
padre y fusionar las páginas que son hijas de éste.

3.2. Si es menor se toma la dirección de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma página.

3.3.1. Si es el último, se toma la dirección de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Si no es el último, se regresa al paso 3.

El proceso de fusión de páginas puede llegar hasta la raíz, en cuyo caso la altura
del árbol disminuye en uno.

Analice el siguiente ejemplo. Se tiene un árbol-B, de grado 2 (ver figura 7.21) en
el cual se quiere eliminar el valor 222. Aplicando el algoritmo dado, se realizan
las operaciones que aparecen en la tabla 7.8.

376 Capítulo 7. Árboles

7.4 Árboles-B 377

7

TABLA 7.8 Operación de eliminación en un árbol-B
Operación Descripción

1 Se recupera la página con los valores: 105 – 320.

2 Se evalúa si la página está vacía. No lo está.

3 Se compara el dato a eliminar (222) con el valor 105. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (320).

4 Se compara el dato a eliminar (222) con el valor 320. Es menor, enton-
ces se toma la dirección de la página que está a la izquierda del 320.

5 Se recupera la página con los valores: 134 – 222 – 261 – 301.

6 Se compara el dato a eliminar (222) con el valor 134. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (222).

7 Se compara el dato a eliminar (222) con el valor 222. Es igual, entonces
se elimina.

8 Se evalúa si el dato eliminado estaba en una página hoja. Sí lo estaba.

9 Se evalúa si el número de elementos (3) es � n y � 2n. Sí lo es. La
operación termina con éxito.

105 320

105 320

33 89 134 222 261 301 345 400 601

33 89 134 261 301 345 400 601

Raíz

Raíz

Luego de eliminar el 222.

FIGURA 7.21 Eliminación del valor 222

En el ejemplo anterior se presentó el caso más simple de eliminación. El dato
buscado estaba en una página hoja que a su vez tenía más de n elementos. Obser-
ve ahora el siguiente caso. En la figura 7.22 se tiene un árbol-B, de grado 2, del
cual se quiere eliminar el valor 89. Aplicando el algoritmo dado, se llevan a cabo
las operaciones mostradas en la tabla 7.9.

378 Capítulo 7. Árboles

TABLA 7.9 Operación de eliminación en un árbol-B
Operación Descripción

1 Se recupera la página con los valores: 105 – 320.

2 Se evalúa si la página está vacía. No lo está.

3 Se compara el dato a eliminar (89) con el valor 105. Es menor,
entonces se toma la dirección de la página que está a la izquierda
del 105.

4 Se recupera la página con los valores: 33 – 89.

5 Se compara el dato a eliminar (89) con el valor 33. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (89).

6 Se compara el dato a eliminar (89) con el valor 89. Es igual, entonces
se elimina.

7 Se evalúa si el dato eliminado estaba en una página hoja. Sí lo estaba.

8 Se evalúa si el número de elementos (1) es � n y � 2n. No lo es, en-
tonces se debe bajar el dato más cercano de la página padre (105) y
sustituir a éste por el que se encuentre más a la izquierda del subárbol
derecho (134).

9 Se evalúa si el número de elementos de la página del subárbol derecho
(de la cual se quitó el 134) cumple con la condición. En este caso (2)
es � n y � 2n. La operación termina con éxito.

Por último, analice el siguiente ejemplo. En el árbol-B, de grado 2, de la
figura 7.23 se quiere eliminar el valor 48. En este caso la altura del árbol, luego
de efectuar todas las reestructuraciones que corresponden, disminuye en uno
La tabla 7.10 presenta las operaciones que se realizan al aplicar el algoritmo.

7.4 Árboles-B 379

7

105 320

33 89 134 261 301 345 400 601

33 105 261 301 345 400 601

Raíz

Luego de eliminar el 89, de bajar
el 105 de la página padre y de
reemplazar a éste por el 134.

FIGURA 7.22 Eliminación del valor 89

134 320
Raíz

TABLA 7.10 Operación de eliminación en un árbol-B
Operación Descripción

1 Se recupera la página con los valores: 48.

2 Se evalúa si la página está vacía. No lo está.

3 Se compara el dato a eliminar (48) con el valor 48. Es igual, entonces
se elimina.

4 Se evalúa si el dato eliminado estaba en una página hoja. No lo estaba.

5 Se debe sustituir el elemento eliminado por el que se encuentre más a la
derecha del subárbol izquierdo (44).

continúa

380 Capítulo 7. Árboles

TABLA 7.10 Continuación
Operación Descripción

6 Se evalúa si el número de elementos (1) de esa página es � n y � 2n.
No lo es, entonces se debe bajar el dato más cercano (41) de la página
padre y fusionar las páginas que son hijas de éste (22 – 30 – 41 – 42).

7 Se evalúa si el número de elementos de la página de la que se bajó el
valor 41 es � n y � 2n. Es (1), por lo tanto se debe bajar el dato más
cercano (44) de la página padre y fusionar las páginas que son hijas de
éste (20 – 44 – 59 – 72). La fusión afectó la raíz, disminuyendo en 1 la
altura del árbol. La operación termina con éxito

20 44 59 72

50 52

20 41 59 72

22 30 63 65

8 11 17 22 30 41 42 63 65 81 90

FIGURA 7.23 Eliminación del valor 48

Raíz

Fusión de páginas

48

8 11 17 42 44 50 52 81 90

Luego de
eliminar
el 48

Fusión de páginas

7.5 Árboles-B+

Los árboles-B+ son una variante de los árboles-B, diferenciándose de estos últi-
mos por el hecho de que toda la información se encuentra almacenada en las
hojas. En la raíz y en los nodos intermedios se guardan solamente las claves o
índices que permiten llegar a un cierto dato.

Las principales características de un árbol-B+ de grado n son:

• La página raíz almacena como mínimo 1 dato y como máximo 2n datos.

• La página raíz tiene como mínimo 2 descendientes.

• Las páginas intermedias y hojas almacenan entre n y 2n datos.

• Las páginas intermedias tienen entre (n+1) y (2n+1) páginas descendientes.

• Todas las páginas hojas tienen la misma altura.

• La información se encuentra ordenada.

• Toda la información se encuentra en las páginas hojas, por lo que la clave
guardada en la raíz o páginas intermedias se duplica.

• La información guardada en la raíz o en páginas intermedias cumple la
función de índices que facilitan el acceso a un cierto dato.

La figura 7.24 presenta un ejemplo de un árbol-B+, de grado 2. En la raíz se al-
macenan valores que funcionan como índices para llegar a los datos que están en
las hojas (es de suponer que el árbol almacena datos más complejos que simples
números enteros).

7.5 Árboles-B+ 381

7

105 320

33 89 105 134 261 301 320 345 400

Raíz

FIGURA 7.24 Ejemplo de un árbol-B+

Las operaciones que pueden realizarse sobre la información almacenada en
árboles-B+ son: búsqueda, inserción y eliminación. Estas operaciones están im-
plementadas en herramientas diseñadas especialmente para el manejo de archi-
vos, por lo que generalmente no se requiere su programación en las aplicaciones.

Como en el caso de los árboles-B, se explican para que pueda entenderlas y
cuando haga uso de algún manejador de archivos sepa qué está pasando interna-
mente con los datos.

Búsqueda en árboles-B+

La operación de búsqueda es similar a la estudiada en los árboles-B. La diferen-
cia es que en estos árboles la búsqueda termina siempre en las páginas hojas
(donde está la información completa). Los pasos para llevar a cabo esta operación
son los siguientes:

1. Se recupera una página (la primera vez es la página raíz) y se la lleva a
memoria.

2. Se evalúa si la página está vacía.

2.1. Si la respuesta es afirmativa, entonces la búsqueda termina con fracaso.

2.2. Si la respuesta es negativa, entonces ir al paso 3.

3. Se compara el dato buscado con cada elemento almacenado en la página.

3.1. Si es igual, entonces se evalúa si es una página hoja.

3.1.1. Si la respuesta es afirmativa, entonces la búsqueda termina con
éxito.

3.1.2. Si la respuesta es negativa, entonces se debe recuperar la página
descendiente por el lado derecho y se regresa al paso 1.

3.2. Si es menor se toma la dirección de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma página.

3.3.1. Si es el último, se toma la dirección de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Si no es el último, se regresa al paso 3.

La tabla 7.11 presenta los pasos requeridos para buscar el valor 320 en el árbol-B+

de la figura 7.24.

382 Capítulo 7. Árboles

Inserción en árboles-B+

La operación de inserción es similar a la estudiada en los árboles-B. La dife-
rencia consiste en que cuando se produce la división de una página en dos
(por dejar de cumplir la condición de que el número de elementos debe ser
� n y � 2n) se debe subir una copia de la clave (o índice) del elemento del
medio. Sólo se duplica información cuando la clave que sube es de una página
hoja. Los pasos para llevar a cabo esta operación son los siguientes:

1. Se recupera una página (la primera vez es la página raíz).

2. Se evalúa si es una página hoja.

2.1. Si la respuesta es afirmativa, se evalúa si la cantidad de elementos alma-
cenados en ella es menor a 2n.

2.1.1. Si la respuesta es afirmativa, entonces se procede a insertar el nue-
vo valor en el lugar correspondiente.

2.1.2. Si la respuesta es negativa, se divide la página en dos y los (2n +
1) datos se distribuyen entre las páginas resultantes y una copia
del valor del medio (o de una clave del mismo) sube a la página

7.5 Árboles-B+ 383

7

TABLA 7.11 Operación de búsqueda en un árbol-B+

Operación Descripción

1 Se recupera la página con los datos: 105 – 320.

2 Se evalúa si está vacía. En este caso la respuesta es negativa.

3 Se compara el dato buscado (320) con el primer elemento de la página
(105). Es mayor y hay más elementos en la misma página, entonces se
avanza al siguiente valor (320).

4 Se compara el dato buscado (320) con el valor 320. Es igual.

5 Se evalúa si la página donde fue encontrado el 320 es una página hoja.
No lo es. Se debe revisar la página descendiente por el lado derecho.

6 Se recupera la página con los datos: 320 – 345 – 400.

7 Se compara el dato buscado (320) con el primer elemento de la página
(320). Es igual.

8 Se evalúa si la página donde fue encontrado el 320 es una página hoja.
Sí lo es. La búsqueda termina con éxito.

padre. Si la página padre no tuviera espacio para este valor, enton-
ces se procede de la misma manera, se divide en dos y el elemen-
to del medio sube a la siguiente página, pudiendo repetirse este
proceso hasta llegar a la raíz, en cuyo caso se aumenta la altura
del árbol.

2.2. Si no es una hoja, se compara el elemento a insertar con cada uno de los
valores almacenados para encontrar la página descendiente donde prose-
guir la búsqueda. Se regresa al paso 1.

Considere el siguiente ejemplo. En el árbol-B+, de grado 2, de la figura 7.25 se
quiere insertar el valor 287. Aplicando el algoritmo dado, se realizan las opera-
ciones que se muestran en la tabla 7.12.

384 Capítulo 7. Árboles

TABLA 7.12 Operación de inserción en un árbol-B+

Operación Descripción

1 Se recupera la página con los valores: 105 – 320.

2 Se evalúa si es una página hoja. No lo es.

3 Se compara el dato a insertar (287) con el valor 105. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (320).

4 Se compara el dato a insertar (287) con el valor 320. Es menor, enton-
ces se toma la dirección de la página que está a la izquierda del 320.

5 Se recupera la página con los valores: 105 – 222 – 261 – 301.

6 Se evalúa si es una página hoja. Sí lo es.

7 Se evalúa si el total de elementos almacenados (4) es menor a 2n.
No lo es.

8 Se divide la página en dos y los elementos se distribuyen entre ellas,
subiendo una copia del valor del medio (261) a la página padre.

9 Se evalúa (antes de la inserción) si el número de elementos en la página
padre (2) es menor a 2n. Sí lo es. La operación termina con éxito.

7.5 Árboles-B+ 385

7

105 320

33 89 105 222 261 301 320 400 601

Raíz

Copia de
261.

Después de insertar el 287,
de dividir la página hoja en
dos y de subir una copia del
261.

105 261 320

33 89 105 222 261 287 301 320 400 601

Raíz

FIGURA 7.25 Inserción del valor 287

287

Eliminación en árboles-B+

La operación de eliminación consiste en quitar un elemento del árbol-B+ cuidan-
do que mantenga las propiedades vistas. Es decir, el número de datos en cada pá-
gina debe ser mayor o igual a n y menor o igual a 2n. Como los datos siempre
están en las páginas hojas, cuando se encuentran se quitan (sólo de la hoja, sin
importar si además están en un nodo intermedio o raíz) y sólo se reestructura el
árbol si la página quedó con menos de n elementos. Los pasos para llevar a cabo
esta operación son los siguientes:

1. Se recupera una página (la primera vez es la página raíz) y se la lleva a me-
moria.

2. Se evalúa si la página está vacía.

2.1. Si la respuesta es afirmativa, entonces la operación de eliminación termi-
na con fracaso.

2.2. Si la respuesta es negativa, entonces ir al paso 3.

3. Se compara el dato a eliminar con cada elemento almacenado en la página.

3.1. Si es igual, se evalúa si está en una página hoja.

3.1.1. Si la respuesta es negativa entonces se toma la dirección de sus
descendientes por el lado derecho y se regresa al paso 1.

3.1.2. Si la respuesta es afirmativa, entonces se elimina y se evalúa si el
número de elementos que quedó sigue siendo mayor o igual a n.

3.1.2.1 Si la respuesta es afirmativa, entonces la operación termi-
na con éxito. Las páginas intermedias no se modifican
aunque almacenen una copia del elemento eliminado.

3.1.2.2 Si la respuesta es negativa, entonces se debe bajar el da-
to más cercano de la página padre y sustituir a éste
por el que se encuentre más a la izquierda del subárbol
derecho o por el que se encuentre más a la derecha del
subárbol izquierdo, siempre que esta página no pierda
la condición. En caso contrario, se debe bajar el dato
más cercano de la página padre y fusionar las páginas que
son hijas de éste.

3.2. Si es menor se toma la dirección de sus descendientes por el lado iz-
quierdo y se regresa al paso 1.

3.3. Si es mayor, se avanza al siguiente dato de la misma página.

3.3.1. Si es el último, se toma la dirección de sus descendientes por el
lado derecho y se regresa al paso 1.

3.3.2. Si no es el último, se regresa al paso 3.

El proceso de fusión puede llegar hasta la raíz, en cuyo caso la altura del árbol
disminuye en uno. Cuando se llevan a cabo las fusiones, se deben quitar todas
aquellas claves copias de elementos eliminados en las páginas hojas.

La tabla 7.13 presenta la secuencia de operaciones requeridas para llevar a cabo
la eliminación del valor 261 del árbol-B+, de grado 2, de la figura 7.26.

386 Capítulo 7. Árboles

7.5 Árboles-B+ 387

7

TABLA 7.13 Operación de eliminación en un árbol-B
Operación Descripción

1 Se recupera la página con el valor: 105.

2 Se evalúa si la página está vacía. No lo está.

3 Se compara el dato a eliminar (261) con el valor 105. Es mayor y no
hay más elementos en la misma página, entonces se toma la dirección
de la página que está a la derecha del 105.

4 Se recupera la página con los valores: 105 – 261.

5 Se compara el dato a eliminar (261) con el valor 105. Es mayor y hay
más elementos en la misma página, entonces se avanza al siguiente
valor (261).

6 Se compara el dato a eliminar (261) con el valor 261. Es igual.

7 Se evalúa si está en una página hoja. Sí lo está, entonces se elimina.

8 Se evalúa si el número de elementos que quedó en la página (1) es � n
y � 2n. No lo es.

9 Se baja el dato más cercano de la página padre (105) y éste no se puede
sustituir, ya que el número de elementos de su otro hijo es 2. Por lo
tanto, se baja y se fusionan sus páginas descendientes. En este caso, la
altura del árbol disminuye en uno. El proceso termina con éxito.

105

33 89 105 261

33 89 105

Raíz

FIGURA 7.26 Eliminación del valor 261

Luego de eliminar el 261 y
de fusionar las páginas

Ejercicios
1. Defina una plantilla para la clase ArbolMultiple. Decida qué atributos y

métodos incluir. ¿Puede implementar esta clase en C++? Justifique su
respuesta.

2. Escriba un método que cuente el número de hojas de un árbol binario.
¿Podría resolverlo por medio de una función? Justifique su respuesta.

3. Escriba un método que cuente el número de nodos intermedios de un árbol bi-
nario. ¿Podría resolverlo por medio de una función? Justifique su respuesta.

4. Escriba un método que calcule la altura de un árbol binario. ¿Podría resol-
verlo por medio de una función? Justifique su respuesta.

5. Escriba un método que imprima todos los ascendientes masculinos de un in-
dividuo cuyos datos genealógicos fueron almacenados en un árbol binario.

6. Escriba un método que imprima todos los datos de los ascendientes que es-
tén vivos de un individuo cuyos datos genealógicos fueron almacenados en
un árbol binario.

7. Se dice que dos árboles son similares cuando sus estructuras son iguales.
Escriba una función en C++ que determine si dos árboles (dados como pa-
rámetros) son similares. En la siguiente figura se presenta un ejemplo de
dos árboles que tienen esta característica.

388 Capítulo 7. Árboles

T

J V

Q G S

X

Z A

M K P

8. Se dice que dos árboles son equivalentes cuando sus estructuras son iguales
y además tienen el mismo contenido. Escriba una función en C++ que de-
termine si dos árboles (dados como parámetros) son equivalentes. En la si-
guiente figura se presenta un ejemplo de dos árboles que tienen esta
característica.

9. Se dice que un árbol binario es completo si todos sus nodos, excepto las ho-
jas, tienen dos hijos. Escriba una función en C++ que determine si un árbol
(dado como parámetro) es completo. En la siguiente figura se presenta un
ejemplo de un árbol que tiene esta característica.

Ejercicios 389

7

X

Z A

M K P

X

Z A

M K P

J

T

M Q

V

G S

10. Retome la plantilla de la clase ArbolBinario presentada en este libro, e in-
cluya un método que imprima por niveles toda la información de un objeto
tipo árbol. Si el árbol fuera el que aparece en el problema 8, la impresión
sería:

X – Z – A – M – K – P

11. Considere que no puede manejar memoria dinámica para representar una
estructura tipo árbol binario. Sin embargo, dadas las características de la in-
formación, usted decide que la mejor estructura para su almacenamiento y
posterior uso es un árbol. Utilice un arreglo unidimensional, guardando en
cada casilla la información correspondiente a un nodo, de tal manera que se
mantengan las relaciones (padre-de y/o hijo-de) entre ellos. Diseñe e imple-
mente las operaciones de búsqueda, inserción y eliminación que se ajuste a
esta nueva representación.

12. Utilice un árbol binario de búsqueda para almacenar datos de tipo clientes ban-
carios. Para ello defina una clase ClienteBanco, con los atributos y los métodos
que considere necesarios, atendiendo lo que se pide más abajo. El número de
cliente será el atributo según el que se ordenará la información en el árbol. Es-
criba un programa en C++, que mediante un menú de opciones, permita:

a) Generar un reporte de todos los clientes de un banco, ordenados por su
número de cliente.

b) Generar un reporte de todos los clientes que tengan una antigüedad
mayor a los 5 años. Puede darle generalidad a su solución, dejando el
número de años como un dato a ingresar por el usuario.

c) Generar un reporte de todos los clientes que tengan como mínimo dos
cuentas diferentes en el banco.

d) Dar de alta un nuevo cliente. El usuario proporcionará todos los datos
del cliente a registrar.

e) Dar de baja un cliente registrado. El usuario dará como dato el número
del cliente.

f) Actualizar el saldo de alguna de las cuentas de un cliente. El usuario
dará como datos el número del cliente, el número de la cuenta a actua-
lizar y el nuevo saldo.

g) Actualizar los datos personales (por ejemplo domicilio, teléfono casa, te-
léfono oficina, etcétera) de un cliente. Su programa debe permitir que en
la misma opción se pueda modificar uno o todos los datos personales.

13. Utilice un árbol binario balanceado para almacenar datos relacionados a in-
sectos. Para ello defina una clase Insecto, con los atributos y los métodos
que considere necesarios, atendiendo lo que se pide más abajo. Cada insecto
tendrá una clave, que será el atributo que permita que la información esté
ordenada en el árbol. Escriba un programa en C++, que mediante un menú
de opciones, pueda:

a) Registrar un nuevo insecto. El usuario dará todos los datos necesarios.

b) Dar de baja un insecto registrado. El usuario dará la clave del insec-
to a eliminar.

c) Generar un reporte de todos los insectos, ordenados por clave.

d) Generar un reporte de todos los insectos que viven en el área del Me-
diterráneo europeo.

390 Capítulo 7. Árboles

e) Generar un reporte de todos los insectos que viven sólo en el desierto
de Rub al-Jali.

f) Generar un reporte de todos los insectos que se alimentan de made-
ra en estado de descomposición.

14. Inserte los siguientes datos en un árbol-B, de grado 2. Los números que se dan
como datos pueden representar datos más complejos (objetos). Dibuje el árbol a
medida que sufra cambios en su estructura como consecuencia de la inserción.

Insertar: 95 – 10 – 34 – 87 – 56 – 99 – 12 – 23 – 50 – 40 – 60 – 54 – 33 –
20 – 91 – 17 – 18 – 94

15. En el árbol-B generado en el problema anterior elimine los datos que se
señalan a continuación. Dibuje el árbol a medida que sufra cambios en su
estructura como consecuencia de la eliminación.

Eliminar: 99 – 60 – 23 – 12 – 95 – 40

16. Inserte los siguientes datos en un árbol-B, de grado 2. Los números que se
dan como datos pueden representar datos más complejos (objetos). Dibuje
el árbol a medida que sufra cambios en su estructura como consecuencia de
la inserción.

Insertar: 105 – 99 – 104 – 80 – 16 – 74 – 112 – 230 – 71 – 33 – 86 – 399 –
33 – 120 – 51 – 67 – 90 – 84 – 45 – 405 – 257 – 110

17. En el árbol-B generado en el problema anterior elimine los datos que se
señalan a continuación. Dibuje el árbol a medida que sufra cambios en su
estructura como consecuencia de la eliminación.

Eliminar: 399 – 80 – 105 – 84 – 86 – 51 – 67 – 33 – 112 – 104

18. Inserte los siguientes datos en un árbol-B+, de grado 2. Los números que se
dan como datos pueden representar a datos más complejos (objetos). Dibuje
el árbol a medida que sufra cambios en su estructura como consecuencia de
la inserción.

Insertar: 120 – 100 – 240 – 817 – 356 – 199 – 249 – 326 – 500 – 170 – 360 –
257 – 358 – 104 – 921 – 590 – 328 – 140

19. En el árbol-B+, de grado 2, generado en el problema anterior elimine los da-
tos que se señalan a continuación. Dibuje el árbol a medida que sufra cam-
bios en su estructura como consecuencia de la eliminación.

Eliminar: 328 – 356 – 100 – 817 – 921 – 500 – 358 – 328 – 590 – 104 – 249

Ejercicios 391

7

20. Inserte los siguientes datos en un árbol-B+, de grado 2. Los números que se
dan como datos pueden representar a datos más complejos (objetos). Dibuje
el árbol a medida que sufra cambios en su estructura como consecuencia de
la inserción.

Insertar: 350 – 180 – 420 – 700 – 390 – 200 – 150 – 400 – 300 – 100 – 500 –
310 – 660 – 580 – 880 – 670 – 370 – 140 – 230 – 490 – 510

21. En el árbol-B+, de grado 2, generado en el problema anterior elimine los da-
tos que se señalan a continuación. Dibuje el árbol a medida que sufra cam-
bios en su estructura como consecuencia de la eliminación.

Eliminar: 880 – 420 – 100 – 580 – 180 – 230 – 400 – 700 – 660 – 670 –
490 – 140 – 350 – 370

392 Capítulo 7. Árboles

CAPÍTULO 8

8.1 Introducción

Este capítulo presenta la estructura de datos conocida como gráfica. Se
estudian sus principales características, cómo se relacionan sus compo-
nentes y se analizan las operaciones que pueden aplicarse sobre ellos.

Las gráficas son estructuras de datos no lineales, en las cuales cada
elemento puede tener cero o más sucesores y cero o más predece-
sores. Están formadas por nodos, llamados generalmente vértices, y
por arcos, conocidos también con el nombre de aristas. Los vértices
representan información y las aristas relaciones entre dicha informa-
ción. La figura 8.1 presenta un ejemplo de una gráfica. En ella, los
vértices almacenan los datos de un grupo de ciudades y las aristas
indican que existe una carretera entre las ciudades que están uniendo.
El valor asociado a cada arista representa el total de kilómetros entre

Gráficas

las ciudades que están en los extremos. Según esta figura, entre las ciudades de
Puebla y Tlaxcala existe una carretera que cubre una distancia de 33 kms. Por su
parte, entre las ciudades de Puebla y de Xalapa hay una carretera de 194 kms.
También se observa que entre las ciudades de Toluca y Xalapa no existe una
carretera directa que las una.

394 Capítulo 8. Gráficas

Tlaxcala

Toluca

Morelia

Puebla

Méx., DF

Xalapa

Formalmente, una gráfica está integrada por los conjuntos V(G) y A(G), donde el
primero representa a todos los vértices o nodos y el segundo a las aristas o arcos.
Por lo general, estos conjuntos son finitos. Una arista se define por medio de un
par único de vértices del conjunto V, que puede o no estar ordenado. Tomando
como referencia la gráfica de la figura 8.2, se tiene que:

V = { v1, v2, v3, v4, v5, v6, v7}

A = { (v1, v2), (v1, v7), (v2, v4), (v2, v7), (v3, v4), (v3, v5), (v4, v5), (v5, v6), (v6, v7) }

G = (V, A)

La arista entre los nodos v1 y v2 se expresa como a= (v1, v2), indicando que los
vértices v1 y v2 son adyacentes y extremos de a. Además, se dice que a es inci-
dente en v1 y v2.

33

194

66

125
118

263

FIGURA 8.1 Ejemplo de una gráfica

El grado de un vértice, identificado como grado (v), es el total de aristas que tienen
como extremo a v. Cuando el grado de un vértice es 0, éste recibe el nombre de
vértice aislado. El vértice v2 de la figura 8.2 es de grado 3, mientras que el vér-
tice v6 es de grado 2.

Dependiendo de la ubicación y combinación de una o varias aristas, se definen
distintas figuras. Las más comunes son:

• Un lazo o bucle es una arista que tiene en ambos extremos al mismo vér-
tice. Se expresa como a= (v, v).

• Un camino del vértice origen v1 al vértice destino vn está formado por todas
las aristas que deben recorrerse para llegar del origen al destino. Si se
recorren n aristas, se dice que el camino es de longitud n.

• Un camino es cerrado si el vértice origen es igual al vértice destino.

• Un camino es simple si todos sus vértices, con excepción del origen y
destino, son distintos. El primero y último vértices de un camino simple
pueden ser iguales.

• Un ciclo es un camino simple cerrado de longitud mayor o igual a tres.

De acuerdo a sus características, las gráficas reciben distintos nombres. Los más
comunes son:

• Una gráfica conexa es aquella en la cual existe un camino simple entre
cualesquiera de sus nodos.

8.1 Introducción 395

8v2

v1

v7 v6

v5

v3

v4

FIGURA 8.2 Ejemplo de gráfica

• Una gráfica árbol o árbol libre es una gráfica conexa sin ciclos.

• Una gráfica es completa si cada uno de sus vértices son adyacentes a todos
los vértices de la gráfica.

• Una gráfica es etiquetada si sus aristas tienen asociado un valor. Si éste es
un número no negativo, se le conoce con el nombre de peso, distancia o
longitud.

• Una gráfica es una multigráfica si al menos dos de sus vértices están
unidos entre sí por dos aristas, llamadas aristas paralelas o múltiples.

• Una subgráfica está formada por un subconjunto de vértices y de aristas
de una gráfica dada. Por lo tanto la subgráfica G�de G, se define como
G�= (V�, A�), donde V� � V y A� � A.

396 Capítulo 8. Gráficas

v2

v3

v1

v5 v4

v1

v5

v2

v3

Al observar las gráficas presentadas en la figura 8.3 se pueden hacer las siguien-
tes afirmaciones:

• Hay un bucle o lazo en el vértice v4 de la gráfica del inciso (a).

• La gráfica (a) es una multigráfica, ya que existen aristas paralelas o múltiples
entre los vértices v1 y v5.

• En la gráfica (a) hay un camino de v5 a v4, definido por la secuencia de aristas:
v5, v1, v3, v4.

• En la gráfica (b) hay un camino cerrado definido por la secuencia de aristas:
v1, v3, v4, v1.

v4

(b)(a)

FIGURA 8.3 Ejemplos de gráficas

8.2 Gráficas dirigidas 397

8
• En la gráfica (a) hay un camino simple definido por la secuencia de aristas:

v1, v3, v4.

• Ambas gráficas son conexas, ya que todos sus vértices están unidos al
menos a otro vértice.

• La gráfica (b) es completa, ya que cada uno de sus vértices son adyacentes
a todos los demás.

8.2 Gráficas dirigidas
Las gráficas dirigidas o digráficas son aquellas cuyas aristas siguen cierta direc-
ción. En este caso, cada arista a = (v1, v2) recibe el nombre de arco y se representa
con la notación v1 —> v2. Se dice que v1 es el vértice origen o punto inicial y que
v2 es el vértice destino o punto terminal del arco a. La figura 8.4 presenta un ejem-
plo de una gráfica dirigida.

v2

v1

v5

v4

v3

FIGURA 8.4 Ejemplo de gráfica dirigida

8.2.1 Representación de una digráfica

Las digráficas son estructuras de datos abstractas (como las pilas y colas), por lo tanto
los lenguajes de programación no cuentan con elementos diseñados exclusivamente
para su representación y manejo. En consecuencia, se requiere utilizar alguna de las

398 Capítulo 8. Gráficas

estructuras de datos ya estudiadas para su representación y almacenamiento en memo-
ria. Las más usadas son las listas de adyacencia y las matrices de adyacencia.

La lista de adyacencia está formada por una lista de listas. Es decir, cada nodo de la
lista representa a un vértice y almacena, además de la información propia del vértice,
una lista de vértices adyacentes. La figura 8.5 muestra un ejemplo de una digráfica
y su correspondiente lista de adyacencia.

v2

v1

v5

v4

v3

V1

V2

V3

V4

V5

V2 V5 NULL

V3 V4 NULL

V1 V4 NULL

V3 NULL

V2 V4 NULL

FIGURA 8.5 Gráfica dirigida y su representación por medio de una
lista de adyacencia

La matriz de adyacencia es una matriz de números enteros, donde los renglones y
columnas representan a los vértices de la digráfica. En la posición i, j se asigna un

8.2 Gráficas dirigidas 399

8
1 si existe un arco del vértice i al vértice j. En caso contrario y en las posiciones
correspondientes a la diagonal principal se asigna un 0. Si la digráfica tiene N vér-
tices, la matriz de adyacencia tendrá NxN elementos. La figura 8.6 muestra la
matriz de adyacencia correspondiente a la digráfica de la figura 8.5. En este libro
se emplea este tipo de representación para las digráficas.

Si la digráfica a almacenar está etiquetada, entonces se necesita una matriz de ad-
yacencia etiquetada. La diferencia es que en lugar del 1 se asigna la etiqueta o
costo del arco correspondiente. Esta matriz también recibe el nombre de matriz de
costos o matriz de distancias. La figura 8.7 muestra un ejemplo de una gráfica
dirigida etiquetada con su correspondiente matriz de adyacencia etiquetada.

0v1

v2

v3

v4

v5

v1 v2 v3 v4 v5

1 0 0 1

0 0 1 1 0

1 0 0 1 0

0 0 1 0 0

0 1 0 1 0

v1
v2

v3

v4
v5

v6

FIGURA 8.6 Representación de una gráfica dirigida por medio
de una matriz de adyacencia

0v1

v2

v3

v4

v5

v1 v2 v3 v4 v5 v6

8 0 0 0

6 0 8 12 0

0 7 0 6 0

0 0 7 0 5

0 0 0 5 0

13

0

0

0

9

v6 11 0 0 0 0 0

FIGURA 8.7 Gráfica dirigida etiquetada y su representación por medio de una
matriz de adyacencia etiquetada

8

6

13

11

9

5

5

12
7

8

6

7

400 Capítulo 8. Gráficas

8.2.2 La clase digráfica

Considerando que se usará una matriz de adyacencia para almacenar la información
de una digráfica, la clase DiGrafica tendrá como atributos un arreglo de dos dimen-
siones para almacenar dicha matriz, un entero que representa el número de vértices
y un arreglo con sus nombres (en este caso enteros). Además de los atributos, la cla-
se tendrá algunos métodos que permiten la manipulación de los datos guardados.

DiGrafica

NumVer: int

Vertices[]: int

MatAdy[][]: int

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 8.8 Clase DiGrafica

A continuación se presenta el código en lenguaje C++ correspondiente a la defi-
nición de la clase DiGrafica del esquema de la figura 8.8. Se incluyen sólo los
prototipos de los métodos, ya que éstos se analizan más adelante. Además de los
atributos ya mencionados, la clase contiene otros elementos que son necesarios
en los métodos que utiliza. Se decidió tratarlos como atributos para simplificar su
codificación y para que la clase estuviera autocontenida.

/* Constante usada para establecer el número máximo de vértices de la

➥digráfica. */

##ddeeffiinnee MAX 20

/* Definición de la plantilla de la clase DiGrafica. Se incluyen como

➥atributos: la matriz de costos/distancias (MatAdy), el número de vértices

➥(NumVer), el nombre de cada uno de los vértices (Vertices), un arreglo

8.2 Gráficas dirigidas 401

8➥para las distancias mínimas entre los vértices (DistMin), un arreglo para

➥la cerradura transitiva de la matriz de adyacencia (CerTran), y un

➥arreglo para vértices intermedios (VerInt). Los tres últimos se usan

➥como auxiliares en métodos que se estudian más adelante. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss DiGrafica

{{

pprriivvaattee::

/* Declaración del arreglo donde se almacenan las distancias en-

tre los vértices. */

TT MatAdy[MAX][MAX];

iinntt NumVer, Vertices[MAX], DistMin[MAX], CerTran[MAX][MAX],

VerInt[MAX][MAX];

ppuubblliicc::

/* Método constructor y métodos auxiliares para leer la informa-

ción relacionada a la gráfica e imprimir los resultados obtenidos

al aplicar los demás métodos. */

DiGrafica();

vvooiidd Lee();

vvooiidd Imprime((iinntt));

/* Métodos que recorren una gráfica dirigida, determinando cami-

nos de distancias mínimas. */

vvooiidd Warshall();

vvooiidd Floyd();

vvooiidd FloydVerInt();

vvooiidd Dijkstra();

}};

/* Declaración del método constructor. Inicializa la matriz de adyacen-

cias MatAdy con un valor arbitrario muy grande (999), indicando que no

existe camino entre los nodos correspondientes. Además, asigna ceros a

los arreglos que se usarán en otros métodos. */

tteemmppllaattee <<ccllaassss TT>>

DiGrafica<<TT>>::::DiGrafica()

{{

iinntt Ind1, Ind2;

ffoorr (Ind1= 0; Ind1 << MAX; Ind1++++)

{{

DistMin[Ind1]= 0;

ffoorr (Ind2= 0; Ind2 << MAX; Ind2++++)

{{

iiff (Ind1 !!== Ind2)

MatAdy[Ind1][Ind2]= 999;

Como ya se mencionó, en la plantilla se incluyeron algunos arreglos que se usan
en los métodos con el fin de que la clase contenga todos los elementos necesa-
rios. Sin embargo, dichos arreglos pueden declararse como locales a los métodos
y pasarse como resultados o parámetros a los usuarios de la clase.

8.2.3 Recorrido de gráficas dirigidas

En esta sección se presentan los métodos más usados para determinar la existen-
cia o no existencia de caminos entre los vértices de la gráfica, así como los méto-
dos que obtienen los caminos de menor longitud entre ellos.

Método Warshall

Este método determina si existe o no un camino de longitud mayor o igual a
uno entre los vértices de una gráfica dirigida. Es decir, el método sólo encuen-
tra si hay un camino directo o indirecto (por medio de otros vértices intermedios)
entre los nodos, sin importar el costo. Para aplicar este método se requiere
generar la cerradura transitiva de la matriz de adyacencia de la digráfica. La
cerradura transitiva es una matriz (CerTran) de NumVer por NumVer elementos,
donde CerTran[i][j]= 1 si existe un camino de i a j, y 0 en caso contrario.

A continuación se presenta el método Warsall de la clase DiGrafica.

402 Capítulo 8. Gráficas

/* Método que determina si existe un camino entre cada uno de los

➥vértices de la gráfica dirigida. CerTran es una matriz que representa

➥la cerradura transitiva de la matriz de adyacencia. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Warshall()

eellssee

MatAdy[Ind1][Ind2]= 0;

CerTran[Ind1][Ind2]= 0;

VerInt[Ind1][Ind2]= 0;

}}

}}

NumVer= 0;

}}

Si se aplica este método a la matriz de distancias de la figura 8.9, el resultado que
se obtiene es el que se presenta en la figura 8.10.

8.2 Gráficas dirigidas 403

8{{

iinntt Ind1, Ind2, Ind3;

/* En la posición i,j de la matriz de adyacencia se asignó el valor 999

➥si no existe un camino directo del vértice i al vértice j. La cerradura

➥transitiva se forma inicialmente a partir de la matriz de adyacencia. */

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

iiff (MatAdy[Ind1][Ind2] !!== 999)

CerTran[Ind1][Ind2]= 1;

/* Se recorren todos los vértices para determinar si existe un camino

➥entre él y los demás, usando otros vértices como intermedios. */

ffoorr (Ind3= 0; Ind3 << NumVer; Ind3++++)

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

CerTran[Ind1][Ind2] |=
CerTran[Ind1][Ind3] &&&&

CerTran[Ind3][Ind2];

}}

V1

V6

V5

V4

V3

V2
10

15

11

9 5

5

6

12

FIGURA 8.9 Gráfica dirigida

La figura 8.10 presenta la matriz de adyacencia etiquetada correspondiente a la
gráfica dirigida de la figura 8.9. En la parte inferior se muestra la cerradura tran-
sitiva obtenida luego de aplicar el método Warshall. El valor 1 en la posición i, j
indica que existe un camino (directo o no) entre el vértice i y el vértice j, mien-
tras que un 0 representa que no hay camino entre ellos. En la diagonal principal
quedan 1�s, aunque en estos casos no tenga utilidad saber que se cuenta con un
camino. Se puede observar que en la posición correspondiente a los vértices (V1, V4)
hay un 1, a pesar de que no hay un camino directo entre ellos. Como resultado de
la aplicación de este método se encontró que es posible ir de V1 a V4, usando vér-
tices intermedios. En este caso se puede ir a través de V2 o de V3.

404 Capítulo 8. Gráficas

0v1

v2

v3

v4

v5

v1 v2 v3 v4 v5 v6

10 15 0 0

0 0 0 12 0

0 0 0 6 0

0 0 0 0 5

0 11 0 5 0

0

0

0

0

0

v6 0 0 0 0 9 0

FIGURA 8.10 Ejemplo de aplicación del método Warshall

Matriz de adyacencia
etiquetada

1v1

v2

v3

v4

v5

v1 v2 v3 v4 v5 v6

1 1 1 1

0 1 0 1 1

0 1 1 1 1

0 1 0 1 1

0 1 0 1 1

0

0

0

0

0

v6 0 1 0 1 1 1

Cerradura transitiva

A continuación se muestra la forma como va generándose la cerradura transitiva
a medida que se ejecuta el método. Cada uno de los incisos corresponde a un
cambio en la matriz. La tabla 8.1(a) presenta la cerradura transitiva en su estado
inicial (con 1´s en las posiciones donde hay un camino), incluyendo la diagonal
(si quisiéramos excluirla deberíamos agregar una condición antes de la asigna-
ción). La tabla 8.1(b) muestra que del vértice V1 se puede llegar a los vértices
V4 y V5, a través de los vértices intermedios V2 y V4 respectivamente. En (c) se
identificó un camino de V2 a V5, por medio de V4. En (d) se presenta un camino
de V3 a V2 y a V5, usando a V4 para llegar a V5 y a este último para llegar a V2.
En (e) se señala un camino de V4 a V2 por medio del vértice V5. Finalmente, en
(f) se indica un camino de V6 a V2 y a V4, a través del vértice V5.

8.2 Gráficas dirigidas 405

8

TABLA 8.1 Obtención de la cerradura transitiva usando Warshall

V1 V2 V3 V4 V5 V6

V1 1 1 1 0 0 0

V2 0 1 0 1 0 0

V3 0 0 1 1 0 0

V4 0 0 0 1 1 0

V5 0 1 0 1 1 0

V6 0 0 0 0 1 1

V1 V2 V3 V4 V5 V6

V1 1 1 1 1 1 0

V2 0 1 0 1 0 0

V3 0 0 1 1 0 0

V4 0 0 0 1 1 0

V5 0 1 0 1 1 0

V6 0 0 0 0 1 1

(a) (b)

V1 V2 V3 V4 V5 V6

V1 1 1 1 1 1 0

V2 0 1 0 1 1 0

V3 0 0 1 1 0 0

V4 0 0 0 1 1 0

V5 0 1 0 1 1 0

V6 0 0 0 0 1 1

V1 V2 V3 V4 V5 V6

V1 1 1 1 1 1 0

V2 0 1 0 1 1 0

V3 0 1 1 1 1 0

V4 0 0 0 1 1 0

V5 0 1 0 1 1 0

V6 0 0 0 0 1 1

(c) (d)

continúa

Método Floyd

Este método encuentra el camino más corto entre todos los vértices de la grá-
fica dirigida. Es decir, si hay más de un camino posible (directo o a través de no-
dos intermedios) entre los vértices Vi y Vj, este método encuentra el de menor
costo.

A continuación se presenta el método Floyd de la clase DiGrafica.

406 Capítulo 8. Gráficas

TABLA 8.1 Continuación

V1 V2 V3 V4 V5 V6

V1 1 1 1 1 1 0

V2 0 1 0 1 1 0

V3 0 1 1 1 1 0

V4 0 1 0 1 1 0

V5 0 1 0 1 1 0

V6 0 0 0 0 1 1

V1 V2 V3 V4 V5 V6

V1 1 1 1 1 1 0

V2 0 1 0 1 1 0

V3 0 1 1 1 1 0

V4 0 1 0 1 1 0

V5 0 1 0 1 1 0

V6 0 1 0 1 1 1

(e) (f)

/* Método que encuentra el camino de costo mínimo entre todos los

➥vértices de la gráfica dirigida. Va modificando la matriz de adyacencia

➥a medida que encuentra un camino más corto entre dos vértices. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Floyd()

{{

iinntt Ind1, Ind2, Ind3;

ffoorr (Ind3= 0; Ind3 << NumVer; Ind3++++)

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

iiff ((MatAdy[Ind1][Ind3] ++ MatAdy[Ind3][Ind2])

<< MatAdy[Ind1][Ind2])

MatAdy[Ind1][Ind2]=

MatAdy[Ind1][Ind3] ++

MatAdy[Ind3][Ind2];

}}

La tabla 8.2 presenta el resultado de aplicar el método Floyd a la digráfica de la
figura 8.9. En (a) se muestra la matriz de adyacencia original (el valor 999 es un
valor arbitrario que indica que no existe un camino entre los vértices involucra-
dos) y en (b) la matriz con las distancias mínimas. La diagonal principal quedó
con ceros (no hay distancia desde un vértice cualquiera hasta el mismo vértice).
En las posiciones correspondientes a vértices que no tienen caminos que los unan
quedó el valor 999. Se sombrean las casillas en las que hubo cambio.

8.2 Gráficas dirigidas 407

8

TABLA 8.2 Ejemplo de aplicación del método Floyd

V1 V2 V3 V4 V5 V6

V1 0 10 15 999 999 999

V2 999 0 999 12 999 999

V3 999 999 0 6 999 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 999

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 22 0 6 11 999

V4 999 16 999 0 5 999

V5 999 11 999 5 0 999

V6 999 20 999 14 9 0

(a) (b)

Al observar la digráfica de la figura 8.9, se puede apreciar que para ir del vértice
V1 al V4, existen dos caminos: V1 – V2 – V4 con una distancia de 22 (10 + 12) y
V1 – V3 – V4 con una distancia de 21 (15 + 6). En la matriz queda la segunda por
ser la menor. En el caso del vértice V4 al V2, sólo existe una opción a través del
vértice V5 con una distancia de 16 (5 + 11).

Ahora se presenta la manera en que va generándose la matriz con las distancias
mínimas, a medida que se ejecuta el método. Cada uno de los incisos corresponde a
un cambio en la matriz. La tabla 8.3 (a) presenta la matriz después de haber encon-
trado un camino de longitud 22 entre los vértices V1 y V4 (a través de V2). En (b)
la matriz se modifica al encontrar un camino más corto entre los vértices mencio-
nados. En (c) se señala que se encontró un camino entre los vértices V1 y V5, con
una distancia de 26. En (d) aparece un camino de longitud 17 entre V2 y V5. En (e)
se indica que hay un camino de V3 a V5, usando el vértice intermedio V4, con una
distancia de 11. En (f) aparece un camino de V3 a V2, ahora usando a V5 (vértice con
el cual se estableció un camino en el paso previo). En (g) se señala un camino de V4
a V2, por medio de V5. En (h) se indica un camino de V6 a V2, a través de V5. Final-

mente, en (i) aparece un camino de V6 a V4 también usando a V5 como intermedio.
Se sombrean las casillas que almacenan los valores mínimos encontrados.

408 Capítulo 8. Gráficas

TABLA 8.3 Obtención de la matriz de distancias mínimas usando Floyd

continúa

V1 V2 V3 V4 V5 V6

V1 0 10 15 22 999 999

V2 999 0 999 12 999 999

V3 999 999 0 6 999 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 999 999

V2 999 0 999 12 999 999

V3 999 999 0 6 999 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

(a) (b)

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 999 999

V3 999 999 0 6 999 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 999 0 6 999 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

(c) (d)

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 999 0 6 11 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 22 0 6 11 999

V4 999 999 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

(e) (f)

Si además de obtener la matriz de distancias mínimas, se necesitara conocer los
vértices intermedios que permitieron establecer esas distancias, se deberá modifi-
car el método de la siguiente manera.

8.2 Gráficas dirigidas 409

8
TABLA 8.3 Continuación

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 22 0 6 11 999

V4 999 16 999 0 5 999

V5 999 11 999 5 0 999

V6 999 999 999 999 9 0

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 22 0 6 11 999

V4 999 16 999 0 5 999

V5 999 11 999 5 0 999

V6 999 20 999 999 9 0

(g) (h)

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 22 0 6 11 999

V4 999 16 999 0 5 999

V5 999 11 999 5 0 999

V6 999 20 999 14 9 0

(i)

/* Método Floyd modificado para que, además de encontrar las distancias

➥mínimas entre todos los vértices de una digráfica, genere una matriz

➥(VerInt) con los vértices intermedios utilizados para minimizar las

➥distancias. Este método usa los atributos Vertices (arreglo que

➥almacena los nombres de todos los vértices de la digráfica) y VerInt

➥(arreglo donde se van guardando los vértices intermedios. Fue inicia-

➥lizado en 0 en el método constructor). */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::FloydVerInt()

La tabla 8.4 presenta el resultado de aplicar el método FloydVerInt a la gráfica
dirigida de la figura 8.9. En (a) aparece la matriz de distancias mínimas y en (b)
la matriz que almacena los vértices intermedios. Esta matriz se interpreta de la si-
guiente manera: de V1 se puede llegar a V4 por medio del vértice 3, de V1 a V5 a
través del vértice 4 y de V2 se llega a V5 pasando por el vértice 4. A su vez, de V3

se llega a V5 a través del vértice 4 y a V2 por medio del vértice 5. En este último
caso hay dos nodos intermedios entre V3 y V2 (V3 – V4 – V5 – V2). Del vértice 4
se puede ir a V2 utilizando a V5 como vértice intermedio. Finalmente, de V6 se
llega a V2 y a V4 a través del vértice 5.

410 Capítulo 8. Gráficas

{{

iinntt Ind1, Ind2, Ind3;

ffoorr (Ind3= 0; Ind3 << NumVer; Ind3++++)

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

iiff ((MatAdy[Ind1][Ind3] ++ MatAdy[Ind3][Ind2])

<< MatAdy[Ind1][Ind2])

{{

MatAdy[Ind1][Ind2]=

MatAdy[Ind1][Ind3] ++

MatAdy[Ind3][Ind2];

VerInt[Ind1][Ind2]= Vertices[Ind3];

}}

}}

TABLA 8.4 Obtención de la matriz de vértices intermedios
usando FloydVerInt

V1 V2 V3 V4 V5 V6

V1 0 10 15 21 26 999

V2 999 0 999 12 17 999

V3 999 22 0 6 11 999

V4 999 16 999 0 5 999

V5 999 11 999 5 0 999

V6 999 20 999 14 9 0

V1 V2 V3 V4 V5 V6

V1 0 0 0 3 4 0

V2 0 0 0 0 4 0

V3 0 5 0 0 4 0

V4 0 5 0 0 0 0

V5 0 0 0 0 0 0

V6 0 5 0 5 0 0

(a) (b)

Método DDiijjkkssttrraa

Este método encuentra el camino más corto desde un vértice a todos los de-
más vértices de la gráfica dirigida. La longitud del camino, si se usara un vérti-
ce intermedio, es la suma de las distancias entre cada uno de los nodos
involucrados.

A continuación se presenta el método Dijkstra de la clase DiGrafica.

8.2 Gráficas dirigidas 411

8

/* Método que encuentra la distancia mínima entre un vértice dado y los

➥demás vértices de una gráfica dirigida. En el arreglo DistMin se

➥almacenan las distancias mínimas desde el vértice origen a cada uno

➥de los otros nodos. Es decir DistMin[i] almacena la menor distancia

➥entre el vértice origen y el vértice i. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Dijkstra()

{{

iinntt Aux[MAX], VertInc[MAX], Ver1, Ver2, Ind1, Ind2, Menor, Band,

Origen;

/* El arreglo VertInc se utiliza para guardar los vértices elegidos

➥por ser los de la distancia mínima. El arreglo Aux es un arreglo

➥lógico que indica si el nodo de la posición i ya fue incluido en

➥VertInc y de esta manera evitar ciclos. */

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

{{

Aux[Ind1]= 0;

VertInc[Ind1]= 0;

}}

ccoouutt<<<<”\n\n Ingrese vértice origen: ”;

cciinn>>>>Origen;

Aux[Origen –– 1]= 1;

/* El arreglo donde se guardan las distancias mínimas del Origen a

➥los demás vértices se inicializa con los valores de la matriz de

➥adyacencia. */

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

DistMin[Ind1]= MatAdy[Origen][Ind1];

ffoorr (Ind1= 0; Ind1<<NumVer; Ind1++++)

{{

/* Se busca el vértice Ver1 en (Vertices - VertInc) tal que

➥DistMin[Ver1] sea el mínimo valor. Se usa el 999 como valor

➥inicial ya que es el elegido para indicar que no existe camino

➥entre dos vértices. */

Menor= 999;

La tabla 8.5 presenta el resultado de aplicar el método Dijkstra a la gráfica diri-
gida de la figura 8.9. En (a) el vértice origen es V1 y en (b) es V4. Con el método
se encontró que para ir de V1 a V2 la distancia mínima es 10 (que corresponde a
un camino directo entre ambos vértices), V3 es 15 (que también es un camino di-
recto), V4 es 21 (a través de V3, ya que si fuera a través de V2 sería 22), V5 es 26
(a través de V3 y de V4). La tabla muestra también que no es posible ir de V1 a
V6. Con respecto al vértice 4, aplicando el método, se encontró que no se puede
llegar a los vértices 1 y 6. Las distancias mínimas entre V4 y V2 es 16 (a través de
V5) y entre V4 y V5 es 5 (camino directo).

412 Capítulo 8. Gráficas

ffoorr (Ind2= 1; Ind2 << NumVer; Ind2++++)

iiff (DistMin[Ind2] << Menor &&&& !!Aux[Ind2])

{{

Ver1= Ind2;

Menor= DistMin[Ind2];

}}

/* Se incluye Ver1 a VertInc y se actualiza el arreglo Aux. */

VertInc[Ind1]= Ver1;

Aux[Ver1]= 1;

/* Se busca la distancia mínima para cada vértice Ver2 en

➥(Vertices - VertInc). */

Ver2= 1;

wwhhiillee (Ver2 << NumVer)

{{

Band=0;

Ind2= 1;

wwhhiillee (Ind2 << NumVer &&&& !!Band)

iiff (VertInc[Ind2] ==== Ver2)

Band= 1;

eellssee

Ind2++++;

iiff (!!Band)

DistMin[Ver2]=

Minimo (DistMin[Ver2],

➥DistMin[Ver1] ++ MatAdy[Ver1][Ver2]);

Ver2++++;

}}

}}

}}

El programa 8.1 presenta la plantilla completa de la clase DiGrafica. En el caso
de los métodos Warshall, Floyd, FloydVerInt y Dijkstra (ya analizados), se inclu-
yeron sólo los prototipos y los encabezados.

Programa 8.1

8.2 Gráficas dirigidas 413

8
TABLA 8.5 Obtención de la distancia mínima entre vértices usando Dijkstra

V1 V2 V3 V4 V5 V6

0Origen: V1 10 15 21 26 999

(a)

V1 V2 V3 V4 V5 V6

999Origen: V4 16 999 0 5 999

(b)

##ddeeffiinnee MAX 10

/* Función auxiliar que obtiene el valor más pequeño de dos dados como

➥parámetros. La utiliza el método de Dijkstra. */

iinntt Minimo(iinntt Val1, iinntt Val2)

{{

iinntt Min= Val1;

iiff (Val2 << Min)

Min= Val2;

rreettuurrnn Min;

}}

/* Definición de la plantilla de la clase DiGrafica. Se incluyen como

➥atributos, además de la matriz de adyacencia, el número de vértices y

➥su nombre, otros elementos que son utilizados en los métodos. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss DiGrafica

{{

pprriivvaattee::

/* Declaración del arreglo donde se almacenan las distancias

➥entre los vértices. */

TT MatAdy[MAX][MAX];

iinntt NumVer, Vertices[MAX], DistMin[MAX], CerTran[MAX][MAX],

VerInt[MAX][MAX];

414 Capítulo 8. Gráficas

ppuubblliicc::

/* Método constructor y métodos auxiliares para leer la información

➥relacionada a la gráfica e imprimir los resultados obtenidos al

aplicar los demás métodos. */

DiGrafica();

vvooiidd Lee();

vvooiidd Imprime((iinntt));

/* Métodos que recorren una gráfica dirigida, encontrando caminos

➥de distancias mínimas. */

vvooiidd Warshall();

vvooiidd Floyd();

vvooiidd FloydVerInt();

vvooiidd Dijkstra();

}};

/* Método constructor. Inicializa el número de vértices en cero y a la

➥matriz de adyacencias MatAdy con un valor arbitrario muy grande (999),

➥indicando que no existe camino entre los nodos correspondientes. Además,

➥asigna ceros a los arreglos auxiliares que se usan en los métodos. */

tteemmppllaattee <<ccllaassss TT>>

DiGrafica<<TT>>::::DiGrafica()

{{

iinntt Ind1, Ind2;

ffoorr (Ind1= 0; Ind1 << MAX; Ind1++++)

{{

DistMin[Ind1]= 0;

ffoorr (Ind2= 0; Ind2 << MAX; Ind2++++)

{{

iiff (Ind1 !!== Ind2)

MatAdy[Ind1][Ind2]= 999;

eellssee

MatAdy[Ind1][Ind2]= 0;

CerTran[Ind1][Ind2]= 0;

VerInt[Ind1][Ind2]= 0;

}}

}}

NumVer= 0;

}}

/* Método que lee los datos de la gráfica dirigida directamente del

➥teclado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Lee()

{{

iinntt NumArcos, Indice, Origen, Destino;

ccoouutt<<<<”\n\n Ingrese número de vértices de la gráfica dirigida: ”;

cciinn>>>>NumVer;

ccoouutt<<<<”\n\n Ingrese los nombres de los vértices

➥de la gráfica dirigida: ”;

8.2 Gráficas dirigidas 415

8ffoorr (Indice= 0; Indice << NumVer; Indice++++)

cciinn>>>>Vertices[Indice];

ccoouutt<<<<”\n\n Total de aristas de la gráfica dirigida: ”;

cciinn>>>>NumArcos;

Indice= 0;

wwhhiillee (Indice << NumArcos)

{{

ccoouutt<<<<”\n\n Ingrese vértice origen: ”;

cciinn>>>>Origen;

ccoouutt<<<<”\n\n Ingrese vértice destino: ”;

cciinn>>>>Destino;

ccoouutt<<<<”\n\n Distancia de origen a destino: ”;

cciinn>>>>MatAdy[Origen –– 1][Destino –– 1];

Indice++++;

}}

}}

/* Método que imprime información relacionada a una gráfica dirigida.

➥Por medio de un número entero se selecciona lo que se va a imprimir, lo

➥cual depende del método aplicado para recorrer la digráfica. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Imprime(iinntt Opc)

{{

iinntt Ind1, Ind2;

sswwiittcchh(Opc)

{{

/* Impresión de la matriz de adyacencia o de costos. */

ccaassee 0: ccoouutt<<<<”\n\n Matriz de Adyacencia o de Costos: \n\n”;

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

{{

ccoouutt<<<<Vertices[Ind1]<<<< ”: ”;

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

ccoouutt<<<<MatAdy[Ind1][Ind2] <<<< ”\t”;

ccoouutt<<<<eennddll;

}}

bbrreeaakk;

/* Impresión de la cerradura transitiva correspondiente a la

➥matriz de adyacencia. Se obtiene cuando se aplica el método de

➥Warshall. */

ccaassee 1: ccoouutt<<<<”\n\n Cerradura Transitiva de la Matriz de

➥Adyacencia: ”<<<<eennddll;

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

{{

ccoouutt<<<<Vertices[Ind1] <<<<”: ”;

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

ccoouutt<<<<CerTran[Ind1][Ind2]<<<<”\t”;

416 Capítulo 8. Gráficas

ccoouutt <<<< eennddll;

}}

bbrreeaakk;

/* Impresión de la matriz de distancias mínimas entre todos los

➥vértices de la gráfica. Se obtiene por medio del método de Floyd. */

ccaassee 2: ccoouutt<<<<”\n\n Matriz de Distancias Mínimas: ”<<<<eennddll;

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

{{

ccoouutt<<<<Vertices[Ind1]<<<< ”: ”;

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

ccoouutt<<<<MatAdy[Ind1][Ind2] <<<< ”\t”;

ccoouutt <<<< eennddll;

}}

bbrreeaakk;

/* Impresión de la matriz con los vértices intermedios usados

➥para establecer los caminos de distancias mínimas. Esta

➥impresión complementa la de la opción 2 cuando se aplica el

➥método FloydVerInt. */

ccaassee 3: ccoouutt<<<<”\n\n Vértices Intermedios para lograr distancias

➥mínimas: ”<<<<eennddll;

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

{{

ffoorr (Ind2= 0; Ind2 << NumVer; Ind2++++)

ccoouutt<<<<VerInt[Ind1][Ind2]<<<<”\t”;

ccoouutt<<<<eennddll;

}}

bbrreeaakk;

/* Impresión de las distancias mínimas entre un vértice y los

➥demás. Se obtiene con el método de Dijkstra. */

ccaassee 4: ccoouutt<<<<”\n\n Distancias mínimas a partir del vértice:

➥”<<<<Vertices[0]<<<<”\n\n”;

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

ccoouutt<<<<” ”<<<<DistMin[Ind1]<<<<”\t”<<<<eennddll;

bbrreeaakk;

ddeeffaauulltt: bbrreeaakk;

}}

ccoouutt<<<<eennddll;

}}

/* Este método corresponde al que se presentó anteriormente por lo que

➥sólo se deja indicado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Warshall()

{{}}

/* Este método corresponde al que se presentó anteriormente por lo que

➥sólo se deja indicado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Floyd()

{{}}

8.2.4 Aplicación de gráficas dirigidas

Considere la gráfica de la figura 8.11 que representa un subconjunto de la red
ferroviaria de un determinado país, asumiendo que las vías pueden usarse en una
sola dirección. Los vértices representan ciudades, los arcos tramos de vías y las
etiquetas de los arcos costos de los pasajes entre los vértices (ciudades) adyacen-
tes. Cada una de las ciudades se identifica por un número, según se muestra en la
tabla 8.6. El programa 8.2 es una aplicación muy simple en la que se ilustra el
uso de los métodos vistos para determinar si existe o no comunicación entre las
ciudades, así como para encontrar las rutas de menor costo entre ellas.

8.2 Gráficas dirigidas 417

8/* Este método corresponde al que se presentó anteriormente por lo que

➥sólo se deja indicado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::FloydVerInt()

{{}}

/* Este método corresponde al que se presentó anteriormente por lo que

➥sólo se deja indicado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DiGrafica<<TT>>::::Dijkstra()

{{}}

C. Zorzal C. Águila

C. Ruiseñor
C. Colibrí

C. Cóndor

$95

$75

$60

$50

$120 $80

$100

$110

$45

C. Paloma

FIGURA 8.11 Aplicación de gráficas dirigidas

La plantilla presentada en el programa 8.1 se guardó en la biblioteca “DiGrafica.h”
y se utilizó en el programa 8.2 para encontrar las rutas de menor costo entre los
vértices de la gráfica de la figura 8.11.

Programa 8.2

418 Capítulo 8. Gráficas

TABLA 8.6 Lista de ciudades de la red ferroviaria
Ciudad Número asociado

Cóndor 1

Zorzal 2

Águila 3

Paloma 4

Ruiseñor 5

Colibrí 6

/* Aplicación de gráficas dirigidas para encontrar ciudades comunicadas

➥entre sí por el sistema ferroviario, así como los costos mínimos para

➥ir de una ciudad a las otras o entre todas las ciudades. */

##iinncclluuddee ”DiGrafica.h”

iinntt Menu()

{{

iinntt Opc;

ddoo {{

ccoouutt<<<<”\n\nOpciones\n”;

ccoouutt<<<<”\n(1) Ciudades que están comunicadas entre sí.”;

ccoouutt<<<<”\n(2) Mínimo costo entre todas las ciudades. ”;

ccoouutt<<<<”\n(3) Mínimo costo entre todas las ciudades y ciudades

➥intermedias. ”;

ccoouutt<<<<”\n(4) Mínimo costo entre una ciudad y las otras. ”;

ccoouutt<<<<”\n(5) Finalizar el proceso.”;

ccoouutt<<<<”\n\nIngrese opción elegida:”;

cciinn>>>>Opc;

}} wwhhiillee (Opc << 1 | | Opc >> 5);

rreettuurrnn Opc;

}}

vvooiidd mmaaiinn(())

{{

DiGrafica<<iinntt>> RedFerrov;

iinntt Opc;

8.2 Gráficas dirigidas 419

8ccoouutt<<<<”\n\n\nIngrese datos de ciudades y costos de pasajes\n”;

RedFerrov.Lee();

ddoo {{

Opc= Menu();

sswwiittcchh (Opc)

{{

/* El método Warshall permite encontrar todas las ciudades que

➥están comunicadas entre sí por medio de la red ferroviaria. */

ccaassee 1: {{

RedFerrov.Warshall();

RedFerrov.Imprime(1);

bbrreeaakk;

}}

/* El método Floyd permite encontrar los costos mínimos para

➥visitar a todas las ciudades que están comunicadas entre sí

➥por medio de la red ferroviaria. */

ccaassee 2: {{

RedFerrov.Floyd();

RedFerrov.Imprime(2);

bbrreeaakk;

}}

/* El método FloydVerInt permite encontrar los costos mínimos

➥para visitar todas las ciudades que están comunicadas entre

➥sí por medio de la red ferroviaria y las ciudades intermedias

➥(cuando no existe camino directo, o si éste no fuera el de

➥costo mínimo). */

ccaassee 3: {{

RedFerrov.FloydVerInt();

RedFerrov.Imprime(3);

bbrreeaakk;

}}

/* El método Dijkstra permite encontrar los costos mínimos

➥para ir de una ciudad a todas las otras ciudades con las que

➥está comunicada por medio de la red ferroviaria. */

ccaassee 4: {{

RedFerrov.Dijkstra();

RedFerrov.Imprime(4);

bbrreeaakk;

}}

}}

}} wwhhiillee (Opc << 5 &&&& Opc >> 0);

}}

La tabla 8.7 presenta el resultado de aplicar el método Warshall a la gráfica de la
figura 8.11. Recuerde que en esta implementación, en la diagonal queda 1. La ta-
bla indica que se puede llegar desde cualquier ciudad a cualquiera de las otras,
con excepción de la primera (Ciudad Cóndor).

La tabla 8.8 presenta el resultado de aplicar el método Floyd a la gráfica de la
figura 8.11. La tabla muestra el mínimo que deberá pagarse en pasajes para tras-
ladarse entre las ciudades. En la implementación del método se usó el valor 999
para indicar que no hay vías entre las ciudades correspondientes a la posición
ocupada por dicho valor.

420 Capítulo 8. Gráficas

TABLA 8.7 Resultado de aplicar Warshall

1 2 3 4 5 6

1 1 1 1 1 1 1

2 0 1 1 1 1 1

3 0 1 1 1 1 1

4 0 1 1 1 1 1

5 0 1 1 1 1 1

6 0 1 1 1 1 1

TABLA 8.8 Resultado de aplicar Floyd

1 2 3 4 5 6

1 0 95 180 155 110 60

2 999 0 110 170 125 75

3 999 225 0 125 80 300

4 999 100 210 0 225 175

5 999 145 255 45 0 220

6 999 195 120 95 50 0

La tabla 8.9 presenta el resultado de aplicar el método FloydVerInt a la gráfica de
la figura 8.11. La tabla muestra las ciudades intermedias que deben visitarse para
llegar a aquellas con las cuales no hay un camino directo o cuando se encuentre
un costo menor. Por ejemplo, en la posición (3,2) está el 5 que indica que para ir
de la ciudad 3 a la ciudad 2 se requiere pasar por la 5. A su vez, en la posición
(5,2) está el 4 que es la ciudad por la que se pasa para ir de la 5 a la 2. Por lo tan-
to, la trayectoria completa para ir de la 3 a la 2 es: 3 – 5 – 4 – 2.

La tabla 8.10 presenta el resultado de aplicar el método Dijkstra a la gráfica de
la figura 8.11, tomando como ciudad (vértice) origen a la 1 (Cóndor). Se puede
observar que el importe mínimo a pagar para ir a la ciudad 2 (Zorzal) es de $95,
mientras que para llegar a la ciudad 3 (Águila) es de $180, y según lo mostrado
en la tabla anterior es a través de la ciudad 6 (Colibrí). Por su parte, para ir a la
ciudad 4 (Paloma) se necesita pagar mínimo $155 y se usan dos ciudades interme-
dias, según la información desplegada en la tabla 8.9. Por último, para ir a las
ciudades 5 (Ruiseñor) y 6 (Colibrí) se requiere pagar $110 y $60 respectivamente.

8.3 Gráficas no dirigidas 421

8
TABLA 8.9 Resultado de aplicar FloydVerInt

1 2 3 4 5 6

1 0 0 6 6 6 0

2 0 0 0 6 6 0

3 0 5 0 5 0 5

4 0 0 2 0 6 2

5 0 4 4 0 0 4

6 0 5 0 5 0 0

8.3 Gráficas no dirigidas
Una gráfica no dirigida o gráfica se caracteriza porque sus aristas son pares no
ordenados de vértices. Por lo tanto, si existe una arista o arco de V1 a V2, ésta se-
rá la misma que de V2 a V1, se grafica sin flecha al final y se expresa como:

a = (V1, V2) = (V2, V1)

Debido a esta característica, las gráficas son muy útiles cuando se tienen datos y
relaciones simétricas entre ellos. Suponga que se quiere representar una red de
comunicación entre servidores, ubicados en diferentes edificios de una misma
empresa. Cada uno de los vértices se corresponderá con cada uno de los servido-

TABLA 8.10 Resultado de aplicar Dijkstra

1 2 3 4 5 6

0Origen: 1 95 180 155 110 60

res, mientras que los arcos representarán al medio elegido para llevar a cabo la
comunicación. Usando una gráfica para modelar esta situación se estará indican-
do que si existe comunicación de un nodo a otro, entonces también es posible
comunicarse de este último al primero. Por otra parte, si la arista estuviera eti-
quetada con la velocidad de comunicación del medio empleado, dicha velocidad
sería la misma en cualquiera de los sentidos.

8.3.1 Representación de una gráfica

Este tipo de gráficas, igual que las digráficas, se representan por medio de una
matriz o de una lista de adyacencias. En este libro se empleará la matriz. Si las
aristas tienen asociado un costo o distancia, la matriz recibe el nombre de matriz
de adyacencia etiquetada o matriz de distancias o costos.

Como ya se mencionó, las gráficas se utilizan para representar relaciones simétri-
cas entre objetos, es decir cuando sea exactamente la misma relación de V1 a V2

que de V2 a V1. Por lo tanto la matriz de adyacencia resulta una matriz simétrica.

La figura 8.12 presenta un ejemplo de una gráfica con costos en las aristas y
su correspondiente matriz de adyacencia etiquetada. Observe que el valor al-
macenado en cada posición (i, j) de la matriz es igual al valor de la posición
(j, i). Aprovechando esta característica, y con el objeto de ahorrar espacio de
almacenamiento, se puede usar un arreglo unidimensional para guardar sólo
los elementos de la matriz triangular inferior o superior.

422 Capítulo 8. Gráficas

0v1

v2

v3

v4

v5

v1 v2 v3 v4 v5 v6

5 3 0 4

5 0 4 4 0

3 4 0 2 0

0 4 2 0 3

4 0 0 3 0

2

0

7

0

0

v6 2 0 7 0 0 0

FIGURA 8.12 Ejemplo de gráfica no dirigida y su representación por medio
de una matriz de costos

5 4

4
3

3

2

4

7

2

V1

V2

V6

V5

V4

V3

8.3.2 La clase ggrrááffiiccaa no dirigida

Se define la clase Grafica para representar este tipo de estructura de datos. Consi-
derando que se usa una matriz de adyacencia para almacenar la información rela-
cionada con la gráfica, la plantilla correspondiente resulta similar a la vista para
las gráficas dirigidas. Los atributos son el número de vértices y sus nombres (en
esta implementación se declararon como enteros) y la matriz de adyacencias. Los
métodos se presentan y explican en la siguiente sección.

8.3 Gráficas no dirigidas 423

8

Grafica

NumVer: int

Vertices[]: int

MatAdy[][]: int

Métodos de acceso y
modificación a los
miembros de la clase

FIGURA 8.13 Clase Grafica

A continuación se presenta el código en lenguaje C++ correspondiente a la defi-
nición de la clase Grafica de la figura 8.13. Se incluyen sólo los prototipos de los
métodos; su descripción se da más adelante.

/* Definición de la plantilla de la clase Grafica. Se incluyen como

atributos el total de vértices (NumVer), los costos/distancias entre los

vértices (MatAdy) y sus nombres (Vertices). */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Grafica

{{

pprriivvaattee::

TT MatAdy[MAX][MAX];

iinntt NumVer, Vertices[MAX];

424 Capítulo 8. Gráficas

ppuubblliicc::

/* Método constructor y métodos auxiliares para leer la información

➥relacionada a la gráfica e imprimir los resultados obtenidos al

➥aplicar los demás métodos. */

Grafica();

vvooiidd Lee();

vvooiidd Imprime();

/* Métodos que permiten el cálculo del árbol abarcador de costo

➥mínimo. */

vvooiidd Prim();

vvooiidd Kruskal();

}};

/* Declaración del método constructor. Inicializa el número de vértices

➥en cero y la matriz de distancias con un valor arbitrario muy grande

➥(999), excepto en la diagonal principal, donde el costo es cero. */

tteemmppllaattee <<ccllaassss TT>>

Grafica<<TT>>::::Grafica()

{{

iinntt Ind1, Ind2;

ffoorr (Ind1= 0; Ind1<<MAX; Ind1++++)

ffoorr (Ind2= 0; Ind2<<MAX; Ind2++++)

iiff (Ind1 !!== Ind2)

MatAdy[Ind1][Ind2]= 999;

eellssee

MatAdy[Ind1][Ind2]= 0;

NumVer= 0;

}}

8.3.3 Recorrido de gráficas no dirigidas

Las operaciones que se aplican sobre una gráfica están orientadas a encontrar los
caminos de costos mínimos entre sus vértices. Antes de presentar estos métodos,
resulta necesario explicar algunos conceptos.

• Árbol libre es una gráfica conexa acíclica.

• Árbol abarcador es un árbol libre que conecta todos los vértices de la
gráfica. El costo del árbol se calcula como la suma de los costos de las
aristas. Por lo tanto, un árbol abarcador de costo mínimo es el formado
por las aristas de menor costo.

Método de PPrriimm

Este método encuentra el árbol abarcador de costo mínimo de una gráfica.
Trabaja con dos conjuntos de vértices, uno de los cuales es Vertices (el con-
junto de todos los vértices de G) y el otro es VerAux (que es un subconjunto de
Vertices). Inicialmente VerAux tiene asignado el valor del primer índice. Los
pasos principales de este método son:

1. Buscar la arista (ver1, ver2) de costo mínimo de tal forma que conecte a
VerAux con la subgráfica correspondiente a (Vertices – VerAux).

2. Agregar el vértice ver2 al conjunto VerAux.

3. Repetir los pasos 1 y 2 hasta que se alcance la condición (VerAux = Vertices).

A continuación se presenta el método Prim de la clase Grafica.

8.3 Gráficas no dirigidas 425

8

/* Este método encuentra el árbol abarcador de costo mínimo de una

➥gráfica. En el arreglo VerAux se almacenan los vértices con menor costo

➥que van formando el árbol abarcador. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Grafica<<TT>>::::Prim()

{{

iinntt MCosto[MAX], VerAux[MAX], Ind1, Ind2, VerMen, MenCos;

/* Inicializa el subconjunto de vértices VerAux con el valor del

➥primer vértice. */

ffoorr (Ind1= 0; Ind1<<NumVer; Ind1++++)

{{

MCosto[Ind1]= MatAdy[0][Ind1];

VerAux[Ind1]= 0;

}}

ccoouutt<<<<”\n\n\nArcos y costos del árbol abarcador de costo mínimo\n\n”;

ccoouutt<<<<”\nVértice Vértice Costo \n”;

/* Encuentra el vértice VerMen en (Vertices - VerAux) tal que el

➥costo de ir de dicho vértice a uno de VerAux sea mínimo. */

ffoorr (Ind1= 0; Ind1 << NumVer –– 1; Ind1++++)

{{

MenCos= MCosto[1];

VerMen= 1;

ffoorr (Ind2= 2; Ind2 << NumVer; Ind2++++)

iiff (MCosto[Ind2] << MenCos)

{{

MenCos= MCosto[Ind2];

VerMen= Ind2;

}}

La figura 8.14 presenta el resultado de aplicar el método de Prim a la gráfica de la
figura 8.12 para obtener el árbol abarcador de costo mínimo.

426 Capítulo 8. Gráficas

ccoouutt<<<<”\n ”<<<<Vertices[VerMen]<<<<” – ”

➥<<<<Vertices[VerAux[VerMen]]

<<<<” ”<<<<MatAdy[VerMen][VerAux[VerMen]];

/* Se agrega el vértice VerMen a VerAux y se redefinen los

➥costos asociados. */

MCosto[VerMen]= 1000;

ffoorr (Ind2= 1; Ind2 << NumVer; Ind2++++)

iiff ((MatAdy[VerMen][Ind2] << MCosto[Ind2]) &&&&

➥MCosto[Ind2] << 1000)

{{

MCosto[Ind2]= MatAdy[VerMen][Ind2];

VerAux[Ind2]= VerMen;

}}

}}

ccoouutt<<<<”\n\n”;

}}

0v1

v2

v3

v4

v5

v1 v2 v3 v4 v5 v6

5 3 999 4

5 0 4 4 999

3 4 0 2 999

999 4 2 0 3

4 999 999 3 0

2

999

7

999

999

v6 2 999 7 999 999 0

FIGURA 8.14 Obtención del árbol abarcador de costo mínimo utilizando Prim

Matriz de adyacencia
etiquetada

Árbol abarcador de
costo mínimo

Vértice Vértice Costo

6 1 2

3 1 3

4 3 2

5 4 3

2 3 4

La primera tabla muestra la matriz de costos, y la segunda el conjunto de vértices
y arcos que forman el árbol abarcador de costo mínimo. Se puede observar que el
método obtuvo las aristas necesarias para comunicar a todos los vértices con el
menor costo.

Método de KKrruusskkaall

Este método, lo mismo que el de Prim, genera el árbol abarcador de costo mí-
nimo de una gráfica. Básicamente consiste en seleccionar las aristas de menor
costo y formar el árbol con sus vértices. Los pasos principales de este método
son:

1. Generar una partición del conjunto de vértices. Inicialmente la partición es
de longitud uno (una por cada vértice): Partic= {{1}, {2},..., {NumVer}}.

2. Seleccionar la arista de menor costo. Si ésta une vértices que se encuentran
en particiones distintas, éstas se reemplazan por su unión.

3. Repetir el paso 2 hasta que el conjunto de particiones quede formado
por una sola partición igual al conjunto de vértices: Partic= {1, 2,...,
NumVer} = Vertices.

A continuación se presenta el método Kruskal de la clase Grafica.

8.3 Gráficas no dirigidas 427

8

/* Este método encuentra el árbol abarcador de costo mínimo de una

➥gráfica. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Grafica<<TT>>::::Kruskal()

{{

/* El arreglo auxiliar ArisCosto[][] almacena en cada renglón los

➥datos de una arista: vértices adyacentes y costo. El arreglo

➥Partic[] almacena particiones de Vertices. Inicialmente

➥Partic= {{{{1}},{{2}},...,{{NumVer}}}}. */

iinntt ArisCosto[2*MAX][3], Partic[MAX], Ind1, Ind2, Ver1, Ver2,

➥TotAris, Menor, Mayor, Band;

/* Inicializa Partic[]. */

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

Partic[Ind1]= Ind1;

/* Inicializa ArisCosto[][]. */

Ver1= 0;

Ver2= 0;

TotAris= 0;

428 Capítulo 8. Gráficas

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

ffoorr (Ind2= Ind1; Ind2 << NumVer; Ind2++++)

iiff (MatAdy[Ind1][Ind2] !!== 0 &&&& MatAdy[Ind1][Ind2] !!== 999)

{{

ArisCosto[Ver1][Ver2++++]= Ind1;

ArisCosto[Ver1][Ver2++++]= Ind2;

ArisCosto[Ver1++++][Ver2]= MatAdy[Ind1][Ind2];

Ver2= 0;

TotAris++++;

}}

/* Ciclo en el cual se seleccionan aristas y se agregan los vértices

➥mientras existan vértices en Partic que se encuentren en distintas

➥particiones. */

Band= 0;

wwhhiillee (Band !!== 1)

{{

/* Se selecciona la arista de menor costo. */

Menor= 999;

ffoorr (Ind1= 0; Ind1 << TotAris; Ind1++++)

iiff (ArisCosto[Ind1][2] << Menor)

{{

Ver1= ArisCosto[Ind1][0];

Ver2= ArisCosto[Ind1][1];

Menor= ArisCosto[Ind1][2];

Ind2= Ind1;

}}

/* Se elimina la arista de menor costo de la matriz ArisCosto. */

ArisCosto[Ind2][2]= 999;

/* Se verifica que la arista (Ver1, Ver2) una dos vértices que

➥pertenecen a particiones diferentes. */

iiff (Partic[Ver1] !!== Partic[Ver2])

{{

ccoouutt<<<<”\nVértice: ”<<<<Vertices[Ver1]<<<<” Vértice: ”

➥<<<<Vertices[Ver2] <<<<” Costo: ”<<<<MatAdy[Ver1][Ver2]<<<<”\n\n”;

Mayor= Maximo(Partic[Ver1], Partic[Ver2]);

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

iiff (Ind1 ==== Ver1 | | Ind1 ==== Ver2 | |
➥Partic[Ind1] ==== Mayor)

Partic[Ind1]= Minimo(Partic[Ver1], Partic[Ver2]);

}}

/* Ciclo para determinar si quedan vértices en particiones

➥diferentes. */

Ind1= 0;

La figura 8.15 presenta el resultado de aplicar el método de Kruskal a la gráfica
de la figura 8.12 para obtener su árbol abarcador de costo mínimo. El árbol gene-
rado es el mismo que con el método de Prim, lo que cambia es el proceso y el or-
den en el cual se van eligiendo las aristas

8.3 Gráficas no dirigidas 429

8wwhhiillee (Ind1 << NumVer &&&& !!Band)

{{

iiff (Partic[Ind1] !!== 0)

Band= 1;

Ind1++++;

}}

/* Si existen particiones en Partic se debe seguir con el

proceso. */

Band= !!Band;

}}

}}

0v1

v2

v3

v4

v5

v1 v2 v3 v4 v5 v6

5 3 999 4

5 0 4 4 999

3 4 0 2 999

999 4 2 0 3

4 999 999 3 0

2

999

7

999

999

v6 2 999 7 999 999 0

FIGURA 8.15 Obtención del árbol abarcador de costo mínimo utilizando Kruskal

Matriz de adyacencia
etiquetada

Árbol abarcador de
costo mínimo

Vértice Vértice Costo

1 6 2

3 4 2

1 3 3

4 5 3

2 3 4

En la figura están la matriz de costos y las aristas seleccionadas para formar el
árbol abarcador de costo mínimo. En este caso, la primera arista seleccionada por
el método es la (1, 6), con un costo de 2. Luego se obtiene la (3, 4) también con
un costo de 2. Se continúa así hasta completar el árbol.

El programa 8.3 presenta la plantilla completa de la clase Grafica.

Programa 8.3

430 Capítulo 8. Gráficas

/* Máximo número de vértices que maneja la clase Gráfica. */

##ddeeffiinnee MAX 20

/* Función auxiliar que obtiene el valor más pequeño de dos dados como

➥parámetros. La utiliza el método de Kruskal. */

iinntt Minimo (iinntt Val1, iinntt Val2)

{{

iinntt Min= Val1;

iiff (Val2 << Min)

Min= Val2;

rreettuurrnn Min;

}}

/* Función auxiliar que obtiene el valor más grande de dos dados como

➥parámetros. La utiliza el método de Kruskal. */

iinntt Maximo (iinntt Val1, iinntt Val2)

{{

iinntt Max= Val1;

iiff (Val2 >> Max)

Max= Val2;

rreettuurrnn Max;

}}

/* Definición de la plantilla de la clase Grafica. Se incluyen como

➥atributos la matriz de adyacencia (MatAdy), el total de vértices

➥(NumVer) y sus nombres (Vertices). */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Grafica

{{

pprriivvaattee::

TT MatAdy[MAX][MAX];

iinntt NumVer, Vertices[MAX];

8.3 Gráficas no dirigidas 431

8ppuubblliicc::

/* Método constructor y métodos auxiliares para leer la informa-

ción relacionada a la gráfica e imprimir los resultados obtenidos

al aplicar los demás métodos. */

Grafica();

vvooiidd Lee();

vvooiidd Imprime();

/* Métodos que calculan el árbol abarcador de costo mínimo. */

vvooiidd Prim();

vvooiidd Kruskal();

}};

/* Declaración del método constructor. Inicializa el número de vértices

➥en cero y la matriz de distancias con un valor arbitrario muy grande

➥(999), excepto en la diagonal principal, donde el costo es cero. */

tteemmppllaattee <<ccllaassss TT>>

Grafica<<TT>>::::Grafica()

{{

iinntt Ind1, Ind2;

ffoorr (Ind1= 0; Ind1 << MAX; Ind1++++)

ffoorr (Ind2= 0; Ind2 << MAX; Ind2++++)

iiff (Ind1 !!== Ind2)

MatAdy[Ind1][Ind2]= 999;

eellssee

MatAdy[Ind1][Ind2]= 0;

NumVer= 0;

}}

/* Método que lee del teclado la información de la gráfica. En esta

➥solución el nombre de los vértices sólo pueden ser valores enteros. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Grafica<<TT>>::::Lee()

{{

iinntt Aristas, Costo, Ind1, Origen, Destino;

ccoouutt<<<<”\n\nIngrese total de vértices de la gráfica: ”;

cciinn>>>>NumVer;

ffoorr (Ind1= 0; Ind1 << NumVer; Ind1++++)

{{

ccoouutt<<<<”\nIngrese el nombre del vértice: ”;

cciinn>>>>Vertices[Ind1];

}}

8.3.4 Aplicación de gráficas no dirigidas

Considere la gráfica de la figura 8.16 que representa un subconjunto de la red ca-
minera de México. Los vértices representan ciudades; los arcos, carreteras y las
etiquetas de los arcos, distancias entre las ciudades. Cada una de las ciudades se
identificará por un número, según se muestra en la tabla 8.11. El programa 8.4 es
una aplicación muy simple en la que se ilustra el uso de los métodos para obtener
el árbol abarcador de costo mínimo, el cual en este caso está formado por las ca-
rreteras de menor distancia que unen a todas las ciudades involucradas.

432 Capítulo 8. Gráficas

ccoouutt<<<<”\n\nIngrese total de aristas de la gráfica: ”;

cciinn>>>>Aristas;

Ind1= 0;

wwhhiillee (Ind1 << Aristas)

{{

ccoouutt<<<<”\nVértice origen: ”;

cciinn>>>>Origen;

ccoouutt<<<<”\nVértice destino: ”;

cciinn>>>>Destino;

ccoouutt<<<<”\nCosto de ir de ”<<<<Origen<<<<” a ”<<<<Destino<<<<”: ”;

cciinn>>>>Costo;

MatAdy[Origen –– 1][Destino –– 1]= Costo;

MatAdy[Destino –– 1][Origen –– 1]= Costo;

Ind1++++;

}}

}}

/* Este método corresponde al presentado más arriba por lo que sólo se

➥deja indicado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Grafica<<TT>>::::Prim()

{{

}}

/* Este método corresponde al presentado más arriba por lo que sólo se

➥deja indicado.*/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Grafica<<TT>>::::Kruskal()

{{

}}

8.3 Gráficas no dirigidas 433

8

33 194

118
125

66
89

215

263

327

388
113

199

Méx. DF

Xalapa

Tlaxcala

Puebla

Toluca

Morelia

Querétaro

Chilpancingo

Cuernavaca

Acapulco

Guadalajara

FIGURA 8.16 Red caminera (parcial) de México

La plantilla presentada en el programa 8.3 se guardó en la biblioteca “Grafica.h”
y se utilizó en el programa 8.4 para encontrar el árbol abarcador de costo mínimo.

Programa 8.4

434 Capítulo 8. Gráficas

TABLA 8.11 Lista de ciudades de la red caminera
Ciudad Número asociado

Xalapa 1

Tlaxcala 2

Puebla 3

México, D.F. 4

Cuernavaca 5

Chilpancingo 6

Acapulco 7

Querétaro 8

Guadalajara 9

Morelia 10

Toluca 11

/* Aplicación del concepto de gráficas para encontrar el conjunto mínimo de

➥carreteras, con el menor costo asociado, que una un grupo de ciudades. */

##iinncclluuddee ”Grafica.h”

vvooiidd mmaaiinn(())

{{

Grafica<<iinntt>> Caminos;

ccoouutt<<<<”\n\nIngrese datos de las ciudades (vértices) y de las

➥carreteras (aristas)\n\n”;

Caminos.Lee();

Caminos.Imprime();

ccoouutt<<<<”\n\nLa red mínima de carreteras requerida para unir todas

➥las ciudades es:\n”;

Caminos.Kruskal();

Caminos.Prim();

}}

La tabla 8.12 muestra la matriz de adyacencia (en este caso de distancias entre
ciudades); la 8.13, el resultado generado por el método Kruskal; y finalmente, la
8.14, el correspondiente al método Prim. Es importante señalar que los árboles

abarcadores obtenidos por ambos métodos son los mismos, sólo cambia el orden
en el cual se seleccionan las aristas de menor costo.

8.3 Gráficas no dirigidas 435

8
TABLA 8.12 Matriz de adyacencia/costos de la red caminera

1 2 3 4 5 6 7 8 9 10 11

1 0 999 194 999 999 999 999 999 999 999 999

2 999 0 33 118 999 999 999 999 999 999 999

3 194 33 0 125 999 999 999 999 999 999 999

4 999 118 125 0 89 999 999 215 999 999 66

5 999 999 999 89 0 199 999 999 999 999 999

6 999 999 999 999 199 0 113 999 999 999 999

7 999 999 999 999 999 113 0 999 999 999 999

8 999 999 999 215 999 999 999 0 388 999 999

9 999 999 999 999 999 999 999 388 0 327 999

10 999 999 999 999 999 999 999 999 327 0 263

11 999 999 999 66 999 999 999 999 999 263 0

Se presenta la red mínima de carreteras requerida para unir todas las ciudades.
Las dos primeras columnas almacenan los vértices adyacentes (vértices extremos
de la arista) y la tercera el costo asociado a la arista (la distancia entre las ciuda-
des representadas por los vértices involucrados).

TABLA 8.13 Resultado obtenido aplicando Kruskal
Del vértice/ciudad Al vértice/ciudad Costo/distancia

2 3 33

4 11 66

4 5 89

6 7 113

2 4 118

1 3 194

5 6 199

4 8 215

10 11 263

9 10 327

Como ya se mencionó, el contenido de las tablas 8.13 y 8.14 es el mismo; es decir,
los dos métodos obtuvieron el árbol abarcador de costo mínimo formado por el
mismo conjunto de aristas. La diferencia es el proceso aplicado y el orden en
el cual se seleccionan las aristas que formarán el árbol.

8.4 Búsqueda
En las secciones anteriores se analizaron operaciones de búsqueda de trayectorias
o caminos entre los distintos vértices de una gráfica. En esta sección se analizan
dos estilos de búsqueda aplicadas en la resolución de problemas. Los estados del
problema se representan por medio de los vértices y los pasos necesarios para pasar
de un estado a otro por medio de las aristas.

De acuerdo al orden en el cual se generan (operación llamada expansión) los
vértices sucesores de uno dado, los métodos de búsqueda se clasifican en bús-
queda en profundidad (conocida también por su nombre en inglés Depth First) y
búsqueda a lo ancho (Breadth First).

8.4.1 Búsqueda en profundidad (Depth First)

Este tipo de búsqueda se lleva a cabo generando todos los estados posibles a par-
tir del vértice inicial, pero sólo considerando una de sus ramas o vértices adya-
centes. Es decir, en cada nodo descendiente se elige sólo uno de sus hijos para
proseguir con la búsqueda del estado solución. De ahí el nombre en profundidad.

436 Capítulo 8. Gráficas

TABLA 8.14 Resultado obtenido aplicando Prim
Del vértice/ciudad Al vértice/ciudad Costo/distancia

3 1 194

2 3 33

4 2 118

11 4 66

5 4 89

6 5 199

7 6 113

8 4 215

10 11 263

9 10 327

Se empieza con el estado (nodo) inicial y se expande sólo uno de sus vértices ad-
yacentes, y sobre éste se aplica el mismo criterio. La operación de búsqueda ter-
mina cuando se llega al estado final o bien, cuando se alcanza el nivel de
profundidad establecido como límite. Cuando se presenta esta última condición
se puede retomar la búsqueda a partir de alguno de los vértices no expandidos.

La figura 8.17 presenta un ejemplo de una gráfica en la cual se aplica búsqueda
en profundidad para llegar al estado final. Cada uno de los vértices representa po-
sibles estados de un problema. El nodo con valor A es el estado inicial y el que
almacena la N es el final. Las aristas más gruesas indican el camino seguido para
llegar al estado solución. Como se puede observar, del vértice A se puede llegar
a T y a Y. Considerando el tipo de búsqueda se expande (visita) sólo uno de los
nodos, en este caso T. A partir de T se puede ir a X, Y o D. Se expande sólo X.
De X se genera el estado L. Desde éste se puede ir a K o E. Se elige K, de éste
se pasa a Z, luego a S y finalmente se llega al estado meta: N.

8.4 Búsqueda 437

8

FIGURA 8.17 Ejemplo de búsqueda en profundidad

Y

A

6

5

7

9

6

2

9

53

3 8

4

6

2

9

8

4

6

8

M

J
S

E

D

T X

L

K

Z

N

Al implementar este método se requiere usar dos listas para ir almacenando los
vértices visitados y aquellos pendientes por visitar. Los primeros se guardan en
una lista llamada Visitado y los otros en NoVisitado. Los principales pasos de es-
te método son:

1. Guardar el vértice inicial en la lista NoVisitado.

2. Sacar el primer elemento (vértice VertiX) de la lista NoVisitado.

3. Evaluar si VertiX está en la lista Visitado y si el nivel alcanzado (profundi-
dad) es menor o igual al permitido.

3.1. Si la respuesta es negativa entonces obtener todos los vértices adyacentes
de VertiX y guardar a éste en Visitado.

3.1.1. Si tiene vértices adyacentes y no son el estado final entonces guar-
darlos al inicio de la lista NoVisitado.

3.1.2. Si tiene vértices adyacentes y alguno de ellos es el estado final en-
tonces el proceso termina con éxito.

3.1.3. Si no tiene vértices adyacentes, ir al paso 4.

3.2. Si la respuesta es afirmativa (el vértice está en Visitado o se llegó al
nivel de profundidad permitido) entonces ir al paso 4.

4. Repetir los pasos 2 y 3 hasta que se llegue al estado final o bien hasta que la
lista NoVisitado quede vacía.

A continuación se presenta el método Depth-First de la clase DiGrafica. Este
método usa la clase Lista (ver capítulo 6) para definir los objetos Visitado y
NoVisitado. Además, con el objeto de reutilizar código en la implementación del
método Breadth First, se desarrollaron dos métodos auxiliares: BuscaVertice()
y VerticesAdyacentes(). El primero de ellos determina si un vértice dado como
parámetro es o no un vértice de la digráfica. Mientras que el segundo genera una
lista con los vértices adyacentes de un vértice dado como parámetro. Estos se
explican con mayor detalle más adelante.

438 Capítulo 8. Gráficas

/* Este método busca una solución (estado final) de un problema

➥representado por medio de una gráfica. Recibe como parámetro el nivel

➥máximo de profundidad permitido. En esta implementación se considera

➥el estado final como el último vértice de la digráfica. Regresa uno si

➥llega al estado meta y cero en caso contrario.En el método se usan los

➥atributos definidos en la clase DiGrafica. Se declaran tres objetos

8.4 Búsqueda 439

8➥de la clase Lista para almacenar los vértices que se van visitando

➥y los pendientes de visitar, así como una lista auxiliar para guardar

➥los vértices adyacentes de uno dado. */

tteemmppllaattee <<ccllaassss TT>>

iinntt DiGrafica<<TT>>::::DepthFirst(iinntt NivelProf)

{{

iinntt Indice, EstadoFinal= 0, VisitaAux[MAX], Resp= 1;

Lista<<TT>> Visitado, NoVisitado, ListaAux;

TT VertiX;

ffoorr (Indice= 0; Indice << NumVer; Indice++++)

VisitaAux[Indice]= 0;

/* Se guarda el primer vértice (representa el estado inicial) de la

➥digráfica en la lista NoVisitado. */

NoVisitado.InsertaFinal(Vertices[0]);

/* En el arreglo auxiliar VisitaAux se indica que el primer vértice

➥ya fue visitado, para evitar caer en ciclos. */

VisitaAux[0]= 1;

/* Se repiten los pasos del algoritmo de búsqueda mientras no se llegue

➥al estado final y mientras queden elementos en la lista NoVisitado. */

Indice= 0;

wwhhiillee (!!NoVisitado.ListaVacia() &&&& !!EstadoFinal)

{{

/* Se saca el primer elemento de NoVisitado. */

VertiX= NoVisitado.Elimina();

/* Se evalúa si el vértice no está en Visitado y si no se alcanzó

➥la profundidad límite. */

iiff (!!Visitado.BuscaDesordenada(VertiX) &&&& Indice << NivelProf)

{{

Visitado.InsertaFinal(VertiX);

/* Se obtienen sus vértices adyacentes. */

ListaAux= VerticesAdyacentes(BuscaVertice(VertiX));

wwhhiillee (!!ListaAux.ListaVacia() &&&& !!EstadoFinal)

{{

VertiX= ListaAux.Elimina();

iiff (BuscaVertice(VertiX) !!== NumVer–1 &&&&

➥!!VisitaAux[BuscaVertice(VertiX)])

{{

NoVisitado.InsertaInicio(VertiX);

VisitaAux[BuscaVertice(VertiX)]= 1;

}}

/* Se evalúa si se llegó al último vértice (representa el

➥estado final). */

eellssee

iiff (BuscaVertice(VertiX) ==== NumVer–1)

Al aplicar este método a la figura 8.17, la secuencia de vértices visitados para lle-
gar al estado final es: A – T – X – L – K – Z – S – N. El vértice inicial es A, por
lo tanto es el primero del que se obtienen los vértices adyacentes (T, Y) los cuales
se guardan en la lista NoVisitado y el vértice A se almacena en Visitado. Como
se guardan al inicio de la lista, ahora se quita T, se obtienen sus adyacentes (X,
D, Y) y se agregan al inicio de la lista NoVisitado, y T se almacena en Visitado.
Se quita X y se generan sus adyacentes (L). Se continúa así hasta que se obtiene
el vértice N, que es el estado final. Cada vez que se quita un vértice de NoVisita-
do (luego de obtener sus adyacentes), se guarda en Visitado. Es importante seña-
lar que cuando se generan los adyacentes de un vértice se evalúa si alguno de
ellos es o no el estado final. Si lo es, la búsqueda termina con éxito, en caso con-
trario se agrega a la lista NoVisitado para ser expandido posteriormente.

Se presentan los dos métodos auxiliares usados por los algoritmos Depth First y
Breadth First.

440 Capítulo 8. Gráficas

{{

Visitado.InsertaFinal(VertiX);

EstadoFinal= 1;

}}

}}

Indice++++;

}}

}}

/* Si se llegó al estado final se imprime la secuencia de vértices

visitados. */

iiff (EstadoFinal)

Visitado.ImprimeIterativo();

eellssee

Resp= 0;

rreettuurrnn Resp;

}}

/* Método entero que determina si un vértice dado como parámetro es o

➥no un vértice de la digráfica. Regresa la posición en la que lo encuentra

➥o un negativo. */

tteemmppllaattee <<ccllaassss TT>>

iinntt DiGrafica<<TT>>::::BuscaVertice(TT VertiDato)

8.4.2 Búsqueda a lo ancho (BBrreeaaddtthh FFiirrsstt)

Este tipo de búsqueda consiste en visitar, en cada nivel, todos los vértices. Se em-
pieza con el estado (nodo) inicial y se expanden todos sus vértices adyacentes,
luego en cada uno de ellos se aplica el mismo criterio. Por lo tanto, en cada nivel
se tienen todos los estados que pueden ser generados a partir de los nodos del
nivel anterior. Luego de cada expansión se debe verificar si ya se alcanzó el esta-
do final. Se continúa así hasta llegar al estado meta o hasta haber expandido
todos los nodos. Debido al orden en el cual se van obteniendo los nodos recibe
el nombre de búsqueda a lo ancho.

La figura 8.18 presenta un ejemplo de una gráfica en la cual se aplica este tipo
de búsqueda para llegar al estado final. Las aristas gruesas indican todos los
vértices expandidos durante la búsqueda de la solución. Las líneas punteadas

8.4 Búsqueda 441

8{{

iinntt Indice= 0, Resp= –1;

/* Busca el nombre del vértice dado en el arreglo que guarda los

➥nombres de todos los vértices de la gráfica. */

wwhhiillee (Indice << NumVer &&&& Vertices[Indice] !!== VertiDato)

Indice++++;

iiff (Indice << NumVer)

Resp= Indice;

rreettuurrnn Resp;

}}

/* Método que genera una lista con los vértices adyacentes de un vértice

➥dado como parámetro. Recibe como parámetro el nombre de un vértice y da

➥como resultado una lista con sus vértices adyacentes. */

tteemmppllaattee <<ccllaassss TT>>

Lista<<TT>> DiGrafica<<TT>>::::VerticesAdyacentes(iinntt VertiDato)

{{

iinntt Indice;

Lista <<TT>> Adyacentes;

ffoorr (Indice= 0; Indice << NumVer; Indice++++)

iiff (MatAdy[VertiDato][Indice] !!== 0)

Adyacentes.InsertaFinal (Vertices[Indice]);

rreettuurrnn Adyacentes;

}}

señalan la trayectoria desde el estado inicial al final. Como puede observarse,
desde el estado inicial A se expanden todos sus nodos sucesores (T, Y), lo
mismo se hace en estos vértices, generando J, M, D y X. A partir de éstos se
obtienen los vértices S, L y E. En el siguiente paso, de S se llega a N que es
el estado meta.

442 Capítulo 8. Gráficas

6

7

2

8

6

8

4

8

9

4

3

9

9

5

6

3 5

6

2

A

T

D

E
MY

J

S

N

Z

K

L

X

FIGURA 8.18 Ejemplo de búsqueda a lo ancho

Para implementar este método se requiere usar dos listas para ir almacenando los
vértices visitados y aquellos pendientes por visitar. Los primeros se guardan en
una lista llamada Visitado y los otros en NoVisitado. Los pasos principales de
este método son:

1. Guardar el vértice inicial en la lista NoVisitado.

2. Sacar el primer elemento (vértice VertiX) de la lista NoVisitado.

3. Evaluar si VertiX está en la lista Visitado.

3.1. Si la respuesta es negativa entonces obtener todos los vértices adyacentes
de VertiX y guardarlos en Visitado.

3.1.1. Si tiene vértices adyacentes y no son el estado final entonces guar-
darlos al final de la lista NoVisitado.

3.1.2. Si no tiene vértices adyacentes, ir al paso 4.

3.2. Si la respuesta es afirmativa, ir al paso 4.

4. Repetir los pasos 2 y 3 hasta que se llegue al estado final o hasta que la lista
NoVisitado quede vacía.

A continuación se presenta el método Breadth-First de la clase DiGrafica. Este
método se auxilia de la clase Lista (ver capítulo 6) para definir los objetos
Visitado y NoVisitado. Como en el caso de la búsqueda en profundidad, se
utilizan los métodos auxiliares ya estudiados para determinar si un vértice
pertenece o no a una digráfica y para generar los vértices adyacentes de uno
dado.

8.4 Búsqueda 443

8

/* Este método busca una solución (estado final) de un problema

➥representado por medio de una gráfica. Visita todos los vértices de un

➥mismo nivel antes de pasar al siguiente. Regresa uno si llega al estado

➥meta o cero en caso contrario. Se usan atributos de la clase como el

➥número y nombre de los vértices. Además, se declaran tres objetos de

➥la clase Lista para almacenar los vértices visitados, los pendientes de

➥visitar y los adyacentes de un nodo dado. */

tteemmppllaattee <<ccllaassss TT>>

iinntt DiGrafica<<TT>>::::BreadthFirst()

{{

iinntt Indice, EstadoFinal= 0, VisitaAux[MAX], Resp= 1;

Lista<<TT>> NoVisitado, Visitado, ListaAux;

TT VertiX;

444 Capítulo 8. Gráficas

/* El arreglo VisitaAux es un arreglo en el cual se indica si un nodo

➥ya fue expandido. */

ffoorr (Indice= 0; Indice << NumVer; Indice++++)

VisitaAux[Indice]= 0;

/* Se guarda el primer vértice de la gráfica en la lista NoVisitado. */

NoVisitado.InsertaFinal(Vertices[0]);

VisitaAux[0]= 1;

/* Ciclo que se ejecuta mientras no se llegue al estado final y

➥queden vértices por visitar. */

wwhhiillee (!!NoVisitado.ListaVacia() &&&& !!EstadoFinal)

{{

/* Saca el primer vértice de la lista NoVisitado. */

VertiX= NoVisitado.Elimina();

/* Se evalúa que el vértice no esté en la lista Visitado para

➥evitar ciclos. */

iiff (!!Visitado.BuscaDesordenada(VertiX))

{{

Visitado.InsertaFinal(VertiX);

/* Se obtienen los vértices adyacentes del vértice visitado. */

ListaAux= VerticesAdyacentes(BuscaVertice(VertiX));

wwhhiillee (!!ListaAux.ListaVacia() &&&& !!EstadoFinal)

{{

VertiX= ListaAux.Elimina();

/* Si el sucesor no es el estado final y no está en

➥Visitado entonces se guarda en la lista NoVisitado para

➥que posteriormente se revise. */

iiff (BuscaVertice(VertiX) !!== NumVer–1 &&&&

➥!!VisitaAux[BuscaVertice(VertiX)])

{{

NoVisitado.InsertaFinal(VertiX);

VisitaAux[BuscaVertice(VertiX)]= 1;

}}

eellssee

iiff (BuscaVertice(VertiX) ==== NumVer –– 1)

{{

Visitado.InsertaFinal(VertiX);

EstadoFinal= 1;

}}

}}

}}

}}

Al aplicar este método a la figura 8.18, la secuencia de vértices visitados para
llegar al estado final es: A – Y – T – J – M – D – X – S – N. El vértice inicial
es A, por lo tanto es el primero al cual se le obtienen los vértices adyacentes
(Y, T) los cuales se guardan al final de NoVisitado y el vértice A se almacena
en Visitado. Luego se quita Y y se obtienen sus adyacentes (J, M) los cuales
se agregan al final de la lista NoVisitado y Y en la lista Visitado. Se quita T
y se generan sus adyacentes (Y, D, X), éstos se guardan en NoVisitado y T en
Visitado. El siguiente vértice que se extrae de NoVisitado es J y se obtiene su
vértice adyacente que es S. Luego se quita M cuyo vértice adyacente es J.
Después se quita D de la lista NoVisitado y se obtienen sus adyacentes (M, E)
los cuales se guardan al final de NoVisitado y D en Visitado. Así se continúa
hasta que se quita S, a partir del cual se obtiene N que es el estado final. Es
importante mencionar que cuando se extrae de NoVisitado un vértice que ya
está en Visitado no se vuelve a agregar a esta lista. Además, cuando se expan-
de un nodo, si alguno de sus adyacentes ya fue generado, entonces no se agrega a
la lista de NoVisitado.

Los métodos presentados son muy parecidos. Conceptualmente la diferencia está
en que el primero desarrolla una rama de la gráfica hasta llegar al final o a un
nivel límite, mientras que el segundo va desarrollando todas las ramas hasta
alcanzar el estado meta. En cuanto a la implementación, la diferencia menciona-
da se logra guardando los siguientes vértices que deben ser expandidos al inicio o
al final respectivamente de la lista de vértices NoVisitado.

8.4 Búsqueda 445

8/* Si se llegó al estado final se imprime la secuencia de vértices

➥visitados. */

iiff (EstadoFinal)

{{

Visitado.ImprimeIterativo();

rreettuurrnn 1;

}}

eellssee

Resp= 0;

rreettuurrnn Resp;

}}

Ejercicios
1. Dada la siguiente gráfica, señale:

(a) Un camino entre los vértices V1 y V5, si es posible.

(b) Un camino simple entre cada par de vértices, si es posible.

(c) El grado de cada vértice.

(d) Lazos o bucles, si existen.

446 Capítulo 8. Gráficas

V1

V7 V6

V4

V3

V5

V2

2. Dada la siguiente matriz de adyacencias etiquetada, dibuje la gráfica dirigi-
da correspondiente. El 0 en la posición (i, j) indica que no existe un arco
entre los vértices Vi y Vj, incluyendo a la diagonal principal.

1 2 3 4 5 6

1 0 15 0 12 6 0

2 0 0 8 7 0 0

3 18 0 0 21 0 16

4 0 11 0 0 10 12

5 0 13 7 0 0 9

6 14 0 18 0 0 0

3. Retome el problema anterior. Aplique el método que crea adecuado para ob-
tener e imprimir los caminos de mínimos costos entre el vértice 3 y los de-
más vértices de la digráfica.

4. Aplique el método que crea conveniente a la gráfica del problema 2, para
generar una matriz que indique si existe o no un camino entre cada uno de
los vértices de la gráfica dirigida.

5. Dada la siguiente matriz de adyacencias etiquetada, dibuje la gráfica no di-
rigida correspondiente. El 0 en la posición (i, j) indica que no existe un arco
entre los vértices Vi y Vj, incluyendo a la diagonal principal.

Ejercicios 447

8

1 2 3 4 5 6 7

1 0 0 53 67 88 21 0

2 0 0 29 0 0 84 19

3 53 29 0 28 62 0 0

4 67 0 28 0 41 55 0

5 88 0 62 41 0 18 34

6 21 84 0 55 18 0 87

7 0 19 0 0 34 87 0

6. Retome la gráfica del problema anterior. Aplique el método que crea conve-
niente para encontrar e imprimir el árbol abarcador de costo mínimo corres-
pondiente a dicha gráfica.

7. Modifique la plantilla de la clase Grafica usando un arreglo unidimensional
para almacenar sólo la matriz triangular superior de la matriz de adyacencia
—recuerde que la matriz de adyacencia de una gráfica es una matriz simé-
trica—. Puede utilizar las fórmulas vistas en el capítulo 4 para recuperar los
elementos. ¿Requiere adaptar los métodos de la clase?

8. Modifique la plantilla de la clase DiGrafica de tal manera que use una lista
de adyacencia en lugar de una matriz de adyacencia para almacenar la in-
formación de la gráfica dirigida. Realice los ajustes necesarios en los méto-
dos estudiados para que puedan aplicarse a esta nueva estructura.

9. Modifique la plantilla de la clase Grafica de tal manera que use una lista de
adyacencia en lugar de una matriz de adyacencia para almacenar la informa-
ción de la gráfica no dirigida. Realice los ajustes necesarios en los métodos
estudiados para que puedan aplicarse a esta nueva estructura.

10. Escriba un método que determine si una gráfica es una gráfica completa,
para ello deberá verificar si cada uno de sus vértices es adyacente a los de-
más.

11. Escriba un método que determine si una gráfica es una gráfica conexa, para
ello deberá verificar si existe un camino simple entre cada uno de sus vérti-
ces. ¿Le sirve alguno de los métodos analizados en este capítulo?

12. Escriba un método que encuentre e imprima todos los caminos simples que
existan en una gráfica dirigida. El método debe imprimir el identificador de
cada uno de los vértices involucrados en los caminos.

13. En la orilla de un río están tres misioneros y tres caníbales con intención de
cruzar a la otra orilla. Cuentan con un bote que tiene una capacidad límite
de dos personas. Los misioneros, para poder protegerse de los caníbales,
quieren estar siempre en un número mayor o igual al de caníbales. Usando
algunos de los métodos vistos, resuelva el problema de trasladar a los seis
individuos de una orilla a la otra sin poner en riesgo a los misioneros.

448 Capítulo 8. Gráficas

CAPÍTULO 9

9.1 Introducción

La ordenación es la operación que permite establecer un orden
(creciente o decreciente) entre un conjunto de valores. Dependiendo
dónde estén almacenados los datos, la ordenación recibe diferentes
nombres. Si se realiza sobre datos guardados en un arreglo se le llama
ordenación interna. Por otra parte, si se aplica a un conjunto de valo-
res almacenados en un archivo, se le denomina ordenación externa.

Si bien la ordenación no es una estructura de datos, se presenta en es-
te libro porque es una de las operaciones más importantes a realizar
sobre los datos guardados en una estructura. Ordenar la información
almacenada en la estructura permite recuperarla en menos tiempo. Es
decir, la búsqueda (tema que se verá con mayor detalle en el siguiente
capítulo) resulta más eficiente cuando los datos están ordenados.

Ordenación

Normalmente esta operación se encuentra implementada como un método de
otras clases, como la clase Arreglo o la clase Lista. Sin embargo, dado que es
el tema central de este capítulo, se tratará como una clase que representa a las
variantes más conocidas del proceso de ordenación.

9.2 Ordenación interna

La ordenación interna se refiere a ordenar un conjunto de datos que se encuen-
tran almacenados en una estructura, en memoria principal. Considerando las ca-
racterísticas que determinan la manera en la que se tiene acceso a los elementos
de una estructura, en este libro se estudiarán los métodos para ordenar a los arre-
glos unidimensionales. El resultado de aplicar esta operación a un arreglo es que
todos sus elementos quedan ordenados de manera creciente o decreciente.

• Creciente: dato1 � dato2 � ... � daton (el primer dato es menor o igual que
el segundo, éste es menor o igual que el tercero y así sucesivamente hasta
el último dato).

• Decreciente: dato1 � dato2 � ... � daton (el primer dato es mayor o igual
que el segundo, éste es mayor o igual que el tercero y así sucesivamente
hasta el último dato).

Existen numerosos métodos que ordenan a los elementos de un arreglo. Los
métodos pueden agruparse según la característica principal (intercambio, inserción
o selección) de la operación que realizan para ordenar los valores. Los más conoci-
dos y utilizados son:

450 Capítulo 9. Ordenación

TABLA 9.1 Métodos de ordenación
Métodos de ordenación Métodos de ordenación Métodos de ordenación
por intercambio por selección por inserción

Directo con desplazamiento Directa Directa
hacia la izquierda

Directo con desplazamiento Binaria
hacia la derecha

Shaker (sacudida) Shell

Con señal

QuickSort

Para programar los métodos de ordenación en el lenguaje C++ se definió una cla-
se base abstracta y un conjunto de clases derivadas. Cada una de las clases deri-
vadas representa uno de los métodos que se estudiarán en este capítulo. La figura
9.1 presenta un esquema de las clases mencionadas.

Todos los métodos utilizan dos operaciones básicas para llevar a cabo la ordena-
ción de los elementos de un arreglo: la comparación y el movimiento o intercam-
bio de los mismos. Por esta razón, en la clase abstracta se incluyó el método
Intercambia() que será común a todas las clases derivadas y que tendrá por obje-
tivo intercambiar los valores de dos posiciones del arreglo.

9.2 Ordenación interna 451

9

Ordenador(T)

void Intercambia()

virtual void Ordena ()

IntercDirectoIzq(T)

void Ordena()

Sheker(T)

void Ordena()

InsercionDirecta(T)

void Ordena()

QuickSort(T)

void Ordena()

A continuación se muestra la manera de programar la clase base abstracta, la cual
tiene un método virtual puro que se redefinirá en cada subclase dependiendo del mé-
todo de ordenación que se esté implementando. Además, tiene un método auxiliar
—Intercambia()— para generalizar la operación de intercambio que será usada por
las subclases.

FIGURA 9.1 Esquema de clases

…

Como ya se mencionó, todos los métodos utilizan dos operaciones básicas para lle-
var a cabo la ordenación de los elementos: la comparación y el movimiento de los
mismos. Por lo tanto, si lo que se quiere ordenar son objetos hay que tener en cuenta
que se deben sobrecargar los operadores de comparación en las clases correspon-
dientes, para hacer uso de los métodos que se presentan en las siguientes secciones.

9.2.1 Métodos de ordenación por intercambio

Estos métodos son de los más sencillos y por lo tanto más usados para ordenar
un conjunto pequeño de datos. Se caracterizan porque se intercambian los valores
como resultado de la comparación de los mismos. Existen varios métodos que se
basan en esta idea. Los más conocidos son:

• Intercambio directo:

� Con desplazamiento hacia la izquierda

� Con desplazamiento hacia derecha

• Intercambio con señal

• Sheker

• Quicksort

452 Capítulo 9. Ordenación

/** Clase abstracta que se utiliza para definir clases derivadas que re-

➥presentan cada uno de los métodos de ordenación interna. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Ordenador

{{

ppuubblliicc::

vvooiidd Intercambia (iinntt, iinntt, Arreglo<<TT>> **);

vviirrttuuaall vvooiidd Ordena (Arreglo<<TT>> **) = 0;

}};

/** Método auxiliar que intercambia los contenidos de dos elementos del

➥arreglo que se está ordenando. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Ordenador<<TT>>::::Intercambia(iinntt Ind1, iinntt Ind2, Arreglo<<TT>> **Arre)

{{

TT Auxiliar;

Auxiliar= Arre–>>RegresaValor(Ind1);

Arre–>>AsignaValor(Ind1, Arre–>>RegresaValor(Ind2));

Arre–>>AsignaValor(Ind2, Auxiliar);

}}

Intercambio directo con desplazamiento hacia la izquierda

El método de intercambio directo consiste en recorrer el arreglo comparando
pares de datos e intercambiándolos de tal manera que los valores pequeños se
vayan desplazando hacia la izquierda o bien, los valores más grandes se vayan
desplazando hacia la derecha. Esta característica genera dos versiones de este
algoritmo, dando origen a sendas clases, las cuales, en este libro, se denominan
IntercDirectoIzq e IntercDirectoDer respectivamente.

Para ordenar Tam elementos (donde Tam es el número de elementos del arreglo) se
realizan Tam-1 recorridos por el arreglo comparando pares de datos. Luego de ca-
da comparación puede o no realizarse un intercambio del contenido entre dos
casillas del arreglo.

A continuación se presenta la clase IntercDirectoIzq, en la cual el método Orde-
na corresponde al algoritmo de ordenación por intercambio directo con desplaza-
miento del valor más pequeño hacia la izquierda.

9.2 Ordenación interna 453

9

/** Clase para el método de intercambio directo con desplazamiento hacia

➥la izquierda. Clase derivada de la clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss IntercDirectoIzq: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Método que ordena los elementos de un arreglo. Por medio de

➥comparaciones e intercambios de elementos lleva el elemento más

➥pequeño hacia el extremo izquierdo del arreglo. Este proceso se

➥repite hasta que todo el arreglo queda ordenado.**/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd IntercDirectoIzq<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

{{

iinntt Ind1, Ind2, Tam= Arre–>>RegresaTam();

ffoorr (Ind1= 1; Ind1 << Tam; Ind1++++)

ffoorr (Ind2= Tam-1; Ind2 >>== Ind1; Ind2––––)

iiff (Arre–>>RegresaValor(Ind2–1) >> Arre–>>RegresaValor(Ind2))

Intercambia(Ind2-1, Ind2, Arre);

}}

Considere un arreglo de 6 elementos (Tam = 6) como el que se muestra en la fi-
gura 9.2. Aplicando el método visto para ordenar este arreglo, se tendría la se-
cuencia de pasos presentada en la tabla 9.2. Las casillas que se recuadran son

aquellas cuyos elementos se intercambian y las casillas que se van sombreando
son las que luego del ciclo interno (Ind2) quedan ordenadas. Observe que como
este método desplaza el valor más pequeño hacia la izquierda, es el extremo iz-
quierdo del arreglo el que va quedando ordenado. La primera vez se coloca el 4
en la posición 0, la segunda vez el 9 en la posición 1 y así sucesivamente hasta el
último valor. Como consecuencia, en cada iteración el intervalo en el cual se or-
denan valores se reduce. Es decir, como la posición 0 queda ocupada por el valor
más pequeño, en el siguiente ciclo la ordenación llega hasta la posición 1, y en la
siguiente hasta la posición 2 y así hasta la posición tamaño del arreglo menos 1.

454 Capítulo 9. Ordenación

19

0 1 2 3 4 5

9 76 17

Arre

4 18

FIGURA 9.2 Arreglo a ordenar

TABLA 9.2 Seguimiento del método de ordenación por intercambio directo
con desplazamiento hacia la izquierda

1 5 19 9 76 17 4 18

4 19 9 76 4 17 18

3 19 9 4 76 17 18

2 19 4 9 76 17 18

1 4 19 9 76 17 18

2 5 4 19 9 76 17 18

4 4 19 9 17 76 18

3 4 19 9 17 76 18

2 4 9 19 17 76 18

3 5 4 9 19 17 18 76

4 4 9 19 17 18 76

3 4 9 17 19 18 76

4 5 4 9 17 19 18 76

4 4 9 17 18 19 76

5 5 4 9 17 18 19 76

Ind1 Ind2 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

Intercambio directo con desplazamiento hacia la derecha

A continuación se presenta la clase IntercDirectoDer, en la cual el método Orde-
na corresponde al algoritmo de ordenación por intercambio directo con desplaza-
miento del valor más grande hacia la derecha.

9.2 Ordenación interna 455

9/** Clase para el método de intercambio directo con desplazamiento hacia

la ➥derecha. Clase derivada de la clase Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss IntercDirectoDer: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Método que ordena los elementos de un arreglo. Por medio de compa-

➥raciones e intercambios de elementos lleva el elemento más grande hacia

➥el extremo derecho del arreglo. Este proceso se repite hasta que todo el

➥arreglo queda ordenado. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd IntercDirectoDer<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

{{

iinntt Ind1, Ind2, Tam= Arre–>>RegresaTam();

ffoorr (Ind1= 0; Ind1 << Tam-1; Ind1++++)

ffoorr (Ind2= 0; Ind2 << Tam-1–Ind1; Ind2++++)

iiff (Arre–>>RegresaValor(Ind2) >> Arre–>>RegresaValor(Ind2+1))

Intercambia(Ind2, Ind2+1, Arre);

}}

Se retoma el arreglo de la figura 9.2 y se utiliza el último método visto para orde-
narlo. La tabla 9.3 presenta la secuencia de operaciones aplicadas. Las casillas
que se recuadran son aquellas cuyos elementos se intercambian y las casillas que
se van sombreando son las que luego del ciclo interno (Ind2) quedan ordenadas.
Observe que como este método desplaza el valor más grande hacia la derecha, es
el extremo derecho del arreglo el que va quedando ordenado. La primera vez se
coloca el 76 en la posición 5, la segunda el 19 en la posición 4 y así sucesiva-
mente hasta el último valor. Como consecuencia, en cada iteración el intervalo en
el cual se ordenan valores se reduce (en el algoritmo esto se logra restando Ind1
al límite superior del segundo ciclo). Es decir, como la posición Tam-1 queda ocu-
pada por el valor más grande, en el siguiente ciclo la ordenación llega hasta la
posición Tam-2, y en la siguiente hasta la posición Tam-3 y así hasta que la última
vez se ordenan sólo dos casillas, la 0 y la 1.

Las dos variantes vistas del método de ordenación por intercambio directo tienen la
misma eficiencia. Ésta se mide por el número de comparaciones y de intercambios
realizados. En cuanto al número de comparaciones, en el primer recorrido se reali-
zan (Tam –1), en el segundo (Tam – 2) comparaciones y así sucesivamente hasta ha-
cer una comparación (cuando sea el último par de datos a ordenar). Por lo tanto,
el total de comparaciones se puede expresar como:

456 Capítulo 9. Ordenación

TABLA 9.3 Seguimiento del método de ordenación por intercambio directo
con desplazamiento hacia la derecha

0 0 9 19 76 17 4 18

1 9 19 76 17 4 18

2 9 19 17 76 4 18

3 9 19 17 4 76 18

4 9 19 17 4 18 76

1 0 9 19 17 4 18 76

1 9 17 19 4 18 76

2 9 17 4 19 18 76

3 9 17 4 18 19 76

2 0 9 17 4 18 19 76

1 9 4 17 18 19 76

2 9 4 17 18 19 76

3 0 4 9 17 18 19 76

1 4 9 17 18 19 76

4 0 4 9 17 18 19 76

Ind1 Ind2 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

Total comparaciones = (Tam –1) + (Tam – 2) + (Tam – 3) + ...+ 1 = Tam ** (Tam–1)

2

lo cual puede escribirse como:

Tam2 – Tam
Total comparaciones = ––––––––––––––––

2

FÓRMULA 9.1

Con respecto al número de intercambios, los mismos dependen del estado del
arreglo, es decir, si ya está ordenado, si está ordenado en orden inverso o si está
desordenado. El total de intercambios se expresa de la siguiente manera:

9.2 Ordenación interna 457

9

Intercambio mínimo = 0 si el arreglo ya está ordenado

Intercambio máximo = (Tam2 – Tam) * 1.5 si el arreglo está en orden inverso

Intercambio medio = (Tam2 – Tam) * 0.75 si el arreglo está desordenado

Algoritmo de Sheker o de sacudida

El algoritmo conocido con el nombre de Sheker o de sacudida es una combina-
ción de los dos anteriores. Cada recorrido del arreglo se divide en dos etapas, en
la primera se mueven los elementos más pequeños hacia la izquierda y en la se-
gunda, los elementos más grandes hacia la derecha. En cada etapa se guarda la
posición donde se realizó el intercambio, y de esta manera en el siguiente recorri-
do del arreglo el intervalo se reduce entre estas dos posiciones. El proceso termi-
na cuando no se producen intercambios o bien, cuando la posición del extremo
izquierdo es mayor que la del extremo derecho.

A continuación se presenta la clase Sheker, en la cual el método Ordena corres-
ponde al algoritmo de Sheker o de sacudida.

FÓRMULA 9.2

/** Clase para el método de Sheker o de sacudida. Clase derivada de la

➥clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Sheker: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Este método ordena los elementos de un arreglo utilizando el

➥algoritmo de Sheker. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Sheker<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

Se retoma el arreglo de la figura 9.2 y se utiliza el último método visto para
ordenarlo. La tabla 9.4 presenta la secuencia de operaciones aplicadas. Las
casillas que se recuadran son aquellas cuyos elementos se intercambian y
las casillas que se sombrean son aquellas que quedan ordenadas. Observe que
el intervalo donde se lleva a cabo la ordenación comprende del 1 al 5 (consi-
derando que usa la posición (Indice-1)). Con cada intercambio se guarda la
posición de la casilla correspondiente y al terminar el primer ciclo se redefine
el extremo izquierdo con la posición más 1. Al ejecutar el segundo ciclo, el
intervalo es menor. Nuevamente con cada intercambio se guarda la posición
y al terminar el ciclo se redefine el extremo derecho como la posición menos
1. En el ejemplo presentado, al terminar la segunda ejecución del segundo
ciclo el extremo derecho queda en 3 siendo menor que el extremo izquierdo
(que tiene el valor de 4) y de esta forma se interrumpe el ciclo While y conclu-
ye la ordenación.

458 Capítulo 9. Ordenación

{{

iinntt Indice, Izq= 1, Tam= Arre–>>RegresaTam(), Der= Tam-1,

➥Extremo= Tam-1;

wwhhiillee (Izq <<== Der)

{{

ffoorr (Indice= Der; Indice >>= Izq; Indice––––)

iiff (Arre–>>RegresaValor(Indice-1) >> Arre–>>RegresaValor(Indice))

{{

Intercambia(Indice-1, Indice, Arre);

Extremo= Indice;

}}

Izq= Extremo+1;

ffoorr (Indice= Izq; Indice <<== Der; Indice++++)

iiff (Arre–>>RegresaValor(Indice-1) >> Arre–>>RegresaValor(Indice))

{{

Intercambia(Indice-1, Indice, Arre);

Extremo= Indice;

}}

Der= Extremo-1;

}}

}}

9.2 Ordenación interna 459

9

TABLA 9.4 Seguimiento del método de ordenación Sheker

Índice Izq Der Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]Extremo

5 1 5 19 9 76 17 4 18

5 19 9 76 17 4 18

4 4 19 9 76 4 17 18

3 3 19 9 4 76 17 18

2 2 19 4 9 76 17 18

1 1 4 19 9 76 17 18

2

2 2 4 9 19 76 17 18

3 4 9 19 76 17 18

4 4 4 9 19 17 76 18

5 5 4 9 19 17 18 76

4

4 4 9 19 17 18 76

3 3 4 9 17 19 18 76

2 4 9 17 19 18 76

4

4 4 4 9 17 18 19 76

3

Intercambio directo con señal

Este algoritmo es otra variante de la ordenación por intercambio directo y busca
ganar eficiencia en cuanto al número de comparaciones realizadas. Para ello se
apoya en una variable auxiliar (la señal) que permite determinar en cada recorri-
do si se produjo algún intercambio. Si lo hubo, entonces se sigue recorriendo el
arreglo; mientras que, en caso contrario, la ordenación termina, habiendo queda-
do ordenado todo el arreglo. Es decir, cuando en un recorrido no se hacen inter-
cambios esta situación se detecta por medio de la variable auxiliar o bandera y se
evitan todas las comparaciones pendientes de acuerdo a los límites de los ciclos.

A continuación se presenta la clase IntercConSenial, en la cual el método Ordena
corresponde al algoritmo de ordenación por intercambio directo con señal.

Considere el arreglo de la figura 9.3, se utiliza el algoritmo de intercambio con
señal para ordenarlo. La tabla 9.5 presenta la secuencia de operaciones aplicadas.
Las casillas que se recuadran son aquellas cuyos elementos se intercambian y las
casillas que se sombrean son aquellas que quedan ordenadas. Cuando Ind1 igual
a 2 el arreglo queda ordenado, sin embargo como Bandera está en 0 (por el inter-
cambio entre el 20 y el 24) se ejecuta el ciclo para Ind1 igual 3.

460 Capítulo 9. Ordenación

/** Clase para el método de intercambio directo con señal. Clase derivada

➥de la clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss IntercConSenial: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Este método ordena los elementos del arreglo utilizando el algoritmo

➥de intercambio directo con señal. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd IntercConSenial<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

{{

iinntt Ind1= 0, Ind2, Bandera= 0, Tam= Arre–>>RegresaTam();

wwhhiillee ((Ind1 << Tam-1) &&&& (!!Bandera))

{{

Bandera= 1;

ffoorr (Ind2= 0; Ind2 << Tam-1; Ind2++++)

iiff (Arre–>>RegresaValor(Ind2) >> Arre–>>RegresaValor(Ind2+1))

{{

Intercambia(Ind2, Ind2+1, Arre);

Bandera= 0;

}}

Ind1++++;

}}

}}

15

0 1 2 3 4 5

4 59 24

Arre

51 20

FIGURA 9.3 Arreglo a ordenar

0 0 15 4 59 24 51 20

1 0 4 15 59 24 51 20

0 1 4 15 59 24 51 20

2 4 15 24 59 51 20

0 3 4 15 24 51 59 20

0 4 4 15 24 51 20 59

1

1 0 4 15 24 51 20 59

1 4 15 24 51 20 59

2 4 15 24 51 20 59

3 4 15 24 20 51 59

0 4 4 15 24 20 51 59

2

1 0 4 15 24 20 51 59

1 4 15 24 20 51 59

2 4 15 20 24 51 59

0 3 4 15 20 24 51 59

4 4 15 20 24 51 59

3

1 0 4 15 20 24 51 59

1 4 15 20 24 51 59

2 4 15 20 24 51 59

3 4 15 20 24 51 59

4 4 15 20 24 51 59

9.2 Ordenación interna 461

9

TABLA 9.5 Seguimiento del método de ordenación por
intercambio con señal

Bandera Ind1 Ind2 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

Método rápido o QuickSort

Este método es otra de las variantes del método de intercambio directo, que se
caracteriza por ser la más rápida en memoria interna. Fue propuesto por C. Hoare
en 1962. Básicamente consiste en encontrar la posición de un cierto elemento del

arreglo, al que llamaremos Pivote, de tal manera que todos los valores que se en-
cuentren a su izquierda sean menores o iguales a él y los que se encuentren a su
derecha sean mayores o iguales a él. Este proceso se repite para cada uno de los
valores que queden a la izquierda y a la derecha del pivote.

A continuación se presenta la clase QuickSort, en la cual el método Ordena corres-
ponde al algoritmo de ordenación conocido como Quick Sort o rápido. En este
caso, el método Ordena utiliza un método auxiliar recursivo, Reduce(), que es el
que lleva a cabo la ordenación del arreglo. Este método recibe los extremos del
intervalo en el cual se colocará a un elemento en la posición que le corresponda.
La primera vez dichos extremos coinciden con los del arreglo. Luego de colocar
el primer elemento en la posición que le corresponde por su tamaño, se tienen
dos intervalos, uno a la izquierda y otro a la derecha del mismo, cada uno de
ellos con un tamaño menor al anterior. De ahí el nombre de Reduce(). Este proce-
so se repite hasta que ya no queden elementos a ordenar.

462 Capítulo 9. Ordenación

/** Clase para el algoritmo de ordenación llamado QuickSort. Clase

➥derivada de la clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss QuickSort: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

vvooiidd Reduce (iinntt, iinntt, Arreglo<<TT>> **);

}};

/** Este método ordena los elementos del arreglo utilizando el algoritmo

➥QuickSort. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd QuickSort<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

{{

iinntt Tam;

Tam= Arre–>>RegresaTam();

iiff (Tam >> 0)

Reduce (0, Tam – 1, Arre);

}}

/** Método auxiliar de la clase QuickSort. Los parámetros Inicio y Fin

➥representan los extremos del intervalo (dentro del arreglo) en el cual

➥se está ordenando. La primera vez son el primero y último índice del

➥arreglo a ordenar. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd QuickSort<<TT>>::::Reduce(iinntt Inicio, iinntt Fin, Arreglo<<TT>> **Arre)

El arreglo de la figura 9.4 se ordenará utilizando la clase QuickSort. La tabla 9.6
presenta la secuencia de operaciones aplicadas. Se sombrean las casillas cuyos
contenidos se intercambian, y se recuadra al pivote una vez guardado en la posi-
ción que le corresponde.

9.2 Ordenación interna 463

9

{{

iinntt Izq, Der, Pivote, Bandera;

Izq= Inicio;

Der= Fin;

Pivote= Inicio;

Bandera= 1;

wwhhiillee (Bandera)

{{

Bandera= 0;

wwhhiillee ((Arre–>>RegresaValor(Pivote) <<== Arre–>>RegresaValor(Der))

&&&& (Pivote !!= Der))

Der––––;

iiff (Pivote !!= Der)

{{

Intercambia(Pivote, Der, Arre);

Pivote= Der;

wwhhiillee ((Arre–>>RegresaValor(Pivote)➥>>= Arre–>>RegresaValor

(Izq)) &&&& (Pivote. !!= Izq))

Izq++++;

iiff (Pivote !!= Izq)

{{

Bandera= 1;

Intercambia(Pivote, Izq, Arre);

Pivote= Izq;

}}

}}

}}

iiff ((Pivote – 1) >> Inicio)

Reduce(Inicio, Pivote – 1, Arre);

iiff (Fin >> (Pivote + 1))

Reduce(Pivote + 1, Fin, Arre);

}}

23

0 1 2 3 4 5

41 63 17

Arre

8 50

6

12

FIGURA 9.4 Arreglo a ordenar

0 6 0 6 1 0 23 41 63 17 8 50 12

0 6 12 41 63 17 8 50 23

1 1 1 12 23 63 17 8 50 41

5

4 4 12 8 63 17 23 50 41

2 1 2 12 8 23 17 63 50 41

3 3 0 3 12 8 17 23 63 50 41

0 2 0 2 1 0 12 8 17 23 63 50 41

1 1 0 1 8 12 17 23 63 50 41

4 6 4 6 1 4 8 12 17 23 63 50 41

5 0 6 8 12 17 23 41 50 63

6

4 5 4 5 1 4 8 12 17 23 41 50 63

4 0

464 Capítulo 9. Ordenación

TABLA 9.6 Seguimiento del método de ordenación QuickSort

Inicio Fin Izq Der Band Pivote Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5] Arre[6]

En la tabla se puede observar que, la primera vez, el pivote tiene valor 23 y queda
almacenado en la posición 3. Esto origina que queden dos intervalos a ordenar, uno
a su izquierda comprendido entre las posiciones 0 y 2, y otro a su derecha entre las
posiciones 4 y 6. El método se invoca con el primer par de datos y queda
pendiente la ejecución con el segundo par (queda en la pila interna que maneja
la recursión). La segunda vez se acomoda el valor 12 en la posición 1. Como no
existen intervalos a ordenar a partir de este valor, se sacan de la pila los valores 4
y 6 y se usan como extremos del nuevo intervalo a ordenar. La tercera vez se aco-
moda el 63 en la posición 6. A la derecha del mismo no quedan elementos a or-
denar, sin embargo, a su izquierda sí. Por lo tanto se invoca al método con los
valores 4 y 5, aunque en este caso no hay cambios.

La figura 9.5 (a) muestra cómo queda dividido el intervalo original [0,6] una vez que
se coloca el pivote 23 en la posición correcta, en dos subintervalos: de 0 a 2, a la iz-
quierda del pivote y de 4 a 6 a su derecha. Por otro lado, en la figura 9.5 (b), luego
de colocar al pivote 12 en la posición que le corresponde, el primer subintervalo
vuelve a reducirse, esta vez de tal manera que ya no requiere ordenación.

Es posible plantear algunas variantes de este método, aplicando distintos criterios
para elegir el pivote. Intente buscar y probar otras alternativas para la selección
de este elemento.

Este algoritmo es el más rápido de los conocidos hasta el momento. Sin embargo,
si el arreglo ya estuviera ordenado o estuviera ordenado en orden inverso se per-
dería gran parte de la eficiencia del mismo.

En cuanto al tiempo de ejecución, en el mejor o en la mayoría de los casos,
queda determinado por la expresión presentada en la fórmula 9.3. En el peor
de los casos (por ejemplo si el arreglo ya está ordenado), con la expresión de la
fórmula 9.4.

9.2 Ordenación interna 465

9

12

0 1 2 3 4 5 6

8 17 23 63 50 41

8

0 1 2 3 4 5 6

12 17 23 63 50 41

(a)

(b)

Posición correcta
del pivote

Posición correcta
del pivote

FIGURA 9.5 Acomodo del pivote
(a) Pivote = 23 y (b) Pivote = 12

O(Tam * log Tam)

FÓRMULA 9.3

O(Tam2)

FÓRMULA 9.4

Con respecto al espacio ocupado por la pila de recursión, en el mejor o en el
promedio de los casos, se representa por medio de la expresión presentada en la
fórmula 9.5. En el peor de los casos, con la expresión de la fórmula 9.6.

466 Capítulo 9. Ordenación

O(log Tam)

FÓRMULA 9.5

O(Tam)

FÓRMULA 9.6

9.2.2 Método de ordenación por selección

Otra manera de ordenar un conjunto de datos es seleccionar el más pequeño y
guardarlo en la primera casilla, luego el siguiente más pequeño y guardarlo en la
segunda casilla y así sucesivamente hasta el penúltimo elemento (el último ya no
requiere ordenarse).

A continuación se presenta la clase SeleccionDirecta, en la cual el método Orde-
na corresponde al algoritmo de ordenación por selección directa.

/** Clase que implementa el algoritmo de selección directa. Es una clase

➥derivada de la clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss SeleccionDirecta: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Este método ordena los elementos del arreglo buscando el elemento más

➥pequeño e intercambiándolo con el que ocupa la primera posición del

➥arreglo. Luego busca el siguiente más pequeño y lo almacena en la

➥segunda posición, y así hasta que el arreglo queda completamente

➥ordenado. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd SeleccionDirecta<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

Considere el arreglo de la figura 9.6, se aplica el método visto para ordenarlo. En
la tabla 9.7 se presentan los cambios que se van realizando en el arreglo a medida
que sus elementos van quedando ordenados. Las casillas que se recuadran son
aquellas cuyos elementos se intercambian y las que se sombrean son aquellas que
quedan ordenadas.

9.2 Ordenación interna 467

9

{{

iinntt Menor, Ind1, Ind2, Ind3, Tam= Arre–>>RegresaTam();

ffoorr (Ind1= 0; Ind1 << Tam-1; Ind1++++)

{{

Menor= Arre–>>RegresaValor(Ind1);

Ind2= Ind1;

ffoorr (Ind3= Ind1+1; Ind3 << Tam; Ind3++++)

iiff (Arre–>>RegresaValor(Ind3) << Menor)

{{

Menor= Arre–>>RegresaValor(Ind3);

Ind2= Ind3;

}}

Arre–>>AsignaValor(Ind2, Arre–>>RegresaValor(Ind1));

Arre–>>AsignaValor(Ind1, Menor);

}}

}}

29 35 18 43 21 16

0 1 2 3 4 5

Arre

FIGURA 9.6 Ejemplo de arreglo a ordenar

TABLA 9.7 Seguimiento del método de ordenación por selección directa

Menor Ind2 Ind3 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]Ind1

29 0 0 29 35 18 43 21 16

1

18 2 2

3

4

16 5 5

continúa

468 Capítulo 9. Ordenación

TABLA 9.7 Continuación

Menor Ind2 Ind3 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]Ind1

16 35 18 43 21 29

35 1 1

18 2 2

3

4

5

16 18 35 43 21 29

35 2 2

3

21 4 4

5

16 18 21 43 35 29

43 3 3

35 4 4

29 5 5

16 18 21 29 35 43

35 4 4

5 5

16 18 21 29 35 43

El número de intercambios que se llevan a cabo es igual al número de elementos
menos uno, lo cual queda expresado en la fórmula 9.7.

Total Intercambios = Tam –1

FÓRMULA 9.7

Este método realiza el mismo número de comparaciones que el de intercambio
directo, es decir Tam * (Tam – 1)/2, por lo tanto se puede decir que el tiempo de
ejecución del algoritmo es:

9.2 Ordenación interna 469

9

O(Tam2)

FÓRMULA 9.8

9.2.3 Método de ordenación por inserción

La ordenación por inserción consiste en tomar un elemento e insertarlo en el
lado izquierdo del arreglo que ya se encuentra ordenado. El proceso empieza a
partir de la segunda casilla y se aplica hasta el último elemento. Existen algunos
métodos que se basan en esta idea:

• Inserción directa

• Inserción binaria

• Shell

Método de inserción directa

Este método ordena el arreglo a partir del segundo elemento, insertándolo en el
lado izquierdo que ya está ordenado (la primera vez sólo se ordena con respecto
al primer elemento). Luego de la primera iteración se tienen dos elementos orde-
nados y por lo tanto el tercer valor se inserta en la posición que le corresponda,
de tal manera que el orden de los dos primeros elementos no se altere. Se repite
el proceso hasta el valor Tam–1.

A continuación se presenta la clase InsercionDirecta, en la cual el método Ordena
corresponde al algoritmo de ordenación por inserción directa.

/** Clase para implementar el algoritmo de inserción directa. Es una cla-

➥se derivada de la clase abstracta Ordenador. **/
tteemmppllaattee <<ccllaassss TT>>

ccllaassss InsercionDirecta: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Este método ordena los elementos del arreglo insertando cada elemento

➥en la parte izquierda del arreglo, asumiendo que la misma ya está

➥ordenada y por lo tanto sin alterar dicho orden. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd InsercionDirecta<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

1 35 0 29 35 18 43 21 16

2 18 1 29 35 35 43 21 16

0 29 29 35 43 21 16

–1 18 29 35 43 21 16

3 43 2 18 29 35 43 21 16

4 21 3 18 29 35 43 43 16

2 18 29 35 35 43 16

1 18 29 29 35 43 16

0 18 21 29 35 43 16

5 16 4 18 21 29 35 43 43

Considere el arreglo de la figura 9.6, se aplica el algoritmo de inserción directa
para ordenarlo. La tabla 9.8 presenta los cambios que se van realizando en el
arreglo a medida que sus elementos van quedando ordenados. Las casillas que se
recuadran son las que se modifican, y se sombrean las que quedan ordenadas. En
la primera iteración quedan ordenadas las casillas 0 y la 1, en la segunda, las tres
primeras y así sucesivamente hasta que en la iteración Tam–1 quedan las Tam casi-
llas ordenadas.

470 Capítulo 9. Ordenación

{{

iinntt Auxiliar, Indice, IndAux, Tam= Arre–>>RegresaTam();

ffoorr (Indice= 1; Indice << Tam; Indice++++)

{{

Auxiliar= Arre–>>RegresaValor(Indice);

IndAux= Indice - 1;

wwhhiillee ((IndAux >>= 0) &&&& (Auxiliar << Arre–>>RegresaValor(IndAux)))

{{

Arre–>>AsignaValor(IndAux+1, Arre–>>RegresaValor(IndAux));

IndAux––––;

}}

Arre–>>AsignaValor(IndAux+1, Auxiliar);

}}

}}

TABLA 9.8 Seguimiento del método de ordenación por inserción directa

Índice Auxiliar IndAux Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

continúa

3 18 21 29 35 35 43

2 18 21 29 29 35 43

1 18 21 21 29 35 43

0 18 18 21 29 35 43

–1 16 18 21 29 35 43

9.2 Ordenación interna 471

9

TABLA 9.8 Continuación

Índice Auxiliar IndAux Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

Este método, en el peor de los casos, realiza una comparación en la primera itera-
ción, en la segunda lleva a cabo dos y así hasta hacer (Tam –1) comparaciones en
la última pasada. Por lo tanto se tienen 1 + 2 + … + (Tam –1) comparaciones que
es igual a:

Total comparaciones = Tam * (Tam –1) /2

FÓRMULA 9.9

Total comparaciones = Tam * (Tam –1) /4

FÓRMULA 9.10

O(Tam2)

FÓRMULA 9.11

Si se considera que en cada pasada, en promedio, se compara la mitad de los
números antes de encontrar el lugar de inserción, se debe dividir a la expresión
anterior entre 2 para obtener el número promedio de comparaciones, quedando:

Con respecto al tiempo promedio de ejecución, puede representarse por medio de
la expresión:

Método de inserción binaria

El método de inserción binaria es una mejora del anterior. En este caso se reali-
za búsqueda binaria para encontrar la posición que le corresponde al elemento a
ordenar en la parte izquierda del arreglo. Es decir, cuando se toma el elemento i y
se busca la posición correcta en la que debe insertarse, se usa la búsqueda binaria
en lugar de la secuencial (ambos métodos de búsqueda se estudian en el próximo
capítulo). De esta manera se aprovecha que los elementos que se encuentran a la
izquierda del analizado ya están ordenados.

A continuación se presenta la clase InsercionBinaria, en la cual el método Orde-
na corresponde al algoritmo de ordenación por inserción binaria.

472 Capítulo 9. Ordenación

/** Clase para implementar el algoritmo de ordenación por inserción

➥binaria. Es una clase derivada de la clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss InsercionBinaria: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Este método ordena los elementos del arreglo, insertando a cada uno

➥de ellos en la parte izquierda del mismo, asumiendo que se encuentra

➥ordenado. Utiliza búsqueda binaria para encontrar la posición que le

➥corresponde dentro de la parte ya ordenada del arreglo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd InsercionBinaria<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

{{

iinntt Auxiliar, Ind1, Ind2, Izq, Der, Medio, Tam= Arre–>>RegresaTam();

ffoorr (Ind1= 1; Ind1 << Tam; Ind1++++)

{{

Auxiliar= Arre–>>RegresaValor(Ind1);

Izq= 0;

Der= Ind1-1;

wwhhiillee (Izq <<== Der)

{{

Medio= iinntt((Izq + Der)/2);

iiff (Auxiliar <<== Arre–>>RegresaValor(Medio))

Der= Medio - 1;

eellssee

Izq= Medio + 1;

}}

1 35 0 0 0 29 35 18 43 21 16

1 0 29 35 18 43 21 16

2 18 0 1 0

–1 1 29 35 35 43 21 16

0 29 29 35 43 21 16

–1 18 29 35 43 21 16

3 43 0 2 1 18 29 35 43 21 16

Considere el arreglo de la figura 9.7, se aplica el último algoritmo visto para or-
denarlo. La tabla 9.9 presenta los cambios que se van realizando en el arreglo a
medida que sus elementos van quedando ordenados. Se recuadran las celdas cu-
yos contenidos van actualizándose y, al final de cada iteración, se sombrea la
porción del arreglo que queda ordenada. Los valores que va tomando la variable
Medio son las posiciones de los elementos contra los que se compara el dato a
ordenar. Como se puede apreciar en la tabla, no se compara con todos los que
están a su izquierda, lo cual es resultado de usar la búsqueda binaria.

9.2 Ordenación interna 473

9

Ind2= Ind1-1;

wwhhiillee (Ind2 >>= Izq)

{{

Arre–>>AsignaValor(Ind2+1, Arre–>>RegresaValor(Ind2));

Ind2––––;

}}

Arre–>>AsignaValor(Izq, Auxiliar);

}}

}}

29 35 18 43 21 16

0 1 2 3 4 5

Arre

FIGURA 9.7 Ejemplo de arreglo a ordenar

TABLA 9.9 Seguimiento del método de ordenación por inserción binaria

Ind1 Izq Der Medio Ind2 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]Auxiliar

continúa

2 2 18 29 35 43 21 16

3 2 18 29 35 43 21 16

4 21 0 3 1 18 29 35 43 21 16

1 0 0 18 29 35 43 21 16

3 18 29 35 43 43 16

2 18 29 35 35 43 16

1 18 29 29 35 43 16

0 18 21 29 35 43 16

5 16 0 4 2 18 21 29 35 43 16

1 0 18 21 29 35 43 16

–1 4 18 21 29 35 43 43

3 18 21 29 35 35 43

2 18 21 29 29 35 43

1 18 21 21 29 35 43

0 18 18 21 29 35 43

-1 16 18 21 29 35 43

474 Capítulo 9. Ordenación

TABLA 9.9 Continuación

Ind1 Izq Der Medio Ind2 Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]Auxiliar

En esta variante del método de inserción, el número de intercambios no se al-
tera, por lo tanto el tiempo promedio de ejecución es igual al presentado en la
fórmula 9.11. Con respecto al número de comparaciones, realiza la mitad por
usar búsqueda binaria. Por lo tanto, el total de comparaciones resulta igual
al caso promedio del método de inserción analizado en la sección anterior
(fórmula 9.10).

Método de Shell

Este método es otra variante mejorada del método de inserción directa. La idea
de insertar un elemento en una posición de tal forma que el arreglo vaya quedan-
do ordenado se mantiene, sin embargo, en este método los elementos a comparar
se seleccionan con un intervalo que se reduce en cada iteración. Por ejemplo, la

primera vez el rango es de Tam/2 posiciones, luego Tam/4, después Tam/8 y así
hasta obtener un valor de 1. Observe cómo en el siguiente ejemplo se va redu-
ciendo el intervalo de los elementos a comparar. La primera vez, como Tam es 18
se compara el valor de la posición 0 con el de la posición 9, el de la 1 con el de
la 10 y así hasta el final. En cada caso, dependiendo de la comparación, se hace
el intercambio correspondiente. Si hubo al menos un intercambio entonces se
comparan nuevamente los contenidos de dichas casillas para asegurar que dichos
elementos queden ordenados. La segunda vez, luego de reducir el tamaño del in-
tervalo en 2, se compara el valor de la casilla 0 con el de la 4, el de la 1 con el de
la 5 y así hasta el final. El proceso se repite hasta que los elementos a comparar
(e intercambiar si correspondiera) ocupan posiciones consecutivas.

Considere el arreglo de 18 elementos que se muestra a continuación. Sobre el
mismo se aplicará el algoritmo de Shell para ilustrar gráficamente su funciona-
miento. Se sombrean las casillas en las cuales se realizó algún intercambio de
contenido.

9.2 Ordenación interna 475

9

17161514131211109876543210

562830703955674921901741329811423 87

Inicialmente se define un intervalo de tamaño igual a 9 (Tam/2). El siguiente arre-
glo muestra el resultado luego de la comparación e intercambio de los valores 81
con 55 y 90 con 28.

23 14 55 9 32 41 17 28 21 49 67 81 39 87 70 30 90 56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

En el siguiente paso, el intervalo se define de tamaño igual a 4 (el valor anterior
se reduce a la mitad). Por lo tanto, se van a comparar (y, si corresponde, inter-
cambiar) los contenidos de las posiciones 0 y 4, 1 y 5, 2 y 6, y así hasta el final.

El siguiente arreglo muestra el resultado luego de la comparación e intercambio
de los valores 55 con 17, 32 con 21, 81 con 30 y 87 con 56.

476 Capítulo 9. Ordenación

17161514131211109876543210

56903070873981674921281741329551423

23 14 17 9 21 41 55 28 32 49 67 30 39 56 70 81 90 87

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

17 9 21 14 23 28 32 30 39 41 55 49 67 56 70 81 90 87

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

En el siguiente paso, el intervalo se define de tamaño igual a 2 (el valor anterior
se reduce a la mitad). Ahora se van a comparar (y, si corresponde, intercambiar)
los contenidos de las posiciones 0 y 2, 1 y 3, 2 y 5, y así hasta el final.

17161514131211109876543210

87908170563930674932285541219171423

El siguiente arreglo muestra el resultado luego de la comparación e intercambio
de los valores 23 con 17, 14 con 9, 41 con 28, 55 con 32, 49 con 30 y 67 con 39.

En el siguiente paso, el intervalo se define de tamaño igual a 1 (el valor anterior
se reduce a la mitad). Por lo tanto, se comparan (y, si corresponde, intercambian)
elementos consecutivos.

El siguiente arreglo muestra el resultado luego de la comparación e intercambio
de los valores 17 con 9, 21 con 14, 32 con 30, 55 con 49, 67 con 56, 90 con 87 y
17 con 14.

9.2 Ordenación interna 477

9

9 14 17 21 23 28 30 32 39 41 49 55 56 67 70 81 87 90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

17161514131211109876543210

87908170566749554139303228231421917

0

A continuación se presenta la clase Shell, en la cual el método Ordena correspon-
de al algoritmo de ordenación con el mismo nombre.

/** Clase para implementar el algoritmo de ordenación llamado Shell.

➥Clase derivada de la clase abstracta Ordenador. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Shell: ppuubblliicc Ordenador<<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (Arreglo<<TT>> **);

}};

/** Este método ordena los elementos del arreglo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Shell<<TT>>::::Ordena(Arreglo<<TT>> **Arre)

{{

iinntt Intervalo, Indice, Bandera, Tam= Arre–>>RegresaTam();

Intervalo= Tam;

wwhhiillee (Intervalo >> 1)

{{

Intervalo= iinntt(Intervalo/2);

Bandera= 1;

wwhhiillee (Bandera)

{{

Bandera= 0;

Indice= 0;

wwhhiillee ((Indice + Intervalo) << Tam)

{{

iiff (Arre–>>RegresaValor(Indice) >>

➥Arre–>>RegresaValor(Indice + Intervalo))

La eficiencia de este método resulta difícil de analizar teóricamente. Algunos au-
tores señalan rangos desde O(Tam3/2) hasta O(Tam 7/6) y otros una eficiencia del or-
den de O(Tam * (log Tam)2).

Considere el arreglo de la figura 9.8, se aplica el algoritmo de Shell para ordenarlo.
La tabla 9.10 presenta los cambios que se van realizando en el mismo a medida
que sus elementos van quedando ordenados. Se sombrean las casillas cuyos conteni-
dos se modifican.

478 Capítulo 9. Ordenación

{{

Intercambia(Indice, Indice + Intervalo, Arre);

Bandera= 1;

}}

Indice++++;

}}

}}

}}

}}

29 35 18 43 21 16

0 1 2 3 4 5

Arre

FIGURA 9.8 Ejemplo de arreglo a ordenar

6 29 35 18 43 21 16

3 1 29 35 18 43 21 16

0 0

1 29 21 18 43 35 16

1 2 29 21 16 43 35 18

3

0 0 29 21 16 43 35 18

1 29 21 16 43 35 18

TABLA 9.10 Seguimiento del método de ordenación Shell

Intervalo Bandera Índice Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

continúa

9.2 Ordenación interna 479

9

2 29 21 16 43 35 18

3

1 1

0 0 21 29 16 43 35 18

1 1 21 16 29 43 35 18

1 2 21 16 29 43 35 18

3 21 16 29 35 43 18

4 21 16 29 35 18 43

5

0 0 16 21 29 35 18 43

1 1 16 21 29 35 18 43

2 16 21 29 35 18 43

3 16 21 29 18 35 43

1 4 16 21 29 18 35 43

5 16 21 29 18 35 43

0 0 16 21 29 18 35 43

1 16 21 29 18 35 43

2 16 21 18 29 35 43

1 3 16 21 18 29 35 43

4 16 21 18 29 35 43

5 16 21 18 29 35 43

0 0 16 18 21 29 35 43

1 1 16 18 21 29 35 43

2 16 18 21 29 35 43

3 16 18 21 29 35 43

4 16 18 21 29 35 43

5 16 18 21 29 35 43

0 0 16 18 21 29 35 43

TABLA 9.10 Continuación

Intervalo Bandera Índice Arre[0] Arre[1] Arre[2] Arre[3] Arre[4] Arre[5]

A continuación se presenta la plantilla de la clase arreglo que se utilizó en todos los
métodos de ordenación estudiados en este capítulo. Si el tipo T utilizado para darle
valor a la plantilla fuera una clase, entonces en dicha clase se debería sobrecargar el
operador << y el operador >> para que los objetos pudieran leerse y escribirse direc-
tamente. Asimismo, deberían sobrecargarse los operadores relacionales <, > y == para
que los objetos pudieran compararse tal como lo establecen los métodos vistos.

Programa 9.1

480 Capítulo 9. Ordenación

/** Se define una constante que representa el número máximo de elementos

➥que puede almacenar el arreglo. **/

##ddeeffiinnee MAX 100

/** Se define la plantilla de la clase Arreglo con todos sus atributos y

➥métodos. Se asume que no existe orden entre los elementos del arreglo. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Arreglo

{{

pprriivvaattee::

TT Datos[MAX];

iinntt Tam;

ppuubblliicc::

Arreglo();

iinntt RegresaTam();

TT RegresaValor(iinntt);

vvooiidd AsignaValor(iinntt, TT);

vvooiidd Lectura();

vvooiidd Escribe();

}};

/** Declaración del método constructor. Inicializa el número actual de

➥elementos en 0. **/

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Arreglo()

{{

Tam= 0;

}}

/** Método que regresa el total de elementos almacenados en el arreglo. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::RegresaTam()

{{

rreettuurrnn Tam;

}}

/** Método que regresa el contenido de la casilla identificada con el

➥valor de Indice. **/
tteemmppllaattee <<ccllaassss TT>>

TT Arreglo<<TT>>::::RegresaValor(iinntt Indice)

9.2 Ordenación interna 481

9

{{

rreettuurrnn Datos[Indice];

}}

/** Método que asigna el contenido de Valor a la casilla indicada por

➥Indice. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::AsignaValor(iinntt Indice, TT Valor)

{{

Datos[Indice]= Valor;

}}

/** Método que lee del teclado y almacena en el arreglo un conjunto de

➥valores. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Lectura()

{{

iinntt Indice;

/** Lectura del número de elementos a guardar en el arreglo. Se valida

➥que el valor dado por el usuario sea menor o igual que el máximo

➥permitido. **/

ddoo {{

ccoouutt<<<<”\n\n Ingrese total de elementos: ”;

cciinn>>>> Tam;

}} wwhhiillee (Tam << 1 | | Tam >> MAX);

/** Lectura de valores para cada una de las Tam casillas del arreglo. **/

ffoorr (Indice= 0; Indice << Tam; Indice++++)

{{

ccoouutt<<<<”\nIngrese el ”<<<<Indice + 1<<<<” dato: ”;

cciinn>>>> Datos[Indice];

}}

}}

/** Método que despliega los valores almacenados en las casillas del

➥arreglo. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Escribe()

{{

iinntt Indice;

iiff (Tam >> 0)

{{

ccoouutt<<<<”\n\n”;

ffoorr (Indice= 0; Indice << Tam; Indice++++)

ccoouutt<<<< ‘\t’ <<<< Datos[Indice];

ccoouutt<<<<”\n\n”;

}}

eellssee

ccoouutt<<<< ”\n No hay elementos almacenados.”;

}}

El programa 9.3 presenta parte de un programa de aplicación de los métodos de
ordenación estudiados hasta el momento, el cual, utiliza tres librerías, una de
ellas es MetOrdena.h en la cual se guardó la clase abstracta Ordenador y todas sus
clases derivadas, otra es Arreglo.h que corresponde al programa 9.1 y la última
Alumno.h en la cual se almacenó la clase Alumno que sirve como tipo base para
declarar los elementos del arreglo. Por razones de espacio sólo se incluye la clase
Alumno en el programa 9.2, quedando a cargo de usted la reconstrucción de la li-
brería MetOrdena.h a partir del código de todos los métodos analizados.

Programa 9.2

482 Capítulo 9. Ordenación

/* Declaración de la clase Alumno. Se incluyeron sólo dos atributos, la

➥clave y el nombre del alumno. Se sugiere que usted los complemente. */

ccllaassss Alumno {

pprriivvaattee::

iinntt Clave;

cchhaarr Nombre[64];

ppuubblliicc::

Alumno();

Alumno(iinntt, cchhaarr *);

iinntt ooppeerraattoorr >> (Alumno);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&, Alumno &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&, Alumno &&);

};

/* Método constructor por omisión. */

Alumno::::Alumno()

{}

/* Método constructor con parámetros. */

Alumno::::Alumno(iinntt Cla, cchhaarr Nom[])

{

Clave= Cla;

ssttrrccppyy(Nombre, Nom);

}

/* Sobrecarga del operador >> para que un objeto tipo Alumno pueda ser

➥comparado directamente. La comparación se realiza sólo sobre el

➥atributo Clave. */

iinntt Alumno::::ooppeerraattoorr >> (Alumno ObjAl)

{

iiff (Clave >> ObjAl.Clave)

rreettuurrnn 1;

eellssee

rreettuurrnn 0;

}

Programa 9.3

9.2 Ordenación interna 483

9

/* Sobrecarga del operador >>>> para que un objeto tipo Alumno pueda ser

➥leído directamente. */

iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&Lee, Alumno &&ObjAl)

{

cout<<<<”\n\nIngrese clave del alumno: ”;

Lee>>>>ObjAl.Clave;

cout<<<<”\n\nIngrese nombre del alumno: ”;

Lee>>>>ObjAl.Nombre;

rreettuurrnn Lee;

}

/* Sobrecarga del operador <<<< para que un objeto tipo Alumno pueda ser

➥impreso directamente. */

oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&Escribe, Alumno &&ObjAl)

{

Escribe<<<<”\n\nDatos del alumno\n”;

Escribe<<<<”\nClave: ”<<<<ObjAl.Clave;

Escribe<<<<”\nNombre: ”<<<<ObjAl.Nombre<<<<”\n”;

rreettuurrnn Escribe;

}

/* Aplicación de los métodos de ordenación interna para ordenar un

➥arreglo de objetos tipo Alumno. Se leen varios objetos tipo Alumno y

➥se almacenan en un arreglo en el orden que se dan, posteriormente se

➥ordenan e imprimen. */

/* Librería que almacena la clase Alumno presentada en el programa 9.2 */

##iinncclluuddee ”Alumno.h”

/* Librería que almacena la clase Arreglo presentada en el programa 9.1 */

##iinncclluuddee ”Arreglo.h”

/* Librería que almacena la clase abstracta Ordenador y todas sus

➥clases derivadas que representan cada uno de los métodos de ordenación

➥estudiados. */

##iinncclluuddee ”MetOrdena.h”

/* Función principal. En este código (parte de una aplicación) se

➥declara el objeto Orden, de la clase IntercDirectoIzq, que representa

➥el método de ordenación por intercambio directo con desplazamiento del

➥elemento más pequeño hacia la izquierda. Además, se declara un objeto

➥de la clase Arreglo usando la clase Alumno. Posteriormente se usa el

➥objeto Orden para ordenar crecientemente el arreglo de alumnos según

➥la clave de los mismos. Por último, se imprimen los datos del alumno

➥con clave más pequeña. */

En este libro se presentaron a cada uno de los algoritmos de ordenación como
subclases de una clase abstracta. Sin embargo, es posible definirlos como méto-
dos dentro de la clase Arreglo. El programa 9.4 presenta parte de esta clase con
algunos de los métodos estudiados. Por razones de espacio, se incluyen sólo los
prototipos de los métodos de la clase Arreglo, mismos que fueron presentados en
el programa 9.1.

Programa 9.4

484 Capítulo 9. Ordenación

vvooiidd mmaaiinn(())

{

/* Declaración y lectura del arreglo que almacena objetos tipo

➥Alumno. */

Arreglo<<Alumno>> Escuela;

Escuela.Lectura();

/* Creación de un objeto de la clase IntercDirectoIzq, el cual se

➥usará para ordenar el arreglo de alumnos. */

IntercDirectoIzq<<Alumno>> Orden;

/* Se aplica el algoritmo de ordenación sobre el arreglo de alumnos. */

Orden.Ordena(&&Escuela);

/* Se imprime el contenido del arreglo una vez ordenado. */

Escuela.Escribe();

/* Impresión de los datos del alumno con clave más pequeña, por lo

➥tanto quedó (luego de la ordenación) en el primer lugar del arreglo. */

iiff (Escuela.RegresaTam() !!== 0)

ccoouutt<<<<””Los datos del primer alumno son:

➥”<<<<Escuela.RegresaValor(0)<<<<”\n”;

}

/* Se define la plantilla de la clase Arreglo con todos sus atributos y

➥métodos. Se asume que no existe orden entre los elementos del arreglo.

➥Se incluyen algunos de los algoritmos de ordenación estudiados como

➥métodos de esta clase. */

/* Se define una constante que representa el número máximo de elementos

➥que puede almacenar el arreglo. */

##ddeeffiinnee MAX 100

9.2 Ordenación interna 485

9

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Arreglo

{

pprriivvaattee::

TT Datos[MAX];

iinntt Tam;

ppuubblliicc::

Arreglo();

iinntt RegresaTam();

TT RegresaValor(iinntt);

vvooiidd AsignaValor(iinntt, TT);

vvooiidd Intercambia(iinntt, iinntt);

vvooiidd IntercDirectoIzq();

vvooiidd InsercionDirecta();

vvooiidd SeleccionDirecta();

vvooiidd QuickSort();

vvooiidd Reduce(iinntt, iinntt);

vvooiidd Lectura();

vvooiidd Escribe();

};

/* Declaración del método constructor. Inicializa el número actual de

➥elementos en 0. */

tteemmppllaattee <<ccllaassss T>>

Arreglo<<TT>>::::Arreglo()

{

Tam=0;

}

/* Método auxiliar que intercambia los contenidos de dos elementos del

➥arreglo. */

tteemmppllaattee <<ccllaassss T>>

vvooiidd Arreglo<<TT>>::::Intercambia(iinntt Ind1, iinntt Ind2)

{

TT Auxiliar;

Auxiliar= Datos[Ind1];

Datos[Ind1]= Datos[Ind2];

Datos[Ind2]= Auxiliar;

}

/* Método que ordena los elementos del arreglo usando el algoritmo de

➥intercambio directo con desplazamiento del elemento más pequeño hacia

➥el extremo izquierdo. */

tteemmppllaattee <<ccllaassss T>>

vvooiidd Arreglo<<TT>>::::IntercDirectoIzq()

486 Capítulo 9. Ordenación

{

iinntt Ind1, Ind2;

ffoorr (Ind1= 1; Ind1<< Tam; Ind1++++)

ffoorr (Ind2= Tam-1; Ind2 >>= Ind1; Ind2––––)

iiff (Datos[Ind2-1] >> Datos[Ind2])

Intercambia(Ind2-1, Ind2);

}

/* Método que ordena los elementos del arreglo usando el algoritmo de

➥inserción directa. */

tteemmppllaattee <<ccllaassss T>>

vvooiidd Arreglo<<TT>>::::InsercionDirecta()

{

iinntt Auxiliar, Indice, IndAux;

ffoorr (Indice= 1; Indice << Tam; Indice++++)

{

Auxiliar= Datos[Indice];

IndAux= Indice - 1;

wwhhiillee ((IndAux >>= 0) &&&& (Auxiliar << Datos[IndAux]))

{

Datos[IndAux+1]= Datos[IndAux];

IndAux––––;

}

Datos[IndAux+1]= Auxiliar;

}

}

/* Este método ordena los elementos del arreglo utilizando el algoritmo

➥de selección directa. */

tteemmppllaattee <<ccllaassss T>>

vvooiidd Arreglo<<TT>>::::SeleccionDirecta()

{

iinntt Menor, Ind1, Ind2, Ind3;

ffoorr (Ind1= 0; Ind1 << Tam-1; Ind1++++)

{

Menor= Datos[Ind1];

Ind2= Ind1;

ffoorr (Ind3= Ind1+1; Ind3 << Tam; Ind3++++)

iiff (Datos[Ind3] << Menor)

{

Menor= Datos[Ind3];

Ind2= Ind3;

}

Datos[Ind2]= Datos[Ind1];

Datos[Ind1]= Menor;

}

}

9.2 Ordenación interna 487

9

/* Este método ordena los elementos del arreglo utilizando el algoritmo

➥QuickSort. */

tteemmppllaattee <<ccllaassss T>>

vvooiidd Arreglo<<TT>>::::QuickSort()

{

Reduce(0, Tam-1);

}

/* Método auxiliar del algoritmo QuickSort. Las parámetros Inicio y Fin

➥representan los extremos del intervalo en el cual se está ordenando. */

tteemmppllaattee <<ccllaassss T>>

vvooiidd Arreglo<<TT>>::::Reduce(iinntt Inicio, iinntt Fin)

{

iiff (Tam >> 0)

{

iinntt Izq, Der, Posic, Bandera;

Izq= Inicio;

Der= Fin;

Posic= Inicio;

Bandera= 1;

wwhhiillee (Bandera)

{

Bandera= 0;

wwhhiillee ((Datos[Posic] <<= Datos[Der]) &&&& (Posic !!== Der))

Der––––;

iiff (Posic !!== Der)

{

Intercambia(Posic, Der);

Posic= Der;

wwhhiillee ((Datos[Posic] >>= Datos[Izq]) &&&& (Posic !!== Izq))

Izq++++;

iiff (Posic !!== Izq)

{

Bandera=1;

Intercambia(Posic, Izq);

Posic= Izq;

}

}

}

iiff ((Posic-1) >> Inicio)

Reduce(Inicio, Posic-1);

iiff (Fin >> (Posic+1))

Reduce(Posic+1, Fin);

}

}

9.3 Ordenación externa
La ordenación externa hace referencia a ordenar un conjunto de datos que se
encuentran almacenados en algún dispositivo en memoria secundaria o auxiliar.
En este libro nos enfocaremos a ordenar datos que se encuentran almacenados en
archivos. El resultado de aplicar un método de ordenación a un archivo es que to-
dos sus elementos quedan ordenados de manera creciente o de manera decreciente.

• Creciente: dato1 � dato2 � ... � daton (el primer dato es menor o igual que el
segundo, éste es menor o igual que el tercero y así sucesivamente hasta
el último dato).

• Decreciente: dato1 � dato2 � ... � daton (el primer dato es mayor o igual
que el segundo, éste es mayor o igual que el tercero y así sucesivamente
hasta el último dato).

Los métodos utilizados para ordenar a los elementos de un archivo son:

488 Capítulo 9. Ordenación

TABLA 9.11 Métodos de ordenación
Métodos de ordenación externa

Mezcla directa

Mezcla equilibrada

Para programar los métodos de ordenación externa en el lenguaje C++ se definió
una clase base abstracta y dos clases derivadas. Cada una de las clases derivadas
representa uno de los métodos que se estudiarán en este capítulo. La figura 9.9
presenta un esquema de las clases mencionadas.

Ordenador(T)

virtual void Ordena()

MezclaDirecta(T)

void Ordena()

. . .

MezclaEquilibrada(T)

void Ordena()

. . .

FIGURA 9.9 Esquema de clases

La clase Base abstracta se programa como se muestra a continuación. La misma
tiene un método virtual puro el cual se redefinirá en cada subclase dependiendo
del método de ordenación que se esté implementando.

9.3 Ordenación externa 489

9

/** Clase abstracta Ordenador, se utiliza para generar clases derivadas

➥que representan cada uno de los métodos de ordenación externa

➥estudiados. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Ordenador

{{

ppuubblliicc::

vviirrttuuaall vvooiidd Ordena (cchhaarr **) = 0;

}};

9.3.1 Mezcla directa

Este método es muy sencillo y consiste en dividir el archivo en particiones y lue-
go volver a generar el archivo a partir de estas particiones pero logrando que los
elementos que componen a cada una de ellas queden ordenados. Este proceso se
repite, pero ahora con particiones de mayor tamaño. De esta manera, el archivo
va quedando ordenado por tramos hasta llegar a que todos sus elementos queden
ordenados entre sí.

Para ayudar a entender más claramente cómo funciona este método se presenta el
siguiente ejemplo. Suponga que se tiene un archivo Arch que almacena las claves:

Arch: 18, 23, 12, 45, 56, 33, 20, 16, 89, 34, 75, 44, 31, 14, 67, 28

1. Se elige un tamaño de partición igual a 1, formando dos archivos a partir de
Arch de la siguiente manera:

Arch 1: 18, 12, 56, 20, 89, 75, 31, 67

Arch 2: 23, 45, 33, 16, 34, 44, 14, 28

Luego de la partición, se vuelve a formar el archivo pero logrando que se
tenga una secuencia de dos elementos ordenados entre sí:

Arch: 18, 23 , 12, 45 , 33 , 56 , 16 , 20 , 34 , 89 , 44 , 75 , 14 , 31 , 28 , 67

2. En la segunda iteración se elige un tamaño de partición igual a 2, formando
dos archivos a partir de Arch de la siguiente manera:

Arch 1: 18, 23 , 33, 56 , 34, 89 , 14, 31

Arch 2: 12, 45 , 16, 20 , 44, 75 , 28, 67

Luego de la partición, se vuelve a formar el archivo pero logrando que se
tenga una secuencia de cuatro elementos ordenados entre sí:

Arch: 12, 18, 23, 45 , 16, 20, 33, 56 , 34, 44, 75, 89 , 14, 28, 31, 67

3. En la siguiente iteración se elige un tamaño de partición igual a 4, formando
dos archivos a partir de Arch de la siguiente manera:

Arch 1: 12, 18, 23, 45 , 34, 44, 75, 89

Arch 2: 16, 20, 33, 56 , 14, 28, 31, 67

Nuevamente se vuelven a unir los dos archivos resultantes para formar el ar-
chivo original pero ahora con una secuencia de ocho elementos ordenados
entre sí:

Arch: 12, 16, 18, 20, 23, 33, 45, 56 , 14, 28, 31, 34, 44, 67, 75, 89

4. En la siguiente iteración se elige un tamaño de partición igual a 8, formando
dos archivos a partir de Arch de la siguiente manera:

Arch 1: 12, 16, 18, 20, 23, 33, 45, 56

Arch 2: 14, 28, 31, 34, 44, 67, 75, 89

Por último se unen los dos archivos resultantes para formar el archivo origi-
nal con todos sus elementos ordenados:

Arch: 12, 14, 16, 18, 20, 23, 28, 31, 33, 34, 44, 45, 56, 67, 75, 89

Seguramente, en la práctica, el archivo almacenará datos más complejos que nú-
meros enteros, sin embargo por razones de simplicidad se mostró el ejemplo sólo
con números. A continuación se presenta, utilizando el lenguaje C++, la clase
MezclaDirecta, que es una clase derivada de la clase abstracta Ordenador, que im-
plementa este método.

490 Capítulo 9. Ordenación

/** Declaración de la clase derivada MezclaDirecta, en la cual el método

➥Ordena se define con el algoritmo correspondiente al método de

➥ordenación externa llamado mezcla directa. **/

tteemmppllaattee <<ccllaassss TT>>

ccllaassss MezclaDirecta: ppuubblliicc Ordenador <<TT>>

9.3 Ordenación externa 491

9

{{

ppuubblliicc::

vvooiidd Ordena (cchhaarr **);

vvooiidd Divide (ffssttrreeaamm , ffssttrreeaamm **, ffssttrreeaamm **, iinntt);

vvooiidd Mezcla (ffssttrreeaamm **, ffssttrreeaamm , ffssttrreeaamm , iinntt);

}};

/** Método de ordenación de la clase MezclaDirecta. Este método se apoya

➥en otros dos: Divide y Mezcla, los cuales implementan las dos

➥operaciones analizadas en el ejemplo anterior. Recibe como parámetro

➥el nombre del archivo a ordenar. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaDirecta <<TT>>::::Ordena (cchhaarr **NomArch)

{{

ffssttrreeaamm Arch, Arch1, Arch2;

iinntt Partic, Maximo;

Arch..ooppeenn(NomArch, iiooss::::iinn | iiooss::::oouutt);
Arch..sseeeekkgg(0, iiooss::::eenndd);

/** Calcula el total de datos guardados en el archivo. **/

Maximo= (iinntt) (Arch.tteellllgg())/ssiizzeeooff(iinntt);

Partic= 1;

wwhhiillee (Partic << Maximo)

{{

Divide(Arch, &&Arch1, &&Arch2, Partic);

Mezcla(&&Arch, Arch1, Arch2, Partic);

Partic= Partic ** 2;

}}

Arch.cclloossee();

}}

/** Método auxiliar que parte el archivo a ordenar en dos archivos, de

➥acuerdo a un tamaño de partición que recibe como parámetro, junto con

➥el archivo original y los dos que formará. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaDirecta <<TT>>::::Divide (ffssttrreeaamm Arch, ffssttrreeaamm **Arch1,

ffssttrreeaamm **Arch2, iinntt Partic)

{{

iinntt Cont, Dato;

Arch.sseeeekkgg(0, iiooss::::bbeegg);

Arch1->>ooppeenn(”MezclaDirAux1.dat”, iiooss::::oouutt);

Arch2->>ooppeenn(”MezclaDirAux2.dat”, iiooss::::oouutt);

wwhhiillee (!!Arch.eeooff(()))

492 Capítulo 9. Ordenación

{{

Cont= 0;

wwhhiillee ((Cont << Partic) &&&& (!!Arch.eeooff(())))

{{

Arch..rreeaadd((cchhaarr **) &&Dato,ssiizzeeooff(Dato));

iiff (!!Arch.eeooff(()))

Arch1–>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

Cont++++;

}}

Cont= 0;

wwhhiillee ((Cont << Partic) &&&& (!!Arch.eeooff(())))

{{

Arch..rreeaadd((cchhaarr **) &&Dato, ssiizzeeooff(Dato));

iiff (!!Arch.eeooff(()))

Arch2––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

Cont++++;

}}

}}

Arch1––>>cclloossee(());

Arch2––>>cclloossee(());

}}

/** Método auxiliar que mezcla dos archivos que recibe como parámetro y

➥genera otro el cual va quedando ordenado. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaDirecta <<TT>>::::Mezcla (ffssttrreeaamm **Arch, ffssttrreeaamm Arch1, ffssttrreeaamm

Arch2, iinntt Partic)

{{

iinntt Dato1, Dato2, Part1, Part2, Band1, Band2;

Arch––>>sseeeekkpp(0, iiooss::::bbeegg);

Arch1..ooppeenn(”MezclaDirAux1.dat”, iiooss::::iinn);

Arch2..ooppeenn(”MezclaDirAux2.dat”, iiooss::::iinn);

Band1= 1;

Band2= 1;

Arch1..rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

iiff (!!Arch1.eeooff(()))

Band1= 0;

Arch2..rreeaadd((cchhaarr **)&&Dato2,ssiizzeeooff(Dato2));

iiff (!!Arch2.eeooff(()))

Band2= 0;

wwhhiillee (((!!Arch1.eeooff(())) | | (!!Band1)) &&&& ((!!Arch2.eeooff(())) | | (!!Band2)))
{{

Part1= 0;

Part2= 0;

wwhhiillee (((Part1 << Partic) &&&& (!!Band1)) &&&& ((Part2 << Partic)

➥&&&& (!!Band2)))

9.3 Ordenación externa 493

9

{{

iiff (Dato1 <<== Dato2)

{{

Arch–>>wwrriittee((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

Band1= 1;

Part1++++;

Arch1..rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

iiff (!!Arch1.eeooff(()))

Band1= 0;

}}

eellssee

{{

Arch––>>wwrriittee((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

Band2= 1;

Part2++++;

Arch2..rreeaadd((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

iiff (!!Arch2.eeooff(()))

Band2= 0;

}}

}}

wwhhiillee ((Part1 << Partic) &&&& (!!Band1))

{{

Arch––>>wwrriittee((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

Band1= 1;

Part1++++;

Arch1..rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

iiff (!!Arch1.eeooff(()))

Band1= 0;

}}

wwhhiillee ((Part2 << Partic) &&&& (!!Band2))

{{

Arch––>>wwrriittee((cchhaarr **) &&Dato2, ssiizzeeooff(Dato2));

Band2= 1;

Part2++++;

Arch2..rreeaadd((cchhaarr **) &&Dato2, ssiizzeeooff(Dato2));

iiff (!!Arch2.eeooff(()))

Band2= 0;

}}

}}

iiff (!!Band1)

Arch––>>wwrriittee((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

iiff (!!Band2)

Arch––>>wwrriittee((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

Arch1..rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

wwhhiillee (!!Arch1.eeooff(()))

Si los elementos a ordenar son objetos, se requiere sobrecargar los operadores re-
lacionales usados en este algoritmo. La sobrecarga debe incluirse en la clase que
se usará como tipo para los elementos del archivo.

9.3.2 Mezcla equilibrada

Este método es una versión mejorada del anterior. La mejora consiste en que el
archivo se divide teniendo en cuenta las secuencias ordenadas de elementos que
tuviera, y no un tamaño establecido por número de elementos. Una vez realizada
una partición inicial de los datos en dos archivos auxiliares, se comienza a unir
las particiones y a guardarlas en otros dos archivos formando secuencias cada vez
más grandes de elementos ordenados. El proceso termina cuando todos los ele-
mentos a ordenar quedan en un mismo archivo, luego de efectuar una partición y
unión de elementos. A continuación se muestra un ejemplo para que pueda enten-
der más fácilmente la lógica del mismo. Se tiene el archivo:

Arch: 18, 23, 12, 45, 56, 33, 20, 16, 89, 34, 75, 44, 31, 14, 67, 28

Y se tienen tres archivos auxiliares: Arch1, Arch2 y Arch3.

1. Se realiza una partición inicial de los elementos del archivo que se quiere
ordenar, de tal manera que los mismos se distribuyan en dos archivos auxi-
liares de acuerdo al orden que exista entre ellos. Los archivos Arch2 y Arch3
quedan así:

494 Capítulo 9. Ordenación

{{

Arch––>>wwrriittee((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

Arch1..rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

}}

Arch2..rreeaadd((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

wwhhiillee (!!Arch2.eeooff(()))

{{

Arch––>>wwrriittee((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

Arch2..rreeaadd((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

}}

Arch1.cclloossee(());

Arch2.cclloossee(());

}}

Arch2: 18, 23 , 33 , 16 , 89 , 44 , 14, 67

Arch3: 12, 45, 56 , 20 , 34, 75 , 31, 28

Luego se unen las particiones y se van formando otros dos archivos con el
resultado de esta operación. En estos archivos van quedando secuencias más
grandes de elementos ordenados.

Arch: 12, 18, 23, 45, 56 , 16, 34, 75, 89 , 14, 28, 67

Arch1: 20, 33 , 31, 44

2. Se realiza la mezcla de dos particiones (una de cada archivo) y se van gene-
rando dos archivos auxiliares con secuencias más grandes de elementos or-
denados. Los archivos Arch2 y Arch3 quedan así:

Arch2: 12, 18, 20, 23, 33, 45, 56 , 14, 28, 67

Arch3: 16, 31, 34, 44, 75, 89

3. Nuevamente las particiones de cada uno de los archivos se mezclan y se re-
definen los primeros dos archivos: Arch y Arch1.

Arch: 12, 16, 18, 20, 23, 31, 33, 34, 44, 45, 56, 75, 89

Arch1: 14, 28, 67

4. Se lleva a cabo la mezcla de las particiones existentes dando como resultado
los archivos Arch2 y Arch3 con la información distribuida entre ellos de la
siguiente manera:

Arch2: 12, 14, 16, 18, 20, 23, 28, 31, 33, 34, 44, 45, 56, 67, 75, 89

Arch3:

Como Arch3 queda vacío, el proceso concluye con éxito: el archivo quedó orde-
nado. A continuación se presenta la codificación de la clase MezclaEquilibrada,
derivada de la clase abstracta Ordenador, la cual implementa el algoritmo descrito.

9.3 Ordenación externa 495

9

/** Declaración de la clase derivada MezclaEquilibrada, en la cual el

➥método Ordena se define con el algoritmo correspondiente al método de

➥ordenación externa llamado mezcla equilibrada. En la clase se incluyen

➥algunos métodos auxiliares que permiten realizar las particiones y

➥agrupamientos de los elementos del archivo. **/

496 Capítulo 9. Ordenación

tteemmppllaattee <<ccllaassss TT>>

ccllaassss MezclaEquilibrada: ppuubblliicc Ordenador <<TT>>

{{

ppuubblliicc::

vvooiidd Ordena (cchhaarr **);

vvooiidd DividePrim (cchhaarr **, ffssttrreeaamm **, ffssttrreeaamm **);

iinntt DivideMezcla (ffssttrreeaamm **, ffssttrreeaamm **, ffssttrreeaamm **, ffssttrreeaamm **);

vvooiidd Escribe1 (iinntt **, iinntt, ffssttrreeaamm **, ffssttrreeaamm **, iinntt);

vvooiidd Escribe2 (iinntt **, iinntt, ffssttrreeaamm **, ffssttrreeaamm **, iinntt **);

vvooiidd Escribe3 (iinntt, iinntt, ffssttrreeaamm **, ffssttrreeaamm **, ffssttrreeaamm **, iinntt);

}};

/** Método de ordenación de la clase MezclaEqulibrada. Este método se

➥apoya en otros auxiliares. Recibe como parámetro el nombre del archivo

➥a ordenar. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaEquilibrada <<TT>>::::Ordena(cchhaarr **NomArch)

{{

iinntt Band1, Band2;

ffssttrreeaamm Arch, Arch1, Arch2, Arch3;

DividePrim(NomArch, &&Arch2, &&Arch3);

Band1= 1;

Band2= 1;

ddoo {{

iiff (Band1)

{{

Arch..ooppeenn(NomArch, iiooss::::oouutt);

Arch1..ooppeenn(”MezEquil1.dat”, iiooss::::oouutt);

Arch2..ooppeenn(”MezEquil2.dat”, iiooss::::iinn);

Arch3..ooppeenn(”MezEquil3.dat”, iiooss::::iinn);

Band2= DivideMezcla(&&Arch2, &&Arch3, &&Arch, &&Arch1);

Band1= 0;

}}

eellssee

{{

Arch..ooppeenn(NomArch, iiooss::::iinn);

Arch1..ooppeenn(”MezEquil1.dat”, iiooss::::iinn);

Arch2..ooppeenn(”MezEquil2.dat”, iiooss::::oouutt);

Arch3..ooppeenn(”MezEquil3.dat”, iiooss::::oouutt);

Band2= DivideMezcla(&&Arch, &&Arch1, &&Arch2, &&Arch3);

Band1= 1;

}}

Arch.cclloossee(());

Arch1.cclloossee(());

Arch2.cclloossee(());

Arch3.cclloossee(());

}} wwhhiillee (Band2 !!= 0);

}}

9.3 Ordenación externa 497

9

/** Método auxiliar que realiza la división inicial del archivo a

➥ordenar. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaEquilibrada <<TT>>::::DividePrim(cchhaarr **NomArch, ffssttrreeaamm **Arch2,

ffssttrreeaamm **Arch3)

{{

iinntt Dato, DatoAux, Band;

ffssttrreeaamm Arch;

Arch..ooppeenn(NomArch, iiooss::::iinn);

Arch2––>>ooppeenn(”MezEquil2.dat”, iiooss::::oouutt);

Arch3––>>ooppeenn(”MezEquil3.dat”, iiooss::::oouutt);

Arch..rreeaadd((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

Arch2––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

Band= 1;

DatoAux= Dato;

Arch..rreeaadd((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

wwhhiillee (!!Arch.eeooff(()))

{{

iiff (Dato >>== DatoAux)

iiff (Band)

Arch2––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

eellssee

Arch3––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

eellssee

iiff (Band)

{{

Arch3––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

Band= 0;

}}

eellssee

{{

Arch2––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

Band= 1;

}}

DatoAux= Dato;

Arch..rreeaadd((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

}}

Arch.cclloossee(());

Arch2–>>cclloossee(());

Arch3–>>cclloossee(());

}}

/** Método auxiliar que mezcla dos archivos generando otros dos, que

➥tienen un mayor número de elementos ordenados. **/

tteemmppllaattee <<ccllaassss TT>>

iinntt MezclaEquilibrada <<TT>>::::DivideMezcla(ffssttrreeaamm **ArchX, ffssttrreeaamm

➥**ArchY, ffssttrreeaamm **ArchZ,

➥ffssttrreeaamm **ArchW)

498 Capítulo 9. Ordenación

{{

iinntt Dato1, Dato2, DatoAux, Band= 1, Lee1, Lee2;

ArchX––>>rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

ArchY––>>rreeaadd((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

iiff (Dato1 << Dato2)

DatoAux= Dato1;

eellssee

DatoAux= Dato2;

Lee1= 0;

Lee2= 0;

wwhhiillee (((!!ArchX–>>eeooff(())) | | (!!Lee1)) &&&& (!!ArchY–>>eeooff(())) | | (!!Lee2))

{{

iiff (Dato1 << Dato2)

iiff ((!!Lee1) &&&& (Dato1 >>== DatoAux))

{{

Escribe1(&&DatoAux, Dato1, ArchZ, ArchW, Band);

Lee1= 1;

}}

eellssee

iiff ((!!Lee2) &&&& (Dato2 >>= DatoAux))

{{

Escribe1(&&DatoAux, Dato2, ArchZ, ArchW, Band);

Lee2= 1;

}}

eellssee

{{

iiff (!!Lee1)

{{

Escribe2(&&DatoAux, Dato1, ArchZ, ArchW, &&Band);

Lee1= 1;

}}

}}

eellssee

iiff ((!!Lee2) &&&& (Dato2 >>== DatoAux))

{{

Escribe1(&&DatoAux, Dato2, ArchZ, ArchW, Band);

Lee2= 1;

}}

eellssee

iiff ((!!Lee1) &&&& (Dato1 >>== DatoAux))

{{

Escribe1(&&DatoAux, Dato1, ArchZ, ArchW, Band);

Lee1= 1;

}}

eellssee

iiff (!!Lee2)

{{

Escribe2(&&DatoAux, Dato2, ArchZ, ArchW, &&Band);

Lee2= 1;

}}

9.3 Ordenación externa 499

9

iiff (Lee1)

{{

ArchX––>>rreeaadd((cchhaarr **)&&Dato1, ssiizzeeooff(Dato1));

iiff (!!ArchX–>>eeooff(()))

Lee1= 0;

}}

iiff (Lee2)

{{

ArchY––>>rreeaadd((cchhaarr **)&&Dato2, ssiizzeeooff(Dato2));

iiff (!!ArchY––>>eeooff(()))

Lee2= 0;

}}

}}

iiff ((Lee1) &&&& (ArchX––>>eeooff(())))

Escribe3(DatoAux, Dato2, ArchY, ArchZ, ArchW, Band);

iiff ((Lee2) &&&& (ArchY––>>eeooff(())))

Escribe3(DatoAux, Dato1, ArchX, ArchZ, ArchW, Band);

iiff (ArchW––>>tteellllpp(()) ==== 0)

rreettuurrnn 0;

eellssee

rreettuurrnn 1;

}}

/** Método auxiliar para guardar la información en los archivos de

➥salida. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaEquilibrada <<TT>>::::Escribe1(iinntt **DatoAux, iinntt Dato, ffssttrreeaamm

➥**ArchZ, ffssttrreeaamm **ArchW, iinntt Band)

{{

**DatoAux= Dato;

iiff (Band)

ArchZ––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

eellssee

ArchW––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

}}

/** Método auxiliar para guardar la información en los archivos de

➥salida. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaEquilibrada <<TT>>::::Escribe2(iinntt **DatoAux, iinntt Dato, ffssttrreeaamm

➥**ArchZ, ffssttrreeaamm **ArchW, iinntt **Band)

{{

**DatoAux= Dato;

iiff (**Band)

{{

ArchW––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

**Band= 0;

}}

500 Capítulo 9. Ordenación

eellssee

{{

ArchZ––>>wwrriittee((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

**Band= 1;

}}

}}

/** Método auxiliar para guardar la información en los archivos de

➥salida. **/

tteemmppllaattee <<ccllaassss TT>>

vvooiidd MezclaEquilibrada <<TT>>::::Escribe3(iinntt DatoAux, iinntt Dato, ffssttrreeaamm

➥**Arch, ffssttrreeaamm **ArchZ, ffssttrreeaamm

➥**ArchW, iinntt Band)

{{

iiff (Dato >>== DatoAux)

Escribe1(&&DatoAux, Dato, ArchZ, ArchW, Band);

eellssee

Escribe2(&&DatoAux, Dato, ArchZ, ArchW, &&Band);

Arch––>>rreeaadd((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

wwhhiillee (!!Arch––>>eeooff(()))

{{

iiff (Dato >>== DatoAux)

Escribe1(&&DatoAux, Dato, ArchZ, ArchW, Band);

eellssee

Escribe2(&&DatoAux, Dato, ArchZ, ArchW, &&Band);

Arch––>>rreeaadd((cchhaarr **)&&Dato, ssiizzeeooff(Dato));

}}

}}

Si los elementos a ordenar son objetos, se requiere sobrecargar los operadores re-
lacionales usados en este algoritmo. La sobrecarga debe incluirse en la clase que
se usará como tipo para los elementos del archivo.

Ejercicios
1. Probar todas las variantes del método de ordenación interna por intercambio

en los siguientes casos:

a) Con un arreglo ordenado.

b) Con un arreglo en orden inverso.

c) Con un arreglo desordenado.

d) Con un arreglo vacío.

e) Con un arreglo desordenado que tiene elementos duplicados.

2. Probar el método de ordenación interna por selección en los siguientes casos:

a) Con un arreglo ordenado.

b) Con un arreglo en orden inverso.

c) Con un arreglo desordenado.

d) Con un arreglo vacío.

e) Con un arreglo desordenado que tiene elementos duplicados.

3. Probar todas las variantes del método de ordenación interna por inserción
en los siguientes casos:

a) Con un arreglo ordenado.

b) Con un arreglo en orden inverso.

c) Con un arreglo desordenado.

d) Con un arreglo vacío.

e) Con un arreglo desordenado que tiene elementos duplicados.

4. Retome el método de ordenación interna QuickSort. Reescríbalo sin usar re-
cursión. Se sugiere el uso de pilas para ir guardando los extremos de los in-
tervalos pendientes de ordenación.

5. Retome el método de ordenación interna QuickSort. Reescríbalo utilizando
otras variantes para la elección del pivote. Se sugiere probar con el elemen-
to medio. Compare el desempeño de su solución con la que se dio en este
libro para diferentes tamaños de arreglos.

6. Complete la siguiente tabla con la evaluación del desempeño (tiempo de
ejecución y/o número de comparaciones y/o número de intercambios) de los
métodos de ordenación para distintos tamaños de arreglos.

Ejercicios 501

9

7. Retome la clase Arreglo del programa 9.4. Complétela con los otros algorit-
mos de ordenación interna estudiados en este capítulo.

8. En el capítulo 4 se definió la clase Dinos para representar dinosaurios. Utili-
ce esta clase como tipo base para la plantilla de la clase Arreglo del progra-
ma 9.4. Realice todos los ajustes necesarios para que el arreglo de
dinosaurios quede ordenado según la clave que los identifica, aplicando
cualquiera de los métodos vistos.

9. Resuelva el problema anterior, pero considerando que la clase Arreglo no
incluye los métodos de ordenación, sino que los mismos son clases tal como se
presentaron en este capítulo. Por lo tanto, en su solución tendrá un objeto de
la clase Arreglo que es el que quiere ordenar y otro de alguna de las clases
(IntercDirectoIzq, IntercDirectoDer, Sheker, Shell, …) que representa al
método de ordenación interna elegido para llevar a cabo la operación.

10. Considere un archivo de números enteros que representan las claves de cier-
tos productos. Utilice el algoritmo de mezcla directa para ordenarlo.

502 Capítulo 9. Ordenación

Tam 10 Tam 100 Tam 1000 Tam 10, 000

Intercambio directo con
desplazamiento hacia la
izquierda

Intercambio directo con
desplazamiento hacia la
derecha

Sheker

Intercambio con señal

QuickSort

Selección directa

Inserción directa

Inserción binaria

Shell

11. Retome el problema anterior, pero ahora utilice el algoritmo de mezcla
equilibrada. ¿Notó alguna diferencia en el desempeño de los mismos?
¿Y si cambia el tamaño del archivo?

12. Considere la clase Alumno cuya especificación aparece más adelante.

a) Desarrolle un programa de captura que lea los atributos de varios
alumnos, y los guarde en un archivo, en el mismo orden que los lee.

b) Utilice el algoritmo de mezcla directa para ordenar el archivo, según el
nombre del alumno.

c) Utilice el algoritmo de mezcla equilibrada para ordenar el archivo,
según el nombre del alumno.

d) Compare el desempeño de los algoritmos utilizados en los incisos
anteriores.

Ejercicios 503

9

Alumno

Nombre: cadena de caracteres

Carrera: cadena de caracteres

Número de materias aprobadas: entero

Calificaciones obtenidas en materias
aprobadas: arreglo de enteros (de máximo
60 valores)

Total de materias reprobadas: entero

Constructor(es)

Lectura

Calcula promedio del alumno

Cambia de carrera

Imprime datos

13. Retome el archivo de objetos tipo Alumno creado en el problema anterior y
asuma que ya fue ordenado según lo solicitado en los incisos (b) y (c). De-
sarrolle un programa que permita al usuario las siguientes opciones:

a) Generar un reporte con los datos de todos los alumnos, ordenados por
el nombre.

b) Generar un reporte con los datos de todos aquellos alumnos que ten-
gan un promedio mayor o igual a 9.

14. Defina la clase Empleado según las especificaciones que se dan más adelan-
te. Desarrolle un programa, utilizando subprogramas y/u otras clases, para:

a) Capturar los datos de un grupo de empleados y guardarlos en un archivo,
siguiendo el orden dado.

b) Ordenar el archivo de manera descendente según la clave del empleado.
Decida qué método de ordenación externa utilizar.

c) Genere un reporte con los datos de todos los empleados que hayan in-
gresado antes de 1990 y que ganen más de cierta cantidad, la cual será
dada por el usuario.

d) Actualice los datos de todos los empleados, dándoles un aumento
del 10%.

e) Forme un archivo auxiliar sólo con los empleados del departamento
de finanzas. Posteriormente, ordene alfabéticamente este archivo de
manera creciente, según el nombre del empleado.

504 Capítulo 9. Ordenación

Empleado

Clave: char[]

NombreEmp: char[]

Departamento: char[]

AñoIngreso: int

Sueldo: float

Constructor(es)

void CambiaDepto(char[])

void CambiaSueldo(float)

void Imprime()

CAPÍTULO 10

10.1 Introducción

La búsqueda es la operación que permite localizar un elemento en
una estructura de datos. Es decir, ayuda a determinar si el dato busca-
do está o no en dicha estructura. Si la misma se realiza sobre datos
almacenados en un arreglo, lista, árbol o gráfica se dice que es bús-
queda interna. Por otra parte, si se aplica a un conjunto de valores
guardados en un archivo, se dice que es búsqueda externa.

Si bien la búsqueda no es una estructura de datos, la misma se pre-
senta en este libro porque es una de las operaciones más importantes
que complementa el uso de cualquier estructura de datos. Almacenar
información en una estructura de datos tiene sentido si después se
puede tener acceso a ella, y para tener acceso se requiere el uso de

Búsqueda

algoritmos de búsqueda. Es decir, es esta operación la que permite
recuperar la información previamente almacenada en una estructura.

Normalmente esta operación se encuentra implementada como un método de
otras clases, como la clase Arreglo, la clase Lista o la clase Arbol. Sin embargo,
dado que es el tema central de estudio de este capítulo, se la tratará como una
clase que representa a las variantes más conocidas del proceso de búsqueda.

10.2 Búsqueda interna
La búsqueda interna es aquella que se aplica a una estructura de datos previa-
mente generada en la memoria de la computadora. En toda operación de este tipo
se distinguen dos elementos, la estructura de datos (que representa dónde se reali-
zará la búsqueda) y el elemento a buscar. Dependiendo de la estructura usada
para almacenar los datos, se podrán aplicar diferentes algoritmos para intentar en-
contrar un elemento. La tabla 10.1 presenta las principales estructuras de datos
internas con los posibles métodos de búsqueda a emplear.

506 Capítulo 10. Búsqueda

TABLA 10.1 Estructuras de datos y métodos de búsqueda
Estructura de datos Tipo de búsqueda

Arreglos Secuencial (para cualquier tipo de arreglo). Binaria

(sólo para arreglos ordenados). Transformación de

claves (Hash).

Listas Secuencial.

Árboles Depende de la estructura interna del árbol. Se

analizaron en el capítulo 7.

Gráficas Depende de la estructura interna de la gráfica y del

tipo de información que se quiera obtener. Se

analizaron en el capítulo 8.

La figura 10.1 presenta un esquema de clases para los algoritmos de búsqueda
que pueden aplicarse a arreglos. Se define la plantilla de una clase abstracta,
Búsqueda, en la cual se incluye un método virtual que se especificará en cada
una de las clases derivadas de acuerdo al algoritmo que representen. Por lo tanto,
se definen tres subclases: SecuencialDesord, SecuencialOrdenado y Binaria, la

primera para la búsqueda secuencial en arreglos desordenados, la segunda para la
búsqueda secuencial en arreglos ordenados y la última para búsqueda binaria, la
cual siempre se realiza en arreglos ordenados. Al tercer tipo de búsqueda en arre-
glos (Hash) se le dedica la sección 10.2.3.

A continuación se presenta la codificación, usando el lenguaje C++, de la planti-
lla de la clase abstracta. Observe que el método virtual Busca() recibe como pa-
rámetro el arreglo donde se llevará a cabo la búsqueda y un elemento de tipo T
que es el dato a buscar. Si la operación se definiera como un método de la clase
arreglo (como se vio en el capítulo 4), entonces sólo se recibiría como parámetro
el dato a buscar.

10.2 Búsqueda interna 507

10
/* Clase abstracta que servirá como base para declarar cada una de las

➥clases derivadas que representan los distintos métodos de búsqueda en

➥arreglos. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Busqueda

{

ppuubblliicc::

vviirrttuuaall iinntt Busca (Arreglo<<TT>>, TT)= 0;

};

Búsqueda(T)

virtual int Busca() = 0

SecuencialDesord(T)

int Busca()

SecuencialOrdenado(T)

int Busca()

Binaria(T)

int Busca()

FIGURA 10.1 Esquema de clases

10.2.1 Búsqueda secuencial

La búsqueda secuencial consiste en recorrer el arreglo, elemento por elemento,
empezando con el primero, hasta llegar al dato buscado o hasta que se hayan eva-
luado todos los componentes del arreglo. Esta última condición se modifica si el
arreglo está ordenado.

Por ejemplo, considere que se han almacenado diez números enteros en el arreglo
de la figura 10.2 y que el dato a buscar es 78. La búsqueda comienza a partir de
la primera posición (índice 0) y se compara el 78 con el dato guardado en dicha
posición. En este caso no son iguales por lo que se continúa con la siguiente casi-
lla que tiene el valor 14. Nuevamente al comparar se determina que no son igua-
les, lo que requiere continuar con el siguiente elemento. La búsqueda termina
cuando se compara con el número almacenado en la casilla 4, ya que son iguales
y por lo tanto la operación termina con éxito. Ahora suponga que el dato buscado
es el 28, en este caso se compara con todos los números guardados en el arreglo
y como no es igual a ninguno de ellos, la operación fracasa cuando se llega al
último valor.

508 Capítulo 10. Búsqueda

18 14 23 12 78 56 8 10 21 45

0 1 2 3 4 5 6 7 8 9

FIGURA 10.2 Búsqueda secuencial

Se define la clase SecuencialDesord, derivada de Búsqueda, para representar la
búsqueda secuencial en arreglos desordenados. Esta clase tiene sólo un miem-
bro, que es el método Busca(), el cual se especifica de acuerdo al algoritmo des-
crito. Es importante señalar que, si el dato a buscar fuera un objeto, se necesitaría
que el operador != estuviera sobrecargado en la clase correspondiente.

/* Definición de la clase encargada de realizar la búsqueda secuencial

➥en un arreglo cuyos elementos están desordenados. Es una clase derivada

➥de Busqueda y en ella se especifica el método Busca(). */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss SecuencialDesord: ppuubblliicc Busqueda<<TT>>

{

ppuubblliicc::

iinntt Busca (Arreglo<<TT>>, TT);

};

Si el arreglo está ordenado, se modifica la última condición del ciclo, de manera
que la búsqueda se interrumpa (antes de llegar al último elemento) si se detecta
que, por el orden que tienen los valores del arreglo, ya no es posible encontrar el
dato buscado. En consecuencia se gana eficiencia en cuanto al número de compa-
raciones. Si el arreglo está ordenado de manera creciente, la condición permitirá
concluir que, al evaluar el dato buscado con respecto al elemento i, si este último
es mayor, no será posible encontrar el dato dentro del arreglo; y al revés, si el
arreglo está ordenado en forma decreciente, en cuanto se encuentre un elemento
que sea menor que el dato buscado, se puede concluir que éste no se encontrará
entre los elementos restantes.

Se define la clase SecuencialOrdenado, derivada de Búsqueda, para representar la
búsqueda secuencial en arreglos ordenados. Esta clase tiene un sólo miembro,
que es el método Busca(), el cual se especifica de acuerdo al algoritmo descrito.
Es importante señalar que, si el dato a buscar fuera un objeto, se necesitaría que
el operador > (para orden creciente o el < para orden decreciente) estuviera so-
brecargado en la clase correspondiente.

10.2 Búsqueda interna 509

10

/* Método que realiza la búsqueda, elemento por elemento, de un dato

➥dado en un arreglo desordenado. Recibe como parámetros el dato a buscar

➥y el arreglo en el cual se llevará a cabo la operación. Si lo encuentra

➥da como resultado la posición, en caso contrario regresa un –1. */

tteemmppllaattee <<ccllaassss TT>>

iinntt SecuencialDesord<<TT>>::::Busca(Arreglo<<TT>> Arre, TT Dato)

{

iinntt Indice= 0, Posic = –1;

wwhhiillee (Indice << Arre.RegresaTam() &&&& Dato !!== Arre.RegresaValor(Indice))

Indice++++;

iiff (Indice << Arre.RegresaTam())

Posic= Indice;

rreettuurrnn Posic;

}

/* Definición de la clase encargada de realizar la búsqueda secuencial

➥en un arreglo ordenado. Es una clase derivada de Busqueda y en ella se

➥especifica el método Busca(). */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss SecuencialOrdenado: ppuubblliicc Busqueda<<TT>>

{

ppuubblliicc::

iinntt Busca (Arreglo<<TT>>, TT);

};

Considerando que la búsqueda puede funcionar como una operación auxiliar a la
inserción y eliminación en arreglos (ver capítulo 4), es conveniente que el méto-
do regrese la posición en la que encuentra al elemento o la posición en la que de-
bería estar. Para poder distinguir estos dos casos es necesario regresar un valor
positivo (si está) o uno negativo (si no está). Si la posición es cero, entonces no
se le puede asociar el signo, razón por la cual se le suma uno. Los usuarios de es-
te método deben tener en cuenta esto, y en caso de requerir la posición (por
ejemplo para un desplazamiento en la operación de inserción) deberán convertirla
pasándola a positiva y restándole uno.

La eficiencia de la búsqueda secuencial se mide por el número de comparaciones
requeridas hasta encontrar el elemento buscado o hasta que se determine que el
mismo no está en el arreglo. Por lo tanto, si el dato fue almacenado en el arreglo,
éste puede estar en la primera posición, en alguna intermedia o en la última, lo
cual implica realizar una, algunas o Tam comparaciones, respectivamente. Cuando
el dato no está en el arreglo, se compara a éste con todos los elementos del arre-
glo, hasta llegar al final del mismo; es decir se realizan Tam comparaciones. Por lo
tanto, en este tipo de búsqueda se distinguen tres casos: (1) el más favorable, con
el número mínimo de comparaciones; (2) el intermedio, con un número medio de
comparaciones; y (3) el más desfavorable, con el número máximo de compara-
ciones. Estas tres posibles situaciones se expresan de la siguiente manera:

510 Capítulo 10. Búsqueda

/* Método que realiza la búsqueda de un dato en un arreglo cuyos valores

➥están ordenados de manera creciente. Esta operación se interrumpe

➥cuando se encuentra el valor buscado o cuando se compara a éste con un

➥valor mayor. Recibe como parámetros el dato a buscar y el arreglo en el

➥cual se llevará a cabo la operación. Si lo encuentra da como resultado

➥la posición, en caso contrario regresa el negativo de la posición en la

➥que debería estar, más 1. */

tteemmppllaattee <<ccllaassss TT>>

iinntt SecuencialOrdenado<<TT>>::::Busca(Arreglo<<TT>> Arre, TT Dato)

{

iinntt Indice= 0, Posic;

wwhhiillee (Indice << Arre.RegresaTam() &&&& Dato >> Arre.RegresaValor(Indice))

Indice++++;

iiff (Indice ==== Arre.RegresaTam() | | Dato << Arre.RegresaValor(Indice))

Posic= –(Indice + 1);

eellssee

Posic= Indice;

rreettuurrnn Posic;

}

Si el arreglo está ordenado, se tiene mayor eficiencia cuando el dato buscado no
está pero por su tamaño debería ocupar alguna posición intermedia. En este caso,
la búsqueda se interrumpe sin necesidad de revisar todo el arreglo.

En el capítulo cuatro, dedicado a los arreglos, se hizo uso de este tipo de búsque-
da como apoyo a las operaciones de inserción y eliminación en esas estructuras
de datos. Esta operación se implementó como un método de la clase Arreglo. A
continuación se presenta un ejemplo utilizando un objeto de la clase derivada
SecuencialOrdenado, para ordenar un objeto de la clase Arreglo. Además, se em-
plea la clase Persona como tipo base para la plantilla de esta última clase.

El programa 10.1 presenta la clase Persona y la plantilla de la clase Arreglo. En
ambas sólo se incluyen los métodos requeridos para esta aplicación.

Programa 10.1

10.2 Búsqueda interna 511

10

Comparaciones mínimas = 1

Comparaciones medias = (1 + Tam) /2

Comparaciones máximas = Tam

FÓRMULAS 10.1

/* Definición de la clase Persona. Se incluyen sobrecarga de operadores

➥para que objetos de este tipo puedan ser usados directamente en la

➥operación de búsqueda. */

ccllaassss Persona

{

pprriivvaattee::

iinntt AnioNac;

cchhaarr NomPers[64], LugNac[64];

ppuubblliicc::

Persona();

Persona(iinntt, cchhaarr[[]], cchhaarr[[]]);

iinntt ooppeerraattoorr >> (Persona);

iinntt ooppeerraattoorr << (Persona);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&, Persona &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&, Persona &&);

};

512 Capítulo 10. Búsqueda

/* Constructor por omisión. */

Persona::::Persona()

{}

/* Constructor con parámetros. */

Persona::::Persona(iinntt ANac, cchhaarr NomP[], cchhaarr LugN[])

{

AnioNac= ANac;

ssttrrccppyy(NomPers, NomP);

ssttrrccppyy(LugNac, LugN);

}

/* Sobrecarga del operador >> para comparar dos objetos de la clase

➥Persona. Una persona es “mayor que” otra si su nombre lo es. Este

➥operador permitirá buscar a una persona, por su nombre, en un arreglo

➥de personas ordenado alfabéticamente. */

iinntt Persona::::ooppeerraattoorr >> (Persona Pers)

{

iinntt Resp=0;

iiff (ssttrrccmmpp(NomPers, Pers.NomPers) >> 0)

Resp= 1;

rreettuurrnn Resp;

}

/* Sobrecarga del operador << para comparar dos objetos de la clase

➥Persona. Una persona es “menor que” otra si su nombre lo es. Este

➥operador permitirá buscar a una persona, por su nombre, en un arreglo

➥de personas ordenado alfabéticamente. */

iinntt Persona::::ooppeerraattoorr << (Persona Pers)

{

iinntt Resp=0;

iiff (ssttrrccmmpp(NomPers, Pers.NomPers) << 0)

Resp= 1;

rreettuurrnn Resp;

}

/* Sobrecarga del operador >>>> para que un objeto tipo Persona pueda ser

➥leído directamente. */

iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&Lee, Persona &&ObjPers)

{

ccoouutt <<<<”\n\nIngrese nombre de la Persona: “;

Lee>>>> ObjPers.NomPers;

ccoouutt <<<<”\n\nIngrese año de nacimiento: “;

Lee>>>> ObjPers.AnioNac;

ccoouutt <<<<”\n\nIngrese lugar de nacimiento: “;

Lee>>>> ObjPers.LugNac;

rreettuurrnn Lee;

}

10.2 Búsqueda interna 513

10

/* Sobrecarga del operador <<<< para que un objeto tipo Persona pueda ser

➥impreso directamente. */

oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&Escribe, Persona &&ObjPers)

{

Escribe<<<<”\n\nDatos de la Persona\n”;

Escribe<<<<”\nNombre: “<<<<ObjPers.NomPers;

Escribe<<<<”\nLugar de nacimiento: “<<<<ObjPers.LugNac;

Escribe<<<<”\nAño de nacimiento: “<<<<ObjPers.AnioNac;

rreettuurrnn Escribe;

}

/* La constante MAX se usa para definir el tamaño máximo del arreglo. */

##ddeeffiinnee MAX 100

/* Plantilla de la clase Arreglo. Se incluyen sólo los métodos

➥requeridos para la aplicación de la operación de búsqueda. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Arreglo

{

pprriivvaattee::

TT Datos[MAX];

iinntt Tam;

ppuubblliicc::

Arreglo();

vvooiidd Lectura();

vvooiidd Escribe();

iinntt RegresaTam();

TT RegresaValor(iinntt);

};

/* Declaración del método constructor. Inicializa el número actual de

➥elementos en 0. */

tteemmppllaattee <<ccllaassss TT>>

Arreglo<<TT>>::::Arreglo()

{

Tam= 0;

}

/* Método que permite leer el número de elementos que se van a almacenar

➥y el valor de cada uno de ellos. Valida que el total de elementos sea

➥al menos 1 y que no supere el máximo especificado. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Lectura()

{

iinntt Indice;

514 Capítulo 10. Búsqueda

ddoo {{

ccoouutt<<<<”\n\n Ingrese número de datos a guardar: “;

cciinn>>>> Tam;

} wwhhiillee (Tam << 1 | | Tam >> MAX);

ffoorr (Indice= 0; Indice << Tam; Indice++++)

{

ccoouutt<<<<”\nIngrese el “<<<<Indice+1<<<<” dato: “;

cciinn>>>>Datos[Indice];

}

}

/* Método que despliega en pantalla los valores almacenados en el

➥arreglo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Arreglo<<TT>>::::Escribe()

{

iinntt Indice;

iiff (Tam >> 0)

{

ccoouutt <<<<”\n Impresión de datos\n”;

ffoorr (Indice= 0; Indice << Tam; Indice++++)

ccoouutt <<<< ‘\t’ <<<< Datos[Indice];

}

eellssee

ccoouutt <<<< “\nNo hay elementos registrados.”;

}

/* Método que permite a usuarios externos a la clase conocer el total de

➥elementos guardados en el arreglo. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Arreglo<<TT>>::::RegresaTam()

{

rreettuurrnn Tam;

}

/* Método que permite a usuarios externos a la clase conocer el dato

➥almacenado en cierta casilla del arreglo. Recibe como parámetro un

➥entero y regresa como resultado el valor almacenado en la posición

➥indicada por dicho número. */

tteemmppllaattee <<ccllaassss TT>>

TT Arreglo<<TT>>::::RegresaValor(iinntt Indice)

{

rreettuurrnn Datos[Indice];

}

El programa 10.2 presenta la aplicación. Se declara un objeto de la clase
SecuencialOrdenado y un objeto de la clase Arreglo, dándole la clase Persona
como tipo para cada uno de sus elementos. Es decir, se tiene un arreglo de perso-
nas. Además, se asume que dicho arreglo está ordenado y por lo tanto se puede
usar la búsqueda secuencial en arreglos ordenados para buscar una persona. El
usuario da como dato el nombre de la persona a buscar y, si se encuentra, se im-
primen todos los datos de dicha persona. En caso contrario, se imprime un men-
saje adecuado.

Programa 10.2

10.2 Búsqueda interna 515

10/* Se incluyen las bibliotecas Arreglos.h y Persona.h donde fueron

➥guardadas las clases Arreglo y Persona respectivamente. En la biblio-

➥teca BusquedaInterna.h se tiene la clase Busqueda y su derivada

➥SecuencialOrdenado. */

##iinncclluuddee “Arreglos.h”

##iinncclluuddee “Persona.h”

##iinncclluuddee “BusquedaInterna.h”

/* Función principal. Se declaran las variables de trabajo, se crea el

➥arreglo de personas (asumiendo que los datos se dan ordenados), se pide

➥el nombre de la persona a buscar y se usa un objeto de la clase

➥SecuencialOrdenado para realizar la búsqueda de la misma en el arreglo. */

vvooiidd mmaaiinn(())

{

/* Declaración de un objeto de la clase SecuencialOrdenado, con

➥Persona como tipo base. */

SecuencialOrdenado<<Persona>> Buscador;

/* Declaración de un objeto de la clase Arreglo, con Persona como

➥tipo base. */

Arreglo<<Persona>> Asistentes;

iinntt Resp;

cchhaarr Nom[64];

/* Lectura del arreglo. Se leen los datos de varias personas y se

➥almacenan en el arreglo. Se asume que los datos se dan ordenados

➥alfabéticamente de acuerdo al nombre de la persona. */

Asistentes.Lectura();

ccoouutt<<<<”\nIngresa el nombre de la persona a buscar: “;

cciinn>>>>Nom;

10.2.2 Búsqueda binaria

La búsqueda binaria se puede aplicar sólo a arreglos ordenados. Este método
se basa en una idea muy simple con la cual se trata de aprovechar el hecho de
saber que el arreglo está ordenado. Inicialmente se considera todo el arreglo
como el espacio de búsqueda, por lo tanto se establece el índice 0 como extremo
izquierdo y el índice Tam–1 como el extremo derecho. Se calcula la posición
central del arreglo y se compara el elemento que está en esa posición con el dato
buscado. Si son iguales, la operación se interrumpe ya que se encontró el valor
deseado. En caso contrario puede suceder que sea menor o mayor. Si es el primer
caso, entonces se redefine el espacio de búsqueda con el extremo izquierdo igual
a la posición central más uno (se descartan todos los valores comprendidos entre
la posición central y el índice 0). Si el elemento de la posición central resulta ma-
yor que el dato buscado, entonces es el extremo derecho el que se reasigna con el
valor de la posición central menos 1 (se descartan todos los valores comprendi-
dos entre la posición central y el índice Tam–1). Se calcula nuevamente la posición
central y se repiten estos pasos hasta encontrar el elemento o hasta que el extre-
mo izquierdo quede mayor que el extremo derecho. Esta última condición indica
que el elemento no se halla en el arreglo.

Se define la clase Binaria, derivada de Búsqueda, para representar la búsqueda
binaria en arreglos ordenados. Esta clase tiene un sólo miembro, que es el méto-
do Busca(), el cual se especifica de acuerdo al algoritmo descrito. Es importante
señalar que, si el dato a buscar fuera un objeto, se necesitaría que el operador !=
estuviera sobrecargado en la clase correspondiente.

516 Capítulo 10. Búsqueda

/* Objeto auxiliar de tipo Persona, empleado para realizar la

➥búsqueda en el arreglo. Sólo se busca por el nombre. */

Persona Alguien(0,0,Nom,””);

/* Se invoca al método Busca() del objeto creado para buscar un

➥elemento en un arreglo ordenado, aplicando búsqueda secuencial. */

Resp= Buscador.Busca(Asistentes, Alguien);

iiff (Resp >>== 0)

ccoouutt<<<<”\n\nSe encontró a la persona y sus datos completos

son\n”<<<<Asistentes.RegresaValor(Resp)<<<<”\n”;

eellssee

ccoouutt<<<<”\n\nNO se encontró a la persona\n\n”;

}

10.2 Búsqueda interna 517

10

/* Definición de la clase encargada de realizar la búsqueda binaria en

➥un arreglo ordenado. Es una clase derivada de Busqueda y en ella se

➥especifica el método Busca(). */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Binaria: ppuubblliicc Busqueda<<TT>>

{

ppuubblliicc::

iinntt Busca (Arreglo<<TT>>, TT);

};

/* Método que realiza la búsqueda de un elemento en un arreglo cuyos

➥valores están ordenados de manera creciente. Se parte el espacio de

➥búsqueda a la mitad y se compara el dato buscado con el valor que ocupa

➥la posición central. Si son iguales, la búsqueda termina con éxito. En

➥caso contrario se evalúa si es menor o mayor y según sea el caso se re-

➥define el extremo derecho o izquierdo respectivamente y se vuelve a

➥calcular el elemento central. Recibe como parámetros el dato a buscar y

➥el arreglo en el cual se llevará a cabo la operación. Si lo encuentra

➥da como resultado la posición, en caso contrario regresa el negativo de

➥la posición en la que debería estar, más 1. */

tteemmppllaattee <<ccllaassss TT>>

iinntt Binaria<<TT>>::::Busca(Arreglo<<TT>> Arre, TT Dato)

{

iinntt Izq= 0, Der= Arre.RegresaTam(), Cen, Posic;

Cen= (Izq + Der) / 2;

wwhhiillee (Izq <<== Der &&&& Dato !!== Arre.RegresaValor(Cen))

{

iiff (Dato << Arre.RegresaValor(Cen))

Der= Cen – 1;

eellssee

Izq= Cen + 1;

Cen= (Izq + Der) / 2;

}

iiff (Izq <<== Der)

Posic= Cen;

eellssee

Posic= –(Izq + 1);

rreettuurrnn Posic;

}

La figura 10.3 muestra cómo se va dividiendo el espacio de búsqueda en dos, en
cada iteración. La primera vez es todo el arreglo, luego de comparar el dato bus-
cado con el elemento que ocupa la posición central será el espacio que está a la

La eficiencia de este algoritmo también queda determinada por el número de
comparaciones que se realizan antes de encontrar el elemento buscado o decidir
que el mismo no fue almacenado. El caso más favorable se presenta cuando el
dato está en la posición central del arreglo, lo cual requiere una sola compara-
ción. El caso más desfavorable es cuando el dato se encuentra durante la última
comparación o cuando no está en el arreglo, ya que se determina luego de reali-
zar log2(Tam) comparaciones. El log2 se debe a que luego de cada comparación,
el espacio de búsqueda (el número total de elementos a revisar) se reduce a la
mitad. El recuadro de fórmulas 10.2 presenta las expresiones para el cálculo del
número de comparaciones en las tres situaciones posibles.

518 Capítulo 10. Búsqueda

Izq

Cen

Cen

Si el central es menor que el
buscado:
Izq = Cen + 1

Si el central es mayor que el
buscado:
Der = Cen – 1

Der IzqIzq Cen Der

Der

FIGURA 10.3 División del espacio en la búsqueda binaria

Comparaciones mínimas = 1

Comparaciones medias = (1 + log
2
(Tam)) / 2

Comparaciones máximas = log
2
(Tam)

FÓRMULAS 10.2

izquierda del central (si éste es mayor que el dato buscado) o el que está a la de-
recha (si fuera menor). El proceso se repite haciendo que el intervalo donde se
buscará sea cada vez más pequeño.

La aplicación presentada en el programa 10.2 puede modificarse para que en lu-
gar de usar búsqueda secuencial en el arreglo ordenado, se use búsqueda binaria.
En ese caso, sólo se requiere cambiar la clase con la cual se declara el objeto
buscador de la siguiente manera:

Binaria<Persona> Buscador;

10.2.3 Búsqueda por transformación de claves (Hash)

Este método de búsqueda, así como los ya estudiados, está asociado a una es-
tructura de datos. En este caso es un arreglo y generalmente se le conoce con el
nombre de tabla Hash. Una tabla Hash permite el acceso a la información al-
macenada en ella de manera muy rápida. Idealmente, se espera que el tiempo de
búsqueda sea independiente del número de elementos que se tengan. Sin embar-
go, si la misma se llena, se pierde gran parte de esta ventaja (puede requerir
pasar los datos a una tabla más grande para recuperar la ventaja mencionada).
Por otra parte, la desventaja es que los datos no tienen ningún orden entre sí
dentro de ella.

La idea principal sobre la que se basa la inserción de elementos en esta estruc-
tura de datos y en consecuencia la operación de búsqueda en ella, consiste en
transformar las claves (parte de los datos a almacenar) en direcciones dentro
del arreglo. De ahí que a este método se le conozca, en el mundo de habla
hispana, como método por transformación de claves. Por lo tanto, además
de la tabla Hash se requiere tener una función (llamada función Hash) que
transforme cada clave en una dirección.

El caso más simple es cuando se puede asociar cada dato directamente a una
posición del arreglo. Por ejemplo, suponga que se tiene un arreglo en el cual se
guardan los datos de 300 empleados y el número que identifica al empleado (su
clave) es un número entero del 0 al 299. Esta situación se ilustra en la figura
10.4. En este caso, la asignación de cada clave a una posición diferente del arre-
glo es inmediata. Es decir, la función Hash obtiene como dirección la misma
clave que es un entero comprendido entre 0 y 299.

dirección = �(Clave) = Clave;

En este ejemplo, si se quisiera aumentar el sueldo al empleado Eduardo Vargas,
sólo se requiere hacer:

10.2 Búsqueda interna 519

10

Para realizar otras operaciones se tendría la misma rapidez, ya que el acceso a los
datos es directo. Sin embargo, hay muchas aplicaciones en las que esta manera
de usar la tabla Hash no es posible, ya sea por el volumen de información que
se maneja o por las características de la misma. Por lo tanto, en estos casos sí se
requiere usar una función que transforme la clave en una dirección.

La función debe definirse de tal manera que sea fácil de calcular y que distribuya
uniformemente los diferentes elementos en el arreglo. Cuando una función gene-
ra la misma dirección para dos datos distintos, se produce lo que se conoce como
colisión. Es decir, se intenta guardar un dato en una posición que ya fue ocupada
previamente por otro elemento.

dirección1 = �(Clave1);

dirección2 = �(Clave2);

en donde: Clave1 � Clave2 y dirección1 = dirección2.

En consecuencia, resulta necesario definir junto a la función una manera
de tratar las colisiones. La figura 10.5 contiene todos los elementos que inter-
vienen: la tabla Hash, el dato que se va a almacenar, la función Hash y la
solución de colisiones.

520 Capítulo 10. Búsqueda

Álvarez, Juan Carlos

Gerente de finanzas

2000

10000

Vargas, Eduardo

Vendedor

1998

7800

…

Espíndola, Isabel

Administrativa

2004

4000

0 1 500

Empleados

FIGURA 10.4 Ejemplo de tabla Hash

Empleados[1] = Empleados[1].NuevoSueldo(Cantidad);

asumiendo que el arreglo almacena objetos de la clase Empleado y que en dicha
clase hay un método que permite actualizar el atributo Sueldo.

Antes de presentar algunas funciones y procesos para el manejo de las mismas,
se ofrece una forma de tratar las claves no numéricas.

Claves no numéricas

Cuando se tienen claves alfabéticas o alfanuméricas se deben convertir primero
a numéricas para luego ser transformadas por la función Hash en una dirección
dentro del arreglo. Generalmente se le asigna a cada letra un valor numérico con-
secutivo, de acuerdo al alfabeto que se esté usando. Así, se genera la siguiente
tabla de equivalencias para las letras del castellano.

10.2 Búsqueda interna 521

10

0 1 2 3 4 5 6 7 … MAX-1

Tabla Hash

Dato

int Clave
//Otros atributos

// Métodos

…

Colisiones

dirección = � (Clave);

Donde:

� es una función Hash que se aplica a la clave del dato que se quiere guardar en el arreglo.
dirección es la dirección obtenida a partir de la clave y será un valor comprendido entre
0 y el MAX (0 � d < MAX).

FIGURA 10.5 Elementos que intervienen en el método Hash

TABLA 10.2 Equivalencia entre letras y números
Letra Valor numérico

a 1

b 2

c 3

continúa

Si, por ejemplo, la clave fuera el registro de contribuyentes de una persona, for-
mado por letras y dígitos, por ejemplo: feac701123di5, quedaría como:
6513701123495 al hacer uso de las equivalencias entre letras y dígitos ya señaladas.

f= 6

e= 5

a= 1

c= 3

d= 4

i= 9

A continuación se presentan las funciones Hash más usadas y posteriormente
algunas alternativas para el manejo de colisiones.

Funciones Hash

Una función Hash es una función que dado un dato (o parte de él) genera una di-
rección. Como se trabaja en memoria principal y con arreglos, la dirección es una
posición del mismo. En esta sección se estudiarán algunos ejemplos de las fun-
ciones Hash:

• Residuo o módulo

• Plegamiento

• Truncamiento

522 Capítulo 10. Búsqueda

TABLA 10.2 Continuación
Letra Valor numérico

d 4

e 5

f 6

g 7

h 8

i 9

… …

z 27

1. Función residuo o módulo

Se debe tomar el residuo que se obtiene de la división de la clave (debe ser nu-
mérica) entre el tamaño del arreglo, el cual será un valor comprendido entre 0 y
el máximo menos uno. Observe los siguientes ejemplos:

MAXIMO: 300 (el arreglo tiene una capacidad máxima de 300 elementos).

10.2 Búsqueda interna 523

10

Clave: 6513701123495

dirección = �(6513701123495) = 6513701123495 % 300 = 95

Clave: 2318212217655

dirección = �(2318212217655) = 2318212217655 % 300 = 255

Clave: 6513701123495

dirección = �(6513701123495)

dirección = dígitos menos significativos de la suma de los números formados con Clave

dirección = dígitos menos significativos de (651 + 370 + 112 + 349 + 5)

dirección = dígitos menos significativos de (1487) = 87

El dato cuya clave es 6513701123495 se almacenará en la casilla del arreglo
identificada por el índice 95.

El dato cuya clave es 2318212217655 se almacenará en la casilla del arreglo
identificada por el índice 255.

En este capítulo se usa esta función para todos los ejemplos y para la implemen-
tación en C++ que aparece más adelante.

2. Plegamiento

Se deben generar dos o más números a partir de los dígitos de la clave (debe ser
numérica) sumarlos para obtener un único número del cual se toman los dígitos
menos significativos como dirección. Observe los siguientes ejemplos:

MAXIMO: 300 (el arreglo tiene una capacidad máxima de 300 elementos).

El dato cuya clave es 6513701123495 se almacenará en la casilla del arreglo
identificada por el índice 87.

524 Capítulo 10. Búsqueda

Clave: 2318212217655

dirección = �(2318212217655)

dirección = dígitos menos significativos de la suma de los números formados con Clave

dirección = dígitos menos significativos de (231 + 821 + 221 + 765 + 5)

dirección = dígitos menos significativos de (2043) = 43

Clave: 6513701123495

dirección = �(6513701123495)

dirección = suma de dígitos que ocupan posiciones pares

dirección = 5 + 3 + 0 + 1 + 3 + 9 = 21

El dato cuya clave es 2318212217655 se almacenará en la casilla del arreglo
identificada por el índice 43.

3. Truncamiento

Se deben elegir algunos dígitos de la clave (debe ser numérica) y formar con
ellos la dirección. El criterio de elección se determina en cada aplicación. Por
ejemplo, se pueden elegir los primeros ene dígitos o los últimos ene dígitos, los
que ocupan posiciones pares o los que ocupan posiciones impares. Dependiendo
del tamaño de la clave se deben sumar los dígitos y tomar los menos significativos.
Para los ejemplos que se presentan a continuación, se eligen los dígitos que están
en las posiciones pares del número, empezando a contar de izquierda a derecha.

MAXIMO: 300 (el arreglo tiene una capacidad máxima de 300 elementos).

El dato cuya clave es 6513701123495 se almacenará en la casilla del arreglo
identificada por el índice 21.

El dato cuya clave es 2318212217655 se almacenará en la casilla del arreglo
identificada por el índice 26.

En todos los ejemplos analizados, a claves diferentes se le asignaron direcciones
diferentes. Sin embargo, no siempre resulta así. Cuando la función Hash elegida
transforma dos claves distintas en una misma dirección se genera una colisión y se
debe proveer algún mecanismo para resolver esta situación, de tal manera que
se pueda almacenar el nuevo dato aunque la dirección asignada ya esté ocupada.

Solución de colisiones

Se llama colisión a la situación generada cuando una función Hash asigna una
misma dirección a dos claves distintas. Es decir, al intentar almacenar un dato en
la dirección correspondiente se detecta que la misma ya fue previamente ocupada
por otro elemento. Observe el ejemplo que se muestra más adelante. En este
caso, si se diera el dato 6513701123495, la función Hash le asignaría la posición
95 del arreglo. Si posteriormente se tuviera un empleado con registro de con-
tribuyentes igual a 6513701123195 (luego de la conversión a numérico), la
función Hash también daría la posición 95 del arreglo.

10.2 Búsqueda interna 525

10

Clave: 2318212217655

dirección = �(2318212217655)

dirección = suma de dígitos que ocupan posiciones pares

dirección = 3 + 8 + 1 + 2 + 7 + 5 = 26

Clave: 6513701123495

dirección = �(6513701123495) = 6513701123495 % 300 = 95

Clave: 6513701123195

dirección = �(6513701123195) = 6513701123195 % 300 = 95

La manera de generar las direcciones y en su caso resolver las colisiones al mo-
mento de insertar, determina la manera de generar las direcciones y resolver las
colisiones al momento de buscar un dato dentro de la tabla Hash. Las cuatro ma-
neras más utilizadas para resolver colisiones:

• Prueba lineal,

• Prueba cuadrática

• Doble dirección

• Encadenamiento

Primero se analizarán las tres primeras porque comparten ciertas características,
mientras que la cuarta será tratada de manera independiente porque requiere el
uso de listas ligadas junto con la tabla Hash.

Prueba lineal

La prueba lineal consiste en que una vez detectada la colisión se busca secuen-
cialmente en el arreglo hasta encontrar un espacio disponible (en caso de una
inserción) o encontrar el dato (en caso de una búsqueda) o bien hasta que se
detecta que el arreglo está lleno o que ya fue recorrido totalmente. Por lo tanto, si
la dirección generada por la función Hash es d y ésta ya fue ocupada, entonces
se buscará en la d+1, luego en la d+2, y así hasta encontrar un lugar disponible
o hasta llegar nuevamente a d. En este último caso, el proceso se detiene para
no caer en ciclos infinitos.

La figura 10.6 presenta un esquema de cómo quedaría la tabla Hash al resolver
la colisión que se presentó al insertar el valor 6513701123195; dicha colisión se
presentó debido a que la dirección asignada (d=95) ya había sido ocupada
previamente. En este caso, asumiendo que la posición 96 (d+1) estuviera libre,
ésta es la elegida para almacenar el nuevo valor. Si posteriormente se busca el da-
to cuya clave es 6513701123195, la función Hash dará la dirección 95. Al
buscar en dicha posición, el dato no se encontrará, por lo que se aplicará prueba
lineal hasta encontrarlo o hasta haber recorrido todo el arreglo. Para nuestro
ejemplo, se encontrará en la siguiente posición, es decir en la 96.

526 Capítulo 10. Búsqueda

6513701123495 6513701123195 2318212217655

0 1 …… … 29994 95 96 255

FIGURA 10.6 Solución de colisiones por prueba lineal

Prueba cuadrática

La prueba cuadrática consiste en que una vez detectada la colisión se redefine
la dirección incrementándola con el cuadrado de un valor, el cual inicia en uno y
se aumenta en uno en cada nuevo intento. El proceso se repite hasta encontrar un
espacio disponible (en caso de una inserción) o encontrar el dato (en caso de una
búsqueda) o bien hasta que se detecta que el arreglo está lleno o que el dato no
está en el arreglo. Por lo tanto, si la dirección generada por la función Hash es d
y ésta ya fue ocupada, entonces se buscará en la d+12, luego en la d+22, y así has-
ta encontrar un lugar disponible o hasta cumplir alguna condición establecida pa-
ra evitar caer en ciclos infinitos.

La figura 10.7 presenta un esquema de cómo quedaría la tabla Hash al resolver
la colisión que se presentó al insertar el valor 6513701123195; dicha colisión
se presentó debido a que la dirección asignada (d=95) ya había sido ocupada
previamente. En este caso, asumiendo que la posición 96 (d+12) está también
ocupada, se vuelve a calcular una nueva dirección por medio de la prueba cua-
drática, resultando igual a 99 (d+22). Considerando que está disponible, es la
elegida para almacenar el dato. Si posteriormente se busca el dato cuya clave es
6513701123195, la función Hash dará la dirección 95. Al buscar en dicha posi-
ción, el dato no se encontrará, por lo que se aplicará la prueba cuadrática hasta
encontrarlo o hasta que se cumpla la condición establecida. Para nuestro ejemplo,
se encontrará en el segundo intento, es decir en la 99.

10.2 Búsqueda interna 527

10

6513701123495 6513701123496 6513701123195 2318212217655

… … … … 29995 96 99 255

FIGURA 10.7 Solución de colisiones por prueba cuadrática

Doble dirección

La doble dirección consiste en que una vez detectada la colisión se redefine la
dirección incrementándola en uno y aplicándole nuevamente la función Hash. Es
decir, la dirección que se obtuvo con la función se convierte en entrada de la mis-
ma función. Por lo tanto, con la doble dirección se obtiene una dirección de una
dirección. El proceso se repite hasta encontrar un espacio disponible (en caso de
una inserción) o encontrar el dato (en caso de una búsqueda), o bien hasta que se
detecta que el arreglo está lleno o que el dato no está en el arreglo. Por lo tanto,
si la dirección generada por la función Hash es d y ésta ya fue ocupada, entonces

se buscará en la d1= �(d+1), luego en la d2= �(d1+1), y así hasta encontrar un lu-
gar disponible o hasta cumplir alguna condición establecida para evitar caer en
ciclos infinitos.

La figura 10.8 presenta un esquema de cómo quedaría la tabla Hash al resolver
la colisión que se presentó al insertar el valor 6513701123195, dado que
la dirección asignada (d=95) ya había sido ocupada previamente. En este caso,
asumiendo que la posición 96 (d1= (d+1) % 300) está también ocupada, se
vuelve a calcular una nueva dirección por medio de la doble dirección, resul-
tando igual a 97 (d2= (d1+1) % 300). Considerando que está disponible, es la
elegida para almacenar el dato. Si posteriormente se busca el dato cuya clave
es 6513701123195, la función Hash dará la dirección 95. Al buscar en dicha
posición, el dato no se encontrará, por lo que se aplicará doble dirección hasta
encontrarlo o hasta que se cumpla la condición establecida. Para nuestro ejem-
plo, se encontrará en el segundo intento, es decir en la 97.

528 Capítulo 10. Búsqueda

6513701123495 6513701123496 6513701123195 2318212217655

… … … 29995 96 97 255

FIGURA 10.8 Solución de colisiones por doble dirección

Implementación del algoritmo de búsqueda por
transformación de claves

La figura 10.9 presenta un esquema de las clases definidas para representar estas
variantes de la solución de colisiones. Se definió una plantilla de una clase abs-
tracta, la clase Hash, que tiene como atributos la tabla Hash y el total de elemen-
tos almacenados. Además, tiene como miembros cuatro métodos, dos de los
cuales son virtuales puros y se redefinirán en las clases derivadas. Los otros dos
son auxiliares para determinar si la tabla está vacía y para imprimir el contenido
de la misma respectivamente.

A partir de la clase abstracta se derivan tres clases concretas para implementar la
solución de colisiones por prueba lineal (clase PruebaLineal), por prueba cuadrá-
tica (clase PruebaCuadratica) y por doble dirección Hash (clase DobleDireccion).
Las tres clases redefinen los métodos Inserta() y Busca() heredados de la clase
base, de acuerdo a sus propias características. La función Hash utilizada en todas
las clases es la del módulo o residuo, la cual por su simplicidad se codifica tanto

en Inserta() como en Busca(). Sin embargo, la misma podría definirse como un
método de la clase abstracta que se heredaría por todas las derivadas.

10.2 Búsqueda interna 529

10

Hash(T)

int Tam

T Datos[]

bool HashVacio()

void Imprime()

virtual bool Inserta(T) = 0

virtual void Busca(T) = 0

PruebaLineal(T)

bool Inserta(T)

void Busca(T)

PruebaCuadratica(T)

bool Inserta(T)

void Busca(T)

DobleDireccion(T)

bool Inserta(T)

void Busca(T)

FIGURA 10.9 Esquema de clases

A continuación se muestra la codificación de estas clases usando el lenguaje
C++.

// Definición del número máximo de elementos que puede contener el

➥arreglo.

##ddeeffiinnee MAXIMO 20

/* Definición de la plantilla de la clase Hash. La clase tiene como

➥miembros protegidos un arreglo de tipo TT para darle mayor generalidad

➥a la solución y el total de elementos almacenados. Además, tiene dos

➥métodos que implementan operaciones comunes a todas las clases

➥derivadas y dos métodos virtuales puros que serán implementados de

➥manera específica en cada una de las subclases. */

530 Capítulo 10. Búsqueda

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Hash

{

protected:

iinntt Tam;

TT Datos[MAXIMO];

ppuubblliicc::

Hash();

bbooooll HashVacio();

vvooiidd Imprime();

vviirrttuuaall bbooooll Inserta(TT) = 0;

vviirrttuuaall vvooiidd Busca(TT) = 0;

};

/* Método constructor. Inicializa los atributos Datos y Tam para indicar

➥que el arreglo está vacío. */

tteemmppllaattee <<ccllaassss TT>>

Hash<<TT>>::::Hash()

{

iinntt Indice;

ffoorr (Indice= 0; Indice << MAXIMO; Indice++++)

Datos[Indice]= NNUULLLL;

Tam= 0;

}

/* Método auxiliar para determinar el estado del arreglo. Regresa ttrruuee

➥si el arreglo está vacío, y ffaallssee en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll Hash<<TT>>::::HashVacio()

{

iiff (Tam ==== 0)

rreettuurrnn ttrruuee;

eellssee

rreettuurrnn ffaallssee;

}

/* Imprime los elementos almacenados en cada una de las posiciones del

➥arreglo. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Hash<<TT>>::::Imprime()

{

iinntt Indice;

/* Verifica que el arreglo tenga al menos un elemento. */

iiff (!HashVacio())

{

ccoouutt<<<<”\n\n Datos almacenados\n\n “;

ffoorr (Indice= 0; Indice << MAXIMO; Indice++++)

iiff (Datos[Indice] !!== NNUULLLL)

10.2 Búsqueda interna 531

10

ccoouutt<<<<”Posición “<<<<(Indice+1)<<<<”: “

<<<<Datos[Indice]<<<<endl;

ccoouutt<<<<”\n\n”;

}

eellssee

ccoouutt<<<<”\nNo hay elementos almacenados en el arreglo. \n”;

}

/* Clase PruebaLineal, derivada de la clase Hash. Implementa el método

➥Hash resolviendo las colisiones por medio de la prueba lineal. Utiliza

➥la función Hash módulo o residuo. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss PruebaLineal: ppuubblliicc Hash<<TT>>

{

ppuubblliicc::

bbooooll Inserta(TT);

vvooiidd Busca(TT);

};

/* Método para insertar un nuevo elemento en un arreglo. Resuelve las

➥colisiones por medio de la prueba lineal. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll PruebaLineal<<TT>>::::Inserta(TT Valor)

{

iinntt Ind1, Ind2;

bbooooll Resp= ttrruuee;

Ind1= Valor %% MAXIMO;

iiff (Datos[Ind1] ==== NNUULLLL)

Datos[Ind1]= Valor;

eellssee

{

Ind2= Ind1 + 1;

wwhhiillee (Ind2 << MAXIMO &&&& Datos[Ind2]!!== NNUULLLL &&&& Ind2 !!== Ind1)

{

Ind2++++;

iiff (Ind2 ==== MAXIMO)

Ind2= 0;

}

iiff (Ind2 ==== Ind1)

Resp= ffaallssee;

eellssee

Datos[Ind2]= Valor;

}

iiff (Resp)

Tam++++;

rreettuurrnn Resp;

}

532 Capítulo 10. Búsqueda

/* Método para buscar el elemento Valor en el arreglo. Resuelve las

➥colisiones por medio de la prueba lineal. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd PruebaLineal<<TT>>::::Busca(TT Valor)

{

iinntt Ind1, Ind2;

/* Verifica que el arreglo tenga al menos un elemento. */

iiff (!HashVacio())

{

Ind1= (Valor %% MAXIMO);

iiff (Datos[Ind1] ==== Valor)

ccoouutt<<<<”\nEl elemento está en la posición: “<<<<(Ind1+1)<<<<endl;

eellssee

{

Ind2= Ind1 + 1;

wwhhiillee (Ind2 << MAXIMO &&&& Datos[Ind2] !!== Valor

➥&&&& Datos[Ind2]!!== NNUULLLL &&&& Ind2 !!== Ind1)

{

Ind2++++;

iiff (Ind2 ==== MAXIMO)

Ind2= 0;

}

iiff (Datos[Ind2] ==== Valor)

ccoouutt<<<<”\nEl elemento está en la posición: “

➥<<<<(Ind2+1)<<<<endl;

eellssee

ccoouutt<<<<”\nEl elemento no está en el arreglo. \n”<<<<endl;

}

}

eellssee

ccoouutt<<<<”\nNo hay elementos almacenados en el arreglo. \n”;

}

/* Clase PruebaCuadratica, derivada de la clase Hash. Implementa el

➥método Hash resolviendo las colisiones por medio de la prueba

➥cuadrática. Utiliza la función Hash módulo o residuo. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss PruebaCuadratica: ppuubblliicc Hash<<TT>>

{

ppuubblliicc::

bbooooll Inserta(TT);

vvooiidd Busca(TT);

};

10.2 Búsqueda interna 533

10

/* Método para insertar un nuevo elemento en un arreglo. Resuelve las

➥colisiones por medio de la prueba cuadrática. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll PruebaCuadratica<<TT>>::::Inserta(TT Valor)

{

bbooooll Resp= ttrruuee;

iinntt Base, Ind1, Ind2, Bandera= 1;

/* Bandera: establece la condición necesaria para evitar ciclos

➥infinitos.

Puede tomar tres posibles valores:

➥1 indica el primer intento de inserción

➥2 indica el segundo intento de inserción

➥3 indica el tercer intento de inserción. En este caso se

➥interrumpe el proceso. */

Ind1 = Valor %% MAXIMO;

iiff (Datos[Ind1] ==== NNUULLLL)

Datos[Ind1]= Valor;

eellssee

{

Base= 1;

Ind2= iinntt (Ind1 + pow(Base,2));

Base++++;

wwhhiillee (Ind2 << MAXIMO &&&& Datos[Ind2] !!== NNUULLLL &&&& Bandera !!== 3)

{

iiff (Bandera ==== 2)

{

Ind2= iinntt (Ind2 + pow(Base,2));

Base++++;

}

eellssee

{

Ind2= iinntt (Ind1 + pow(Base,2));

Base++++;

}

iiff (Ind2 >>== MAXIMO)

iiff (Bandera ==== 2)

Bandera= 3;

eellssee

{

Base= 1;

Ind2= 0;

Bandera= 2;

}

}

534 Capítulo 10. Búsqueda

iiff (Bandera ==== 3)

Resp= ffaallssee;

eellssee

Datos[Ind2]= Valor;

}

iiff (Resp)

Tam++++;

rreettuurrnn Resp;

}

/* Método para buscar el elemento Valor. Resuelve el problema de las

➥colisiones por medio de la prueba cuadrática. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd PruebaCuadratica<<TT>>::::Busca(TT Valor)

{

iinntt Base, Ind1, Ind2;

/* Verifica que el arreglo almacene al menos un elemento. */

iiff (!HashVacio())

{

Ind1= (Valor %% MAXIMO);

iiff (Datos[Ind1] ==== Valor)

ccoouutt<<<<”\nEl elemento está en la posición: “<<<<(Ind1+1)<<<<endl;

eellssee

{

Base= 1;

Ind2= iinntt (Ind1 + pow(Base,2));

wwhhiillee (Datos[Ind2] !!== Valor &&&& Datos[Ind2] !!== NNUULLLL)

{

Base++++;

Ind2= iinntt (Ind1 + pow(Base,2));

iiff (Ind2 >>== MAXIMO)

{

Base= 0;

Ind1= 0;

Ind2= 0;

}

}

iiff (Datos[Ind2] ==== Valor)

ccoouutt<<<<”\nEl elemento está en la posición:

➥“<<<<(Ind2+1)<<<<endl;

eellssee

ccoouutt<<<<”\nEl elemento no está en el arreglo. \n”;

}

}

eellssee

ccoouutt<<<<”\nNo hay elementos almacenados en el arreglo. \n”;

}

10.2 Búsqueda interna 535

10

/* Clase DobleDireccion, derivada de la clase Hash. Implementa el método

➥Hash resolviendo las colisiones por medio de dobles direcciones.

➥Utiliza la función Hash módulo o residuo. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss DobleDireccion: ppuubblliicc Hash<<TT>>

{

ppuubblliicc::

bbooooll Inserta(TT);

vvooiidd Busca(TT);

};

/* Método para insertar un nuevo elemento en un arreglo. Resuelve las

➥colisiones por medio de la doble dirección Hash. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll DobleDireccion<<TT>>::::Inserta(TT Valor)

{

bbooooll Resp= ttrruuee;

iinntt Ind1, Ind2, Bandera= 1;

/* Bandera: establece la condición necesaria para evitar ciclos

➥infinitos. Puede tomar tres posibles valores:

➥1 indica el primer intento de inserción

➥2 indica el segundo intento de inserción

➥3 indica el tercer intento de inserción. En este caso se

➥interrumpe el proceso. */

Ind1= Valor %% MAXIMO;

iiff (Datos[Ind1] ==== NNUULLLL)

Datos[Ind1]= Valor;

eellssee

{

Ind2 = ((Ind1+1) %% MAXIMO) + 1;

wwhhiillee (Ind2 << MAXIMO &&&& Datos[Ind2] !!== NNUULLLL &&&& Bandera !!== 3)

{

Ind2= ((Ind2+1) %% MAXIMO) + 1;

iiff (Ind2 >>== MAXIMO)

iiff (Bandera ==== 2)

Bandera= 3;

eellssee

{

Ind2= 0;

Bandera= 2;

}

}

iiff (Bandera ==== 3)

Resp= ffaallssee;

eellssee

Datos[Ind2]= Valor;

}

El método Busca() se definió del tipo Void (en las implementaciones), de tal mane-
ra que el método imprime si encuentra o no al elemento buscado. También se pudo
definir de tipo entero y, en este caso, regresar la posición donde está, o un valor
negativo si no lo encuentra en el arreglo. Otra posible variante es definirlo de tipo
Bool, como Inserta(), dando el valor True si está y False en caso contrario.

Es importante aclarar que si el tipo usado para darle valor a T fuera una clase, en-
tonces en dicha clase deberían estar sobrecargados los operadores == y != para
que los métodos pudieran usarse tal como están implementados.

El programa 10.3 presenta una aplicación para mostrar el uso del algoritmo por
transformación de claves, usando la prueba lineal para el manejo de colisiones. El

536 Capítulo 10. Búsqueda

iiff (Resp)

Tam++++;

rreettuurrnn Resp;

}

/* Método para buscar el elemento Valor. Resuelve el problema de las

➥colisiones por medio de la doble dirección Hash. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd DobleDireccion<<TT>>::::Busca(TT Valor)

{

iinntt Ind1, Ind2;

/* Verifica que el arreglo almacene al menos un elemento. */

iiff (!HashVacio())

{

Ind1= (Valor %% MAXIMO);

iiff (Datos[Ind1] ==== Valor)

ccoouutt<<<<”\nEl elemento está en la posición: “<<<<(Ind1+1)<<<<endl;

eellssee

{

Ind2= ((Ind1+1) %% MAXIMO) + 1;

wwhhiillee (Ind2 << MAXIMO &&&& Datos[Ind2] !!== Valor &&&&

➥Datos[Ind2]!!== NNUULLLL &&&& Ind2 !!== Ind1)

Ind2= ((Ind2 + 1) %% MAXIMO) + 1;

iiff (Datos[Ind2] ==== Valor)

ccoouutt<<<<”\nEl elemento está en la posición:

➥“<<<<(Ind2+1)<<<<endl;

eellssee

ccoouutt<<<<”\nEl elemento no está en el arreglo. \n”;

}

}

eellssee

ccoouutt<<<<”\nNo hay elementos almacenados en el arreglo. \n”<<<<endl;

}

uso de las clases derivadas que implementan las otras variantes es similar al presen-
tado en este programa.

Programa 10.3

10.2 Búsqueda interna 537

10

/* Aplicación. Se incluye la biblioteca en la cual se guardó la clase

➥Hash y su derivada PruebaLineal. */
##iinncclluuddee “Hash.h”

vvooiidd mmaaiinn(())

{

iinntt Total, I, Cod;

/* Se declara un objeto de la clase PruebaLineal, usando el tipo iinntt

➥para definir el tipo de datos que se almacenarán en la tabla Hash. */

PruebaLineal<<iinntt>> HashLin;

ddoo {{

ccoouutt<<<<”\nCuántos códigos de productos quieres guardar: “;

cciinn>>>>Total;

} wwhhiillee (Total <<== 0);

/* Lectura de los datos y almacenamiento de los mismos en la tabla

➥Hash por medio del método Inserta(). Si se presenta alguna colisión en

➥el momento de insertar, se resuelve por medio de la prueba lineal. */

ffoorr (I= 1; I <<== Total; I++++)

{

ccoouutt<<<<”\n\nIngresa un código: “;

cciinn>>>>Cod;

HashLin.Inserta(Cod);

}

/* Por medio de este ciclo se permite que el usuario verifique qué

➥códigos fueron dados de alta en el arreglo. Se ingresa un código y

➥se invoca al método que busca un elemento en la tabla Hash. Según

➥el resultado obtenido se da un mensaje adecuado. */

ccoouutt<<<<”\n\nCódigo a buscar (para terminar –1): “;

cciinn>>>>Cod;

wwhhiillee (Cod !!== –1)

{

HashLin.Busca(Cod);

ccoouutt<<<<”\n\nCódigo a buscar (para terminar –1): “;

cciinn>>>>Cod;

}

/* Se imprime la información de todos los códigos guardados en la

➥tabla Hash. */

ccoouutt<<<<”\n\n\nReporte de todos los códigos almacenados\n “;

HashLin.Imprime();

}

Encadenamiento

Además de las tres formas ya estudiadas para el manejo de las colisiones, existe otra
que es muy útil y fácil de usar, pero que requiere utilizar listas ligadas además del
arreglo. Es decir, en este caso la tabla Hash se ve como un arreglo de listas. De ahí
el nombre que recibe esta manera de solucionar las colisiones: por encadenamiento.

El encadenamiento se da por la misma naturaleza de la estructura de datos elegida
para almacenar la información. Dado que cada elemento del arreglo es una lista,
si se tiene una colisión el dato colisionado también se guarda en la lista de la
casilla asignada. Es decir, la dirección que se obtuvo con la función Hash sigue
siendo la misma; sin embargo, los datos se van guardando en la lista ligada, la
cual por ser implementada en memoria dinámica no tiene (en principio) límite
establecido. Por lo tanto, si la dirección generada por la función Hash es d, sin
importar si la misma ya fue ocupada o no se almacena el dato en la lista que está
en la posición d del arreglo.

La figura 10.10 presenta un esquema de cómo se va generando la tabla Hash,
usando encadenamiento, al insertar el valor 6513701123195 en la dirección
obtenida por la función (d=95), la cual fue previamente asignada a otro dato
(6513701123495). En este caso, como en cada posición de la tabla se tiene una
lista no existe problema de espacio para insertarlo en la misma. Es decir, una vez
generada la dirección se invoca el método que inserta elementos a la lista almace-
nada en dicha posición. Cuando se busca un elemento se procede de manera
similar. Se calcula la dirección Hash y luego se realiza la búsqueda en la lista
guardada en dicha posición.

538 Capítulo 10. Búsqueda

FIGURA 10.10 Manejo de colisiones por encadenamiento

0

1

…

95

96

97

…

299

6513701123495 6513701123195

La figura 10.11 presenta el esquema de clases para implementar este algoritmo.
Se modificó la clase Hash de la figura 10.9, declarando el atributo Datos[] del
tipo de la plantilla Lista. Además, el método Busca() de definió de tipo Bool.

10.2 Búsqueda interna 539

10

Hash(T)

int Tam

Lista<T> Datos[]

bool HashVacio()

void Imprime()

virtual bool Inserta(T) = 0

virtual void Busca(T) = 0

Encadenamiento(T)

bool Inserta(T)

void Busca(T)

FIGURA 10.11 Esquema de clases

A continuación se presenta la implementación de estas clases, usando el lenguaje
C++. Es importante señalar, que si en lugar de usar la plantilla de la clase Lista
se hubiera usado una lista con un tipo ya asociado, se hubiera podido derivar de
la clase Hash previamente estudiada.

// Definición del número máximo de elementos que puede contener el arreglo.

##ddeeffiinnee MAXIMO 20

// Se incluye la biblioteca con la plantilla de la clase Lista.

##iinncclluuddee “Lista.h”

540 Capítulo 10. Búsqueda

/* Definición de la clase Hash, en la cual el manejo de las colisiones se

➥hará por medio del encadenamiento. La función Hash es el módulo o residuo.

➥Se apoya en la clase Lista, la cual está en la biblioteca Lista.h */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Hash

{

pprrootteecctteedd:

iinntt Tam;

Lista<<TT>> Datos[MAXIMO];

ppuubblliicc::

Hash();

bbooooll HashVacio();

vvooiidd Imprime();

vviirrttuuaall bbooooll Inserta(TT) = 0;

vviirrttuuaall bbooooll Busca(TT) = 0;

};

/* Método constructor. Inicializa los atributos Datos y Tam para

➥indicar que el arreglo está vacío. En este caso se tiene un arreglo

➥de listas. */

tteemmppllaattee <<ccllaassss TT>>

Hash<<TT>>::::Hash()

{

iinntt Indice;

for(Indice= 0; Indice << MAXIMO; Indice++++)

Datos[Indice]= NNUULLLL;

Tam= 0;

}

/* Método auxiliar para determinar el estado del arreglo. Regresa ttrruuee

➥si el arreglo está vacío, y ffaallssee en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll Hash<<TT>>::::HashVacio()

{

iiff (Tam ==== 0)

rreettuurrnn ttrruuee;

eellssee

rreettuurrnn ffaallssee;

}

/* Imprime los elementos almacenados en el arreglo. Para que este

➥método pueda imprimir el contenido del arreglo, teniendo en cuenta que

➥cada uno de ellos es una lista, se requiere que en la clase Lista se

➥haya sobrecargado el operador <<<<. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Hash<<TT>>::::Imprime()

{

iinntt Ind;

10.2 Búsqueda interna 541

10

/* Verifica que el arreglo tenga al menos un elemento. */

iiff (!HashVacio())

{

ccoouutt<<<<”\n\n Datos almacenados\n\n “;

ffoorr (Ind= 0; Ind << MAXIMO; Ind++++)

iiff (Datos[Ind] !!== NNUULLLL)

ccoouutt<<<<”Posición “<<<<(Ind+1)<<<<”:

“<<<<Datos[Ind]<<<<eennddll;

ccoouutt<<<<”\n\n”;

}

eellssee

ccoouutt<<<<”\nNo hay elementos almacenados en el arreglo. \n”;

}

/* Clase Encadenamiento, derivada de la clase Hash. Implementa el método

➥Hash resolviendo las colisiones por medio de encadenamiento. Utiliza

➥la función Hash módulo o residuo. Se apoya en una lista simplemente

ligada. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Encadenamiento: ppuubblliicc Hash<<TT>>

{

ppuubblliicc::

bbooooll Inserta(TT);

bbooooll Busca(TT);

};

/* Método para insertar un nuevo elemento en un arreglo. Resuelve las

colisiones por medio de encadenamiento. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll Encadenamiento<<TT>>::::Inserta(TT Valor)

{

iinntt Ind1;

bbooooll InserLis;

Ind1= Valor %% MAXIMO;

InserLis= Datos[Ind1].InsertaFinal(Valor);

iiff (InserLis)

Tam++++;

rreettuurrnn InserLis;

}

/* Método para buscar el elemento Valor. Resuelve el problema de las

➥colisiones por medio de encadenamiento, haciendo uso de una lista

➥simplemente ligada. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll Encadenamiento<<TT>>::::Busca(TT Valor)

{

iinntt Ind1;

bbooooll Resp= ffaallssee;

A continuación se presenta la plantilla de la clase Lista con los operadores sobre-
cargados requeridos por la clase Encadenamiento.

542 Capítulo 10. Búsqueda

iiff (!HashVacio())

{

Ind1= (Valor %% MAXIMO);

iiff (Datos[Ind1].BuscaDesordenada(Valor) !!== NNUULLLL)

Resp= ttrruuee;

}

rreettuurrnn Resp;

}

// Clase Lista dependiente de la clase NodoLista.

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista;

/* Definición de la clase NodoLista. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoLista

{

ppuubblliicc::

NodoLista<<TT>> *Liga;

TT Info;

NodoLista();

ffrriieenndd ccllaassss Lista<<TT>>;

// Otros métodos presentados en el capítulo 6, dedicado a listas

➥ligadas.

};

/* Declaración del método constructor por omisión. Inicializa con el

➥valor NNUULLLL al puntero al siguiente nodo. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>>::::NodoLista()

{

Liga = NNUULLLL;

}

/* Definición de la clase Lista. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista

{

pprriivvaattee::

NodoLista<<TT>> *Primero;

10.2 Búsqueda interna 543

10

ppuubblliicc::

Lista ();

bbooooll InsertaFinal(TT);

NodoLista<<TT>> * BuscaDesordenada(TT);

vvooiidd ooppeerraattoorr = (ccoonnsstt);

bbooooll ooppeerraattoorr !!== (ccoonnsstt);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&, Lista &&);

// Otros métodos estudiados en el capítulo 6, dedicado a las

➥listas ligadas.

};

/* Declaración del método constructor. Inicializa el puntero al primer

➥nodo de la lista con el valor NNUULLLL: indica lista vacía. */

tteemmppllaattee <<ccllaassss TT>>

Lista<<TT>>::::Lista()

{

Primero = NNUULLLL;

}

/* Sobrecarga del operador == para que a un objeto de la clase Lista se

➥le pueda asignar la constante NNUULLLL, operación necesaria cuando se

➥inicializa el arreglo de listas. */

tteemmppllaattee <<ccllaassss TT>>

vvooiidd Lista<<TT>>::::ooppeerraattoorr = (ccoonnsstt)

{

Primero = NNUULLLL;

}

/* Sobrecarga del operador !!== para que un objeto de la clase Lista pueda

➥ser comparado con la constante NNUULLLL, operación necesaria cuando se

➥intenta determinar si una casilla del arreglo está disponible. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll Lista<<TT>>::::ooppeerraattoorr !!== (ccoonnsstt)

{

rreettuurrnn (Primero !!== NNUULLLL);

}

/* Sobrecarga del operador <<<< para que un objeto tipo Lista pueda ser

➥impreso directamente. De esta manera, el método Imprime() de la clase

➥Hash se generaliza a cualquiera de las formas vistas para tratar las

➥colisiones. */

tteemmppllaattee <<ccllaassss TT>>

oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&Escribe, Lista<<TT>> &&ObjLis)

{

NodoLista<<TT>> *P = ObjLis.Primero;

wwhhiillee (P)

{

Escribe<<<<”\n”<<<<P–>>Info;

P= P–>>Liga;

}

544 Capítulo 10. Búsqueda

Escribe<<<<”\n\n”;

rreettuurrnn Escribe;

}

/* Método que inserta un nodo al final de la lista. El método es válido

➥tanto para listas ya creadas como para listas vacías. */

tteemmppllaattee <<ccllaassss TT>>

bbooooll Lista<<TT>>::::InsertaFinal(TT Dato)

{

NodoLista<<TT>> *P, *Ultimo;

P = new NodoLista<<TT>>();

iiff (P)

{

P–>>Info= Dato;

iiff (Primero)

{

Ultimo = Primero;

wwhhiillee (Ultimo–>>Liga)

Ultimo = Ultimo–>>Liga;

Ultimo–>>Liga = P;

}

eellssee

Primero = P;

rreettuurrnn ttrruuee;

}

eellssee

rreettuurrnn ffaallssee;

}

/* Método que busca un elemento dado como referencia en una lista

➥desordenada. Regresa la dirección del nodo si lo encuentra o NNUULLLL en

➥caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> * Lista<<TT>>::::BuscaDesordenada(TT Ref)

{

NodoLista<<TT>> *Q, *Resp= NNUULLLL;

iiff (Primero)

{

Q = Primero;

wwhhiillee ((Q–>>Info !!== Ref) &&&& (Q–>>Liga))

Q = Q–>>Liga;

iiff (Q–>>Info ==== Ref)

Resp= Q;

}

rreettuurrnn Resp;

}

La eficiencia de este método se determina por el nivel de llenado de la estructura.
Cuanto más llena esté más comparaciones adicionales requerirá para llegar al
dato buscado. El primer intento siempre es directo, es decir se compara el dato
con el que está en la dirección que le corresponde. Sin embargo, si el dato no está
en esa posición entonces se debe proceder según el algoritmo usado para resolver
colisiones. Por lo tanto, el comportamiento final de este método depende, además
del nivel de llenado, del manejo de colisiones que se implemente.

El programa 10.5 presenta una aplicación de este algoritmo para ilustrar su uso.
Los datos con los que se trabaja son objetos de la clase Producto y a los mismos
se les asigna una dirección de acuerdo a su clave. Es decir, la función Hash se
aplica sólo a su clave, por lo que en la clase Producto se sobrecarga el operador
del residuo (%). En el programa se capturan algunos productos y se almacenan
en una tabla Hash con encadenamiento. Posteriormente, se realizan algunas
búsquedas sobre la tabla Hash, y finalmente se imprime un reporte de todos los
productos almacenados en el arreglo. Para dar mayor claridad al ejemplo, se
incluye en el programa 10.4 la clase Producto con todos los métodos requeridos
para esta aplicación. Las clases Lista y Hash son las que se presentaron anterior-
mente y están en las bibliotecas Lista.h y Hash.h respectivamente.

Programa 10.4

10.2 Búsqueda interna 545

10

/* Definición de la clase Producto. Se incluyen algunos atributos y los

➥métodos requeridos para esta aplicación, destacando la sobrecarga de

➥algunos operadores para que el algoritmo de Hash con encadenamiento

➥pueda usarse. */

ccllaassss Producto

{

pprriivvaattee::

iinntt Clave;

cchhaarr NomProd[64];

double Precio;

ppuubblliicc::

Producto();

Producto(int, cchhaarr[[]], double);

iinntt ooppeerraattoorr ==== (Producto);

iinntt ooppeerraattoorr !!== (Producto);

iinntt ooppeerraattoorr %% (int);

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr>>>>(iissttrreeaamm &&, Producto &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr<<<<(oossttrreeaamm &&, Producto &&);

};

546 Capítulo 10. Búsqueda

/* Constructor por omisión. */

Producto::::Producto()

{}

/* Constructor con parámetros. */

Producto::::Producto(iinntt Cla, cchhaarr NomP[], double Pre)

{

Clave= Cla;

ssttrrccppyy(NomProd, NomP);

Precio= Pre;

}

/* Sobrecarga del operador ==== para comparar dos objetos tipo Producto.

➥Para que dos productos sean iguales sus claves deben ser iguales. */

iinntt Producto::::ooppeerraattoorr ==== (Producto Prod)

{

iinntt Resp=0;

iiff (Clave ==== Prod.Clave)

Resp= 1;

rreettuurrnn Resp;

}

/* Sobrecarga del operador !!== para comparar dos objetos tipo Producto.

Para que dos productos sean distintos sus claves deben ser diferentes.

*/

iinntt Producto::::ooppeerraattoorr !!== (Producto Prod)

{

iinntt Resp=0;

iiff (Clave !!== Prod.Clave)

Resp= 1;

rreettuurrnn Resp;

}

/* Sobrecarga del operador %% para ser aplicado en la función Hash

➥módulo o residuo. Recibe como parámetro el tamaño de la tabla Hash, y

➥regresa como resultado el residuo entre la clave del producto y dicho

➥valor. */

iinntt Producto::::ooppeerraattoorr %% (iinntt num)

{

rreettuurrnn Clave %% num;

}

/* Sobrecarga del operador >>>> para que un objeto de la clase Producto

pueda ser leído directamente. */

iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&Lee, Producto &&ObjProd)

{

ccoouutt <<<<”\n\nIngrese clave del producto: “;

Lee>>>> ObjProd.Clave;

ccoouutt <<<<”\n\nIngrese nombre del producto: “;

El programa 10.5 presenta una aplicación del algoritmo por transformación de
claves con encadenamiento. Se crea una tabla Hash de objetos tipo Producto,
luego permite hacer búsquedas sobre la tabla y finaliza con un reporte de todos
los elementos almacenados.

Programa 10.5

10.2 Búsqueda interna 547

10

Lee>>>> ObjProd.NomProd;

ccoouutt <<<<”\n\nIngrese precio: “;

Lee>>>> ObjProd.Precio;

rreettuurrnn Lee;

}

/* Sobrecarga del operador <<<< para que un objeto de la clase Producto

pueda ser escrito directamente. */

oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&Escribe, Producto &&ObjProd)

{

Escribe<<<<”\n\nProducto\n”;

Escribe<<<<”\nClave: “<<<<ObjProd.Clave;

Escribe<<<<”\nNombre: “<<<<ObjProd.NomProd;

Escribe<<<<”\nPrecio: “<<<<ObjProd.Precio<<<<”\n”;

rreettuurrnn Escribe;

}

/* Aplicación. Se incluyen las bibliotecas con el código de las

➥plantillas de la clase Lista y Hash, mismos que corresponden a lo pre-

➥sentado anteriormente. La clase Producto se incluye en la biblioteca

➥Producto.h */

##iinncclluuddee “Lista.h”

##iinncclluuddee “Hash.h”

##iinncclluuddee “Producto.h”

vvooiidd mmaaiinn(())

{

iinntt Total, i, Clave;

/* Se declara un objeto de la clase derivada Encadenamiento con el

➥tipo Producto como base para TT. */

Encadenamiento<<Producto>> HashEnc;

Producto Prod;

/* Se pide al usuario el total de productos que se almacenarán en la

➥tabla Hash. */

548 Capítulo 10. Búsqueda

ddoo {{

ccoouutt<<<<”\nCuántos productos quiere insertar: “;

cciinn>>>>Total;

} wwhhiillee (Total <<== 0);

/* Se lee cada uno de los productos y se inserta en la tabla Hash

➥usando el método Inserta() el cual invoca a un método de inserción

➥de la clase Lista. Es importante recordar que la tabla Hash es un

➥arreglo de listas. */

ffoorr (i= 1; i <<== Total; i++++)

{

ccoouutt<<<<”\n\nIngresa producto a insertar\n “;

cciinn>>>>Prod;

HashEnc.Inserta(Prod);

}

/* Por medio de este ciclo se permite que el usuario verifique qué

➥productos fueron dados de alta en el arreglo. Se ingresa la clave de

➥un producto, con la que se crea un objeto de ese tipo y se invoca

➥al método que busca un elemento en la tabla Hash. Se da un mensaje

➥de acuerdo al resultado obtenido. */

ccoouutt<<<<”\n\nClave del producto que busca (para terminar 0): “;

cciinn>>>>Clave;

wwhhiillee (Clave !!== 0)

{

Producto Prod(Clave, “”, 0);

iiff (HashEnc.Busca(Prod))

ccoouutt<<<<”\nEse producto ya fue registrado\n”;

eellssee

ccoouutt<<<<”\nEse producto NO está registrado “;

ccoouutt<<<<”\n\nClave del producto que buscas (para terminar 0): “;

cciinn>>>>Clave;

}

/* Se imprime la información de todos los productos guardados en la

➥tabla Hash. */

ccoouutt<<<<”\n\n\nReporte de todos los productos almacenados\n “;

HashEnc.Imprime();

}

10.2.4 Búsqueda secuencial en listas

Debido a la naturaleza de las listas simplemente ligadas, la búsqueda secuencial
es el único tipo de búsqueda que se puede aplicar sobre esta estructura de datos.
La variante que se puede introducir depende de si se sabe si los elementos de la

misma están o no ordenados. Por lo tanto, para las listas se definirá una clase
abstracta: Búsqueda y dos clases derivadas: SecuencialListasDesordenadas y
SecuencialListasOrdenadas para poder implementar las dos variantes de esta
operación.

10.2 Búsqueda interna 549

10

Búsqueda(T)

virtual NodoLista<T> Busca() = 0

SecuencialListaDesordenada(T)

NodoLista<T> Busca()

SecuencialListaOrdenada(T)

NodoLista<T> Busca()

FIGURA 10.12 Esquema de clases

A continuación se presenta la codificación, usando el lenguaje C++, de la planti-
lla de la clase abstracta. Observe que el método Virtual Busca() recibe como pa-
rámetro la lista donde se llevará a cabo la búsqueda y un elemento de tipo T que
es el dato a buscar. Si la operación se definiera como un método de la clase lista,
entonces sólo se recibiría como parámetro el dato a buscar.

/* Definición de la clase abstracta Busqueda. A partir de ella se derivan

➥otras dos clases para implementar los correspondientes algoritmos de

➥búsqueda secuencial para listas desordenadas y para listas ordenadas. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Busqueda

{

ppuubblliicc::

vviirrttuuaall NodoLista<<TT>> * Busca (Lista<<TT>>, TT) = 0;

};

La implementación de la clase derivada para realizar la búsqueda de un elemento
en una lista simplemente ligada, cuyos elementos están desordenados queda:

550 Capítulo 10. Búsqueda

/* Declaración de la clase SecuencialListaDesordenada, derivada de la

➥clase abstracta Busqueda. Se especifica el método Busca() de acuerdo al

➥algoritmo de búsqueda secuencial en una lista desordenada. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss SecuencialListaDesordenada: ppuubblliicc Busqueda<<TT>>

{

ppuubblliicc::

NodoLista<<TT>> * Busca (Lista<<TT>>, TT);

};

/* Método que busca un elemento dado como referencia en una lista

➥desordenada. Regresa la dirección del nodo si lo encuentra o NNUULLLL en

➥caso contrario. Recibe como parámetro la lista en la cual se realizará

➥la búsqueda y el dato a buscar. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> * SecuencialListaDesordenada<<TT>>::::Busca(Lista<<TT>> ListaDato,

➥TT Valor)

{

NodoLista<<TT>> *Q, *Resp= NNUULLLL;

/* Verifica si la lista tiene al menos un elemento. */

iiff (ListaDato.RegresaPrimero())

{

Q = ListaDato.RegresaPrimero();

wwhhiillee ((Q–>>RegresaInfo() !!== Valor) &&&& (Q–>>RegresaLiga()))

Q = Q–>>RegresaLiga();

iiff (Q–>>RegresaInfo() ==== Valor)

Resp= Q;

}

rreettuurrnn Resp;

}

Es importante señalar que si el dato a buscar fuera un objeto se debería sobrecar-
gar el operador != en la clase a la cual pertenece dicho objeto.

La implementación de la clase derivada para realizar la búsqueda de un elemento
en una lista simplemente ligada, cuyos elementos están ordenados queda:

Es importante señalar que si el dato a buscar fuera un objeto se debería sobrecar-
gar el operador < en la clase a la cual pertenece dicho objeto.

Con respecto a la eficiencia de esta operación es igual a la presentada para los arre-
glos. Dada la característica de la búsqueda, es independiente a si se implementa con
arreglos o con listas. En consecuencia, aplican las fórmulas dadas en 10.1.

El programa 10.6 muestra una aplicación de la búsqueda secuencial en listas. Se
crea una lista con los datos de las personas que asistieron a un congreso. Luego
se permite consultar (realizando búsquedas) la lista para verificar si una determi-
nada persona asistió o no al evento. Como no se sabe si la lista está ordenada, se

10.2 Búsqueda interna 551

10

/* Declaración de la clase SecuencialListaOrdenada, derivada de la clase

➥abstracta Busqueda. Se especifica el método Busca() de acuerdo al

➥algoritmo de búsqueda secuencial en una lista ordenada de manera

creciente. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss SecuencialListaOrdenada: ppuubblliicc Busqueda<<TT>>

{

ppuubblliicc::

NodoLista<<TT>> * Busca (Lista<<TT>>, TT);

};

/* Método que busca un elemento dado como referencia en una lista

➥ordenada de forma creciente. Regresa la dirección del nodo si lo

➥encuentra y NNUULLLL en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> * SecuencialListaOrdenada<<TT>>::::Busca(Lista<<TT>> ListaDato, TT

➥Valor)

{

NodoLista<<TT>> *Q, *Resp= NNUULLLL;

/* Verifica que la lista tenga al menos un elemento. */

iiff (ListaDato.RegresaPrimero())

{

Q = ListaDato.RegresaPrimero();

wwhhiillee ((Q–>>RegresaInfo() << Valor) &&&& (Q–>>RegresaLiga()))

Q= Q–>>RegresaLiga();

iiff (Q–>>RegresaInfo() ==== Valor)

Resp= Q;

}

rreettuurrnn Resp;

}

utiliza la búsqueda secuencial en listas desordenadas. Finalmente se imprimen los
datos de todos los asistentes.

Programa 10.6

552 Capítulo 10. Búsqueda

/* Se incluyen las bibliotecas en las que se guardaron las

➥plantillas de la clase Lista y de la clase Busqueda y su derivada

➥SecuencialListaDesordenada y además la biblioteca en la que está

➥la clase Persona. */

##iinncclluuddee “Lista.h”

##iinncclluuddee “Busqueda.h”

##iinncclluuddee “Persona.h”

/* Función principal. Se crea la lista de personas y luego, por medio de

➥la clase ya definida, se buscan a personas de acuerdo a su nombre que

➥es un dato proporcionado por el usuario. */

vvooiidd mmaaiinn(())

{

/* Se crean los objetos de la clase SecuencialListaDesordenada y de

➥la clase Lista, usando la clase Persona como tipo base. Además se

➥declaran algunas otras variables de trabajo. */

Lista<<Persona>> LisDesord, LisOrd;

SecuencialListaDesordenada<<Persona>> Buscador;

NodoLista<<Persona>> *Apunt;

cchhaarr NomPers[64];

/* Se capturan los datos de los asistentes al congreso sin ningún

➥orden entre los mismos. */

ccoouutt<<<<”\n\nIngrese la lista de asistentes al congreso.\n\n”;

LisDesord.CreaFinal();

/* Se realiza la búsqueda secuencial de personas, por su nombre, en

➥la lista previamente creada. Si dicha persona asistió al congreso,

➥entonces se imprimen todos sus datos. En caso contrario sólo se

➥indica que no participó en el evento. */

ccoouutt<<<<”\n\nIngrese nombre de la persona que desea verificar si

➥asistió al congreso.n”;

ccoouutt<<<<”Para terminar capture una X\n\n”;

cciinn>>>>NomPers;

wwhhiillee (ssttrrccmmpp(NomPers, “X”) !!== 0)

{

Persona Asistente(0, NomPers, “”);

Apunt = Buscador.Busca(LisDesord, Asistente);

iiff (Apunt !!== NNUULLLL)

ccoouutt<<<<”\n\nEsa persona asistió al congreso y sus datos

➥son:\n” <<<<Apunt–>>RegresaInfo()<<<<”\n”;

La búsqueda secuencial en listas puede tratarse como una operación de la clase
Lista en vez de considerarse como una clase. A continuación se presenta parte de
esta clase en la cual se incorporaron los métodos de búsqueda ya estudiados, con
la variante de que fueron escritos de manera recursiva.

10.2 Búsqueda interna 553

10

eellssee

ccoouutt<<<<”\n\nEsa persona NO asistió al congreso\n\n”;

ccoouutt<<<<”\n\nIngrese el nombre de la persona que desea verificar si

➥asistió al congreso\n\n”;

ccoouutt<<<<”Para terminar capture una X\n\n”;

cciinn>>>>NomPers;

}

/* Imprime todos los datos de los asistentes al congreso. */

LisDesord.Imprime(LisDesord.RegresaPrimero());

}

// Clase Lista dependiente de la clase NodoLista.
tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista;

/* Definición de la clase NodoLista. */
tteemmppllaattee <<ccllaassss TT>>

ccllaassss NodoLista

{

pprriivvaattee::

NodoLista<<TT>> *Liga;

TT Info;

ppuubblliicc::

NodoLista();

ffrriieenndd ccllaassss Lista<<TT>>;

// Otros métodos estudiados en el capítulo 6, dedicado a las

➥listas ligadas.

};

/* Declaración del método constructor por omisión. Inicializa con el

➥valor NNUULLLL al puntero al siguiente nodo. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>>::::NodoLista()

{

Liga = NNUULLLL;

}

554 Capítulo 10. Búsqueda

/* Definición de la clase Lista. Se incluyen sólo los métodos de búsqueda,

➥tema de estudio de este capítulo. */

tteemmppllaattee <<ccllaassss TT>>

ccllaassss Lista

{

pprriivvaattee::

NodoLista<<TT>> *Primero;

ppuubblliicc::

Lista ();

NodoLista<<TT>> *BuscaSecuencialOrd (NodoLista<<TT>> *, TT);

NodoLista<<TT>> *BuscaSecuencialDesord (NodoLista<<TT>> *, TT);

// Otros métodos estudiados en el capítulo 6, dedicado a las

➥listas ligadas.

};

/* Declaración del método constructor. Inicializa el puntero al primer

➥nodo de la lista con el valor NNUULLLL: indica lista vacía. */

tteemmppllaattee <<ccllaassss TT>>

Lista<<TT>>::::Lista()

{

Primero = NNUULLLL;

}

/* Método de la clase Lista que busca un elemento en una lista ordenada

➥de manera creciente. Regresa la dirección del nodo si lo encuentra o

➥NNUULLLL en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> * Lista<<TT>>::::BuscaSecuencialOrd(NodoLista<<TT>> * Ap, TT Dato)

{

iiff (Ap)

iiff (Ap–>>Info << Dato)

rreettuurrnn BuscaSecuencialOrd(Ap–>>Liga, Dato);

eellssee

iiff (Ap–>>Info ==== Dato)

rreettuurrnn Ap;

eellssee

rreettuurrnn NNUULLLL;

eellssee

rreettuurrnn NNUULLLL;

}

/* Método de la clase Lista que busca un elemento en una lista

➥desordenada. Regresa la dirección del nodo si lo encuentra o NNUULLLL

➥en caso contrario. */

tteemmppllaattee <<ccllaassss TT>>

NodoLista<<TT>> * Lista<<TT>>::::BuscaSecuencialDesord (NodoLista<<TT>>

➥* Ap, TT Dato)

10.2.5 Búsqueda en árboles

La operación de búsqueda en árboles depende de la estructura de los mismos. Las
más usadas fueron presentadas en el capítulo 7, dedicado al estudio de estas estruc-
turas de datos.

10.2.6 Búsqueda en gráficas

La operación de búsqueda en gráficas depende de la estructura de las mismas. Las
más usadas fueron presentadas en el capítulo 8. Además, en el caso de estas estruc-
turas, la búsqueda también queda determinada por la información que se pretende
extraer de las mismas.

10.3 Búsqueda externa
La búsqueda externa es aquella que se realiza sobre un archivo previamente
creado y guardado en algún dispositivo de almacenamiento secundario. La mane-
ra en la que se podrá tener acceso a los datos del archivo depende de la forma en
que el archivo fue creado. En esta sección se estudiará la búsqueda secuencial y
binaria en archivos de objetos.

La implementación de cualquiera de los tipos de búsqueda en archivo está estre-
chamente determinada por el lenguaje de programación utilizado.

10.3 Búsqueda externa 555

10

{

iiff (Ap)

iiff (Ap–>>Info !!== Dato)

rreettuurrnn BuscaSecuencialDesord(Ap–>>Liga, Dato);

eellssee

rreettuurrnn Ap;

eellssee

rreettuurrnn NNUULLLL;

}

10.3.1 Búsqueda externa secuencial

La búsqueda secuencial en archivos de objetos consiste en leer del archivo un
objeto (el primero) y compararlo con el dato buscado. Si son iguales termina la
búsqueda con éxito. En caso contrario se debe leer el siguiente elemento del
archivo y se compara nuevamente con el dato que interesa. El proceso se repite
hasta encontrar la información buscada o hasta llegar al final del archivo, caso en
el que la búsqueda termina con fracaso.

Si la información del archivo estuviera ordenada, entonces se puede modificar la
condición durante la cual se realiza la lectura y comparación de objetos para ga-
nar eficiencia. Si estuviesen ordenados crecientemente, se busca mientras no sea
el fin de archivo y mientas el dato leído sea menor que el elemento buscado. En
cambio si el orden fuera decreciente, se busca mientras no sea el fin de archivo y
mientas el dato leído sea mayor que el elemento buscado.

Como se puede apreciar, el algoritmo (tanto para archivos desordenados como
para ordenados) es el mismo que el aplicado a estructuras de almacenamiento
interno. La diferencia está en la implementación debido a las características
propias de los archivos.

El programa 10.7 presenta la clase Vehiculo que será usada en la implementación
de estos algoritmos.

Programa 10.7

556 Capítulo 10. Búsqueda

/* Definición de la clase Vehiculo. Se incluyen sólo algunos atributos y

➥métodos, mismos que se utilizarán para ilustrar la búsqueda secuencial

➥en archivos de objetos. */

ccllaassss Vehiculo

{

pprriivvaattee::

cchhaarr Placa[8], NumMotor[16], Color[8];

iinntt Cilindros;

ppuubblliicc::

Vehiculo();

Vehiculo(cchhaarr **, cchhaarr **, cchhaarr **, iinntt);

cchhaarr ** RegresaPlaca();

ffrriieenndd iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&, Vehiculo &&);

ffrriieenndd oossttrreeaamm &&ooppeerraattoorr <<<< (oossttrreeaamm &&, Vehiculo &&);

};

/* Constructor por omisión. */

Vehiculo::::Vehiculo()

{}

10.3 Búsqueda externa 557

10

/* Constructor con parámetros. */

Vehiculo::::Vehiculo(cchhaarr Pla[], cchhaarr NumM[], cchhaarr Col[], int Cil)

{

ssttrrccppyy(Placa, Pla);

ssttrrccppyy(NumMotor, NumM);

ssttrrccppyy(Color, Col);

Cilindros= Cil;

}

/* Método que permite a usuarios externos a la clase conocer el atributo

➥Placa. */

cchhaarr * Vehiculo::::RegresaPlaca()

{

rreettuurrnn Placa;

}

/* Sobrecarga del operador >>>> para que un objeto tipo Vehiculo pueda

➥ser leído directamente. */

iissttrreeaamm &&ooppeerraattoorr >>>> (iissttrreeaamm &&Lee, Vehiculo &&ObjV)

{

ccoouutt <<<<”\n\nIngrese placa del vehículo: “;

Lee>>>> ObjV.Placa;

ccoouutt <<<<”\n\nIngrese número de motor: “;

Lee>>>> ObjV.NumMotor;

ccoouutt <<<<”\n\nIngrese color: “;

Lee>>>> ObjV.Color;

ccoouutt <<<<”\n\nIngrese total de cilindros: “;

Lee>>>> ObjV.Cilindros;

rreettuurrnn Lee;

}

/* Sobrecarga del operador <<<< para que un objeto tipo Vehiculo pueda

➥ser impreso directamente. */

ostream &&operator <<<< (ostream &&Escribe, Vehiculo &&ObjV)

{

Escribe<<<<”\n\nDatos del vehículo\n”;

Escribe<<<<”\nPlacas: “<<<<ObjV.Placa;

Escribe<<<<”\nNúmero de motor: “<<<<ObjV.NumMotor;

Escribe<<<<”\nColor: “<<<<ObjV.Color;

Escribe<<<<”\nTotal de cilindros: “<<<<ObjV.Cilindros;

rreettuurrnn Escribe;

}

El programa 10.8 presenta una aplicación de la búsqueda secuencial en un archi-
vo cuya información está desordenada. Se crea un archivo con objetos de la clase
Vehiculo y posteriormente se realiza la búsqueda de algún vehículo por medio del
número de placas. Si lo encuentra despliega toda la información del mismo, y en
caso contrario sólo indica que no se encontró.

Programa 10.8

558 Capítulo 10. Búsqueda

/* Se incluye la biblioteca donde se guardó la clase Vehiculo. */

#include “Vehiculo.h”

/* Función auxiliar para crear un archivo de objetos tipo Vehiculo. */

vvooiidd CreaArch()

{

cchhaarr NomArch[64];

iinntt Total, Indice;

Vehiculo Auto;

/* Se declara un objeto de la clase fstream, provista por CC++++ para el

➥manejo de archivos. */

ffssttrreeaamm Arch;

ccoouutt<<<<”\n\nNombre del archivo que quiere crear: “;

cciinn>>>>NomArch;

/* Se crea un archivo para escritura. */

Arch.ooppeenn(NomArch, iiooss::::oouutt);

ccoouutt<<<<”\n\nTotal de vehículos a registrar: “;

cciinn>>>>Total;

/* Se leen y se almacenan en el archivo objetos de la clase Vehiculo. */

ffoorr (Indice= 1; Indice <<== Total; Indice++++)

{

cciinn>>>>Auto;

Arch.wwrriittee((cchhaarr *) &&Auto, ssiizzeeooff(Auto));

}

Arch.cclloossee();

}

/* Función principal. Permite crear un nuevo archivo o usar uno ya

➥existente. Sobre el archivo elegido realiza búsqueda secuencial para

➥encontrar un objeto tipo Vehiculo. Se asume que la información está

➥desordenada. */

vvooiidd mmaaiinn (())

{

cchhaarr Nom[64], Placa[64], Resp;

ffssttrreeaamm Arch;

Vehiculo Auto;

ccoouutt<<<<”\nQuieres crear un nuevo archivo s/n: “;

cciinn>>>>Resp;

iiff (Resp ==== ‘s’)

CreaArch();

Este algoritmo se puede adaptar para búsqueda secuencial en archivos ordenados.
Sólo se requiere cambiar la segunda condición del ciclo, quedando

(strcmp(Auto.RegresaPlaca(), Placa) < 0) para arreglos ordenados crecientemente, o

(strcmp(Auto.RegresaPlaca(), Placa) > 0) para arreglos ordenados decreciente-
mente.

10.3.2 Búsqueda externa binaria

La búsqueda binaria se aplica sólo a archivos de objetos que están ordenados.
El espacio de búsqueda (que es todo el archivo) se divide a la mitad, luego se lee
el dato que ocupa esa posición y se compara con el elemento que interesa. Si son
iguales, la búsqueda termina con éxito. En caso contrario, se evalúa si el dato leído
es menor o mayor que el dato buscado. En el primer caso se redefine el espacio de
búsqueda limitándolo desde la posición central más uno hasta el final del archivo.
En el segundo, desde la posición inicial hasta la central menos uno. El proceso se

10.3 Búsqueda externa 559

10

ccoouutt<<<<”\n\nIngresa el nombre del archivo que quieres consultar: “;

cciinn>>>>Nom;

/* Se abre el archivo para lectura. */

Arch.ooppeenn(Nom, ios::::in);

ccoouutt<<<<”\n\nIngrese el número de placas del vehículo: “;

cciinn>>>>Placa;

/* Se lee un objeto del archivo mientras no se llegue al fin del

➥mismo y mientras no se encuentre el elemento buscado. */

Arch.rreeaadd((cchhaarr *) &&Auto, ssiizzeeooff(Auto));

wwhhiillee (!Arch.eeooff(()) &&&& (ssttrrccmmpp(Auto.RegresaPlaca(), Placa) != 0))

Arch.rreeaadd((cchhaarr *) &&Auto, ssiizzeeooff(Auto));

/* Se verifica si se encontró el auto en el archivo. */

iiff (ssttrrccmmpp(Auto.RegresaPlaca(), Placa) ==== 0)

ccoouutt<<<<”\n”<<<<Auto;

eellssee

ccoouutt<<<<”\n\nEse auto no está registrado\n\n”;

Arch.cclloossee();

}

repite hasta encontrar el dato buscado o hasta que el extremo izquierdo del espa-
cio quede mayor al extremo derecho, lo cual implica terminar con fracaso.

Para poder aplicar este algoritmo a un archivo ya ordenado se requiere calcular
la posición del último elemento almacenado en el archivo. Para ello se usan
facilidades que ofrecen los lenguajes de programación, como se verá en el
programa 10.9.

El algoritmo (en esencia) es el mismo que el analizado para estructuras de alma-
cenamiento interno. La diferencia está en la implementación debido a las caracte-
rísticas propias de los archivos.

El programa 10.9 presenta la implementación de este algoritmo. Se vuelve a usar
la clase Vehiculo definida en el programa 10.7. Si se requiere crear un archivo se
puede usar la función del programa 10.8 creada para tal efecto.

Programa 10.9

560 Capítulo 10. Búsqueda

/* Función principal. Utiliza búsqueda binaria para encontrar un

➥vehículo en un archivo previamente creado, cuya información está

➥ordenada por número de placas. */

vvooiidd mmaaiinn (())

{

cchhaarr Nom[64], Placa[64];

iinntt Izq, Der, Cen;

ffssttrreeaamm Arch;

Vehiculo Auto;

ccoouutt<<<<”\n\nIngrese el nombre del archivo que quiere consultar: “;

cciinn>>>>Nom;

ccoouutt<<<<”\n\nIngrese el número de placas del vehículo: “;

cciinn>>>>Placa;

/* Se abre el archivo para lectura. */

Arch.ooppeenn(Nom, iiooss::::iinn);

/* Se posiciona al final del archivo. */

Arch.sseeeekkgg(0, iiooss::::eenndd);

/* Se calcula el extremo derecho, el izquierdo y el central del

➥espacio de búsqueda. */

Der = (iinntt) Arch.tteellllgg()/ssiizzeeooff(Auto) –1;

Izq= 0;

Cen= (iinntt) (Izq + Der) /2;

Ejercicios 561

10

/* Se posiciona el puntero del archivo en la posición central del

➥mismo y se lee el objeto que haya sido almacenado en esa posición. */

Arch.sseeeekkgg(Cen*ssiizzeeooff(Auto), iiooss::::bbeegg);

Arch.rreeaadd((cchhaarr *) &&Auto, ssiizzeeooff(Auto));

/* Se busca mientras el extremo izquierdo sea menor o igual al

➥extremo derecho y mientras no se encuentre el elemento buscado. */

wwhhiillee (Izq <<= Der &&&& ssttrrccmmpp(Auto.RegresaPlaca(), Placa) != 0)

{

iiff (ssttrrccmmpp(Auto.RegresaPlaca(), Placa) << 0)

Izq= Cen +1;

eellssee

Der = Cen –1;

Cen= (int) (Izq + Der) /2;

Arch.sseeeekkgg(Cen*ssiizzeeooff(Auto), iiooss::::bbeegg);

Arch.rreeaadd((cchhaarr *) &&Auto, ssiizzeeooff(Auto));

}

/* Se comprueba si se encontró al vehículo buscado. */

iiff (ssttrrccmmpp(Auto.RegresaPlaca(), Placa) ==== 0)

ccoouutt<<<<”\n”<<<<Auto;

eellssee

ccoouutt<<<<”\n\nEse auto no está registrado\n\n”;

Arch.cclloossee();

}

En el programa 10.9 se usaron métodos (Seekg() y tellg()) de la clase fstream
para tener acceso a ciertas funcionalidades necesarias para realizar la búsqueda
binaria. Con la ayuda de estos métodos se calculó el total de elementos almace-
nados en el arreglo y se pudo, en cada iteración, colocar el puntero del archivo
en la posición central del mismo.

Ejercicios
1. Considere las fórmulas presentadas en Fórmulas 10.1, para búsqueda

secuencial. Complete la siguiente tabla con el número mínimo, medio y
máximo de comparaciones para distintos tamaños de arreglos.

562 Capítulo 10. Búsqueda

Número de comparaciones

Tam Mínimo Medio Máximo

10

100

1000

5000

10000

Número de comparaciones

Tam Mínimo Medio Máximo

10

100

1000

5000

10000

2. Considere las fórmulas presentadas en Fórmulas 10.2, para búsqueda bina-
ria. Complete la siguiente tabla con el número mínimo, medio y máximo de
comparaciones para distintos tamaños de arreglos.

3. Se tiene un arreglo que almacena los datos de productos (puede usar la
clase Producto del programa 10.4). Utilice la clase SecuencialDesord para
declarar un objeto, el cual debe buscar un producto en el arreglo mencionado.
El usuario proporcionará la clave del producto de interés.

4. Escriba un programa en C++ que realice las siguientes operaciones (modu-
larice su solución):

(a) Lea la información de varios productos (utilice la clase Producto ya
mencionada) y almacénela en un arreglo.

(b) Ordene el arreglo por medio de algunos de los algoritmos estudiados
en el capítulo 9.

(c) Usando la clase Binaria busque algún producto en el arreglo ya orde-
nado. Si lo encuentra debe imprimir toda la información del mismo, y
en caso contrario debe indicar que ese producto no está registrado. El
usuario proporcionará la clave del producto de interés.

5. Retome la clase Arreglo usada en el programa 10.1. Escriba un método, lla-
mado BusqBinaria(T), que implemente la búsqueda binaria como miembro
de esa clase.

6. Modifique las clases correspondientes al método por transformación de cla-
ves, de tal manera que la función Hash se implemente como un método de la
clase abstracta Hash y pueda ser usada por todas las clases derivadas.

7. Retome el problema anterior. Utilice alguna forma distinta para la función
Hash (truncamiento, plegamiento o alguna diseñada por usted). Compare
los resultados obtenidos para el mismo conjunto de datos. ¿Cuál distribuyó
más uniformemente los elementos en la tabla Hash?

8. Modifique el método Busca() de la clase abstracta Hash y de sus clases deri-
vadas para que su resultado sea un entero que indique la dirección donde
encontró el elemento buscado o un negativo en caso de fracaso.

9. Se define la clase CuentaBancaria según se especifica más abajo. Utilice
Hash con encadenamiento para almacenar en memoria principal un conjun-
to de objetos declarados a partir de dicha clase. Generalice la clase Hash vista
en este capítulo y, si corresponde, su clase derivada, para que además de
insertar y buscar, se pueda eliminar un elemento de la tabla Hash. Considere
casos de error.

Ejercicios 563

10

CuentaBancaria

NumeroCta: int

Saldo: double

Titular: char[]

FechaApertura: char[]

Constructor(es)

RegresaCta(): int

Otros métodos que crea necesarios
para resolver el problema.

10. Escriba un programa en C++ que realice las siguientes operaciones (organi-
ce su solución modularmente):

a) Capture objetos de tipo Persona (puede usar la clase definida en el pro-
grama 10.1) y almacénelos en un archivo. Los datos son proporcionados
sin orden.

b) Busque, por su nombre, una persona previamente guardada en el
archivo. Si la encuentra debe imprimir toda la información de dicha
persona. En caso contrario sólo indicará que no está registrada. El
usuario proporciona como entrada el nombre de la persona a buscar.

11. Escriba un programa en C++ que realice las siguientes operaciones (organi-
ce su solución modularmente):

a) Capture objetos de tipo CuentaBancaria (puede usar la clase definida
en el problema 9) y almacénelos en un archivo.

b) Utilice alguno de los algoritmos de ordenación vistos en el capítulo 9
para ordenar el archivo, de acuerdo al número que identifica a cada
cuenta bancaria.

c) Busque, por número de cuenta, una cuenta previamente guardada en
el archivo. Si la encuentra debe imprimir toda la información de dicha
cuenta. En caso contrario sólo indicará que no está registrada. El usua-
rio proporciona como entrada el número de la cuenta a buscar. Para
realizar la búsqueda utilice el algoritmo de búsqueda binaria, ya que
como resultado del inciso b) el archivo debe estar ordenado según el
atributo NumeroCta.

564 Capítulo 10. Búsqueda

ÍNDICE

A

Abstracción, 1, 2, 4
Abstract Data Type, 4
Abstracta, clase, 107
Adyacencia

lista, 398
matriz, 398

etiquetada, 399
Adyacentes, vértices, 394
Aislado, vértice, 395
Algoritmo de Sheker, 457
Amigas(os)

clases, 59
funciones, 65
métodos, 63

Árbol, 313
abarcador, 424
altura, 315
balanceado, 345

eliminación, 353
inserción, 350

binario, 315
búsqueda en, 330
creación, 320
de búsqueda, 329
eliminación de un

elemento, 335
inserción de un nuevo

elemento, 332
operaciones, 319
recorrido, 321

grado, 315

hermano, 314
hijo, 314
hoja, 315
interior, 315
libre, 396, 424
nodo, 313
padre, 314
raíz, 313, 315
reacomodo, 346
terminal, 315

Árboles B, 367
búsqueda en, 368, 382
eliminación en, 375,

385
inserción en, 370, 383
página, 367
página raíz, 367, 381
páginas hojas, 367, 381
páginas intermedias,

367, 381
Arreglo(s), 115

bidimensional, 150
clase, 117
de dos dimensiones, 150
de objetos, 160
desordenados, 123, 508
eliminación de un

elemento, 122
escritura, 121
lectura, 119
ordenado(s), 131, 509,

516
paralelos, 140

Atributos, 7

B

Balanceado, árbol, 345
Bidimensional, arreglo, 150
Binaria, búsqueda, 516
Binario, árbol, 315

búsqueda de un
elemento, 330

creación, 320
de búsqueda, 329
eliminación de un

elemento, 335
inserción de un

elemento, 332
operaciones en, 318
recorrido, 321

Breadth First (búsqueda a
lo ancho), 436

Búsqueda, 505
a lo ancho (Breadth

First), 436
binaria, 516
de elementos en listas,

281
eficiencia, 510, 518
en árboles, 555
en gráficas, 555
en profundidad (Depth

First), 436
externa, 505, 555

binaria, 559
secuencial, 556

interna, 505, 506

566 Índice

secuencial, 124, 131, 508
eficiencia, 510
en listas, 548

C

Camino, 395
cerrado, 395
ciclo, 395
simple, 395

Clase(s), 7, 9
abstracta(s), 9, 107
amigas (friend), 59
arreglo, 117
base, 35
concretas, 9
derivada, 35

Cola(s), 195, 211
Circular(es), 224, 225
dobles, 231

Colisión, 520
solución, 525

Constructor
con parámetros por

omisión, 19
con parámetros, 18
por omisión, 18

D

Depth First (búsqueda en
profundidad), 436

Desordenados, arreglos,
123, 508

Dijkstra, método, 411
Doblemente ligadas, listas,

269, 272, 276, 281
búsqueda de elementos,

281

Dos dimensiones, arreglo,
150

E

Elemento
eliminación, 122, 141
inserción, 125, 133,

141
Eliminación

de elementos en una
lista, 247

de un elemento de la
lista, 250, 279

de un elemento de un
arreglo, 122, 141

del primer elemento de
la lista, 248, 276

del último elemento de
la lista, 249, 278

en árboles balanceados,
353

en listas doblemente
ligadas, 276

operación, 215
(Pop), 199

Encadenamiento, 538
Encapsulamiento, 1, 2
Escritura de un arreglo, 121
Estructura

abstracta, 197, 212
de datos, 115

F

Factor de equilibrio, 345
FIFO, 212
Final, 212

Floyd, método, 406
Frente, 212
Friend

clases, 59
Funciones, 99

amigas, 65

G

Grado
de un árbol, 315
de un nodo, 315
de un vértice, 395

Gráfica, 421
árbol, 396
conexa, 395
digráfica, 397
dirigida, 397
etiquetada, 396
multigráfica, 396
no dirigida, 421
subgráfica, 396

H

hash
funciones, 522
tabla, 519

Herencia, 1, 3, 35
clase base, 35
clase derivada, 35
de niveles múltiples, 45
múltiple, 40
privada, 58
simple, 36
subclase, 35
superclase, 35

Hermano, 314

Índice 567

Hijo, 314
Hoja, 315

I

Incidente, vértice, 394
Inserción, 272

al final de la lista, 242,
274

al principio de la lista,
241, 272

antes de un nodo,
244

binaria, método, 472
de elementos en una

lista, 241
de un nuevo elemento,

125, 133, 141
después de un nodo,

246
en árboles balanceados,

350
formando una lista

ordenada, 275
operación de, 214
(Push), 198

Intercambio directo
con desplazamiento

hacia la derecha,
455

con desplazamiento
hacia la izquierda,
453

con señal, 459

K

Kruskal, método, 427

L

Lazo o bucle, 395
Lectura de un arreglo, 119
LIFO, 196
Lista(s), 237

búsqueda
de elementos en listas

doblemente ligadas,
281

secuencial, 548
circular simplemente

ligada, 238
circulares doblemente

ligadas, 293
de adyacencia, 398
doblemente ligadas, 269,

272
eliminación

de elementos, 247
de un elemento, 250
del primer elemento,

248
del último elemento,

249
inserción

al final, 242
al principio, 241
de elementos, 241

multilistas, 293
simplemente ligada, 238

M

Matrices
poco densas, 171
triangulares, 177

Matriz, 422, 150
de adyacencia, 398, 422

etiquetada, 399, 422

de costos, 399, 422
de distancias, 399, 422
triangular inferior, 177,

181
triangular superior,

177
Método

constructor, 17
de inserción binaria,

472
destructor, 17
Dijkstra, 411
Floyd, 406
Kruskal, 427
por transformación de

claves, 519
Prim, 425
Quicksort, 461
rápido, 461
Shell, 469, 474
Warshall, 402

Métodos, 7
amigos, 63
virtuales, 99

puros, 107
Mezcla

directa, 488, 489
equilibrada, 488, 494

Multilistas, 293

N

Nivel de un nodo, 315
Nodo, 313

grado, 315
nivel, 315

Nodos, 238
inserción antes de, 244
inserción después de,

246

568 Índice

O

Objeto, 7
Ocultamiento, 3
Operación de eliminación,

215
Operación de inserción,

214
Operadores, sobrecarga, 204
operator, 78
Ordenación, 449

creciente, 450, 488
decreciente, 450, 488
externa, 449, 488

mezcla directa, 488,
489

mezcla equilibrada,
488, 494

interna, 449, 450
por inserción 469

binaria, 469
directa, 469

por intercambio, 452
con señal, 452
directo, 452
Quicksort, 452
Sheker, 452

por selección, 466
Ordenados, arreglos, 131,

508, 516

P

Padre, 314
Paralelos, arreglos, 140
Pila(s), 195, 196

tope, 196

Plantillas, 87
de clases, 89
de funciones, 87

Polimorfismo, 1, 3, 99
Pop (eliminación), 199
Prim, método, 426
private, 10
Programación orientada a

objetos, 1
protected, 10
public, 10
Push (inserción), 198

Q

Quicksort, método, 461

R

Raíz, 313, 315
Reacomodo del árbol, 346
Rotación, 346

compuesta, 348
simple, 347

S

Sección
privada (private), 10
protegida (protected), 10
pública (public), 10

Shekel, algoritmo, 457
Shell, método, 469, 474

Simplemente ligada, lista
circular, 268

Sobrecarga, 77
de funciones, 82
de los operadores <<, 80
de los operadores >>, 80
de operadores, 78, 204

Subclase, 35
Superclase, 35

T

template, 88
Tipo Abstracto de Datos, 4

V

Vértice(s)
adyacentes, 394
aislado, 395
grado de, 395
incidente, 394

Virtual, 99
Virtuales, métodos, 99

W

Warshall, método, 402

	Estructura de datos orientada a objetos: Algoritmos con C++
	Contenido
	Capítulo 1 Introducción a la Programación Orientada a Objetos
	Capítulo 2 Herencia y amistad
	Capítulo 3 Sobrecarga, plantillas y polimorfismo
	Capítulo 4 Arreglos
	Capítulo 5 Pilas y colas
	Capítulo 6 Listas
	Capítulo 7 Árboles
	Capítulo 8 Gráficas
	Capítulo 9 Ordenación
	Capítulo 10 Búsqueda
	Índice

